
Chapter 7
Stochasticity and Determinism in Models
of Hematopoiesis

Marek Kimmel

Abstract This chapter represents a novel view of modeling in hematopoiesis, synthe-
sizing both deterministic and stochastic approaches. Whereas the stochastic models
work in situations where chance dominates, for example when the number of cells is
small, or under random mutations, the deterministic models are more important for
large-scale, normal hematopoiesis. New types of models are on the horizon. These
models attempt to account for distributed environments such as hematopoietic niches
and their impact on dynamics. Mixed effects of such structures and chance events
are largely unknown and constitute both a challenge and promise for modeling. Our
discussion is presented under the separate headings of deterministic and stochastic
modeling; however, the connections between both are frequently mentioned. Four
case studies are included to elucidate important examples. We also include a primer
of deterministic and stochastic dynamics for the reader’s use.
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Introduction

The role of stochastic events in hematopoiesis has been discussed for the past 60 years
since the beginnings of experimental hematology by Till and McCulloch [1]. The
two opposing paradigms, deterministic hematopoiesis based on the firm regulation of
peripheral blood cell populations, and stochastic hematopoiesis based on variability
observed in seeded bone marrow cells, are still awaiting a grand synthesis. This is in
spite of the existence of substantial experimental findings, particularly those in the
recent decade, using techniques of single-cell measurements. Disease-accompanying
dynamics have been over the years variously modeled as deterministic or stochastic.
Examples of stochastic phenomena observed in hematopoiesis include, but are not
limited to:
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• Stochastic fluctuations in the number of hematopoietic stem cell (HSC) mak-
ing self-renewal versus commitment decisions result in high variability in the
magnitude of the response to infection.

• The same stochastic fluctuations may lead to depletion of the HSC compartment
when facing massive infections such as neonatal sepsis.

• Presence of variant proteins in molecular switches responding to hematopoietic
growth factors such as granulocyte colony-stimulating factor (GCSF) leads to
aberrant proliferation and leukemia, again with an important chance component.

• Molecular switches under stochastic fluctuations in molecular pathways and re-
ceptor noise may become reversible, which results in reversibility and plasticity
at the level of the HSC and early committed cell level.

Recently, a third approach is emerging, which may be termed the molecular deter-
minism (term coined based on ideas in [2, 3]). According to molecular determinism,
stochastic variability of the proliferating bone marrow cells can be reduced to com-
plicated series of deterministic events including molecular switches, which are
multistable by nature and which trigger proliferation and/or maturation decisions.
This is distinct from older proposals involving chaotic dynamics [4, 5].

Mathematical, and in particular stochastic, principles have been used to explain the
balance of factors contributing to behavior of a cell population as a whole. However,
new techniques for gathering data and probing biological processes at a molecule
and cell level continuously provide unprecedented amounts of new information,
which leads to reexamination of these models. This has led to a renewed skepticism
concerning stochastic modeling as a paradigm. As argued by Snijder and Pelkmans
[2], deterministic approach (or, what was called “molecular determinism” earlier in
the current chapter) can resolve apparently stochastic phenomena with deterministic
variability. They argue that cell-state parameters, such as cell size, growth rate, and
cell cycle state, can be used to explain cell-to-cell variability, similarly as spatial cell
population context parameters such as local cell density and location on cell colony
edges. Tracing back cell-to-cell variability in time over multiple cell cycles may
identify inherited, predetermining factors in cells of the same lineage. Snijder and
Pelkmans [2] also advocate repeated stimulation of the same cells to help identify
the presence of deterministic factors in seemingly stochastic cell-to-cell variability.
Complicated dynamics leading to chaotic (and sometimes indistinguishable from
stochastic) behavior has been appreciated for some time. For example, existing
mathematical models of cell cycle regulation (cf. e.g., [6] and references therein) rely
on nonlinear regulatory functions to control cell population distribution. However,
these models also include a very real phenomenon of uneven allocation of constituents
to progeny cells, which arguably is either truly stochastic or is indistinguishable from
stochastic. Moreover, the idea of “backtracking” complicated (chaotic) trajectories
seems to be doubtful from mathematical viewpoint. Schroeder [7] discussed the
need for long-term continuous follow-up on individual cells in order to understand
the specific rules of proliferation and differentiation. This chapter also touches upon
issues such as influence of imaging techniques on cell behavior and difficulty in cell
tracking using existing software.
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Returning to molecular determinism, a very good example of this approach seems
to be the paper by Takizawa et al. [8], concerning a purely deterministic and demand-
driven integrated model of regulation of early hematopoiesis. This models is very
complex and it involves “view of how cytokines, chemokines, as well as conserved
pathogen structures, are sensed, leading to divisional activation, proliferation, dif-
ferentiation, and migration of HSCs and progenitor cells, all aimed at efficient
contribution to immune responses and rapid reestablishment of hematopoietic home-
ostasis.” Takizava et al. [8] paper is too involved physiologically to be discussed at
length here. Let us notice that it contrasts with the simpler (and stochastic) mod-
els of Ogawa [9] and Abkowitz et al. [10]. In these models, the branching process
(bp) paradigm is used at its simplest, with cells depicted as independent individuals,
splitting at random and possibly interacting with a limited number of smaller entities.

Another current concept is that of nongenetic variability as a substrate for natu-
ral section, as espoused by Huang’s group [11]. For example, slow fluctuations in
mammalian cells are the expression of heritability (memory) of protein abundance
in successive generations of normal or cancer cells [12, 13]. One example is the
noninherited form of drug resistance in cancer. Theoreticians have been suggesting
this for several decades because of similar experimental evidence. The memories
of protein abundance and dynamic homeostasis, which implied slow fluctuations in
individual cells, were important constituents of many of the cell cycle regulation and
unequal division models [14–16]. Development of resistance to chemotherapy by
gene amplification (genetic, but nonmutation driven) has been pondered by theorists
equally long ago [17, 18].

Questions about the dynamics of hematopoiesis are resurfacing due to new ex-
perimental studies concerning lineage-specific growth factors, morphogens, the
microenvironment, and the plasticity of stem cells. These new findings allow a re-
examination of two long-standing questions: whether hematopoiesis is stochastic or
deterministic, and whether it is discrete or continuous. These issues exist for other
non-HSC systems; however, hematopoiesis serves as the most informative and ac-
cessible mammalian tissue system to look for answers [1]. Since quantitative systems
analysis based on multi-scale modeling is needed to understand the complexity and
dynamics of hematopoiesis, determining the correct approach to this modeling is of
more than academic interest. Much work has been recently published on this topic
and some of it will be reviewed in the current chapter. We will first pose three key
questions and then use a simple “toy” model to explain basic ideas and problems.

Question 1. Is Hematopoiesis Deterministic or Stochastic?

Experimental data suggest stochastic factors play a role in determining fate of daugh-
ter cells of a stem cell [19, 20]. However, it is not clear at which critical junction
stochasticity operates in lineage-specific regulation (principal examples being ery-
thropoietin (Epo)-driven erythropoiesis and GCSF-driven granulopoiesis. Recent
systemic and modeling studies of dynamics of signaling pathways in cells at various
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stages of hematopoiesis, underscore the role of bistable (or multistable) switches,
which can direct the cell towards “fates” such as differentiation in various directions,
proliferation, or apoptosis [21]. These switches, as described and modeled, are es-
sentially deterministic circuits, displaying a series of stable and unstable steady states
[22]. The stable steady states correspond to distinct patterns of expression of target
genes, characteristic of a given cell “fate.” Small change in initial conditions at indi-
vidual cell’s level or in type or strength of receptor activation results in switching from
one stable work regime to another [23]. Although this paradigm explains the interplay
of positive and negative feedbacks in cells, it does not explain the intrinsic stochas-
ticity, implied by both classical and more recent experiments on hematopoietic cells
[9, 10]. Independently, there exists a sizeable body of evidence that eukaryotic cells
may make individual decisions based on nondeterministic rules [24, 25]. The sources
of intrinsic stochasticity in eukaryotic cells are related to processes in which a small
number of interacting molecules may trigger a large-scale effect [26]. Stochastic
effects may provide robust evolutionarily adaptive mechanisms [27]. A critical prop-
erty of hematopoiesis is the ability to protect against environmental insults (e.g.,
infection), which may require a design incorporating stochastic dynamics.

Question 2. Do HSCs and Their Progeny Constitute Discrete
Subsets or a Continuum?

The general question of stem cell plasticity and, in particular, the reversibility of the
HSC has gained much interest due to stem cell engineering and induced pluripotent
stem cells. A related question is to what extent the succession and timing and com-
mitment and differentiation (maturation) processes in hematopoiesis can be altered
or “stretched” within the bounds of normality. On an operational level, is it sufficient
to model hematopoiesis in the terms of discrete stages or is it necessary to include
continuous maturation?

Question 3. What Role Is Played in Hematopoiesis
by Spatial Effects?

The usual approach has been to treat the process as spatially uniform in both the
bone marrow and peripheral circulation. However, recent research on niches and
environments in the bone marrow and the interaction of HSC and mesenchymal stem
cells (see [28]), has led to a realization that spatial effects and interaction between
spatial and stochastic effects cannot be ignored. Such interactions in mathematical
models result in qualitatively new dynamics (as in Roeder’s 2006 model [29]). The
reason is that spatial separation provides opportunity for small colonies of cells to
fix stochastic fluctuations despite the fact the total size of the population is large.
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Primer in Deterministic and Stochastic Dynamics

This primer is intended for the wide audience who study systems biology, and
depending on your expertise can be skipped or used as a loose reference.

Deterministic Dynamical Systems

To understand deterministic models of hematopoiesis, we will need definitions and
theorems from the mathematical theory of dynamical systems. In general, these are
objects that evolve in time and, when “stopped” as a result of either a physical or a
“thought” intervention, can be restarted and continued “as if nothing happened.” This
is known as the “continuation principle.” Mathematically, let us denote by x(t ; t0, x0)
the state of the system at time t, if at time t0 the state was x0, i.e., x(t0; t0, x0) = x0.
In these terms, the continuation principle can be stated as x(t + s; t0, x0) = x(t ; t0 +
s; x(s; t0, x0)).

The most commonly employed dynamical systems have the form of differential
equations (DEs; including multidimensional or infinitely dimensional DEs). In this
setup, x(t ; t0, x0) is the solution of the DE of the form dx/dt = f (x), with solution
x(t) satisfying the x(t0) = x0. Such solution can be denoted by x(t ; t0, x0), and it
can be proved that it satisfies the continuation principle. Solutions of DEs have been
extensively studied and therefore constitute a convenient tool.

Solution x(t ; t0, x0) of a DE dx/dt = f (x) is stable if there can be found a
disc of radius δ in the space of initial conditions, such that the solution stays for-
ever in a “pipe” of a desired radius ε. In mathematical terms, for each ε there
exists a δ such that if

∣∣x0
′ − x0

∣∣ < δ, then
∣∣x(t ; t0, x0

′) − x(t ; t0, x0)
∣∣ < ε, for all

t ≥ t0. Solution x(t ; t0, x0) is asymptotically stable if it is stable and moreover∣∣x(t ; t0, x0
′) − x(t ; t0, x0)

∣∣ converges to 0 with t converging to infinity. In many cases,
it is interesting to investigate stability of the equilibrium solution, i.e., the solution
along which the time derivative dx/dt = 0. This solution is a constant function
solving the equation 0 = f (x). Useful mathematical tools for investigating stability
include the Lyapunov functions and characteristic equations.

Bifurcation Most commonly applied to the mathematical study of dynamical sys-
tems, a bifurcation occurs when a small smooth change made to the parameter values
of a system causes a sudden qualitative or topological change in its behavior. The
name “bifurcation” was first introduced by the mathematician Henri Poincaré in
1885. The two best-known types of bifurcation are exchange of stability and Hopf
bifurcation. In exchange of stability, change of parameter causes a new equilibrium
to appear, which becomes stable, while the old one remains but becomes unstable.
In Hopf bifurcation, a stable equilibrium becomes unstable, with oscillations around
it appearing at the same time.

Chaos theory is a field of study in mathematics, with applications in disciplines
including physics and biology. In a chaotic system, small differences in initial
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conditions (even those due to rounding errors) yield widely diverging trajectories,
rendering long-term prediction impossible in general. Chaotic systems are determin-
istic, so their trajectories are mathematically determined by their initial conditions,
with no random elements involved. However, the deterministic nature of these sys-
tems does not make them predictable. In many ways, chaos can mimic randomness
(stochasticity).

Stochastic Processes

Proliferation of cells is frequently stochastic. Therefore, it is useful to introduce
definitions and theorems from the theory of probabilities and the theory of stochastic
processes. The following account is a brief intuitive introduction. The definitions
will be highlighted by italics.

Random variable (rv) X is, intuitively, a numerical result of observation, which
displays random variation. The notation X(ω) highlights the dependence of the rv on
the “chance” element ω of the sample space � (wherever it is superfluous, the ω is
omitted. Stochastic process (or random function) X(t ; ω) is, intuitively, a function of
time t with a random component. Mathematically, it is a family of rv’s parameterized
by time. Function of time X(t ; ω), with ω fixed is called the realization or the sample
path of the process. Self-recurrence is an important property of the stochastic process
X(t ; ω). Suppose that a process such that at X(0; ω) = x0 is stopped at some time
t0. Then, if also X(t0; ω) = x0, the continuation process restarted from time t0 is
identical (it has the same distributions) as the original process, except that it is shifted
by t0. A process with such property is called self-recurrent. Self-recurrence may be
considered a rephrasing of a causality principle. It leads to recurrent relationships
for a wide class of stochastic processes, including Markov processes and bp’s.

Markov process is a process with a limited memory (the Markov property). Intu-
itively, given the state of the process at time s, the future of the process (at some t
such that s < t) depends only on this state and not on its states at times before s. Math-
ematically, Pr [X(t) ∈ A|X(u), u ≤ s < t] = Pr [X(t) ∈ A|X(s), s < t], where A is
a subset of the state space of the process (space of values assumed by the process).
The probability listed above is the transition probability from state x = X(s) to the
set of states A, in time t s. If the states of the process form a finite or denumerable
set, then the process is called a Markov chain. In this case, it is possible to define a
matrix (finite or infinite) of transition probabilities between states P (t) = [Pij (t)],
where Pij (t) = Pr [X(s + t) = j |X(s) = i].

Branching process (bp) is a random collection of individuals (such as particles,
objects, or cells), proliferating according to rules involving various degrees of ran-
domness of the individual’s life length and the number of progeny of an individual.
The unifying principle is the so-called branching property, which states that the
longevity and type of progeny of a newborn particle, conditional on the current state
of the process, are independent of any characteristics of other particles present at this
time or in the future. The branching property is a form of self-recurrence, as defined
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earlier on. Galton–Watson bp (G–W bp) is the simplest bp. It evolves in discrete
time measured by nonnegative integers. At time 0, an ancestor individual (a particle,
cell, or object) is born. At time 1, the ancestor dies, producing a random number
of progeny. Each of these becomes an ancestor of an independent subprocess, dis-
tributed identically as the whole process. This definition implies that the numbers
of progeny produced by each particle ever existing in the process are independent
identically distributed rv’s and that all particles live for one time unit. Discrete time
moments coincide with generations of particles. The number of particles existing in
the G–W bp, as a function of time, constitutes a time-discrete Markov chain.

Bp’s occur frequently in biological systems. They serve as models for proliferating
cells, amplified genes, and shortening telomeres. Bp is critical if the expected (mean)
count of progeny of a particle is equal to 1. It is supercritical, if the mean count
of progeny of a particle is greater than 1 and subcritical if it is less than 1. This
classification leads to profound differences in asymptotic properties (properties after
sufficiently long time) of the process. In particular, critical bp’s behave in a paradoxic
way since they become extinct (i.e., all particles die out) with probability 1, while
the expected number of particles stays constant. Asymptotic properties of subcritical
bp’s are summarized by the Yaglom’s theorem, which states that for a subcritical
bp, which also becomes extinct with probability 1, there exists a quasi-stationary
distribution, conditional on nonextinction. This means that the sample paths that do
not become extinct will be, for times sufficiently long, distributed according to a
law (distribution) that does not vary with time (i.e., stationary). All bp’s share the
property of instability, which means that, as time tends to infinity, the bp becomes
either extinct or indefinitely large. Instability is due to the independent assumptions
inherent in the definition of a bp (see earlier on).

Supercritical bp’s have the property called the exponential steady state, which
characterizes populations growing without spatial or selective constraints, the condi-
tion in which the number of individuals increases or decreases exponentially, while
the proportions of individuals in distinct age classes and any other identifiable cat-
egories remain constant. Related notion is that of the Malthusian parameter, i.e., a
parameter α such that the number Z(t) of particles present in the process, normalized
by dividing it by exp (αt), converges to a limit rv, as time tends to infinity.

Markov bp is a type of time-continuous bp. At time 0, an ancestor individual
(a particle, cell, or object) is born. The ancestor lives for time τ , which is an ex-
ponentially distributed rv, and then the ancestor dies, producing a random number
of progeny. Each of these becomes an ancestor of an independent subprocess, dis-
tributed identically as the whole process. The number of particles existing in the
Markov bp, as a function of time, is a Markov chain.

Type space is a collection of possible particle (cell) types existing in a bp. If there is
more than one but finitely many types, the process is called multitype. Multitype G–
W bp is a generalization of the usual (single-type) G–W bp. In the multitype process,
each individual belongs to one of a finite number of types. At time 0, an ancestor
individual (a particle, cell, or object), of some type, is born. Processes started by
individuals of different types are generally different. At time 1, the ancestor dies,
producing a random number of progeny of various types. The distribution of progeny
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counts depends on the type of parent. Each of the first-generation progeny becomes an
ancestor of an independent subprocess, distributed identically as the whole process
(modulo ancestor’s type). In the multitype process, asymptotic behavior depends
on the matrix of expected progeny count. Rows of this matrix correspond to the
parental types, and columns to the progeny types. The largest positive eigenvalue
of this matrix (the Perron–Frobenius eigenvalue), is the Malthusian parameter (see
earlier on) of the process, provided the process is supercritical (the Perron–Frobenius
eigenvalue larger than 1) and positive regular. The latter means that parent of any
given type will have among its (not necessarily direct) descendants individuals of all
possible types, with nonzero probability.

Probability generating function (pgf ) is a function fX(s) of a symbolic argument
s, which is an equivalent of the distribution of a nonnegative integer-valued rv X. If
numbers p0, p1, p2, . . . constitute the distribution of rv X, i.e., Pr [X = k] = pk ,
then the pgf of rv X is defined as fX(s) = E(sX) = ∑∞

i=0 pi , for s ∈ [0,1]. Use of
the pgf simplifies mathematical derivations involving nonnegative integer rv’s and
processes, among them the bp’s.

Poisson process is one of the most important stochastic processes, since it is
frequently used as a model for mutation dynamics. It can be intuitively defined as a
random collection of time points having the properties of complete randomness (the
counts of events in any two disjoint time intervals are independent), and stationarity
(the probability of an event occurring in a short time interval (t, t + �t) is equal to
λ �t + o(�t), where a small o(�t) with respect to �t has the property it converges
to 0 faster than �t itself, i.e., o(�t)/�t → 0, as �t → 0. Constant λ is called the
intensity of the process. The number N of epochs of the Poisson process in an interval
of length t has Poisson distribution of the form pn = Pr [N = n] = exp (−λt)λn/n!,
for n = 0,1, 2, . . . , and the time intervals T between any two epochs have exponential
distribution with the same parameter λ, i.e., the density of distribution of T is equal
to fT (t) = λ exp (−λt).

The Wright–Fisher (W–F) model is a stochastic construct that is frequently
used in genetics to explain loss of variants in a finite population. In brief, it
is assumed that there exist N individuals, which produce progeny from one
synchronous generation to another. Individuals in generation n + 1 are copies
of individuals randomly and independently chosen from generation n, so that
the probability that individuals 1,2, . . . , i, . . . , N are represented respectively
k1, k2, . . . , ki , . . . , kN times in the succeeding generation is equal to pk1,k2,... ,ki ,... ,kN

=
(1/N )k1+k2+...+ki+...+kN N !/(k1!k2! . . . , ki ! . . . kN !), where k1 + k2 + . . . + ki + . . . +
kN = N , i.e., the rv’s k1, k2, . . . , ki , . . . , kN are multinomially distributed. One con-
sequence is that in each generation there exists a nonzero probability of one (or
more) individuals leaving no progeny. This leads eventually (after a finite number
of generations) to loss of copies of all the individuals except one. This individual
(or genetic variant) is called fixed. The W–F model differs from the G–W bp, in that
the former has a fixed total number of individuals, while in the latter the number of
individuals is fluctuating from one generation to another. The W–F model applies in
situations in which the environment pressure makes population size change unlikely.
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Turing pattern formation One of the most interesting mathematical phenomena
arising in models structured by spatial coordinates is pattern formation via diffusion-
driven instability (DDI). Discovered by Alan Turing, this effect has been used to
explain emergence of biological, physical, and chemical patterns, such as patterns
in colonies of microorganisms, embryo segmentation, or dynamics of the Belousov–
Zhabotinsky reactions. The usual mathematical framework is that of the system of
at least two reaction-diffusion equations, i.e., partial differential equations (PDEs)
of the form

∂u/∂t = D1�xu + f (u, v),

∂v/∂t = D2�xv + g(u, v),

where u(x, t)and v(x, t) are defined as functions of spatial coordinates x and time
t , ∂( · )/∂t id partial differentiation with respect to time, �x( · ) is the second order
partial differentiation operator with respect to the spatial coordinates x (diffusion
operator or Laplacian), and nonlinear functions f (u, v) and g(u, v) are reaction
terms. Spatial pattern is a stable spatially heterogeneous equilibrium solution (DDI
or Turing pattern), which arises in the reaction-diffusion system, but which does not
exist for the corresponding pure reaction system

∂u/∂t = f (u, v),

∂v/∂t = g(u, v),

for which only spatially homogeneous (constant in x) solution exist.

Deterministic Models of Hematopoiesis

Deterministic Models of Regulatory Feedbacks

Simplest Model of Hematopoiesis

Case study: Simple Hierarchical Model Some basic concepts on which hemat−
opoiesis models are based can be explained using a simplified deterministic model
of granulopoiesis. Let us consider a sequence of populations of bone marrow cells,
where:

• Population i = 0 consists of the HSC
• Populations i = 1, . . . , J include several stages of cells committed to granu-

lopoiesis
• Populations i = J + 1, . . . , I include differentiated granulopoietic precursors
• Population i = I + 1 includes the mature blood granulocytes

Let us denote by Ni(t), i = 0, . . . , I +1, t = 0, �t , . . . , k�t the respective numbers
of cells in population i (or, in other words, of type i) at times k�t being the integer
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multiples of the duration of the cell cycle, this latter for this example assumed
equal for all cell populations. Let us further assume that cells of type i = 1, . . . , I
proliferate without losses, i.e., each produces two viable progeny cells upon division.
Mature granulocytes do not proliferate but at each time point k�t they die with
probability α�t . As a result, the expected lifetime of a granulocyte is equal to
1/(α�t).

The rules of maturation and differentiation are described as follows:

• Each of the HSC (type i = 0) progeny remains a HSC with probability 1 − d and
differentiates into a cell committed to the granulocyte lineage with probability
d0 < d such that d − d0 is the probability of commitment to the remaining
lineages.

• Each of the progeny of the committed and progenitor type i cells may either
remain type i (with probability 1 −di) or become type i + 1 (with probability di).

These rules lead to the following system of difference equations for the expected
numbers of cells of all types:

N0(t + �t) = qN0(t) (7.1)

Ni(t + �t) = qiNi(t) + pi−1Ni−1(t), i = 0, . . . , I (7.2)

NI+1(t + �t) = NI+1(t) + pINI (t) − (α�t)NI+1(t), (7.3)

where for brevity we denote p = 2d , pi = 2di , and qi = 2(1−di), so that p+q0 < 2
and pi + qi = 2.

Equations (7.1–7.3) can be solved recursively. In particular, we are able to compute
steady-state (equilibrium) values assuming Ni(t) = Ni = const. This results in the
following expressions:

Ni = N0

(∏i−1

j=0
pj

) (∏i

j=1
(1 − qj )

)
, i = 1, . . . , I (7.4)

NI+1 = N0

(∏I

j=0
pj

) (∏I

j=1
(1 − qj )

)
(α�t)−1. (7.5)

Let us note that biologically feasible steady state exists if di ≥ 1/2. Further, for
simplicity, we will assume that the probabilities of commitment to the subsequent
stage are all equal to di = δ for i = 1, . . . , J , hence all pi = 2δ = π and qi =
2(1−δ) = ψ for i = 1, . . . , J . We may also assume that all differentiated precursors
differentiate further at the subsequent division, i.e., di = 1 for i = J + 1, . . . , I ,
hence pi = 2 and qi = 0 for i = J + 1, . . . , I . This yields

NI+1 = N0p0[π (1 − ψ)]J 2I−J (α�t)−1 = N0p0[2δ(2δ − 1)]J 2I−J (α�t)−1.

(7.6)

Nonlinear (polynomial) action of GCSF feedback Equation (7.6) demonstrates that
the number of peripheral granulocytes at equilibrium depends polynomially on the
commitment probability δ. Therefore, if at the normal equilibrium the value of δ is
below 1 (i.e., not all committed cells commit further), then if GCSF action increases δ
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so that in each of the J stages of committed cells more cells commit further upon each
division, this causes the equilibrium number of peripheral granulocytes to increase
(neglecting transients) with the Jth power of δ, i.e., nonlinearly. Therefore, small
deviations of δ may cause large changes of the equilibrium number of NI+1(t), the
number of mature cells.

Need for a negative internal feedback of HSC If the commitment probability p0

of HSC is kept unchanged and probability d is equal to ½, then (see Eq. (8.1)) the
steady state N0(t) = N0 = const is maintained. However, if the GCSF feedback
causes d to exceed ½, then Equation (7.1) shows that the HSC will be geometrically
(exponentially) depleted with time. To prevent this from happening in long term,
a protective mechanism is needed. Interplay between the GCSF feedback and the
internal negative feedback was first considered byArino and Kimmel [15]. It has been
showed there that some forms of the feedback may not be sufficient for a complete
return to equilibrium, a possibility observed in some disease states such as neonatal
sepsis [30].

What Does the Simplified Model Fail to Explain?

I. Interindividual and temporal fluctuations in the number of granulocytes. The
simplified model is a mean value model, so it does not account for fluctuations
caused by stochastic events at the level of HSC and further amplified in the
commitment/differentiation cascade.

II. Feedbacks. The model is also missing the explicit form of the GCSF and internal
feedbacks, although it helps realizing these are needed.

III. Differentiation arrest and dedifferentiation. The model does not involve
the chance state of molecular circuitry guiding the cell to commit-
ment/differentiation, instead it uses aggregate coefficients di the simplification
it shares with many published models [9, 10].

Deterministic Feedbacks in Hematopoiesis

Deterministic mathematical theory of cell production systems primarily relies on
systems of nonlinear DEs. These models perform differently depending on the con-
figuration of regulation feedbacks. Cell production systems are self-renewing cell
populations which maintain the continuous supply of differentiated functional cells
to various parts of a living organism. The dynamics of cell production systems at-
tracted the attention of biologists and mathematicians a long time ago in the context
of blood cell production [31]. Despite differences depending on the type of cells con-
sidered, certain common elements can be found in all the cell production systems and
their models. First, there exists a self-renewing subpopulation of stem cells. Stem cell
divisions can produce both stem cells and cells of greater lineage commitment, called
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the precursor cells. The precursor cells, in turn, produce cells with an even greater
degree of maturity. After a certain number of maturation (differentiation) stages, the
mature (differentiated) cells are produced. They usually do not have the ability to
divide, and after fulfilling their specific tasks, are removed from the organism.

In normal conditions, the cell production system maintains a constant supply
of differentiated mature cells. In the emergency cases, when for some reasons the
organism suffers from the loss of certain mature cells (such as loss of erythrocytes
in a hemorrhage) the system reacts, providing an increased supply of cells. These
two postulates imply that the system is regulated through a long-range feedback
mechanism detecting the perturbations in the number of mature cells and accordingly
adjusting the production rate of the stem and precursor cells.

It seems logical to suppose at least one more regulation feedback exists. Indeed,
the long-range feedback would have a tendency towards “draining” the stem cell
population to compensate for the loss. Then, if all the stem cells were committed
towards maturation, the whole system might collapse, since only the stem cells
are truly self-renewing. Therefore, another feedback should “cut off” the supply of
precursor cells if the number of stem cells decreases, preventing the system from
extinction. This will be called a short-range feedback.

Based on ideas similar to those presented above, mathematical models of cell pro-
duction systems were constructed, mainly for various lines of the blood-forming sys-
tem in man and in experimental animals. For example, Mackey’s periodic neutropenia
model (as cited in Haurie et al. [32]) described the effects of a short-range feedback
of the stem cell cycle, while the Wazewska and Lasota model included the long-range
feedback only [33]. Recently, various possible configurations of short-, mid-, and
long-range feedbacks have been discussed and analyzed mathematically [34].

Case study: Configuration of Feedbacks in a Deterministic Model of Hemat−
opoiesis We will use as a case study the series of models devised by Arino and
Kimmel [35]. Considering these models will explain the modeling paradigm, which
has been later on perfected in various ways. The models are based on the following
assumptions (Fig. 7.1):

1. Stem cell proliferation dynamics is represented by a cell cycle model consisting
of two phases: active and passive. A stem cell leaving mitosis enters the passive
phase and then it may either transform into a more mature precursor cell or
enter the active phase (and then divide and enter the passive phase again). It
is assumed that the cell residence time in the resting phase has the exponential
distribution with parameter α(t) (the reciprocal of the mean residence time in
this phase). Such a hypothesis is consistent with the Smith–Martin model of the
cell cycle. The probability of stem cell differentiation (transformation) is denoted
by d(t). The residence time in the active phase is equal to T. We understand
that our “active phase” is S + G1 + M, where S stands for the deoxyribonucleic
acid (DNA) synthesis. G2 denotes the premitotic phase and M the cell division
(mitosis). Our “passive phase” is assumed to be G0 + G1, where G0 is the resting
(quiescent or “storage”) phase, while G1 is the initial growth phase.
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Fig. 7.1 Structural model of the hematopoietic system. P(t), N(t), C(t), and R(t) are the number
of cycling stem cells, dormant stem cells, precursor cells, and mature cells, respectively. α(t) is
the exit rate from the dormant stem cell compartment: T is the residence time in the active stem
cell compartment, d(t) is the fraction of differentiating stem cells. H and A are the transit time
and amplification coefficient of the precursor cell compartment and β is the mature cell death rate.
(Adapted from Ref. [35])

2. Regulated factors are d(t) probability of stem cell differentiation and/or α(t)
reciprocal of the mean residence time in the passive phase.

3. Each stem cell, once differentiated, produces after time H an average number of
A mature (completely differentiated) cells. Quantities A and H represent all the
stages of the precursor cells maturation, division, and so forth.

4. Mature cell life length is a rv with exponential distribution with expected value
1/β.

Model structure implied by the assumptions (1)–(4) is depicted in Fig. 7.1. The
equation for the stem cell number N (t) in G0 + G1, takes the following form:

Ṅ (t) = −α(t)N (t) + 2(1 − d(t))α(t)N (t).

The equation for the number R(t) of mature cells is:

Ṙ(t) = −βR(t) + r(t),

where r(t) is the rate of cell flow into the mature cell compartment. Assumption (3)
implies
that:

r(t) = Ad(t − H )α(t − H )N (t − H ),

so that

Ṙ(t) = −βR(t) + r(t)Ad(t − H )α(t − H )N (t − H ).
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We may also compute the number P (t) of cells present at time t in the active phase
of the stem cell cycle:

P (t) =
∫ t

t−T

(1 − d(τ ))α(τ )N (τ )dτ .

Equations above provide a complete description of the cell production system
dynamics, if the regulated factors α(t) and d(t) are specified.

Depletion and Nonunique Equilibria We will make the case for the possibility of
depletion of HSC and nonunique equilibria, by considering the deterministic model
of erythropoietic regulation [35].

Model 1: The fraction d(t) of differentiating stem cells is an increasing function
of the number of dormant stem cells: d(t) = g[N (t)]. The rate α(t) of the outflow
from the dormant stem cell compartment is a decreasing function of the number
of mature cells: α(t) = h[R(t)]. Intuitively, the mature cell number is influencing
the production rate of stem cells, while the contents of the “storage” dormant
compartment controls the proportion of differentiating stem cells.
Model 2: In this variant, both α(t) and d(t) depend on the mature cell number:
d(t) = g[R(t)], α(t) = h[R(t)] with g( · ) and h( · ) being decreasing functions.
The assumption that both feedbacks here are designed to “exploit” the stem cell
population causes system instability.
Model 3: This is, in a sense, a reversal of model 1. The long-range feedback
controls the differentiating stem cell fraction, while the “defensive” one, the exit
rate from the dormant compartment: d(t) = g[R(t)], α(t) = h[N (t)], where g( · )
and h( · ) are decreasing.
Model 4: This is a special case of model 1, with d(t) = 1/2. In this case, model
equations assume the form, Ṅ (t) = −h[R(t)]N (t) + h[R(t − T )]N (t − T ) and
.

R(t) = −βR(t) + (A/2)h[R(t − H )]N (t − H ).

Importance of the Internal Feedback Models 1, 2, and 3 have (under additional
hypotheses; see the exhaustive discussion in Arino and Kimmel [35]), two equilibria,
the trivial one (N , R) = (0,0) and the nontrivial one (N , R) = (Ñ , R̃), which is a
solution of nonlinear algebraic equations involving functions g( · ) and h( · ). Without
getting into mathematical details, we can state, that in models 1 and 3, which involve
autonomic internal feedbacks of the dormant HSC, the trivial equilibrium usually
(i.e., for a region of parameter values) repels solutions, while the nontrivial one
attracts them. Hence, the system is resistant to shocks. In model 2, which does
not include an internal feedback, the situation is reversed, given a deviation from the
nontrivial equilibrium, the system decays to the trivial one. This supports the assertion
that without an internal feedback, the hematopoietic system may be unstable.

Nonunique equilibria of model 4 display an unusual behavior. Function V (t) =
N (t) + 2P (t) equal to the number of stem cells in the dormant phase plus twice the
number of stem cells in the proliferative phase (“potential” number of HSC) stays
constant along the trajectories of the system. Therefore, also at the equilibrium it will
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be the same value it had at time 0. Simple calculations show that in model 4, initial
conditions dictate the equilibrium value: If the system undergoes a shock such as
depletion of bone marrow HSC, it will forever linger near that low value. This situa-
tion only concerns an impaired internal feedback, but it may correspond to a specific
biological defect such as one caused by a defective cytokine receptor (see further on).

Topics concerning configuration and functional forms of deterministic models of
feedbacks have been further developed in more recent works of other authors. As
an example, Marciniak-Czochra, Stiehl, and coworkers consider a range of general
issues related to the question of hierarchy in the cell production systems, such as
the granulopoietic system, using rigorous mathematical approaches [36]. HSCs are
characterized by their ability of self-renewal to replenish the stem cell pool and
differentiation to more mature cells. The subsequent stages of progenitor cells also
share some of this dual ability. It is yet unknown whether external signals modulate
proliferation rate or rather the fraction of self-renewal. They propose three multicom-
partment models, which rely on a single external feedback mechanism. In model 1,
the signal enhances proliferation, whereas the self-renewal rates in all compartments
are fixed. In model 2, the signal regulates the rate of self-renewal, whereas the pro-
liferation rate is unchanged. In model 3, the signal regulates both proliferation and
self-renewal rates. The study demonstrates that a unique strictly positive stable steady
state can only be achieved by regulation of the rate of self-renewal. Furthermore, it
requires a lower number of effective cell doublings. To maintain the stem cell pool,
the self-renewal ratio of the HSC has to be greater than or equal to 50 % and it has to
be higher than the self-renewal ratios of all downstream compartments. Interestingly,
the equilibrium level of mature cells depends only on the parameters of self-renewal
of HSC and it is independent of the parameters of dynamics of all upstream compart-
ments. The model is compatible with the increase of leukocyte numbers following
HSC transplantation. A more theoretical analysis of feedbacks has been published
in ref. [37, 38]. In another paper, Marciniak-Czochra and Stiehl [39] find that that
certain conditions have to be met for proliferative parameters of stem cells relative
to those of the committed cells. Otherwise, the stem cells die out and their function
is fulfilled by cells of one of the committed stages, the one that satisfies these condi-
tions. Their other contributions concern replicative senescence of HSCs [40]. Logic
of control, in a more intuitive framework, but considering competing feedbacks, has
been considered in the works of Lander and coworkers [41].

Much of classical deterministic analysis has been developed over past 35 years
by the school of Mackey and his coworkers. Initially he collaborated with La-
sota and Wazewska, who had developed the first mathematical model of erythroid
production [33]. They suggested that decreasing the rate of erythroid precursor mat-
uration increases the steady-state level of nonproliferating erythroid cells. A patient
would quickly recover red blood cell levels following treatment-induced anemia.
Since erythroid precursor maturation rate increases with Epo levels, which are neg-
atively correlated with blood oxygen content, the model suggests that by increasing
a patient’s blood oxygen level one can accelerate the rate of erythrocyte recovery
following chemotherapeutic insult or radiation therapy. This conclusion was success-
fully validated in patients, showing the insight mathematical modeling can provide
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into disease. Another major topic was cytopenias and leukemias. Some neutrope-
nias and anemias are characterized by periodic oscillations in blood cell counts [42].
The dynamics of these disorders has attracted model making, with the goal that the
model will illuminate their pathophysiology as well as normal hematopoiesis. The
oscillatory behavior seen in these diseases is thought by some to be due to irregular
feedback control [42]. Other, more sophisticated models suggest that the abnormality
lies not in the feedback loop but in an elevated neutrophil apoptotic rate that perturbs
the normal regulation of stem cell dynamics [43].

There exists a category of recent deterministic models, which account for variabil-
ity among disease cases or different types of disease. For example, Stiehl et al. [44]
consider heterogeneity of responses to bone marrow transplants; they developed a
model-based methodology for using averaged clinical trial data to estimate responses
of individual patients. Other papers address the role of multiple cell lineages, includ-
ing evolution of leukemia, competition between healthy and leukemic cells and
dynamics of multiclonal structure of acute myeloid leukemia (AML) [45, 46]. One
implication is that enhanced self-renewal may be a key mechanism in the clonal se-
lection process. Simulations suggest that fast proliferating and highly self-renewing
cells dominate at primary diagnosis, while relapse following therapy-induced remis-
sion is triggered mostly by highly self-renewing but slowly proliferating cells. A
similar framework was applied to myelodysplastic syndrome (MDS) which is an im-
portant example of a malignant disease with a hypothetical stem cell origin [47]. The
results stress the importance of self-renewal in cancer dynamics and allow conclud-
ing that invoking slowly proliferating cancer cells helps explain clinical dynamics
and observations such as treatment resistance.

Models with Structure

Case Study: Structured Roeder Model and Competing Feedback In Roeder’s model,
HSCs are assumed to exist in two growth compartments: quiescent (denoted byA) and
proliferating (denoted by �). At the beginning of every time step (representing 1 h),
a stem cell may transfer from A to � with probability ω or from � to A with
probability α. Each stem cell has a time-dependent affinity, denoted by a(t), and
the affinity ranges between amin and amax (which are estimated to be 0.002 and 1.0,
respectively [29]). A cell with a high affinity has a high chance of remaining in the A
environment or transferring to it. Likewise, a cell with a low affinity is more likely
to remain in the � environment or transfer to it, where it starts proliferating. The
transition probabilities can be variously defined.

Proliferating cells in the � compartment progress through various stages of the cell
cycle: G1, S, G2, and M. The G1 phase is the longest period of growth during which
the cell generates new organelles. The S phase is the period when DNA synthesis and
replication occurs. The G2 phase is the short period of growth when the cell prepares
for mitosis, and the M phase, or mitosis, is when the cell divides into two daughter
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cells. Only � cells in the G1 phase of the cell cycle can transfer to A. The � cells
spend about two thirds of their time in the G1 phase. For each cell that remains in the
A compartment, its affinity increases by a factor of r (estimated as 1.1). Similarly,
cells that remain in �, decrease their affinity by a factor of d (estimated as 1.05). The
affinity of a cell stops increasing once it reaches the maximal value, amax. Stem cells
whose affinity reaches the minimum affinity, amin, differentiate into a proliferating
precursor and then into a nonproliferating mature cell. Each cell in � has an internal
time counter, c(t), that indicates its position in the cell cycle (measured in hours).
Each time step is equivalent to 1 h. Consequently, at each time step, c(t) increases
by 1. After c(t) reaches its maximal value of 48, it recycles back to 0 at the next time
step, resulting in a 49-h cell cycle. Cells entering � start with a counter that is set at
c(t) = 32 corresponding to the beginning of the S phase. For the first 17 h, the cell
progresses through the S, G2, and M phases and divides into two cells once c(t) = 48.
Then for the next 32 h, ( c(t) = 0, . . . , 31), the cell remains in the G1 phase. If at
the end of this period the cell has not transferred to A, it reenters the S, G2, and M
phases and the cycle repeats.

In the original work of Roeder et al. [29], an agent-based model has been used
to follow the dynamics of stem cell counts in the bone marrow. In a subsequent
work by Kim et al. [48], a quasi-stochastic (operating on mean values) model has
been derived, for the purpose of elucidating the progression of chronic myelogenous
leukemia (CML). As it can be noticed, the mechanism of A↔ � transitions amounts
to an elaborate protective system for the dormant HSC (the “internal feedback” of
Arino and Kimmel [35]). This is one of the places in the model, where stochastic
effects are likely to play a major role, since HSC may be organized in relatively small
clonal colonies [28].

Continuous Maturation

Cell differentiation is a process by which dividing hematopoietic precursor cells
become specialized, less proliferative, and equipped to perform specific functions.
More generally, differentiation occurs many times during the development of a mul-
ticellular organism as the organism changes from a single zygote to a complex system
with cells of different types. During tissue repair and normal cell turnover, a steady
supply of somatic cells is ensured by proliferation of corresponding adult stem cells
(such as the hemopoietic stem cells), which retain the capability for self-renewal.
Nonhematologic cancers are likely to originate from a population of cancer stem
cells that have properties comparable to those of stem cells [49]. Stem cell state and
fate depend on the environment, which ensures that the critical stem cell character
and activity in homeostasis is conserved, and that repair and development are ac-
complished [50]. While different genetic and epigenetic processes are involved in
formation and maintenance of different tissues, the dynamics of population depends
on the relative importance of symmetric and asymmetric cell divisions, cell differ-
entiation, and death. One established view of the differentiation process is that of a
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series of discrete compartments, which can be modeled by a system of ordinary DEs
describing dynamics of cells at different maturation stages and transition between
the stages. This corresponds to the assumption [51, 52] that in each lineage of cell
precursors there exists a discrete chain of maturation stages, which are sequentially
traversed. However, differentiated precursors form such a clear sequence only under
homeostatic (steady-state) conditions. Committed cells generally form a continuous
sequence, which may involve incremental stages, part of which may be reversible.
These observations invoke not only the fundamental biological questions of whether
cell differentiation is a discrete or a continuous process and what the measure of cell
differentiation is but also the question of how to choose an appropriate modeling ap-
proach. Is the pace of maturation (commitment) dictated by successive divisions, or
is maturation a continuous process decoupled from proliferation? Early continuous
maturation models have been conceived by Mackey group [43], but the question of
correspondence of the discrete compartment and continuous maturation models is
still open.

A recent paper that mathematically compares these two types of models is Doumic
et al. [53]. The continuous maturation model has the form of a partial DE of trans-
port type—a structured population equation with a nonlinear feedback loop. This
models the signaling process due to cytokines, which regulate the differentiation and
proliferation process. The dynamics of the model is compared to that of its discrete
counterpart. Without an attempt to describe the details, let us note that the continuous
and discrete maturation model (which assume the same mode of regulation) differ
with respect to dynamics. One of the manifestations is that the discrete model has
a richer set of stable equilibria including some with the upper stages of the hierar-
chy depleted, but the lower ones still capable of maintaining proliferation. Another
mathematical approach is to unify the continuous and discrete maturation in a single
model [54]. An earlier attempt includes mathematical proof of equivalence between
a transport type approach and a bp [55].

Stochastic Models of Hematopoiesis

Stochastic processes (in particular the bp’s) can be used to model biological phenom-
ena of some complexity, at cellular or subcellular levels [56]. Probabilistic population
dynamics arise from the interplay of the population growth pattern with probability.
Thus, the classical G–W bp defines the pattern of population growth using sums of
independent and identically distributed (iid) rv’s; the population evolves from gen-
eration to generation by the individuals getting iid numbers of children. This mode
of proliferation is frequently referred to as “free growth” or “free reproduction.”
The “simple deterministic model of hematopoiesis” considered earlier on is in fact
describing the expected (mean) trajectories of a multitype G–W process.

The formalism of the G–W process provides insight into one of the fundamental
problems of cell populations, the extinction problem and its complement, the question
of size stabilization: If a freely reproducing population does not die out, can it
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stabilize, or does it have to grow beyond bounds? The answer is that there are no
freely reproducing populations with stable sizes. Population size stability, if it exists
in the real world, is the result of forces other than individual reproduction, of the
interplay between populations, and their environment. This is true for processes much
more general than the G–W process. A fusion between branching and environment
pressure constitutes a challenge for stochastic models (if one does not wish to resort
to simulation only); the same way, selection constitutes a challenge to population
genetics models.

If unlimited growth models make more sense in the context of proliferation of
cancer cells, then what the rate of the unlimited growth is? It can be answered not
only within the generation counting framework of G–W type processes but also in
more general branching models. In all these frameworks, in the supercritical case,
when the average number of progeny of an individual is greater than 1, the growth
pattern is asymptotically exponential. The parameter of this exponential growth is
the famous Malthusian parameter. In the supercritical case, we can answer not only
questions about the rate of growth but also questions about the asymptotic compo-
sition of nonextinct populations. What will the age distribution tend to be? What is
the probability of being firstborn? What is the average number of second cousins?
Importantly for biological applications, many of these questions do not have natural
counterparts in deterministic models of unlimited growth.

Case Study: Model of SNC → MDS → AML Transition [57]

Severe congenital neutropenia (SCN) is a life-threatening infection in children which
can be avoided through the use of recombinant GCSF. However, SCN often trans-
forms into secondary MDS (sMDS) and then into secondary AML (sAML). A great
unresolved clinical question is whether chronic, pharmacological doses of GCSF
contribute to this transformation [58]. A number of epidemiological clinical trials
have demonstrated a strong association between exposure to GCSF and sMDS/sAML
[59–62] Mutations in the distal domain of the GCSF receptor (GCSFR) have been
isolated from patients with SCN who developed sMDS/sAML or patients with de
novo MDS [63]. Recently, clonal evolution over approximately 20 years was docu-
mented in a patient with SCN who developed sMDS/sAML [64]. Clonal evolution
of a sick hematopoietic progenitor cell in SCN involves perturbations in proximal
and distal signaling networks triggered by a mutant GCSFR. A summary of signaling
pathways taking part in the response to GCSF in normal and mutant cells is presented
in Fig. 7.2. Transition from SCN → sMDS → sAML involves chance mechanisms,
such as mutations, drift, and transcription and receptor noise, which require that
stochastic models to be used [1].

The model of this process in Kimmel and Corey [57] assumes that a limited
mutation load at the SCN phase causes neutropenia and fluctuations of cell population
size. With time, accumulation of driver mutations causes expansion of mutant clones,
which however are not yet expanding at a dramatic rate. At some point in time,
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Fig. 7.2 Dynamic stochastic model of impaired differentiation in granulocyte precursors. Granulo-
cyte colony-stimulating factor (GCSF) signaling occurs through its cognate receptor, granulocyte
colony-stimulating factor receptor (GCSFR). It involves both proximal signaling networks con-
sisting of signaling molecules such as Lyn, JAK2, Akt, and ERK1/2, and distal gene regulatory
networks consisting of transcription factors. Together, these signaling networks promote prolif-
eration, survival, and differentiation. In patients with severe congenital neutropenia, the earliest
known mutations to contribute to transformation to secondary MDS or AML are nonsense muta-
tions in the GCSFR gene. This mutation leads to a truncated receptor, one of the more common
being GCSFR delta 715. (From Ref. [57]. See more at: http://journal.frontiersin.org/Journal/
10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf. Copyright: ©2013 Kimmel and Corey)

mutations accumulate sufficiently to cause a major change in the proliferation law
and the now malignant cell population starts rapidly expanding. In summary: (i) At
the time of diagnosis of SCN, GCSF therapy is initiated, which induces an initial
series of X driver mutations, occurring at random times. (ii) The X-th mutation
causes transition to the MDS, during which further Y mutations occur. (iii) After
X +Y mutations, the AML stage begins, during which the subsequent mutant clones
grow at increasing rate, which in turn shortens the times at which still new mutations
appear. In the model, the increasing proliferation rate of successive mutant clones
causes acceleration of growth of the malignant bone marrow stem cell population,
which shortens the time interval to appearance of new clones, which in turn increases
proliferation rate, and so forth; this results in a positive feedback (Fig. 7.3). Stochastic
nature of the process (the times to appearance of each next mutant are random) causes
a spread of the timing of the subsequent mutations, particularly the first X mutations
during the SCN phase. This may result in the transition to MDS not manifesting
itself for a very long time in a fraction of cases.

http://journal.frontiersin.org/Journal/10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf.
http://journal.frontiersin.org/Journal/10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf.
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Fig. 7.3 Proliferating healthy cells in the bone marrow mutate at random times, possibly influ-
enced by superpharmacological doses of GCSF. As long as the cell population size is kept in check,
genetic drift and selection remove many of the mutants, whereas some mutants persist. When the
population expands, new mutant clones become more easily established. At some point, a quali-
tative change in the proliferation rate occurs and the now malignant cell population starts rapidly
expanding. GCSF granulocyte colony-stimulating factor, sMDS secondary myelodysplastic syn-
drome, sAML secondary acute myeloid leukemia, BM bone marrow. (From Ref. [57]. See more
at: http://journal.frontiersin.org/Journal/10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf.
Copyright: ©2013 Kimmel and Corey)

Stochastic dynamics plays a major role in the model. For a new subclone, stochas-
tic theory is used to estimate extinction probability, with extinction after more than
a few cell generations being negligible in view of the growth advantage of the new
clone. However, the time at which the next mutation occurs in a cell clone is also
stochastic and it is as a rule more dispersed for the slower-growing clones. Therefore,
the time to reach the threshold number of bone marrow stem cells (which in our model
defines the time at sAML diagnosis) is an rv. One of the questions asked is whether
dispersion of this time matches the wide distribution of the times at diagnosis [65].

Mathematically, the population-genetic effect of population size-dependent accu-
mulation of mutations occurs as a natural consequence of the proliferation law in the
form of a multitype G–W bp [66]. (i) Consecutively arising surviving mutant clones
are numbered with the index k, ranging from 1 to k; time interval between the appear-
ance of the k-th and k + 1-st surviving mutant clones is denoted by τk. k-th mutant
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Fig. 7.4 Summary of successive driver mutations in the natural course of the SCN → sMDS
→ sAML transition. a Cell counts in successive mutant clones. Straight lines with increas-
ing slopes: cell counts in successive mutant clones. Thick dashed line: total mutant cell count.
b Relative proportions of cells belonging to successive mutant clones. SCN severe congeni-
tal neutropenia, sMDS secondary myelodysplastic syndrome, sAML secondary acute myeloid
leukemia, BM bone marrow. (From Ref. [57]. See more at: http://journal.frontiersin.org/Journal/
10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf. Copyright: ©2013 Kimmel and Corey)

cells have accumulated k driver mutations. (ii) All clones expand as G–W bp’s. Cell
life length is constant and equal to T, and at that time the cell either produces two
progeny with probability bk (cell type k) or dies (or becomes quiescent or differ-
entiated, which does not make a difference for disease dynamics) with probability
1 − bk . (iii) A cell of type k can mutate upon its birth (for definiteness) to type k + 1
with probability u. These three rules allow one to derive the probability distributions
of time intervals τk , probabilities of survival of each clone, and expected growth
laws of each clone. Fig. 7.4 depicts the impact of successive driver mutations on the
natural course of the SCN → sMDS → sAML transition. Fig. 7.4a depicts counts
Ni(t) of cells in successive mutant clones as a function of time. Straight lines with
increasing slopes are counts of cells in successive mutant clones. We observe that the
time intervals separating the origins of successive clones are decreasing with each
mutation event. Thick dashed line represents the total mutant cell count. Fig. 7.4b

http://journal.frontiersin.org/Journal/10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf.
http://journal.frontiersin.org/Journal/10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf.
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depicts relative proportions ni(t) = Ni(t)/
∑

j Nj (t) of cells belonging to succes-
sive mutant clones. It is interesting to observe that clones with increasing numbers of
mutations dominate transiently, until they are replaced by other clones with higher
proliferative capacity (selective value).

It is somewhat surprising that under any combination of coefficients of the
model, the range of simulated times at which sAML arises is rather narrow [57].
This outcome is in contrast to the wide spread of times at diagnosis summarized in
Rosenberg et al. [65]. The observed distributions of times (and ages) at diagnosis
can be matched if a large interindividual variability is assumed. This illustrates how
important it is to take into account potential different sources of stochasticity when
modeling human disease.

Underlying stochastic effects Most likely mechanisms creating stochastic behav-
ior in hematopoiesis are: (i) asymmetric division of progeny cells, with resulting
difference in their fates, and (ii) on–off switching of differentiation status of cells
accomplished by hormonal controls such as GCSF or Epo.

Asymmetric division is a possible mechanism by which randomness is inserted
into stem cells’ decision making. In the past, a prevailing hypothesis concerning
stem cell decisions was that at each stem cell division, one of the progeny becomes
a committed cell whereas the other remains a stem cell, in this manner providing
a perfect balance between commitment and self-renewal. There exist at least two
problems with this simple paradigm: first, that this does not seem satisfactory when
the demand for committed cells is greater than average, and second, that it has
been observed that stem cells can divide both asymmetrically and symmetrically.
Observations are consistent with stochastic decisions as to which mode of division to
choose. Consequences for population dynamics are different for different stochastic
scenarios of asymmetric division, even if on the average these scenarios produce
50–50 committed and stem cells.

An interesting discussion of symmetry and asymmetry in stem cell division has
been proposed by Schroeder [67]. Discussing findings in an experimental paper by
Wu et al. [68], Schroeder [67] considers a catalogue of versions of symmetric and
asymmetric divisions. Symmetric division: undifferentiated hemopoietic precursor
cells (HPCs) produce two undifferentiated progeny, whose later fate decisions are not
linked to the parent’s mitosis. Hypothetical mechanisms of asymmetric divisions in
HPCs include: (i) orientation of the division plane that leads to positioning of only one
of the progeny close enough to localized extrinsic signals provided by a self-renewal
or differentiation niche, (ii) generation of two identical undifferentiated progeny,
which being in close spatial contact immediately after mitosis engage in reciprocal
feedback signaling, leading to differentiation of only one of them, and (iii) intrinsic
cell fate determinants segregate asymmetrically between daughter cells, instructing
either self-renewal or differentiation of the receiving daughter. Let us notice that these
distinct scenarios do not produce distinctions in deterministic models, where only
averages matter, but they lead to possibly widely divergent scenarios in stochastic
dynamics. As an example of mechanism (iii), Wu [68] found that Numb, a negative
modulator of Notch signaling, which is known to asymmetrically segregate to one
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progeny during asymmetric division is indeed frequently enriched in one of the two
emerging progeny cells. This has been accomplished by analyzing Numb localization
in HPCs that had been fixed during mitosis and visualized.

Switches have been proposed to effectively translate the hormonal signals into de-
cision about commitment or further progression. An archetypical molecular bistable
switch (Gardner, Collins, and Cantor genetic toggle switch [69]) is deterministic and
involves a system of two genes, the products of which are mutual cross-repressors.
The system also involves two activators, which momentarily annul the action of the
repressors and allow the system to switch. From mathematical point of view, the
switch is a dynamical system with two stable equilibria separated by an unstable
one. A more sophisticated switch, which moreover is based on confirmed molecular
mechanism, is the Laslo switch [21].

However, a molecular switch may involve stochastic mechanisms, which make its
action less predictable. This may mean that, if the level of fluctuations is sufficiently
high, the switch is oscillating between the two stable equilibria, before or instead of
being absorbed by one of them. Such behavior has been observed. In disease state,
we may have to do with an aberrant switch with dynamics altered by mutation in one
of the important molecular circuits.

Several transcription factors play key roles in regulating myelopoiesis and
granulopoiesis. These include the ETS protein PU.1 and the cytosine-cytosine-
adenosine-adenosine-thymidine (CCAAT)-enhancer-binding protein-α (CEBP-α),
and are often referred to as the “master regulators” of myeloid development [21].
Although PU.1 is sometimes considered to induce myeloid versus lymphoid and
monocyte versus granulocyte differentiation, the data suggest that the effects of
PU.1 are more complex than this. Similarly, CEBP-α has been considered to direct
granulocyte versus monocyte differentiation. PU.1 and CEBP-α constitute a gene
regulatory network with bistable properties. Gene regulatory networks may be mod-
ified by protein abundance and posttranslational modification, both of which were
shown to be induced by activation of cytokine receptors such as GCSFR via ki-
nases. First, PU.1 and CEBP-α undergo serine/threonine phosphorylated triggered
by GCSFR activation. Second, GCSFR activation modulates CEBP-α expression,
which influences PU.1 function via unidentified mechanisms. Third, GCSFR also
influences Gfi-1 expression and activity.

For the granulocyte lineage, the most essential growth factor is GCSF. Its cognate
receptor, GCSFR is a member of the hematopoietin cytokine receptor superfamily,
which includes receptors for many of the interleukins, colony-stimulating factors
(e.g., Epo), cytokines (e.g., leptin), and hormones (e.g., prolactin). As a drug, recom-
binant human GCSF is used widely to reduce the duration of chemotherapy-induced
neutropenia and mobilize into the periphery hematopoietic progenitor cells for trans-
plant [70]. A number of clinical disorders demonstrate importance of GCSF/GCSFR
(see below). Mutations in the GCSFR have been found in patients with SCN, MDS,
and AML [59, 71].

Laslo et al. [21] describe a regulatory network demonstrating bistability based
on a feedback loop between two transcriptional repressors (Egr/Nab-2 and Gfi-1)
of PU.1 and GATA-1 genes that drive a common myeloid progenitor cell toward
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either granulocyte or macrophage fate. As mentioned above, deterministic toggle, or
bistable, switch is a circuit which has two stable equilibria, usually separated by an
unstable one [69]. Stochastic toggle switches have much richer behavior [72]. Instead
of a monotonous approach to the stable equilibrium, the absorbing state is reached via
a “saw-like” trajectory. If the time before absorption extends over more than a single
cell cycle, the cell remains uncommitted, or in one of the the “intermediate” states, as
for example in the paper by Laslo et al. [73] where existence of graded states of cells
was experimentally observed and theoretically predicted (albeit using a deterministic
switch). On the theoretical side, state space methods have been used by Michaels
et al. [74] to find the range of dynamical behaviors exhibited by Laslo-type switch.

Jaruszewicz et al. [75] demonstrate that in a system of bistable genetic switch, the
randomness characteristics control in which of the two epigenetic attractors the cell
population will settle. They focus on two types of randomness: the one related to gene
switching and the one related to protein dimerization. Change of relative magnitudes
of these random components for one of the two competing genes introduces a large
asymmetry of the protein stationary probability distribution and changes the relative
probability of individual gene activation. Increase of randomness associated with
a given gene can both promote and suppress activation of the gene. Each gene is
repressed by an increase of gene switching randomness and activated by an increase
of protein dimerization randomness. In summary, the authors demonstrated that
randomness may determine the relative strength of the epigenetic attractors, which
may provide a unique mode of control of cell fate decisions.

Traulsen et al. [76] concentrate on the role of hierarchy of the hematopoietic
system, discussing the influence of mutations in the hematopoietic system. Although
mutations can occur in any cell within hematopoiesis, both the size of the circulating
clone and its lifetime depend on the location of the cell of origin in the hematopoietic
hierarchy. Mutations in more primitive cells give rise to larger clones that survive
for longer, taking also a longer time to appear in the circulation. On the contrary,
the smaller clones caused by mutations of more differentiated precursors appear in
the circulation much more rapidly after the causal mutation, but they are smaller and
survive shorter. Three disease-causing mutations serve as illustrations: the breakpoint
cluster region gene–V-abl Abelson murine leukemia viral oncogene homolog 1 gene
(BCR–ABL) associated with chronic myeloid leukemia; mutations of the PIG-A gene
associated with paroxysmal nocturnal hemoglobinuria; and the V617 F mutation in
the JAK2 gene associated with myeloproliferative diseases. Among other, evidence is
presented of existence of these mutations in asymptomatic individuals, speculatively,
these are mutations in more differentiated precursors. Citing from Traulsen et al. [76]:
“In general, we can expect that only a mutation in a hematopoietic stem cell will give
long-term disease; the same mutation taking place in a cell located more downstream
may produce just a ripple in the hematopoietic ocean.”

Wilson et al. [77] argue based on a combination of flow cytometry with label-
retaining assays (BrdU and histone H2B-GFP) that there exists a population of
dormant mouse HSCs (d-HSCs) within the lin− Sca1+ cKit+ CD150+ CD48−
CD34− population. Computational modeling suggests that d-HSCs divide about
every 145 days, or five times per lifetime. d-HSCs harbor the vast majority of
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multilineage long-term self-renewal activity. They form a reservoir of the most po-
tent HSCs during homeostasis, and are efficiently activated to self-renew in response
to bone marrow injury or GCSF stimulation. After reestablishment of homeostasis,
activated HSCs return to dormancy, suggesting that HSCs are not stochastically en-
tering the cell cycle but they reversibly switch from dormancy to self-renewal under
conditions of hematopoietic stress.

Becker et al. [78] show that Epo receptors have the ability to cope with steady-
state and acute demand in the hematopoietic system. By mathematical modeling of
quantitative data and experimental validation, these authors showed that rapid ligand
depletion and replenishment of the cell surface receptor are characteristic features of
the Epo receptor (EpoR). The amount of Epo–EpoR complexes and EpoR activation
integrated over time corresponds linearly to ligand input.

Models of Mutations and Evolution of Disease

Carcinogenesis Models

Carcinogenesis modeling has had an established history of using stochastic models,
beginning with the Knudson two-hit model. Successor models include the multi-hit
model and eventually to the two-stage clonal expansion model of Moolgavkar [79].
With almost 1000 citations, this paper might be called one of the most influential ever
mathematical models in cancer research. Concerning its application in leukemias,
see, e.g., Radivoyevich et al. [80].

We will focus mostly on models of leukemogenesis, conceived in the genome-
sequencing era. These models have the following features, which are a novelty due
to both evolution of thinking in inflow of a large number of new variant data:

1. Mutations are identified as variants in studies in which whole exomes or even
genomes are sequenced for each individual in the study.

2. Functionality of mutations is determined in two stages: first by bioinformatics al-
gorithms (usually based on evolutionary comparisons) and then by wet-laboratory
studies of pathways influenced by these mutations.

3. Progression of leukemogenesis is based on the concept of driver and passen-
ger mutations. Driver mutations are selected for most advantageous phenotype
of cancer cells, whereas the passenger mutations are neutral byproducts of
carcinogenesis and serve as molecular clocks of the process.

A number of interesting models of mutations leading to cancer have recently been
published (see references further on). They all explore models of proliferation, fre-
quently using bp’s, combining them with models of driver and passenger mutations.
Driver mutations are those that, although they might have arisen spontaneously, pro-
vide selective advantage for the emerging cancer proliferation, particularly against
the background of already existing inherited or acquired mutations. Passenger muta-
tions are generally neutral and their accumulation may provide a molecular “clock”
indicating how long it has been since the cancer cells deviated from normal cells.
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Tumors are initiated by the first genetic alteration that provides a relative fitness
advantage. In the case of leukemias, this might represent the first alteration of an
oncogene, such as a translocation between BCR and ABL.

Recent paper by Ley et al. [81] addressed the issue of driver mutations contributing
to the pathogenesis of AML, using analysis of the genomes of 200 adult cases of de
novo AML, either whole-genome sequencing (50 cases) or whole-exome sequencing
(150 cases), along with ribonucleic acid (RNA) and microRNA sequencing and DNA-
methylation analysis. The conclusion was that AML genomes have fewer mutations
than most other adult cancers, with an average of only 13 mutations found in genes.
Of these, an average of five was in genes that are recurrently mutated in AML. A total
of 23 genes were significantly mutated, and another 237 were mutated in two or more
samples. Further analysis suggested strong biologic relationships among several of
the genes and categories. Further studies of this kind are likely to lead to insights
into the nature of these relationships, although with very few exceptions (such as
Beekman et al. [64]) only a single time point in patient lifetime is usually available.

One of the important recent papers with this focus is the mathematical model of
the relationship between accumulation of driver and passenger mutation in tumors
published by Nowak and Vogelstein groups [82]. In most previous models of tumor
evolution, mutations accumulate in cell populations of constant size or of variable
size, but the models take into account only one or two mutations. Such models
typically address certain aspects of cancer evolution, but not the whole process. In
the model presented in Bozic et al. [82], it has been assumed that each new driver
mutation leads to a slightly faster tumor growth rate. This model is as simple as
possible, because the analytical results depend on only three parameters: the average
driver mutation rate u, the average selective advantage associated with driver
mutations s, and the average cell division time T. The model is based on G–W bp.

The hypotheses are as follows: At each time step, a cell can either divide or
differentiate, senesce, or die. In the context of tumor expansion, there is no difference
between differentiation, death, and senescence, because none of these processes will
result in a greater number of tumor cells than present prior to that time step. It
is assumed that driver mutations reduce the probability that the cell will become
“stagnate,” i.e., it will differentiate, die, or senesce, although the stagnant cells
are not removed from the tumor. A cell with k driver mutations has a stagnation
probability dk = (1 − s)k/2. The division probability is bk = 1 − dk . The parameter
s is the selective advantage provided by a driver mutation. When a cell divides, one
of the daughter cells can acquire an additional driver mutation with probability u.
The theory can accommodate any realistic mutation rate and the major numerical
results are only weakly affected by varying the mutation rate.

We can calculate the average time between the appearances of successful cell
lineages. Not all new mutants are successful, because stochastic fluctuations may
lead to the extinction of a lineage. The lineage of a cell with k driver mutations
survives only with a probability of approximately 1 − dk/bk

∼= 2sk. Assuming that
u 
 ks 
 1, the average time between the first successful cell with k and the first
successful cell with k + 1 driver mutations is given by

τk = T

ks
log

2ks

u
.
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This result is obtainable from the theory of the G–W process (by elementary
means) and the derivation is found in the supplement to Bozic et al. [82]. The
cumulative time to accumulate k mutations grows logarithmically with k. On the
other hand, the average number of passenger mutations, n(t), present in a tumor cell
after t days is proportional to t, that is n(t) = νt/T , where ν is the rate of acquisition
of neutral mutations. Combining the results for driver and passenger mutations,
results in a formula for the number of passenger mutations that are expected in a
tumor that has accumulated k driver mutations

n = ν

2s
log

4ks2

u2
log k.

Here, n is the number of passengers that were present in the last cell that clonally
expanded. Bozic et al. [82] demonstrate that this dependence fits empirical data on
several human cancers.

Distribution of Mutational Events in Various Phases
of Tumor Growth

This question has been recently addressed by Tomasetti et al. [83]. The framework
is not very different from that of Bozic et al. [82]. However, the paper describes
mathematically the different phases in which somatic mutations occur in a tissue
giving rise to a cancer. Starting from a single fertilized egg, all tissues are created
via clonal expansion (development phase). The tissue is then subjected to periodic
self-renewals. During development and tissue renewal, passenger mutations occur
randomly, undergo clonal expansions and either become extinct or expand as succes-
sive passenger mutations accumulate. A driver gene mutation may initiate a tumor
cell clone, which then can expand through subsequent driver mutations, eventually
yielding a clinically detectable tumor mass (cancerous phase). Passenger mutations
occur during this phase as well. The model makes the novel prediction, validated by
empirical findings, that the number of somatic mutations in tumors of self-renewing
tissues is positively correlated with the age of the patient at diagnosis. Importantly,
the analysis indicates that half or more of the somatic (i.e., acquired, non-germline)
mutations in tumors of self-renewing tissues occur prior to the onset of neoplasia. This
is the case, among others for the chronic lymphocytic leukemia (CLL). The model
also provides a novel way to estimate the in vivo tissue-specific somatic mutation
rates in normal tissues directly from the sequencing data of tumors.

Stochastic models also allow modeling of eradication of leukemic stem cells while
saving healthy stem cells. The paper by Sehl et al. [84] uses an impressive array of
analytical and computational tools to analyze a pair of stochastic processes describing
proliferation and death of healthy and cancer stem cells under chemotherapy. The
question asked concerns the birth and death rates differential between these two cell
types, required to eradicate the latter and preserve the former. Mutations, emergence
of drug resistance, interactions of cancer and healthy cells, and other complicating
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factors are disregarded. Because the biological setup is simplified to the extreme, it
allows effective mathematical analysis.

A review of gene copy number and loss of heterozygosity and gene mutation
profiles demonstrated that relapsed AML invariably represented reemergence or evo-
lution of a founder clone Parkin et al. [85]. Analysis of informative paired persistent
AML disease samples uncovered cases with two coexisting dominant clones of which
at least one was chemotherapy sensitive and one resistant, respectively. These data
support the conclusion that incomplete eradication of AML founder clones rather
than stochastic emergence of fully unrelated novel clones underlies AML relapse
and persistence.

As a side note, it seems surprising that quite few papers offer estimates of absolute
numbers of HSCs and committed cells. Against this background, the paper by Peixoto
et al. [86] discusses the mathematics of hematopoiesis based on stochastic hypothe-
ses. Mathematical model that describes normal hematopoiesis across mammals as
a stable steady state of a hierarchical stochastic process is also used to understand
the detailed dynamics of a range of blood disorders both in humans and in animal
models. The paper includes comparative numerical estimates of the numbers of cells
in different compartments.

Models of Spatial Effects and Structure

Niches

One of the most important realizations of recent years has been that there existed
spatial organization in normal and malignant HSCs in bone marrow. This finding
allowed correlating such states as proliferative activity, dormancy, and differentia-
tion, not only with the locations in the bone marrow but also with proximity to some
other cells type such as mesenchymal stem cells or osteoblasts. Such organization
has been previously postulated in the papers by Roeder and coauthors; however,
now it is based on biologically verifiable findings. The locations are referred to as
stem cell niches. A recent review by Tieu et al. [28] states that the HSC niche is an
important regulator of stem cell fate. Complex signaling pathways, such as those
involving Notch, Wnt, and Hedgehog, regulate stem cell renewal, differentiation,
and quiescence [87 – 89]. Mathematical models can be useful in studying the dy-
namics of stem cell maintenance and, specifically, spatial considerations related to
the structural relationships between stem cells and their progeny with cells of the
microenvironment. This paradigm will trigger development of a new generation of
deterministic and stochastic models, in which the interaction of spatial and stochastic
effects poses new mathematical problems.

Huang [90] discusses in qualitative terms three perspectives outside the realm of
their familiar linear deterministic view: (i) state space, (ii) high dimensionality, and
(iii) heterogeneity. These concepts jointly offer a new vista on stem cell regulation
that naturally explains many novel, counterintuitive observations and their inherent
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inevitability, obviating the need for ad hoc explanations of their existence based on
natural selection.

Bertolusso and Kimmel [91] considered the early carcinogenesis model originally
proposed as a deterministic reaction-diffusion system of the following form:

∂c/∂t = (a(b, c) − dc)c + μ

∂b/∂t = α(c)g − dbb − db

∂g/∂t = γ −1(∂2g/∂x2) − α(c)g − dgg + κ(c) + db,

where c, g, and b are the spatial densities of cells, free-diffusing growth factor, and
bound growth factor, respectively. The model explores the spatial effects stemming
from growth regulation of precancerous cells by diffusing growth factor molecules.
The model has been originally devised [92] for solid tumors spreading along linear
or tubular structures such as in lung or breast cancer, but it might apply to systems of
similar geometry, which are found in bone marrow. The original deterministic model
exhibits Turing instability, producing transient spatial density spikes in cells which
are model counterparts of emerging foci of malignant cells. However, the process of
diffusion of growth factor molecules is by its nature a stochastic random walk. An
interesting question emerges to what extent the dynamics of the deterministic diffu-
sion model approximates the stochastic process generated by the model. Bertolusso
and Kimmel [91] addressed this question using simulations with a new software tool
called sbioPN (spatial biological Petri Nets). The conclusion is that whereas single-
realization dynamics of the stochastic process is very different from the behavior
of the reaction diffusion system, it is becoming more similar when averaged over a
large number of realizations. The degree of similarity depends on model parameters.
Interestingly, despite the differences, typical realizations of the stochastic process
include spikes of cell density, which however are spread more uniformly and are less
dependent of initial conditions than those produced by the reaction-diffusion system.
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