
Quality-of-Service in Data Center Stream
Processing for Smart City Applications

Paolo Bellavista, Antonio Corradi and Andrea Reale

1 Introduction

The wide diffusion of cheap, small, and portable sensors integrated in an unprece-
dented large variety of devices—from smartphones to household appliances, from
cars to fixed monitoring stations—, and the availability of almost ubiquitous Internet
connectivity through Wi-Fi hotspots or cellular networks, makes it possible to collect
and use valuable real-time information about many fundamental aspects of the envi-
ronment we live in. If properly understood and used, this information has the potential
to bring important improvements to cross-concerning areas that have strong and di-
rect impact on the quality of people’s life, such as healthcare, urban mobility, public
decision making, and energy management. This continuous collection and exploita-
tion of real-time data from people and objects of the real world is at the foundations of
the Smart City vision [26], where people, places, environment, and administrations
become closer and get connected through novel ICT services and networks. In the
last years, several projects from academia, industries and governments have started
to work toward the actual implementation of this vision in big urban areas. Examples
of these initiatives are the many European funded projects such as European Digital
Cities [21], Smart Cities Stakeholder Platform [42], SafeCity [41], or EUROCITIES
[23], or industry-led activities, such as the IBM Smarter Cities project [29], or the
Intel Collaborative Research Institute for Sustainable Connected Cities [30].

In order to implement novel and useful smart services for the city, it is not only
sufficient to collect the raw content of these Big Data Streams, but is also crucial
to distill interesting and usable knowledge from them. However, the unprecedented

P. Bellavista (�) · A. Corradi · A. Reale
Department of Computer Science and Engineering (DISI), Università di Bologna, Italy
e-mail: paolo.bellavista@unibo.it

A. Corradi
e-mail: antonio.corradi@unibo.it

A. Reale
e-mail: andrea.reale@unibo.it

© Springer Science+Business Media New York 2015 1047
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_35

1048 P. Bellavista et al.

heterogeneity in data representation and semantics, and in the goals and quality
requirements of analysis tasks is a hard technical challenge to face while developing
applications that deal with huge and continuous streams of information. Distributed
Stream Processing Systems (DSPSs) represent very relevant technological support
frameworks for the industrial and cost-effective implementation of Smart City
applications: for instance, by efficiently leveraging the distributed resources
available in data centers with limited impact on the complexity of the application
logic, they answer the requirements of performance and scalability that continuous
data streams analysis impose.

In this chapter we analyze the state-of-the-art of DSPSs, with a strong focus on
the characteristics that make them more or less suitable to serve the novel processing
needs of Smart City scenarios. In particular, we concentrate on the ability to offer
differentiated Quality of Service (QoS). A growing number of Smart City applica-
tions, in fact, including those in the security, healthcare, or financial areas, require
configurable and predictable behavior. For this reason, a key factor for the success of
new and original stream processing supports will be their ability to efficiently meet
those needs, while still being able to scale to fast growing workloads.

The chapter is organized as follows: Section 2 introduces the class of big data
analysis platforms known as DSPSs. It does so by providing a simple framework for
their description and comparison. Section 3 presents three state-of-the-art and widely
used DSPSs and compares their specific characteristics by using the framework
presented in Sect. 2. Section 4 focuses on the problem of integrating QoS-aware
behavior in DSPSs by emphasizing the reasons why they would be especially useful
in Smart City scenarios. Our QoS-aware DSPS, called Quasit, is presented in Sect. 5;
Quasit has been specifically designed to allow a rich customization of quality-related
stream processing parameters, and is able to enforce them at runtime in a scalable
and cost-effective way. Finally, in Sect. 6, we look at a special kind of weak QoS
specifications, which can be flexibly and adaptively enforced by DSPSs: to this
purpose, we present LAAR, a technique for adaptive DSPS operator replication,
which allows to trade “perfect” fault-tolerance guarantees off for reduced execution
cost, while being able to handle variable load conditions and to offer guaranteed
lower bounds on the achievable system reliability.

2 Distributed Stream Processing Systems

A stream processing application is a collection of software components whose goal
is to process, analyze, or transform streams of information to produce continuous
results in the form of output streams. A Stream Processing System (SPS) is a
middleware that provides support for both the development and the execution of
stream processing applications, and is labeled as distributed (DSPS) if it deploys
them on a set of distributed computing resources, such as, very relevant nowadays,
the ones in a data center.

We propose an original representation model for DSPSs that helps analyzing
them according to a simple three layer scheme. The layers are complementary, each

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1049

Fig. 1 A three-layer model of
Distributed Stream
Processing Systems

describing a different aspect of the stream processing system, and are called abstract
model, development model, and execution model, respectively (Fig 1).

• The abstract model defines the high-level stream processing concepts adopted by
the system. For instance, it gives precise definitions of data streams and relevant
system events; it determines the characteristics of data processing flows, and the
type, role, and granularity of processing components.

• The development model defines the set of interfaces that are exposed to developers
to build the stream processing components defined in the abstract model. A devel-
opment model, for example, could map abstract concepts on syntactic constructs
of special-purpose stream processing languages, or on ad-hoc Application Pro-
gramming Interfaces (APIs) and libraries developed for existing general-purpose
languages.

• The execution model determines how abstract model components are mapped
on runtime entities executed by the distributed servers on which the DSPS is
deployed. For example, an entire application could be mapped, at execution time,
on a single process of the host operating system, or it could be split into several
interacting processes.

While the three models may, in theory, largely vary from system to system, in practice,
it is easy to identify many recurring aspects among the most common solutions. In
the remainder of this section, we discuss the three models and overview how they
are commonly realized in existing state-of-the-art solutions.

2.1 Abstract Model

The abstract model of a DSPS defines the high level concepts on which the system is
based, including the system-dependent concepts of stream, stream processing appli-
cation, and the processing workflow that the system adopts. While development and

1050 P. Bellavista et al.

Fig. 2 A generic processing graph in Distributed Stream Processing Systems

execution models usually can be significantly different from one system to another,
abstract models tend to be very similar and based on the common abstraction of
processing graph [2, 4, 6, 10, 16, 24, 35, 44].

A processing graph (Fig. 2) is a Directed and Acyclic Graph (DAG) whose
nodes represent data processing and transformation steps, and whose edges rep-
resent streams flowing between components. A stream is an unbounded sequence of
discrete elements, often called samples or tuples. The type of a sample defines its
structure, and every stream contains samples all of the same type. Depending on the
system, a sample type could be a primitive type—such as an integer or floating point
number—or it could be a composite type, similar to a structure in the C language, or,
in some cases, to objects of an object oriented type system. Every processing graph
is always fed by one or more input streams, and produces one or more output streams
as a result. The origin and destination of input and output streams can be highly het-
erogeneous, such as for example, a file, a network socket, a PUB/SUB endpoint, or
a relational database. Since input streams are unbounded, a characterizing feature of
stream processing applications is that, once started, they continue to execute forever,
unless explicitly stopped.

A graph node can be of three different kinds, i.e., data source, data sink, and
operator. A data source node identifies a data stream that is conceptually out of the
application: its role is to abstract from the actual nature of the stream producer. It
can represent either an external stream source or the output of another application
running on the same system. A data sink node, conversely, represents the destination
of an application output; data sinks can be used either to redirect output streams to
other systems for additional processing steps or storage, or to connect the output of
an application with the input of another one. An operator node is associated with
one or more input data streams and generates one or more output streams. Operators
are the core of stream processing applications: they define the set of operations that
can be performed on streams. Operators can implement, for example, relational
manipulations of single or moving windows of samples, such as projections or joins;

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1051

they can perform aggregation or filtering actions, or realize more complex, arbitrary,
algorithms. Operators, data sources, and data sinks are collectively called graph
components or, more simply, components.

Samples are received and produced by stream components on their input and
output ports, each having its own type, which corresponds to the type of the stream
it receives or produces. Every graph component performs its processing operations
on data samples according to an asynchronous processing model; conceptually all
the components operate in parallel and perform their processing actions as soon as
data samples are available at their input ports.

2.2 Development Model

A development model maps the concepts defined in the abstract model on the
programming-level constructs offered to developers to write their stream processing
applications. These constructs should allow to:

1. Define new applications, by describing which source, operator, and sink compo-
nents should be instantiated and how they should be connected into a processing
graph.

2. Customize component instances, in order to adapt their behavior to specific
application needs (e.g., to bind graph source nodes to actual external sources).

3. Develop new components with custom functionalities.

Any DSPS development model should at least define the tools to achieve the first two
goals of the list; in fact, in many cases, it is not necessary to create new or custom
components, especially in the common scenario where the DSPS comes bundled
with collections of ready-to-use components (also referred to as toolkits) that can
satisfy most common application requirements.

In the available literature, two families of application development models are
common. The first includes models whose mappings are based on special-purpose
languages; the second relates to the exploitation of general purpose languages for
that.

Special-purpose stream processing languages are usually tightly bound to the
system they have been designed for. They normally allow a very concise definition
of applications and components, by having stream processing concepts mapped one-
to-one to language-level concepts. For example, the Stanford Stream system [6]
defines the so called Continuous Query Language (CQL), which permits to develop
stream processing applications by writing continuous queries in a syntax that strongly
resembles SQL queries. These queries are processed by the underlying system and
decomposed in a processing graph of pre-defined operators. If ad-hoc languages
permit faster and easier application development, they generally lack the flexibility
of general-purpose languages and, more importantly, they force developers to learn
new languages and new development processes.

1052 P. Bellavista et al.

Development models based on general-purpose languages, instead, usually have
a less steep learning curve, as system-specific stream processing concepts are ex-
pressed using familiar constructs offered by common general-purpose programming
languages, such as C++, Java, or Python. For example, in Apache S4 [35], opera-
tors are defined by writing corresponding Java classes, all subclasses of a common
abstract superclass. The developer has to “fill-in” the methods that implement the
operator logic, which the system automatically invokes when corresponding events
of interest occur. Using general-purpose languages has several benefits, including
the possibility to seamlessly reuse existing libraries and software modules in new
stream processing applications. However, this usually comes at the expense of con-
ciseness and prototyping speed because those APIs can be verbose and sometimes
cumbersome.

2.3 Execution Model

An execution model maps the elements defined in the abstract model and described
through the development model onto runtime objects that the hosting platform is
able to run directly. An execution model defines:

1. The characteristics of platform specific execution units, and the high-level policies
adopted for scheduling local resources, such as CPU and memory.

2. The distribution of the execution units on the cluster of available servers.
3. The mapping of graph edges on communication channels, such as shared memory,

pipes, or network sockets.

The first important aspect of an execution model is the mapping of operators, sources,
and sinks on host platform concepts, such as processes or threads. With a process-per-
operator allocation, each operator is individually instantiated as a separate process,
with one or possibly more concurrent threads of execution (e.g., one per input port).
This grants the maximum isolation, since problems with one component cannot affect
other concurrently running ones. With this choice, the local scheduling of resources
is demanded to the standard facilities of the host operating system CPU and memory
schedulers. The first implementations of the Stream Processing Core (SPC) [4] (at
the basis of the more recent IBM InfoSphere Streams system— see the following)
used a similar approach, by isolating single components into their own containers,
corresponding to standard UNIX processes.

A process-per-server allocation creates just one process per server. Within this
process, components are hosted as separate software modules, for example as in-
stances of a given class in case of a class-based object oriented implementation.
While, on the one side, this arrangement does not grant the same execution isolation
that a process-per-operator allocation does, on the other side, it permits a tighter
control on resource scheduling policies. For example, every in-process component
could be given a dedicated execution thread or, more interestingly, a pool of threads
could be used to execute groups of components according to internal policies or QoS

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1053

requirements (e.g., for a priority-proportional scheduling of resources). Moreover,
the communication of components running within the same process is usually faster
and cheaper, as shared memory based channels can be used. The process-per-server
allocation is used, for example, by Apache S4 [35] and Quasit [10], which start a
Java virtual machine on each cluster server, and deploy sources, operators, and sinks
as objects running within the local VM.

Somewhere in the middle between the two previous solutions, the cluster-of-
operators approach fuses subsets of tightly coupled components (e.g., operators
with strong reciprocal communication dependencies) into one process. Again, within
every single process, very flexible resource scheduling approaches and faster commu-
nication channels can be used. Different operator clusters, however, are still mapped
onto different processes, granting a better isolation to each group. IBM InfoSphere
Streams [24] uses a similar hybrid approach thanks to a technique, called operator
fusion [33], that groups multiple operators into single execution units automatically.

Knowing what the execution units are, the application processing graph can
be rewritten in the corresponding runtime graph where nodes represent individual
runtime objects (e.g., processes) and edges represent inter-process communication
channels. A further role of the execution model is the definition of an assignment
strategy for runtime objects. An assignment strategy decides the distribution of run-
time objects on the available cluster servers: a good solution should take into account
the resource requirements of every object (e.g., CPU and memory), the resources
availability of each server, and the expected/declared application communication
patterns, and it should find an assignment that satisfies the application resource and
quality requirements while minimizing its execution cost. The assignment can be
static-only, or can have dynamic phases as well. During the static phase an initial as-
signment is decided based on a-priori knowledge of the application and input streams
characteristics. Due to changing load conditions, for example caused by load spikes
in some input streams, the initial assignment could be no longer adequate to satisfy
the application QoS requirements; in these cases, a dynamic phase can be performed
at runtime to adaptively deal with load variations. For example, [39] and [38] propose
two-phase algorithms to perform both static and dynamic assignment phases, while
[40] tries to find an initial static assignment that maximizes the system robustness to
possible variations.

Finally, an execution model should decide how communication channels are
implemented at runtime. For in-process communication, function calls or shared
memory-based message passing are the most commonly chosen alternatives. While
the first binds the execution thread of the caller to that of the callee, the second allows
an independent execution of the two components. For what concerns inter-process
communication, the choice depends on whether the channel endpoints reside on the
same host or on remote hosts. In the first case, solutions such as system-level shared
memory or pipes can be adopted to implement faster and cheaper communication
solutions; in case of remote communication, the choice of the protocol depends very
much on the desired communication cost and QoS level. For example, if cheap and
unreliable communication is enough, UDP-based channels are a possible solution.

1054 P. Bellavista et al.

3 Platforms for Distributed Stream Processing

In the last decade, the problem of effectively processing continuous information flows
has been faced in several projects. In the early 2000s, systems like TelagraphCQ
[8, 17], Aurora [1, 16], Borealis [2], and Stream [6, 7] have started recognizing
the ineffectiveness of using traditional database management systems (DBMSs) for
the real-time analysis of continuous data, and have proposed their own alternative
solutions. More recently, as a result of the industrial success of scalable and parallel
batch data processing systems like MapReduce [20], solutions such as Map-Reduce-
Merge [46] or MapReduce Online [18] have tried to reuse its successful scalable
processing model in stream processing scenarios, by enhancing it with continuous
and dynamic data analysis capabilities. In this section, we have selected three promi-
nent state-of-the-art DSPSs, and we discuss their design and architectural features
under the light of the three-layers modeling framework introduced in the previous
section. The three systems described in the following are IBM InfoSphere Streams,
Apache S4, and Storm. The particular choice of these systems over the different
alternatives available in the literature is motivated by the fact that, to our knowledge,
the selected DSPSs are the most widely adopted in real-world large scale production
systems, including large data center deployments from important industry players
such as IBM, Yahoo! and Twitter: for this reason, we believe that their analysis can
provide important insights about the common requirements of real stream process-
ing workloads, including those of Smart City scenarios. It is not the goal of this
work to provide an extensive survey of existing stream processing solutions: for a
comprehensive work, the interested reader is referred to [19].

In the following three subsections, we briefly overview each selected DSPS by
analyzing its abstract, development, and execution model; for each of them, we also
emphasize peculiar QoS-related features, when supported.

3.1 IBM InfoSphere Streams

IBM InfoSphere Streams [24] is a DSPS evolved from the SPC research project [4].
In Streams, application processing graphs are defined in an ad-hoc special-purpose
Stream Processing Language (SPL) that is used to describe operators and their stream
connections. The language is very flexible, as it permits to define new data types, or to
customize the behavior of existing operators by changing, for example, their number
of input/output ports or their output logic. Besides defining simple operators, SPL
also enables to combine them in composite ones, which encapsulate more complex
behavior.

In addition, the system exposes two sets of general-purpose APIs that can be used
to build user-defined custom operators. The first is a mixed C++ and Perl API that,
by using a two-steps code generation process, gives them maximum customization
flexibility and execution efficiency [25]. The second is a simpler Java API, based
on runtime reflection techniques rather than code generation. Due to the cost of

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1055

reflection, however, this API is in general less efficient than its C++/Perl counterpart.
Operators built through either API can be exported to reusable toolkits and used
directly within SPL source files.

At compile time, an optional operator fusion process can be manually or automat-
ically started in order to cluster groups of correlated operators. Each group is then
transformed into its corresponding runtime object, called Processing Element (PE),
whose execution is mapped onto an operating system process. Hence, InfoSphere
Streams follows an operator-per-process or cluster-of-operators approach, depending
on whether the fusion step is performed or not. Depending on configuration param-
eters, operators inside the same process are executed by dedicated threads—in this
case they communicate to other in-process operators through message passing—or
by shared threads—in this case they communicate via function calls. At the time
of writing, the only explicit QoS parameter supported by Streams is a loose form
of fault-tolerance, based on checkpointing [32]: periodically or driven by events,
runtime objects can save their current state on secondary memory; whenever a crash
occurs, that state is restored, but all the processing operations performed between
the last checkpoint and the failure are lost.

3.2 Apache S4

Apache S4 [5] is a DSPS initially developed and maintained by Yahoo! [35] and
currently part of the Apache Incubator project umbrella.

In S4 processing graphs, there is no distinction between sources, sinks, and oper-
ators, but all the components are uniformly modeled and called PEs1. PEs can import
streams coming from other applications running on the same platform, process them,
and possibly export output streams either to external destinations or to other appli-
cations concurrently running on the platform. External streams of data (i.e., coming
from sources external to the platform itself) can be transformed into internal streams
by developing and running special S4 applications, called adaptors.

To develop PEs or adaptors, S4 offers its own Java API. Developer create new PE
types by writing classes that inherit from the ProcessingElement superclass,
whose methods are automatically invoked by the framework whenever new samples
to process are available or in a time-driven fashion with customizable rate.

The S4 execution model follows a process-per-server approach: S4 instantiates
a JVM container on each cluster server and PE instances are executed within these
containers. The VM execution threads are not directly associated with PE instances,
but with streams: within a VM container, the platform instantiates one thread for
each stream feeding a hosted PE, and this thread executes all the methods of the PE
instances served by that stream. Very peculiarly, every S4 stream can be optionally

1 Note that, while in IBM InfoSphere Streams (Sect. 3.1) the concept of PE belongs to the execution
model, in S4, it represents an abstract model concept.

1056 P. Bellavista et al.

keyed. In a keyed stream, every data sample has a unique key: the S4 runtime support
dynamically creates a new PE instance for each different key in a stream, so that
every instance processes all the stream samples for one key in a sort of functional map
operation. This allows an easy parallelization of PEs and, consequently, an easy scale-
up mechanism. S4 permits to choose inter-VM (and hence remote) communication
transports among UDP- or TCP-based ones (by default UDP is employed). Similarly
to IBM InfoSphere Streams, the only QoS policy supported by S4 is a weak form of
fault-tolerance based on periodic or event-driven checkpointing of PE state.

3.3 Storm

Storm [44] is a DSPS developed by BackType and recently released under the Eclipse
Public License by Twitter after its acquisition of BackType. As IBM InfoSphere
Streams and Apache S4, Storm is based on the processing graph abstract model
presented in Sect. 2.1. In the Storm model, data sources are called spouts and op-
erators bolts; there is no explicit concept of sink, but destinations can be realized
through bolts themselves since they can perform arbitrary actions on received samples
(including saving them on files or forwarding them to external systems).

According to the Storm development model, the main method to define new
spouts and bolts is through a Java API. As in Apache S4, in Storm, custom bolts and
spouts are defined by writing classes that extend specific base classes, which, in turn,
provide basic functionalities to newly built components. Graph instances are defined
by creating instances of component classes and by defining their connection edges
via specific API calls.

The Storm execution model is rather articulated. There are three parameters that
influence how a particular graph is instantiated on the hosting platform, i.e, (i) the
number of worker processes, (ii) the number of per-component tasks, and (iii) the
number of per-component threads. The first parameter determines the total number
of processes instantiated in the Storm cluster; the second, associated with every
spout or bolt, determines the number of instances per component (also called tasks
in Storm terminology) instantiated across all the cluster; the third determines the
total number of threads dedicated to serve a component’s set of tasks. At runtime,
every worker is instantiated in a different Java VM, which can host one or more
tasks (and execute one or more threads) from the same application. When multiple
tasks for a single component are running, the routing of stream samples to different
component instances is based on a further parameter, configurable at development
time, which determines a grouping policy: for example, samples can be randomly
shuffled among tasks for load balancing purposes, or can be routed using a modulo
hashing of some sample fields.

Very peculiarly, Storm puts a strong focus on fault-tolerance by optionally pro-
viding at-least-once processing semantics: this means that it guarantees that every
sample produced by any of the graph spouts is processed at least once. To do so, for
each root sample (i.e., a sample generated by a spout), Storm keeps track of all the

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1057

samples whose creation has been caused by its processing, and buffers it until all
the tracked samples are acknowledged by their final destinations. Given the highly
customizable nature of stream processing functionalities, Storm is not able to au-
tomatically keep track of caused by relationships between samples, but it requires
explicit developer intervention for that: at code-level, in fact, Storm developers have
to explicitly mark every new sample as caused by another sample if willing to avail
of Storm fault-tolerance facilities.

4 QoS-Aware Stream Processing

In every kind of IT infrastructure serving mission-critical application scenarios, such
as healthcare, finance, or transportation, it is very important that services behave in
conformance to a well-defined Service Level Agreement (SLA) that determines the
required QoS level. An SLA normally puts constraints on the functional behavior
of the service (e.g., it should produce all and correct results in normal conditions)
but also, and more importantly, constraints on how the service is expected to behave
according to a set of performance indicators (non-functional requirements). The
range of possible performance indicators is, in general, very large and application-
dependent: two common and simple examples are latency—measuring the maximum
time interval between a service request and the corresponding response—or avail-
ability—measuring the fraction of time the service generates correct results, even in
spite of possible failures. Other indicators can refer to lower-abstraction details of the
service, by measuring, for example, platform-specific parameters such as memory or
CPU usage. Every constraint in an SLA that binds a specific performance indicator
to some value is said to represent a QoS policy for the service.

In general, the implementation of QoS-aware services, i.e., services that are guar-
anteed to deterministically operate according to a set of associated QoS policies, is
a very difficult task, and maps to the ability of the runtime platform to allocate (both
statically and dynamically) the proper amount of computational resources where
they are needed to satisfy the specified quality requirements. The technical chal-
lenge is even harder in the case of stream processing applications. In fact, differently
from simple request-response or batch-oriented processing scenarios, where charac-
teristics of computational tasks are known a-priori and thus easier to reason about,
in stream processing, the properties of input streams (e.g., their data rate) change
continuously and their behavior is not completely known in advance and difficult to
predict. The consequent high variability in the load that applications have to sustain
during long provisioning times, makes it very challenging to implement effective
and adaptive resource scheduling techniques.

Nonetheless there is a growing number of real-world applications that has to deal
with the analysis of large data streams and that requires, at the same time, predictable
performance guarantees. This is often the case in Smart City scenarios, where a
common goal is to use the results of stream analysis to trigger real-time feedback
actions on real-world aspects of the city itself and of the urban life. These actions

1058 P. Bellavista et al.

can be responses to emergency conditions, such as the activation of alarms in smart
telecare systems [45], or the computation of emergency rescue plans in a smart traffic
management system [22], which must be performed in a timely and reliable fashion.
To better emphasize the importance of properly handling application-specific QoS
requirements, let us briefly expand on this second scenario.

Consider a Traffic Management System (TMS) deployed in a Smart City. In this
system every car periodically reports its position and speed to ad-hoc collection
points using vehicle-to-vehicle and vehicle-to-infrastructure communications [34].
In their turn, each collection point relays these data to the data center-hosted stream
processing application that processes these data in order to realize the TMS services.
The TMS generally has the following three high-level functions:

• Traffic flow control. By analyzing short term and long term variations in car speeds
along different roads, the system adapts the traffic lights timings to current road
network conditions.

• Management of road emergencies. In case of car accidents, the vehicles involved
and other cars passing immediately route messages about the event to on-road
collection points, which, in their turn, relay them to the data center application.
By analyzing these messages, the TMS detects the emergency condition, notifies
the appropriate emergency service (e.g., ambulances), and tries to adapt the traffic
flow to the new conditions, for example, by suggesting alternative navigation paths
to other drivers (see next point).

• Real-time navigation. Cars traveling in the city can query the TMS for advanced
navigation services. The system will answer with an always up-to-date route that
takes into account road load conditions and possible emergency situations.

The three tasks of the TMS service, although based on the same input data streams,
have very different quality requirements. For example, the traffic light timers must be
promptly and quickly adapted to new road load conditions, meaning that the related
processing actions should be performed with bounded latency. Similarly, processing
of emergency notifications should be performed within deterministic time limits,
in order to allow immediate rescue actions to take place. For the same reason, the
management of all the emergency situations must take priority over other computa-
tions; this is especially useful during periods of high computational load (e.g., during
traffic peaks) when the available DSPS resources might not be enough to satisfy all
the processing flows. Accident notification messages should be transferred and pro-
cessed reliably becuase the consequences of information loss can be very severe.
On the other hand, the analysis of vehicles’ position and speed to determine road
load conditions can be performed best-effort: the related processing tasks can be
executed with lower priority; in addition, data loss can be largely tolerated in this
case given the implicit spatial and temporal information redundancy present in the
corresponding data streams.

This simple but, we believe, very representative example shows how important can
be for DSPSs to provide a rich and native support for QoS-aware stream processing.
By using this type of support, developers of Smart City applications could focus
their attention on application-level modeling and implementation problems, while

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1059

delegating the realization of complex QoS enforcing mechanisms to the underlying
DSPS. However, to the best of our knowledge, the most widely used and state-of-the-
art DSPSs have only limited QoS-based configuration capabilities, which in most
cases include only the selection of various reliability mechanisms (see Sect. 3).

On the contrary, we claim that QoS should be introduced as a first class concept in
DSPSs at all the three abstract, development, and execution layers of our model. QoS
in the abstract model should permit to specify, with different levels of granularity,
the QoS policies required for graphs, single components, or groups of components
directly in the application models. At this layer, different DSPSs should define their
own quality-related vocabulary and determine which are the performance aspects
controllable through their QoS policies, to which specific components they can ap-
ply, and how they interact with each other. QoS in the development model should
define the programming constructs (either as extensions of ad-hoc stream processing
languages or as specific APIs for general-purpose languages) that can be used to an-
notate application code with the quality requirements expressed at the model level.
Finally, QoS in the execution model should support the execution of applications
specified according to the other two layers. In this layer, each different DSPS should
map different QoS policies to different mechanisms for runtime admission, monitor-
ing, enforcement, and management, and should develop proper resource scheduling
algorithms to satisfy the required QoS specifications.

In the following section, as a practical example of this kind of approach, we
introduce Quasit, an original DSPS designed and implemented by following the
above QoS-related guidelines.

5 Quasit

Quasit [10, 11] is a distributed stream processing system whose main design goal is
to support QoS-aware stream analysis. To do so, it incorporates the concept of QoS
at all the abstract, development, and execution model layers. Quasit is designed to
run on large data centers made of commodity hardware, exploiting all the available
processing power, and automatically handling various types of failures.

The Quasit abstract model is based on the processing graph concepts presented
in Sect. 2.1. Originally, every element in Quasit processing graphs, called streaming
information graphs (SIGs) in Quasit terminology, can be augmented with a QoS
specification (a collections of QoS policies applied to that element); collectively,
QoS specifications are used to dynamically adapt to variable load conditions and to
the quality requirements of different parts of the stream processing flow. The Quasit
development model is based on a simple Scala API, which lets developer (i) write,
compose, and reuse custom operators, sources, and sinks, (ii) arrange components in
SIGs to deploy on the infrastructure, and (iii) define the required QoS configurations
for components, channels, or graphs as a whole. The API is designed to support
a functional-like programming style that clearly separates operator behavior and
state, thus making it easier for the runtime to support advanced QoS provisioning

1060 P. Bellavista et al.

strategies. The Quasit runtime model maps the SIG components to runtime objects
that run on all the available data center resources, and implements the set of QoS
mechanisms that make it possible to execute application SIGs while enforcing their
QoS requirements.

In the following subsections, we will concentrate on the three model-levels and
overview the main ideas behind Quasit QoS-aware stream processing.

5.1 Quasit Abstract Model

The basic modeling unit in Quasit is the Streaming Information Graph (SIG), a
weakly connected acyclic and directed graph representing the transformations that,
applied to one or more input streams, produce an output data stream. Similarly to
the model described in Sect. 2.1, three kinds of nodes can be used in a SIG graph
i.e., operators, data sources and data sinks.

SIG nodes and edges can be labeled with QoS specifications, which define non-
functional configuration parameters or constraints. Depending on the type of node or
edge, a QoS specification can consist of several QoS policies, each policy influencing
a different quality aspect. For example, through QoS specifications on SIG edges, it
is possible to control the characteristics of the protocol used to exchange data among
nodes they connect, or, through QoS Specifications on operator nodes, it is possible
to configure their reliability guarantees.

The processing core of the Quasit abstract model is the simple operator
component, whose structure is shown in Fig. 3.

A simple operator can be stateless or stateful. When stateful, the operator process-
ing behavior is defined by the combination of the value of its state and its processing
function; when stateless, by the processing function alone. The processing function
is executed asynchronously whenever a sample from any of the operator input ports
is available and its result may depend on the current value of the operator state. The
role of the processing function is to describe how input streams are combined to pro-
duce an operator’s output stream, and, if necessary, to update the operator internal
processing state.

Quasit also allows to combine operators into more complex ones, by defining com-
posite operators: existing operators (either simple or composite) can be arranged in
a special SIG type, called operator definition SIG (OD-SIG), whose source and
sink nodes are virtual, i.e., they do not correspond to real streaming data produc-
ers/consumers. Quasit defines a mapping between this kind of SIG and the associated
composite operators: each data source in the OD-SIG defines a typed input port of
the composite operator, and the data sink in the graph determines the type of the
operator output port. Without digging into formal details, the behavior of a com-
posite operator is defined by the internal structure of its defining OD-SIG: when a
sample arrives to an input port of the composite operator it is processed as if it was
processed by the OD-SIG operators graph. This composition mechanism provides

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1061

Fig. 3 Structure of a Quasit simple operator

an easy way to create new complex processing functionalities in terms of simpler
ones, and promotes sharing and reusing existing and well-tested components.

5.2 Quasit Development Model

Quasit offers a very simple Scala API to let developers write their stream processing
applications, create new data sources, data sinks and operators (either simple or
composite), arrange components in SIGs, and associate QoS specifications to SIG
elements.

In order to define new components, developers write descriptor classes that con-
tain all the information that the framework needs to instantiate component instances
at runtime. Depending on the type of component (i.e., source, sink, simple or com-
posite operator), the descriptor class must extend an appropriate superclass which
acts as a sort of “template” for the new descriptor. For example, operator descrip-
tor classes must inherit either from StatefulOperatorDescriptor[O,S]
or StatelessOperatorDescriptor[O], depending on whether the operator
needs to maintain some state between subsequent processing operations or not. Any
component descriptor class must implement the appropriate life-cycle methods that
are asynchronously invoked when relevant events occur. For example, an operator

1062 P. Bellavista et al.

Fig. 4 A Quasit SIG implementing a simple, comm-like application

descriptor class must implement the processingFunction method, which realizes the
main operator processing logic. This method, in fact, is called whenever samples are
available at any operator input port. If the operator is stateless, the optional return
value of the processing function is a list of samples to produce in the operator output
stream; otherwise, it is a pair of objects, the first being a list of output samples, the sec-
ond (optional) the new state the operator should transition to. A SIGDescriptor
describes how components are arranged in the processing graph. It lists instances of
component descriptors and the edges that connect them. While instantiating compo-
nent descriptors, edges, or SIG descriptors, it is possible to associate to each of these
elements specific QosSpecification objects, which will be used by the Quasit
runtime to enforce the required quality levels.

Let us see, with a brief concrete example, how it is possible to create component
descriptors and arrange them in SIGs. To keep the discussion self-contained we will
consider a very simple scenario, where two sources continuously read lines each from
a different file, tokenize them into words and send them to an operator (henceforth
referred to as the comm operator) that determines and outputs words found in both
the input files; this application can be thought as a sort of distributed and scalable
implementation of the UNIX comm utility. A representation of the corresponding
SIG is shown in Fig. 4.

Listing 1 shows how the descriptor class for the comm operator is de-
fined. CommOpDescritpor inherits from StatefulOperatorDescriptor
[WordMsg,Map[String,Short]]. The two type parameters passed to the base
class (i.e., WordMsg and Map[String,Short] respectively represent the output
type of comm operators and the type of their processing state. In fact, WordMsg is a
simple container for words, while the state of a comm operator is a map that associates
every word ever met with three possible values: one, if the word has been found on the
first source only, two, if the word has been found on the second source only, and three

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1063

if it has been found on both. Every instance of CommOpDescriptor has to spec-
ify two parameters, i.e., a symbolic name and an instance of OperatorQosSpec
that will determine the set of QoS policies associated to the operator instance. Lines
3–7 determine the parameters passed to the StatefulOperatorDescriptor
constructor; in particular, it is interesting to pay attention to the definition of the two
operator input ports and their types (line 5) and to the definition of the operator initial
state, i.e., an empty map (line 7). The comm operator processing function is defined
from line 10 to line 15: by leveraging the expressiveness of Scala partial functions,
it is possible to express the actions to perform in case a sample is received from the
first data source (‘‘data1’’ port) or the second one (‘‘data2’’ port) very concisely.
The private function processWord (line 17, determines the actual behavior of the
operator, and the return values of its processing function. Note that, for example,
once a word is found in both sources, a sample is produced on the output and the
operator state updated accordingly (line 33).

1 class CommOpDescriptor(name: String, qos: OperatorQosSpec)

2 extends StatefulOperatorDescriptor[WordMsg,Map[String,Short]](

3 name, qos,

4 // Define the operator ports

5 Map("data1" -> classOf[WordMsg], "data2" -> classOf[WordMsg]),

6 // The initial state of the operator is an empty map

7 Map[String,Short]()) {

8

9

10 override def processingFunction = {

11 case (msg: WordMsg, "data1", state: Map[_,_]) =>

12 processWord(msg.word, 1, state)

13 case (msg: WordMsg, "data2", state: Map[_,_]) =>

14 processWord(msg.word, 2, state)

15 }

16

17 private def processWord(word: String, srcMask: Short,

18 state: Map[String, Short]):

19 (Option[WordMsg], Option[Map[String,Short]]) = {

20

21 val wordState = state.get(word)

22 wordState match {

23 case None =>

24 // There is no entry in the map

25 val newState = state + (word -> srcMask)

26 // Produce no output but a new state

27 (None, Some(newState))

28 case Some(mask) =>

29 if ((mask & srcMask) != 0) { // already seen from this source

1064 P. Bellavista et al.

30 (None, None)

31 } else {

32 val newState = state + (word -> 3.toShort) // seen from both

33 (Some(new WordMsg(word)), Some(newState))

34 }

35 }

36 }

37 }

Listing 1: Definition of a simple Quasit operator.

Listing 2, instead, shows how to instantiate operator descriptors and how to represent
a SIG through a SIG descriptor. First, in lines 3 and 4, the two source descriptors
are instantiated, pointing to the input files. After that, in lines 7–11, the comm
operator descriptor instance is instantiated as well; notice that it is explicitly given
the name‘‘commOp’’ and that it is assigned a queuing QoS policy, which determines
the type of queues used to buffer the operator input samples. After instantiating a
file sink (line 14), the actual SigDescriptor instance is created in lines 18–29.
The SIG descriptor instance is given a unique name, and the graph components are
listed one by one through references to their descriptors. Graph edges connecting
components are described through a sequence of triples (line 23), each defining an
edge through its source node, its target node, and the QoS specification associated to
the corresponding stream channel (default in this case). Finally, the SIG descriptor is
associated with a SIG-wise QoS specification (lines 28–29): in this particular case,
a fault-tolerance related policy, called internal completeness, is requested. As we
will see in more detail in Sect. 6, this policy trades off perfect resiliency to failures
and the ability to handle load spikes, while steel guaranteeing that a given fraction
of samples are correctly processed (in the example, 70 % of the samples).

1 def main(args: Array[String]): Unit = {
2 // Instantiate the data source descriptors
3 val src1 = new FileSourceDescriptor("src1", "/pathto/f1")
4 val src2 = new FileSourceDescritpr("src2", "/pathto/f2")
5
6 // Instantiate a CommOp descriptors
7 val comOpA = new CommOpDescriptor("commOp",
8 OperatorQosSpec().withPolicy(
9 QueingPolicy(QueueingPolicy.Unbounded,
10 QueueingPolicyKind.Fifo)),
11)
12
13 // Instantiate the sink
14 val sink = new FileNativeSink[WordMsg]("sink",

DataSinkQosSpec(),
15 "/pathto/comm.txt")
16
17 // Define the graph
18 val sig = SigDescriptor(

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1065

Fig. 5 Distributed architecture of a Quasit domain

19 name = "CommSig",
20 dataSources = Seq(src1, src2),
21 dataSink = sink,
22 operators = Seq(comOpA),
23 edges = Seq(
24 ("src1" -> "commOp", "data1", ChannelQosSpec()),
25 ("src2" -> "commOp", "data2", ChannelQosSpec()),
26 ("commOp" -> "sink", ChannelQosSpec()))
27)
28).withSigQosSpec(SigQosSpec()
29 .withPolicy(FTPolicy(FTPolicy.IC, 0.7)))

30
31 ...
32 }

Listing 2: Creation of a SIG descriptor instance.

1066 P. Bellavista et al.

5.3 Quasit Execution Model

The Quasit abstract model, combined with the corresponding development model,
offers a flexible and intuitive way to express stream analysis needs through the
composition of small processing stages, and allows to customize these stages by
means of several QoS policies. The Quasit execution model supports the execution
of Quasit components at runtime by leveraging the computing power of a cluster of
commodity computers within large-scale data centers.

A running Quasit deployment is called domain. A domain handles the distributed
and QoS-aware execution of one or more user-defined SIGs. Similarly to other scal-
able data processing architectures (e.g., [20, 24, 31, 44]), the distributed architecture
of a Quasit domain follows the master-workers pattern, with a central component with
management and monitoring responsibilities and several distributed nodes perform-
ing the actual data processing operations. Figure 5 shows the three core distributed
components running in one Quasit domain:

• Several Quasit Runtime Nodes (QRN), the workers;
• One Quasit Domain Manager (QDM), the master node;
• One optional Quasit Operator Repository (QOR).

The main QoS-aware execution services of our Quasit framework are provided by
the co-operation of the QRN and QDM components. A typical Quasit deployment
includes one QDM node and a cluster of QRN nodes, usually interconnected by a
high-speed local area network (LAN). A QRN is in charge of providing the execution
environment for Quasit simple operators and implement threading, networking, and
local QoS management services. The QDM has management and control responsi-
bilities over a Quasit domain. It does not take any direct role in stream processing
tasks: for this reason, its centralized architecture does not represent a relevant bot-
tleneck to the overall system scalability. Finally, the QOR is a repository of simple
and composite operator types, and users can use its services to publish their operator
definitions and to search for previously published ones.

In the current Quasit prototype implementation, every cluster server hosts one
QRN, which is executed within a Java Virtual machine process (i.e. process-per-
server model). Within this JVM, operator instances are modeled as distributed actors
[3] managed by the Akka Actors framework [27]. All the actors running within the
same JVM are managed by a pool of threads of configurable size, which executes
operators processing functions at need, i.e., when there are samples to process at their
input ports. This threading schema gives tremendous flexibility because it permits
easily implementation of custom scheduling strategies, such as, for example, priority-
based ones.

Operators deployed on different QRNs are connected via channels realized by
leveraging the OMG DDS standard for high-performance PUB/SUB data exchange
[36, 37]. Concretely, the PUB/SUB communication module maps the output port
of every stream source (either operator or data source) to a unique destination topic
and, symmetrically, every input port (of either an operator or a data sink) to a topic

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1067

subscription. This solutions provides, at the same time, (i) strong decoupling be-
tween data producers and consumers, (ii) reduced space and time overhead thanks
to the very efficient serialization mechanisms of the DDS middleware, and— most
importantly— (iii) possibility to exploit the very fine-grained control of low-level
QoS-related parameters that the DDS standard permits to associate with its topics,
readers, and writers.

QoS policies defined at model-level on Quasit SIGs are enforced at runtime thanks
to a two level QoS-management architecture, realized through the interaction of one
domain QoS manager, running within the QDM, and several node QoS managers,
one for each QRN. The domain QoS manager performs global admission control and
QoS-based system configuration, while node QoS managers leverage the computa-
tional resources of the QRNs on which they execute to implement and enforce the
requested QoS policies on locally running operators and I/O ports.

6 Load-Adaptive Active Replication (LAAR)

We have seen that the nature of stream applications poses several different and hard
challenges to platform providers, including the ability to offer, at the same time, per-
formance elasticity in spite of load variations, and resiliency to failures, while keeping
costs limited. Handling load fluctuations due to sudden and possibly temporary vari-
ations in the data rates of input streams is a very complex task: in general, it maps
to the ability to plan and allocate, statically and—more importantly—dynamically,
the available computing resources to different parts of the hosted applications.

As stream processing applications usually run for (indefinitely) long time intervals,
failures become very likely to occur. Many proposals in the literature have inves-
tigated possible fault-tolerance techniques—including active replication [14, 43],
checkpointing [15, 32], replay logs [9, 28], or hybrid solutions [47] — each provid-
ing different trade-offs between best-case runtime cost and recovery cost. Whichever
the adopted technique, maintaining some form of replication at some level (soft-
ware/hardware components, state, or messages) imposes non-negligible overhead in
terms of computing and communication resources.

In this section we present a possible solution to deal with temporary load variations
in stream processing applications. This original approach trades off reliability guar-
antees and execution cost in actively replicated stream processing applications by
temporarily claiming computational resources back from the fault-tolerance layer
and by using them to handle possible load spikes. Our technique, called LAAR
(Load-Adaptive Active Replication) [12, 13], dynamically deactivates and activates
redundant replicas of processing components in order to claim/release resources and
accommodate temporary load variations. At the same time, LAAR provides a-priori
guarantees about the achievable levels of fault-tolerance, expressed in term of an
internal completeness metric that captures the maximum amount of information that
can be lost in case of failures.

1068 P. Bellavista et al.

Fig. 6 A simple processing scenario. On the left, the application graph. On the right, concise
characteristics of the application and of its data source

LAAR builds on top and significantly extends existing static replication techniques
that have been previously proposed for DSPSs [28]: for every component in the
application processing graph, k replicas are deployed at runtime. At any moment in
time, one of the k replicas of each component has the role of primary, the others
are called secondary. Primary and secondary replicas all receive samples from the
primaries of their predecessors, and all process them advancing through the same
sequence of internal states. However, only the primary outputs samples to the replicas
of its successors. LAAR continuously monitors the input rate of application sources.
It automatically activates and deactivates replicas in order to satisfy two goals:

1. The application deployment is never overloaded;
2. The internal completeness constraint expressed in the SLA is satisfied.

For the sake of simplicity, an application deployment is said to be overloaded when,
for any host, the total CPU cycles per second that would be needed to execute the
components assigned to it is greater than the available CPU cycles per second. Note
that, in an overloaded system, samples accumulate at operator or sink input queues
(increasing latency) and are eventually dropped when the corresponding buffers fill.

Let us illustrate the basic intuition upon which our approach is based in a minimal
application scenario. Consider the application in Fig. 6: it consists of two operators
connected in a very simple pipeline; the first operator (O1) processes data from a
single data source (not reported in the figure for the sake of simplicity) and forwards
its output to O2, which, in turn, sends the results of its computations to an external data
sink (also not depicted in the figure). The selectivity of both operators is 1, meaning
that for every received input sample they produce one output sample; moreover, it
takes 100 ms for both operators to process an incoming sample, considering the
CPU architecture of the hosts where the application is going to be deployed. The
single data source can produce samples at two different rates, “Low” and “High”:
the “Low” rate is 4 samples per second and is active on average for 80 % of the time
(0.8 probability), while the “High” rate is 8 samples per second and is active in the
remaining time intervals (0.2 probability).

The application is replicated and deployed on two servers, each hosting a copy
of each operator, as shown in Fig. 7a. It is straightforward to see that, when the
input configuration is “Low”, 80 % of the CPU time available at both hosts will be

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1069

a b

Fig. 7 a Replicated deployment of the application of Fig. 6 on two hosts. b Dynamic deactivation
of replicas by LAAR during a “High” input configuration

occupied for processing samples. More importantly, when the input configuration is
“High”, the application would need 160 % of the total CPU time available, which—of
course—is available only by adding extra resources to the deployment environment
(with an increased cost).

The basic idea behind LAAR is to monitor the data sources and, according to the
current data rates, dynamically deactivate replicas in order to release the resources
necessary to face load variations. Figure 7b, for example, shows how LAAR could
deactivate replicas of O1 and O2 during a load peak, so that the total CPU available
will become enough to handle the new load.

Figure 8a and b show this behavior in a real stream processing deployment. We im-
plemented and executed the replicated pipeline stream processing application shown
in Fig. 7a on a deployment environment consisting of two servers equipped with a
single core CPU. Figure 8a shows the execution of the application using static active
replication: when the input passes to the “High” configuration (around 50 s from the
beginning of the experiment), the CPU of the two hosts saturates, and the output is
not able to keep up with the input rate; on the contrary, Figure 8b shows how, by
temporarily deactivating replicas during the “High” input configuration, it is possible
to save enough resources to allow the output stream to follow the input.

Obviously, if a failure of one of the active operators occurred during a “High”
period, part of the input would not be processed as expected. However, the unique
and strong aspect of LAAR is its ability to quantify a-priori these effects on the
overall application reliability. As anticipated, LAAR defines the concept of internal
completeness, a metric that tries to capture the amount of samples that are guaranteed
to be processed in a pessimistic failure scenario, i.e., a scenario where all the active
operator replicas fail. Without digging into formal details, the Internal Completeness
metric (IC) is defined as follows:

IC(s) = no. of samples processed in a pessimistic failure scenario P

no. of samples processed with no failures
(1)

1070 P. Bellavista et al.

a b

Fig. 8 a CPU time used by the two couples of replicated operators—top—and corresponding input
and output rate—bottom. b CPU time and input/output data rate when O1 replica 1 and O2 replica
0 are deactivated by LAAR

where s represents a particular replica activation strategy, which associates the
activation/deactivation status of application operators to each possible input rates
configuration. For instance, in the example scenario presented above, during a pe-
riod of T seconds and in absence of any failure, the application would process a
total of T (0.8 · 8 + 0.2 · 16) samples (considering both operators). On the contrary,
considering a very pessimistic failure scenario P, where the active replica of each
operator (respectively O1, 1 and O2, 2) is crashed all the time, the total number of
samples processed would be T (0.8 · 8 + 0), for a total IC value of 6.4

9.6 = 0.6. This
means that, even in case of failures, at least 60 % of the total processing operations
would be correctly performed.

However, finding a replica activation strategy that, at the same time, is able to
keep the system in a non-overloaded condition despite load variations and to satisfy
a user-defined IC requirement while keeping costs limited, is a very hard problem,
especially when the processing graphs are much more complex than the one presented
before. In order to solve this problem, LAAR performs a static optimization phase
where the problem is modeled as a Mixed Integer Programming (MIP) instance.
Although a precise formal description of the problem model is out of the scope of
this chapter, in the following we sketch its formulation, in order to help the readers
understand the main ideas behind the approach.

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1071

minimize
s

cost (s) (2)

subject to:

IC(s) ≥ SLA Constr. (3)

load(h, s, c) < Thres. ∀ server h and input conf. c (4)

nreplicas(o, s, c) ≤ 1 ∀ operator o and input conf. c (5)

In the equations above, the cost function in the minimization term represents the cost,
in terms of resources (e.g., CPU, memory, and bandwidth), for a service provider
to run the application during a billing period of length T using replica activation
strategy s. Equation 3 constraints IC to satisfy the value required in the application
SLA, while Eq. 4 states that each host in the deployment should never be overloaded.
Thres. is a constant expressing the number of CPU cycles per second available at the
deployment servers. The last constraint, expressed in Eq. 5, requires that there is at
least one active replica of every operator in every input configuration, to ensure that
the measured IC value is always one in absence of failures.

To have a rough idea of the complexity of the above problem, consider that the
solution space has a size that is exponential in the number of operators, number of
replicas per operator, and number of possible input configurations. In addition, the
computation of IC values, resource usage, and server load levels require exponential
time with respect to the number of operators, since they depend on the number of
samples processed by different operators in different configurations, which in turn
recursively depend on the number of samples processed by their predecessors. To
deal with this complexity, LAAR solves the problem using an original constraint
programming based algorithm, called FT-Search, that is able to find optimal or sub-
optimal solutions to problem instances of reasonable size (i.e., graphs with tens of
operators) in limited time, largely compatible with practical industrial data center
constraints and application-specific requirements.

After having found solutions to the above optimization problem before appli-
cation deployment time, LAAR performs its dynamic replica activation operations
at runtime by inserting a special operator in the application graph, which continu-
ously monitors the input rates and, according to the measured values, sends ad-hoc
activation/deactivation commands to operator replicas.

If compared to active replication techniques, LAAR is able to handle load spikes
by completely avoiding increased latency or sample drops due to full operator buffers.
Moreover, by using weaker fault tolerance specifications through the IC metric, it can
also reduce the cost of running stream processing applications proportionally to the
required fault-tolerance guarantees. A large corpus of experiments, performed on a
LAAR implementation built on top of IBM InfoSphere Streams and executed on a 60
cores IBM BladeCenter Cluster deployment, confirms the above claims. In particular,
we have executed 100 different artificially generated stream processing applications
using four different fault tolerance techniques. A No Replication (NR) approach
runs the streaming applications without instantiating any operator replica. A Static
Replication (SR) approach creates two replicas for each operator and keeps them

1072 P. Bellavista et al.

Fig. 9 Comparison of the
different replication
strategies; average values
normalized w.r.t. SR

active all the time, independently on the input configuration. The LAAR replication
approach uses the previously described techniques to run the streaming applications
with three different IC requirements, 0.5, 0.6, and 0.7 (labelled L.5, L.6 and L.7,
respectively). Finally, a greedy (GRD) approach uses techniques similar to those
adopted by LAAR, but instead of deactivating replicas according to the results of a
static optimization phase, it uses a simple runtime heuristic (i.e., it deactivates the
most resource greedy component first).

Figure 9 shows a concise summary of the results collected in these experiments,
by showing the average numbers of samples dropped, the average IC value achieved,
and the average cost of different replication strategies as a fraction of the same values
measured using the SR approach. It is immediate to see that, by using LAAR, it is
possible to control the desired IC guarantees to directly influence the associated
deployment cost, which is considered highly valuable and relevant in many business
application scenarios.

7 Conclusions

The interest around the Smart City paradigm has been growing at an increasing
pace in the last years and it is very likely that, thanks to the technical advances in
computing devices and wireless, mobile, and wearable sensing, it will continue to
grow in the next years. The efficient and effective exploitation of the unprecedented
amounts of real-world data generated and injected every day inside IT infrastructures
is a crucial step toward a real improvement in people’s quality of life through smart
computing technologies. In this context, DSPSs are a key technology for their ability
to analyze information “on-the-fly” and produce continuous feedback that can be
exploited to adapt real-world processes to their dynamically varying conditions.
The tremendous heterogeneity of data and applications, together with their often
unpredictable dynamic requirements, pose additional challenges for these systems.
Developers of stream processing applications should be allowed to express, in a
flexible way, the QoS requirements of their application scenarios, and DSPSs should

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1073

understand these requirements and automatically adapt their internal mechanisms
to meet them in a way that is as much transparent as possible to the streaming
applications and their logic. However, only a few modern DSPSs expose QoS-based
customization features, and, in most cases, their are not first-class elements in all
the three abstract, development, and runtime models, oppositely from the role we
believe they should have. At the best of our knowledge, Quasit represents the most
prominent exception, by allowing to express and enforce a large variety of QoS
policies at each of the three levels.

We claim that future research on DSPSs should focus on QoS-related open issues
with much stronger attention. In particular, it should: (i) improve the existing stream
processing models to give application developers the opportunity to integrate rich
QoS requirements in their applications; (ii) study efficient mechanisms to implement
QoS policies on large scale deployments of DSPSs inside data centers. About this last
point, a particularly promising research direction is the development of a novel class
of weak or probabilistic QoS requirements that, in contrast with more traditional
strong requirements, give runtime platforms additional degrees of freedom in their
enforcement and more possibilities to adapt to highly variable system workloads. We
believe (and the first preliminary results already collected are confirming our claim)
that the internal completeness reliability metric adopted in the LAAR replication
technique well represents this new class of QoS requirements for stream processing
applications.

Acknowledgements We would like to thank the IBM Research Dublin Lab, and in particular
Spyros Kotoulas, for his valuable work and feedback on LAAR (overviewed in Sect. 6), designed
and implemented within a joint research collaboration.

References

1. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M.,
Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data stream management. The
VLDB Journal, 12, 2, pp. 120–139 (2003).

2. Abadi, D.J., Ahmad,Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.-H., Lindner,
W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The Design of the
Borealis Stream Processing Engine.Proceedings of the 2nd Biennial Conference on Innovative
Data Systems Research (CIDR). IEEE, Asilomar, CA (2005).

3. Agha, G. A.: Actors: a model of concurrent computation in distributed systems, Ph.D.
dissertation, Artificial Intelligence Laboratory, Cambridge MA, USA (1985).

4. Amini, L., Andrade, H., Bhagwan, R., Frank Eskesen and Richard King and Yoonho Park and
Chitra Venkatramani: SPC: A distributed, scalable platform for data mining. Proceedings of
the Workshop on Data Mining Standards, Services and Platforms (DM-SS 2006). pp. 27–37.
ACM, Philadelphia, PA (2006).

5. Apache S4 Project Web Site. Available, http://incubator.apache.org/s4. Last visited in
September 2013.

6. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Ito, K., Motwani, R., Srivastava, U., and
Widom, J.: STREAM : The Stanford Data Stream Management System, Technical report,
Stanford InfoLab (2004).

1074 P. Bellavista et al.

7. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations
and query execution. The VLDB Journal. 15, 2, pp. 121–142 (2005).

8. Avnur, R., Hellerstein, and J.M.: Eddies: continuosly adaptive query processing. Proceedings
of the ACM SIGMOD international conference on Management of data (SIDMOD 2000).
pp. 261–272. ACM, Dallas, TX, USA (2000).

9. Balazinska, M., Balakrishnan, H., Madden, S.R., Stonebraker, M.: Fault-tolerance in the
borealis distributed stream processing system. ACM Trans. Database Syst. 33, 1, Article 3, 44
pages (2008).

10. Bellavista, P., Corradi, A., Reale, A.: The QUASIT Model and Framework for Scalable Data
Stream Processing with Quality of Service. Proceedings of the 5th International Conference
on Mobile Wireless Middleware, Operating Systems, and Applications (MOBILWARE 2012).
Springer Berlin-Heidelberg, Berlin, Germany (2012).

11. Bellavista. P., Corradi, A., Reale, A.: Design and Implementation of a Scalable and QoS-aware
Stream Processing Framework: the Quasit Prototype. Proceedings of the IEEE International
Conference on Cyber, Physical and Social Computing (CPSCOM 2012). IEEE, Besançon,
France (2012).

12. Bellavista. P., Corradi, A., Kotoulas, S., Reale, A.: Dynamic datacenter resource provisioning
for high-performacne distributed stream processing with adaptive fault-tolerance. Proceedings
of the 14thACM/IFIP/USENIX International Middleware Conference—Demo & Poster Track,
ACM, Beijing, China (2013).

13. Bellavista. P., Corradi,A., Kotoulas, S., Reale,A.:Adaptive fault-tolerance for dynamic resouce
provisioning in distributed stream processing systems. Proceedings of the 17th International
Conference on Extending Database Technology (EDBT 2014), ACM, Athens, Greece (2014).
To appear.

14. Brito, A., Fetzerm C., Felber, P.: Multithreading-enabled active replication for event stream
processing operators. In: 28th Symposium on Reliable Distributed Systems, pp. 22–31, IEEE,
Niagara Falls, NY, USA (2009).

15. Cai, Z., Kumar, V., Cooper, B.F., Eisenhauer, G., Schwan, K., Strom, R.E.: Utility-
driven proactive management of availability in enterprise-scale information flows. In:
ACM/IFIP/USENIX 7h International Middleware Conference, Springer, Melbourne, Australia
(2006).

16. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker,
M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data management applications.
Proceedings of the 28th international conference on Very Large Data Bases (VLDB 2002). The
VLDB Endowment, Hong Kong, PRC (2002).

17. Chandrasekaran, S., Shah, M.A., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein,
J.M., Hong, W., Krishnamurthy, S., Madden, S.R., Reiss, F.: TelegraphCQ. Proceedings of the
ACM SIGMOD international conference on on Management of data (SIGMOD 2003). pp. 668.
ACM, San Diego, CA, USA (2003).

18. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.: MapRe-
duce Online. Proceedings of the 7th USENIX conference on Networked systems design and
implementation (NSDI 2010). USENIX Association, San Jose, CA, USA (2010).

19. Cugola, G., Margara, A.: Processing flows of information: From Data Stream to Complex
Event Processing. ACM Comput. Surv.. 44, 3, pp. 1–62 (2012).

20. Dean, J., Ghemawat, S.: MapReduce : Simplified Data Processing on Large Clusters. Commun.
ACM, vol. 51, no. 1, pp. 107–113 (2008).

21. Digital Cities Project Web Site. Available, http://www.digital-cities.eu. Last visited in
September 2013.

22. Djahel, S., Salehie, M., Tal, I., Jamshidi, P.: Adaptive Traffic Management for Secure and Effi-
cient Emergency Services in Smart Cities. Proceedings of the IEEE International Conference
on Pervasive Computing and Communicatino (PerCom 2013)—WiP Session. pp. 340–343,
IEEE, San Diego, CA, USA (2013).

23. EUROCITIES Web Site. Available, http://www.eurocities.eu/. Last visited in September 2013.

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1075

24. Gedik, B., Andrade, H.: A model-based framework for building extensible, high performance
stream processing middleware and programming language for IBM InfoSphere Streams. Softw.
Pract. Exper. 42, 11, 1363–1391 (2012).

25. Gedik, B., Andrade, H., Wu, K.-L.: A code generation approach to optimizing high-
performance distributed data stream processing. Proceeding of the 18th ACM conference on
Information and knowledge management (CIKM 2009). p. 847, ACM, Hong Kong, PRC
(2009).

26. Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanovic, P., Meijers, M.:
Smart cities – Ranking of European medium-sized cities. Vienna UT, Centre of Regional
Science (2007) Available, http://www.smart-cities.eu/download/smart_cities_final_report.pdf.
Last visited in September 2013.

27. Haller, P. and Odersky, M.: Scala Actors: Unifying thread-based and event-based program-
ming. Theoretical Computer Science, vol. 410, no. 2–3, pp. 202–220 (2009).

28. Hwang, J.-H., Balazinska, M., Rasin, A., Çetintemel, U., Stonebraker, M., Zdonik, S.: High-
availability algorithms for distributed stream processing. In: 21st International Conference on
Data Engineering, pp. 779–790, IEEE, Tokyo, Japan (2005).

29. IBM Smarter Cities Project Web Site. Available, http://www.ibm.com/smarterplanet/us/en/
smarter_cities/. Last visited in September 2013.

30. Intel Collaborative Research Institute for Sustainable Connected Cities. Available,
http://www.intel-university-collaboration.net/?page_id=1420. Last visited in September 2013.

31. Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D.: Dryad: distributed data-parallel pro-
grams from sequential building blocks. In: 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems, vol. 41, no. 3, p. 59–72, ACM New York, NY, USA (2007).

32. Jacques-Silva, G., Gedik, B., Andreade, H., Wu, K.-L.: Language level checkpointing support
for stream processing applications. In: 2009 International Conference on Dependable Systems
& Networks, pp. 145–154, IEEE, Estoril, Portugal (2009)

33. Khandekar, R., Hildrum, K., Parekh, S., Rajan, D., Wolf, J.: COLA : Optimizing Stream
Processing Applications Via Graph Partitioning. Proceedings of the ACM/IFIP/USENIX
10th International Middeware Conference. pp. 308–327, Springer Berlin Heidelberg, Urbana
Champagin, IL, USA (2009).

34. Martinez, F., Toh, C.-K., Cano, J., Calafate, C., Manzoni, P.: Emergency Services in Fu-
ture Intelligent Transportation Systems Based on Vehicular Communication Networks. IEEE
Intelligent Transportation Systems Magazine 2,2, pp. 6–20 (2010).

35. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed Stream Computing Platform.
In: 2010 IEEE International Conference on Data Mining Workshops (ICDMW ’10), pp. 170–
177, IEEE Los Alamitos, USA (2010).

36. OMG: Data Distribution Service for Real-time Systems – Version 1.2, Specification. Object
Management Group (2007).

37. Pardo-Castellote, G.: OMG data-distribution service: Architectural overview. Proceedings of
the 23rd International Conference on Distributed Computing SystemsWorkshops, pp. 200–206.
IEEE, Providence, RI, USA (2003).

38. Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D.: SODA : An Optimizing
Scheduler for Large-Scale Stream-Based Distributed Computer Systems. Proceedings of the
ACM/IFIP/USENIX 9th International Middleware Conference. pp. 306–325. Springer Berlin
Heidelberg, Leuven, Belgium (2008).

39. Xing, Y., Zdonik, S., Hwang, J.-H.: Dynamic Load Distribution in the Borealis Stream Pro-
cessor. Proceedings of the 21st International Conference on Data Engineering (ICDE 2005).
pp. 791–802. IEEE, Tokyo, Japan (2005).

40. Xing, Y., Hwang, J.-H., Zdonik, S.: Providing Resiliency to Load Variations in Distributed
Stream Processing. Proceedings of the 32nd international conference on Very large data bases
(VLDB 2006). pp. 775–786. The VLDB Endowment, Seoul, Korea (2006).

41. Safe City Project Web Site. Available, http://www.safecity-project.eu/. Last visited in
September 2013.

http://www.ibm.com/smarterplanet/us/en/smarter_cities/
http://www.ibm.com/smarterplanet/us/en/smarter_cities/

1076 P. Bellavista et al.

42. Smart Cities Stakeholder Platform. Available, http://www.eu-smartcities.eu/. Last visited in
September 2013.

43. Shah, M., Hellerstein, J., Brewer, E.: Highly available, fault-tolerant parallel dataflows. In:
ACM International Conference on Management of Data, pp. 827–838, ACM, Paris, France
(2004).

44. The Storm Project Web Site. Available, http://storm-project.net/. Last visited in September
2013.

45. Tang, P., Venables, T.: “Smart” homes and telecare for independent living. J. Telemed. Telecare.
6, 1, pp. 8–14 (2000).

46. Yang, H.-c., Dasdan, A., Hsiao, R., Parker, D.: Map-reduce-merge: simplified relational data
processing on large clusters. In: Proceedings of the ACM SIGMOD international conference
on Management of data (SIGMOD 2007). pp. 1029–1040, Beijing, PRC (2007).

47. Zhang, Z., Gu, Y., Ye, F., Yang, H., Kim, M., Lei, H., Liu, Z.: A hybrid approach to high avail-
ability in stream processing systems. In: 30th IEEE International Conference on Distributed
Computing Systems, pp. 138–148, Genoa, Italy (2010).

	Part VII Data Services
	Quality-of-Service in Data Center Stream Processing for Smart City Applications
	1 Introduction
	2 Distributed Stream Processing Systems
	2.1 Abstract Model
	2.2 Development Model
	2.3 Execution Model

	3 Platforms for Distributed Stream Processing
	3.1 IBM InfoSphere Streams
	3.2 Apache S4
	3.3 Storm

	4 QoS-Aware Stream Processing
	5 Quasit
	5.1 Quasit Abstract Model
	5.2 Quasit Development Model
	5.3 Quasit Execution Model

	6 Load-Adaptive Active Replication (LAAR)
	7 Conclusions
	References

