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1 Introduction

The increasing amount of information being generated, collected, shared, and dis-
seminated nowadays is making the in-house management of data centers by private
and public companies more and more difficult and economically expensive. The
wide availability of cloud providers offering high-quality services for data storage
and management is then a driving motivation for companies that more often move
their data centers to the cloud. Although this trend has clear economic advantages,
it also introduces novel security issues. In fact, when moving a data center to the
cloud, the data are no more under the direct control of their owner who needs to
rely on an external system for providing the same guarantees as in their in-house
management (e.g., data availability, protection against external attacks, selective ac-
cess to the data, fault tolerance management [32–34, 39]). However, being external
third parties, cloud providers are often assumed to be honest-but-curious, and hence
trusted to correctly manage the data they store but not trusted to access their content.
This situation raises several concerns, especially with respect to the proper protec-
tion of the confidentiality of the data. An effective solution consists in encrypting
the data before outsourcing them so that non-authorized parties (including the cloud
provider), not knowing the encryption key, cannot access the data content in plaintext
[9, 31]. Data encryption before outsourcing presents however some disadvantages.

S. De Capitani di Vimercati (�) · S. Foresti · G. Livraga · P. Samarati
Dipartimento di Informatica, Università degli Studi di Milano,
Via Bramante 65, 26013 Crema, Italy
e-mail: sabrina.decapitani@unimi.it

S. Foresti
e-mail: sara.foresti@unimi.it

G. Livraga
e-mail: giovanni.livraga@unimi.it

P. Samarati
e-mail: pierangela.samarati@unimi.it

© Springer Science+Business Media New York 2015 997
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_33



998 S. De Capitani di Vimercati et al.

Fig. 1 Reference scenario

First, while effectively hiding plaintext data to the eyes of the provider, encrypting all
data with a single key would require either all users to have complete visibility of the
resources in the data collection, or the data owner to mediate access requests to the
data to enforce selective access. Second, encryption complicates query evaluation
since the cloud provider cannot directly evaluate users queries over encrypted data.
Third, in cases where also the queries posed by users need to be protected, encryption
might not provide sufficient protection guarantees.

To overcome such issues, different techniques have been proposed that aim at
supporting selective and private access to outsourced data. These techniques are
based on the use of selective encryption, meaning that different pieces of data are
encrypted with different keys according to who can access them. Indexes are instead
used by cloud providers to select the data to be returned in response to a query,
possibly even without revealing the target of the query itself. While, singularly taken,
these techniques represent effective solutions, the combined adoption of selective
encryption and indexes may cause violations of confidentiality that still need to
be carefully addressed. In this chapter, we present an overview of the techniques
proposed for enabling data to self-enforce the access control policy defined by their
owner, and for supporting query evaluation on encrypted data. Fig. 1 illustrates the
reference scenario where a data owner outsources her data to a cloud provider and
users access such data.

The remainder of this chapter is organized as follows. Sect. 2 shows how encrypted
data can enforce access control restrictions, without requiring the intervention of the
data owner or the collaboration of the storing server. Sect. 3 presents an overview of
the techniques proposed for supporting query evaluation over encrypted data. Sect. 4
describes novel solutions for accessing outsourced data collections without revealing
the target of the query to the storing server. Sect. 5 illustrates the privacy issues arising
when combining solutions for access control enforcement with indexing techniques
and introduces preliminary solutions to this problem. Finally, Sect. 6 presents our
closing remarks.
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2 Access Control Enforcement

The information stored in data centers can be of any type: relational databases,
XML documents, multimedia files, and so on. For simplicity, but without loss of
generality, in this chapter we assume the data stored in the cloud to be organized in a
relational database, with the note that all approaches illustrated in the following can
be easily adapted to operate on any logical data modeling. We then consider a relation
r defined over schema R(a1, . . ., an), where attribute ai is defined over domain Di ,
i = 1, . . ., n. At the storing server, relation r is represented through an encrypted
relation rk , defined over schema Rk(tid, enc), with tid a numerical primary key
added to the encrypted relation and enc the encrypted tuple. Each tuple t in r is
represented as an encrypted tuple tk inRk , where t k[tid] is randomly chosen by the
data owner and t k[enc]=E k(t), with E a symmetric encryption function with key k.

Different techniques have been proposed to enforce access control with the inter-
vention of neither the storing server, for confidentiality reasons, nor the data owner,
for efficiency reasons (e.g., [10, 12, 29]). These solutions are based on the idea that
data self-enforce selective access restrictions through encryption, as illustrated in the
following of this section.

2.1 Selective Encryption

A promising solution for enforcing access control to outsourced data is based on
selective encryption, which adopts different encryption keys for different tuples, and
selectively distributes keys to authorized users. Each user can decrypt and therefore
access a subset of tuples, depending on the keys she knows. The authorization policy
regulating which user can read which tuple is defined by the data owner before
outsourcing relation r (e.g., [10, 12]). The authorization policy can be represented
as a binary access matrix M with a row for each user u, and a column for each
tuple t, where: M[u,t]= 1 iff u can access t; M[u,t]= 0 otherwise. To illustrate,
consider relation Patients in Fig. 2. Figure 3 illustrates an example of access matrix
regulating access to the tuples in relation Patients by users A, B, C, D, and E. The
jth column of the matrix represents the access control list acl(tj ) of tuple tj , for each
j = 1, . . . , |r|. As an example, with reference to the matrix in Fig. 3, acl(t1) = ABC.
The encryption policy, which defines and regulates the set of keys used to encrypt
tuples and the distribution of keys to the users, must be equivalent to the authorization
policy, meaning that each user should be able to decrypt all and only the tuples she
is authorized to access.

Solutions translating an authorization policy into an equivalent encryption policy
(e.g., [12]) have two main design desiderata: (i) guarantee that each user has to
manage only one key; and (ii) encrypt each tuple with only one key (i.e., no tuple is
replicated). To fulfill these two requirements, selective encryption approaches rely
on key derivation techniques that permit to compute an encryption key kj starting
from the knowledge of another key ki and (possibly) a piece of publicly available
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Fig. 2 An example of relation

Fig. 3 An example of access matrix

information. To determine which key can be derived from which other key, key
derivation techniques require the preliminary definition of a key derivation hierarchy.
A key derivation hierarchy can be graphically represented as a directed graph with
a vertex vi for each key ki in the system and an edge (vi ,vj ) from key ki to key kj
iff kj can be directly derived from ki . Note that key derivation can be applied in
chain, meaning that key kj can be computed starting from key ki if there is a path
(of arbitrary length) from vi to vj in the key derivation hierarchy.

A key derivation hierarchy can have different shapes, as described in the following.

• Chain of vertices (e.g., [40]): the key kj associated with vertex vj is computed
by applying a one-way function to the key ki of its predecessor in the chain. No
public information is needed.

• Tree hierarchy (e.g., [41]): the key kj associated with vertex vj is computed by
applying a one-way function to the key ki of its direct ancestor, and a public
label lj associated with kj . Public labels are necessary to guarantee that different
children of the same node in the tree have different keys.

• DAG hierarchy (e.g., [2, 3, 7, 19]): keys in the hierarchy can have more than
one direct ancestor, and each edge in the hierarchy is associated with a publicly
available token [3]. Given two keys ki and kj , and the public label lj of kj ,
token ti,j permits to compute kj from ki and lj . Token ti,j is computed as ti,j =
kj ⊕ f (ki , lj ), where ⊕ is the bitwise xor operator, and f is a deterministic
cryptographic function. By means of ti,j , all users knowing (or able to derive) key
ki can also derive key kj .
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Each of the proposed key derivation hierarchies has advantages and disadvantages.
However, the token-based key derivation best fits the outsourcing scenario by mini-
mizing the need of re-encryption and/or key re-distribution in case of updates to the
authorization policy [12] (for more details, see Sect. 2.2).

The set containment relationship ⊆ over the set U of users can nicely be used
to define a DAG key derivation hierarchy suited for access control enforcement and
able to satisfy the desiderata of limiting the key management overhead [12]. Such
a hierarchy has a vertex for each of the elements of the power-set of the set U of
users, and a path from vi to vj iff the set of users represented by vi is a subset of that
represented by vj . The correct enforcement of the authorization policy defined by
the data owner is guaranteed iff: (i) each user ui is communicated the key associated
with the vertex representing her; and (ii) each tuple tj is encrypted with the key
of the vertex representing acl(tj ). With this strategy, each tuple can be decrypted
and accessed by all and only the users in its access control list, meaning that the
encryption policy is equivalent to the authorization policy defined by the data owner.
Furthermore, each user has to manage one key only, and each tuple is encrypted with
one key only. For instance, Fig. 4a illustrates the key derivation hierarchy induced
by the set U= {A, B, C, D} of users and the subset containment relationship over it
(in the figure, vertices are labeled with the set of users they represent). Fig. 4b and
Fig. 4c illustrate the keys assigned to users in the system and the keys used to encrypt
the tuples in relation Patients in Fig. 2, respectively. The encryption policy in the
figure enforces the access control policy in Fig. 3 restricted to the set U= {A, B, C, D}
of users as each user can derive, from her own key, the keys of the vertices to which
she belongs and hence decrypt the tuples she is authorized to read. For instance, user
C can derive the keys used to encrypt tuples t1, t2, t3, t5, and t6, and then access their
content.

Even though this approach correctly enforces an authorization policy and enjoys
ease of implementation, it defines more keys and more tokens than necessary. Since
tokens are stored in a publicly available catalog at the server side, when a user u
wants to access a tuple t she needs to interact with the server to visit the path in the
key derivation hierarchy from the vertex representing u to the vertex representing
acl(t). Therefore, keeping the number of tokens low increases the efficiency of
the derivation process, and then also of the response time to users. The problem
of minimizing the number of tokens, while guaranteeing equivalence between the
authorization and the encryption policies, is NP-hard (it can be reduced to the set
cover problem) [12]. It is however interesting to note that: (i) the vertices needed
for correctly enforcing an authorization policy are only those representing singleton
sets of users (corresponding to users’ keys) and the access control lists of the tuples
(corresponding to keys used to encrypt tuples) in r; (ii) when two or more vertices
have more than two common direct ancestors, the insertion of a vertex representing
the set of users corresponding to these ancestors reduces the total number of tokens.
Elaborating on these two intuitions to reduce the number of tokens, the following
heuristic approach efficiently provides good results [12].
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a b c

Fig. 4 An example of encryption policy equivalent to the access control policy in Fig. 3, considering
the subset {A,B,C,D} of users

1. Initialization. The algorithm first identifies the vertices necessary to implement
the authorization policy, that is, the vertices representing: (i) singleton sets of
users, whose keys are communicated to users and that allow them to derive the
keys of the tuples they are entitled to access; and (ii) the access control lists of
the tuples, whose keys are used for encryption. These vertices represent the set
of material vertices of the system.

2. Covering. For each material vertex v corresponding to a non-singleton set of
users, the algorithm finds a set of material vertices that form a non-redundant set
covering for v, which become direct ancestors of v. A set V of vertices is a set
covering for v if for each u in v, there is at least a vertex vi in V such that u appears
in vi . It is non-redundant if the removal of any vertex from V produces a set that
does not cover v.

3. Factorization. For each set {v1, . . . vm} of vertices that have n > 2 common
ancestors v′

1, . . ., v′
n, the algorithm inserts an intermediate vertex v representing

all the users in v′
1, . . ., v′

n and connects each v′
i , i = 1, . . ., n, with v, and v with

each vj , j = 1, . . .,m. In this way, the encryption policy includes n+m, instead
of n ·m tokens in the catalog.

Figure 5 illustrates, step by step, the definition of the key derivation hierarchy through
the algorithm in [12], for the authorization policy in Fig. 3. The initialization phase
generates the set of (material) vertices in Fig. 5a. The covering phase generates the
preliminary key derivation hierarchy in Fig. 5b, where each vertex is connected to a
set of parents including all and only the users in the vertex itself. The factorization
phase generates the key derivation hierarchy in Fig. 5c, which has an additional
non-material vertex (i.e., ADE, denoted with a dotted line in the figure) representing
the users that belong to both ABDE and ACDE. This factorization saves one token.
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a b

c d

Fig. 5 Definition of an encryption policy equivalent to the access control policy in Fig. 3

Figure 5d illustrates the keys assigned to users in the system and the keys used to
encrypt the tuples in relation Patients in Fig. 2.

2.2 Updates to the Access Control Policy

In case of changes to the authorization policy, the encryption policy must be updated
accordingly, to guarantee their equivalence. Since the key used to encrypt each tuple
t in r depends on the set of users who can access it, it might be necessary to re-encrypt
the tuples involved in the policy update with a different key that only the users in
their new access control lists know or can derive. A trivial approach to enforce a
grant/revoke operation on tuple t requires the data owner to: (i) download tk from the
server; (ii) decrypt it; (iii) update the key derivation hierarchy if it does not include
a vertex representing the new set of users in acl(t); (iv) encrypt t with the key k′
associated with the vertex representing acl(t); v) upload the new encrypted version
of t on the server; and (vi) possibly update the public catalog containing the tokens.
For instance, consider the encryption policy in Figs. 5c–d and assume that user D is
granted access to tuple t1. The data owner should download tk1 ; decrypt it using key
kABC; insert a vertex representing acl(t1) = ABCD in the key derivation hierarchy;
encrypt t1 with kABCD; and upload the encrypted tuple on the server, together with
the tokens necessary to users A, B, C, and D to derive kABCD. This approach, while
effective and correctly enforcing authorization updates, leaves to the data owner the
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burden of managing the update. Also, re-encryption operations are computationally
expensive. To limit the data owner overhead, in [12] the authors propose to use two
layers of encryption (each characterized by its own encryption policy) to partially
delegate to the server the management of grant and revoke operations.

• The Base Encryption Layer (BEL) is applied by the data owner before outsourcing
the dataset. A BEL key derivation hierarchy is built according to the authorization
policy existing at initialization time. In case of policy updates, BEL is only updated
by possibly inserting tokens in the public catalog (i.e., edges in the BEL key
derivation hierarchy). Note that each vertex v in the BEL key derivation hierarchy
has two keys: a derivation key k (used for key derivation only), and an access
key ka (used to encrypt tuples, but that cannot be exploited for key derivation
purposes).

• The Surface Encryption Layer (SEL) is applied by the server over the tuples that
have already been encrypted by the data owner at BEL. It dynamically enforces
the authorization policy updates by possibly re-encrypting tuples and changing
the SEL key derivation hierarchy to correctly reflect the updates. Differently from
BEL, vertices in the SEL key derivation hierarchy are associated with a single
key ks .

Intuitively, with the over-encryption approach, a user can access a tuple t only if
she knows the keys used to encrypt t at BEL and SEL. At initialization time, the
encryption policies at BEL and SEL coincide, but they immediately change and
become different at each policy update. Grant and revoke operations are enforced as
follows.

• Grant. When user u is granted access to tuple t, she needs to know the key used
to encrypt t at both BEL and SEL. Hence, the data owner adds a token in the
BEL key derivation hierarchy from the vertex representing u to the vertex whose
key is used to encrypt t (i.e., the vertex representing acl(t) at initialization time).
The owner then asks the server to update the key derivation hierarchy at SEL and
to possibly re-encrypt tuples. Tuple t in fact needs to be encrypted at SEL with
the key of the vertex representing acl(t) ∪ {u} (which is possibly inserted into
the hierarchy). Besides t, also other tuples may need to be re-encrypted at SEL
to guarantee the correct enforcement of the policy update. In fact, tuples that are
encrypted with the same key as t at BEL and that user u is not allowed to read
must be encrypted at SEL with a key that u does not know (and cannot derive).
The data owner must then make sure that each tuple ti sharing the BEL encryption
key with t are encrypted at SEL with the key of the vertex representing acl(ti).
For instance, consider the access matrix in Fig. 3 and the encryption policies at
BEL and SEL enforcing it in Fig. 6, and assume that user D is granted access
to tuple t1. Figure 7 illustrates the encryption policies at BEL and SEL after the
enforcement of the grant operation. To enforce this change in the access control
policy, the data owner must first add a token that permits user D to derive the
access key of vertex ABC ( kaABC) used to encrypt t1 at BEL (dotted edge in the
figure). Also, she will ask the server to update the SEL key derivation hierarchy
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a

b

Fig. 6 Encryption policies at BEL and SEL, equivalent to the access control policy in Fig. 3

to add a vertex representing ABCD. Tuple t1 is then over-encrypted at SEL with
the key of this new vertex.

• Revoke. When user u loses the privilege of accessing tuple t, the data owner
simply asks the server to re-encrypt (at SEL) the tuple with the key associated
with the set acl(t) \ {u} of users. If the vertex representing this set of users is
not represented in the SEL key derivation hierarchy, the server first updates the
hierarchy inserting the new vertex, and then re-encrypts the tuple. For instance,
consider the encryption policies at BEL and SEL in Fig. 7 and assume that the
data owner revokes B the privilege to access t4. The data owner requires the server
to change SEL (BEL is not affected by revoke operations) to guarantee that tuple
t4 is encrypted with a key that user B cannot derive. To this aim, t4 is re-encrypted
with key ksADE . Figure 8 illustrates the encryption policies at BEL and SEL after
the enforcement of the revoke operation. Note that vertex ABDE is removed from
the hierarchy since it is neither necessary for policy enforcement nor useful for
reducing the number of tokens.
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a

b

Fig. 7 Encryption policies at BEL and SEL in Fig. 6 after granting D access to t1

Since the management of (re-)encryption operations at SEL is delegated to the server,
there is the risk of collusions with users. In fact, by combining their knowledge, a
user and the server can possibly decrypt tuples that neither the server nor the user
can access. For instance, with reference to the encryption policy in Fig. 8, the server
and user D can access to tuple t2 by combining their knowledge. In fact, this tuple
is encrypted with access key kaABC at BEL, known to user D as it is used to encrypt
t1, and with key ksABC at SEL, known to the server. Collusion represents a risk to
the correct enforcement of the authorization policy, but this risk is limited. In fact,
collusion between a user u and the server permits them to decrypt a tuple t that
they are not authorized to access only if u is granted the privilege to read a tuple t′
(different from t) that is encrypted with the same key as t at BEL. Indeed, u knows the
key with which t is encrypted at BEL (as it is necessary to access t′) while the server
knows the key with which it is encrypted at SEL (as it manages all the encryption
keys at SEL). Collusion risk can then be mitigated at the price of using a higher
number of keys at BEL, that is, by using the same encryption key at BEL only for
tuples whose acls are likely to evolve in the same way [12].
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a

b

Fig. 8 Encryption policies at BEL and SEL in Fig. 7 after revoking B access to t4

2.3 Write Privileges

The solution described in the previous section, while effectively enforcing read priv-
ileges and updates to them, assumes the outsourced relation to be read-only (i.e.,
only the owner can modify tuples). To allow the data owner to selectively authorize
other users to update the outsourced data, this approach has been complemented
with a specific technique to manage write privileges. The approach in [11] associates
each tuple with a write tag (i.e., a random value independent from the tuple con-
tent) defined by the data owner. Access to write tags is regulated through selective
encryption: the write tag of tuple t is encrypted with a key known only to the users
authorized to write t (i.e., the users specified within its write access list, denoted
aclwt) and by the server. In this way, only the server and authorized writers have
access to the plaintext write tag of each tuple. The server will then accept a write
request on a tuple when the requesting user proves knowledge of the corresponding
write tag.
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a b c

Fig. 9 Encryption policy in Figs. 5c–d extended to the enforcement of write privileges

Since the key used for encrypting the write tag of a tuple has to be shared between
the server and the tuple writers, it is necessary to extend the key derivation hierarchy
with the storing server. However, the server cannot access the outsourced tuples in
plaintext, and hence it cannot be treated as an additional authorized user (i.e., with the
ability of deriving keys in the hierarchy). The keys used to encrypt write tags are then
defined in such a way that: (i) authorized users can compute them applying a secure
hash function to a key they already know (or can derive via a sequence of tokens); and
(ii) the server can directly derive them from a key kS assigned to it, through a token
specifically added to the key derivation hierarchy. Note that keys used for encrypting
write tags cannot be used to derive other keys in the hierarchy. For instance, consider
the encryption policy in Figs. 5(c–d) and assume that aclw(t1) = aclw(t7) = A,
aclw(t2) = aclw(t3) = BC, aclw(t4) = ADE, aclw(t5) = aclw(t8) = D, and
aclw(t6) = E. Figure 9a illustrates the key derivation hierarchy, extended with the
key kS assigned to the server S and the keys necessary to encrypt write tags (the
additional vertices and edges are dotted in the figure). Figures 9b–c summarize the
keys assigned to users and to the server, and the keys used to encrypt the tuples in
relation Patients and their write tags, respectively.

The over-encryption approach (Sect. 2.2), while effective for enforcing updates
to a read authorization policy, cannot unfortunately be adopted to enforce grant and
revoke of write authorizations. A possible way to enforce dynamic write privileges
[11] operates as follows.

• Grant. When user u is granted the privilege to modify tuple t, the write tag of t is
encrypted with a key known to the server and the users in aclw(t)∪ {u}. If the key
derivation hierarchy does not include it, such a key is created and properly added
to the hierarchy. For instance, with reference to the encryption policy in Figure 9,
assume that user B is granted the write privilege over t4. The write tag of the tuple
needs to be encrypted with key, kABDES, which is inserted into the key derivation
hierarchy, while key kADES can be removed.
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• Revoke. When user u is revoked the write privilege over tuple t, a fresh write tag
must be defined for t, having a value independent from the former tag (e.g., it can
be chosen adopting a secure random function). This is necessary to ensure that
u, who is not oblivious, cannot exploit her knowledge of the former write tag of
tuple t to perform unauthorized write operations. After the tag has been generated,
it is encrypted with a key known to the server and to the users in aclw(t) \ {u}. For
instance, with reference to the encryption policy in Fig. 9, assume that user C is
revoked the write privilege over t3. The write tag of the tuple needs to be changed
and encrypted with key kBS, which should be inserted into the key derivation
hierarchy.

Note that, since the server is authorized to know the write tag of each and every
tuple to correctly enforce write privileges, the data owner can delegate to the storing
server both the generation and encryption (with the correct key) of the write tag of
the tuples [11].

2.4 Attribute-Based Encryption

An alternative solution to selective encryption for the enforcement of access restric-
tions is represented by Attribute-Based Encryption (ABE [29]). ABE is a particular
type of public-key encryption that regulates access to tuples on the basis of policies
defined on descriptive attributes, associated with tuples and/or users. ABE can be
implemented as either Ciphertext-Policy ABE (CP-ABE [47]), or Key-Policy ABE
(KP-ABE [29]), depending on how attributes and authorization policies are associ-
ated with tuples and users. Both the strategies have been recently widely investigated,
and several solutions have been proposed, as briefly illustrated in the following.

CP-ABE CP-ABE associates with each user u a set of descriptive attributes, and
a private key that is generated on the basis of these attributes. Each tuple t in a
relation r is associated with an access structure modeling the access control policy
regulating accesses to t. Graphically, an access structure is a tree whose leaves
represent attributes and whose internal nodes represent logic gates (e.g., conjunctions
and disjunctions). Figure 10 illustrates an example of access structure associated
with tuple t2 in relation Patients in Fig. 2. This access structure corresponds to the
Boolean formula (job = ‘doctor’∨ job = ‘nurse’) ∧ ward = ‘neurology’, meaning that
only doctors or nurses working in the neurology ward can access the medical data of
Barbara (i.e., tuple t2). CP-ABE key generation technique guarantees that the key k of
user u can decrypt tuple t only if the set of attributes used when generating k satisfies
the access policy represented by the access structure considered when encrypting
t. Although CP-ABE effectively and efficiently enforces access control policies,
one of its main drawbacks is related to the management of attribute revocation.
Intuitively, when a user loses one of her attributes, she should not be able to access
tuples that require the revoked attribute for the access —which however is hard to
enforce while guaranteeing efficiency. A solution to this problem is presented in
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Fig. 10 An example of access structure associated with tuple t2 of relation Patients in Fig. 2

[51], where the authors illustrate an encryption scheme able to manage attribute
revocation, ensuring the satisfaction of both backward security (i.e., a user cannot
decrypt the tuples requiring the attribute revoked to the user) and forward security
(i.e., a new user can access all the tuples outsourced before her join, provided her
attributes satisfy the access control policy). In [44], the authors instead define a
hierarchical attribute-based solution that relies on an extended version of CP-ABE
in which attributes associated with users are organized in a recursive set structure,
and propose a flexible and scalable approach to support revocations.

KP-ABE KP-ABE associates an access structure with each user and a set of descrip-
tive attributes with each tuple. The key associated with each user is then generated on
the basis of her access structure, while the key used to encrypt each tuple depends on
its attributes. Thanks to the properties of KP-ABE key generation techniques, each
user u can decrypt only tuples t such that the attributes of tuple t satisfy the access
structure associated with user u. Since ABE is based on public-key encryption, to
reduce the overhead caused by asymmetric encryption, the tuple content can be en-
crypted with a symmetric key, which is in turn protected through KP-ABE [53]. Only
authorized users can remove the KP-ABE encryption layer to retrieve the symmetric
key use to protect the content of the tuples. This solution also efficiently supports
policy updates and couples ABE with proxy re-encryption to delegate to the storing
server most of the re-encryption operations necessary to enforce policy updates.

The support of write privileges is provided by the adoption of Attribute-Based
Signature (ABS) techniques. The proposal in [21] combines CP-ABE and ABS
techniques to enforce read and write access privileges, respectively. This approach,
although effective, has the disadvantage of requiring the presence of a trusted party
for correct policy enforcement. A similar approach, based on the combined use of
ABE and ABS for supporting both read and write privileges, is illustrated in [38].
This solution has the advantage over the approach in [21] of being suited also to
distributed scenarios.

3 Efficient Access to Encrypted Data

Since data stored in the cloud are encrypted for confidentiality reasons, the storing
server cannot directly evaluate users’ queries since it is not trusted to access the data
content. This makes access to outsourced data time consuming and computationally
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a b

Fig. 11 An example of plaintext relation (a) and the corresponding encrypted and indexed
relation (b)

expensive (the client would need to download the data and locally evaluate her
query). To limit such an overhead, either keyword search or index-based approaches
can be adopted, which enable query evaluation at the server side without the need
to decrypt data [39]. Keyword search techniques (e.g., [6, 8, 25, 42, 45]) permit to
search for documents including a keyword of interest in an encrypted data collection.
Indexes are metadata that depend on the plaintext values of the attributes in the
original relation, and are stored in the encrypted relation as additional attributes.
Given a relation r, defined over schema R(a1, . . ., an), the corresponding encrypted
and indexed relation rk has schemaRk(tid,enc, Ii1 , . . ., Iij ), where Iil , l = 1, . . ., j ,
is the index defined over attribute ail in R. Note that not all the attributes in R need
to have a corresponding index in Rk , but only those that are expected to be involved
in queries. For instance, Fig. 11b represents an example of an encrypted version of
relation Patients in Fig. 2 (also reported in Fig. 11a for the reader’ s convenience),
where attributes ZIP, MarStatus, and Illness are associated with indexes Iz,
Im, and Ii , respectively. In this and in the following examples, for readability, we
will denote index values with Greek letters.

To provide efficient access to the outsourced data collection, different indexing
techniques have been proposed, aimed at supporting the server-side evaluation of
a variety of conditions and clauses in SQL queries. The most important indexing
approaches can be classified in three main categories, depending on how the index
function ι maps the original attribute values to the corresponding index values, as
illustrated in the following.

• Direct Index. Each plaintext value is represented by a different index value and
vice versa. An example of direct index (e.g., [9]) is adopted by encryption-based
indexes, which map plaintext value val to index value Ek(val), where E is a
symmetric encryption function with key k. Index Iz in Fig. 11b is an example of
a direct index defined over attribute ZIP in Fig. 11a.

• Bucket-based Index. Each plaintext value is represented by one index value, but
different plaintext values are mapped to the same index value, generating col-
lisions. There are different approaches for defining which plaintext values are
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represented by the same index value. The two most common techniques are
partition-based and hash-based indexes. Partition-based indexes (e.g., [31]) parti-
tion the domain D of attribute a into subsets of contiguous values and associate a
label with each of them. The index value representing a value in a partition is the
label of the partition. Hash-based indexes (e.g., [5]) instead rely on a secure hash
function h generating collisions. Given plaintext value val, its corresponding in-
dex value is computed as h(val). Index Im in Fig. 11b is an example of hash-based
index over attribute MarStatus in Fig. 11a, where values divorced and widow
generate a collision and are both represented by index value κ .

• Flattened Index. Each plaintext value is represented by different index values,
each characterized by the same number of occurrences (flattening). Each index
value, however, represents one plaintext value only. A flattened index can be
obtained by properly combining encryption with a flattening post-processing that
guarantees that the frequency of index values be the same (e.g., [46]). Index Ii in
Fig. 11b is an example of a flattened index over attribute Illness in Fig. 11a,
where plaintext value gastritis is represented by index values η and μ.

Intuitively, the fact that the outsourced relation is encrypted and enriched with indexes
must be transparent to the final users. The basic indexing techniques illustrated above
nicely support the server-side evaluation of simple SQL queries including equality
conditions in the where clause. Consider a query q submitted by a user of the form
“select Att from R where Cond”, where Att⊆R and Cond is a set of equality
conditions of the form a = val, with a∈R and val a constant value in the domain D
of a. To determine the query that should be submitted to the storing server, each
condition a = val in Cond is first translated into an equivalent condition of the form:
I = ι(val), if I is a direct or a bucket-based index; and I in ι(val), if I is a flattened
index and hence ι(val) may return a set of values. The query qs submitted to the
server is then “select enc from Rk where Condk”, where Condk is obtained as
illustrated above. The result returned by the server must then be decrypted by the
client, to retrieve the plaintext content of the tuples. The client may also need to
perform a projection over the attributes in Att, if they represent a proper subset of
R, and to filter spurious tuples, that is, tuples that satisfy Condk but that do not
belong to the query result (i.e., they do not satisfy Cond). Note that the presence of
spurious tuples may depend on collisions possibly caused by bucket-based indexes,
where multiple plaintext values are mapped to the same index value. The client then
evaluates a query qc of the form “select Att from D(Resk) where Cond”, where
Resk is the relation returned by the server as the result of the evaluation of query qs .
The result of query qc is returned to the requesting user. Consider, as an example, a
query q = select SSN, Name from Patients where MarStatus = “widow” and
Illness = “gastritis” operating on relation Patients in Fig. 11a. The query qs to
be sent to the server is select enc from Patientsk where Im = κ and Ii in {η,μ},
which returns tuple t7. The client will then decrypt the result returned by the server and
evaluate query select SSN, Name from D(Resk) where MarStatus = “widow”
and Illness = “gastritis” to check whether tuple t7 satisfies both the conditions
and to project the attributes of interest for the requesting user.
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Besides the techniques illustrated and classified above, many other approaches
have been proposed for efficiently delegating to the server the evaluation of com-
plex conditions and/or SQL clauses. As an example, order preserving encryption
has been proposed as an effective solution for supporting range conditions, as well
as grouping and ordering clauses (e.g., [1, 46]). Aggregate functions can instead be
computed if the index over the attribute of interest has been defined through homo-
morphic encryption techniques, which support the evaluation of arithmetic operators
on encrypted data (e.g., [24, 30]). Different techniques, which do not fit into the clas-
sification above, have also been proposed to the aim of enjoying the advantages of
traditional database indexing techniques also in the outsourcing scenario (e.g., in [9]
the authors propose to use encrypted B+-trees for the efficient evaluation of range
queries).

4 Protecting Access Privacy

Besides protecting the confidentiality of the outsourced data collection, it is also
paramount to protect the privacy of the accesses to the data themselves. In fact, queries
can be exploited for inference, making both users’ and data privacy at risk. As an
example, consider a scenario where the outsourced data contain medical information.
Revealing that a user submitted a query looking for the symptoms of lung cancer
implicitly reveals that (with high probability) either her or a person close to her
suffers from such a disease. Also, users accesses may be exploited to infer the
private content of the outsourced data collection. Indeed, by monitoring patterns of
frequently accessed tuples, an observer can draw inferences on their specific values
thanks to additional knowledge she may have on how frequently each piece of data
in a given domain is accessed. In this case, it is necessary to protect both access
confidentiality (i.e., each query singularly taken) and pattern confidentiality (i.e., the
fact that two queries aim at the same target value). A first attempt to protect access
confidentiality is represented by keyword search approaches (e.g., [6, 8, 25, 42, 45]),
which do not reveal to the server any information about the outsourced data and
the target keyword. A similar approach consists in defining a set of tokens that can
be adopted by users to evaluate queries on outsourced data without disclosing the
conditions in their queries to the storage server [18, 36]. Protection of accesses to a
B+-tree index structure can instead be obtained by grouping the nodes in the tree
into buckets [37]. The use of homomorphic encryption techniques then permits to
access the node of interest in each bucket, while preventing the server from precisely
identifying the node target of each access. These approaches represent a first step
towards the definition of privacy-preserving indexing approaches, but they fall short
in protecting the confidentiality of repeated accesses and, more in general, of patterns
thereof. In the remainder of this section, we will illustrate some of the most important
approaches recently proposed to address both access and pattern confidentiality in a
scenario where data need to remain confidential (i.e., outsourced data are encrypted).
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4.1 Oblivious RAM

One of the first approaches [49] proposed to protect access and pattern confidentiality
in a scenario where also the confidentiality of the data must be protected is based
on the Oblivious RAM (ORAM) data structure [26]. The outsourced database is
organized as a set of n encrypted blocks, which are stored in a pyramid-shaped data
structure. Each level l of the ORAM structure stores 4l blocks and is characterized
by a Bloom filter and a hash table that permit to quickly determine whether an index
value is stored in the level and, if this is the case, to identify the block where it is
stored. Access and pattern confidentiality are provided by guaranteeing that: (i) the
search process does not reveal the level in the structure where the target block is
stored, and (ii) a block in the hash table is never accessed more than once with the
same search key.

The search algorithm visits the ORAM structure level by level, starting from the
top of the pyramid. For each level l, the search algorithm uses the Bloom filter to
determine whether the target of the search is stored in the level. If this is the case,
the item of interest is extracted from the level (by accessing the block identified by
the hash table), decrypted, re-encrypted with a different nonce, and inserted into a
cache. Otherwise, the algorithm extracts a random element from the level and inserts
it into the cache. We note that, even when the target element is retrieved, the search
process visits all the lower levels in the ORAM structure extracting at each level a
random (fake) element. This guarantees that, by observing accesses to the structure,
the server is not able to identify the level where the target of the search was stored.
The search process terminates when the last level in the ORAM structure is visited.

When the cache is full, it is merged with the first level of the ORAM structure and
the items in the resulting new level are re-shuffled, to destroy any correspondence
between old and new items in the level. As a consequence, the Bloom filter associated
with the level is re-defined, to correctly refer to the new level content. The same
process applies to each level in the structure: when level l is full, it is merged
with level l + 1, the blocks are re-shuffled, and the Bloom filter is redefined. The
cost of accessing the ORAM clearly depends on the possible need to reorganize a
level in the indexing structure while visiting it, and on the specific level that needs
to be redefined. The amortized cost per query, which takes into consideration the
impact of periodic reorganizations of the structure, is O( log n log log n), under the
assumptions ofO(

√
n) temporary client storage and of O(n) server storage overhead.

However, the cost of reorganizing the bottom level of the pyramid is O(n), where n
is the number of index values in the dataset. Response time of any access request
submitted during the reordering of lower levels of the database is therefore high and
not acceptable in many real-world scenarios.

To mitigate the cost of query evaluation when low levels in the ORAM structure
need to be reorganized, the proposal in [20] puts forward the idea of limiting the
shuffling operation to the blocks that store accessed tuples. This approach is based
on the presence of a secure coprocessor on the server that locally manages a cache
of size k, which is empty at initialization time. Each tuple in the dataset is associated
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with a label, initially set to value ‘white’. Once a tuple is accessed, its label becomes
‘black’. For each access to the dataset, the search algorithm fetches a black tuple
and a white tuple. If the target tuple is already in cache, the algorithm retrieves two
randomly chosen fake tuples (a black one and a white one), otherwise it accesses
the target tuple and a randomly chosen fake tuple. When the cache is full, the secure
coprocessor shuffles black tuples (performing a partial shuffling) only and re-encrypts
them before re-writing the blocks on the server. Partial shuffling provides access and
pattern confidentiality, since white tuples have not been accessed and hence it is not
necessary to move their content to hide the traces that an access could have left. The
amortized cost per query of this solution is O(

√
n log n/k), which is lower than the

proposal in [49]. It however relies on a secure coprocessor for guaranteeing access
and pattern confidentiality.

Alternative techniques that can be adopted to limit the response time of the ORAM
structure are based on the idea of minimizing the number of interactions between the
client and the server [27, 48]. Indeed, the communication costs have a high impact
on response times and reducing the number of interactions provides benefits to users.
Other approaches instead rely on enhancing the support of concurrent accesses [28,
50]. These solutions basically define copies of the levels of the ORAM structure.
Searches operate on a read-only copy of the level of interest, while the master copy
of the same level is dynamically updated and used for reordering purposes only.
In this way, exclusive locks blocking access to a level of the structure during its
reorganization process do not delay users’ accesses.

Path-ORAM has recently been proposed as an alternative approach to provide
access and pattern confidentiality without paying the high price of re-shuffling, which
characterizes traditional ORAM structures [43]. Path-ORAM is a tree-shaped data
structure whose nodes are buckets storing a fixed number of blocks (which can either
be dummy or contain actual data). Each block is mapped to a randomly chosen leaf
in the tree and it is stored either at the client side (in a local cache, which is called
stash) or in one of the buckets along the path to the leaf to which it is associated.
Read operations download from the server and store in the stash all the buckets in the
path from the root to the leaf to which the block of interest is mapped. The mapping
of the target block is randomly updated (i.e., the block is mapped to a new, randomly
chosen, leaf). The path read from the server is then written back, inserting into the
buckets the blocks in the local stash (provided the bucket is along the path to the leaf
to which the block is mapped).

4.2 Dynamically Allocated Data Structures

Dynamic data allocation solutions aim at destroying the otherwise static relationship
between disk blocks and the information they store. These approaches are based on
the definition of a dynamically allocated index structure (e.g., a B+-tree, a hash
table, a flat index) that guarantees private and efficient access to the data.
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If the data are organized in a tree-shaped index structure, access confidentiality is
provided by guaranteeing that the storing server does not know (nor can infer) which
is the node in the tree target of the access, as it would otherwise reveal the value target
of the search. The first step to protect the confidentiality of the dataset content consists
in encrypting the nodes in the tree before outsourcing, and in storing each encrypted
node in a different disk block. However, repeated accesses to the same physical block
inevitably represent repeated accesses to the same node content and hence queries
aiming to the same value (or to values within a small interval). If the storing server
knows the relative frequency of accesses to the plaintext values, it can reconstruct the
correspondence between node contents and encrypted blocks, by simply matching
access frequencies.A preliminary approach aimed at protecting access confidentiality
through a privacy-preserving tree relies on the combined adoption of the following
three protection techniques [35]:

• access redundancy: each access request visits, besides the node target of the
access, m additional blocks (at least one of which should be empty) for each
level in the tree to hide the target of the access in a set of m + 1 equally-probable
candidate nodes;

• node swapping: the node target of the access is swapped with one of the empty
blocks downloaded from the server for the same level, meaning that the target
node is stored in an empty block and viceversa;

• node re-encryption: all the nodes downloaded from the server are re-encrypted,
to hide the swap.

Although effective for protecting content and access confidentiality, this proposal
falls short in providing pattern confidentiality, since frequently accessed blocks can
easily be identified by the server and then exploited for inference purposes.

An alternative approach, which does not operate on a tree-shaped index structure,
is based on the adoption of a lightweight scheme that provides access and pattern
confidentiality by combining the following three protection techniques [52]:

• dummy data items: each access request visits, besides the block target of the
access, two additional blocks;

• swapping: the target of the access is swapped with one of the dummy data items
downloaded from the server;

• repeated patterns: dummy data items are selected in such a way that, out of the
three blocks downloaded from the server, two (and only two) are among the ones
accessed during the previous search.

The goal of the combined adoption of these three protection techniques is to make
each access to the outsourced data collection indistinguishable from the server’s point
of view. In fact, each access has two blocks in common with the previous one, while
the third one is fresh. Swapping protects repeated accesses and is combined with
re-encryption of the content of all the accessed blocks, to prevent the server from
reconstructing which swap has been performed (thus possibly recognizing repeated
accesses).
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4.3 Shuffle Index

A recent technique addressing the need of providing efficient query execution, while
protecting access and pattern confidentiality, is based on the definition of a shuffle
index [14].

Data Structure A shuffle index is a privacy-preserving indexing technique, used for
organizing data in storage and for efficiently executing users’ queries. It can be seen
at three different abstraction levels (i.e., abstract, logical, and physical), as illustrated
in the following. At the abstract level, the shuffle index is an unchained B+-tree with
fan-out F, built over a candidate key K of relation r. Each internal node of the tree
represents the root of a sub-tree with q ≥  F/2! children (except for the root node,
where 1 ≤ q ≤ F ), and stores q − 1 ordered values val1 ≤ . . . ≤ valq−1 of attribute
K. The leaves store the tuples of the outsourced relation, together with their key
value, but (in contrast to traditional B+-tree structures) are not connected in a chain,
so not to allow the server storing the data to discover the relative order among the
values in the leaves. Figure 12a illustrates an example of unchained B+-tree.

At the logical level, each node n of the unchainedB+-tree is represented by a pair
〈id, n〉 where id is the logical identifier associated with the node and n is its content.
Pointers to children of internal nodes of the abstract data structure are represented,
at the logical level, through the identifier of child nodes. Figure 12b illustrates an
example of logical representation of the unchainedB+-tree in Fig. 12a. Note that the
order of logical identifiers does not necessarily reflect the value-order relationship
between the node contents. For readability, in the figure nodes are ordered accord-
ing to their logical identifier (reported on the top of each node), whose first digit
corresponds to the level of the node in the tree.

At the physical level, each node 〈id, n〉 is concatenated with a random salt, to
destroy plaintext distinguishability, and then encrypted in CBC mode, using a sym-
metric encryption algorithm. The logical identifier of the node easily translates into
the physical address where the block representing the encrypted node is stored at
the server side (for simplicity, we assume that the physical address of a block co-
incides with the logical identifier of the corresponding node). Figure 12c illustrates
the physical representation of the logical index in Fig. 12b. Note that the physical
representation of the shuffle index coincides with the view of the storage server over
the outsourced data collection. In fact, although the server does not have knowledge
of the encryption key, it can establish the level in the tree associated with each block
by observing a long enough history of accesses to the B+-tree structure, because
accesses visit the tree level by level.

Protection Techniques To protect content, access, and pattern confidentiality, en-
cryption is complemented with three protection techniques: cover searches, cached
searches, and shuffling. These protection techniques apply to every access to the
shuffle index, which proceeds by visiting the B+-tree level by level from the root to
the leaves.
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c

Fig. 12 An example of abstract (a), logical (b), and physical (c) representation of a shuffle index

• Cover searches. Cover searches aim at hiding the target of an access within a set of
other potential targets, in such a way that the server cannot recognize the value of
interest for the user. Cover searches are fake searches, which are not recognizable
as such by the storage server, that are executed in conjunction with the search
for the target value (i.e., the value of interest for the requester). For each level of
the shuffle index (but the root level) the client downloads num_cover + 1 blocks:
one for the node along the path to the target, and num_cover for the nodes along
the paths to the covers. Hence, at the server’s eyes, each of the num_cover + 1
leaf blocks accessed during a visit of the shuffle index has the same probability of
storing the target. To provide sufficient protection to the target of the access, cover
searches must guarantee: (i) indistinguishability with respect to target searches,
meaning that the server should not be able to determine whether an accessed block
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is a cover or the target; and (ii) block diversity, meaning that paths to covers and
to the target must be disjoint (except for the root node).

• Cached searches. Cached searches aim at protecting repeated accesses to a node
content, by making them indistinguishable from non-repeated accesses to the eyes
of the server. The cache is a layered structure with a layer for each level in the
shuffle index. It is maintained at the client side and stores the nodes along the
paths to the targets of the num_cache most recent accesses to the shuffle index.
Being stored at a trusted party, the cache is maintained in plaintext. Each layer
of the cache is managed according to the Least Recently Used (LRU) policy,
which guarantees the property that the parent of each cached node (and hence
also the path connecting it to the root of the tree) is also in cache. Whenever
the target of an access is in cache, it is replaced by an additional cover for the
access, to guarantee that num_cover + 1 blocks are downloaded for each level
of the tree (but the root level). This makes repeated accesses look like accesses
to nodes that have not been previously accessed. The adoption of a local cache
prevents short-time intersection attacks, which could be exploited by the server to
identify repeated accesses when subsequent searches download non-disjoint sets
of blocks. In fact, accesses within a time frame of num_cache accesses do not
have nodes in common.

• Shuffling. Shuffling aims at breaking the relationship between node content and
block where it is stored, to avoid that accesses to the same physical block cor-
respond to accesses to the same node content. By changing the node-block
allocation, the server cannot draw conclusions on the content of the accessed
nodes by observing accessed blocks. In fact, repeated accesses to the same block
do not necessarily correspond to repeated accesses to the same node content. Shuf-
fling consists in moving the content of accessed (either as target or as covers) and
cached nodes to different blocks (i.e., shuffling assigns a different block address
to each accessed node, choosing among the downloaded blocks). To prevent the
server from reconstructing node shuffling, every time a node content is moved to
a different block, it is re-encrypted using a different random salt. Its parent is also
updated to guarantee that the parent-child relationship between them is preserved.

Search Process Each search operation for a value then combines these three
protection techniques, as described in the following.

Given the value target_value, target of the access to the outsourced relation,
the search algorithm (operating at the client side) first randomly chooses a set of
num_cover+1 cover values in the actual domain of the key attribute K on which the
shuffle index has been defined. Since these values should act as cover searches for
target_value, this choice must guarantee both indistinguishability and block diver-
sity, as described above. Note that the algorithm chooses one additional cover (i.e.,
num_cover+1 instead of num_cover) as it is needed if the target of the access is in the
local cache. The search algorithm then visits the shuffle index level by level, starting
from the root. For each level l of the shuffle index, the search algorithm first checks
whether the node in the path to target_value is in the local cache and, if a cache miss
occurs, it discards one of the cover searches initially chosen proceeding the search
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with num_cover covers. It then determines the address of the blocks storing the nodes
along the paths to target_value and to the num_cover cover searches (num_cover+1
covers if a cache hit occurred). These blocks are then downloaded from the server,
decrypted to retrieve the content of the nodes they store, and randomly shuffled to-
gether with the nodes at level l in the local cache. To preserve the correctness of the
shuffle index data structure, the parents of shuffled nodes are updated, guaranteeing
that pointers refer to the blocks where the children of each node are stored. The
search algorithm also updates the local cache structure, according to the LRU policy.
If the node along the path to target_value is in cache, the algorithm simply refreshes
its timestamp; otherwise, the node along the path to the target is inserted as the
most recently accessed node and the least recently accessed node is removed from
the cache. Before moving to the next level, the nodes shuffled during the previous
iteration (i.e., accessed and cached nodes at level l − 1) are encrypted with a fresh
random salt and sent to the server for storage. Upon receiving the encrypted blocks,
the server replaces the old block stored at each physical address with the new one
received from the client. The process terminates when the visit of the shuffle index
reaches the leaf level. The leaf along the path to target_value is then returned to the
requesting user, since it contains the tuple with value target_value for attribute K,
if such a tuple exists in r. For instance, consider a search for value ‘W’ on shuffle
index in Fig. 12 that adopts one cover. Also, assume that the cache has size 2 and
that it stores: the root node at level 0; nodes 103[J,L,–] and 102[W,Y,–] at level 1;
and leaves 211[J,K,–] and 210[Y,Z,–] at level 2. The client first chooses two covers
for the target ‘W’, say ‘E’ and ‘Q’, and visits the root node (block 001), which is
stored in the local cache. It then identifies the block at level 1 along the paths to the
target (i.e., 102) and to the two covers (i.e., 104 and 101, respectively). Since block
102 is in cache, the client downloads from the server blocks 104 and 101, decrypts
their content, and shuffles the accessed and cached blocks (i.e., 101, 102, 103, and
104) as illustrated in Fig. 13b. It then updates the pointers to children in the root
node, encrypts its content and sends it back to the server for storage. Moving to the
next level, the client first identifies the leaf blocks along the path to the target (i.e.,
201) and to the two covers (i.e., 212 and 202, respectively). Since block 201 is not
in cache, one of the two covers is discarded, say 202, and the client downloads from
the server and decrypts blocks 201 and 212. The client then shuffles blocks 201,
210, 211, and 212, updates the pointer to them in their parents, encrypts nodes 101,
102, 103, and 104, and sends the resulting blocks to the server for storage. Then, it
updates the cache at level 2 inserting leaf node 212[W,X,–] and removing leaf node
211[Y,Z,–]. Finally, the client encrypts the shuffled leaves and sends the resulting
blocks to the server. Figure 13c illustrates the logical shuffle index resulting after the
access.

The search algorithm operates in logarithmic time in the size of the outsourced
database (i.e., its computational complexity is O((1+ num_cover + num_cache)
logF (n)), with n the number of tuples in r), since for each search the algorithm visits
num_cover + 1 different paths of the shuffle index.
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Fig. 13 An example of evolution of the logical shuffle index in Fig. 12b as a consequence of a
search for value ‘W’ with ‘E’ and ‘Q’ as covers

Extensions of the Shuffle Index The original shuffle index proposal has been ex-
tended in several directions to support: (i) concurrent accesses to the data; (ii) searches
over attributes different from K ; and (iii) data storage at different servers. Concur-
rency is provided by the adoption of delta versions [17], which are copies of portions
of the shuffle index that are dynamically created/updated by subsequent accesses.
Each access to the shuffle index is assigned to a different delta version with ex-
clusive write lock. Accessed blocks are downloaded from the delta version (if the
delta version includes the node of interest) or from the shuffle index (otherwise),
while shuffled blocks are written on the delta version. Periodically, delta versions
are reconciled and applied to the shuffle index, to preserve the effects of the different
shuffling operations performed by different users.
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To efficiently support private accesses to r based on attributes different from K,
in [17] the authors propose to complement the primary shuffle index with different
secondary shuffle indexes, built on candidate keys that are expected to be often
involved in query evaluation. A secondary index defined on attribute a is a shuffle
index that stores, in association with value val for a, the values that attribute K has
in tuple t (i.e., t[K]), such that t[a]= val. A search for the tuples in r with value val
for attribute a proceeds then in two steps: (1) search for value val in the secondary
index, retrieving the value valK of attribute K in the tuples of interest; and then (2)
search for value valK in the primary index, retrieving the tuple of interest.

The distribution of the shuffle index over different servers, which are not aware
one of each other, increases the protection offered to the confidentiality of users’
accesses. According to the proposal in [16], in a distributed scenario cover searches,
cached searches, and shuffling protection techniques can be complemented with
shadowing. Shadowing guarantees that the observations by each server of accessed
blocks make it believe to be the only server storing the whole data collection. In fact,
each server observes the same number of blocks read (written, respectively) at each
level of the tree.

5 Combining Access Control and Indexing Techniques

Access control enforcement and query evaluation over encrypted outsourced data
has been widely studied, as testified by the different approaches illustrated in the
previous sections of this chapter. However, the problem of combining them is still
an open issue. The joint adoption of selective encryption (Sect. 2) and indexing
techniques (Sect. 3) may permit authorized users to infer information they are not
entitled to access. In fact, authorized users can infer the values that attributes have
in tuples they should not be able to read, by exploiting their visibility over the index
values for the tuples they are entitled to access. For instance, with reference to the
encrypted relation in Fig. 11b and the access control policy regulating it in Fig. 3,
user B can infer that t7[ZIP]= 22010 even if B �∈ acl(t7), because tk7 [Iz] = tk1 [Iz]
and B knows that t1[ZIP]= 22010 since B belongs to acl(t1).

The problem of jointly adopting selective encryption and indexing techniques
has recently been investigated, leading to the identification of different privacy risks
that vary depending on the technique adopted for index definition (see Sect. 3) [13].
Before illustrating these risks, we summarize the knowledge of an authorized user u
(i.e., a user who can access a subset of the tuples in r). Each authorized user knows:
(i) index function ι used to define index I over attribute a (necessary for query
evaluation); (ii) the plaintext tuples that the user can access; (iii) all the encrypted
tuples inRk (they are publicly available). For instance, consider the encrypted relation
in Fig. 11b and the access control policy regulating it in Fig. 3. User A knows the
index functions used by the data owner to define Iz, Im, and Ii ; all the plaintext
tuples but t3 and t8; and the encrypted relation in Fig. 11b. The knowledge of user A
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a b c

Fig. 14 Access control lists (a), knowledge of user A over relation Patients (b), and over relation
Patientsk(c)

is summarized in Fig. 14, where gray cells denote plaintext values that user A is not
authorized to read.

The inferences that an authorized user can draw on index I representing attribute
a can be summarized as follows.

• Direct index. Since each plaintext value is associated with one index value and
viceversa, if tki [I] = tkj [I] then also ti[a] = tj [a] and viceversa. Hence, each
user u can infer the plaintext value of attribute a for all those tuples in r that
have the same value as a tuple that u is authorized to access. Consider, as an
example, direct index Iz in relation Patientsk in Fig. 14c. User A knows that
t1[ZIP]= t3[ZIP]= t7[ZIP]= 22010 even if she cannot read t3, since all these
tuples have the same value for index Iz.

• Bucket-based index. Since different plaintext values are mapped to the same index
value, the information leakage illustrated for direct indexes is mitigated by the
presence of collisions. Hence, if tki [I]= tkj [I] there is a certain (greater than
zero) probability that also ti[a]= tj [a], but there is no guarantee that this equality
condition holds. Consider, as an example, index Im in relation Patientsk in
Fig. 14c. Since the value for Im is the same for t2, t7, and t8, user A can infer
that probably t2[MarStatus]= t7[MarStatus]= t8[MarStatus]=widow.
We note however that plaintext values ‘widow’ and ‘divorced’ are represented by
the same index value κ .

• Flattened index. Although less straightforward, the inference risk caused by flat-
tened indexes is the same as illustrated for direct indexes. In fact, each index value
represents one plaintext value only and then if tki [I] = tkj [I], also ti[a]= tj [a]. The
viceversa is instead not true, that is, not all the occurrences of a value val are
represented by the same index value. However, each authorized user knows the
index function ι adopted by the data owner and can then compute ι(val), retrieving
all the index values representing val. For instance, consider flattened index Ii in
relation Patientsk in Fig. 14c. Although user A is not authorized to read tuple
t3, she can infer that t3[Illness]= gastritis as t3 and t7 have the same value for
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Fig. 15 An example of encrypted and indexed version of relation Patients with index Iz over ZIP
defined according to a salted user-dependent function

index Ii . Also, since she can compute ι(gastritis)= {η,μ}, she can infer that also
t1 and t4 have this value for attribute Illness.

From the observations above, it is easy to see that attribute values are exposed when
the same index value appears in association with tuples characterized by different
access control lists. Consider two tuples ti and tj in r such that acl(ti) �= acl(tj ),
and tki [I]= tkj [I]. All the users in acl(ti) (acltj , respectively) can draw inferences
on the value of tj [a] (ti[a], respectively). For instance, tuples t1, t3, and t7 have
the same value for attribute ZIP, but different acls. This permits A to infer that
t3[ZIP]= 22010 even if she should not be able to read such a tuple. A first solution
to limit such a leakage of information is based on the idea that the index value
representing value t[a]= l should not only depend on l but also on acl(t). In [13]
the authors present a solution that operates on direct indexes, which represent the
worst-case scenario. This approach associates a different index function ιu with
each user u (depending on a piece of secret information shared between u and the
data owner). Function ιu is salted (i.e., a randomly chosen salt is applied) to avoid
that tuples with the same plaintext value v but different acl are associated with the
same index value ιu(v) for user u, which could easily be exploited for inferences.
For instance, consider direct index Iz in relation Patientsk in Fig. 14c. Figure 15
illustrates relation Patientsk , where index Iz has been defined using a different
(salted) index function for each user in the system. For readability, in the figure we
use a subscript to indicate the user to which the index value refers (e.g., αA is a value
computed by ιA) and symbol ′ denotes the salted version of index values (e.g., α′

A is
the salted version of αA).

While interesting, the proposal illustrated in [13] and mentioned above considers
one specific indexing technique only. Even if it can be easily extended to operate
with bucket-based and flattened indexing functions, it cannot be combined with the
privacy-preserving indexing approaches described in Sect. 4. Furthermore, user-
based indexing techniques are suitable for static scenarios, as dynamic observations
of repeated accesses to the data can reveal to an observer which index values represent
the same plaintext value. In fact, index values representing the same plaintext value
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are often accessed together by authorized users. For instance, with reference to
relation Patientsk in Fig. 15b, every time user A needs to access all the tuples with
ZIP = 22010, she will query the encrypted relation with the condition Iz = αA or
Iz = α′

A. The server can then easily conclude that αA and α′
A represent the same

plaintext value.

6 Conclusions

Public and private organizations are more and more resorting to cloud systems for
outsourcing their own data centers. While bringing intuitive benefits in terms of
economies of scale, moving to the cloud raises new privacy risks, since data are
no more under the direct control of their owner. The research and development
communities have dedicated many efforts in the design and development of novel
techniques for protecting outsourced data and accesses to them. In this chapter, we
surveyed recent approaches that, while protecting confidentiality of the data to the
eyes of the storing server through encryption, enforce access control restrictions and
efficiently evaluate queries over encrypted data, possibly without even revealing to
the server the target of accesses. We also described the main issues arising when
these techniques are adopted in combination, illustrating a preliminary approach for
their solution.
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