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1 Introduction

Multicores are nowadays at the heart of almost every computational system, from the
smartphone in our pocket, to the server-class machines in datacenters that provide us
with a myriad of cloud services. With the advent of chip multiprocessors, the shift to
mainstream parallel architectures is inevitable, and both programmers and architects
are presented with immense opportunities and enormous challenges. Despite the fact
that multiprocessor systems have existed for a long time, multi-threaded program-
ming has not been much of a focus. Instead, multiprocessors were of interest only
to the small community of high-performance computing (HPC), and so was parallel
programming, which was mostly ignored by software vendors, and not widely inves-
tigated nor taught. As a matter of fact, most software development over time has been
predicated on single-core hardware, and the collective knowledge of software devel-
opers across organizations has been based primarily on single processor platforms.

Now that the free lunch is over [76], programmers must change the way they create
applications to fully leverage multicore hardware. At every layer of the computing
stack, whether the targeted platform is a handheld device or a warehouse-scale com-
puter, programmers are being pushed towards unfamiliar programming models in
order to deliver parallel software that takes advantage of the newly available compu-
tational resources and meets the demands of the end user. In the context of datacenters,
the task is even more daunting because of the massive scale and complex architec-
ture of these systems where efficient exploitation of parallelism is paramount at every
level. Ideally, parallel software developed for these large-scale clusters should be able
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to harness the potential of their multicore building blocks, while improving aspects
that impact the total cost of ownership such as energy efficiency, server utilization,
code maintainability or programmer productivity. Hybrid programming models that
use shared memory for intra-node parallelism and message passing for inter-node
communication are a good example of how programmers exploit these large-scale
systems with multi-core processors. New programming models keep appearing in
today’s datacenters as a result of the wide spectrum of applications and their diverse
characteristics. On the one hand, traditional HPC datacenters usually run scientific
workloads that have long, computationally-intensive jobs, often as a single binary
exclusively executed on a large number of nodes, where synchronization and com-
munication abounds. On the other hand, Internet services exhibit ample parallelism
given their large data sets of relatively independent records (e.g. web pages) and the
thousands of independent requests received per second. In either environment, the
programmer’s job is to find the most appropriate way to efficiently exploit the paral-
lelism that is inherent to the problem, maintaining high productivity while producing
correct code that is easily verifiable and composable.

Many applications that run in today’s datacenters have very strong requirements
in terms of response time. This is particularly true for those online services that
provide an almost instantaneous reply to the user, such as a web search engine.
While the work required to process a user’s request can be rather easily partitioned
across different nodes in independent units of data, each task that executes in a single
node generally performs a substantial amount of computation due to very large data
sets. This alleviates the overheads inherently imposed by the communication and
synchronization of hundreds or thousands of parallel tasks amongst different nodes
of the datacenter. Given the considerable extent of the job performed by each task,
the algorithms executed at the task level may also be subject to parallelization in
order to speedup the task and reduce overall latency. This could improve utilization
of the datacenter too, addressing the important trade-off between keeping machines
busy and response times low. Since each task is mapped to a single computing node
where all processing cores share the same address space, the intuitive abstraction of
shared memory may simplify programmer’s job of turning a monolithic task into a
parallel, multi-threaded program.

A fundamental problem that all programmers face when writing multi-threaded
code is the difficulty of simultaneously achieving both high efficiency and productiv-
ity/correctness. Designing a parallel algorithm involves orchestrating the concurrent
execution of the parts to improve performance while at the same time guaranteeing
correctness. Complex and hard-to-find, software defects unique to multi-threaded
applications such as race conditions and deadlocks can quickly derail a software
project [18]. Software engineering tools have yet to simplify the programming for
these shared-memory architectures in order to make the new hardware resources
accessible to the average programmer. In order to avert a software crisis, developers
must adapt and improve such tools to make them better suited for parallel multi-
core software development [83]. The reality is that software has not matured enough
to take advantage of the number of cores that are already available in today’s sys-
tems, and the vast majority of applications are still single-threaded [30]. The rise
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of multicores has brought such problem of effective concurrent programming to the
forefront of computing research. To help alleviating this problem, Transactional
Memory (TM) has been proposed as a concurrency control mechanism that aims to
simplify concurrent programming with reasonable scalability.

This chapter examines the state-of-the-art of Transactional Memory, paying spe-
cial attention to its hardware implementations (Hardware Transactional Memory or
HTM). Recent inclusion of HTM support in commodity multicore processors (Intel’s
Transactional Synchronization Extensions [91]) and commercial mainframes (IBM’s
Transaction Execution Facility [40]) has converted TM into a reality for current and
future datacenters.

The remainder of this chapter is organized as follows. In Sect. 2 we delve into the
problems that traditional parallel programming with locks has and discuss how TM
can alleviate them. Subsequently, we present the fundamentals of TM in Sect. 3 and
the hardware mechanisms TM requires in Sect. 4. Next, we describe the programming
interfaces of the hardware TM support provided by the new Intel processors (Sect. 5),
and present a brief performance analysis of it (Sect. 6). Section 7 summarizes the
most relevant proposals found in the HTM research literature. The main conclusions
of this chapter are summarized in Sect. 8.

2 Why Transactional Memory Is Going Mainstream

Concurrent programming is a far more challenging task than sequential program-
ming: A parallel program is undoubtedly more difficult to design, write, and debug
than its sequential counterpart. Orchestrating the concurrent execution of the parts to
improve performance while at the same time guaranteeing correctness is by no means
an easy task. Designing parallel algorithms requires restructuring code and data in
often counter-intuitive ways, so that it can be split into parallel tasks. Balancing the
workload among the available processors, or communicating and managing shared
data between different processors are some of the many factors that make parallel
programming a complicated endeavour. Programmers need to reason carefully about
possible interactions of their threads when running concurrently, and not doing so
may result in programs that are incorrect, perform poorly, or both. To add insult to
injury, parallel programs are very hard to debug due to the combinatorial explosion
of possible execution orderings: Parallel programs often produce non-deterministic
results, making it harder to prove programs correct, and their bugs are often elusive
and notoriously difficult to find and fix, because of the difficulty to reproduce the
exact same execution (i.e. interleaving of threads, etc.) that leads to a race.

In the context of shared memory architectures where concurrent tasks process
shared data, guaranteeing correctness while maintaining efficiency and productivity
is a key challenge. Parallel thread execution requires synchronization for accessing
shared data. Programmers are responsible for ensuring that concurrent accesses to
shared data structures are correct, and often rely on mutual exclusion mechanisms
to protect these critical sections, so that no more than one thread can simultaneously
enter the same critical section and access the same shared data.
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2.1 The Drawbacks of Lock-Based Synchronization

Traditional multi-threaded programming models use low-level primitives such as
locks to guarantee mutual exclusion. Unfortunately, the complexity of lock-based
synchronization makes parallel programming an error prone task, particularly when
fine-grained locks are used to extract more parallelism. At one end, heroic program-
mers seeking performance try to minimize the amount of shared resources (data)
that are protected by the same lock, so that different threads accessing different data
do not have to serialize their execution unnecessarily, thus enabling maximum con-
currency. However, the use of fine-grain locks adds more programming complexity,
since programmers must be careful to acquire them in a fixed, predetermined order so
as to avoid deadlocks. At the other end, common programmers seeking productivity
(correctness) choose to reduce the complexity of reasoning, i.e. likelihood of dead-
lock, by using fewer locks with coarser granularity where each lock is responsible for
protecting larger critical section. This naturally comes at the cost of sacrificing per-
formance, when threads without true data races contend for the same lock. Though
programmers can also include deadlock detection mechanisms in their programs, to
try and recover from deadlocks, this alternative also adds substantial complexity.

As if deadlocks were not enough, locking brings about other undesired situations
like priority inversion (when a high priority thread is unable to acquire a lock because
a lower priority thread is holding it), convoying (when a lock holder is de-scheduled
from execution, impeding others to progress) and lack of fault tolerance (when a
lock holder modifies data and then crashes, causing the whole program to fail). Fur-
thermore, locking breaks the abstraction principle, as programmers using a module
need to be aware of the locks it uses, to ensure that the program still follows the
predetermined locking order that prevents deadlock. Therefore, locks jeopardize the
code composability property, as two individually correct modules can deadlock when
combined together.

2.2 The Transactional Abstraction

The trade-off between programming ease and performance imposed by locks remains
one of the key challenges to programmers and computer architects of the multicore
era. Transactional Memory (TM) [34, 36] has been proposed as a conceptually sim-
pler programming model that can help boost developer productivity by eliminating
the complex task of reasoning about the intricacies of safe fine-grained locking. TM
inherits the concept of transaction from the database community, and applies it to the
domain of shared-memory programming in an attempt to simplify the task of thread
synchronization. Transactions in the multi-threaded programming world are blocks
of code that are guaranteed to be executed atomically and in isolation with respect to
all other code. At a high level, the programmer or compiler annotates sections of the
code as atomic blocks or transactions. The underlying system then executes these
transactions speculatively in an attempt to exploit as much concurrency as possible.
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TM systems generally employ an optimistic approach to concurrency control in order
to let multiple transactions execute in parallel, while still preserving the properties
of atomicity and isolation. Therefore, the TM system attempts to make best use of
available concurrency in the application while guaranteeing correctness. By using
transactions to safely access shared data, programmers need not reason about the
safety of interleavings or the possibility of deadlocks to write correct multi-threaded
code. Hence, TM addresses the performance-productivity trade-off by not discour-
aging programmers from using coarse-grain synchronization, since the underlying
system can potentially achieve performance comparable to fine-grained locks by ex-
ecuting transactions speculatively. In addition to addressing such critical trade-off,
TM tries to solve other limitations of lock-based synchronization. Transactional code
is robust in the face of both hardware and software failures, as the system can always
rollback the speculative updates to its pre-transactional state in case a thread crashes
inside a transaction. Unlike locks, transactions are composable, and they can be
safely nested without any risk of deadlocks [6].

2.3 High-Performance Transactional Memory

Transactions are a promising abstraction that could ease parallel programming and
make it more accessible to the common programmer. Transactional semantics can be
entirely supported in software, hardware, or using a combination of both. According
to this, we can classify TM systems into software transactional memory (STM),
hardware transactional memory (HTM), and hybrid transactional memory systems.

STM implementations [26, 35, 48, 72] allow running transactional workloads on
existing systems without requiring special hardware support, providing a great degree
of flexibility at little cost. Unfortunately, implementing the necessary mechanisms
entirely in software imposes too high an overhead and thus STM systems do not
fare well against traditional lock-based approaches when performance is important.
For this new paradigm to be a viable alternative to locks, the key mechanisms that
provide transactional semantics must be implemented at the architectural level.

Hybrid TM systems [4, 12, 23, 43, 74, 77] attempt to combine both the speed and
flexibility by using simple hardware to accelerate performance-critical operations
of an STM implementation. In this way, hybrid implementations of TM rely on
some kind of software intervention to execute transactions, though they minimize
the overheads of providing transactional semantics in comparison to a software-only
solution. Hybrid TM models use the STM as a backup to handle situations where the
hardware cannot execute the transaction successfully [34].

Transactional semantics can also be supported largely in hardware [1, 14, 16,
31, 50, 51, 89], allowing for good performance with varying degrees of complexity,
which change considerably from one HTM proposal to another depending on what
kind of transactions the TM system is capable of committing without resorting to fall-
back mechanisms. Simple HTM schemes [17, 22, 36] adopt a “best-effort” solution
that cannot not guarantee that all transactions will eventually commit successfully
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using hardware support alone, mostly because of the limitations imposed by the hard-
ware structures involved. More sophisticated HTM proposals [1, 31, 51] address this
limitation in transaction size, guaranteeing that certain “bounded” transactions can
be entirely executed in hardware. These proposals typically behave in the same way
as best-effort ones as long as hardware structures are sufficient, and then fall back
to additional hardware mechanisms to maintain transactional properties on resource
overflow. However, neither bounded nor best-effort solutions can commit transac-
tions that encounter events that are too complicated to handle in hardware, like context
switches, page faults, I/O, exceptions or interrupts [37], and in such circumstances
the transaction is invariably aborted. Even more elaborated HTM schemes have been
designed [1, 64] to handle all transactions in hardware, ensuring that the same trans-
action is not indefinitely aborted because of its size, duration or other events it may
encounter. Unfortunately, the complexity of these “unbounded” HTM designs makes
them too costly for processor manufacturers to consider them in practice.

2.4 Industrial Adoption of Hardware Transactional Memory

In the early 2000s, Transmeta was the first company to implement a form of transac-
tional memory in its x86-compatible Crusoe microprocessor, though this hardware
only meant to support aggressive speculative optimizations in its dynamic binary
translation system [24].

More recently, Azul Systems included HTM support in its Vega systems [22],
a specialized appliance designed to massively scale the usable compute resources
available to Java applications. However, the HTM support was only used to accelerate
Java locks and not exposed to programmers.

Sun Microsystems was the first general-purpose processor manufacturer that ven-
tured to introduce support for transactions in a chip multiprocessor. In 2007, the
company announced that its high-end Rock processor would have support for both
transactional memory and speculative multithreading [17]. Unfortunately, Sun can-
celled the project in 2009, and Rock chips never made it to the market, though some
prototypes were distributed for research purposes.

Around the time the Rock project was cancelled, AMD proposed the Advanced
Synchronization Facility (ASF) [21], a set of instruction extensions to the x86 ar-
chitecture that provide limited support for lock-free data structures and transactional
memory. To date, it is unknown whether any future AMD products will implement
ASF.

In mid 2011, IBM revealed that its BlueGene/Q compute chip would feature trans-
actional memory support. The custom design was a system-on-a-chip that integrated
18 PowerPC cores with memory and networking subsystems [33]. Cores shared a
multiversioned L2 cache which supports transactional memory and speculative mul-
tithreading. With the lessons learned from BlueGene/Q, IBM began to ship the IBM
zEnterprise EC12 system in the fall of 2012, less than a year after the first Blue-
Gene/Q system made its debut in the Top500 list. The zEC12 processor introduces
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the Transactional Execution Facility [40], which extends the z/Architecture used on
IBM mainframes with transactional memory support. The zEC12 has given IBM
the distinction of becoming the first company to deliver commercial chips with this
technology [27].

In early 2012, Intel announced that its new Haswell microarchitecture would
implement hardware transactional memory through a set of new instructions called
Transactional Synchronization Extensions (TSX) [61, 91]. Shortly after, Intel’s TSX
specification was released, describing how TM is exposed to programmers, but with-
holding details on the actual implementation. In mid-2013, Intel began shipping
processors based on its 4th-generation Core microarchitecture, making the Core
i3/i5/i7 and Xeon v3 processor families the first chips with TM support that are
available in the consumer and server markets. The adoption of transactional mem-
ory by mainstream, commodity x86 processors culminates a two decade journey of
active academic research. Section 7 provides a good overview of the contributions
have brought the industry here.

3 Fundamentals of Transactional Memory

Transactional Memory (TM) [34, 36] has been proposed as an easier-to-use program-
ming model that can help developers build scalable shared-memory data structures,
relieving them from the burdens imposed by fine-grained locking. Under the TM
model, the programmer declares what regions of the code must appear to execute
atomically and in isolation (called transactions), leaving the burden of how to provide
such properties to the underlying levels. The TM system then executes optimistically
transactions, stalling or aborting them whenever real run-time data races (called
conflicts) occur amongst concurrent transactions. The TM programming model thus
replaces explicit synchronization mechanisms like locking with a more declarative
approach whose aim is to decouple performance pursuit from programming pro-
ductivity. The transactional abstraction is provided at the programming language
level through a new construct, e.g. atomic, employed by programmers to delimit
accesses to shared data—i.e. critical sections—thus structuring their parallel code
into atomic blocks or transactions. A transaction is said to commit when it completes
its execution successfully—confirming its speculative updates to shared memory—
while it is aborted or squashed when some condition occurs—e.g. a conflict with
a concurrent transaction—that impedes its completion with success. To guarantee
race-free execution of a transactional multi-threaded application, TM implementa-
tions must satisfy two basic properties, namely atomicity and isolation, which are
inherited from the database domain.

The atomicity property dictates that a transaction is either executed to completion
or not executed at all. If the transaction successfully commits, all of its speculative
changes are made globally visible at once. Otherwise, if the transaction aborts, all its
tentative updates are discarded in order to revert the system to its pre-transactional
state, as if the transaction had never executed. To the outside world, this means that
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a transaction appears as an indivisible operation that cannot be partially executed.
On its part, the isolation property requires that the intermediate (speculative) state
of a partially completed transaction must remain hidden from other code. By satis-
fying these properties, transactions appear to execute in some serial global order, i.e.
committed transactions are never observed by different processors as executed in dif-
ferent orders. To provide these properties, the TM system must implement two basic
mechanisms, namely data versioning and conflict management. The policy and im-
plementation of these two mechanisms constitutes the two fundamental dimensions
of the TM design space.

Version management handles the simultaneous storage of both speculative data
(new values that will become visible if the transaction commits) and pre-transactional
data (old values retained if the transaction aborts). Only one of the two values can be
stored in-situ, i.e. in the corresponding memory address, while the other needs to be
placed somewhere else. The data versioning policy dictates how the system handles
the storage of both versions, and it constitutes a major design point of the system.
Depending on which value, old or new, gets to stay “in place” during the course
of the transaction, the data version management policy can be classified as eager
or lazy. Lazy versioning keeps old values in-situ until the commit phase, buffering
speculative updates “on the side” in the meantime. In contrast, an eager approach
to versioning uses a per-thread transaction log to backup the old value of a memory
location prior to each write, and then updates the memory location with the new value.

When two concurrent transactions access the same memory location, and at least
one of the accesses is a write operation, we say that there is a conflict or race between
them. TM systems implement a conflict management mechanism to detect and re-
solve such conflicts. For this purpose, the data read and written by each transaction
must be tracked. The set of data addresses that a transaction modifies during its ex-
ecution is known as write set. Similarly, the read set refers to the group of memory
locations read by the transaction. In these terms, a conflict between two concurrent
transactions happens when a transaction’s write set overlaps with other concurrent
transactions’ read or write sets. Depending on the meta-data information used for
transactional book-keeping, conflict detection can take place at different levels of
granularity, from objects, to cache lines to word or even byte-level addresses.

4 Hardware Mechanisms for Transactional Memory

HTM systems must identify memory locations for transactional accesses, manage
the read-sets and write-sets of the transactions, detect and resolve data conflicts,
manage architectural register state, and commit or abort transactions [34].

4.1 ISA Extensions

Identifying transactional boundaries is accomplished by extending the instruction set
architecture (ISA). All HTM implementations introduce a pair of new instructions,
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i.e. “begin transaction” and “commit transaction”, to delimit the scope of a transac-
tion. On the one hand, the execution of the “begin transaction” instruction causes the
processor to enter into “transactional mode” (usually setting some bit in the status
register) and perform some common actions related to the initialization of the basic
transactional mechanisms, like checkpointing the architectural registers to a shadow
register file. The architectural registers and memory combined form the precise state
of the processor, and therefore the register state also needs to be restored to a known
precise state in case of abort. The operation of creating a shadow copy of the archi-
tectural registers at the start of a transaction is rather straightforward and can often be
performed in a single cycle. On the other hand, the “commit transaction” instruction
attempts to confirm the speculative updates of the transaction by publishing them
to the rest of the system, and it returns the processor to non-transactional state if
successful, discarding the register checkpoint.

The most straightforward step to identify transactional accesses is to leverage these
two instructions that mark the beginning and end of a transaction, so that all the loads
and store instructions executed while in transactional mode are implicitly considered
transactional. This is the approach that most modern HTM proposals follow, includ-
ing the Haswell microarchitecture [91], and the failed Rock processor [17]. Another
option is to further augment the ISA with explicit “transactional load” and “trans-
actional store” instructions, separated from their conventional counterparts. Though
allowing a transaction to contain both transactional and non-transactional accesses
may complicate things, this provides increased flexibility and may aid programmers
to reduce the pressure on the underlying TM mechanisms, as non-transactional ac-
cesses do not participate in data versioning nor conflict detection. The original HTM
proposal by Herlihy and Moss [36] as well as the AMD Advanced Synchronization
Facility (ASF) [21] are explicitly transactional designs.

Some proposed HTMs also include an “abort transaction” instruction to explicitly
roll back the tentative work of transaction. This is an example of flexible design that
may enable TM hardware to be applied toward solving problems beyond guaran-
teeing mutual exclusion during the execution of critical regions. Programmers using
hardware transactions may find useful the ability to explicitly rollback execution upon
a certain condition, which need not necessarily be a conflict with other transaction.

4.2 Transactional Book-Keeping

HTM systems must track a transaction’s read and write set in order to detect data
races amongst concurrent transactions. Many HTMs extend the cache line metadata
kept at the private cache level, with two new bits that record, respectively, whether
the line has been speculatively read (SR) and/or speculatively modified (SM) during
the ongoing transaction [31, 51, 82]. Such designs also support the capability to clear
all the read bits in the data cache instantaneously, an action that is performed when
the transaction commits or aborts. The private caches serve as a natural place to track
a transaction’s read and write sets, enabling low overhead tracking, although they
also constrain the granularity of conflict detection to that of a cache line.
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All HTM systems that leverage the private level cache to perform transactional
book-keeping are susceptible of transactional overflows due to the cache’s limited
capacity or associativity. Best effort designs would automatically abort the transac-
tion if a cache line whose SR or SM bit is set is replaced, while bounded schemes
would resort to some safety net in order to keep tracking read and write sets and
detecting conflicts in the presence of spilled lines.

An alternative scheme of transactional book-keeping which does not leverage the
private level cache is to use Bloom filters to conservatively summarize a transaction’s
data accesses using “address signatures” [14, 89]. The main disadvantage of hash
encoding is that false positives may signal spurious conflicts, this is, the signature
may indicate that an address belongs to the transaction read and write sets when in
fact it does not.

4.3 Data Versioning

Besides keeping read and write set metadata, private caches are the natural place to
buffer speculative values, since they are on the access path for the local processor and
thus can automatically forward the latest transactional update to subsequent loads
without special search. Write-back caches can be modified to behave as write buffers
that support versioning of speculative data. Depending on the implementation, one
or multiple versions of a speculatively modified cache line may be allowed.

For HTM systems with eager version management [51, 89], caches need no
changes as they do not really have any notion of speculative writes. All writes go
to the memory hierarchy in the same way, whether they occur inside or outside a
transaction. It is then the responsibility of the coherence protocol to detect accesses
to speculatively written data, and ensure no other threads or transactions observe
it. Unlike lazy systems, evictions of speculatively written data from the private
caches are tolerated, and they need no special treatment from the point of view of
the versioning mechanism. However, specialized hardware is required to fill this
virtualized log with the old value of each memory location that is being updated
inside a transaction. The contents of the log are simply discarded on commit, by
resetting the log pointer to its initial position. On an abort, a software handler walks
the log restoring the original values into memory.

4.4 Conflict Detection and Resolution

HTM proposals leverage coherence mechanisms for conflict detection. Invalidation-
based, cache coherence protocols allow HTM implementations to detect conflicts
among concurrently running transactions at the granularity of cache lines. While
unnecessary transactional conflicts may arise as a result of false sharing, for most
transactional workloads this choice of granularity represents a good trade-off between
design cost and performance.
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More important than the granularity of the detection is the design decision of
when conflicts with concurrent transactions must be detected. Strategies for conflict
detection and resolution vary depending on when a processor examines the book-
keeping information of its read and write sets. In systems with eager detection—
sometimes also referred to as pessimistic—conflicts are detected as soon as they
happen, i.e. on every individual memory access. In the opposite approach, called
lazy or optimistic conflict detection, this check is delayed until transaction commit,
and the resolution is generally a committer-wins scheme.

The coherence protocol already provides mechanisms to locate the copies of a
requested cache line, and thus the detection of transactional conflicts can be achieved
with straightforward extensions. In snooping-based protocols, all caches observe all
coherence traffic for all lines, allowing cache controllers to check for conflicts when-
ever a request is observed on the bus. In directory-based protocols, cache controllers
only observe the coherence traffic corresponding to the lines that are currently pri-
vately cached. In a typical MESI directory protocol, a local store to a shared (S) line
results in a write miss, since the protocol ensures that no cache can have permissions
to write the data at this point. An exclusive request is sent to the directory, which in
turn forwards invalidation messages to the current sharers of the line (except maybe
the requester). The sharers are then able to check whether the requested address be-
longs to their read set—by checking the SR bit in cache, the read signature, etc.—and
appropriately detect a write-read conflict. Similarly, a load (store) miss to a line that
is remotely cached in modified (M) or exclusive (E) state results in a read (write)
request forwarded from the directory to the cache that has the latest copy of the
data, which then checks its write-set (read- and write-set) metadata to determine if a
read-write (write-write) conflict exists.

Once an HTM system detects a conflict, it must determine how to resolve it. The
conflict resolution policy constitutes another design dimension in HTM by dictating
which transaction wins the conflict and is granted access to the data. The loser
transaction can stall its execution, or it can be aborted: The alternatives change
depending on when the conflict is detected.

In HTMs with eager conflict detection, there are several policies for resolution:
requester wins, requester aborts, or requester stalls using a scheme of conservative
deadlock avoidance. The implementation of the requester wins policy is straight-
forward: The cache or caches that detect a conflict simply trigger abort and yield
to the requester. If the conflicted data was not speculatively modified (write-read
conflict), the loser responds with the appropriate invalidation acknowledgement or
data message. Otherwise, the response may be delayed until the data is conveniently
restored. The main drawback of this policy is that it can produce livelock scenarios.
The opposite option is to abort the requester. This is accomplished by augmenting
the coherence protocol with negative acknowledgements (nack) messages, so that a
cache controller that detects a conflict responds to a forwarded request or invalidation
with a nack message. On reception of a nack response, the requester knows it has
lost the conflict and can take the appropriate actions. The simplest alternative is to
trigger its own abort, but this can also result in livelock. A less draconian, livelock-
free solution is to stall the transaction and periodically retry the conflicting memory
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access until a positive response (different from the nack) is received. In this case,
cyclic dependencies amongst transactions can bring the system to a deadlock, and
so the system must have a way out such possible cycles. LogTM [51] uses a sim-
ple timestamp-based scheme to conservatively detect cycles, aborting the youngest
transaction to break the possible cycle.

HTM systems with lazy conflict detection must resolve conflicts when a committer
seeks to commit a transaction that conflicts with one or more other transactions.
The resolution policy in this scenario can abort all others, or else stall or abort the
committer. In general, lazy HTMs follow a committer wins policy [10, 32] that
favours forward progress and is both deadlock- and livelock-free. Unfortunately, the
committer wins policy does not guarantee fairness and can result in starvation for
some transactions.

4.5 Transaction Commit

The execution of the “commit transaction” instruction attempts to make the transac-
tion’s tentative changes permanent and visible to other processors instantaneously.
Such publication is in itself a task that must occur atomically and without interfer-
ence from other processors. For most HTMs, publishing speculative updates means
obtaining exclusive ownership for all cache lines in the write set, and then releasing
isolation over both transactional sets at once.

The implementation of the commit instruction is a straightforward operation in
eager HTMs, since writes were performed in place and therefore all write set lines
held in cache have write (exclusive) permissions. As for lazy HTMs, the require-
ment of en-masse publication of speculative updates to shared memory at commit
time poses more challenges when multiple speculative versions of the same data can
coexist. Commits in this case are non-trivial because each SM line must be located
and its coherence permission upgraded while every other copy in remote caches gets
invalidated. On the other hand, lazily-versioned HTMs that allow at most one spec-
ulative version easily provide local commits since speculative writes are performed
only when the protocol has obtained exclusive ownership (write permissions) for
the line. To simultaneously support both local commits and aborts, the coherence
protocol must be able to tolerate silent replacements of exclusively owned lines, and
it must be adapted to ensure the consistent version of the data is always written back
to the shared levels of the memory hierarchy before the first speculative write.

4.6 Transaction Abort

A hardware transaction may be implicitly aborted by the conflict resolution mech-
anism, or the abort can be explicitly triggered from the program via an “abort
transaction” instruction. Aborting a transaction means discarding all its tentative
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changes and return the state of the processor to the exact same state it was right be-
fore the transaction began. Book-keeping information (SM and SR bits, signatures,
etc.) must always be cleared on abort, and the last step of the abort process is the
restoration of the architectural registers using the checkpoint that was saved in the
shadow register file at the beginning of the transaction.

Implementing the abort functionality is quite simple in lazy HTMs, since spec-
ulative writes were performed “on the side” (in private structures local to the core)
and therefore the shared memory still contains consistent, pre-transactional val-
ues. Aborts are cheap since silent invalidations of shared-state lines are generally
supported by the protocol, and thus lazy HTM systems can quickly discard the spec-
ulative state, by extending the cache design with conditional gang-invalidation of
lines whose SM bit is set.

Eager HTMs, on the other hand, must restore each cache line in the write set
with the pre-transactional value that was backed up in the transaction log. The log
unroll is generally done in software, by trapping to an abort handler that accesses the
log base and pointer registers, and walks the log in reverse direction—those entries
that were added last must be processed first. No transactional conflicts should arise
during this process, as the coherence protocol ensures that the lines that belong to
the write set of the aborting transaction are isolated and cannot belong to any other
transaction. Because aborting is a slow process in eager HTMs, isolation over the
read set is usually released as soon as the abort is triggered, as it is safe for other
transactions to access it while the log is unrolled.

5 Intel TSX: TM Support in Mainstream Processors

Almost a decade after the research community regained interest in hardware imple-
mentations of TM, the world’s largest semiconductor company adopted these ideas
for a commercial product. The fourth generation of the Intel Core microarchitecture,
commonly known by its code name Haswell, implements the basic mechanisms
to provide programmers with a best-effort yet fast implementation of the transac-
tional abstraction. Intel began shipping Haswell-based processors in 2013, making
the Core i3/i5/i7 and Xeon v3 processor families the first chips with TM support
that are available in the consumer and server markets. Given Intel’s market share
on mobile, desktop and servers platforms, Haswell is an important milestone to-
wards the expansion of transactions as a synchronization primitive for multi-threaded
applications.

Following the tick of Ivy Bridge, which shrunk the Sandy Bridge microarchi-
tecture to the 22-nm process technology, Haswell’s tock extends the instruction set
architecture in a number of ways, from which the Transactional Synchronization
Extensions (TSX) are certainly one of the most prominent novel features. Through
the new TSX instructions, Haswell offers programmers two interfaces to exploit
its ability to use optimistic concurrency in thread synchronization: Hardware Lock
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Elision (HLE) is meant to accelerate conventional lock-based programs while main-
taining legacy compatibility, while Restricted Transactional Memory (RTM) allows
programmers to explicitly start, commit and abort transactions, thus providing a nat-
ural way of implementing transactions as a synchronization abstraction. Regardless
of the TSX interface used, the same underlying hardware mechanisms are involved
in the transactional execution.

5.1 Hardware Lock Elision

Hardware Lock Elision (HLE) is a legacy-compatible ISA extension aimed at ex-
tracting more thread-level parallelism from conventional lock-based programs, by
using speculation to allow concurrent execution of critical sections protected by the
same mutex. HLE comes in the form of two instruction prefixes, XACQUIRE and
XRELEASE, which act as hints to delimit the boundaries of a critical section. If
the processor supports TSX, each of these prefixes modifies the behaviour of the
instructions that are typically used, respectively, to acquire and release a lock vari-
able; otherwise, the prefixes are ignored and the processor executes the code without
entering transactional execution, making HLE-ready binaries backwards compatible.

When the XACQUIRE hint is used in conjunction with the atomic instruction
that attempts to acquire a free lock (e.g. cmpxchg), it alters its usual behaviour
and prevents (elides) the associated write of the “busy” value. Instead, the processor
enters transactional execution, adds the address of the lock to its read set and proceeds
to execute the critical section speculatively. Because the globally visible value of the
lock remains unchanged (i.e. “free”), other threads can read it without causing a data
conflict and also enter the critical section protected by the lock. While in transactional
execution, each processor leverages coherence traffic to monitor memory accesses,
detecting data conflicts and rolling back as necessary.

Similarly, the XRELEASE prefix is paired with the store instruction that releases
the lock, so that the associated write of the “free value” is again avoided. Instead,
the processor attempts to commit the transactional execution. In this way, as long
as threads do not perform any conflicting operations on each other’s data, they can
concurrently execute the critical section without unnecessary serialization due to a
coarse grain lock.

If speculation fails, the processor will rollback and re-execute the critical section
without using lock elision. Mutual exclusion in the re-execution of the critical section
is automatically ensured, because the address of an elided lock is always added to
the read set of the transaction, and thus non-transactional writes associated to lock
acquisition will always cause data conflicts with all other threads that may be eliding
the same lock at that time, which will be forced to rollback and also retry without
elision. Therefore, code that makes use of HLE maintains the same forward progress
guarantees as the underlying lock-based execution.
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5.2 Restricted Transactional Memory

Unlike HLE, Restricted Transactional Memory (RTM) gives up backwards com-
patibility to provide programmers with a more flexible interface for transactional
execution. It introduces new instructions to define transaction boundaries, XBEGIN
and XEND, as well as to explicitly abort a transaction from software, XABORT.
Transactional nesting is supported in TSX by means of flattening: the nesting level is
incremented by XBEGIN and decremented by XEND, and commit is only attempted
when the nesting level goes to zero.

Programmers must provide an alternative code path to the XBEGIN instruction,
where control is transferred to in case the transaction aborts, after the processor
has discarded all speculative updates, restored architectural state to appear as if
the speculation never occurred, and resume execution non-transactionally. After an
abort, the EAX register is used to communicate its cause (explicit, data conflict,
internal buffer overflow, faults, etc.) to the fallback routine, as well as the 8-bit
immediate taken as argument by the XABORT instruction. In this way, programmers
may freely use the fallback path in different ways to decide the most profitable course
of action, manage contention, etc. It is important to remark that according to the TSX
specification, the HTM implementation is best-effort, as there are no guarantees as
to whether an RTM transaction will ever successfully commit. Thus, the fallback
code is entirely responsible for guaranteeing forward progress.

Figure 1 shows a simple implementation of the fallback path, which attempts to
retry a transaction a number of times before acquiring a global lock to execute the
transaction in serial irrevocability. This implementation shares similarities with that
found in GCC’s libitm library, since version 4.7.0. As we can see, serial_lock
is read after the transaction has successfully started so that, when a thread enters
serial irrevocable mode by acquiring the lock, it automatically causes the abort of all
other running transactions due to a conflict on the lock variable, achieving a similar
behaviour to what the HLE interface provides.

6 Analysing Intel TSX Performance on Haswell

In this section, we present a brief performance analysis of the Intel TSX exten-
sions, with the purpose of shedding light into the benefits of hardware support for
transactions. For this evaluation, we use a benchmark from the STAMP suite (Stan-
ford Transactional Applications for Multi-Processing [13]). STAMP benchmarks
are extensively used in the TM research literature. Unlike other benchmarks (e.g.
SPLASH-2 [88]), the STAMP applications have been developed from scratch using
coarse grain transactions, in an attempt to capture the features of future transactional
workloads.

For the sake of simplicity, we focus exclusively on the application intruder, whose
use of transactions we can see in the code snippet shown in Fig. 2. This benchmark
emulates a signature-based network intrusion detection system in which packets
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Fig. 1 A possible implementation of the fallback for Intel RTM

are processed in parallel and go through three phases: capture, reassembly, and
detection. Transactions are used to synchronize access to the shared data structures
used in the capture and reassembly phases, respectively, a simple FIFO queue and
a self-balancing tree. We can see how the resulting code is simple as that of coarse-
grain locks, effectively easing the task of the programmer, as opposed to the use of
fine-grain locking on the queue and tree data structures.

We pick intruder because it exhibits several interesting characteristics. First, it
comprises several transactions that access different data structures. On the one hand,
its first and third transactions are used to extract an element at the head of a queue,
and thus have small read and write set sizes, since it basically consist of a read-
modify-write operation of the head pointer. On the other hand, its main transaction
has medium-sized transactional sets—in the order of a few tens of cache lines—since
it carries out most of the processing of the packet (reassembly) by traversing the tree
structure. Despite its coarse granularity, its main transaction can be accommodated
by the Haswell hardware without constantly causing capacity aborts. Last but not
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Fig. 2 Example of coarse grain transactions in intruder

least, intruder exhibits high levels of contention that are desirable to evaluate TM
performance in less favourable conditions.

Our experiments with TSX are performed on a 3.4 GHz quad-core Intel Core i7-
4770 processor with 16 GB of main memory, running Linux kernel 3.11. Each core
has support for two SMT threads, but we choose to disable hyperthreading from the
BIOS, in order to dedicate all available resources for speculative buffering (e.g. L1
data cache) to a single thread per core. Each core has an eight-way, 32 KB L1 data
cache. Given the four hardware contexts available, we run the program with one, two
and four threads. We pin one thread to each core using pthread affinity. The bench-
mark is compiled with GCC v.4.8.1, using the O3 optimization level. Since version
4.8, GCC supports the Intel RTM intrinsics, built-in functions and code genera-
tion by including the <immintrin.h> header and enabling the -mrtm flag. The
begin_transaction and end_transaction functions shown in Fig. 1 are
used to implement the fallback-path. The read-write spinlock implementation from
linux-3.11/arch/x86/include/asm/spinlock.h is used to enforce
serialization. Transactions are allowed to retry up to eight times before resorting to se-
rialization via the fallback lock. For each configuration, a minimum of 20 executions
are averaged to derive statistically meaningful results. Our experiments use the large
input size recommended for non-simulator runs [13]: 256K traffic flows are analyzed,
10 % of which have attacks injected, where each flow has a maximum of 128 packets.

To observe the relative performance gain achieved by TSX, we consider in this
experiment other two synchronization schemes that do not make use of the hardware
support for transactions. We run a lock-based version of the benchmark in which
transactions are implemented as critical sections protected through a single global
lock (SGL). Additionally, we compare TSX performance against a software TM
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Fig. 3 Performance comparison of TSX versus TL2 and single global lock

system called Transactional Locking II (TL2) [26], which is distributed with STAMP.
We also include a sequential flavour of the benchmark (SEQ), which is stripped of
all synchronization.

Figure 3 shows the execution time of the three synchronization schemes imple-
mented by the underlying library. The plot shows execution time (in seconds) for
each of the synchronization flavours considered, and runs with one to four threads.
As we can see in Fig. 3, intruder achieves good scalability through optimistic con-
currency in spite of the coarse grain transactions used. Both hardware (TSX) and
software (TL2) implementations of TM scale significantly better than a single global
lock. In particular, we see how TSX is able to bring the execution time from 15 s
with a single thread, down to around 4.5 when running 4 threads. As opposed to
HTM and STM solutions, adding more threads in the SGL scheme does not speedup
execution but rather causes a slight performance degradation: The global lock pre-
cludes all concurrency in the application, and adding more threads only makes things
worse by increasing the contention on the lock variable. Given that the use of coarse
grain transactions entails a similar complexity to that of single global lock, this per-
formance comparison between SGL and two TM implementations confirms that,
from the point of view of the programmer, transactions are indeed able to keep up
its promise of achieving better scalability than coarse grain locks, with the same
programming effort.
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Fig. 4 PCM output for intruder (four threads), showing TSX performance event counts

Furthermore, the numbers obtained by TSX demonstrate that hardware implemen-
tations of transactional semantics are necessary to dramatically reduce the substantial
performance overheads seen in software-only solutions, as a result of the instru-
mentation on every memory access within a transaction which is required to track
transactional reads and writes and be able to detect conflicts. Hardware TM imple-
mentations can exhibit their full potential in those cases where most transactions
are appropriately sized to avoid overflowing the hardware buffering capacity, as it
is the case of intruder in our Haswell-based setup. Other STAMP benchmarks with
larger transaction footprints may not be as well suited and exhibit substantially higher
capacity-induced aborts [91].

In spite of the good speedup achieved by TSX with four threads (3.3 times faster
than sequential), the scalability of intruder starts to deviate more and more from the
ideal. This is a direct result of the increasing level of contention seen in the appli-
cation: several threads attempting to capture the same packet from the FIFO queue,
concurrent accesses to the dictionary while the tree is rebalanced, etc. Using the In-
tel Performance Counter Monitor (PCM), an open source tool, we can monitor TSX
performance events in order to obtain relevant information about the execution of the
program, such as the amount of contention (e.g. number of aborts due to data conflicts,
TX_MEM.ABORT_CONFLICT). Figure 4 shows the output of PCM when running
the benchmark intruder with four threads using TSX. The number of conflict-induced
aborts may increase quickly with contention, particularly in HTM implementations
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that resolve conflicts using a requester wins policy. Though details about its imple-
mentation have not been disclosed at the time of this writing, it is likely that Intel
has adopted such simple yet livelock-prone conflict resolution strategy in Haswell,
with the intent of keeping the changes in its coherence protocol to a minimum. In
any case, the TSX specification clearly places on the fallback path the responsibility
of providing forward progress when it detects that a transaction has failed too many
times. As commented earlier, in our implementation of the abort handler all running
transactions are automatically killed when the fallback lock is acquired due to a data
conflict, thus adding to the number of contention-induced aborts.

7 An Overview of Hardware TM Research

Research in HTM design has been very active since the introduction of multicores in
mainstream computing. In the early 1990s, Herlihy and Moss introduced Transac-
tional Memory [36] as a hardware alternative to lock-based synchronization. Their
main idea was to generalize the LL/SC primitives in order to perform atomic accesses
not to one but to several independent memory locations, thus eliminating the need
for protecting critical sections with lock variables. Almost a decade later, architects
began to recover their interest in transactions at a hardware level. Rajwar and Good-
man’s Transactional Lock Removal (TLR) [63] was the first to apply the concept
of transaction to the execution of lock-protected critical sections, merging the idea
of Speculative Lock Elision (SLE) [62] with a timestamp-based conflict resolution
scheme.

The early proposal by Herlihy and Moss was revived ten years later by Hammond
et al., who present Transactional Coherence and Consistency (TCC) [32] as a novel
coherence and consistency model that uses continuous transactional execution. The
novelty of TCC stems from its “all transactions, all the time” philosophy, where
transactions are the basic unit of parallel work, synchronization, memory coherence
and consistency. TCC’s lazy approach contains speculative updates within private
caches and lazily resolves races when a committing transaction broadcasts its write-
set, employing a bus to serialize transaction commits.

In contrast to Stanford’s TCC, Wisconsin’s LogTM [51] explores the opposite
corner of the HTM design space. Moore et al. take a more evolutionary ap-
proach to transactional memory in LogTM, combining transactional support with
a conventional shared memory model that enables a more gradual change towards
transactional systems. LogTM is a purely eager HTM system that leverages a stan-
dard coherence protocol to perform conflict detection on individual memory requests,
and makes commits fast by storing old values to a per-thread log in cacheable vir-
tual memory, which is unrolled by a software handler in case of abort. Unlike TCC,
LogTM can tolerate evictions of transactional data from caches thanks to the log,
and enables conflict detection on evicted blocks through an elegant extension to the
coherence protocol.
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LogTM has been subsequently refined. Moravan et al. [52] introduce support for
nested transactions, enabling both closed nesting with partial aborts and open nesting
[55]. Open nesting is a programming language construct motivated by performance,
which can improve concurrency by relaxing the atomicity guarantee. When an open
nested transaction commits, the TM system releases its read and written data so
that other transactions can access them without generating conflicts. Thanks to open
nesting, otherwise-offending transactions can access the exposed data after the nested
transaction commits, while the outer transaction still runs. This can enhance the
degree of concurrency achieved by the flattening scheme found in LogTM, which
enforces isolation until the outermost transaction commits. In [3], Baek et al. propose
FanTM, a design that uses address signatures in hardware [14] to efficiently support
transaction nesting.

Later on, Yen et al. [89] decouple transactional support from caches, removing
read and write bits used for transactional book-keeping, and replacing them with hash
signatures. This latest improvement, called LogTM-SE (Signature Edition), borrows
the concept of Bloom filters [5] to conservatively encode a transaction’s read and write
set metadata. The idea of applying hash encoding towards conflict detection/thread
disambiguation was first introduced into the realm of TM by Ceze et al. in [14] and
[15]. The use of hash signatures for transactional book-keeping has been further
explored by several authors. In [69], Sanchez et al. examine different signature
organizations and hashing schemes to achieve hardware-efficient and accurate TM
signatures. Quislant et al. have also studied signature organizations, basing their
works in LogTM-SE. In [59], they show that locality can be exploited in order to
reduce the number of bits inserted in the filter for those addresses nearby located,
and reducing the number of false conflicts. More recently, the authors have studied
multiset signature designs [60] which record both the read and write sets in the
same Bloom filter. Yen et al. developed Notary [90], which introduces a privatization
interface that allows the programmer to explicitly declare shared and private heap
memory allocation, which can be used to reduce the signature size as well as the
number of false conflicts arising from private memory accesses. Sanyal et al. exploit
the same concept in [70], proposing a scheme that dynamically identifies thread-local
variables and excludes them from the commit set, both reducing the pressure on the
versioning mechanisms and improving the scalability of such phase in lazy HTMs.

In the context of signature-based eager HTM systems, Titos-Gil et al. have pro-
posed a scheme of conflict detection at the directory level [29] that is not only capable
of dealing with contention more efficiently than LogTM-SE, but can also minimize
the performance degradation caused by false positives. Their solution moves trans-
actional bookkeeping from caches to the directory, introducing separate hardware
module that acts as conflict controller and works independently of the coherence
controller, leaving the protocol largely unmodified.

In FASTM [46], Lupon et al. extend LogTM with a coherence protocol that enables
fast abort recovery in an otherwise eager HTM, by leveraging the private cache to
buffer speculative state, effectively avoiding traps to software handlers that perform
log unroll as long as speculatively modified data does not overflow the private cache
level. LogTM’s approximation of making commits fast has also inspired OneTM [8]
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[7], which uses a cache to reduce the frequency with which transactions overflow on
chip resources, and proposes a simple irrevocable execution switch to handle such
overflows as well as context switches, I/O or system calls inside transactions, at the
cost of limited concurrency.

Bobba et al. propose TokenTM [11], another unbounded HTM design that uses
the abstraction of tokens [49] to precisely track conflicts on an unbounded number of
memory blocks and it handles both paging, thread migration and context switching,
but incurs high state overhead. In [41], Jafri et al. improve on TokenTM and pro-
pose LiteTM, a design that maintains the same virtualization properties of TokenTM
while greatly reducing the state overhead, and without sacrifying much performance.
Support for transactions of unlimited duration, size and nesting depth has also been
considered by proposals such as UTM [1, 44] or VTM [64], which focus on hard-
ware schemes that provide virtualization of transactions. However, both achieve this
goal by introducing large amounts of complexity in the processor and the memory
subsystem. On its part, XTM [20] implements transaction virtualization support in
software, using virtual memory and operating at page granularity. A similar approach
is taken by Chuang et al. [19] in PTM, a page-based, hardware-supported TM design
that combines transaction bookkeeping with the virtual memory system to support
transactions of unbounded size, as well as to handle context switches and exceptions.

While it is not an issue for eager systems like LogTM, parallelism at commit is
important for lazy systems when running applications with low contention but a large
number of transactions. Transactions that do not conflict should ideally be able to
commit simultaneously. The very nature of lazy conflict resolution protocols makes
it difficult since only actions taken at commit time permit discovery of data races
among transactions. Simple lazy schemes like the ones employing a global commit
token [10] or a bus [31] do not permit such parallelism. The reason for limited
parallelism at commit time is that the committing transaction has no knowledge of
which other concurrently running transactions must abort to preserve atomicity. The
TCC design [31] was later extended to scalable DSM architectures using directory
based coherence. This proposal is called Scalable TCC (STCC) [16], and it employs
selective locking of directory banks to avoid arbitration delays and thereby improve
commit throughput. Pugsley et al. [58] improve over STCC by proposing even more
scalable commit algorithms that reduce the number of network messages, remove the
need for a centralized agent, and tackle deadlocks, livelocks and starvation scenarios.

Another approach to improve the scalability of the commit process in lazy systems
has been explored by EazyHTM [82]. Tomic et al. record the information pertaining
to potential conflicts, which is readily available from coherence messages during
the lifetime of any transaction, and use this information at commit time to allow
true commit parallelism. All potentially conflicting transactions that must be aborted
would be known, and committers that have not seen races can commit in a truly
parallel fashion.

Pi-TM [53] builds upon the ideas explored by EazyHTM, and leverages the con-
cept of pessimistic self-invalidation to enable parallel lazy commits without affecting
the execution in the common case. Negi et al. develop an early conflict detection—
lazy conflict resolution HTM design with modest extensions to existing protocols,
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which uses information regarding conflicts and performs pessimistic invalidation
of potentially conflicting lines on commit and abort, enabling fast common-case
execution.

FlexTM [75] also provides lazy conflict resolution by recording conflicts as they
happen, using this information to enable distributed commits. Unlike EazyHTM,
Shriraman et al. choose to do so in software, sacrifying progress guarantees to
gain greater parallelism. Performance costs associated with software intervention
and software verification challenges without watertight forward progress guarantees
could limit the value of this approach. EazyHTM, on the other hand, provides parallel
lazy commits in hardware and ensures forward progress, but trades off common-case
performance to achieve it. FlexTM allows flexibility in policy but it does so by imple-
menting critical policy managers in software. It provides a significant improvement
in speed over software TM implementations by proposing the use of alert-on-update
hardware, but the considerable cost of software intervention renders a comparison
with pure HTMs moot. In the context of HTM, Shriraman and Dwarkadas [73] have
also analyzed the interplay between conflict resolution time and contention manage-
ment policy. They show that both policy decisions have a considerable impact on the
ability to exploit available parallelism and demonstrate that conflict resolution time
has the dominant effect on performance, corroborating that lazy HTMs are able to
uncover more parallelism than eager approaches.

With DynTM [47], Lupon et al. introduce a cache coherence protocol that allows
transactions in a multi-threaded application run either eagerly or lazily based on some
heuristics like prior behavior of transactions, at the cost of adding extra complexity
at level of the coherence controller. Recognizing the fact that contention is more a
property of data rather than that of an atomic code block, ZEBRA [79] chooses a
different dimension when combining eager and lazy policies into a HTM design, al-
lowing per-cache-line selection of versioning and conflict resolution policies. While
DynTM selects policies at the level of transactions, ZEBRA is a data-centric design
which works at the same granularity of the underlying coherence infrastructure—
i.e. cache lines—and therefore introduces less complexity into existing protocols.
This hybrid design is able to track closely or exceed the performance of the best
performing policy for a given workload, bringing together the benefits of parallel
commits (inherent in traditional eager HTMs) and good optimistic concurrency with-
out deadlock avoidance mechanisms (inherent in lazy HTMs), with little increase in
complexity.

LV* [54], a proposal that utilizes snoopy coherence, allows programmer control
over policy in hardware but with the constraint that all transactions in an application
must use the same policy at any given time. The requirement of programmer-assisted
policy change is a drawback too since the same phase of an application can exhibit
different behavior with varying datasets.

The mitigation of the performance penalty associated with transaction aborts has
been of interest to the HTM community. Waliullah and Stenstrom study the utility
of intermediate checkpoints in lazy HTM systems [85, 86], as a means to reduce the
amount of work that is discarded on abort. In their scheme transactions record con-
flicting addresses upon abort, and use this historical information to insert a checkpoint
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before a memory reference predicted as conflicting is executed. If the transaction is
squashed, it is rolled back to the checkpoint associated with the first conflicting ac-
cess, rather than all the way back to the beginning. Reducing the penalty of abort
was also considered by Armejach et al. [2], who propose a reconfigurable private
level data cache to improve the efficiency of the version management mechanism in
both eager and lazy HTMs.

Titos et al. have also analysed how the lack of effective techniques for store
management results in a quick degradation in the performance of eager HTM systems
with increasing contention and, thus, lends credence to the belief that eager designs
do not perform as well as their lazy counterparts when conflicts abound [80]. The
authors present two simple ways to improve handling of speculative stores which
yield substantial improvements in execution time when running applications with
high contention, allowing eager designs to exceed the performance of lazy ones.

The applications of data forwarding and value prediction for conflict resolution
have also been explored in the context of eager HTM systems. Pant et al. [56, 57]
observe that shared-conflicting data is often updated in a predictable manner by dif-
ferent transactions, and propose the use of value prediction in order to capture this
predictability and increase overall concurrency by satisfying loads from conflicting
transactions with predicted values, instead of stalling. In DATM [66], Ramadan et
al. investigate the advantages of value forwarding for speculative resolution of true
data conflicts amongst concurrent transactions. DATM is an eager system that dis-
covers and tracks the data dependencies amongst concurrent transactions, allowing
writer transactions to proceed in the presence of other conflicting transactional acces-
sors, and reader transactions to obtain uncommitted data produced by a concurrent
transaction, while still enforcing a legal serialized order that preserves consistency.

Hardware TM systems can suffer a series of pathological behaviours that nega-
tively affect performance. Bobba et al. explore HTM design space, identifying how
some of these undesirable scenarios [10] affect each kind of system depending on
the choice of policies for version and conflict management. Some pathologies such
as starvation have been further analysed and resolved in other subsequent works
[87]. Other pathologies that affect HTM performance have been the topic of several
studies. Volos et al. [84] investigate the interaction of transactional memory imple-
mentations and lock-based code, and discover other problematic scenarios that may
arise in these circumstances. False sharing, another undesired situation that may
arise in multi-threaded codes, becomes even a bigger problem when it occurs in con-
junction with hardware transactional memory [51] due to the detection of conflicts
at a cache line granularity. Tabba et al. [78] propose a mechanism that takes the
concepts of coherence decoupling [39] and value prediction, and combines them to
mitigate the effects of coherence conflicts in transactions. The granularity of conflict
detection in HTM has also been the subject of the works by Khan et al. [42], whose
HTM proposal is able to detect conflicts at the level of objects—instead of cache
lines—which leads to a novel commit scheme as well as an elegant solution to the
problem of version management virtualization.
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Another kind of pathological behaviour affecting HTM performance happens
when concurrent operations on data structures that are not semantically conflicting—
such as two insertions in two different buckets of a hash table—result in conflicting
transactions because of updates on auxiliary program data—e.g. the size field. In-
spired by instruction replay-based mechanisms [25], Blundell at al. propose RetCon
[9], a hardware mechanism that eliminates the performance impact of such spureous
transactional conflicts. RetCon tracks the relationship between input and output val-
ues symbolically and uses this information to transparently repair the output state of
a transaction at commit.

Ramadan et al. have examined the architectural features necessary to support
HTM in the Linux kernel for the x86 architecture [65, 68]. They propose MetaTM,
an HTM model that contains features that enable efficient and correct interrupt han-
dling for an x86-like architecture. Using TxLinux—a Linux kernel modified to use
transactions in place of locking primitives in several key subsystems—they quantify
the effect of architectural design decisions on the performance of such a large trans-
actional workload. TxLinux, based on the Linux 2.4 kernel and thus characterized
by its simple, coarse-grained synchronization structure, is used by Hoffman et al. in
[38] to show that a minimal subset of TM features supported in hardware can sim-
plify synchronization, provide comparable performance to fine-grained locking and
handle overflows. The challenge of operating system (OS) support in HTM is also ad-
dressed Wang et al. [71] and Tomic et al. [81]. DTM [71] proposes a hardware-based
solution that fully decouples transaction processing from caches, while HTM-OS
[81] leverages the existing OS virtual memory mechanisms to support unbounded
transaction sizes and provide transaction execution speed that does not decrease
when transaction grows. A related challenge that has been addressed in the HTM
literature is the support of input/output operations within transactions: Lui et al. [45]
analyse this problem and propose an HTM system that supports I/O within transac-
tions by means of partial commits, using commit-locks and blocking/waking-up of
transactional threads.

The applicability of hardware transactional memory (HTM) has also been con-
sidered in the context of dynamic memory management. Dragojevic et al. [28]
demonstrate that HTM can be used to simplify and streamline memory reclama-
tion for practical concurrent data structures. The use of HTM to aid lightweight
dynamic language runtimes in evolving more capable and robust execution models
while maintaining native code compatibility has been studied too. Using a modified
Linux kernel and a Python interpreter, Riley at al. [67] explore the lack of thread
safety in native extension modules and use features found in an HTM implementa-
tion to address several issues that impede to the effective deployment of dynamic
languages on current and future multicore and multiprocessor system.
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8 Conclusions

Following the recent inclusion of hardware support for Transactional Memory in
commodity multicore processors [91] and commercial mainframes [40], the time
has come for architects and programmers of datacenters to ponder the new opportu-
nities that may unfold in the coming years. This chapter examines the state-of-the-art
of Transactional Memory, paying special attention to its hardware implementations
(Hardware Transactional Memory or HTM). Transactions not only address one the
key challenges of the multicore era, i.e. the trade-off between programming ease
and performance, but also bring about other important benefits such as better code
composability and fault tolerance. For these reasons, parallel software developed for
large-scale clusters may also find in Transactional Memory an attractive program-
ming model to unlock the full potential of the multicore processors that power a
datacenter, while improving aspects that impact the total cost of ownership such as
server utilization or code maintainability.
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