
Chapter 15
Drug Resistance

Cristian Tomasetti

Abstract Drug resistance is a fundamental problem in the treatment of cancer since
cancer that becomes resistant to the available drugs may leave the patient with no
therapeutic alternatives. In this chapter, we consider the dynamics of drug resistance
in blood cancer and the related issue of the dynamics of cancer stem cells. After
describing the main types of chemotherapeutic agents available for cancer treat-
ment, we review the different mechanisms of drug resistance development. Various
mathematical models of drug resistance found in the literature are then reviewed.
Given the well-known hierarchy of the hematopoietic system, it is critical to focus
on those cells that have the ability to self-renew, since these will be the only cells
able to induce long-term drug resistance. Thus, a recent mathematical model taking
into account the complex dynamics of the leukemic stem-like cells is described. The
chapter closes with a few applications of this model to chronic myeloid leukemia.
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Introduction

The development of drug resistance is a fundamental problem in the treatment of
cancer. The beneficial effects induced by a drug at the beginning of cancer therapy
are, more often than not, temporary and are typically lost due to the insurgence
of drug resistance. In this chapter, we consider the dynamics of drug resistance in
blood cancer and the related issue of the dynamics of cancer stem cells. We review
the main biological mechanisms known to cause drug resistance as well as various
mathematical models of drug resistance found in the literature. Subsequently, we
focus on those leukemic cells that have the key ability to self-renew, that is, the
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leukemic stem cells. A recent mathematical model able to account for the complex
dynamics of these cells is introduced and a few applications of this model to chronic
myeloid leukemia are presented.

Chemotherapy

Aside for the possible surgical removal of a tumor, chemotherapy is the most common
treatment against cancer (transplant, radiotherapy, and immunotherapy being the
other major ones). While chemotherapeutic drugs are usually successful at reducing
the initial tumor load, their effectiveness is often reduced or even completely lost
after a few cycles of treatment. The main reason for their failure is the development
of “drug resistance.” To better address the issue of cell resistance to anticancer drugs,
we will briefly review what chemotherapy is, how it has evolved in time, and how it
works.

A chemotherapeutic drug is, broadly speaking, a chemical compound with the
ability to reduce the tumor load. The first modern chemotherapy drug used against
cancer was discovered in 1942, when the US government asked two Yale assistant
professors, L. S. Goodman and A. Gilman, to study mustard gas, which had been
developed and used as a chemical warfare agent in World War I. The two researchers
found that nitrogen mustard, an alkylating agent derived from mustard gas, caused a
dramatic regression of lymphoma in the patient under study. This discovery led in the
late 1940s and early 1950s to the investigation and subsequent use in clinical prac-
tice of various compounds: A. Haddow used urethane in chronic myeloid leukemia
(CML) patients, J. Burchenal used methotrexate to treat leukemia in children, and
S. Farber utilized aminopterin in acute childhood [1, 2]. Since then, many more
compounds have been found that are able of producing a significant regression of
a tumor load. We can broadly divide the chemotherapeutic agents in the following
categories [3]:

• Alkylating agents (and variations): By attaching alkyl groups to the guanine base of
DNA double-helix strands, they chemically modify a cell’s DNA, thus impairing
its function. Indeed, by cross-linking guanine bases in DNA, they make the DNA
strands unable to uncoil and separate. DNA replication is impaired and therefore
the cell can no longer divide.

• Antimetabolites: Chemicals that are similar in structure to metabolites (molecules
that are part of the normal cell metabolism) prevent these substances from being
incorporated into the DNA during the S phase of the cell cycle (synthesis phase,
when DNA replication occurs), consequently stopping normal cell development
and division by damaging the DNA strand. In fact antimetabolites masquerade as
purines or pyrimidines, molecules that are building blocks of DNA.

• Plant alkaloids: By inhibiting the assembly of microtubules they block cell
division, due to the fundamental role played by microtubules in a cell.
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Fig. 15.1 A point mutation causing drug resistance. a The bcr-abl enzyme (blue) activates the
substrate (yellow) via phosphorylation causing unregulated proliferation among the leukemic cells.
b Imatinib (red) binds competitively to the ATP binding site inhibiting the enzyme’s activity. c A
point mutation induces a conformational change in the ATP binding site that does not allow imatinib
to bind anymore, thus allowing ATP (green) to reach its binding site and therefore resulting in
bcr-abl’s activity. ATP adenosine triphosphate

• Topoisomerase inhibitors: By inhibiting topoisomerases, which are essential en-
zymes that maintain the topology of DNA, they cause damages to the transcription
and replication of DNA (interfering with proper DNA supercoiling).

• All these types of drugs do not differentiate between cancer and normal cells, with
the resulting well-known toxic effects. However, the inhibition of cell division or
the interference against DNA replication is expected to harm cancer cells more
than healthy cells, given that cancer cells should divide more often than normal.

• Targeted therapies: In the past decade, new and less toxic drugs have been de-
signed to target only a particular molecular attribute that characterizes a given
type of cancer cell and not its healthy counterpart. Imatinib mesylate, for ex-
ample, works by inhibiting the bcr-abl enzyme activity (see Fig. 15.1), which
characterizes CML cells [4, 5]. Because of the potential of these new therapies,
we are witnessing the rise of a new discipline, molecular oncology, whose focus
is to understand the genetic and biochemical mechanisms involved in cancer [6].



306 C. Tomasetti

The Biology of Drug Resistance

A general phenomenon for all standard chemotherapeutic agents is that successive
applications of the treatment will yield decreasing therapeutic benefits due to the
development, in the cancer cells, of resistance to the drug. Thus, while standard
chemotherapy has proven to be effective in the treatment of a few types of cancer—
such as lymphomas, germ cell, and some pediatric malignancies—in the majority of
cases the results are modest [6]. Even for the new and promising targeted therapies,
the development of drug resistance constitutes a fundamental problem. For example,
in CML patients, the occurrence of specific mutations in the bcr-abl domain of the
leukemic cells will result almost invariably in the relapse of the disease due to the
lost effectiveness of imatinib [7]. We briefly summarized here some of the various
classifications of drug resistance. For a more comprehensive overview, we refer to
the book by Teicher [8] and to the references therein. For a comprehensive treatment
of drug resistance to targeted therapies, we refer to the book by Daniel [9].

Resistance may be relative or absolute. Relative resistance refers to cases where
the level of resistance of a cancer cell depends on the drug’s dosage: the higher
the dosage the less probable for the cell to be resistant. With absolute resistance
instead, no matter what the dose is, the drug will not affect the resistant cell. In
general, resistance to standard chemotherapy appears to be relative [1, 10, 11]. Drug
resistance can be both a spontaneous phenomenon (e.g., caused by random genetic
mutations which occur independently and even before the drug is administered, as we
will see) as well as an induced one, which means that drug resistance may originate
as a consequence of taking a drug [12 –14]. Drug resistance depends on many factors.
We may divide them broadly into two categories [8, 15]:

• Physiological resistance, which depends on host factors, like, for example, the
size, location, and growth rate of the cancer, the blood supply, the immune system
status, the tumor microenvironment, the tumor pH, or the patient’s intolerance to
the effects of a drug. Location resistance is also known as diffusion resistance.

• Biological resistance, given by kinetic resistance or genetic and epigenetic
alterations in the cancer cells.

In the following, we will focus only on the second kind. Kinetic resistance refers to the
reduction in effectiveness of a drug caused by the cell division cycle. Such resistance
is generally only temporary. As we have seen, many standard chemotherapeutic
drugs (such as methotrexate, vincristine, and cytosine arabinoside, to name a few)
are effective during only one specific phase of the cell cycle, e.g., during the S phase
when the DNA is synthesized. Thus, in the case of a short exposure to the drug,
the cancer cell will not be affected if it is found in a different phase. Even more
importantly, the cell will be substantially invulnerable if it is out of the cell division
cycle, i.e., in a “resting state” or G0 state. This implies that the number of cells that
are affected by the drug is lower for cell populations that have low proliferation rates.
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Resistance to drugs may instead develop as a consequence of genetic events such
as mutations, rather than developing due to kinetic reasons. This category includes
both point mutations and chromosomal mutations, also known as gene amplifications.

Point mutations are genetic changes causing the replacement of a single base nu-
cleotide or pair with another nucleotide or pair in the DNA or RNA. These mutations
may occur, for example, during DNA replication. If the mutation is nonsynonymous,
it will change the cellular phenotype possibly making the cancer cell resistant to the
drug. A major reason for the development of resistance to imatinib in CML patients
is due to point mutations that alter the adenosine triphosphate (ATP) binding site of
bcr-abl, which is the specific binding target of imatinib, thus inhibiting the activity
of the drug [4, 5, 7]. This mechanism is depicted in Fig. 15.1.

Gene amplification is either the consequence of an abnormally large number
of copies of a particular gene or the result of an overproduction of transcripts of
particular gene. This means that a limited portion of the genome is reproduced to
a much greater extent than the replication of DNA composing the remainder of the
genome. Such a defect amplifies the phenotype that the gene confers on the cell,
which, in turn, induces resistance by essentially providing the cells with more copies
of a particular gene than the drug is able to cope with. The classical example is
given by the amplification in the number of efflux transporters a cell is endowed
with, thus increasing the ability of the cell to eliminate, expel the drug. While gene
amplification (and consequently the resistance induced by it) may be a temporary
phenomenon, point mutations appear to be permanent.

The cause for genetic mutations is not completely clear. Is it a random phe-
nomenon, possibly occurring even before the therapy is started, or rather a
drug-induced, directed one, perhaps both? Such a fundamental question has been the
focus of the Nobel Prize winning work of Luria and Delbrück [16]. Using fluctuation
analysis, Luria and Delbrück showed that drug resistance in in vitro bacterial cul-
tures is primarily a random phenomenon rather than a drug-induced, directed one.
Many further in vitro experiments with tumor cell lines confirmed this result. In
vivo experiments have instead provided somewhat contradictory results, with some
results supporting and others opposing the idea of drug resistance being a random
phenomenon, see references [2, 17].

Mathematical Models of Drug Resistance

Drug resistance has been extensively studied in the mathematical literature. Origi-
nally, the modeling of resistance due to random point mutations was motivated by
the experimental findings of Luria and Delbrückin 1943 on the development of re-
sistance to antibiotics in bacteria due to mutations [16]. The mathematical model the
authors formulated in order to answer that fundamental question was then used for
estimating the rate at which mutations causing resistance occurred. In that model,
Luria and Delbrück assumed that the process starts with one normal cell and no mu-
tants. A random process, specifically a Poisson process with an intensity function,
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modeled the occurrence of mutations. Importantly, both normal and mutant cells
were assumed to grow deterministically in an exponential fashion. The probability
of no mutations was then calculated as well as the mean and the variance of the
distribution of the number of mutants [16]. Given these estimates, it was possible to
implement methods for the estimation of mutation rates from the data. This Nobel
Prize winning work has been followed by a large literature on the study of the distri-
bution of the number of mutants in a population which grows exponentially, known
as the Luria and Delbrück distribution [18].

The first model of resistance to chemotherapy due to point mutations in cancer is
the celebrated model by Goldie and Coldman and its extensions [2, 19–24].

In Goldie and Coldman [21], the growth of the drug-sensitive cancer cell popula-
tion was approximated by using a deterministic exponential curve. At each division,
it was assumed that there is a small positive probability that a cancer drug-sensitive
cell may give rise to one drug-resistant cancer cell daughter because of a random
point mutation. Such a mutant generated a clone growing according to a birth pro-
cess. A Poisson distribution approximated the number of mutations occurring in the
drug-sensitive population at any given time. It was also assumed that back mutations
could not occur. Then, by using a filtered Poisson process, it was possible to calcu-
late the number of mutants present in the cancer cell population. The probability of
having no resistant cells present in a tumor was then calculated, where the nonex-
istence of resistant cells was assumed to be the condition for being cured. We note
that in the model by Goldie and Coldman, the drug-sensitive population is modeled
deterministically as in Luria and Delbrück [16], but the drug-resistant population is
modeled stochastically rather than deterministically. The main results of Goldie and
Coldman are that the probability of having no drug resistance present in a tumor
is inversely related to the tumor size and that more frequent dosage repetitions are
more successful in minimizing the risk of drug resistance development than less
frequent doses administered for a longer period of time [21]. In Coldman et al., the
authors extended the model to multi-drug resistance. It was assumed that multiple
drug resistance occurred in single step where now a cancer cell may be sensitive to
all drugs, resistant to only one of the drugs, to two given drugs, and so forth [23,
24]. The main conclusion of their study was that the best strategy was to use all
available drugs simultaneously. Furthermore, it was shown that, if the simultaneous
administration of all drugs is not possible, the sequential alternation of all drugs is
optimal when these drugs are equally effective. Goldie and Coldman extended their
mathematical model to consider also the development of drug resistance when the
cancer stem cell hypothesis is considered [2, 22]. Unfortunately, they assumed that
a stem cell could either renew symmetrically, producing two daughter stem cells, or
differentiate symmetrically, producing two differentiated (not stem cells) daughters.
In this way, the two division modes are simply equivalent to either a stem cell birth or
death, leaving out from the stem cell dynamics the fundamental case of an asymmet-
ric division, where a stem cell and a differentiated daughter cell are produced. Their
model then reduces to the usual birth and death process of a growing population.
Notwithstanding this limitation, their model was the first model on drug resistance
that somehow considered the cancer stem cell dynamics.
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A more recent study on random point mutations is by Komarova et al. [25–28]. For
example, a model based on stochastic birth and death processes on a combinatorial
mutation network was used to describe the development of resistance to multi-drug
treatments [25, 27]. Thus, probabilistic methods and a hyperbolic partial differential
equation were used to show how the pretreatment phase is more significant in the
development of drug resistance than the treatment phase. This is a very natural,
intuitive result given that the treatment will, in general, drastically reduce the cancer
cell population and consequently also reduce the number of cell divisions from
which random point mutations may arise. The main result obtained by the author is
the following: In the case of a single-drug treatment, the probability to have resistant
mutants generated before the beginning of the treatment and present, including their
progeny, at some given time afterward, does not depend on the cancer turnover rate
contrary to the multidrug scenario [25]. A consequence of such result would also
be that the probability of single-drug treatment success would not depend on such
a rate. In Tomasetti et al., however, it has been shown that this result does not hold
for finite times (those of biological interest), especially if the difference between
the death and the birth rate of the cancer cells is small [29]. Komarova et al. used
the same methodology to analyze the development of resistance in CML [26, 27].
The authors suggested that a combination of three drugs with different specificities
might overcome the problem of resistance [27]. At the same time, they observed
that combining more than two current drugs may not provide any further therapeutic
advantage, due to the problem of cross-resistance [26].

Another recent work on point mutations is by Iwasa et al. [29]. Continuous-time
branching processes were used to calculate the probability of resistance at the time of
detection of the cancer, as well as the expected number of mutants found at detection
if resistance developed. These estimates were found both for the case where drug-
sensitive and drug-resistant cells have the same birth and death rates as well as for
the cases where the drug-resistant cells have a fitness advantage or disadvantage with
respect to the wild-type cancer cells. Similarly to the results [21], the authors showed
that the probability of resistance is an increasing function of the detection size and
the mutation rate [29].

Finally, Durrett et al. used multi-type branching processes to study multi-drug
resistance, obtaining estimates for the distribution of the first time when k mutations
have accumulated in some cell, as well as for the growth of the various subpopulations
of mutant cells [30].

While we will not consider the modeling of drug resistance due to gene am-
plification, kinetic resistance, drug-induced or physiological resistance, we would
like to briefly comment on some of the works on these types of resistance and refer
interested readers to the references therein. Modeling of resistance due to gene ampli-
fication can be found, e.g., in [31–33]. Drug resistance in these works is studied using
stochastic branching models. Kinetic resistance has been mathematically studied in
[34, 35]. The models in these papers are based on ordinary differential equations.
An alternative approach on kinetic resistance, using age-structured models, can be
found in [36–40]. Instead, for mathematical models and experimental findings on
drug-induced resistance, we refer to [14, 41, 42].
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A Model of Drug Resistance for Leukemias: Including
the Dynamics of Leukemic Stem Cells

In the previously mentioned mathematical models of drug resistance, cancer cells are
considered as a homogeneous population (aside from being or not drug resistant).
In fact, cancer cells will typically differ in size, morphology, division rate, death
rate, and resistance to a given drug [43, 44]. This diversity is caused by genetic
differences, as well as by epigenetic plasticity [45].

Blood constitutes possibly the best example of a tissue with a large variety
of cell types, and where homeostasis is maintained by a small subset of slowly
replicating cells, known as the hematopoietic stem cells. These cells have the ca-
pacity of both self-renewal and differentiation into more mature—and much shorter
lived—differentiated blood cells. From the point of view of drug resistance, this
hematopoietic hierarchy implies that only the cancer cells that have the capacity for
self-renewal can propagate long-term drug resistance. Therefore, these cancer cells
should be taken into account in any model of drug resistance. In fact, only these cells
should be taken into account. Note that this is true even if cancer stem cells were to
be always drug resistant due to some intrinsic property related to their stemness.

Tomasetti et al. modeled drug resistance by focusing on the dynamics of a growing
leukemic stem cell population where all their possible modes of division are included:
symmetric self-renewal, asymmetric division, and symmetric differentiation [46].
We will review this model in some detail.

Consider the following question: What is the probability that by the time a patient
is diagnosed with, e.g., CML some of the leukemic stem cells (LSCs) have been
already hit by specific point mutations causing these cells and all their progeny to
be resistant to a given targeted therapy? Since point mutations seem to represent the
main cause of resistance to targeted therapies and since it appears that the main effect
of these therapies on leukemic stem cells is cytostatic, it follows that an answer to
the above question is the key in order to understand what is the probability, for a
newly diagnosed CML patient, to incur in a later relapse of the disease due to the
development of resistance to the treatment.

If we assume for simplicity that point mutations occur randomly during DNA
replication, and letting u be the probability that when a leukemic stem cell divides
one of its daughter cells will carry a point mutation, we can think about this problem
as depicted in Fig. 15.2.

Denote by S(t), the total number of wild-type LSCs present in a patient at time t.
Denote by l and d, the rates at which LSCs divisions and deaths occur, respectively.
Also, denote by a, b, and c the probabilities that a cell division will be asymmetric,
symmetric differentiation, or symmetric self-renewal, respectively (thus a + b +
c = 1).

The average dynamics of the wild-type LSC population can then be described by
the following equation:

dS(t)

dt
=

[
l(1 − u)(1 − a − b) −

(
d + bl + ual

2

)]
S(t) (15.1)
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Fig. 15.2 Clonal expansions. The wild-type leukemic stem cells expansion (in green) from the first
LSC, at time 0, up to the time of diagnosis tM . Mutated LSCs subclones (in red) may appear and
go subsequently extinct or grow and be present at the time of diagnosis. The model estimates the
probability of having mutated LSCs (red) at time tM . LSC leukemic stem cell

Indeed, the wild-type population grows only when a symmetric self-renewal without
mutations occurs, an event of probability (1 − u)(1 − a − b), while it decreases due
to cell death, symmetric differentiation, or when the stem cell daughter of an asym-
metric division is hit by a mutation. Since u is very small (< 10−6 in CML), we can
approximate the above equation by

dS(t)

dt
= [l(1 − a − 2b) − d] · S(t) (15.2)

By solving Eq. (15.2), we find that the average time for which the wild-type LSC
population will consist of x cells is

tx+1 − tx = ln (1 + 1/x)

l(1 − a − 2b) − d
, (15.3)

where tx is the time at which the population reaches size x. Thus, the average number
of mutations occurring while S = x, which we defined as mx , is given by multiplying
the number of cells present at that time by the mutation rate and by the average time
for which S = x,

mx = xul(1 − a/2 − b)
ln (1 + 1/x)

l(1 − a − 2b) − d
≈ ul(1 − a/2 − b)

l(1 − a − 2b) − d
(15.4)

since x ln (1 + 1/x) 1. It is important to note that mx is not a function of x.
Now, we will use branching processes [47] to model the mutant LSCs. Let M and

T be the total number of wild-type and mutated LSCs present in a patient at the time
of diagnosis, respectively, and let GT be the probability generating function of T.



312 C. Tomasetti

Then

GT (ξ ) = E[ξT ] = E[ξK1+...+KM−1 ] = E[E[ξK1 |r1]] · · · E[E[ξKM−1 |rM−1]],
(15.5)

where Kx is the number of mutated LSCs that are present at the time of diagnosis,
tM , and whose originating mutations (rx being their total number) occurred when
S = x. Letting rx be Poisson with mean mx we obtain

GT (ξ) =
M−1∏

x=1

∞∑

rx=0

(
mrx

x

rx ! e−mx gx(ξ)rx
)

= exp

(

−
M−1∑

x=1

mx [1 − gx (ξ)]

)

, (15.6)

where gx(ξ ) is the probability generating function, at time tM , of a mutant clone
originated when S = x.

To find gx(ξ ), we let gx(ξ ,t) be the probability generating function, at time t,
of a mutant clone originated when S = x. Here, time is measured from the time of
occurrence of the originating mutation. Then, this generating function satisfies the
Kolmogorov backward equation

∂g

∂t
= l(1 − a − b)g2 + (d + bl) − (l(1 − a − b) + d + bl)g. (15.7)

Solving the above partial differential equation and noting that

M ≈ xe[l(1−a−2b)−d]tM−x , (15.8)

where, tM−x is the average time it takes for the wild-type LSCs to go from x to M,
we find that

gx(ξ ) = gx(ξ , tM−x) ≈
(ξ − 1)

(
d + bl

l(1 − a − b)

)
M
x

−
(
ξ − d + bl

l(1 − a − b)

)

(ξ − 1)M
x

−
(
ξ − d + bl

l(1−a − b)

) , (15.9)

Plugging Eq. (15.9) in Eq. (15.6), we find that the probability, PR , that at the time of
detection, tM , there are already present some mutated, drug resistance LSCs given
by

PR = 1 − GT (0) ≈ 1 − exp

(
−uM

(
1 − a/2 − b

1 − a − b

)
1

C
ln

1

1 − C

)
, (15.10)

where

C = d + bl

l(1 − a − b)
. (15.11)

Moreover, it is now possible to calculate, from the probability generating function
GT , the various moments of the distribution of resistant LSCs. For example, the
expected value at the time of diagnosis is given by

E[T ] = G′
T (1) ≈ uM In(M)

(
1 − a/2 − b

1 − a − 2b − d/l

)
. (15.12)
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Fig. 15.3 Modes of division versus turnover rate. Plots of the given mathematical expressions, as
functions of the parameter a (left), and of the turnover rate d/l (right)

In Fig. 15.3, where two key parts of the formula given in Eq. (15.10) are depicted, we
can observe the important role played by the mode of division chosen by the LSCs in
determining the amount of drug resistance generated before the start of the therapy.
In fact, the first expression changes considerably, going from 1 to values above 6
(for realistic values of the parameter a), while the range for the second expression
(accounting for the influence of the turnover rate d/l) is much smaller. Thus, it is
fundamental to account for the mode of division chosen by the stem cells in any
model of drug resistance development.

Applications of the Model

We will briefly consider two applications of the above model, both to CML.
A first straightforward application considers the effects that a targeted therapy,

like imatinib, has on the LSCs. Assume that, when the therapy starts, the drug
does not affect the LSC population dynamics at all, i.e., assume that the LSCs are
insensitive to the drug. This has been the established point of view in the medical
literature, and a mathematical model has been often used to support this hypothesis
[48]. Interestingly, the mathematical model had that hypothesis included among its
assumptions.

If this hypothesis were to be correct, then the LSC population will continue to
grow also after the start of the therapy, beyond the number present at the time of
detection given by M in Eq. (15.10). Therefore, the probability of developing LSCs
resistant to the drug would continue growing, according to the formula found in Eq.
(15.10). But this clearly contradicts the evidence observed in the data coming from
long clinical trials [49]. Thus, it must be that imatinib also affects the LSC population
[50].

A second nontrivial application considers the preferred mode of division of
leukemic stem cells in CML. We have already seen that the mode of division chosen
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by the cancer stem cells will dramatically affect the dynamics of the tumor’s growth
as well as the generation of drug resistance due to random point mutations. Inter-
estingly, there appears to be a link between symmetric self-renewal and an inherent
risk of cancer [51], while it has been observed that the preferred mode of division of
healthy hematopoietic stem cells is given by asymmetric division: Their probability
to divide asymmetrically, given by the parameter a in Eq. (15.10), has been estimated
to be close to one, and generally a > 0.9 [52, 53]. By using again the data coming
from the International Randomized Study of Interferon and STI571 (IRIS) clinical
trial [49], it is possible to show that the amount of resistance found among patients
is too small for the parameter a in the formula of Eq. (15.10) to be close to one.
We must rather have a < 0.5 (see [46] for further details). Thus, the model allows
us to infer that the LSCs should have a much lower than normal tendency to divide
asymmetrically hence indicating a substantial shift toward an increased symmetric
self-renewal among leukemic stem cells.

Conclusions

We have reviewed a few elements of the basic biology behind the development of
drug resistance in cancer and some of the mathematical models found in the literature.
Given the key role played by cancer stem cells in carrying long-term drug resistance,
we have analyzed in some detail a recent stochastic model that includes the dynamics
of stem cells among its elements, and a few applications of this model to CML have
been considered. Interestingly, the formulas obtained with this model have also
been recently used in predicting drug resistance to targeted therapy in colorectal
cancer [54]. In conclusion, mathematical modeling has proven to be a useful tool for
analyzing the dynamics of drug resistance.
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