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Part I
Basic Components

The blood system is multi-scale, from the organism to the organs to cells to intracellu-
lar signaling pathways to macromolecule interactions. Blood consists of circulating
cells, cellular fragments (platelets and microparticles), and plasma macromolecules.
Blood cells and their fragments result from a highly-ordered process, hematopoiesis.
Definitive hematopoiesis occurs in the bone marrow, where pluripiotential stem cells
give rise to multiple lineages of highly specialized cells. Highly-productive and con-
tinuously regenerative, hematopoiesis requires a microenvironment of mesenchymal
cells and blood vessels.

In this first section, we shall cover the important components of blood: begin-
ning with the microenvironment and then focusing on erythrocytes, megakaryocytes,
phagocytic cells, and platelets. In Chap. 1, the editors of this volume provide a multi-
disciplinary overview of hematopoiesis and systems biology. This should serve to
introduce hematology to the quantitative and modeling scientists as well as to in-
troduce basic mathematical principles and Text modeling to the hematologists. In
Chap. 2, Krinner and Roeder discuss the interactions among hematopoietic stem
cells and the microenvironment. No other tissue undergoes the tremendous amount
of regeneration and accurate specialization of diverse tissues as the blood system. For-
tunately, defects in production (overproduction or underproduction) are infrequent
occurrences. In Chap. 3, Socolovsky and associates focus on how erythropoietin
drives production of red blood cells through basal and stress conditions. This high-
lights an important property of the blood system—the ability to function for the most
part within a narrow range of physiological conditions and still retain the dynamic
capacity to respond quick to stressful stimuli and other environmental changes. In
Chap. 4, the Kaushanskys describe in detail thrombopietin’s intracellular signaling
that drives the differentiation of megakaryocytes. Interestingly, many of its proximal
components are found activated in response to other cytokines. In Chap. 5, Alber
and colleagues detail how platelets are formed from megakaryocytes and how they
become activated. Platelet production and homeostasis highlights their clinical sig-
nificance—a sufficient number of platelets must remain quiescent and then be able
to respond briskly to bleeding. Too many platelets and too much activation result
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in life-threatening clots; whereas too few platelets and too little activation result in
life-threatening bleeding. Lastly in this section, in Chap. 6, Corey and colleagues
discuss granulocytes and monocytes, two critical components in innate immunity.

Seth Joel Corey, MD, MPH
Chicago, IL

Mark Kimmel, PhD
Houston, TX

Joshua N. Leonard, PhD
Evanston, IL



Chapter 1
Systems Hematology: An Introduction

Seth Joel Corey, Marek Kimmel and Joshua N. Leonard

Abstract Hematologists have traditionally studied blood and its components by
simplifying it into its components and functions. A variety of new techniques have
generated large and complex datasets. Coupled to an appreciation of blood as a
dynamic system, a new approach in systems hematology is needed. Systems hema-
tology embraces the multi-scale complexity with a combination of mathematical,
engineering, and computational tools for constructing and validating models of bi-
ological phenomena. The validity of mathematical modeling in hematopoiesis was
established early by the pioneering work of Till and McCulloch. This volume seeks to
introduce to the various scientists and physicians to the multi-faceted field of hema-
tology by highlighting recent works in systems biology. Deterministic, stochastic,
statistical, and network-based models have been used to better understand a range of
topics in hematopoiesis, including blood cell production, the periodicity of cyclical
neutropenia, stem cell production in response to cytokine administration, and the
emergence of drug resistance. Future advances require technological improvements
in computing power, imaging, and proteomics as well as greater collaboration be-
tween experimentalists and modelers. Altogether, systems hematology will improve
our understanding of normal and abnormal hematopoiesis, better define stem cells
and their daughter cells, and potentially lead to more effective therapies.

Keywords Hematology · Models · Reductionist · Systems biology
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Blood, pure and eloquent, wrote Max Wintrobe, one of the pioneers of modern hema-
tology. His description was but a reference to lines written by the seventeenth-century
English poet John Donne. Hematology, the study of blood and its components, has
undergone dramatic changes over the millennia, since man first recognized its power.
The first plague visited upon the Egyptians was blood, “I will strike the water of the
Nile, and it will be changed into blood. The fish in the Nile will die, and the river will
stink and thus the Egyptians will not be able to drink its water.” What we consider
so vital to human life was viewed as deleterious. Rabbis later writing commentary
warned against circumcising a third son after two had died of bleeding. Contempo-
raneously, Hippocratic writings described blood as one of the four humors. More
appreciative of its vital nature, the Greek physicians equated blood with spring and
air. The Greek word for blood, haima, has been sustained in all things hematologic
and hematopoietic.

Like other branches of medicine, hematology has undergone paradigm shifts.
From the ancient Jews’and Greeks’attribution of blood to health and disease through
the seventeenth century’s rationalists who described its circulation through arteries
and veins, to the modern physiologists of the past century, our understanding of blood
and its components has advanced. The past 50 years have provided us with more inti-
mate knowledge of its components at the subcellular level. This reductionist approach
to science has now been superceded by the awareness of complex, large datasets,
made possible by proteomic, flow cytometric, microarray, genomic sequencing, and
epigenetics. The complexity of blood and its components is also recognized at mul-
tiple levels from the subcellular to the macroscopic, such as the environment and its
effect on the organism. While physical and chemical laws have been applied to biol-
ogy, limitations to their applicability and predictability are frequently encountered.
Biology is dynamic.

The biomedical discipline that has been called physiology has evolved to a new
approach—a modern synthesis of biochemistry, genetics, mathematics, engineering,
and machine-based learning. Complex, large datasets of genes, lipids, metabolites,
and proteins have made it impossible for one investigator to intuit the whole. This
new, integrative field has been called systems biology. In this volume, we seek to
introduce physicians and scientists, qualitative and quantitative, to the different facets
of systems hematology. Systems hematology embraces this complexity, utilizing
engineering principles and computational methods to build and validate models using
experimental data. The approach rests on (i) defining all (or the known knowns) of
the components, (ii) systematically perturbing and monitoring the components of the
system, (iii) reconcile the experimentally observed responses with those predicted
by the model, and (iv) designing and performing new experiments to distinguish
between multiple or competing models. The goals are to understand how the system
works, identify new systems-based properties, and predict outcomes.

The major obstacle to success in systems biology lies in the disciplines practiced
by physicians and scientists. Major differences exist in the methods, jargon, and
philosophies between quantitative scientists, the theoretical physicists, the mathe-
maticians, the engineers, computer programmers, and experimentalists. Even within
the experimentalists, there is diversity and increasing technologization, as evidenced
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by cell biology, molecular biology, and proteomics. Until there is a common vernac-
ular, fundamental concepts in the fields of biology, mathematics, engineering, and
computation can be understood and transdisciplinary studies can be successful.

Blood as a System

Biological systems operate at multiple levels (or scales): molecular, cellular, tissue,
and organismal, and environmental. Stem cells generate differentiated blood cells
through a continuous process of asymmetric stem cell division, yielding daughter
cells with different capacities for renewal or differentiation. This process occurs in a
specialized microenvironment. The blood system consists of highly specialized cells
and plasma containing a range of proteins to regulate different processes. Among
the blood cells are erythrocytes that shuttle oxygen or its waste product to and from
tissues; white blood cells to fight infection and mediate inflammation; and platelets
to stop bleeding. Within the compartment of white blood cells, there is variability:
neutrophils to engulf foreign agents, lymphocytes to make antibodies and coordinate
immunity, and monocytes to process and regulate host defense. Plasma contains more
than 1000 proteins [1]. Homeostatic mechanisms insure that the right number of cells
is produced, but they are sufficiently dynamic to meet the needs of environmental
changes (e.g., hypoxia, infection, or bleeding). While hematologists diagnose and
treat patients with anemias, immune deficiencies, leukemias and lymphomas, and
hypercoagulability, it is astonishing that such high level of quality control of blood
and its elements exists and that blood diseases are not more common.

Systems Properties in Hematopoiesis

Because of the facility in sampling blood or bone marrow repetitively and quantita-
tively, the blood system is well suited for modeling and validation. Hematopoiesis
and the functioning of specialized blood cells involve complex processes that can be
examined at the level of genes [2], signal transduction proteins [3], or the population
distribution of diverse cell types [4]. Both deterministic and stochastic processes
contribute. By viewing hematopoiesis (cell proliferation and differentiation) as a dy-
namic system and disease as perturbations of the system, one can learn more about
both disease and physiological states.

Proliferation and loss are fundamental properties of hematopoietic stem cells and
their progeny. Population dynamics offers a quantitative approach in studying them.
Asymmetric division results in a stem cell dividing into either another stem cell or
a more committed cell, while symmetric division yields either two stem cells or
two differentiated daughter cells. These processes can be combined in a series of
short steps [5–8]. Models built around these division (a)symmetries usually result
in exponential cell growth, but such growth cannot be realistically sustained in vitro
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due to spatial and nutrient limitations. Models based on heterogeneous population
account for cell proliferation and loss due to death or differentiation.

Differentiation is the other fundamental property of hematopoietic progenitor cells
and requires critical processes of cell fate decision making. Decision making occurs
as a result of biochemical signaling and gene regulatory networks within the cell [9],
[10]. Ultimately, transcription factors determine cellular differentiation and special-
ization [11]. The relative contributions of instructive and permissive programming in
hematopoiesis have long been debated [6, 12–23]. To describe hematopoietic stem
cell renewal and differentiation, deterministic and stochastic models have been con-
structed. James Till, a biophysicist, and Ernest McCulloch, a physician, pioneered
the study of hematopoiesis in the early 1960s through their development of a quan-
titative spleen colony assay, establishment of a hematopoietic stem cell, and data
analysis that yielded a stochastic model of hematopoiesis [24], [25]. In their stochas-
tic model [5], cells have two possible fates: (1) differentiate and leave the proliferative
compartment or (2) undergo symmetric division forming two colony-forming cells.
Each fate was assigned a probability. Drawing random numbers to determine the fate
of each cell, Till and McCullouch calculated the diversity of stem cell populations
after the course of several generations. Colony generation appears as a well-defined
process even though individual cell-fate decisions are random. Regulation acts at the
population, not cellular, level and the population of stem cells can be affected by
influencing processes that define the effective probabilities of birth and death.

A cell uses complex intracellular signaling and gene regulatory networks in order
to integrate the multiplicity of cues in its environment and to ultimately make a
specific decision. In particular, gene regulatory networks have provided great insights
into lineage commitment of hematopoietic progenitors.

Types of Mathematical Models

Different methods of modeling have been developed to describe and predict biolog-
ical processes. Not all models are accurate, but some are more useful than others.
Deterministic models describe the state of a system over time in the absence of
random events. These always produce the same output for a given input [26]. In
contrast, stochastic models describe the effects of randomness and noise on system
output [27]. Statistical models use existing data to estimate a functional relationship
between system input and output. Network models graph the direction and magnitude
of interactions that exist between the various components in a system [28].

Deterministic models typically consist of one or more differential equations, with
each equation describing the change in a system state variable over time, as it depends
on other system variables and rates. If the state variable of interest is the number of
cells in the population, a differential equation modeling the change in the population
over time would consist of the difference between rates of cell production and rates
of cell loss:
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dNX

dt
= (rate at which precursor of X differentiates into X)

− (rate at which X differentiates into next cell lineage)

− (rate at which X dies) (1.1)

where NX is the number of cells of type X.
Each equation describes the rate of change in the number of cells of given type and

maturity in the system by including terms for the rates of cell production, death, and
differentiation. Once the equations are established, they are solved either analytically
or numerically to determine the population’s functional dependence on time. In
models describing physiological conditions, the equations tend toward a steady-state
solution representing system homeostasis; that is, after sufficient time has elapsed,
positive and negative contributions to cell number balance and the population attains
a constant level (e.g., dNX/dt = 0 in Eq. 1.1). For disease-state cell populations, other
types of behavior such as oscillations or uncontrolled growth are frequently modeled.

Stochastic models are employed to examine the effects of intrinsic and extrinsic
randomness on a system. Intrinsic randomness arises from interactions of a finite
(“small”) number of discrete components, e.g., binding of a given gene’s promoters
(two copies per diploid genome) by transcription factor’s molecules (also a limited
number). Extrinsic randomness arises either from variability (genetic and pheno-
typic) among cells or from environmental fluctuations. The most common type of
stochastic model is a Markov process, in which the future state of the system de-
pends only on its current state and is independent of its past states. Monte Carlo
simulations are an empirical method to investigate dynamics of a stochastic system,
by generating repeated random trajectories and computing frequencies that estimate
probability distributions.

Statistical models are sometimes confused with stochastic models. Whereas
stochastic models reflect the structure of the biological system, statistical models
are data driven. Statistical models can be employed even when no knowledge about
system’s structure exists and can generate predictions, which may be only statisti-
cally validated. However, some statistical models such as Bayesian networks may
provide insights concerning the structure. Bayesian network models are built from
graphs in which the states of and relationships between network elements are prob-
abilistic. While graph theoretical models can be circular, Bayesian networks have a
definite, distinct set of termini. These models have a wide range of uses. For exam-
ple, a Bayesian network model could be used to predict the probabilities of certain
cellular mutations based on abnormalities in protein expression levels (assuming, of
course, that there is a relationship between the two). Their structure and necessary
constants have to be estimated based on data. Though popular, Bayesian networks
suffer from the possible reversal of causality [29].

Network models have recently gained popularity in the social, physical, and
biological sciences from the widespread application of graph theory, an area of
mathematics that investigates the relationships between the objects of a group [30].
Graph theory lends itself to visual representations making it an appealing tool for bi-
ologists investigating phenomena ranging from the interactions between populations
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in an ecosystem to the interactions between molecular species involved in a signaling
pathway. At its simplest, a graph is a map of all known system components or system
states and their possible interactions or transitions. Circles (nodes) represent com-
ponents and states, and lines and arrows (branches or edges) represent relationships
between nodes. Graphs help portray topological structures such as loops. Complex
dynamics can arise from relatively few interacting components [31], and network
maps are widely used to help visualize the interactions. Building upon existing graph
theoretical notation, an international group has developed Systems Biology Graph-
ical Notation to standardize the visual representations used to describe biological
interaction networks [32].

Current Status of Systems Biology

The success of systems analysis of hematopoiesis will depend upon technological
breakthroughs and collaborations between the biological and physical sciences that
yield accurate predictions and emergent properties. With each discipline using a dif-
ferent language, this is easier said than done. Changes in undergraduate, graduate,
and medical curricula must be implemented to train a new generation of biomedical
researchers fluent in quantitative or engineering disciplines [33–35]. Systems biol-
ogy requires a balance between models sufficiently complex to describe a system and
yet simple enough to be clinically useful. Understanding large quantities of data well
enough to validate a model is especially challenging. The development of Systems
Biology Markup Language (SBML) has made it easier to develop biology-oriented
software packages, such as COPASI, Simmune, MetaCore, and Cytoscape, which
aid model building and data analysis [32, 36–39]. Since 2001, the number of such
packages developed for systems biology has grown from 5 to over 170. With compu-
tational power becoming ever greater and cheaper, the number and diversity of such
software packages will only increase, bringing within their scope models that may
not be impossible to validate with current technology. At present, most models of
hematopoiesis are built at a single scale, e.g., cellular or molecular. The future lies
in building models that span multiple scales, incorporating more of the connections
that exist between them and thereby being able to account for some of the complexity
that arises from the connections. Among the fundamental questions in normal and
leukemic hematopoiesis that systems biology will address are: integration of signal-
ing pathways, circuits, and networks that determine cell fate, multi-scale modeling
of stem cell plasticity, synthesis of genetic and epigenetic data, global analysis of
phosphoproteins, dynamics of hematopoiesis in the bone marrow microenvironment
presented in three-dimensional imaging, and cellular engineering to expand selective
blood cell compartments for therapy. The complexity or density of experimental data
will demand a systems approach. More in-depth coverage may be found in the few
textbooks of systems biology and bioinformatics that have appeared, none solely
devoted to hematologic topics [40–43].
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Chapter 2
Quantification and Modeling of Stem Cell–
Niche Interaction

Axel Krinner and Ingo Roeder

Abstract Adult stem cells persist lifelong in the organism, where they are responsi-
ble for tissue homeostasis and repair. It is commonly assumed that their maintenance
and function are facilitated in local environments called “stem cell niches.” Although
there is convincing evidence that a variety of niche components determine stem cell
fate, the regulatory details of stem cell–niche interactions are widely unknown. To
pave the way for a substantiated discussion of these interactions, we first focus on the
stem cells themselves and describe the stem cell defining criteria and their implica-
tions. The fate of the cells that fulfill these criteria is regulated by a broad spectrum of
factors and regulatory mechanisms. A summary of established components and their
action is given exemplary for the hematopoietic system. The complexity resulting
from the interplay of various cell types, signaling molecules, and extracellular struc-
tures can be boiled down to important key features as exemplified by the presented
model of hematopoietic stem cell organization. Although neglecting many details,
we show that this and similar models have the power to yield intriguing results as
proven by the agreement of the presented model with experimental data and the
predictions derived from model simulations. Finally, we will discuss the paradigm
of systems biology and give a summary of the techniques that promise to unveil
further details of the organization principles of stem cell niches at different levels.
The synergistic effect of the described techniques together with the integration of
their results into a unified model that allows quantitative evaluation and predictions
may lead to a better and more systematic understanding of the most relevant niche
elements and their interactions.
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Introduction

Although it is generally accepted that microenvironmental cues play a key role in
regulating stem cell function, and although many individual regulatory mechanisms
and pathways of cell–microenvironment interaction have been identified, a systemic
understanding of stem cell–microenvironment interaction and its impact on stem
cell fate regulation is still missing. This is also the case for hematopoietic stem
cells (HSCs), which have been extensively studied for more than 40 years, starting,
e.g., with the pioneering work of James Till and Ernest McCulloch in the early
1960s. The two scientists were able to demonstrate the existence of undifferentiated
hematopoietic cells in the bone marrow (BM) that are capable of both, self-renewing
and differentiating—two features that are classically used to define cells as stem
cells. Based on serial transplantation experiments, Till and McCulloch showed that
these (stem) cells are able to develop into spleen colonies of irradiated mice, which
contain cells with an identical potential [1–3]. These were called colony-forming
units in spleen (CFU-S cells) and regarded as stem cells. Later, they turned out to
be progenitor cells, which are, in contrast to true stem cells, characterized by only a
limited self-renewal and repopulation potential.

Clearly, the origin of CFU-S cells was the BM, but it was by no means clear,
whether there are specific regions in the BM that functionally support stem and/or
progenitor cells. Unlike other stem cell systems, such as the intestinal crypt [4],
the BM is lacking an obviously structured spatial arrangement. This absence of
clearly visible, stem-cell-supporting areas widely hampered the study of HSCs and
their interactions with local microenvironmental components in the in vivo situation.
Nevertheless, the perspective of an instructive local microenvironment of HSCs was
introduced already in the early 1970s by John Trentin [5, 6] and Raymond Schofield
[7]. Schofield proposed a concept that includes a context dependency of stem cell
behavior. In this concept, stem cells live in a certain environment, the niche, where
differentiation and maturation is prevented and thereby continuous proliferation and
maintenance of stem cell potential is guaranteed. Therefore, stem cells lose their
potential, if they lack this specific environment. This concept is consistent with the
results of contemporary coculture experiments. For instance, Dexter and coworkers
were able to maintain proliferative CFU-S cells over several months in vitro using
a mixture of feeder cells from the BM, whereas these cells differentiated if cultured
without feeder cells [8, 9].

Since these days, new ideas and experimental techniques have extended the list
of cells and other microenvironmental factors that presumably act in combination
to form the stem cell niche. Other factors, such as geometry and biomechanics,
nutrient supply, signaling molecules, metabolic conditions, and contact dependent
cues have been shown to contribute to the niche environment, too. Later in this
chapter, we will give an overview of some important examples of these presumably
stem-cell-regulating niche components with a particular focus on the hematopoietic
system.
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Defining Stem Cells

Before talking about stem cell regulatory components and effects of a niche envi-
ronment, we need to precisely define what we mean by a stem cell or by stem cell
potential. Because the term stem cell resulted from the conceptual aftermath of the
discovery of a multipotent and self-renewing cell population, its definition almost
exclusively contains functional criteria. Only in the case of embryonic stem (ES)
cells [10, 11], the functional definition has its counterpart in a definition by origin.
When the blastula is formed, this cell population emerges from the first differenti-
ation step, the separation of trophoblast and inner cell mass. While the first forms
only extraembryonic structures, all cell types of the embryo itself develop from the
cells of the inner cell mass. Therefore, these cells are characterized as pluripotent.
They are the source for the in vitro derivation of ES cell lines, which are usually
denoted as pluripotent ES cells, as they preserve the potential to differentiate into
cells of all tissue types. In vivo, the development of the embryo involves further dif-
ferentiation steps beginning with the development of three germ layers. From those,
the different tissues are derived and with this specification process the ability of the
cells to generate cells from other tissues is lost. Pluripotency, therefore, turns into
multipotency. Multipotent cells still have the potential to differentiate into various
cell types of a particular tissue and are maintained as so-called (adult) tissue stem
cells lifelong. They preserve their proliferation and self-renewal capacity as well as
their multilineage potential in order to guarantee homeostasis and to repair damaged
tissues, which represents the core of their functional definition [12].

Whereas the details of the definition of a tissue stem cell depend on its author,
functional characteristics such as self-renewal, differentiation, and proliferative po-
tential were always cornerstones of this definition. Tissue stem cells are defined by a
number of qualities, which enable them to guarantee a lifelong maintenance and, in
case of injury, to reconstitute a fully functional tissue. Over the years and with new
experimental results, the definitions have been modified and a more flexible inter-
pretation of this concept of a functional definition has been introduced. Flexibility
has been included in the sense that stem cell fate decisions depend on the environ-
ment. This dependence results in some flexibility or even reversibility of stem cell
properties and functionalities [13].

A general problem with the functional definition is the fact that it does not allow
for a prospective selection of stem cells on an individual cell basis: Any particular
assay (e.g., a colony formation assay) that is required for the examination of a
particular cellular function (e.g., proliferative potential) will always alter the state of
the cell. Therefore, the assessment of one function of a particular cell might impair
the assessment of any other of its functions by another assay. In other words, the
measurement process itself (to test for stem cell functionality) alters the object of
measurement. This perception is the reason why Potten and Loeffler [14] compared
this dilemma to Heisenberg’s uncertainty principle of quantum physics. Although
this analogy is certainly not perfect, it points to a very important aspect that applies
to both areas: Any prospective statement about the function of a particular object (in
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our case a potential stem cell) can only be made in a probabilistic sense. This should
be kept in mind if talking about stem cells; we will come back to this aspect later.

To meet this problem of characterization and selection of tissue stem cells,
scientists have put large efforts in the development of purification protocols that
enrich a cell population for functional stem cells. Fluorescence-activated cell sort-
ing (FACS) applied simultaneously to a large set of cell surface markers has led
and still leads to continuously refined selection protocols. Latest protocols allow for
very high enrichment rates of HSCs with long-term repopulating ability (LTRA),
which are considered as the true HSCs. As an example, the Lin-Sca+c-Kit+ (LSK)
CD34-SLAM (CD244-CD48-CD150+) marker combination allows to enrich mouse
primary BM cells to a degree of up to one LTRA-HSC in two target cells [15, 16].
Surprisingly, for most of these markers, no functional, mechanistic link to LTRA has
been found. However, it should be noted that despite the high enrichment, prospective
statements about the purified cells are still only possible in a statistical, probabilistic
sense.

Furthermore, there are two other flaws that are inherently connected with this char-
acterization approach. First, for the application of sorting protocols, the cells have to
be removed from their natural habitat. As mentioned above, such a treatment might
alter cellular properties during this time of in vitro culture due to the dependence
of stem cell properties on environment. Second, for assessment of in vivo function-
ality, the cells have to be reinjected into host animals. Usually lethally irradiated
mice provide the environment that guarantees efficient engraftment. Unfortunately,
irradiation does significantly damage the niche environment and the physiological
structures in the BM [17–19]. Therefore, cellular and microenvironmental effects
are inevitably confounded by the application of such assay protocols.

These two remarks bring us back to the role of the local microenvironment. In
our opinion, it does not make sense to talk about HSCs without considering these
cells as being embedded in a particular environmental context. This is most likely
also true for any other tissue type. However, in the following, we will focus on the
hematopoietic system and use HSCs as a model system to describe a general approach
to systematically analyze the underlying mechanisms of microenvironment-based
stem cell regulation. Herein, we will focus on a description of (potential) regulatory
components of the stem cell niche and on mathematical modeling approaches to study
the systems dynamics of stem cell–niche interactions. These two major paragraphs
will be complemented by some thoughts about a potential road map for a more
complete understanding of stem cell–niche interactions.

Components of the HSC Niche

Already decades ago, the BM has been identified as the natural environment and,
therefore, a “niche” of HSCs. Basically, it is composed of a scaffold of extracellular
matrix components, a cell population comprising cells of various lineages, and a
fluid filling the rest of the space (Fig. 2.1). In the marrow, two main structures are
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Fig. 2.1 Components of the
niche. The niche environment
comprises several factors. All
of them are dynamically
dependent on the cells of the
niche environment. They
provide growth factors, build
and remodel the extracellular
matrix and constitute
endosteum and vascular
network

obvious, mineralized bone and vascularization. Most of the cell types found within
the marrow have been attributed to either of these basic structures. Directly associated
with the bone is its lining, the endosteum. It is mainly composed of undifferentiated
mesenchymal bone-lining cells and the two bone-remodeling cell types, osteoblasts
(OBs) and osteoclasts. Also, there is the vascular system connecting the marrow to
the rest of the organism by vessels and sinusoids. The walls of these tubular structures
are formed by endothelial cells (ECs), which coexist with so-called perivascular cells
in their direct vicinity.

There are a number of reports proposing that these two structures represent two
distinct local environments in the BM: the endosteal and the perivascular environ-
ment, which form two distinguishable stem cell niches fostering different stem cell
populations [20]. Whereas the so-called endosteal niche is associated with prolif-
erative quiescence (low cell cycle activity), the vascular niche has been described
to support stem cell proliferation [21, 22]. As a consequence of the two different
environments, stem cells with LTRA are found preferentially in the endosteal niche,
while the vascular niches hosts stem and progenitor cells with only short-term re-
populating ability (STRA) [23]. In this view, the dormant cells form a reserve pool
for emergencies, which can be repopulated after a potential emergency operation
[23]. In contrast, a more recent study suggests a continuous and frequent exchange
of cells between quiescent and proliferative states [24]. The hypothesis inevitably
comes up that this exchange happens between the two niche environments. How-
ever, these studies only quantify the number of cell divisions in a certain time (using
label retaining experiments), but their observations do not link transitions between
dormant and proliferative states to translocations between the two niches.

A thorough identification of niche environment and function would require a
separation of the two niches. As already shown by early histological studies, the
interior vascular system of the bone is connected with the exterior system by a
dense system of vessels through mineralized bone, which consequently indicates
highly vascularized endosteum [25]. This difficulty of defining a spatial separation
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of vasculature and endosteum was recently confirmed by in vivo tracking experiments
of HSCs in mice [26]. By fluorescence staining of blood, OBs and injected HSCs,
relative positions of HSCs, vasculature, and OBs were measured. In this way, it
was shown that sinusoids are abundant in the whole BM, though more dense in the
BM cavities [26]. Therefore, a rigorous spatial separation of the two hypothesized
niche environments seems impossible. Taking one step beyond, this might suggest
integrating the signals emanating from the two presumed “niche environments” into
one self-organizing system featuring one continuous niche. This view is supported
by the fact that concentrations of various soluble molecules, e.g., chemokine (C-X-C
motif) ligand 12 (CXCL12, also known as stromal cell-derived factor, SDF-1), stem
cell factor (SCF), or osteopontin (OPN), seem to exhibit continuous rather than step-
like gradients. Also, the supply of nutrients and oxygen continuously changes with
distance from the bone surface. The latter observation was the origin of yet another
idea, the metabolic niche [27, 28]. In such a continuous niche, all components may be
present throughout the niche, although with certain tendencies or activities. We will
now summarize these components of the niche by describing the cells themselves
and their role within the BM, because they represent the active components in the
BM that are motile, remodel the bone, and produce HSC-supporting factors.

Hematopoietic Cells

Hematopoietic Stem and Progenitor Cells

An important contribution to the niche organization is made by the HSCs themselves.
It is their active migratory behavior that finally determines the niche by bringing them
into particular environmental conditions and keeping them there. For example, most
dormant HSCs are detected in an isolated position [23]. Also, it has been reported that
dormancy and LTRA is associated with cells homing close to the endosteal surface
[21]. Furthermore, several properties related to HSC migration, such as membrane
fluctuations, cell adhesion, and cell motility, vary with distance to the bone [29]. A
prominent cell-adhesion molecule that has been in the focus of discussion in recent
years is N-cadherin. Intermediate levels of N-cadherin expression have been reported
to indicate a quiescent state, while activated cells express low levels [30]. However,
the conditional knockout of N-cadherin in mice illustrates the complexity of the niche
system, since it caused no observable change in HSC frequency or repopulation
potential [31]. An interesting link to the metabolic niche is given by the observation
that reactive oxygen species downregulate N-cadherin in HSCs [32]. Further support
of a hypoxic BM niche comes from Parmar and colleagues. They used a perfusion
tracer to identify the location of most HSCs in an area of low perfusion [33]. Also
consistent with the idea of a hypoxic in vivo niche is the analysis of HSCs in hypoxic
culture. In vitro hypoxic conditions induce quiescence in hematopoietic cells [34] and
support the Hoechst-stained side population in LSK cells that is commonly accepted
as a typical HSC quality [35].
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Many different factors have been identified in the context of the stem cell niche,
including Angiopoietin-1 (Ang-1) [36], Kit-ligand (Kitl) [37], CXCL12 [38], throm-
bopoietin (TPO) [39], and OPN [40]. However, in most cases, the identity of their key
cellular sources promoting this maintenance remains unclear. Just now conditional
knockouts of known factors in hematopoietic cells begin to reveal the cell types most
that are most important for a particular signaling route [41].

Macrophages and Monocytes

Recent studies suggest a key role for monocytes in maintenance of HSCs [42–44].
Chow et al. applied four different techniques to induce specific loss of defined subpop-
ulations of monocytes and macrophages [42]. Loss of the addressed cells resulted
in HSC mobilization into peripheral blood and spleen. It was accompanied by a
40 % reduction of CXCL12 that is known to critically regulate niche retention of
HSCs via activation of its receptor CXCR4 [45, 46]. Addressing the transcription
of CXCL12 and other HSC retention factors in stromal cells, it was shown that
CXCL12, SCF, Ang-1, and vascular cellular adhesion molecule 1 (VCAM1) mR-
NAs were not reduced in OBs but in Nestin-positive osteoprogenitors/mesenchymal
stem cells (MSCs). Interestingly, total cell numbers of both populations were not
affected. These results indicate that the key factors themselves are regulated by fur-
ther components as in this case the macrophage/monocyte cell numbers. In a similar
approach, Winkler et al. [44] depleted phagocytes and also observed mobilization
of HSCs. Transcripts of CXCL12, Ang-1, and SCF decreased in total BM and in
endosteal stroma, too. Most striking was the simultaneous loss of osteomacs, a par-
ticular macrophage subpopulation specifically associated with the endosteal lining
[44, 47]. Additionally, a significant reduction of bone remodeling activity was ob-
served. In the depleted system, the proportion of bone surface lined with OBs and
the amount of newly formed bone matrix decreased significantly. Thus, both studies
nicely illustrate two aspects of the regulation of the stem cell niche: the tight inter-
action of different cell types, here HSCs, macrophages, and osteoprogenitors, and
the complexity resulting from combination of various feedback mechanisms such as
bone remodeling, cell numbers, and HSC mobilization.

Osteoclasts

Although osteoclasts take part in the process of bone remodeling, they do not be-
long to the mesenchymal lineage like OBs and osteocytes, but are derived from
hematopoietic cells [48]. They are responsible for bone resorption and, therefore,
for Ca2+ blood levels. The calcium-sensitive receptor (CaR) is expressed on various
hematopoietic lineages and, in particular, on LSK cells [49, 50]. Ca signaling and its
role in niche regulation were investigated by studying a CaR -/- mouse model [49]. In
CaR -/- mice, BM cellularity and relative frequency of LSK cells among hematopoi-
etic cells were clearly reduced. The function of fetal liver mononucleated CaR -/-
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cells was tested by their transplantation into irradiated mice, and although 100 %
survival was observed, homing of these cells in the BM was markedly reduced [49].
Despite no differences in surface expression of many homing related molecules (e.g.,
CD49d, CD62L and CXCR4) was found, they also showed a remarkably reduced
adhesion to one of the main components of bone, collagen I. All together the osteo-
clasts represent another niche player that intimately connects signaling, extracellular
matrix, cell migration, and control via differentiation.

Mesenchymal Cells

Mesenchymal Stem and Progenitor Cells

Like HSCs, MSCs are defined by their functional potential to self-renew, prolifer-
ate, and differentiate. As for HSCs, a strictly phenomenological characterization is
limited. For MSCs, the multilineage potential comprises three main lineages: the
chondrogenic, adipogenic, and osteogenic lineage [51]. In the BM, they directly
participate in the regulation of hematopoiesis as adventitial reticular cells (ARCs) in
humans [52] or in mice as CXCL12-abundant reticular (CAR) cells [38] or Nestin-
positive cells [53]. Additionally, they differentiate into two other cell types that are
involved in the control of a HSC niche: OBs [e.g., 54, 55] and adipocytes [56].
Within the BM, they are found in the reticular space as mural or subendothelial cells
[57]. Definitely impressive is the variety of cytokines expressed by MSCs that are
involved in niche regulation: SCF, leukemia inhibitory factor (LIF), SDF-1, Onco-
statin M (OSM), bone morphogenetic protein-4 (BMP-4), Flt-3, and transforming
growth factor-β (TGF-β) [57]. MSCs are also capable of producing a variety of in-
terleukins [58], niche related adhesion molecules such as VCAM1 and N-cadherin
[52, 53] or even the key hematopoietic growth factors G-CSF and GM-CSF [58].
However, since most of the related experiments have been carried out in vitro, their
interpretation regarding the in vivo situation should be done with caution. The role of
stromal cells for HSC fate was shown early by their coculture with HSCs where they
support proliferation and differentiation in vitro [59]. Another indication of their role
as niche keepers is given by subcutaneous transplantation of CD146 + MSCs into
immunodeficient mice, where they are able to generate heterotopic BM, trigger its
vacularization, and there eventually give rise to hematopoiesis [52].

Osteoblasts

Multiple studies have shown that OBs play a crucial role in supporting HSCs. Ge-
netic data indicate that functional stem cells do need to interact with OBs [16, 20,
55]. In these studies that involved transgenic mice to address the effect of the factors
BMP and parathyroid hormone, the number of the stromal pool of OBs was found
to correlate with HSC number involving Notch-ligand and N-cadherin interactions
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[54, 55]. Coculture with endosteal cells characterized by typical osteogenic markers
(such as alkaline phosphatase and OPN) maintains the pluripotent state and hinders
HSC proliferation [59] confirming the role of OBs in HSC regulation. Direct com-
munication between HSCs and OBs is given, for example, by Ang-1/Tie2 signaling,
which has been reported sustain HSC quiescence [36]. Thus, Ang-1/Tie2 signaling
might directly correlate with the long-term repopulation ability of HSCs. However,
two details that are mentioned rather rarely have to be considered: (1) OBs are a
transient cell state in the osteoblastic lineage finally leading to osteocytes and (2)
bone deposition by OBs is a dynamic process restricted to less than 10 % of the bone
surface in adults [60]. This leads to the question on the influence of other cells in the
osteoblastic lineage and the mechanisms of regulation. If only OBs would enable
hematopoiesis and this regulation would act on a purely local scale, hematopoiesis
would be limited to the sites of bone deposition. The solution for this conflict might
be found in the role of pre- and post-osteoblastic stages. While the role of osteo-
progenitors has already been confirmed, it remains elusive whether the abundant
osteocytes contribute a regulatory function in the niche.

Adipocytes

The triple differentiation potential of MSCs includes both, osteogenic, and adi-
pogenic lineages. Generally, lineage commitment is an exclusive choice and,
therefore, the HSC-supporting OB population competes with the adipocytes for pro-
genitor cells. Interestingly, a study evaluating the occurrence of HSCs in different
body regions of wild-type mice and in fat-free transgenic mice has shown that the
number of adipocytes in the BM correlates inversely with hematopoietic activity of
the BM and suggests a negative regulation of hematopoiesis by adipocytes. Engraft-
ment of HSCs in these fatless mice after irradiation is more efficient than in their
wild-type litter mates [56]. Although this effect might be due to an apparent recip-
rocal correlation of adipocytes and OBs, the control of adipocyte/OB differentiation
clearly represents a process that not only regulates HSC number and engraftment but
also depends on biomechanics and, thus, introduces biomechanical stress to the set
of regulatory mechanisms [61].

Endothelial Cells

Very early hints to a contribution of ECs to hematopoiesis were given in the 1970s
when Knospe et al. [62] reported that hematopoietic regeneration in areas of curetted
BM in adult mice corresponded with sites of BM sinusoidal vascular regeneration.
Further evidence was given by coculture in vitro. Primary human BM ECs sup-
ported the proliferation and differentiation of human CD34 + cells (which represent
a HSC-enriched subpopulation of BM cells) and produced several hematopoietic cy-
tokines. This stem cell support by ECs is restricted to neither hematopoietic tissues
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nor HSCs, but is found in most stem cell systems [63]. Chute and coworkers, there-
fore, tested the effect of human ECs on self-renewal of human HSCs. Interestingly,
noncontact culture of human BM or cord blood HSCs with primary human brain
ECs induced a tenfold expansion of human HSCs with the potential to repopulate im-
munodeficient mice, suggesting that adult brain ECs produced soluble factors, which
induce HSC self-renewal [64, 65]. Analysis of several candidate proteins revealed
that concerted action of either angiopoietin-like 5, insulin-like growth-factor-binding
protein-2 (IGFBP-2) or pleiotrophin together with early acting cytokines (SCF, TPO,
Flt3-L) significantly supports the expansion of HSCs in vitro.

Adrenergic Neurons

Circulating HSCs and their progenitors exhibit robust circadian fluctuations in the pe-
ripheral blood [66]. They fluctuate in antiphase with the expression of the chemokine
CXCL12 in the BM microenvironment. This cyclic release of HSCs follows the oscil-
lations of the circadian clock and is transmitted by the sympathetic nervous system.
BM adrenergic nerves secret noradrenaline and this signal leads to the rapid down-
regulation of CXCL12 via the β3-adrenergic receptor and subsequent mobilization
of HSCs. This interaction with the sympathetic nervous system adds a totally new
aspect to the complex control mechanisms of the hematopoietic niche.

Already from the above given overview, it becomes clear that a mechanistic un-
derstanding of niche-driven HSC regulation is still a rather “white spot on the map of
hematopoiesis.” Although there is no doubt about the importance of the local environ-
ment in stem cell regulation, and although a number of important components of niche
functionality have already been identified, a number of major ingredients for a sys-
temic understanding of stem cell organization and its dependence on the local growth
environment (GE) are still missing. These include (i) the spatial organization of niche
components, (ii) the general rules of stem cell–niches “communication” (e.g., feed-
back mechanisms), as well as (iii) a quantification of the functional relationships
between the individual components of the stem cell–niche complex.

One way to foster a comprehensive understanding of niche-mediated stem cell
regulation is the application of systems biological methods. In particular, the applica-
tion of mathematical models provides a means for quantitatively studying the effect
of different regulatory rules (such as feedback loops or dose–response relations),
can help to guide the experimental strategy and to foster a quantitative, mechanistic
understanding. However, to be able to mathematically model the dynamics of stem
cell systems, it is necessary (a) to derive adequate model assumptions, (b) to estimate
model parameters, and (c) to experimentally test model predictions. In the follow-
ing, we will give an overview on different strategies to measure and quantify stem
cell–niche interactions and illustrate a modeling framework that is able to integrate
these measurements and to quantitatively study emerging system properties.
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Mathematical Modeling of Stem Cell–Niche Interactions

The Benefit of Models

As described in the previous sections, experimental research in the field of HSC
biology has attracted a lot of attention in the past decades. In contrast, surprisingly,
little theoretical work has been published. This lack of theoretical research may be
partly due to the expectation that experimental approaches will be able to determine
stem cells and stem cell functionality directly. However, the more we realize that
this expectation is misleading (see, e.g., the unsuccessful search for the stem cell
marker), theoretical concepts and mathematical models that allow to quantitatively
test the concepts and to compare them directly to experimental data, are becoming
more and more important to cope with the current lack of understanding.

A theoretical—or in other words systems biological—basis of (tissue) stem cell
research that complements (but not replaces!) experimental approaches, will have
several advantages. Theories and their formalizations in mathematical models:

• Provide presumptive mechanisms to explain and link a variety of observed phe-
nomena and reveal how far data are consistent with one another and with the latent
mechanisms.

• Help to direct experimentation due to predictions that can be investigated.
• Help to anticipate the impact of manipulations to a system and its response.
• May help to understand the similarities of construction principles between

different tissues and/or species.

To guarantee that mathematical models indeed provide the above listed support for
the experimental sciences, they have to meet a number of general requirements. In
particular, to study and analyze stem cell–niche interactions, corresponding models
have to:

• Be based on populations of individual cells to follow clonal development, to
conform with the uncertainty principle and to enable considerations of population
fluctuations.

• Consider growth environments and their interactions with cells.
• Be dynamic in time and space.
• Make assumptions on mechanisms that regulate proliferation, cellular differenti-

ation, and cell–growth environment interactions (e.g., homing).
• Be comprehensive in the sense of being applicable to the normal, unperturbed in

vivo homeostasis as well as to any in vivo or in vitro assay procedure. This means,
the model has to adequately account for system–measurement interactions.

Of course, there are several strategies to use mathematical models to study different
aspects of stem cell–niche interactions. One possibility is an elaborated modeling
of particular (molecular) mechanisms, such as receptor–ligand interaction, signaling
pathways or transcriptional regulations. Such an approach, which is commonly re-
ferred to as “bottom-up” approach, includes as many system components as possible,
even at very small scales, to explain the resulting, higher-level system dynamics. It
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intends to describe almost the entire complexity of a certain (sub−)system and can
certainly help to achieve a detailed quantitative understanding of specific regulatory
processes. However, due to the complexity of the models and the corresponding
huge number of model parameters, their application and their predictive power are
usually restricted to particular (experimental) situations. Also, to be successful, this
type of models requires detailed information on the molecular parameters, such
as transcription-factor-binding rates, diffusion coefficients, or protein decay rates,
which are very often not available.

An alternative modeling strategy is the formulation of rather simple models that
explain higher order phenomena without considering the full complexity of the un-
derlying system. In particular, such an approach intends to find the most simple, but
still consistent explanation of a number of different phenomena (e.g., different assay
systems, different cell types) in terms of general rules that are predicted to determine
the system dynamics. A validation of such model can, e.g., be achieved by a (quan-
titative) comparison of modeling results with a defined list of critical phenomena.
Although such a “top-down” approach is intentionally neglecting low-level (e.g.,
molecular) details, it is still very helpful to identify general regulatory principles and
to predict the system behavior in different situations.

A Simple Model of HSCs–Niche Interaction

In the following subsection, we will describe a mathematical model that, building on
the above-introduced top-down perspective, explains stem cell organization in the
hematopoietic system. Specifically, the presented model focuses on the regulatory
effect of microenvironmental cues, often called niche factors, and their interplay with
(intrinsic) properties of individual HSCs. This model, which describes stem cell–
niche interactions in a very simple and abstract way, has originally been proposed
already in 2002 [13, 67]. Since then it has successfully been applied to a multitude
of different experimental and clinical settings, e.g., by supporting the design of new
experiments, by generating new biological hypotheses, or by predicting the effect
of new therapeutic strategies [68–75]. For a detailed, technical description of the
mathematical implementation and the parameters of the model, we refer the reader,
e.g., to Roeder and Loeffler [67] or Roeder et al. [73].

The model is based upon three of general principles:

(a) Functional flexibility: The model assumes a separation of potential cellular prop-
erties and their actual use. Any cell can, but does not have to use its functional
potentials in different situations.

(b) Phenotypic flexibility: Cellular properties (potentials and actual functions, see
(a)) can, in principle, be gained and lost reversibly.

(c) Context dependency: Actual use of a certain cellular property or potential as well
as the development and change of properties are context dependent.
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Fig. 2.2 Scheme of the HSC model. HSCs can reside in one of two functionally different signaling
contexts, A and �. Their affinity a to reside in GE A reflected by the probabilities to change GEs as
illustrated by vertical arrows. Evolution of affinity a and proliferation are context dependent. In A
the cells are quiescent and regain affinity a, while in � they proliferate and gradually lose a. After
passing the threshold amin, the cells eventually lose the capacity to switch into signaling context A

To implement these principles for the particular situation of the hematopoietic system
in a mathematical framework, the following minimal set of assumptions is made:

1. To account for context dependency, we assume two different signaling contexts
inside the BM, denoted asA and�, respectively. This assumption does in principle
not exclude a higher numbers of signaling contexts (see discussion below), but is
the simplest configuration that allows to model context dependency. All cells in
the BM can reside in either A or �. The propensity of a particular cell to reside
in A is modeled by a variable called context affinity a. Cells with large a tend
to either stay in A (if residing in A) or to change to A (if residing in �), but
these propensities shrink with decreasing value of a. Once a has fallen below a
threshold amin, cells are no longer able to change to signaling context A.

2. Phenotypic reversibility is given by the context affinity a that can reversibly
change within the interval [amin,1], with highest propensity for staying
in/changing to A at a = 1.

3. Whereas cells in � do gradually lose context affinity a over time, cells in A can
regain a up to its maximum value 1. Also, cells in A do not proliferate, although
they have, in principle, the potential for proliferation. This potential is used, if
the cell is found in context �. These assumptions introduce functional flexibility
in the sense that both proliferation as well as losing/regaining of a are potential
functions/behaviors of the cells that can be used under certain circumstances.

The design of this model (Fig. 2.2) translates the rather general assumptions in-
spired by biological observations (context dependence and flexibility) into a formal
mathematical framework. Of course, as a first step, this model must comply with
obvious requirements such as self-renewal, homeostasis, and in case of damage,
regeneration. It turns out that the simple rules (1)–(3) result in the properties of
a stem cell population: Simultaneously to the continuous production of cells with
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Fig. 2.3 Realization of symmetric and asymmetric cell fates in the HSC model. The proposed
context-dependent, self-organizing stem cell model is capable to account for qualitatively different
stem cell fates, namely asymmetric (a), symmetric self-renewing (b), and symmetric differentiating
(c), without assuming different types of cell division. Depending on whether a stem cell (context
affinity a > amin) is able to find the way into context A (the “niche”), it will/will not be able to regain
its context affinity a and, therefore, to maintain/lose its stem cell potential. For detail, the reader is
referred to Roeder and Lorenz [75]

a < amin in �, the system maintains a stable population of cells with a > amin due to
proliferation in � and regeneration of a in A. It is also able to regenerate the above-
described homeostatic situation after reducing cell numbers. In fact, it is in principle
able to be “rebooted” from a single cell with context affinity a > amin. These system
properties do exactly describe the functionality of a stem cell population: its cells
are able to simultaneously self-renew their own population of undifferentiated cells
(a > amin) and to produce differentiated cells (a < amin). Furthermore, the stem cell
defining ability to repopulate a disturbed/depleted system is fully captured by the
above-described model.

The model also provides useful predictions and generates (new) hypotheses that
can guide further experimental strategies. Importantly, the predictions can be tested
experimentally, because the model provides measurable quantities like time scales
and cell numbers. In this way, it has been capable of addressing a wide range of
biological phenomena regarding the stem cell population, such as age-related changes
of HSC properties, proliferative heterogeneity of HSCs, or leukemia development
and treatment, without changing the underlying basic assumptions [68–75].

For example, in contrast to other models of stem cell organization, this model does
not explicitly consider different types of cell division, symmetric self-renewing, sym-
metric differentiating, and asymmetric (producing on stem and one differentiating
cell). This decision process is replaced by the context dependency of cellular develop-
ment, i.e., the loss and the regain of affinity a. Different developmental pathways of
individual cells do generate symmetric and asymmetric cellular fates, without tying
this process to the cell division event (Fig. 2.3). That means the model demonstrates
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that cell fate asymmetry, which is a necessary property of a regenerative tissue, can
be induced by environmental effects rather than by a pre-determined cell-intrinsic
program at the single cell level. However, on the cell population level, the assump-
tion of an asymmetric average behavior of stem cells can still serve as an appropriate
description.

There are a number of further model predictions that emphasize the interplay
of cell-intrinsic potentials and cell-extrinsic (e.g., niche-induced) influences, which
are able to challenge the functional potentials of the cells.

First, the model predicts the existence of two distinguishable functional states of
HSCs, namely a rather quiescent and an actively proliferating one, between which
these cells can reversibly change. This prediction, which is based on theoretical con-
siderations on the effect of a heterogeneous local GE of HSCs (signaling contexts
A and �), had already been formulated in 2002 [67]. This was 6 years before the
same conclusion had been derived on the basis of experimental results: In 2008,
Wilson et al. [23] demonstrated the existence of two HSC subpopulations: a deeply
quiescent and a more proliferative one. Furthermore, these authors showed that in
situations of stress or injury, quiescent cells can be activated into cell cycle, while
most of them will return into proliferative quiescence once homeostasis has been
reestablished. Our model, which predicts exactly this behavior, demonstrates that
these reversible system dynamics are consistent with the concept of a niche-induced
proliferation arrest. As shown by a quantitative comparison of model simulations
with BrdU label dilution data, the heterogeneity observed in the HSC population
(dormant vs. active cells) is naturally generated by a system that is driven by a par-
ticular niche environment, which induces a protective effect on HSCs [69]. Here,
protective means to keep the cells in a rather inactive state while they maintain their
full repopulation ability. From a conceptual point of view, we argue that proliferation
and quiescence are just two sides of the same “stem cell coin,” and that the dualism
in the appearance of HSCs (dormant vs. proliferative) is an inherent system property.
Moreover, this dualism and the reversibility of the actual cellular state make it highly
questionable to consider these populations as being independent from each other.
Thus, the model shows the consistency of a simple, self-organizing system, which
uses a context- or niche-dependent cellular development as the driving force of stem
cell regulation, with many in vitro and in vivo phenomena. In this sense, it provides
theoretical evidence for the functional role of a stem cell niche in the hematopoi-
etic system. Although this consistency check does not represent a formal proof for
the (mechanistic) correctness of the model, it points out possible explanations for
(biologically) unknown processes.

Another prediction, which results from the assumption of a context-dependent
stem cell organization, and in particular from the potentially reversible change of
HSCs between the functionally different signaling contexts, is the gradual loss of
clonal heterogeneity of the HSC population over time [72]. Figure 2.4 illustrates this
phenomenon, which is referred to as clonal conversion: If one assumes a certain
degree of heterogeneity among HSCs with respect to their dynamics of changing
between different signaling contexts, e.g., represented by their differentiation rate
and their individual niche-binding propensity, one would predict a gradual loss of
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Fig. 2.4 Clonal conversion in the HSC model: in a simulation of a murine HSC population over
24 months, the initial heterogeneity in two cell-intrinsic parameters almost vanishes, if no de novo
generation of heterogeneity is included. Each HSC is initialized with an individual combination of
differentiation coefficient (quantifies the velocity of losing context affinity a) and context transition
probability (controls transitions from context � to A). This cell-specific parameter configuration,
which is inherited from mother to daughter cells, is illustrated by the black dots in the diagrams. Over
time, the model predicts a selection of the fittest HSC clones with lower differentiation coefficient
and higher probability per time step for changing into the (“niche”) context. For details of the
underlying simulation, we refer the reader to Roeder et al. [72]

this heterogeneity over time. An important assumption underlying this result is the
strict inheritance of the individual cellular properties from mother to daughter cells.
This is what we call a clonal property. As the cells compete for a common resource,
the space in the stem cell-supporting niche environment, those clones with even
slightly higher potential for homing to the niche, will ultimately outcompete the
others. It is important to note, that only the number of clones (the cell “families”
with identical properties), not the total number of HSCs in the system decreases. The
latter remains constant for the dynamic regulation of the system. Clonal conversion
is still a theoretical prediction in the hematopoietic system. To be experimentally
validated, one needs to individually mark HSCs and to track their clonal progeny
over time. Although this has been done in the past using random, retroviral inte-
gration sites [76, 77], a detailed, quantitative analysis has only recently become
potentially feasible by the introduction of the method of cellular barcoding [78, 79].
A particular question to be addressed in this context is, whether the above-assumed
heritable clonal properties indeed stay constant over time. Only if that would be true,
the predicted clonal conversion and reduction of the diversity could be observed at
the degree shown in Fig. 2.4. Alternatively, it is well possible that heterogeneity is
constantly generated. A quantitative understanding of the interplay of clonal conver-
sion and maintenance and generation of clonal heterogeneity is not only important
from a basic science perspective but it is medically relevant, too. For example, it has
recently been described that polyclonality (the simultaneous existence of many cell
clones with different properties) in the T-cell population can inhibit the development
of lymphomas [80]. Similar questions, such as the regulatory effect or the prognostic
function of a polyclonal hematopoiesis for the potential outgrowth of leukemic (stem)
cell clones, are discussed in the context of gene therapeutic applications [81–84].
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Towards a Mechanistic Understanding of HSC–Niche
Interactions

A Potential Road Map

Although the described model already explains a number of general regulatory prin-
ciples and although it allows for (experimentally testable) model predictions, it is still
very much restricted to a rather general level of description. Complex mechanisms are
simplified in such a way that the general rules (e.g., the role of the context-dependent
control of proliferative activity) can be quantitatively studied without considering un-
derlying molecular details. The consistency of the model assumptions is tested using a
“reverse-engineering” strategy. That means, the model assumptions are evaluated by
comparing the system dynamics, predicted by the model under a number of different
conditions, with experimental observations on the cellular and the tissue level. This
way, the modeling can provide possible explanations of the system behavior in terms
of the considered rules and properties. However, the model is not able to explain the
lower level processes, such as signaling pathways that are triggering proliferative
activity or receptor–ligand configurations that induce co-localization of certain cell
types. To arrive at a detailed mechanistic explanation of cellular organization, with
a focus on stem cell–niche interactions including the sub-cellular/molecular level, a
number of prerequisites have to be achieved (Fig. 2.5):

I. Relevant regulatory components (e.g., genes or molecules) have to be identified
and validated biologically.

II. Test systems, which allow for studying the effects of relevant regulatory com-
ponents on cell behavior and function under controlled conditions, have to be
established.

III. The spatial in vivo organization, including a quantification of the anatomical
topology and/or geometry of regions of stem cell appearance, as well as the
dynamics of stem cells within these regions has to be characterized.

IV. A theoretical framework that allows for a systematic analysis and for the
integration of different data types needs to be implemented.

On the basis of these prerequisites, it will be possible to set up a combined experimen-
tal and theoretical program that will result in a much deeper understanding of stem
cell–niche interactions. Partially, the above mentioned requests were already estab-
lished. In the following, we will give a short summary of some of the corresponding
results.

Coculture Systems and Molecular High-Throughput Screens

Cocultures with various BM stromal cell types have established the possibility of
maintaining HSCs for longer periods of time in culture. Of course, this maintenance
of HSCs in coculture depends on the cell type and involves the complexity of the
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wide spectrum of biological signals. Therefore, discriminating single factors is rather
difficult, but molecularly assessing the transcriptional state of both HSCs and cocul-
tured cells helps to identify important factors involved in the molecular crosstalk of
HSCs and stromal cells. Specifically, high-throughput analysis of the transcriptome
and proteome of the cocultured cells provides a means to select candidate factors to
focus on in further studies.

Because heterogeneity not only is present in the stem cell niche but also seems to
be a functional element of stem cell regulation, analysis of individual cells is almost
mandatory. An approach to analyze individual cells in a specific environment, alone
or in small colonies, is provided by advances in microfluidics and lab-on-a-chip
techniques. Small cocultures of arbitrary composition can be cultured in individual
capsules within an environment of tailored factor composition and biomechanical
properties and analyzed at high throughput [85, 86]. Another technique to mention
in this context is single-cell PCR that has the ability to unveil information on the
heterogeneity of transcription states within cell populations or among many of the
microfluidic cocultures [87].

Biomimetics/Artificial Niches

After identification of relevant niche components, their mode of action can be identi-
fied by an isolated analysis of these components in an in vitro setting, where all other
factors can be controlled. Advances in material sciences permit to combine presump-
tive factors in artificial and observable environments. Different polymers, linkers,
and proteins together with micro- and 3D-printing techniques can provide scaffolds
of diverse biophysical properties and geometries [88]. Molecular modifications of
these scaffolds by covalently attaching functional molecules permit to mimic biologi-
cally relevant cell–cell and cell–matrix contacts and to change scaffold degradability.
Finally, perfusion and fed-batch approaches can control the availability of soluble
factors and nutrients and the drainage of metabolites [89]. In principle, all the above
factors can now be combined in a single high-throughput experiment. Automation
in the laboratory facilitates combinatorial composition of various presumable niche
components [90]. Taken together, the advances in controlling an increasing number
of niche components in vitro pave the way to constructing artificial niches as valuable
experimental setups.

Image Analysis and Single Cell Tracking (In Vitro)

The screening of niche components in vitro is an essential tool for studying their
contributions to the stem cell niche. The results arising from these high-throughput
experiments will generate a huge amount of data that mainly consist of micrographs.
Automation, therefore, is not only necessary for performing the experiments but also
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for their analysis, where reliable segmentation algorithms for image analysis are
necessary. This allows identification of individual cells and, therefore, quantifica-
tion of cellular heterogeneity. This way, we can also assess the role of the latter for
the self-organization of the niche. Because self-organization of the stem cell niche
implies a dynamically changing system, time-lapse microscopy is necessary to fol-
low this process. Single-cell-tracking tools have been identified as a key element for
understanding the dynamics process of cell regulation [91, 92]. Increasing computa-
tional power as well as the development of new algorithms that allow for automatic
cell recognition (segmentation) and tracking (registration and mapping) have already
produced intriguing results on the genealogies of cells in vitro [93].

In Vivo Imaging

After describing possibilities to address the stem cell niche in vitro in an analytical or
artificial manner, one still has to recognize that the true stem cell niche environment
and, thus, the ultimate standard for stem cells is the in vivo situation. If we really want
to understand the niche and its regulation, direct comparison of experimental results
with the in vivo scenario is necessary. Taking into account the role of single cells in the
maintenance of the population, this includes the knowledge about detailed locations
and dynamics of individual cells. Only this level of understanding will lead to an
unambiguous and comprehensive picture of the stem cell niche. In the past decade,
considerable advances in vivo imaging of the BM could be achieved, e.g., by taking
advantage of the thin bone of the calvarium in mice. Simultaneous visualization
of transplanted HSCs, OBs, bone, and vasculature facilitates the in vivo tracking
of individual HSCs and analysis of the relative positions of the visualized niche
components [26]. This way, information on the migratory behavior of single HSCs
becomes accessible and its analysis promises to shed light on the spatiotemporal
organization of the stem cell niche.

Spatiotemporal Modeling

Each of the approaches described above provides information related to different
levels of the organization hierarchy in the stem cell niche. A crucial step towards the
understanding of the niche is now to integrate it into a formulated model. Paralleling
the generation of information on different levels, various models can be applied ac-
cording to the sort of experimental input. Besides the multitude of possible modeling
techniques, there are some common characteristics for models of the spatiotemporal
niche organization. Cell heterogeneity requires representation of the internal state
of individual cells. The degree of detail, e.g., differentiation/cell cycle position or
levels of protein/transcription factors is determined by the experimental context. To
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pursue understanding of the spatiotemporal organization implies to relate the inter-
nal states to dynamic spatial entities. Finally, the interaction of cells with other cells
and local environment is crucial for the self-organization of the niche. Essentially,
there are three aspects that have to be considered regarding this interaction: (1) The
cells perceive information from the environment. Therefore, an interface between
the environment (e.g., factors, nutrient, cell contacts) and the internal state of the
cell has to be given by the model. (2) In order to process this external information
and to change the internal state, the model needs a set of hypothesized or identified
rules for this information processing. (3) Cellular actions that allow the cell to alter
its environment according to its internal states, e.g., by motion, growth or produc-
tion/degradation of nutrients, extra cellular matrix or signaling molecules constitute
the last element of the model and close the circle of self-organization.

These general ingredients permit to focus on particular aspects of regulation as
required by the experimental design and its input to the model. For example, if
the aim of the model is to describe transcription factor networks, the internal state
will be the most important aspect. In the other direction, the model has to provide
predictions that are accessible by the experiments. Of course, the complexity of
the stem cell niche will hamper modeling all aspects of niche regulation at once,
but as exemplified above, also simplified models can be quite useful and produce
intriguing results. As another example, a model of mesenchymal cells has addressed
this HSC niche relevant cell type by a phenomenological, noise-driven model of
cell differentiation [94]. Its stochastic approach succeeded well in describing the
oxygen dependence of cell proliferation and differentiation. An adequate description
of the population heterogeneity is featured by this phenomenological noise-driven
model. The spatial representation allowed to match the differentiation dynamics in
the oxygen gradient within a pellet culture and to capture the importance of cell–cell
contacts for the production of cartilage. In a similar way, key qualities of the niche
may be identified by comparison of hidden scenarios. An example may be given by
combinations of different mechanisms of transport for positive and negative signals
that cover different ranges like information transfer via adhesion, membrane-bound
transport, and diffusion. Similar simplifications enable mathematical modeling to
contribute substantially to the disentangling of the niche despite its complexity.

Concluding Remarks

Generally, there is no doubt about the importance of extrinsic, microenvironmental
effects on the regulation and on fate decisions of tissue stem cells in general and
of HSCs in particular. As described above by means of some examples, a number
of theories about the localization, the components, and the key regulatory pathways
are discussed in the scientific community. Partially, these theories are substantiated
by different experimental results. However, a complete picture of stem cell–niche
interaction and of the underlying regulatory and organizational principles is still
lacking.
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In this chapter, we tried to summarize (without claiming completeness) important
facts about the stem cell niche in the hematopoietic system. In particular, we discussed
the possibility to use mathematical models, as one important means of a systems
biological approach, to quantitatively study the rules that drive the dynamics of stem
cell systems. As shown above, even rather simple models can considerably help to
identify regulatory principles, which are consistent with multiple in vitro and in vivo
results, and, therefore, to guide further experimental strategies.

Nevertheless, we also pointed out that from our perspective a complete or, more
realistic, a better understanding of stem cell organization and of the particular role of
niche components in this process will require a concerted experimental and theoret-
ical research program. In our opinion, any promising approach towards a systemic
understanding of stem cell organization (and that is what systems biology is all about)
should consist of: (i) experimental systems that allow for controlled quantification of
the effect of individual regulatory components including the possibility for targeted
system perturbations (may be in an in vitro setting), (ii) a theoretical framework that
allows for interpretation and for quantitative comparison of theoretical (model) pre-
dictions with experimental data, and last but not least, (iii) an experimental system
that allows to validate the obtained result for the in vivo situation. This also makes
clear that systems biology is always a combination of experiment and theory. How-
ever, the theoretical component must not be forgotten; it can indeed considerably
sharpen our scientific view. Along these lines, we would like to finish with a citation
that is commonly attributed to Charles R. Darwin: “Mathematics seems to endow
one with something like a new sense.”
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Chapter 3
Erythropoiesis: From Molecular Pathways
to System Properties

Miroslav Koulnis, Ermelinda Porpiglia, Daniel Hidalgo
and Merav Socolovsky

Abstract Erythropoiesis is regulated through a long-range negative feedback loop,
whereby tissue hypoxia stimulates erythropoietin (Epo) secretion, which promotes
an increase in erythropoietic rate. However, this long-range feedback loop, by itself,
cannot account for the observed system properties of erythropoiesis, namely, a wide
dynamic range, stability in the face of random perturbations, and a rapid stress re-
sponse. Here, we show that three Epo-regulated erythroblast survival pathways each
give rise to distinct system properties. The induction of Bcl-xL by signal transducer
and activator of transcription 5 (Stat5) is responsive to the rate of change in Epo
levels, rather than to its absolute level, and is therefore maximally but transiently ac-
tivated in acute stress. By contrast, Epo-mediated suppression of the pro-survival Fas
and Bim pathways is proportional to the levels of stress/Epo and persists through-
out chronic stress. Together, these elements operate in a manner reminiscent of a
“proportional-integral-derivative (PID)” feedback controller frequently found in en-
gineering applications. A short-range negative autoregulatory loop within the early
erythroblast compartment, operated by Fas/FasL, filters out random noise and con-
trols a reserve pool of early erythroblasts that is poised to accelerate the response
to acute stress. Both these properties have previously been identified as inherent to
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negative regulatory motifs. Finally, we show that signal transduction by Stat5 com-
bines binary and graded modalities, thereby increasing signaling fidelity over the
wide dynamic range of Epo found in health and disease.

Keywords Erythropoiesis · Erythroblast · Stat5 · Epo · EpoR · Fas · Apoptosis,
Bim, Bcl-xL, negative autoregulation · Negative feedback · Stability · Stress ·
PID controller · Flow cytometry · Signal transduction · Binary/digital signaling ·
Graded/analog signaling

Overview

Imagine receiving a box in the mail, containing a disassembled bicycle. You might
examine and even admire the individual parts, but the manner in which they provide
transportation does not become apparent until you work out how they fit together
into an assembled bike. Our current status investigating the erythropoietic system is
similar: Decades of research have delivered an inventory of well-studied components;
the challenge is to understand how they interact to generate the remarkable behavior
of the erythropoietic system. To do so, we need to devise ways of measuring and
describing interactions between the various system parts. Some simple engineering
concepts are useful, particularly those pertaining to feedback control and signal
transduction.

It has long been known that erythropoiesis is regulated via a well-established
oxygen-dependent negative feedback loop mediated by the hormone erythropoietin
(Epo). However, quantitative experimental measurements of multiple parts of the
system in mice show that its stability and rapid stress response require much more
than a simple negative feedback loop; they depend on the joint action of both long-
and short-range feedbacks, persistent and adapting signaling responses, and binary
as well as analog signaling modalities.

A number of groups have proposed mathematical models of the erythropoietic
system (e.g., [1–4]). The account below does not propose a specific model; instead,
we focus on understanding how specific molecular pathways in erythroid progenitors
contribute to system properties at the level of the whole organism [5–9]. We conclude
by suggesting that the early erythroblast compartment carries a computational task
similar to that of a “proportional-integral-derivative (PID)” controller, a feedback
controller frequently used in engineering applications.

First Indications of Negative Feedback

In 1878, Paul Bert proposed that at high altitude, lower oxygen tension would drive
a compensatory increase in red blood cells number [10]. This may have been one of
the earliest biological “feedback” control mechanisms to be recognized, where the
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regulated parameter, namely, tissue oxygen tension, maintains its own level between
narrow bounds by suppressing the production of the cells that supply it to tissues.
In 1906, Carnot and DeFlandre proposed that negative feedback was mediated via a
humoral factor, a hypothesis that was confirmed by Erslev in 1953 [11]. The hormonal
mediator, Epo, was purified in 1971 [12] and cloned in 1985 [13, 14]. Its receptor,
EpoR, was cloned by D’Andrea and Lodish in 1989 [15].

Principal Components and Operation of the Epo/pO2 Negative
Feedback Loop

Epo Production and Erythropoietic Rate

The production of red cells is absolutely dependent on both Epo and EpoR [16–18]. In
the adult, Epo secretion by the kidney [10, 19] is induced by hypoxia via the hypoxia-
inducible factors, HIF1 and HIF2, which are direct Epo transcriptional activators [10,
19]. Epo activates the EpoR on the surface of erythroid progenitors and precursors
in the adult bone marrow and spleen or in the fetal liver, resulting in expansion of the
erythroid progenitor pool and a consequent increase in erythropoietic rate [20–22].
Erythropoietic rate may be assessed by the number of blood reticulocytes, which are
immature red cells that were released into the circulation over the prior 24-h period.

The total amount of oxygen delivered to tissues is dependent on the total number
of red cells in the circulation (the red cell mass). The hematocrit, which is the fraction
of blood volume made up of red cells, is a useful proxy for monitoring changes in the
red cell mass during anemia, though less so in polycythemia [23]. In healthy humans,
red cells circulate for 120 days, and the rate of red cell production equals the rate of
removal of senescent red cells from the circulation. The remarkably large dynamic
range of the Epo/pO2 negative feedback loop becomes apparent when examining
patients with anemia. Epo levels are found to increase exponentially with decreasing
hematocrit, up to 1000-fold their basal level [24], in turn leading up to a tenfold
increase in red cell production rate. Increased red cell production rate is the result
of a process known as the “erythropoietic stress response,” triggered by anemia and
other conditions that lead to lower tissue oxygen tension, such as high altitude or
cardiorespiratory disease [25, 26].

Epo Cellular Targets in Hematopoietic Tissue

Epo has evolved to regulate red cell production without affecting the kinetics of
other blood lineages [27], limiting its action to committed erythroid progenitors.
Of interest, recent hierarchical clustering of single-cell transcriptomes [28] supports
the suggestion [29] that megakaryocitic–erythrocytic progenitors arise directly from
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hematopoietic stem cells, rather than by the longer commitment route of the “clas-
sical” hematopoietic hierarchy [30, 31]. This early commitment to the erythroid
lineage presumably contributes to a fast erythropoietic response to acute stress. Epo
targets were traditionally identified by their colony-forming potential in vitro: The
“burst-forming unit-erythroid” (BFU-e), which give rise to large, ∼ 500-cell colonies
[32, 33], and a later, colony-forming unit-erythroid (CFU-e), which gives rise to
colonies of 8–32 cells [34]. CFU-e cells become entirely Epo dependent for sur-
vival during cell cycle S-phase of the last CFU-e generation [35, 36], an event that
coincides with several other key commitment decisions including activation of the
erythroid master transcriptional regulator GATA-1 and a consequent increase in EpoR
expression [36]. This stage also marks maximal Epo responsiveness, as indicated by
the peak level of activation of the intracellular signal transducer and activator of
transcription 5 (Stat5) [8].

The erythroblast progeny of CFU-e undergo erythroid gene induction and mature
into red cells in the space of three to five “differentiation divisions.” Morphological
criteria that include gradually decreasing cell size, condensing nucleus, and increased
expression of hemoglobin, are used to classify erythroblasts into proerythroblasts
(ProE), early and late basophilic, polychromatic, and orthochromatic erythroblasts.
In recent years, several groups, including our own, have developed flow-cytometric
approaches that make use of cell surface markers to distinguish increasingly mature
erythroblasts and CFU-e cells [7, 36–41] (Fig. 3.1). We use the cell surface markers
CD71 and Ter119 together with the flow-cytometric forward scatter (FCS) parameter
to subdivide adult erythroblasts into ProE, EryA, EryB, and EryC subsets that form a
developmental sequence (Fig. 3.1) [5–7, 37]. This approach allows us to investigate
how the frequency, number, and biochemistry of differentiation stage-specific ery-
throid progenitors and precursors alter in hematopoietic tissue in vivo in response to
Epo, hypoxia, and other forms of erythropoietic stress.

What Should a Model of the Erythropoietic System Explain?

A good model should allow us to explain the erythropoietic system’s principal
properties, which include:

1. Stability. In a healthy individual at sea level, the hematocrit, oxygen tension, and
Epo remain within a narrow range for many years. This stability is maintained in
spite of inevitable biochemical, cellular, and environmental “ noise” that might be
expected to generate fluctuations in the rates of red cell production and destruction.
The Epo/pO2 negative feedback loop cannot account for the observed stability,
due to its inherent delay: Epo’s target cells require three to five cell divisions
before generating mature red cells. This delay might be expected to promote
oscillations and hinder stability. The system’s stability is therefore likely the
result of additional mechanisms.

2. A rapid response to stress. Whatever the mechanisms that stabilize steady-state
erythroid parameters in the face of unwanted fluctuations, they must nevertheless
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Fig. 3.1 Flow-cytometric identification of tissue erythroblasts. a Classification of adult and fetal
erythropoietic tissue into increasingly differentiated erythroid precursors using flow-cytometric
parameters CD71, Ter119, and forward scatter (FSC). Epo-dependent progenitors are marked by
high expression of CD71. b Flow-cytometric CD71/Ter119/FSC profiles of mouse spleen either in
the basal state (top panels) or 48 h following injection of erythropoietin (Epo; 300U/25 g mouse,
“stress,” lower panels). The principal expansion is seen in the Epo-dependent erythroblast subsets
labeled “ProE” and “EryA” (in blue). Epo-independent late erythroblast subsets are colored in
red. HSC hematopoietic stem cells, CFU-e colony-forming unit-erythroid, ProE proerythroblasts.
(Published in Ref. [5])

allow a rapid increase in erythropoietic rate in response to physiologically relevant
perturbations such as bleeding, anemia, or high altitude. Indeed, in the mouse,
CFU-e, ProE, and EryA erythroblasts may increase 50–100-fold within 48–72 h
in response to a single maximal Epo dose [5, 7, 42–44].

3. A graded erythropoietic response to a graded increase in Epo levels, over a wide
dynamic range. EpoR signal transduction needs to reflect the wide dynamic range
of extracellular Epo concentrations in basal and stress conditions.

Below, we will consider some recent insights into these questions.
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Epo-Mediated Anti-Apoptosis as a Mechanism
of Erythroid Expansion

Both in vivo and in vitro, Epo appears not to alter the cell cycle status of primary
erythroid cells [20, 35, 45, 46], suggesting that erythroid expansion in stress is
mediated by other mechanisms. In 1990, Koury and Bondurant determined that CFU-
e -like cells cultured in vitro underwent apoptosis, unless rescued by Epo [47]. They
suggested that Epo-mediated anti-apoptotic signaling might be the major mechanism
regulating erythroid expansion. This requires first, that early CFU-e progenitors be
continuously generated in large, excessive numbers, regardless of Epo concentration,
and that they undergo apoptosis unless rescued by EpoR signaling. Second, erythroid
progenitors should differ in their sensitivity to Epo signaling, so that an increasing
Epo dose would rescue an increasing fraction of progenitors.

Our examination of erythroblasts in vivo during their response to stress sup-
ports this hypothesis. Several EpoR-activated survival mechanisms participate in the
stress response. Further, individual survival pathways each endow the erythropoietic
process with unique system properties.

Molecular Pathways Regulating Survival in the Early Erythroblast
Compartment

The Early Erythroblast Compartment Is Highly Susceptible to Apoptosis

The last generation of CFU-e and their early erythroblast progeny together comprise
the early erythroblast compartment. Cells in this compartment are highly suscepti-
ble to apoptosis, requiring Epo for survival in vitro and in vivo. By contrast, late
erythroblasts are apoptosis resistant and Epo independent. Thus, in the basal state in
healthy mice at sea level, 40–60 % of early erythroblasts in spleen and 10–20 % in
bone marrow or fetal liver are undergoing apoptosis, as judged by Annexin V binding
[5–7, 9]. By contrast, there is little apoptosis in late erythroblasts. With the acute
onset of stress, such as an injection of Epo or low atmospheric oxygen, the number
of apoptotic early erythroblasts declines rapidly, correlating with a rapid expansion
in the early erythroblast pool and increased erythropoietic rate [5–7]. The highest
rates of early erythroblast apoptosis are found in the mouse spleen, reflecting the
low erythropoietic rate of this tissue in the basal state, and its massive potential for
expansion during stress when apoptosis is inhibited. The susceptibility of the early
erythroblast compartment to apoptosis is also apparent in its higher sensitivity to
radiation injury, compared with later erythroblasts [48].
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A Balance in Favor of Pro-Apoptotic Regulators in Early,
but Not Late, Erythroblasts

The difference in apoptosis resistance between late and early erythroblasts is a result
of their distinct expression pattern of apoptotic regulators. Early erythroblasts express
high levels of pro-apoptotic regulators and only low levels of pro-survival proteins;
this pattern inverts with differentiation, culminating in late erythroblasts that express
high levels of pro-survival regulators, and only low levels of pro-apoptosis proteins.
Thus, early erythroblasts have fourfold higher levels of the pro-apoptotic regulator
Bim mRNA and protein, compared with late erythroblasts [6]; they also express
higher mRNAs for the pro-apoptotic Bax and Bid [48]. Further, 30–50 % of early
erythroblasts in the mouse spleen and fetal liver express the death receptor Fas on
their cell surface, declining to < 5 % in mature erythroblasts [5, 7, 9]. Conversely,
levels of the pro-survival Bcl-xL protein are low in early erythroblasts, increasing
sixfold with differentiation into late erythroblasts.

Differentiation-Dependent Expression of Apoptosis Regulators Is Mediated
by GATA-1 and Modified by EpoR Signaling During Stress

The differentiation-dependent shift in expression of apoptotic regulators is the result
of GATA-1-mediated transcriptional regulation. GATA-1 directly induces Bcl-xL

[49]. It also suppresses Bim via its transcriptional target lymphoma-related factor
(LRF) [50]. EpoR signaling enhances these effects as a function of Epo levels and
stress. Epo preferentially targets the early erythroblast compartment, where it induces
Bcl-xL and suppresses both Bim and Fas, events that would not otherwise take place
until later in differentiation [5, 7, 51]. The resulting pro-survival effect allows a
larger number of early erythroblasts to give rise to viable progeny. Taken together,
the dependence of the early erythroblast compartment on Epo for survival makes the
early erythroblast pool, and consequently, erythropoietic rate, highly responsive to
the prevailing Epo concentration.

A Graded Input/Output Relationship in the Regulation of Erythropoietic Rate
by Epo Requires Erythroblast Heterogeneity

The regulation of erythropoietic rate requires a graded input, in the form of Epo
concentration, to generate a graded output, measured as an appropriate increase in
the number of CFU-e, ProE, and EryA early erythroblasts [5–7, 20]. However, the
response to EpoR survival signaling at the single-cell level is binary, either life or
death. A graded output at the population level therefore requires heterogeneity in the
susceptibility of early erythroblasts to apoptosis and/or their sensitivity to EpoR’s
anti-apoptotic signaling. Indeed, CFU-e-like cells in vitro were found to be hetero-
geneous in their survival response to Epo, an effect that was shown to be independent
of the number of cell-surface EpoR [52]. The molecular basis of this heterogeneity
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is currently unclear. A question for future investigation is whether it is the result
of stochastic variation in the expression of apoptotic regulators and/or EpoR signal
transduction components, or whether it is generated by distinct subpopulations of
early erythroblasts, each with a deterministically different response to EpoR survival
signaling.

Erythroblast Survival Pathways Each Generate Unique
System-Level Properties

A number of EpoR-activated survival pathways have now been identified [51, 53–
56], but relevance to erythropoiesis in vivo was documented for only a few [38,
57–60]. The study of these pathways in vivo became possible with the advent of flow-
cytometric techniques [7, 37, 48]. Below we discuss three EpoR-activated survival
pathways, which appear to be similar in vitro, in that they each rescue cells from
apoptosis. However, their unique properties are revealed when they are studied in
the context of the whole organism in vivo.

Short-Range Negative Autoregulation Through Fas and FasL
Provides Stability and a Fast Stress Response at the Level
of the Whole Organism

Early Erythroblasts Co-Express Fas and FasL, Suppressed
by High Epo and Stress

Erythropoiesis takes place in the context of the erythroblastic island tissue niche,
where a central macrophage is surrounded by one or more concentric layers of
closely apposed erythroblasts [61, 62]. Intercellular interactions between cells in
the island are likely contributors to erythropoietic regulation. One key interaction
between erythroblasts is mediated via the death receptor, Fas, and its ligand, FasL
[7, 9, 25, 37]. Using multiparameter flow cytometry in fresh mouse tissue we found
that, surprisingly, both Fas and FasL are co-expressed on the surface of early, but
not late, erythroblasts. As discussed below, Fas- and FasL-mediated intercellular
interaction within the early erythroblast pool mediates negative autoregulation [5, 9].
Further, EpoR-mediated suppression of Fas and FasL contributes to the expansion
of the early erythroblast pool during the stress response.

Fas as a Negative Regulator of Erythropoiesis

Several lines of evidence support the hypothesis that Fas and FasL are negative
regulators of the early erythroblast pool and consequently, of erythropoietic rate:
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(1) The likelihood that a given early erythroblast is undergoing apoptosis is highly
correlated with its cell-surface Fas expression [7]. (2) With the onset of acute stress,
Fas expression declines at the same time that apoptosis decreases and the number of
early erythroblasts (ProE and EryA) increases [5, 7]. Conversely, early erythroblast
Fas expression and apoptosis both increase following the transition from hypoxia
back to atmospheric oxygen [5]. (3) During stress, the decline in the fraction of
early erythroblasts expressing Fas is a function of the degree of stress and Epo levels
(Fig. 3.2a) [5, 7]. Further, there is an inverse relationship between the total num-
ber of early erythroblasts and the early erythroblast Fas expression, both during the
response to stress and during development (Fig. 3.2a, left panel) [5, 7, 9]. (4) An
acute decrease in erythroblast FasL by transient administration of the decoy receptor
Fas:Fc resulted in an acute increase in erythropoietic rate, reducing ProE and EryA
apoptosis and doubling reticulocyte number by 48–72 h [5]. (5) We generated mice
that lack either functional Fas or functional FasL, in which we also prevented the
autoimmune syndrome that is usually associated with these mutations. We found
that the absence of Fas or FasL resulted in a two- to fourfold increase in the number
of early erythroblasts (ProE and EryA), confirming that Fas and FasL exert a nega-
tive regulatory effect on these cells. Further, the mice also had either an increased
hematocrit, or blood Epo concentration that was lower than in normal mice [5].
Therefore, negative regulation of the early erythroblast pool by Fas and FasL lowers
erythropoietic rate at the level of the whole animal.

Fas-Mediated Apoptosis Is a Component of a Short-Range Negative
Autoregulatory Loop Within the Erythroblastic Island

Although Fas expression is regulated by Epo, whether or not it leads to apoptosis is
not cell-autonomous, but instead depends on the probability that Fas-expressing
and FasL-expressing early erythroblasts interact within the erythroblastic island
(Fig. 3.2b). It is expected that the probability of such an encounter would be propor-
tional to the square of the frequency of early erythroblasts within the island [5, 9], a
relationship that we confirmed experimentally in both adult and fetal tissue [5, 7, 9]
(Fig. 3.2a), strongly supporting the concept of Fas- and FasL-mediated negative
autoregulation of the early erythroblast pool. Thus, Fas-mediated apoptosis is respon-
sive to both the prevailing Epo levels and the actual frequency of early erythroblasts.
Unexpected perturbations in early erythroblast frequency would immediately trigger
correction, through altered rates of Fas-mediated apoptosis. Early erythroblast fre-
quencies that are inappropriately high would result in a higher chance of intercellular
interaction and apoptosis, quickly returning early erythroblast frequency to its appro-
priate set point. Conversely, a lower than required early erythroblast frequency would
be corrected through the lower probability of an intercellular encounter and therefore
a slower apoptotic loss. Its responsiveness to local changes means that Fas-mediated
autoregulation has the potential to prevent propagation of any perturbation or “noise”
in the early erythroblast pool into the mature red blood cell compartment, obviating
the need for activating a correction via the long-range Epo/pO2 negative feedback
loop, and preventing unnecessary fluctuations in hematocrit and pO2 (Fig. 3.2b).
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Fig. 3.2 Short-range negative autoregulation of early erythroblasts by Fas and FasL. a Interde-
pendence of erythropoietin (Epo) concentration, early erythroblast (EryA) frequency and EryA
expression of Fas in vivo. Mice were injected with varying doses of Epo, and spleen EryA fre-
quency and Fas expression were examined on day 3 post injection. Left panel shows EryA cell
frequency relative to basal frequency, plotted against the number of EryA cells that express Fas
(Fas+ EryA, expressed as a ratio to basal levels). Data points represent individual mice. Blue = mice
in the basal state, red = mice injected with Epo. Data are fitted with a curve derived from the math-
ematical model described in [5]. Right panel shows the dependence of Fas+ EryA on the dose
of injected Epo, in the same dataset as in the left panel; all mice injected with a given Epo dose
were pooled into one data point, mean ± sem. b Adjusted feedback diagram of the erythropoi-
etic system. In addition to the long-range Epo/pO2 negative feedback loop, there is a short-range
Fas/FasL-mediated negative autoregulatory loop local to the early erythroblast compartment. Epo
signaling inhibits local autoregulation by suppressing Fas expression. The illustrated erythroblastic
island shows that the frequency of Fas/FasL-expressing early erythroblasts (in blue) within the
island determines the probability of their interaction and potential apoptosis. Later erythroblasts
(EryB, EryC) are illustrated in red. F = Fas. HSC hematopoietic stem cells, CFU-e colony-forming
unit-erythroid, ProE proerythroblasts, RBC red blood cell. (Adapted from Ref. [5])

An independent line of evidence for negative autoregulation via Fas and FasL
comes from a computational modeling approach in which we used erythroblast
frequency data during early fetal liver development to predict potential regulatory in-
tercellular interactions within the erythroblastic island [9]. We divided the erythroid
differentiation sequence within the island into four increasingly mature subsets. We
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made dynamical measurements of the frequency of each of these subsets in vivo on
successive embryonic days during the onset of definitive erythropoiesis in the mouse
fetal liver, between embryonic days 12 and 14. This period is characterized by large
changes in the erythroblastic island, which is initially dominated by early erythrob-
lasts, rapidly giving way to higher frequencies of late erythroblasts [9]. To build the
model, we generated a system of ordinary differential equations, in which the differ-
entiation of early to late erythroblasts was modulated by intercellular interactions.
We considered all potential feedforward and feedback interactions between the four
erythroblast subsets, and altogether screened 298 networks, or model topologies, in
each of which there were at least three such interactions. Once each of the models
was fitted to the experimental data, potential intercellular interactions were ranked
based on a number of metrics, including their ability to bestow robustness to the
erythropoietic networks in which they were present. The highest ranking interaction
in this analysis was a negative autoregulatory interaction within an early erythrob-
last compartment, equivalent to the experimentally identified Fas/FasL-mediated
autoregulation.

Local Negative Autoregulation by Fas Stabilizes the Erythropoietic System

Fas-mediated negative autoregulation provides short-range correction of noise or
perturbations of the early erythroblast pool (see above). This was made apparent
when we examined mutant mice that lacked either Fas or FasL function. We found
that, in addition to being significantly larger, the size of their early erythroblast pool
was more variable between individual mice in the same population, compared with
matched control mice, evident from the increased variance and increased coefficients
of variation in early erythroblast subsets in both fetal and adult tissue [5, 9]. There
was also increased variability in overall erythropoietic rate, as reflected by increased
variability in the number of blood reticulocyte. These experimental findings suggest
that Fas and FasL-mediated negative autoregulation contributes to the stability of the
erythropoietic system.

Fas-Mediated Apoptosis Controls a Reserve Pool of Early Erythroblasts That
Accelerates the Stress Response

Perhaps counter intuitively, mice lacking Fas or FasL showed a significantly delayed
response to stress at multiple levels of the erythropoietic system, in spite of the
absence of a negative regulator and of their already larger basal erythroblast pool
[5]. Whereas control mice responded to a single high dose of Epo with a 30-fold
expansion in the early erythroblast pool by day 2, the increase in Fas-deficient mice
was smaller by 30 %, a shortfall equivalent to tenfold the size of the normal basal
erythroblast pool. The Fas-deficient mice caught up with control mice by day 3, but
the early shortfall caused a delay in the expansion of mature erythroblasts and a
slower increase in hematocrit. Mice with impaired Fas function also took longer to
elevate erythropoietic rate when placed in low atmospheric oxygen [5].
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These findings suggest that Fas-mediated apoptosis nonredundantly controls ap-
proximately 30 % of the erythropoietic reserve available for the acute stress response
(Fig. 3.3a). This reserve consists of cells that are continuously generated as part of
the very large “input” into the early erythroblast compartment from earlier progenitor
stages. In the basal state, these cells undergo apoptosis through a number of distinct
pathways and do not contribute to the basal erythropoietic rate. With the onset of
stress and the consequent increase in Epo, Fas expression is suppressed, and cells
in the Fas-regulated reserve survive and contribute to the rapid stress response. In
Fas-deficient mice, the absence of the Fas-regulated reserve slows down the response
to stress.

The control of erythropoietic reserve through apoptosis appears at first glance to
be a highly wasteful mechanism, since during health most of the CFU-e/early ery-
throblasts are continuously generated only to be lost. The finding that mice lacking
Fas-mediated apoptosis are slower to respond to stress suggests that this “wasteful”
mechanism may have evolved due to its fast stress response: It allows the fast recruit-
ment of a large number of preexisting progenitors in response to the sudden onset
of stress, such as might occur following injury and bleeding. An equivalent 30-fold
expansion in erythroblasts through cell cycling would presumably add a considerable
time lag to the Epo response.

The Role of the Negative Autoregulatory Motif

Negative autoregulation is a frequent motif in biological networks. Computational
and experimental approaches in simple transcriptional networks in E. coli suggested
that it has two principal effects: conferring resistance to random fluctuations, and ac-
celerating the response to a stimulus [63–68]. The roles we outlined for the Fas/FasL
autoregulatory interaction in early erythroblasts suggest that the negative autoregu-
latory motif may exert similar “logic” in higher-level intercellular networks, helping
to maintain both stability and a fast stress response of tissue progenitors.

Contrasting Dynamic Responses of Bcl-XL and Bim Highlight
Distinct Anti-Apoptotic Mechanisms for Acute and Chronic
Phases of Stress

Bcl-XL Induction Is an Adapting Response to a Change
in the Level of Epo/Stress

Bim and Bcl-xL are pro- and anti-apoptotic regulators of the Bcl-2 family [69–
72]. EpoR activation in early erythroblasts leads to Bim suppression [6, 51] and
to induction of Bcl-xL [6, 38, 57, 73]. We found that the time course of these two
anti-apoptotic pathways differed markedly. In response to acute stress such as low
atmospheric oxygen or Epo injection, early erythroblast Bcl-xL increased rapidly
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Fig. 3.3 Mechanisms that accelerate the acute stress response. a Fas/FasL negative autoregulation
accelerates the response to stress. Top panel shows the slower response of lpr/gld mice, mutant
for Fas/FasL, respectively. Lower panels suggest the mechanism of this delay. In control mice
(left panel), EryA cells are continuously formed from earlier precursors (“input”). In the basal
state, when erythropoietin (Epo) concentration is low, only a small fraction of these cells survives
(arrow pointing left), forming the “basal EryA pool” (in purple). The EryA that undergo apoptosis
(dashed lines) do so either through Fas (“Fas-regulated reserve,” green dashed line) or alternative
mechanisms (“alternative reserve,” blue dashed line). Together, the EryA reserve is 30 to 60-fold
the size of the basal pool [6]. During the acute response to stress, high Epo rescues the EryA reserve
pools from apoptosis (arrow pointing to right), resulting in an immediate increase in the size of
the surviving EryA pool (solid green and blue colors) and an increase in erythropoietic rate. In
the basal state, the lpr and gld mice partially compensate for the chronic absence of Fas-mediated
negative regulation by generating fewer EryA cells (a smaller input, right panel). In this way, the
absence of Fas-mediated apoptosis does not excessively increase the basal EryA pool. However,
the absence of the Fas-regulated reserve in lpr and gld mice reduces the number of EryA that may
be immediately recruited into the surviving EryA pool during stress, delaying the stress response.
(Published in Ref. [6]). b Contrasting dynamic EpoR signaling responses. Hypoxic stress and high
Epo levels result in two distinct EpoR signals: A persistent inhibitory signal that is proportional
to the prevailing Epo concentration, suppressing Bim and Fas expression; and an adapting signal,
inducing Bcl-xL, that
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and peaked by 12–18 h. However, the peak was short-lived, with Bcl-xL rapidly
declining to basal levels by 48 h, in spite of the persistence of stress. By contrast,
Bim suppression was slower, reaching its maximum by 48–72 h. Unlike Bcl-xL, both
Bim and Fas/FasL suppression persisted for the duration of stress/high Epo levels
[5–7].

Consistent with its adapting response to acute stress, Bcl-xL was not elevated in
chronic stress conditions such as β-thalassemia. However, an acute stress stimulus
superimposed on chronic stress reactivated a transient induction of Bcl-xL that was
very similar to that seen in an acute stress challenge starting from basal conditions
[6].

These findings suggest that Bcl-xL induction is responsive to changes in Epo
concentration with respect to time, rather than to the absolute level of Epo or stress
(Fig. 3.3b). In this way, it provides a rapid, though transient survival signal to early
erythroblasts, accelerating the response to acute stress and remaining active until
slower but persistent pathways, such as Bim suppression, are activated.

Mechanism of Adaptation in the Bcl-XL Response

The contrasting dynamic responses of Bcl-xL on the one hand, and Bim or Fas on
the other, suggest that the EpoR generates at least two signal forms in response to
high Epo: a persistent signal proportional to the absolute Epo concentration; and
an adapting signal that is elicited in response to a change in Epo concentration
(Fig. 3.3b). Our recent work suggests that EpoR-activated Stat5 phosphorylation
(p-Stat5) is the key stimulus to Bcl-xL induction, and that adaptation in p-Stat5 is
responsible for the transience of the Bcl-xL response [6]. Using mice with knockin
mutations of the EpoR cytoplasmic domain, we found that adaptation in both p-Stat5
and the Bcl-xL response was dependent on the EpoR distal cytoplasmic domain.
We suggest it is the result of p-Stat5-mediated induction of suppressor of cytokine
signaling (SOCS) family proteins, negative regulators that bind EpoR cytoplasmic
domain phosphotyrosines and inhibit further p-Stat5 docking and activation [74–76].

The Early Erythroblast Compartment as a “PID” Controller

Why does high Epo elicit both persistent and adaptive responses? The speed of
response to acute stress is paramount. However, it may be that fast-response
pathways like Bcl-xL are intrinsically riskier for the cell, and are therefore
replaced in the chronic phase with slower but safer pathways. Indeed, persistently

is proportional to the rate of change in Epo concentration, and therefore, specifically accelerates

erythropoietic rate in acute stress. The responses of each of these pathways to consecutive stepwise

increases in Epo concentration is shown on the right. (Published in Ref. [6])
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high Bcl-xL is associated with polycythemia vera and other myeloproliferative dis-
orders [77–80]. High levels of its close relative, Bcl-2, are associated with B cell
lymphomas.

More generally, the levels of Bcl-xL reflect the rate of change of Epo with re-
spect to time. By contrast, the Bim and Fas responses are proportional to the actual
Epo concentration over a wide range [5, 6]. The early erythroblast compartment is
therefore processing both proportional and derivative functions of Epo.

These findings are reminiscent of a feedback controller frequently used in en-
gineering applications and known as the PID controller [81]. A controller is a
computational device that uses feedback to generate the output of a dynamical system,
so that it matches a desired reference value (Fig. 3.4a). The controller is continuously
fed an input, known as the “error,” generated by the comparison of the actual system’s
output with the system’s required set point. The error is processed by three types of
elements within the controller, each with its own specific gain, tuned to match the
system’s requirements. These are first, “P,” which generates an output that is propor-
tional to the error signal. Second, “I,” generating an output that is the integral of the
system’s errors over a recent, specified period of time. This element helps to predict
the output based on the system’s recent error history. Last, “D” generates an output
that is a function of the error’s derivative with respect to time. This element predicts
the likely future error based on the current error’s rate of change. All three elements
are combined to generate the controller output that drives the system (Fig. 3.4a).
PID controllers are often combined with additional elements such as noise filters to
improve the system’s output.

We propose that the early erythroblast compartment behaves as a controller of ery-
thropoietic rate and contains elements similar to those of a PID controller (Fig. 3.4b).
The error signal that feeds into this controller is Epo concentration, signaling the mis-
match between the actual and desired oxygen availability, sensed by HIF1 and HIF2
(see above). Epo then regulates the size of the early erythroblast compartment via
pathways that use the same “logic” as those of the PID controller elements. Thus,
regulation of Fas, FasL, and Bim expression are similar to the “P” element since
they are proportional to Epo concentration, while regulation of Bcl-xL expression
corresponds to the “D” element since it is a function of the derivative of Epo con-
centration. At the current time we have not identified an “I” element within the early
erythroblast compartment in vivo. However, we propose that it may be represented
by Epo-dependent CFU-e self-renewal, a process that Epo achieves in cooperation
with glucocorticoids during erythropoietic stress [22, 82, 83]. The early erythroblast
compartment controller also includes a noise-reducing filter operated by the Fas/FasL
negative autoregulatory interaction. The final output from the controller, namely the
number of surviving erythroblasts, is the sum total of all survival and self-renewal
pathways, and directly drives erythropoietic rate, which in turn increases red cell
mass and delivery of oxygen to tissues.
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Fig. 3.4 The early erythroblast compartment is analogous to a proportional-integral-derivative
(PID) controller. a Block diagram of a PID controller, a device that uses feedback to continuously
generate the output of a dynamical system so as to match a desired reference value [81]. An “error”
is continuously generated by the comparison of the system’s required set point with the actual
value of the parameter controlled by the system. Three elements within the controller generate
output that is either proportional (“P”), integral (“I”), or a derivative (“D”) function of the error
signal. The output of the three elements is then combined

(∑)
to generate the system’s output.

b The early erythroblast compartment as a PID controller of erythropoietic rate. Erythropoietin
(Epo) concentration represents the error signal, generated by the mismatch between the actual
and desired oxygen availability, sensed by HIF1 and HIF2. Epo regulates the size of the early
erythroblast compartment (the controller “output”) via pathways that use the same “logic” as those
of the PID controller elements. Fas and Bim suppression is proportional (“P”) to Epo concentration
while regulation of Bcl-xL expression corresponds to the “D” element since it is a function of the
derivative of Epo concentration. The “I” element may represent Epo-dependent CFU-e self-renewal.
CFU-e colony-forming unit-erythroid, RCM red cell mass

Stat5 Signaling Combines Binary and Graded Dynamic
Modalities

The Dimmer Switch Model of Stat5 Signaling

Mouse genetic models suggest that EpoR-mediated Stat5 activation by phosphory-
lation is essential for both basal erythropoiesis and for its acceleration during stress
[38, 57, 84, 85]. A key challenge lies in understanding how Stat5 signaling encodes
both basal and stress Epo signals, in turn eliciting distinct downstream responses.
We investigated the dynamic features of the Stat5 phosphorylation signal (p-Stat5)
in erythroblasts within freshly isolated tissue using flow cytometry [8]. We found



3 Erythropoiesis: From Molecular Pathways to System Properties 53

Fig. 3.5 Binary and graded modalities of signal transducer and activator of transcription 5 (Stat5)
signaling in erythroblasts. a, b The steepness of the erythropoietin (Epo)/p-Stat5 dose/response
curves increases, and the maximal p-Stat5 intensity decreases, with increasing erythroblast matu-
ration. Panel “A” shows the gating strategy of freshly isolated embryonic day 14.5 fetal liver cells,
based on Ter119, CD71, and forward scatter (FSC). The S3 subset is subdivided into increasingly
mature (expressing increasing Ter119) smaller subsets, labeled FSC gates #1–#6. The dose/response
curves for each subset (panel B) shows decreasing maximal intensity, and increasing steepness and
Hill coefficient, with increasing erythroblast maturation [8]. c, d The dimmer-switch model of Stat5
signaling. Stat5 signaling in erythroblasts resembles a dimmer switch, which combines binary and
graded components (panel C). The closing of an “on/off ” switch completes an electric circuit,
turning on a dim light. The further turning of the power-switch dial permits a gradual decrease of
the circuit’s resistance, with a consequent graded increase in the electric current and light intensity.
Panel D shows a binary, decisive but low-intensity p-Stat5 signal in more mature S3 erythroblasts.
In S1 early erythroblasts, this signal can increase further with a gradual further increase in Epo
concentration. No further increase takes place in mature S3 erythroblasts, though the number of
signaling erythroblasts increases with increasing Epo concentration [8]

two modalities of p-Stat5 signaling, dependent both on the level of Epo/stress and on
erythroblast maturation. The Epo/pStat5 dose/response curve in early erythroblasts
is graded and reaches the highest signal intensities in response to high Epo. By con-
trast, in later erythroblasts the Epo/pStat5 dose/response curve is much steeper, with
a high Hill coefficient, but a low maximal intensity. This results in a low intensity
but decisive, or binary, pStat5 response (Fig. 3.5a, 3.5b).

The transition from a high-intensity graded p-Stat5 signal in the earliest erythrob-
lasts to a low-intensity binary response in later erythroblasts is the result of a decline
in Stat5 protein [8]. We propose that the p-Stat5 signal is analogous to a light bulb
operated through a dimmer switch (Fig. 3.5c, 3.5d). A binary switch controls the
circuit and is responsible for activating a binary, though dim, light. A gradual further
turning of the power switch dial permits a gradual further increase in the electric
current and light intensity.
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The intensity of the p-Stat5 signal determines the intracellular gene transcriptional
responses it elicits. The low-intensity p-Stat5 response is essential for basal survival
pathways in erythroblasts and hence for basal erythropoiesis and survival of the whole
organism. By contrast, the high-intensity, graded and transient p-Stat5 response is
specific to acute stress, stimulating a rapid increase in both Bcl-xL [6] and CD71 [8].

Signaling with Fidelity over a Wide Epo Concentration Range

The binary and graded signaling modalities have fundamentally different functional
consequences. The steep dose/response curve of the binary response filters out noise
and generates a clear signal. This mode of signaling is therefore ideal at the low end
of the Epo concentration range. A key disadvantage of binary signaling, however,
is its inability to encode incremental changes in stimulus. This would exclude it as
a useful signaling modality in erythropoietic stress, where incremental changes in
Epo concentration signal the required incremental increases in erythropoietic rate.
On the other hand, relying on a graded signaling response over the three log orders
of magnitude of the Epo concentration range would make the response to basal Epo
levels difficult to distinguish from noise. Stat5 bridges this conundrum by combining
the binary and graded signaling modalities, so that binary signaling dominates and
provides signaling fidelity in the low-intensity signaling range of basal erythropoiesis,
and graded signaling is reserved for the high-intensity stress range.

Conclusions and Outlook

Computational models of the erythropoietic system have treated the erythroid pro-
genitor compartment as a “black box,” disregarding the biochemical pathways that
control progenitor functions. Our experimental approach simultaneously measures
dynamical change at multiple levels of the erythropoietic system in vivo, including
the molecular responses of defined sequential differentiation stages of erythroid pro-
genitors and precursors. This approach shows that specific biochemical pathways at
the single-cell level are directly responsible for the large-scale system properties of
erythropoiesis. It suggests that the early erythroblast compartment is a complex and
sophisticated feedback controller where molecular and cellular pathways compute
the optimal response to the pO2 “error signal,” namely the prevalent Epo concen-
tration. To date, we identified molecular mechanisms that enhance stability in the
face of unwanted perturbations using short-range feedback and an accelerated stress
response. Further, the logic “tools” used to achieve these large-scale functions are
similar to those used in engineering applications, and include binary and graded
signal transduction modalities, negative autoregulation, and elements of the PID
feedback controller. A better and detailed dynamical understanding of molecular
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erythropoiesis, combined with knowledge of system engineering, should allow biol-
ogists to refine a molecular model of erythropoiesis that would allow a mechanistic
assessment of pathology and improved design of therapies.
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Chapter 4
Systems Biology of Megakaryocytes

Alexis Kaushansky and Kenneth Kaushansky

Abstract The molecular pathways that regulate megakaryocyte production have
historically been identified through multiple candidate gene approaches. Several tran-
scription factors critical for generating megakaryocytes were identified by promoter
analysis of megakaryocyte-specific genes, and their biological roles then verified by
gene knockout studies; for example, GATA-1, NF-E2, and RUNX1 were identified
in this way. In contrast, other transcription factors important for megakaryopoiesis
were discovered through a systems approach; for example, c-Myb was found to
be critical for the erythroid versus megakaryocyte lineage decision by genome-
wide loss-of-function studies. The regulation of the levels of these transcription
factors is, for the most part, cell intrinsic, although that assumption has recently
been challenged. Epigenetics also impacts megakaryocyte gene expression, medi-
ated by histone acetylation and methylation. Several cytokines have been identified to
regulate megakaryocyte survival, proliferation, and differentiation, most prominent
of which is thrombopoietin. Upon binding to its receptor, the product of the c-Mpl
proto-oncogene, thrombopoietin induces a conformational change that activates a
number of secondary messengers that promote cell survival, proliferation, and dif-
ferentiation, and down-modulate receptor signaling. Among the best studied are the
signal transducers and activators of transcription (STAT) proteins; phosphoinositol-
3-kinase; mitogen-activated protein kinases; the phosphatases PTEN, SHP1, SHP2,
and SHIP1; and the suppressors of cytokine signaling (SOCS) proteins. Addi-
tional signals activated by these secondary mediators include mammalian target of
rapamycin; β(beta)-catenin; the G proteins Rac1, Rho, and CDC42; several transcrip-
tion factors, including hypoxia-inducible factor 1α(alpha), the homeobox-containing
proteins HOXB4 and HOXA9, and a number of signaling mediators that are reduced,
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including glycogen synthase kinase 3α(alpha) and the FOXO3 family of forkhead
proteins. More recently, systematic interrogation of several aspects of megakaryocyte
formation have been conducted, employing genomics, proteomics, and chromatin
immunoprecipitation (ChIP) analyses, among others, and have yielded many pre-
viously unappreciated signaling mechanisms that regulate megakaryocyte lineage
determination, proliferation, and differentiation. This chapter focuses on these path-
ways in normal and neoplastic megakaryopoiesis, and suggests areas that are ripe
for further study.

Keywords Megakaryocytes · Platelets · Systems biology · Protein array · Genomics ·
Signal transduction · Transcription factors · Thrombopoietin · Cell proliferation ·
Endomitosis

Background

An adequate supply of platelets is essential to repair the minor vascular damage
that occurs with daily life, and to initiate thrombus formation in the event of overt
vascular injury. Platelets also play a critical role in cardiovascular disease [1], wound
repair [2], the innate immune response [3], and the biology of metastatic cancer [4].
The average platelet count in humans ranges from 150 to 350 × 109/L, with some
diurnal variation, although the level for any individual is maintained within fairly
narrow limits when adjusted for time of day. The range of tolerable platelet counts
is broad, but once platelet counts fall below 50 × 109/L, the risk of pathological
bleeding rises substantially.

Once derived from a bi-potent erythroid–megakaryocyte progenitor cell, the
megakaryoblast undergoes a series of divisions, during which time the cytoplasm
begins to express platelet-specific proteins (e.g., β(beta)1-tubulin), the cell surface
membrane becomes decorated by a number of platelet-specific adhesive proteins
(e.g., integrin α(alpha)IIb/β3, integrin αII/β1, glycoprotein GpIb, GpVI), cytoplas-
mic granules and their constituents (e.g., platelet factor 4, transforming growth factor
β1, von Willebrand factor, P-selectin) assemble, and internal membranes (special-
ized for rapid calcium flux or for proplatelet formation) begin to form. After four to
six cycles of cell division, mitosis begins to abort in anaphase. As DNA synthesis
continues despite aborted mitosis, a process termed endomitosis, the megakaryocyte
becomes highly polyploid. During the endomitotic phase of the megakaryocyte life
cycle, gene transcription becomes synchronized on all copies of the platelet-specific
structural genes, resulting in massive translation of critical platelet proteins, required
for the impressive growth in cell volume during this phase of megakaryocyte devel-
opment. The result is an extremely large mature megakaryocyte that contains 64,
128, or even 256 times the normal chromosome complement. At this point, exvagi-
nations of internal membranes form, driven by a breakdown of the circumferential
actin cytoskeleton and projection of long filaments of β1-tubulin; these proplatelet
processes then branch and fragment into platelets.
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A wide range of pathological conditions lead to both reduced (thrombocytopenia)
and increased (thrombocytosis) platelet counts. Hence, the mechanisms that regulate
the production of megakaryocytes and platelets are of keen interest for both health
and disease.

Components of the Gene Expression Apparatus that Affect
Megakaryocyte Lineage Development

Candidate Gene Approaches

Once a hematopoietic stem cell (HSC) commits to the myeloid lineage, the stochastic
rise and fall of lineage-specific transcription factors influences its precise hematopoi-
etic lineage fate. Using reporter gene analyses of the 5′ untranslated region of
megakaryocyte and mixed erythroid/megakaryocyte-specific genes to probe for its
regulatory sites, at least six transcription factors, GATA1, GATA2, RUNX1, Fli-1,
FOG1, and NF-E2, have been identified as critical for megakaryocyte gene ex-
pression and differentiation into mature platelets. More recently, using a variety of
methods, a number of genes that drive megakaryocyte-specific epigenetic changes
have also been identified.

GATA-1, termed for its core DNA-binding sequence (AGATAG), is vital for com-
mitting primitive multipotent progenitors to the erythroid/megakaryocyte pathway.
However, the transcription factor also is critical later in megakaryopoiesis, for cyto-
plasmic development. For example, reduction in GATA-1 expression impairs granule
and demarcation membrane formation in murine megakaryocytes [5]. The promot-
ers for integrin αIIb, glycoprotein (Gp)Ib, GpVI, GpIX, and platelet factor-4 genes
display consensus sequences for both GATA-1 and members of the Ets family of
transcription factors (e.g., FLI-1), deletion of which reduces or eliminates reporter
gene expression [6–8], at least in mature hematopoietic cells; these were among
the first studies demonstrating the need for multiple lineage-specific transcription
factors to drive lineage-specific gene expression. Additional megakaryocyte targets
of GATA-1 include the inositol 1,4,5-triphosphate receptor 2 (InsP3-R2), which
encodes endoplasmic reticulum channels that control calcium efflux [9] enzymes of
arachidonic acid metabolism, and the G-protein-coupled P2Y receptors, 1 and 12
[10].

Another transcription factor that plays a critical role in the final stages of
megakaryocyte maturation is NF-E2. Initially described as an erythroid-specific,
basic leucine zipper family transcription factor [11], NF-E2 is composed of a ubiq-
uitously expressed p18 subunit and a p45 protein also present in megakaryocytes.
NF-E2 binds to tandem AP-1-like motifs, such as those seen in the second DNAse
hypersensitive site of the β-globin locus control region, and is required for β-
globin expression [12]. However, genetic elimination of p45 failed to significantly
affect erythropoiesis. Rather, p45-deficient mice display prominent alterations in
megakaryocyte development and severe thrombocytopenia [13] leading to death
from widespread hemorrhage. Examination of the marrow reveals modest expansion
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of megakaryocytes but failure of the cells to produce platelets because of defects
in cytoplasmic maturation, including substantial reductions in platelet granules and
membranes. The genetic targets of NF-E2 include β1-tubulin [14], thromboxane syn-
thesis [15], both expressed relatively late in megakaryocyte maturation, consistent
with the phenotype of NF-E2-deficient marrow megakaryocytes, highly polyploid
cells that express integrin αIIbβ3 and platelet factor-4, but lack platelet granules and
the internal membranes required for proplatelet formation.

FLI-1 is an Ets family transcription factor first identified as the site of insertion
of Friend murine leukemia virus. Its oncogenic potential in humans was established
with the identification of a fusion of the Ewing’s sarcoma gene (EWS) and the Ets
domain of Fli1 in pediatric Ewing’s sarcoma, and the interaction of Fli-1 with Tel
in acute myeloid leukemia (AML). A role in normal hematopoiesis was suggested
when overexpression of Fli-1 was shown to lead to massive overproduction of ery-
throcytes, and established when hemizygous loss of Fli-1 was shown to be causative
of the thrombocytopenia of Paris–Trousseau syndrome [16]. Consistent with this
conclusion is the finding that loss of the C-terminal region of Fli1 causes significant
thrombocytopenia in mice, [17] and loss of both Fli-1 and another Ets factor, Erg, is
required for both HSC and megakaryocyte development [18].

RUNX1, also termed AML1 and core-binding factor (CBF)α, is a member of the
Runt (Rnt) family of transcription factors, which stabilize the interaction of CBFβ

with DNA [19]. The gene for RUNX1 is located on chromosome 21 (21q22.12),
and encodes a protein of 453 amino acids, including the DNA-binding Rnt domain
and the transactivating domain (TAD). Translocation between the RUNX1 site on
chromosome 21 and the ETO gene on chromosome 8 produces the AML–ETO onco-
gene, found in approximately half of patients with M2 acute myelogenous leukemia
[20]. The activity of RUNX1 is modulated by a number of posttranslational modifi-
cations, including phosphorylation by mitogen-activated protein kinases (MAPKs)
and cyclin-dependent kinases, and by interaction with several binding partners. Once
activated, the RUNX1/CBFβ complex binds to the consensus sequence TGTGNNN
and enhances transcription of a myriad of megakaryocytic genes, including platelet
factor-4 and integrin αIIb, and a number of genes that promote cell proliferation [19].

FOG1, or Friend of GATA, was initially identified as a protein that interacts with
GATA-1 on erythroid promoters without interacting directly with DNA [21]. Its direct
role in megakaryocyte development has been determined through promoter reporter
analyses; for example, FOG interacts with GATA in the regulation of megakaryocyte-
specific genes [22]. FOG1 is a member of the zinc-finger domain proteins that employ
two zinc fingers to bind DNA. In the case of FOG1, the amino terminal finger binds the
protein to GATA transcription factors, and mutations of this domain are responsible
for human dyserythropoietic anemia and thrombocytopenia [21, 23]. In addition
to the transcriptional activity of FOG that regulates megakaryopoiesis, a number of
epigenetic factors have been identified that mediate its action. For example, mutations
in FOG1 are associated with a gray platelet syndrome-like macrothrombocytopenia.
The causative mutation in FOG1 blocks the interaction of the transcription factor
with the nucleosome remodeling and deacetylase complex (NuRD) [24].
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In addition to transcription factors that direct megakaryocyte-specific gene expres-
sion, several genes or gene products in megakaryocytes are regulated by microRNAs
(miRNAs). miRNAs are a large group of ∼22-nucleotide noncoding RNAs that are
evolutionarily conserved and modulate protein expression by blocking target gene
transcription or degrading the corresponding mRNA [25]. There are over 400 hu-
man miRNAs and several are implicated in megakaryopoiesis. In megakaryocytes,
miRNA-150 expression is reduced as cells differentiate towards megakaryocytes, and
overexpression of miRNA-150 inhibits megakaryopoiesis in in vitro and mouse mod-
els, potentially by targeting Meis1 and Ets1 transcripts [26]. In contrast, miRNA-150
levels increase during megakaryocyte differentiation, in a thrombopoietin-dependent
manner, but not in erythroid cells [27]. miRNA-150 targets c-Myb expression, re-
ducing its expression, and as downregulation of c-Myb promotes megakaryocytic
differentiation at the expense of erythroid cells [28], the pathway of miRNA-150
to c-Myb helps to explain the effects of the hormone on enhancing megakaryocyte
production. Additional regulatory miRNAs with potential roles in megakaryopoiesis
include miRNA-34a, which when overexpressed in primitive hematopoietic cells
increased megakaryocyte colony formation and modulates c-Myb expression [29],
and miRNA-27a which targets the transcription factor RUNX1 [30].

Systems Approaches to Identify Novel Members of the
Megakaryocytic Gene Expression Apparatus

Several investigators have used gene arrays to identify previously undescribed tran-
scription factors that regulate the megakaryocyte lineage. For example, Fuhrken and
colleagues induced CD34 + human marrow cells into the granulocytic or megakary-
ocytic lineage, and then focused upon the differentially expressed genes that bear
a transcription factor signature [31]. Nearly 200 differentially expressed transcrip-
tion factor motif-containing genes were identified, including several known to be
expressed in the lineage, such as GATA-1, Fli-1, and MafG, lending credence to the
veracity of the approach. Novel genes identified that were subsequently shown to
be differentially expressed in megakaryocytes at the protein level included FHL2,
MXD1, E2F3, and RFX5. However, other than the LIM domain protein FHL2,
for which genetic elimination results in a failure of erythropoiesis and megakary-
opoiesis [32], there are no subsequent studies that have determined if these genes
play an important biological role in megakaryopoiesis.

With the availability of a growing database of transcription factors that influence
hematopoiesis, and a fairly robust understanding of the factors that influence their
expression and biological activities, many believe that this information can be used
to model the networks that regulate lineage fate determination, ultimately utilizing
such network models to reprogram progenitor cells, predict the effects of specific loss
or gain of a specific transcription factor, or to drive specific differentiation patterns
in primitive cells. One such effort that has met with some success is a Boolean model
developed to predict the pathways taken, as a common myeloid progenitor cell gives
rise to neutrophils, macrophages, erythroid cells, and megakaryocytes [33]. The
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success of the modeling effort was confirmed; when the model predictions of the
levels of 11 distinct transcription factors in each population of cells was compared to
the values measured by quantitative reverse transcription polymerase chain reation
(RT-PCR), a remarkable concurrence was found.

Like systems approaches to identifying novel transcription factors that regu-
late megakaryocyte gene expression programs, a number of investigators have
systematically sampled megakaryocyte miRNAs and tested their function. To
discover novel regulatory pathways during megakaryocytic differentiation, soon af-
ter miRNA expression arrays were developed, Garzon and colleagues performed
miRNA expression profiling of in vitro-differentiated megakaryocytes derived from
primitive hematopoietic progenitors [34]. They found that miRNA-10a, miRNA-
126, miRNA-106, miRNA-10b, miRNA-17, and miRNA-20 were down-modulated
as megakaryocytes differentiated from their immediate progenitors. Furthermore,
using ectopic expression of various miRNAs found in megakaryocytes, they went
on to show the functional consequences of several of these regulatory elements. A
more comprehensive analysis of miRNA expression in differentiating megakary-
ocytes was more recently published [35]. A comprehensive assessment of miRNAs
differentially expressed between normal cells and those derived from patients with
the myeloproliferative neoplasms (MPNs), essential thrombocythemia (ET), and pri-
mary myelofibrosis (PMF) has begun to reveal some of the complex changes that
can accompany malignant transformation [36]. Along similar lines, Girardot and
colleagues sampled miRNAs in patients with MPNs in an attempt to help explain the
down-modulation seen in the receptor, c-Mpl, in megakaryocytes and platelets from
such patients. They found that miRNA-28 bound to and degraded c-Mpl mRNA,
potentially accounting for the observed phenomenon [37].

Genes Regulated by the Megakaryocytic Transcriptional
Apparatus

Candidate Gene Approaches

The transcription factors that drive the expression of a number of megakaryocyte-
specific genes have been determined by classic promoter reporter analysis, and have
included GATA-1, GATA-2, RUNX1, Fli-1, SCL, SP-1, NF-E2, EGR1, FOG1,
among others (e.g. [22, 38]). Once the role(s) of individual transcription factors was
identified, effective transcriptional complexes were then identified [39]. Many of
the genes regulated by these transcriptionally active proteins have been studied in
detail, and include the genes encoding integrin αIIb, glycoprotein GpIb, GpVI, GpIX,
and platelet factor-4, InsP3-R2, enzymes of arachadonic acid metabolism, several
G-protein-coupled P2Y receptors, β1-tubulin, thromboxane synthesis, as detailed
above.
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Novel Findings Due to Systems Approaches

One of the earliest systematic studies of the genes differentially expressed in the
three major hematopoietic lineages—erythroid, myeloid, and megakaryocytic—
was reported in 2005 [40]. Megakaryocytes derived from thrombopoietin-induced
CD34 + marrow cells were sampled by gene array analysis at 4, 7, and 11 days
following culture initiation. Genes expected to be differentially expressed included
those encoding integrin αIIb, integrin α6, integrin β3, GpIb, GpV, GpIX, FOG2,
IRS1, Thromboxane A2 receptor, and vascular endothelial cell growth factor, as
well as many previously undescribed genes, lending much credence to the general
approach of employing arrays to discovering new pathways that are important for
megakaryocyte development. In a similar approach, novel genes potentially involved
in megakaryocyte apoptosis were identified by Chen and colleagues [41].

Based on the repeated identification of binding sites for multiple transcription fac-
tors in the regulatory regions of several dozen well-described megakaryocyte-specific
genes, an innovative approach to identify additional, previously undescribed genes
important for megakaryocyte development was launched using chromatin immuno-
precipitation (ChIP)–Seq technology. Tijssen and colleagues performed ChIP–Seq
for GATA-1/2, RUNX1, Fli-1, and SCL in megakaryocytes derived from cord blood
CD34 + cells, identifying 4722 GATA-1, 2475 GATA-2, 7345 RUNX1, 8688 Fli-1,
and 3085 SCL binding sites in the genome [42]. Approximately 150 genes were
identified that bound all five transcription factors, including many well-described
megakaryocyte-specific proteins (e.g., integrin αIIB and GpIbβ), and using bioin-
formatics approaches, nearly one half of these genes had been previously reported
expressed in megakaryocytes. Eight genes that were also expressed in zebrafish were
subsequently randomly chosen for loss of function studies, to determine whether they
might be functionally important; morpholino antisense-induced knockdown of each
of these genes significantly impaired thrombocyte and/or erythrocyte formation in
the resultant fish. In this way, the genes march2, max, smox, pttg1lp, emilin1, and
sufu were identified as critical for stem cell and/or megakaryocyte formation.

An approach related to ChIP-Seq is termed formaldehyde-assisted isolation of
regulatory elements (FAIRE), a method that identifies regions of open (likely tran-
scriptionally active) chromatin, and hence, functionally important for a potentially
important gene that had been previously identified from genome-wide association
studies, quantitative trait locus analyses, or any other genetic systems approach. Paul
and colleagues used FAIRE to confirm that rs342293, a noncoding polymorphism
that correlates with platelet volume and function, is open in megakaryocytes and
closed in erythroid cells, and identifies an Evi1-binding site in the PIK3CG gene,
known to be involved in platelet membrane biogenesis [43].

Polyphosphate-4-phosphatase (P4P) was first identified by subtraction cloning
between normal and GATA-1 knockdown megakaryocytes [44]. Consistent with its
mode of discovery, the P4P gene was subsequently shown to display a functional
GATA-1 site. One of the initially unexplained features of GATA-1 knockdown mice
is their (dysmorphic) megakaryoblasts, which are highly abundant and proliferate
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in vitro far greater than control cells [5]. P4P catalyzes hydrolysis of the D-4-position
phosphate of PI3,4P and PI3,4,5P. These membrane phospholipids are products of
thrombopoietin-stimulated phosphoinositol-3-kinase (PI3K) action on membrane
phospholipids, which then play an important role in the proliferation and survival
of the cells. When reintroduced into the knockdown mice, P4P diminishes the ex-
uberant growth characteristic of the knockdown cells [44], findings similar to the
phenotype of cells from PTEN or SHIP knockout mice, enzymes that hydrolyze the
D-3 and D-5 positions of PI3,4,5P.

Cytokines

Candidate Gene Approaches

Thrombopoietin

The primary regulator of platelet production is thrombopoietin, an acidic glycopro-
tein produced in many organs but primarily in the liver, kidney, and bone marrow.
Most paths to discovery of thrombopoietin were dependent on identification of the
c-Mpl proto-oncogene. Based on the presence of two copies of a characteristic
structural motif, an 200 amino acid module containing four spatially conserved
Cys residues, 14 β-sheets, a juxtamembrane Trp–Ser–Xaa–Trp–Ser sequence, a 20–
25-residue transmembrane domain, and a 70–500-amino-acid intracellular domain
containing short sequences that bind intracellular kinases, it was postulated that the
c-Mpl product was an orphan cytokine receptor. Using three different approaches,
four separate groups identified the ligand for the c-Mpl proto-oncogene; the use of the
recombinant protein in marrow cultures allowed the outgrowth of megakaryocytes,
and its administration to mice lead to massive megakaryopoiesis and thrombocyto-
sis. Genetic elimination of thrombopoietin in mice leads to severe thrombocytopenia,
and while only a single pedigree of humans null for thrombopoietin has been de-
scribed, genetic elimination of c-Mpl leads to severe neonatal thrombocytopenia, and
ultimately, HSC failure. Once available in large amounts, crystallization of throm-
bopoietin was accomplished, and its tertiary fold was found remarkably similar to
that of erythropoietin and many members of the growth hormone/prolactin family of
cytokines.

Stromal Cell-Derived Factor-1

Chemokines, defined by their ability to support chemotaxis, play multiple roles in
blood cell physiology [45]. Four classes of the 8- to 12-kDa polypeptides have been
recognized, based on the spacing of cysteine residues close to the amino termi-
nus of the proteins (so called CC and CXC chemokines). All chemokine receptors
are members of the seven-transmembrane family of receptors that signal through
heterotrimeric G proteins, and are subtyped by the family of chemokines they serve.
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The CXC chemokine CXCL12 (also termed stromal cell-derived factor (SDF)-1
and its receptor CXCR4 are critical for normal hematopoietic stem-cell trafficking
and function. Most chemokines and chemokine receptors are promiscuous, they can
bind to, or bind multiple counter-receptors, respectively; in contrast, the phenotype
of genetic elimination of both CXCR4 and CXCL12 are almost identical [46, 47],
a severe defect in stem cell homing to and retention in the marrow, resulting in
hematopoietic failure. In addition, megakaryocytes display CXCR4 [48] and migrate
in response to an CXCL12 concentration gradient [49]. Several groups have shown
that CXCL12 augments thrombopoietin-induced megakaryocyte growth in suspen-
sion culture [48, 50]. Later studies have shown that the synergy between CXCL12
and other stimuli on megakaryocyte growth extends to cell surface adhesion [51].

Other Cytokines

A number of other cytokines have been described to affect megakaryocyte growth in
vitro, almost always in concert with thrombopoietin or in plasma- or serum (a source
of thrombopoietin)-containing cultures. Included in this group are other members of
the cytokine receptor family, including interleukin (IL)-3, granulocyte–macrophage
colony-stimulating factor, leukemia inhibitory factor, erythropoietin, IL-6, and IL-
11, and members of the receptor tyrosine kinase family, including stem cell factor,
Flt3 ligand and fibroblast growth factor. Of note, except for stem cell factor, genetic
elimination of any of these cytokines fails to substantially alter resting platelet levels
of the resultant animal.

Membranes/Receptors

Candidate Gene (Hypothesis-Driven) Approaches

c-Mpl Receptor

The myeloproliferative leukemia virus was first described in 1986 as causing a murine
leukemia. The viral oncogene was identified in 1990, and the cellular proto-oncogene
in 1992. Upon inspection of its predicted primary structure, it was immediately
apparent that c-Mpl encoded a cytokine receptor. The cloning and characteriza-
tion of thrombopoietin as the c-Mpl ligand 2 years later confirmed this hypothesis.
The c-Mpl receptor is expressed primarily in hematopoietic tissues, specifically in
megakaryocytes, their precursors (e.g., HSC), and their progeny (platelets). For the
most part, c-Mpl is constitutively expressed in these tissues, although the level of
receptor display is modulated by thrombopoietin-induced receptor internalization
and degradation. In the absence of stimulation, hematopoietic cytokine receptors
such as c-Mpl exist in a homodimeric state, in a conformation that holds the cy-
toplasmic domains far apart (e.g., 73 Å in the unliganded erythropoietin receptor).
Upon binding the cognate ligand, the receptor conformation shifts, bringing the two
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cytoplasmic domains into close juxtaposition (39 Å in the liganded erythropoietin
receptor). Additional studies indicate that the intracytoplasmic domain proximal to
box1 and box2 cytoplasmic domains constitutively bind JAK family kinases, even
in an inactive state. Upon ligand binding, the closer juxtaposition of the two tethered
kinases is thought to allow their cross-activation, initiating signal transduction.

Mutational studies of the thrombopoietin receptor have revealed a great deal of
signaling subtlety. By introducing a series of progressively longer helical segments
into the transmembrane domain of the receptor, to introduce progressive degrees
of cytoplasmic domain “orientation twist,” Staerk and colleagues have found that
depending on how the cytoplasmic domain homodimer is oriented, the receptor can
be “off,” “inducibly on” (i.e., responsive to thrombopoietin, the normal state), or
“constitutively on,” associated with a myeloproliferative phenotype in vivo [52].
As the signals sent from each of these receptor forms are different, an increasing
understanding of the tertiary structure of the thrombopoietin receptor could lead to
an enhanced ability to intervene disorders of c-Mpl.

Interferon Receptors

The most common cause of thrombocytosis in humans is inflammation. Much of
the enhanced megakaryopoiesis due to inflammation has been traced to IL6-induced
enhanced expression of hepatic thrombopoietin [53]; however, interferons could
play a role as well. Interferon receptors are expressed on the megakaryocyte surface
membrane, but not on platelets [54]. Culture of megakaryocytes or megakaryocyte
cell lines has been shown to activate STAT1, and its downstream signals, leading to
megakaryocyte maturation [55].

Adhesive Receptors

A large number of adhesive proteins are present on the surface of megakaryocytes and
platelets. Included in this class are integrins and non-integrins, both of which have
the capacity to enter into adhesive reactions that tether cells together in a regulable
fashion, colloquially referred to as “molecular velcro.” Less well appreciated is that
both types of adhesive cell surface proteins also send signals that affect the activation
state of the cell, and, in some cases, have an impact on megakaryopoiesis.

Integrins are heterodimeric proteins composed of 1 of 14 or more α chains and 1
of 8 or more β chains. The most important megakaryocyte and platelet integrins are
αIIb/β3, which serve as a fibrinogen receptor, integrin α2/β1, one of two collagen re-
ceptors, and integrin α4β1, a fibronectin receptor. The effects of collagen on platelet
activation is well known—it modestly activates aggregation and allows adhesion to
exposed subendothelial collagen. Likewise, the interaction of fibrinogen with integrin
αIIb/β3 is critical for platelet aggregation, directly cross-linking adjacent platelets in
the growing platelet plug. Less well appreciated is the effect of integrins and other ad-
hesive receptors on megakaryopoiesis. Genetic elimination of GpIb leads to modest
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thrombocytopenia, as seen in patients with Bernard–Soulier syndrome [56]. Engage-
ment of integrin α4/β1 with specific fragments of fibronectin (that cannot interact
with integrin α5/β1) stimulates megakaryocyte growth in vitro [57]. And integrin
αIIbβ3 is critical for proplatelet formation and platelet release [58]. Megakaryocytes
and platelets display two distinct collagen receptors, integrin α2β1 and GpVI [59].
The latter collagen receptor is thought to be the predominant signaling receptor, en-
gaging cAMP and cGMP, the Fcγ receptor; the Src kinases, Fyn and Lyn; and the G
protein, CDC42, among others [60–62]. Thus, while the platelet and megakaryocyte
adhesion receptors are predominantly thought of in terms of platelet function, i.e.,
molecular velcro, they also play critical roles in megakaryocyte development and
platelet production.

Novel Findings Due to Systems Biology

Given the relatively similar ontological background of erythroblasts and megakary-
oblasts (the bi-potent “Meg-Erythroid” progenitor), a systematic search for
megakaryocyte-specific cell surface receptors might best be conducted by finding
differentially expressed genes predicting to encode transmembrane-containing pro-
teins. Such a differential erythroid/megakaryocytic gene array was conducted by
Macaulay and colleagues [63], who found many of the expected genes (integrin
αIIb, integrin β3, PECAM1, CD9, platelet factor-4), but several previously unidenti-
fied or poorly characterized transcripts. Among the latter, of some interest were G6b,
G6f, and the succinate receptor, SUCNR1. G6b has also been identified by others as
a novel immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing protein
[64], and later found to modulate collagen-induced platelet activation mediated by
GpVI [65], and the finding of succinate receptors on megakaryocytes and platelets
provides an explanation for the enhancing effect of succinate on a variety of platelet
agonists.

Signaling Molecules/Adaptors

Candidate Gene (Hypothesis-Driven) Approaches

Prior to the cloning of thrombopoietin, extensive studies using numerous hematopoi-
etic family cytokines, especially growth hormone and erythropoietin, provided a
roadmap for candidate-signaling molecules and adapters that might be utilized by
megakaryopoietic cytokines. With the cloning and characterization of thrombopoi-
etin and naturally occurring and engineered c-Mpl-bearing cells, the tools required
to confirm or refute the role of these candidate genes in megakaryopoiesis was at
hand.
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The signaling pathways that promote cell survival, proliferation, and differentia-
tion in megakaryopoiesis have been widely studied. Like that for erythropoietin and
the erythropoietin receptor, c-Mpl binding of thrombopoietin results in the juxtaposi-
tion of two molecules of the signaling kinase Jak2, with subsequent phosphorylation
of the contralateral Jak2, and several tyrosine residues of the receptor (Y591, Y625,
Y630). Once Jak2 is active and Y625 and Y630 are phosphorylated, signal transducer
and activator of transcription (STAT)3 and STAT5, and in some settings STAT1 are
recruited and phosphorylated, leading to their dimerization and translocation into
the nucleus. STAT5 is indispensable for the normal megakaryocyte development, as
Stat5-deficient mice show impaired platelet production [66]. Moreover, transgenic
mice with megakaryocytic lineage-specific overexpression of a dominant negative
form of STAT3 display reduced platelet recovery following 5-FU-induced myelo-
suppression [67]. One target of HGF-induced STAT5 that mediates these effects on
cell survival is the anti-apoptotic molecule BclXL [68].

Coincident with STAT activation, the adapter proteins SHC and LNK bind
to P-Y625, recruiting son-of-sevenless (SOS) and then Ras, and recruiting p85
phosphoinositol-3-kinase, and its kinase domain, p110. Activation of the MAPK
pathway in megakaryocytes by Ras is required for maturation of megakaryocytic
progenitor cells and the generation of highly polyploid cells [69]. One MAPK-
dependent pathway that contributes to megakaryocyte differentiation is its activation
of RUNX1 by phosphorylation (see below, and [70]). Phosphorylation of AKT
by thrombopoietin-activated PI3K controls cell-cycle progression and cell sur-
vival [71] through silencing of FOXO family of transcription factor [72], which
if left unchecked would stimulate expression of the cell-cycle inhibitor p27 and the
proapoptotic molecule fas ligand.

The STAT proteins are also affected by additional c-Mpl-related adaptor
molecules. For example, overexpression of LNK, a known inhibitor of cytokine sig-
naling, inhibits thrombopoietin-induced STAT5 and MAPK activation in 32D-mpl
cells, introduction of LNK into bone marrow Lin-cells reduced thrombopoietin-
dependent growth, and ploidy of megakaryocytes and increased megakaryocyte
ploidy was found in LNK-deficient mice [73, 74]. The calcium- and integrin-binding
(CIB) protein appears to play a similar role, as genetic elimination of CIB1 is
associated with thrombocytosis, increased megakaryocyte ploidy, and enhanced
thrombopoietin-induced activation of PI3K/Akt and MAPK, although proplatelet
formation was impaired, perhaps due to a megakaryocyte adhesion and migration
defect [75].

A number of small G proteins are also activated during megakaryopoiesis. RhoA,
Rac1, and CDC42 are critical for megakaryocyte maturation. For example, like
most/all diploid cells, RhoA localizes to the cleavage furrow in diploid megakary-
ocytes undergoing late anaphase. However, this subcellular localization is disturbed
during megakaryocytic endomitosis, although the molecular explanation is unclear.
Likewise, CDC42 interacts with WASP, the protein product of the gene mutated in
Wiscott–Aldrich syndrome, a disorder characterized by modest thrombocytopenia.
Rac1, RhoA, and CDC42 are also critical for megakaryocyte proplatelet formation.
Maturing megakaryocytes display reduced phosphorylation of the myosin light chain
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(MLC), levels of which are mediated by these G proteins. Of note, inhibition of hi-
stone deacetylases with newly emerging cancer chemotherapeutic agents leads to
reduced levels of Rac1, RhoA, and CDC42, enhanced levels of phopho-MLC, and
reduced proplatelet formation, thought to account for the thrombocytopenia due to
these new drugs [76].

Once a megakaryocyte is stimulated by thrombopoietin and other pro-proliferative
stimuli, the induced signals must be extinguished, lest uncontrolled proliferation en-
sue. At least three mechanisms down-modulate the sensitivity of cells to further
growth factor signaling: (1) induction of suppressors of cytokine signaling (SOCS)
proteins, (2) activation of phosphatases that remove P-Tyr sites from Jak family
kinases and cytokine receptors, and (3) a number of adaptor proteins that neg-
atively regulate signaling. Removal of activated c-Mpl from the cell surface by
endocytosis will be discussed below. SOCS proteins are induced by STAT-mediated
transcription, and once translated bind to P-Y residues in c-Mpl and Jak2, preclud-
ing binding of additional signaling molecules and triggering proteolytic destruction
[77]. Hematopoietic cells contain a number of phosphatases that eliminate P-Y from
receptors and signaling adaptors (e.g., SHP1); their physiological importance is il-
lustrated by disorders of macrophage activation or profound erythropoiesis. Recent
evidence suggests that the dual-function phosphatase, PTEN, is also important for
hematopoiesis. Moreover, thrombopoietin has been shown to induce the expression
of SOCS1 and SOCS3 [78], implicating these STAT–induced proteins in the reg-
ulation of thrombopoietin signaling. Finally, several proteins that bind to c-Mpl,
either directly or indirectly, initiate signals that dampen the proliferative signals
that emanate from c-Mpl. In addition to LNK, mentioned above, the Src family ki-
nase Lyn down-modulates thrombopoietin-induced proliferation [79], likely acting
downstream of the focal adhesion kinase, FAK [80].

Once exposed to thrombopoietin, c-Mpl is rapidly removed from the cell sur-
face, in a clathrin-dependent process [81]. The molecular components required for
the removal of surface proteins are clathrin triskeletons and adaptor protein (AP)2
complexes [82]. Target proteins for clathrin-mediated endocytosis bear recognition
sequences NPXY or YXXθ (theta; θ = bulky hydrophobic), LL, or an acidic cluster;
of note, human c-Mpl bears two YRRL sequences (Y521RRL and Y591RRL), highly
conserved in the murine receptor. Previously, we showed that theY591F mutant c-Mpl
molecule displays enhanced thrombopoietin signaling [83]. Moreover, reduced re-
ceptor internalization and enhanced signaling could explain why truncation of c-Mpl
beyond S574 [84] or L582 [83] signals so well, despite elimination of the P-Y residues
that activate STATs and MAPKs. We found that cell surface clearance of c-Mpl is
greatly diminished when Y591 is mutated to F, an effect associated with intense and
prolonged signaling, and that Y591 is part of the clathrin/AP2 complex recognition
site. Moreover, Y521 is responsible for the trafficking of internalized c-Mpl to the
lysosome, as its mutation to F allows enhanced recycling of the internalized receptor
to the cell surface [81]. c-Mpl contains two intracellular lysine residues that are po-
tential targets for ubiquitination (K553, K573) and hence might mediate its degradation
through the proteasome. The use of mutant forms of the c-Mpl receptor demonstrated
that c-Cbl is an E3 ligase for the ubiquitinated c-Mpl receptor, and is responsible for
receptor-signaling intensity.
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In addition to cytokine and chemokine binding, the engagement of other
megakaryocyte cell surface proteins induces activation of adaptors and signaling
molecules. Upon binding cognate ligand, the cytoplasmic domain of the integrin
receptors undergo conformational changes, eliminating binding sites for some, and
revealing binding sites for other adaptors and signal transducers. Among the adap-
tors that bind once platelets are activated, talin, Rap1, and RIAM are critical for the
conformational change that allows fibrinogen engagement during aggregation [85].

Novel Findings Due to Systems Biology

As noted above, STAT1 activation is critical for megakaryocyte maturation. Re-
cently, an exciting corollary to the levels of megakaryocyte expression of STAT1
was identified in patients with MPNs.

When an acquired, activating mutation of Jak2 (Jak2V617F) was identified in vir-
tually all patients with polycythemia vera (PV), and half of patients with ET and
PMF, a dilemma arose: How can one mutation lead to three distinct (albeit related)
diseases [86]. One ready explanation would be that additional genetic alterations
could explain the phenotypic diversity of the same primary, proliferative stimulus
(an activated Jak2). By performing gene array analysis of the clonal erythroid and
megakaryocytic colonies derived from 20 patients with ET, and 16 with PV, Chen
and colleagues concluded that the inherent level of STAT1 expression and activation,
which varies considerably from patient to patient, contributes to whether a patient
that acquires Jak2V617 F develops PV or ET [63] 63 ]. Several conclusions from
this work deserve comment. First, the gene expression profiles of progenitor-derived
colonies from different patients display far more variation between patients than
between normal and malignant progenitors of the same individual. Second, nor-
mal megakaryocytic colonies display more STAT1 than normal erythroid colonies.
Third, expression of a constitutively active STAT1 in normal human CD34 + pro-
genitor cells skews the balance of erythroid and megakaryocyte outgrowth towards
the latter. Fourth, since patients with either of these MPNs circulate both normal
and Jak2V617 F-positive progenitor cells, the levels of STAT1 in both neoplastic and
normal colonies could be independently assessed, allowing the pre-mutant expres-
sion profile to be determined; patients with heterozygous expression of Jak2V617F
ET display more STAT1 in their normal hematopoietic colonies than those with PV.
These investigators conclude that the inherent variability in STAT1 expression, prior
to the acquisition of Jak2V617F, determines whether PV or ET develops in any given
patient with that kinase mutation.

The marrow of patients with PMF display altered megakaryopoiesis, with
densely clustered arrays of megakaryocytes with maturation defects and ineffective
thrombopoiesis. In an attempt to understand the genetic basis for this phenotype,
Theophile and colleagues performed low-density gene array analysis, focusing
on genes that influence cell survival, on laser-dissected megakaryocytes from
patients with PMF and normal individuals. They found that many anti-apoptotic
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genes tended to be overexpressed in PMF megakaryocytes, especially BNIP3 [87].
However, given some recent results from Chen and colleagues [88], indicating
that the premorbid level of STAT1 expression could be responsible for the disease
phenotype (PV vs. ET, see above), it would need to be explored whether patients
with PMF might display enhanced anti-apoptotic genes at baseline, which could then
account for their PMF phenotype upon acquiring Jak2V617 F. In keeping with this
notion, Olthaf and colleagues reported that another STAT, STAT5, plays a similar
lineage-switching function [89]. When they reduced expressed expression of STAT5
in CD34+ using an RNA interference (RNAi) approach, they found enhanced
megakaryocytic output of the cultures; in contrast, when an activated form of STAT5
was introduced into the same starting cell population, erythropoiesis was enhanced.

As noted above, engagement of megakaryocyte and platelet adhesion receptors
leads to both platelet activation and megakaryopoiesis. Thus, a systems approach to
identifying new adaptor proteins for these receptors is of great interest. The search for
platelet activation adaptors and signaling molecules will be discussed in Chap. 14, but
several studies should be commented upon here due to the effects of integrin α4β1,
integrin αIIbβ3, and GpIb on megakaryopoiesis. Using the global proteome machine
database to create an in silico protein interaction tool, Zhang and colleagues queried
which proteins might interact with the cytoplasmic domains of the integrin αIIb and
integrin β3 subunits [90]. In addition to talin1, Rap1, the partnering integrin subunit,
tubulin, vinculin, and plekstrin, expected from prior experimental studies, they also
identified myosin, GpIb, α-actinin, profiling, and the adaptor protein 14-3-3. Like-
wise, for integrin β1, using the in silico tool, they found integrin α2, integrin α5,
integrin α6, integrin αIIb, γ (gamma)actin, multimerin1, thrombospondin1, talin1,
filamin A, vinculin, myosin, vimentin—only some of which were previously known.
To confirm their predictions, they then performed formaldehyde cross-linking of acti-
vated platelets, added an anti-integrin β1 antibody and performed mass spectroscopy
on the immunoprecipitate; over 80 % of the predicted proteins were confirmed to
interact with integrin β1 experimentally.

Genome-wide association studies (GWAS) hold the promise of identifying in an
unbiased way a large number of genes that were previously unsuspected to play a role
in a simple or complex trait. Much has been written about the advantages and poten-
tial pitfalls of GWAS, but it is clear that its power to generate testable hypotheses is
impressive. Recently, a GWAS was conducted on 68,000 individuals of European
descent, focusing on platelet size and number [91]. From the analysis, 68 loci were
identified as contributing to one or both of these traits; 43 with platelet count, 25
with platelet volume, and 16 with both. Several of the genes were previously de-
scribed as impacting megakaryocyte or platelet formation, including those encoding
thrombopoietin, GpIb, Wiskott–Aldrich-like protein, LNK, Cbl, β1-tubulin, NF-
E2, and cyclin A. Several other genes were identified that were previously known
to play important functional roles in megakaryocytes or platelets, including CD9
(a tetraspanin), integrin αllb, protease-activated receptor (PAR)1, the major throm-
bin receptor, and the adhesion receptor CD226. When loss-of-function analyses
were conducted in Drosophila on genes not currently known to affect hematopoiesis
or platelet function, several hematopoietic phenotypes were identified, including



74 A. Kaushansky and K. Kaushansky

ablation of all primitive hematopoiesis (arhgef3, ak3, rnf145, and jmjd1c), or throm-
bocytes alone (tpma; the homologue of human TPM1). As this GWAS accounted
for less than 10 % of the genetic variability in human platelet number and size,
it is safe to assume that there are many additional genetic determinants affecting
megakaryopoiesis.

Genes Targeted by Signaling Apparatus

Candidate Gene Approaches

Once the primary regulators of megakaryopoiesis were identified, a number of
signaling pathways that affect megakaryocyte development were identified. For
example, MafB, which enhances GATA-1 and Ets activity during megakaryoblast
differentiation [25], is induced by activation of ERK1/2, one of the primary
downstream events of thrombopoietin stimulation [26]. The transcription factor
RUNX1 (also termed CBFα2 and AML1) was identified from reporter gene analyses
of several genes that regulate hematopoiesis. Its critical role in megakaryopoiesis
was established by gene mapping studies in patients with familial platelet disor-
der/predisposition to AML; such patients, but not their normal family members,
display haploinsufficiency of RUNX1, linking the gene to thrombocytopenia [92].
This conclusion was subsequently confirmed by its genetic elimination in mice [93].
In addition to its upregulation in cytokine-stimulated megakaryocytes, in response
to phosphorylation by thrombopoietin-induced activation of ERK1/2, RUNX1
forms a complex with CBF-β and together with GATA-1, induces integrin αIIb

and integrin α2 expression in megakaryocyte-like cells. Moreover, phosphorylated
RUNX1 then induces expression of p19 INK4, which leads to endomitosis arrest
and megakaryocyte maturation [94].

A number of studies have demonstrated an important role for thrombopoietin in
HSC biology. For example, the hormone supports cell survival in cultures of highly
purified murine HSCs [95], and genetic elimination of thrombopoietin or its recep-
tor leads to an approximate tenfold reduction in the ability of HSCs to repopulate
lethally irradiated mice. The molecular targets that support this function include
at least three transcription factors, each pathway identified by prior work identify-
ing a critical role of each transcription factor in HSC biology. Three- to fourfold
overexpression of the homeobox-containing transcription factor HoxB4 results in a
tenfold expansion of HSCs following transplantation [96]. Thrombopoietin-induced
activation of p38 MAPK enhances expression of HoxB4, in a USF1/2-dependent
fashion [97]. Likewise, modest overexpression of HoxA9 leads to greatly enhanced
HSC numbers [98]; thrombopoietin-induced activation of PI-3 K induces expression
of the heterodimeric partner of HoxA9, MEIS1 [99], and once phosphorylated by
activated MAPK, MEIS-1 acts to translocate HoxA9 to the nucleus. Finally, based
on the supportive role of vascular endothelial growth factor (VEGF) on HSCs [100],
the capacity of thrombopoietin to induce hypoxia-inducible factor (HIF)1α to drive
expression of VEGF [101] was demonstrated.
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Novel Findings Due to Systems Biology

One of the most unique features of megakaryocytes is endomitosis, the process by
which mitosis is aborted in mid-anaphase, coupled to reenter into DNA synthesis,
producing cells that become polyploid, containing 64, 128, and even 256 times the
normal chromosomal complement in a single lobated nucleus. Polyploidization is felt
to be necessary for the cell enlargement required for efficient platelet formation, al-
lowing amplification of the genome to support the massive protein synthesis that
fuels the impressive cell growth that characterizes megakaryocyte development.
Early studies demonstrated that gene expression occurs in concert in polyploidy
megakaryocytes; that is, for example, in a 32N cell, all 32 copies of a gene are
undergoing transcription simultaneously, and transcriptionally silent genes remain
silent at all the multiple loci [102]. Another important question is whether endomito-
sis might specifically drive certain transcriptional programs. To address this question,
Raslova and colleagues sorted human megakaryocytes into various ploidy classes,
and performed gene chip analysis on each class of cells [103]. Surprisingly, only
105 genes were modulated during endomitosis, comparing 2N cells to 16N cells.
Of the genes down-modulated in the more mature cells, nearly all were members
of classes that regulate DNA replication, transcription and repair, and most of the
upregulated genes were involved in cytoskeletal maturation (e.g., actin, β1-tubulin,
MYH9), platelet adhesion/aggregation (e.g., integrins, GpIb, PECAM), and signal
transduction (e.g., MAPK, FYN, RAC1, RAB1B).

Systematic Approaches to Addressing Major Issues
in Megakaryopoiesis

Candidate gene approaches have advanced our understanding of the molecular ma-
chinery that mediates megakaryocyte differentiation, development, and platelet
production. Despite this, a number of key questions remain. For instance, what
signals are essential to transition megakaryocytes from normal diploid mitosis to
polyploid endomitosis, or from a large intact megakaryocyte into one that fragments
into platelets. What factors other than thrombopoietin are essential for “normal”
megakaryocyte and platelet levels? Are platelets formed from megakaryocytes of
lower ploidy functionally different from platelets formed from high-ploidy cells?

With several proteins critical for basic megakaryocyte development now func-
tionally defined, the identification of subsequent factors, very likely to display more
subtle effects, is certain to be increasingly challenging. Additionally, genes criti-
cal to answering the next set of major questions in hematopoiesis, in general, and
megakaryopoiesis, in particular, might not be “usual players.” For these reasons, in
order to continue to advance our understanding, the field must undertake a series of
experiments that utilize unbiased methodology, to further advance our understanding
of megakaryopoiesis. Although far from comprehensive, what follows is a summary
of techniques that will likely be part of the investigation of megakaryopoiesis in the
decades to come.
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Uncovering Critical Protein–Protein Interactions

As discussed above, megakaryocytes display cell surface receptors that are shared
with other cell types (i.e., integrins) and receptors are relatively unique to these
cells (i.e., c-Mpl is expressed primarily on megakaryocytes, their precursors, and
their progeny). Thus, the wiring diagram that describes potential signaling events in
megakaryocytes cannot be accurately inferred from models in other cell types. For
this reason, mapping the protein–protein interactions that occur for megakaryocyte-
specific receptors is critical. Fortunately, proteomic techniques have been established
to identify interacting partners.

One critical technology that has already been utilized in the field is protein domain
microarrays. Protein microarray technology provides a means to study protein–ligand
interactions in vitro in a noncompetitive format. Importantly, it can be used to obtain
quantitative information on binding affinities. In a typical protein microarray exper-
iment, the target proteins are spotted in a regular pattern at high spatial density on a
solid support, usually a chemically derivatized glass substrate or a glass-supported
nitrocellulose membrane. The spotted proteins become immobilized on the surface
and, following a blocking step, are incubated with a labeled probe (e.g., a protein,
peptide, nucleic acid, or small molecule). After a brief washing step, protein–ligand
interactions are identified using the label on the probe. For example, if the probe has
been labeled with a fluorophore, the array is simply scanned for fluorescence.

Most eukaryotic proteins are modular in nature. For example, they might comprise
both catalytic domains and interaction domains that, to a first approximation, can be
extracted from their host protein without loss of function. Thus, a domain-oriented
strategy that provides an effective way to circumvent the difficulty associated with
producing full-length recombinant proteins can be used to study the recognition
properties of entire families of related proteins in high throughput. Recently, this
approach was taken to study the Src-homology-2 (SH2) and phosphotyrosine binding
(PTB) domain-containing proteins that interact with pY630 of c-Mpl. This study
identified a new binding partner, Tensin2, and demonstrated that it is a key activator
of the pro-survival Akt cascade in megakaryocytes [104].

It is impractical to express and purify all protein domains in the human genome,
so broader approaches to the study of protein–protein interaction are often advan-
tageous. For this purpose, immunoprecipitation followed by mass spectrometry
(IP-MS) has been extensively used in a number of fields. In this type of experi-
ment, the protein of interest is immunoprecpitated under native conditions, then
the subsequent precipitant lyzed, digested, and peptides subjected to tandem mass
spectrometry. This allows for the identification of binding partners to the protein of
interest. More extensive use of this technique will enable a more complete picture
of what proteins interact with critical megakaryocyte signaling molecules.
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Comparison of Intracellular Signaling in Different
Cell Populations

In addition to a more comprehensive understanding of the molecular basis of direct
interactions that contribute to signaling in megakaryocytes, a broader understanding
of signaling pathways involved in each of the phenotypic changes described above
is necessary. To date, this has been challenging due to the difficulty in collecting
large number of primary megakaryocytes undergoing specific changes. However,
with the development of a number of new technologies, understanding the signaling
changes that occur in cell populations with only a small number of cells is rapidly
becoming possible.

Antibody-Based Approaches

A number of new technologies have made analyses that were previously only ap-
proachable by traditional western blotting, possible on a smaller scale. A new
technology, Luminex xMAP, based on the principles of flow cytometry, uses colored
microspheres linked to antibodies to quantify protein abundance or posttranslation
modification [105]. The advantage over traditional western blotting is the abil-
ity to obtain this measurement with as few as ten cells. xMAP technology is a
medium-throughput approach, and is available commercially. Additionally, anti-
body microarray technology similarly uses a very small amount of total cell lysate
per measurement. In an antibody array, a wide variety of antibodies are attached
to a glass slide, and lysates, which have been modified to be labeled on either the
N- or C-terminus with a fluorescent tag, are incubated with the slide. These arrays
are commercially available and able to monitor differences between a wide range of
signaling proteins. Alternatively, arrays can be fabricated from lysates. In a lysate
microarray, each sample is printed on a glass slide coated with nitrocellulose. The
slide is then treated as a membrane would be in the process of performing a western
blot. Unfortunately, it is critical to validate each antibody that is used for a particu-
lar cell line for use on protein microarrays, by comparing data obtained on control
arrays to that obtained by western blotting [106]. Although antibody validation will
always be a challenge in these approaches, the ability to obtain western-blot-like
information from only thousands of cells is a major advantage.

Perhaps the most promising antibody-based technique is a fusion between flow
cytometry and fluorescence microscopy, termed ImageStream. ImageStream tech-
nology allows for a cellular sample to be stained with multiple antibodies, just as
one might do in analyzing or isolating subpopulations in peripheral blood mononu-
clear cells or other samples. However, in addition to providing levels of total protein
present in the given cell, by taking an image of each cell that is analyzed, subcellular
localization can also be determined. This combination of single-cell analysis, and
the ability to mark a given cell with up to tens of markers, is extremely powerful, and
will surely advance our understanding of signaling in hard-to-isolate cell populations
such as megakaryocytes [107, 108].
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Non-Antibody-Restricted Approaches

For experiments that require truly unbiased experimentation that antibody-based
approaches cannot provide, a number of quantitative mass-spectrometry-based
approaches have been developed. The two most common approaches now used rou-
tinely are termed stable isotope labeling with amino acids in cell culture (SILAC)
and isobaric tags for relative and absolute quantization (iTRAQ). In both types of
experiments, proteins from samples to be compared are labeled with a given tag,
digested, then mixed. Finally, samples are then analyzed by liquid chromatography
and tandem mass spectrometry and quantities of peptides containing one tag are
compared with peptides containing another tag. This allows for quantification of
each peptide between multiple samples.

Analysis of Transcriptional Changes

In the past decades, the development of DNA microarray and RNA–seq technologies
has greatly enhanced our ability to probe the entire complement of RNA sequences
for information. Although multiple technologies exist for this purpose, the two most
commonly used approaches are transcription arrays and RNA–seq. In a transcrip-
tional array, a large number of short nucleotide sequences are printed on a glass
slide, and RNA extracted from a particular experimental condition, labeled with
a fluorescent dye, and hybridized to the array. If RNA from a particular gene is
expressed, it will bind the corresponding printed spot, and produce a signal. Mi-
croarrays have now been successfully used for decades, in > 40,000 journal articles.
Although this approach has now become the “gold standard” in transcriptome analy-
ses, it requires that probes predict transcribed sequences, since each spot on an array
must correspond to a given sequence, and arrays typically cannot probe the entirety
of sequences contained within the human genome. Thus, sequences that are thought
to encode noncoding sequences are typically excluded.

In an atypical cell type such as the megakaryocyte, transcription of sequences
that are typically believed to be silent is not outside of the realm of possibility.
Next-generation sequences approaches have allowed for the development of RNA–
seq-based approaches. In RNA–seq, RNA generated in a particular experimental
condition is directly sequenced, so assumptions do not need to be made regard-
ing which sequences are transcribed. Moving forward, this approach will likely
be invaluable, not only in comparing the response of megakaryocytes to different
environmental conditions and identifying molecular differences in cell populations
at different developmental time points, but also potentially for identifying novel
transcripts unique to megakaryocytes.
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Conclusions, Challenges, and Future Directions

Much has been learned since megakaryocytes were first recognized as the origin of
blood platelets in 1906. With the cloning and characterization of thrombopoietin, the
field has advanced significantly, because of the capacity to grow the cells in vitro
and analyze their biochemistry and cell biology. But much remains to be discovered,
in order that a more complete understanding of these cells translate into both a bet-
ter appreciation of the unique biological properties of endomitosis and proplatelet
formation and fragmentation, and the ability to manipulate the cells for therapeu-
tic benefit be realized. In addition to the genes already identified and detailed in
this chapter, the systems approaches described hold great potential to expand our
inventory of potentially important determinants of megakaryocyte biology. In this
realm, systems approaches will be of great benefit. The function of potentially novel
regulators of the megakaryocyte must undergo a thorough functional analysis. RNAi
hold great promise as a function-defining tool, as extensive libraries of RNAi are
now available to systematically inhibit virtually all human and murine genes. Thus,
we are on the verge of a systematically determined global description of the wiring
diagram of the megakaryocyte and its immediate product, the blood platelet. Given
the vital role these blood cells play in hemostasis, inflammation, cancer, and cardio-
vascular disease, the future holds great promise to greatly impact many of the most
prevalent diseases of man.
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Chapter 5
Systems Biology of Platelet–Vessel
Wall Interactions

Yolande Chen, Seth Joel Corey, Oleg V. Kim and Mark S. Alber

Abstract Platelets are small, anucleated cells that participate in primary hemosta-
sis by forming a hemostatic plug at the site of a blood vessel’s breach, preventing
blood loss. However, hemostatic events can lead to excessive thrombosis, resulting
in life-threatening strokes, emboli, or infarction. Development of multi-scale mod-
els coupling processes at several scales and running predictive model simulations
on powerful computer clusters can help interdisciplinary groups of researchers to
suggest and test new patient-specific treatment strategies.

Keywords Platelets · Blood vessels · Hemostasis · Thrombosis

Multiple Functions of Platelets in Blood Clot Development

First observed through simple microscopy in the nineteenth century, platelets and
leukocytes interact with blood vessel walls [1, 2]. Since those first observations,
an impressive body of information has accumulated to establish the centrality of
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Fig. 5.1 Platelets and vessel walls interact in multiple ways. Platelets and vessel wall cells express
adhesion molecules, surface receptors, and release substances that initiate or regulate cascading
thrombosis events. Matrix components of the vessel wall, when blood flow is exposed through a
damaged endothelium, also elicit clotting reactions from blood cells. Moreover, blood cells and
endothelial cells also produce microparticles and microvesicles that carry procoagulant activity

platelets in vascular thrombosis. The main steps in thrombosis formation classically
include the tethering, rolling/translocation, and adhesion of leukocytes and platelets
to the exposed matrix at the damaged blood vessel site. Arterial thrombosis remains
the most common cause of myocardial infarction and stroke, resulting in signifi-
cant morbidity and mortality. To prevent thrombosis, many patients are treated with
antiplatelet agents [3]. By producing chemical messengers, microparticles, and vas-
cular changes, platelets also promote cancer and inflammation [4–6]. Therefore,
there is a great need to understand more platelet–leukocyte–endothelial interactions
(Fig. 5.1) and translate that into more effective, less toxic therapies.

A major challenge in quantitative understanding of hemostasis/thrombosis is to
integrate various processes occurring during thrombus development. To predict how
variations of multiple factors associated with platelet activity affect thrombus devel-
opment is of great biomedical importance. However, there are significant challenges
in developing such understandings. For instance, platelet–vessel wall receptor–ligand
interactions occur at nanometer scale, whereas blood flow dynamics in the vicinity
of a thrombus is a macroscopic event developing over the scale of hundreds of
micrometers to millimeters. Coupling various processes is a complex, challenging
task.
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By reviewing main platelet functions, their roles in hemostasis/thrombosis, and
computational approaches to simulate clotting events, this chapter establishes a ra-
tionale for a systems approach to platelet physiology. These include modeling of
coagulation reactions, platelet activation, platelet dynamics, platelet–platelet in-
teractions, and blood flow. The integrative modeling approaches are described to
provide the basis for multi-scale computational models of thrombus development.
First, biological background on platelet functioning is given, including platelet ad-
herence and activation, intracellular and extracellular signaling, relation to tumor
metastasis, and global approaches to study platelet–vessel wall interactions. Then,
several recent integrative modeling methods of thrombus development involving
cellular signaling, platelet–platelet, platelet–flow, and platelet–wall interactions are
highlighted. Finally, a concluding perspective is offered on the role of platelets in
hemostasis/thrombosis and tumor progression as well as the role of system biology
in testing new therapeutic targets.

Platelet Adherence and Activation

Platelets interact with their environment through specialized receptors, many of
which are integrins [7]. One principle mediator is platelet P-selectin (CD62P), a
cell adhesion molecule stored in platelet alpha granules that interacts with P-selectin
ligand 1 (PSGL-1, or CD162, found on leukocytes and endothelial cells). Endothelial
cells possess granules called Weibel–Palade bodies, which release von Willebrand
Factor (vWF) and P-selectin when activated. Interaction between P-selectin and its
ligand occurs during tethering and rolling on the endothelium [1]. Importantly, the
platelet surface receptor for vWF is glycoprotein Ib (GPIb; CD42). Lack of cleavage
of high molecular weight vWF multimers results in thrombotic thrombocytopenic
purpura, a catastrophic disorder. On the other hand, defective GPIb expression or
activity results in excessive bleeding, the Bernard–Soulier disorder. vWF binding to
GPIb induces downstream cytoskeletal actin rearrangement via FilaminA. FilaminA
which regulates intracellular signaling [8] is responsible for a solid anchorage of GPIb
[9]. Filamin A mutations have recently been found as a cause for thrombocytopenia
[10] and abnormal platelet function [11].

Another critical mediator for platelet interactions is integrin αIIbβ3 (CD41), a
cell surface receptor for fibrinogen. This integrin is defective in individuals suffering
from Glanzmann’s thrombasthenia, a bleeding disorder. When fibrinogen binds to the
integrin, a cascade of downstream events, which include cytoskeletal rearrangements
via talin and other signaling involving rous sarcoma (SRC) and focal adhesion kinase
(FAK)-tyrosine kinases [12], is set in motion. Equally important is the presence
of collagen receptors at the surface of the platelet, the better known of which are
GPVI and α2β1. GPVI in particular seems to have a prominent role during collagen
exposure to platelet surface and subsequent activation [12]. Platelets also express
the C-type lectin receptor (CLEC-2, which triggers a downstream signaling cascade
similar to that of GPVI, including activation of the spleen tyrosine kinase (Syk))
[12].
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G-protein-coupled receptors include the thrombin receptor, adenosine diphos-
phate (ADP) receptors (P2Y1, P2Y12 which is a target for several “antiplatelet” drugs
in thrombotic disease treatment) [3, 13], and thromboxane A2 receptor. They are ac-
tivated in response to soluble factors from the blood. Exposure of the subendothelial
matrix provides additional potent activators of platelet activation and coagulation.
Platelet receptors recognize matrix components, collagen (via α2β1, GPVI), and
laminin (via α6β1). Targeting of the laminin receptor, like the integrin α6β1, has
been shown to be a promising strategy in the treatment of arterial thrombosis [14].
Recently, platelets were found to express CXCR6, the receptor specific to chemokine
CXCL16. CXCL16 present on atherosclerotic lesions was found to enhance platelet
adhesion to the endothelium after high arterial shear stress and to injured vascular wall
[15]. Other cell surface proteins on platelets, such as Eph kinases and EphrinB1 [16],
semaphorins [17] or Gas6 receptors [18], may promote thrombus formation. Gap
junction channels, such as connexin 37 [19], may also enhance thrombus formation.

The list of platelet cell surface receptors or adhesion molecules will likely continue
to grow, adding to complexity of platelet interactions and function. For instance, by
expressing CD40-L, Fc receptors to immunoglobulins, and toll-like receptors [5],
platelets serve as effectors in the immune system. Platelet-derived microparticles
containing pro-inflammatory cytokines such as IL-1β contribute to inflammation [6].

Intracellular Cell Signaling and Inter-platelet Signaling

Resulting from those diverse ligand–receptor stimuli (Fig. 5.2), downstream signal-
ing events involve phospholipid metabolism, generation of cAMP and cGMP second
messengers, and Ca2+ release from the dense tubular system. These pathways lead
to cytoskeletal reorganization, calpain activation, and signal amplification and diver-
sification due to protein and lipid kinases. Phosphatase activity increases too [20].
Many of these pathways intersect or interact with each other in a complex fashion.
Besides outside–inside signaling, there is also inside–outside signaling, as in the
case of αIIbβ3 integrin activation [12, 21].

Extraplatelet Signaling

Upon platelet stimulation, alpha or dense granule release occurs, leading to platelet
activation amplification, since the released substances (fibrinogen, vWF,ADP, throm-
boxane A2, thrombospondin-1) will further activate platelets and contribute to
hemostasis. One adaptive measure is to induce blood vessel constriction, which
is achieved through thromboxane A2. However, alpha granules release not only
prothrombotic but also pro-angiogenic (VEGF) and anti-angiogenic (endostatin,
thrombospondin) factors [22–25]. Intensively studied are platelet microparticles and
exosomes. Microparticles are shed from membranes and their size varies from 100
to 1000 nm [26], while exosomes are secreted and overall smaller (30–100 nm) [27].
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Fig. 5.2 Platelets express a diversity of cell surface receptors and chemical substances that interact
with the vessel wall components during hemostasis. Downstream signaling events take place that
involve phospholipid signalization, Ca2+ flux, calpain activation, cAMP- and cGMP-level mod-
ulation, cytoskeletal players and their modulators and diverse kinases. Many of these pathways
intersect or interact with each other in a complex manner

Microparticles are shed from the platelet membrane and carry tissue factor activ-
ity, thus being procoagulant [12, 28]. Exosome secretion from platelets has also
been described, but their role is less well known [29]. Inflammation contributes to
thrombus formation through the interaction of platelets with leukocytes (neutrophils
and monocytes) [30, 31]. Indeed, thrombosis could more generally be seen as an
effector of innate immunity [32]. Moreover, neutrophils also contribute to thrombus
formation, including via formation of neutrophil extracellular traps (NET) [33–37].

When a blood vessel is injured, the subendothelial matrix is exposed, and matrix
components such as the collagens or laminins serve as potent activators of platelet
activation. Furthermore, endothelial cells release prothrombotic factors such as vWF
from their Weibel–Palade bodies. Interestingly, vWF release from the endothelial
Weibel–Palade bodies is dependent on essential autophagy genes Atg5 or Atg7, and
pharmacological inhibitors of autophagic flux lead to increased bleeding time [38].
On the other hand, the endothelium also releases substances that are inhibitory to
platelet activation, by secreting nitric oxide (NO) and the downstream modulation
of cGMP levels [39–43], or by secreting prostacyclin(PGI2) [44].
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On a different scale, platelet contraction forces depend on microenvironment
stiffness [45] and platelet adhesion and spreading depends on local microenviron-
ment geometry [46]. Stresses developed by contracting platelets significantly alter
thrombus internal structure and were recently shown to strongly deform embedded
erythrocytes [47]. Vessels can be made susceptible to injury depending on vessel
geometry, biophysical and rheological forces from the blood flow that will pro-
duce turbulence and shear. Models are being developed, where the role of vWF
is still being found to be crucial [48]. Progression of an injured endothelium, re-
sulting from a combination of flow shear, inflammatory state, and dyslipidemia,
results in atherosclerosis and atheroma plaques, which by themselves lead to specific
atheroma–platelet interactions [15, 44].

Platelets and Tumor Metastasis Through the Vessel Wall

Apart from their role in thrombosis and inflammation/immunity, platelets are also
currently under intense scrutiny for their role in cancer metastasis dissemination.
Indeed, a study has found that interactions between platelets and tumor cells induce
an invasive mesenchymal-like phenotype and enhance in vivo metastasis. This effect
is mediated by platelet-derived TGFβ, which activates the Smad and NF-κB pathways
in cancer cells [4]. Specific to vessel wall effects, tumor cell-activated platelets
secreted ADP, which facilitates cancer cell penetration past blood vessels. The P2Y2
receptor on blood vessel cells is necessary for this effect [49].

Global Approaches in Studying Platelet–Vessel Wall Interactions

To discover molecular mechanisms of platelet interactions with the vessel wall, re-
searchers have been relying on narrowed and focused approaches (Fig. 5.3). One
example is observing human disease and trying to pin down the molecular defect.
Then one might want to search for partners of known actors. Subsequently, to confirm
the relevance, one might pursue on knocking down or knocking out an element and
observing the cell or organism for modified behaviors. More recently, researchers
have been adding new global approaches in the field of biology, enriching knowledge
through global and systemic approaches [50]. These new global approaches include:

1. Mutagenesis screening by N-ethyl-N-nitrosourea (ENU). For example, BcL-xL
was discovered to regulate platelet half-life or platelet number [51].

2. Genome-wide association studies (GWAS). Human genomic variations are as-
sociated with cardiovascular outcomes, platelet size, or number, as reported by
European study consortiums [52]. Jones et al. found that single nucleotide variants
in platelet endothelial aggregation receptor 1 (PEAR1), guanine nucleotide ex-
change factors (GEFs) for Rho family GTPases (VAV3), and IP3 receptor (ITPR1)
were associated with modified platelet response to platelet agonists [53].
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Fig. 5.3 Systems approach to hemostasis control by platelet–blood vessel interaction. A highly
informative approach is based on multi-scale analysis of human bleeding disorders at biochemical,
molecular, genetic, and organismal levels

3. Transcriptomics. Rowley et al. recently reported a comprehensive transcriptome
study of human and mouse platelets [54]. This approach led to the discovery of
connexin 37 in platelet aggregation [19].

4. Proteomics. Comprehensive platelet proteomics have been performed [55] and
can be further narrowed down to subfields as “secretome” or “phosphoproteome”
[56]. These proteomic studies revealed that secretogranin III, cyclophilin A, and
calumenin were secreted by platelets after thrombin stimulation and found in
atherosclerotic plaques [57] and nitrous oxide-treatment abrogated platelet ac-
tivation by thrombin and prevented thrombin-induced translocation of gelsolin,
filamin, 14–3-3 ζ, phosphatidylinositol 3-kinase-gamma isoform, and growth
factor receptor-bound protein 2 (Grb2) [58].

5. Network analysis. Network analysis tools are being developed and
databases are being made available online. For example, cPlateletWeb
(http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de) is an Internet-based
platform organizing signaling network [59, 60]. A study based on PlateletWeb
found a novel interaction between vasodilator-stimulated phosphoprotein and
Abelson interactor 1 in human platelets [61]. Another database is Reactome
(http://www.reactome.org), where extensive data have been collected, analyzed,
and grouped in different pathways [62].

http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de
http://www.reactome.org
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6. Informatics for modeling and simulations. Bioinformatics can be used to de-
velop models for simulating platelet function, thrombus formation associated
with pro- or anticoagulant gradients, and different flow conditions [63–69]. In-
deed, thrombus formation studies have mostly focused on separate components
of thrombogenesis, which can be numerous and subgrouped into categories: co-
agulation cascades of blood coagulation factors, platelet adhesion to the vascular
wall, platelet aggregation among themselves, internal platelet activation phenom-
ena, platelet substance release and amplification reaction, white blood cells’ roles
in thrombus formation, vessel wall product release, vessel wall injury and expo-
sure of thrombogenic elements, atheroma genesis, and blood flow shear variation
and impact.

Integrative Multi-scale Modeling Approaches

Integrating the relative role of each of the mentioned elements to model thrombus
formation has been challenging. Various modeling approaches have been proposed,
that integrate a certain number of processes or scales, and tested with the assistance of
simulations implemented on large computer clusters (see [63, 65, 70, 83] for review).
One target goal for future research would be to improve modeling ability to predict
platelet/vessel wall behavior and thrombus formation by integrating simulations of
the molecular signature characteristics, mechanical properties of agonist/antagonist,
blood flow and viscoelastic properties of a blood vessel. Below we outline several
existing modeling approaches that combine several scales.

Explicit incorporation of single platelet dynamics into a three-dimensional throm-
bus formation model has been described in Pivkin et al. [71] where each platelet
was represented in a simplified way as a spherical object, while red blood cells
were treated using continuum submodel describing their density. The model also
included an ADP-induced platelet activation mechanism. Model simulations accu-
rately reproduced the thrombus growth rate as a function of blood velocity obtained
in experiments [72].

Fogelson and Guy developed a microscale platelet aggregation model in which
individual platelets were modeled as fluid-filled closed membranes immersed in a
viscous liquid [73]. This model allowed for simulations of individual platelet motion
and their interactions with each other and with surrounding medium. In the model
by Mody and King [74], the hydrodynamic effects of the oblate spheroidal shape
of platelets and the proximity of a wall on cell–cell collisions were investigated.
Collision time and contact area and collision frequency were compared between
spherical shape vs. platelet-type oblate shape on one hand and presence or not of a
proximal bounding wall. The approach used calculation of forces and torques acting
on each particle in the fluid system (gravity, bond forces, and repulsion between
two surfaces in close proximity). The study showed that the contact time between
two platelets during collision close to the wall was greater than the contact time
during a collision far from the wall. The wall proximity had a greater influence on
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platelet–platelet collisions than on sphere–sphere collisions. The method also used
Huang and Hellums’ mathematical model of the shear-induced platelet aggregation
[75–77], where high shear resulted in increased platelet aggregation.

Leiderman and Fogelson [78] described a model of blood coagulation under
flow that included coagulation biochemistry, chemical activation, and deposition of
platelets, and a two-way interaction between fluid dynamics and growth of platelet
mass. Expanding on a previously published Kuharsky and Fogelson model [79], this
approach now described how tissue factor threshold triggered production of thrombin
and how the wall shear rate and near-wall increased platelet concentration affected
thrombus growth. The porous nature of the thrombus, allowing for advective and
diffusive transport within itself, was also accounted for in the extended model. Xu
et al. [63, 80–83] proposed a multi-scale model-coupling submodels of coagulation
reactions, platelet dynamics, and blood flow, where platelets were represented as
extended objects with fluctuating boundaries based on the cellular Potts model [84].

The importance of quantifying transport of coagulation factors within thrombus
microenvironment was emphasized in Ref. [69]. By combining in vitro experiments
and continuum-modeling approach of thrombus hydrodynamics, authors showed
that both diffusivity and advection of blood proteins through the porous thrombus
structure affect platelet–thrombus interaction and play an essential role in blood clot
growth dynamics. Following this work, Stalker et al. demonstrated, using mouse
injury model, that regional platelet-packing density emerged in parallel with differ-
ences in intrathrombus molecular transport and predicted that these differences affect
thrombus growth and stability [85].

Wu et al. [86] presented a three-dimensional multi-scale platelet–blood flow–
vessel wall interaction model, which combined three biological scales crucial for
the early platelet aggregation. The model included hybrid cell membrane submodel
of platelet elasticity, stochastic receptor–ligand binding submodel of cell adhesion
kinetics and Lattice Boltzmann submodel of blood flow. Adhesion kinetics involved
specific receptor–ligand pairs, namely vWF-GpIb complexes. At subcellular level,
to simulate vWF–GpIb and GpIb-vWF–GpIbαbinding, individual molecules were
represented by elastic springs. This was justified by the demonstration that the
receptor–ligand binding is probabilistic in nature. Individual filaments of the cy-
toskeleton network of platelet membrane were modeled as coarse-grained harmonic
potentials. At cellular level, a novel continuum description of the cell membrane
was used. The subcellular and cellular components were integrated by distributing
GpIbα receptors over verticies of the cytoskeleton network and by superimposing the
lipid bilayer and the network. The model allowed investigation of how platelet stiff-
ness, GPIb receptor expression, and platelet–platelet interaction affect platelet–wall
adhesion quantified in terms of platelet pause time. To reduce the computational time
cost, the model was implemented on graphical processing units (GPUs) computer
cluster. Predictive simulations revealed that platelet deformation, interactions be-
tween platelets in the vicinity of the vessel wall, as well as the number of functional
GPIbα platelet receptors played significant roles in the platelet adhesion to the injury
site (Fig. 5.4, from Ref. [86]).
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Fig. 5.4 Simulated
deformations of platelet
structure during adhesion to
the vessel wall for platelets
stiffnesses of a 2.5 kPa and b
25 kPa. c The effect of
platelet membrane stiffness
on the platelet pause time.
(Originally published in Ref
[86] Open Access: http://rsta.
royalsocietypublishing.org
/content/372/2021/20130380.
long)

Recently, a multi-scale model was presented in Flamm, Diamond et al.
[64, 65, 87], which included four components: the fluid flow (using a lattice Boltz-
mann method), the transport of soluble substances (using convection–diffusion–
reaction equations), motion and binding of platelets leading to their deposition (using
a lattice kinetic Monte Carlo algorithm), and the activation state of each platelet (us-
ing a neural network for cellular signaling). A pairwise agonist scanning approach
had been found to allow handling of large datasets of measured calcium mobilization
to predict an individual’s platelet responses to pairwise combinations of ADP (which
activates P2Y1/P2Y12 receptors), U46619 (which has properties similar to Throm-
boxane A2), and convulxin (which activates GPVI receptor to collagen). A neural
network for cellular signaling was used to predict patient-specific responses to drugs.
The resulting simulations were compared with experimental results in a system us-
ing blood flowing on collagen in microfluidic devices at different shear rates. The
simulations were used to predict the individual’s drug sensitivity to cyclooxygenase
(COX) inhibitors and P2Y1 receptor antagonists in three different blood donors.

Perspective and Conclusions

Increasing and organizing our knowledge on platelet–vessel wall interactions and
combining it with novel multi-scale computational models to test new biological hy-
pothesis will help devise treatments for human disease where excessive thrombosis
occurs, while attempting to minimize the risk of bleeding. Moreover, platelets and

http://rsta.royalsocietypublishing.org/content/372/2021/20130380.long
http://rsta.royalsocietypublishing.org/content/372/2021/20130380.long
http://rsta.royalsocietypublishing.org/content/372/2021/20130380.long
http://rsta.royalsocietypublishing.org/content/372/2021/20130380.long
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vessels are not only implicated in “pure” thrombotic states and inflammatory disease
but also in other pathological processes such as cancer and metastases. Furthermore,
how both platelets and blood vessels may contribute to tumor growth and tumor
dissemination can be by itself a part of a systems approach to cancer biology. Re-
lying only on in vivo studies is impractical and time consuming. Genetic knockout
animal models have their own limits, as nonhuman animals’ biology differs from
human biology in many aspects, and a complete functional knockout might not yield
information on certain conditions, where a dosage effect or a mutated state might be
the actual determinant pathogenesis. While hypothesis-based experiments are being
performed, concomitantly developing and refining multi-scale models and running
simulations on powerful computer clusters will enable biomedical community to
accelerate testing of new therapeutic targets. Systems biology is thus becoming a
novel empowering tool to devise new less toxic treatments more efficiently and
economically.
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Chapter 6
Systems Approach to Phagocyte Production
and Activation: Neutrophils and Monocytes

Hrishikesh M. Mehta, Taly Glaubach and Seth Joel Corey

Abstract Granulocyte differentiation and immune response function is a dynamic
process governed by a highly coordinated transcriptional program that regulates
cellular fate and function, often in a context-dependent manner. Advances in high-
throughput technologies and bioinformatics have allowed us to better understand
complex biological processes at the genomic and proteomic levels. Components
of the environmental milieu, along with the molecular mechanisms that drive the
development, activation, and regulation of granulocytes, have since been eluci-
dated. In this chapter, we present the intricate network in which these elements
come together and influence one another. In particular, we describe the critical roles
of transcription factors like PU.1, CCAAT/enhancer-binding protein (C/EBPα; al-
pha), C/EBPε (epsilon), and growth factor independent-1 (Gfi-1). We also review
granulocyte colony-stimulating factor (G-CSF) receptor-induced signal transduction
pathways, their influence on proliferation and differentiation, and the cooperativity
of cytokines and chemokines in this process.
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Phagocytes constitute the primary line of host defense through the highly coordinated
process of chemotaxis; ingestion of microbes, particles, and cells; and production
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and secretion of peptides, lipids, and reactive oxygen species (ROS). This biological
function has been critical for the success of multicellular organisms and is found
in elementary forms such as dichtyostelium. Phagocytes provide the cornerstone of
the innate immune system. Unlike the adaptive immune response that requires prior
microbe exposure and time to develop specific antigen recognition, phagocytes are
critical for the rapid, nonspecific targeting and elimination of infectious pathogens.
These events involve complex interactions between the host, pathogen recognition,
and phagocytic effector cells that must be tightly regulated. Efficient innate immune
responses must be balanced against prevention of unabated inflammation linked to
autoimmune and inflammatory disease states. For example, the recognition and sub-
sequent phagocytosis of apoptotic neutrophils by macrophages is a key homeostatic
event in the resolution of inflammation. The components and molecular mechanisms
governing the development, activation, and regulation of these cells have been es-
tablished, and they present the basis for this chapter and future work with a systems
analysis.

From a common myeloid progenitor (CMP) cell, phagocytic cells develop into
highly specialized cells. Granulocytes, also known as polymorphonuclear leukocytes
(PMNs), consist of neutrophils, basophils, and eosinophils. Of these, the neutrophil
is the most predominant circulating leukocyte in humans, whereas lymphocytes
predominate in mice. Peripheral blood monocytes undergo a process of activation
and differentiation to become resident tissue macrophages. Both cell types are de-
scended from a common hematopoietic progenitor cell, the colony-forming unit
granulocyte/macrophage (CFU-GM).

Granulocyte production must be sufficient and dynamic to protect the host against
infection, but not excessive as to cause chronic inflammation and tissue damage.
Production begins at the earliest stage when the hematopoietic stem cell (HSC) is re-
cruited from a pool of dormant HSCs (Figs. 6.1 and 6.2). A granulocyte requires 12
days in the bone marrow before it leaves to eventually reside in tissues. In peripheral
blood, neutrophil levels are finely controlled (2–8 × 103/mm3) and their circulating
half-life is brief (∼ 6 h). Most of the bone marrow activity (∼ 67 % of the cells belong
to the myeloid, nonerythroid lineage) is directed toward a continuous, prodigious
degree of neutrophil production (∼ 5–10 × 1010/day) [1]. Life-threatening sepsis
occurs when absolute neutrophil counts are less than 0.5 × 103/mm3. Granulocyte
production can respond quickly to severe infection with a log-fold increase in cir-
culating neutrophil counts (∼ 3–5 × 104/mm3) within 48–72 h. When healthy adult
volunteers received a single dose of granulocyte colony-stimulating factor (GCSF),
neutrophil counts increased rapidly, peaking at 12 h and returning to baseline by
48–72 h [2]. Bone marrow reserve is critical. The neonatal neutrophil bone marrow
storage pool is decreased compared to the adult counterpart [3, 4]. Moreover, there
is delayed neutrophil response to infection (3–4 h in the neonate compared to 30–90
min in the adult) [5]. Thus, neonates are especially susceptible to neutrophil exhaus-
tion when stressed by severe infection (sepsis). Understanding neutrophil production
and kinetics has led to improved survival in stressed neonates [6, 7].
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Fig. 6.1 Overview of derivation of granulocytes and monocytes from hematopoietic stem cells.
Hematopoietic stem cells (HSC) give rise to multipotent progenitors (MPP) which can produce
three lineage-committed progenitors, which are the classical common lymphoid progenitors (CLP)
and common myeloid progenitor (CMP) and a nonclassical lymphoid/myeloid multipotent pro-
genitor (LMPP). CMPs produce colony-forming units which consist of granulocytes erythrocytes,
monocytes, and megakaryocytes (CFU-GEMM). Granulocyte and monocyte progenitors (GMP)
and megakaryocyte and erythroid progenitors (MEP) descend from CMP. However, GMP can also
be derived from LMPP. CFU-GM colony forming unit-granulocyte and monocyte

Granulopoiesis

Granulopoiesis is a complex process by which a CMP, under the stimulation
of cytokines interleukin-3 (IL3), GCSF, and/or granulocyte macrophage colony-
stimulating facto GMCSF, induces CFU-granulocytes erythrocytes, monocytes, and
megakaryocytes (GEMM) to differentiate into CFU-GM, the common precursor for
both neutrophils and monocytes. Myelopoiesis involves stem and progenitor cells that
generate also megakaryocytes (and platelets) and erythrocytes (Fig 6.1). This hierar-
chy has been challenged and a newer paradigm has emerged to reflect evidence that
the cells of both the innate (neutrophils and macrophages) and adaptive (T and B cells)
immune system are derived from a lymphoid/myeloid multipotent progenitor (LMPP;
Fig 6.1), which does not give rise to megakaryocytes or erythrocytes [8, 9]. Other
cytokines involved in multipotential lineage progenitors include thrombopoietin and
Flt3. The precise combination(s) of growth factors and stromal factors that lead to
the production of a specific granulocyte remains poorly understood. The CFU-GM
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Fig. 6.2 Multiscale analysis of granulopoiesis. Granulocytes are produced in the bone marrow
through self-renewal and differentiation of hematopoietic stem cells (HSC). These pluripotential
HSC initiate granulopoiesis by becoming granulocyte/macrophage progenitor cells (GMP) and
colony-forming cells of granulocytes/macrophages (CFC-GM). Soon, they become myeloblasts,
which are easily identifiable precursors in the bone marrow. This prodigious amount of stem cell
renewal and differentiation produces approximately 10 billion cells per day in each adult person.
The number of circulating granulocytes is kept within a narrow range of 2000–8000 per μl. The
bone marrow is able to respond quickly to infectious stimuli and amplify granulocyte numbers
by several fold. The granulocytes leave the blood vessels and migrate (chemotaxis) to the tissues
where they release cytokines, engulf microbes, and produce reactive oxygen species (ROS) through
a respiratory burst involving the NADPH oxidase. Granulocyte colony-stimulating factor (G-CSF)
is the primary cytokine responsible for stem cell expansion toward the granulocyte, inducer of
differentiation of the myeloblasts, and enhancer of granulocyte function. NADPH nicotinamide
adenine dinucleotide phosphate

stem cell differentiates into either a CFU-G or CFU-M stem cell. The development of
mature granulocytes from hematopoietic precursor cells is controlled by a small num-
ber of transcription factors and complex gene regulatory networks, including those
encoding growth factors and their receptors, enzymes, adhesion molecules, and tran-
scription factors. In particular, PU.1, CCAAT/enhancer-binding protein (C/EBPα;
alpha), C/EBPε (epsilon), and growth factor independent (Gfi)-1 have emerged as
critical players, master regulators of myeloid development [10], and constitute a
gene regulatory networking for granulopoiesis. A systematic study of the regulatory
components and their complex interactions will enable higher-order understanding
of how granulocytes are produced, how they modulate other immune responses and
themselves, and how aberrations in these pathways lead to disease states.

GCSF is the most important hematopoietic growth factor that drives the produc-
tion, proliferation, and differentiation of myeloid progenitor and precursor cells,
beginning with the bone marrow HSC and terminating as a mature neutrophil re-
leased into the periphery. It also acts to enhance the survival and function of mature
neutrophils by delaying apoptosis [1, 2] and acting cooperatively with other cy-
tokines (e.g., IL-8 and tumor necrosis factor (TNF)) to activate or “prime” the
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neutrophil, in a dose-dependent manner [3, 4]. The clinical utility of GCSF is well
evidenced by its use in the treatment and survival of patients with congenital and
chemotherapy-induced neutropenias.

GCSF acts through its cognate receptor (GCSFR) via multiple signal transduc-
tion pathways, including the Janus kinase (JAK)/signal transducer and activator
of transcription (STAT), Ras/mitogen-activated protein kinase (MAPK), and phos-
phatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathways, described in detail
below. Seven isoforms of GCSF receptor, termed class I through VII, have been iden-
tified by screening placental and myeloid leukemia complementary DNA (cDNA)
libraries [11–14]. These isoforms result from the alternative spicing of the GCSFR
mRNA. Although multiple isoforms of GCSFR were identified, only the class I and
class IV isoforms appear to be important for granulopoiesis, as these were the only
two isoforms validated to be expressed in normal and leukemic hematopoietic cells
using quantitative PCR [15]. The class I isoform represents the wild type since it is the
predominantly expressed GCSFR isoform. The class IV GCSFR is an alternatively
spliced, truncated isoform lacking the distal 87 amino acids, which are replaced by
a novel 34 amino acid sequence [13]. Quantitative analysis of class I and class IV
isoform expression revealed very low relative levels of class IV in mature circulating
neutrophils compared to class I [15]. However, in CD34+ cells from adult bone mar-
row, a higher ratio of class IV to I expression was observed, suggesting that class IV
expression drops during differentiation and is therefore developmentally regulated
[16]. Interestingly increased class IV to class I ratio was also observed in leukemic
cell lines and patient samples from acute myeloid leukemia (AML) patients [15].
Functional studies of the class IV isoform demonstrated that the class IV GCSFR as
differentiation defective, but able to promote proliferation [17]. The class IV isoform
is similar in structure to a series of truncated GCSFR mutants resulting from somatic
nonsense mutations identified in patients with severe congenital neutropenia that
developed acute myelogenous leukemia [18–20]. Similar to the class IV GCSFR,
these truncated forms of GCSFR also conferred a maturation arrest with enhanced
proliferation [19, 20].

Ligand-induced dimerization of the GCSFR rapidly triggers downstream signal
transduction pathways including JAK/STAT, Ras/MAPK, and Lyn-PI3K/Akt signal
transduction pathways [21–29]. The proximal cytoplasmic domain of the GCSFR
contains Box 1 and Box 2, which are conserved in the hematopoietic cytokine recep-
tor superfamily. The distal domain also contains a di-leucine receptor internalization
signal and four tyrosine residues (Y704, Y729, Y744, and Y764 in the human re-
ceptor sequence). The tyrosine residues can be phosphorylated and serve as docking
sites for SH2-containing proteins. The truncated forms of GCSFR lack three of four
tyrosine residues (Y729, Y744, Y769) in the distal domain, which strongly implicate
them in promoting differentiation signaling. The distal domain also contains a di-
leucine receptor internalization signal and is also a target of suppressor of cytokine
signaling (SOCS) protein binding which serves to target the receptor for ubiquitina-
tion. Together, they contribute to signaling termination via receptor degradation [30].
Thus, the loss of the distal domain results in increased receptor signaling promoted
by both reduced internalization and also increased recycling of internalized receptor
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to the surface. In the full-length class I GCSFR, cell signaling and receptor inter-
nalization synergize to promote granulopoiesis by coupling differentiation signaling
with attenuation of long-term proliferation.

The GCSFR dimerization-induced JAK transautophosphorylation promotes acti-
vation of STAT5 and STAT3 protein phosphorylation which then translocate to the
nucleus and promote gene expression. STAT5 is primarily implicated in promoting
proliferation, whereas STAT3 is implicated in promoting both proliferation and dif-
ferentiation. STAT3 can bind to multiple sites on the GCSFR, which is dependent on
the GCSF dose, resulting in STAT3 activation. Activation of STAT3 promotes differ-
entiation indirectly by inducing growth arrest, but does not induce the differentiation
program, demonstrating the role of GCSFR signaling in maintenance of granulocyte
precursors and cell fate determination. STAT3 induces cell cycle termination by in-
ducing expression of feedback inhibitors such as SOCS3 that inhibits the JAK/STAT
pathway and promotes signal termination by ubiquitin-mediated receptor degrada-
tion. STAT3 also promotes expression of p27kip1, an inhibitor of cyclin-dependent
kinases, and promoting cell cycle arrest and, perhaps, differentiation. Another im-
portant regulator of granulocyte maturation is SHP2. A protein tyrosine phosphatase,
SHP2 favors granulopoiesis over monopoiesis by promoting the expression of the
transcription factor C/EBPα [31–33]. One possible target of SHP2 is runt-related
transcription factor 1 (RUNX1), a transcription factor that induces the expression of
C/EBPα [34]. SHP2 also represents a nonconventional downstream target of JAK2
for the class IV isoform of GCSFR. Class IV-mediated proliferation was identified
to be mediated by a nonclassical JAK2-SHP2 pathway as opposed to the classical
JAK/STAT pathway [16].

The transcription factors PU.1 and globin transcription factor (GATA)-1 act to
inhibit each other and are implicated in early determination of the MPP to either
LMPP or megakaryocyte erythrocyte progenitor (MEP) [35, 36]. Higher PU.1 levels
inhibit the activity of GATA-1, which inhibits the erythrocyte development and by
default promotes LMPP generation [37]. Thus, PU.1 is deterministic during the
early stage of granulocyte/monocyte formation, which depends on inactivation of
GATA-1. Development along the LMPP lineage progresses to formation of CLP and
granulocyte macrophage progenitor (GMP). At this stage of development, PU.1 and
C/EBPα appear to act in concert to promote GMP formation over CLP. C/EBPα

expression is observed in CMP and GMP but not in CLP and MEP [38] and thus
its expression would direct the decision to generate GMP from LMPP. Along with
C/EBPα expression, graded expression of PU.1 also determines lymphoid versus
myeloid decision making in LMPP. High PU.1 expression is observed in macrophages
and lower expression in B cells, which leads to PU.1 dose-dependent activation of
signals that guide macrophage development whereas low PU.1 levels promote B cell
development [39].

Determination of cell fate in GMP to form either macrophages or granulocytes
is dependent on the interplay of C/EBPα and PU.1. High PU.1 expression promotes
increased expression of Egr1,2 and Nab2, which collectively promote monopoiesis
by both promoting expressing monocyte specific genes and also inhibit neutrophil-
specific genes [10, 39]. An important determinant of neutrophil formation, Gfi-1, is
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inhibited by Egr2/Nab complex. However, Gfi-1 itself can repress Egrs in addition
to repressing PU.1 expression [40]. Expression of Gfi-1 is promoted by C/EBPα.
Thus, Gfi-1 and Egrs represent secondary regulators of late-stage granulocyte and
monocyte lineage commitment by counteractive regulation of gene expression. The
secondary regulators along with the master regulators help make cell fate decisions
between granulocytes and monocyte lineages [40]. Gfi-1 and C/EBPε (epsilon) have
been identified as regulators of terminal neutrophil differentiation.

Gene Expression Analysis of Neutrophil Development

System-level studies such as microarray and proteomic analysis using mass spec-
trometry have revealed distinct patterns of gene expression, defining the phagocytic
precursor cell at different stages of differentiation. Microarray analysis indicated
that neutrophil development can be divided into two segments: early and terminal
differentiation. Gene expression analysis of early differentiation revealed expected
upregulation of cell cycle proteins in the order HSC < MPP < CLP/CMP along with
selective expression of myeloid genes in CMPs but not CLPs supporting existence of
lineage specific genes and patterning [41]. Additionally, genes associated with HSCs
were downregulated in MPP, CMP, and CLP. Multiple studies have been carried out in
both microarray and proteomic scales to identify cellular differences during terminal
differentiation. The milieu of genes and proteins identified has been characterized
under functional groups to simplify their role during terminal differentiation.

Granule proteins are functional components of the terminally differentiated neu-
trophils that are released either into phagosomes or to the extracellular space. Granule
proteins are stored in azurophilic, specific, and gelatinase granules, also classified
as primary, secondary, and tertiary granules based on their sequential production
[42]. Microarray-based analysis of morphologically defined stages in terminal neu-
trophil differentiation identified 16 new proteins which involved proteases, protease
inhibitors, and signaling molecules [43]. Proteomic analysis of granule proteins was
performed by subcellular fractionation of the three different types of granules and
identified 286 proteins [44]. Additional proteomic studies have further identified pro-
teins specific to granules or plasma membrane as well as their localization in lipid
rafts [45–48].

Cell surface protein expression follows developmental patterns, which allows
them to be used as cell surface markers for differentiation. Identification of cell
surface proteins also provides the mechanisms by which phagocytic cells or their pre-
cursors can interact with the environment and define cell fate or help gauge changes
in the extracellular environment. Microarray analysis showed low-level expression
of receptors involved in inflammatory responses such as some IL, interferon, trans-
forming growth factor, and chemokine receptors during early terminal differentiation
stages. Expression of these receptors increase in terminally differentiated neutrophils
[43]. An increase in GCSFR and GMCSFR was also observed along with a reduction
in MCSFR expression. Thus, increased receptor expression profile shows priming
of the cell to detect inflammatory responses.
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Microarray gene expression patterns obtained from highly purified subsets of
cells representing terminal differentiation stages of neutrophil differentiation demon-
strated expected expression of cell cycle and apoptosis proteins [49]. A hallmark of
differentiation is cell cycle arrest and downregulation of cell cycle proteins during
an early terminal differentiation stage. The cell cycle promoting proteins cyclin-
dependent kinases (cdk) 2, 4, and 6 and E2F target genes were upregulated. However,
E2F expression was not downregulated, suggesting that other transcription factors
were downregulating E2F targets. Inhibitor of cell cycle p27kip1 was increased, a
target of GCSF-mediated STAT3 and also under the control of C/EBPα (alpha) and
C/EBPε (epsilon). Differential expression of apoptosis-related genes during termi-
nal differentiation stages shows a difference in the mechanism of apoptosis at early
and late stages, indicative of the cellular function. Early stages involve upregulation
of p53-mediated apoptosis pathway, which surveys DNA damage, thus preventing
proliferation of mutations. However, gene expression profile at the nonproliferative
stage of differentiation showed an upregulation in ligand–receptor-mediated apop-
tosis pathway genes, with a concurrent reduction in p53-induced apoptotic genes.
Thus, the profile suggests apoptosis in neutrophils is mediated upon activation of the
neutrophil and in response to inflammatory cytokines.

Monocytopoiesis

Monocytes and macrophages are important effectors of the innate immune response
and inflammation. Monopoiesis proceeds from the monoblast in the bone marrow to
the circulating monocyte in the periphery, and eventually matures without prolifer-
ation to the tissue macrophage. However, monocyte development may be less linear
than classically understood, and not necessarily a mere developmental intermediate
between bone marrow precursors and tissue macrophages. Evidence suggests the
possibility of a macrophage dendritic cell progenitor (MDP) and additionally shows
that some subsets of both dendritic cells and tissue macrophages do not originate
from monocytes in a steady state. Furthermore, monocytes may carry out specific
effector functions during inflammation without further differentiation to macrophage
or dendritic cell [50–53]. However, this dichotomy of thought between the classical
hierarchy of monopoiesis and the novel existence of an MDP bone marrow progenitor
has yet to be resolved.

GMCSF (or CSF2) is different from GCSF in that it acts on all granulocytes,
monocytes, and macrophages. Because of this broad activity and the vast expression
of the GMCSF receptor on hematopoietic cells, it was originally thought that the
action of GMCSF was critical to the regulation and maintenance of the granulo-
cyte and monocyte populations. However, deletion of neither the gene for GMCSF
nor the GMCSF receptor had a significant impact on myelopoiesis but revealed an
unexpected role for GMCSF in pulmonary homeostasis [54–56] 56. Additional evi-
dence suggests GMCSF plays a vital role in stress or emergency myelopoiesis, with
resultant increased production of granulocytes and monocytes in the bone marrow
and stimulation of their survival and function in the tissues where they are recruited
[57, 58].
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Function of Neutrophils and Monocytes

Monocytes circulate in the bone marrow, blood, and spleen and are thought not to
proliferate at steady state. In the setting of infection, monocytes are released from
the bone marrow into the peripheral blood and migrate to sites of inflammation
or injury where they mature to express distinct effector phenotypes [59]. A large
portion of undifferentiated monocytes are also contained in the spleen, and serve as
a storage reservoir for additional rapid deployment to sites of injury or infection [50].
Monocytes express chemokine receptors and pathogen associated pattern recognition
receptors (e.g., toll-like receptors; TLRs) that mediate this process. Migration to
tissues and further differentiation to inflammatory macrophages or dendritic cells is
likely determined by the inflammatory milieu and the nature of the invading pathogen
and TLR [59].

Macrophages are resident tissue phagocytes important for maintenance of tissue
health via the clearance of apoptotic cells and other debris. Like their monocyte
predecessors, macrophages also express a wide range of pattern recognition receptors
that make them efficient effectors of the innate immune response in addition to their
role in tissue homeostasis [60]. However, macrophages also play a vital role in
initiating the adaptive immune response as antigen-presenting cells via MHC II.
The developmental origin and more detailed function of tissue macrophage subsets
remain poorly understood.

Neutrophils and monocytes released from the bone marrow can circulate for
24 h and 1–3 days respectively. The process of recruitment of neutrophils and
monocytes involves recruitment by chemoattractants, IL-8, and bacterial proteins
(N-formylmethionyl-leucyl-phenylalanine (fMLF), peptidoglycans). The delivery of
neutrophils to the site starts off with “rolling” along the blood vessel walls and is me-
diated by low-affinity interactions between the selectin family of proteins [61, 62].
L-selectins are expressed on neutrophils which interact with transient and sequen-
tially expressed P- and E-selectins on the inflammatory endothelial cells. Interaction
between the selectins is followed by interaction of β2 (beta2)-integrins on neutrophils
and intercellular adhesion molecule (ICAM) 1 and ICAM2 on endothelial cell wall
(tethering). Integrin-binding affinity is increased in neutrophils upon activation by
chemokines, which results in opening up of the integrin receptor conformation and
of the ligand-binding pocket [63]. Increased affinity of the integrins brings the rolling
of neutrophils to a stop, followed by transmigration across the vascular wall to the
tissues. Microarray analysis of neutrophils exposed to fMLF showed an increase in
pro-inflammatory molecules such as IL-8, TNF, IL1B, and both CXC and CC type
chemokine [64]. Increased expression of pro-inflammatory cytokines contributes
to delaying of apoptosis, which is essential for neutrophil function. In support,
downregulation of apoptotic proteins was also observed. Additionally, in agree-
ment with other studies, an upregulation of cytoskeletal reorganization proteins and
adhesion-mediating molecules was observed [64, 65].

Priming of neutrophils is a process that activates the neutrophil and increases ex-
pression of proteins that are required for increased activity and also delay apoptosis.
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Priming agents include GCSF, GMCSF, IL-8, bacterial lipopolysaccharides (LPS)
and TNF-α (alpha) [66–69]. Priming with GCSF enhances chemotaxis and mobiliza-
tion of neutrophils to the site of injury, whereas GMCSF is involved in promoting a
more robust response that is involved in both delaying apoptosis and increasing the
bactericidal activity of neutrophils by promoting expression of antiapoptotic proteins
and cell surface receptors involved in recognition of antigens [70]. A role in antigen
presentation was also evident from the increased expression of major histocompat-
ibility complex II (MHC II). Priming with LPS enhances the bactericidal activity,
with recruitment of components necessary for the assembly of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase complex. In addition, priming with LPS
also induced expression of proteins required for the NF-κB pathway [64, 71].

Phagocytosis is the penultimate step in neutrophil and macrophage function,
wherein they ingest to get rid of the invading bacteria or apoptotic cells. The process
of phagocytosis involves recognition of the bacteria or antigen via opsonization with
antibodies or complement that is recognized by receptors on neutrophils. Opsonized
bacteria are recognized by receptors against the Fc region of the antibody. Bacteria
opsonized by complement bind are then able to bind to receptors like CD11b/CD18
on the neutrophil surface. Binding of opsonized bacteria to the activated neutrophil
surface initiates changes in cytoskeleton and membrane to promote ingestion of the
organism as a phagosome. Finally, the phagosome after sequential integration with
the neutrophil granules turns into a phagolysosome and the invading organism is
killed by exposure to products derived from ROS and antimicrobial granule proteins
such as proteases, gelatinase, peroxidase, and other degradative enzymes.

Transcriptome analysis of phagocytosis identified expression of several hundred
messenger RNAs (mRNAs) within 2 h of exposure [72, 73]. The changes in expres-
sion are divided into an early response and late response. Early response included
cytokines and chemokines that act as pro-inflammatory molecules and aid in further
recruitment of monocytes and neutrophils. Late-stage transcriptional changes involve
upregulation of proapoptotic proteins of the receptor-mediated apoptotic pathway,
such as TNFα, TNFR1, and tumor necrosis factor related apoptosis inducing ligand
receptor (TRAILR). Other changes include proteins that are involved in the signal
transduction pathway that involve TLRs. The downregulation of proteins that are
involved in antibody- and complement-opsonized microbe recognition parallels the
apoptotic expression.

ROS play a very important role in phagocytosis-mediated killing of bacteria
by neutrophils. The production of ROS in neutrophils is mediated by an enzyme
complex NADPH oxidase, which is composed of several components: oxidase spe-
cific (p22phox, p47phox, p67phox, and gp91phox) and guanosine triphosphate (GTPase;
Rac1/2) [74]. Components of NADPH oxidase are present either in the cytoplasm or
in either the plasma membrane or secretory vesicle membrane. Priming with GMCSF,
TNFα, and LPS triggers phosphorylation of oxidase components and recruitment of
the cytosolic components to the phagocyte membrane. Assembled NADPH oxi-
dase mediates transfer of electrons from extracellular NADPH to oxygen within the
phagosome, resulting in formation of a superoxide anion [75]. The superoxide anion
dismutates to form hydrogen peroxide, which then oxidizes chloride anion to form
hypochlorous acid. The reaction is catalyzed by myeloperoxidase, which resides in



6 Systems Approach to Phagocyte Production and Activation 109

azurophilic granules and is released into the phagosome upon degranulation. Other
products formed by hydrogen peroxide-mediated oxidation include hydroxyl radical.
Together they have strong microbicidal activity.

Neutrophils contain highly toxic components used to kill microbes, but these
molecules do not differentiate between host and pathogen. Neutrophils undergo apop-
tosis 24 h after they leave the bone marrow. The transcriptome analysis of neutrophils
in the bone marrow and in peripheral blood show an upregulation of proapoptotic
genes which indicates that neutrophils are destined to die as soon as they differ-
entiate [43]. Priming of neutrophils delays the apoptotic response by upregulating
antiapoptotic genes; however, upon phagocytosis, the transcriptional program now
directs apoptosis of the neutrophils, termed as delayed apoptosis. The delayed apop-
tosis program is mediated by death receptors and is accompanied by a decreased
inflammatory response. The decreased inflammatory response and mediation of
apoptosis promotes resolution of the immune response and removal of the infec-
tion by macrophages. A downregulation of NF-κB expression is observed which
halts the antiapoptotic response [76].
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Part II
Physiological Processes

This part contains not only reviews concerning basic systems biology of physiological
processes, but also two chapters concerning modeling and data analysis; recent
advances in experimental techniques produced a huge volume of data, which has to
be organized before it is understood.

Two paradigms are presented. In Chap. 7 Marek Kimmel “Stochasticity and
determinism in models of hematopoiesis” represents a novel view of modeling in
hematopoiesis, synthesizing deterministic and stochastic approaches. Whereas the
stochastic models work in situations where chance dominates, for example when
the number of cells is small, or under random mutations, the deterministic models
are more important for large-scale, normal hematopoiesis. It is also argued that
distributed environments such as hematopoietic niches may have a major impact
on dynamics. In Chap. 8 Rosemary Braun “Systems analysis of high–throughput
data” focuses on multi–gene analysis methods and the integration of expression
data with domain knowledge (such as biological pathways) and other gene-related
information (e.g., sequence or methylation data) to identify novel functional modules
in the complex cellular interaction network. Integrative approaches are presented
to extract information about causal relationships, which is scrambled by the high
dimensionality of the data and the complex nature of biological interaction networks.

The review of major physiological processes opens with Chap. 9 by Ka Tat Siu
andAlex Minella “Developing a systems-based understanding of hematopoietic stem
cell cycle control”. The chapter is mostly concerned with determination of genes that
regulate the major outcomes of hematopoietic stem cells (HSC) mitotic divisions:
towards the generation of two new HSCs (symmetric, self-renewing), one HSC and
one hematopoietic progenitor cell with multi-lineage potential (HPC) (asymmetric),
or two HPCs (symmetric, progenitor pool-repleting). The objectives of these studies
are to understand fundamental HSC biology and discover mechanistic underpin-
nings of bone marrow stem cell diseases, including the myelodysplastic syndromes
(MDS) and aplastic anemias. In Chap. 10 Chifman, Laubenbacher, and Torti “A
systems biology approach to iron metabolism” reports recent advances in the study
of iron metabolism that have revealed multiple intricate pathways that are essential
to the maintenance of iron homeostasis. This complexity makes a systems biology
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approach crucial, with its enabling technology of computational models based on a
mathematical description of regulatory systems. Systems biology may represent a
new strategy for understanding imbalances in iron metabolism and their underlying
causes.

In Chap. 11 Nabil Azhar and Yoram Vodovotz “Innate immunity in Disease—In-
sights from Mathematical Modeling and Analysis” makes an argument that any
rational efforts at modulating inflammation via the blood compartment must involve
computational modeling. The acute inflammatory response is a complex defense
mechanism that has evolved to respond rapidly to injury, infection, and other dis-
ruptions in homeostasis. The complex role of inflammation in health and disease
has made this biological system difficult to understand comprehensively and mod-
ulate rationally for therapeutic purposes. Consequently, systems approaches have
been applied in order to characterize dynamical properties and identify key con-
trol points in inflammation. Another modeling-oriented approach is represented
by Chap. 12 by Lily Chylek, Bridget Wilson and William Hlavacek “Modeling
biomolecular site dynamics in immunoreceptor signaling systems”. It follows up on
the topic of immunological modeling. The focus here is on the dynamic, site-specific,
and context-dependent nature of interactions in immunoreceptor signaling (i.e., the
biomolecular site dynamics of immunoreceptor signaling). The challenges associ-
ated with capturing these details in computational models have been met through use
of rule-based modeling approaches.

The immune system plays a central role in human health. The activities of im-
mune cells, whether defending an organism from disease or triggering a pathological
condition such as autoimmunity, are driven by the molecular machinery of cel-
lular signaling systems. Decades of experimentation have elucidated many of the
biomolecules and interactions involved in immune signaling and regulation, and re-
cently developed technologies have led to new types of quantitative, systems-level
data. To integrate such information and develop non-trivial insights into the im-
mune system, computational modeling is needed, and it is essential for modeling
methods to keep pace with experimental advances. In this chapter, we focus on the
dynamic, site-specific, and context-dependent nature of interactions in immunore-
ceptor signaling (i.e., the biomolecular site dynamics of immunoreceptor signaling),
the challenges associated with capturing these details in computational models, and
how these challenges have been met through use of rule-based modeling approaches.

Part II of the current volume is concluded with Chap. 13 by Elizabeth Gardiner
and Robert Andrews “Structure and function of platelet receptors initiating blood
clotting”. The focus is the structure and function of key platelet receptors involved
in thrombus formation and coagulation in health and disease, with a particular focus
on platelet glycoprotein (GP)Iba. This latter is the major ligand-binding subunit
of the platelet GPIb-IX-V complex, that binds the adhesive ligand, von Willebrand
factor (VWF), and is co-associated with the platelet-specific collagen receptor, GPVI.
Investigation of platelet receptors is so important because recent studies reveal the
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link between coagulation and other pathophysiological processes, including platelet
activation, inflammation, cancer, the immune response and infectious diseases.
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Chapter 7
Stochasticity and Determinism in Models
of Hematopoiesis

Marek Kimmel

Abstract This chapter represents a novel view of modeling in hematopoiesis, synthe-
sizing both deterministic and stochastic approaches. Whereas the stochastic models
work in situations where chance dominates, for example when the number of cells is
small, or under random mutations, the deterministic models are more important for
large-scale, normal hematopoiesis. New types of models are on the horizon. These
models attempt to account for distributed environments such as hematopoietic niches
and their impact on dynamics. Mixed effects of such structures and chance events
are largely unknown and constitute both a challenge and promise for modeling. Our
discussion is presented under the separate headings of deterministic and stochastic
modeling; however, the connections between both are frequently mentioned. Four
case studies are included to elucidate important examples. We also include a primer
of deterministic and stochastic dynamics for the reader’s use.

Keywords Hematopoiesis · Leukemias · Stem cells · Dynamical systems · Stochastic
processes · Molecular determinism · Driver and passenger mutations

Introduction

The role of stochastic events in hematopoiesis has been discussed for the past 60 years
since the beginnings of experimental hematology by Till and McCulloch [1]. The
two opposing paradigms, deterministic hematopoiesis based on the firm regulation of
peripheral blood cell populations, and stochastic hematopoiesis based on variability
observed in seeded bone marrow cells, are still awaiting a grand synthesis. This is in
spite of the existence of substantial experimental findings, particularly those in the
recent decade, using techniques of single-cell measurements. Disease-accompanying
dynamics have been over the years variously modeled as deterministic or stochastic.
Examples of stochastic phenomena observed in hematopoiesis include, but are not
limited to:
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• Stochastic fluctuations in the number of hematopoietic stem cell (HSC) mak-
ing self-renewal versus commitment decisions result in high variability in the
magnitude of the response to infection.

• The same stochastic fluctuations may lead to depletion of the HSC compartment
when facing massive infections such as neonatal sepsis.

• Presence of variant proteins in molecular switches responding to hematopoietic
growth factors such as granulocyte colony-stimulating factor (GCSF) leads to
aberrant proliferation and leukemia, again with an important chance component.

• Molecular switches under stochastic fluctuations in molecular pathways and re-
ceptor noise may become reversible, which results in reversibility and plasticity
at the level of the HSC and early committed cell level.

Recently, a third approach is emerging, which may be termed the molecular deter-
minism (term coined based on ideas in [2, 3]). According to molecular determinism,
stochastic variability of the proliferating bone marrow cells can be reduced to com-
plicated series of deterministic events including molecular switches, which are
multistable by nature and which trigger proliferation and/or maturation decisions.
This is distinct from older proposals involving chaotic dynamics [4, 5].

Mathematical, and in particular stochastic, principles have been used to explain the
balance of factors contributing to behavior of a cell population as a whole. However,
new techniques for gathering data and probing biological processes at a molecule
and cell level continuously provide unprecedented amounts of new information,
which leads to reexamination of these models. This has led to a renewed skepticism
concerning stochastic modeling as a paradigm. As argued by Snijder and Pelkmans
[2], deterministic approach (or, what was called “molecular determinism” earlier in
the current chapter) can resolve apparently stochastic phenomena with deterministic
variability. They argue that cell-state parameters, such as cell size, growth rate, and
cell cycle state, can be used to explain cell-to-cell variability, similarly as spatial cell
population context parameters such as local cell density and location on cell colony
edges. Tracing back cell-to-cell variability in time over multiple cell cycles may
identify inherited, predetermining factors in cells of the same lineage. Snijder and
Pelkmans [2] also advocate repeated stimulation of the same cells to help identify
the presence of deterministic factors in seemingly stochastic cell-to-cell variability.
Complicated dynamics leading to chaotic (and sometimes indistinguishable from
stochastic) behavior has been appreciated for some time. For example, existing
mathematical models of cell cycle regulation (cf. e.g., [6] and references therein) rely
on nonlinear regulatory functions to control cell population distribution. However,
these models also include a very real phenomenon of uneven allocation of constituents
to progeny cells, which arguably is either truly stochastic or is indistinguishable from
stochastic. Moreover, the idea of “backtracking” complicated (chaotic) trajectories
seems to be doubtful from mathematical viewpoint. Schroeder [7] discussed the
need for long-term continuous follow-up on individual cells in order to understand
the specific rules of proliferation and differentiation. This chapter also touches upon
issues such as influence of imaging techniques on cell behavior and difficulty in cell
tracking using existing software.
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Returning to molecular determinism, a very good example of this approach seems
to be the paper by Takizawa et al. [8], concerning a purely deterministic and demand-
driven integrated model of regulation of early hematopoiesis. This models is very
complex and it involves “view of how cytokines, chemokines, as well as conserved
pathogen structures, are sensed, leading to divisional activation, proliferation, dif-
ferentiation, and migration of HSCs and progenitor cells, all aimed at efficient
contribution to immune responses and rapid reestablishment of hematopoietic home-
ostasis.” Takizava et al. [8] paper is too involved physiologically to be discussed at
length here. Let us notice that it contrasts with the simpler (and stochastic) mod-
els of Ogawa [9] and Abkowitz et al. [10]. In these models, the branching process
(bp) paradigm is used at its simplest, with cells depicted as independent individuals,
splitting at random and possibly interacting with a limited number of smaller entities.

Another current concept is that of nongenetic variability as a substrate for natu-
ral section, as espoused by Huang’s group [11]. For example, slow fluctuations in
mammalian cells are the expression of heritability (memory) of protein abundance
in successive generations of normal or cancer cells [12, 13]. One example is the
noninherited form of drug resistance in cancer. Theoreticians have been suggesting
this for several decades because of similar experimental evidence. The memories
of protein abundance and dynamic homeostasis, which implied slow fluctuations in
individual cells, were important constituents of many of the cell cycle regulation and
unequal division models [14–16]. Development of resistance to chemotherapy by
gene amplification (genetic, but nonmutation driven) has been pondered by theorists
equally long ago [17, 18].

Questions about the dynamics of hematopoiesis are resurfacing due to new ex-
perimental studies concerning lineage-specific growth factors, morphogens, the
microenvironment, and the plasticity of stem cells. These new findings allow a re-
examination of two long-standing questions: whether hematopoiesis is stochastic or
deterministic, and whether it is discrete or continuous. These issues exist for other
non-HSC systems; however, hematopoiesis serves as the most informative and ac-
cessible mammalian tissue system to look for answers [1]. Since quantitative systems
analysis based on multi-scale modeling is needed to understand the complexity and
dynamics of hematopoiesis, determining the correct approach to this modeling is of
more than academic interest. Much work has been recently published on this topic
and some of it will be reviewed in the current chapter. We will first pose three key
questions and then use a simple “toy” model to explain basic ideas and problems.

Question 1. Is Hematopoiesis Deterministic or Stochastic?

Experimental data suggest stochastic factors play a role in determining fate of daugh-
ter cells of a stem cell [19, 20]. However, it is not clear at which critical junction
stochasticity operates in lineage-specific regulation (principal examples being ery-
thropoietin (Epo)-driven erythropoiesis and GCSF-driven granulopoiesis. Recent
systemic and modeling studies of dynamics of signaling pathways in cells at various
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stages of hematopoiesis, underscore the role of bistable (or multistable) switches,
which can direct the cell towards “fates” such as differentiation in various directions,
proliferation, or apoptosis [21]. These switches, as described and modeled, are es-
sentially deterministic circuits, displaying a series of stable and unstable steady states
[22]. The stable steady states correspond to distinct patterns of expression of target
genes, characteristic of a given cell “fate.” Small change in initial conditions at indi-
vidual cell’s level or in type or strength of receptor activation results in switching from
one stable work regime to another [23]. Although this paradigm explains the interplay
of positive and negative feedbacks in cells, it does not explain the intrinsic stochas-
ticity, implied by both classical and more recent experiments on hematopoietic cells
[9, 10]. Independently, there exists a sizeable body of evidence that eukaryotic cells
may make individual decisions based on nondeterministic rules [24, 25]. The sources
of intrinsic stochasticity in eukaryotic cells are related to processes in which a small
number of interacting molecules may trigger a large-scale effect [26]. Stochastic
effects may provide robust evolutionarily adaptive mechanisms [27]. A critical prop-
erty of hematopoiesis is the ability to protect against environmental insults (e.g.,
infection), which may require a design incorporating stochastic dynamics.

Question 2. Do HSCs and Their Progeny Constitute Discrete
Subsets or a Continuum?

The general question of stem cell plasticity and, in particular, the reversibility of the
HSC has gained much interest due to stem cell engineering and induced pluripotent
stem cells. A related question is to what extent the succession and timing and com-
mitment and differentiation (maturation) processes in hematopoiesis can be altered
or “stretched” within the bounds of normality. On an operational level, is it sufficient
to model hematopoiesis in the terms of discrete stages or is it necessary to include
continuous maturation?

Question 3. What Role Is Played in Hematopoiesis
by Spatial Effects?

The usual approach has been to treat the process as spatially uniform in both the
bone marrow and peripheral circulation. However, recent research on niches and
environments in the bone marrow and the interaction of HSC and mesenchymal stem
cells (see [28]), has led to a realization that spatial effects and interaction between
spatial and stochastic effects cannot be ignored. Such interactions in mathematical
models result in qualitatively new dynamics (as in Roeder’s 2006 model [29]). The
reason is that spatial separation provides opportunity for small colonies of cells to
fix stochastic fluctuations despite the fact the total size of the population is large.
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Primer in Deterministic and Stochastic Dynamics

This primer is intended for the wide audience who study systems biology, and
depending on your expertise can be skipped or used as a loose reference.

Deterministic Dynamical Systems

To understand deterministic models of hematopoiesis, we will need definitions and
theorems from the mathematical theory of dynamical systems. In general, these are
objects that evolve in time and, when “stopped” as a result of either a physical or a
“thought” intervention, can be restarted and continued “as if nothing happened.” This
is known as the “continuation principle.” Mathematically, let us denote by x(t ; t0, x0)
the state of the system at time t, if at time t0 the state was x0, i.e., x(t0; t0, x0) = x0.
In these terms, the continuation principle can be stated as x(t + s; t0, x0) = x(t ; t0 +
s; x(s; t0, x0)).

The most commonly employed dynamical systems have the form of differential
equations (DEs; including multidimensional or infinitely dimensional DEs). In this
setup, x(t ; t0, x0) is the solution of the DE of the form dx/dt = f (x), with solution
x(t) satisfying the x(t0) = x0. Such solution can be denoted by x(t ; t0, x0), and it
can be proved that it satisfies the continuation principle. Solutions of DEs have been
extensively studied and therefore constitute a convenient tool.

Solution x(t ; t0, x0) of a DE dx/dt = f (x) is stable if there can be found a
disc of radius δ in the space of initial conditions, such that the solution stays for-
ever in a “pipe” of a desired radius ε. In mathematical terms, for each ε there
exists a δ such that if

∣∣x0
′ − x0

∣∣ < δ, then
∣∣x(t ; t0, x0

′) − x(t ; t0, x0)
∣∣ < ε, for all

t ≥ t0. Solution x(t ; t0, x0) is asymptotically stable if it is stable and moreover∣∣x(t ; t0, x0
′) − x(t ; t0, x0)

∣∣ converges to 0 with t converging to infinity. In many cases,
it is interesting to investigate stability of the equilibrium solution, i.e., the solution
along which the time derivative dx/dt = 0. This solution is a constant function
solving the equation 0 = f (x). Useful mathematical tools for investigating stability
include the Lyapunov functions and characteristic equations.

Bifurcation Most commonly applied to the mathematical study of dynamical sys-
tems, a bifurcation occurs when a small smooth change made to the parameter values
of a system causes a sudden qualitative or topological change in its behavior. The
name “bifurcation” was first introduced by the mathematician Henri Poincaré in
1885. The two best-known types of bifurcation are exchange of stability and Hopf
bifurcation. In exchange of stability, change of parameter causes a new equilibrium
to appear, which becomes stable, while the old one remains but becomes unstable.
In Hopf bifurcation, a stable equilibrium becomes unstable, with oscillations around
it appearing at the same time.

Chaos theory is a field of study in mathematics, with applications in disciplines
including physics and biology. In a chaotic system, small differences in initial
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conditions (even those due to rounding errors) yield widely diverging trajectories,
rendering long-term prediction impossible in general. Chaotic systems are determin-
istic, so their trajectories are mathematically determined by their initial conditions,
with no random elements involved. However, the deterministic nature of these sys-
tems does not make them predictable. In many ways, chaos can mimic randomness
(stochasticity).

Stochastic Processes

Proliferation of cells is frequently stochastic. Therefore, it is useful to introduce
definitions and theorems from the theory of probabilities and the theory of stochastic
processes. The following account is a brief intuitive introduction. The definitions
will be highlighted by italics.

Random variable (rv) X is, intuitively, a numerical result of observation, which
displays random variation. The notation X(ω) highlights the dependence of the rv on
the “chance” element ω of the sample space � (wherever it is superfluous, the ω is
omitted. Stochastic process (or random function) X(t ; ω) is, intuitively, a function of
time t with a random component. Mathematically, it is a family of rv’s parameterized
by time. Function of time X(t ; ω), with ω fixed is called the realization or the sample
path of the process. Self-recurrence is an important property of the stochastic process
X(t ; ω). Suppose that a process such that at X(0; ω) = x0 is stopped at some time
t0. Then, if also X(t0; ω) = x0, the continuation process restarted from time t0 is
identical (it has the same distributions) as the original process, except that it is shifted
by t0. A process with such property is called self-recurrent. Self-recurrence may be
considered a rephrasing of a causality principle. It leads to recurrent relationships
for a wide class of stochastic processes, including Markov processes and bp’s.

Markov process is a process with a limited memory (the Markov property). Intu-
itively, given the state of the process at time s, the future of the process (at some t
such that s < t) depends only on this state and not on its states at times before s. Math-
ematically, Pr [X(t) ∈ A|X(u), u ≤ s < t] = Pr [X(t) ∈ A|X(s), s < t], where A is
a subset of the state space of the process (space of values assumed by the process).
The probability listed above is the transition probability from state x = X(s) to the
set of states A, in time t s. If the states of the process form a finite or denumerable
set, then the process is called a Markov chain. In this case, it is possible to define a
matrix (finite or infinite) of transition probabilities between states P (t) = [Pij (t)],
where Pij (t) = Pr [X(s + t) = j |X(s) = i].

Branching process (bp) is a random collection of individuals (such as particles,
objects, or cells), proliferating according to rules involving various degrees of ran-
domness of the individual’s life length and the number of progeny of an individual.
The unifying principle is the so-called branching property, which states that the
longevity and type of progeny of a newborn particle, conditional on the current state
of the process, are independent of any characteristics of other particles present at this
time or in the future. The branching property is a form of self-recurrence, as defined
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earlier on. Galton–Watson bp (G–W bp) is the simplest bp. It evolves in discrete
time measured by nonnegative integers. At time 0, an ancestor individual (a particle,
cell, or object) is born. At time 1, the ancestor dies, producing a random number
of progeny. Each of these becomes an ancestor of an independent subprocess, dis-
tributed identically as the whole process. This definition implies that the numbers
of progeny produced by each particle ever existing in the process are independent
identically distributed rv’s and that all particles live for one time unit. Discrete time
moments coincide with generations of particles. The number of particles existing in
the G–W bp, as a function of time, constitutes a time-discrete Markov chain.

Bp’s occur frequently in biological systems. They serve as models for proliferating
cells, amplified genes, and shortening telomeres. Bp is critical if the expected (mean)
count of progeny of a particle is equal to 1. It is supercritical, if the mean count
of progeny of a particle is greater than 1 and subcritical if it is less than 1. This
classification leads to profound differences in asymptotic properties (properties after
sufficiently long time) of the process. In particular, critical bp’s behave in a paradoxic
way since they become extinct (i.e., all particles die out) with probability 1, while
the expected number of particles stays constant. Asymptotic properties of subcritical
bp’s are summarized by the Yaglom’s theorem, which states that for a subcritical
bp, which also becomes extinct with probability 1, there exists a quasi-stationary
distribution, conditional on nonextinction. This means that the sample paths that do
not become extinct will be, for times sufficiently long, distributed according to a
law (distribution) that does not vary with time (i.e., stationary). All bp’s share the
property of instability, which means that, as time tends to infinity, the bp becomes
either extinct or indefinitely large. Instability is due to the independent assumptions
inherent in the definition of a bp (see earlier on).

Supercritical bp’s have the property called the exponential steady state, which
characterizes populations growing without spatial or selective constraints, the condi-
tion in which the number of individuals increases or decreases exponentially, while
the proportions of individuals in distinct age classes and any other identifiable cat-
egories remain constant. Related notion is that of the Malthusian parameter, i.e., a
parameter α such that the number Z(t) of particles present in the process, normalized
by dividing it by exp (αt), converges to a limit rv, as time tends to infinity.

Markov bp is a type of time-continuous bp. At time 0, an ancestor individual
(a particle, cell, or object) is born. The ancestor lives for time τ , which is an ex-
ponentially distributed rv, and then the ancestor dies, producing a random number
of progeny. Each of these becomes an ancestor of an independent subprocess, dis-
tributed identically as the whole process. The number of particles existing in the
Markov bp, as a function of time, is a Markov chain.

Type space is a collection of possible particle (cell) types existing in a bp. If there is
more than one but finitely many types, the process is called multitype. Multitype G–
W bp is a generalization of the usual (single-type) G–W bp. In the multitype process,
each individual belongs to one of a finite number of types. At time 0, an ancestor
individual (a particle, cell, or object), of some type, is born. Processes started by
individuals of different types are generally different. At time 1, the ancestor dies,
producing a random number of progeny of various types. The distribution of progeny



126 M. Kimmel

counts depends on the type of parent. Each of the first-generation progeny becomes an
ancestor of an independent subprocess, distributed identically as the whole process
(modulo ancestor’s type). In the multitype process, asymptotic behavior depends
on the matrix of expected progeny count. Rows of this matrix correspond to the
parental types, and columns to the progeny types. The largest positive eigenvalue
of this matrix (the Perron–Frobenius eigenvalue), is the Malthusian parameter (see
earlier on) of the process, provided the process is supercritical (the Perron–Frobenius
eigenvalue larger than 1) and positive regular. The latter means that parent of any
given type will have among its (not necessarily direct) descendants individuals of all
possible types, with nonzero probability.

Probability generating function (pgf ) is a function fX(s) of a symbolic argument
s, which is an equivalent of the distribution of a nonnegative integer-valued rv X. If
numbers p0, p1, p2, . . . constitute the distribution of rv X, i.e., Pr [X = k] = pk ,
then the pgf of rv X is defined as fX(s) = E(sX) = ∑∞

i=0 pi , for s ∈ [0,1]. Use of
the pgf simplifies mathematical derivations involving nonnegative integer rv’s and
processes, among them the bp’s.

Poisson process is one of the most important stochastic processes, since it is
frequently used as a model for mutation dynamics. It can be intuitively defined as a
random collection of time points having the properties of complete randomness (the
counts of events in any two disjoint time intervals are independent), and stationarity
(the probability of an event occurring in a short time interval (t, t + �t) is equal to
λ �t + o(�t), where a small o(�t) with respect to �t has the property it converges
to 0 faster than �t itself, i.e., o(�t)/�t → 0, as �t → 0. Constant λ is called the
intensity of the process. The number N of epochs of the Poisson process in an interval
of length t has Poisson distribution of the form pn = Pr [N = n] = exp (−λt)λn/n!,
for n = 0,1, 2, . . . , and the time intervals T between any two epochs have exponential
distribution with the same parameter λ, i.e., the density of distribution of T is equal
to fT (t) = λ exp (−λt).

The Wright–Fisher (W–F) model is a stochastic construct that is frequently
used in genetics to explain loss of variants in a finite population. In brief, it
is assumed that there exist N individuals, which produce progeny from one
synchronous generation to another. Individuals in generation n + 1 are copies
of individuals randomly and independently chosen from generation n, so that
the probability that individuals 1,2, . . . , i, . . . , N are represented respectively
k1, k2, . . . , ki , . . . , kN times in the succeeding generation is equal to pk1,k2,... ,ki ,... ,kN

=
(1/N )k1+k2+...+ki+...+kN N !/(k1!k2! . . . , ki ! . . . kN !), where k1 + k2 + . . . + ki + . . . +
kN = N , i.e., the rv’s k1, k2, . . . , ki , . . . , kN are multinomially distributed. One con-
sequence is that in each generation there exists a nonzero probability of one (or
more) individuals leaving no progeny. This leads eventually (after a finite number
of generations) to loss of copies of all the individuals except one. This individual
(or genetic variant) is called fixed. The W–F model differs from the G–W bp, in that
the former has a fixed total number of individuals, while in the latter the number of
individuals is fluctuating from one generation to another. The W–F model applies in
situations in which the environment pressure makes population size change unlikely.
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Turing pattern formation One of the most interesting mathematical phenomena
arising in models structured by spatial coordinates is pattern formation via diffusion-
driven instability (DDI). Discovered by Alan Turing, this effect has been used to
explain emergence of biological, physical, and chemical patterns, such as patterns
in colonies of microorganisms, embryo segmentation, or dynamics of the Belousov–
Zhabotinsky reactions. The usual mathematical framework is that of the system of
at least two reaction-diffusion equations, i.e., partial differential equations (PDEs)
of the form

∂u/∂t = D1�xu + f (u, v),

∂v/∂t = D2�xv + g(u, v),

where u(x, t)and v(x, t) are defined as functions of spatial coordinates x and time
t , ∂( · )/∂t id partial differentiation with respect to time, �x( · ) is the second order
partial differentiation operator with respect to the spatial coordinates x (diffusion
operator or Laplacian), and nonlinear functions f (u, v) and g(u, v) are reaction
terms. Spatial pattern is a stable spatially heterogeneous equilibrium solution (DDI
or Turing pattern), which arises in the reaction-diffusion system, but which does not
exist for the corresponding pure reaction system

∂u/∂t = f (u, v),

∂v/∂t = g(u, v),

for which only spatially homogeneous (constant in x) solution exist.

Deterministic Models of Hematopoiesis

Deterministic Models of Regulatory Feedbacks

Simplest Model of Hematopoiesis

Case study: Simple Hierarchical Model Some basic concepts on which hemat−
opoiesis models are based can be explained using a simplified deterministic model
of granulopoiesis. Let us consider a sequence of populations of bone marrow cells,
where:

• Population i = 0 consists of the HSC
• Populations i = 1, . . . , J include several stages of cells committed to granu-

lopoiesis
• Populations i = J + 1, . . . , I include differentiated granulopoietic precursors
• Population i = I + 1 includes the mature blood granulocytes

Let us denote by Ni(t), i = 0, . . . , I +1, t = 0, �t , . . . , k�t the respective numbers
of cells in population i (or, in other words, of type i) at times k�t being the integer
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multiples of the duration of the cell cycle, this latter for this example assumed
equal for all cell populations. Let us further assume that cells of type i = 1, . . . , I
proliferate without losses, i.e., each produces two viable progeny cells upon division.
Mature granulocytes do not proliferate but at each time point k�t they die with
probability α�t . As a result, the expected lifetime of a granulocyte is equal to
1/(α�t).

The rules of maturation and differentiation are described as follows:

• Each of the HSC (type i = 0) progeny remains a HSC with probability 1 − d and
differentiates into a cell committed to the granulocyte lineage with probability
d0 < d such that d − d0 is the probability of commitment to the remaining
lineages.

• Each of the progeny of the committed and progenitor type i cells may either
remain type i (with probability 1 −di) or become type i + 1 (with probability di).

These rules lead to the following system of difference equations for the expected
numbers of cells of all types:

N0(t + �t) = qN0(t) (7.1)

Ni(t + �t) = qiNi(t) + pi−1Ni−1(t), i = 0, . . . , I (7.2)

NI+1(t + �t) = NI+1(t) + pINI (t) − (α�t)NI+1(t), (7.3)

where for brevity we denote p = 2d , pi = 2di , and qi = 2(1−di), so that p+q0 < 2
and pi + qi = 2.

Equations (7.1–7.3) can be solved recursively. In particular, we are able to compute
steady-state (equilibrium) values assuming Ni(t) = Ni = const. This results in the
following expressions:

Ni = N0

(∏i−1

j=0
pj

) (∏i

j=1
(1 − qj )

)
, i = 1, . . . , I (7.4)

NI+1 = N0

(∏I

j=0
pj

) (∏I

j=1
(1 − qj )

)
(α�t)−1. (7.5)

Let us note that biologically feasible steady state exists if di ≥ 1/2. Further, for
simplicity, we will assume that the probabilities of commitment to the subsequent
stage are all equal to di = δ for i = 1, . . . , J , hence all pi = 2δ = π and qi =
2(1−δ) = ψ for i = 1, . . . , J . We may also assume that all differentiated precursors
differentiate further at the subsequent division, i.e., di = 1 for i = J + 1, . . . , I ,
hence pi = 2 and qi = 0 for i = J + 1, . . . , I . This yields

NI+1 = N0p0[π (1 − ψ)]J 2I−J (α�t)−1 = N0p0[2δ(2δ − 1)]J 2I−J (α�t)−1.

(7.6)

Nonlinear (polynomial) action of GCSF feedback Equation (7.6) demonstrates that
the number of peripheral granulocytes at equilibrium depends polynomially on the
commitment probability δ. Therefore, if at the normal equilibrium the value of δ is
below 1 (i.e., not all committed cells commit further), then if GCSF action increases δ
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so that in each of the J stages of committed cells more cells commit further upon each
division, this causes the equilibrium number of peripheral granulocytes to increase
(neglecting transients) with the Jth power of δ, i.e., nonlinearly. Therefore, small
deviations of δ may cause large changes of the equilibrium number of NI+1(t), the
number of mature cells.

Need for a negative internal feedback of HSC If the commitment probability p0

of HSC is kept unchanged and probability d is equal to ½, then (see Eq. (8.1)) the
steady state N0(t) = N0 = const is maintained. However, if the GCSF feedback
causes d to exceed ½, then Equation (7.1) shows that the HSC will be geometrically
(exponentially) depleted with time. To prevent this from happening in long term,
a protective mechanism is needed. Interplay between the GCSF feedback and the
internal negative feedback was first considered byArino and Kimmel [15]. It has been
showed there that some forms of the feedback may not be sufficient for a complete
return to equilibrium, a possibility observed in some disease states such as neonatal
sepsis [30].

What Does the Simplified Model Fail to Explain?

I. Interindividual and temporal fluctuations in the number of granulocytes. The
simplified model is a mean value model, so it does not account for fluctuations
caused by stochastic events at the level of HSC and further amplified in the
commitment/differentiation cascade.

II. Feedbacks. The model is also missing the explicit form of the GCSF and internal
feedbacks, although it helps realizing these are needed.

III. Differentiation arrest and dedifferentiation. The model does not involve
the chance state of molecular circuitry guiding the cell to commit-
ment/differentiation, instead it uses aggregate coefficients di the simplification
it shares with many published models [9, 10].

Deterministic Feedbacks in Hematopoiesis

Deterministic mathematical theory of cell production systems primarily relies on
systems of nonlinear DEs. These models perform differently depending on the con-
figuration of regulation feedbacks. Cell production systems are self-renewing cell
populations which maintain the continuous supply of differentiated functional cells
to various parts of a living organism. The dynamics of cell production systems at-
tracted the attention of biologists and mathematicians a long time ago in the context
of blood cell production [31]. Despite differences depending on the type of cells con-
sidered, certain common elements can be found in all the cell production systems and
their models. First, there exists a self-renewing subpopulation of stem cells. Stem cell
divisions can produce both stem cells and cells of greater lineage commitment, called
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the precursor cells. The precursor cells, in turn, produce cells with an even greater
degree of maturity. After a certain number of maturation (differentiation) stages, the
mature (differentiated) cells are produced. They usually do not have the ability to
divide, and after fulfilling their specific tasks, are removed from the organism.

In normal conditions, the cell production system maintains a constant supply
of differentiated mature cells. In the emergency cases, when for some reasons the
organism suffers from the loss of certain mature cells (such as loss of erythrocytes
in a hemorrhage) the system reacts, providing an increased supply of cells. These
two postulates imply that the system is regulated through a long-range feedback
mechanism detecting the perturbations in the number of mature cells and accordingly
adjusting the production rate of the stem and precursor cells.

It seems logical to suppose at least one more regulation feedback exists. Indeed,
the long-range feedback would have a tendency towards “draining” the stem cell
population to compensate for the loss. Then, if all the stem cells were committed
towards maturation, the whole system might collapse, since only the stem cells
are truly self-renewing. Therefore, another feedback should “cut off” the supply of
precursor cells if the number of stem cells decreases, preventing the system from
extinction. This will be called a short-range feedback.

Based on ideas similar to those presented above, mathematical models of cell pro-
duction systems were constructed, mainly for various lines of the blood-forming sys-
tem in man and in experimental animals. For example, Mackey’s periodic neutropenia
model (as cited in Haurie et al. [32]) described the effects of a short-range feedback
of the stem cell cycle, while the Wazewska and Lasota model included the long-range
feedback only [33]. Recently, various possible configurations of short-, mid-, and
long-range feedbacks have been discussed and analyzed mathematically [34].

Case study: Configuration of Feedbacks in a Deterministic Model of Hemat−
opoiesis We will use as a case study the series of models devised by Arino and
Kimmel [35]. Considering these models will explain the modeling paradigm, which
has been later on perfected in various ways. The models are based on the following
assumptions (Fig. 7.1):

1. Stem cell proliferation dynamics is represented by a cell cycle model consisting
of two phases: active and passive. A stem cell leaving mitosis enters the passive
phase and then it may either transform into a more mature precursor cell or
enter the active phase (and then divide and enter the passive phase again). It
is assumed that the cell residence time in the resting phase has the exponential
distribution with parameter α(t) (the reciprocal of the mean residence time in
this phase). Such a hypothesis is consistent with the Smith–Martin model of the
cell cycle. The probability of stem cell differentiation (transformation) is denoted
by d(t). The residence time in the active phase is equal to T. We understand
that our “active phase” is S + G1 + M, where S stands for the deoxyribonucleic
acid (DNA) synthesis. G2 denotes the premitotic phase and M the cell division
(mitosis). Our “passive phase” is assumed to be G0 + G1, where G0 is the resting
(quiescent or “storage”) phase, while G1 is the initial growth phase.
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Fig. 7.1 Structural model of the hematopoietic system. P(t), N(t), C(t), and R(t) are the number
of cycling stem cells, dormant stem cells, precursor cells, and mature cells, respectively. α(t) is
the exit rate from the dormant stem cell compartment: T is the residence time in the active stem
cell compartment, d(t) is the fraction of differentiating stem cells. H and A are the transit time
and amplification coefficient of the precursor cell compartment and β is the mature cell death rate.
(Adapted from Ref. [35])

2. Regulated factors are d(t) probability of stem cell differentiation and/or α(t)
reciprocal of the mean residence time in the passive phase.

3. Each stem cell, once differentiated, produces after time H an average number of
A mature (completely differentiated) cells. Quantities A and H represent all the
stages of the precursor cells maturation, division, and so forth.

4. Mature cell life length is a rv with exponential distribution with expected value
1/β.

Model structure implied by the assumptions (1)–(4) is depicted in Fig. 7.1. The
equation for the stem cell number N (t) in G0 + G1, takes the following form:

Ṅ (t) = −α(t)N (t) + 2(1 − d(t))α(t)N (t).

The equation for the number R(t) of mature cells is:

Ṙ(t) = −βR(t) + r(t),

where r(t) is the rate of cell flow into the mature cell compartment. Assumption (3)
implies
that:

r(t) = Ad(t − H )α(t − H )N (t − H ),

so that

Ṙ(t) = −βR(t) + r(t)Ad(t − H )α(t − H )N (t − H ).
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We may also compute the number P (t) of cells present at time t in the active phase
of the stem cell cycle:

P (t) =
∫ t

t−T

(1 − d(τ ))α(τ )N (τ )dτ .

Equations above provide a complete description of the cell production system
dynamics, if the regulated factors α(t) and d(t) are specified.

Depletion and Nonunique Equilibria We will make the case for the possibility of
depletion of HSC and nonunique equilibria, by considering the deterministic model
of erythropoietic regulation [35].

Model 1: The fraction d(t) of differentiating stem cells is an increasing function
of the number of dormant stem cells: d(t) = g[N (t)]. The rate α(t) of the outflow
from the dormant stem cell compartment is a decreasing function of the number
of mature cells: α(t) = h[R(t)]. Intuitively, the mature cell number is influencing
the production rate of stem cells, while the contents of the “storage” dormant
compartment controls the proportion of differentiating stem cells.
Model 2: In this variant, both α(t) and d(t) depend on the mature cell number:
d(t) = g[R(t)], α(t) = h[R(t)] with g( · ) and h( · ) being decreasing functions.
The assumption that both feedbacks here are designed to “exploit” the stem cell
population causes system instability.
Model 3: This is, in a sense, a reversal of model 1. The long-range feedback
controls the differentiating stem cell fraction, while the “defensive” one, the exit
rate from the dormant compartment: d(t) = g[R(t)], α(t) = h[N (t)], where g( · )
and h( · ) are decreasing.
Model 4: This is a special case of model 1, with d(t) = 1/2. In this case, model
equations assume the form, Ṅ (t) = −h[R(t)]N (t) + h[R(t − T )]N (t − T ) and
.

R(t) = −βR(t) + (A/2)h[R(t − H )]N (t − H ).

Importance of the Internal Feedback Models 1, 2, and 3 have (under additional
hypotheses; see the exhaustive discussion in Arino and Kimmel [35]), two equilibria,
the trivial one (N , R) = (0,0) and the nontrivial one (N , R) = (Ñ , R̃), which is a
solution of nonlinear algebraic equations involving functions g( · ) and h( · ). Without
getting into mathematical details, we can state, that in models 1 and 3, which involve
autonomic internal feedbacks of the dormant HSC, the trivial equilibrium usually
(i.e., for a region of parameter values) repels solutions, while the nontrivial one
attracts them. Hence, the system is resistant to shocks. In model 2, which does
not include an internal feedback, the situation is reversed, given a deviation from the
nontrivial equilibrium, the system decays to the trivial one. This supports the assertion
that without an internal feedback, the hematopoietic system may be unstable.

Nonunique equilibria of model 4 display an unusual behavior. Function V (t) =
N (t) + 2P (t) equal to the number of stem cells in the dormant phase plus twice the
number of stem cells in the proliferative phase (“potential” number of HSC) stays
constant along the trajectories of the system. Therefore, also at the equilibrium it will
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be the same value it had at time 0. Simple calculations show that in model 4, initial
conditions dictate the equilibrium value: If the system undergoes a shock such as
depletion of bone marrow HSC, it will forever linger near that low value. This situa-
tion only concerns an impaired internal feedback, but it may correspond to a specific
biological defect such as one caused by a defective cytokine receptor (see further on).

Topics concerning configuration and functional forms of deterministic models of
feedbacks have been further developed in more recent works of other authors. As
an example, Marciniak-Czochra, Stiehl, and coworkers consider a range of general
issues related to the question of hierarchy in the cell production systems, such as
the granulopoietic system, using rigorous mathematical approaches [36]. HSCs are
characterized by their ability of self-renewal to replenish the stem cell pool and
differentiation to more mature cells. The subsequent stages of progenitor cells also
share some of this dual ability. It is yet unknown whether external signals modulate
proliferation rate or rather the fraction of self-renewal. They propose three multicom-
partment models, which rely on a single external feedback mechanism. In model 1,
the signal enhances proliferation, whereas the self-renewal rates in all compartments
are fixed. In model 2, the signal regulates the rate of self-renewal, whereas the pro-
liferation rate is unchanged. In model 3, the signal regulates both proliferation and
self-renewal rates. The study demonstrates that a unique strictly positive stable steady
state can only be achieved by regulation of the rate of self-renewal. Furthermore, it
requires a lower number of effective cell doublings. To maintain the stem cell pool,
the self-renewal ratio of the HSC has to be greater than or equal to 50 % and it has to
be higher than the self-renewal ratios of all downstream compartments. Interestingly,
the equilibrium level of mature cells depends only on the parameters of self-renewal
of HSC and it is independent of the parameters of dynamics of all upstream compart-
ments. The model is compatible with the increase of leukocyte numbers following
HSC transplantation. A more theoretical analysis of feedbacks has been published
in ref. [37, 38]. In another paper, Marciniak-Czochra and Stiehl [39] find that that
certain conditions have to be met for proliferative parameters of stem cells relative
to those of the committed cells. Otherwise, the stem cells die out and their function
is fulfilled by cells of one of the committed stages, the one that satisfies these condi-
tions. Their other contributions concern replicative senescence of HSCs [40]. Logic
of control, in a more intuitive framework, but considering competing feedbacks, has
been considered in the works of Lander and coworkers [41].

Much of classical deterministic analysis has been developed over past 35 years
by the school of Mackey and his coworkers. Initially he collaborated with La-
sota and Wazewska, who had developed the first mathematical model of erythroid
production [33]. They suggested that decreasing the rate of erythroid precursor mat-
uration increases the steady-state level of nonproliferating erythroid cells. A patient
would quickly recover red blood cell levels following treatment-induced anemia.
Since erythroid precursor maturation rate increases with Epo levels, which are neg-
atively correlated with blood oxygen content, the model suggests that by increasing
a patient’s blood oxygen level one can accelerate the rate of erythrocyte recovery
following chemotherapeutic insult or radiation therapy. This conclusion was success-
fully validated in patients, showing the insight mathematical modeling can provide
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into disease. Another major topic was cytopenias and leukemias. Some neutrope-
nias and anemias are characterized by periodic oscillations in blood cell counts [42].
The dynamics of these disorders has attracted model making, with the goal that the
model will illuminate their pathophysiology as well as normal hematopoiesis. The
oscillatory behavior seen in these diseases is thought by some to be due to irregular
feedback control [42]. Other, more sophisticated models suggest that the abnormality
lies not in the feedback loop but in an elevated neutrophil apoptotic rate that perturbs
the normal regulation of stem cell dynamics [43].

There exists a category of recent deterministic models, which account for variabil-
ity among disease cases or different types of disease. For example, Stiehl et al. [44]
consider heterogeneity of responses to bone marrow transplants; they developed a
model-based methodology for using averaged clinical trial data to estimate responses
of individual patients. Other papers address the role of multiple cell lineages, includ-
ing evolution of leukemia, competition between healthy and leukemic cells and
dynamics of multiclonal structure of acute myeloid leukemia (AML) [45, 46]. One
implication is that enhanced self-renewal may be a key mechanism in the clonal se-
lection process. Simulations suggest that fast proliferating and highly self-renewing
cells dominate at primary diagnosis, while relapse following therapy-induced remis-
sion is triggered mostly by highly self-renewing but slowly proliferating cells. A
similar framework was applied to myelodysplastic syndrome (MDS) which is an im-
portant example of a malignant disease with a hypothetical stem cell origin [47]. The
results stress the importance of self-renewal in cancer dynamics and allow conclud-
ing that invoking slowly proliferating cancer cells helps explain clinical dynamics
and observations such as treatment resistance.

Models with Structure

Case Study: Structured Roeder Model and Competing Feedback In Roeder’s model,
HSCs are assumed to exist in two growth compartments: quiescent (denoted byA) and
proliferating (denoted by �). At the beginning of every time step (representing 1 h),
a stem cell may transfer from A to � with probability ω or from � to A with
probability α. Each stem cell has a time-dependent affinity, denoted by a(t), and
the affinity ranges between amin and amax (which are estimated to be 0.002 and 1.0,
respectively [29]). A cell with a high affinity has a high chance of remaining in the A
environment or transferring to it. Likewise, a cell with a low affinity is more likely
to remain in the � environment or transfer to it, where it starts proliferating. The
transition probabilities can be variously defined.

Proliferating cells in the � compartment progress through various stages of the cell
cycle: G1, S, G2, and M. The G1 phase is the longest period of growth during which
the cell generates new organelles. The S phase is the period when DNA synthesis and
replication occurs. The G2 phase is the short period of growth when the cell prepares
for mitosis, and the M phase, or mitosis, is when the cell divides into two daughter
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cells. Only � cells in the G1 phase of the cell cycle can transfer to A. The � cells
spend about two thirds of their time in the G1 phase. For each cell that remains in the
A compartment, its affinity increases by a factor of r (estimated as 1.1). Similarly,
cells that remain in �, decrease their affinity by a factor of d (estimated as 1.05). The
affinity of a cell stops increasing once it reaches the maximal value, amax. Stem cells
whose affinity reaches the minimum affinity, amin, differentiate into a proliferating
precursor and then into a nonproliferating mature cell. Each cell in � has an internal
time counter, c(t), that indicates its position in the cell cycle (measured in hours).
Each time step is equivalent to 1 h. Consequently, at each time step, c(t) increases
by 1. After c(t) reaches its maximal value of 48, it recycles back to 0 at the next time
step, resulting in a 49-h cell cycle. Cells entering � start with a counter that is set at
c(t) = 32 corresponding to the beginning of the S phase. For the first 17 h, the cell
progresses through the S, G2, and M phases and divides into two cells once c(t) = 48.
Then for the next 32 h, ( c(t) = 0, . . . , 31), the cell remains in the G1 phase. If at
the end of this period the cell has not transferred to A, it reenters the S, G2, and M
phases and the cycle repeats.

In the original work of Roeder et al. [29], an agent-based model has been used
to follow the dynamics of stem cell counts in the bone marrow. In a subsequent
work by Kim et al. [48], a quasi-stochastic (operating on mean values) model has
been derived, for the purpose of elucidating the progression of chronic myelogenous
leukemia (CML). As it can be noticed, the mechanism of A↔ � transitions amounts
to an elaborate protective system for the dormant HSC (the “internal feedback” of
Arino and Kimmel [35]). This is one of the places in the model, where stochastic
effects are likely to play a major role, since HSC may be organized in relatively small
clonal colonies [28].

Continuous Maturation

Cell differentiation is a process by which dividing hematopoietic precursor cells
become specialized, less proliferative, and equipped to perform specific functions.
More generally, differentiation occurs many times during the development of a mul-
ticellular organism as the organism changes from a single zygote to a complex system
with cells of different types. During tissue repair and normal cell turnover, a steady
supply of somatic cells is ensured by proliferation of corresponding adult stem cells
(such as the hemopoietic stem cells), which retain the capability for self-renewal.
Nonhematologic cancers are likely to originate from a population of cancer stem
cells that have properties comparable to those of stem cells [49]. Stem cell state and
fate depend on the environment, which ensures that the critical stem cell character
and activity in homeostasis is conserved, and that repair and development are ac-
complished [50]. While different genetic and epigenetic processes are involved in
formation and maintenance of different tissues, the dynamics of population depends
on the relative importance of symmetric and asymmetric cell divisions, cell differ-
entiation, and death. One established view of the differentiation process is that of a
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series of discrete compartments, which can be modeled by a system of ordinary DEs
describing dynamics of cells at different maturation stages and transition between
the stages. This corresponds to the assumption [51, 52] that in each lineage of cell
precursors there exists a discrete chain of maturation stages, which are sequentially
traversed. However, differentiated precursors form such a clear sequence only under
homeostatic (steady-state) conditions. Committed cells generally form a continuous
sequence, which may involve incremental stages, part of which may be reversible.
These observations invoke not only the fundamental biological questions of whether
cell differentiation is a discrete or a continuous process and what the measure of cell
differentiation is but also the question of how to choose an appropriate modeling ap-
proach. Is the pace of maturation (commitment) dictated by successive divisions, or
is maturation a continuous process decoupled from proliferation? Early continuous
maturation models have been conceived by Mackey group [43], but the question of
correspondence of the discrete compartment and continuous maturation models is
still open.

A recent paper that mathematically compares these two types of models is Doumic
et al. [53]. The continuous maturation model has the form of a partial DE of trans-
port type—a structured population equation with a nonlinear feedback loop. This
models the signaling process due to cytokines, which regulate the differentiation and
proliferation process. The dynamics of the model is compared to that of its discrete
counterpart. Without an attempt to describe the details, let us note that the continuous
and discrete maturation model (which assume the same mode of regulation) differ
with respect to dynamics. One of the manifestations is that the discrete model has
a richer set of stable equilibria including some with the upper stages of the hierar-
chy depleted, but the lower ones still capable of maintaining proliferation. Another
mathematical approach is to unify the continuous and discrete maturation in a single
model [54]. An earlier attempt includes mathematical proof of equivalence between
a transport type approach and a bp [55].

Stochastic Models of Hematopoiesis

Stochastic processes (in particular the bp’s) can be used to model biological phenom-
ena of some complexity, at cellular or subcellular levels [56]. Probabilistic population
dynamics arise from the interplay of the population growth pattern with probability.
Thus, the classical G–W bp defines the pattern of population growth using sums of
independent and identically distributed (iid) rv’s; the population evolves from gen-
eration to generation by the individuals getting iid numbers of children. This mode
of proliferation is frequently referred to as “free growth” or “free reproduction.”
The “simple deterministic model of hematopoiesis” considered earlier on is in fact
describing the expected (mean) trajectories of a multitype G–W process.

The formalism of the G–W process provides insight into one of the fundamental
problems of cell populations, the extinction problem and its complement, the question
of size stabilization: If a freely reproducing population does not die out, can it
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stabilize, or does it have to grow beyond bounds? The answer is that there are no
freely reproducing populations with stable sizes. Population size stability, if it exists
in the real world, is the result of forces other than individual reproduction, of the
interplay between populations, and their environment. This is true for processes much
more general than the G–W process. A fusion between branching and environment
pressure constitutes a challenge for stochastic models (if one does not wish to resort
to simulation only); the same way, selection constitutes a challenge to population
genetics models.

If unlimited growth models make more sense in the context of proliferation of
cancer cells, then what the rate of the unlimited growth is? It can be answered not
only within the generation counting framework of G–W type processes but also in
more general branching models. In all these frameworks, in the supercritical case,
when the average number of progeny of an individual is greater than 1, the growth
pattern is asymptotically exponential. The parameter of this exponential growth is
the famous Malthusian parameter. In the supercritical case, we can answer not only
questions about the rate of growth but also questions about the asymptotic compo-
sition of nonextinct populations. What will the age distribution tend to be? What is
the probability of being firstborn? What is the average number of second cousins?
Importantly for biological applications, many of these questions do not have natural
counterparts in deterministic models of unlimited growth.

Case Study: Model of SNC → MDS → AML Transition [57]

Severe congenital neutropenia (SCN) is a life-threatening infection in children which
can be avoided through the use of recombinant GCSF. However, SCN often trans-
forms into secondary MDS (sMDS) and then into secondary AML (sAML). A great
unresolved clinical question is whether chronic, pharmacological doses of GCSF
contribute to this transformation [58]. A number of epidemiological clinical trials
have demonstrated a strong association between exposure to GCSF and sMDS/sAML
[59–62] Mutations in the distal domain of the GCSF receptor (GCSFR) have been
isolated from patients with SCN who developed sMDS/sAML or patients with de
novo MDS [63]. Recently, clonal evolution over approximately 20 years was docu-
mented in a patient with SCN who developed sMDS/sAML [64]. Clonal evolution
of a sick hematopoietic progenitor cell in SCN involves perturbations in proximal
and distal signaling networks triggered by a mutant GCSFR. A summary of signaling
pathways taking part in the response to GCSF in normal and mutant cells is presented
in Fig. 7.2. Transition from SCN → sMDS → sAML involves chance mechanisms,
such as mutations, drift, and transcription and receptor noise, which require that
stochastic models to be used [1].

The model of this process in Kimmel and Corey [57] assumes that a limited
mutation load at the SCN phase causes neutropenia and fluctuations of cell population
size. With time, accumulation of driver mutations causes expansion of mutant clones,
which however are not yet expanding at a dramatic rate. At some point in time,
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Fig. 7.2 Dynamic stochastic model of impaired differentiation in granulocyte precursors. Granulo-
cyte colony-stimulating factor (GCSF) signaling occurs through its cognate receptor, granulocyte
colony-stimulating factor receptor (GCSFR). It involves both proximal signaling networks con-
sisting of signaling molecules such as Lyn, JAK2, Akt, and ERK1/2, and distal gene regulatory
networks consisting of transcription factors. Together, these signaling networks promote prolif-
eration, survival, and differentiation. In patients with severe congenital neutropenia, the earliest
known mutations to contribute to transformation to secondary MDS or AML are nonsense muta-
tions in the GCSFR gene. This mutation leads to a truncated receptor, one of the more common
being GCSFR delta 715. (From Ref. [57]. See more at: http://journal.frontiersin.org/Journal/
10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf. Copyright: ©2013 Kimmel and Corey)

mutations accumulate sufficiently to cause a major change in the proliferation law
and the now malignant cell population starts rapidly expanding. In summary: (i) At
the time of diagnosis of SCN, GCSF therapy is initiated, which induces an initial
series of X driver mutations, occurring at random times. (ii) The X-th mutation
causes transition to the MDS, during which further Y mutations occur. (iii) After
X +Y mutations, the AML stage begins, during which the subsequent mutant clones
grow at increasing rate, which in turn shortens the times at which still new mutations
appear. In the model, the increasing proliferation rate of successive mutant clones
causes acceleration of growth of the malignant bone marrow stem cell population,
which shortens the time interval to appearance of new clones, which in turn increases
proliferation rate, and so forth; this results in a positive feedback (Fig. 7.3). Stochastic
nature of the process (the times to appearance of each next mutant are random) causes
a spread of the timing of the subsequent mutations, particularly the first X mutations
during the SCN phase. This may result in the transition to MDS not manifesting
itself for a very long time in a fraction of cases.

http://journal.frontiersin.org/Journal/10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf.
http://journal.frontiersin.org/Journal/10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf.
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Fig. 7.3 Proliferating healthy cells in the bone marrow mutate at random times, possibly influ-
enced by superpharmacological doses of GCSF. As long as the cell population size is kept in check,
genetic drift and selection remove many of the mutants, whereas some mutants persist. When the
population expands, new mutant clones become more easily established. At some point, a quali-
tative change in the proliferation rate occurs and the now malignant cell population starts rapidly
expanding. GCSF granulocyte colony-stimulating factor, sMDS secondary myelodysplastic syn-
drome, sAML secondary acute myeloid leukemia, BM bone marrow. (From Ref. [57]. See more
at: http://journal.frontiersin.org/Journal/10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf.
Copyright: ©2013 Kimmel and Corey)

Stochastic dynamics plays a major role in the model. For a new subclone, stochas-
tic theory is used to estimate extinction probability, with extinction after more than
a few cell generations being negligible in view of the growth advantage of the new
clone. However, the time at which the next mutation occurs in a cell clone is also
stochastic and it is as a rule more dispersed for the slower-growing clones. Therefore,
the time to reach the threshold number of bone marrow stem cells (which in our model
defines the time at sAML diagnosis) is an rv. One of the questions asked is whether
dispersion of this time matches the wide distribution of the times at diagnosis [65].

Mathematically, the population-genetic effect of population size-dependent accu-
mulation of mutations occurs as a natural consequence of the proliferation law in the
form of a multitype G–W bp [66]. (i) Consecutively arising surviving mutant clones
are numbered with the index k, ranging from 1 to k; time interval between the appear-
ance of the k-th and k + 1-st surviving mutant clones is denoted by τk. k-th mutant
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Fig. 7.4 Summary of successive driver mutations in the natural course of the SCN → sMDS
→ sAML transition. a Cell counts in successive mutant clones. Straight lines with increas-
ing slopes: cell counts in successive mutant clones. Thick dashed line: total mutant cell count.
b Relative proportions of cells belonging to successive mutant clones. SCN severe congeni-
tal neutropenia, sMDS secondary myelodysplastic syndrome, sAML secondary acute myeloid
leukemia, BM bone marrow. (From Ref. [57]. See more at: http://journal.frontiersin.org/Journal/
10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf. Copyright: ©2013 Kimmel and Corey)

cells have accumulated k driver mutations. (ii) All clones expand as G–W bp’s. Cell
life length is constant and equal to T, and at that time the cell either produces two
progeny with probability bk (cell type k) or dies (or becomes quiescent or differ-
entiated, which does not make a difference for disease dynamics) with probability
1 − bk . (iii) A cell of type k can mutate upon its birth (for definiteness) to type k + 1
with probability u. These three rules allow one to derive the probability distributions
of time intervals τk , probabilities of survival of each clone, and expected growth
laws of each clone. Fig. 7.4 depicts the impact of successive driver mutations on the
natural course of the SCN → sMDS → sAML transition. Fig. 7.4a depicts counts
Ni(t) of cells in successive mutant clones as a function of time. Straight lines with
increasing slopes are counts of cells in successive mutant clones. We observe that the
time intervals separating the origins of successive clones are decreasing with each
mutation event. Thick dashed line represents the total mutant cell count. Fig. 7.4b

http://journal.frontiersin.org/Journal/10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf.
http://journal.frontiersin.org/Journal/10.3389/fonc.2013.00089/full#sthash.ASCNmDwj.dpuf.
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depicts relative proportions ni(t) = Ni(t)/
∑

j Nj (t) of cells belonging to succes-
sive mutant clones. It is interesting to observe that clones with increasing numbers of
mutations dominate transiently, until they are replaced by other clones with higher
proliferative capacity (selective value).

It is somewhat surprising that under any combination of coefficients of the
model, the range of simulated times at which sAML arises is rather narrow [57].
This outcome is in contrast to the wide spread of times at diagnosis summarized in
Rosenberg et al. [65]. The observed distributions of times (and ages) at diagnosis
can be matched if a large interindividual variability is assumed. This illustrates how
important it is to take into account potential different sources of stochasticity when
modeling human disease.

Underlying stochastic effects Most likely mechanisms creating stochastic behav-
ior in hematopoiesis are: (i) asymmetric division of progeny cells, with resulting
difference in their fates, and (ii) on–off switching of differentiation status of cells
accomplished by hormonal controls such as GCSF or Epo.

Asymmetric division is a possible mechanism by which randomness is inserted
into stem cells’ decision making. In the past, a prevailing hypothesis concerning
stem cell decisions was that at each stem cell division, one of the progeny becomes
a committed cell whereas the other remains a stem cell, in this manner providing
a perfect balance between commitment and self-renewal. There exist at least two
problems with this simple paradigm: first, that this does not seem satisfactory when
the demand for committed cells is greater than average, and second, that it has
been observed that stem cells can divide both asymmetrically and symmetrically.
Observations are consistent with stochastic decisions as to which mode of division to
choose. Consequences for population dynamics are different for different stochastic
scenarios of asymmetric division, even if on the average these scenarios produce
50–50 committed and stem cells.

An interesting discussion of symmetry and asymmetry in stem cell division has
been proposed by Schroeder [67]. Discussing findings in an experimental paper by
Wu et al. [68], Schroeder [67] considers a catalogue of versions of symmetric and
asymmetric divisions. Symmetric division: undifferentiated hemopoietic precursor
cells (HPCs) produce two undifferentiated progeny, whose later fate decisions are not
linked to the parent’s mitosis. Hypothetical mechanisms of asymmetric divisions in
HPCs include: (i) orientation of the division plane that leads to positioning of only one
of the progeny close enough to localized extrinsic signals provided by a self-renewal
or differentiation niche, (ii) generation of two identical undifferentiated progeny,
which being in close spatial contact immediately after mitosis engage in reciprocal
feedback signaling, leading to differentiation of only one of them, and (iii) intrinsic
cell fate determinants segregate asymmetrically between daughter cells, instructing
either self-renewal or differentiation of the receiving daughter. Let us notice that these
distinct scenarios do not produce distinctions in deterministic models, where only
averages matter, but they lead to possibly widely divergent scenarios in stochastic
dynamics. As an example of mechanism (iii), Wu [68] found that Numb, a negative
modulator of Notch signaling, which is known to asymmetrically segregate to one
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progeny during asymmetric division is indeed frequently enriched in one of the two
emerging progeny cells. This has been accomplished by analyzing Numb localization
in HPCs that had been fixed during mitosis and visualized.

Switches have been proposed to effectively translate the hormonal signals into de-
cision about commitment or further progression. An archetypical molecular bistable
switch (Gardner, Collins, and Cantor genetic toggle switch [69]) is deterministic and
involves a system of two genes, the products of which are mutual cross-repressors.
The system also involves two activators, which momentarily annul the action of the
repressors and allow the system to switch. From mathematical point of view, the
switch is a dynamical system with two stable equilibria separated by an unstable
one. A more sophisticated switch, which moreover is based on confirmed molecular
mechanism, is the Laslo switch [21].

However, a molecular switch may involve stochastic mechanisms, which make its
action less predictable. This may mean that, if the level of fluctuations is sufficiently
high, the switch is oscillating between the two stable equilibria, before or instead of
being absorbed by one of them. Such behavior has been observed. In disease state,
we may have to do with an aberrant switch with dynamics altered by mutation in one
of the important molecular circuits.

Several transcription factors play key roles in regulating myelopoiesis and
granulopoiesis. These include the ETS protein PU.1 and the cytosine-cytosine-
adenosine-adenosine-thymidine (CCAAT)-enhancer-binding protein-α (CEBP-α),
and are often referred to as the “master regulators” of myeloid development [21].
Although PU.1 is sometimes considered to induce myeloid versus lymphoid and
monocyte versus granulocyte differentiation, the data suggest that the effects of
PU.1 are more complex than this. Similarly, CEBP-α has been considered to direct
granulocyte versus monocyte differentiation. PU.1 and CEBP-α constitute a gene
regulatory network with bistable properties. Gene regulatory networks may be mod-
ified by protein abundance and posttranslational modification, both of which were
shown to be induced by activation of cytokine receptors such as GCSFR via ki-
nases. First, PU.1 and CEBP-α undergo serine/threonine phosphorylated triggered
by GCSFR activation. Second, GCSFR activation modulates CEBP-α expression,
which influences PU.1 function via unidentified mechanisms. Third, GCSFR also
influences Gfi-1 expression and activity.

For the granulocyte lineage, the most essential growth factor is GCSF. Its cognate
receptor, GCSFR is a member of the hematopoietin cytokine receptor superfamily,
which includes receptors for many of the interleukins, colony-stimulating factors
(e.g., Epo), cytokines (e.g., leptin), and hormones (e.g., prolactin). As a drug, recom-
binant human GCSF is used widely to reduce the duration of chemotherapy-induced
neutropenia and mobilize into the periphery hematopoietic progenitor cells for trans-
plant [70]. A number of clinical disorders demonstrate importance of GCSF/GCSFR
(see below). Mutations in the GCSFR have been found in patients with SCN, MDS,
and AML [59, 71].

Laslo et al. [21] describe a regulatory network demonstrating bistability based
on a feedback loop between two transcriptional repressors (Egr/Nab-2 and Gfi-1)
of PU.1 and GATA-1 genes that drive a common myeloid progenitor cell toward
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either granulocyte or macrophage fate. As mentioned above, deterministic toggle, or
bistable, switch is a circuit which has two stable equilibria, usually separated by an
unstable one [69]. Stochastic toggle switches have much richer behavior [72]. Instead
of a monotonous approach to the stable equilibrium, the absorbing state is reached via
a “saw-like” trajectory. If the time before absorption extends over more than a single
cell cycle, the cell remains uncommitted, or in one of the the “intermediate” states, as
for example in the paper by Laslo et al. [73] where existence of graded states of cells
was experimentally observed and theoretically predicted (albeit using a deterministic
switch). On the theoretical side, state space methods have been used by Michaels
et al. [74] to find the range of dynamical behaviors exhibited by Laslo-type switch.

Jaruszewicz et al. [75] demonstrate that in a system of bistable genetic switch, the
randomness characteristics control in which of the two epigenetic attractors the cell
population will settle. They focus on two types of randomness: the one related to gene
switching and the one related to protein dimerization. Change of relative magnitudes
of these random components for one of the two competing genes introduces a large
asymmetry of the protein stationary probability distribution and changes the relative
probability of individual gene activation. Increase of randomness associated with
a given gene can both promote and suppress activation of the gene. Each gene is
repressed by an increase of gene switching randomness and activated by an increase
of protein dimerization randomness. In summary, the authors demonstrated that
randomness may determine the relative strength of the epigenetic attractors, which
may provide a unique mode of control of cell fate decisions.

Traulsen et al. [76] concentrate on the role of hierarchy of the hematopoietic
system, discussing the influence of mutations in the hematopoietic system. Although
mutations can occur in any cell within hematopoiesis, both the size of the circulating
clone and its lifetime depend on the location of the cell of origin in the hematopoietic
hierarchy. Mutations in more primitive cells give rise to larger clones that survive
for longer, taking also a longer time to appear in the circulation. On the contrary,
the smaller clones caused by mutations of more differentiated precursors appear in
the circulation much more rapidly after the causal mutation, but they are smaller and
survive shorter. Three disease-causing mutations serve as illustrations: the breakpoint
cluster region gene–V-abl Abelson murine leukemia viral oncogene homolog 1 gene
(BCR–ABL) associated with chronic myeloid leukemia; mutations of the PIG-A gene
associated with paroxysmal nocturnal hemoglobinuria; and the V617 F mutation in
the JAK2 gene associated with myeloproliferative diseases. Among other, evidence is
presented of existence of these mutations in asymptomatic individuals, speculatively,
these are mutations in more differentiated precursors. Citing from Traulsen et al. [76]:
“In general, we can expect that only a mutation in a hematopoietic stem cell will give
long-term disease; the same mutation taking place in a cell located more downstream
may produce just a ripple in the hematopoietic ocean.”

Wilson et al. [77] argue based on a combination of flow cytometry with label-
retaining assays (BrdU and histone H2B-GFP) that there exists a population of
dormant mouse HSCs (d-HSCs) within the lin− Sca1+ cKit+ CD150+ CD48−
CD34− population. Computational modeling suggests that d-HSCs divide about
every 145 days, or five times per lifetime. d-HSCs harbor the vast majority of
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multilineage long-term self-renewal activity. They form a reservoir of the most po-
tent HSCs during homeostasis, and are efficiently activated to self-renew in response
to bone marrow injury or GCSF stimulation. After reestablishment of homeostasis,
activated HSCs return to dormancy, suggesting that HSCs are not stochastically en-
tering the cell cycle but they reversibly switch from dormancy to self-renewal under
conditions of hematopoietic stress.

Becker et al. [78] show that Epo receptors have the ability to cope with steady-
state and acute demand in the hematopoietic system. By mathematical modeling of
quantitative data and experimental validation, these authors showed that rapid ligand
depletion and replenishment of the cell surface receptor are characteristic features of
the Epo receptor (EpoR). The amount of Epo–EpoR complexes and EpoR activation
integrated over time corresponds linearly to ligand input.

Models of Mutations and Evolution of Disease

Carcinogenesis Models

Carcinogenesis modeling has had an established history of using stochastic models,
beginning with the Knudson two-hit model. Successor models include the multi-hit
model and eventually to the two-stage clonal expansion model of Moolgavkar [79].
With almost 1000 citations, this paper might be called one of the most influential ever
mathematical models in cancer research. Concerning its application in leukemias,
see, e.g., Radivoyevich et al. [80].

We will focus mostly on models of leukemogenesis, conceived in the genome-
sequencing era. These models have the following features, which are a novelty due
to both evolution of thinking in inflow of a large number of new variant data:

1. Mutations are identified as variants in studies in which whole exomes or even
genomes are sequenced for each individual in the study.

2. Functionality of mutations is determined in two stages: first by bioinformatics al-
gorithms (usually based on evolutionary comparisons) and then by wet-laboratory
studies of pathways influenced by these mutations.

3. Progression of leukemogenesis is based on the concept of driver and passen-
ger mutations. Driver mutations are selected for most advantageous phenotype
of cancer cells, whereas the passenger mutations are neutral byproducts of
carcinogenesis and serve as molecular clocks of the process.

A number of interesting models of mutations leading to cancer have recently been
published (see references further on). They all explore models of proliferation, fre-
quently using bp’s, combining them with models of driver and passenger mutations.
Driver mutations are those that, although they might have arisen spontaneously, pro-
vide selective advantage for the emerging cancer proliferation, particularly against
the background of already existing inherited or acquired mutations. Passenger muta-
tions are generally neutral and their accumulation may provide a molecular “clock”
indicating how long it has been since the cancer cells deviated from normal cells.



7 Stochasticity and Determinism in Models of Hematopoiesis 145

Tumors are initiated by the first genetic alteration that provides a relative fitness
advantage. In the case of leukemias, this might represent the first alteration of an
oncogene, such as a translocation between BCR and ABL.

Recent paper by Ley et al. [81] addressed the issue of driver mutations contributing
to the pathogenesis of AML, using analysis of the genomes of 200 adult cases of de
novo AML, either whole-genome sequencing (50 cases) or whole-exome sequencing
(150 cases), along with ribonucleic acid (RNA) and microRNA sequencing and DNA-
methylation analysis. The conclusion was that AML genomes have fewer mutations
than most other adult cancers, with an average of only 13 mutations found in genes.
Of these, an average of five was in genes that are recurrently mutated in AML. A total
of 23 genes were significantly mutated, and another 237 were mutated in two or more
samples. Further analysis suggested strong biologic relationships among several of
the genes and categories. Further studies of this kind are likely to lead to insights
into the nature of these relationships, although with very few exceptions (such as
Beekman et al. [64]) only a single time point in patient lifetime is usually available.

One of the important recent papers with this focus is the mathematical model of
the relationship between accumulation of driver and passenger mutation in tumors
published by Nowak and Vogelstein groups [82]. In most previous models of tumor
evolution, mutations accumulate in cell populations of constant size or of variable
size, but the models take into account only one or two mutations. Such models
typically address certain aspects of cancer evolution, but not the whole process. In
the model presented in Bozic et al. [82], it has been assumed that each new driver
mutation leads to a slightly faster tumor growth rate. This model is as simple as
possible, because the analytical results depend on only three parameters: the average
driver mutation rate u, the average selective advantage associated with driver
mutations s, and the average cell division time T. The model is based on G–W bp.

The hypotheses are as follows: At each time step, a cell can either divide or
differentiate, senesce, or die. In the context of tumor expansion, there is no difference
between differentiation, death, and senescence, because none of these processes will
result in a greater number of tumor cells than present prior to that time step. It
is assumed that driver mutations reduce the probability that the cell will become
“stagnate,” i.e., it will differentiate, die, or senesce, although the stagnant cells
are not removed from the tumor. A cell with k driver mutations has a stagnation
probability dk = (1 − s)k/2. The division probability is bk = 1 − dk . The parameter
s is the selective advantage provided by a driver mutation. When a cell divides, one
of the daughter cells can acquire an additional driver mutation with probability u.
The theory can accommodate any realistic mutation rate and the major numerical
results are only weakly affected by varying the mutation rate.

We can calculate the average time between the appearances of successful cell
lineages. Not all new mutants are successful, because stochastic fluctuations may
lead to the extinction of a lineage. The lineage of a cell with k driver mutations
survives only with a probability of approximately 1 − dk/bk

∼= 2sk. Assuming that
u 
 ks 
 1, the average time between the first successful cell with k and the first
successful cell with k + 1 driver mutations is given by

τk = T

ks
log

2ks

u
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This result is obtainable from the theory of the G–W process (by elementary
means) and the derivation is found in the supplement to Bozic et al. [82]. The
cumulative time to accumulate k mutations grows logarithmically with k. On the
other hand, the average number of passenger mutations, n(t), present in a tumor cell
after t days is proportional to t, that is n(t) = νt/T , where ν is the rate of acquisition
of neutral mutations. Combining the results for driver and passenger mutations,
results in a formula for the number of passenger mutations that are expected in a
tumor that has accumulated k driver mutations

n = ν

2s
log

4ks2

u2
log k.

Here, n is the number of passengers that were present in the last cell that clonally
expanded. Bozic et al. [82] demonstrate that this dependence fits empirical data on
several human cancers.

Distribution of Mutational Events in Various Phases
of Tumor Growth

This question has been recently addressed by Tomasetti et al. [83]. The framework
is not very different from that of Bozic et al. [82]. However, the paper describes
mathematically the different phases in which somatic mutations occur in a tissue
giving rise to a cancer. Starting from a single fertilized egg, all tissues are created
via clonal expansion (development phase). The tissue is then subjected to periodic
self-renewals. During development and tissue renewal, passenger mutations occur
randomly, undergo clonal expansions and either become extinct or expand as succes-
sive passenger mutations accumulate. A driver gene mutation may initiate a tumor
cell clone, which then can expand through subsequent driver mutations, eventually
yielding a clinically detectable tumor mass (cancerous phase). Passenger mutations
occur during this phase as well. The model makes the novel prediction, validated by
empirical findings, that the number of somatic mutations in tumors of self-renewing
tissues is positively correlated with the age of the patient at diagnosis. Importantly,
the analysis indicates that half or more of the somatic (i.e., acquired, non-germline)
mutations in tumors of self-renewing tissues occur prior to the onset of neoplasia. This
is the case, among others for the chronic lymphocytic leukemia (CLL). The model
also provides a novel way to estimate the in vivo tissue-specific somatic mutation
rates in normal tissues directly from the sequencing data of tumors.

Stochastic models also allow modeling of eradication of leukemic stem cells while
saving healthy stem cells. The paper by Sehl et al. [84] uses an impressive array of
analytical and computational tools to analyze a pair of stochastic processes describing
proliferation and death of healthy and cancer stem cells under chemotherapy. The
question asked concerns the birth and death rates differential between these two cell
types, required to eradicate the latter and preserve the former. Mutations, emergence
of drug resistance, interactions of cancer and healthy cells, and other complicating
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factors are disregarded. Because the biological setup is simplified to the extreme, it
allows effective mathematical analysis.

A review of gene copy number and loss of heterozygosity and gene mutation
profiles demonstrated that relapsed AML invariably represented reemergence or evo-
lution of a founder clone Parkin et al. [85]. Analysis of informative paired persistent
AML disease samples uncovered cases with two coexisting dominant clones of which
at least one was chemotherapy sensitive and one resistant, respectively. These data
support the conclusion that incomplete eradication of AML founder clones rather
than stochastic emergence of fully unrelated novel clones underlies AML relapse
and persistence.

As a side note, it seems surprising that quite few papers offer estimates of absolute
numbers of HSCs and committed cells. Against this background, the paper by Peixoto
et al. [86] discusses the mathematics of hematopoiesis based on stochastic hypothe-
ses. Mathematical model that describes normal hematopoiesis across mammals as
a stable steady state of a hierarchical stochastic process is also used to understand
the detailed dynamics of a range of blood disorders both in humans and in animal
models. The paper includes comparative numerical estimates of the numbers of cells
in different compartments.

Models of Spatial Effects and Structure

Niches

One of the most important realizations of recent years has been that there existed
spatial organization in normal and malignant HSCs in bone marrow. This finding
allowed correlating such states as proliferative activity, dormancy, and differentia-
tion, not only with the locations in the bone marrow but also with proximity to some
other cells type such as mesenchymal stem cells or osteoblasts. Such organization
has been previously postulated in the papers by Roeder and coauthors; however,
now it is based on biologically verifiable findings. The locations are referred to as
stem cell niches. A recent review by Tieu et al. [28] states that the HSC niche is an
important regulator of stem cell fate. Complex signaling pathways, such as those
involving Notch, Wnt, and Hedgehog, regulate stem cell renewal, differentiation,
and quiescence [87 – 89]. Mathematical models can be useful in studying the dy-
namics of stem cell maintenance and, specifically, spatial considerations related to
the structural relationships between stem cells and their progeny with cells of the
microenvironment. This paradigm will trigger development of a new generation of
deterministic and stochastic models, in which the interaction of spatial and stochastic
effects poses new mathematical problems.

Huang [90] discusses in qualitative terms three perspectives outside the realm of
their familiar linear deterministic view: (i) state space, (ii) high dimensionality, and
(iii) heterogeneity. These concepts jointly offer a new vista on stem cell regulation
that naturally explains many novel, counterintuitive observations and their inherent
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inevitability, obviating the need for ad hoc explanations of their existence based on
natural selection.

Bertolusso and Kimmel [91] considered the early carcinogenesis model originally
proposed as a deterministic reaction-diffusion system of the following form:

∂c/∂t = (a(b, c) − dc)c + μ

∂b/∂t = α(c)g − dbb − db

∂g/∂t = γ −1(∂2g/∂x2) − α(c)g − dgg + κ(c) + db,

where c, g, and b are the spatial densities of cells, free-diffusing growth factor, and
bound growth factor, respectively. The model explores the spatial effects stemming
from growth regulation of precancerous cells by diffusing growth factor molecules.
The model has been originally devised [92] for solid tumors spreading along linear
or tubular structures such as in lung or breast cancer, but it might apply to systems of
similar geometry, which are found in bone marrow. The original deterministic model
exhibits Turing instability, producing transient spatial density spikes in cells which
are model counterparts of emerging foci of malignant cells. However, the process of
diffusion of growth factor molecules is by its nature a stochastic random walk. An
interesting question emerges to what extent the dynamics of the deterministic diffu-
sion model approximates the stochastic process generated by the model. Bertolusso
and Kimmel [91] addressed this question using simulations with a new software tool
called sbioPN (spatial biological Petri Nets). The conclusion is that whereas single-
realization dynamics of the stochastic process is very different from the behavior
of the reaction diffusion system, it is becoming more similar when averaged over a
large number of realizations. The degree of similarity depends on model parameters.
Interestingly, despite the differences, typical realizations of the stochastic process
include spikes of cell density, which however are spread more uniformly and are less
dependent of initial conditions than those produced by the reaction-diffusion system.
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Chapter 8
Systems Analysis of High-Throughput Data

Rosemary Braun

Abstract Modern high-throughput assays yield detailed characterizations of the ge-
nomic, transcriptomic, and proteomic states of biological samples, enabling us to
probe the molecular mechanisms that regulate hematopoiesis or give rise to hema-
tological disorders. At the same time, the high dimensionality of the data and the
complex nature of biological interaction networks present significant analytical chal-
lenges in identifying causal variations and modeling the underlying systems biology.
In addition to identifying significantly disregulated genes and proteins, integrative
analysis approaches that allow the investigation of these single genes within a func-
tional context are required. This chapter presents a survey of current computational
approaches for the statistical analysis of high-dimensional data and the development
of systems-level models of cellular signaling and regulation. Specifically, we focus
on multi-gene analysis methods and the integration of expression data with domain
knowledge (such as biological pathways) and other gene-wise information (e.g., se-
quence or methylation data) to identify novel functional modules in the complex
cellular interaction network.

Keywords Statistical analysis · High-throughput data · Microarrays · Sequencing ·
NGS · Genomics · Machine learning · Network models

Introduction

The precise coordination of complex and adaptive living processes relies upon sys-
tems that regulate transcriptional, posttranscriptional, and epigenetic control of gene
expression and protein production. In contrast to the simplified view of the “central
dogma” of molecular biology, wherein transcription followed by translation leads
linearly from DNA to RNA to protein, it is now understood that there exist feed-
back loops at each stage, forming a network of regulatory interactions (Fig. 8.1).
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Fig. 8.1 Regulatory mechanisms in molecular biology. DNA is transcribed to mRNA and then
translated into protein. The rate of transcription is controlled by a feedback loop in which the
level of transcription factor proteins is regulated the activity of the transcriptional complex, and
genes can be permanently silenced by methylation of cytosine in CpG promoter regions of the
DNA sequence. More recently, it has been discovered that the expression of small noncoding RNA
molecules (e.g., microRNAs) can downregulate entire sets of genes by binding to complementary
sequences in the mRNA

Identifying functionally relevant genes and unraveling the systems governing their
expression can elucidate the molecular mechanisms underlying development and
disease, as well as facilitate the development of prognostic tests and therapeutic
interventions [1, 2].

Although living organisms have long been thought of as complex systems com-
prising many strongly interdependent parts [3, 4], the study of biological processes
at the systems level remained a theoretical practice until fairly recently. Prior to the
completion of the Human Genome Project and the development of high-throughput
technologies, limitations on the ability to exhaustively assay samples of interest re-
quired that each gene be probed one at a time, leading to a reductionist approach in
which biological systems were investigated by examining their parts in isolation. In
recent years, however, major technological advances have enabled assays that yield
highly detailed genome-wide information for each sample (including sequence, ex-
pression, and epigenetic modifications). This unprecedented increase in our ability
to probe how every gene is expressed in a particular tissue or responds to a particular
environmental perturbation now makes systems biology possible. The wealth of data
now being generated in high-throughput profiling studies not only allows gene-level
analyses to be applied comprehensively across the entire genome, but provides an
immense opportunity to augment reductionist one-gene-at-a-time techniques with
systems-level analyses that treat the data in an integrative manner and elucidate the
functional association between differentially expressed genes.

Complementing the advances in experimental technologies, advances in comput-
ing technology have ushered in an exciting era of computational systems biology.
Broadly speaking, computational systems biology investigations may be classified
into two groups, each with its own utility and set of challenges: the statistical analy-
sis of high-dimensional data to infer differentially regulated network modules from
experimental studies, and the dynamical simulation of these networks to model the
occurrence of cellular events. Here, we focus on statistical and machine learning
algorithms to draw inferences about regulatory networks from complex data sets.
Combined with gene-level analyses, pathway-based methods provide comprehensive
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analyses of the functional modules that govern biological processes. The objective of
this chapter is to provide theoretical and practical knowledge of how high-throughput
data can be harnessed to yield mechanistic insights and build predictive models at
the systems level.

Generating High-Throughput Data

The accuracy of any systems-level analysis will depend on the quality of the data
being analyzed. This, in turn, depends upon the experimental design, the assay
technology employed, and the preprocessing of the raw data.Although a full review of
these considerations is beyond the scope of this chapter, a brief overview is presented
for context.

Experimental Design

Experiments may be designed with several goals in mind:

Class comparison Identification of genes or gene sets behaving differently between
predetermined “classes” of samples (e.g., cases and controls, different phenotypes,
different stages of development, different treatments, etc.).

Time series Investigation of the dynamics of gene expression changes following
an exposure (e.g., to examine how the expression profile changes over time and
differs between growth phenotypes).

Class prediction (supervised machine learning) Identification of a minimal set of
genes that can be used to categorize a new sample into one of several known
types based on its molecular profile (e.g., with the goal of predicting treatment
response). Also called supervised machine learning.

Class discovery (clustering/unsupervised ML) Identification of novel groups of
samples on the basis of their molecular profiles (e.g., to identify disease subtypes
among clinically similar cases that may correspond to differing prognoses).

Network Analysis Identification of differential relationships between molecules,
either by analyzing the data in the context of putative interaction networks or by
“reverse engineering” the underlying network based on experimental data.

Regardless of the question under consideration, several guiding principles should be
observed. First, all high-throughput studies yield a measurements in a feature space
(105–106 probes) that is of much higher dimensionality than the number of samples
(often on the order of 102). From a mathematical modeling standpoint, these exper-
iments are underdetermined, meaning there are many more variables (genes) than
there are equations (samples), and different analysis methods may yield different
results that are nevertheless equally valid/optimal fits. Second, despite improve-
ments in quality control and experimental accuracy and precision, high-throughput
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technologies remain relatively noisy and are highly sensitive to batch effects (mean-
ing that the same samples, assayed at two different labs or at two different times
using identical protocols, may exhibit highly differentially expressed genes that are
responding to extraneous biological variables). These two challenges underscore the
need for biological replicates: both to increase the power of the many gene-wise sta-
tistical tests being performed, and to capture the natural level of variability between
phenotypically identical samples.

Microarrays

There currently exist a number of different experimental modalities for genomic
investigations, each with its own benefits and challenges. The oldest and best-
established are microarrays, which measure the hybridization of fluorophore-labeled
nucleic acid strands to complementary probe sequences on a chip. The intensity of
fluorescence at a specific probe spot is proportional to the amount of bound nucleic
acid strands. Microarray chips contain 105–106 different probes, permitting thou-
sands of genes to be simultaneously assayed. These may be designed to measure
mRNA abundance (gene expression profiling), microRNAs (miRNA profiling), or
to detect single nucleotide polymorphisms (SNPs) in DNA. Chips functionalized
with antibodies may be used in a similar fashion to assess protein abundance.

Before they can be analyzed, microarray data must be preprocessed and nor-
malized. The preprocessing steps include the subtraction of background intensities,
averaging across duplicated probes, thresholding or scaling to spiked-in controls or
housekeeping genes, removal of probes that fail to meet QC criteria, and normal-
ization to render each array comparable to the others. Normalization schemes rely
upon the assumption that the vast majority of genes are not differentially modulated
in the phenotype of interest, and attempt to remove chip-wide variations in gene
expression that are likely due to technical factors alone. The choice of preprocess-
ing and normalization algorithms can have a significant impact on the results of the
statistical analysis, and the appropriate selection depends in part on the microar-
ray technology; the reader is referred to the several comprehensive reviews [5–7]
for additional guidance. Because the normalized abundances are approximately log-
normally distributed, values expressed on a logarithmic scale are often tested using
standard parametric statistics.

“Next Generation” Sequencing

The development of next generation sequencing (NGS) represents an important leap
forward in identifying disease-specific genetic variants (DNAseq), epigenetic modifi-
cations (ChIPSeq of histone methylation), and transcriptional regulation and splicing
(RNAseq). Combined, such genomic data provide a powerful means to identify the re-
lationships between the genetic sequence, epigenetic marks, and expression of genes.
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In contrast to microarrays, which probe regions of the genome with known se-
quences, NGS studies comprehensively assay the entire genome. The data produced
are vast, and present different preprocessing challenges than those encountered in
microarray studies. The experimental technique consists of fragmenting the DNA or
RNA into short segments, which are then sequenced. These so-called “short reads”
must then be aligned to a reference genome sequence in order to identify the genes
to which they correspond. (Although NGS assays are highly comprehensive, the
mapping of reads is a computationally challenging task, and the resulting data is
often considerably noisier than that obtained by microarray.) The number of reads
for a given genomic region is used as a measure of gene expression (in RNAseq)
and to identify probable transcription-factor binding sites or epigenetic modifica-
tions (DNAseq, ChIPseq). For more details on sequencing, alignment, and variant
calling in NGS studies, the reader is referred to two recent reviews [8, 9]. Once these
steps are completed, the data may be analyzed to reveal disease-associated genetic
variants, epigenetic modifications, and differential expression [10].

Gene-Level Statistical Analyses

While the focus of this chapter is to acquaint the reader with systems-level statistical
analyses, it is useful to briefly review several common gene-level approaches.

Often, the first goal is to identify genes that behave differently in the sample
groups of interest (“class comparison”). For mRNA and miRNA expression studies,
where the gene level data are continuous, genes are tested for differential expression
between groups using a t-test; where more covariates are involved (such as in studies
investigating gene×environment interactions), linear models may be used. Linear
models may also be used in the context of time-series analysis to identify genes
whose expression changes over time and detect those whose time-course profiles
differ between sample classes. In SNP and sequence studies, where the covariates
are categorical, χ2 tests are used to identify SNP loci where minor allele frequencies
differ significantly. These tests yield a statistic, one per gene/miRNA/locus, that
quantifies the difference in expression or allele frequencies between the groups of
interest. These statistics may then be compared against an appropriate distribution
to yield a p-value and identify significant associations. (For expression microarrays,
the limma package [11] in R [12] provides a user-friendly framework for gene level
analyses. Other BioConductor utilities [13, 14] provide similar functionality for SNP
arrays, NGS, and other experimental modalities.)

In all cases, the vast number of hypotheses being tested (at least one per gene,
and often times more) necessitates a multiple testing correction [15] of the p-values.
That is, at a significance threshold of p ≤ 0.05, we expect that a gene will be falsely
called significant 5 % of the time, leading to thousands of such false positives when
the number of genes assayed is on the order of 105. While the simple Bonferroni
adjustment may be used (in which the significance threshold is set to 0.05 divided
by the number of genes assayed), it is considered to be excessively conservative.
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Specifically, it is assumed in the Bonferroni adjustment that each gene is strictly
independent of all others, an assumption well known to be false for genomic data
(in the case of expression, co-regulated genes will exhibit correlated expression; in
SNPs, patterns of recombination will lead to linkage disequilibrium, or a tendency
for SNP alleles at one loci to be correlated with the alleles at another). Instead,
the false positives should be controlled using the false discovery rate adjustment
(FDR) [16], which has been proven to exert robust control over the error rate even
when the hypotheses have dependencies [17]. Alternatively, assumption-free but
computationally intensive permutation procedures [18] may be used.

Identifying Functional Modules

The lists of significant genes obtained by the analyses described above provide limited
mechanistic insights without additional biological context. To gain an understanding
of systems biology, it is necessary to assemble single-gene information to identify
sets of genes and interactions that fulfill particular biological functions. Typically,
this is done either by finding clusters of genes that behave in the same way in the
experiment, or by incorporating expert knowledge from pathway databases to focus
the analysis.

Clustering

It is well-accepted that genes interact with each other in transcriptional modules, and
that these modules in turn interact with other modules [19, 20]. Because of these re-
lationships, genes that function together often exhibit directly or inversely correlated
expression. The simplest method for identifying those modules and connections is
by clustering the genes to identify groups of genes whose expression is similar across
the set of samples [21, 22].

The two most commonly used clustering algorithms are hierarchical clustering
and k-means clustering. Their considerable popularity is due to their computational
and conceptual simplicity. However, because both rely upon the user to specify the
number of clusters, they are prone to artificially separating genes that should be in the
same cluster (if the user specifies more clusters than are truly present) or speciously
combining them (if the user specifies too few). They are limited in their ability to
detect clusters with complex shapes. To address these limitations, refinements of
both schemes have been proposed; we describe them below.

Hierarchical Clustering

The commonly used hierarchical clustering [23] technique agglomeratively sorts
genes based on the similarity of their expression, producing a tree that can be cut
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into clusters. For each pair of genes i and j , hierarchical clustering computes a dis-
tance metric Dij ; then, starting with each gene as its own “cluster,” iteratively merges
clusters based on the smallest Dij between them. Most frequently, a Euclidean dis-

tance metric (i.e., Dij=
√∑

m (g2
i,m+g2

j ,m) where gi,m denotes the expression of

gene i in sample m) is used, although non-Euclidean distances (e.g., Manhat-
tan or Mahalanobis), correlation-based distances (e.g., Dij=1−Cor(gi , gj )), or
information-theoretic metrics may also be used. The criteria for merging clusters
is known as the linkage. Simply put, for any two clusters, we wish to consider merg-
ing, we examine the pairwise distances Dij for the genes in the merged clusters;
the linkage can be set to be the average, minimum (“single” linkage), or maximum
(“complete” linkage) of the pairwise differences within the resulting cluster. The
choice of which clusters to merge is then based on which cluster pairs yield the
smallest linkage. At each iteration, those pairs of clusters are merged, forming a
binary tree, and the number of clusters is determined by the height at which user cuts
the tree.

However, while hierarchical clustering has a long history in microarray analysis,
it is extremely sensitive to the choice of distance metric and the linkage method used
to merge the clusters, since the “greedy” agglomeration causes slight inaccuracies
to snowball. Hierarchical clustering should therefore be considered an exploratory
tool rather than an analytical one.

k-Means Clustering

The well-established k-means clustering [24] technique provides a more stable par-
tition of the genes. The algorithm iteratively finds points that define the centers of
globular clusters: starting with a user-specified number of clusters k, it selects k

genes at random as starting centroids, and clusters all the genes based on the cen-
troid to which they are closest. For each of the resulting k clusters, new centers are
computed based on the mean expression of the genes assigned to that cluster. The
genes are reclustered with respect to the new centroids, and the process is repeated
until the clustering assignments converge. In addition to being much less error prone
than hierarchical clustering, k-means is also considerably faster. As with hierarchi-
cal clustering, however, the user must specify the number of clusters (which in the
case of genes means guessing at the number of “modules”). In addition, k-means
performs poorly when the genes do not form globular, linearly separable clusters.

Improved Approaches

To address these drawbacks, several refinements have been proposed. Graph-
theoretic spectral techniques [25–30] are able to articulate clusters with nonlinear
and nonconvex boundaries, allowing complex relationships between genes (such as
those that oscillate differentially over the cell cycle) to be discerned. Variational
clustering schemes [31, 32] achieve similar goals. Several schemes have also been
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proposed to estimate the number of clusters from the data itself rather than relying
on user input [30, 33–36]. Combined, these methods produce robust partitions even
in complex data sets.

One interesting and extensible approach, consensus clustering [36], is a method
that may be wrapped around any clustering algorithm of choice (hierarchical, k-
means, spectral clustering, etc.) to provide both an estimate of the number of clusters
present in the data and a measure of the robustness of the clustering. In consensus
clustering, the data is randomly subset so that only a portion of the genes and samples
are used. The clustering algorithm of choice is then used to cluster the samples or
genes into k = 2, 3, 4, . . . groups for multiple random subsets of the data. For each k,
a consensus matrix is obtained where the i, j th entries are the fraction of times gene
i and gene j were assigned to the same cluster across multiple subsets. For a truly
robust partition, it is expected that the entries will all be close to 1 or 0, that is, either
i and j are consistently placed in the same cluster, or they are consistently placed in
different groups. (This reflects the intuition that if the algorithm only place objects in
the same cluster together half the time, it is questionable whether a separate cluster
truly exists.) The optimal k (number of clusters) is that for which the consensus
matrix comes closest to the ideal of pure 1’s and 0’s. Wrapping consensus clustering
around k-means or hierarchical clustering mitigates the limitations of those methods;
moreover, because the consensus technique may be wrapped around any clustering
engine, it can readily incorporate the advantages offered by the more sophisticated
nonlinear clustering algorithms described above. Recently, consensus clustering was
applied to identify molecular subtypes of diffused large B-cell lymphoma, leading
to the identification of highly reproducible transcriptional signatures corresponding
to differential signaling cascades [37].

Dimension Reduction

As the number of genes assayed is vast, it is often of interest to find a small number of
representative patterns that describe most of the variation observed in the data and on
which the gene expression may be modeled, rather than dealing with the whole data
set. This problem is closely related to clustering: by identifying dominant patterns of
gene expression (across samples or over time), one may then find clusters of genes
that match particular patterns. Those pattern-based clusters may then be examined
for common regulatory elements.

Principal Component Analysis

The simplest and best-known dimension reduction technique is principal component
analysis (PCA) [38], which transforms a set of observations of possibly correlated
variables (e.g., gene expression measurements) into a new set of variables, called the
principal components (PCs), which are constructed such that the PCs are completely
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PC2

PC1

Fig. 8.2 In principal components analysis, the principal components are defined such that the
first principal component (PC1) lies along the direction of greatest variation and each succeeding
component (in two dimensions, only PC2) is defined to lie in an orthogonal direction with the
highest variance. Geometrically, the PCA space is a rotation of the original axes

independent of each other. The transformation is defined such that the first principal
component lies along the direction of greatest variation in the data, accounting for
as much of the overall variation in the gene expression between samples as possible.
Each succeeding component lies, in turn, along the direction of the highest variance
under the constraint that it will be orthogonal to (i.e., uncorrelated with) the preceding
components. Mathematically, the principal components are the eigenvectors of the
covariance matrix; the associated eigenvalues indicate the amount of variance along
each component. A graphical illustration in two dimensions is given in Fig. 8.2.

The transformation is linear, that is, the original coordinates (genes) are rotated in
the PCA space, such that the bulk of the variation lies along the first PC, and so on, as
shown in Fig. 8.2. Each gene may thus be described using a weighted combination
of components (and vice versa). Because the bulk of the statistical variation in the
data is contained in the first few components, it is possible to use just the first few
PCs, rather than the full 105-dimensional feature space, when analyzing the data. The
resulting clusters may then be examined for common regulatory elements. Recently,
Chilarska and coworkers used this approach to identify combinatorial transcriptional
control in a genome-wide study of blood stem/progenitor cells [39]. PCA has also
been used to identify “fingerprints” of hematopoietic stem cell differentiation [40].

Eigengenes

The principal components transformation can be written in terms of another matrix
factorization called the singular value decomposition (indeed, computation of the
principal components is typically done from the SVD, rather than the mathemati-
cally equivalent but computationally costly eigendecomposition of the covariance
matrix). While PCA yields a matrix containing the PCs (i.e., the eigenvectors) and
a vector of loadings (the eigenvalues), SVD yields two matrices, each describing an
orthogonal basis, and a vector of so-called singular values. When applied to gene
expression data, the two matrices have the dimensions of the genes and samples,
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which are referred to as the “eigengenes” and “eigenarrays,” respectively [41]. Like
the principal components, the eigengenes (eigenarrays) are unique orthonormal su-
perpositions of the genes (samples). Eigengenes/arrays that are inferred to represent
noise may be filtered out, much like filtering out the higher PCs in PCA. Representing
the data by the remaining eigengenes and eigenarrays gives a global picture of the
dynamics of gene expression, in which individual genes (or samples) are clustered
into groups of similar regulation and function (or similar cellular state and biolog-
ical phenotype, respectively). These clusters may then be associated with observed
genome-wide effects of regulators. Recently, this method has been used to uncover
the combinatorial role of transcription factors regulating the yeast sulfur assimila-
tion pathway [42] and combined with dynamical modeling; a similar approach could
be used to link high-throughput data to dynamical models of blood stem cell fate
(e.g., [43]).

Nonlinear Dimension Reduction

The patterns described by the principal component vectors or eigengenes are lin-
ear combinations of the gene expression measurements. However, if the biological
patterns of interest have a nonlinear form, as is likely to arise from regulatory net-
works with feedback loops, neither classical PCA nor SVD can articulate those
patterns. Instead, nonlinear dimension reduction (NLDR) techniques must be used.
NLDR may be thought of as a nonlinear version of PCA where the coordinates are
“threaded” along the direction of greatest variability. Optimally detecting those paths
is a mathematically and computationally challenging task, and several methods have
been proposed including kernel PCA, Laplacian eigenmaps, IsoMaps, and spectral
embedding [44, 45]. Of these approaches, the neural-network-based self organizing
map (SOM) [46] is the best represented in the genomics literature. Figure 8.3 pro-
vides an illustration of the first SOM coordinate versus the first PC for data lying
on a curved manifold; while the first PC captures only 76.77 % of the variance, the
first component of the SOM captures 93.14 % and provides a better description of
the underlying pattern.

This property makes SOM (and NLDR generally) particularly well-suited for
analyzing transcription dynamics, where the relationships between genes may not
be strictly linear. SOM has been applied to detect and interpret gene expression
patterns governing hematopoiesis [47]. For an in-depth mathematical treatment of
various NLDR methods, the reader is referred to [48].

However, while NLDR provides a more accurate and possibly more biologically
meaningful dimension reduction than PCA or SVD, it must also be noted that the
transformation from the new, dimension-reduced space to that of the genes is not a
straight-forward (or even necessarily possible) task. This is a direct consequence of
their nonlinearity and places them in stark contrast to PCA and SVD, from which it is
easy to recover the original coordinates. This, in turn, means that it is very difficult to
say which genes are the ones driving the dominant pattern observed, which can pose
problems when it comes time to identify specific genes for validation work. In short,
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Fig. 8.3 Comparison of SOM versus PCA. While the first PC captures only 76.77 % of the variance,
the first component of the SOM captures 93.14 % and provides a better description of the underlying
pattern

what we gain in accuracy and representativeness in NLDR is lost in interpretability.
The choice of dimension reduction should thus be undertaken with the end goal of
the analysis in mind.

Pathway Analysis

Pathways, or networks of functionally related genes and molecules, provide a natu-
ral framework in which systems-level effects may be investigated in the context of
existing “expert” knowledge. Pathway definitions may be extracted from a grow-
ing number of databases, including the Pathway Interaction Database [49], KEGG
[50], Reactome [51], and InnateDB [52], among others. Many statistical computing
packages, including R/BioConductor, have interfaces to these databases [53].

Analyzing high-throughput molecular measurements at the pathway level have
two significant benefits. First, it permits the grouping of hundreds of thousands of
genes (or other biomarkers) into several hundred pathways, reducing the complexity
of the analysis. Second, identifying active pathways that differ between two condi-
tions can provide more explanatory power and mechanistic insights than a simple
list of genes. These benefits have given rise to a vast number of different pathway
analysis approaches over the past decade [54].
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Many tools for pathway analysis are available, including free, open-source R
software from the BioConductor project [13] (http://www.bioconductor.org) and
popular commercial tools such as Ariadne Genomics Pathway Studio (http://www.
ariadnegenomics.com/) and Ingenuity Pathway Analysis (http://www.ingenuity.
com/). As these tools are well-documented and constantly evolving, we focus here
on the underlying methodology.

Enrichment Analyses

The simplest pathway analysis approach is an overrepresentation analysis, which
seeks to address statistically the following question: given a set of genes known to
be on a pathway, and given the list of genes detected to be different in the study
(e.g., with FDR≤0.05 in a test of differential expression), is there greater overlap
than would be expected by chance alone? That is, do the significant genes appear to
aggregate in certain pathways? The probability of having an overlap of m or more
genes when there are M significant genes out of N genes assayed, and n genes in
total on the pathway is given by the hypergeometric distribution,

Pr (X ≥ m|N , M , n) =
∑n

r=m

(
M

r

)(
N−M

n−r

)

(
N

n

) (8.1)

which is easily computed for all gene sets of interest.
While simple, overrepresentation analysis has a significant limitation: because it

uses only the most significant genes (e.g., those passing the arbitrary FDR≤0.05
threshold), marginally less significant genes (e.g., FDR = 0.051) are discarded, re-
sulting in information loss. In contrast, the popular Gene Set Enrichment Analysis
(GSEA) algorithm [55, 56] uses the full list of all genes, ranked in order of signifi-
cance, and uses a Kolmogorov–Smirnov running sum statistic to answer the question:
what is the probability that the genes in this pathway lie as near the top of the ranked
list as we observe them to be? Significance may be computed either by permuting
the sample labels or permuting the genes included in the pathway [54, 57, 58]. These
methods have been applied successfully to a variety of studies, including expres-
sion profiling of acute lymphocytic leukemia subtypes [59]; pathways involved in
the activation of memory T cells, monocytes, and B cells [60]; and resistance to
chemotherapy in acute myeloid leukemia cells [2].

Nevertheless, both simple overrepresentation analysis and GSEA have a common
drawback: they rely upon the computation of gene-level statistics. It is well known
that complex diseases exhibit considerable molecular heterogeneity, either due to
causative mechanisms that can be deleteriously affected in a variety of ways (such
that no particular alteration is dominant among the case samples) or to those that are
only deleteriously affected through a specific combination of particular alterations
(such that control samples may have some, but not all, the alterations necessary
to produce the case phenotype). As a result, individual genes may fail to reach
significance in univariate tests of significance, and pathway analyses that rely on

http://www.bioconductor.org
http://www.ariadnegenomics.com/
http://www.ariadnegenomics.com/
http://www.ingenuity.com/
http://www.ingenuity.com/
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single-gene association statistics may fail to detect significant pathways simply be-
cause the constituent genes do not exhibit univariate associations. Simply put, by
relying on univariate, gene-level tests, overrepresentation and enrichment analyses
still make the reductionist assumption that regulatory systems may be investigated
by examining their parts in isolation.

Pathway Summary Statistics

An alternative is to compute a pathway-level “summary” statistic: a single value that
summarizes the expression level (or other data) for all the genes in the pathway. For
each pathway, a summary statistic is obtained for each sample based on its profile,
and those summaries may then be tested for association with the condition of interest.
A very crude example is to use the average expression value for the genes on the
pathway, such that a sample in which many of the genes are upregulated will have a
high pathway summary value, regardless of which genes happen to be upregulated.
However, simply averaging the gene expression levels is a poor measure of pathway
activity from a biological point of view, since these mechanisms involve both up-
and downregulation for which coordinated gene expression (and hence correlations)
are important. A more justifiable approach, therefore, is to use PCA for the genes
in the pathway of interest, selecting the first PC as the “pathway summary.” This
has the effect of summarizing the expression (or other) values for all the genes on
the pathway by a single number that describes the bulk of the variation and which
mathematically accounts for the correlations in gene expression. This technique has
been used identify differential pathways in leukemia [61] as well as other cancers.

Extending this idea, we proposed a method [62] in which the pathway summary
values and genes not known to be on the pathway were tested for differential cor-
relation. In the “Gene × Pathway Correlation (GPC) Score” method [62], we first
computed pathway summary values based on the first PC for every pathway of in-
terest, yielding for each pathway j a value pj ,m summarizing sample m’s expression
across pathway j ’s genes. For each gene i with expression gi,m in sample m, we
compute the GPC-score as the difference in the correlations of g and p in the case
and control phenotype,

GPC-score = Corm∈Case(pj ,m, gi,m) − Corm∈Control(pj ,m, gi,m) , (8.2)

yielding a gene × pathway matrix of correlation differences for each gene-pathway
pair. The significance of the correlation differences are assessed by randomly permut-
ing the case and control labels. This method has the power to identify new regulatory
interactions (by finding correlated gene-pathway pairs), as well as to detect those
which are altered in disease (by identifying gene-pathway pairs with significant dif-
ferences). An example gene-pathway pair identified in a prostate cancer study is
given in Fig. 8.4.

Although this method was applied in [62] exclusively to mRNA expression data,
the same technique may be applied as an integrative analysis using both mRNA
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Fig. 8.4 GPC-Score identifies differential gene-pathway coexpression for the MSH2 (mismatch
repair) gene and the RNA polymerase pathway for a subset of prostate tumor samples; these samples
corresponded to worse clinical outcomes. (Image: [62])

and other genomic or environmental measurements. For instance, one can apply
it to combined miRNA/mRNA data to search for differentially correlated miRNA-
pathway pairs, thereby identifying miRNAs whose expression modulates the activity
of regulatory networks.

These pathway summaries effectively amount to selecting the n genes on a given
pathway and applying a dramatic dimension reduction to go from the n features down
to a single one. As such, the same caveats about linearity described in Section “Di-
mension Reduction” apply, namely, linear methods cannot account for complex
or oscillatory relationships between genes. Instead, NLDR such as kernel PCA
or Laplacian eigenmaps may be used, providing a more accurate and biologically
representative summary of the expression patterns across a pathway.

Sample Class Prediction and Class Discovery

In the previous section, our goal was to categorize genes into biologically relevant
functional modules, either by grouping the genes into clusters of correlated expres-
sion or by pathway analysis. Here, we turn our attention to categorizing samples
based on complex patterns in the experimental data, with the goal of predicting
the status or outcome for a new sample or discovering sample subclasses that were
previously unknown.
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The gene-level tests described in Section “Generating High-Throughput Data”
yield lists of differentially expressed genes and significantly associated genetic vari-
ants that are ubiquitously reported in genomic studies. However, while these genes
are significantly associated with the phenotype of interest, they may not accurately
classify or predict the outcome for a new sample. To develop predictors from high-
throughput data, machine-learning algorithms are commonly used. These algorithms
are first “trained” against a subset of the data for which the outcomes are known,
and then evaluated for accuracy against an independent “testing” subset (for which
the outcomes are also known). If the classifier performs well in the testing subset,
it may then be validated in a distinct data set. The procedure of dividing the data
into training/testing sets, known as cross-validation, ensures that the models are not
overfit to technical nuances in the data. As the known sample labels (case/control,
exposed/unexposed, etc.) are used to train the machine, these techniques are referred
to as “supervised” classifiers.

The literature now contains many supervised machine learning algorithms; for a
deep and comprehensive exposition, the reader is directed to Hastie and Tibshirani’s
Elements of Statistical Learning [48]. Here, we discuss three powerful techniques:
one designed for continuous data (such as gene expression), one designed for categor-
ical (SNP or sequence) data, and a third that can accommodate a mixture of covariates.
From a systems-biology perspective, the predictive “signatures” obtained from these
algorithms may be used to suggest functional modules, identify epistatic interactions
between genetic variants, or provide an integrative analysis that combines genomic,
epigenetic, and expression data. We also discuss unsupervised methods for class
discovery (i.e., the identification of sample subtypes based solely on the high-
throughput data). Such methods can articulate complex, systems-level similarities
and differences that would be indetectable by association tests alone.

Nearest Shrunken Centroids

Given a set of samples comprising different categories (cases and controls, say),
and a new sample whose categorization is unknown, a natural way to classify it is
to ask which group, on average, the unknown sample is closer to. This approach
is referred to as a “nearest centroid classifier”—the centroids represent the average
gene expressions (or other data) in each sample class, and the new sample is classified
based on the centroid to which it is nearest.

In the context of genome-wide expression profiling, the centroid for each sample
class resides in a very high-dimensional space. If 105 genes have been assayed, the
centroid for the cases is a 105-dimensional vector which gives the average expression
for each gene across all the case samples; likewise the controls. As the vast majority
of these genes are not biologically relevant, it is important to remove those which can
be reasonably assumed to be noise. One powerful approach is to consider not only the
average gene expression, but the variance as well, moving the centroid coordinates
closer to each other by an amount proportional to the variance of the corresponding
genes [63]. This procedure is referred to as “shrinking” the centroids.



168 R. Braun

Scale to 
equal

variance

x

µ’gk= 0  k
Gene is removed!

New centroids
µ’gk > 0  k 

New centroids   
µ’gk= 0, k =

µg1, µg1,

µg2,

µg2,

g1

g2

g1

g2

a

b

c

d

Fig. 8.5 Nearest shrunken centroids classifier. In a, the nearest centroid classifier in two dimensions
is illustrated. There are two classes of samples k, shown as light circles and dark squares. After
scaling each gene (here, g1 and g2) to unit variance within each group k, the unknown sample x

is classified based upon the nearest centroid μ (in this case, the dark squares). (b)–(d) illustrate the
shrinkage of the centroids for a gene g. Centroids μgk , shown as a black line, are moved in the
direction of the center line to a new position μ′

gk . In b, neither cross the center line, and the new
position is retained. In c, the centroid for the light circles crosses the center line and is thresholded
to 0. In d, both centroids cross the center line and are thresholded to 0; because the new centroids
are equal, the gene no longer contributes to the classification

A graphical illustration is given in Fig. 8.5. Mathematically, the nearest centroids
procedure attempts to classify a new sample with gene expression x into group k

such that δk(x) is minimized:

δk(x) = x�Σ−1μk − 1

2
μ�

k Σ−1μk + ln (π k) , (8.3)

where μk are the centroids for each group k, Σ is the covariance matrix (across
all groups), and π k are the prior probabilities that x belongs to each group k. For
instance, when building a classifier to detect a rare disease, π k may be taken from the
disease prevalence in the population, reflecting the low probability that the patient
has the disease of interest.

In the “shrunken” approach [63], the gth entry of the vector μk (i.e., the mean
of gene g in group k) is moved from μgk to μ′

gk by an amount proportional to the
pooled variance sg (plus a slight offset s0) for gene g:

μ′
gk = μgk − Δ(sg + s0)

√
1/nk + 1/n , (8.4)

where nk is the number of samples in group k, n is the total number of samples,
and the degree of shrinkage is controlled by the parameter Δ. Genes that cross
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Fig. 8.6 Application of the nearest shrunken centroids classifier to distinguish cytogenetically
normal cases (“NEG”) from those with BCR/ABL fusion based on gene expression profiles of
patients with acute lymphoblastic leukemia (ALL). The overall misclassification error is shown on
the left, while the misclassification error for the known groups is shown on the right. As the shrinkage
parameter Δ increases, fewer genes remain in the model. Initially, the removal of genes improves
the accuracy as “noisy” genes are removed. Optimal values of Δ, corresponding to the smallest
error observed in the cross-validation, are obtained at Δ = 2.272 (115 genes) and Δ = 2.796 (40
genes). Increasing Δ beyond 3 removes informative genes (only 20 remain at Δ = 3), causing a
dramatic increase in the error rate, particularly amongst BCR/ABL cases

the “overall” centroid across all groups (i.e., those for which μ′
gk − μg ≤ 0) for

all classes k do not contribute to the final model, resulting the removal of high-
variance “noisy” genes from the classifier. The shrinkage parameter Δ controls the
aggressiveness of the removal (higher Δ forces a greater degree of shrinkage and
hence more genes are removed), and is optimized by cross-validation. The data set
is split into multiple training and testing subsets, and samples in the testing subset
are classified according to the shrunken centroids in the training subset. By varying
the value of Δ over multiple training/testing splits, it is possible to choose Δ such
that the error in the testing subset is minimized.

An example applied to gene expression data from well-known study [64] of
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) is given
in Fig. 8.6. Here, the nearest shrunken centroids classifier, implemented in the R
package pamr [65], has been applied to data from 12,625 genes in 95 ALL cases, of
whom 42 are cytogenetically normal and 37 have BCR/ABL fusion. The classifier
was trained using tenfold cross validation with increasing values of Δ ranging from
Δ = 0 (no shrinkage, all genes used) until no genes remained at Δ ≈ 5. As shown in
Fig. 8.6, the misclassification error initially drops as Δ is increased and noisy genes
are removed. The optimum Δ = 2.796 yields an error rate of approximately 13 %
using 40 genes. Further increasing Δ has the effect of removing informative genes,
causing the error rate to rise again. This is particularly true for the BCR/ABL cases,
which are frequently misclassified as cytogenetically normal as Δ is increased above
the optimum.
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Identifying Epistatic Interactions

As with expression profiling by microarray and NGS, genome-wide association stud-
ies (GWAS) have become a powerful and increasingly affordable tool to study genetic
sequence variants associated with disease. Modern GWAS yield information on mil-
lions of single nucleotide polymorphism (SNPs) loci distributed across the human
genome, and have already yielded insights into the genetic basis of complex diseases
[66, 67]; a complete list of published GWAS can be found at the National Can-
cer Institute-National Human Genome Research Institute (NCI-NHGRI) catalog of
published genome-wide association studies [68]. As described above, the data is typ-
ically analyzed by testing the alleles at each locus for association with case status;
significant association is indicative of a nearby genetic variant which may play a role
in the phenotype being studied. Genomic regions of interest may also be investigated
by haplotype analysis, in which a handful of alleles transmitted together on the same
chromosome are tested for association with disease; in this case, the loci which are
jointly considered are located within a small genomic region, often confined to the
neighborhood of a single gene.

Recently, however, there has been increasing interest in multilocus, systems-based
analyses. This interest is motivated by a variety of factors. First, few loci identified
in GWAS have large effect sizes (the problem of “missing heritability”) and it is
likely that the common-disease, common-variant hypothesis [69, 70] does not hold
in the case of complex diseases. Second, single marker associations identified in
GWAS often fail to replicate. This phenomenon has been attributed to underlying
epistasis [71], and a similar problem in gene expression profiling has been mitigated
through the use of gene-set statistics. Most importantly, it is now well understood that
because biological systems are driven by complex biomolecular interactions, multi-
gene effects will play an important role in mapping genotypes to phenotypes; recent
reviews by Moore and coworkers describe this issue well [70, 72]. In addition, the
finding that epistasis and pleiotropy appear to be inherent properties of biomolecular
networks [73] rather than isolated occurrences motivates the need for systems-level
understanding of human genetics.

Several multi-SNP GWAS analysis approaches have been described in the liter-
ature. Thorough reviews are provided in [74, 75], and we briefly describe several
here. Building on the well-established Gene Set Enrichment Analysis [55] method
initially developed for gene expression data, two articles have proposed an extension
of GSEA for SNP data [76, 77] using the χ2 SNP-level statistics. As in expression-
based GSEA, the reliance on single-marker statistics means that systematic yet subtle
changes in a gene set will be missed if the individual genes do not have a strong
marginal association. In the case of a purely epistatic interaction between two SNPs
in a set, the set may fail to reach significance altogether.

As an alternative, the notion that cases will more closely resemble other cases than
they will controls has motivated a number of distance-based approaches for detecting
epistasis. Multi-dimensionality reduction (MDR) has been proposed and applied to
SNP data [78–80]. The technique is conceptually similar to the nearest Shrunken
centroids classifier described above; here, sets of l SNPs are exhaustively searched
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for combinations that will best partition the samples by examining the 3l cells in
that space (corresponding to homozygous minor, heterozygous, and homozygous
major alleles for each locus) for overrepresentation of cases. While this method finds
epistatic interactions without requiring marginal effects and can be structured to in-
corporate expert knowledge, it is limited by the fact the the total number of loci to be
combinatorially explored must be restricted to limit computational cost. To address
this, an “interleaving” approach in which models are constructed hierarchically has
been suggested [79] to reduce the combinatorial search space. A recent and pow-
erful MDR implementation [81] taking advantage of the CUDA parallel computing
architecture for graphics processors has made feasible a genome-wide analysis of
pairwise SNP interactions. Still, MDR remains computationally challenging, such
that expanding the search to other SNP set sizes (rather than restricting to pairwise
interactions) can be impeded by combinatorial complexity if an exhaustive search is
to be performed.

In order to narrow down the combinatorial complexity of discovering SNP sets
using techniques such as MDR, feature selection may be employed. Of particular
importance here is the distance-based approach of the Relief family of algorithms
[82–85]. These are designed to identify features of interest by weighting each feature
through a nearest-neighbor approach. The weights are constructed in the following
way: for each SNP, one selects samples at random and asks whether the nearest
neighbor (across all SNPs) from the same class and the nearest neighbor from the
other class have the same or different values from the randomly chosen sample. At-
tributes for which in-class nearest neighbors tend to have the same value are weighted
more strongly as being more representative of the underlying biology. Because the
neighbor distances are computed across all attributes, Relief-type algorithms can
identify SNPs that form part of an epistatic group and provide a means of filtering
out unpredictive loci.

While these methods have so far been applied to finding small groups of interacting
SNPs, one may instead be interested in whether cases and controls exhibit differential
distance when considering a large number of genes. A multi-SNP statistic has been
proposed in the literature [86–88] for determining whether a new sample of interest is
on average (across a large number of SNPs) “closer” to one population (e.g., cases)
than to another (e.g., controls). The method [86] is motivated by the idea that a subtle
but systematic variation across a large number of SNPs can produce a discernible
difference in the closeness of an individual to one population sample relative to
another. Assuming an individual Y and two population groups F and G with minor
allele frequencies yi , fi , and gi (yi ∈ {0, 0.5, 1}) for SNP i, respectively, we write
the distance metric for SNP i as

DY ,i = |yi − fi | − |yi − gi | , (8.5)

and then consider the normalized mean across all SNPs of interest:

SY = EDY ,i√
VarDY ,i/ l

. (8.6)

An illustration is given in Fig. 8.7.
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Fig. 8.7 Genetic distance
metric (Eqs. 8.5–8.6). If Y is
closer to G than to F for
locus i, DY ,i is positive. If
DY ,i is consistently positive
across all l loci, SY will be so
as well, indicating a tendency
for Y to have more “G-like”
patterns of genetic variation

It is clear from Eqs. 8.5 and 8.6 that individuals Y whose minor allele frequencies
at locus i more closely resemble those of group G will have a positive DY ,i and
vice versa. By chance alone, we would expect DY ,i to be as frequently positive as
negative, yielding SY ≈ 0. However, a slight but consistent tendency to be closer to
one group than another across a set of SNPs will cause deviations in SY (Fig. 8.7).
The significance of SY in Eq. 8.6 may be assessed either parametrically by assuming
normality (only in the case of large l), or by resampling the F and G populations.

While this statistic was originally designed to identify group membership of indi-
viduals who were known to be in either F or G (and hence contributing to fi and gi),
it was later shown in [87] that even out-of-pool breast cancer cases were in general
“closer” to the population of other cases than to the controls, suggesting that the
combination of multiple alleles has the potential to classify new samples. Building
on these ideas, the PoDA [89] technique has been proposed to find pathway-based
SNP-sets that distinguish cases from controls. The hypothesis is that if the SNPs
come from a pathway that plays a role in disease, there will be greater in-class
similarity than between-class similarity in the genotypes for those SNPs, i.e., a
case will show greater genetic similarity to other cases than to controls for the
SNPs on a disease-related pathway, but will be equidistant for the SNPs on a non-
disease-related pathway. In order to identify the significant pathways, a leave-one-out
cross-validation procedure is used: each sample in the study is treated as unknown,
and the pathways with SNPs that most accurately classify the “unknown” samples
are flagged. Because subtle but consistent DY ,i’s will accumulate to give large values
of SY in Eq. 8.6, PoDA can identify multi-SNP sets which differ systematically even
when the single-SNP associations are not strong enough to be significant, making
it useful for detecting epistatic interactions. By restricting the PoDA SNP sets to
those defined based on known relationships (e.g., SNPs in genes sharing a common
pathway), one may incorporate expert knowledge to reduce the search space and
provide biological interpretability.
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Fig. 8.8 Schematic of a decision tree. At each step, a variable and threshold is chosen to optimally
partition the samples based on known labels. The decision rules may operate on continuous variables
(like color here, with blue and red coming closest to the mauve and periwinkle ideals, respectively),
categorical variables (like column, which can take on values 1–5), or booleans (like “bottom,”
which is either true or false). The partitioning stops when the nodes are pure. Variables may be used
multiple places in the tree (such as color here), so long as they are not used along the same branch
twice

Random Forests

The methods described above are designed to be applied to one type of data from a
single experimental modality—continuous data, such as that obtained in expression
profiling, or categorical data, such as that obtained by SNP or sequencing studies.
Now that genome-wide experiments are growing increasingly affordable, it is be-
coming more common for a variety of assays to be run on the same set of samples,
allowing the various measurements to be integrated in the analysis. The Random
Forests algorithm [90] is a decision-tree based classifier that permits multiple types
of data to be mixed a priori, enabling its use as an integrative predictor.

Decision trees are a conceptually simple supervised classifier. At each step, a
variable and threshold is chosen to optimally partition the samples based on known
labels. The decision rules may operate on continuous or categorical variables. The
partitioning continues until either all nodes are pure or all variables have been used.
An illustration is given in Fig. 8.8. Once the rules are established based on labeled
samples (i.e., the tree is trained), the rules may be used to classify a new sample of
unknown status.

Because at every level the decision tree partitions the samples completely, certain
partitions are not possible to achieve. An example is given in Fig. 8.9; here, there is
no way to place the cuts (corresponding to decision rules) to isolate the sample in
the center and achieve pure partitions.

In order to address this issue, the “Random Forests” classifier was proposed [90].
As in consensus clustering (described above), in Random Forests, we also randomly
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Fig. 8.9 Possible and impossible decision tree partitions. On the left, a possible partition (at levels
1, 2, and 3 in the decision tree) is shown; on the right, a partition that cannot be achieved with the
classical decision tree algorithm

subset the data, selecting samples on which to grow the tree using a random sample
of features (gene expression, SNP alleles, clinical covariates, or any other available
information). The procedure is repeated for many different samplings, yielding a
“forest” of decision trees, each trained on a random subset of the data (in much the
same way that one obtains a multitude of clusterings of randomly subsetted data in
consensus clustering). New samples are then classified according to a majority vote
of the trees.

As the goal here is to predict rather than cluster, the measure of accuracy is not how
well-clustered the selected samples are (as it is in consensus clustering), but how well
the decision tree predicts the status of the samples not selected in the random sample.
For each tree, one can compute the the prediction accuracy for the “out of bag” (OOB)
samples—those not used in the training of that particular tree. The average OOB error
rate is considered to be a good estimate of the testing error, since each OOB error
rate computation is based on samples not used in that particular tree. The OOB error
rate is also used to tune the size of the random subset of features. The more features
are kept, the more similar the trees will be to one another (eventually converging to
identical trees), leading to a forest that may be overfit. The smaller the size of the
feature subset, the more diverse the trees are, but each tree will exhibit worse per-tree
performance due to the lost information. By varying the size of the feature subset
and examining the OOB error rate, these two competing forces may be optimally
balanced to yield a forest of trees that are neither underdetermined nor overfit.

Random forests have a number of useful features as an integrative predictor:
it can incorporate different data modalities, is invariant to transformations of the
data, can handle missing data easily, has a tuning mechanism to prevent overfitting,
and provides an estimate of its accuracy. In addition, by looking at the purity of
the partition each time a particular feature is used across the entire forest of trees,
one may obtain a measure of its importance, yielding a ranked list of discriminatory
markers. The ranked list may then be used as an input to pathway enrichment analyses
(see Section “Pathway Analysis”), providing further systems-level insight [91]. This
approach both allows one to combine data types in the pathway analysis and indicates
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pathways that are not only “hit” by differential genes but by those that are predictive
of the biological outcome. Alternatively, pathway summary statistics (as described
in Section “Pathway Analysis”) may be used as the features input to the Random
Forests algorithm.

These features make Random Forests a powerful and highly accurate [92–94]
algorithm for generating predictive models. Recently, it has been applied to public
expression data as an in-silico screen to discover agents that eradicate leukemia
stem cells [95]; applied to a SNP study to identify genomic variants that govern
progression-free survival of myeloma patients [96]; and to elucidate transcription
factor activity in hematopoietic stem cell differentiation [97].

Class Discovery

The prediction algorithms described above rely upon supervised training using a set
of samples for which the true classification is known. However, as with clustering,
our knowledge about the true structure of the data may be incomplete in the sense
that there exist subtypes which are either unknown or not reflected by the training
sample labels. In particular, if a set of samples comprise a single clinical phenotype
but span several different molecular subtypes, classifying a new sample based on
molecular data may be highly error-prone owing to the lack of a distinct pattern in
the training set. As a result, it is often of interest to attempt to discover any existing
molecular subtypes present in the data. To this end, the clustering and cluster-number
determination algorithms described in Section “Identifying Functional Modules”
may be applied to samples (as well as to genes) to discover the optimal number of
sample clusters. As with genes, it is important to recognize that these clusters may
not be linearly separable, and therefore nonlinear techniques are likely to be more
accurate [98]. The application of these techniques may then be followed by training
a supervised classifier on the detected molecular subtypes. (Note that if a nonlinear
clustering method is used, it is necessary to ensure the appropriate nonlinear out-of-
sample extension is used to project the test samples onto the nonlinear space defined
by the training samples, as discussed in [44].)

The Partition Decoupling Method

One approach for identifying molecular subtypes at progressively finer scales with-
out imposing linearity constraints is the partition decoupling method (PDM) [26, 30].
The PDM is able to reveal relationships between samples based on multigene expres-
sion profiles without requiring that the genes be differentially expressed (i.e., without
requiring the samples to be linearly separable in the gene-expression space), as il-
lustrated in Fig 8.10, and has the power to reveal relationships between samples at
various scales, permitting the identification of phenotypic subtypes. The PDM con-
sists of two iterated components: a spectral clustering step, in which the correlations
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Fig. 8.10 Expression levels for three oscillatory yeast cell-cycle genes from two different treat-
ments: +, elutriation-synchronized samples; �, CDC-28 synchronized samples. The samples have
different amplitudes of expression oscillation, leading to a “bullseye” pattern (note that the means
for each gene in the two groups is approximately the same). Cluster assignment for each sample is
shown by color for linear k means clustering (red/black) above the diagonal, and nonlinear spectral
clustering (blue/green) below the diagonal. Note the difference in accuracy. (Image: [30])

between samples in the high-dimensional feature space are used to partition samples
into clusters, followed by a scrubbing step, in which the projection of the data onto
the cluster centroids is subtracted so that the residuals may be clustered. As part of the
spectral clustering procedure, a low-dimensional nonlinear embedding of the data
is used, both reducing the effect of noisy features and permitting the partitioning of
clusters with non-convex boundaries. The clustering and scrubbing steps are iterated
until the residuals are indistinguishable from noise as determined by comparison to
a resampled null model. This procedure yields “layers” of clusters that articulate
relationships between samples at progressively finer scales.

The PDM has a number of satisfying features. The use of spectral clustering
allows identification of clusters that are not necessarily separable by linear surfaces
(such as the “bullseye” pattern in Fig. 8.10), permitting the identification of complex
relationships between samples. This means that clusters of samples can be identified
even in situations where the genes do not exhibit differential expression, a trait that
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makes it particularly well-suited to examining gene expression profiles of complex
diseases. The PDM employs a low-dimensional embedding of the feature space,
reducing the effect of noise in the data. As the data itself is used to determine both
the optimal number of clusters and the optimal dimensionality in which the feature
space is represented, the PDM provides an entirely unsupervised method for class
discovery, without relying upon heuristics. Importantly, the use of a resampled null
model to determine the optimal dimensionality and number of clusters prevents
clustering when the geometric structure of the data is indistinguishable from chance.
By scrubbing the data and repeating the clustering on the residuals, the PDM permits
the resolution of relationships between samples at various scales; this is a particularly
useful feature in the context of gene-expression analysis, as it permits the discovery
of distinct sample types, subtypes, etc.

These features make the PDM a powerful tool for genomic data analysis. As we
demonstrated in [30] and illustrated here in Fig. 8.11, PDM detects with near-perfect
accuracy both the phenotype and exposure groups in a study of radiation response;
application to a leukemia data set with “incomplete” sample labeling demonstrated
the PDM’s ability to detect ALL subtypes simply from the expression data alone,
with higher accuracy than other algorithms.

As described in [30], the accuracy of the PDM can be applied to gene subsets
defined by pathways to identify mechanisms that permit the partitioning of pheno-
types. In Pathway-PDM, one subsets the genes by pathway, applies the PDM, and
tests whether the unsupervised PDM cluster assignments reflect the known sample
classes. Pathways that permit accurate partitioning contain genes with expression pat-
terns that distinguish the classes, and may be inferred to play a role in the underlying
biology. As the PDM does not require the pathway’s constituent genes be differen-
tially expressed, complex regulatory relationships within pathways may be detected
(such as those giving rise to the pattern seen in Fig. 8.10). It was further demonstrated
in [30] that this approach, due to its increase accuracy, is a useful meta-analytical
tool that can improve cross-study concordance, allowing more robust findings to be
culled from existing high-throughput datasets.

Network-Based Approaches

Further refinements to the analyses described here are achieved by examining the
structure of interaction networks, rather than treating pathways as simple collections
of genes. Network-based analyses fall into two broad categories: statistical analyses
of high-throughput data in the context of putative interaction networks, and the
inference of network topology from the data itself. A comprehensive introduction to
network analysis in general may be found in [99]; case studies of its application to
gene expression data are presented in [7], and a review of graph-theoretic concepts in
the context of biology is provided in [100]. Here, we discuss a number of promising
techniques.
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Fig. 8.11 Multilayered, highly accurate unsupervised class discovery using PDM. Left, two “lay-
ers” of clusters correspond to the radiation exposure (UV light, Ionizing radiation, Mock) and the
case (high-RS) group (versus three control groups) in a radiation sensitivity study. The number of
clusters in each layer is determined by the PDM itself from the data yielding three clusters in the
first layer (top left panel) and two in the second (center left panel); the resulting classification is
near-perfect discrimination of both phenotype and exposure (bottom left panel). Right, we see the
clustering for leukemia data from [64]. The PDM automatically detects three clusters; in the top
panel, comparison against the provided labels (AML/ALL) shows that the ALL group has been split
by PDM; in the lower panel, it is revealed that this corresponds to a subtype difference (ALL-B,
ALL-T ), demonstrating PDM’s ability to identify sample subtypes even when they may be unknown
or unannotated in the data. (Image: [30])

Network Statistics

To incorporate known interaction network topology with traditional pathway analy-
ses (Section “Pathway Analysis”), several approaches have been proposed. These
methods are based on gene-specific data (either the raw data itself or p-values
derived from gene-level statistical tests) overlayed on biological networks obtained
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from databases such as Pathway Interaction Database [49], KEGG [50], Reactome
[51], InnateDB [52], etc.

The relevance of network structure has long been appreciated. In [101], the authors
presented systematic mathematical analysis of the topology of metabolic networks of
43 organisms representing all three domains of life, and found that despite significant
variation in the pathway components, these networks share common mathematical
properties which enhance error-tolerance. In [102], the authors compared the lethality
of mutations in yeast with the positions of the affected protein in known pathways, and
found that the biological necessity of the protein was well modeled by its connectivity
in the network.

Based on such observations, Ideker et al. [103] proposed a method to identify
subnetworks of pathways whose genes were enriched for highly significant genes. As
the combinatorial problem of finding the maximum-scoring subnetwork is NP-hard
(and hence computationally unfeasible for large networks), the authors introduced a
simulated-annealing approximation. A related method, described in [104], searches
for genes for which differential expression is present within the subnetwork of genes
surrounding it. A more robust scoring approach improving upon [103] has recently
been proposed [105], and is implemented in R/BioConductor as BioNet [106].
These techniques may be used to indicate subsets of interactions in a pathway that
appear to be the most critical, and could be targeted in functional studies.

However, like non-network enrichment analyses (Section “Pathway Analysis”),
these network-based enrichment analyses [102–104] rely upon the constituent genes
displaying independent association with the phenotypes of interest and will fail to
capture networks in which the individual gene expressions have similar distribu-
tions but altered coexpression characteristics. As an alternative, correlation- and
co-expression-based approaches have been proposed in which the edges connecting
two interacting genes are examined in the context of the surrounding network. In
[107], the authors proposed an “activity” and “consistency” score for each interaction
in a pathway. Beginning with a list of molecule input and outputs for every interaction
in a biological pathway, Efroni et al. [107] defined the “activity” of the interaction as
the joint probability of finding the interaction’s genes in an overexpressed state and
defined the “consistency” of the interaction as the probability of overexpression in
the output conditioned on the activity of the inputs. Similarly, in ScorePAGE [108]
the similarity between each pair of genes in a pathway is computed (e.g., correla-
tion, covariance, etc.) and is averaged over the pathway weighted by the number of
reactions needed to connect the two genes.

More recently, Signaling Pathway Impact Analysis (SPIA) [109, 110] was pro-
posed. SPIA incorporates changes in gene expression with the types of interactions
and the positions of genes in a pathway, defining a “perturbation factor” for each
gene as the sum of its measured change in expression and a linear function of the
perturbation factors of all the other genes in a pathway. Compared to GSEA [55],
SPIA was found to have increased statistical power to detect altered pathways [110].
Similarly, the NetGSA method [111] also models each gene as a linear function of
other genes in the network, but in addition accounts for a gene’s baseline expression
by representing it as a latent variable in the model. Both SPIA and NetGSA have
been implemented as R BioConductor packages [13].
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Network Inference

In the methods outlined above, pathway network descriptions are obtained from
curated databases and used as a framework in which to analyze transcriptomic data at
the systems level. While this enables existing biological knowledge to be incorporated
into the analysis, it also has the drawback of presuming that the network of regulatory
relationships is accurately represented by the pathway database. A complementary
approach involves the inference of regulatory networks from the data without making
assumptions about the underlying graph. Network inference methods are thus able
to identify previously unknown relationships between genes, as well as incorporate
elements (such as microRNAs) that are not represented in pathway databases.

Inference of the underlying network structure given a set of cell states [112–120]
is a formidable task. Although some success in the reconstruction of large-scale gene
regulatory networks (GRNs) has recently been achieved in some cases [119–123], the
systematic reconstruction of large-scale networks describing regulatory function and
direct interactions of genes from expression or other data remains a major challenge in
systems biology. With the increasing feasibility of genome-wide assays, an increasing
amount of systems biology research is concerned with attempting to infer GRNs
from large scale data sets based upon correlations between expression levels under
various experimental conditions. Methods developed for this task are faced with a
fundamental difficulty: while direct regulatory relationships between genes typically
yield a high degree of correlation in their expression, the reverse is not necessarily
true. For instance, two non-interacting genes may share the same upstream regulator,
causing their expression to be correlated despite not sharing a direct link. On a global
scale, GRNs are known to be sparse, i.e., direct regulatory relationships are a small
fraction of all possible connections, but correlations can be non-vanishing between
any pair of genes.

Increasingly sophisticated techniques have been devised to tackle this difficulty
and attempt to infer the topological properties of GRNs from correlations in gene
expression [112, 119]. Prominent examples are simple thresholding techniques [118],
the use of partial correlation [116], and mutual information [113]. It should, however,
be noted that an essential drawback of these methods is the reliance on arbitrary
thresholds or related external parameters that are not defined by the system, and the
quality of inferences based on these techniques often depends sensitively on these
parameters. For instance, choosing correlation thresholds too high or too low yields
false negatives or false positives, respectively.

Reconstructed networks may also be compared across phenotypes to identify
novel interactions. In [124], the authors describe a method in which pairs of genes
connected by a common edge in the pathway network were examined for correlation
in tumor and normal gene expression data in multiple cancers. Gene–gene edges
with correlations that exceeded a threshold were kept, thus forming a correlation
network in tumors and a separate correlation network in normal cells. Differences
in the resulting correlation networks were then assessed through a permutation test,
indicating pathways with significant differences in gene correlation. (This method
could be regarded as an network based extension of [62, 125, 126].)
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Recently, these network inference techniques have played a role in reverse en-
gineering the regulatory networks of healthy human B cells [127] and chronic
lymphocytic leukemia cancer cells [128], providing a richer description of the
systems biology of blood. Because network inference approaches do not rely on
assumptions about the pathway architecture, they are exceptionally well-suited to be
applied to integrated data sets (e.g., combining both mRNA and microRNA expres-
sion data) to identify complex regulatory relationships. In a recent example, network
inference techniques have revealed how the networks of miRNAs and target genes
are reprogrammed in leukemia [129], further enriching our understanding of the
systems biology underlying healthy and diseased hematopoietic processes.

Future Directions

Today, the feasibility of genome-wide assays, along with thousands of existing se-
quenced genomes [130] and hundreds of thousands of existing expression profiles
[131] publicly available, provide exciting avenues for the investigation of develop-
mental and disease processes in blood. To fully harness the power of this information,
it is necessary not only to analyze the data at the gene-level, but also to examine it at
the systems level. Driven by the abundance of experimental data, novel computational
tools for systems-level investigations have been devised and implemented (includ-
ing pathway enrichment analyses, methods for identifying functional gene-sets, and
techniques for inferring regulatory networks), enabling a variety of complementary
analytical techniques to be applied.

At the same time, a number of significant methodological challenges remain
an area of active research, including improving the precision and accuracy of the
knowledge contained in gene and pathways annotation databases, developing more
efficient algorithms for combinatorially bound problems, and improving the robust-
ness of network analysis and enrichment techniques. Just as the analytical methods
will benefit experiment, so too will new experimental data inform methodological
advances. We expect that these mutual advances will further improve the ability
of computational and mathematical methods to model biological processes, predict
clinical and experimental outcomes, and suggest therapeutic targets.
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Chapter 9
Developing a Systems-Based Understanding
of Hematopoietic Stem Cell Cycle Control

Ka Tat Siu and Alex C. Minella

Abstract To maintain hematologic homeostasis, hematopoietic stem cells (HSCs)
undergo multiple rounds of cell division throughout their lives. Under steady-state
conditions, adult HSCs are relatively quiescent and reside primarily in hypoxic bone
marrow niches. In response to physiologic stimuli, normal HSCs either reenter the
cell division cycle or remain in quiescence. A large body of work has focused on
understanding the mechanistic underpinnings balancing differentiation against self-
renewal programs in cycling HSCs. Numerous reports from genetically engineered
mouse models harboring mutations in key pathways governing proliferation control,
DNA damage responses, and metabolic regulation indicate the critical roles these pro-
cesses play in determining HSC self-renewing versus blood-lineage-reconstituting
divisions. In this chapter, we integrate these findings and highlight the cellular
networks that control HSC function and fitness by regulating HSC cycling.

Keywords Hematopoietic stem cell · Hematopoietic progenitor cell · Cell cycle ·
Self-renewal · Differentiation · Quiescence · Metabolism · Aging · DNA damage

Introduction

The lifelong regeneration of blood cells is sustained by a small population of rel-
atively quiescent hematopoietic stem cells (HSCs), which infrequently enter cell
cycle to either self-renew or give rise to multi-potential progenitor cells. These pro-
genitor cells undergo more rapid proliferation to produce cells with progressively
greater lineage restriction, ultimately allowing repletion of terminally differentiated
blood and bone marrow cells that are short-lived. HSCs are found predominantly
in bone marrow niches, where most are maintained in a quiescent state [1]. Under
conditions of hematopoietic homeostasis, the size of the adult HSC pool remains
relatively constant, with striking evolutionary conservation of absolute stem cell
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numbers demonstrated in mammals from mouse to man [2, 3]. A major goal of
molecular hematology has been to determine the critical genes that regulate the ma-
jor outcomes of HSC mitotic divisions: towards the generation of two new HSCs
(symmetric, self-renewing) or one HSC and one hematopoietic progenitor cell (HPC)
with multi-lineage potential (asymmetric). The objectives of these studies are both
to understand fundamental HSC biology and discover mechanistic underpinnings of
bone marrow stem cell diseases, including the myelodysplastic syndromes (MDS)
and aplastic anemias.

In experimental models, purported HSCs must fulfill the functional criteria that
define adult tissue stem cells, namely long-term self-renewal and multi-lineage re-
constitution capabilities. Although the functional characteristics of HSCs have long
been well defined, the strategies for enrichment of bone marrow cells for highly puri-
fied HSCs have been refined considerably over the last decade. Phenotypic isolation
of nearly pure populations of HSCs is now made possible with the use of signaling
lymphocytic activation molecules (SLAM), including CD48 and CD244 (for nega-
tive selection) and CD150 (for positive selection) [4]. These SLAM markers have
been demonstrated to remain stably expressed across a variety of conditions such as
mobilization, development, aging, and hematopoietic reconstitution, making them
optimal markers of HSCs [5, 6]. The “gold standard” for assessing HSC function in
vivo involves the use of serial transplantation assays, which require the transfer of
purified HSCs (or HSC-enriched donor bone marrow cells) into irradiated recipient
animals and the subsequent reiterative transfer of engrafted, donor-derived bone mar-
row cells from primary to secondary recipients and beyond [7]. The rigorous nature
of these experiments has necessitated a “reductionist” approach to studying the reg-
ulation of HSC self-renewal and reconstitution capacities, whereby the expression
of genes in relative isolation is perturbed, followed by exhaustive characterization
of functional defects in self-renewal and/or multi-lineage reconstitution associated
with this manipulation. In the following sections, we highlight a number of stud-
ies representing the accumulated knowledge from over a decade’s worth of work in
mouse models now permitting the conceptualization of networks connecting the reg-
ulation of HSC cycling to cellular programs governing metabolism, differentiation,
and self-renewal.

HSC Cycling Dynamics

Relative quiescence is a hallmark feature of adult HSCs. TheWeissman group in 1999
reported that under steady-state conditions, approximately three-quarters of bone
marrow HSCs with long-term reconstitution potential (LT-HSCs) are quiescent. Of
those transiting the mitotic cell cycle, the majority are found in G1-phase, with only
about 5 % of all LT-HSCs identifiable within S/G2/M-phases [8]. Calculations from
in vivo labeling experiments using the thymidine analogue 5-bromo-2-deoxyuridine
(BrdU) led to conclusions that mouse HSCs periodically enter and exit the cell
cycle, with the entire HSC pool turning over every 57 days [8]. In later experi-
ments employing limiting dilution competitive reconstitution assays in which donor
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LT-HSCs were sorted into G0 (quiescent), G1, and S/G2/M subpopulations, Weiss-
man and colleagues showed that the long-term repopulating capacity of HSCs resides
in the quiescent fraction [9]. This result supports the concept that bone marrow
HSCs are heterogeneous with respect to their functional capability, which intrinsi-
cally is coupled to their proliferative status. This conclusion is further supported by
work performed by the Trumpp group, who applied mathematical modeling to data
from long-term BrdU label-retaining assays. In this work, they concluded that two
distinct subsets of HSCs are contained within the lineage-negative, Sca-1-positive,
c-kit-positive, CD34-negative, CD48-negative, CD150-positive, BrdU-retaining cell
population: one population of actively dividing HSCs that turns over every 36 days
and another population of dormant HSCs, which divides every 145 days [10]. Their
modeling further predicts that dormant HSCs only divide five times during the lifes-
pan of a normal C57BL/6 mouse [10]. Serial transplantation assays revealed critical
functional differences between the two HSC populations. Dormant HSCs retained
long-term self-renewing capacity, whereas cycling HSCs had limited self-renewing
potential [10]. The investigators further hypothesized that the dormant HSCs func-
tion chiefly to respond to bone marrow injury. Upon hematologic stress induced by
5-fluorouracil (5-FU) treatment, dormant HSCs reenter the cell cycle to generate
proliferative progenitor cells, which give rise to mature cells to replenish the bone
marrow space [10]. Finally, BrdU pulse-chase studies of 5-FU treated HSCs confirm
that injury-activated HSCs are able to return to dormancy after reestablishment of
hematologic homeostasis [10]. Thus, these findings have several important impli-
cations for HSC biology. First, they support the hypothesis that limiting rounds of
mitoses is crucial to the maintenance of the HSC pool [11]. Second, they provide
functional evidence for the existence of a dormant population of HSCs that acts as
a reservoir to maintain lifelong hematopoiesis. Lastly, these data demonstrate that
self-renewing HSCs are highly responsive to external stimuli and are able to re-
versibly switch from dormant to proliferative states during steady state and stress
hematopoiesis [10].

Regulators of HSC Proliferation

A complex network controlling quiescence and self-renewal appears to be required
for maintenance of a stable HSC pool, responsive to potential hematologic stress
throughout an organism’s lifespan. Some transcriptional regulators, such as Bmi-1
and MEF/ELF4, oppose quiescence programs to promote HSC self-renewal. The
polycomb group protein Bmi-1 is preferentially expressed in HSCs compared to dif-
ferentiated cells [12] and plays a central role in HSC self-renewal. Bmi-1 actively
represses the Ink4a locus, which encodes the cyclin D-cdk4/6 inhibitor, p16Ink4a, and
the tumor suppressor, p19ARF that positively regulates p53 [13]. Loss of Bmi-1 results
in upregulation of p16Ink4a and p19ARF, and Bmi-1-deficient mice die of bone marrow
failure due to exhaustion of HSCs within 2 months of birth [12, 14]. Deletion of both
p16Ink4a and p19ARF rescues the hematopoietic defects in Bmi-1-deficient animals
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[12, 15], suggesting the critical activities of Bmi-1 in maintaining HSC self-renewal
are restraining p16Ink4a and p19ARF expression. Myeloid elf-1-like factor (MEF),
also known as ELF4, is a member of the E26 transformation-specific (ETS) family
of winged helix–turn–helix transcription factors [16]. Conditional deletion of Elf4
in hematopoietic cells leads to accumulation of quiescent HSCs in the bone mar-
row [17]. MEF/ELF4-deficient bone marrows also demonstrate reduced sensitivity
to myelotoxic stress induced by 5-FU, possibly consistent with an HSC-protective
effect of enforced quiescence. Furthermore, MEF-deficient HSCs outnumber wild-
type HSCs in competitive repopulation assays, consistent with increased overall
fitness [17]. These results support the conclusion that quiescent HSCs are intrinsi-
cally more effective than cycling HSCs in long-term engraftment assays [9] and that
MEF promotes HSC self-renewal by facilitating entry of quiescent HSCs into the
cell cycle. Taken together, these data underscore the importance of limiting cell cycle
reentry in maintaining lifelong hematopoiesis.

Disruption of HSC quiescence programs may promote HSC exhaustion. Deple-
tion of hematopoietic stem and/or progenitor cells (HSPCs) resulting from ablating
a single cell cycle regulator was first reported by the Scadden group using p21Cip1

knockout mice [18]. These knockout mice demonstrate enhanced proliferation of
lineage-negative bone marrow cells, at the expense of their self-renewal capacity,
manifested as progressive bone marrow failure and death starting with tertiary trans-
plantation [18]. The role of p21 as a major regulator of HSC quiescence was revisited
in a different model, in which HSCs from mice bearing a deletion of the Gfi-1 tran-
scriptional repressor were studied. In Gfi1-null mice, Orkin and colleagues show
HSPCs are increased in number compared to wild-type controls [19]. In addition,
Gfi-1-deficient HSPCs are defective in repopulating bone marrows of lethally ir-
radiated recipients in transplantation assays and show reduced long-term fitness in
contributing to erythropoiesis in chimeric animals. Thus, Gfi-1 promotes HSPC
quiescence and preserves HSPC function, findings the investigators suggest are as-
sociated with its positive regulation of p21 expression. Conditional inactivation of
another member of the Cip/Kip family of cyclin-dependent kinases inhibitors (CKIs),
p57Kip2, in hematopoietic cells leads to a reduction in the quiescent HSC pool size
and impaired repopulating capacity after transplantation [20]. Concomitant deletion
of either p21Cip1 or p27Kip1 exacerbates the HSC abnormalities of p57Kip2-deficient
mice [20, 21], and knocking the p27Kip1 gene into the p57Kip2 locus reverses the
defects in multi-lineage reconstitution and HSPC pool size associated with p57 loss
[20]. These data indicate that p57Kip2 is an important regulator of HSC quiescence
and also that functional redundancy exists among the Cip/Kip proteins in HSCs [11].

Similarly, Retinoblastoma (Rb) family proteins show functional redundancy in de-
veloping and adult tissues. Allelic disruption of all three Rb family members—pRb,
p107, and p130 triple knockout (TKO)—in adult mice results in a cell-autonomous
myeloproliferative phenotype [22]. This phenotype is accompanied by increased
HSPC proliferation and impaired HSC self-renewal, as evidenced by the failure
of TKO HSCs to support long-term engraftment. Thus, Rb family members coop-
eratively maintain HSC quiescence. Finally, the Morrison and Li groups showed
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conditional deletion of the Pten tumor suppressor gene in hematopoietic cells in-
creases HSC cell cycling and results in depletion of HSCs. Pten-deficient HSCs are
also defective in multi-lineage reconstitution [23, 24], and rapamycin, a pharmaco-
logical inhibitor of the mTOR pathway, rescues the multi-lineage reconstitution HSC
defects associated with Pten loss [23]. Therefore, PTEN maintains HSC quiescence
through modulating mTOR signaling.

Although the aforementioned studies may lead one to conclude that hyper-
proliferation is intrinsically linked to stem cell exhaustion, other experimental models
seem to contradict this notion. For one, loss of the p53 transcription factor and tumor
suppressor protein drives HSCs into the cell cycle, actually resulting in enhanced
HSC self-renewal, at least through two rounds of transplantation [25–27]. Thus, p53
normally maintains HSC in a quiescent state and restrains self-renewing cell divi-
sions. Enhanced self-renewal of p53-null HSCs, however, may be associated with
diminished multi-lineage reconstitution capacity [25, 27]. On the other hand, results
from the Dick laboratory demonstrate human HSPCs with reduced p53 expression
treated with moderately dosed ionizing radiation have enhanced self-renewal kinet-
ics in primary transplants, compared to p53-intact control cells, though the former
ultimately exhaust after secondary transplantation with increased DNA damage foci.
Thus, p53 may not only restrict HSC self-renewal by promoting quiescence but
also regulate long-term HSC function by enabling repair of and resolution of DNA
damage foci [28]. Interestingly, data from the Nimer group suggest p21Cip1 is not
the major mediator of p53-dependent HSC quiescence [22]. Rather, they nominate
Necdin and Gfi-1 as major mediators of the p53-dependent quiescence program [26].

Loss of p18Ink4c leads to an increased numbers of actively cycling HSPCs, while
competitive repopulation assays show that p18Ink4c-deficient HSPCs outnumber their
wild-type counterparts after secondary transplantation [29, 30], suggesting that HSC
self-renewal function is not impaired. Similarly, HoxB4 overexpression in HPCs
enhances both in vivo and ex vivo expansion of murine and human HSCs [31–33].
Moreover, HoxB4-transduced bone marrow progenitor cells exhibit a competitive
advantage over wild-type cells in competitive reconstitution assays, suggesting that
HoxB4-associated HSC hyper-proliferation is not coupled to a functional deficit
[31, 33]. Finally, the Passegué group reported a Junb knockout mouse model in
which increased HSC proliferation was not found accompanied by evidence of stem
cell exhaustion [34]. The authors attribute HSC hyper-proliferation in their model
to disruption of Notch- and TGF-β-dependent signaling, possibly rendering HSCs
insensitive to proliferation limits. Thus, under certain conditions HSC proliferation
may be uncoupled from self-renewal. Interestingly, in contrast to its effect in HSCs,
Junb loss induces aberrant expansion of myeloid progenitors and the development of
myeloproliferative disease originating from the HSC compartment [34]. Since HSCs
must transit through the cell cycle to undergo either self-renewal or differentiation,
the identification of regulators unique to these divergent fates will further illuminate
the mechanistic relationship between HSC proliferation and functionality.
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Interplay Between HSC Proliferation and Metabolic
Regulatory Controls

Adult HSCs are primarily localized in specialized microenvironments known as bone
marrow niches. These niches are relative hypoxic [35]. One advantage for localizing
quiescent HSCs to a hypoxic niche is to minimize accumulation of reactive oxygen
species (ROS), which could promote premature differentiation and exhaustion [36].
Tolerance of HSCs to hypoxic microenvironments is attributable to induction of
hypoxia-inducible factor-1α (HIF-1α) protein, a master transcriptional regulator
of the hypoxic response [37] that promotes a cellular switch from mitochondrial
oxidative metabolism to glycolysis [38]. The Suda laboratory identified a key
role for HIF-1α in the regulation of HSC quiescence by demonstrating HIF-1α

deficiency results in loss of HSC quiescence and exhaustion following various
stress conditions including bone marrow transplantation, 5-FU-induced injury,
and aging, in a p16Ink4a and p19Arf -dependent manner [39]. Overexpression of
Bmi-1, which suppresses the Ink4a gene products (p16Ink4a and p19Arf ), reverses
the senescence-like HSC exhaustion phenotype associated with HIF-1α loss [39].
These results suggest that HIF-1α protects HSCs against cellular senescence.

Recently, the Bardeesy, DePinho, and Morrison laboratories independently
demonstrated that liver kinase B1 (LKB1), a master regulator of cellular metabolism,
promotes HSC quiescence by restricting cell cycle entry [40–42]. Lkb1, a known
tumor suppressor gene, encodes a serine–threonine kinase that restricts cell growth
under energy-deprived conditions [43]. Lkb1 inactivation in adult mice results in loss
of HSC quiescence followed by rapid depletion of HSCs and a marked reduction of
their repopulating capacity [40–42]. Transcriptome analysis of Lkb1-null HSPCs re-
veals significant enrichment of genes involved in G1/S-phase cell cycle checkpoint
regulation and reduced expression of peroxisome-proliferator-activated receptor γ

(PPARγ) co-activators PGC-1α and PGC-1β, master transcriptional regulators of
mitochondrial biogenesis [40, 44]. These results are consistent with the observations
that Lkb1-null HSPCs display enhanced cell cycling and decreased mitochondrial
membrane potential and mitochondrial DNA content [40]. Another report from the
Pandolfi group demonstrates a role for lipid catabolism in the maintenance of HSCs.
Here, investigators show that promyelocytic leukemia (PML)-PPAR-δ-fatty acid ox-
idation (FAO) pathway maintains HSC function by sustaining ATP levels in HSCs
and promoting asymmetric division of HSCs [45].

Elevated ROS levels can promote DNA damage and activation of senes-
cence mechanisms in the HSC compartment [46]. Importantly, studies of ataxia-
telangiectasia-mutated (ATM)-deficient mice demonstrated a role for ROS in the
regulation of HSC function. The Atm gene encodes a serine–threonine kinase that
maintains genomic stability by activating cell cycle checkpoints in response to DNA
double-strand breaks (DSBs) [47, 48]. Ionizing radiation induces ATM-dependent
cell cycle arrest in HSCs, followed by engagement of DNA repair mechanisms [49].
Atm deletion leads to ROS-mediated depletion of HSCs and progressive bone mar-
row failure in older mice [50]. Accumulation of ROS in ATM-null HSCs activates the
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p16Ink4a–Rb pathway, resulting in suppression of their multi-lineage reconstitution
activity [50]. Importantly, treatment of Atm-null mice with the antioxidant N-acetyl-
cysteine (NAC) improves self-renewal and reconstitution of their HSCs [50, 51]. Like
ATM, Forkhead box-O (FoxO) transcription factors are key modulators of oxidative
stress in the hematopoietic system. FoxO3a deficiency results in elevation of ROS
in HSPCs and reduced quiescence associated with an increase in cells in the G2/M-
phase [52, 53]. Additionally, mice engineered to express conditional alleles of Foxo1,
Foxo3, and Foxo4 show increased HSPC proliferation and reduced HSC numbers
following inactivation of the three alleles, phenotypes reversed by NAC treatment
[54]. Thus, the FoxO proteins cooperatively preserve HSC quiescence at least in
part by mitigating ROS accumulation. Together, the reports summarized in this sec-
tion strongly implicate a direct link between cellular metabolism and hematopoietic
homeostasis.

Aging as a Paradigm for Systems-Based Understanding of HSC
Cycle Regulation

Aging is characterized by reduced ability to regenerate tissues following damage or
failure to maintain tissue homeostasis after exposure to stress [55]. Thus, studying
stem cell exhaustion phenotypes should enhance our understanding of age-related
HSC diseases, including the MDS and leukemias. For example, conditional inactiva-
tion of Fbxw7, which encodes the substrate-binding domain of the SCFFbw7 ubiquitin
ligase that promotes destruction of multiple regulators of cell proliferation, including
c-Myc, Notch, cyclin E, and c-Jun [56], impairs HSC quiescence and repopulating
capacity in transplantation experiments and causes premature loss of HSCs as a re-
sult of p53-dependent apoptosis [57, 58]. In the context of p53 deletion, Fbw7 loss
in hematopoietic progenitors promotes development of T cell acute lymphoblas-
tic leukemia (T-ALL) [57, 59]. Thus, Fbw7 appears to constitute a barrier against
both HSC exhaustion and leukemogenesis. Moreover, p53 mutation may be subject
to positive selective pressure in hematopoietic progenitors with impaired SCFFbw7

activity.
Accumulated DNA damage has been proposed as one underlying mechanism

causing age-associated stem cell dysfunction [60]. Although quiescent HSCs possess
intrinsic barriers against genomic instability, including their utilization of glycolytic
metabolism reducing the risk of ROS accumulation [54], the quiescent state may
also pose unique risks to HSC genomes. For one, quiescence mandates that HSCs
use the error-prone nonhomologous end joining (NHEJ) pathway to repair DNA
damage, which could lead to chromosomal rearrangements [49, 61]. Studies of aged
mice deficient in nucleotide excision repair (NER), NHEJ, and telomere maintenance
pathways reveal that DNA damage accrual severely impairs the capacity of HSCs
to self-renew and repopulate the hematopoietic system under conditions of stress
[62]. These results are consistent with the observation that aged mice possess in-
creased numbers of immunophenotypically identifiable HSCs, but with diminished
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Fig. 9.1 Dynamic regulation of hematopoietic stem cell (HSC) cycling towards distinct fates.
During mitoses, HSCs can generate two progeny with stem cell characteristics, two hematopoietic
progenitor cells (HPCs) capable of multi-lineage differentiation, or one cell of each type. Gene
products enforcing HSC quiescence or self-renewing cell cycling are highlighted and organized
into concept-based clusters

functional capacity [55]. Older HSCs, indeed, exhibit increased incidences of DNA
DSBs [62, 63] and undergo fewer cell divisions, due to increased p16Ink4a levels,
compared to younger counterparts [64, 65]. Since increased expression of p16Ink4a

is associated with cellular senescence [66], a reasonable conclusion is that cellular
senescence accounts for decreased functional capacity of old HSCs. However, a re-
cent report suggests no correlation between p16Ink4a levels and HSC aging [67]. Thus,
progressive genome damage may impair HSC function without engaging classical
DNA-damage-associated senescence pathways [68, 69].

Studies of late-generation telomerase knockout mice provide evidence that telom-
ere shortening limits the repopulating capacity of HSCs under serial transplantation
[70]. However, the mechanism that impairs regenerative capacity of aged HSCs
remains largely unknown. Using in vivo RNAi screening, the Rudolph group identi-
fied a gene-encoding basic leucine zipper transcription factor, activating transcription
factor (ATF)-like (Batf ) as a major barrier against HSC self-renewal in response to
telomere dysfunction [71]. Batf loss enhances HSC self-renewal but also results in
DNA damage accumulation in HSCs in response to telomere shortening [71]. Addi-
tionally, BATF protein induction by DNA damage promotes lymphoid differentiation
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of HSPCs [71]. BATF expression levels in human HSPCs isolated from the MDS pa-
tients inversely correlate with telomere length and directly correlate with activation
of DNA damage signals [71]. Together these results demonstrate that BATF controls
a critical checkpoint that limits HSC proliferation in response to DNA damage [71].

Conclusion

In HSCs, proliferation controls, along with metabolic and signaling regulatory mod-
ules, are highly integrated into self-renewal and quiescence-enforcing mechanisms
and have key roles in determining HSC fitness (summarized in Fig. 9.1). In order to
maintain hematopoietic homeostasis, HSCs switch reversibly between quiescence
and active cycling in response to physiologic stimuli. Aging phenotypes can be
manifestations of effective engagement of checkpoint mechanisms that restrict prop-
agation of HSCs in the setting of genome damage or oncogenic stress. Hematopoietic
failure occurs when normal HSCs cannot replace the function of diseased counter-
parts, while the loss of critical checkpoints against inappropriate self-renewal in
the setting of oncogenic or genotoxic insults permits the emergence of malignant
clones. Understanding how to restore or replace physiologic barriers restricting ma-
lignant HSC self-renewal represents a key challenge in applying a systems-based
understanding of HSC biology to the major clinical problem of HSC-based diseases.
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Chapter 10
A Systems Biology Approach to Iron Metabolism

Julia Chifman, Reinhard Laubenbacher and Suzy V. Torti

Abstract Iron is critical to the survival of almost all living organisms. However,
inappropriately low or high levels of iron are detrimental and contribute to a wide
range of diseases. Recent advances in the study of iron metabolism have revealed
multiple intricate pathways that are essential to the maintenance of iron homeostasis.
Further, iron regulation involves processes at several scales, ranging from the subcel-
lular to the organismal. This complexity makes a systems biology approach crucial,
with its enabling technology of computational models based on a mathematical de-
scription of regulatory systems. Systems biology may represent a new strategy for
understanding imbalances in iron metabolism and their underlying causes.

Keywords Hydroxyl radical · Heme · Phagocytose · Constant decay rate · Petri nets ·
Homeostasis · Transferrin · Erythroid bone marrow · Erythrocytes · Phagocytosis ·
Plasma · Continuous versus discrete models

Introduction

Dysregulation of iron metabolism plays a role in a wide range of diseases [1], and
understanding this role is crucial in the search for therapeutics. Fortunately, over the
past decade, some key mechanisms involved in iron regulation have been uncovered,
and a more complete picture of iron regulation is starting to emerge [2]. Complicating
the matter, however, is the fact that iron regulation involves processes at scales
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ranging from the organism to subcellular compartments, each of which interacts
with the others. At each scale, the control system uses several intertwined feedback
loops that also cross scales. Thus, it is crucial that, on the one hand, we understand
iron metabolism as a multiscale control system, and on the other hand, we move
beyond a purely descriptive static characterization of this control system.

Systems biology provides an approach and tool set to address both of these re-
quirements. Systems biology integrates individual components of a system by tying
them together through their interactions. This is done through the use of computa-
tional models that are capable of synthesizing all the different interactions between
components into a dynamical system that captures global dynamic behavior. In par-
ticular, such a dynamical system representation allows the integration of regulatory
events at different scales. System dynamics can then be probed using the computa-
tional model as a virtual laboratory, for the purpose of formulating hypotheses that
can then be validated in the laboratory.

This chapter begins with a description of iron metabolism at the systemic and
intracellular scales and discusses some of the most important diseases involving
dysregulation of iron. We then take a systems biology view and describe some of
the computational models of iron metabolism at both scales. Our aim is to present
several different approaches to the construction of computational models, and the
advantages and disadvantages of the different methods.

Iron Metabolism

The earliest accounts of iron being present in blood date back to as early as the
eighteenth century, but it was not until the late 1930s that the first accounts of
iron metabolism at the molecular level emerged and not until 1958 that the first
comprehensive review of iron absorption was published [3, 4]. More recently,
key findings have shaped our current view of iron metabolism. These include the
discovery of the transferrin receptor (TfR), in the 1970s, the discovery of the iron-
responsive element/iron-regulatory protein (IRE/IRP)regulatory axis in the 1980s,
and the discovery of hemochromatosis gene (HFE), the gene mutated in hereditary
hemochromatosis (HH), in 1996 [5–7]. Arguably, the most seminal finding in re-
cent years was the discovery of the long-sought iron-regulatory hormone, hepcidin,
and its target ferroportin (Fpn), in the early 2000s [8–13]. It is now apparent that
many iron-associated disorders are attributable to genetic malfunctions that affect the
hepcidin–Fpn axis. Nevertheless, our knowledge of iron biology remains incomplete.

The importance of iron to almost all living organisms is undeniable; iron is
required for oxygen transport, energy production, DNA synthesis, and cellular res-
piration. For example, iron is a component of hemoglobin—an oxygen carrier that
transports oxygen from the lungs to the peripheral tissue and then carries carbon
dioxide back to the lungs. Likewise, iron is a constituent of myoglobin, an oxygen
storage protein that provides oxygen to the muscle tissue. At the same time, excess
iron can be toxic due to the ability of iron to exist in various oxidation states. The
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ability of iron to redox cycle can facilitate the formation of hydroxyl or lipid radicals,
which in turn can damage proteins, DNA, and lipids. To maintain iron homeostasis at
both the systemic and the cellular levels, vertebrates have developed an elaborate ma-
chinery to control iron intake, storage, utilization, and recycling. Our understanding
of diseases associated with iron depends on our knowledge of iron homeostasis.

Systemic Iron Homeostasis

An adult well-nourished human contains approximately 3–5 g of iron. Nearly, 60 %
of this iron is incorporated into hemoglobin, with 10 % in muscle myoglobin. The
rest is stored in hepatocytes and reticuloendothelial macrophages. There is no known
mechanism of iron excretion from the body. Roughly 1–2 mg of iron is lost daily
through sweat, blood loss, sloughing of intestinal epithelial cells, and desquama-
tion. To compensate for this loss, the body absorbs about 1–2 mg of dietary iron
per day, but hemoglobin synthesis alone requires 20–25 mg of iron per day. To sup-
port hemoglobin synthesis and other metabolic processes, iron must be recycled and
tightly regulated within the system. The circulating peptide hormone hepcidin to-
gether with its receptor Fpn primarily maintain systemic iron homeostasis, whereas
IRPs play a primary role in the control of intracellular iron homeostasis. Recently,
an intracellular iron network consisting of 151 chemical species, 107 reactions, and
transport steps was identified [2]. Here, only key features are presented; for more
details, comprehensive reviews, and current advances, the reader is encouraged to
consult the articles [2, 14–19].

Iron Absorption

Inorganic, nonheme iron is available in many foods, e.g., eggs and vegetables, and
is absorbed by duodenal enterocytes. Ferrireductase, Cybrd1 (DcytB), reduces non-
heme iron to Fe2+ before it is transported through the cellular membrane by the
divalent metal transporter 1 (DMT1; SLC11A2) [20–24]. The absorption of heme
iron, found in red meats, is not fully understood. Once heme iron is absorbed, it is
transported into the cytosol and released by heme oxygenase 1 (HO1) [25]. Excess in-
tracellular iron is stored in the storage protein ferritin (Ft). Ft oxidizes and sequesters
excess ferrous iron into a ferrihydrite mineral core [26, 27]. Iron sequestered in the
Ft of enterocytes is lost after a few days through the sloughing of intestinal ep-
ithelial cells. Dietary cytosolic iron is exported into the plasma by the basolateral
iron exporter Fpn (SLC40A1) [8, 9, 11]. Export of iron from enterocytes into the
circulation requires the ferroxidase hephaestin (HEPH), a multicopper oxidase, that
oxidizes Fe2+ to Fe3+ [28]. In the plasma, Fe3+ circulates bound to Tf, a glycoprotein
that has two binding sites for ferric iron and maintains iron in a soluble form. The
discovery of Tf as a plasma iron transporter dates back to 1946 [29]. Tf has two im-
portant functions: It limits the formation of toxic radicals and delivers iron to cells. In
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Table 10.1 Levels of
transferrin saturation

Transferrin saturation (%) Clinical interpretation

< 16 Iron deficiency

16–45 Normal levels

45–60 Signs of iron overload

> 60 Iron overload

healthy humans, about 1/3 of Tf is saturated with iron. Iron concentrations in healthy
adults are approximately 14–32 μmol/L, with virtually all circulating iron bound to
Tf. In conditions of iron overload, non-Tf-bound-iron (NTBI) accumulates. NTBI
is thought to contribute substantially to the pathology associated with iron overload
(Table 10.1) [17].

Iron Utilization, Recycling, and Storage

The principal consumer of iron is the erythroid bone marrow, and most of that
iron comes from internal recycling by tissue macrophages, predominantly splenic
macrophages. Erythroblasts acquire iron via a ubiquitous protein expressed on the
cell surface, transferrin receptor 1 (TfR1). Through receptor-mediated endocytosis,
TfR1 transfers iron-loaded Tf (Holo-Tf) into acidified endosomes where iron dis-
sociates from Tf with the assistance of six transmembrane epithelial antigen of the
prostate (STEAP) proteins, and exits the endosome via DMT1 [30]. Tf and TfR are
recycled back to the cell surface. Iron is imported into mitochondria from intracel-
lular compartments by the inner membrane protein mitoferrin 1 to form heme, the
majority of which is then used for hemoglobin production [31]. Since excess heme
is toxic and can lead to apoptosis, mechanisms must be in place to maintain heme
at appropriate levels. It has been proposed that feline leukemia virus subgroup C
cellular receptor (FLVCR) and ATP-binding cassette protein G2 (ABCG2) export
excess heme, although this is not completely understood [32, 33].

Macrophages recapture iron from senescent and damaged erythrocytes by first
phagocytosing erythrocytes and then catabolizing heme using heme oxygenase, to
release iron. Ferrous iron is exported into the plasma via the iron exporter Fpn
(SLC40A1) and unused iron is stored in macrophages, mainly in Ft [15, 17, 34].
Another major storage site for iron is the liver; the majority of iron entering the liver
is stored in Ft and can be mobilized when required by the body. Hepatocytes acquire
Holo-Tf through two receptors, TfR1 and TfR2, but TfR2 is believed to act mainly as
a Tf saturation “sensor” and has much lower affinity for Holo-Tf than TfR1 [35–37].
Most importantly, when serum iron levels surpass the Tf-binding capacity, the liver
becomes the major storage site for NTBI [15]. The mechanism by which hepatocytes
acquire NTBI is not completely understood; one candidate for uptake of NTBI is
zinc transporter Zip14 (SLC39 A) [38]. Other tissues, such as heart and pancreas
represent sites of iron accumulation in iron overload, and are also proposed to have
mechanisms for NTBI uptake.



10 A Systems Biology Approach to Iron Metabolism 205

Fig. 10.1 Systemic iron homeostasis. Inorganic, nonheme iron is absorbed by duodenal enterocytes.
In the plasma, iron circulates bound to transferrin (Tf ). The principal consumer of iron is the
erythroid bone marrow, and most of that iron comes from internal recycling by tissue macrophages,
predominantly splenic macrophages. Liver is the major storage site of iron. Iron entering the liver is
stored in ferritin (Ft) and can be mobilized when required by the body. Some iron is incorporated in
other tissues. Hepcidin regulates systemic iron homeostasis by inhibiting iron release from duodenal
enterocytes, macrophages, and hepatocytes

Regulation of Systemic Iron Homeostasis

To avoid iron overload or deficiency, an organism must maintain an internal equi-
librium of iron and make iron available only when and where it is needed. The
circulating peptide hormone hepcidin is a key molecule that regulates systemic iron
homeostasis. It is predominantly produced by the liver, although studies indicate
that other tissues also generate hepcidin [12, 13]. Hepcidin levels are modified in
response to physiological stimuli that affect iron homeostasis, such as iron over-
load, hepatic iron stores, inflammation, iron deficiency, erythropoietic activity, and
hypoxia. Higher levels of hepcidin reduce iron absorption and vice versa.

Hepcidin modulates serum iron levels and controls Tf saturation by inhibiting
iron release from duodenal enterocytes, macrophages, and hepatocytes (Fig. 10.1).
More precisely, hepcidin regulates iron efflux by binding to the iron exporter Fpn,
triggering its internalization and degradation in lysosomes [39]. The mechanism was
originally reported to be facilitated by Janus kinase 2 (Jak2) [40]; although this has
subsequently been challenged by work demonstrating a ubiquitin-mediated pathway
of Fpn degradation [41,42].
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Transcriptional Regulation of Hepcidin

Expression of hepcidin in the liver is primarily affected by transcriptional mecha-
nisms mediated by the bone morphogenetic protein (BMP) family of transcription
factors and other signaling components, which are members of the TGF-β family of
ligands [43]. Recent studies suggest that the principal regulator of hepcidin is BMP6,
which is increased in response to hepatic iron stores [44, 45]. BMP binds to its re-
ceptor (BMP-R) and coreceptor hemojuvelin (HJV), a glycosylphosphatidylinositol-
linked protein [43]. This interaction induces the phosphorylation of R-SMAD
proteins and subsequent formation of active transcription complexes involving the
co-regulator SMAD4, which bind to BMP responsive elements in the hepcidin pro-
moter [46]. The membrane receptor neogenin (NEO1) enhances BMP signaling and
hepcidin expression, perhaps by stabilizing HJV [47, 48]. The transmembrane serine
protease TMPRSS6 cleaves HJV, inactivates it, and consequently inhibits production
of hepcidin [49].

Another mechanism for hepcidin regulation involves hemochromatosis proteins
(HFEs). HFE has been suggested to act as a switch between two sensors of holo-Tf,
TfR1, and TfR2. In this model, high concentrations of holo-Tf displace HFE from
TfR1 and permit the interaction of HFE with TfR2. The HFE/TfR2 complex then
promotes hepcidin transcription through an unknown mechanism [50–52].

Hepcidin expression is also induced by the inflammatory cytokine interleukin-6
(IL-6) and other cytokines by activating signal transducer and activator of transcrip-
tion 3 (STAT3) [53–55]. STAT3 binds to specific sequences in the HAMP promoter.
Cytokine-mediated induction of hepcidin is thought to contribute to the hypoferremia
that frequently accompanies chronic infections, acute inflammation, and cancer [56].

Despite the substantial progress that has been made in defining key players in
hepcidin regulation, the identification of critical components involved in hepcidin
signaling and their functional relationships is far from complete. Mechanisms of
hepcidin regulation mentioned above are depicted in Fig. 10.2.

Intracellular Iron Homeostasis

Free ferrous iron can be toxic, since it contributes to the formation of the hydroxyl
radical through the Fenton reaction. Hence, intracellular iron must be maintained
as meticulously as systemic iron. The regulatory mechanism that coordinates intra-
cellular iron uptake, utilization, storage, and excretion is centered on the IRPs and
utilizes IREs. What follows is a brief description of the mechanism for a “generic
cell” that encompasses pathways that have been consistently observed in many cell
types (Fig. 10.3). Further details can be found in [2].
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Fig. 10.2 Transcriptional regulation of hepcidin. Regulation of hepcidin by BMP/SMAD and
IL-6/STAT3 pathways. Expression of hepcidin in the liver is mainly affected by transcriptional
mechanisms mediated by the BMP family, primarily BMP6. BMP binds to its receptor (BMPR) in
conjunction with the coreceptor HJV. This interaction induces the phosphorylation of R-SMAD pro-
teins which interact with the common mediator SMAD4, bind specific sequences in the hepcidin
promoter, and trigger hepcidin gene (HAMP) transcription. NEO1 may enhance BMP signaling
by interacting with HJV. TMPRSS6 negatively regulates hepcidin by cleaving HJV. Hepcidin ex-
pression is also induced by IL-6 through activation of STAT3. STAT3 binds to specific sequences
in the HAMP promoter. TfR2 and HFE are also involved in hepcidin activation through mecha-
nisms that are incompletely defined. BMP bone morphogenetic protein; BMPR bone morphogenetic
protein receptor; HJV hemojuvelin; R-SMAD receptor-regulated SMAD; NEO1 neogenin; STAT3
signal transducer and activator of transcription 3; TMPRSS6 transmembrane serine protease; TFR2
transferrin receptor 2

Iron Import

Mammalian cells acquire iron predominantly via TfR1. Following binding of Holo-
Tf to TfR1, Tf-bound Fe is taken up by receptor-mediated endocytosis into acidified
endosomes where ferric iron is reduced to Fe2+ by the transmembrane family of
metalloreductases (STEAP) [30]. The DMT1 then facilitates the transport of ferrous
iron from the endosomes into the cytoplasm. In some cells, e.g., enterocytes, DMT1
is also located on the cell surface and participates in the transport of extracellular
iron. It is worth pointing out that the role of STEAP proteins has been studied and
well defined in hepatocytes, macrophages, erythroid cells, and erythroblasts, while
their role in peripheral tissues requires further investigation [14]. Following egress
from the endosome, iron enters the so-called labile iron pool (LIP), a cytosolic pool
of weakly bound iron available for a variety of interactions with other molecules.
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Fig. 10.3 Intracellular iron homeostasis of a generic cell. Cells acquire iron predominantly via TfR1.
Ferric iron is reduced to Fe2+ by the transmembrane family of metalloreductases (STEAP). DMT1
then facilitates the transport of ferrous iron from the endosomes into the cytoplasm. In some cells,
e.g., enterocytes, DMT1 participates in the transport of extracellular iron. DcytB reduces nonheme
iron to Fe2+ before it is transported through the cellular membrane. Following egress from the
endosome, iron enters the so-called labile iron pool (LIP). Ferroportin (Fpn) is believed to be the
only ferrous iron exporter. It has been suggested that dietary heme iron can enter through SLC48A1
and be exported via FLVCR. A mechanism by which heme is moved in and out of mitochondria
(the major site of iron utilization) is poorly understood. Ferrous iron is imported into mitochondria
for incorporation into bioactive heme by the SLC transporter mitoferrin (Mfrn). Iron that is not
exported or utilized is stored in ferritin (Ft). TfR1 transferrin receptor 1; FLVCR feline leukemia
virus subgroup C cellular receptor; DMT1 divalent metal transporter 1; STEAP six transmembrane
epithelial antigen of the prostate

It has been suggested that dietary heme iron is transported by the heme carrier
protein 1 (SLC46A1) [57], but another study demonstrated that SLC46A1 is an
important folate transporter [58, 59]. A year later SLC48A1 was identified as a
possible candidate for heme import [60]. Some cells, like macrophages, acquire
heme indirectly by phagocytosing erythrocytes and catabolizing heme to release
iron. Hepatocytes have multiple mechanisms of iron entry, including TfR2 and a
possible transporter for NTBI, zinc transporter Zip14 (SLC39 A) [38].

Iron Export

While there is no known mechanism for iron excretion from the body, there is a
well-organized and controlled regulation of iron excretion from cells. Fpn, located
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on the plasma membrane, is expressed in a wide variety of human tissue types and
is believed to be the only ferrous iron exporter [8, 9, 11, 34]. It requires coordinated
efforts of ferroxidases (ceruloplasmin; Cp, and/or HEPH) to assist iron oxidation
and loading onto Tf. As mentioned above, cells also export iron in the form of heme
through FLVCR and ABCG2 [32, 33].

Iron Utilization and Storage

The major site of iron utilization is the mitochondrion, where iron is used in synthesis
of heme and iron–sulfur (Fe/S) cluster prosthetic groups, but the understanding of the
mechanism by which iron is moved inside the cell is still incomplete. Iron is imported
into the mitochondrion for incorporation into bioactive heme by the SLC transporter
mitoferrin (SLC25A37) [31]. Intracellular heme regulates its own production through
delta aminolevulinate synthase (ALAS) and its degradation by inducing HO1 [61],
[62]. After heme is synthesized, it is exported via an unknown mechanism into the
cytosol for integration into proteins.

Ferrous iron that is not exported or utilized is stored in Ft, a cytosolic protein
whose main function is to oxidize and sequester excess ferrous iron into a ferrihydrite
mineral core. Ft is a 24-subunit polymer comprised of heavy (Ft H) and light (Ft L)
polypeptide chains in variable ratios. The subunit composition of Ft depends on cell
type and physiological status [27]. Each Ft protein can accrue as many as 4500 iron
atoms. Since free iron can promote formation of reactive oxygen species, Ft is crucial
to preventing iron-mediated cell damage by keeping excess iron in a nonreactive form.

Intracellular Iron Regulation

Intracellular iron homeostasis is regulated posttranscriptionally by the iron-
regulatory proteins IRP1 (ACO1) and IRP2 (IREB2) in response to changing iron
levels. For a comprehensive review, the reader is encouraged to consult [7], [18].

IRP1 and IRP2 exert their effects by binding to IREs, cis-regulatory hairpin struc-
tures that are present in the untranslated regions (UTRs) of messenger RNA mRNAs
involved in iron metabolism. The mRNAs encoding Ft, Fpn, ALAS2, mitochondrial
aconitase (ACO2), and hypoxia-inducible factor 2α (HIF2α) contain a single IRE in
their 5′ UTRs. The mRNA encoding TfR1 contains multiple IREs within the 3′ UTR,
whereas the mRNAs encoding DMT1, cell division cycle 14 homolog A (Cdc14 A),
hydroxyacid oxidase 1 (HAO1), and MRCKα contain a single IRE in their 3′ UTRs.

When intracellular iron levels are low, IRPs bind to IREs with high affinity. Bind-
ing of IRPs to 5′-UTR IREs inhibits the translation of Ft and Fpn, while binding
to the 3′-UTR IREs results in the stabilization of mRNA of the iron importer TfR1,
thus increasing cytoplasmic iron levels. In iron-replete cells, the regulatory effect
of IRPs stops: IRP2 is targeted for degradation, and IRP1 acquires a completed
iron–sulfur cluster that impedes IRE binding (Fig. 10.4). The role of IRP regula-
tion in the mechanisms and functions of other IRE-containing mRNAs has been less
thoroughly studied.
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Fig. 10.4 Intracellular iron regulation

Diseases of Iron Metabolism

Iron is required for oxygen transport, energy production, DNA synthesis, and cellular
respiration. Accordingly, inappropriately low or high levels of iron are detrimental
and lead to a wide range of diseases.

Iron overload/deficiency is either hereditary or acquired. Levels of iron can be
altered by the presence of mutated genes, diet that contains inappropriate amounts of
iron (either insufficient or excessive), transfusion of red blood cells, iron injections,
excessive blood loss, decreased intake or intestinal absorption of iron, and hemolysis.

Iron Overload

Excess iron leads to iron deposition in vital organs such as the liver, heart, pancreas,
and endocrine glands. This propagates the formation of hydroxyl or lipid radicals,
which damage proteins, DNA, cellular membranes, and can lead to cell death. Left
untreated, chronic iron overload increases the risk of liver cirrhosis, cancer, hypog-
onadism, arthritis, cardiac arrhythmia, heart failure, retinal degeneration, diabetes
mellitus, neurodegenerative diseases (Alzheimer’s, Parkinson’s, Huntington’s), and
premature death. Treatments for iron overload include phlebotomy and iron chelation
therapy [63].
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Table 10.2 Genes involved in iron-related disorders

Disorder Genes Protein Protein function

Hemochromatosis HFE HFE Involved in transcriptional regulation
of hepcidin

Hemochromatosis TfR2 Transferrin re-
ceptor 2

Holo-Tf sensor; at high Tf levels, HFE
interaction with TfR2 is increased
promoting hepcidin expression

Juvenile
hemochromatosis

HJV Hemojuvelin Involved in transcriptional regulation
of hepcidin; BMP coreceptor

Juvenile
hemochromatosis

HAMP Hepcidin Modulates serum iron levels; regulates
iron efflux by binding to the iron
exporter ferroportin, triggering its
internalization and degradation

Hemochromatosis
(hepcidin resistance)

SLC40A1 Ferroportin Iron exporter

Aceruloplasminemia CP Ceruloplasmin Ferroxidase

Hypotransferrinemia TF Transferrin Glycoprotein with two binding sites
for ferric iron

IRIDA TMPRSS6 Matriptase-2 Cleaves HJV, inactivates it, and,
consequently, inhibits production
of hepcidin

Tf Transferrin, TfR2 transferrin receptor 2, CP ceruloplasmin, TfR transferring receptor, BMP
bone morphogenetic protein, TMPRSS6 transmembrane serine protease, HJV hemojuvelin, IRIDA
Iron-refractory iron-deficiency anemia, Holo-Tf sensor iron-loaded Tf sensor

Hereditary Hemochromatosis

Hemochromatosis is the most common genetic iron overload disorder and results
from mutations in several genes, all of which affect the Fpn/hepcidin regulatory
axis (Table 10.2) [14, 16, 17]. The main characteristic of this disorder is increased
absorption of dietary iron and its accumulation in the liver, heart, pancreas, en-
docrine glands, tissue and joints, where it causes injury and organ dysfunction, as
described above. To date, researchers have identified five mutated genes associ-
ated with hemochromatosis, which can be grouped further into two cases: hepcidin
deficiency and hepcidin resistance [16].

Hepcidin Deficiency Mutations in the genes encoding HFE, TfR2, hemojuvelin
(HFE2, HJV), and hepcidin (HAMP) cause hemochromatosis by inactivating the
pathway that upregulates hepcidin. The most common and mild form of HH is due
to a missense mutation of the HFE gene, which is incompletely penetrant, and is
influenced by environmental and other genetic factors [5, 64]. A severe and less
common form of HH, with extremely low or absent hepcidin levels, is juvenile
hemochromatosis (mutations in HJV or HAMP genes) that leads to hypogonadism,
heart failure, and death [65–67]. Another rare form of HH but less severe is caused
by a mutation in the TfR2 gene [68].
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Hepcidin Resistance Missense mutations in the gene encoding Fpn obstruct hep-
cidin binding and result in insensitivity of Fpn to regulation by hepcidin, leading to
hepatocyte iron accumulation and high plasma iron [69].

Aceruloplasminemia

Aceruloplasminemia is a disorder caused by mutations in the gene encoding Cp, a
ferroxidase involved in the loading of Fe onto Tf following its release from cells [70,
71]. Low serum Cp levels and accumulation of iron in neural and glial cells of the
brain, pancreatic islet cells, and hepatocytes characterize this disorder. The clinical
outcome is retinal degeneration, diabetes mellitus, cerebellar ataxia, dementia, and
neurologic diseases.

Other diseases related to iron overload and degenerative neurologic conditions
are Hallervorden–Spatz disease and Friedreich’s ataxia [63].

Hypotransferrinemia/Atransferrinemia

Practically undetectable plasma levels of Tf characterize hypotransferrinemia [72].
Deficiency in Tf allows NTBI to accumulate and deposit in the liver and other organs,
leading to the accumulation of iron to toxic levels. On the other hand, reduction in
Tf-bound iron impairs erythropoiesis in the bone marrow, which strictly depends on
Tf-bound iron. Hypotransferrinemic patients also have a severe hepcidin deficiency,
implying that Tf is somehow involved in the regulation of hepcidin [16].

Transfusional Siderosis

Repeated blood transfusions are a life-saving therapy in many conditions, but multi-
ple transfusions can also lead to toxicity and chronic iron overload. Transfusions are
used in patients with beta thalassemia, sickle cell anemia, bone marrow failure (aplas-
tic anemia, myelodysplastic syndrome, red blood cell aplasia), and patients receiving
aggressive cancer therapy. Each unit of transfused blood contains 200–250 mg
of iron, which is more than a hundred times the amount absorbed daily from the
diet (1–2 mg). At first, iron accumulates in reticuloendothelial macrophages and
later in parenchymal tissue cells of the liver, pancreas, heart, and endocrine tissue,
where it can lead to cardiomyopathy and other iron overload disorders [63].

Iron Deficiency

Iron deficiency is the major cause of anemia and a public health problem worldwide.
Since roughly two thirds of total body iron is used in hemoglobin synthesis, deficiency
in iron will affect the production of healthy red blood cells.
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Iron-Deficiency Anemia

Approximately three billion people worldwide suffer from iron-deficiency anemia
due to decreased dietary iron intake, poor absorption, and increased need for iron,
which can result from blood loss; gastrointestinal bleeding; blood donations; preg-
nancy; and cancer of the esophagus, stomach, or colon. Children and women are
at much greater risk. Iron deficiency can result in premature birth, poor growth de-
velopment and cognitive skills, and also affects the nervous system. Patients may
experience symptoms associated with anemia that include chronic fatigue, poor
exercise tolerance, headaches, and problem concentrating [14, 63].

Left untreated, iron-deficiency anemia can lead to complications such as irregular
heartbeat, angina and heart attack, low-birth weight, high risk of infection (child-
hood), and delayed growth (childhood) [63]. Changes in diet and iron supplements
can treat minor iron deficiency, while severe cases may require transfusion of red
blood cells, intravenous iron, or iron injections.

Iron-Refractory Iron-Deficiency Anemia

Iron-refractory iron-deficiency anemia (IRIDA) is triggered by a rare mutation in the
gene TMPRSS6, which encodes matriptase-2 expressed in the liver. This mutation
leads to reduced activity of TMPRSS6 and consequently high hepcidin levels. As
a result, iron absorption from the intestine and iron release from macrophages is
inhibited, causing severe iron deficiency [16, 17].

Anemia of Chronic Inflammation

Anemia of chronic inflammation, also called anemia of chronic disease (ACD), is a
systemic iron disorder and occurs in association with malignancy, chronic infections,
trauma, inflammatory disorders, and organ failure [56]. Iron stores in ACD are not
exhausted, but iron is sequestered in macrophages. In addition, absorption of iron
is reduced and hemoglobin synthesis is inhibited. The decrease in serum iron is a
consequence of hepcidin increase in response to inflammation, which seems to be an
attempt to restrict iron availability to invading microorganisms and tumor cells [73].
Hepcidin production is induced by the inflammatory cytokine interleukin-6 (IL-6),
bacterial pathogens, and lipopolysaccharide [74]. Anemia of chronic inflammation
is considered to be mild-to-moderate anemia, and treatment is usually focused on
the underlying disorder.

Iron Homeostasis and Cancer

Dysregulation of iron metabolism in cancer is well known, and it has been argued for
years that excess iron and increased cancer incidence go hand in hand [75], although
this is not always observed [76]. Links between excess iron and cancer are also
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suggested by the efficacy of dietary iron deprivation [77] and iron chelators [78] in
cancer therapy. In the early 1980s, it was observed that levels of TfR1 are elevated
in cancer, and use of TfR1 as a targeting ligand in the design of anticancer drugs was
proposed [79, 80].

More recently, it was observed that hepcidin and Fpn are expressed in epithelial
cells of peripheral tissue, such as the breast, where they exhibit the same regulatory
interaction as in macrophages and liver cells [81]. Levels of hepcidin were increased
and levels of Fpn were decreased in breast cancer cell lines when compared to non-
malignant breast cells, and this was correlated with an increased LIP in malignant
cells. Data collected from breast cancer patients also showed reduced levels of Fpn in
malignant compared to nonmalignant breast tissue. Experimentally induced overex-
pression of Fpn reduced tumor growth of breast cancer xenografts, implying a direct
relationship between intracellular iron and tumor growth. Importantly, low levels
of Fpn in the tissues of breast cancer patients were associated with poor clinical
outcome and reduced survival. Subsequent work determined that elevated TfR1 and
reduced HFE (which would also be expected to elevate iron in tumor tissue) similarly
predict poor survival in breast cancer patients [82].

Although cancer is of course more than an iron disorder, these findings indicate a
clear and direct relationship between iron and cancer. Clarifying the precise nature
of this relationship will require further study.

A Systems Biology Approach to Iron Metabolism

The complexity of iron regulation in mammals makes a systems biology approach
crucial, with its enabling technology of computational models based on a mathemat-
ical description of the iron homeostasis control system. Before discussing specific
mathematical models, we briefly summarize the role that models play in systems bi-
ology (Fig. 10.5) [83]. As discussed earlier, the primary role of mathematical models
is to discover new biology. This is typically done in two steps. The first step, model
building, consists of the description of the pertinent biology in mathematical terms.
There are a variety of mathematical formalisms one can use for this purpose. Which
one to choose for a given problem depends in large part on the type of information
available and on the type of questions one would like to answer. A common approach
is through a system of differential equations. In the case of a metabolic network, for
instance, there will be one differential equation per molecular species in the network,
viewing it as a biochemical reaction network. The equation for a given species de-
scribes the rate of change of the species in terms of the quantities of other species it de-
pends on, together with a collection of kinetic parameters. Alternatively, one can view
the network in terms of a collection of logical rules that govern the “decision making”
of the node based on the states of the other molecular species. Rather than varying
continuously, the species might take on categorical values, such as low or high.

The second step is model analysis, which, in many cases, relies on simulation. That
is, the mathematical model is implemented as a computational algorithm in a com-
puter. Simulation of the model consists of the choice of an initial concentration of all
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Fig. 10.5 The construction of a mathematical model. The starting point is a formulation of the
problem and specific questions that the model will answer. Biological knowledge about components
of the system, its structure, interactions, and any available experimental results must be gathered.
Different types of experimental data are analyzed and integrated. This information is then used to
construct a mathematical model. Since different models emphasize different features, the choice
of mathematical model depends on the questions being asked. Its structure will also depend on the
system description: organismal, cellular, or molecular. Some systems will have unknown biological
parameters and will require detailed information about kinetic constants or time course data in order
to estimate model parameters. Various computational techniques are used to assess if the model is
in accordance with experimental results, and if not, hypotheses underlying the model need to be
refined, and different types of experiments might be proposed. This iterative process is repeated
and the model is refined until it accurately describes the relevant aspects of the system

the species in the network, from which the time evolution of the model is calculated.
Observations might include which steady state is reached from this initialization or
whether the simulation is robust with respect to small changes in the model param-
eters. The result of these simulations is an understanding of how the model behaves
under certain perturbations of interest. If the model correctly captures the key features
of the biology, then an understanding of the model can lead to a more targeted inves-
tigation of the actual network, leading to new biological insights. In the following
section, we discuss some published computational models related to iron regulation.

Models of Iron Homeostasis

Biological systems can be described mathematically as dynamical systems, in terms
of functional relationships between the variables, which govern the temporal evolu-
tion of the system. Some biological data are best modeled by systems in which the
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model components take on discrete states, while others require continuously vary-
ing system states. Dynamic models of iron homeostasis that are presented in this
section are of two different types: continuous and discrete. The models summarized
in the section "Diseases of Iron Metabolism” are all continuous in the form of ordi-
nary differential equations (ODE), whereas the model in the section “Transfusional
Siderosis” is discrete and is based on the theory of Petri nets.

Generally speaking, differential equations describe the temporal change of state
variables, e.g., the change in concentration of a molecular component. To put this
in the context of iron metabolism, let duodenal enterocytes represent a compartment
and let y denote the concentration of labile iron in this compartment. Then the rate
of change of y, dy/dt, describes how the level of iron changes over time. If it is
constant, then the differential equation will be dy/dt = 0. Since iron is brought into
the cell and is also exported from the cell, further assumptions can be made. For
simplicity, assume that iron enters enterocytes at some rate a and is exported at some
rate b. Then the flow of iron through enterocytes can be described by the differential
equation dy/dt = a-by. This is of course a simplified illustration; in reality one would
have as many equations as compartments and will have to consider shuttling between
the compartments. In addition, rates might not be just simple constants, but rather
complicated expressions, and would have to incorporate various regulations, for
example, regulation of the iron exporter Fpn by hepcidin. From this simple example,
one can see that the resulting ODE model will have many unknown parameters and
will require detailed information about kinetic constants or time course data in order
to estimate model parameters.

Compartmental Model of Iron Homeostasis

B. J. Lao and D. T. Kamei developed a simple compartmental model of iron home-
ostasis calibrated to mouse data [84]. The model consists of five compartments, each
denoting the amount of iron at a specific location or in a particular state: hepato-
cyte, diferric transferrin (FeTf), red blood cells (RBC), NTBI, and macrophage. The
system is then given by five ODEs that explicitly incorporate the roles of Fpn, hep-
cidin, TfR2, and HFE. We present only one of the equations, describing the RBC
compartment.

d(RBC)

dt
= kFeTf ;RBC − kRBC;macro × RBC

kFeTf ;RBC = 36
nmol

h
(rate of iron transfer from FeTf to RBC compartment)

kRBC;macro = 1.6 × 10−3h−1 (rate of iron transfer from RBC compartment to macrophages)

These rates are based on findings published in [85], [86]. All parameters in the model
were approximated using mouse data from various sources.
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The resulting model was used to simulate anemia, iron overload, and erythro-
poiesis stimulation. The following conclusions were formed.

1. FeTf may be involved in determining the availability of iron for erythropoiesis.
2. To maintain proper iron absorption and intracellular iron levels, the IREs of Fpn

are essential. Simulations performed without IREs resulted in normal FeTf and
in iron accumulation in macrophages and hepatocytes.

3. Increased iron absorption by duodenal enterocytes replicated features of HFE
hemochromatosis, and iron accumulation in hepatocytes was influenced by the
uptake of NTBI. Moreover, increased levels of NTBI cause hepcidin decrease
implying that removal of NTBI might revert hepcidin levels.

Systemic Model of Iron Homeostasis

In Ref. [87], a systemic model of iron metabolism was built based on data from
normal mice (C57BL6) [88] under three diets: iron deficient, iron adequate, and
iron loaded. The model consists of a plasma compartment and 15 peripheral organ
compartments. Each compartment (pool) is represented by its iron content and is
described by a balance equation.

dCi

dt
=

∑

j

vij −
∑

j

vji + vio − voi

Ci iron content in ith compartment
vij the rate of iron influx from compartment j to i
vji the rate of iron outflux from compartment i to j
vio the rate of iron flux from outside into compartment i
voi the rate of iron flux from compartment i out of the system

Time-course data were obtained by administering radioactive tracer (59Fe) and then
measuring at certain intervals over 28 days nonheme iron as well as hematocrit and
hemoglobin content of blood. The experimental data from mice under three different
diets were used to estimate parameters and calibrate the model. The authors argue
that the resulting quantitative model reflects systemic properties of iron homeostasis.
They conclude that this model could be used to study dietary iron perturbations and
plan to use the model on genetically modified mice. Furthermore, the authors envision
that this mathematical model of pools and fluxes will serve as a foundation for a
whole-body model, which would ultimately include iron uptake, storage, secretion,
heme synthesis, and regulatory structure.

Intracellular Model of Iron Homeostasis

A model of intracellular iron homeostasis was constructed in [89]. This model is
specific to normal breast epithelial cells and represents the core control system of iron
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metabolism focused on iron import via TfR1, export (Fpn), sequestration (Ft), and
regulation (IRPs). These proteins and the LIP are connected by several feedback loops
that drive network dynamics. Each component in the model is defined by an ODE that
describes changes in concentration with respect to time. The resulting ODE system
has five equations and 15 parameters with two parameters being external: hepcidin
and the iron saturation level of extracellular Tf. One of the assumptions made was
that Ft is always bound to iron and undergoes natural degradation. As a result, Ft
releases iron back into the LIP. It was represented by the following mechanism.

LIP Ft LIP

b c

c constant decay rate
b hyperbolic rate that describes negative regulation of IRPs on Ft

b = a × k

k + IRP
.

Here, IRP represents an inhibiting state variable, k an activation threshold, and a
the maximum production rate of the regulated protein (in this case Ft). Using this
information, the rate of change of the LIP can be represented by the following
equation.

d(LIP)

dt
= a1Feex × (TfR1) + c × (Ft) − a2 × (LIP) × (Fpn) − b × (LIP)

a1Feex × (TfR1) iron import (via TfR1) with the rate a1

a2 × (LIP) × (Fpn) iron export (via Fpn) with the rate a2

Feex iron saturation level of extracellular Tf
b and c as described above

The model was validated using data from overexpression of Fpn. Through a combi-
nation of analytical arguments and simulations, it was shown that the model has a
unique stable steady state for any choice of parameters, agreeing with experimental
evidence that cellular iron is tightly controlled [90].

Including additional relevant components in the model will be the next step,
with the ultimate goal of identifying basic forces and key regulators that contribute
to modifications in iron homeostasis as normal breast epithelial cells transition to
malignancy.
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Petri Net Model of Systemic Iron Homeostasis

Petri net theory uses a different approach to simulations and analysis, and has also
been applied to iron metabolism. Carl A. Petri, a German mathematician and com-
puter scientist, introduced and formally defined the concept in the 1960s. Today,
Petri nets are used in computational biology to model gene-regulatory networks,
metabolic pathways, signal transduction pathways, and biochemical networks.

Informally speaking, a Petri net is a directed graph that consists of two kinds of
nodes, places and transitions, and arcs connecting them. Arcs only connect two nodes
of different kinds; they do not join two places, or two transitions. Places, depicted by
circles, represent passive elements such as proteins, protein complexes, or chemical
compounds, while transitions, depicted by rectangles, are active elements and repre-
sent biological interactions or chemical reactions. In the context of iron metabolism,
an example of a place might be Fe2+ and an example of a transition is oxidation of
Fe2+ by HEPH. Some places are marked by black dots or natural numbers, called
tokens, which are dynamic elements of the net and represent the concentration of
a given species in terms of moles, molecules, or even abstract concentration lev-
els such as high, medium, and low. Tokens are distributed over places to describe
a systems state, e.g., the normal body iron physiological state. The distribution of
tokens over places is called a marking of the net. For a certain biological reaction
to happen, its places, e.g., proteins, must contain sufficient numbers of tokens. If all
places are marked (contain tokens), then a transition may fire by removing one or
more tokens from each place and moving it to another appropriate place (Fig. 10.6).
This changes the marking of the net, i.e., the systems state. Enabled transitions do not
have to fire, which makes Petri nets nondeterministic and the behavior of the system
is established by all possible firing sequences. Of course, just following tokens does
not represent the entire analysis. Comprehensive formal analysis must be performed
to show behavioral and structural properties of the system.

In a series of papers, a Petri net model of systemic iron homeostasis was con-
structed [91–93]. The model consists of 47 places and 57 transitions and has been
verified through extensive analysis. In the latest article in the series [92], the authors
focused on some aspects of the anemia of chronic disorders and, based on their
analysis of the net, they have made some observations, listed below. The predictions
made by the model were validated using data from patients with chronic anemia that
were treated with recombinant human erythropoietin (rHuEPO). The conclusions
based on the model and laboratory tests are:

1. TfR levels are not influenced by inflammation.
2. There is a strong positive correlation between the dose of rHuEPO and soluble

TfR.
3. There is a strong negative correlation between the dose of rHuEPO and hepcidin,

suggesting a reverse relationship.
4. The TfR1 serum level was confirmed to be a suitable indicator of erythropoietic

activity.
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Fig. 10.6 A simple Petri net
example. Initially, input
places p1 and p2 contain three
and two tokens, respectively.
By firing transition t, one
token will be removed from
p1 and two tokens from p2.
Transition t will consume
tokens and place two of them
into place p3. Transition t
may fire since its preplaces p1
and p2 have sufficient number
of tokens. After one firing
step, the marking of the net is
changed: p1 has only two
tokens left, p2 has no tokens,
and p3 has two tokens.
Transition t cannot fire
anymore

It is worth commenting on some differences among the mathematical models pre-
sented here. The majority of the models consist of a system of ODEs. These capture
the continuous rate of change of the concentrations of the different molecular quan-
tities over (continuous) time. The last model consists of a Petri net, that is, a graph
structure of a certain type, together with rules that govern the state of the different
nodes in this graph. In the model presented, the states are integer values, specifying
how many tokens are placed at a particular node at a given time. Thus, the states are
discrete, rather than continuous concentrations.

Furthermore, time progresses in discrete steps also. There are also other types of
time- and/or state-discrete models in use in systems biology [83]. The different mod-
eling methods each have their pros and cons. What particular modeling framework
is best for a particular type of system depends on several factors, such as availability
of experimental data, kinetic parameters, the type of question to be answered, and
others.

Conclusion

Iron metabolism and its relationship to a variety of disorders and diseases is difficult or
impossible to fully understand without a systems approach. Regulatory mechanisms
in different parts of the organism, operating at different time and spatial scales,
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are connected to each other and interact through complex feedback loops. Without
an understanding of how these interdependencies affect dynamic changes in iron
homeostasis, systematic therapeutic approaches will remain elusive. Systems biology
and mathematical modeling promise such a rigorous understanding. As detailed in
this chapter, much has been discovered about the mechanistic foundations of iron
regulation. However, key parts of the system remain poorly understood.

So-called reductionist biology has an important role to play in uncovering addi-
tional features of iron metabolism. These can then be integrated into system-level
models, such as the case studies presented here. Systems biology brings another
valuable approach to the problem through the generation and analysis of high-
throughput “-omics” data, which have not yet been used extensively to study iron
metabolism. Large-scale gene expression studies using DNA microarrays or high-
throughput sequencing can help in discovering new genes involved in iron regulation
and their connections to the known control network. Proteomics analyses using mass
spectrometry-based methods can shed light on posttranscriptional regulation and fur-
ther help identify important players in the network. The application of one or more
of a variety of network-inference algorithms can be used to build up a more complete
regulatory network structure that can be used to generate experimental hypotheses,
to be validated in the laboratory.

Since iron regulation is a highly dynamic process, we require dynamic compu-
tational models for its study. This chapter describes some recent examples of such
models. Given the complexity of the entire process, substantially more sophisticated
models will be required. Their construction needs to be based on comprehensive
time-resolved data at different scales and in different cell types. The confluence of
new and improved mathematical and computational techniques, together with so-
phisticated new measurement techniques, brings such models into the realm of the
possible. Thus, the promise of systems biology is yet to be fully realized in the study
of iron metabolism and its relation to human health.
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Chapter 11
Innate Immunity in Disease: Insights from
Mathematical Modeling and Analysis

Nabil Azhar and Yoram Vodovotz

Abstract The acute inflammatory response is a complex defense mechanism that has
evolved to respond rapidly to injury, infection, and other disruptions in homeostasis.
This robust responsiveness to biological stress likely endows the host with increased
fitness, but over-robust or inadequate inflammation predisposes the host to various
diseases. Importantly, well-compartmentalized inflammation is generally benefi-
cial, but spillover of inflammation into the blood is a hallmark—and likely also
a driver—of self-maintaining inflammation. The blood is also a key entry point and
immunological interface for vectors of parasitic diseases, diseases that themselves
incite systemic inflammation. The complex role of inflammation in health and disease
has made this biological system difficult to understand comprehensively and mod-
ulate rationally for therapeutic purposes. Consequently, systems approaches have
been applied in order to characterize dynamical properties and identify key control
points in inflammation. This process begins with the collection of high-dimensional,
experimental, and clinical data, followed by data reduction and data-driven modeling
that finally informs mechanistic computational models for analysis, prediction, and
rational modulation. These studies have suggested that the overall architecture of the
inflammatory response includes a multiscale positive feedback from inflammation
→ tissue damage → inflammation, which is often inadequately controlled by nega-
tive feedback from anti-inflammatory mediators. Given the importance of the blood
interface for the inflammatory response, and the accessibility of this compartment
both as an immunological sampling reservoir for vectors as well as for diagnosis
and therapy, we suggest that any rational efforts at modulating inflammation via the
blood compartment must involve computational modeling.
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Abbreviations

ABM Agent-based model
AsNOS Anopheles stephensi nitric oxide synthase
DAMP Damage-associated molecular pattern molecule
DBN Dynamic Bayesian Networks
GMM Genetically modified mosquito
MODS Multiple organ dysfunction syndrome
ODE Ordinary differential equations
PCA Principal component analysis
RBM Rule-based model
sTNFR Soluble tumor necrosis factor-α receptor
TNF-α Tumor necrosis factor-α

Introduction

Inflammation is an essential process in maintaining health and responding to disease.
Acute inflammation is driven largely by the innate immune system, which not only
serves as the first line of defense against invading pathogens but also functions to
resolve tissue damage and restore homeostasis upon a variety of inflammatory condi-
tions including sepsis, trauma, wound healing, and many more. A large aspect of the
acute inflammatory response plays out in the blood, but usually only when inflam-
mation is dysregulated. Dysregulated systemic inflammation also plays a significant
role in the pathophysiology of other diseases that are not primarily attributed to innate
immunity, such as cancer and diabetes. Although the list of diseases is broad and the
processes important to each setting may differ in certain respects, the core architecture
of the inflammatory response to biological stress is highly conserved [1]. An infec-
tion or a tissue injury/damage triggers an initially local cascade of events mediated
by an array of cells (e.g., macrophages, neutrophils, dendritic cells, lymphocytes,
etc.) and molecules (cytokines, free radicals, and damage-associated molecular pat-
tern molecules (DAMPs)) that locate invading pathogens or stressed/damaged tissue,
alert and recruit other cells and molecules, eliminate the offending agents, and finally
restore the body to equilibrium [2]. When dysregulated or overexuberant, inflamma-
tion can be discerned in the systemic circulation in the form of altered levels of
inflammatory cells and molecular mediators.

In sepsis and trauma, this response is concomitant with physiologic manifestations
including changes in heart rate and body temperature, responses that act in a con-
certed fashion in order to help optimize host defense while minimizing tissue damage.



11 Innate Immunity in Disease: Insights from Mathematical Modeling and Analysis 229

Fig. 11.1 Complex structure of the innate immune response to biological stress. Following an initi-
ating event (e.g., trauma, hemorrhage, infection), both pro- and anti-inflammatory influences (e.g.,
chemokines, cytokines, lipid products, and free radicals) are elaborated, leading to tissue damage
or dysfunction. These stressed tissues elaborate damage-associated molecular patterns (DAMPs),
which further propagate innate immune mechanisms. When the pro-inflammatory mediators ex-
ceed defined thresholds, both pro- and anti-inflammatory mediators spillover into the blood and
may cause inflammation to feedback and spread systemically to other organs as well; we refer to
this process as an inflammatory tipping point. Inflammatory mediators are also transferred to blood-
feeding vectors and can serve to communicate the infection status of the host, as well as modulating
anti-parasite immunity in the vector. Black curved arrows represent the pro-inflammatory feedback
and gray curved arrows represent feedback from anti-inflammatory mediators

Indeed, although a well-regulated inflammatory response is essential for proper
healing and host defense, an overly exuberant response can become self-perpetuating
and lead to organ dysfunction and death [3, 4]. These vastly different outcomes can
be explained, at least in part, by the high-level architecture of the immune response,
which includes a positive feedback loop from inflammation →damage/dysfunction
→ inflammation that can drive pathophysiology in inflammatory diseases (Fig. 11.1).

The detrimental effects of self-sustaining inflammation are likely responsible for
the general perception of inflammation as an inherently harmful process [5, 6].
However, in addition to the aforementioned beneficial roles of inflammation in the
resolution of tissue injury, recent studies suggest that morbidity and mortality are
worse in animals and humans with low levels of early pro-inflammatory signals [7].
The emerging view of inflammation is indeed more nuanced, casting inflammation
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as a highly coordinated communication network that allows the body to sense and
respond to challenges and subsequently restore homeostasis [8, 9]. One may consider
the complexity resulting from this coordination to be an indicator of a well-regulated
and properly orchestrated response, and consequently a less complex response would
be indicative of a pathological dis- or misconnectivity of the network. Guided by
insights from studies on the dysregulated physiology characteristic of sepsis and
trauma/hemorrhage, which have reported that a decrease invariability/complexity of
heart rate can presage increased morbidity and mortality, we have suggested that
well-organized dynamic networks of mediators are crucial to an appropriate inflam-
matory response [10, 11]. Indeed, such networks are induced early in the response to
experimental surgical trauma in mice, and these networks become disorganized and
less complex with the addition of hemorrhagic shock to this minor trauma [10]. How-
ever, emerging studies from our group also suggest that overly-robust, and possibly
self-sustaining, inflammation manifests as networks that are highly complex.

The current paradigm for acute inflammation, based in large part on studies in
response to trauma, hemorrhage, or infection, involves a dynamic cascade of cellu-
lar and molecular events. Innate immune cells such as mast cells, neutrophils, and
macrophages are activated directly by bacterial endotoxin or indirectly by various
stimuli elicited systemically upon trauma and hemorrhage [12–15], including the
release of DAMPs (Fig. 11.1) [16–18]. These stimuli enter the systemic circula-
tion and activate circulating monocytes and neutrophils [19], which subsequently
migrate to compromised tissue by following along a chemoattractant gradient in-
duced at the site of injury/infection [20]. Activated macrophages and neutrophils
produce and secrete effectors that activate a variety of immune cells (including fur-
ther activating themselves) as well as nonimmune cells such as endothelial cells.
Both DAMPs and pro-inflammatory cytokines—primary among them tumor necro-
sis factor-α (TNF-α) [21–27]—promote immune cell activation and affect important
physiological functions that feedback positively to promote further production of
inflammatory mediators. This behavior may lead to inflammatory tipping points—
and concomitant spillover of inflammatory mediators into the blood—indicative of
cascading system failure that occurs at multiple scales and across multiple compart-
ments [28] (Fig. 11.1). In turn, dysregulated inflammation in the blood may itself
become a driver of further inflammation in other tissues (Fig. 11.1).

Inflammation Is a Complex System

As evidenced by the preceding description, inflammation, like most biological sys-
tems, is a highly nonlinear system with multiple feedback loops that may be discerned
even when viewed in a coarse-grained, relatively abstract fashion (Fig. 11.1). Posi-
tive feedback loops allow rapid ramping up of a response to biological stress, while
the negative feedback works to suppress inflammation and restore homeostasis once
the threat (infection, damaged tissue, etc.) has been eliminated. We suggest that, as
has likely occurred in many other complex biological systems [29], inflammation
has evolved to be robust to a broad range of perturbations but at a cost of fragility in
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key control nodes that may account for the tipping point behavior described above
[16, 29] (Fig. 11.1). Failure at these points can lead to disease; therefore, character-
izing these failure modes, and especially the tipping point phenotype, is paramount
for the development of effective therapeutic interventions [28]. Another property of
a complex nonlinear system is the ability to exhibit vastly different behaviors that de-
pend on initial conditions and parameters (i.e., strengths and rates of interactions of
components) [30, 31]. This heterogeneity, which recapitulates the clinical observa-
tion of patient-to-patient variability, complicates the prediction of individual patient
outcomes using the current suite of statistically based tools [17, 28]. As described
below, a systems approach to inflammation can be useful, indeed necessary, to ex-
plain the behavior of the innate immune response in an individual patient to various
biological conditions and ultimately allow for the modulation of this response in
pathological conditions.

Modeling Inflammation

Modeling Methods for A Systems Biology of Inflammation

Systems biology approaches span a broad range of techniques, and can be categorized
roughly into correlative or causative approaches, with focus on either learning basic
principles of system organization and function [32–34] or building predictive compu-
tational models [32, 35]. Although there is overlap between these areas, most efforts
at elucidating biological mechanisms from high-dimensional data have traditionally
focused on particular points along this spectrum of computational approaches. We
suggest that gleaning translationally relevant insights into the inflammatory response
and its interconnected (patho) physiology will require the successful navigation of
this spectrum, in a logical progression from data to models to understanding and
prediction [17, 28] (Fig. 11.2).

Correlative approaches, with which most biologists and clinicians are familiar,
include regression techniques that build models predictive within the conditions of
the data they were trained on [36]. Although these methods do not provide detailed
mechanistic insight, these approaches can be used to understand abstract features of
the response, such as the presence of nonlinearities and the order of the response. The
main drawback of this class of models is that they are almost completely devoid of
mechanistic insight, and can be very over-fit to the data on which they were trained.
A less-utilized data-driven method is principal component analysis (PCA), which
reduces a high-dimensional dataset into a few principal components that account
for much of the observed variance in the data. When applied to time-series data,
the variables (genes/proteins/etc.) that constitute these principal components may be
interpreted as the principal drivers of the observed response and can give some mech-
anistic insights into the underlying process [10, 37]. In the setting of inflammation,
correlative approaches such as PCA may facilitate the development of diagnostics by
analyzing the cytokine milieu in the blood resulting from inflammatory spillover, in
order to identify the health state of individuals and possibly inform patient-specific
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Fig. 11.2 Taming the data deluge: from high-dimensional data to data-driven and mechanistic
models. Data-driven methods are used to reduce dimensionality and infer correlative and causal
relationships among genes/proteins in the system. Quasi-mechanistic insights from these models,
together expert knowledge and the network structure inferred by Dynamic Bayesian Networks
inform mechanistic models that may be encoded as ODEs, ABMs, RBMs, etc. Predictions from
simulation of these models are compared with experimental data under new conditions and the
model is refined based on the discrepancies. Finally, the mechanistic model can be analyzed by
a variety of methods to understand its dynamics and identify key control points. ODE ordinary
differential equation, ABM agent-based model, RBM rule-based model

interventions [38]. While these methods correlate gene/protein levels to phenotype
and can suggest relevant molecular players involved in a given inflammatory pro-
cess, these methods do not provide much information about how the genes/proteins
interact with each other [17, 33].

In order to better discern organizational aspects of interacting networks of me-
diators, such as co-regulation or auto-induction, a variety of methods have been
developed. Hierarchical clustering and Bayesian methods use high-throughput ge-
nomic or proteomic data of several time points and/or conditions to correlate gene
expression patterns with function and infer regulatory networks of correlated genes.
Several developments in these methods over the past 15 years have yielded more
informative networks that can be more easily translated into mechanistic models.
Among these methods, Dynamic Bayesian Networks (DBNs) are particularly suited
for inferring directed (causative) networks of interactions based on the probabilistic
measure of how well the network can explain observed data. DBNs can be supple-
mented by additional experimental evidence and expert knowledge to hypothesize
mechanistic models (Fig. 11.2).

Mechanistic models are derived from more detailed biological and physical de-
scriptions of a system have a rich set of tools for both analysis and simulation. These
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models, based on causative interactions, can be constructed as ordinary differential
equations (ODEs), rule-based models (RBMs), and agent-based models (ABMs)
among other methods (including hybrid methods), and have the advantage of po-
tentially being predictive outside the range of conditions/time points that they were
calibrated on. Although it is often difficult to parameterize such models, they can
unveil emergent phenomena that are not immediately obvious from the interactions
that are encoded in the model. There are several analytic tools for ODE models
especially that have been developed and used to decipher the organizational prin-
ciples of networks (or subnetworks), the properties that explain the dynamics and
robustness/sensitivity of a given complex system, and, perhaps most importantly, the
critical points of control in the system [34] (Fig. 11.2). These tools are particularly
important in order to help define the complex interplay between the inflammatory
mediators in the blood and other compartments both within the host (organs/tissue)
and without (e.g., in the case of interactions with blood-feeding vectors). Tools from
dynamical systems theory allow identification of the possible steady state(s) of a
system as well as the kinetics of the system’s time evolution. These tools have been
used extensively to explain (or predict, depending on the context) diverse behaviors
such as bistability, hysteresis, and oscillations in a variety of biological systems [39].
Bifurcation diagrams, in particular, can be used to map out the effects of a partic-
ular parameter on the possible steady state behaviors of a system, and to indicate
the transition from a healthy steady state to a pathological one [14, 40–42]. The
relative importance of parameters can also be quantified by calculating the change
in the model output in response to changes in the parameter values using sensitivity
analysis [34, 43]. These methods work in a complementary fashion to identify the
key points that can be modulated to change the behavior of a system (Fig. 11.2).

The analysis of ODE models of biological systems can be approached from a
control theory perspective as well. Achieving robustness and efficiency are core
principles of both evolution as well as engineering. Indeed, feedback, a pervasive
biological phenomenon, is also a fundamental component of control strategies [29].
An ODE model is the equivalent of a state-space representation of a control system.
Thus, it is possible to decompose the biological system into a control structure and
analyze the role of each component using control theoretic tools that characterize
their robustness and identify the key mediators that modulate the performance of such
a control system [44]. These analyses are especially relevant given that the tipping
point phenomenon in the inflammatory response is likely the result of a failure of the
body’s control structure to handle stress (Fig. 11.1).

Although ODE models are associated with a wide range of analytical tools, they are
inappropriate descriptions for settings in which there are low numbers of molecules
or in settings in which molecules are not well mixed and thus stochastic effects are
at play. RBMs and ABMs (among others) are superior methods for such conditions,
as they are able to handle stochastic simulations. Agent-based modeling software
packages such as NetLogo [45] and SPARK [46] are especially useful because of their
ability to encode and visualize spatially realistic effects as well. Hybrid models can
be constructed to merge the advantages of both ODEs and ABMs, and are especially
useful for describing phenomena that occur on different timescales. Moreover, the
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inflammatory response is a quintessential example of a system whose parts operate
not only at various timescales but also across various compartments. Thus, a hybrid
modeling approach that melds processes best modeled by ODE with processes best
modeled byABM/RBM is essential for a more complete description of inflammation.
As a step in this direction, a hybrid model of pressure ulcer formation in spinal cord
injury (SCI) patients was developed, abstracting the microscopic details of blood
flow and oxygen availability as a series of resistors using differential equations, while
encoding an abstracted cascade of inflammation and wound healing in response to
simulated cycles of pressure on the peripheral tissue using ABM. Based on data on
blood flow in noninjured human subjects versus SCI patients, the parameters gained
from this hybrid model predicted the higher likelihood of pressure ulcer development
in SCI patients (Solovyev et al., unpublished observations).

While we wish to navigate through process of data→data-driven model→ mech-
anistic model →prediction and understanding of the innate immune response, we
seek to put it in the perspective of translational applications with a focus on clinical
and preclinical settings. Much of the work in systems biology has understandably
been in simpler, well-studied model organisms, but even among studies focused on
preclinical science, there has been an overall lack of translation to the clinical arena.
Translational systems biology is a framework with a focus on translational insights
for novel diagnostic or therapeutic purposes and predictive mathematical models that
inform in silico clinical trials [9, 47, 48]. Initially formulated to deal with the clinical
challenge of integrating acute inflammation and organ dysfunction in critical illness,
this work expanded to include healing of acute and chronic wounds and infections
in various diseases, rational dynamic modulation of inflammation, and cross-species
host–pathogen interactions.

Modeling and Rational Modulation of Inflammation in Sepsis and
Trauma/Hemorrhage

Traumatic injury is often accompanied by hemorrhage and is a significant cause
of morbidity and mortality in patients, especially among young people [49, 50].
These patients are particularly susceptible to multiple organ dysfunction syndrome
(MODS), a poorly understood syndrome that may be partly attributed to excessive
and dysregulated inflammation [4]. The complexity of the interactions between in-
flammation and organ physiology has likely stymied the development of therapies
for MODS, and was the motivation for the development of both data-driven and
mechanistic computational models [10, 12–14, 42, 51–54].

Several models of the acute inflammatory response to sepsis, trauma, and hem-
orrhage have been developed, models that provide insight into the mechanisms of
inflammation at varying degrees of abstraction. Based on the typical progression
of the inflammatory pathway described in the preceding section, an ODE model
of acute inflammation consisting of pathogen, a single population of inflammatory
cells, and a measure of global tissue damage/dysfunction interconnected the actions
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of pro-inflammatory cytokines and DAMPs for the first time, and described both
recoverable infection and septic shock, as well as suggesting different therapeutic
avenues for the diverse manifestations of sepsis [55]. With the addition of more in-
teractions, including the positive feedback loop between inflammation and damage,
a more complex model was used for simulating populations of patients in sepsis
and anthrax [12, 52], and to test effects of probiotic treatment of necrotizing entero-
colitis [56]. Another equation-based model was calibrated in various inflammatory
scenarios in mice [12] and was calibrated on easily accessible circulating levels of
inflammatory cytokines and nitric oxide (NO) reaction products, and explicitly in-
cluded measurable physiological parameters such as blood pressure along with the
more abstract global damage (a surrogate for both DAMPs and the health status of
the individual; Fig. 11.1) in mice [12, 13, 51]. This calibrated model was capable of
predicting, outside of its calibration set, dose ranges of endotoxin at which death is
known to occur [12] in addition to predicting responses to combinations of insults
on which it was not trained [12, 57, 58].

While investigating the role of initial trauma in the murine response to
trauma/hemorrhagic shock, both correlative (transcriptomic analysis, PCA, regres-
sion) and causative (ODE) models were used in a complementary fashion, and
suggested that the role of initial trauma is central in driving the inflammatory re-
sponse, both systemically and in the liver [13]. Transcriptomic data indicated an
overlap between the genes and pathways induced in trauma alone or trauma with
hemorrhagic shock with differences in only the magnitude of expression. In agree-
ment with this observation, a mechanistic mathematical model showed that using
the same model with different initial conditions could differentiate the inflammatory
responses to trauma versus hemorrhagic shock. Later, multivariate regression, PCA,
and dynamic network analysis all suggested major mechanistic differences between
sham cannulation and hemorrhagic shock and predicted that the majority of the
inflammatory response to survivable trauma/hemorrhage was due mostly to the un-
derlying tissue trauma induced by cannulation surgery [13]. The model was extended
to include details of experimental trauma/hemorrhage in mice (e.g. bleeding rate and
target blood pressure), and further validated using a unique, computerized platform
for automated hemorrhage that was constructed specifically to test the behavior of
this mathematical model [53].

The natural extension from understanding and predicting the inflammatory re-
sponse is to modulate it in a rational fashion to reduce its detrimental effects.
Whereas the modeling work described earlier can help identify targets for therapeu-
tic intervention, and predictive models can be calibrated to account for individual
variability while making therapeutic suggestions, synthetic biology can help drive
further, clinically-useful developments. Indeed, recent advances have begun to lay
the foundations for clinical applications of synthetic biology. These advances have
focused on the engineering of synthetic biological circuits in bacterial cells that are
introduced into the human host to sense and respond appropriately to transition the
host from a diseased to a healthy state [59]. As noted in the review by Warren et al.,
advances need to be made in the use of mammalian synthetic biology in order to
facilitate clinical translation [60–62] (see also Chap. 14).
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In the setting of inflammatory diseases, key stumbling blocks to effective therapy
involve the variability of individual responses to pro-inflammatory stimuli as well as
the detrimental effects of an overly suppressed inflammatory response. Importantly,
the blood compartment is both a component of the multiscale positive feedback loop
of inflammation → damage → inflammation as well as being easily accessible for
therapy [28]. Accordingly, we have envisioned a synthetic biological device using
a human cell line to detect the circulating levels of pro-inflammatory mediators in
the blood of an individual patient, and respond appropriately by producing an appro-
priate counter-stimulus—usually a neutralizing protein or receptor antagonist—for
a given mediator. We have successfully created stably transfected human hepatocyte
(HepG2-derived) cell lines expressing the mouse soluble TNF-α receptor (sTNFR)
[63, 64], under control of the mouse variant of the central, TNF-α-responsive tran-
scription factor NF-kB enhancer coupled to a reduced thymidine kinase promoter.
These cells are housed in a bioreactor optimized for the growth and differentiation of
hepatocytes, that directly connects the with host’s circulatory system. Initial proof-
of-concept studies using this bioreactor that produces sTNFR constitutively in a rat
bacterial endotoxin infusion model (a quantitative paradigm of acute inflammation
that mimics many of the features of sepsis) show promising results for the dynamic
modulation of TNF and other pro-inflammatory mediators, as well as ameliorating
organ pathophysiology [65]. We suggest that the combination of mechanistic mathe-
matical modeling—of both a given inflammatory disease as well as the effect of this
type of biohybrid device on the disease—could be combined to engineer the optimal
use of this type of synthetic biohybrid device in order to modulate inflammation
systemically.

Moving Beyond the Host: Cross-Species Immune Signaling

The aforementioned examples have focused on the host’s inflammatory response
to infection or injury. In the case of infectious diseases, however, the host is not
an isolated system and instead part of an entire ecosystem involving the infectious
agent/parasite as well as possible vectors. Infectious organisms have evolved along-
side the host immune system and developed strategies for evasion and modulation of
immunity in the host [66, 67]. In the case of diseases such as dengue and malaria, the
addition of an invertebrate vector agent introduces a further layer of complexity in
the disease process. Blood plays an expanded role in such diseases, serving not only
as the site of immune system coordination within the host but also as an interface
for communication and interaction among the parasite, vector, and host [66]. This
complex ecology is being reassessed in light of the modern view of the vector as
an organism that mounts an immune/inflammatory response in an attempt to control
parasite growth, rather than as a willing partner in parasite transmission [66].

Studies show that in addition to the parasite Plasmodium falciparum, proteins
and other biomolecules from the host are ingested and can persist in the mosquito
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vector Anopheles stephensi upon taking a blood meal [66]. Thus, the mosquito vec-
tor is likely to be sampling the current immune/inflammatory state of the vertebrate
host, in essence getting a snapshot as well as early warning regarding the state of the
host’s inflammatory equilibrium (Fig. 11.1). Several such blood-derived factors have
been identified, including insulin, insulin-like peptides, and the cytokine transform-
ing growth factor (TGF)-β1[66]. Moreover, these host molecules induce signaling
in the mosquito midgut cells and modulate protein expression [68, 69]. For exam-
ple, mammalian TGF-β1 induces mosquito responses including mitogen-activated
protein (MAP) kinase signaling [68]. More recently, we found using a LuminexTM

assay for multiple cytokines and chemokines that interleukin (IL)-10 was selectively
retained in the mosquito midgut for up to five hours post-blood meal (unpublished
observations). In vitro studies also showed that administration of human IL-10 can
alter MAPK signaling in mosquito cells (Luckhart et al. unpublished observations).
The full gamut of interspecies signaling factors is likely to include DAMPs and other
inflammation-related molecules as well (Fig. 11.1). Below, we discuss these findings
in greater detail.

TGF-β1 has been identified as a central player in the immune response to parasite
infection within the host [70]. However, much less is known about the converse,
namely the possible role of TGF-β1 on mosquito immunity and physiology. Hu-
man TGF-β1 ingested by the Anopheles stephensi mosquito via a blood meal was
shown to induce expression of the mosquito homolog of the inducible nitric oxide
synthase, AsNOS [71]. Inducible NOS is often associated with mammalian host
defense responses to malaria, and studies have shown that the mosquito also reg-
ulates parasite development through complex, multiphasic expression of AsNOS
[72]. Several additional observations including evidence of feedback regulation by
the MAPK MEK (MAP kinase kinase)/extracellular signal-regulated kinase (ERK),
along with dichotomous dose-dependent effects of mammalian TGF-β1 on AsNOS
induction and parasite growth suggested that computational modeling might be ben-
eficial in clarifying the underlying mechanisms [71]. An initial Boolean model of
the system predicted oscillations in AsNOS as well as MEK/ERK, which was one
possible mechanistic model consistent with experimental data. An ODE model of the
same system gave quantitative predictions that fit reasonably well with the data. This
model also highlighted the necessity of a persistent presence of TGF-β1 to drive the
multiphasic response. However, experimental data had previously suggested that the
half-life of TGF-β1 may be much shorter than the observed multiphasic time course
of AsNOS. This discrepancy was reconciled with the model-generated hypothesis of
an endogenous mosquito TGF-β1-like molecule that is induced by exogenous mam-
malian TGF-β1 and can drive the long-term AsNOS response. Indeed, the mosquito
homolog of TGF-β1, As60A [73] was shown to have the same multiphasic dynamics
that the model predicted the hypothesized TGF-β1-like molecule must have in order
to maintain the observed AsNOS response [74]. These studies begin to provide in-
sight into some of the conserved, cross-species mechanisms of immune modulation
between the mammalian host and mosquito vector. Notably, they highlight a new role
for the blood as a medium for the interface and biological communication between
species, with particular implications for vector-borne diseases.
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In keeping with the goal of translational systems biology, we wish to use com-
putational modeling and analysis for the development of new therapeutic strategies.
In the decade since the publication of the genomes of the malaria parasite(s) and of
Anopheles gambiae, another major malaria mosquito vector, there have been several
functional and comparative genomic analyses that have helped uncover regulatory
networks through correlative studies [75–80]. Some of these studies have focused on
the interface between vector and parasite, identifying gene clusters/networks respon-
sible for the mosquito’s control of parasite growth [81]. However, most modeling
work in malaria has been focused mainly on epidemiological aspects of the disease
or very coarse-grained mechanistic modeling of host–pathogen–vector interactions
[30], rather than models on the intra- and intercellular scale that build directly from the
genomic studies or other quantitative experimental data. As outlined in Sect. 12.2.1,
and partially illustrated in the preceding paragraph, a systematic approach starting
with data-driven modeling and correlative studies that inform mechanistic models
and analyses can help build a comprehensive understanding of the molecular and
cellular mechanisms underlying the interspecies immune control of malaria parasite.
This approach is essential for identifying master regulators in the mosquito vector
that can point to therapeutic targets for disease control via genetic modification.

Just as we described the dynamic modulation of inflammation in the host via a
bioreactor, we seek to modulate the interspecies immune response to infection via
the use of transgenic mosquitoes, ideally at the blood-feeding interface. Genetically
modified mosquito (GMM) vectors have become an attractive option for disease con-
trol in the past decade as efforts to eradicate mosquitoes or modulate human immunity
to malaria infection have been met with reduced efficacy and other challenges. Key to
the success of a strategy involving GMMs is ensuring that the modification remains
dominant and spreads throughout the population while maintaining the fitness of the
mosquito. Recent studies have generated mosquitoes with increased parasite killing
but with detrimental effects on fitness [82, 83]. These studies are more descriptive
of the phenotype than the underlying mechanism driving it, and much remains to be
learned about the pathways driving the observed response. Thus, a systems-level un-
derstanding of blood factor-modulated immune response of the mosquito is needed
to account for the trade-offs between parasite killing and mosquito fitness in potential
interventions.

Conclusions and Future Prospects

The study of the inflammatory response dates back to Roman times, when it was first
characterized by its physical manifestations of increased temperature, redness, pain,
and swelling. Centuries of research have increased our understanding of inflamma-
tion beyond description of its symptoms, and unveiled an ever-increasing complexity
underlying this primordial defense mechanism. The modern view of inflammation
is that of a multifaceted communication process that manifests across multiple com-
partments of the body and multiple biological scales [28]. The blood is an important



11 Innate Immunity in Disease: Insights from Mathematical Modeling and Analysis 239

compartment among these, and serves at least three different functions in innate im-
munity. It is the medium through which inflammation progresses in its early stages
as circulating monocytes and other inflammatory cells are recruited to sites of in-
jury/infection. In settings of dysregulated or overexuberant inflammation, spillover
of inflammatory mediators from the site of injury to the blood can contribute to a
positive feedback, increasing systemic inflammation. Finally, inflammatory media-
tors in the host’s blood can transfer to blood-feeding vectors and directly modulate
the immune response of the vector in a complex host–vector–parasite interaction.
The highly complex nature of the immune response to biological stress and the mul-
tifaceted role of the circulatory system in this response are perhaps to blame for the
lack of efficient and/or successful therapies for diseases such as sepsis, trauma, and
MODS. A systems approach to inflammation can be helpful, perhaps even neces-
sary, for the identification of better therapeutic strategies by taking advantage of both
data-driven and mechanistic modeling. The methods highlighted in this chapter can
provide novel insights into the innate immune system, increasing our understand-
ing to suggest targets for rational modulation of inflammation as well as providing
predictive simulations on which to base further basic research, drug discovery, and
clinical trials.

Future possibilities include design of synthetic biological circuits for dynamic,
individualized modulation of inflammation in the host, as well as control of the host–
pathogen–vector interface to eliminate parasite transmission in vector-borne disease.
While much progress remains to be made in order to realize these far-reaching goals,
recent advances offer a promising outlook for the future of translational systems
biology of inflammation.
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Chapter 12
Modeling Biomolecular Site Dynamics in
Immunoreceptor Signaling Systems

Lily A. Chylek, Bridget S. Wilson and William S. Hlavacek

Abstract The immune system plays a central role in human health. The activi-
ties of immune cells, whether defending an organism from disease or triggering a
pathological condition such as autoimmunity, are driven by the molecular machin-
ery of cellular signaling systems. Decades of experimentation have elucidated many
of the biomolecules and interactions involved in immune signaling and regulation,
and recently developed technologies have led to new types of quantitative, systems-
level data. To integrate such information and develop nontrivial insights into the
immune system, computational modeling is needed, and it is essential for modeling
methods to keep pace with experimental advances. In this chapter, we focus on the
dynamic, site-specific, and context-dependent nature of interactions in immunore-
ceptor signaling (i.e., the biomolecular site dynamics of immunoreceptor signaling),
the challenges associated with capturing these details in computational models, and
how these challenges have been met through use of rule-based modeling approaches.
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Introduction

Immune cells must process information about their changing environment to respond
to signs of damage and infection. These cells possess surface receptors that bind ex-
tracellular ligands and initiate intracellular signaling, with information propagating
through complex networks of molecular interactions. Dysregulation of these net-
works, and resulting dysregulation of immune responses, can lead to pathological
conditions such as allergies, asthma, and autoimmunity. Thus, an understanding of
signaling in immune cells is needed for improved understanding and treatment of
disease. The complexity of cell signaling challenges intuition, but computational
modeling offers the possibility of expanding our reasoning capabilities to obtain a
predictive understanding of how immune cells respond to stimuli [1, 2].

Intracellular signals are propagated through enzyme-catalyzed reactions and non-
covalent interactions, which are mediated by specific sites within biomolecules.
These biomolecules, especially proteins, tend to each contain multiple functional
components or sites. Examples of biomolecular sites involved in cell signaling in-
clude tyrosine residues that undergo phosphorylation and bind SH2 domains, SH3
domains and proline-rich motifs that interact with one another, and PH domains that
bind phospholipids. The outcomes of biomolecular interactions are changes in popu-
lation levels of chemical species (e.g., multimolecular complexes). The biomolecular
site dynamics of cell signaling are governed by the same laws of physics and chem-
istry that govern chemical reaction kinetics [3]. Chemical reaction kinetics have long
been modeled through the formalism of ordinary differential equations (ODEs). Use
of ODE models is widespread in systems biology [4–6] and has yielded useful in-
sights [7]. However, formulation of an ODE model depends on the availability of a
reaction network, for which one must enumerate all species that can be populated,
and make definite statements about how these species are connected and influence
each other. In the case of cell signaling systems, this requirement can become a
significant obstacle to model specification. This difficulty arises from the multisite
structures of biomolecules.

As an example, let us consider the T cell receptor (TCR)/CD3 complex. This recep-
tor contains ten immunoreceptor tyrosine-based activation motifs (ITAMs) [8], each
of which contains two tyrosine residues. Each of the 20 ITAM tyrosine residues has
two possible states: phosphorylated or unphosphorylated. As a result, the TCR/CD3
complex has accessible to it 220 ≈ 1 million possible phosphorylation states. In gen-
eral, without quantitative characterization of phosphorylation kinetics, the exact
phosphoform of a given receptor at a given time cannot be narrowed through logical
reasoning alone to less than 1 million possible phosphoforms. A reaction network
capturing the full spectrum of TCR phosphoforms would contain 1 million nodes
(representing chemical species), corresponding to 1 million ODEs, which would be
impractical to specify. Thus, despite a wealth of information available about this
receptor and proteins associated with it, specifying a reaction network that fully cap-
tures the possible consequences of known protein interactions and modifications is
a challenge. Even if the populated chemical species and active chemical reactions
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could be identified within an experimental system to narrow the scope of modeling,
any changes of the system, such as protein copy number variations, could alter the
populated chemical species and active chemical reactions. Thus, traditional model-
ing approaches are problematic when one is interested in the site-specific dynamics
of a biomolecular interaction network, i.e., biomolecular site dynamics.

The problem is not that biomolecular site dynamics are impossible to capture in a
model but rather that available mechanistic knowledge is difficult to translate into a
traditional model form. Allowing more natural representation of available mechanis-
tic knowledge of cell signaling is a formalism that leverages the modular, multisite
nature of proteins and other biomolecules. This formalism is based on use of local
rules to represent interactions between sites of binding partners, which are taken to
be modular, meaning the interactions are assumed to be somewhat independent of
molecular context. An interaction is modular if a rule can be specified to represent
the interaction (i.e., to define when the interaction occurs and with what rate) and the
rule does not completely define the reactants. For example, if ligand–receptor bind-
ing is independent of receptor phosphorylation, then the interaction can be said to be
modular, and a rule can be specified for ligand–receptor binding that applies regard-
less of receptor phosphorylation state. Rule-based modeling allows the translation of
mechanistic knowledge into computational models consistent with chemical reaction
kinetics. Because an interaction can be represented without complete knowledge of
the states of the participating reactants, there is no need to specify a reaction network,
which eliminates a major barrier to modeling of biomolecular site dynamics.

A rule concisely describes the necessary and sufficient conditions required of reac-
tants for a reaction to occur. A rule-based model captures the same chemical kinetics
as an ODE-based model (up to assumptions of modularity, which may be relaxed
as needed to accommodate empirical observations), while permitting simulation of
chemical kinetics without pregeneration of a reaction network. The methodology
of rule-based modeling has been reviewed in detail elsewhere [9–11] and compre-
hensive guides to rule-based modeling software tools, such as BioNetGen [12], are
available. Here, rather than reviewing methodology or software tools, we will re-
view how rule-based modeling has been used to study biomolecular site dynamics
of immunoreceptor signaling systems.

These systems are characterized by at least two mechanisms that, as we will dis-
cuss, the rule-based approach is well suited to capture: aggregation (or multivalent
binding) and multisite phosphorylation. Aggregation of receptors is induced by inter-
actions with cells bearing multiple ligands and/or multivalent ligands, and serves to
initiate signaling [13–15]. Following aggregation of the IgE receptor (FcεRI), for ex-
ample, the first biochemically detectable event in intracellular signaling is multisite
phosphorylation of receptor ITAMs. Each of these motifs contains two canonical ty-
rosine residues that, when phosphorylated, serve as docking sites for SH2 domains of
Src- and Syk-family kinases, which trigger subsequent signaling events. Aggregation
reemerges in the cytoplasm, as signaling complexes assemble through multivalent
interactions of scaffold/adaptor/linker proteins [16]. Aspects of these complex pro-
cesses have been formalized, simulated, and analyzed in the models that will be
discussed below.
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Comparison of Modeling Assumptions

An ODE model is specified by making statements about how concentrations of chemi-
cal species change with time. Thus, a modeler is steered towards making assumptions
about which species can be populated. These assumptions must sometimes be ad hoc,
and may be at odds with available data. For example, the number of phosphorylation
states of a TCR/CD3 complex could be reduced through a “virtual phosphorylation
site” assumption, as it has been called in a study of ErbB receptor signaling by
Birtwistle et al. [17]. Under this assumption, multiple ITAM tyrosine residues would
be treated as a single site. This assumption would be serviceable for some purposes,
such as a model that aims to elucidate how overall features of TCR signaling are
affected by ligand–receptor binding kinetics [18]. However, if a modeler aimed to
investigate the dependence of signaling events on the number or identity of specific
ITAMs, a question that has been investigated experimentally [19], a virtual phos-
phorylation site assumption would be limiting. A virtual phosphorylation site could
also be problematic in cases where different phosphotyrosines interact with different
binding partners, as is the case for the linker for activation of T cells (LAT), because
if multiple sites are treated as one, a false competition between binding partners may
arise. These issues are discussed further by Chylek [20].

In contrast, a rule-based model is specified by making statements about site-
specific requirements that must be met by reactants for a reaction to occur. A modeler
is then steered towards making assumptions about the modularity or cooperativity
of interactions. Which set of assumptions is preferable depends on what type of
information is available. Given that signaling proteins are generally composed of
modular domains [21], specification of a model in the form of rules is often more
straightforward and efficient than specification in the form of ODEs. However, the
two approaches are complementary, mirroring alternate modeling formalisms that
are found in other fields (e.g., use of Lagrangian and Eulerian coordinates in fluid
dynamics).

Summary of Recent Modeling Work

Rule-based modeling has been used to investigate a number of biological systems.
In Table 12.1 we summarize recent applications aimed at understanding immune
signaling, and in Table 12.2, we summarize applications aimed at understanding
other types of cell signaling systems, as well as general mechanisms of cell signaling.
We consider only applications from 2007 to present; earlier applications have been
reviewed elsewhere [9]. It is worth noting that rule-based approaches, although
developed for and most commonly used for modeling of cell signaling systems, have
been used to model other processes, including metabolism [22–24], dynamics of
various complex chemical reaction mechanisms [25–27], viral capsid assembly [28,
29], and synthetic gene circuitry [30]. A number of algorithms and software tools
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Table 12.1 Recent studies of immune signaling that have employed rule-based modeling

Reference Topic of study Software used

Lipniacki et al. [18] Feedbacks in T cell receptor signaling BioNetGen

Nag et al. [53] LAT aggregation Problem-specific code

An and Faeder [54] Toll-like receptor signaling BioNetGen

Nag et al. [55] Serial engagement of FcεRI BioNetGen

Monine et al. [56] Steric effects on aggregation of FcεRI Problem-specific code

Nag et al. [57] Syk activation in mast cells BioNetGen

Artymov et al. [58] Coreceptors in T cell receptor signaling SSC

Nag et al. [59] LAT aggregation with varying valency Problem-specific code

Barua et al. [60] Interlocked feedbacks in BCR signaling BioNetGen

Mukherjee et al. [61] Effect of ligand valency on BCR signaling SSC

Chylek [20] Extension of model of Mukherjee et al. [61] BioNetGen

Barua and Goldstein [62] Role of lipid rafts in FcεRI signaling BioNetGen

Mukhopadhyay et al. [63] Ultrasensitivity in T cell receptor signaling BioNetGen

Liu et al. [64] FcεRI signaling in response to multivalent
antigen

BioNetGen

LAT linker for activation of T cells, BCR B cell receptor

for rule-based modeling are available [12, 31–51]. In addition, a number of rule-
based models have been developed as demonstrations in methodological work. For
example, to demonstrate use of a model visualization tool, a rule-based model of the
mitogen-activated protein (MAP) kinase signaling network in yeast was developed,
with all parameter values set to 1 [52].

Modeling of LAT Aggregation

In Tables 12.1 and 12.2, we list several examples of applications of rule-based mod-
eling. We now discuss one topic in detail: interactions of the linker protein LAT. This
protein is subject to multisite phosphorylation and forms aggregates with other signal-
ing proteins through multivalent interactions, exemplifying two processes commonly
found in immunoreceptor signaling. We also discuss a series of recently developed
models for investigation of LAT aggregation. These models were obtained through
traditional modeling methods and rule-based modeling, which provides an opportu-
nity to highlight differences in model specification and the type of information that
can be gained from the different approaches.

LAT is a transmembrane protein that undergoes multisite phosphorylation follow-
ing stimulation of immunoreceptor signaling. Its four distal tyrosine residues have
well-characterized roles as binding sites for SH2 domains of other signaling proteins.
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Table 12.2 Other recent studies of cell signaling that have employed rule-based modeling

Reference Topic of study Software used

Barua et al. [65] Interactions of Shp-2 BioNetGen

Barua et al. [66] Interactions of tandem SH2 domains BioNetGen

Barua et al. [67] Jak kinase activation BioNetGen

Gong et al. [68] HMGB1 signaling in cancer BioNetGen

Ray and Igoshin [69] Transcriptional feedback in bacteria BioNetGen, Mathematica

Malleshaiah et al. [70]
(see supplemental mate-
rial of this paper)

Scaffold proteins and switch-like
behavior

Facile, ANC, MATLAB

Dushek et al. [71] Multisite phosphorylation Smoldyn

Selivanov et al. [72] Mitochondrial respiration Problem-specific code

Sorokina et al. [73] The postsynaptic proteome of the
neuronal synapse

RuleStudio, jsim, R

Thomson et al. [74] Yeast pheromone signaling BioNetGen, MATLAB

Geier et al. [75] Integrin activation BioNetGen

Ghosh et al. [76] Iron homeostasis in tuberculosis KaSim, Cytoscape

Abel et al. [77] Influence of the membrane environment
on bistability

SSC

Deeds et al. [78] Combinatorial complexity in protein
interaction networks

KaSim

Kocieniewski et al. [79] Dual phosphorylation in the MAP kinase
cascade

BioNetGen

Michalski and Loew [80] Activation of CaMKII BioNetGen, VCell

Tsernyschkow et al. [81] Kinetochore architecture SRSim

Kesseler et al. [82] DNA damage G2 checkpoint BioNetGen

Kozer et al. [83] EGFR oligomerization BioNetGen

Falkenberg and Loew [84] Rho GTPase cycling BioNetGen

Kiselyov et al. [85] Ligand binding of insulin receptor and
IGF1 receptor

Problem-specific code

HMGB1 high-mobility group protein B1, EGFR epidermal growth factor receptor, IGF1 insulin-like
growth factor 1, MAP mitogen-activated protein

One of these proteins is growth factor receptor-bound 2 (GRB2), whose SH2 domain
can bind phosphorylated tyrosines 171, 191, and 226 in LAT. GRB2 also contains a
pair of SH3 domains, which interact with proline-rich sequences in son of sevenless
homolog 1 (SOS1). The presence of at least four proline-rich sequences in SOS1
allows it to cross-link two GRB2 molecules [86]. In this way, aggregates of LAT–
GRB2–SOS1 can form. LAT aggregation has been observed following stimulation
of T cells [87] and mast cells [88], and the GRB2 binding sites in LAT are required
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for this process [16]. Expression of a SOS1 proline-rich region that can bind only
one GRB2 molecule inhibits LAT aggregation and attenuates downstream signal-
ing events, including calcium mobilization [16]. These results indicate that LAT’s
capacity to aggregate is relevant for its physiological function.

LAT is subject to valence switching, i.e., the number of LAT sites that can bind
GRB2 can vary from zero to three, and depends on how many LAT tyrosine residues
are phosphorylated. Thus, aggregation of LAT is influenced by its phosphorylation
state. This dependence has been explored quantitatively by Goldstein and coworkers,
using a combination of equilibrium theory borrowed from polymer chemistry, and
rule-based modeling.

Nag et al. [53] formulated an equilibrium continuum model to compare aggrega-
tion of bivalent LAT versus trivalent LAT. The molecules and interactions considered
in the model are illustrated in Fig. 12.1. The equilibrium model predicted that an in-
crease in valency from two to three leads to a dramatic increase in average LAT
aggregate size. For a homogenous population of trivalent LAT, a sol–gel coexistence
region is predicted if concentrations of LAT, GRB2, and SOS1 are within certain
ranges. The following equation was derived for the fraction of LAT molecules in
the gel, a super-aggregate containing a significant fraction of all LAT, that is in
equilibrium with unclustered LAT and small LAT aggregates:

fg = 1 − 2(1 + β)2

ασχμθg2s
, (12.1)

where s is the fractional concentration of free SOS1 and σ is a negative cooperativity
factor. The parameter β is given by the following equation:

β = KGLG + 2KGLKGSGS + 2σKGLK2
GSG

2S, (12.2)

where KGL is the solution equilibrium constant for GRB2 binding to LAT, KGS is
the solution equilibrium constant for GRB2 binding to free SOS1, G is the cytosolic
concentration of GRB2 free of SOS1, and S is the cytosolic concentration of SOS1
free of GRB2. The nondimensional parameters α, χ , μ, and θ are defined as follows:

α = 3KGLLT (12.3)

χ = KGLGT (12.4)

μ = 2KGSST (12.5)

θ = KGSGT . (12.6)

Here KGL is the surface equilibrium cross-linking constant for membrane-
associated GRB2 binding to LAT at the end of a chain, and GT , LT , and ST are
the total concentrations of GRB2, LAT, and SOS1, respectively.

The equilibrium relations given above were found by enumerating all possible
complexes of LAT, GRB2, and SOS1, with the exception of cyclic aggregates.
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Fig. 12.1 A model of interactions among LAT, GRB2, and SOS1 [53, 59] represented as an ex-
tended contact map [111]. Boxes represent proteins, domains, and motifs. Double-headed arrows
represent noncovalent interactions, and arrows are numbered to correspond to rules in Fig. 12.2.
Posttranslational modifications are designated by small squares connected to flags that indicate the
site and type of modification (e.g., “pY171” refers to phosphorylation of tyrosine 171). LAT con-
tains three tyrosine residues that can be phosphorylated and serve as binding sites for the SH2
domain of GRB2. GRB2 also contains a pair of SH3 domains, which are taken to be a sin-
gle site in the model. Four proline-rich sequences in SOS1 are taken to be a pair of sites that
can bind GRB2. Thus, GRB2 can bind SOS1 to form a 1:1 complex, which can be bound by a
second GRB2 molecule to form GRB2–SOS1–GRB2 complex. This ternary complex can cross-
link two LAT molecules. An example of a molecule type definition is LAT(PY, PY, PY), which
represents LAT containing three phosphorylated tyrosine residues, which by being assigned the
same name are taken to be indistinguishable by convention. An example of a rule is LAT(PY) +
GRB2(SH2,SH3) <−> LAT(PY!1)·GRB2(SH2!1,SH3). This rule indicates that free GRB2 can
reversibly bind a free phosphosite in LAT via its SH2 domain when its SH3 domain is free. It is
assumed that the other two phosphotyrosines in LAT do not influence the interaction, as these sites
are omitted from the rule. For a more complete model specification, see Fig 12.2. LAT linker for
activation of T cells, GRB2 growth factor receptor-bound 2, SOS1 son of sevenless homolog 1
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Enumeration of complexes requires insights from the field of branching processes,
because binding of trivalent LAT to three GRB2 molecules can form a vast number
of distinct linear chains and treelike networks. A statistical weight (relative concen-
tration) is assigned to each complex. These weights enter into a partition function,
which is a convergent infinite sum that can be reduced to an algebraic expression.
The partition function can be used to obtain conservations laws for each molecule in
the system, from which one can calculate the free concentrations of these molecules
as well as concentrations of other species. The terms of the partition function are
obtained by assuming detailed balance, which holds under equilibrium conditions.
Thus, the model is silent about reaction kinetics. An ODE model for the chemical
kinetics of this system cannot be easily specified because of the large number of
distinct chemical species that can be populated [89]. The equilibrium model is anal-
ogous to an earlier model for binding of a trivalent ligand to a bivalent cell-surface
receptor [90], and can be thought of as a model for binding of a soluble cytosolic
bivalent ligand (GRB2–SOS1–GRB2) to a trivalent membrane receptor (LAT).

The equilibrium model of Nag et al. [53] is exact in the continuum limit, i.e., for
a system of infinite size. However, a cell is of finite size. To evaluate the effect of
finite system size, a rule-based model was developed and simulated (to steady state),
and its predictions were compared to those of the equilibrium model. The rules of
the model are presented in Fig 12.2; the model was simulated using a network-free
simulation method [89]. At the time at which the model was developed, a problem-
specific code was required to perform network-free simulation. General-purpose
network-free simulators have since become available [36–38]. Steady-state results
obtained from the rule-based model were found to be consistent with the equilibrium
model. Information equivalent to Eq. 12.1 can be obtained by simulating the rule-
based model to steady state and calculating the fraction of LAT molecules in the
largest aggregate. The rule-based model is analogous to other rule-based models for
ligand-induced receptor aggregation that have recently been studied [56, 89].

Although Nag et al. [53] focused on equilibrium behavior, their rule-based model
enables study of the kinetics of aggregation, which are not captured in their equi-
librium model. Kinetics of aggregation of multivalent binding partners have been
modeled using traditional modeling methods (e.g., ODEs) by restricting the scope of
the model to consideration of, for example, only ligand states [91]; consideration of
the full spectrum of possible complexes requires a rule-based approach. In addition,
a rule-based approach allows cyclic aggregates to be considered, as demonstrated
by Monine et al. [56]. The approach of Perelson and DeLisi [91] becomes unwieldy
when cyclic aggregates, or rings, can form [92].

A second set of models related to LAT aggregation has recently been used by
Nag et al. [59] to evaluate the robustness of their earlier predictions. Rather than
assuming a homogenous population of trivalent or bivalent LAT, a mixed population
of trivalent, bivalent, and monovalent LAT was assumed. Monovalent LAT blocks
aggregate growth, and bivalent LAT prevents branching. It was found that the pres-
ence of monovalent and bivalent LAT reduced the size of the sol–gel coexistence
region in parameter space. Consideration of varying valency (or valence switching) is
important, because a distribution of LAT phosphoforms is likely to be found in cells.



254 L. A. Chylek et al.

Fig. 12.2 Abbreviated BioNetGen input file for a model of LAT, GRB2, and SOS1 interactions.
The molecule types block specifies the molecules included in the model, and the components that
each molecule contains. The reaction rules block contains rules that represent interactions that can
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This distribution could shift as signaling progresses because of different kinetics of
phosphorylation at different sites [93], which we discuss in more detail below.

Modeling Early Events in BCR Signaling

The rule-based approach has also been applied to study early events in B cell antigen
receptor (BCR) signaling [60, 61]. In the study of Barua et al. [60], a rule-based model
was used to study the roles of two related but distinct Src family kinases: LYN and
FYN. These kinases are involved in interlocked positive and negative feedback loops.
Positive feedback arises as receptor ITAMs are phosphorylated, generating binding
sites for LYN, FYN, and SYK. Negative feedback arises as the adaptor protein PAG1
is phosphorylated. Phosphorylated PAG1 recruits CSK, a kinase that phosphorylates
LYN and FYN at negative regulatory sites. By incorporating available mechanistic
knowledge into a rule-based model capturing the interactions of the receptor (BCR),
LYN, FYN, SYK, CSK, and PAG1, the site dynamics of this system were explored,
and the effects of perturbations (e.g., protein knockdown and overexpression) were
evaluated. It was found that oscillations in SYK activity could arise for certain ranges
of the stimulatory signal, and for certain expression levels of LYN and FYN. It was
also found that bistability could arise in cells lacking LYN or CSK. These results
represent model predictions that are experimentally testable. Another recent study of
BCR signaling [61], combining rule-based modeling with experimentation, focused
on how spatial reorganization of the receptor and associated kinases contributes to
engagement of positive feedback loops. For further discussion of this model, see
Chylek [20].

Integration with Experimentation

Development of detailed computational models is justified by availability of detailed
experimental data. Emerging technologies have enabled examination of site-specific
aspects of cell signaling, in some cases at the single-molecule level. Insights and ques-
tions derived from these studies motivate modeling efforts to capture a comparable
level of detail.
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 12.2 (continued) occur in the model. Rules are numbered to correspond to arrows in Fig 12.1.

Note that multiple rules correspond to each arrow. An arrow represents an interaction; the rules

corresponding to a given arrow each represents the kinetics of the interaction in a unique molecular

context. The simulation command at the bottom calls a network-free simulator. Not shown are

the parameters block, in which parameters are assigned values; the seed species block, in which

initial conditions are set; and the observables block, in which model outputs are specified. For

more information about the contents and format of a BioNetGen input file, see Faeder et al. [12].

LAT linker for activation of T cells, GRB2 growth factor receptor-bound 2, SOS1 son of sevenless

homolog 1
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In the case of LAT, site-specific antibodies have been used to monitor phosphoryla-
tion kinetics of tyrosine residues 132 and 191 following TCR stimulation [93]. It was
found that tyrosine 191 becomes phosphorylated significantly faster than tyrosine
132. This difference could have noteworthy consequences for regulation of down-
stream signaling, because these sites have distinct binding partners: phosphorylated
tyrosine 132 binds phospholipase Cγ1 (PLCG1), whereas phosphorylated tyrosine
191 binds GRB2-related adapter protein 2 (GRAP2) and related adaptor proteins.
These types of site-specific interactions are captured naturally in a rule-based model.

Another area in which site-specific phosphorylation has proven significant is
partial phosphorylation of ITAMs. The consensus view is that, when doubly phos-
phorylated, ITAMs recruit the tandem SH2 domains of Syk family kinases. However,
it is now clear that phosphorylation of a single ITAM tyrosine residue may lead to
recruitment of a different set of signaling proteins, with distinct consequences for
downstream signaling. By using mono-SH2 and dual-SH2 domain recombinant pro-
teins as probes for singly and doubly phosphorylated ITAMs, it has been found that
ITAM monophosphorylation is associated with anergy and activation of the negative
regulators DOK1 and INPP5D in BCR signaling [94]. Activation of this inhibitory
circuit may be linked to recruitment of the kinase LYN to singly phosphorylated
ITAMs of the CD79A and CD79B subunits of the BCR.

Development of useful models will depend on suitable data sets for model pa-
rameterization. A potentially rich source of data is likely to come from quantitative
high-resolution mass spectrometry (MS). MS can be used to detect phosphorylation
of specific residues in an unbiased manner [95], enabling discovery of previously
uncharacterized phosphorylation sites in receptor subunits and their downstream tar-
gets [96, 97]. MS can also be used to quantitatively track changes in phosphorylation
levels of known phosphorylation sites as signaling progresses, including changes that
occur on short time scales [98]. In the near future, novel methods for single-molecule
MS may even offer the possibility of characterizing the phosphoforms of individual
proteins [99]. We propose that rule-based modeling is well suited for mechanistic
interpretation of large-scale MS data sets, because the rule-based formalism entails
the same site-specific resolution [100].

Other advances in quantitative measurements will also provide modelers with
systematic measurements of binding constants for protein domains involved in im-
munoreceptor signaling. High-throughput platforms have been developed and used
to measure the affinities of SH2 domains of human proteins for specific phospho-
tyrosine peptides [101–104]. Such tools can potentially be used to determine the
parameters needed for mechanistic modeling.

Lastly, super-resolution imaging techniques have enabled observation of signal-
ing complexes on the nanoscale [105]. These studies have elucidated the spatial
reorganization of proteins that occurs during immunoreceptor signaling, including
aggregation of LAT following TCR stimulation [106]. The ability to image aggrega-
tion at high resolution, such that individual molecules can be distinguished, means
that predictions from rule-based models of aggregation, such as a predicted aggregate
size distribution, could potentially be tested in a direct manner.
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Conclusions and Future Directions

A great deal of knowledge about immunoreceptor signaling has been accumulated.
In addition, modern experimental methodologies allow us to obtain data that pertains
to the site-specific details of molecular interactions. We believe that these data can
be integrated to form a more complete, and more predictive, picture of how immune
cells sense and respond to their environment. Our approach to piecing together this
picture is to translate biological knowledge into models for chemical kinetics, using
a formalism that naturally captures available biological knowledge. This formalism,
in which rules are used to represent interactions and their contextual dependen-
cies, allows us to capture biomolecular site dynamics (e.g., site-specific details of
protein–protein interactions), more comprehensively simulate the reaction networks
that mediate cell signaling, and manipulate specific features of cell signaling sys-
tems in silico. Until recently, only a subset of rule-based models could be simulated.
With the development of network-free simulation methods [36–38, 89, 107, 108],
simulation of a much wider array of models is now possible.

Mechanistic models have value as hypothesis generators and as vehicles of under-
standing [109]. A number of interesting biological questions can now be addressed
via rule-based modeling, in part because this approach facilitates consideration of
the full spectrum of possible phosphoforms for a protein of interest, which could be
especially valuable for the study of ITAMs and related motifs that can have oppos-
ing regulatory functions that depend on phosphoform [110]. Rule-based modeling
approaches are needed to address these and other questions that will emerge as the
intricate machinery of immune signaling is explored further.
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Chapter 13
Structure and Function of Platelet Receptors
Initiating Blood Clotting

Elizabeth E. Gardiner and Robert K. Andrews

Abstract At the clinical level, recent studies reveal the link between coagulation
and other pathophysiological processes, including platelet activation, inflammation,
cancer, the immune response, and/or infectious diseases. These links are likely to
underpin the coagulopathy associated with risk factors for venous thromboembolic
(VTE) and deep vein thrombosis (DVT). At the molecular level, the interactions
between platelet-specific receptors and coagulation factors could help explain co-
agulopathy associated with aberrant platelet function, as well as revealing new
approaches targeting platelet receptors in diagnosis or treatment of VTE or DVT.
Glycoprotein (GP)Ibα, the major ligand-binding subunit of the platelet GPIb-IX-V
complex, that binds the adhesive ligand, von Willebrand factor (VWF), is co-
associated with the platelet-specific collagen receptor, GPVI. The GPIb-IX-V/GPVI
adheso-signaling complex not only initiates platelet activation and aggregation
(thrombus formation) in response to vascular injury or disease but GPIbα also regu-
lates coagulation through a specific interaction with thrombin and other coagulation
factors. Here, we discuss the structure and function of key platelet receptors involved
in thrombus formation and coagulation in health and disease, with a particular focus
on platelet GPIbα.

Keywords Platelets · Coagulation · GPIb-IX-V · GPVI

Introduction: Coagulation and Platelets

Coagulation of human plasma is initiated by activation of the intrinsic (FXII-
dependent) or extrinsic (tissue factor-dependent) pathways (Fig. 13.1a) [1]. In vivo,
release of activated tissue factor at sites of damaged vasculature provides a triggering
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Fig. 13.1 Coagulation and platelet function. a Intrinsic (FXII-dependent) and extrinsic (tissue
factor-dependent) coagulation pathways leading to the common pathway of thrombin (FIIa) gen-
eration. Thrombin induces clotting via conversion of fibrinogen to fibrin, a process accelerated by
activated platelets, and b can bind to platelet GPIbα (of the GPIb-IX-V complex) and activate
platelets via GPIbα signaling when GPV (a thrombin substrate) is removed, and G-protein-
coupled protease-activated thrombin receptors, PAR-1 and PAR-4. Thrombin can thereby enhance
thrombus formation following adhesion of circulating platelets to extracellular matrix or activated
endothelium, or under shear stress, leading to secretion of ADP and procoagulant factors such as
polyphosphates, increased expression of platelet surface phospholipids, and activation of integrin
αIIbβ3 that binds fibrinogen or VWF and mediates platelet aggregation. Thrombin can be activated
by vascular damage (releasing tissue factor) or by activation of FXII (intrinsic pathway) by collagen
exposure, platelet secretion of procoagulant factors such as polyphosphates, collagen (that binds
FXII under some conditions or activates prekallikrein under hyperglycemic conditions), or possibly
by pathological shear stress a. F factor, GP glycoprotein, HK high molecular weight kininogen,
PK prekallikrein, PL phospholipids, TSP thrombospondin, VWF von Willebrand factor

mechanism for initiating coagulation [2]. For the intrinsic pathway, however, while
contact activation by negative surfaces is known to trigger coagulation in vitro, recent
evidence suggests that collagen exposure, release of procoagulant polyphosphates
from activated platelets [3], and possibly even pathological shear stress could provide
a mechanism for activating factor XII (FXII) in vivo [4]. Other mechanisms could
involve activation of prekallikrein that acts on FXII. Another intriguing possibility is
that antibacterial leukocyte DNA-containing neutrophil extracellular traps (NETs) or
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associated proteins could activate intrinsic coagulation. Both intrinsic and extrinsic
pathways activate the common coagulation pathway, involving activation of FX to
FXa which converts prothrombin (FII) to active thrombin (FIIa; Fig. 13.1a).

However coagulation is initiated, there is a clear role for platelets in spatial and
temporal regulation of coagulation at prothrombotic sites [5]. Circulating platelets in
the bloodstream are rapidly activated following vascular damage by exposure of col-
lagen, von Willebrand factor (VWF), or other adhesive ligands in the subendothelial
matrix or ruptured atherosclerotic plaque [6], VWF/P-selectin on activated endothe-
lium, or VWF in stenotic vessels (Fig. 13.1b) [7]. Platelet glycoprotein (GP)Ibα of
the GPIb-IX-V complex bindsVWF [8] or thrombospondin (TSP), GPVI binds colla-
gen or laminin (facilitated by activated platelet integrins, α2β1, or α5β1, respectively,
facilitating adhesion or platelet activation via GPVI) [9]. Engagement of GPIb-IX-
V/GPVI leads to activation of the integrin αIIbβ3, which binds fibrinogen or VWF and
mediates platelet aggregation and fibrin formation [10]. Activated platelets secrete
agonists such as ADP which acts on purinergic G-protein-coupled receptors [11],
and secrete procoagulant factors such as polyphosphates [3] which promote coagu-
lation and generation of active thrombin [12]; expression of phosphatidylserine or
other procoagulant phospholipids on the surface of activated platelets also acceler-
ates coagulation by localization and assembly of coagulation complexes (Fig. 13.1b).
Thrombin activates platelets by using GPIbα as a cofactor in the activation of platelets
via G-protein-coupled protease-activated receptors, PAR-1 or PAR-4, which in turn
promote platelet activation and degranulation. Platelet activation is also associated
with time-dependent metalloproteinase-mediated ectodomain shedding of platelet
receptors, GPIbα (“glycocalicin”), GPV, and GPVI [13] (Fig. 13.1b). In this regard,
elevated levels or plasma soluble GPVI (sGPVI) associated with disseminated in-
travascular coagulation (DIC) correlate with increased levels of coagulation markers
[14]. Interestingly, GPV may be shed via cleavage at separate sites either by platelet
sheddases or by thrombin [13, 15], with loss of surface GPV being associated with
increased platelet activation by the interaction of thrombin with GPIbα.

Ligand Binding to Platelet GPIbα

Coagulation factors including thrombin, FXII, FXI, and high molecular weight
kininogen (HK) bind to the same ligand-binding domain of GPIbα involved in bind-
ing VWF, TSP, and other ligands [16, 17]. GPIbα is a multifunctional receptor which
binds prothrombotic and procoagulant ligands within a versatile “shear-activated”
ligand-binding region (Fig. 13.2). The absence or deficiency of GPIbα causes the
inherited bleeding disorder, Bernard–Soulier Syndrome (BSS) [18] and along with
the loss of high-shear- and VWF-dependent platelet-to-platelet interactions [19];
platelets from individuals with BSS are generally thought to have ablated procoag-
ulant function [20]. GPIbα (∼ 135 kDa) consists of an N-terminal globular domain
(∼ 40 kDa), a sialomucin core, an extracellular membrane-proximal tandem Cys
sequence which forms disulfide bonds to 2 GPIbβ subunits (forming GPIb) [21],
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Fig. 13.2 N-terminal ligand-binding region of platelet GPIbα Structural regions based on primary
sequence and crystal structure, and functional mapping of anti-GPIbα monoclonal antibodies which
inhibit binding of one or more ligands. Antibodies against different epitopes, and the small-molecule
allosteric inhibitor, the cyclic peptide OS1, interact with different regions within the 282-residue
N-terminal domain illustrating the globular conformationally dependent binding sites for VWF and
possibly other ligands. Coagulation factors of the intrinsic pathway (FXII, FXI, high molecular
weight kininogen, with FXI being a substrate for both FXII and thrombin) also interact with the
N-terminal domain of GPIbα

transmembrane domain, and cytoplasmic tail containing binding sites for intracel-
lular signaling/cytoskeletal proteins. GPIb is noncovalently associated with GPIX
and GPV, all members of the leucine-rich repeat family. The N-terminal globu-
lar domain of GPIbα (His1–Glu282) contains four important structural domains: the
tandem leucine-rich repeats (∼ 24 residues, each spanning the sequence 36–200), the
N-terminal (residues 1–35) and C-terminal (201–268) disulfide-looped sequences,
and an anionic sulfated tyrosine-rich sequence (269–282; Fig. 13.2) [22]. Using
enzymes which specifically cleave at 282/283 (mocarhagin) [23] or inhibitory anti-
GPIbα monoclonal antibodies mapped to specific structural regions [22, 24] as well
as other approaches, it has been shown that GPIbα 1–282 contains discontiguous
but overlapping binding sites for VWF [25], TSP [26], thrombin [27–29], FXII [30],
FXI [31], HK [32], and counter receptors on activated endothelial cells (P-selectin)
[33] or leukocytes (αMβ2; Mac-1) [34]. The sulfated tyrosine sequence also asso-
ciates with the ectodomain of the immunoreceptor family protein, GPVI, on human
platelets [35]. In addition, the procoagulant protein, recombinant FVIIa has been
reported to bind to the sialomucin domain of GPIbα, downstream of Glu282 which
could also localize thrombin generation to activated platelets.
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Extensive biochemical, crystallographic, and molecular simulation studies have
analyzed binding of VWF to human GPIbα, revealing that the leucine-rich repeat
sequence 60–128 (repeats “2–4”) is critical for interacting with the VWF A1 domain
[28, 36–39]. Compared to the structure of the ligand-binding domain under resting
conditions, as the shear stress increases from low to high physiological or patho-
logical levels, the C-terminal disulfide-looped domain alters its conformation when
complexed with VWF A1. A small molecular weight inhibitor, OS1, allosterically
inhibits VWF binding to GPIbα by preventing the formation of the active conforma-
tion [40], while gain-of-function mutations within the C-terminal disulfide loop also
increase binding to VWF-A1.

Specialized electrostatic “catch-slip” bonding facilitates high-affinity adhesion
of VWF to receptor as shear rate increases, thereby enabling platelets to roll, skip,
or firmly adhere to immobilized VWF in a shear-dependent manner [4, 38]. At
high physiological or pathological shear rates such as encountered in a sclerotic or
blocked artery, platelet adhesion becomes entirely GPIbα dependent [41]. However,
examination of arterial thrombus formation in experimental models in vivo shows a
significantly greater dependence on platelet GPIbα than VWF [42, 43], suggesting
other ligands are also important. The extent to which conformational activation of
GPIbα regulates interaction of ligands other than VWF is unknown, and precise
binding sites for other ligands, including coagulation factors, are yet to be fully
resolved. It is clear, however, that ligands such as TSP, P-selectin, and αMβ2 not only
bind to the N-terminal domain of GPIbα under static conditions but also support
GPIbα-dependent adhesion under flow conditions. The interaction of GPIbα with
αMβ2 involves a domain of αM (“I-domain”) homologous to the GPIbα-binding A1
domain ofVWF, although the binding sites for the two ligands are not identical. VWF
A1 competes for binding of TSP, and some anti-GPIbα antibodies differentially block
VWF or other ligands. It has been determined that the sulfated sequence (269–282)
is critically involved in thrombin binding, with this interaction facilitating thrombin-
dependent activation of platelet PAR-1. The extent to which co-localization of FXII,
thrombin, and the common substrate FXI on a single receptor or adjacent copies of
GPIbα within the GPIb-IX-V/GPVI complex is yet to be definitively established,
although binding to GPIbα promotes activation of FXI by thrombin. Interestingly,
regions of GPIbα beyond the 45-kDa N-terminal portion may be involved in platelet
procoagulant function, as specific enzymatic removal of this region in murine washed
platelets did not interfere with thrombin generation [44]. Targeted disruption of the
cytoplasmic portion of GPIb-IX-V, for example, by site-directed mutagenesis, may
help elucidate how the receptor complex modulates platelet procoagulant activity.

Functional Role of Interactions Involving GPIbα

Considering together the network of potential interactions of platelet GPIbα illus-
trates the potential for this receptor to co-localize, sequester, or otherwise regulate
different components of platelet thrombus formation, coagulation, and platelet–
leukocyte and platelet–endothelial cell interactions (Fig. 13.3). These interactions,
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Fig. 13.3 Interactions involving GPIbα In addition to other platelet surface receptors (black) with
which it is co-associated (GPVI, GPV, GPIX, FcγRIIa), GPIbα interacts with at least ten other pur-
ported binding partners, including adhesive proteins (blue), coagulation factors (red), and receptors
on either leukocytes (green) or activated endothelial cells (orange). Indirectly, the GPIbα-related
network includes over 30 proteins. What this interaction map does not show is the spatial-temporal
nature of these interactions or how these interactions are regulated under static or high-shear con-
ditions (for example, when VWF binding is enhanced). These features are likely to control a
coordinated, localized thrombotic, inflammatory, and coagulation response to injury, atheroma,
immune disease, or infectious diseases

rarely studied in combination, suggest how coagulation associated with platelet
thrombus formation and inflammatory responses involving activated platelets and
leukocytes in immune or infectious diseases could be coordinated by interactions
involving GPIbα and adhesive or procoagulant ligands or counter-receptors under
resting or activated conditions. GPIbα could provide a common regulatory receptor
controlling time-dependent transition from initial platelet adhesion, activation and
aggregation, to coagulation and inflammation in response to vascular injury or dis-
ease, for example, by progressively binding to VWF/TSP, thrombin/FXII/FXI/HK,
or P-selectin/αMβ2, respectively. The capacity of platelets to rapidly adhere, become
activated and degranulate in flowing blood mediated by GPIbα and other receptors
would be a key property enabling the coordination of these pathophysiological pro-
cesses. It is only recently that the role of platelets and platelet receptors has been
investigated in detail in inflammation [45], coagulation [46], cancer [47–49], and
infectious diseases [50, 51].

One potential link between coagulation factors and platelet receptors involves
findings by Renne and colleagues [52], showing that while deficiency of FXII/FXI
has minimal impact on bleeding times, there is marked inhibition of occlusive platelet
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thrombus formation at high shear in the arterial circulation in experimental models. It
is unclear how FXII is activated under these conditions, but interaction with platelet
GPIbα or GPIbα-dependent adhesion localizing platelet activation and secretion, and
phosphatidylserine exposure could provide the means for stable occlusive thrombus
formation in the presence of FXII. The role of HK in GPIbα binding and activation
of FXII is also interesting in terms of possible GPIbα-mediated activation of FXII in
vivo, and the link between coagulation and platelet–leukocyte adhesion as HK also
engages the GPIbα counter-receptor on leukocytes, αMβ2 [53]. The HK binding site
on αMβ2 overlaps a fibrinogen-binding site, and increased the capacity for binding
GPIbα, providing a potential mechanism for HK-dependent enhancement of platelet–
leukocyte adhesion [53]. The FXII activator, plasma kallikrein (PK), also interacts
with collagen under hyperglycemic conditions [54], such that collagen exposure
could lead to activation of PK/FXII as well as localizing platelet GPIb-IX-V/GPVI
via interactions with collagen/VWF. Together, this would provide a mechanism for
bridging platelets, leukocytes, and the subendothelial matrix leading to the activation
of coagulation [55].

More recently, clear roles for leukocytes in the direct upregulation of platelet pro-
coagulant function have emerged. While the majority of circulating microparticles
in healthy individuals are platelet or megakaryocyte derived [46], leukocyte-derived
microparticles originating from neutrophils, monocytes/macrophages, or lympho-
cytes as well as endothelial-derived microparticles are significantly upregulated in all
stages of atherosclerosis and circulate at a high level in the bloodstream of patients
with high atherothrombotic risk [56, 57]. Microparticles have been demonstrated
to associate with resting platelets via CD36, lowering the required threshold con-
centration of agonist to activate platelets [58] and also via engagement of platelet
GPIbα by active αMβ2 on microparticles derived from activated neutrophils [59]. In
the second study, engagement of GPIbα by αMβ2–bearing microparticles triggered
signaling pathways that led to surface expression of P-selectin and activation of
αIIbβ3-mediating platelet aggregation. Both interactions provide a clear and distinct
mechanistic link between platelet prothrombotic and leukocyte inflammatory states
where microparticles from unstimulated versus activated neutrophils differentially
facilitate interaction with either activated platelets (via PSGL-1/P-selectin) or resting
platelets (via active αMβ2/GPIbα), respectively.

Platelet GPIbα also interacts with bacterial proteins, such as the Staphylo-
coccal superantigen-like protein 5 (SSL5) via the sulfated-tyrosine sequence and
carbohydrate moieties of GPIbα [60, 61]. SSL5 also interacts with extracellular im-
munoglobulin domains of GPVI [61]. These types of interactions could be involved
in platelet activation associated not only with bacterial infection and increased throm-
botic risk but also with the coagulopathy commonly associated with sepsis and other
infections. Bacterial-induced activation of leukocytes also releases DNA-containing
NETs, which may limit dispersal of bacterial, but are also associated with release of
nuclear proteins such as histones [62]. NETs have been linked to the development
of venous “red” (platelet-deficient) thrombus in experimental models of deep vein
thrombosis (DVT) [63]; however, NETs and associated proteins such as VWF A1
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domain-binding histones [64] could also promote platelet activation, secretion, and
leukocyte recruitment in arterial “white” (platelet-rich) thrombus.

On the platelet surface, GPVI interacts with the sulfated region of GPIbα that binds
thrombin [35], and could also influence coagulation in other ways. GPVI contains
two extracellular immunoglobulin domains, and is co-associated with the accessory
signaling receptor, FcRγ, required for GPVI surface expression [65–67]. The anti-
GPIbα monoclonal antibody SZ2, inhibits collagen-dependent platelet activation
via GPVI [68]. Masking GPVI also attenuates collagen-induced or tissue factor-
dependent thrombin generation, thrombus formation [69], or pulmonary throm-
boembolism [70]. GPVI engagement could promote phosphatidylserine exposure on
activated platelets [71–73], induce procoagulant platelet-derived microparticles [73],
or activate platelets leading to secretion of procoagulant factors such as polyphos-
phates. However, GPVI blockade can also inhibit tissue factor-mediated coagulation
in the absence of collagen or other known GPVI ligands [69], while GPVI ligands
also induce dose-dependent increases in FXa and thrombin generation, regulated
by a subpopulation of platelets with increased coagulation factor binding that is not
related to increased phosphatidylserine exposure [71]. These mechanisms require
further analysis in combination with interactions involving coagulation factors and
GPIbα, which is co-associated with GPVI [35]. GPVI also binds to extracellular ma-
trix metalloproteinase (MMP) inducer (EMMPRIN; CD147), like GPVI, a member
of the immunoreceptor family expressed on activated platelets, monocytes, and tumor
cells [74]. The GPVI–EMMPRIN interaction could contribute to platelet-mediated
coagulation at sites of monocyte recruitment, for example, at atherosclerotic sites of
the vasculature [75], or in the context of tumor growth.

Plasma GPIbα and GPVI

Although the extracellular domain of platelet GPIbα is important for ligand bind-
ing, constitutive ectodomain shedding of GPIbα results in high levels of soluble
GPIbα ectodomain (glycocalicin) in normal plasma (approximately two thirds of
total GPIbα in blood) [76]. The functional consequences of glycocalicin-binding
ligands are not addressed by existing studies, and it possibly has a regulatory role in
some circumstances or is less efficacious than surface-expressed GPIbα within the
GPIb-IX-V/GPVI adheso-signaling complex. Similarly, shedding of platelet GPVI
liberating plasma soluble GPVI [77, 78] could downgrade the capacity for GPVI-
dependent platelet activation or microparticle generation. Unlike GPIbα, levels of
sGPVI in healthy plasma are relatively low (approximately one sixth of total blood
GPVI) [79], but are elevated under prothrombotic [80–82] or procoagulant [14]
conditions and may serve as a platelet-specific biomarker as an indicator of risk, for
example, in the case of infectious diseases or immune disease [78]. In this regard, the
platelet Fc receptor, FcγRIIa, utilises intracellular signaling pathways equivalent to
GPVI/FcRγ, and engagement of FcγRIIa induces GPVI shedding [83]. Through this
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mechanism, antiplatelet autoantibodies, for example, targeting platelet factor 4/hep-
arin complexes as seen in heparin-induced thrombocytopenia can activate platelets
via FcγRIIa [84, 85], to release platelet-derived microparticles [86] and increase
platelet thrombin generation [87].

Conclusions: Targeting Platelets in Human Disease

Whether selectively targeting platelet GPIb-IX-V/GPVI ligand binding, platelet ac-
tivation or secretion to inhibit the impact of platelets on coagulation to aid in the
therapeutic control of thrombosis [88, 89], or coagulopathy where platelets and
platelet/leukocyte or platelet/endothelium interactions are implicated in procoagulant
activity, warrants further investigation [90]. Further analysis, particularly centered
on studies in human vascular systems of interactive sites, changes in binding under
shear conditions, and the influence of other ligands under different conditions is re-
quired [91] to exploit these possibilities. It is also worth noting how multifunctional
interactions of thrombin, FXa, and other factors beyond coagulation, broaden the
range of interactions of platelet GPIb-IX-V/GPVI in human pathophysiology.
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Part III
Clinical Applications

Translating our understanding of blood cell systems into novel strategies for im-
proving clinical treatment of disease will require the development and integration of
novel experimental, computational, and conceptual tools. This section introduces the
reader to contemporary approaches and pressing challenges at this frontier through
both general overviews and in-depth applications of such methodologies to specific
clinical objectives.

In Chap. 14, Lei and Mackey apply the tools of systems biology to the clinical
challenge of treating cytopenia. The authors first use computational modeling to
build understanding of patient responses to treatment, and these prediction are then
extended to guide the design of novel therapeutic agents and strategies for their ad-
ministration. In Chap. 15, Tomasetti provide an overview of the use of mathematical
modeling to understand drug resistance and then explore a specific case study de-
scribing the dynamics of drug resistance in leukemia. In Chap. 16, Radivoyevitch, Li
and Sachs use stochastic models to explore several processes in leukemia. They first
explore the potential role of stem-like cancer cells in disease progression and consider
potential consequences for therapeutic dosing and then consider a model by which
chromosomal lesions may lead to disease progression through a series of coordinated
stochastic steps occurring over a wide range of time scales. In Chap. 17, Stiehl, Ho,
and Marciniak-Czochra develop a dynamic model describing engraftment and re-
covery of normal hematopoiesis following stem cell transplantation. They use this
model to identify mechanisms and therapeutic strategies predicted to reduce risks of
graft failure and minimize time required to generate normal blood cell populations.
Finally, in Chap. 18, Dudek, Chuang, and Leonard discuss the prospect of engineer-
ing human cells to carry out customized therapeutic objectives as an leading front
in the field of personalized, design-driven medicine. They illustrate this paradigm
by considering the historical development, recent progress, and current challenges
facing the use of engineered T cells for immunotherapy of cancer. Furthermore, they
consider how the emerging field of synthetic biology may dovetail with advances in
systems biology to accelerate the generation and development of novel therapeutic
strategies and technologies.
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Chapter 14
Understanding and Treating Cytopenia Through
Mathematical Modeling

Jinzhi Lei and Michael C. Mackey

Abstract Here, we briefly review how the study of dynamic hematological diseases
with mathematical modeling tools has led to a better understanding of the origin of
some types of neutropenia and thrombocytopenia and to improved treatment strate-
gies. In addition, we have briefly discussed how these models suggest improved ways
to minimize and/or treat cytopenia induced by chemotherapy.

Keywords Anemia · Chemotherapy · Granulocyte colony-stimulating factor ·
Neutropenia · Thrombocytopenia · Thrombopoietin

Introduction

All blood cells arise from a common origin in the bone marrow, the hematopoi-
etic stem cells (HSC). HSC are morphologically undifferentiated cells which can
either proliferate or differentiate to produce all types of blood cells (erythrocytes,
neutrophils, and platelets). The proliferation of the stem cells and progenitor cells
is controlled by a negative feedback system mediated by hematopoietic cytokines.
Erythropoietin (EPO) is the hormone that mediates the red blood cell (RBC) pro-
duction, granulocyte colony-stimulating factor (G-CSF) controls the regulation of
neutrophils, and thrombopoietin (TPO) known as c-mpl ligand or megakaryocyte
growth and development factor is the primary regulator of thrombopoiesis.

Hematopoiesis is a homeostatic system and, consequently, most disorders of its
regulation lead to transient or chronic failures in the production of either all or
only one blood cell type. Among the wide range of diseases affecting the blood
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cells, there are some which are characterized by predictable oscillations in one or
more cellular elements of the blood. They are called periodic or dynamical diseases
[1]. The investigation of their dynamic character offers an opportunity to enrich
our knowledge about the regulatory processes controlling blood cell production and
may suggest better therapeutic strategies [2]. Cyclical neutropenia (CN) [2–3], peri-
odic chronic myelogenous leukemia (CML) [3, 7], periodic autoimmune hemolytic
anemia (AIHA) [8], and cyclical thrombocytopenia (CT) [9, 10] are some classical
examples of dynamical hematological diseases. Diseases like periodic chronic myel-
ogenous leukemia (PCML) and CN, which involve fluctuations in all major blood
cell lines with the same period on a given subject, are believed to arise in the stem
cell compartment in the bone marrow. Since in CT or periodic AIHA, besides oscilla-
tions in one type of cell count, the patient hematological profile has been consistently
normal, a destabilization of a peripheral control mechanism might play an important
role in the genesis of these disorders.

Dynamic Hematological Disease

Cyclical Neutropenia

Neutrophils are critical for the immune response, and low absolute neutrophil counts
(ANC) in the blood can lead to infections. Neutropenia is a term that designates
a low number of neutrophils, thus indicating that the individual is less effective at
fighting infections. The severity of neutropenia in patients can be classified based on
the ANC [11]: mild neutropenia (1.0 ≤ANC < 1.5 × 109 cells/L) with minimal risk
of infection, moderate neutropenia (0.5 ≤ANC < 1.0 × 109 cells/L) with moderate
risk of infection, and severe neutropenia (ANC < 0.5 × 109 cells/L) with severe risk
of infection. Patients with severe neutropenia are often seen with symptoms such as
mouth ulcers, fever, pharyngitis, sinusitis, otitis, and other infections, some of which
can sometimes be life threatening.

CN is characterized by oscillations in the number of neutrophils from normal to
very low levels (less than 0.5 × 109 cells/L, also called severe neutropenia). The
period of these oscillations is usually around 3 weeks for humans, although periods
up to 45 days have been observed [6]. One major characteristic of CN is that the
oscillations are present not only in neutrophils but also in platelets, monocytes, and
reticulocytes [4]. For CN patients, the period of severe neutropenia usually lasts for
about 3–5 days within every 3-week period [5, 12].

CN also occurs in gray collies with the same characteristics as in humans and
with oscillation periods on the order of 11–16 days [4, 6, 13]. This animal model
has provided extensive experimental data that would be difficult, if not impossible,
to obtain in humans.

CN was first reported as an inherited disease by Reimann [14], and later confirmed
in studies of Australian families by Morley et al. [15]. In families, the severity of
symptoms and the severity of neutropenia may vary. Furthermore, the disease is
more severe in children and is ameliorated by unknown factors as they grow older
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[16]. Through family studies and linkage analysis, mutations in the gene encoding
neutrophil elastase (ELA2) are recognized as causing cyclic neutropenia [17].

Cyclical Thrombocytopenia

Platelets are blood cells whose function is to take part in the clotting process, and
the term thrombocytopenia denotes a reduced platelet (thrombocyte) count. In CT,
platelet counts oscillate generally from very low values (1 × 109 cells/L) to normal
(150−450 × 109 platelets/L blood) or above normal levels (2000 × 109 cells/L)
[9]. These oscillations have been observed with periods varying between 20 and 40
days [18]. In addition, patients may exhibit a variety of clinical symptoms indicative
of impaired coagulation such as purpura, petechiae, epistaxis, gingival bleeding,
menorrhagia, easy bruising, possibly premenstrually, and gastrointestinal bleeding
[9]. There are two proposed origins of CT. One is of autoimmune origin and most
prevalent in females. The other is of amegakaryocytic origin, more common in males.

Autoimmune CT is characterized by a shortened platelet lifespan at the time of
decreasing platelet counts [19]. This is consistent with normal to high levels of
bone marrow megakaryocytes and with an increased destruction rate of circulating
platelets [9]. Autoimmune CT has also been postulated to be a rare form of idiopathic
(immune) thrombocytopenic purpura (ITP) [19].

The amegakaryocytic form of CT is characterized by oscillations in bone marrow
megakaryocytes preceding the platelet oscillations [20–23]. In this second type of CT,
platelet oscillations are thought to be due to a cyclical failure in platelet production
[18, 21–25]. The platelet lifespan is usually normal [25] and antibodies against
platelets are not detected [24]. Although it has been suggested that the failure of
platelet production could arise at the stem cell level [26], it is generally thought that
the cycling originates at the megakaryocyte level [22, 24]. For a more detailed review
of CT, see [9, 27].

It has been hypothesized that autoimmune and amegakaryocytic CT have different
dynamic origins [27]. This is supported by Swinburne and Mackey [9], who noted that
the patients diagnosed as having the autoimmune CT generally have shorter periods
(13–27 days) than those classified as amegakaryocytic (27–65 days). Moreover, they
reported that autoimmune patients typically show platelet oscillations from low to
normal levels, whereas amegakaryocytic subjects generally show oscillations from
above normal to below normal levels of platelets.

Periodic Anemia

Examples of periodic anemia are relatively rare in the clinical literature, though there
are a few well-documented examples [28, 29]. Although periodic fluctuations of ery-
throid precursors in the bone marrow are well documented in CN and some cases
of periodic leukemia (see below), the rarity of reports of actual periodic anemia is
presumably due to the extremely long lifespan of circulating erythrocytes in humans.
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There are, however, well-documented examples of cyclical anemia in mice follow-
ing either the administration of a single dose of 89Sr [30–32] or after whole-body
irradiation [33, 34].

AIHA results from an abnormality of the immune system that produces autoan-
tibodies, which attack red blood cells (RBC) as if they were substances foreign to
the body. It leads to an abnormally high destruction rate of the red blood cells. Pe-
riodic AIHA is a rare form of hemolytic anemia in humans [28] characterized by
oscillatory erythrocyte numbers about a depressed level. The origin of the disease is
unclear. Periodic AIHA, with a period of 16–17 days in hemoglobin and reticulocyte
counts, has been induced in rabbits by using RBC autoantibodies [35]. Mackey [36]
showed that the laboratory characteristics of this induced disorder were consistent
with model predictions using a mathematical formulation like those explored in the
section “Mathematical Model Development”.

Periodic Leukemia

Leukemia is a cancer of the blood or bone marrow characterized by an abnormal
proliferation of blood cells, usually leucocytes. CML is distinguished from other
leukemias by the presence of a genetic abnormality in blood cells, called the Philadel-
phia chromosome, which is a translocation between chromosomes 9 and 22 that leads
to the formation of the BcrAbl fusion protein [37]. This protein is thought to be re-
sponsible for the dysfunctional regulation of myelocyte growth and other features of
CML [38]. (For more details about CML, see [39]).

A dynamical disease of particular interest is PCML, characterized by oscillations
in circulating cell numbers that occur primarily in leucocytes, but may also occur in
the platelets and reticulocytes [7]. The leucocyte count varies periodically, typically
between values of 30 and 200 × 109 cells/L, with a periods ranging from 40 to
80 days. In addition, oscillation of platelets and reticulocytes may occur with the
same period as the leucocytes, around normal or elevated numbers [7, 40]. As in
cyclical neutropenia, the hypothesis that the disease originates from the stem cell
compartment is supported by the presence of oscillations in more than one cell
lineage.

Mathematical Model Development

As is clear from the preceding section describing the periodic cytopenias, the
hematopoietic system is capable of displaying interesting dynamical properties in
pathophysiological situations. These dynamics have been instrumental in guiding the
development of a multiplicity of mathematical models of hematopoietic dynamics.
Many of these have been reviewed in [41] and [42].
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Fig. 14.1 A cartoon representation of the age-structured model of hematopoiesis. See text for details
and notations. (Adapted from [44])

Model Description

Although the regulation of blood cell production is complicated [4, 43], and its
understanding constantly evolving, the broad outlines are clear. Fig. 14.1 contains a
cartoon representation of hematopoiesis.

There are four linages, including the hemopoietic stem cells and three differenti-
ated cell lines, leukocytes, erythrocytes, and platelets.

Hemopoietic stem cells are classified as either proliferating or resting phase [45].
The proliferating stem cells undergo mitosis at a fixed time after entry into that
state, and are lost randomly during the proliferating phase [46]. Each normal cell
generates two resting-phase cells at the end of mitosis. The resting-phase cells can
either reenter the proliferative phase at a rate that involves a negative feedback, or
develop to mixed myeloid progenitor cell, which further differentiate into precursors
of any of the three cell lines, leukocytes (white blood cells (WBC)), erythrocytes
(RBC), or thrombocytes (platelets). The rates of differentiation into these three lines
depend on the numbers of circulating cells of the relevant type that encapsulate the
feedback between the circulating cell numbers and the production. The feedback is
always negative so that when the number of circulating mature cells of a given line
falls, the relevant differentiation rate has a corresponding compensatory increase.
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There are two stages for each of the circulating cell lines after the differentia-
tion, first the amplification/maturation of precursor cells in the bone marrow, and
next circulation of mature cells throughout the whole body. In the stage of ampli-
fication/maturation, the precursor cells undergo many stages of cell division and
randomly die so that the number of precursors increases rapidly in a period: one
stem cell is capable of producing about 106 mature blood cells after 20 cell divisions
[47]. In the circulation stage, mature blood cells are removed randomly at a fixed
rate. In addition, the circulating erythrocytes and platelets are actively destroyed at
a fixed time from the entry into the circulating compartment [48, 49].

The proliferation and differentiation of hematopoietic cells and the function of
mature blood cells are regulated by a variety of cytokines, including EPO [50], which
mediates the regulation of erythrocyte production, G-CSF [51], which regulates
neutrophil number, and TPO [52, 53], which regulates production of platelets and
other cell lineages.

For the red blood cells, EPO mediates a negative feedback loop that helps to
regulate erythrocyte production [50, 54]. A decrease in the numbers of circulating
erythrocytes leads to a decrease in tissue pO2 levels, which in turn triggers the
production and release of EPO by renal macula cells. This elevation of EPO increases
the net production of primitive erythroid precursors (colony-forming units-erythroid,
CFU-E) and, ultimately, an increase in the number of circulating erythrocytes and
hence the tissue pO2 levels.

The regulation of platelet production (thrombopoiesis) involves similar feedback
mechanisms mediated by TPO [55]. A decrease in circulating platelet counts results
in an increased level of TPO, which then stimulates maturation of the platelet pro-
genitor cells (CFU-megakaryocyte (CFU-Meg)), and eventually leads to an increase
in platelet production.

There are three types of leucocytes, namely the lymphocytes, the granulocytes,
and the monocytes. Here, we focus on granulopoiesis (production of granulocytes)
and more specifically on neutrophils. The mechanisms of regulating granulopoiesis
involve G-CSF, which is the main regulator of neutrophil production [56]. It stimu-
lates the formation of neutrophils from HSC, accelerates the formation of neutrophils
in bone marrow, and stimulates their release from the bone marrow into the blood. Al-
though the exact mechanisms by which G-CSF acts is still unclear, it has been shown
that the neutrophils regulate their own production through a negative feedback [51]:
An increase (decrease) in the number of circulating neutrophils would induce a de-
crease (increase) in the production of neutrophils throughout the adjustment of the
G-CSF levels. Several studies have shown an inverse relationship between the serum
levels of G-CSF and the number of circulation neutrophils [57–60].

Formulation

In the past several decades, different mathematical tools have been used in hema-
tological modeling, including differential equations (partial, ordinarily, or delay),
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stochastic processes, Boolean networks, Bayesian theory, multivariate statistics, de-
cision trees, etc. For reviews, see [41, 61, 62]. The choice of the mathematical
tools often depends on the desired level of description of the model. Here, we focus
on models that originate from age-structured models, which offer a natural way to
model hematopoietic dynamics, and are widely used in the study of dynamical blood
diseases [3, 10, 44, 63–65].

Age-Structured Model

We refer the model illustrated in Fig. 14.1. Variables used in the following equa-
tions and typical values for hematologically normal individuals are summarized in
Table 14.1.

Let Q(t) (cells/kg) denote the population of resting-phase stem cells and s(t , a)
(cells/kg) the population of stem cells in the proliferating phase, with age a = 0
for their time of entry into the proliferative state. For the other three cell lines, let
n(t , a), r(t , a), and p(t , a) (cells/kg) represent the populations of leukocytes, erythro-
cytes, and platelets, respectively, with age a = 0 for the time point of differentiating
from stem cells. Let

N (t)=
∫ +∞

τN

n(t , a)da, R(t) =
∫ τRsum

τR

r(t , a)da, P (t) =
∫ τPsum

τP

p(t , a)da (14.1)

which are the populations of circulating cells. Hereinafter, we set

τRsum = τR + τRS , τPsum = τP + τPS

Moreover, the differentiation rates κN , κR , and κP are assumed to depend on circulat-
ing cell populations through negative feedback functions denoted by κN (N ), κR(R),
and κP (P ), respectively.

Using the above notation, the age-structured model of hematopoiesis is then
described by the following partial differential equations [44]:

∇s(t , a) = −γS(t)s(t , a) (t > 0, 0 ≤ a ≤ τS)

dQ

dt
= 2s(t , τS) − (β(Q) + κN (N ) + κR(R) + κP (P ))Q (t > 0)

∇n(t , a) =

⎧
⎪⎨

⎪⎩

ηN (t , a)n(t , a) (t > 0, 0 ≤ a ≤ τN )

−γN (t , a)n(t , a) (t > 0, τN ≤ a)

∇r(t , a) =

⎧
⎪⎨

⎪⎩

ηR(t , a)r(t , a)

−γR(t , a)r(t , a)

(t > 0, 0 ≤ a ≤ τR)

(t > 0, τR ≤ a ≤ τRsum )

∇p(t , a) =

⎧
⎪⎨

⎪⎩

ηP (t , a)p(t , a)

−γP (t , a)p(t , a)

(t > 0, 0 ≤ a ≤ τP )

(t > 0, τP ≤ a ≤ τPsum )

(14.2)
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Table 14.1 Variables used in the model equations and typical value for hematologically normal
individuals [44]

Variable Definition Value Unit

Stem cell compartment

Q(t) Population of resting-phase stem cells 1.12 106 cells/kg

s(t , a) Population of proliferating-phase stem cells − cells/kg

β Rate of reentering the proliferative phase 0.0433 day−1

τS Duration of mitosis 2.83 days

γS Apoptosis rate of proliferating stem cells 0.1013 day−1

Neutrophil compartment

n(t , a) Population of neutrophils − cells/kg

N (t) Population of circulating neutrophils 5.59 108 cells/kg

κN Differentiation rate from stem cells to neutrophils 0.0077369 day−1

ηN Amplification rate of neutrophil precursor cells 2.2887 day−1

τN Duration of neutrophil precursor amplification/maturation 12.6 days

γN Apoptosis rate of circulating neutrophils 2.4 day−1

Erythrocyte compartment

r(t , a) Population of erythrocytes − cells/kg

R(t) Population of circulating erythrocytes 3.5 1011 cells/kg

κR Differentiation rate from stem cells to erythrocytes 0.005271 day−1

ηR Amplification rate of erythrocyte precursor cells 1.8114 day−1

τR Duration of erythrocyte precursor amplification/maturation 6 days

γR Apoptosis rate of circulating erythrocytes 0.001 day−1

τRS Lifetime of circulating erythrocytes 120 days

τRsum τR + τRS 126 days

Platelet compartment

p(t , a) Population of platelets − cells/kg

P (t) Population of circulating platelets 1.3924 1010 cells/kg

κP Differentiation rate from stem cells to platelets 0.0087074 day−1

ηP Amplification rate of platelet precursor cells 1.7928 day−1

τP Duration of platelet precursor amplification/maturation 7 days

γP Apoptosis rate of circulating platelets 0.15 day−1

τPS Lifetime of circulating platelets 9.5 days

τPsum τP + τPS 16.5 days
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Table 14.2 Parameters for
the Hill functions (3) [44] Parameter name Value Unit

Function β(Q)

k0 8.0 day−1

θ2 0.0826 106 cells/kg

s2 2 (none)

Function κN (N )

f0 0.154744 day−1

θ1 0.2942 108 cells/kg

s1 1 (none)

Function κR(R)

κ̄r 1.23744 day−1

Kr 0.0382 (10−11 cells / kg )−S3

s3 6.96 day−1

Function κP (P )

κ̄p 0.2802 day−1

Kp 20.343 (1010 cells / kg )−S4

s4 1.29 day−1

where

∇ = ∂

∂t
+ ∂

∂a

The negative feedback functions are represented by Hill functions [64]:

κN (N ) = f0
θ

s1
1

θ
s1
1 + Ns1

, β(Q) = k0
θ

s2
2

θ
s2
2 + Qs2

, κR(R) = κ̄r

1 + KrRs3
,

κP (P ) = κ̄p

1 + KpP p4
(14.3)

Typical parameter values are given in Table 14.2.
The boundary conditions at a = 0 are given by

s(t , 0) = β(Q(t))Q(t),

n(t , 0) = κN (N (t))Q(t), (t ≥ 0)

r(t , 0) = κR(R(t))Q(t),

p(t , 0) = κP (P (t))Q(t), (t ≥ 0)

(14.4)
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according to the negative feedback loops. Moreover, we have

lim a→∞ n(t , a) = 0. (14.5)

The initial conditions are

s(0, a) = gS(a), (0 ≤ a ≤ τS)

Q(0) = Q0

n(0, a) = gN (a), (0 ≤ a ≤ +∞)

r(0, a) = gR(a), (0 ≤ a ≤ τRsum )

p(0, a) = gP (a), (0 ≤ a ≤ τPsum )

(14.6)

where gS(a), gN (a), gR(a), and gP (a) give the initial population distributions of
proliferating-phase stem cells, and the precursors of neutrophils, erythrocytes, and
platelets, respectively.

Equations (14.1)–(14.6) define the initial boundary value problem for the age-
structured model of hematopoietic regulation, and is the basis of the following
simplified model and analysis.

Delay Differential Equation Model

In hematological modeling, we are mainly interested at the dynamics of circulating
blood cell populations N (t), R(t), and P (t). This can be modeled by delay differential
equations obtained from the above age-structured model. We assume the apoptosis
rates γN , γR , γP are constants. Using the method of characteristics with Eq. (14.2),
and using the boundary conditions Eq. (14.4) and Eq. (14.5), we obtain the following
equations when t > τmax = max{τS , τN , τRsum , τPsum}:

dQ

dt
= 2e−τS γ̂S (t−τS )β(QτS

)QτS
− (β(Q) + κN (N ) + κR(R) + κP (P ))Q,

dN

dt
= −γNN + eτN η̂N (t−τN )κN (NτN

)QτN
,

dR

dt
= −γRR + eτRη̂R (t−τR )κR(RτR

)QτR
− e−γRτRS eτRη̂R (t−τRsum )κR(RτRsum

)QτRsum
,

dP

dt
= −γP P + eτP η̂P (t−τP )κP (PτP

)QτP
− e−γP τPS eτP η̂P (t−τPsum )κP (PτPsum

)QτPsum
,

(14.7)

where

γS = 1

τS

∫ τS

0
γS(t + s)ds, η̂k(t) = 1

τk

∫ τk

0
ηk(t + s, s)ds, (k = N , R, P )

(14.8)
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Here, the subscripts on the dependent variables indicate delayed arguments, i.e.,
QτS

= Q(t − τS).
The delay differential Eq. (14.7) determines the dynamic behavior for the circu-

lating blood cell populations. Here, we note that when t < τmax, Eq. (14.7) is not
equivalent to the original age-structured model Eq. (14.2). In this case, the initial
conditions of Eq. (14.6) have to be involved in the dynamical equation. Refer to [44]
for a detailed discussion of this point.

For hematologically normal individuals, we assumed the apoptosis rate γS and
amplification rates ηk , (k = N , R, P ) are constants, and hence γ̂S = γS,η̂k = ηk ,
(k = N, R, P). Thus, we obtain the following delay differential equations:

dQ

dt
= 2e−τSγS β(QτS

)QτS
− (β(Q) + κN (N ) + κR(R) + κP (P ))Q,

dN

dt
= −γNN + eτN ηN κN (NτN

)QτN
,

dR

dt
= −γRR + eτRηR

(
κR(RτR

)QτR
− e−γRτRS κR

(
RτRsum

)
τRsum

)
,

dP

dt
= −γP P + eτP ηP

(
κP (PτP

)QτP
− e−γP τPS κP

(
PτPsum

)
QτPsum

)
.

(14.9)

Eq. (14.9) was first presented in [64], and has been used to study different types of
dynamical blood diseases [3, 10, 44, 64].

To study the effect of clinical treatments, such as chemotherapy and G-CSF
administration, which are known to affect hematopoiesis in the bone marrow, we
further divide the amplification/maturation compartment of each cell line into two
sub-compartments, corresponding to amplification and maturation, respectively. Let

τk = τkP + τkM , (k = N , R, P ) (14.10)

where τkP is the duration of the amplification stages, and τkM is the time for mat-
uration. The amplification rates ηk(k = N , R, P ) are defined separately in the two
stages:

ηk(t , a) =

⎧
⎪⎨

⎪⎩

ηkP (t) 0 ≤ a ≤ τkP

−γkM (t) τkP ≤ a ≤ τk

(14.11)

where ηkP is the amplification rate in the amplification stage and γkM is the apoptosis
rate in the maturation stage, and are assumed to be independent of the age a. Thus,
η̂k defined by (8) can be written as

η̂k = 1

τk

[∫ τkP

0
ηkP (t + s)ds −

∫ τk

τkP

γkM (t + s)ds

]
. (14.12)

For hematologically normal individuals whose rates ηkP and γkM are constant, we
have

ηk = (ηkP τkP − γkMτkM )/τk , (k = N , R, P ). (14.13)
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Parameters for the neutrophil compartment can be referred to [66], and parameters
for the erythrocyte compartment and platelet compartment are not known yet.

Cyclical Neutropenia

Modeling of Cyclical Neutropenia

Although it is a rare disorder, CN is probably the most extensively studied periodic
hematological disorder due to its interesting dynamics and its clinical and laboratory
manifestations. A number of mathematical models have been put forward in an
attempt to understand this disorder, and these fall into two major categories according
to the origin of CN (see Fig. 14.1 to place them in perspective). For other reviews,
see [4, 41, 67–69].

The first group of models identifies the origin of CN with a loss of stability in the
peripheral control loop. Typical examples are [70–85], all of which have postulated
an alteration in the feedback on immature precursor production from the mature
cell population number. However, the work of [86] casts doubt on this explanation,
by showing that any alternations of parameters in the peripheral control system
consistent with the extant laboratory and clinical data on CN are unable to reproduce
either the characteristics of clinical CN or its laboratory counterpart in the gray collie
[43, 86].

The second group of models builds upon the existence of oscillations in many of
the peripheral cellular elements (neutrophils, platelets, and erythroid precursors, see
Fig. 14.1) and postulates that the origin of CN is in the common HSC population.
Mackey [45] has suggested that the oscillations originate in a loss of stability in the
HSC. This hypothesis allowed the quantitative calculation of the period of oscillation
when the stability was lost due to an abnormally large-cell apoptosis rate within the
proliferating compartment. Some mathematical models coupled a stem cell compart-
ment with the peripheral loop for granulocytes [4, 6, 87], whereas others present a
more complex model showing the stem cells coupled to all major cell lines [3, 44,
88]. For recent reviews, see [67] and [65].

Here, we introduce several models, from simple to sophisticated, that have given
significant insight into the origin and dynamical features of CN. Then, we show how
these models have been used to understand and improve the effects of CN treatments.

Origin of CN

Mackey [45] presented the following delay differential equation

dQ

dt
= −(β(Q) + κ)Q + 2e−γSτS β(QτS

)QτS
(14.14)
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for the resting-phase HSC populations, which can be obtained from Eq. (14.9) by
omitting the cell lines of neutrophil, erythrocyte, and platelet, and writing κ the total
HSC differentiation rate.

The model (14) was sufficiently simple that it was possible to perform a complete
bifurcation analysis [45]. This model has two possible steady states. There is a steady
state corresponding to no cells (Q0 = 0), which is stable if it is the only steady state.
The second positive steady state Q∗ exists for small HSC apoptosis rate γS. The
stability of the positive steady state depends on the value of γS. When γS = 0,
this steady state cannot be destabilized to produce oscillatory dynamics of CN. For
γS > 0, increases in γS lead to a decrease in the HSC numbers, and destabilize the
steady state when a critical value of γS is reached, γS = γcrit,1, at which a supercritical
Hopf bifurcation occurs. When γS is further increased, a reverse bifurcation occurs
at a critical value γS = γcrit,2, where the positive steady state becomes stable, and
approaches the zero steady state as γS increases. For all values of γS satisfying
γcrit,1 < γS < γcrit,2, there is a periodic solution of Eq. (14.14) whose period is in
good agreement with that seen in CN [45]. These results suggest that CN might
be related to defects, possibly genetic, within the HSC population that lead to an
abnormal apoptotic loss of cells from the proliferative phase of the cell cycle.

Bernard et al. [87] presented a two-variable delay differential equation model that
couples the above HSC population model with the neutrophil compartment:

dQ

dt
= 2e−τSγS β(QτS

)QτS
− (β(Q) + κN (N ))Q,

dN

dt
= −γNN + eτN ηN κN (NτN

)QτN
,

(14.15)

where

κN (N ) = f0
θ

s1
1

θ
s1
1 + Ns1

, β(Q) = k0
θ

s2
2

θ
s2
2 + Qs2

.

This model is derived from Eq. (14.9) by simply neglecting the compartments for
the erythrocytes and platelets. First, we note that this model has a unique positive
steady state for Q and N if

f0 < k0(2e−γSτS − 1). (14.16)

This condition states that the rate of HSC differentiation must be smaller than the
net increase due to one cell division times the proliferation rate k0 [87]. Using a
combination of mathematical analysis and computational tools, [87] showed that
the origin of CN is probably due to an increased apoptosis rate in the stem cell
compartment ( γS) and in the neutrophil precursors (which leads to a decrease in
ηN ), leading to a destabilization of the HSC compartment through a supercritical
Hopf bifurcation. This has the effect of generating oscillations in the HSC popula-
tion. This result was in accordance with previous modeling studies [6] and agrees
with experimental data on gray collies. Moreover, numerical analysis showed that
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Eq. (14.15) has bistability, i.e., coexistence of a stable steady state and a stable oscil-
latory solution when γS and ηN take values from a certain range. This bistability is
essential for understanding the diverse effect of G-CSF treatment on CN as we will
see in the next section.

A more sophisticated model that includes not only the neutrophils and HSC but
also the platelets and RBC was developed by [3, 64] (Fig. 14.1). This model combines
a number of compartmental models: the stem cell and neutrophil dynamics [87], and
the erythrocyte and platelet compartment models [48, 89]. The circulating cells are
coupled to each other via their common origin in the stem cell compartment. The
model consists of a set of four coupled delay differential equations as given by Eq.
(14.9).

In [3], the authors used a simulated annealing approach to fit clinical and labo-
ratory data (from humans and dogs) to estimate the model parameters that would
reproduce the characteristics of CN. The results supported the hypothesis on the ori-
gin of CN in [87] that realistic CN oscillations in neutrophils and platelets can result
from an increased apoptosis rate in the neutrophil precursors. Furthermore, in order
to mimic the data, it was also necessary to decrease the rate of differentiate into the
neutrophil line, and the changes of the apoptosis rate of stem cells in the proliferative
phase.

In [44], the authors further investigate the model numerically for the possible
solutions of the model equations Eq. (14.9) with respect to changes in the param-
eters as well as the initial conditions. The results confirmed the findings in [3] that
decreasing the proliferation rate of neutrophil precursors or increasing the stem cell
death rate are two possible mechanisms to induce CN, and the periods of the result-
ing oscillations are independent of the changed parameters. In particular, the results
suggested that by either decreasing the neutrophil precursor proliferation rate to 3–
15 % less than the normal value or increasing the HSC apoptosis to 40–100 % larger
than the normal value, it is possible to induce oscillations reminiscent of those in
CN patients. Furthermore, simulations with changing initial conditions showed that
the hematopoietic system possesses multistability over a wide range of parameters
values, including typical parameter values for a healthy state. In this multistable re-
gion, the hematopoietic system may display the coexistence of a stable steady state
along with an oscillatory state. This result is crucial for understanding the effects of
CN patient treatment. Because of the multistability, CN that is caused by changes
in system parameters may not recover to the healthy state even if the parameters are
taken back to their normal values by therapy, for example through G-CSF treatment.

Modeling of Chemotherapy Induced CN

Before introducing models for studying different G-CSF treatment strategies for CN
in the next section, we show how a simple model can be used to explore neutrophil
dynamics in response to chemotherapy.

Chemotherapy is frequently accompanied by hematopoietic side effects due to
the myelosuppressive character of the drugs used. These side effects commonly
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include neutropenia and, to a lesser extent, thrombocytopenia and/or anemia. In
[90] and [66], the authors presented a two-compartment mathematical model of the
combined dynamics of the HSC and the differentiated neutrophil progeny, modified
from the model of [87] for the stem cell and neutrophil dynamics.

This model contains the HSC compartment, as well as a neutrophil compartment.
The neutrophil compartment is further divided into three sub-compartments corre-
sponding to proliferating, maturating, and circulating neutrophils, respectively. The
erythrocytes and platelets are not included in the model other than to assume that the
total differentiation rate of HSCs into these two cell lines is a constant κδ (days−1).
An illustration of the model is showed in Fig. 14.2. The equations describing the
dynamics of this model can be obtained from Eq. (14.7) and Eq. (14.12) and are
given below:

dQ

dt
= −(β(Q) + κN (N ) + κδ)Q + AQ(t)β(QτS

)QτS
,

dN

dt
= −γNN + AN (t)κN (NτN

)QτN

(14.17)

and

κN (N ) = f0
θ

s1
1

θ
s1
1 + Ns1

,

β(Q) = k0
θ

s2
2

θ
s2
2 + Qs2

,

AQ(t) = 2 exp

[
−

∫ τS

0
γS(t − τS + s)ds

]
,

AN (t) = exp

[∫ τNP

0
ηNP (t − τN + s)ds −

∫ τN

τNP

γNM (t − τN + s)ds

]
,

τN = τNP + τNM.

Chemotherapy increases apoptosis in both proliferative HSCs and proliferative
neutrophil precursors [91] leading to an increase in γS and a decrease in ηNP .

Chemotherapy is often administered with a fixed period T(days) so that the rates
γS(t) and ηNP (t) are periodic functions and dependent on the chemotherapy admin-
istration. There are many different chemotherapeutic drugs currently in use, and
therefore different methods for modeling pharmacokinetics. Here, we present the
simple model as in [90] in which the effect of chemotherapy is maintained for 1
day, and assumes square wave temporal functions for the apoptosis rate γS and the
neutrophil precursor proliferative rate ηNP of the following form:

γS(t) =

⎧
⎪⎨

⎪⎩

γ max
S if 0 ≤ t − kT < 1,

γS otherwise
(14.18)
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Fig. 14.2 A cartoon representation of the model of neutrophil production is investigated here. The
model dynamics include those of the hematopoietic stem cells (HSC) as well as differentiated cells
committed to the neutrophil line. Quiescent (resting phase) HSCs can either remain in Q, exit into
the proliferative HSC phase at a rate β, or differentiate into the committed neutrophil compartment
at a rate κN , or into the combined megakaryocyte/erhthrocyte lines at a rate κδ. Cells in the HSC
proliferative phase are assumed to undergo apoptosis at a rate γS and the duration of the proliferative
phase is taken to be τS. Cells in the neutrophil pathway are amplified by successive divisions for a
time τNP , and then enter a purely maturation (no proliferation) compartment for a period of time
τNM before they enter the circulation. The circulating neutrophils (N) die at a random rate γN so
their average lifespan is γ −1

N . The differentiation rate of HSC to neutrophils is controlled by the
circulating neutrophil population through the differentiation rate κN , while the HSC proliferation
is controlled by the resting HSC population with proliferation rate β. (Adapted from [90])

and

ηNP =

⎧
⎪⎨

⎪⎩

ηmin
NP if T1 ≤ t − kT < 1,

ηNP otherwise.
(14.19)

Here, k is an integer, and t = 0 for the starting time of the first chemotherapy period.
An expanded model with more realistic chemotherapy dynamics is presented in [66].
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Fig. 14.3 Numerical simulation results for the neutrophil compartment model with chemotherapy
alone. a The amplitude (left hand ordinate) in neutrophil response (blue squares connected with
a dashed blue line) as well as the nadir (right hand ordinate and green circles connected with a
dashed green line) as a function of the period T of chemotherapy. The horizontal green dash-dot
line indicates the level for severe neutropenia (0.63 × 108 cells/kg). Note that the major peaks in
the amplitude coincide with the minima in the nadir. The solid blue line is the computed linear
frequency response function (refer [90]; rescaled to compare with the amplitude). b Simulated
neutrophil levels from Eq. (14.17) in response to chemotherapy with a period of either T = 18
days or 21 days. Neutrophil levels are in units of 108 cells/kg, the dashed-dot horizontal line again
indicates the level for severe neutropenia, and the arrow shows the first neutrophil nadir. (Adapted
from [90])

Using a combination of simulation and mathematical analysis, Zhuge et al. [90]
studied the neutrophil response to chemotherapy as a function of the period T. Simula-
tions showed that the neutrophil amplitude varies with the period T of chemotherapy,
with a peak at T = 21 days, and the neutrophil nadir has a minimum at the same
period (Fig. 14.3). Figure 14.3b shows a computed time series for the neutrophils
at two different periods of chemotherapy administration. The model predicts sub-
stantial differences in the dynamic response of the system as severe neutropenia was
produced in the model at T = 21 days but not at T = 18 days.

According to [90], a possible reason for the occurrence of a significant peak in
the amplitude and minimum in the nadir at a specific T is resonance between the
periodic perturbation to the system and the intrinsic characteristic frequency in the
neutrophil production dynamics. This hypothesis is confirmed by comparing the
amplitude response with the frequency response function obtained analytically from
the linearizing the model Eq. (14.17) around the steady state (shown by a solid line
in Fig. 14.3a). The frequency response function has a maximum at T = 21.8 days in
agreement with the simulation results. Furthermore, an analysis of the linear response
function predicts that the resonant period for the model is given by twice the average
neutrophil lifetime (defined as the average time τN spent in marrow proliferation and
maturation following commitment from the HSC plus the average lifetime γ −1

N in
the circulation). If this simple relationship is found to hold clinically, then it offers a
way to tailor chemotherapy for individuals. Namely, using the techniques employed
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by [51], determine τN and γN for a specific patient, and then compute the resonant
period T to be avoided in any delivery of myelosuppressive agents.

We note that in Fig. 14.3a, there is a peak in the amplitude response and minimum
in the nadir at T = 4 days that cannot be explained by resonance. The mechanism
for the occurrence of this peak remains unknown.

Modeling of G-CSF Administration

CN in humans is often treated using G-CSF [92], which is known to interfere with
apoptosis [93–96], and it has the overall effect of decreasing the period of severe
neutropenia by increasing the nadir and the amplitude of the oscillations as well as
decreasing their period [4]. However, G-CSF is expensive (about US $ 40,000 per
year for a 70-kg adult treated daily) and may cause undesirable side effects [97, 98].
In this section, we show how mathematical modeling can illuminate the effects of
different G-CSF treatment schemes. For another review, see [65].

In [87], five parameters in the model Eq. (14.15) are modified to mimic the
effects of G-CSF in CN: decreased apoptosis in both the HSC (decrease γS) and
in the neutrophil precursor compartment (decrease ηN ), decrease in the duration of
both the proliferative and differentiating phases ( τN and τS) as well as increasing the
parameter θ1 in the feedback function. Interesting dynamical features of the model
were found. The bifurcation analysis agreed with the clinical aspects of G-CSF
administration that results in an increase of amplitude and a decrease in the period
of the oscillations [6, 92]. In clinical observations, some cases have been reported in
which G-CSF treatment abolished significant oscillations [4, 5, 92]. This is also seen
in the model of [87], in which a stable steady state (corresponding to annihilation
of oscillations) coexists with a stable large amplitude oscillation. This bistability
is interesting since it suggests that it is possible to stabilize the neutrophil count by
properly designing the treatment administration scheme and could potentially reduce
the amount of G-CSF required in treatment.

In [2], the model of [87] was explored with different G-CSF treatment protocols.
The authors showed that, depending on the starting time of G-CSF treatment, the
neutrophil count could either be stabilized or show large amplitude oscillations. This
is also seen in the comprehensive model given by Eq. (14.9) that includes erythrocyte
and platelet dynamics [44, 88]. Using computer simulations, the authors also showed
that other G-CSF treatment schemes (such as administering G-CSF every other day)
could be effective while using less G-CSF, hence reducing the cost of treatment and
side effects for patients.

In [88], the authors used the comprehensive model as in [3] coupled with
a two-compartment model for G-CSF pharmacokinetics. They fitted their model
with clinical data for neutrophils and platelets and explored the effects of differ-
ent treatment schedules. They found that different initial conditions or temporary
interventions may lead to dramatically different long-term behaviors.

G-CSF is frequently used to deal with neutropenia induced by chemotherapy [65,
97]. However, the clinical administration schedule of G-CSF after chemotherapy is



14 Understanding and Treating Cytopenia Through Mathematical Modeling 297

typically determined by trial and error and it is not clear if there is an optimal way
of giving G-CSF [99, 100]. In [65], the authors present a delay differential equation
model for the regulation of neutrophil production that accounts for the effect of
G-CSF. Using a combination of analysis and numerical simulations, they used this
model to study the effects of delaying G-CSF treatment following chemotherapy for
two recombinant forms of G-CSF (filgrastim and pegfilgrastim). They found that
varying the starting day or the duration of G-CSF treatment can lead to different
qualitative responses in the neutrophil count.

In [90], the authors presented a simple model based on Eq. (14.17) that coupled
changes in γS , γNM , ηNP , and τNM due to 1-day G-CSF administration. They found
that the neutrophil dynamics response to G-CSF is highly variable, depending on
the time of G-CSF delivery after chemotherapy at each cycle. In particular, there are
specific times in the chemotherapy cycle when G-CSF can have positive effects in
terms of ameliorating or even eliminating severe neutropenia. However, there are also
broad ranges of administration times that will lead to a worsening by G-CSF of the
neutropenia induced by the chemotherapy. These results are in general agreement
with results presented in [65], but await confirmation until more realistic G-CSF
kinetic are included in the modeling (for example, refer to [66]).

In summary, these studies have showed complicated dynamical properties of
hematopoiesis after G-CSF treatment. Understanding the effects of G-CSF is difficult
since G-CSF is known to affect the neutrophil maturation time in the bone marrow,
whose detailed dependence is unknown, and further clinical investigations are needed
to characterize this important facet of neutrophil regulation.

Discussion

Here, we have given a brief survey of how the study (using mathematical models)
of dynamic hematological diseases in which there is a period cytopenia has not only
given an insight into the physiological origin of these diseases but also afforded
investigators an opportunity to see how to better treat these diseases. As an unex-
pected by-product of these investigations which have extended over four decades,
mathematical biologists in collaboration with hematologists and oncologists are now
starting to address the all-important question of “How can the severe side effects
of myelosuppressive therapy on the hematopoietic system be either mitigated or
avoided altogether?” This later question is, in our minds, one of the more important
by-products of the modeling venture and offers a potentially exciting opportunity
to use insight from mathematics to better the delivery of medical care for those
needing it.
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Chapter 15
Drug Resistance

Cristian Tomasetti

Abstract Drug resistance is a fundamental problem in the treatment of cancer since
cancer that becomes resistant to the available drugs may leave the patient with no
therapeutic alternatives. In this chapter, we consider the dynamics of drug resistance
in blood cancer and the related issue of the dynamics of cancer stem cells. After
describing the main types of chemotherapeutic agents available for cancer treat-
ment, we review the different mechanisms of drug resistance development. Various
mathematical models of drug resistance found in the literature are then reviewed.
Given the well-known hierarchy of the hematopoietic system, it is critical to focus
on those cells that have the ability to self-renew, since these will be the only cells
able to induce long-term drug resistance. Thus, a recent mathematical model taking
into account the complex dynamics of the leukemic stem-like cells is described. The
chapter closes with a few applications of this model to chronic myeloid leukemia.

Keywords Drug resistance · Fluctuation analysis · Poisson process · Targeted
therapy · Hematopoietic stem cells · Symmetric and asymmetric division · Leukemia
· Hyperbolic PDE · Continuous-time branching processes · Probabilistic methods

Introduction

The development of drug resistance is a fundamental problem in the treatment of
cancer. The beneficial effects induced by a drug at the beginning of cancer therapy
are, more often than not, temporary and are typically lost due to the insurgence
of drug resistance. In this chapter, we consider the dynamics of drug resistance in
blood cancer and the related issue of the dynamics of cancer stem cells. We review
the main biological mechanisms known to cause drug resistance as well as various
mathematical models of drug resistance found in the literature. Subsequently, we
focus on those leukemic cells that have the key ability to self-renew, that is, the
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leukemic stem cells. A recent mathematical model able to account for the complex
dynamics of these cells is introduced and a few applications of this model to chronic
myeloid leukemia are presented.

Chemotherapy

Aside for the possible surgical removal of a tumor, chemotherapy is the most common
treatment against cancer (transplant, radiotherapy, and immunotherapy being the
other major ones). While chemotherapeutic drugs are usually successful at reducing
the initial tumor load, their effectiveness is often reduced or even completely lost
after a few cycles of treatment. The main reason for their failure is the development
of “drug resistance.” To better address the issue of cell resistance to anticancer drugs,
we will briefly review what chemotherapy is, how it has evolved in time, and how it
works.

A chemotherapeutic drug is, broadly speaking, a chemical compound with the
ability to reduce the tumor load. The first modern chemotherapy drug used against
cancer was discovered in 1942, when the US government asked two Yale assistant
professors, L. S. Goodman and A. Gilman, to study mustard gas, which had been
developed and used as a chemical warfare agent in World War I. The two researchers
found that nitrogen mustard, an alkylating agent derived from mustard gas, caused a
dramatic regression of lymphoma in the patient under study. This discovery led in the
late 1940s and early 1950s to the investigation and subsequent use in clinical prac-
tice of various compounds: A. Haddow used urethane in chronic myeloid leukemia
(CML) patients, J. Burchenal used methotrexate to treat leukemia in children, and
S. Farber utilized aminopterin in acute childhood [1, 2]. Since then, many more
compounds have been found that are able of producing a significant regression of
a tumor load. We can broadly divide the chemotherapeutic agents in the following
categories [3]:

• Alkylating agents (and variations): By attaching alkyl groups to the guanine base of
DNA double-helix strands, they chemically modify a cell’s DNA, thus impairing
its function. Indeed, by cross-linking guanine bases in DNA, they make the DNA
strands unable to uncoil and separate. DNA replication is impaired and therefore
the cell can no longer divide.

• Antimetabolites: Chemicals that are similar in structure to metabolites (molecules
that are part of the normal cell metabolism) prevent these substances from being
incorporated into the DNA during the S phase of the cell cycle (synthesis phase,
when DNA replication occurs), consequently stopping normal cell development
and division by damaging the DNA strand. In fact antimetabolites masquerade as
purines or pyrimidines, molecules that are building blocks of DNA.

• Plant alkaloids: By inhibiting the assembly of microtubules they block cell
division, due to the fundamental role played by microtubules in a cell.
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Fig. 15.1 A point mutation causing drug resistance. a The bcr-abl enzyme (blue) activates the
substrate (yellow) via phosphorylation causing unregulated proliferation among the leukemic cells.
b Imatinib (red) binds competitively to the ATP binding site inhibiting the enzyme’s activity. c A
point mutation induces a conformational change in the ATP binding site that does not allow imatinib
to bind anymore, thus allowing ATP (green) to reach its binding site and therefore resulting in
bcr-abl’s activity. ATP adenosine triphosphate

• Topoisomerase inhibitors: By inhibiting topoisomerases, which are essential en-
zymes that maintain the topology of DNA, they cause damages to the transcription
and replication of DNA (interfering with proper DNA supercoiling).

• All these types of drugs do not differentiate between cancer and normal cells, with
the resulting well-known toxic effects. However, the inhibition of cell division or
the interference against DNA replication is expected to harm cancer cells more
than healthy cells, given that cancer cells should divide more often than normal.

• Targeted therapies: In the past decade, new and less toxic drugs have been de-
signed to target only a particular molecular attribute that characterizes a given
type of cancer cell and not its healthy counterpart. Imatinib mesylate, for ex-
ample, works by inhibiting the bcr-abl enzyme activity (see Fig. 15.1), which
characterizes CML cells [4, 5]. Because of the potential of these new therapies,
we are witnessing the rise of a new discipline, molecular oncology, whose focus
is to understand the genetic and biochemical mechanisms involved in cancer [6].
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The Biology of Drug Resistance

A general phenomenon for all standard chemotherapeutic agents is that successive
applications of the treatment will yield decreasing therapeutic benefits due to the
development, in the cancer cells, of resistance to the drug. Thus, while standard
chemotherapy has proven to be effective in the treatment of a few types of cancer—
such as lymphomas, germ cell, and some pediatric malignancies—in the majority of
cases the results are modest [6]. Even for the new and promising targeted therapies,
the development of drug resistance constitutes a fundamental problem. For example,
in CML patients, the occurrence of specific mutations in the bcr-abl domain of the
leukemic cells will result almost invariably in the relapse of the disease due to the
lost effectiveness of imatinib [7]. We briefly summarized here some of the various
classifications of drug resistance. For a more comprehensive overview, we refer to
the book by Teicher [8] and to the references therein. For a comprehensive treatment
of drug resistance to targeted therapies, we refer to the book by Daniel [9].

Resistance may be relative or absolute. Relative resistance refers to cases where
the level of resistance of a cancer cell depends on the drug’s dosage: the higher
the dosage the less probable for the cell to be resistant. With absolute resistance
instead, no matter what the dose is, the drug will not affect the resistant cell. In
general, resistance to standard chemotherapy appears to be relative [1, 10, 11]. Drug
resistance can be both a spontaneous phenomenon (e.g., caused by random genetic
mutations which occur independently and even before the drug is administered, as we
will see) as well as an induced one, which means that drug resistance may originate
as a consequence of taking a drug [12 –14]. Drug resistance depends on many factors.
We may divide them broadly into two categories [8, 15]:

• Physiological resistance, which depends on host factors, like, for example, the
size, location, and growth rate of the cancer, the blood supply, the immune system
status, the tumor microenvironment, the tumor pH, or the patient’s intolerance to
the effects of a drug. Location resistance is also known as diffusion resistance.

• Biological resistance, given by kinetic resistance or genetic and epigenetic
alterations in the cancer cells.

In the following, we will focus only on the second kind. Kinetic resistance refers to the
reduction in effectiveness of a drug caused by the cell division cycle. Such resistance
is generally only temporary. As we have seen, many standard chemotherapeutic
drugs (such as methotrexate, vincristine, and cytosine arabinoside, to name a few)
are effective during only one specific phase of the cell cycle, e.g., during the S phase
when the DNA is synthesized. Thus, in the case of a short exposure to the drug,
the cancer cell will not be affected if it is found in a different phase. Even more
importantly, the cell will be substantially invulnerable if it is out of the cell division
cycle, i.e., in a “resting state” or G0 state. This implies that the number of cells that
are affected by the drug is lower for cell populations that have low proliferation rates.
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Resistance to drugs may instead develop as a consequence of genetic events such
as mutations, rather than developing due to kinetic reasons. This category includes
both point mutations and chromosomal mutations, also known as gene amplifications.

Point mutations are genetic changes causing the replacement of a single base nu-
cleotide or pair with another nucleotide or pair in the DNA or RNA. These mutations
may occur, for example, during DNA replication. If the mutation is nonsynonymous,
it will change the cellular phenotype possibly making the cancer cell resistant to the
drug. A major reason for the development of resistance to imatinib in CML patients
is due to point mutations that alter the adenosine triphosphate (ATP) binding site of
bcr-abl, which is the specific binding target of imatinib, thus inhibiting the activity
of the drug [4, 5, 7]. This mechanism is depicted in Fig. 15.1.

Gene amplification is either the consequence of an abnormally large number
of copies of a particular gene or the result of an overproduction of transcripts of
particular gene. This means that a limited portion of the genome is reproduced to
a much greater extent than the replication of DNA composing the remainder of the
genome. Such a defect amplifies the phenotype that the gene confers on the cell,
which, in turn, induces resistance by essentially providing the cells with more copies
of a particular gene than the drug is able to cope with. The classical example is
given by the amplification in the number of efflux transporters a cell is endowed
with, thus increasing the ability of the cell to eliminate, expel the drug. While gene
amplification (and consequently the resistance induced by it) may be a temporary
phenomenon, point mutations appear to be permanent.

The cause for genetic mutations is not completely clear. Is it a random phe-
nomenon, possibly occurring even before the therapy is started, or rather a
drug-induced, directed one, perhaps both? Such a fundamental question has been the
focus of the Nobel Prize winning work of Luria and Delbrück [16]. Using fluctuation
analysis, Luria and Delbrück showed that drug resistance in in vitro bacterial cul-
tures is primarily a random phenomenon rather than a drug-induced, directed one.
Many further in vitro experiments with tumor cell lines confirmed this result. In
vivo experiments have instead provided somewhat contradictory results, with some
results supporting and others opposing the idea of drug resistance being a random
phenomenon, see references [2, 17].

Mathematical Models of Drug Resistance

Drug resistance has been extensively studied in the mathematical literature. Origi-
nally, the modeling of resistance due to random point mutations was motivated by
the experimental findings of Luria and Delbrückin 1943 on the development of re-
sistance to antibiotics in bacteria due to mutations [16]. The mathematical model the
authors formulated in order to answer that fundamental question was then used for
estimating the rate at which mutations causing resistance occurred. In that model,
Luria and Delbrück assumed that the process starts with one normal cell and no mu-
tants. A random process, specifically a Poisson process with an intensity function,
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modeled the occurrence of mutations. Importantly, both normal and mutant cells
were assumed to grow deterministically in an exponential fashion. The probability
of no mutations was then calculated as well as the mean and the variance of the
distribution of the number of mutants [16]. Given these estimates, it was possible to
implement methods for the estimation of mutation rates from the data. This Nobel
Prize winning work has been followed by a large literature on the study of the distri-
bution of the number of mutants in a population which grows exponentially, known
as the Luria and Delbrück distribution [18].

The first model of resistance to chemotherapy due to point mutations in cancer is
the celebrated model by Goldie and Coldman and its extensions [2, 19–24].

In Goldie and Coldman [21], the growth of the drug-sensitive cancer cell popula-
tion was approximated by using a deterministic exponential curve. At each division,
it was assumed that there is a small positive probability that a cancer drug-sensitive
cell may give rise to one drug-resistant cancer cell daughter because of a random
point mutation. Such a mutant generated a clone growing according to a birth pro-
cess. A Poisson distribution approximated the number of mutations occurring in the
drug-sensitive population at any given time. It was also assumed that back mutations
could not occur. Then, by using a filtered Poisson process, it was possible to calcu-
late the number of mutants present in the cancer cell population. The probability of
having no resistant cells present in a tumor was then calculated, where the nonex-
istence of resistant cells was assumed to be the condition for being cured. We note
that in the model by Goldie and Coldman, the drug-sensitive population is modeled
deterministically as in Luria and Delbrück [16], but the drug-resistant population is
modeled stochastically rather than deterministically. The main results of Goldie and
Coldman are that the probability of having no drug resistance present in a tumor
is inversely related to the tumor size and that more frequent dosage repetitions are
more successful in minimizing the risk of drug resistance development than less
frequent doses administered for a longer period of time [21]. In Coldman et al., the
authors extended the model to multi-drug resistance. It was assumed that multiple
drug resistance occurred in single step where now a cancer cell may be sensitive to
all drugs, resistant to only one of the drugs, to two given drugs, and so forth [23,
24]. The main conclusion of their study was that the best strategy was to use all
available drugs simultaneously. Furthermore, it was shown that, if the simultaneous
administration of all drugs is not possible, the sequential alternation of all drugs is
optimal when these drugs are equally effective. Goldie and Coldman extended their
mathematical model to consider also the development of drug resistance when the
cancer stem cell hypothesis is considered [2, 22]. Unfortunately, they assumed that
a stem cell could either renew symmetrically, producing two daughter stem cells, or
differentiate symmetrically, producing two differentiated (not stem cells) daughters.
In this way, the two division modes are simply equivalent to either a stem cell birth or
death, leaving out from the stem cell dynamics the fundamental case of an asymmet-
ric division, where a stem cell and a differentiated daughter cell are produced. Their
model then reduces to the usual birth and death process of a growing population.
Notwithstanding this limitation, their model was the first model on drug resistance
that somehow considered the cancer stem cell dynamics.
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A more recent study on random point mutations is by Komarova et al. [25–28]. For
example, a model based on stochastic birth and death processes on a combinatorial
mutation network was used to describe the development of resistance to multi-drug
treatments [25, 27]. Thus, probabilistic methods and a hyperbolic partial differential
equation were used to show how the pretreatment phase is more significant in the
development of drug resistance than the treatment phase. This is a very natural,
intuitive result given that the treatment will, in general, drastically reduce the cancer
cell population and consequently also reduce the number of cell divisions from
which random point mutations may arise. The main result obtained by the author is
the following: In the case of a single-drug treatment, the probability to have resistant
mutants generated before the beginning of the treatment and present, including their
progeny, at some given time afterward, does not depend on the cancer turnover rate
contrary to the multidrug scenario [25]. A consequence of such result would also
be that the probability of single-drug treatment success would not depend on such
a rate. In Tomasetti et al., however, it has been shown that this result does not hold
for finite times (those of biological interest), especially if the difference between
the death and the birth rate of the cancer cells is small [29]. Komarova et al. used
the same methodology to analyze the development of resistance in CML [26, 27].
The authors suggested that a combination of three drugs with different specificities
might overcome the problem of resistance [27]. At the same time, they observed
that combining more than two current drugs may not provide any further therapeutic
advantage, due to the problem of cross-resistance [26].

Another recent work on point mutations is by Iwasa et al. [29]. Continuous-time
branching processes were used to calculate the probability of resistance at the time of
detection of the cancer, as well as the expected number of mutants found at detection
if resistance developed. These estimates were found both for the case where drug-
sensitive and drug-resistant cells have the same birth and death rates as well as for
the cases where the drug-resistant cells have a fitness advantage or disadvantage with
respect to the wild-type cancer cells. Similarly to the results [21], the authors showed
that the probability of resistance is an increasing function of the detection size and
the mutation rate [29].

Finally, Durrett et al. used multi-type branching processes to study multi-drug
resistance, obtaining estimates for the distribution of the first time when k mutations
have accumulated in some cell, as well as for the growth of the various subpopulations
of mutant cells [30].

While we will not consider the modeling of drug resistance due to gene am-
plification, kinetic resistance, drug-induced or physiological resistance, we would
like to briefly comment on some of the works on these types of resistance and refer
interested readers to the references therein. Modeling of resistance due to gene ampli-
fication can be found, e.g., in [31–33]. Drug resistance in these works is studied using
stochastic branching models. Kinetic resistance has been mathematically studied in
[34, 35]. The models in these papers are based on ordinary differential equations.
An alternative approach on kinetic resistance, using age-structured models, can be
found in [36–40]. Instead, for mathematical models and experimental findings on
drug-induced resistance, we refer to [14, 41, 42].
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A Model of Drug Resistance for Leukemias: Including
the Dynamics of Leukemic Stem Cells

In the previously mentioned mathematical models of drug resistance, cancer cells are
considered as a homogeneous population (aside from being or not drug resistant).
In fact, cancer cells will typically differ in size, morphology, division rate, death
rate, and resistance to a given drug [43, 44]. This diversity is caused by genetic
differences, as well as by epigenetic plasticity [45].

Blood constitutes possibly the best example of a tissue with a large variety
of cell types, and where homeostasis is maintained by a small subset of slowly
replicating cells, known as the hematopoietic stem cells. These cells have the ca-
pacity of both self-renewal and differentiation into more mature—and much shorter
lived—differentiated blood cells. From the point of view of drug resistance, this
hematopoietic hierarchy implies that only the cancer cells that have the capacity for
self-renewal can propagate long-term drug resistance. Therefore, these cancer cells
should be taken into account in any model of drug resistance. In fact, only these cells
should be taken into account. Note that this is true even if cancer stem cells were to
be always drug resistant due to some intrinsic property related to their stemness.

Tomasetti et al. modeled drug resistance by focusing on the dynamics of a growing
leukemic stem cell population where all their possible modes of division are included:
symmetric self-renewal, asymmetric division, and symmetric differentiation [46].
We will review this model in some detail.

Consider the following question: What is the probability that by the time a patient
is diagnosed with, e.g., CML some of the leukemic stem cells (LSCs) have been
already hit by specific point mutations causing these cells and all their progeny to
be resistant to a given targeted therapy? Since point mutations seem to represent the
main cause of resistance to targeted therapies and since it appears that the main effect
of these therapies on leukemic stem cells is cytostatic, it follows that an answer to
the above question is the key in order to understand what is the probability, for a
newly diagnosed CML patient, to incur in a later relapse of the disease due to the
development of resistance to the treatment.

If we assume for simplicity that point mutations occur randomly during DNA
replication, and letting u be the probability that when a leukemic stem cell divides
one of its daughter cells will carry a point mutation, we can think about this problem
as depicted in Fig. 15.2.

Denote by S(t), the total number of wild-type LSCs present in a patient at time t.
Denote by l and d, the rates at which LSCs divisions and deaths occur, respectively.
Also, denote by a, b, and c the probabilities that a cell division will be asymmetric,
symmetric differentiation, or symmetric self-renewal, respectively (thus a + b +
c = 1).

The average dynamics of the wild-type LSC population can then be described by
the following equation:

dS(t)

dt
=

[
l(1 − u)(1 − a − b) −

(
d + bl + ual

2

)]
S(t) (15.1)
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Fig. 15.2 Clonal expansions. The wild-type leukemic stem cells expansion (in green) from the first
LSC, at time 0, up to the time of diagnosis tM . Mutated LSCs subclones (in red) may appear and
go subsequently extinct or grow and be present at the time of diagnosis. The model estimates the
probability of having mutated LSCs (red) at time tM . LSC leukemic stem cell

Indeed, the wild-type population grows only when a symmetric self-renewal without
mutations occurs, an event of probability (1 − u)(1 − a − b), while it decreases due
to cell death, symmetric differentiation, or when the stem cell daughter of an asym-
metric division is hit by a mutation. Since u is very small (< 10−6 in CML), we can
approximate the above equation by

dS(t)

dt
= [l(1 − a − 2b) − d] · S(t) (15.2)

By solving Eq. (15.2), we find that the average time for which the wild-type LSC
population will consist of x cells is

tx+1 − tx = ln (1 + 1/x)

l(1 − a − 2b) − d
, (15.3)

where tx is the time at which the population reaches size x. Thus, the average number
of mutations occurring while S = x, which we defined as mx , is given by multiplying
the number of cells present at that time by the mutation rate and by the average time
for which S = x,

mx = xul(1 − a/2 − b)
ln (1 + 1/x)

l(1 − a − 2b) − d
≈ ul(1 − a/2 − b)

l(1 − a − 2b) − d
(15.4)

since x ln (1 + 1/x) 1. It is important to note that mx is not a function of x.
Now, we will use branching processes [47] to model the mutant LSCs. Let M and

T be the total number of wild-type and mutated LSCs present in a patient at the time
of diagnosis, respectively, and let GT be the probability generating function of T.
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Then

GT (ξ ) = E[ξT ] = E[ξK1+...+KM−1 ] = E[E[ξK1 |r1]] · · · E[E[ξKM−1 |rM−1]],
(15.5)

where Kx is the number of mutated LSCs that are present at the time of diagnosis,
tM , and whose originating mutations (rx being their total number) occurred when
S = x. Letting rx be Poisson with mean mx we obtain

GT (ξ) =
M−1∏

x=1

∞∑

rx=0

(
mrx

x

rx ! e−mx gx(ξ)rx
)

= exp

(

−
M−1∑

x=1

mx [1 − gx (ξ)]

)

, (15.6)

where gx(ξ ) is the probability generating function, at time tM , of a mutant clone
originated when S = x.

To find gx(ξ ), we let gx(ξ ,t) be the probability generating function, at time t,
of a mutant clone originated when S = x. Here, time is measured from the time of
occurrence of the originating mutation. Then, this generating function satisfies the
Kolmogorov backward equation

∂g

∂t
= l(1 − a − b)g2 + (d + bl) − (l(1 − a − b) + d + bl)g. (15.7)

Solving the above partial differential equation and noting that

M ≈ xe[l(1−a−2b)−d]tM−x , (15.8)

where, tM−x is the average time it takes for the wild-type LSCs to go from x to M,
we find that

gx(ξ ) = gx(ξ , tM−x) ≈
(ξ − 1)

(
d + bl

l(1 − a − b)

)
M
x

−
(
ξ − d + bl

l(1 − a − b)

)

(ξ − 1)M
x

−
(
ξ − d + bl

l(1−a − b)

) , (15.9)

Plugging Eq. (15.9) in Eq. (15.6), we find that the probability, PR , that at the time of
detection, tM , there are already present some mutated, drug resistance LSCs given
by

PR = 1 − GT (0) ≈ 1 − exp

(
−uM

(
1 − a/2 − b

1 − a − b

)
1

C
ln

1

1 − C

)
, (15.10)

where

C = d + bl

l(1 − a − b)
. (15.11)

Moreover, it is now possible to calculate, from the probability generating function
GT , the various moments of the distribution of resistant LSCs. For example, the
expected value at the time of diagnosis is given by

E[T ] = G′
T (1) ≈ uM In(M)

(
1 − a/2 − b

1 − a − 2b − d/l

)
. (15.12)
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Fig. 15.3 Modes of division versus turnover rate. Plots of the given mathematical expressions, as
functions of the parameter a (left), and of the turnover rate d/l (right)

In Fig. 15.3, where two key parts of the formula given in Eq. (15.10) are depicted, we
can observe the important role played by the mode of division chosen by the LSCs in
determining the amount of drug resistance generated before the start of the therapy.
In fact, the first expression changes considerably, going from 1 to values above 6
(for realistic values of the parameter a), while the range for the second expression
(accounting for the influence of the turnover rate d/l) is much smaller. Thus, it is
fundamental to account for the mode of division chosen by the stem cells in any
model of drug resistance development.

Applications of the Model

We will briefly consider two applications of the above model, both to CML.
A first straightforward application considers the effects that a targeted therapy,

like imatinib, has on the LSCs. Assume that, when the therapy starts, the drug
does not affect the LSC population dynamics at all, i.e., assume that the LSCs are
insensitive to the drug. This has been the established point of view in the medical
literature, and a mathematical model has been often used to support this hypothesis
[48]. Interestingly, the mathematical model had that hypothesis included among its
assumptions.

If this hypothesis were to be correct, then the LSC population will continue to
grow also after the start of the therapy, beyond the number present at the time of
detection given by M in Eq. (15.10). Therefore, the probability of developing LSCs
resistant to the drug would continue growing, according to the formula found in Eq.
(15.10). But this clearly contradicts the evidence observed in the data coming from
long clinical trials [49]. Thus, it must be that imatinib also affects the LSC population
[50].

A second nontrivial application considers the preferred mode of division of
leukemic stem cells in CML. We have already seen that the mode of division chosen
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by the cancer stem cells will dramatically affect the dynamics of the tumor’s growth
as well as the generation of drug resistance due to random point mutations. Inter-
estingly, there appears to be a link between symmetric self-renewal and an inherent
risk of cancer [51], while it has been observed that the preferred mode of division of
healthy hematopoietic stem cells is given by asymmetric division: Their probability
to divide asymmetrically, given by the parameter a in Eq. (15.10), has been estimated
to be close to one, and generally a > 0.9 [52, 53]. By using again the data coming
from the International Randomized Study of Interferon and STI571 (IRIS) clinical
trial [49], it is possible to show that the amount of resistance found among patients
is too small for the parameter a in the formula of Eq. (15.10) to be close to one.
We must rather have a < 0.5 (see [46] for further details). Thus, the model allows
us to infer that the LSCs should have a much lower than normal tendency to divide
asymmetrically hence indicating a substantial shift toward an increased symmetric
self-renewal among leukemic stem cells.

Conclusions

We have reviewed a few elements of the basic biology behind the development of
drug resistance in cancer and some of the mathematical models found in the literature.
Given the key role played by cancer stem cells in carrying long-term drug resistance,
we have analyzed in some detail a recent stochastic model that includes the dynamics
of stem cells among its elements, and a few applications of this model to CML have
been considered. Interestingly, the formulas obtained with this model have also
been recently used in predicting drug resistance to targeted therapy in colorectal
cancer [54]. In conclusion, mathematical modeling has proven to be a useful tool for
analyzing the dynamics of drug resistance.
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Chapter 16
Etiology and Treatment of Hematological
Neoplasms: Stochastic Mathematical Models

Tomas Radivoyevitch, Huamin Li and Rainer K. Sachs

Abstract Leukemias are driven by stemlike cancer cells (SLCC), whose initiation,
growth, response to treatment, and posttreatment behavior are often “stochastic”,
i.e., differ substantially even among very similar patients for reasons not observable
with present techniques. We review the probabilistic mathematical methods used
to analyze stochastics and give two specific examples. The first example concerns
a treatment protocol, e.g., for acute myeloid leukemia (AML), where intermittent
cytotoxic drug dosing (e.g., once each weekday) is used with intent to cure. We
argue mathematically that, if independent SLCC are growing stochastically during
prolonged treatment, then, other things being equal, front-loading doses are more
effective for tumor eradication than back loading. We also argue that the interacting
SLCC dynamics during treatment is often best modeled by considering SLCC in
microenvironmental niches, with SLCC–SLCC interactions occurring only among
SLCC within the same niche, and we present a stochastic dynamics formalism,
involving “Poissonization,” applicable in such situations. Interactions at a distance
due to partial control of total cell numbers are also considered. The second half
of this chapter concerns chromosomal aberrations, lesions known to cause some
leukemias. A specific example is the induction of a Philadelphia chromosome by
ionizing radiation, subsequent development of chronic myeloid leukemia (CML),
CML treatment, and treatment outcome. This time evolution involves a coordinated
sequence of > 10 steps, each stochastic in its own way, at the subatomic, molecular,
macromolecular, cellular, tissue, and population scales, with corresponding time
scales ranging from picoseconds to decades. We discuss models of these steps and
progress in integrating models across scales.
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Keywords Stochastic modeling · Monte Carlo simulations · Stemlike cancer cells
(SLCC) · Acute myeloid leukemia (AML) · Chronic myeloid leukemia (CML) ·
Modeling protocols for fractionated dosing · Theorem on front-loading dose · Birth–
death models · Extinction in stochastic systems · Clone niche model · Chromosomal
aberrations · Ionizing radiation · Physical, chemical, cellular, clinical, and epidemi-
ological time scales · Stochastic geometry · Markov chains · Poissonization · DNA
double-strand breaks

Abbreviations

AML Acute myeloid leukemia
AUC Area under curve
CAS Chromosome aberration simulator
CML Chronic myeloid leukemia
DSB DNA double-strand break(s)
Gy Radiation dose unit = 1 J/kg
HSC Normal hematopoietic stem cell(s)
LSS Life span study of atomic bomb survivors
SEER Cancer database (www.seer.cancer.gov)
SLCC Stemlike cancer cell(s)
TCP Tumor control probability
TKI Tyrosine kinase inhibitor(s), e.g., imatinib

Introduction

Stochastics

We shall here often consider stemlike cancer cells (SLCC). Within a heterogeneous
cancer, SLCC are cells putatively capable of reinitiating the cancer if placed in the
right microenvironment [1]. Usually in this chapter, no other stemlike properties are
implied. SLCC are sometimes also called “tumor clonogens” [2].

Many biological and medical situations involve “stochastic” effects. Stochasticity
refers to situations that appear highly similar using currently optimal observational
techniques, but that may nonetheless have very different outcomes. To model such
situations, probabilistic methods are needed. “Deterministic” calculations refer to
averages instead. Figure 16.1 gives a hypothetical example.

Mathematical and Computational Models of Stochastic Processes

In this chapter, we analyze the dynamics (i.e., time evolution) of neoplasms using the
two main techniques for quantitative studies of stochastics: Monte Carlo simulation
[3] and analytic stochastic process theory [4–6].
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Fig. 16.1 Treatment discontinuation possibilities. To illustrate deterministic versus stochastic mod-
els, suppose that (1) Semlike cancer cells (SLCC) (spheres) have a growth advantage over normal
stem cells in the absence of drug treatment, but a disadvantage under treatment and (2) treatment
is discontinued when the average number of SLCC is just 1. What will happen? Assuming a deter-
ministic model, SLCC will repopulate, e.g., with exponential growth as shown. However, a more
realistic stochastic model can give different results, even if the average number of SLCC at each time
equals the deterministic estimate for that time. Here snapshots, three times shown by the dashed
vertical lines, given for eight patients. Of these eight, patients 1 and 2, responding stochastically
to the treatment, were “lucky” enough to be fully SLCC-free when treatment was discontinued;
afterwards, they remain disease-free. “Luck” refers to factors not systematically foreseeable with
current techniques. Patient 4 was also lucky, and patient 7 was even luckier: both SLCC died out
accidentally, one after the other, despite their growth advantage. On the other hand, patient 8 is
substantially worse off than the deterministic model would predict, while patients 5 and 6 have also
been unlucky. Whether any of the four SLCC-bearing patients will relapse clinically is also in part
a matter of luck.

In Monte Carlo simulations, computer software uses random number generators,
in effect rolling dice, to mimic the stochastic decisions a biological system makes.
For example, when a SLCC undergoes mitosis in Fig. 16.1, there are three possi-
bilities: a “birth” if both daughters are viable SLCC, no change in SLCC numbers
if one daughter is an SLCC and the other daughter permanently leaves the SLCC
subpopulation (e.g., undergoes apoptosis or differentiates), and a “death” if both
daughters leave the SLCC subpopulation. Each of these three possibilities has a cer-
tain probability. Tracking SLCC dynamics for a specific simulated patient, Monte
Carlo software will determine probabilistically at every successive mitosis which
of these possibilities occurs and thereby track the integer number of SLCC in the
patient. By simulating thousands of patients, one then gets an estimate of what per-
centage of patients is predicted to have 0, 1, 2, etc. SLCC at the end of the treatment.
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Other subpopulations, e.g., drug resistant or emergent faster-growing SLCC subpop-
ulations, are tracked similarly. Monte Carlo simulation is very generally applicable,
is surprisingly simple to implement, and is clear intuitively. One common use of
Monte Carlo simulations is in “individual-based” (including agent-based) modeling
[7].

However, analytic methods, when available, often give better overall insight into
the various possible dynamical outcomes than do Monte Carlo methods. We shall
discuss this point in the section below on the front-loading theorem, when we have
an example available to illustrate the differences more concretely.

Preview

As Fig. 16.1 suggests, stochastic effects in cell population dynamics are most impor-
tant when some cell subpopulations have very small numbers—are teetering on the
edge of extinction. This situation occurs frequently for leukemias: SLCC numbers
are small soon after (cryptic) leukemia initiation; during later stages of prolonged
leukemia treatments, e.g., just after treatment is discontinued; and after a bone
marrow transplant. Moreover, new subpopulations that arise during progression are
small at first, as are clones of drug-resistant mutants. Therefore, we shall here use
neoplasms instead of normal hematopoiesis to illustrate stochastics.

One of our two main examples will concern modeling the eradication of leukemias
which are proliferating during intermittent, fractionated drug dosing. The second
concerns the induction of a BCR–ABL chromosome aberration (i.e., a Philadelphia
chromosome) by ionizing radiation, subsequent development of chronic myeloid
leukemia (CML), and CML response to tyrosine kinase inhibitor (TKI) treatment;
this second example is instructive because it is highly multiscale, and because there
are more than 10 interrelated steps involved, each with a somewhat different kind of
stochastics.

Dose Timing

Fractionated Dosing

Doses of drugs (or ionizing radiation) are often “fractionated,” i.e., given intermit-
tently over a prolonged period (Fig. 16.2). One main reason is to control deleterious
side effects. For fractionated treatment of SLCC that proliferate during the prolonged
period, many clinical and mathematical questions arise, giving an instructive exam-
ple of the difference between deterministic and stochastic analyses. We consider
SLCC population dynamics during fractionated treatments that attempt to eradicate
all SLCC and thereby achieve cure. We first discuss scenarios where SLCC do not
interact with each other, only with their microenvironment, then scenarios where
SLCC–SLCC interactions occur.
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Fig. 16.2 A schematic example of fractionated dosing. Shown is a hypothetical 4-week cycle of
one dose each weekday. The first dose fraction, given on Monday of week 1, is larger than the
others. The total number of dose fractions and the time of the kth fraction are denoted by K and Tk ,
respectively, and RP denotes a recovery period during which the drug washes out of the patient (and
short-term side effects ameliorate). The end of the RP is here taken as F = 30 days. Cycles may be
repeated, but we here focus on a single cycle. Gaps and variable doses can occur within a cycle.
Fractionated protocols are somewhat analogous to “metronomic” ones used, e.g., in antiangiogenic
disease management [8]

Response to Fractionated Dosing: Deterministic
Birth–Death Models for Non–Interacting SLCC

Consider SLCC in a large group of highly similar patients. Denote the (per SLCC)
birthrate at time t by b(t) ≥ 0, i.e., if m(t) denotes the number of SLCC at time t
averaged over patients, the average number of extra cells per patient born in a very
short time interval dt is b(t)m(t)dt. The birthrate b(t) might be time independent,
but also might instead change in time, e.g., if treatment triggers a delayed biological
response (see, e.g., Ref [9]). Here “birth” refers to the extra SLCC that arises when
a symmetric mitosis without differentiation produces two viable SLCC daughters.

Similarly, denote the endogenous (treatment independent) death rate (per SLCC)
by d(t) ≥ 0 and the treatment death rate by αc(t). Here the drug blood plasma con-
centration c(t), in μg/mL, is assumed to be that experienced by the SLCC, treatment
death rate has been approximated as proportional to c(t), and α is the constant needed
to convert c(t) to a death rate. For the kth dose Dk (in mg/kg), we take the incremental
contribution to the concentration c(t) to be ck(t) = s(t − Tk)Dk/V d. Here the shape
s(t), shown schematically in Fig. 16.3a, has been normalized to have an integral
(AUC, area under curve) of 1 day and Vd is the volume of distribution. Table 16.1
summarizes the quantities we have introduced and defines some auxiliary quantities.

For fractionation, the total plasma concentration c(t) has some pattern generally
similar to the one shown in Fig. 16.3b. During treatment, the treatment death rate
αc(t) will normally make the net death rate λ(t) = d(t) + αc(t) − b(t) positive, but
if the treatment death rate is small or zero, λ(t) can be negative—the number of
SLCC usually increases in the absence of treatment. Note in Fig. 16.3b that the drug
concentration can drop strongly on weekends, possibly allowing tumor repopulation.
Thus, for rapidly growing neoplasms, weekend breaks are deprecated.

Assuming no SLCC–SLCC interactions, the standard deterministic differential
equation for the average SLCC number m(t) and its solution are the following, where
the notation of Table 16.1 is used:
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Fig. 16.3 The time course of drug concentration and its integral. a A schematic plot of the shape
s(t) of the drug concentration due to a dose given at t = 0; the total area under the curve (AUC) is
taken to be 1 day. The numerical example here is intended only to illustrate the general behavior of
the quantities in Eqs. 16.2 and 16.3. Table 16.1 gives the units for s(t), c(t), and C(t). b A plot of
c(t) for the cycle shown in Fig. 16.2 and s(t) as in a, with the same dose each weekday except for
the first Monday where the dose is higher. Throughout this section, we assume that c(t) has dropped
back down to zero by the time the recovery period ends. c The concentration integral C(t) for three
slightly different cycles: the same dose each weekday for 4 weeks except on one Monday (day 0,
7, or 21), when the dose is 10-fold (an unusually high boost, chosen here for visual clarity in this
schematic example). The curve for an earlier boost is always at least as high as for a later boost and
is higher at some times. This feature is general; its implications for stochastic proliferation lead to
a front-loading theorem

(A) dm/dt = −λm; the solution is

(B) m(t) = m(0) exp

[
−

∫ t

0
λ(y)dy

]
; here

(C)
∫ F

0
λ(t)dt =

∫ F

0
[d(t) − b(t)]dt + αC(F )

=
∫ F

0
[d(t) − b(t)]dt + α

∑K

k=1
Dk. (16.1)

Here Eq. 16.1 states that on average, the increase in SLCC number in a short time
dt is the negative of the net death rate λ(t) multiplied by the average cell number
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Table 16.1 Symbols used

Symbol Definition or example Name Units

1 K Fig. 16.2 Total number of fractions None

2 k k = 1, 2,. . . , K Fraction number None

3 Dk Text below Fig. 16.2 Dose for kth fraction mg/kg

4 Tk Fig. 16.2 Time of kth fraction Days

5 F Fig. 16.2 Time at end of recovery Days

6 s(t) Fig. 16.3 Concentration increment curve None

7 ck(t) ck(t) = Dk s(t − Tk) kth concentration increment μg/mL

8 c(t)
∑k

k=1 ck(t); Fig. 16.3 Concentration at time t μg/mL

9 C(t) C(t)=
∫ t

0 c(y)dy Concentration integral; AUC = C(F) μg-day/mL

10 b(t) ≥ 0 Text below Fig. 16.2 Birthrate per cell Per day

11 d(t) ≥ 0 Text below Fig. 16.2 Endogenous death rate per cell Per day

12 α > 0 Text below Fig. 16.2 SLCC drug sensitivity mL/(μg-day)

13 αc(t) ≥ 0 8 and 12 above Treatment death rate per cell Per day

14 λ(t) λ(t) = d(t) +αc(t) − b(t) Net death rate per cell Per day

15 m(t) Text below Fig. 16.2 Average number of SLCC at time t None

16 q(F) Eq. (16.3) Survival probability None

17 Vd Text near Fig. 16.3 Volume of drug distribution L/kg

m(t). The solution Eq. 16.1 of this differential equation is familiar from calculus
(e.g., Ref. [10]; Box 6.2). If the net death rate λ happens to be constant in time, i.e.,
λ(t) = a > 0, then Eq. 16.1 is just the equation of exponential decay m(t) = m(0)e−at;
in general, the exponent involves an integral of λ(t) over time. Eq. 16.1 follows
from the definitions in Table 16.1 of λ, C(t), and ck(t) together with properties of
s(t) and c(t) described in the caption to Fig. 16.3. The summation in Eq. 16.1 is
merely the total dose, independent of the way this dose is distributed among the
dose fractions. This fact implies, since α is fixed, the standard, important (and at
first surprising) result that the deterministic estimate of the average number m(F) of
SLCC at the final time F is independent of the order in which different doses are
administered, provided that (a) the drug pharmacokinetics are linear (e.g., doubling
the dose doubles c(t)) and (b) “other things are equal,” namely that dosing does not
alter SLCC dose sensitivity α or the time dependence of the endogenous rates b(t)
and d(t). In contrast, stochastic estimates are sensitive to dose delivery timing, as
will be discussed below.

When the SLCC do not interact with each other, we can get full information by
considering a single clone that has exactly one cell at time t = 0. We now temporarily
confine attention to this case. Then, for all cases of interest m(F) in Eq. 16.1, the
average number of SLCC at the end of recovery, assuming the initial number was 1,
obeys m(F) < < 1 since we are considering treatments designed to eradicate. When
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m(F) < < 1, this average number can usually be considered the deterministic estimate
of the probability that a clone started by a single cell at time t = 0 has been eradicated
by time t = F. Two ways to see this fact are the following: If, as is usually an excellent
approximation, no such clones have more than 1 SLCC at time t = F, then m(F) is
exactly the eradication probability; if the cell number per clone is Poisson distributed,
the survival probability is 1 − exp[− m(F)] ∼= m(F).

Response to Fractionated Dosing: Stochastic Birth–Death Models

In this section, we continue to assume no SLCC interactions; we focus attention
entirely on a single clone that at time t = 0 has only one cell, assume m(F) < < 1,
and interpret m(F) as the deterministic estimate of the survival probability for such
a clone. Following seminal work by Tucker and coworkers (reviewed in Ref. [11]),
stochastic birth–death models (reviewed in [5, 6, 12]) have generally been used for
estimating disease persistence in the situation described deterministically by Eq.
16.1. The stochastic models calculate the time-dependent probabilities that a clone
has no SLCC, exactly 1 SLCC, exactly 2 SLCC, etc. They can therefore be used
to calculate the survival probability q(F) that the clone has at least 1 SLCC at the
end of the recovery period. For birth and death rates linearly proportional to m,
corresponding to independent SLCC, and to exponential growth or decay, the result
(Ref. [5] example 4.8) is as follows:

q(F ) = m(F )

1 + ∫ F

0 b(t) exp
[
− ∫ F

t
λ(y)dy

]
dt

. (16.2)

We analyze and interpret this useful equation via six remarks and a front-loading
theorem. The six remarks are:

1. The numerator is the deterministic estimate of the clone’s survival probability, as
discussed above.

2. If the (per cell) birthrate b(t) is zero, no stochastic correction is needed;
q(F) = m(F).

3. Otherwise, the extra term in the denominator of Eq. 16.2 is positive, i.e., stochastic
fluctuations always decrease q(F) below m(F), and in this sense, deterministic es-
timates tend to be overly pessimistic. An intuitive interpretation is that a stochastic
fluctuation can “accidentally” eradicate a small clone, and thereafter, no stochas-
tic fluctuation or birthrate, however large, can resurrect the clone. On the other
hand, a stochastic fluctuation that increases the SLCC number merely changes
a surviving clone into a larger surviving clone which, with luck, can still be
eradicated.

4. Suppose, for a given protocol, we compare two patients who have the same net
death rate λ(t) and suppose the second patient has b(t) greater than the first (and
thus necessarily a greater endogenous death rate d(t) to keep λ(t) fixed). Then the
second patient has a better prognosis—the estimated SLCC survival probability,
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Eq. 16.2, is smaller since the integral in the denominator of Eq. 16.2 contains b(t),
and everything else in Eq. 16.2 depends only on the net death rate. The intuitive
interpretation is that increasing the birth and endogenous death rates by the same
amount corresponds to a more fluctuating situation and thus a higher chance of
reaching a zero-SLCC state accidentally.

5. The exponential in the denominator of Eq. 16.2 is an “influence function” that,
intuitively speaking, carries the effects of having an extra cell born at time t
forward to the later time F.

6. Many other results can be obtained from Eq. 16.2, e.g., estimates of doses needed
to cure half of a patient population. Stochastic process theory (e.g., [5]) also gives
many further equations similar to Eq. 16.2, e.g., for the survival probability q(t)
at times earlier than F, for the probability that a clone has exactly one SLCC at
any time, not just the probability q(t) that it has at least one, etc. These further
results are not needed in this chapter but are often useful in detailed calculations.

The Front-Loading Theorem

This section describes a theorem based on the stochastic formalism above. Often
in fractionated treatments, some doses are “boosted,” i.e., larger than others (e.g.,
Fig. 16.2). Typically “front loading” or “back loading” is used, boosting early or late
doses, respectively. We now show that if “other things”—SLCC sensitivity α and per
cell birth and endogenous death rates b(t) and d(t)—are equal, stochastic fluctuations
favor front loading as far as SLCC eradication is concerned in the present scenario.
This result substantially generalizes a previous result on front loading [13].

Theorem Consider a cycle where two doses obey Dk < Dj , with fraction k earlier
than fraction j. Suppose the birthrate obeys b(t) > 0. Then switching Dk and Dj

(so that the larger dose is earlier instead of later) always decreases the SLCC clone
survival probability q(F), provided “other things are equal,” as defined above.

Remarks Thus, stochastic effects on eradication of SLCC favor front loading. It
should be emphasized that the theorem does not imply front loading is always the
preferred protocol. One main reason is that front loading may increase temporary
side effects so severely that patients may need or choose to discontinue or postpone
treatments, which could be very counterproductive. In fact, a routine extension of the
theorem states that for stochastically proliferating cancers, the best way to eradicate
SLCC with a given total dose is to concentrate all the dose in one single treatment
given as soon as possible—intuitively speaking, the sooner we drive the average
SLCC number to low levels, the longer the period where chance events might eradi-
cate the SLCC population entirely. But usually, the main reason for fractionation in
the first place is that such a 1-dose protocol causes intolerable side effects.

Additional caveats concern the assumption that individual dose sizes do not influ-
ence the sensitivity α or the time course of the endogenous per cell birth and death
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rates b(t) and d(t). There are many known exceptions, some of which tend to dis-
courage front loading while others favor it. For example, if front loading results in
earlier reoxygenation of hypoxic niches for SLCC, it may have the deleterious effect
of increasing b − d but also the favorable effect of increasing α. Furthermore, recall
that Eq. 16.2 does not apply to cases where SLCC interact with each other.

Protocols that strike a balance between tumor control and side effects, and account
for changes in “other things” rather than just considering tumor control with other
things being equal, are beyond the scope of this chapter, whose emphasis is on
interpreting stochasticity. However, it is useful to have the general results above
available: In many cases, stochastic fluctuations favor eradication and front boosting;
in particular, the idea of boosting the last few doses to clean up remaining SLCC
rather than hitting early and hard may often be a fallacy.

Idea of the Theorem’s Proof Using the notations in Table 16.1, basic properties of
integrals, and basic properties of exponentials, Eq. 16.2 can be rewritten as follows:

A) q(F) = m(F )

1 + m(F )
∫ F

0 [b(t)/m(t)]dt
, where m(F ) = exp

[
−

∫ F

0
λ(t)dt

]
and

B)
1

m(t)
= exp

[∫ t

0
λ(y)dy

]
= exp

[∫ t

0
[d(y) − b(y)]dy

]
exp [αC(t)]. (16.3)

Here m(F) in the numerator of Eq. 16.3 is the deterministic result, and, as discussed
in connection with Eq. 16.2, is independent of the individual dose sizes, provided
the total dose is fixed. In the denominator, m(F) also appears in this rewritten form
of Eq. 16.2. Thus, the only quantity in the Eq. 16.3 for q(F) that differs between
the two alternative protocols is 1/m(t) in the integral. Eq. 16.3 shows that actually
only the term exp[αC(t)] differs. As illustrated in Fig. 16.3c, and readily proved by
calculus, this term in the denominator of Eq. 16.3 is larger for the protocol where
a boost is given earlier so that, with b(t) > 0 in Eq. 16.3, the SLCC clone survival
probability q(F) is smaller for the more nearly front-loaded protocol. If the drug is
completely cleared between doses, the theorem and its proof take on a particularly
simple form that might be relevant, for example, in the treatment of acute myeloid
leukemia (AML) with ara-C, a drug that is cleared rapidly [14].

The theorem furnishes an instructive example of the advantages and disadvantages
of analytic versus Monte Carlo stochastic calculations. On the one hand, Monte
Carlo techniques can almost never give sufficient overall insights to prove a general
theorem, and sometimes do not even hint at such general results. On the other hand,
as soon as modeling assumptions are generalized to be more realistic, there are often
no explicit solutions such as those given in Eqs. 16.1 and 16.2, while Monte Carlo
methods continue to be applicable with only minor modifications.

We next consider an example of this difference by dropping our assumption above
that SLCC do not interact with each other. In reality, SLCC do interact with each
other [15]: by approaching a set point when the number in the body is too large or
too small, by paracrine signaling, by competing for local resources such as oxygen
or supportive microenvironmental niches, etc.
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SLCC–SLCC Interactions via Total SLCC Control

Especially for chronic as opposed to acute leukemias, feedback control of the total
SLCC number in the body is likely to occur. Feedback models have been considered
by various mathematical modeling groups (e.g., in the case of CML [16–20]). Here
a simplified version will be used to highlight differences between a deterministic
model analyzed with a differential equation versus its stochastic counterpart analyzed
by Monte Carlo methods. Consider the following deterministic birth–death model,
somewhat similar to Eq. 16.1, for the total number of SLCC m(t) in the body:

dm/dt = −λm; where λ = d + αc(t) − b(m). (16.4)

The key difference is that the birthrate b now depends on the total number m(t), due
to feedback control mediated by intercellular interactions, which complicates the
solutions, especially for the stochastic counterpart of Eq. 16.4. In this illustrative
example, the endogenous death rate d > 0 is taken as constant (i.e., feedback control
on d is neglected for simplicity). The remaining term in λ is the treatment death rate
as before. To get an explicit example, one should require that the net endogenous
birthrate (i.e., the so-called Malthusian rate, b − d, which, as is typical, is the only
combination that matters to this deterministic equation), have the well-known logistic
form analyzed, e.g., in [21]. Then b(m) − d has the form b − d=(1/n){1-[m(t)/K]}d.

Here K is the set point number (“carrying capacity”) in the absence of treatment, the
solutions of interest obey m(t) ≤ K, and (1/n) > 0 is a dimensionless parameter that
determines, intuitively speaking, how fast m(t) snaps back when pulled below its set
point by a transient drug treatment.

For the corresponding stochastic model, one must specify the birth and endoge-
nous death rates separately and can then use Monte Carlo methods. In terms of the
constant endogenous death rate d and the snapback parameter 1/n, the birthrate is
given as b(m)=d[(n + 1)/n][1 − m/[ (n + 1K) ]. Thus, b(m) is a decreasing linear
function of m with a slope − dK /n that becomes flatter as 1/n decreases toward 0.
As n → ∞, b becomes independent of m, i.e., db/dm = 0. In any case, when m = K,
b = d.

The stochastic version of the model was implemented using the R package adap-
tivetau [22]. Adaptivetau gives a Monte Carlo implementation for a discrete-time
Markov chain “embedded” [4] in the continuous-time Markov chain corresponding
to Eq. 16.4, as follows. In effect, Eq. 16.4 is broken into a sequence of state-changing
time steps randomly drawn from an appropriate exponential distribution, and changes
in the integer SLCC number m(t) at the corresponding times are tracked. At each
step, a random number generator is used to decide if the state change at that step
was a birth or a death, as governed by the birth and death rates. “Markov” refers to
the fact that the system is assumed to have no memory. For example, if there are
three cells at a given time, the birth and death rates are the same whether the system
has always contained three cells or started at some other number and arrived at three
only via some complicated sequence of births and deaths.
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Fig. 16.4 Patient trajectories for different levels of SLCC control looseness. A 50 % increase in
death rate was applied for 5 days either early at t = 100 (black) or late at t = 600 (red). Increasing
levels of control system looseness (higher n values) imply increasing time constants with which the
system returns to set point after perturbation by the drug, and also imply increases in the variance
about the set point. Out of 100 such early-dosed (black) and 100 late-dosed (red) simulations at
each n value, n = 1 and 10 did not yield a single cure, n = 100 yielded 1 cure, and n = 1000 yielded
52 early-dose cures and 44 late-dose cures (e.g., red trajectory in the bottom right panel)

In these illustrative calculations, patients were simulated with d = 1, K = 5000,
m(0) = 5000 (i.e., the system always started at its set point), c(t) = 0 except during a
5-day dosing interval over which αc(t) = 0.5, and with dosing starting either early at
day 100 or late at day 600. Simulations were run through day 1105. Such simulations
may have relevance to chronic leukemias or myeloid dysplastic syndrome wherein
malignant cells may be under looser control than normal cells, but still be under more
control than in acute leukemias (that may have 1/n = 0). To illustrate the range of
possibilities of posttreatment kinetic recoveries to set point, representative examples
of simulations with n values of 1, 10, 100, and 1000 are shown in Fig. 16.4.

Figure 16.4 shows that looser control causes increase in both the variance about the
set point (e.g., before perturbation by the drug) and in the amount of time needed for
cell numbers to return to set point once the exposure to the drug has stopped. Based
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Fig. 16.5 Loose control
(n ≥ 1000) is required for an
early- versus late-boost
advantage

on Fig. 16.4, the probability of malignant population extinction might be predicted
to be very low when n < ∼100, and indeed, examining 100 early- and late-dosed
patient trajectories at each n over a broad range (Fig. 16.5) confirms this fact and
further indicates that the advantage of giving doses earlier rather than later requires
considerable SLCC control looseness. The intuitive reason is that the endogenous per
cell birthrate is larger for smaller cell numbers; front boosting means longer times
with smaller cell numbers and thus a tendency, opposite to that of stochasticity, to
favor back boosting. The implication is that front boosting may be more applicable
to acute than to chronic leukemias.

Local SLCC–SLCC Interactions: The Niche Model
and Poissonization

Cumbersome features of Monte Carlo calculations can be very substantially re-
duced if the main SLCC–SLCC interactions are local. Specifically, as in [23], we
can emphasize subpopulations of SLCC rather than individual SLCC. The SLCC
subpopulations are visualized as comparatively distant from each other, with each
subpopulation localized in its own microenvironmental “niche” and intercellular in-
teractions among SLCC being confined to cells in the same niche (Fig. 16.6). Here a
niche can be an actual biological structure, such as a crypt in the case of colon cancer,
or a bone marrow niche in the case of leukemias [24], or it may merely reflect low
cell mobility with dominant intercellular interactions localized.

The niche model is flexible to the extent that all kinds of SLCC–SLCC interactions
are allowed, though only for SLCC within the same niche. In some ways, the model
is simpler than even a model of independent SLCC, because in some estimates (e.g.,
[25]), niches can be treated as the basic units, without needing to analyze how many
SLCC each surviving SLCC niche contains after recovery.

In designing the niche model, the attitude was that simplifying assumptions are
inevitable but implicit assumptions are to be avoided. The main assumptions are the
following.
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Fig. 16.6 Localized interactions among SLCC. Using Monte Carlo methods to model situations
where all SLCC can interact, even if far apart, can lead to formidable computational problems.
In the niche model, SLCC are grouped into different, noninteracting subpopulations in different
microenvironmental niches, facilitating estimates of how local SLCC–SLCC interactions influence
growth.

1. SLCC-occupied niches are “identically distributed”—probabilistically identical.
For example, two niches need not have the same number of SLCC at a given
time, but if they do, the per unit time probabilities at that time of their numbers
increasing or decreasing by a given amount are the same.

2. At time t, a patient has N(t) SLCC-occupied niches which are independent, where
N(t) is a stochastic process, i.e., is characterized by the time-dependent probabil-
ities that a patient has no niches occupied by any SLCC, exactly one such niche,
exactly two such niches, etc.

3. It is not realistic to assume the initial niche number N(0) is a given constant;
it is somewhat more realistic to assume N(0) is a Poisson-distributed stochastic
variable with average N. This assumption is also more convenient mathemati-
cally and leads to simple, general results for the probability distribution of N(t)
for t > 0 (in contrast to the probability distribution for the number of SLCC per
niche which can be complicated for t > 0). The assumption that the initial prob-
ability distribution is Poisson is called “Poissonization” in probability theory. It
is used frequently (reviewed in [26]). Its advantages as regards both realism and
mathematical convenience are analogous to those achieved by using Gaussian
rather than fixed step sizes in random walk polymer calculations [27], or by using
canonical rather than petit canonical ensembles in statistical physics. Technically
speaking, the assumption implies that there will be some patients who, initially,
are free of SLCC but nevertheless symptomatic; for N > 5, as will be the case
for almost any diagnosable cancer, the fraction of such patients (< 1 %) is too
small to influence the overall conclusions. In any case, such a situation is not
impossible: it could occur, e.g., if less stemmy (i.e., progenitor) tumor cells die
off slowly, continuing meanwhile to create a burden of differentiated cancer cells,
as suggested for CML in [28].

4. On the time scales of interest (e.g., a few months; see Fig. 16.2), niches populated
by SLCC do not give “birth,” i.e., the number of niches containing SLCC cannot
increase. This assumption is crucial to the formalism. As mentioned above, the
assumption still allows any behavior for the SLCC birthrates within one niche. For
a discussion of empirical evidence that on longer time scales niches can “infect”
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neighboring niches (to use a solid tumor example, stemlike colon cancer cells
within one intestinal crypt can invade neighboring crypts), see [25].

We now show that with these assumptions, the tumor dynamics during treatment
and recovery is described by (a) a relatively simple (time inhomogeneous Pois-
son) stochastic process, N(t), the number of independent, identically distributed
SLCC niches at time t; and (b) a (usually more complicated) time-dependent prob-
ability distribution of SSLC within a niche undergoing a birth–death process with
interactions.

For one niche, which in general may have many cells before treatment starts,
let Q denote the probability that the niche still contains at least one SLCC at the
end of recovery, i.e., till t = F, and let tumor control probability (TCP) denote the
probability that a patient is “cured,” i.e., is entirely free of SLCC at time F.

Theorem 2 N(F) is Poisson distributed with mean NQ; therefore, TCP = exp[− NQ].

Proof N(0) is Poisson distributed with mean N. Extinction of all SLCC in a niche
gives a random thinning of N with survival probability Q. The basic Poisson color
theorem [4], that a random thinning of a Poisson process is a Poisson process, implies
N(F) is Poisson distributed with mean NQ; the Poisson probability that N(F) = 0 is
thus TCP = exp[− NQ].

Despite the simplicity of the theorem and its proof, it is a quite useful result
because it shows that all attention can be focused on a single representative niche
and (apart from some generalizations of our TCP criterion) focused specifically on
the probability Q that a single niche remains populated by at least one SLCC.

For intraniche SLCC interdependence, the main formal advantage of the new for-
malism comes into play: Typically, the average number N(0) is large; consequently,
the average number of SLCC per niche is much smaller than the total number of
SLCC per patient. With SLCC–SLCC interactions, which frequently require Monte
Carlo approaches, confined to SLCC within a niche, and with all niches probabilisti-
cally identical, the computer-intensive part of the calculations becomes much easier
to implement.

Summary

“Stochastic” usually refers to differences, e.g., among similar patients, whose un-
derlying causes are not observable with the best methods presently available, so that
quantifying the differences involves probabilities. Stochastics are especially impor-
tant when dealing with small numbers, e.g., a cell subpopulation which is likely
to have only one or two cells. “Stochastic processes” track the time evolution of
a system, such as a leukemia, for which stochastics are important. Techniques for
analyzing stochastic processes include explicit analytic results and Monte Carlo com-
puter simulations, with the former usually preferable in the comparatively few cases
where they are available and the latter unusually flexible.
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Fractionated drug treatments designed to eradicate stemlike leukemic cells have
important stochastic aspects. Stochastics always favor front loading, to the (limited)
extent that confounding factors such as SLCC–SLCC interactions, normal tissue tox-
icities, or treatment-induced changes in drug response can be ignored. If interacting
SLCC can be divided into subpopulations, each occupying a spatially distinct niche,
tracking their time development and possible eradication computationally becomes
simpler. SLCC global interactions via control of total SLCC numbers in the body are
also amenable to calculations. Such calculations suggest greater stochastic effects
on the cancer stem cell extinction probability as stochasticity increases and control
loosens, e.g., as in transitions from chronic-phase CML to blast crisis.

Chromosomal Aberrations and Hematological
Neoplasms: An Example

Chromosomal aberrations are strongly associated with cancers [30] and can cause
some hematological malignancies. This section considers Philadelphia (i.e., BCR–
ABL) chromosome formation by ionizing radiation in a primitive hematopoietic cell,
resulting in CML—the best understood example of cancer initiation, development,
and treatment. Characterization of CML involves an unusually rich and instructive
example that illustrates how different stochastic mathematical and computational
methods can be used to study stochastic systems in general. It may eventually help
us understand other, more common but less well understood, cancers.

Some Examples of Chromosome Aberrations

We here consider structural chromosomal aberrations that occur among unduplicated
(G0/G1) chromosomes due to misrejoining of DNA double-strand break (DSB) free
ends (Fig. 16.7), e.g., by the nonhomologous end joining repair process [31]. Detailed
studies of such aberrations are based on various modern versions of fluorescent in
situ hybridization [32]. Chromosome aberrations drive both lymphoid and myeloid
malignancies. Aberrations that drive lymphoid malignancies are in part due to DSB of
recombinations that diversify antigen specific T cell receptors and B cell antibodies
in G0/G1 cells [33]. Examples are ones that cause MYC overexpression due its
translocation to an immunoglobulin enhancer in Burkitt’s lymphoma [34] or similarly
BCL2-overexpression in follicular lymphomas [35].

Myeloid malignancies (e.g., CML or AML) are also caused by chromosomal
aberrations, but in these cases, it is expected that both DSB are formed by processes
that are not DNA sequence specific, e.g., DSB created by reactive oxygen species,
certain cytotoxic anticancer drugs, or ionizing radiation. The rest of this section
focuses on ionizing radiation induction of myeloid leukemias, especially CML.
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Fig. 16.7 Simple aberrations. Chromosomes are shown with DSB (gaps) and centromeres (con-
strictions). Each DSB has two free ends. The free ends can misrejoin to make the rearranged
chromosomes shown. These are among the simplest chromosome aberrations since only two DSBs
are involved. There are other ways to misrejoin here, but for translocations and inversions, cell
proliferation is often not impaired, basically because each rearranged chromosome has one and
only one centromere. Some cancers are caused by such “transmissible” misrejoinings.

Ionizing Radiation

Radiobiology is highly suited for dissecting mechanistic CML studies because ion-
izing radiation, which is known to induce CML [36] that appears indistinguishable
from background CML [37], is an unusually well-understood carcinogen, especially
at small time and length scales. One reason is that by using highly controllable
dose changes, one can verify the presence of radiation action and analyze its
details—dose–response relations are central in radiobiology. The following radia-
tion properties have been characterized and mathematically modeled with relatively
high precision: single-particle radiation track structure (reviewed in [38]); micro-
and nanodosimetry (reviewed in [39, 40]); inter- and intratissue dose distributions,
such as human dose–volume histograms (e.g., [41]); radiochemistry action at sub-
millisecond times (reviewed in [42]); subsequent DNA damage–repair–misrepair
mechanisms (e.g., [43]); DNA damage-processing outcomes (e.g., chromosomal
aberrations [44], especially important here); gene mutations [45]; transcriptome
changes [46]; and many additional relevant end points [47]. Overall, radiation per-
turbations in organisms are frequently more informative than chemical perturbations
due to (a) better-known dose localization, both spatially and temporally; (b) thor-
ough knowledge of particle-track physics; and (c) alterations not only in the dose
but also in the ionizing particle type and/or energy [48], with resulting changes in
response giving extra information. For example, the specific initiation time for a
radiation-induced neoplasm is often precisely known.

A gold standard for analyses of ionizing radiation-induced cancers is the ongo-
ing life span study (LSS, [49, 50]) of the Japanese survivors of the atomic bombs.
The population affected was large and more nearly representative of normal hu-
man demographics than in other studies of radiation carcinogenesis. Irradiation was
whole-body. Much of this dataset is publicly available. It shows significant radio-
genic excess relative risk at many cancer sites. This excess relative risk is larger for
leukemias than for most solid cancers.
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A Deluge of Stochastic Processes

When an atomic bomb exploded above Hiroshima onAugust 6, 1945, it set off a chain
of stochastic events (Fig. 16.8) that culminated years, decades, and probably even
more than a half-century later in diagnoses of CML and subsequent CML dynamics.
We shall here summarize the comparatively very-well-understood physicochemical
stochastics involved (Fig. 16.8a–16.8c); emphasize the chromosome aberration for-
mation stochastics and their biological implications (Fig. 16.8d–16.8f); and comment
briefly on the later stochastics, e.g., during drug treatments (Fig. 16.8g–16.8j).

CML also has stochastic aspects not shown in Fig. 16.8, including the following:
age dependence of sporadic (i.e., background) CML, modeled, e.g., by the stochas-
tic two-stage clonal expansion model [51]; stochastic mass action kinetics during
progression of CML to blast crisis [52, 53]; stochastic competition between SLCC
and normal hematopoietic stem cell (HSC) [24]; the probability distribution for the
latency time from CML initiation (Fig. 16.8f) to diagnosis (Fig. 16.8h), a stochastic
variable [54]; stochastic interactions of SLCC with the immune system (reviewed,
e.g., in [55 ]), etc.

Femtoseconds to Microseconds: Physical and Chemical Stochastics

A first step toward carcinogenesis after the atomic bomb exploded was when one
of its photons entered a cell nucleus and in ∼10−14 s underwent a Compton colli-
sion [56] with an electron (Fig. 16.8a). The photon energy was stochastic, but for
the sake of simplifying the present example, we suppose its energy was exactly
500 keV, corresponding to a small wavelength (∼3 × 10−12 m) and high frequency
(∼1 cycle in 10−20 s). Even knowing these numbers, the energy of the scattered elec-
tron, which is biologically the more relevant quantity, is still a stochastic variable,
as we still do not know how close the photon came to the electron; indeed, quantum
uncertainties exist related to the fact that photon and electron are wavelike and thus
cannot in principle be located exactly. The probability distribution of this stochastic
electron energy is known quite accurately: It is given to excellent approximation by
one of the oldest results of relativistic quantum electrodynamics, the Klein–Nishina
formula [56]. On average, the scattered electron energy is ∼175 keV. To continue
this analysis, let us suppose that the ejected electron starts with a kinetic energy of
exactly 175 keV.

High-energy ejected electrons initiate “tracks” in cells (Fig. 16.8b). Tracks are
intricate stochastic spatial patterns of energy depositions. More specifically, they
are the locations and energy amounts of thousands of ionizations and molecular
excitations created along or near the path of the ejected/primary electron. Ionizations
occur when the primary electron encounters other electrons in the biological material
and gives them enough energy to leave their molecule. Meanwhile, excitations occur
when the energy is insufficient for the struck electron to leave its molecule, yet enough
to raise it to a higher energy molecular orbital, and as a result increase its chemical
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Fig. 16.8 Ionizing radiation induction of CML involves many steps, each stochastic in its own way.
The figure schematically shows the induction and consequences of a BCR–ABL translocation. Top
row: almost every item (a–j) and every arrow between items is stochastic in its own way, requiring
specially tailored mathematical analysis. The other panels are used in the text to discuss details.
Surprisingly, many different kinds of interrelated stochastic effects occur and have been modeled
mathematically with various techniques. The process is multiscale in space (subnanometers to
> meters) and in time (subpicoseconds to decades). Different ways of calculating the probabilities
for the transition c→d→e→f will be emphasized in the text. The simplest calculations use the
following randomness assumptions: all DNA has the same radiation sensitivity; DNA is located
at random within a cell nucleus; DSB are consequently located at random, both in space and in
the genome; DSB free ends (Fig. 16.7) misrejoin at random aside from a bias for partners formed
nearby; transmissible misrejoinings involving more than two DSB are negligible at the doses of
interest; and misrejoining is far less frequent than is “restitution,” i.e., restoration of the DNA with
at most a few local base pair changes that do not impact the fitness of the cell.

reactivity. Figure 16.8b shows the ionizations schematically, exaggerating the track
thickness for visibility’s sake. The central path is tortuous because when the primary
electron imparts energy into its surroundings, it recoils. Some energies can be so
large that “secondary” electrons start their own tracks (dark spurs in Fig. 16.8b).
Eventually, as the electron slows down, it imparts more energy (not less) to its
surroundings per unit contour length of its track (Fig. 16.8b toward top).

For well over 60 years, a gradually accelerating research effort has been devoted
to developing Monte Carlo software to analyze such stochastic tracks for various
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particles and energies. Several powerful, new, primarily physics, packages have
been developed in the last few years (e.g., [57]; [geant4.cern.ch/ ]) and are now being
mined for biological implications (e.g., [38 ]). 175 keV electron tracks are considered
sparsely ionizing: except near the track end, they deposit much less energy per unit
contour length than do, e.g., 1 MeV alpha particles.

With electron tracks accurately characterized, one can then take into account,
with a much simpler stochastic calculation, that there were many different tracks,
not just one. Fig. 16.8c schematically shows the starting points of the electron tracks
in one cell nucleus after a substantial dose. Each such track will typically soon
leave the nucleus (note the difference in scale between Fig. 16.8b, 16.8c); other
electron tracks (not shown) starting outside the nucleus will enter it. The starting
points, to excellent approximation, form a three-dimensional stationary Poisson point
process, i.e., the stochastic geometric pattern appropriate for completely randomly
located and completely independent points ([58], Chap. 2). Moreover, since we do
not know the orientation of the incoming photons with respect to the cell nucleus, it
is appropriate to assume isotropy, i.e., all initial directions being equally probable for
each of the electrons. Since, as discussed in connection with Fig. 16.8a, we know the
probabilities for the various initial energies that the electrons can have, the Poisson
point process gives a complete stochastic description of how to go, in a comparatively
simple way, from (difficult) one-track calculations to multitrack calculations. Among
the most important conclusions is that, while ionizations due to one track are highly
correlated, ionizations due to two different tracks are independent.

Once all these energy depositions have occurred, stochastic radiochemistry is
needed to estimate their subsequent effects at submicrosecond times. For example,
one needs the probability that an OH radical produced by a track diffuses a given
distance, perhaps toward a DNA strand that it could attack. These radiochemical
aspects have also been comparatively well explored [42].

Microseconds to Kiloseconds: Stochastic Aspects of BCR–ABL
Formation

Quantitative estimates have been developed for the number of CML “SLCC
predecessors”—normal cells at risk of a CML-initiating BCR–ABL chromosome
translocation. The results are relevant not only to CML dynamics but also to un-
derstanding stem cells, since comparing the estimated predecessor number with
estimates of the HSC number indicates that either HSC numbers are larger than pre-
viously thought, or that SLCC predecessors are less primitive than HSC, meaning that
CML initiation involves some dedifferentiation (reviewed in [54]). The SLCC prede-
cessor number estimates can be carried out separately for ionizing radiation-induced
and for age-driven CML. Here only the ionizing radiation case will be described.

The calculations, stochastic throughout, involve the following: superimposing
radiation tracks geometrically on their main target, DNA (Fig. 16.8d); estimating the
locations of the DSB produced (Fig. 16.8e, 16.8f); and estimating the number and
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type of chromosome aberrations that result from DSB misrejoinings (Figs. 16.7 and
16.8f).

Relative to biological system uncertainties, radiation track structure, and other
physicochemical aspects outlined in the above section (Femtoseconds to Microsec-
onds) can be regarded as known; a further simplification is that we are here interested
in situations where, relative to biological time scales, the radiation exposure is essen-
tially instantaneous. As yet less well understood than the physicochemical aspects
are the targets (stochastic geometric patterns of the DNA strands in an interphase cell
nucleus, here analyzed for their configurations during the G0/G1 phase of the cell
cycle), and the stochastic dynamics of misrejoining DSB. Considerable progress,
however, has been made recently (reviewed in [38]) and the problems are now being
attacked in many different ways. This section reports on different estimated dose–
response relations for chromosome translocations (e.g., formation of the Philadelphia
chromosome in Fig. 16.8f), depending on different stochastic models of two aspects
of forming a translocation: how the DNA is distributed in an interphase cell nucleus
and how DSB misrejoin.

A pioneering paper [59] used a theorem in stochastic geometry [58] to derive the
dose dependence of chromosome translocation production under various assump-
tions. The simplest calculation uses the randomness assumptions listed in the caption
to Fig. 16.8; it is described next.

Multiple radiation tracks, averaged as outlined in the above section (Femtoseconds
to Microseconds), determine a macroscopic radiation dose D (energy deposited per
unit mass, measured in Gy, “gray,” where 1 Gy = 1 J/kg; radiation dose is an intensive
quantity). A related quantity is D(r), the expected amount of energy per unit mass
deposited at distance r from an arbitrary, energy-weighted, energy deposition point.
D(r) thus refers to energy deposition point pairs; it is a conditional dose, the condition
being that the origin is an energy deposition point. Kellerer and Rossi [59] showed
that D(r)=D+[t(r)/ρ4πr2], where ρ is the mass density and t(r) is a one-track point
pair function that depends only on the radiation type, not on the dose D; the extra
term in square brackets arises because different energy depositions from a single
track are correlated.

Now, making the randomness assumptions (Fig. 16.8), let s(r)dr be the expected
volume of DNA within a spherical shell (volume 4πr2dr) centered at an arbitrary
point in the DNA, and define S(r) = s(r)/V, where V is the total volume of DNA
in the cell nucleus. S(r) is another point pair function. Furthermore, let g(r) be the
probability density for two DSBs to misrejoin if they are created at a Euclidean
distance r from each other; g is known to be biased toward small distances; one
possibility is g = a exp[− ar] for a > 0. In any case, for a given g(r), the expected
yield E(T |D) of chromosome translocations as a function of average dose D is then
[59]:

E(T |D) = 1

4
YD

∫ ∞

0
YD(r)S(r)g(r)dr. (16.5)
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Here Y is the DSB yield per Gy per human G0/G1 cell. A characteristic feature of
this formulation is that g(r) maps the initial state directly into the final state without
explicitly tracking the intervening evolution in time.

The idea behind the proof [58] of Eq. 16.5 is that radiation and DNA are sta-
tistically independent, so probabilities of having point pairs a distance r apart, and
with each point being both in a track and in DNA, can be described using products
D(r)S(r) of corresponding quantities for point pairs in tracks and DNA, separately.
A more detailed intuitive interpretation of Eq. 16.5 is reviewed in [54].

Substituting the result discussed above, D(r) = D + [t(r)/ρ4πr2], into Eq. 16.5
yields

E(T |D) = 1

4
Y 2D

(∫ ∞

0

t(r)

ρ4πr2
S(r)g(r)dr + D

∫ ∞

0
S(r)g(r)dr

)
, (16.6)

which gives, in approximate agreement with observations on chromosome aberra-
tions, a linear–quadratic dose–response for translocations E(T |D) = aT D + βT D2

with

αT = 1

4
Y 2

∫ ∞

0

t(r)

ρ4πr2
S(r)g(r)dr and βT = 1

4
Y 2

∫ ∞

0
S(r)g(r)dr. (16.7)

Given two genes “a” and “b,” an adaptation of Eqs. 16.6 and 16.7 can be developed,
using in place of S(r) a gene-specific version Sab(r) based on the lengths, in base
pairs, of the relevant portions of the two genes involved. The adaptation can then
be used to predict the gene pair translocation dose–response, e.g., the BCR–ABL
dose–response relevant to radiation-induced CML risk estimation [60].

In Eq. 16.7, the track structure descriptor t(r) is known to very high precision
relative to S(r) and g(r). Meanwhile, the DSB yield Y has been estimated by several
independent assays to be ∼25–40 per Gy for human G0/G1 cells subjected to sparsely
ionizing radiation (reviewed, e.g., in [47, 61, 62]); g(r) can be estimated by fitting
Eq. 16.7 to chromosome aberration data across different radiation types (e.g., [60]),
or by using the Markov chain calculation described below, which in effect replaces
g(r) by a stochastic process calculation.

S(r) and Sab(r) can be estimated by combining theory with nonaberration data.
They can be calculated directly from the shape and size of the cell nucleus when the
randomness assumptions (Fig. 16.8 caption) hold. Otherwise, corrections are needed.
For example, Sab(r) may be abnormally large for small r if the corresponding two loci
have an abnormal bias toward being geometrically close together. It is clear from Eq.
16.7 that with g(r) in any case biased toward small distances, the two loci are then
predicted to participate in more translocations than average, especially since t(r) is
also biased toward small distances because it refers to point pairs in a single track.
Studying interphase large-scale DNA geometry is now an unusually active area of
research, sparked in part by the cancer genome project. The results, described next,
can help in estimating S and its loci-specific counterparts.

In studying chromosome aberrations, it has long been considered that large-scale
DNA geometry during cell cycle interphase involves some stochastic motifs, mixed
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in with systematic ones (e.g., [63–65], reviewed in [66]). For example, certain chro-
mosomes systematically tend to be located toward the nuclear membrane more often
than other chromosomes, but there is much intercellular variation, caused, e.g.,
by constrained Brownian motion of segments of a chromosome. These results are
inferred from various kinds of observations, including the following: fluorescent
staining (e.g., [67, 68], reviewed in [69]); details of chromosome aberration spectra
(e.g., [70], reviewed in [44]); and, more recently, high-throughput assays such as
“Hi-C” [66, 71].

Of special interest here are estimates of whether, prior to irradiation, problem-
atical gene pairs such as BCR and ABL (or, for example, PML and RARA, whose
translocation causes acute promyelocytic leukemia) show a bias toward unusually
close spatial proximity. Here again, early data come from fluorescence in situ hy-
bridization imaging ([72–74], reviewed in [75]). Very comprehensive information on
gene pair association probabilities is now becoming available with next-generation
sequencing technology. It raises the intriguing possibility that the “repair factories”
inferred from studies of radiogenic chromosome aberrations [76] and more recently
from radiation-induced DNA damage foci [43] could be related to the transcription
organizing centers suggested by work on nuclei not damaged by radiation [77].

Methods of applying such DNA geometry observations to radiogenic chromo-
some aberration frequency estimation are available (e.g., [78]). In particular, the
results were used to improve estimates of the BCR–ABL loci-specific two-point func-
tion Sab discussed in section above and thereby improve estimates of Philadelphia
chromosome yields/risks after exposures to ionizing radiation [60]. The improved
translocation yield estimate was important because it reduced the estimated number
of CML SLCC predecessor cell numbers enough to achieve marginal consistency
with the largest current estimates of HSC numbers (reviewed in [54]). Hopefully,
Hi-C data will continue to be made publically available (http://hic.umassmed.edu/
welcome/welcome.php), as it is likely that such data will enable major improvements
in chromosome aberration formation models.

However, even if S(r) in Eq. 16.6 can eventually be understood as well as is
t(r), the remaining quantity, the misrejoining probability density g(r), remains at
present more ad hoc and phenomenological. One attack on this drawback is to think
of misrejoining as a sequence of steps [79, 80], not as a single step that transforms
an entire initial situation such as those shown in Fig. 16.9 (left column) into an entire
final situation (right column). Chromosome aberration simulator (CAS) software for
studying DSB induction and misrejoining implements this idea [44, 81], circumvents
many of the simplifying randomness assumptions, and can identify cells that have
only transmissible rearrangements (compare Figs. 16.7 and 16.9).

CAS implementation is via Monte Carlo methods. A number of repair factories
are assigned to a cell, with the average number taken as an adjustable constant to be
determined for the particular cell type by examining the aberration data themselves;
often about 10 repair factories per cell are estimated, but sometimes the number is
substantially larger. The greater the number of repair factories, the greater the dose
range where stochastic, rather than deterministic, models are needed. Chromosomes
are assigned at random to each repair factory, using Poisson distributions. A Poisson

http://hic.umassmed.edu/welcome/welcome.php
http://hic.umassmed.edu/welcome/welcome.php
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distribution with average proportional to dose, the proportionality constant being the
model’s second (and last) adjustable constant, is then used to assign DSB to each
chromosome in accordance with its length (in Mbp) and its radiation sensitivity.
Thereafter, it is assumed that all pairwise misrejoinings among DSB for a partic-
ular repair factory are equally likely (i.e., each repair factory acts as a well-mixed
reaction vessel) and DSB free ends for different repair factories never misrejoin.
An embedded Markov chain, similar to adaptivetau discussed above except that it
does not estimate the time taken for each step, gives detailed output for the DSB
restitution/misrepair process, which can be parsed, e.g., to estimate the (tiny) frac-
tion of cells with transmissible damage that includes a Philadelphia chromosome
(Fig. 16.9).

Kiloseconds to Gigaseconds: Stochastics of CML Latency
and Treatment Response

After establishment of a Philadelphia chromosome clone, the malignant cell pop-
ulation evolves dynamically over a period of many years, the latter part of which
typically includes medical, e.g. TKI, treatment (Fig. 16.8g–16.8i). Recently, many
groups have studied stochastic aspects of this cell population dynamics; surveys
include [54, 82, 83]; examples include [29, 53, 84–86]. Mathematical techniques
used include Monte Carlo simulations, stochastic birth–death processes that are of-
ten generalized to track several related subpopulations, and the Moran model [5],
a stochastic process that assumes the total number of stem cells, HSC + SLCC, is
fixed at a single deterministic number during subpopulation evolution.

For example, one of the clinically important malignant cell population dynam-
ical topics analyzed stochastically is the development of drug resistance, before
or during TKI treatment. Two seminal papers [87, 88] modeled imatinib-resistant
mutants, multidrug-resistant mutants, and the use of TKI cocktails to combat such
resistance. Also seminal in these papers was the emphasis on point mutations within
the ABL domain of leukemic cells, and on mutation rate per cell division as the key
parameter.

More recent papers, e.g., [82, 89–91], review, extend, and in some cases modify,
these analyses. There is considerable agreement in these later papers, e.g., on the
following points. Only mutations in CML SLCC are important, not mutations in more
differentiated cells. Back mutations and resistance due to two or more successive
mutations in one SLCC subclone are so rare they can be neglected, but mutations
that confer resistance to more than one drug cannot. A substantial fraction of the
resistant mutants are already present, perhaps undetectably, at diagnosis. And a
cocktail of two different TKI should be considered for first-line treatment.

Finally (Fig. 16.8j), on still larger time and length scales, there are statistical
studies of human CML population dynamics. For example, the LSS [50] is still
giving new information on CML almost 70 years after the A-bomb.
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Fig. 16.9 Transmissible aberration patterns. The figure shows chromosomes 7, 9, and 22 in an
interphase cell nucleus starting (left) with four DNA DSBs (gaps) whose free ends can restitute
or misrejoin stepwise. Top row: restitutions A and B first restore Chr. 7 to its undamaged state;
then a translocation (C and D) makes a Philadelphia chromosome (labeled BCR–ABL). The entire
final rearrangement (top right) is most likely transmissible to daughter cells and therefore liable
to initiate CML. The two small asterisks in the fourth rectangle show DSB free ends destined to
misrejoin or remain single, because their partners have already been unfaithful. In the bottom row,
the starting point is the same, and a Philadelphia chromosome also forms. However, due to other
misrejoinings, the final state (bottom right) is not transmissible. The ring (left) and its replicate can
link during the S phase of the cell cycle, causing severe problems at mitosis; the acentric fragment
(right bottom) and its replicate can get lost or be incorrectly distributed between daughters even if
mitosis succeeds. These problems tend to reduce the clonal fitness and thus make the Philadelphia
chromosome less dangerous. In general, the possible number of initial states is very large indeed;
the number of possible final states for a given initial state with many breaks is also large. CAS
systematically tracks all the possibilities and assigns them probabilities.

Summary

Chromosome aberrations can be found in many cancers, but they are particularly
important in hematologic malignancies. In the case of lymphoid malignancies, DSB
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are created endogenously in antigen-specific immunity processes, and this can have
unwanted translocation side effects [92]. Myeloid leukemias are also associated with
aberrations. In the case of BCR–ABL causing CML and 20–30 % of adult acute lym-
phocytic leukemias [93], BCR–ABL prevalence may be particularly high for several
reasons: An unusually large ABL intron over which translocations create the same
chimeric protein product and thus the same clinical disease; geometric proximity
between chromosomes 9 and 22 that places BCR and ABL unusually close to one
another more often than expected by chance, thus leading to a higher probability
of translocation; and, as with many cancer mutations, a selective advantage for cell
survival. For radiogenic CML, stochastics are important not only in Philadelphia
chromosome formation but also at many other steps between an initial radiation
event and the long-term clinical outcome.

Conclusions

This chapter gave examples of the importance of stochastic effects during the genesis
and treatment of hematological neoplasms, and of the methods used to quantify such
effects. Although our emphasis has been on leukemias, the approach is applicable to
understanding and treating other cancers as well. Indeed, the mathematical methods
applied have been useful across many fields of science for many decades. In this
regard, it is not surprising then that they are applicable to leukemias at multiple
levels, here at the levels of radiation action, chromosome translocation formation,
and malignant cell or human population dynamics. At the level of chromosome
translocations, one important aspect of stochastic modeling is that it enables proper
accounting of DSB restitution, particularly at low doses where proper DSB free
ends find one another largely because there are no other local options available that
might cause a misrejoining. At the higher level of cell numbers, stochastic modeling
enables representation of malignant clone extinction probabilities. The importance
of stochastic models in the genesis and treatment of leukemias will only increase in
the future as mathematical models of cancer are applied more and more to the design
of clinical trials.
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Chapter 17
Assessing Hematopoietic (Stem-) Cell Behavior
During Regenerative Pressure

Thomas Stiehl, Anthony D. Ho and Anna Marciniak-Czochra

Abstract Hematopoiesis is a complex and strongly regulated process. In case of
regenerative pressure, efficient recovery of blood cell counts is crucial for survival
of an individual. We propose a quantitative mathematical model of white blood
cell formation based on the following cell parameters: (1) proliferation rate, (2)
self-renewal, and (3) cell death. Simulating this model we assess the change of these
parameters under regenerative pressure. The proposed model allows to quantitatively
describe the impact of these cell parameters on engraftment time after stem cell
transplantation. Results indicate that enhanced self-renewal during the posttransplant
period is crucial for efficient regeneration of blood cell counts while constant or
reduced self-renewal leads to delayed recovery or graft failure. Increased cell death
in the posttransplant period has a similar impact. In contrast, reduced proliferation
or pre-homing cell death causes only mild delays in blood cell recovery which can
be compensated sufficiently by increasing the dose of transplanted cells.

Keywords Stem cell, Hematopoiesis, Bone marrow transplantation, Stem cell trans-
plantation, Quantitative mathematical modeling, Dynamical systems, Engraftment
failure, Blood regeneration, Self-renewal, Proliferation

Introduction

Hematopoiesis is a key example for tissue maintenance and regeneration throughout
the lifespan of an organism. The efficiency of the hematopoietic system is demon-
strated by a daily output of more than 1011 cells in human adults [20, 48]. The
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hematopoietic system not only replaces the steady state daily loss of mature blood
cells but in addition it is also able to respond to dramatic changes such as blood loss,
immune defense, or bone marrow transplantation.

A large number of hematopoietic disorders [17] demonstrate the complex interplay
between its different components, which in case of impairment lead to detrimental
effects. Due to the vital importance of blood formation it is not surprising that
hematopoiesis is governed by complex regulatory mechanisms, such as negative
feedback loops. Over the last decades a large number of different hematopoietic
cytokines have been characterized [28] and their effects on blood formation have
been investigated. Important examples are erythropoietin (EPO) and granulocyte
colony-stimulating factor (G-CSF, pegfilgastrim) with their therapeutic applications.
Nevertheless, the interaction of different regulatory molecules and the signalling cues
invoked by them seem to be highly complicated [32] and are not fully understood.

In addition to the molecular mechanisms it seems crucial to obtain a better un-
derstanding of the processes taking place at the level of cells such as frequency of
divisions, probability of cell death, and probability to differentiate. Due to exper-
imental limitations and changes in cell behavior under culture conditions [5] it is
difficult to directly observe the effect of cytokine stimulation on the cellular level.
Mathematical modeling is an effective tool to close this gap since it allows to com-
pare the impact of possible regulatory mechanisms and modes of cell behavior on
observable system behavior. Formulation of different possible scenarios in terms
of mathematical models and comparison of model simulations to experimental or
clinical data provide insights into underlying cellular behavior.

Mathematical models have a long history of being used to better understand bi-
ological and medical problems. Depending on the question of interest, different
mathematical approaches can be chosen. Large cell populations can be reasonably
modelled by differential equations describing the change of cell concentrations over
time. Depending on the structure of the considered population and on spatial effects,
either ordinary or partial differential equations are obtained. A necessary assump-
tion for the application of differential equations is that a given event happens to
each individual of a given subpopulation with the same probability (subpopulations
behave as a “well mixed tank”). If cell populations can be divided into a finite num-
ber of discrete subpopulations, as it is done in the classical understanding of the
hematopoietic system, and if spatial interactions can be neglected a system of ordi-
nary differential equations is obtained [26, 27, 42]. In case of a continuous structure,
consisting of many infinitely small subpopulations, partial differential equations of
the transport type can be used [10]. If interaction of cells in space is important, partial
differential equations describing change of cell concentrations in time and space can
be formulated [15]. To incorporate stochastic effects, branching processes [18] or
individual-based models can be applied [22, 33, 34]. Individual-based models are
valid for small populations but become computationally intensive in case of large
numbers of individuals.

The current work is devoted to a more rigorous understanding of the changes of
hematopoietic cell behavior under regenerative pressure. To characterize the impact
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of regenerative pressure on system behavior we chose hematopoietic stem cell trans-
plantation as a scenario distant from steady-state conditions. Hematopoietic stem
cell transplantation is a clinical intervention allowing to treat otherwise untreatable
diseases, such as leukemias [13], hematologic [24], or metabolic disorders [47, 50].
Nevertheless, hematopoietic stem cell transplantation can be linked to life threaten-
ing complications. During the period from infusion of the transplant until recovery
of leukocyte counts, patients are prone to infections. Other delicate but rare compli-
cations are delayed engraftment [46] and graft failure [17, 21], where engraftment is
delayed or absent. Especially, in case of allogeneic transplantation where donor and
recipient of the transplant are different persons, complications may be severe. One
example is the so called graft-versus-host disease, where host’s tissues are attacked
by immune cells originating from the graft.

In the current work we use an ordinary differential equation model to describe the
formation of white blood cells (leukopoiesis) and their dynamics after stem cell trans-
plantation. Model choice is based on the classical understanding of the hematopoietic
system, with all lineages originating from the hematopoietic stem cells (HSC) that
give rise to different discrete populations of progenitor cells producing mature blood
cells [14, 16, 17]. The model we apply has been calibrated to granulopoiesis and is
able to describe neutrophil engraftment after stem cell transplantation quantitatively
[41]. In the model, cell behavior is characterized by the following parameters: (1)
proliferation rate, which describes how often a cell of a given type divides per unit
of time; (2) fraction of self-renewal, describing the probability that a daughter cell
belongs to the same sub-population as the mother cell; and (3) death rate, describing
which fraction of a cell population dies per unit of time.

We will investigate the following questions:

• Which of these cell parameters may decrease or increase under regenerative
pressure?

• What is the quantitative impact of the change of these cell parameters on the time
needed for regeneration of normal blood cell counts?

• Which cellular behavior might lead to impairment of blood regeneration and
delayed engraftment after transplantation?

• How do different changes of cell behavior influence engraftment kinetics on the
level of patient populations?

In the section “Model Description” we shortly describe the model and present the
model parameters we use for simulations. In the section “Impact of Cytokine-
Dependent Self-Renewal and Proliferation on Neutrophil Engraftment” we investi-
gate the impact of proliferation and self-renewal on reconstitution after bone marrow
transplantation. In the section “Reasons for Delayed Engraftment” we investigate
how different impairments of transplant cell function, for example, in case of allo-
geneic transplantation, might influence the time needed for engraftment. We then
conclude with a discussion of results and final remarks.
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Model Description

We use a refined version of the model proposed by Marciniak-Czochra et al. [25, 26,
42]. The refined and calibrated version of the model can be applied to quantitatively
describe neutrophil engraftment after stem cell transplantation [41]. In the current
work we restrict ourselves to a short description of the model.

Assumptions

Lineage Structure

Based on the classical knowledge of hematopoiesis [14, 16, 17] we assume that each
hematopoietic lineage can be subdivided into a finite sequence of subpopulations
traversed sequentially starting from the hematopoietic stem cell (HSC) and ending
at the mature cell population (e.g., granulocytes). We refer to these subpopulations
as “compartments” or “maturation stages.” Some of the compartments may belong
to more than one cell lineage. For simplicity the model is restricted to one cell
lineage. Since, infections constitute a major complication after hematopoietic stem
cell transplantation (HSCT), we are interested in regeneration of the white blood cell
population the most of which is constituted by neutrophils. Therefore, the model is
based on the architecture of the neutrophil lineage. We distinguish eight maturation
stages, denoted as ci , 1 ≤ i ≤ 8:

• Primitive hematopoietic stem cells (HSC, stage i =1),
• Long-term-culture initiating cells (LTC-IC, stage i =2),
• Colony-forming-unit-granulocyte-macrophage (CFU-GM, stage i =3),
• Colony-forming-unit-granulocyte (CFU-G, stage i =4),
• Myeloblasts (stage i =5),
• Promyelocytes (stage i =6),
• Myelocytes (stage i =7),
• Mature neutrophil granulocytes in circulation (stage i =8).

Cell Properties

Cell behavior of each maturation stage is described by proliferation rate, fraction of
self-renewal, and death-rate of cells belonging to the respective stage.

• Proliferation rate of stage i at time t is denoted as pi(t). It describes how often a
cell of the given type divides per unit of time. If Ti is the average time between
two divisions of cells of stage i, then the proliferation rate is ln (2)/Ti. In accor-
dance with literature [17], we assume that mature neutrophils are postmitotic, i.e.,
p8 ≡ 0.



17 Assessing Hematopoietic (Stem-) Cell Behavior During Regenerative Pressure 351

• Fraction of self-renewal of stage i at time t is denoted as ai(t). It describes the
probability that a daughter cell originating from division remains in the same
maturation stage as the mother cell. The fraction of self-renewal determines how
often a cell divides on average before it moves to a more mature state. It can be
proven mathematically [26, 42] that the fraction of self-renewal of HSC has to be
larger than 0.5 and that of all other cell types.

• Death rate of cells at stage i at time t is denoted as di(t). It describes which
fraction of a cell population dies or disappears per unit of time. We assume, in
accordance with biological data [4], that the rate of disappearance of neutrophils
from bloodstream, d8, is greater than zero.

Cytokine Effects

Based on literature we assume that increased cytokine concentrations enhance pro-
liferation of immature cells [35, 44]. We restrict this effect to i ≤ 4, due to findings
in different progenitor populations [6, 44]. It has been reported that proliferation
may increase fourfold upon cytokine stimulation [44]. Furthermore, half-life of neu-
trophils in blood stream may increase at most fourfold. We assume that the fraction
of self-renewal of all stages increases in augmented cytokine concentrations. This
choice is motivated by a qualitative study of mathematical models [26]. We will
return to this assumption in the next section.

Cytokine Dynamics

For simplicity we restrict ourselves to one cytokine, such as G-CSF. We assume that
the cytokine is produced at a constant rate α and degraded by receptor mediated en-
docytosis. Since the density of G-CSF receptors is maximal on mature cells [38], we
neglect the effect of immature stages on cytokine clearance. We furthermore assume
a constant in time cytokine degradation at rate γ by a cell-independent mechanism,
for example, by liver or kidney. These assumptions result in the following equation
for cytokine concentration S(t):

d

dt
S(t) = α − βc8(t)S(t) − γ S(t).

Based on studies of cytokine kinetics during infections or injuries [2], we assume
that the time scale of cytokine dynamics is much shorter than that of cell cycle. We
therefore apply a quasi-steady-state approximation ( d

dt
S(t) = 0, for all t). Rescaling

leads to the relative cytokine effect

s(t) = 1

1 + kc8(t)
∈ (0, 1],

where k depends on the rates of cell dependent and cell independent degradation
[26].
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Fig. 17.1 Model visualization: Self-renewal and differentiation of all progenitor populations is
regulated by cytokine feedback. Cytokine signalling also regulates clearance of mature cells and
proliferation rates of stem cells and early progenitors. Mature cells are postmitotic. Cytokine levels
depend on mature cell count

For simplicity we assume that pi(t) and ai(t) depend linearly on s(t). Since pi(t)
increases at most fourfold upon cytokine stimulation and d8(t) decreases at most to
1/4 of its steady state value, we assume, that d8(t) depends linearly on 1/s(t).

Model Formulation

In each compartment, except for the mature cell compartment, the flux to mitosis
at time t is given by pi(t)ci(t). Since we neglect cell cycle duration, outflux from
mitosis at time t is given by 2pi(t)ci(t), from which 2ai(t)pi(t)ci(t) stay in stage
i and 2(1 − ai(t))pi(t)ci(t) move to stage i + 1. Taking into account that the last
compartment is postmitotic and that HSC are the most primitive cells, we obtain the
following model system [26, 41, 42].

dc1(t)
dt

= (2a1,max s̃(t)−1)p1,maxs(t)c1(t)
dc2(t)

dt
= (2a2,max s̃(t)−1)p2,maxs(t)c2(t) + 2(1−a1,max s̃(t))p1,maxs(t)c1(t)

dc3(t)
dt

= (2a3,max s̃(t)−1)p3,maxs(t)c3(t) + 2(1−a2,max s̃(t))p2,maxs(t)c2(t)
dc4(t)

dt
= (2a4,max s̃(t)−1)p4,maxs(t)c4(t) + 2(1−a3,max s̃(t))p3,maxs(t)c3(t)

dc5(t)
dt

= (2a5,max s̃(t)−1)p5,maxc5(t) + 2(1−a4,max s̃(t))p4,maxs(t)c4(t)
dc6(t)

dt
= (2a6,max s̃(t)−1)p6,maxc6(t) + 2(1−a5,max s̃(t))p5,maxc5(t)

dc7(t)
dt

= (2a7,max s̃(t)−1)p7,maxc7(t) + 2(1−a6,max s̃(t))p6,maxc6(t)
dc8(t)

dt
= 2(1−a7,max s̃(t))p7,maxc7(t) − d̃8

s(t)c8(t)

s(t) = 1
(1+kc8(t))

s̃(t) = 1
(1+k̃c8(t))

The model is summarized in Fig. 17.1.
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Table 17.1 Steady-state
proliferation rates and
half-life times found in
literature

Population Generation time Reference

prim HSC 23–67 weeks, mean: 47 weeks [37]

Myeloblast 16–18 h [8, 11]

Promyelocyte 18–24 h [8, 11]

Myelocyte 52 h [ 8, 11 ]

Population Half-life-time Reference

Granulocytes 6.7 (4–10) h [4]

Table 17.2 Composition of
the transplant of 3.6 × 106

cells per kg of body weight
used for simulations

Cell type Number of transplanted cells per kg
of body weight

prim HSC ≈ 3 × 103 − 4 × 103

LTC-IC ≈ 36 × 103

CFU-GM ≈ 155 × 103

CFU-G ≈ 54 × 104

Myeloblast 0

Promyelocyte 0

Myelocyte 0

Mature neutrophil 0

Model Simulations

Numerical solutions of the system are obtained using an explicit Runge–Kutta-
Scheme provided by the Matlab solver ode23t (MathWorks, Natick, MA). Model
parameters are chosen in accordance with measurements and steady-state values from
literature as described by Stiehl et al. [41]. The parameters used are summarized in
Table 17.3. Neutrophil engraftment is defined as achievement of 5 × 108 neutrophils
per liter of blood. To relate cells per kg of body weight to cells per liter of blood we
assume a body weight of 70 kg and a blood volume of 5 l. Initial conditions are set
based on the composition of CD34+ peripheral blood cells after G-CSF mobilization.
The choice of the initial condition is discussed in a recent article [41] and presented
in Table 17.2. It is based on the data from literature summarized in Table 17.3. For
simulations of large patient populations we used random parameter sets uniformly
distributed within the ranges from reference [41] which are presented in Table 17.1.
To exclude pathological cases we only include parameter sets leading to neutrophil
engraftment within at most 3 months for a transplant dose of 106 CD34+ cells per kg
of body weight and leading to steady state neutrophil counts of at least 109 per liter
of blood. If not indicated differently, we simulate patient groups of 1000 patients.
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Table 17.3 Data on peripheral stem cells grafts

Cell Type Mobilization Frequency in CD34+-enriched subpopulation

CFU-GM G-CSF 43: ∅: 43.2/103 cells, SD: 21/103 cells

G-CSF + chemotherapy 43: ∅: 78.4/103 cells, SD: 37.8/103 cells

LTC-IC G-CSF 3: ≈ 10/103

CFU-G G-CSF 3: ≈ 150/103

CFU-GM G-CSF 3: ≈ 10/103

∅ mean, SD standard deviation

Table 17.4 Parameter ranges used for simulation of large patient groups after autologous transplan-
tation without posttransplant cytokine administration. To account for interindividual heterogeneity
ranges were taken larger than in literature

Parameter Value Parameter Corresponding
division frequency

Parameter Value

a1,max > 0.5 and < 1.0 p∗
1,max

1
15 weeks − 1

100 weeks d8 0.35 1
day − 1.0 1

day

a2,max > 0 and < a1,max p∗
2,max

1
10 days − 1

15 weeks k1 (3 to 9) × 10−9

a3,max > 0 and < a1,max p∗
3,max

1
10 days − 1

15 weeks k2 (6.4 to 19.2) × 10−10

a4,max > 0 and < a1,max p∗
4,max

1
4 days − 1

1 day

a5,max > 0 and < a1,max p5,max
1

60 h − 1
15 h

a6,max > 0 and < a1,max p6,max
1

60 h − 1
15 h

a7,max > 0 and < a1,max p7,max
1

60 h − 1
15 h

∗ Proliferation rates p1,max to p4,max are maximal proliferation rates. The steady state values are approximately
one fourth of the given maximal values

Impact of Cytokine-Dependent Self-Renewal and Proliferation
on Neutrophil Engraftment

To investigate the impact of cytokine-dependent self-renewal and proliferation we
proceed as follows. We simulate the calibrated model described in the previous
Section for 1000 virtual patients, each of them characterized by an individual, random
set of model parameters. This scenario will serve as a reference scenario and the
virtual patients as reference group. The reference group has the following properties:

• Proliferation rates of stages 1–4 increase at most fourfold if cytokine concentra-
tions increase.

• Clearance of stage 8 decrease at most fourfold if cytokine concentrations increase.
• Self-renewal of all stages increases if cytokine concentrations increase.

We compare engraftment kinetics of the reference group to the following hypothetical
scenarios:
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1. Proliferation rates are independent of cytokine concentration and constant in time
for all stages. In the reference scenario proliferation rates of stages 1–4 depend
on cytokine concentration. We fix these proliferation rates to the steady-state
values of the reference scenario, pi,max/(2a1,max), i = 1, . . . , 4 and set k = 0 to
achieve independence of cytokine levels. This choice guarantees that steady-state
proliferation and self-renewal are the same as in the steady state of the reference
scenario. For the simulations we use the parameter set of the reference group
subjected to the transformation pi,max �→ pi,max/(2a1,max), i = 1, . . . , 4.

2. Self-renewal of committed progenitors is independent of cytokine concentration
and constant in time. We fix the fractions of self-renewal of stages 3–7 to their
corresponding steady state values in the reference scenario. Self-renewal of stages
1 and 2, corresponding to long- and short-term repopulating stem cells, is assumed
to be cytokine dependent. Regulated self-renewal of the stem cell population is
important to allow expansion of the stem cell compartment after transplantation
and maintenance of its size in steady state in absence of apoptosis. This assumption
is supported by evidence for repopulation of the hematopoietic system by one
single transplanted cell [29, 30]. For all non-stem cell populations we set the
fraction of self-renewal to ai,max/(2a1,max) and remove multiplication by s̃(t).
This guarantees that in the steady state self-renewal is identical to the reference
scenario. For the simulations we use the parameter set of the reference group
subjected to the transformation ai,max �→ ai,max/(2a1,max), for all non-stem cell
populations.

Simulation results are depicted in Fig. 17.2. The impact of cytokine-dependent pro-
liferation is relatively small. Average engraftment is extended to 25 days, compared
to the 13 days in the reference scenario. In comparison the impact of cytokine-
independent self-renewal of non-stem cells on reconstitution time is dramatic.
Average engraftment time increases from 13 days in the reference scenario to 2798
days, which is unrealistically long.

Regulation of Self-Renewal

Simulations indicate that regulation of self-renewal behavior has a significant impact
on engraftment kinetics. Enhancement of self-renewal leads to reduction of the period
of aplasia in comparison to fixed self-renewal probability. Another strategy to supply
bloodstream with mature cells might be enhanced differentiation of immature cells
resulting in fast transition from the immature to the mature state. On the other hand
this scenario could lead to a depletion of immature cells, especially stem cells, if
the differentiating cells cannot reestablish high enough mature blood cell counts.
To obtain insight if enhancement of differentiation during shortage of mature cells
has beneficial effects due to immediate transition from the immature to the mature
state or detrimental effects due to exhaustion of the stem cell pool, we propose the
following modification of the model.
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Fig. 17.2 Impact of cytokine dependent proliferation and self-renewal on engraftment kinetics. a
Fraction of engrafted patients versus time for a population of 1000 virtual patients (reference group)
and transplantation of 9 × 106 CD34+ cells per kg of body weight (circles). Proliferation and self-
renewal depend on the cytokine concentration as described in the section “Model Description”.
Model output is compared to patient data (lines), taken from Lowenthal et al. [23]. b Fraction of
engrafted patients versus time for the same population of 1000 virtual patients and 9 × 106 CD34+
cells per kg of body weight. Proliferation rates are independent of cytokine concentrations. In steady
state proliferation rates are the same as in a. c Engraftment for the same virtual population, with
cytokine dependent proliferation rates but fixed self-renewal of maturation stages 3–7. In steady
state proliferation rate and self-renewal are identical in each of the presented scenarios. d Example
for neutrophil recovery in one virtual patient. Solid line corresponds to a, dashed-dotted line to b
and dotted line to c
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dc6(t)

dt
= (2a6,max{1−ŝ(t)}−1)p6,maxc6(t) + 2(1−a5,max{1−ŝ(t)})p5,maxc5(t)

dc7(t)

dt
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(2a1,max − 1)2

This system has the same steady-state population sizes, proliferation, and self-
renewal as the system from the previous section. Figure 17.3 shows time evolution of
neutrophils for one patient. Neutrophil counts rise immediately after transplantation
but after a relatively short pulse cell counts decline toward zero. A similar behavior
is observed for all patients from the reference scenario. To investigate if this result
depended on parameter choice of the reference group, we repeated simulations for
another group of 1000 patients with the following broader parameter ranges for di-
vision rates: Division rate of stem cells between once per 15 and and once per 100
weeks, division rate of stages 2–4 between once per 15 weeks and once per day,
division rates of stages 5–7 between once per 3 days and once per 15 h. We only
considered parameters leading to steady-state cell counts of more than 109 per liter
and a transplant dose of 9 × 106 cells per kg of body weight. Again none of the
patients showed reconstitution. For the reference model patients engrafted after a
median time of 13.8 days. This demonstrates that reduction of self-renewal during
aplasia is not compatible with the calibrated model from the previous section and
with clinical data. We therefore assume enhanced self-renewal during aplasia.

Reasons for Delayed Engraftment

In the previous section we investigated the impact of regulation of cell function
by cytokines on engraftment kinetics. In this section we focus on possible reasons
for delays during engraftment. Since patients are prone to infections during apla-
sia, delayed engraftment may result in severe complications. Delayed engraftment
is a well-known complication after stem cell transplantations [46]. Various data
suggest that average recovery after allogeneic transplantation takes longer than au-
tologous transplantation of comparable cell doses. The latter can be explained due
to immunologic and nonimmunologic processes affecting transplanted cells [39].
Damages of microenvironment due to chemotherapy might be another reason for
delayed engraftment. Although there exist hypotheses which factors might lead to
delays in reconstitution it is unknown how cell behavior might change in an impaired
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Fig. 17.3 Example for failing engraftment if self-renewal decreases in case of aplasia. If self-
renewal decreases in case of aplasia, cells show a rapid transition form the immature stages to the
mature stages. This results in a pulse of mature cells shortly after transplantation. If this pulse is
not sufficient to compensate for the lack of mature cells persisting stimulation of cell differentiation
leads to exhaustion of the immature cell pool and decline of mature cell counts

environment. In the following, we investigate the influence of the following processes
on delays of engraftment:

• Cell death before homing
• Cell death in the posttransplantation period
• Reduced proliferation of transplanted cells
• Reduced self-renewal of transplanted cells

One approach to overcome complications of immunologic mechanisms is enlarge-
ment of the transplant [19, 31]. For this reason we investigate the impact of the
mentioned mechanisms on engraftment kinetics for different transplant doses.

Cell Death Before Homing

Cell death before homing is simulated as a reduction of transplant dose. This is
justified by the fact that the duration for the homing process is short in comparison
to the time needed for engraftment [9, 49]. We assume that all stages are affected
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Fig. 17.4 Impact of pre-homing cell death on engraftment kinetics: Solid line shows outcome for the
reference group, that is, without cell death before homing (Scenario A), dashed-dotted line shows
outcome if 10 % of transplanted cells die before homing (Scenario B), dashed line if 30 % (Scenario
C) and dotted if 50 % of transplanted cells die before homing (Scenario D). Upper row: transplant
dose 9×106 CD 34+ cells per kg of body weight; a Kaplan–Meier plot for neutrophil engraftment;
b box–whisker plot, whiskers denote 97.5th and 2.5th percentile respectively; c example for time
dynamics of neutrophil counts for one fixed set of cell properties and the different fractions of
transplant dying before homing. Lower row: The same for a transplant dose of 3 × 106 CD 34+
cells per kg of body weight; d Kaplan–Meier plot; e box–whisker plot

equally. Figure 17.4 depicts the influence of pre-homing cell death on patient recovery
for the 1000 patients of the reference scenario. Simulations show moderate effect of
pre-homing cell death decreasing with increasing transplant dose. For a transplant of
3×106 cells per kg of body weight, engraftment time increases by 3 % if pre-homing
cell death increases from 0 to 10 %. This is in accordance with the observation that for
most patients reconstitution time weakly depends on transplant dose above certain
thresholds of transplanted cells [45].

Cell Death in the Posttransplant Period

To study the effect of enhanced cell death in the posttransplantation period we in-
clude death rates constant in time for all cell stages but the HSCs. Since we are
only interested in cases where the stem cell population does not die out, we set the
death rate of the stem cell population to a constant fraction of the maximal influx
to the stem cell compartment which is given by (2a1,max − 1)p1. We assume that
the death rate is the same for all non-stem cells in the bone marrow. We assume
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Fig. 17.5 Impact of enhanced cell death during early posttransplantation period: Solid line shows
outcome for the reference group, i.e. without death of immature cells in the posttransplantation
period (Scenario A), dashed-dotted line shows outcome if d2 = · · · = d7 = 0.05, d1 = 0.05 ·
(2a1,max − 1)p1 (Scenario B), dashed line if d2 = · · · = d7 = 0.1, d1 = 0.1 · (2a1,max − 1)p1

(Scenario C) and dotted if d2 = · · · = d7 = 0.15, d1 = 0.15 · (2a1,max − 1)p1 (Scenario D).
Upper row: transplant dose 9 × 106 CD 34+ cells per kg of body weight; a Kaplan-Meier plot for
neutrophil engraftment; b box–whisker plot, whiskers denote 97.5th and 2.5th percentile resp.; c
example for time dynamics of neutrophil counts for one fixed set of cell properties and the different
death rates in the posttransplantation period. Lower row: The same for a transplant dose of 3 × 106

CD 34+ cells per kg of body weight; d Kaplan–Meier plot; e box–whisker plot

clearance of neutrophils in blood stream (half-life less than 1 day) is not affected.
Long time cell death changes steady-state cell counts. Enhanced cell death increases
interindividual variation. If we increase cell death for non-stem cells from 0 to 15 %
of the death rate of mature neutrophils, median recovery time increases by about
300 % and interpercentile ranges increase even stronger. The latter indicates strong
interindividual variations. Simulation results are depicted in Fig. 17.5. Result indi-
cate that cell death in the posttransplant period has a strong impact on reconstitution
time, which is hardly influenced by transplanted cell doses.

Reduced Proliferation

The transplanted cells are influenced by the host’s microenvironment. One possible
influence might be impairment of proliferation. Since all mitotic cells are situated in
the bone marrow, we assume that the relative loss of proliferative activity is the same
for all stages. To investigate its influence on engraftment, we simulate engraftment
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Fig. 17.6 Impact of impaired proliferation on engraftment time: Solid line shows outcome for
the reference group (Scenario A), dashed-dotted line shows outcome if proliferation rates of all
stages are reduced by 10 % w.r.t. the reference scenario (Scenario B), dashed line shows outcome if
proliferation rates of all stages are reduced by 30 % w.r.t. the reference scenario (Scenario C) and
dotted line shows outcome if proliferation rates of all stages are reduced by 50 % w.r.t. the reference
scenario (Scenario D). Upper row: transplant dose 9 × 106 CD 34+ cells per kg of body weight;
a Kaplan–Meier plot for neutrophil engraftment; b box–whisker plot, whiskers denote 97.5th and
2.5th percentile resp.; c example for time dynamics of neutrophile counts for one fixed set of cell
properties and the different proliferation rates in the posttransplantation period. Lower row: The
same for a transplant dose of 3 × 106 CD 34+ cells per kg of body weight; d Kaplan–Meier plot; e
box–whisker plot

of the reference population and compare it to populations with reduced proliferation
rates. We proceed as follows: Let denote by p

j

i,max the maximal proliferation rate of
cells of stage i in patient j of the reference population (i = 1, . . . , 7). We simulate
engraftment for populations where the maximal proliferation rate of cells of stage i

in patient j is αp
j

i,max , with α < 1. All other cell parameters are identical to those of
the respective patient of the reference population. The results for α = 0.9, α = 0.7,
and α = 0.5 are depicted in Fig. 17.6. Reduction of proliferation rates by 10 %
leads to increase of engraftment time by 15 %. In summary, figures show moderate
increase of engraftment time in case of impaired proliferation. This effect can easily
be compensated by enlarged doses of transplanted cells.
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Reduced Self-Renewal

Self-renewal of the transplanted cells might also be influenced by the host’s microen-
vironment. We study its impact on engraftment kinetics by reducing self-renewal of
the reference population. As above we are only interested in cases where stem cells
are able to survive, therefore we impose that a1,max > 0.5. We proceed as follows: Let
a

j

i,max , (j = 2, . . . , 7) denote the maximal possible fraction of self-renewal of cells

in non-stem stage i of patient j of the reference group. Let a
j

1,max denote maximal
possible self-renewal of stem cells in patient j of the reference group. We compare
engraftment of the reference group to engraftment of populations, where maximal
possible fraction of self-renewal of cells in non-stem stage i of patient j is given by
αa

j

i,max , (j = 2, . . . , 7) and maximal possible fraction of self-renewal of stem cells

in patient j by 0.5 + α(aj

1,max − 0.5), and α < 1. The latter choice is motivated

by the fact that a
j

1,max has to be larger than 0.5 to obtain engraftment. All other cell
parameters are chosen identical to the corresponding patients in the reference group.
In Fig. 17.7 we show engraftment of populations with α = 0.98, α = 0.95, and
α = 0.9. A reduction of self-renewal by 2 % leads to an increase of mean engraft-
ment time by 350 % for a transplant of 3 × 106 cells per kg of body weight. The
results in Fig. 17.7 imply that self-renewal has a strong impact on engraftment, which
cannot be compensated sufficiently by transplant enlargement.

Discussion

Dynamics of blood regeneration after stem cell transplantation depends on cellular
behavior during the posttransplantation period. In the current work we use mathemat-
ical modelling and computer simulations to quantify the impact of cell proliferation,
self-renewal, and cell death on engraftment time. Since hematopoiesis is a strongly
regulated process [14, 16, 17] different cell properties might change in the posttrans-
plantation period due to cytokine feedback. Furthermore, preceding chemotherapies
[12], diseases [1, 36], or immunologic mechanisms [40] might impair functionality
of the transplanted cells and therefore cause delayed engraftment. To optimize clini-
cal outcome after hematopoietic stem cell transplantation it is helpful to know which
cell properties lead to fast engraftment and which functional impairments may be
responsible for observed delays.

In the current work we use a calibrated model of granulopoiesis to investigate
the impact of different cell properties on post transplant neutrophil engraftment. The
proposed model allows to quantify the effect of distinct changes of cell behavior
on post transplant blood cell dynamics. We quantify the effect of cell behavior on
regeneration dynamics simulating engraftment of a large group of individual patients
with stochastic interindividual differences in cell parameters. We use this group
as a reference group. We then vary distinct parameters for each individual in the
reference group. Comparing outcome of the group with modified cell parameters to
outcome of the reference group, we are able to quantify the impact of cell behavior
on reconstitution dynamics. Such studies are not possible in experimental settings.
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Fig. 17.7 Impact of reduced self-renewal on engraftment: Solid line shows outcome for the reference
group (Scenario A), dashed-dotted line shows outcome if self-renewal of all non-stem stages is
reduced by 2 % w.r.t reference population and the distance from stem cell self-renewal to 0.5 is
reduced by 2 % w.r.t. to the reference population (Scenario B). Dashed line shows outcome if
the respective quantities are reduced by 5 % (Scenario C) and dotted line if they are reduced by
10 % (Scenario D). Upper row: transplant dose 9 × 106 CD 34+ cells per kg of body weight; a
Kaplan–Meier plot for neutrophil engraftment; b box–whisker-plot, whiskers denote 97.5th and
2.5th percentile resp.; c example for time dynamics of neutrophil counts for one fixed set of cell
properties and the different self-renewal fractions in the posttransplantation period. Lower row: The
same for a transplant dose of 3 × 106 CD 34+ cells per kg of body weight; d Kaplan–Meier plot; e
box–whisker plot

We investigated whether self-renewal and proliferation of stem and progenitor
cells may change in the posttransplant period. It has been described in literature
that progenitor cells can proliferate four times faster under cytokine stimulation.
Our simulations indicate that this behavior leads to a reduction of mean engraftment
time by a factor of 2. In comparison to this the impact of enhanced self-renewal
during the posttransplant period reduces average engraftment time by more than a
factor of 100, a similar result has been described in [26]. We also demonstrated
that enhanced differentiation during the posttransplant period is not compatible with
sustained engraftment due to exhaustion of the stem cell compartment.

To better understand possible reasons for delayed engraftment we investigated the
impact of the following scenarios on engraftment time:

• Cell death before homing
• Cell death in the posttransplantation period
• Reduced proliferation of transplanted cells
• Reduced self-renewal of transplanted cells
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Simulation results indicate that cell death before homing and reduction of prolifera-
tion rate have a minor impact on blood cell recovery while reduced self-renewal and
enhanced cell death in the posttransplant period lead to major delays in engraftment.
Interindividual heterogeneity between patients increases in each of the considered
scenarios. This might explain higher rates of graft failure or patient death in case
of impaired cell function. The observed increased interindividual variation is in line
with the clinically observed heterogeneity.

Our model focuses on phenomenological cell properties such as proliferation and
death. Immunologic mechanisms are not directly included. Instead it is assumed
that they influence the considered functional cell properties. The same is assumed
for interaction of hematopoietic cells and the surrounding microenvironment. Our
model does not directly include exogenous complications such as infections. Since,
in reality patients are not able to survive arbitrarily long with low leukocyte counts we
may interpret very long engraftment times (e.g., > 100 days) in model simulations
as graft failures.

During recent years the concept of megadose transplantation has been elaborated
and it has been shown that megadose transplants are able to circumvent problems
during engraftment in different settings [19, 31]. For this reason we investigated
how far large cell doses allow to compensate for changes in stem- and progeni-
tor cell function. Whenever such a compensation is possible megadose transplants
might be an appropriate means to reduce complications. Our simulations indicate
that cell death before homing and reduced proliferation rates can be compensated
by enlarged transplants while ongoing cell death and reduced self-renewal cannot
be efficiently compensated. This observation might lead to the speculation that in
scenarios where megadose transplants are beneficial either pre-homing cell death or
reduced proliferation can play an important role while in cases where mega-dose
transplantations fail to improve patient outcome ongoing cell death, for example,
due to immune reactions or reduced self-renewal may dominate the posttransplant
period. The fact that different impairments of cell function have different impacts on
reconstitution dynamics in computer simulations might suggest that clinical outcome
depends on pretreatment and diagnosed disease. This may explain the benefit from
reduced intensity conditioning regimens [7]. Optimal treatment requires eradication
of malignant cells with minimal damage to the micro-environment. Treatment regi-
mens in clinical practice are a compromise between these two requirements. A better
understanding of the impact of impaired cell function might therefore be helpful to
optimize treatment regimens.

In summary, our results indicate that enhanced self-renewal in the posttransplant
period is crucial for efficient engraftment. Delayed engraftment can be caused by var-
ious mechanisms. The effect of impaired self-renewal and ongoing cell death is most
detrimental for clinical outcome and cannot be improved by megadose transplants.
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Chapter 18
Engineered Cell-Based Therapies: A Vanguard
of Design-Driven Medicine

Rachel M. Dudek, Yishan Chuang and Joshua N. Leonard

Abstract Engineered cell-based therapies are uniquely capable of performing so-
phisticated therapeutic functions in vivo, and this strategy is yielding promising
clinical benefits for treating cancer. In this review, we discuss key opportunities and
challenges for engineering customized cellular functions using cell-based therapy
for cancer as a representative case study. We examine the historical development
of chimeric antigen receptor (CAR) therapies as an illustration of the engineering
design cycle. We also consider the potential roles that the complementary disciplines
of systems biology and synthetic biology may play in realizing safe and effective
treatments for a broad range of patients and diseases. In particular, we discuss how
systems biology may facilitate both fundamental research and clinical translation,
and we describe how the emerging field of synthetic biology is providing novel
modalities for building customized cellular functions to overcome existing clinical
barriers. Together, these approaches provide a powerful set of conceptual and exper-
imental tools for transforming information into understanding, and for translating
understanding into novel therapeutics to establish a new framework for design-driven
medicine.
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Abbreviations

APC Antigen presenting cell(s)
CAR Chimeric antigen receptor(s)
CLL Chronic lymphocytic leukemia
CTL Cytotoxic T lymphocyte (CTL)
CTLA4 Cytotoxic T lymphocyte antigen 4
DPLSR Discriminant partial least squares regression
EBV Epstein-Barr virus
EGFR Epidermal growth factor receptor
GVHD Graft versus host disease
HLA Human leukocyte antigen
IDO Indoleamine 2,3-dioxygenase
IL Interleukin
iPSC Induced pluripotent stem cell(s)
MDSC Myeloid derived suppressor cell(s)
MHC Major histocompatibility complex
NK Natural killer
ODE Ordinary differential equation(s)
PCA Principal component analysis
PD1 Programmed cell death protein 1
PDE Partial differential equation(s)
scFv Single chain variable fragment
STAT3 Signal transducer and activator of transcription 3
TAA Tumor associated antigen(s)
Th1 Helper T cell, type 1
Th2 Helper T cell, type 2
TIL Tumor infiltrating lymphocyte(s)
TCR T cell receptor(s)
TNP 2,4,6-trinotrophenol
Treg Regulatory T cell
VH Variable heavy chain
VL Variable light chain

Introduction

Cell-based therapies are uniquely able to sense and respond to their environment, syn-
thesize multiple bioactive molecules, and confer multifactorial effector functions in
vivo. In this way, cells can be considered “devices” that carry out sophisticated func-
tions that cannot be achieved with small molecule drugs or biomolecular therapeutics.
However, the development of novel cell-based therapies is inherently complex, due
to challenges in understanding and controlling both the cell-based therapeutic itself
and the manner in which it interacts with host biology. Consequently, the process
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of developing effective cell-based therapies may be summarized by two interrelated
challenges:

1. Identify a therapeutic strategy: Which desired effector functions are predicted to
confer the desired therapeutic effects in vivo?

2. Implement a therapeutic strategy: How should a cell-based therapy be manipu-
lated or engineered to manifest the desired therapeutic effector functions?

Here, we explore the challenge of developing effective cell-based therapies using
immunotherapy for cancer as an illustrative case study. We consider how transfor-
mative advances in our abilities to acquire extensive biological data and to construct
novel biomolecular “parts” may enable and accelerate the development of cell-based
therapies. In particular, we discuss the complementary approaches of systems bi-
ology and synthetic biology, which combine to create a powerful design cycle for
engineering safe and effective cell-based therapies.

Origins of Cell-Based Immunotherapy for Cancer

Targeted pharmacological agents can extend the lives of cancer patients by months
or even years. Particularly effective examples include monoclonal antibodies (e.g.,
trastuzumab for breast cancer and ipilimumab for metastatic melanoma) [1, 2] and
selective kinase inhibitors (e.g., imatinib for chronic myelogenous leukemia) [3, 4].
However, these targeted approaches sometimes fail to eradicate rare resistant cancer
cells (perhaps including cancer “stem cells”) [5, 6], and over time, other tumor
cells may evolve resistance by mutating or downregulating the protein targeted by
the therapeutic [7, 8]. Either mechanism may lead to tumor escape and relapse,
typically rendering the cancer refractory to the previously effective therapeutic. Thus,
additional approaches are required to meet the needs of patients for whom molecular
therapeutics are not yet available or are no longer beneficial.

A promising alternative strategy is to harness a patient’s own immune system to
eradicate or control tumor growth. Such an immunotherapy approach generally takes
one of two forms: (1) Induction of an antitumor immune response through therapeutic
cancer vaccines (reviewed in [9, 10]) or (2) adoptive transfer of tumor-reactive T
cells that directly mediate tumor killing and control. Immunotherapy may provide
an additional option for patients whose disease is refractory to pharmacological
agents, or it may complement other therapeutic approaches [11] and protect against
relapse by inducing immunological memory of tumor-associated antigens (TAA). In
this review, we focus on the development of adoptive T cell-based strategies as a
representative case study of approaches for engineering cell-based therapies.

Many immunotherapy strategies are originally motivated by considering pre-
sumed natural mechanisms for controlling tumor growth. The immunosurveillance
theory, which was first formulated in the mid-twentieth century, posits that during
homeostasis, the adaptive arm of the immune system controls nascent tumors by rec-
ognizing mutant protein antigens expressed by tumor cells and targets these cells for
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killing [12, 13]. In updated versions of this model, cytotoxic T lymphocytes (CTL)
expressing antigen receptors that recognize specific TAA presented on tumor cells
in the context of major histocompatibility complexes (i.e., MHC-I) are stimulated to
proliferate and drive targeted cell killing via the CTL arsenal of mechanisms [14].
Such CTL may also differentiate into a memory phenotype that also prevents tumor
recurrence. This conceptual model has been refined and expanded over half a cen-
tury to now propose that disease results from a gradual escape from immunological
control during cancer progression, via processes collectively termed immunoediting
[15]. Since natural killer (NK) T cells kill tumors that simply downregulate MHC
to evade CTL recognition via the “missing self” mechanism [16], immune evasion
generally involves both reduced tumor immunogenicity and active suppression of
CTL function in the tumor microenvironment. This local immune suppression may
involve a number of suppressors of CTL function, including programmed cell death
protein 1 (PD1), cytotoxic T lymphocyte antigen 4 (CTLA4), and indoleamine 2,3
dioxygenase (IDO), which are expressed by both tumor cells and immune cells in-
cluding regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) in
the tumor microenvironment [17–19]. This overall conceptual model is supported
by the common observation of anergic or otherwise dysfunctional tumor-specific T
cells in the vicinity of established tumors.

Based on this understanding of tumor–immune interactions, early immunotherapy
approaches were motivated by the hypothesis that naturally occurring tumor-specific
CTL may be harnessed therapeutically. In this approach, autologous tumor infiltrat-
ing lymphocytes (TIL) are isolated from a surgically accessible tumor, expanded,
and activated ex vivo, and re-infused into the patient [20]. In clinical trials, autolo-
gous TIL therapy has shown promise for treating melanoma, but efficacy has largely
been limited to this type of cancer. The reasons for this restriction are not yet clear,
but proposed explanations include high rates of mutation in melanoma and unique
modes of immune dysfunction in different cancers [14]. More generally, experience
with autologous TIL highlighted the importance of generating sufficient quantities of
T cells having both tumor antigen specificity and the capacities to persist, proliferate,
and induce cytotoxic functions at the tumor site upon re-infusion.

The advent of technologies for genetically modifying human cells opened the
door to potentially programming desired functionalities into a cell-based therapy. An
important first step was the demonstration by Rosenberg and colleagues that T cells
engineered with a retroviral vector expressing a reporter gene could be administered
to human cancer patients without inducing significant toxicity [21]. One approach for
applying genetic engineering to circumvent the challenge of isolating and expanding
TIL is to identify aT cell receptor (TCR) that is specific for a givenTAA and then clone
and express this TCR as a transgene in autologous T cells [22]. Such a model TCR
is generally isolated from TIL of a patient with a good response to TIL therapy. The
hypothesis motivating this approach is that when the engineered T cell encounters a
tumor cell expressing the TAA, the transgenic TCR will induce downstream signaling
through native pathways, resulting in proliferation and induction of cytotoxicity.
Since this approach relies upon native TCR, it is limited in that the transgenic TCR
only recognizes TAA presented in the context of a compatible MHC-I. Thus, a
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given cloned TCR is only effective in HLA-matched patients (i.e., those expressing
compatible MHC-I), and overall efficacy is diminished by low MHC-I expression
on tumor cells. In addition, since the transgenic TCR may be expressed alongside a
native TCR within a single-engineered cell, mispairing between TCR chains creates
receptors with hybrid specificity, potentially limiting recognition of the tumor or
raising the risk of off-target activation and induction of harmful autoimmunity [23].
Mispairing between transgenic TAA-specific TCR chains and native TCR chains has
been implicated in the development of lethal graft-versus-host disease (GVHD) in
mice [24]. However, prior to these animal studies, similar transgenic TCR had been
expressed in human subjects, with none developing GVHD and some experiencing
tumor regression [25, 26]. Thus, the actual risk of toxicity due to hybrid TCR remains
unclear, but caution is nonetheless warranted.

Although transgenic TCR-based approaches demonstrated the feasibility of ge-
netically modifying cells to create customized therapeutics, the challenges and
limitations associated with this particular strategy also motivated the development
of a new technology platform that is amenable to modular incorporation of spe-
cific functionalities. For these reasons, we posit that this next wave of therapies that
utilize chimeric antigen receptors (CAR) represents a fundamental shift in strategy
from recapitulating natural functionalities to designing novel therapeutics that may
be described as cell-based “devices.” Thus, the historical development of CAR ther-
apies (Fig. 18.1) illustrates the engineering design cycle and may guide the future
development of other cell-based therapies.

Development of CAR Therapy: The Engineering
Design Cycle in Action

The central innovation of the CAR is genetically fusing the ligand-binding variable
domain of an antibody recognizing a TAA to the intracellular domains of a TCR capa-
ble of inducing T cell activation [27]. This ligand-binding domain typically consists
of a single chain variable fragment (scFv), in which variable heavy chain (VH) and
variable light chain (VL) domains are joined by a linker to form a single chain. Since
antibody recognition of the TAA does not require presentation of the TAA in the
context of MHC, an engineered T cell expressing the appropriate CAR may be ac-
tivated by contacting the TAA in an MHC-independent fashion, thus overcoming a
key limitation of the transgenic TCR approach.

The first CAR was successfully expressed in T cells in 1989 by Eshhar and col-
leagues [28] (Fig. 18.1). In this design, the intracellular architecture of the native
TCR α (alpha) and β (beta) chains were maintained, but the ligand-binding domain
was derived from an antibody specific for the model antigen, 2,4,6-trinitrophenol
(TNP). When presented with target TNP-A.20 cells (a TNP-modified B cell lym-
phoma from BALB/c mice), T cells transfected with the chimeric TCR secreted IL-2
and killed these target cells in an antigen-specific manner. However, since this de-
sign is subject to mispairing with native TCR chains just as in the transgenic TCR
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Fig. 18.1 Development of CAR therapy through the engineering design cycle. This figure provides
a historical perspective on the development of cell-based therapy for cancer as an example of
engineering design in practice. a The native TCR comprises alpha and beta chains that form a
signaling complex with delta, gamma, epsilon, and zeta chains to transmit a signal after the TCR
binds its target antigen presented on the MHC of another cell. Specificity for a novel antigen may be
conferred by creating a chimeric TCR, in which the TCR variable region is replaced by an antibody-
derived single chain variable fragment (scFv), comprising variable heavy (VH ) and variable light
(VL) chains joined by a linker. b First generation (1G) CAR comprised a scFv domain fused to a
transmembrane domain and a signal transduction domain (typically the TCR zeta chain). Second
and third generation (2G, 3G) CAR incorporated an additional one or two tandem costimulatory
domains (CS or CS1/CS2, respectively). c Historical timeline of CAR development illustrating
iterative refinement through identification of design challenges and then engineering innovations
to address these challenges. The milestones selected are representative of this process but are not
exhaustive. CAR chimeric antigen receptor, TCR T cell receptor, VH variable heavy domain, VL

variable light domain, 1G first generation, 2G second generation, 3G third generation, MHC major
histocompatibility locus
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approach, the same group revised their design in 1993 by inventing a construct then
termed a T-body, comprising an immunoglobulin ligand-binding domain fused to the
CD3γ (gamma) or CD3ζ (zeta) T cell activation domain [29]. This T-body scheme
is now considered the first generation (1G) CAR. Efforts to translate this 1G CAR
to an in vivo model identified several key challenges, including the achievement of
adequate T cell proliferation and survival ex vivo and activity in vivo. A combina-
tion of improved culture conditions, incorporating IL-15 to induce expression of
antiapoptotic molecules, and costimulation provided by CD80 expressed on CD19+
Raji target tumor cells in vivo was credited with enabling the success of the first in
vivo tumor regression in mice using 1G CAR T cells [30]. However, since costim-
ulatory molecules are not expressed by many tumors, a key result of this study was
identifying the need for costimulation in vivo as an important design challenge for
CAR engineering.

Endogenous T cells receive costimulatory signals through either (a) engagement
of the T cell’s CD28 receptor by B7 ligands (i.e., CD80/B7-1 or CD86/B7-2) on a
professional antigen-presenting cell (APC; i.e., costimulation in cis) or (b) by binding
interleukin 2 (IL-2), which is typically secreted by an activated helper CD4+ T cell
(i.e., Th1 or Th2 cells) responding to the binding of antigen to its own TCR (i.e., cos-
timulation in trans). However, since CAR recognize TAA in an MHC-independent
context, cis-costimulation through interaction with APC presenting TAA does not
occur, and trans-costimulation is required. Although IL-2 can easily be provided
during ex vivo culture, subsequent lack of IL-2 costimulation in vivo may lead to
poor proliferation and persistence. Indeed, early pilot studies with 1G CAR T cells
demonstrated persistence of only a few days [31]. Although IL-2 can be administered
systemically and has been shown to extend CAR T cell persistence [32], sustained
IL-2 infusion is technically challenging, costly, and can cause severe toxicities asso-
ciated with sepsis in some patients [33]. Each of these challenges motivated another
iterative refinement of CAR design to directly incorporate provision of costimulation.

CAR designs incorporating costimulation may be divided into two general strate-
gies. In the first strategy, T cells expressing a native TCR specific for a persistent
antigen (such as an antigen associated with a chronic viral infection) are engineered
to also express the CAR. Thus, the resulting “bispecific” CAR T cell receives cos-
timulation when its endogenous TCR binds the persistent viral antigen presented on
APC in the vicinity of the tumor, where it is activated when its CAR binds TAA on
the tumor [34]. The first example of tumor regression in a CAR clinical trial was
achieved using a bispecific 1G CAR T cell expressing a native TCR specific for the
Epstein-Barr virus (EBV) and a CAR specific for the GD2 antigen expressed by neu-
roblastoma cells [35]. Patients enrolled in this trial all had persistent EBV infection,
as evidenced by the presence of EBV-specific IgG in their blood. A follow-up to
this study 4 years later indicated that the bispecific CAR T cells persisted in some
patients, and that disease remission correlated strongly with persistence of the en-
gineered T cells [36]. In the second strategy, the ability to initiate costimulatory
signaling is incorporated into the CAR itself by appending additional intracellular
domains to the CAR, such as domains from CD28, CD134, and/or CD137 [37, 38].
CAR incorporating two intracellular domains are termed second generation (2G) and
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those incorporating three intracellular domains are termed third generation (3G). In
both Jurkat immortalized T cells [39] and primary T cells [40], 2G CAR incorporat-
ing dual CD3ζ (zeta) and CD28 signaling domains in tandem led to improved IL-2
secretion and cytotoxicity in vitro.

Continual development of CAR platforms over the last decade produced abundant
evidence that this approach yielded superior cytokine secretion and proliferation [41,
42], and even resistance to suppression by Treg [43]. By 2010, a complete lymphoma
remission was reported in a human patient treated with 2G CAR therapy although
by 7 months post-therapy the patient relapsed following the failure of the 2G CAR T
cells to persist and establish memory [44]. Strategies to increase persistence included
both adjunctive therapies, such as IL-2 administration [45], and redesign of the CAR
to incorporate the endodomain of CD137 (also termed 4-1BB) in place of or in
addition to the endodomain of CD28. By 2010, two independent preclinical studies
demonstrated that T cells expressing either a CD137-CD3ζ (zeta) 2G CAR or a CD28-
CD137-CD3ζ (zeta) 3G CAR directed against the CD19 antigen achieved antigen-
independent T cell expansion and conferred a survival benefit in mouse xenograft
models [38, 46]. Taking this CD137-CD3ζ (zeta) 2G CAR into a phase I clinical trial,
June and colleagues reported in 2011 that out of three chronic lymphocytic leukemia
(CLL) patients treated, one exhibited a partial response and two exhibited complete
responses and the establishment of memory CAR T cells [47, 48]. Following this
potential breakthrough, a number of clinical trials have subsequently commenced
to investigate other promising CAR designs including 3G CAR [49], to extend this
promising therapy to larger and younger patient cohorts [50, 51], and to pave the
way for phase II clinical trials.

Realizing the promise of CAR therapy for diverse patient groups now requires
systematic investigations into (1) identifying which cancers are amenable to im-
munotherapy and corresponding TAA [52, 53], (2) identifying which T cell subsets
to engineer with CAR and what transduction methods and culture conditions to em-
ploy [54], and (3) identifying effective dosing regimens and adjunctive therapies
during administration of CAR T cells to patients [55]. Adjunctive therapies appear
particularly promising, as was highlighted by a 2013 clinical trial from Memorial
Sloan-Kettering in which a 2G CAR against CD19 was administered to patients with
refractory B cell acute lymphoblastic leukemia (B-ALL) following chemotherapy
preconditioning to the point of minimal residual disease and subsequent allogeneic
hematopoietic stem cell transplantation (allo-HSCT). In this trial, 88 % of patients
(14 out of 16) experienced a complete remission [51, 56]. A detailed discussion of
these design considerations is beyond the scope of this review, but a summary of
current approaches, considerations, and relevant reviews is presented in Table 18.1.

While achieving long-term memory and complete remission with 2G CAR therapy
is a major milestone, a persistent challenge in CAR therapy is optimizing the balance
between efficacy and safety. In one notable case, a patient with metastatic colon
cancer died after being treated with a 3G CAR against the HER2 antigen [57]. It
was hypothesized that the CAR recognized low levels of HER2 expressed on lung
epithelial cells, leading to excessive pulmonary infiltration and cytokine secretion
in the lungs that resulted in respiratory failure. This case highlights the fact that
achieving an optimal balance between safety and efficacy will depend strongly on the
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Table 18.1 Key design parameters for CAR therapy

Design parameter Options Ref.

Disease B cell malignancies, neuroblastoma, ovarian cancer, renal
cell carcinoma, melanoma, etc.

[52, 53]

Antigen α-folate receptor, CD19, CEA, CAIX, GD2, ERBB2/
HER2/neu

[52, 53, 126]

T cell subset αβ, γδ, iNKT, CD8+, CD4+, antigen (e.g., EBV) specific [54, 127]

Transduction
method

γ retrovirus, lentivirus, transposon, electroporation [54, 127]

Culture conditions APC cell line, artificial APC, OKT3, IL-2, IL-15, other
cytokines

[54]

CAR model 1G, 2G, 3G, bispecific [52, 55, 127]

Dosing Regimen (single vs. split), number of cells [58]

Conditioning/
adjunctive thereapy

lymphodepletion, myeloablation; IL-2, dendritic cells co- or
post-administration

[55]

CAR chimeric antigen receptor, APC antigen presenting cell, EBV Epstein–Barr virus

type of disease targeted and the TAA selected. For example, in B cell malignancies or
melanoma, ablation of healthy cells sharing the TAA (i.e., B cells and melanocytes) is
not lethal, and so therapeutic benefit is optimized with highly active CAR responses.
In contrast, the case of colon cancer expressing HER2 discussed above suggests that
the therapeutic window is more restricted, due to the risks of CAR-mediated killing of
healthy cells. In fact, excessive CAR-mediated killing of the targeted tumor cells can
also restrict the therapeutic window. In the anti-CD19 CAR trial performed by June
and colleagues, one of three patients receiving a CAR T cell infusion experienced
life-threatening toxicities due to excessive tumor lysis syndrome and cytokine storm,
and this patient was treated with a systemic corticosteroid to attenuate the tumor lytic
activity of the CAR T cells [47]. It is possible that this steroid administration explains
why this patient did not experience the same degree of tumor remission as did the
other patients enrolled in the trial. Thus, early toxicity due to excessive on-target
effects may be a general challenge for CAR safety, and potential solutions based upon
dosing strategies have been proposed [58]. More generally, the identification of these
challenges and exploration of potential solutions also demonstrates the progression
of CAR therapy through another iteration of the design cycle.

The history of CAR development is a compelling illustration of the power of
the engineering design cycle. Grand challenges in this field now include efficiently
and expediently capitalizing on these early successes to extend these approaches
to treat other types of cancer, to design therapies that benefit large and potentially
diverse patient groups, and to simultaneously maximize efficacy and safety. Meeting
these goals will require employing emerging tools for both understanding these
biological phenomena at a systems level and new technologies for translating this
understanding into viable therapeutic strategies. In the following sections, we discuss
how the complementary approaches of systems biology and synthetic biology may
create a new framework for successfully addressing these challenges (Fig. 18.2).
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Fig. 18.2 Emerging framework for design-driven medicine. The synergistic relationships between
systems biology, synthetic biology, and clinical translation together provide a framework for trans-
lating information into understanding, and for translating understanding into improved therapies
through the engineering design cycle

Harnessing Systems Biology to Understand and Overcome
Barriers to Cell-Based Immunotherapy

Realizing the potential of cell-based therapies for cancer will require improved un-
derstanding of both the functions of engineered cells and the manners in which these
therapeutics interact with host physiology. In particular, clinical experience to date
highlights two general challenges that pose significant barriers to achieving broad
clinical efficacy. First, tumors frequently evolve the capacity to modulate local im-
mune responses, and this local immune dysfunction is broadly considered a central
impediment to both natural and therapeutically induced immune control of cancer [9,
59–61]. Although suppression of CTL responses is a general feature of many cancers,
many aspects of immune dysfunction vary widely between different types of cancer.
Second, patient-to-patient variability in both tumor biology and host immune func-
tion poses a challenge for (a) gaining understanding from immunotherapy clinical
investigations and for (b) identifying immunotherapy strategies that are likely to be
effective for a particular patient. Each of these challenges comprises a systems-level
problem, and the expanding field of systems biology provides a toolbox of conceptual
and research tools that may be applied to addressing such questions.

Systems biology is a scientific approach that seeks to explain how ensembles of
biological entities interact to generate aggregate behaviors that govern the function
of living systems (reviewed in [62–64]). This approach may be applied at multiple
scales, ranging from investigating the operation of genetic and biochemical networks
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in individual cells to explaining the origins of variability between individual humans
within a population. Systems biology provides a framework for pairing the power of
numerous new technologies for collecting vast quantities of biological information
with the computational and analytical tools required to make use of data of this type
and scale.

The systems biology toolbox provides a range of computational methods that may
be applied to distinct challenges in understanding tumor–immune interactions and
enabling cell-based therapy for cancer [64–67]. At one end of the spectrum, statis-
tical methods such as clustering and principal component analysis (PCA) may be
employed to characterize datasets without requiring prior knowledge of the underly-
ing biology [68]. Discriminant partial least squares regression (DPLSR) is related to
PCA and enables one to identify combinations of measured variables that best predict
a given outcome, such as the intracellular signaling events that predict tumor necro-
sis factor (TNF)-induced apoptosis of tumor cells [69, 70]. Bayesian inference can
be used to infer causal relationships, such as the topology of intracellular signaling
networks, as was demonstrated in naı̈ve CD4+ T cells [71, 72]. Each of these meth-
ods may be paired with experimental investigations into tumor–immune interactions
and could be a useful tool for harnessing large or complicated datasets to discover
patterns or generate novel hypotheses regarding potential causal relationships.

At the other end of the computational methods spectrum, mechanistic modeling
is a powerful approach for investigating specific questions or phenomena. Mecha-
nistic models describe specific events and biochemical transformations such as gene
expression, protein phosphorylation, and complex formation, and the dynamics of
these processes are described by constructing mathematical expressions (typically
ordinary or partial differential equations, ODE or PDE, respectively) based upon
known or postulated mechanisms [66]. Because such models are based upon prior
knowledge of the system, this approach is often especially useful for (a) exploring
the behavior of a putative conceptual model and formulating novel hypotheses, (b)
determining whether a single conceptual model can be consistent with a series of
observations, or (c) determining which of a set of hypothetical mechanisms is most
consistent with experimental observations.

Mechanistic models are especially useful for investigating and understanding
complex systems, such as immune function, which often defy explanation by a simple
narrative. For example, signaling in response to interleukins 6 and 10 (IL-6 and IL-
10) is somewhat paradoxical, in that the receptor for each cytokine signals through the
same transcription factor (signal transducer and activator of transcription 3, STAT3),
yet IL-6 and IL-10-induced responses are pro-inflammatory or anti-inflammatory,
respectively. To potentially explain this paradox, Fowler and colleagues generated
an ODE-based model of this system that explains a range of experimental obser-
vations by hypothesizing the existence of a simple but previously uncharacterized
mechanism for crosstalk between these pathways [73]. Tumor biology has also been
widely modeled using methods ranging from ODE to agent-based simulations (re-
viewed in [74]), and a number of approaches have also incorporated tumor–immune
interactions [75–78]. Mechanistic models of in vivo cancer scenarios are particularly
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useful as tools for investigating conceptual questions, due to the difficulty of ob-
serving and modulating tumor dynamics in living animals or patients. As history has
demonstrated, the emergence of powerful new experimental methods will drive the
development and need for computational models that enable researchers to utilize
these data.

Several new experimental systems biology tools might be especially useful for
elucidating complex tumor–immune interactions by enabling robust characteriza-
tions at the level of individual cells. For example, using “mass cytometry,” one can
simultaneously quantify the expression of up to 100 markers or components in sin-
gle cells, far exceeding the capacity of multiparametric flow cytometry [79]. In a
demonstration of this method, patient-derived bone marrow cells were analyzed us-
ing 34 parameters including both cell surface markers and functional markers such
as intracellular cytokine content and transcription factor phosphorylation states. This
high-dimension characterization revealed subtle cell type-specific differences in sig-
naling during hematopoietic development and in response to drugs. Other methods
enable the characterization of time-dependent behavior at this single-cell level of
resolution. For example, microengraved subnanoliter-scale wells have been used to
profile the dynamics of cytokine secretion by individual T cells, which identified the
existence of a number of distinct functional programs within a single population of
human primary T cells [80].

An exciting and largely open grand challenge in experimental systems biology
is the characterization of human immune variability. Although immune function
is understood to vary widely between individuals, the nature, consequences, and
underlying causes of this variability remain poorly understood. This challenge is
particularly applicable to cell-based therapy for cancer, since the primary mode of
action for this approach (cell-mediated tumor killing) depends strongly upon host
immune function, which may both promote therapeutic action and duration of ben-
efits or pose a barrier to efficacy. Several studies have characterized variability at
the genetic level, including profiles of variation in the human MHC locus [81] or
sequencing of adaptive immune receptor repertoires [82]. However, to date we lack
similarly comprehensive functional characterizations of immune variability, the in-
terpretation of which is particularly challenging because of noise arising from patient
history, both recent and long term. Thus, a new approach that could address this need
is the functional profiling of mature cells differentiated from patient-derived induced
pluripotent stem cells (iPSC), which can be generated from cells easily collected via
a cheek swab. This method has already proven useful for elucidating mechanisms
of disease-associated differences in neuronal function [83], and this approach could
help to decouple genetically encoded aspects of immune variability from those that
depend on patient history. Ultimately, such insights would contribute fundamental
understanding of tumor–immune function and would be useful for guiding clinical
translation of cell-based therapeutics.

Systems biology could serve the mission of clinically translating cell-based ther-
apy by enabling physicians to best match patients with a therapy that is likely to
provide clinical benefits. Such an approach has been proposed to improve the design
of clinical trials with pharmacological anticancer therapy [84–88], and computational
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tools provide a framework for analyzing preclinical patient samples to target clinical
trials to patient groups most likely to respond to a given drug [89, 90]. Computa-
tional tools could also prove useful for monitoring and predicting patient responses
during clinical trials already underway. This concept was illustrated in the context
of prophylactic vaccination for yellow fever, in which high throughput screening
was combined with clustering analysis to identify early response biomarkers that
predicted long-term protective effects of vaccination [91]. Finally, computational
systems biology approaches could be used to design more effective therapeutic reg-
imens [84, 92–94]. For example, a mathematical model describing the potential of
lung cancer tumor cells to acquire function-altering mutations in epidermal growth
factor receptor (EGFR) was used to design a novel therapeutic strategy predicted to
prolong clinical benefit of tyrosine kinase inhibitor (TKI) drugs targeting this path-
way [92]. Such insights could be difficult or impossible to glean from patient data
or in vitro experiments in the absence of mechanistic, quantitative models.

Increasingly powerful models describing tumor–immune interactions in cell-
based therapy are also proving useful for understanding therapeutic efficacy and
limitations and for designing improved therapies [75, 94–100]. Mathematical mod-
els have proven particularly useful for interpreting data from preclinical and clinical
cell-based therapy experiments, and for resolving counterintuitive or seemingly con-
tradictory observations [75, 94, 96, 97]. For instance, a computational investigation
was used to develop a novel hypothesis explaining the surprising experimental ob-
servation that in murine models of melanoma, Th2 cells (which generally promote
antibody-mediated immunity) are better able to promote tumor rejection than are
Th1 cells (which generally promote CTL-mediated immunity) [97]. Modeling may
also help to explain mixed clinical results, as was demonstrated for adoptive CTL
transfer treatment of glioblastoma [94]. Importantly, by potentially explaining the
origins of treatment failure, these investigations also generated suggestions as to how
such failures may be overcome.

Ultimately, computational models could enable physicians to customize cell-
based therapies to individual patients. For example, a model that was “personalized”
with patients’prostate-specific antigen levels was able to predict individual responses
to vaccination for treatment of prostate cancer [101]. Personalized models could
ultimately be used to simulate patient responses to different therapeutic regimens.
The increasing power of computational tools to predict and evaluate patient responses
to therapeutics has inspired a number of provocative suggestions as to how clinical
trials may be restructured [102–105]. Given the unique challenges associated with
cell-based therapy for cancer, computational systems biology is certain to play an
increasingly important role in both fundamental research and in maximizing both
safety and efficacy in the clinic.
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Synthetic Biology: A New Frontier
in Design-Driven Medicine

The emerging technology of synthetic biology is a potentially transformative ap-
proach to engineering biological systems and could enable the rapid translation of
fundamental understanding into novel and effective therapies. In combination with
tools and information from clinical science and systems biology, synthetic biology
could therefore enable a new approach to design-driven medicine (Fig. 18.2). The
central objective of the field of synthetic biology may be summarized as developing
the knowledge and capabilities necessary to engineer novel biological systems in a
robust fashion [106–109]. Ultimately, this approach should enable one to start with
an abstract functional goal, and then provide tools and methods for building a bio-
logical system that carries out this function. In the example of cell-based therapies
for cancer, synthetic biology could bridge the gap between formulating a hypothesis
describing a desirable cellular function—“I predict that a cell that did X would have
Y effect”—and being able to test or implement that hypothesis by engineering a
cell-based “device” accordingly.

Although much of the foundational work in synthetic biology was performed in
microbial systems, an increasing number of applications are targeted directly at clini-
cal applications, including those that engineer mammalian cells to serve as cell-based
therapies (reviewed in [107, 108]). Several early proof-of-principle demonstrations
illustrate potential new therapeutic modalities that may be constructed using syn-
thetic biology. First, synthetic biology may enable physicians to externally control
or modulate the function of a therapeutic post-administration (Fig. 18.3a). In one
such example, Smolke and colleagues engineered RNA devices that are activated
by the drug theophylline [110]. These RNA devices were expressed in engineered T
cells, such that upon oral administration of theophylline, the adoptively transferred
T cells expressed IL-2 and proliferated. If implemented with CAR therapy, such a
strategy could reduce the need for systemic administration of IL-2 and potentially de-
crease toxicity associated with high cytokine levels in the blood. Hypothetically, this
control strategy could also be inverted to tunably downregulate T cell proliferation
in the event of toxicities such as cytokine storm or tumor lysis syndrome. In another
strategy to temporarily and reversibly put the brakes on excessive CAR T cell acti-
vation, Lim et al. reported a “pause switch” comprising components from bacterial
virulence proteins and yeast MAP kinase pathways, which dampened T cell prolif-
eration upon activation of the switch by the antibiotic, tetracycline [111]. In another
example, Fussenegger and colleagues developed a system in which externally ap-
plied light could control gene expression in vivo [112]. In this system, immortalized
human embryonic kidney (HEK) cells were engineered to produce a peptide regulat-
ing glucose homeostasis in response to blue light. These engineered cells were then
microencapsulated in a hydrogel matrix and implanted subcutaneously, and exposing
these animals to blue light pulses successfully conferred regulation of serum glucose
levels. Recently, externally tunable synthetic biology technology has reached human
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Fig. 18.3 Opportunities for harnessing synthetic biology to enhance cell-based therapy for cancer.
Synthetic biology could provide novel modalities for enhancing cell-based therapies to improve both
safety and efficacy. a These modalities include enabling physicians to tune therapeutic activity post-
administration using an externally administered cue (top) or “programming” cell-based therapies
to autonomously regulate their own activity in response to environmental cues (bottom). b Example
of how a synthetic biology gene circuit can enhance specificity of a cell-based therapy for a tumor
versus healthy tissue. In this example, the engineered cell expresses two receptors that each detect
one of two external ligands, either a TAA shared by the tumor and a healthy tissue or an antigen
found only on the healthy tissue, and each receptor releases a transcriptional activator (A) or a
transcriptional repressor (R), upon detecting its respective ligand. In this way, the cell performs
a multiparametric logical evaluation of the two ligands, such that the engineered cell becomes
“activated” (e.g., triggering it to express a potent immune stimulant or toxin) only when contacting
a tumor cell and not when contacting a healthy cell sharing the TAA b. A transcriptional activator,
R transcriptional repressor, TAA tumor associated antigen

clinical trials in the form of externally tunable expression of IL-12 from an adenovi-
ral vector that is injected intratumorally [113]. This technology utilizes Intrexon’s
RheoSwitch system, which may be activated by an orally administered activator lig-
and [114, 115]. Enabling physicians to control the activity of cell-based therapies
could facilitate both personalized treatment strategies and optimization of safety and
efficacy in response to real-time monitoring of patient responses.

A second attractive modality that could be realized through synthetic biology
is the construction of autonomously regulating therapeutics (Fig. 18.3a). In gen-
eral, the therapeutic would survey its surroundings and perform some function in
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response to this information. One application of this capability would be to create
a self-regulating therapeutic, and this concept was demonstrated using an implant
comprised of microencapsulated cells engineered to regulate uric acid homeosta-
sis [116]. These cells expressed urate oxidase in response to high serum levels of
uric acid, successfully eliminating excess uric acid in urate oxidase-deficient mice.
A distinct type of application would be conditionally activated therapeutics, which
perform a desired function only in a specific, predetermined context. This capability
would be especially useful for cell-based immunotherapy of cancer, where it might
be desired to deliver local immune stimulation at the tumor site at a level that could
not be tolerated systematically. Thus, synthetic biology could enable one to create a
therapeutic window that would not otherwise exist using current approaches.

Autonomously regulated therapeutics could potentially function as prodrugs, in
which the therapeutic is delivered to many cells, but it only becomes “activated” in
the target cell of interest. This concept was demonstrated using a gene circuit that
sensed cellular miRNA levels and used this information to selectively activate the
circuit only when it was expressed in specific cancer cells having miRNA expression
“fingerprints” matching those programmed to be recognized by the gene circuit [117].
In principle, such a circuit could be delivered via a nontargeted gene therapy vector,
transducing both healthy and cancer cells, but the output of the gene circuit (such as
a toxin) would be expressed only in the diseased cells. Such a capability is uniquely
possible using synthetic biology approaches to perform multiparametric evaluation
of cellular features, and both analog and digital (e.g., Boolean) evaluation have been
performed in mammalian cells using “parts” composed of RNA elements [118–120],
gene transcription networks [121], and other protein-based elements [122].

An alternative approach to autonomous regulation that is particularly attractive
for cell-based cancer therapy would be to program an engineered cell to evaluate
its environment and then become “activated” only under prespecified conditions.
Such a cell-based therapy could be programmed to travel throughout the body and
deliver a potent immune stimulant only when the engineered cell enters the tumor
microenvironment. For example, engineered logical evaluation could be used to pre-
vent activation in healthy tissue by programming the therapeutic to survey for both
a TAA and a second antigen that is expressed only on healthy tissue that might also
express the TAA at low levels (Fig. 18.3b). One version of such a strategy has been
implemented in the form of the inhibitory CAR (iCAR), which combines an extra-
celluar antigen-binding domain fused to the intracellular domain of a native T cell
inhibitory receptor, PD-1 or CTLA-4 [123]. Expression of iCAR effectively damp-
ened T cell activation via either a native TCR primed against a model antigen or
a transduced CAR when both the activating and inhibitory receptor were engaged,
without impeding activation when only the activating antigen was present. Similarly,
specificity could be achieved by engineering the cell-based therapy to become ac-
tivated only when it encounters two TAA, neither of which is uniquely expressed
by tumor cells. One approach to implementing this strategy has been to transduce
a T cell with both a suboptimal CAR specific for one antigen and also with a cos-
timulatory receptor (CCR) specific for a second antigen, thereby making full T cell
activation conditional upon binding to both antigens [124]. In addition to providing
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specificity, combinatorial antigen recognition strategies could also be employed to
circumvent tumor escape by antigen downregulation [50].

While CAR engineering is a promising approach, realizing the promise of pro-
grammable cell-based therapies will require the development of new synthetic
biology “parts.” For example, robustly interfacing engineered cells with host phys-
iologywill require cell-surface sensors that detect exclusively extracellular species
and relay these detection events into engineered intracellular gene circuits. To ad-
dress this need, Daringer et al. recently reported a modular approach to synthetic
receptor engineering, which couples the sensing of a target extracellular analyte to
the induction of a signaling pathway that is orthogonal to native signaling path-
ways in the cell [125]. Such orthogonality facilitates the construction of complex
cellular programs, such as the multiparameteric evaluation of environmental cues to
enhance or restrict CAR T cell activation in particular milieus. It is already clear that
synthetic biology dovetails with advances in systems biology and clinical science to
provide a novel approach to therapeutic development and an ensemble of capabilities
that are particularly well-suited to overcoming current barriers to safe and effective
immunotherapy of cancer.

Closing Thoughts

Engineered cell-based therapy for cancer is a strategy that is poised to realize true
clinical benefits. Grand challenges for this field include extending early successes
to broader patient groups and to multiple types of disease, while maximizing both
safety and efficacy. The synergistic technologies of systems and synthetic biology
promise to accelerate the achievement of these goals by enabling researchers to
transform information into understanding, and to translate understanding into novel
therapeutic strategies. Harnessing these approaches may prove pivotal for advancing
this field from one driven by heuristics to one driven by knowledge and even patient-
specific information. Ultimately, immunotherapy of cancer may prove to be the first
of many engineered cell-based therapies, ushering in a new wave of design-driven
medicine.
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Chapter 19
A Systems Approach to Blood Disorders

Pankaj Qasba

Abstract A systems approach to blood diseases can help make essential contribu-
tions to our ability to diagnose, treat, and perhaps even prevent common diseases in
humans. Using blood as a window, one can study health and disease through this
unique tool box with reactive biological fluids that mirrors the prevailing hemody-
namics of the vessel walls and the various blood cell types. Many blood diseases,
rare and common, can and have been exploited using systems biology approaches
with successful results and therefore ideal models for systems medicine. More im-
portantly, hematopoiesis offers one of the best studied systems with insight into stem
cell biology, cellular interaction, development; linage programming and reprogram-
ming that are influenced every day by the most mature and understood regulatory
networks.

Keywords Hematopoiesis · Regulatory networks · Blood system · Erythropoiesis ·
Fanconi anemia (FA) · Diamond–Blackfan anemia (DBA) · Bone marrow failure syn-
dromes (BMFs) · In silco · System biology · System medicine · Omics · Multiscale ·
Microfluidics · Hemoglobinopathies · Fetal hemoglobin · Induced pluripotent stem
(iPS) cells

The hematopoietic system serves as a paradigm for understanding tissue stem cells,
their biology, involvement in aging, and disease. Investigations in the field of
hematopoiesis have yielded critical insights into the areas of stem cell biology; the
role of cellular interactions in development and in tissue homeostasis; lineage pro-
gramming and reprogramming by transcription factors; and stage- and age-specific
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differences in cellular phenotypes [1, 2]. These critical insights provide us the tools
to further elucidate and understand the transcriptional network that controls lineage
choices and reprogramming of cellular lineages [3, 4]. The elucidation of regu-
latory networks is the most mature of the various systems biology components for
hematopoiesis and serves as the first, and an essential step in building hypotheses and
understanding biology at the system level [5]. However, our understanding of these
molecular interactions and complex networks is still minimal. We must examine how
genes, proteins, and other cellular components interact during normal and disease
states to capture how cell activity is coordinated and controlled. The blood system
truly provides a unique “tool box”: a heterogeneous cellular compartment, and a
vascular component comprising the vessel wall with a reactive biological fluid. So
the time is right for us to take a broader systems biology approach to understanding
erythropoiesis and blood diseases.

Systems biology methodologies have been successfully exploited in several blood
diseases. Fanconi anemia (FA) is an autosomal recessive disorder characterized by
congenital abnormalities, bone marrow failure, chromosome fragility, and cancer
susceptibility. A remarkably high clinical variability exists among FA patients [6]
possibly contributed by many regulatory mechanisms that affect the expression level
of FA proteins. A logical systems approach by Tategu et al. [7] identified cross talk
between E2F transcription factors and the FA pathway. Their in-silico mining of
a transcriptome database and promoter analyses revealed that most of the FA gene
members were regulated by E2F transcription factors, known to be pivotal regulators
of cell cycle progression. Similarly, using systems approaches, one can probe the
cross talk between the propensity of head and neck cancers, bone marrow failure,
and DNA repair failure in FA patients and possibly make predictions of early onset
of such cancers [8]. One can model FA cells or induced pluripotent stem (iPS)
cells to delineate the role of human papillomavirus in the pathogenesis of these
malignancies. Diamond–Blackfan anemia (DBA) is a bone marrow disorder that is
characterized by impaired production of red blood cells. Approximately, half of all
cases can be attributed to ribosomal protein gene mutations [9]. More recently, a
new mutation in gene encoding the hematopoietic transcription factor GATA1 was
linked to the disease [10–12]. Again, a systems approach will help to decipher the
expanded network of genes involved in the remaining 50 % of the DBA patients
without a genetic lesion and help understand the interplay between the ribosomal
genes, hematopoietic transcription factors, and impaired erythroid development in
this disease.

Other bone marrow failure syndromes (BMFs) such as Shwachman–Diamond
syndrome (SDS), dyskeratosis congenita, myelodysplastic syndrome (MDS) and
aplastic anemias present opportunities as models for a systems approach that will re-
sult in a better understanding of the phenotypic variability that is a striking feature of
these syndromes [13–17]. The studies of many of these rare disorders are facilitated
by the existence of established registries that link biospecimens with extensive phe-
notypic and genotypic data [18]. Registries enable the applications of computational
biology and modeling to narrow down the parameters for potential drug screens and
drug candidates for specific patient populations. The use of in-silico clinical trials
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may be appropriate for rare diseases where small numbers have prevented under-
taking traditional clinical trials [19]. The use of these technologies in selected rare
diseases may generate sufficient data to support the development of systems biology
methodologies for “virtual” clinical trials that could reduce the time for the devel-
opment of therapeutic interventions and the number of subjects required for their
testing. Many of rare diseases have strong patient advocacy organizations and have
developed sophisticated and inclusive registries that could be employed in support
of such a systems-based approach to translational research.

Vascular biology and hemostasis provide another example amenable to systems
approaches, Diamond et al. utilized high-throughput liquid handling and microflu-
idics to develop an integrated view of blood function under flow in response to
multiple stimuli encountered during thrombosis and hemostasis [20]. This system
allows multiscale prediction of patient-specific platelet function under flow and phar-
macologic modulation, providing a possible risk assessment for arterial thrombotic
events based on a patient’s unique platelet phenotype. It is possible to provide a
realistic description of intracellular signaling, platelet membrane receptor function,
and the assembly of extracellular processes on platelet membranes or in plasma by
exploiting a systems model of platelet and plasma function [21, 22]. Similarly, when
stored platelets and red blood cells develop storage lesions during storage in plastic
blood containers, the use of systems biology and integrated “omics” represents a
tangible solution in the study of blood cell storage lesions by providing compre-
hensive biochemical descriptions of organisms through quantitative measurements
and data integration in mathematical models. The biological knowledge collected
from a target organism can be translated into a mathematical format and used to
compute physiological properties. Hence the approach can help optimize the de-
velopment of methods media that may lead to extended storage periods for blood
components [23]. More importantly, the synergy between experimental and compu-
tational sciences provides a critical insight into better understanding of the molecular
mechanism of red cell storage lesions.

Systems approaches have been employed in the study of the hemoglobinopathies
(sickle cell disease (SCD) and thalassemia). Using Bayesian networks, Sebastiani
et al. analyzed 108 SNPs in 39 candidate genes in 1398 individuals with SCD and
generated 31 SNPs in 12 genes interacting with fetal hemoglobin to modulate risk of
stroke, a severe complication affecting individuals with SCD. This group produced
an algorithm that utilized SNPs from candidate modifier genes to define an individ-
ual subject’s susceptibility to stroke. Using this predictive model, a high degree of
accuracy was obtained to define the risk of stroke in 114 subjects [24].

More recently, Karniadkis laboratory has been developing a multiscale model for
quantifying biophysical characteristics of SCD [25]. The model(s) would predict cell
shape from hemoglobin polymerization, blood rheology based on cellular shape and
mechanics, and the risk of vascular occlusion due to sickle cell adhesion to other blood
cells and the vascular endothelium. Such work represents an example of unusually
comprehensive integration from molecular- to tissue-level modeling of a major blood
disease, again demonstrating that blood diseases provide the “tool sets” to apply sys-
tems biology approaches. One of the best studied examples in hemoglobinopathies
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is the transcription factor gene BCL11A, first identified by genome-wide association
studies (GWAS) as a locus associated with the fetal hemoglobin level and disease
severity [26], but its biological function was unclear. Orkin, Sankaran, and other
laboratories have now established BCL11A as the key transcription factor regulating
the fetal-to-adult hemoglobin switch in red blood cells, and genetic variation identi-
fied through GWAS is located in an enhancer element regulated by GATA1, TAL1,
and other closely related transcription factors [27, 28]. This provides an opportu-
nity to use systems biology approaches to predict and validate the developmental
stage-specific gene regulatory networks in human primary erythroid precursors by
integrating genomic and epigenomic data types. Furthermore, one can interrogate
these networks’ responses to external perturbations with implications for the robust
developmental control in an erythroid gene regulatory model [18, 29, 30].

Rothenberg et al. has taken advantage of T cell development that is characterized
by an experimentally tractable system for dynamical modeling of a lineage choice
process [31, 32]. This is yet another example of systems approach to study transcrip-
tional control of cell-fate choice and subsequent lineage specification. Finally, the
iPS cells derived from blood will be complemented by iPS cells derived from cells of
the immune system that have undergone T or B cell receptor recombination, open-
ing the possibility for treating antigen-specific autoimmunity and allergies. Also,
iPS cells from individual patients will be useful in exploring mechanisms of disease
initiation, progression, and development in a test tube [33].

In a recent interview, Lee Hood, a biotech pioneer and cofounder of institute for
systems biology said, “I believe that a systems approach to medicine will increasingly
lead to a better understanding of disease mechanisms, will make blood a window
into studying health and disease. . . ” [33]. Blood system truly provides a unique
tool box with a reactive biological fluid whose function is dictated by prevailing
hemodynamics, vessel wall characteristics, heterogeneous cell types—red and white,
platelets and their precursors, T and B cells, and p—human blood presents itself as
an ideal multicellular “organ” for systems biology analysis.
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