
Auditing for Data Integrity and Reliability
in Cloud Storage

Bingwei Liu and Yu Chen

1 Introduction

As a new computing paradigm, cloud computing has enhanced the data storage
centers with multiple attractive features including on-demand scalability of highly
available and reliable pooled computing resources, secure access to metered services
from nearly anywhere, and displacement of data and services from inside to outside
the organization. Due to the low cost of storage services provided in the cloud,
compared with purchasing and maintaining storage infrastructure, it is attractive to
companies and individuals to outsource applications and data storage to public cloud
computing services.

Outsourcing data to remote data centers that are based on cloud servers is a
rapidly growing trend. It alleviates the burden of local data storage and maintenance.
Security and privacy, however, have been the major concerns that make potential
users reluctant to migrate important and sensitive data to the cloud. The fact that
data owners no longer possess their data physically forces service providers and
researchers to reconsider data security policies in the storage cloud. On one hand,
evidences such as data transmission logs can prevent disputation among users and
service providers [8–11]; on the other hand, the service providers need to convince
users that their data stored in the cloud is tamper free and crash free, and that their data
can be retrieved anytime when needed. Traditional cryptographic methods cannot
meet these new challenges in the new paradigm of cloud storage environments.
Downloading the entire data set to verify its integrity is not practical due to constraints
of the communication network and the massive amount of data.

B. Liu (�)
Department of Electrical and Computer Engineering, Binghamton University,
State University of New York, Binghamton, NewYork, USA
e-mail: bliu@binghamton.edu

Y. Chen
Department of Electrical and Computer Engineering, Binghamton University,
State University of New York, Binghamton, NewYork, USA
e-mail: ychen@binghamton.edu

© Springer Science+Business Media New York 2015 535
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_17

536 B. Liu and Y. Chen

Integrity and reliability of data in the cloud are not inherently assured. On the
one hand, cloud service providers themselves face the same threats that traditional
distributed systems need to handle. On the other hand, cloud service providers have
incentive to hide data loss or to discard parts of user data without informing the
user, since they aim at making profit and need to maintain their reputation. Trusted
third party (TTP) based auditing is promising to solve this dilemma. Therefore, a
customized auditing scheme is desired, which is expected to keep track of accesses
and operations on stored data in the cloud. The recorded information is also essential
for digital forensics or disputation resolving. In this chapter, we will discuss the
rationale and technologies that are potentially capable of meeting this important
challenge in the storage cloud.

There are technologies to verify the retrievability of a large file F in its entirety on a
remote server [1, 3, 12]. Juels and Kaliski [12] have developed Proof of Retrievability
(POR), a new cryptographic building block. The POR protocol encrypts a large file
and randomly embeds randomly-valued check blocks, called sentinels. To protect
against corruption by the prover of a small portion of F, they also employed error-
correcting codes in the POR scheme. The tradeoff of these sentinel-based schemes
is that preprocessing is required before uploading the file to remote storage. Because
sentinels must be indistinguishable from regular file blocks, POR can only be applied
to encrypted files and has a limited number of queries that are decided prior to
outsourcing.

A Provable Data Possession (PDP) scheme [1] allows a user to efficiently, fre-
quently, and securely verify that the server possesses the original data without
retrieving the entire data file and provides probabilistic guarantees of possession.
The server can only access small portions of the file when generating the proof of
its possession of the file. The client stores a small amount of metadata to verify the
server’s proof.

However, PORs and PDPs mainly focus on static, archival storage. Considering
dynamic operations in which the stored data set will be updated, such as inserting,
modifying, or deleting, these schemes need to be extended accordingly. Dynamic
Provable Data Possession (DPDP) schemes [7] aim to verify file possession under
these situations.

Due to constraints at user side such as limited computing resources, researchers
also seek solutions that migrate the auditing task to a third party auditor (TPA).
This approach will significantly reduce users’ computing burden. However, new
challenges appear. Privacy protection of users’data against external auditors becomes
a major issue. Privacy-preserving public auditing has attracted a lot of attention from
the cloud security research community.

The rest of the chapter is organized as follows. The basics of information auditing
are introduced in Sect. 2. Section 3 discusses the principles of POR and PDP schemes
and illustrates several typical implementations. Section 4 presents recent reported
efforts considering privacy-preservation in cloud storage. Section 5 discusses several
open questions and indicates potential research directions in the future. Finally, we
conclude this chapter in Sect. 6.

Auditing for Data Integrity and Reliability in Cloud Storage 537

2 Information Auditing: Objective and Approaches

The past decades have witnessed the rapid development of information technologies
and systems. Such an evolution has made system architecture very complex. Infor-
mation auditing plays the central role in effective management since it is critical to
any organization to obtain a good understanding of information storage, transmis-
sion, and manipulation. As more and more components have been introduced, the
focus and definition of information auditing are expanded. In this section, a definition
of information auditing is given first. Then, three typical approaches are discussed
that actually reflect the particular view of an auditor focusing on an organization.

2.1 Definition of Information Auditing

In past 30 years, the application of information auditing has been extended from
identifying formal information sources, which emphasizes document management,
to monitoring the information manipulations on the organizational level. As an in-
dependent, objective assurance and consulting activity, information auditing helps
to add value and improve operations. It provides clients and service providers in-
formation for internal control, risk management, and so on. Defined by the ASLIB
Knowledge & Information Management Group [6], information auditing is:

A systematic examination of information use, resources and flows, with a
verification by reference to both people and existing documents, in order
to establish the extent to which they are contributing to an organization’s
objectives.

According to this definition, information auditing could include one or more of the
following objectives:

• Identifying control requirements
• Supporting vender selection
• Reviewing vendor management
• Assessing data migration
• Assessing project management
• Reviewing/assessing/testing control flow
• Logging digital footprints for forensics

Corresponding to the objectives, the following are questions an information auditing
system is expected to address:

• Data: What information does this system store, transfer, or manipulate?
• Function: How does the system work? What has done to the data?
• Infrastructure: Where are the system components and how are they connected?

538 B. Liu and Y. Chen

• User: Who launches the work? What is the work flow model?
• Time: When do events happen? How are they scheduled?
• Motivation: Why are functions executed? What are the goals and strategies?

2.2 Three Approaches of Information Auditing

Considering the complexity of today’s information systems, an IT manager may be
interested in certain components of an organization instead of all components. To
allow more dimensions to auditing, an auditor can adopt particular views against
an organization and variant approaches can be taken. Three approaches are sug-
gested by researchers: strategic-oriented, process-oriented, and resource-oriented.
The strategic-oriented approach focuses on the routines by which an organization
achieves its strategic objectives under the constraints of available information re-
sources. The expected output in this dimension would be an information strategy for
the organization. Typically a strategic-oriented information auditing system should
consider the following questions:

• Goal: What is this system for?
• Approaches: How can we achieve this goal?
• Resources: What information/infrastructure resources do we have/use?
• Constraints: Is there any resource/performance gap/constraints?
• Essential Concerns: What are the most essential concerns?

The process-oriented approach focuses on a process, which is a sequence of activities
the system takes to achieve the expected outcomes. Processes reflect system char-
acteristics and reveal how information flows and how functions cooperate. There
are four main types of processes: core processes, support processes, management
processes, and business network processes [14]. The key output would include
processed-based mapping and information flow/resources analysis. Typical questions
[6] a process oriented information auditing system will answer include:

• Activities: What do we do?
• Approaches: How do we do it?
• Attestation: How can we prove we do what we say we will do?
• Resources: What information resources do we use and require?
• Facilities/Tools: What systems do we use?
• Concerns: What problems do we experience?

The resource-oriented approach aims at identifying, classifying, and evaluating
information resources. Instead of associating resources with a strategic goal or
an operational process, the major purpose of the resource-oriented approach is
to allow auditors to manage or categorize resources according to strategic impor-
tance or according to their ability to support critical processes. Questions [6] that
resource-oriented information auditing systems should address include:

Auditing for Data Integrity and Reliability in Cloud Storage 539

• Identification: What are the information resources?
• Utilization: How are the information resources used?
• Management: How does the system manage and maintain them?
• Policy: What are the regulations of utility?
• Priority: Which are the most critical information resources? Which are useless?

Considering the properties and security expectations of cloud storage, process-
oriented auditing is the most suitable candidate among the three approaches.
Information collected in this dimension will provide sufficient evidence for both
digital forensics and the reputation estimation of the data storage service provider.
However, there is no reported effort that tries to develop such a process-oriented
auditing system for cloud computing services. We hope this book chapter can inspire
more activities in this important area.

3 Auditing for Data Integrity in Distributed Systems

One of the important applications of distributed storage service systems is to store
large research data files that are not frequently accessed but cannot be reproduced
because the devices that collected the data are unavailable or because of the expense.
A client might choose to store such data in remote a storage system provided by
trusted professional services. Usually the data files will be replicated in case one of
the storage servers is unavailable because of maintenance or disk damage. For each
server that possesses the client’s data files, both the client and the service provider
need to assure that each file is retrievable in its entirety whenever the client needs.
It is not practical to download the entire file to verify its integrity when dealing with
large archive file. Users (data owners) need to be assured that their outsourced data
is not deleted or modified at the server, without having to download the entire data
file.

In this section, we investigate the general categories of strategies for auditing data
integrity in distributed systems. Then three popular schemes are discussed in more
details.

3.1 Strategies of Auditing Data Integrity

A straightforward way to assure the integrity of our data is to utilize message authen-
tication code (MAC). The client, who wants to use the storage service of a server,
calculates a short MAC for each file block, save them in local storage and upload his
data to the server. To increase the security of data, the client can choose to encrypt the
data before MAC calculation. When the client needs to check the server’s possession
of the data, he simply asks the server to calculate MACs for all file blocks and send
them as a proof of possession. The obvious problem of this simple strategy is the huge
overheads of computation and communication. In order to make sure the entirety of

540 B. Liu and Y. Chen

data, the server needs to access all file blocks, executing expense computation when
the file is large. The communication cost to transmit all MACs is also unacceptable.

More practical strategies in auditing data integrity can be divide into two
categories:

1. Sentinel Embedding. The strategy is to utilize sentinels produced by the client to
secure data integrity. Sentinels are created by a one-way function. By appending
the predefined number of sentinels to the encoded file and permuting the resulting
file, the client is able to check fixed number of sentinels during each challenge
period to the server. Since the server has no knowledge about the position of these
sentinels, it cannot modify any block of the client’s data without being detected
in one or several challenges that could ask for the entirety of any block.

2. Random Sampling Authenticators. The other way to audit the integrity of data
is based on authenticators. An authenticator is produced for each file block be-
fore uploading data to the server. The client only stores some metadata, such as
cryptographic keys and functions, and uploads his data along with authenticators
to the server. The key of this strategy is the algorithm that we use to calculate
the authenticators. This algorithm should be able to verify the integrity in an
aggregating way so that the proof from the server will not be proportional to the
number of blocks that we want to check.

Juels and Kaliski [12] proposed the Proof of Retrievability (POR) based on sentinel
embedding. Although it is a strong protocol for data integrity, there is one inevitable
problem. The number of sentinels is predefined, causing a fix number of challenges.
This is unacceptable in some applications. In order to obtain higher confidence of
data integrity, the entire file needs to be retrieved to embed more sentinels.

Ateniese et al. [1] on the other hand suggested random sampling in their Prov-
able Data Possession scheme. The rest schemes that we shall discuss in this chapter
[17, 18, 20] are all constructed under similar idea, with various choices of authenti-
cator algorithms for specific purposes, such as privacy preservation or dynamic data
operations etc.

One problem of random sampling schemes is that they cannot assure in 100 %
confidence. Ateniese et al. [1] suggested that checking 460 blocks in each challenge is
able to achieve 99 % confidence to detect server misbehavior if 1 % of data is changed.
This seems good enough for most applications, but still needs to be improved for
more flexible storage services.

In the following subsections, we focus on POR [12], PDP [1] and Compact POR
[17] for distributed storage system. Next section further discusses the challenges in
Cloud storage services and efforts [18, 20] to solve them.

3.2 Proof of Retrievability

Juels and Kaliski [12] proposed a cryptographic building block known as a proof of
retrievability (POR) for archived files. POR enables a user (Verifier) to determine

Auditing for Data Integrity and Reliability in Cloud Storage 541

Fig. 1 Schematic of a POR System [12]

that an archive (Prover) “possesses” a file or data object F. A successfully executed
POR assures a Verifier that the Prover presents a protocol interface through which
the Verifier can retrieve F in its entirety.

Figure 1 shows the schematic of a POR. Two parties are involved in this model:
the archive server as the Prover and the owner of the archived file or the user as the
Verifier.

At theVerifier side, a key generation algorithm and an encoding algorithm are used
to preprocess the file F. The key generation algorithm produces a key to encode the
file F. This key should be independent of F and is stored by the Verifier. The encoding
algorithm transforms raw file F into encoded file F̃ by randomly embedding a set of
randomly-valued check blocks called sentinels.

After storing the encoded file into the Prover, the Verifier challenges the Prover by
specifying the positions of a collection of sentinels and asking the Prover to return the
associated sentinel values. If the Prover has modified or deleted a substantial portion
of F, then with high probability it will also have suppressed a number of sentinels. It
is therefore unlikely to respond correctly to the Verifier. To protect against corruption
by the Prover of a small portion of F, a POR scheme also employs error-correcting
codes.

A POR system (PORSYS) consists of six algorithms: keygen, encode, ex-
tract, challenge, verify and respond. Table 1 summarizes inputs, outputs of these
algorithms and provides a brief description of each algorithm.

Definition 1 Algorithm: An algorithm with n inputs and m outputs is denoted as

A(input1, · · ·, inputn) → (output1, · · ·, outputm)

where A is the name of the algorithm.

542 B. Liu and Y. Chen

Table 1 Six Algorithms of a POR System [12]

Role Algorithm Description

Verifier keygen[π] → κ Generate a secret key κ , could be a public/private
key pair. For security concern, this key can be
decomposed into multiple keys

encode(F ; κ ,α)[π] → F̃η) Encode the original file with κ into F̃η, where η
denotes the unique file id (handle) of F̃ in the file
system

extract(η; κ ,α)[π] → F Extract the original file F by a sequence of chal-
lenges to the Prover

challenge(η; κ ,α)[π] → c Take as input the file handle η, secret key κ , and
state α. Output a challenge value c

verify((r , η); κ ,α) → b ∈ {0, 1} Determine whether the receiver response r is valid
to challenge c. If success, output 1, otherwise
output 0

Prover respond(c, η) → r Generate a response to a challenge c

In these algorithms, α denotes a persistent state during a Verifier invocation, andπ
denotes the full collection of system parameters. π should at least include the security
parameter j. In particular, we can also include the length, formatting, encoding of
files and challenge/response sizes in π .

The encode algorithm is the core of this system since all operations and data
for verification are accomplished in this algorithm. The basic steps include error
correction, encryption, sentinel creation and permutation.

Figure 2 shows the file structure changes in POR system. Suppose F with a
message-authentication code (MAC) has b blocks, denoted as: F [1], · · ·,F [b]. It
is divided into s chunks, each has k l-bit blocks. Thus we can view it as an s × k
matrix, where each element is a block. For simplicity, the error-correcting code
(ECC) also operates over l-bit symbols and sentinels, and l-bit values computed by
a one-way function have l-bit length. This basic scheme adopts an efficient (n, k, d)-
error correcting code with even-valued d . This code has the ability to correct up to
d/2 errors. After applying ECC toF , each chunk is expanded to n blocks, resulting in
a new file F ′ = (F ′[1],F ′[2], · · ·,F ′[b′]), where the number of blocks is b′ = bn/k.
The encryption step applies a symmetric-key cipher E to F ′, yielding file F ′′.

A sentinel is created by a suitable one-way function f, taking as input the key
generated by keygen and the index of this sentinel. Suppose we have s sentinels.
These sentinels are appended to F ′′, yielding F ′′′ with b′ + s blocks. Finally, in the
encode algorithm, we apply a permutation function to F ′′′, obtaining the output file
F̃ , where F̃ [i] = F ′′′[g(κ , i)].

The auditing procedure involves challenge, response and verify algorithms.The
Verifier use a state α to track the state of each challenge. For simplicity, we let the

Auditing for Data Integrity and Reliability in Cloud Storage 543

Fig. 2 File blocks changes in the encode step of sentinel POR system

Verifier stateα initially be 1, incrementing it by q during each challenge1. The current
value of α indicates that in last challenge phase the client requested sentinel position
from α − q to α − 1. The positions of sentinels that the Verifier wants to check are
simply generated by the permeation function with two inputs: the secret key and the
position of sentinel before applying permutation, that is b′ +α. The Prover then send
the Verifier requested blocks (in the Prover’s point of view). The Verify uses the one-
way function f to calculate all sentinels that are being checked and compare with
the Prover’s response. In this way, the Verifier can detect the Prover’s misbehavior
in a relatively low cost of checking a small number of sentinels.

The overhead of POR mainly includes the storage for error-correcting code and
sentinels, as well as computation of error-correcting code and permutation opera-
tions. Several optimization can be done to improve POR’s performance. For example
the length of response can be further hashed to a compact fixed length proof and the
challenge can also be compressed by passing a seed to the Prover instead of all index
of sentinel blocks. However, the major problem of this scheme is the limited number
of challenge once the sentinel embedded file is upload to the prover.

3.3 Provable Data Possession

PDP was first proposed by Ateniese et al. [1]. Earlier solutions for verifying a server
retaining a file need either expensive redundancy or access to the entire file. The PDP
model provides probabilistic proof of the possession of a file with the server accessing
small portions of the file when generating the proof. The client only stores fixed size

1 In [12], the state α is not clearly defined. This interpretation of α is based on the σ in challenge
function in Sect. 3.1 of [12].

544 B. Liu and Y. Chen

of metadata and consumes a constant bandwidth. The challenge and the response
are also small (168 and 148 bytes respectively). This subsection will introduce the
PDP scheme in detail, including the definition and two enhanced versions of PDP
algorithms: S-PDP and E-PDP.

3.3.1 Preliminaries

The PDP schemes are based on RSA algorithm. Readers are referred to [16] for more
information about RSA algorithm.

First we choose two safe primes p and q that are large enough. Let N = pq, all
exponentiations are calculated modulo N . We denoted ZN = {0, 1, · · ·,N − 1} and
Z

∗
N is the set of all numbers in ZN that are relatively prime to N . That is

Z
∗
N = {a ∈ ZN : gcd(a,N) = 1}

Definition 2 Quadratic Residue: An integer a ∈ ZN is a quadratic residue
(mod N) if x2 ≡ a mod N has a solution. Let QRN be the set of all quadratic
residues of ZN and g be a generator ofQRN .

In the RSA algorithm [16], a large integer d is randomly chosen such that it is
relatively prime to (p − 1)(q − 1). The other integer e is computed so that

ed ≡ 1 mod (p − 1)(q − 1).

When using RSA-based algorithm for verification, there is a slight difference in
choosing e and d in that

ed ≡ 1 mod
p − 1

2
· q − 1

2
.

Definition 3 Sets of Binary Numbers: The set of all binary numbers with length
n is denoted by {0, 1}n. Specifically, {0, 1}∗ is the set of arbitrary length of binary
numbers.

When we want to randomly choose a number k from a set S, we use the notation

k
R← S. For example, k

R← {0, 1}κ means k is a number randomly chosen from the
set of all κ-bit binary numbers.

Definition 4 Homomorphic Verifiable Tags (HVTs): An HVT is a pair of values
(Tmi ,Wi). Wi is a random value obtained from the index i. Tmi will be store on the
server.

As building blocks of PDP, HVTs have the properties of unforgeable and blockless
verification. The PDP scheme use HVTs as the verification metadata of file blocks.

Finally, we introduce four cryptographic functions:

• h : {0, 1}∗ → QRN is a secure deterministic hash-and-encode function.
• H : {0, 1}∗ → ZN is a cryptographic hash function.

Auditing for Data Integrity and Reliability in Cloud Storage 545

Fig. 3 Protocol for provable data possession [1]

• f : {0, 1}κ × {0, 1}log2 n → {0, 1}� is a pseudo-random function (PRF). Specifi-
cally, we use fk(x) to denote f (k, x).

• π : {0, 1}κ × {0, 1}log2 n → {0, 1}log2 n is a pseudo-random permutation (PRP).

A hash function often takes as input an concatenation of two binary strings. We use
s1||s2 to denote the concatenation of s1 and s2.

3.3.2 Defining the PDP Protocol

The PDP protocol involves a client, denoted as C, who wants to store a large file in
a remote server and a server, denoted as S, who provides storage services. Fig. 3
depicts the PDP protocol in [1].

The PDP protocol consists of four polynomial-time algorithms: KeyGen, Tag-
Blcok, GenProof and CheckProof. Table 2 summarizes these algorithms. Among
them, KeyGen, TagBlcok and CheckProof are executed on the client side. The
server need only to run the GenProof algorithm to generate a proof that it is
possessing the client’s file upon receiving a challenge from the client.

A file F is divided into n blocks, that is F = (m1, · · ·,mn). If not explicitly stated,
the letter n always means the number of blocks in file F. At the beginning of the setup
phase, F is pre-processed by the client C into a new file F′. This process could include
encrypting the file and generating a tag for each file block. The client then uploads
F′ to the server S. To verify whether the server is storing the entire file, the client
then periodically generates a challenge and sends it to the server. Upon receiving a
challenge, the server computes a proof of possession as a response to this challenge
and sends back to the client. Finally, the client can check the server’s response and
verifies whether the server possesses the correct file.

A PDP protocol consist of two phases: the Setup Phase and the Challenge Phase.

• Setup Phase:
The Setup Phase at the client side includes generation of necessary keys (public
key and private key), calculation of a tag for each file block, transmission of

546 B. Liu and Y. Chen

Table 2 Four Algorithms of a PDP System [1]

Role Function Description

Client KeyGen(1κ) → (pk, sk) Generate a secret key pair (pk, sk), taking
as input a secret parameter κ

TagBlock(pk, sk,m) → Tm Generate the verification metadata Tm for
the input file block m

CheckProof(pk, sk, chal, P)) → {0, 1} Validate a proof of possession P . IF P is a
correct proof of possession, output 1, else
output 0

Server GenProof(pk, F, chal,Σ) → P Generate a proof of possession P for given
challenge chal

the processed file to the server and finally deletion local copy of the file. These
operations are all executed on the client side. In particular, this phase consists of
the following steps:
1. KeyGen(1κ) → (pk, sk) generate secret keys.
2. Apply TagBlock to each file block mi , i = 1, · · ·, n, resulting in n tags Tmi .
3. Send {pk, F,Σ = (Tm1 , · · ·, Tmn)} to S.
4. Delete F and Σ in local storage.

• Challenge Phase:
In the Challenge Phase we use a challenge-response style to verify the integrity of
the client’s file. The challenge message specifies a predefined number of blocks,
with their indices. The server needs to prove it is possessing all these blocks by
calculating a proof P using all block data. The necessary steps of this phase are:
1. C generates a challenge chal, specifying the set of blocks that it wants S to

prove that it possesses these blocks.
2. C sends chal to S.
3. S runs GenProof to get the proof of possession P
4. S sends P to C.

Considering the tradeoff between security and efficiency, Ateniese et al.[1] intro-
duced a secure PDP scheme (S-PDP), which has a strong data possession guarantee,
as well as an efficient PDP scheme (E-PDP), providing better efficiency by means
of a weaker data possession guarantee. The next two subsections will discuss these
two schemes in detail.

3.3.3 The Secure PDP Scheme (S-PDP)

This section provides the construction of the Secure PDP Scheme (S-PDP) [1], in-
cluding implementation of each algorithm and the two phases. The S-PDP is able to
assure that the server possesses all blocks that are specified in the challenge message.

The key generation algorithm produce the public key pk = (N , g) and the secret
key sk = (e, d, v). The RSA modulus N is the product of two distinct large primes
p and q. Let g be a generator of QRN . The public key pk is then formed by N

Auditing for Data Integrity and Reliability in Cloud Storage 547

and g. Among the three integers in the secret key v is randomly chosen from {0, 1}κ .
d is used to generate tags (authenticators) in TagBlock algorithm and e is used in
CheckProof algorithm. pk and sk should be stored on the client side.

For each block of data, mi , the TagBlock algorithm calculates a tag using the
data as a number and its index. An index related number Wi is first generated by
concatenating v with the index i, denoted as Wi = v||i. The tag of this block Tmi is
then computed as

Tmi = (h(Wi) · gm)d mod N.

After getting all tagsΣ = (Tm1 , · · ·, Tmn), the client sends them to the server together
with the original file F and the public key pk. That is {pk, F, Σ} are sent to the
server. The client then deletes F and Σ on its local storage. This finishes the Setup
Phase.

In the Challenge Phase, a challenge chal = (c, k1, k2, gs) is generated as follows.
First of all, we randomly choose three integers: k1,k2 and s. k1 and k2 are selected
from {0, 1}κ , serving as keys for the pseudo-random permutation π and the pseudo-
random function f respectively. The last number s belongs to Z

∗
N and is used to

mask the generator g. The challenge message is then formed as (c, k1, k2, gs), where
c is the number of blocks that each challenge will pick and gs = gs mod N .

At the server side, there is only one algorithm GenProof that is executed upon
receiving a challenge requested by the client. For each number j from 1 to c, an
index ij = πk1 (j) and a mask aj = fk2 (j) are calculated. The file blocks that the
client want to check are then indicated by {i1, i2, · · ·, ic}. Finally, two numbers T and
ρ are computed as the proof for this challenge:

T =
c∏
j=1

T
aj
mij

, ρ = H (g
a1mi1+···+acmic
s mod N).

The motivation for putting the coefficients aj in the challenge phase is to strengthen
the guarantee that S possesses each block queried by the client. In each challenge
phase, there is a randomly chosen key for calculation of these coefficients. S cannot
store combinations of the original blocks to save storage cost. Since the proof of
possession has a constant length regardless the number of blocks being requested,
this scheme can maintain constant communication cost in the challenge phase.

Once T and ρ are ready, the server response the client with its proof to chal,
P = (T, ρ). The client runs GenProof to check the correctness of the proof. First,
it computes ij , aj andWij as the server did. Then τ = T e is divided by h(Wij)

aj for
each j from 1 to c. This actually results in

τ = ga1mi1+···+acmic mod N.

If the proof is valid, the following equation should be true:

H (τ s mod N) = ρ.

548 B. Liu and Y. Chen

Table 3 Comparison between S-PDP and E-PDP [1]

Algorithm S-PDP E-PDP

GenProof aj = fk2 (j) delete

T = (∏c
j=1 T

aj
ij

)
mod N T =∏c

j=1 Tij mod N

ρ = H (g
a1mi1 +···+acmic
s mod N) ρ = H (g

mi1 +···+mic
s mod N)

CheckProof ij = πk1 (j),Wij = v||ij , aj = fk2 (j) ij = πk1 (j),Wij = v||ij
τ = (τ/h(Wij)aj) mod N τ = [T e/(h(wi1) · · ·h(wic))] mod N

3.3.4 The Efficient PDP Scheme (E-PDP)

The Efficient Provable Data Possession (E-PDP) [1] scheme achieved a higher per-
formance at the cost of a weaker guarantee by eliminating all coefficients aj in the
GenProof and CheckProof algorithms. Table 3 shows a comparison between S-PDP
and E-PDP. As all coefficients aj = 1, the E-PDP scheme reduces the expensive ex-
ponential computation. However, the server S can only possess the sum of the blocks
mi1 , · · ·,mic for a challenge. In order to completely pass the challenge phase every
time, the server S needs to compute every combination of c blocks out of n blocks,
that is

(
n

c

)
. The client can choose values of n and c such that make it impractical for

the server to simply store all sums.

3.4 Compact Proof of Retrievability

Because of the predefined number of sentinels, the sentinel-based POR scheme has
a limited number of possible challenges. Based on Juels and Kaliski’s work [12],
Shacham and Waters [17] introduced two new schemes that achieved public and
private verifiability, with compete proof of security.

Shacham and Waters [17] proposed two new proof of retrievability schemes, with
private and public verifiability respectively. The main advantage of SW PORs is
the unlimited number of queries. The private verification scheme, based on pseudo-
random functions (PRFs), has the shortest response of any POR scheme (20 bytes)
with the cost of a longer query. The second scheme used short signatures introduced
by Boneh, Lynn and Shacham (BLS) [5] to verify the authentication of data in remote
servers, hence assuring public verifiability is secure. At an 80-bit security level, this
scheme has the shortest query (20 bytes) and response (40 bytes)of any POR scheme.

An important contribution of [17] is that it provided a complete security proof for
both schemes. Interested readers can consult this paper for more details.

3.4.1 System Model

Shacham and Waters’s system model has similar functions with Juels and Kaliski’s
POR description in [12], but modules were redefined and more details were added. In

Auditing for Data Integrity and Reliability in Cloud Storage 549

this model, key generation and verification procedures no longer maintain any state.
In addition, Shacham and Waters’s protocols [17] allow challenge and response to
be arbitrary.

There are two parties in this system, the Verifier and the Prover. The Verifier could
be the data owner itself or a third party auditor. The prover is the storage server.
Similar to POR, a fileM with size b is divided into n blocks, each further split into
s sectors. Thus, we can refer to a sector asmij , 1 ≤ i ≤ n, 1 ≤ j ≤ s.M can also be
treated as an n× s matrix {mij }. Each sector is an element of Zp = {0, 1, · · ·,p− 1},
where p is a large enough prime number.

Our description of these algorithms in the following sections about public and
private verification will be slightly different with [12] in input and output parameters.
We redefine part of these algorithms to maintain internal consistency. We hereby
ignore all input and output parameters since they vary in the public scheme and the
private scheme and focus on the functionalities of these algorithms. There are four
algorithms in the system model:

• KeyGen. The key generation algorithm. The Verifier runs this algorithm to gen-
erate necessary private keys (for private verification) or key pairs (for public
verification) for other algorithms.

• Store. The file processing algorithm. The Verifier runs this algorithm to produce
the processed fileM∗ and a file tag t . The processed fileM∗ is stored in the server.
The file tag t is saved in the data owner’s local storage or at the server side depends
on the desire of service agreement.

• Prove. The proving algorithm. The Prover runs this algorithm to generate a proof
of retrievability according the index indicated in the challenge message sent by
the Verifier.

• Verify. The verifying algorithm. If it is a third party auditor who is running this
algorithm, the file tag need to be retrieved and verified first. Then the challenge
message is produced. When the prover sends the response message back, the
Verify algorithm continues to verify the response. After running this algorithm,
the Verifier will know whether the file is being stored on the server and can be
retrieved as needed. If the algorithm fails, it outputs 0. The Verifier can then use
an extractor algorithm to attempt to recover the file.

This scheme still works in two phases. In the setup phase the data owner runs Key-
Genand Store to process the file and upload the resulting file to the server (Prover).
The challenge phase involves the Verifier (data owner or TPA), running Verify, and
the Prover, running Prove.

3.4.2 Private Verification Construction

The construction of a private verification consists of the implementation of the four
functions that are discussed in Sect. 3.4.1.

550 B. Liu and Y. Chen

Since this scheme is for private verification purposes, we only need a secret key
sk = (kenc, kmac) in the KeyGen algorithm, where kenc is an encryption key and kmac
is an MAC key.

In the Store algorithm, the file M is preprocessed with an erasure code before
applying the following operations. This erasure code should be able to recover the
file even the Prover erases some portion of the file. The processed file is denoted as
M∗ as a part of output. This file is divided into n blocks, each has s sections. Hence
we can writeM∗ = {mij }, (i = 1, · · ·, n; j = 1, · · ·, s). To detect any modification to
the file by the Prover, the Verifier (data owner) calculate an authenticators

σi = fkprf (i) +
s∑
j=1

αjmij , i = 1, · · ·, n

for each block, where αj are randomly chosen from Zp. These authenticators provide
strong assurance that the Prover cannot forge any one of them since it has no knowl-
edge of the PRF as well as the PRF key. A file tag t is also computed to include PRF
key and αj . These numbers are concatenated and encrypted first. Then the encrpyted
bit string is appended to the number of blocks n, forming an initial tag t0. Finally, the
file tag is produced by appending the MAC of t0, keyed with kmac, with itself. The
Verifier only stores sk and outsources the processed file M∗, authenticators {σi}ni=1
and the file tag t to the Prover.

In the Verify algorithm, the Verifier sends an l-element query Q = {(i, vi)},
1 ≤ i ≤ n, specifying the index of blocks that are to be verified, to the Prover. In
each pair of (i, vi), i is a random index of file block and vi is randomly chosen from
B, a subset of Zp. For simplicity, we can let B = Zp. There are totally l pairs inQ,
suggesting that the set of all i, I = {i : (i, vi) ∈ Q}, has the size l.

In the Prove algorithm, the Prover uses vi as coefficients when calculating a proof
for a specific Q. This also prevents the Prover from using a previously calculated
proof. The response r = {μ1, · · ·,μs , σ } is produced as follows. For each 1 ≤ j ≤ s,
we let μj = ∑i∈I vimij . The last number σ is simply the sum of all products of vi
and σi , that is σ = ∑

i∈I viσi . Now the Prover have all it needs for the response r
and send it to the Verifier.

Back to the Verify algorithm, upon receiving r , the Verifier checks if

σ =
∑
i∈I

vifkprf (i) +
s∑
j=1

αjμj

is true. If it is, there is a high probability thatM is retrievable.
As shown in the protocol, this private verification scheme has less computation

overhead than PDP since multiplication is the only operation except addition.

3.4.3 Public Verification Construction

A public verifiable POR scheme allows anyone who has the public key of the data
owner to query the Prover and verify the return response. With this protocol, user

Auditing for Data Integrity and Reliability in Cloud Storage 551

offloads the verification task to a trusted third party auditor. The public verification
scheme in [17] used BLS signatures [5] for authentication values instead of utilizing
PRF.

In this public verification construction, Shacham and Waters employ bilinear map
in the verify algorithm V . We briefly introduce bilinear map here. Interested readers
are referred to [4, 5] for more details. Let G1, G2 and GT be multiplicative cyclic
groups of the same prime order p. g1 is a generator of G1 and g2 is a generator of
G2. A bilinear map is a map e : G1 ×G2 → GT with the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua , vb) = e(u, v)ab.
2. Non-degenerate: e(g1, g2) �= 1

In this scheme, we let G = G1 = G2.
The KeyGen algorithm now needs a public and private key pair. At first a signing

key pair (spk, ssk) is generated. The public key pk = (v, spk) and the secret key
sk = (α, ssk), where α is randomly chosen from Zp and v = gα .

The file tag t contains a name ∈ Zp and s randomly chosen uk ∈ G, k = 1, · · ·, s
as well as the number of blocks n. These data are concatenated, resulting t0 =
name||n||u1|| · · · ||us , and appended by its signature keyed with ssk. The final file
tag is t = t0||SSigssk(t0). uk is also used for authenticator calculation. For each i
from 1 to n, the authenticator of blockmi is σi = (H (name||i) ·∏s

j=1 u
mij
j)α , where

H : {0, 1}∗ → G be the BLS hash [5]. After calculating the above information, the
user then sends the erasure coded fileM∗ together with {σi} to the Prover.

The challenge phase is almost the same as the private verification scheme except
that σ in the response message is changed to the sum of σ vi

i instead of viσi before.
Of course, the verification equation need to be modified since bilinear group is used
here. The user now check whether the following condition is held:

e(σ , g) = e
(∏

(i,vi)∈Q
H (name||i)vi ·

s∏
j=1

u
μj
j , v

)
.

4 Auditing in Cloud Storage Platform

Cloud computing is migrating traditional computing services to remote cloud service
providers. Cloud storage has advantages such as high flexibility, ultimately low
price and relatively high data security for a wide spectrum of users. However, not all
problems with traditional distributed storage are solved by cloud computing. Security
is still the major concern, even though the cloud providers all claim they can protect
our data in more secure way than the users can do themselves.

This section analyzes changes brought by cloud computing in data storage and
introduces researchers’ attempt to solve these problems.

552 B. Liu and Y. Chen

4.1 Challenges

Although there are reported efforts in information auditing for distributed systems,
the special features in the cloud storage platforms necessitate customized design
due to new challenges. This subsection briefly lists the problems that need to be
considered.

1. Dynamic Data Operations. Clients in cloud services might not have files of large
size such as the original PDP and PoR schemes assume, but the number of files
is greater, and the flexibility requirements are stronger. Files in the cloud storage
will be changed more frequently. Modification, deletion and insertion need to be
considered in the design of storage system.

2. Public Verifiability. Computing devices that cloud clients have might not be
powerful enough to accomplish the computational task of integrity auditing of
their own data in cloud storage. Meanwhile, these clients’ end devices might have
multiple tasks to do, which cannot allow limited computing resources consumed
by this single task. It is desired to offload the verification procedure to a third
party auditor (TPA), which has sufficient computing resources and expertise in
data auditing. It is expected to make the verification protocol a public verifiable
one.

3. Privacy Preserving. This seems to conflict with the public verifiability require-
ment at first glance. How can the TPA execute auditing protocol and yet not
be trusted? Studies in preserving privacy in using TPAs for auditing purposes
showed that it is feasible and practical to design a verification protocol for un-
trusted TPAs. Using this protocol, file blocks should not be retrieved in order to
verify the integrity of files.

4. Computational Efficiency. A cloud client can be a portable device like PDA or
smartphone which usually has weaker computation ability and limited commu-
nication bandwidth. Data auditing protocols in cloud storage should try to reduce
both computation and bandwidth as much as possible.

5. Multiple Files. A cloud client’s storage request could consist of large number of
files instead of a single large file.

6. Batch auditing. A cloud server can be audited by a TPA for thousands of users’
files. In this case, if aggregating multiple proofs as a single message to the TPA
is applicable, the communication burden of the protocol could be significantly
reduced to an acceptable level.

In the following subsections, we shall discuss more schemes trying to tackle some
of these problems.

Auditing for Data Integrity and Reliability in Cloud Storage 553

4.2 Public Verifiability

There is a variant of PDP scheme [1] that can support public verifiability. A PDP
scheme with public verifiability property allows anyone to challenge the server for
the possession of the specific file as long as they have the client’s public key.

To support public verifiability, the following changes are made to the S-PDP
protocol:

1. Besides N and g, the Client should make e public.
2. A PRF ω : {0, 1}κ × {0, 1}log2 n → {0, 1}� is used to generate Wi by randomly

choose a v from {0, 1}κ as a key. That is,Wi = ωv(i).
3. The client makes v public after the Setup phase.
4. The challenge chal in GenProof and CheckProof no longer contains gs or s.
5. In GenProof, the server computes M = a1mi1 + · · · + acmic instead of ρ and

returns V = (T,M).
6. In CheckProof, the client checks gM = τ and |M| < λ/2.

In sect. 3.4, we also saw a public verifiable POR scheme.

4.3 Dynamic Data Operations Support

The PDP scheme [1] did not employ dynamic data operations like modification,
deletion and insertion due to the original motivation to verify integrity of archive
files, which will not involve many dynamic operations. Similarly, the POR scheme
[12] cannot support data dynamics due to the verification mechanism of embedding
pre-computed sentinels. However, these operations are vital features for cloud storage
services.

Ateniese et al. [2] propose a dynamic version of PDP scheme . The extended
scheme achieved higher efficiency because it only relied on symmetry-key cryptog-
raphy. But the number of queries was limited, hence, the scheme cannot support
fully dynamic data operations. Erway et al. [7] introduced a formal framework for
dynamic provable data possession (DPDP) . Their first scheme utilized authenticated
skip list data structure to authenticate tag information of blocks, thereby eliminating
the index information in tags. They also provided an alternative RSA tree based
construction, which improved the detection probability at the cost of an increased
Server computation burden.

Wang et al.[20] extended the Compact POR in Sect. 3.4 to support both public
verifiability and data dynamics in cloud storage. We’ll focus on this model to discuss
dynamic data operation support. Table 4 shows the six algorithms in [20].

In cloud data storage, Clients could be portable devices that have limited compu-
tation ability. A third party auditor is necessary for the verification procedure. The
system we shall consider in this section includes three entities: Client, Cloud Storage
Server and the prover, a Third Part Auditor (TPA). The TPA is trusted and unbiased
while the Server is untrusted. Privacy preserving is not considered in [20].

554 B. Liu and Y. Chen

Table 4 Algorithms of Extended POR System [20]

Role Algorithm Description

Client KeyGen(1κ) → (pk, sk) This algorithm is the same as in SW’s
model in sect. 3.4. It generates a se-
cret key pair (pk, sk), taking as input a
secret parameter κ

SigGen(sk,F) → (Φ, sigsk(H (R))) Generates the signature set Φ = {σi}
on file blocks {mi} and sign the root R
of a Merkel hash tree sigsk(H (R))

VerifyUpdate(pk, update, Pupdate) →
{(1, sigsk(H (R′))), 0}

Verifies the update operation

Client/TPA VerifyProof(pk, chal, P) → {0, 1} Validate a proof P . IF P is correct,
output 1, else output 0

Server GenProof(pk, F, chal,Σ) → P Generates a proof P for given challenge
chal

ExecUpdate(F ,Φ, update) →
(F ′, Φ ′, Pupdate)

According to the type of “update” re-
quest from the Client, this algorithm
executes the corresponding update op-
eration and outputs the updated file F ′,
signatures Φ ′ and proof P

The Client encodes the raw file F̃ into F using Reed-Solomon codes. The file F
consists of n blocksm1, · · ·,mn,mi ∈ Zp, wherep is a large prime. e : G×G→ GT
is a bilinear map, with a hash functionH : {0, 1}∗ → G serving as a random oracle.
g is the the generator of G. h is a cryptographic hash function.

In order to accomplish dynamic dada operation, the well studied Merkle hash tree
(MHT) [13] is a good choice to assure the value and positions of data blocks. A MHT
is a binary tree with all data blocks as leaf nodes. A parent node is the hash of the
concatenation of its two children. This procedure continues until reach a common
root node. All dynamic operations will result in a update of MHT by recalculating
every node that is in the path from affected blocks to the root. The sibling data that
is needed for a recalculation is called auxiliary information.

The verification of data relies on BLS hash [5] and bilinear map as in [17]. The
differences here reside in file tag, authenticators calculation, components of a proof
and the verification of a proof. The file tag is shorter in that it only include the
concatenated name, number of blocks and a random value for authentication purpose.
A proof includes four parts: a block data related value, a authenticator related value,
the auxiliary information set and the signature of the MHT root’s BLS hash. When
computing an authenticator, the SigGen algorithm no longer take into account the
index or name as in [1] or the public scheme of [17]. It is simply σi = (H (mi) ·umi)α ,
where u is a random value and α is a part of the secret key. The bilinear map e is
used twice in VerifyProof, one to authenticate MHT root and the other to verify the
rest of the proof.

Auditing for Data Integrity and Reliability in Cloud Storage 555

We now consider three types of dynamic data operations: Modification, Inser-
tion and Deletion. The advantage of MHT lies in the convenience in modifying the
structure of the tree, hence embedding dynamic data operations into the scheme.

• Modification. The Client wants to replace a block block. First, it computes the
signature for new block and a update message is sent to the Server. The Server runs
ExecUpdate to update the block. The update procedure includes replacement of
new block, new authenticator and the leaf node in MHT.The root is then updated.A
proof of update message must be sent to the Client so that he can know whether the
update is valid. This message includes all auxiliary information, the old signature
of the hash of the root and the new root. The Client generate old root using auxiliary
information and uses bilinear map to check whether the signature is valid. If it is
true, new MHT root is computed and compared with the one transmitted back by
the Server. The modification is valid if and only if it passes all these tests.

• Insertion. The Client wants to insert blockm∗ after blockmi . It generates signature
σ ∗ and sends the Server a update message. The Server runs ExecUpdate to execute
a insertion operation, storing new block, inserting new authenticator, generating
new root, and sends a update message to the Client like it did in the modification
operation. The Client also need to verify this operation according to the message
it receive.

• Deletion. Inverse operation to insertion. Similar to modification and insertion.

This scheme efficiently solves the dynamic operation problem but has the drawback
that the messages exchanged between the Client and the Server is proportional to the
number of file blocks.

4.4 Privacy Preserving

Although auditing storage data through a third party auditor, who has expertise in
auditing and powerful computing capabilities, has many advantages to the client,
the auditing procedure has the possibility to reveal user data to the TPA. Previous
schemes [1, 17, 20] for data verification do not consider the privacy protection issue
when offloading the verification job to the TPA. They all assumed that the TPA is
trusted and will not try to look into user’s data when verifying the integrity of data. A
privacy-preserving public auditing scheme was proposed for cloud storage in [19].
Based on a homomorphic linear authenticator, integrated with random masking, the
proposed scheme is able to preserve data privacy when TPA audits the stored data in
the server.

There are three entities in this system: The user, the Cloud Server and the TPA.
Since dynamic data operations were not considered in this scheme, only four algo-
rithms (KeyGen, SigGen, GenProof and VerifyProof) are needed in this protocol,
without the two algorithms for update purpose in Sect. 4.3. Still, we have two phases
in the system: Setup Phase and Audit Phase. The mathematical integrity assurance
technique is still a bilinear map e : G1 ×G2 → GT as in Sect. 3.4.3. These groups

556 B. Liu and Y. Chen

should be different groups but has the same order. The server has knowledge about
G1, GT and Zp (all file blocks are elements of this group).

Like all other public key cryptosystem, the KeyGen algorithm needs a public-
private key pair. A pair of signing keys (spk, ssk) is generated for the verification of
file tag, which includes the identifier of the file.

The secrete key sk includes the secret signing key ssk and a random integer chosen
from Zp. The public keypk = (spk, g, gx , u, e(u, v)) on the other hand includes more
values. g is a generator of G2, u is an element of G1 and e(u, v) ∈ GT is the image
of u and v under the bilinear map e.

The SigGen algorithm calculates the file tag and authenticators in a different
way. The file tag in [19] is shorter than previous schemes [17, 20], only the identifier
of the file is included. This identifier, denoted as name, is also an element of Zp.
The signing key pair is generated just for verification of name. An authenticator the
block mi is σi = (H (name||i) · umi)x . The hash function H : {0, 1}∗ → G1 maps
a bit string into G1, which means all authenticators will fall into G1. The set of the
authenticators and the file tag are sent to the server. This finishes the setup phase.

During the audit phase, the file tag is retrieved and verified by the TPA. If t is
valid, the file name is recovered. The challenge chal is generated in the same way as
in [17]. Upon receiving chal, the server runs GenProof to calculate the proof that
it possesses the requested file blocks. There are three components in the response to
chal:μ, σ , andR. σ is the aggregation of all authenticators that are indicated by chal.
Each authenticator σi is raised to the power vi and their product is the value of σ . The
other two values are related to a random number r from Zp. R is the result of raising
the image of u, v to the power r . A numberμ′ is directly calculated from all indicated
blocks. This value is highly related to the file. To hide it from the TPA, the server uses
r and the hash value ofR. The final componentμ = r+h(R)μ′ is obtained. The TPA
runs VerifyProof to validate the response. IfR ·e(σγ g) = e((∏i∈I H (Wi)vi)γ ·uμ, v)
is true, the response is a valid one. The audit procedure is then accomplished.

Data dynamic operations can also be supported by adapting this scheme using
MHT as in [20].

4.5 Multiple Verifications

Since the cloud server is accessed by multiple users, the possibility that many clients
request verification for different files or one client requests verifying multiple files.
These requests should be treated in different way and hence need different auditing
schemes. For example, multiple clients have different key pairs, whereas one single
client requesting multiple verifications has the same key pair. Most schemes that
claim to be able to support batch auditing belong to the first category.

Both [19] and [20] have the extension to support multiple verifications thanks
to the aggregation property of bilinear signature schemes [4]. [20] uses auxiliary
information in a proof, hence has relatively long proof message for multiple clients

Auditing for Data Integrity and Reliability in Cloud Storage 557

batch auditing. Only σ in each proof can be aggregated in one value. [19] aggregates
by multiply all R’s.

Batch auditing can reduce the computation cost on TPA since the K responses are
aggregated into one. But the practical efficiency still needs to be verified by further
experiments.

5 Open Questions

In this chapter, we provided an overview of general issues on information auditing
to clarify the major goal of information auditing. Then we discussed two popular
protocols that audits for data integrity in distributed data storage: PDP and POR.
They were proposed almost at the same time to address different security concerns.
PDP provides a high probability guarantee that a system possesses a file with high
efficiency in computation and communication. POR and Compact POR allow a
stronger guarantee of retrievability with the cost of more complex algorithms. Most
schemes discussed in this chapter came with security proof in the original research
papers, in which interested readers can find proof details and mathematical analysis.
However, there is not sufficient study on efficiency and performance.

Since it is still a new research area in Cloud storage, we anticipate more new
schemas will come out in the academic community, trying to resolve different chal-
lenges from various perspective. When evaluating a scheme, it usually includes the
following metrics:

• Server computation overhead for a proof in each storage node.
• Server communication overhead when transmit computing results to form the

final proof.
• Client computation overhead for authenticators, error-correcting code and verifi-

cation algorithm.
• Communication cost between any two parties of the client, the server and TPA.
• Client storage for necessary metadata.
• Server misbehavior detection probability.

Compared to traditional information auditing, there are still numerous open problems
in cloud data security auditing. The number one impending issue is the lack of stan-
dardization and consistency in auditing development efforts due to the heterogenity
in infrastructure, platforms, software, and policy. While a “silver bullet” is highly
desired, the diversity in auditing and assurance practices in cloud computing makes
it extremely challenging to find a one-for-all solution. Essentially, in terms of data
security oriented auditing, a thorough study is expected on balancing the tradeoffs
among confidentiality, integrity, availability and usability.

From the cloud service providers’point of view, allowing external auditing implies
more components such as transparency, responsibility, assurance, and remediation
[15]. To accommodate these central components, a cloud service provider is required
to:

558 B. Liu and Y. Chen

• Set up policies that are consistent with external auditing criteria.
• Provide transparency to clients/users.
• Allow external auditing.
• Support remediation, such as accident management and compliant handling.
• Enable legal mechanisms that support prospective and retrospective accountabil-

ity.

6 Conclusions

An efficient auditing system is critical to establish accountability for cloud users who
do not have physical possession of their data. Existance of a trustworthy third party
audits enable users to check the data integrity, track suspicious activities, obtain
evidence for forensics, and evaluate service providers’ behaviors when needed. This
chapter provides our readers fundamental understanding of cloud auditing technolo-
gies. We expect to witness development of standard framework for cloud auditing
and efforts at cloud service providers to make their policies and mechanisms more
auditable and accountable.

References

1. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.: Provable
data possession at untrusted stores. In: Proceedings of the 14th ACM conference on Computer
and communications security, CCS ’07, pp. 598–609. ACM, NewYork, NY, USA (2007). DOI
10.1145/1315245.1315318. URL http://doi.acm.org/10.1145/1315245.1315318

2. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient provable data
possession. In: Proceedings of the 4th international conference on Security and privacy in
communication networks, SecureComm ’08, pp. 9:1–9:10. ACM, NewYork, NY, USA (2008).
DOI 10.1145/1460877.1460889. URL http://doi.acm.org/10.1145/1460877.1460889

3. Ateniese, G., Kamara, S., Katz, J.: Proofs of Storage from Homomorphic Identifica-
tion Protocols. In: M. Matsui (ed.) Advances in Cryptology - ASIACRYPT 2009, Lec-
ture Notes in Computer Science, vol. 5912, chap. 19, pp. 319–333. Springer Berlin
/ Heidelberg, Berlin, Heidelberg (2009). DOI 10.1007/978-3-642-10366-7_19. URL
http://dx.doi.org/10.1007/978-3-642-10366-7_19

4. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures
from bilinear maps. Advances in Cryptology-EUROCRYPT 2003 pp. 641–641 (2003)

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. Jour-
nal of Cryptology 17, 297–319 (2004). URL http://dx.doi.org/10.1007/s00145-004-0314-9.
10.1007/s00145-004-0314–9

6. Buchanan, S., Gibb, F.: The information audit: Role and scope. International journal of
information management 27(3), 159–172 (2007)

7. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession.
In: Proceedings of the 16th ACM conference on Computer and communications security, CCS
’09, pp. 213–222. ACM, New York, NY, USA (2009). DOI 10.1145/1653662.1653688. URL
http://doi.acm.org/10.1145/1653662.1653688

8. Feng, J., Chen,Y.: A fair non–repudiation framework for data integrity in cloud storage services.
International Journal of Cloud Computing 2(1), 20–47 (2013)

http://dx.doi.org/10.1007/978-3-642-10366-7_19

Auditing for Data Integrity and Reliability in Cloud Storage 559

9. Feng, J., Chen, Y., Liu, P.: Bridging the missing link of cloud data storage security in aws. In:
Consumer Communications and Networking Conference (CCNC), 2010 7th IEEE, pp. 1–2.
IEEE (2010)

10. Feng, J., Chen, Y., Summerville, D., Ku, W.S., Su, Z.: Enhancing cloud storage security
against roll-back attacks with a new fair multi-party non-repudiation protocol. In: Consumer
Communications and Networking Conference (CCNC), 2011 IEEE, pp. 521–522. IEEE (2011)

11. Feng, J., Chen, Y., Summerville, D.H.: A fair multi-party non-repudiation scheme for storage
clouds. In: Collaboration Technologies and Systems (CTS), 2011 International Conference on,
pp. 457–465. IEEE (2011)

12. Juels, A., Kaliski Jr., B.S.: Pors: proofs of retrievability for large files. In: Proceed-
ings of the 14th ACM conference on Computer and communications security, CCS ’07,
pp. 584–597. ACM, New York, NY, USA (2007). DOI 10.1145/1315245.1315317. URL
http://doi.acm.org/10.1145/1315245.1315317

13. Merkle, R.: Protocols for public key cryptosystems. In: IEEE Symposium on Security and
privacy, vol. 1109, pp. 122–134 (1980)

14. Ould, M.A.: Business Processes: Modeling andAnalysis for Re-engineering and Improvement.
Wiley, Chichester (1995)

15. Pearson, S.: Toward accountability in the cloud. Internet Computing, IEEE 15(4), 64 –69
(2011). DOI 10.1109/MIC.2011.98

16. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 21(2), 120–126 (1978). DOI 10.1145/359340.359342. URL
http://doi.acm.org/10.1145/359340.359342

17. Shacham, H., Waters, B.: Compact Proofs of Retrievability Advances in Cryptology
- ASIACRYPT 2008. In: J. Pieprzyk (ed.) Advances in Cryptology - ASIACRYPT
2008, Lecture Notes in Computer Science, vol. 5350, chap. 7, pp. 90–107. Springer
Berlin / Heidelberg, Berlin, Heidelberg (2008). DOI 10.1007/978-3-540-89255-7_7. URL
http://dx.doi.org/10.1007/978-3-540-89255-7_7

18. Wang, C., Chow, S., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for secure
cloud storage. Computers, IEEE Transactions on PP(99), 1 (2011). DOI 10.1109/TC.2011.245

19. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for data storage
security in cloud computing. In: INFOCOM, 2010 Proceedings IEEE, pp. 1–9 (2010). DOI
10.1109/INFCOM.2010.5462173

20. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data dynamics
for storage security in cloud computing. Parallel and Distributed Systems, IEEE Transactions
on 22(5), 847 –859 (2011). DOI 10.1109/TPDS.2010.183

	Part III Cloud Computing
	Auditing for Data Integrity and Reliability in Cloud Storage
	1 Introduction
	2 Information Auditing: Objective and Approaches
	2.1 Definition of Information Auditing
	2.2 Three Approaches of Information Auditing

	3 Auditing for Data Integrity in Distributed Systems
	3.1 Strategies of Auditing Data Integrity
	3.2 Proof of Retrievability
	3.3 Provable Data Possession
	3.3.1 Preliminaries
	3.3.2 Defining the PDP Protocol
	3.3.3 The Secure PDP Scheme (S-PDP)
	3.3.4 The Efficient PDP Scheme (E-PDP)

	3.4 Compact Proof of Retrievability
	3.4.1 System Model
	3.4.2 Private Verification Construction
	3.4.3 Public Verification Construction

	4 Auditing in Cloud Storage Platform
	4.1 Challenges
	4.2 Public Verifiability
	4.3 Dynamic Data Operations Support
	4.4 Privacy Preserving
	4.5 Multiple Verifications

	5 Open Questions
	6 Conclusions
	References

