

Handbook on Data Centers

Samee U. Khan • Albert Y. Zomaya
Editors

Handbook on Data Centers

Editors
Samee U. Khan Albert Y. Zomaya
Department of Electrical School of Information Technologies

and Computer Engineering The University of Sydney
North Dakota State University Sydney
Fargo New South Wales
North Dakota Australia
USA

ISBN 978-1-4939-2091-4 ISBN 978-1-4939-2092-1 (eBook)
DOI 10.1007/978-1-4939-2092-1

Library of Congress Control Number: 2014959415

Springer New York Heidelberg Dordrecht London
© Springer Science+Business Media New York 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Data centers play an important role in modern IT infrastructures. A data center is
a home to computational power, storage, and applications necessary to support an
enterprise business. Data centers process billions of Internet transactions every day.
Nowadays, data centers are the beating hearts of the companies they serve. Large
data centers with thousands of servers have been deployed by renowned ICT organi-
zations, like IBM, Microsoft, Amazon, Yahoo, E-Bay, and Google, to provide cloud
computing services. The phenomenal increase in the size and number of data cen-
ters and resultant increase in operational cost has stimulated the research in various
domains of data centers, such as energy efficiency, resource management, network-
ing, and security. This detailed Handbook on Data Centers covers in a succinct and
orderly manner all aspects pertaining to data centers technologies.

Given the fast growing expansion of data centers, it is not surprising that a variety
of methods are now available to researchers and practitioners striving to improve data
center performance. This handbook aims to organize all major concepts, theories,
methodologies, trends, challenges and applications of data centers into a coherent
and unified repository. Moreover, the handbook provides researchers, scholars, stu-
dents and professionals with a comprehensive, yet concise source of reference to
data centers design, energy efficiency, resource management, and scalability issues.
The handbook consists of nine parts, where each part consists of several chapters.
The following topics spanning the data center technologies are covered in detail: (a)
energy efficiency, (b) networking, (c) cloud computing, (d) hardware, (e) modeling
and simulation, (f) security, (g) data services, (h) monitoring, and (i) resource man-
agement.Each part describes the state of the art methods, as well as the extensions
and novel methodologies developed recently for data centers.

The first part describes energy efficiency methods for data centers and addresses
the designing of energy efficient scheduling mechanisms for high performance com-
puting environments. The authors have discussed energy-aware algorithms for task
graph scheduling, replica placement, check-pointing, numerical processing, and to
estimate energy consumption for the given workload. Also, this part addresses the
problem of minimizing energy consumption with schedule length constraint on mul-
ticore processors. The following chapters covers the energy efficiency aspects of
data centers presented in the handbook: (a) Energy-Efficient and High-Performance

v

vi Preface

Processing of Large-Scale Parallel Applications in Data Centers, (b) Energy-aware
algorithms for task graph scheduling, replica placement and checkpoint strategies,
(c) Energy efficiency in HPC Data Centers: Latest Advances to Build the Path to
Exascale, (d) Techniques to achieve energy proportionality in data centers: a survey,
(e) A Power-Aware Autonomic Approach for Performance Management of Scien-
tific Applications in a Data Center Environment, (f) CoolEmAll: Models and Tools
for Planning and Operating Energy Efficient Data Centres, (g) Smart Data center,
(h) Power and Thermal Efficient Numerical Processing, and (k) Providing Green
Services in HPC Data Centers: A Methodology based on Energy Estimation.

The second part of the handbook provides a study of various communication and
networking methodologies for data centers. The network virtualization concepts, the
architecture of optical networks for data centers, and network scalability issues are
discussed in detail. Moreover, an emphasis is drawn over packet classification in
multicore platforms. The routing techniques for data center networks are discussed
in detail along with study on TCP congestion control in data center networks. The
following chapters provide a detailed overview in terms of networking technologies
for data centers are included in this part: (a) Network Virtualization in Data Centers:
A Data Plane Perspective, (b) Optical data center networks: Architecture, perfor-
mance, and energy efficiency, (c) Scalable Network Communication using Unreliable
RDMA, (d) Packet Classification on Multi-core Platforms, (e) Optical Interconnects
for Data Center Networks, (f) TCP Congestion Control in Data Center Networks,
and (g) Routing Techniques in Data Center Networks.

The third part of the handbook discusses the role of data centers in cloud comput-
ing and highlights various challenges faced in ensuring the data integrity, reliability,
and privacy in cloud computing environments. The role of trusted third parties in
performing monitoring and auditing of service level agreements is illustrated, as well
as integrity of big data in cloud computing is discussed. The data intensive appli-
cations in cloud are discussed along with storage challenges. This part includes the
following chapters: (a) Auditing for Data Integrity and Reliability in Cloud Storage,
(b) I/O and File Systems for Data-Intensive Applications, (c) Cloud resource pric-
ing under tenant rationality, (d) Online Resource Management for Carbon-Neutral
Cloud Computing, (e) A Big Picture of Integrity Verification of Big Data in Cloud
Computing, (f) An Out-of-Core Task-based Middleware for Data-Intensive Scientific
Computing, (g) Building Scalable Software for Data Centers: An Approach to Dis-
tributed Computing at Enterprise Level, and (h) Cloud Storage over Multiple Data
Centers.

The fourth part of the handbook shed a light on data centers emerging hardware
technologies. The issues pertaining to the efficient data storage on redundant array
of independent disks (RAID) technologies, the data synchronization challenges on
many-cores, and hardware approaches to transactional memory on chip multipro-
cessors are detailed. The following chapters are included in this part: (a) Realizing
Accelerated Cost-Effective Distributed RAID, (b) Efficient Hardware-Supported
Synchronization Mechanisms for Many-cores, and (c) Hardware Approaches to
Transactional Memory in Chip Multiprocessors

Preface vii

The fifth part of the handbook discusses modeling and simulation techniques
for data centers and include following chapters: (a) Data Center Modeling and
Simulation Using OMNeT++, (b) Power-Thermal Modeling and Control of Energy-
Efficient Servers and Datacenters, (c) Thermal modeling and management of storage
systems in data centers, and (d) Modeling and Simulation of Data Center Networks.
This portion highlights various techniques to model power consumption, thermal
response, storage systems, and communication in data center networks. The authors
utilized discrete-time simulator OMNet++ to model the data center traffic.

The sixth part of the handbook provides a discussion on various security and
privacy techniques for data centers. A model is proposed to detect and mitigate the
covert channels in data centers. The privacy issues regarding data center outsourcing
are discussed and a survey of various privacy attacks and their counter measures
is presented. The following chapters are included in this portion: (a) C2Hunter:
Detection and Mitigation of Covert Channels in Data Centers, (b) Selective and
Private Access to Outsourced Data Centers, and (c) Privacy in Data Centers: A
Survey of Attacks and Countermeasures.

The seventh part details the data services and their management in data center.
The quality of service requirements for processing stream data for city applications is
discussed. The data management and querying of big data is surveyed in detail. The
authors also discussed the various methods of constructing on the fly data centers
in wireless ad hoc network environments. The following chapters are included in
this part: (a) Quality-of-Service in Data Center Stream Processing for Smart City
Applications, (b) Opportunistic Databank: A context aware on-the-fly data center
for mobile networks, (c) Data Management:State-of-the-Practice at Open-Science
Data Centers, and (d) Data Summarization Techniques for Big Data—A Survey.

The eighth part of handbook illustrates various hardware and software-based mon-
itoring solutions for data centers. The use of wireless sensor networks technology to
sense the thermal activities and efficient circulation of cooling air is explored. Traffic
monitoring is another vital topic discussed with a survey on network intrusion detec-
tion systems for data centers. The following chapters are covered in this portion: (a)
Central Management of Datacenters, (b) Monitoring of Data Centers using Wireless
Sensor Networks, (c) Network Intrusion Detection Systems in Data Centers, and (d)
Software Monitoring in Data Centers.

Lastly, the ninth part of book chapter elaborates the resource management aspects
of data centers and present a detailed case study on usage patterns in multi-tenant
data centers. A discussion is also performed on scheduling of distributed transactional
memory and the various tradeoffs and techniques in distributed memory management
are elaborated in detail. Moreover, an emphasis is drawn on the resource scheduling
in data-centric systems. This part includes the following chapters: (a) Usage Pat-
terns in Multi-tenant Data Centers: a Large-Case Field Study, (b) On Scheduling
in Distributed Transactional Memory: Techniques and Tradeoffs, (c) Dependability-
Oriented Resource Management Schemes for Cloud Computing Data Centers, and
(d) Resource Scheduling in Data-Centric Systems.

Contents

Part I Energy Efficiency

Energy-Efficient and High-Performance Processing of Large-Scale
Parallel Applications in Data Centers . 3
Keqin Li

Energy-Aware Algorithms for Task Graph Scheduling, Replica
Placement and Checkpoint Strategies . 37
Guillaume Aupy, Anne Benoit, Paul Renaud-Goud and Yves Robert

Energy Efficiency in HPC Data Centers: Latest Advances to Build
the Path to Exascale . 81
Sébastien Varrette, Pascal Bouvry, Mateusz Jarus and Ariel Oleksiak

Techniques to Achieve Energy Proportionality in Data Centers:
A Survey . 109
Madhurima Pore, Zahra Abbasi, Sandeep K. S. Gupta
and Georgios Varsamopoulos

A Power-Aware Autonomic Approach for Performance Management
of Scientific Applications in a Data Center Environment 163
Rajat Mehrotra, Ioana Banicescu, Srishti Srivastava
and Sherif Abdelwahed

CoolEmAll: Models and Tools for Planning and Operating Energy
Efficient Data Centres . 191
Micha vor dem Berge, Jochen Buchholz, Leandro Cupertino,
Georges Da Costa, Andrew Donoghue, Georgina Gallizo, Mateusz Jarus,
Lara Lopez, Ariel Oleksiak, Enric Pages, Wojciech Piatek,
Jean-Marc Pierson, Tomasz Piontek, Daniel Rathgeb, Jaume Salom,
Laura Sisó, Eugen Volk, Uwe Wössner and Thomas Zilio

ix

x Contents

Smart Data Center . 247
Muhammad Usman Shahid Khan and Samee U. Khan

Power and Thermal Efficient Numerical Processing 263
Wei Liu and Alberto Nannarelli

Providing Green Services in HPC Data Centers: A Methodology Based
on Energy Estimation . 287
Mohammed El Mehdi Diouri, Olivier Glück, Laurent Lefêvre
and Jean-Christophe Mignot

Part II Networking

Network Virtualization in Data Centers: A Data Plane Perspective 327
Weirong Jiang and Viktor K. Prasanna

Optical Data Center Networks: Architecture, Performance, and Energy
Efficiency . 351
Yuichi Ohsita and Masayuki Murata

Scalable Network Communication Using Unreliable RDMA 393
Ryan E. Grant, Mohammad J. Rashti, Pavan Balaji and Ahmad Afsahi

Packet Classification on Multi-core Platforms . 425
Yun R. Qu, Shijie Zhou and Viktor K. Prasanna

Optical Interconnects for Data Center Networks . 449
Khurram Aziz and Mohsin Fayyaz

TCP Congestion Control in Data Center Networks . 485
Rohit P. Tahiliani, Mohit P. Tahiliani and K. Chandra Sekaran

Routing Techniques in Data Center Networks . 507
Shaista Habib, Fawaz S. Bokhari and Samee U. Khan

Part III Cloud Computing

Auditing for Data Integrity and Reliability in Cloud Storage 535
Bingwei Liu and Yu Chen

I/O and File Systems for Data-Intensive Applications 561
Yanlong Yin, Hui Jin and Xian-He Sun

Cloud Resource Pricing Under Tenant Rationality . 583
Xin Jin and Yu-Kwong Kwok

Contents xi

Online Resource Management for Carbon-Neutral Cloud Computing . . . 607
Kishwar Ahmed, Shaolei Ren, Yuxiong He and Athanasios V. Vasilakos

A Big Picture of Integrity Verification of Big Data in Cloud
Computing . 631
Chang Liu, Rajiv Ranjan, Xuyun Zhang, Chi Yang and Jinjun Chen

An Out-of-Core Task-based Middleware for Data-Intensive Scientific
Computing . 647
Erik Saule, Hasan Metin Aktulga, Chao Yang, Esmond G. Ng
and Ümit V. Çatalyürek

Building Scalable Software for Data Centers: An Approach
to Distributed Computing at Enterprise Level . 669
Fernando Turrado García, Ana Lucila Sandoval Orozco
and Luis Javier García Villalba

Cloud Storage over Multiple Data Centers . 691
Shuai Mu, Maomeng Su, Pin Gao, Yongwei Wu, Keqin Li
and Albert Y. Zomaya

Part IV Hardware

Realizing Accelerated Cost-Effective Distributed RAID 729
Aleksandr Khasymski, M. Mustafa Rafique, Ali R. Butt,
Sudharshan S. Vazhkudai and Dimitrios S. Nikolopoulos

Efficient Hardware-Supported Synchronization Mechanisms
for Manycores . 753
José L. Abellán, Juan Fernández and Manuel E. Acacio

Hardware Approaches to Transactional Memory in Chip
Multiprocessors . 805
J. Rubén Titos-Gil and Manuel E. Acacio

Part V Modeling and Simulation

Data Center Modeling and Simulation Using OMNeT++ 839
Asad W. Malik and Samee U. Khan

Power-Thermal Modeling and Control of Energy-Efficient Servers
and Datacenters . 857
Jungsoo Kim, Mohamed M. Sabry, Martino Ruggiero and David Atienza

xii Contents

Thermal Modeling and Management of Storage Systems in Data
Centers . 915
Xunfei Jiang, Ji Zhang, Xiao Qin, Meikang Qiu, Minghua Jiang
and Jifu Zhang

Modeling and Simulation of Data Center Networks 945
Kashif Bilal, Samee U. Khan, Marc Manzano, Eusebi Calle,
Sajjad A. Madani, Khizar Hayat, Dan Chen, LizheWang and Rajiv Ranjan

Part VI Security

C2Hunter: Detection and Mitigation of Covert Channels in Data
Centers . 961
Jingzheng Wu, YanjunWu, Bei Guan, Yuqi Lin, Samee U. Khan,
Nasro Min-Allah and Yongji Wang

Selective and Private Access to Outsourced Data Centers 997
Sabrina De Capitani di Vimercati, Sara Foresti, Giovanni Livraga
and Pierangela Samarati

Privacy in Data Centers: A Survey of Attacks and Countermeasures 1029
Luis Javier García Villalba, Alejandra Guadalupe Silva Trujillo
and Javier Portela

Part VII Data Services

Quality-of-Service in Data Center Stream Processing for Smart City
Applications . 1047
Paolo Bellavista, Antonio Corradi and Andrea Reale

Opportunistic Databank: A context Aware on-the-fly Data Center
for Mobile Networks . 1077
Osman Khalid, Samee U. Khan, Sajjad A. Madani, Khizar Hayat,
LizheWang, Dan Chen and Rajiv Ranjan

Data Management: State-of-the-Practice at Open-Science Data
Centers . 1095
Ritu Arora

Data Summarization Techniques for Big Data—A Survey 1109
Z. R. Hesabi, Z. Tari, A. Goscinski, A. Fahad, I. Khalil and C. Queiroz

Part VIII Monitoring

Central Management of Datacenters . 1155
Babar Zahoor, Bibrak Qamar and Raihan ur Rasool

Contents xiii

Monitoring of Data Centers using Wireless Sensor Networks 1171
Cláudia Jacy Barenco Abbas, Ana Lucila Sandoval Orozco
and Luis Javier García Villalba

Network Intrusion Detection Systems in Data Centers 1185
Jorge Maestre Vidal, Ana Lucila Sandoval Orozco
and Luis Javier García Villalba

Software Monitoring in Data Centers . 1209
Chengdong Wu and Jun Guo

Part IX Resource Management

Usage Patterns in Multi-tenant Data Centers: a Large-Case Field
Study . 1257
Robert Birke, Lydia Chen and Evgenia Smirni

On Scheduling in Distributed Transactional Memory: Techniques
and Tradeoffs . 1267
Junwhan Kim, Roberto Palmieri and Binoy Ravindran

Dependability-Oriented Resource Management Schemes for Cloud
Computing Data Centers . 1285
Ravi Jhawar and Vincenzo Piuri

Resource Scheduling in Data-Centric Systems . 1307
Zujie Ren, Xiaohong Zhang andWeisong Shi

Index . 1331

Part I
Energy Efficiency

Energy-Efficient and High-Performance
Processing of Large-Scale Parallel Applications
in Data Centers

Keqin Li

1 Introduction

1.1 Motivation

Next generation supercomputers require drastically better energy efficiency to allow
these systems to scale to exaflop computing levels. Virtually all major processor ven-
dors and companies such as AMD, Intel, and IBM are developing high-performance
and highly energy-efficient multicore processors and dedicating their current and
future development and manufacturing to multicore products. It is conceivable that
future multicore architectures can hold dozens or even hundreds of cores on a single
die [3]. For instance, Adapteva’s Epiphany scalable manycore architecture consists
of hundreds and thousands of RISC microprocessors, all sharing a single flat and
unobstructed memory hierarchy, which allows cores to communicate with each other
very efficiently with low core-to-core communication overhead. The number of cores
in this new type of massively parallel multicore architecture can be up to 4096 [1].
The Epiphany manycore architecture has been designed to maximize floating point
computing power with the lowest possible energy consumption, aiming to deliver
100 and more gigaflops of performance at under 2 watts of power [4].

Multicore processors provide an ultimate solution to power management and
performance optimization in current and future high-performance computing. A mul-
ticore processor contains multiple independent processors, called cores, integrated
onto a single circuit die (known an a chip multiprocessor or CMP).Anm-core proces-
sor achieves the same performance of a single-core processor whose clock frequency
ism times faster, but consumes only 1/mφ−1 (φ ≥ 3) of the energy of the single-core

The author can be reached at phone: (845) 257-3534, fax: (845) 257-3996.

K. Li (�)
Department of Computer Science, State University of New York,
New Paltz, NY 12561, USA
e-mail: lik@newpaltz.edu

© Springer Science+Business Media New York 2015 3
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_1

4 K. Li

processor. The performance gain from a multicore processor is mainly from paral-
lelism, i.e., multiple cores’ working together to achieve the performance of a single
faster and more energy-consuming processor. A multicore processor implements
multiprocessing in a single physical package. It can implement parallel architectures
such as superscalar, multithreading, VLIW, vector processing, SIMD, and MIMD.
Intercore communications are supported by message passing or shared memory. The
degree of parallelism can increase together with the number m of cores. When m
is large, a multicore processor is also called a manycore or a massively multicore
processor.

Modern information technology is developed into the era of cloud computing,
which has received considerable attention in recent years and is widely accepted as
a promising and ultimate way of managing and improving the utilization of data
and computing resources and delivering various computing and communication ser-
vices. However, enterprise data centers will spend several times as much on energy
costs as on hardware and server management and administrative costs. Furthermore,
many data centers are realizing that even if they are willing to pay for more power
consumption, capacity constraints on the electricity grid mean that additional power
is unavailable. Energy efficiency is one of the most important issues for large-scale
computing systems in current and future data centers. Cloud computing can be an
inherently energy-efficient technology, due to centralized energy management of
computations on large-scale computing systems, instead of distributed and individ-
ualized applications without efficient energy consumption control [10]. Moreover,
such potential for significant energy savings can be fully explored with balanced
consideration of system performance and energy consumption.

As in all computing systems, increasing the utilization of a multicore processor
becomes a critical issue, as the number of cores increases and as multicore processors
are more and more widely employed in data centers. One effective way of increasing
the utilization is to take the approach of multitasking, i.e., allowing multiple tasks
to be executed simultaneously in a multicore processor. Such sharing of computing
resources not only improves system utilization, but also improves system perfor-
mance, because more users’ requests can be processed in the same among of time.
Such performance enhancement is very important in optimizing the quality of ser-
vice in a data center for cloud computing, where multicore processors are employed
as servers. Partitioning and sharing of a large multicore processor among multiple
tasks is particularly important for large-scale scientific computations and business
applications, where each computation or application consists of a large number of
parallel tasks, and each parallel task requires several cores simultaneously for its
execution.

When a multicore processor in a data center for cloud computing is shared by a
large number of parallel tasks of a large-scale parallel application simultaneously, we
are facing the problem of allocating the cores to the tasks and schedule the tasks, such
that the system performance is optimized or the energy consumption is minimized.
Furthermore, such core allocation and task scheduling should be conducted with en-
ergy constraints or performance constraints. Such optimization problems need to be
formulated and efficient algorithms need to be developed and their performance need

Energy-Efficient and High-Performance Processing of Large-Scale . . . 5

to be analyzed and evaluated. The motivation of the present chapter is to investigate
energy-efficient and high-performance processing of large-scale parallel applications
on multicore processors in data centers. In particular, we study low-power scheduling
of precedence constrained parallel tasks on multicore processors. Our approach is to
define combinatorial optimization problems, develop heuristic algorithms, analyze
their performance, and validate our analytical results by simulations.

1.2 Our Contributions

In this chapter, we address scheduling precedence constrained parallel tasks on
multicore processors with dynamically variable voltage and speed as combinatorial
optimization problems. In particular, we define the problem of minimizing schedule
length with energy consumption constraint and the problem of minimizing energy
consumption with schedule length constraint on multicore processors. Our schedul-
ing problems are defined in such a way that the energy-delay product is optimized
by fixing one factor and minimizing the other. The first problem emphasizes energy
efficiency, while the second problem emphasizes high performance.

We notice that energy-efficient and high-performance scheduling of parallel tasks
with precedence constraints has not been investigated before as combinatorial op-
timization problems. Furthermore, all existing studies are on scheduling sequential
tasks which require one processor to execute, or independent tasks which have
no precedence constraint. Our study in this chapter makes some initial attempt to
energy-efficient and high-performance scheduling of parallel tasks with precedence
constraints on multicore processors with dynamic voltage and speed.

Our scheduling problems contain four nontrivial subproblems, namely, prece-
dence constraining, system partitioning, task scheduling, and power supplying. Each
subproblem should be solved efficiently, so that heuristic algorithms with overall
good performance can be developed. These subproblems and our strategies to solve
them are described as follows.

• Precedence Constraining—Precedence constraints make design and analysis of
heuristic algorithms more difficult. We propose to use level-by-level scheduling
algorithms to deal with precedence constraints. Since tasks in the same level are
independent of each other, they can be scheduled by any of the efficient algorithms
previously developed for scheduling independent tasks. Such decomposition of
scheduling precedence constrained tasks into scheduling levels of independent
tasks makes analysis of level-by-level scheduling algorithms much easier and
clearer than analysis of other algorithms.

• System Partitioning—Since each parallel task requests for multiple cores for its
execution, a multicore processor should be partitioned into clusters of cores to be
assigned to the tasks. We use the harmonic system partitioning and core allocation
scheme, which divides a multicore processor into clusters of equal sizes and
schedules tasks of similar sizes together to increase core utilization.

6 K. Li

• Task Scheduling—Parallel tasks are scheduled together with system partition-
ing and precedence constraining, and it is NP-hard even scheduling independent
sequential tasks without system partitioning and precedence constraint. Our ap-
proach is to divide a list (i.e., a level) of tasks into sublists, such that each sublist
contains tasks of similar sizes which are scheduled on clusters of equal sizes.
Scheduling such parallel tasks on clusters is no more difficult than scheduling
sequential tasks and can be performed by list scheduling algorithms.

• Power Supplying—Tasks should be supplied with appropriate powers and exe-
cution speeds, such that the schedule length is minimized by consuming given
amount of energy or the energy consumed is minimized without missing a given
deadline. We adopt a four-level energy/time/power allocation scheme for a given
schedule, namely, optimal energy/time allocation among levels of tasks (Theo-
rems 6 and 10), optimal energy/time allocation among sublists of tasks in the
same level (Theorems 5 and 9), optimal energy allocation among groups of tasks
in the same sublist (Theorems 4 and 8), and optimal power supplies to tasks in
the same group (Theorems 3 and 7).

The above decomposition of our optimization problems into four subproblems makes
design and analysis of heuristic algorithms tractable. A unique feature of our work
is to compare the performance of our algorithms with optimal solutions analytically
and validate our results experimentally, not to compare the performance of heuristic
algorithms among themselves only experimentally. Such an approach is consistent
with traditional scheduling theory.

The remainder of the chapter is organized as follows. In Sect. 2, we review
related research in the literature. In Sect. 3, we present background information,
including the power and task models, definitions of our problems, and lower bounds
for optimal solutions. In Sect. 4, we describe our methods to deal with precedence
constraints, system partitioning, and task scheduling. In Sect. 5, we develop our
optimal four-level energy/time/power allocation scheme for minimizing schedule
length and minimizing energy consumption, analyze the performance of our heuristic
algorithms, and derive accurate performance bounds. In Sect. 6, we demonstrate
simulation data, which validate our analytical results. In Sect. 7, we summarize the
chapter and give further research directions.

2 Related Work

Increased energy consumption causes severe economic, ecological, and technical
problems. Power conservation is critical in many computation and communication
environments and has attracted extensive research activities. Reducing processor en-
ergy consumption has been an important and pressing research issue in recent years.
There has been increasing interest and importance in developing high-performance
and energy-efficient computing systems [15–17]. There exists an explosive body of
literature on power-aware computing and communication. The reader is referred to
[5, 9, 45, 46] for comprehensive surveys.

Software techniques for power reduction are supported by a mechanism called
dynamic voltage scaling [2]. Dynamic power management at the operating system

Energy-Efficient and High-Performance Processing of Large-Scale . . . 7

level refers to supply voltage and clock frequency adjustment schemes implemented
while tasks are running. These energy conservation techniques explore the oppor-
tunities for tuning the energy-delay tradeoff [44]. In a pioneering paper [47], the
authors first proposed the approach to energy saving by using fine grain control of
CPU speed by an operating system scheduler. In a subsequent work [49], the authors
analyzed offline and online algorithms for scheduling tasks with arrival times and
deadlines on a uniprocessor computer with minimum energy consumption. These re-
search have been extended in [7, 12, 25, 33–35, 50] and inspired substantial further
investigation, much of which focus on real-time applications. In [6, 20, 21, 24, 27,
36–40, 42, 43, 48, 52–55] and many other related work, the authors addressed the
problem of scheduling independent or precedence constrained tasks on uniprocessor
or multiprocessor computers where the actual execution time of a task may be less
than the estimated worst-case execution time. The main issue is energy reduction by
slack time reclamation.

There are two considerations in dealing with the energy-delay tradeoff. On the
one hand, in high-performance computing systems, power-aware design techniques
and algorithms attempt to maximize performance under certain energy consumption
constraints. On the other hand, low-power and energy-efficient design techniques
and algorithms aim to minimize energy consumption while still meeting certain
performance goals. In [8], the author studied the problems of minimizing the ex-
pected execution time given a hard energy budget and minimizing the expected
energy expenditure given a hard execution deadline for a single task with random-
ized execution requirement. In [11], the author considered scheduling jobs with
equal requirements on multiprocessors. In [14], the authors studied the relationship
among parallelization, performance, and energy consumption, and the problem of
minimizing energy-delay product. In [18], the authors addressed joint minimization
of carbon emission and maximization of profit. In [23, 26], the authors attempted
joint minimization of energy consumption and task execution time. In [41], the au-
thors investigated the problem of system value maximization subject to both time
and energy constraints. In [56], the authors considered task scheduling on clusters
with significant communication costs.

In [28–32], we addressed energy and time constrained power allocation and task
scheduling on multiprocessors with dynamically variable voltage and frequency and
speed and power as combinatorial optimization problems. In [28, 31], we studied
the problems of scheduling independent sequential tasks. In [29, 32], we studied the
problems of scheduling independent parallel tasks. In [30], we studied the problems
of scheduling precedence constrained sequential tasks. In this chapter, we study the
problems of scheduling precedence constrained parallel tasks.

3 Preliminaries

In this section, we present background information, including the power and task
models, definitions of our problems, and lower bounds for optimal solutions.

8 K. Li

3.1 Power and Task Models

Power dissipation and circuit delay in digital CMOS circuits can be accurately mod-
eled by simple equations, even for complex microprocessor circuits. CMOS circuits
have dynamic, static, and short-circuit power dissipation; however, the dominant
component in a well designed circuit is dynamic power consumption p (i.e., the
switching component of power), which is approximately p = aCV 2f , where a is
an activity factor, C is the loading capacitance, V is the supply voltage, and f is
the clock frequency [13]. In the ideal case, the supply voltage and the clock fre-
quency are related in such a way that V ∝ f φ for some constant φ > 0 [51]. The
processor execution speed s is usually linearly proportional to the clock frequency,
namely, s ∝ f . For ease of discussion, we will assume that V = bf φ and s = cf ,
where b and c are some constants. Hence, we know that power consumption is
p = aCV 2f = ab2Cf 2φ+1 = (ab2C/c2φ+1)s2φ+1 = ξsα , where ξ = ab2C/c2φ+1

and α = 2φ + 1. For instance, by setting b = 1.16, aC = 7.0, c = 1.0, φ = 0.5,
α = 2φ + 1 = 2.0, and ξ = ab2C/cα = 9.4192, the value of p calculated by the
equation p = aCV 2f = ξsα is reasonably close to that in [22] for the Intel Pentium
M processor.

Assume that we are given a parallel computation or application with a set of n
precedence constrained parallel tasks. The precedence constraints can be specified as
a partial order ≺ over the set of tasks {1, 2, ..., n}, or a task graphG = (V ,E), where
V = {1, 2, ..., n} is the set of tasks and E is a set of arcs representing the precedence
constraints. The relationship i ≺ j , or an arc (i, j) from i to j , means that task i must
be executed before task j , i.e., task j cannot be executed until task i is completed. A
parallel task i, where 1 ≤ i ≤ n, is specified byπi and ri explained below. The integer
πi is the number of cores requested by task i, i.e., the size of task i. It is possible that
in executing task i, the πi cores may have different execution requirements (i.e., the
numbers of core cycles or the numbers of instructions executed on the cores) due to
imbalanced load distribution. Let ri represent the maximum execution requirement
on the πi cores executing task i. The product wi = πiri is called the work of task i.

We are also given a multicore processor withm homogeneous and identical cores.
To execute a task i, any πi of them cores of the multicore processor can be allocated
to task i. Several tasks can be executed simultaneously on the multicore processor,
with the restriction that the total number of active cores (i.e., cores allocated to tasks
being executed) at any moment cannot exceed m.

In a more general setting, we can consider scheduling u parallel applications
represented by task graphs G1,G2, ...,Gu respectively, on v multicore processors
P1,P2, ...,Pv in a data center with m1,m2, ...,mv cores respectively (see Fig. 1).
Notice that multiple task graphs can be viewed as a single task graph with discon-
nected components. Therefore, our task model can accommodate multiple parallel
applications. However, scheduling on multiple multicore processors is significantly
different from scheduling on a single multicore processor. In this chapter, we fo-
cus on scheduling parallel applications on a single multicore processor, and leave

Energy-Efficient and High-Performance Processing of Large-Scale . . . 9

Fig. 1 Processing of parallel applications in a data center

the study of scheduling parallel applications on multiple multicore processors as a
further research topic.

We use pi to represent the power supplied to task i and si to represent the speed
to execute task i. It is noticed that the constant ξ in pi = ξsαi only linearly scales
the value of pi . For ease of discussion, we will assume that pi is simply sαi , where
si = p

1/α
i is the execution speed of task i. The execution time of task i is ti =

ri/si = ri/p1/α
i . Note that all the πi cores allocated to task i have the same speed si

for duration ti , although some of the πi cores may be idle for some time. The energy

10 K. Li

consumed to execute task i is ei = πipiti = πirip
1−1/α
i = πiris

α−1
i = wi s

α−1
i ,

where wi = πiri is the amount of work to be performed for task i.

3.2 Problems

Our combinatorial optimization problems solved in this chapter are formally defined
as follows.

Given n parallel tasks with precedence constraints ≺, task sizes π1, π2, ..., πn,
and task execution requirements r1, r2, ..., rn, the problem of minimizing schedule
length with energy consumption constraint E on an m-core processor is to find the
power supplies p1, p2, ..., pn (equivalently, the task execution speeds s1, s2, ..., sn)
and a nonpreemptive schedule of the n tasks on the m-core processor, such that the
schedule length is minimized and that the total energy consumed does not exceed
E. This problem aims at achieving energy-efficient processing of large-scale parallel
applications with the best possible performance.

Given n parallel tasks with precedence constraints ≺, task sizes π1, π2, ..., πn,
and task execution requirements r1, r2, ..., rn, the problem of minimizing energy
consumption with schedule length constraint T on anm-core processor is to find the
power suppliesp1, p2, ...,pn (equivalently, the task execution speeds s1, s2, ..., sn) and
a nonpreemptive schedule of the n tasks on the m-core processor, such that the total
energy consumption is minimized and that the schedule length does not exceed T .
This problem aims at achieving high-performance processing of large-scale parallel
applications with the lowest possible energy consumption.

The above two problems are NP-hard even when the tasks are independent (i.e.,
≺= ∅) and sequential (i.e., πi = 1 for all 1 ≤ i ≤ n) [28]. Thus, we will seek fast
heuristic algorithms with near-optimal performance.

3.3 Lower Bounds

LetW = w1 + w2 + · · · + wn = π1r1 + π2r2 + · · · + πnrn denote the total amount
of work to be performed for the n parallel tasks. We define T ∗ to be the length of
an optimal schedule, and E∗ to be the minimum amount of energy consumed by an
optimal schedule.

The following theorem gives a lower bound for the optimal schedule length T ∗
for the problem of minimizing schedule length with energy consumption constraint.

Theorem 1 For the problem of minimizing schedule length with energy consumption
constraint in scheduling parallel tasks, we have the following lower bound,

T ∗ ≥
(
m

E

(
W

m

)α)1/(α−1)

for the optimal schedule length.

Energy-Efficient and High-Performance Processing of Large-Scale . . . 11

Table 1 Summary of our methods to solve the subproblems

Subproblem Method

Precedence constraining Level-by-level scheduling algorithms

System partitioning Harmonic system partitioning and core allocation scheme

Task scheduling List scheduling algorithms

Power supplying Four-level energy/time/power allocation scheme

The following theorem gives a lower bound for the minimum energy consump-
tion E∗ for the problem of minimizing energy consumption with schedule length
constraint.

Theorem 2 For the problem of minimizing energy consumption with schedule length
constraint in scheduling parallel tasks, we have the following lower bound,

E∗ ≥ m
(
W

m

)α 1

T α−1

for the minimum energy consumption.
The above lower bound theorems were proved for independent parallel tasks

[29], and therefore, are also applicable to precedence constrained parallel tasks. The
significance of these lower bounds is that they can be used to evaluate the performance
of heuristic algorithms when their solutions are compared with optimal solutions (see
Sects. 5.1.4 and 5.2.4).

4 Heuristic Algorithms

In this section, we describe our methods to deal with precedence constraints, sys-
tem partitioning, and task scheduling, i.e., our methods to solve the first three
subproblems. Table 1 gives a summary of our strategies to solve the subproblems.

4.1 Precedence Constraining

Recall that a set of n parallel tasks with precedence constraints can be represented by
a partial order ≺ on the tasks, i.e., for two tasks i and j , if i ≺ j , then task j cannot
start its execution until task i finishes. It is clear that the n tasks and the partial order
≺ can be represented by a directed task graph, in which, there are n vertices for the
n tasks and (i, j) is an arc if and only if i ≺ j . We call j a successor of i and i a
predecessor of j . Furthermore, such a task graph must be a directed acyclic graph
(dag). An arc (i, j) is redundant if there exists k such that (i, k) and (k, j) are also
arcs in the task graph. We assume that there is no redundant arc in the task graph.

12 K. Li

A dag can be decomposed into levels, with v being the number of levels. Tasks
with no predecessors (called initial tasks) constitute level 1. Generally, a task i is in
level l if the number of nodes on the longest path from some initial task to task i is
l, where 1 ≤ l ≤ v. Note that all tasks in the same level are independent of each
other, and hence, they can be scheduled by any of the algorithms (e.g., those from
[29, 32]) for scheduling independent parallel tasks. Algorithm LL-Hc-A, where A
is a list scheduling algorithm, standing for level-by-level scheduling with algorithm
Hc-A, schedules the n tasks level by level in the order level 1, level 2, ..., level v.
Tasks in level l+1 cannot start their execution until all tasks in level l are completed.
For each level l, where 1 ≤ l ≤ v, we use algorithm Hc-A developed in [29] to
generate its schedule (see Fig. 2).

The details of algorithm Hc-A is given in the next two subsections.

4.2 System Partitioning

Our algorithms for scheduling independent parallel tasks are called Hc-A, where
“Hc” stands for the harmonic system partitioning scheme with parameter c to be
presented below, and A is a list scheduling algorithm to be presented in the next
subsection.

To schedule a list of independent parallel tasks in level l, algorithm Hc-A divides
the list into c sublists (l, 1), (l, 2), ..., (l, c) according to task sizes (i.e., numbers of
cores requested by tasks), where c ≥ 1 is a positive integer constant. For 1 ≤ j ≤
c − 1, we define sublist (l, j) to be the sublist of tasks with

m

j + 1
< πi ≤ m

j
,

i.e., sublist (l, j) contains all tasks whose sizes are in the interval Ij = (m/(j + 1),
m/j). We define sublist (l, c) to be the sublist of tasks with 0 < πi ≤ m/c, i.e., sublist
(l, c) contains all tasks whose sizes are in the interval Ic = (0,m/c). The partition
of (0,m) into intervals I1, I2, ..., Ij , ..., Ic is called the harmonic system partitioning
scheme whose idea is to schedule tasks of similar sizes together. The similarity is
defined by the intervals I1, I2, ..., Ij , ..., Ic. For tasks in sublist (l, j), core utilization
is higher than j/(j + 1), where 1 ≤ j ≤ c − 1. As j increases, the similarity
among tasks in sublist (l, j) increases and core utilization also increases. Hence, the
harmonic system partitioning scheme is very good at handling small tasks.

Algorithm Hc-A produces schedules of the sublists sequentially and separately
(see Fig. 2). To schedule tasks in sublist (l, j), where 1 ≤ j ≤ c, the m cores are
partitioned into j clusters and each cluster containsm/j cores. Each cluster of cores
is treated as one unit to be allocated to one task in sublist (l, j). This is basically the
harmonic system partitioning and core allocation scheme. The justification of the
scheme is from the observation that there can be at most j parallel tasks from sublist

Energy-Efficient and High-Performance Processing of Large-Scale . . . 13

Fig. 2 Scheduling of level l

(l, j) to be executed simultaneously. Therefore, scheduling parallel tasks in sublist
(l, j) on the j clusters, where each task i has core requirement πi and execution
requirement ri , is equivalent to scheduling a list of sequential tasks on j processors
where each task i has execution requirement ri . It is clear that scheduling of a list of

14 K. Li

sequential tasks on j processors (i.e., scheduling of a sublist (l, j) of parallel tasks on
j clusters) can be accomplished by using algorithm A, where A is a list scheduling
algorithm to be elaborated in the next subsection.

4.3 Task Scheduling

When a multicore processor with m cores is partitioned into j ≥ 1 clusters,
scheduling tasks in sublist (l, j) is essentially dividing sublist (l, j) into j groups
(l, j , 1), (l, j , 2), ..., (l, j , j) of tasks, such that each group of tasks are executed on
one cluster (see Fig. 2). Such a partition of sublist (l, j) into j groups is essentially
a schedule of the tasks in sublist (l, j) on m cores with j clusters. Once a partition
(i.e., a schedule) is determined, we can use the methods in the next section to find
optimal energy/time allocation and power supplies.

We propose to use the list scheduling algorithm and its variations to solve the task
scheduling problem. Tasks in sublist (l, j) are scheduled on j clusters by using the
classic list scheduling algorithm [19] and by ignoring the issue of power supplies
and execution speeds. In other words, the task execution times are simply the task
execution requirements r1, r2, ..., rn, and tasks are assigned to the j clusters (i.e.,
groups) by using the list scheduling algorithm, which works as follows to schedule
a list of tasks 1, 2, 3 · · · .

• List Scheduling (LS): Initially, task k is scheduled on cluster (or group) k, where
1 ≤ k ≤ j , and tasks 1, 2, · · · , j are removed from the list. Upon the completion
of a task k, the first unscheduled task in the list, i.e., task j + 1, is removed from
the list and scheduled to be executed on cluster k. This process repeats until all
tasks in the list are finished.

Algorithm LS has many variations, depending on the strategy used in the initial
ordering of the tasks. We mention several of them here.

• Largest Requirement First (LRF): This algorithm is the same as the LS algorithm,
except that the tasks are arranged such that r1 ≥ r2 ≥ · · · ≥ rn.

• Smallest Requirement First (SRF): This algorithm is the same as the LS algorithm,
except that the tasks are arranged such that r1 ≤ r2 ≤ · · · ≤ rn.

• Largest Size First (LSF): This algorithm is the same as the LS algorithm, except
that the tasks are arranged such that π1 ≥ π2 ≥ · · · ≥ πn.

• Smallest Size First (SSF): This algorithm is the same as the LS algorithm, except
that the tasks are arranged such that π1 ≤ π2 ≤ · · · ≤ πn.

• Largest Task First (LTF): This algorithm is the same as the LS algorithm, except
that the tasks are arranged such that π1/α

1 r1 ≥ π1/α
2 r2 ≥ · · · ≥ π1/α

n rn.
• Smallest Task First (STF): This algorithm is the same as the LS algorithm, except

that the tasks are arranged such that π1/α
1 r1 ≤ π1/α

2 r2 ≤ · · · ≤ π1/α
n rn.

We call algorithm LS and its variations simply as list scheduling algorithms.

Energy-Efficient and High-Performance Processing of Large-Scale . . . 15

Table 2 Overview of the optimal energy/time/power allocation scheme

Level Method Theorems

1 Optimal power supplies to tasks in the same group 3 and 7

2 Optimal energy allocation among groups of tasks in the same sublist 4 and 8

3 Optimal energy/time allocation among sublists of tasks in the same level 5 and 9

4 Optimal energy/time allocation among levels of tasks 6 and 10

5 Optimal Energy/Time/Power Allocation

In this section, we develop our optimal four-level energy/time/power allocation
scheme for minimizing schedule length and minimizing energy consumption, i.e.,
our method to solve the last subproblem. We also analyze the performance of our
heuristic algorithms and derive accurate performance bounds.

Once the n precedence constrained parallel tasks are decomposed into v
levels, 1, 2, ..., v, and tasks in each level l are divided into c sublists
(l, 1), (l, 2), ..., (l, c), and tasks in each sublist (l, j) are further partitioned into j
groups (l, j , 1), (l, j , 2), ..., (l, j , j), power supplies to the tasks which minimize
the schedule length within energy consumption constraint or the energy consump-
tion within schedule length constraint can be determined. We adopt a four-level
energy/time/power allocation scheme for a given schedule, namely,

• Level 1—optimal power supplies to tasks in the same group (l, j , k) (Theorems 3
and 7);

• Level 2—optimal energy allocation among groups (l, j , 1), (l, j , 2), ..., (l, j , j) of
tasks in the same sublist (l, j) (Theorems 4 and 8);

• Level 3—optimal energy/time allocation among sublists (l, 1), (l, 2), ..., (l, c) of
tasks in the same level l (Theorems 5 and 9);

• Level 4—optimal energy/time allocation among levels 1, 2, ..., l of tasks of a
parallel application (Theorems 6 and 10).

Table 2 gives an overview of our energy/time/power allocation scheme. We will give
the details of the above optimal four-level energy/time/power allocation scheme for
the two optimization problems separately.

5.1 Minimizing Schedule Length

5.1.1 Level 1

We first consider optimal power supplies to tasks in the same group. Notice that tasks
in the same group are executed sequentially. In fact, we consider a more general case,
i.e., n parallel tasks with sizes π1,π2, ...,πn and execution requirements r1, r2, ..., rn

16 K. Li

to be executed sequentially one by one. Let us define

M = π1/α
1 r1 + π1/α

2 r2 + · · · + π1/α
n rn.

The following result [29] gives the optimal power supplies when the n parallel tasks
are scheduled sequentially.

Theorem 3 When n parallel tasks are scheduled sequentially, the schedule length
is minimized when task i is supplied with power pi = (E/M)α/(α−1)/πi , where
1 ≤ i ≤ n. The optimal schedule length is T = Mα/(α−1)/E1/(α−1).

5.1.2 Level 2

Now, we consider optimal energy allocation among groups of tasks in the same
sublist. Again, we discuss group level energy allocation in a more general case, i.e.,
scheduling n parallel tasks onm cores, whereπi ≤ m/j for all 1 ≤ i ≤ nwith j ≥ 1.
In this case, the m cores can be partitioned into j clusters, such that each cluster
contains m/j cores. Each cluster of cores are treated as one unit to be allocated to
one task. Assume that the set of n tasks is partitioned into j groups, such that all the
tasks in group k are executed on cluster k, where 1 ≤ k ≤ j . LetMk denote the total
π

1/α
i ri of the tasks in group k. For a given partition of the n tasks into j groups, we are

seeking an optimal energy allocation and power supplies that minimize the schedule
length. Let Ek be the energy consumed by all the tasks in group k. The following
result [29] characterizes the optimal energy allocation and power supplies.

Theorem 4 For a given partitionM1,M2, ...,Mj of n parallel tasks into j groups
on a multicore processor partitioned into j clusters, the schedule length is minimized
when task i in group k is supplied with power pi = (Ek/Mk)α/(α−1)/πi , where

Ek =
(

Mα
k

Mα
1 +Mα

2 + · · · +Mα
j

)
E,

for all 1 ≤ k ≤ j . The optimal schedule length is

T =
(
Mα

1 +Mα
2 + · · · +Mα

j

E

)1/(α−1)

,

for the above energy allocation and power supplies.

5.1.3 Level 3

To use algorithm Hc-A to solve the problem of minimizing schedule length with
energy consumption constraint E, we need to allocate the available energy E to the
c sublists. We use E1, E2, ..., Ec to represent an energy allocation to the c sublists,
where sublist j consumes energy Ej , and E1 + E2 + · · · + Ec = E. By using any

Energy-Efficient and High-Performance Processing of Large-Scale . . . 17

of the list scheduling algorithms to schedule tasks in sublist j , we get a partition
of the tasks in sublist j into j groups. Let Rj be the total execution requirement of
tasks in sublist j , and Rj ,k be the total execution requirement of tasks in group k,
and Mj ,k be the total π1/α

i ri of tasks in group k, where 1 ≤ k ≤ j . Theorem 5 [29]
provides optimal energy allocation to the c sublists for minimizing schedule length
with energy consumption constraint in scheduling parallel tasks by using scheduling
algorithms Hc-A, where A is a list scheduling algorithm.

Theorem 5 For a given partitionMj ,1,Mj ,2, ...,Mj ,j of the tasks in sublist j into j
groups produced by a list scheduling algorithm A, where 1 ≤ j ≤ c, and an energy
allocation E1, E2, ..., Ec to the c sublists, the length of the schedule produced by
algorithm Hc-A is

T =
c∑
j=1

(
Mα
j ,1 +Mα

j ,2 + · · · +Mα
j ,j

Ej

)1/(α−1)

.

The energy allocation E1, E2, ..., Ec which minimizes T is

Ej =
(

N
1/α
j

N
1/α
1 +N1/α

2 + · · · +N1/α
c

)
E,

where Nj = Mα
j ,1 + Mα

j ,2 + · · · + Mα
j ,j , for all 1 ≤ j ≤ c, and the minimized

schedule length is

T = (N1/α
1 +N1/α

2 + · · · +N1/α
c)α/(α−1)

E1/(α−1)
,

by using the above energy allocation.

5.1.4 Level 4

To use a level-by-level scheduling algorithm to solve the problem of minimizing
schedule length with energy consumption constraint E, we need to allocate the
available energy E to the v levels. We use E1, E2, ..., Ev to represent an energy allo-
cation to the v levels, where level l consumes energyEl , andE1+E2+· · ·+Ev = E.

Let Rl,j ,k be the total execution requirement of tasks in group (l, j , k), i.e., group
k of sublist (l, j) of level l, and Rl,j be the total execution requirement of tasks in
sublist (l, j) of level l, and Rj be the total execution requirement of tasks in sublist
(l, j) of all levels, and Ml,j ,k be the total π1/α

i ri of tasks in group (l, j , k), where
1 ≤ l ≤ v and 1 ≤ j ≤ c and 1 ≤ k ≤ j .

By Theorem 5, for a given partitionMl,j ,1,Ml,j ,2, ...,Ml,j ,j of the tasks in sublist
(l, j) of level l into j groups produced by a list scheduling algorithm A, where

18 K. Li

1 ≤ l ≤ v and 1 ≤ j ≤ c, and an energy allocationEl,1, El,2, ..., El,c to the c sublists
of level l, where

El,j =
(

N
1/α
l,j

N
1/α
l,1 +N1/α

l,2 + · · · +N1/α
l,c

)
El ,

with Nl,j = Mα
l,j ,1 +Mα

l,j ,2 + · · · +Mα
l,j ,j , for all 1 ≤ l ≤ v and 1 ≤ j ≤ c, the

scheduling algorithm Hc-A produces schedule length

Tl =
(N1/α
l,1 +N1/α

l,2 + · · · +N1/α
l,c)α/(α−1)

E
1/(α−1)
l

,

for tasks in level l, where 1 ≤ l ≤ v. Since the level-by-level scheduling algorithm
produces schedule length T = T1 + T2 + · · · + Tv, we have

T =
v∑
l=1

(N1/α
l,1 +N1/α

l,2 + · · · +N1/α
l,c)α/(α−1)

E
1/(α−1)
l

.

Let Sl = (N1/α
l,1 +N1/α

l,2 + · · ·+N1/α
l,c)α , for all 1 ≤ l ≤ v. By the definition of Sl , we

obtain

T =
(
S1

E1

)1/(α−1)

+
(
S2

E2

)1/(α−1)

+ · · · +
(
Sv

Ev

)1/(α−1)

.

To minimize T with the constraint F (E1,E2, ...,Ev) = E1 + E2 + · · · + Ev = E,
we use the Lagrange multiplier system

∇T (E1,E2, ...,Ev) = λ∇F (E1,E2, ...,Ev),

where λ is the Lagrange multiplier. Since ∂T /∂El = λ∂F/∂El , that is,

S
1/(α−1)
l

(
− 1

α − 1

) 1

E
1/(α−1)+1
l

= λ,

1 ≤ l ≤ v, we get

El = S1/α
l

(1

λ(1 − α)

)(α−1)/α
,

which implies that

E = (S1/α
1 + S1/α

2 + · · · + S1/α
v)
(1

λ(1 − α)

)(α−1)/α
,

and

El =
(

S
1/α
l

S
1/α
1 + S1/α

2 + · · · + S1/α
v

)
E,

for all 1 ≤ l ≤ v. By using the above energy allocation, we have

Energy-Efficient and High-Performance Processing of Large-Scale . . . 19

T =
v∑
l=1

(Sl
El

)1/(α−1)

=
v∑
l=1

S
1/(α−1)
l((

S
1/α
l

S
1/α
1 + S1/α

2 + · · · + S1/α
v

)
E

)1/(α−1)

=
v∑
l=1

S
1/α
l (S1/α

1 + S1/α
2 + · · · + S1/α

v)1/(α−1)

E1/(α−1)

= (S1/α
1 + S1/α

2 + · · · + S1/α
v)α/(α−1)

E1/(α−1)
.

For any list scheduling algorithm A, we have Rl,j ,k ≤ Rl,j /j + r∗, for all 1 ≤ l ≤ v
and 1 ≤ j ≤ c and 1 ≤ k ≤ j , where r∗ = max(r1, r2, ..., rn) is the maximum task
execution requirement. Since πi ≤ m/j for every task i in group (l, j , k) of sublist
(l, j) of level l, we get

Ml,j ,k ≤
(m
j

)1/α
Rl,j ,k ≤

(m
j

)1/α
(
Rl,j

j
+ r∗

)
.

Therefore,

Nl,j ≤ m
(
Rl,j

j
+ r∗

)α
,

and

N
1/α
l,j ≤ m1/α

(
Rl,j

j
+ r∗

)
,

and

N
1/α
l,1 +N1/α

l,2 + · · · +N1/α
l,c ≤ m1/α

⎛
⎝
⎛
⎝ c∑
j=1

Rl,j

j

⎞
⎠+ cr∗

⎞
⎠ .

Consequently,

Sl ≤ m
⎛
⎝
⎛
⎝ c∑
j=1

Rl,j

j

⎞
⎠+ cr∗

⎞
⎠
α

,

and

S
1/α
l ≤ m1/α

⎛
⎝
⎛
⎝ c∑
j=1

Rl,j

j

⎞
⎠+ cr∗

⎞
⎠ ,

and

S
1/α
1 + S1/α

2 + · · · + S1/α
v ≤ m1/α

⎛
⎝
⎛
⎝ c∑
j=1

Rj

j

⎞
⎠+ cvr∗

⎞
⎠ ,

20 K. Li

which implies that

T ≤ m1/(α−1)

⎛
⎝
⎛
⎝ c∑
j=1

Rj

j

⎞
⎠+ cvr∗

⎞
⎠
α/(α−1)

1

E1/(α−1)
.

We define the performance ratio as β = T/T ∗ for heuristic algorithms that solve
the problem of minimizing schedule length with energy consumption constraint on
a multicore processor. By Theorem 1, we get

β = T

T ∗ ≤
⎛
⎝
⎛
⎝
⎛
⎝ c∑
j=1

Rj

j

⎞
⎠+ cvr∗

⎞
⎠/(W

m

)⎞⎠
α/(α−1)

.

Theorem 6 provides optimal energy allocation to the v levels for minimizing schedule
length with energy consumption constraint in scheduling precedence constrained
parallel tasks by using level-by-level scheduling algorithms LL-Hc-A, where A is a
list scheduling algorithm.

Theorem 6 For a given partition Ml,j ,1, Ml,j ,2, ..., Ml,j ,j of the tasks in sublist
(l, j) of level l into j groups produced by a list scheduling algorithm A, where
1 ≤ l ≤ v and 1 ≤ j ≤ c, and an energy allocation E1, E2, ..., Ev to the v levels,
the level-by-level scheduling algorithm LL-Hc-A produces schedule length

T =
v∑
l=1

(N1/α
l,1 +N1/α

l,2 + · · · +N1/α
l,c)α/(α−1)

E
1/(α−1)
l

,

where Nl,j = Mα
l,j ,1 +Mα

l,j ,2 + · · · +Mα
l,j ,j , for all 1 ≤ l ≤ v and 1 ≤ j ≤ c. The

energy allocation E1, E2, ..., Ev which minimizes T is

El =
(

S
1/α
l

S
1/α
1 + S1/α

2 + · · · + S1/α
v

)
E,

where Sl = (N1/α
l,1 + N1/α

l,2 + · · · + N1/α
l,c)α , for all 1 ≤ l ≤ v, and the minimized

schedule length is

T = (S1/α
1 + S1/α

2 + · · · + S1/α
v)α/(α−1)

E1/(α−1)
,

by using the above energy allocation. The performance ratio is

β ≤
⎛
⎝
⎛
⎝
⎛
⎝ c∑
j=1

Rj

j

⎞
⎠+ cvr∗

⎞
⎠/(W

m

)⎞⎠
α/(α−1)

,

where r∗ = max(r1, r2, ..., rn) is the maximum task execution requirement.

Energy-Efficient and High-Performance Processing of Large-Scale . . . 21

Theorems 4 and 5 and 6 give the power supply to the task i in group (l, j , k) as

1

πi

(
El,j ,k

Ml,j ,k

)α/(α−1)

= 1

πi

((
Mα
l,j ,k

Mα
l,j ,1 +Mα

l,j ,2 + · · · +Mα
l,j ,j

)

(
N

1/α
l,j

N
1/α
l,1 +N1/α

l,2 + · · · +N1/α
l,c

)(
S

1/α
l

S
1/α
1 + S1/α

2 + · · · + S1/α
v

)
E

Ml,j ,k

)α/(α−1)

,

for all 1 ≤ l ≤ v and 1 ≤ j ≤ c and 1 ≤ k ≤ j .
We notice that the performance bound given in Theorem 6 is loose and pessimistic

mainly due to the overestimation of the πi’s in sublist (l, j) to m/j . One possible
remedy is to use the value of (m/(j + 1) +m/j)/2 as an approximation to πi . Also,
as the number of tasks gets large, the term cvr∗ may be removed. This gives rise to
the following performance bound for β:

⎛
⎝
⎛
⎝ c∑
j=1

Rj

j

(
2j + 1

2j + 2

)1/α
⎞
⎠/(W

m

)⎞⎠
α/(α−1)

. (1)

Our simulation shows that the modified bound in (1) is more accurate than the
performance bound given in Theorem 6.

5.2 Minimizing Energy Consumption

5.2.1 Level 1

The following result [29] gives the optimal power supplies when n parallel tasks are
scheduled sequentially.

Theorem 7 When n parallel tasks are scheduled sequentially, the total energy
consumption is minimized when task i is supplied with power pi = (M/T)α/πi ,
where 1 ≤ i ≤ n. The minimum energy consumption is E = Mα/T α−1.

5.2.2 Level 2

The following result [29] gives the optimal energy allocation and power supplies
that minimize energy consumption for a given partition of n tasks into j groups on
a multicore processor.

Theorem 8 For a given partitionM1,M2, ...,Mj of n parallel tasks into j groups
on a multicore processor partitioned into j clusters, the total energy consumption is
minimized when task i in group k is executed with power pi = (Mk/T)α/πi , where

22 K. Li

1 ≤ k ≤ j . The minimum energy consumption is

E = Mα
1 +Mα

2 + · · · +Mα
j

T α−1
,

for the above energy allocation and power supplies.

5.2.3 Level 3

To use algorithm Hc-A to solve the problem of minimizing energy consumption
with schedule length constraint T , we need to allocate the time T to the c sublists.
We use T1, T2, .., Tc to represent a time allocation to the c sublists, where tasks
in sublist sublist j are executed within deadline Tj , and T1 + T2 + · · · + Tc = T .
Theorem 9 [29] provides optimal time allocation to the c sublists for minimizing
energy consumption with schedule length constraint in scheduling parallel tasks by
using scheduling algorithms Hc-A, where A is a list scheduling algorithm.

Theorem 9 For a given partitionMj ,1, Mj ,2, ..., Mj ,j of the tasks in sublist j into
j groups produced by a list scheduling algorithm A, where 1 ≤ j ≤ c, and a time
allocation T1, T2, ..., Tc to the c sublists, the amount of energy consumed by algorithm
Hc-A is

E =
c∑
j=1

(
Mα
j ,1 +Mα

j ,2 + · · · +Mα
j ,j

T α−1
j

)
.

The time allocation T1, T2, ..., Tc which minimizes E is

Tj =
(

N
1/α
j

N
1/α
1 +N1/α

2 + · · · +N1/α
c

)
T ,

where Nj = Mα
j ,1 +Mα

j ,2 + · · · +Mα
j ,j , for all 1 ≤ j ≤ c, and the minimized energy

consumption is

E = (N1/α
1 +N1/α

2 + · · · +N1/α
c)α

T α−1
,

by using the above time allocation.

5.2.4 Level 4

To use a level-by-level scheduling algorithm to solve the problem of minimizing
energy consumption with schedule length constraint T , we need to allocate the time
T to the v levels. We use T1, T2, ..., Tv to represent a time allocation to the v levels,
where tasks in level l are executed within deadline Tl , and T1 + T2 + · · · + Tv = T .

By Theorem 9, for a given partitionMl,j ,1,Ml,j ,2, ...,Ml,j ,j of the tasks in sublist
(l, j) of level l into j groups produced by a list scheduling algorithm A, where

Energy-Efficient and High-Performance Processing of Large-Scale . . . 23

1 ≤ l ≤ v and 1 ≤ j ≤ c, and a time allocation Tl,1, Tl,2, ..., Tl,c to the c sublists of
level l, where

Tl,j =
(

N
1/α
l,j

N
1/α
l,1 +N1/α

l,2 + · · · +N1/α
l,c

)
Tl ,

with Nl,j = Mα
l,j ,1 +Mα

l,j ,2 + · · · +Mα
l,j ,j , for all 1 ≤ l ≤ v and 1 ≤ j ≤ c, the

scheduling algorithm Hc-A consumes energy

El =
(N1/α
l,1 +N1/α

l,2 + · · · +N1/α
l,c)α

T α−1
l

,

for tasks in level l, where 1 ≤ l ≤ v. Since the level-by-level scheduling algorithm
consumes energy E = E1 + E2 + · · · + Ev, we have

E =
v∑
l=1

(N1/α
l,1 +N1/α

l,2 + · · · +N1/α
l,c)α

T α−1
l

.

By the definition of Sl , we obtain

E = S1

T α−1
1

+ S2

T α−1
2

+ · · · + Sv

T α−1
v

.

To minimize E with the constraint F (T1, T2, ..., Tv) = T1 + T2 + · · · + Tv = T , we
use the Lagrange multiplier system

∇E(T1, T2, ..., Tv) = λ∇F (T1, T2, ..., Tv),

where λ is the Lagrange multiplier. Since ∂E/∂Tl = λ∂F/∂Tl , that is,

Sl

(
1 − α
T αl

)
= λ,

1 ≤ l ≤ v, we get

Tl = S1/α
l

(
1 − α
λ

)1/α

,

which implies that

T = (S1/α
1 + S1/α

2 + · · · + S1/α
v)

(
1 − α
λ

)1/α

,

and

Tl =
(

S
1/α
l

S
1/α
1 + S1/α

2 + · · · + S1/α
v

)
T ,

for all 1 ≤ l ≤ v. By using the above time allocation, we have

24 K. Li

E =
v∑
l=1

Sl

T α−1
l

=
v∑
l=1

Sl((
S

1/α
l

S
1/α
1 + S1/α

2 + · · · + S1/α
v

)
T

)α−1

=
v∑
l=1

S
1/α
l (S1/α

1 + S1/α
2 + · · · + S1/α

v)α−1

T α−1

= (S1/α
1 + S1/α

2 + · · · + S1/α
v)α

T α−1
.

Similar to the derivation in Sect. 5.1.4, we have

S
1/α
1 + S1/α

2 + · · · + S1/α
v ≤ m1/α

⎛
⎝
⎛
⎝ c∑
j=1

Rj

j

⎞
⎠+ cvr∗

⎞
⎠ ,

which implies that

E ≤ m
⎛
⎝
⎛
⎝ c∑
j=1

Rj

j

⎞
⎠+ cvr∗

⎞
⎠
α

1

T α−1
.

We define the performance ratio as β = E/E∗ for heuristic algorithms that solve
the problem of minimizing energy consumption with schedule length constraint on
a multicore processor. By Theorem 2, we get

β = E

E∗ ≤
⎛
⎝
⎛
⎝
⎛
⎝ c∑
j=1

Rj

j

⎞
⎠+ cvr∗

⎞
⎠/(W

m

)⎞⎠
α

.

Theorem 10 provides optimal time allocation to the v levels for minimizing energy
consumption with schedule length constraint in scheduling precedence constrained
parallel tasks by using level-by-level scheduling algorithms LL-Hc-A, where A is a
list scheduling algorithm.

Theorem 10 For a given partitionMl,j ,1,Ml,j ,2, ...,Ml,j ,j of the tasks in sublist (l, j)
of level l into j groups produced by a list scheduling algorithm A, where 1 ≤ l ≤ v
and 1 ≤ j ≤ c, and a time allocation T1, T2, ..., Tv to the v levels, the level-by-level
scheduling algorithm LL-Hc-A consumes energy

Energy-Efficient and High-Performance Processing of Large-Scale . . . 25

E =
v∑
l=1

(N1/α
l,1 +N1/α

l,2 + · · · +N1/α
l,c)α

T α−1
l

,

where Nl,j = Mα
l,j ,1 +Mα

l,j ,2 + · · · +Mα
l,j ,j , for all 1 ≤ l ≤ v and 1 ≤ j ≤ c. The

time allocation T1, T2, ..., Tv which minimizes E is

Tl =
(

S
1/α
l

S
1/α
1 + S1/α

2 + · · · + S1/α
v

)
T ,

where Sl = (N1/α
l,1 + N1/α

l,2 + · · · + N1/α
l,c)α , for all 1 ≤ l ≤ v, and the minimized

energy consumption is

E = (S1/α
1 + S1/α

2 + · · · + S1/α
v)α

T α−1
,

by using the above time allocation. The performance ratio is

β ≤
⎛
⎝
⎛
⎝
⎛
⎝ c∑
j=1

Rj

j

⎞
⎠+ cvr∗

⎞
⎠/(W

m

)⎞⎠
α

,

where r∗ = max(r1, r2, ..., rn) is the maximum task execution requirement.
Theorems 8 and 9 and 10 give the power supply to the task i in group (l, j , k) as

1

πi

(
Ml,j ,k

Tl,j

)α
= 1

πi

((
N

1/α
l,1 +N1/α

l,2 + · · · +N1/α
l,c

N
1/α
l,j

)

(
S

1/α
1 + S1/α

2 + · · · + S1/α
v

S
1/α
l

)
Ml,j ,k

T

)α
,

for all 1 ≤ l ≤ v and 1 ≤ j ≤ c and 1 ≤ k ≤ j .
Again, we adjust the performance bound given in Theorem 10 to

⎛
⎝
⎛
⎝ c∑
j=1

Rj

j

(
2j + 1

2j + 2

)1/α
⎞
⎠/

(
W

m

)⎞
⎠
α

. (2)

Our simulation shows that the modified bound in (2) is more accurate than the
performance bound given in Theorem 10.

6 Simulation Data

To validate our analytical results, extensive simulations have been conducted. In this
section, we demonstrate some numerical and experimental data for several example
task graphs. The following task graphs are considered in our experiments.

26 K. Li

Fig. 3 CT(b,h): a complete
binary tree with b = 2 and
h = 4

Fig. 4 PA(b,h): a
partitioning algorithm with
b = 2 and h = 3

• Tree-Structured Computations. Many computations are tree-structured, includ-
ing backtracking search, branch-and-bound computations, game-tree evaluation,
functional and logical programming, and various numeric computations. For sim-
plicity, we consider CT(b,h), i.e., complete b-ary trees of height h (see Fig. 3
where b = 2 and h = 4). It is easy to see that there are v = h+1 levels numbered
as 0, 1, 2, ..., h, and nl = bl for 0 ≤ l ≤ h, and n = (bh+1 − 1)/(b − 1).

• Partitioning Algorithms. A partitioning algorithm PA(b,h) represents a divide-
and-conquer computation with branching factor b and height (i.e., depth of
recursion) h (see Fig. 4 where b = 2 and h = 3). The dag of PA(b,h) has

Energy-Efficient and High-Performance Processing of Large-Scale . . . 27

Fig. 5 LA(v): a linear algebra
task graph with v = 5

v = 2h + 1 levels numbered as 0, 1, 2, ..., 2h. A partitioning algorithm pro-
ceeds in three stages. In levels 0, 1, ...,h− 1, each task is divided into b subtasks.
Then, in level h, subproblems of small sizes are solved directly. Finally, in levels
h+ 1,h+ 2, ..., 2h, solutions to subproblems are combined to form the solution
to the original problem. Clearly, nl = n2h−l = bl , for all 0 ≤ l ≤ h− 1, nh = bh,
and n = (bh+1 + bh − 2)/(b − 1).

• Linear Algebra Task Graphs. A linear algebra task graph LA(v) with v levels (see
Fig. 5 where v = 5) has nl = v − l + 1 for l = 1, 2, ..., v, and n = v(v + 1)/2.

• Diamond Dags. A diamond dag DD(d) (see Fig. 6 where d = 4) contains v =
2d − 1 levels numbered as 1, 2, ..., 2d − 1. It is clear that nl = n2d−l = l, for all
1 ≤ l ≤ d − 1, nd = d , and n = d2.

Since each task graph has at least one parameter, we are actually dealing with classes
of task graphs.

28 K. Li

Fig. 6 DD(d): a diamond dag
with d = 4

We define the normalized schedule length (NSL) as

NSL = T(
m

E

(
W

m

)α)1/(α−1) .

When T is the schedule length produced by a heuristic algorithm LL-Hc-A according
to Theorem 6, the normalized schedule length is

NSL =

⎛
⎜⎜⎝(S1/α

1 + S1/α
2 + · · · + S1/α

v)α

m

(
W

m

)α
⎞
⎟⎟⎠

1/(α−1)

.

NSL is an upper bound for the performance ratio β = T/T ∗ for the problem of
minimizing schedule length with energy consumption constraint on a multicore pro-
cessor. When the πi’s and the ri’s are random variables, T , T ∗, β, and NSL all
become random variables. It is clear that for the problem of minimizing schedule
length with energy consumption constraint, we have β̄ ≤ NSL, i.e., the expected
performance ratio is no larger than the expected normalized schedule length. (We
use x̄ to represent the expectation of a random variable x.)

We define the normalized energy consumption (NEC) as

Energy-Efficient and High-Performance Processing of Large-Scale . . . 29

NEC = E

m

(
W

m

)α 1

T α−1

.

When E is the energy consumed by a heuristic algorithm LL-Hc-A according to
Theorem 10, the normalized energy consumption is

NEC = (S1/α
1 + S1/α

2 + · · · + S1/α
v)α

m

(
W

m

)α .

NEC is an upper bound for the performance ratio β = E/E∗ for the problem of
minimizing energy consumption with schedule length constraint on a multicore pro-
cessor. For the problem of minimizing energy consumption with schedule length
constraint, we have β̄ ≤ NEC.

Notice that for a given task graph, the expected normalized schedule length NSL
and the expected normalized energy consumption NEC are determined by A, c, m,
α, and the probability distributions of the πi’s and the ri’s. In our simulations, the
algorithm A is chosen as LS; the parameter c is set as 20; the number of cores is
set as m = 128; and the parameter α is set as 3. The particular choices of these
values do not affect our general observations and conclusions. For convenience, the
ri’s are treated as independent and identically distributed (i.i.d.) continuous random
variables uniformly distributed in [0, 1). The πi’s are i.i.d. discrete random variables.
We consider three types of probability distributions of task sizes with about the same
expected task size π̄ . Let ab be the probability that πi = b, where b ≥ 1.

• Uniform distributions in the range [1..u], i.e., ab = 1/u for all 1 ≤ b ≤ u, where
u is chosen such that (u + 1)/2 = π̄ , i.e., u = 2π̄ − 1.

• Binomial distributions in the range [1..m], i.e.,

ab =

(
m

b

)
pb(1 − p)m−b

1 − (1 − p)m
,

for all 1 ≤ b ≤ m, wherep is chosen such thatmp = π̄ , i.e., p = π̄/m. However,
the actual expectation of task sizes is

π̄

1 − (1 − p)m
= π̄

1 − (1 − π̄/m)m
,

which is slightly greater than π̄ , especially when π̄ is small.
• Geometric distributions in the range [1..m], i.e.,

ab = q(1 − q)b−1

1 − (1 − q)m
,

for all 1 ≤ b ≤ m, where q is chosen such that 1/q = π̄ , i.e., q = 1/π̄ . However,
the actual expectation of task sizes is

30 K. Li

Table 3 Simulation data for expected NSL and NEC on CT(2,12)

Uniform Binomial Geometric

π̄ Simulation Analysis Simulation Analysis Simulation Analysis

10 1.1772602 1.1850145 1.1127903 1.0635657 1.2695944 1.3183482

20 1.1609754 1.1485746 1.1046696 1.0817685 1.2527372 1.2739448

30 1.2032217 1.2026955 1.1401395 1.1407631 1.2827662 1.3051035

40 1.3783493 1.4501456 1.2111586 1.2364135 1.2959831 1.3174113

50 1.3977418 1.4592250 1.2498124 1.2784298 1.2998132 1.3175610

60 1.3278814 1.3437082 1.2799084 1.3180794 1.3030358 1.3200509

99 % confidence interval ±0.365 %)

10 1.3816853 1.4002241 1.2386909 1.1314678 1.6180743 1.7403012

20 1.3471473 1.3204301 1.2223807 1.1720051 1.5698000 1.6194065

30 1.4504859 1.4461415 1.2989038 1.2983591 1.6412385 1.6968020

40 1.9023971 2.1084568 1.4683900 1.5308593 1.6805737 1.7387274

50 1.9592480 2.1352965 1.5604366 1.6323378 1.6883269 1.7364845

60 1.7623788 1.8044903 1.6405732 1.7409541 1.6957874 1.7386959

(99 % confidence interval ±0.687 %)

1/q − (1/q +m)(1 − q)m

1 − (1 − q)m
= π̄ − (π̄ +m)(1 − 1/π̄)m

1 − (1 − 1/π̄)m
,

which is less than π̄ , especially when π̄ is large.

In Tables 3, 4, 5 and 6, we show and compare the analytical results with simulation
data. For each task graph in { CT(2,12), PA(2,12), LA(2000), DD(2000) }, and each
π̄ in the range 10, 20, .., 60, and each probability distribution of task sizes, we
generate rep sets of tasks, produce their schedules by using algorithm LL-Hc-LS,
calculate their NSL (or NEC) and the bound (1) (or bound (2)), report the average
of NSL (or NEC) which is the experimental value of NSL (or NEC), and report the
average of bound (1) (or bound (2)) which is the numerical value of analytical results.
The number rep is large enough to ensure high quality experimental data. The 99 %
confidence interval of all the data in the same table is also given.

We have the following observations from our simulations.

• NSL is less than 1.41 and NEC is less than 1.98. Therefore, our algorithms produce
solutions reasonably close to optimum. In fact, NSL and NEC reported here are
very close to those for independent parallel tasks reported in [29].

• The performance of algorithm LL-Hc-A forA other than LS is very close (within
±1 %) to the performance of algorithm LL-Hc-LS. Since these data do not provide
further insight, they are not shown here.

• The performance bound (1) is very close to NSL and the performance bound (2)
is very close to NEC.

Energy-Efficient and High-Performance Processing of Large-Scale . . . 31

Table 4 Simulation data for expected NSL and NEC on PA(2,12)

Uniform Binomial Geometric

π̄ Simulation Analysis Simulation Analysis Simulation Analysis

10 1.1940250 1.1841913 1.1287074 1.0635894 1.2918262 1.3185661

20 1.1710935 1.1489358 1.1120907 1.0822820 1.2628233 1.2735483

30 1.2121712 1.2032254 1.1414699 1.1396784 1.2893692 1.3044971

40 1.3838241 1.4505296 1.2130609 1.2377678 1.3006607 1.3152063

50 1.4034276 1.4608829 1.2497254 1.2777187 1.3052527 1.3182187

60 1.3319146 1.3448578 1.2799201 1.3177687 1.3067475 1.3179615

(99 % confidence interval ±0.284 %)

10 1.4280855 1.4053089 1.2756771 1.1309478 1.6643757 1.7374005

20 1.3687912 1.3196764 1.2362757 1.1716339 1.5959196 1.6185853

30 1.4680717 1.4464946 1.3037462 1.3007006 1.6629560 1.7012833

40 1.9143602 2.1021764 1.4697836 1.5294041 1.6933298 1.7328875

50 1.9717267 2.1383667 1.5614395 1.6318344 1.7026727 1.7361106

60 1.7748939 1.8095803 1.6402284 1.7397315 1.7084739 1.7376521

(99 % confidence interval ±0.565 %)

Table 5 Simulation data for expected NSL and NEC on LA(2000)

Uniform Binomial Geometric

π̄ Simulation Analysis Simulation Analysis Simulation Analysis

10 1.1392509 1.1841096 1.0771624 1.0638363 1.2300726 1.3179978

20 1.1430859 1.1491148 1.0989144 1.0823187 1.2321125 1.2722681

30 1.1954796 1.2028781 1.1372623 1.1399934 1.2686012 1.3032303

40 1.3729227 1.4497884 1.2109722 1.2375699 1.2858406 1.3161030

50 1.3964647 1.4610101 1.2488649 1.2779096 1.2930727 1.3191233

60 1.3272967 1.3445859 1.2802743 1.3187192 1.2959390 1.3182489

(99 % confidence interval ±0.085 %)

10 1.2974381 1.4020482 1.1602487 1.1313969 1.5137571 1.7379887

20 1.3062497 1.3200333 1.2076518 1.1715685 1.5175999 1.6178453

30 1.4292225 1.4470430 1.2933014 1.2994524 1.6099920 1.6995260

40 1.8847470 2.1014650 1.4664142 1.5315937 1.6530311 1.7317472

50 1.9501571 2.1348479 1.5596494 1.6330611 1.6715971 1.7392715

60 1.7624447 1.8088376 1.6389275 1.7388263 1.6797186 1.7382355

(99 % confidence interval ±0.204 %)

32 K. Li

Table 6 Simulation data for expected NSL and NEC on DD(2000)

Uniform Binomial Geometric

π̄ Simulation Analysis Simulation Analysis Simulation Analysis

10 1.1393071 1.1842982 1.0770276 1.0636933 1.2303693 1.3183983

20 1.1429980 1.1490295 1.0989960 1.0822466 1.2316570 1.2714949

30 1.1955924 1.2030593 1.1372779 1.1400176 1.2690205 1.3039776

40 1.3726198 1.4493161 1.2109189 1.2375156 1.2859527 1.3162776

50 1.3962951 1.4607530 1.2487413 1.2777190 1.2932855 1.3193741

60 1.3274819 1.3447974 1.2803877 1.3189128 1.2962310 1.3186892

(99 % confidence interval ± 0.054 %)

10 1.2978774 1.4023671 1.1597583 1.1313744 1.5144683 1.7391638

20 1.3063526 1.3202184 1.2076968 1.1715103 1.5179540 1.6182936

30 1.4292362 1.4470899 1.2934523 1.2996875 1.6099667 1.6996302

40 1.8840943 2.1007925 1.4659063 1.5308111 1.6536717 1.7325694

50 1.9501477 2.1345382 1.5596254 1.6330039 1.6719013 1.7398729

60 1.7625789 1.8090184 1.6405736 1.7412621 1.6799813 1.7386383

(99 % confidence interval ± 0.155 %)

7 Summary and Future Research

We have emphasized the significance of investigating energy-efficient and high-
performance processing of large-scale parallel applications on multicore processors
in data centers. We addressed scheduling precedence constrained parallel tasks on
multicore processors with dynamically variable voltage and speed as combinatorial
optimization problems. We pointed out that our scheduling problems contain four
nontrivial subproblems, namely, precedence constraining, system partitioning, task
scheduling, and power supplying. We described our methods to deal with precedence
constraints, system partitioning, and task scheduling, and developed our optimal
four-level energy/time/power allocation scheme for minimizing schedule length and
minimizing energy consumption. We also analyzed the performance of our heuristic
algorithms, and derived accurate performance bounds. We demonstrated simulation
data, which validate our analytical results.

Further research can be directed toward employing more effective and effi-
cient algorithms to deal with independent tasks in the same level. Notice that the
approach in this chapter (i.e., algorithm LL-Hc-A) belongs to the class of post-
power-determination algorithms. Such an algorithm first generates a schedule, and
then determines power supplies [31, 32]. The classes of pre-power-determination and
hybrid algorithms are worth of investigation [30]. Our study in this chapter can also
be extended to multiple multicore/manycore processors in data centers and discrete
speed levels.

Energy-Efficient and High-Performance Processing of Large-Scale . . . 33

References

1. http://en.wikipedia.org/wiki/Adapteva
2. http://en.wikipedia.org/wiki/Dynamic_voltage_scaling
3. http://www.intel.com/multicore/
4. http://www.multicoreinfo.com/2011/10/adapteva-2/
5. S.Albers, “Energy-efficient algorithms,” Communications of theACM, vol. 53, no. 5, pp. 86–96,

2010.
6. H. Aydin, R. Melhem, D. Mossé, and P. Mejía-Alvarez, “Power-aware scheduling for periodic

real-time tasks,” IEEE Transactions on Computers, vol. 53, no. 5, pp. 584–600, 2004.
7. N. Bansal, T. Kimbrel, and K. Pruhs, “Dynamic speed scaling to manage energy and tem-

perature,” Proceedings of the 45th IEEE Symposium on Foundation of Computer Science,
pp. 520–529, 2004.

8. J. A. Barnett, “Dynamic task-level voltage scheduling optimizations,” IEEE Transactions on
Computers, vol. 54, no. 5, pp. 508-520, 2005.

9. L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques for system-level
dynamic power management,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 8, no. 3, pp. 299–316, 2000.

10. A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Q. Dang, and K. Pentikousis,
“Energy-efficient cloud computing,” The Computer Journal, vol. 53, no. 7, pp. 1045–1051,
2010.

11. D. P. Bunde, “Power-aware scheduling for makespan and flow,” Proceedings of the 18th ACM
Symposium on Parallelism in Algorithms and Architectures, pp. 190–196, 2006.

12. H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, and P.W. H.Wong, “Energy efficient
online deadline scheduling,” Proceedings of the 18th ACM-SIAM Symposium on Discrete
Algorithms, pp. 795–804, 2007.

13. A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS digital design,” IEEE
Journal on Solid-State Circuits, vol. 27, no. 4, pp. 473–484, 1992.

14. S. Cho and R. G. Melhem, “On the interplay of parallelization, program performance, and
energy consumption,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 3,
pp. 342–353, 2010.

15. D. Donofrio, L. Oliker, J. Shalf, M. F. Wehner, C. Rowen, J. Krueger, S. Kamil, and M.
Mohiyuddin, “Energy-efficient computing for extreme-scale science,” Computer, vol. 42, no.
11, pp. 62–71, 2009.

16. W.-c. Feng and K. W. Cameron, “The green500 list: encouraging sustainable supercomputing,”
Computer, vol. 40, no. 12, pp. 50–55, 2007.

17. V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L. Rountree, and M. E.
Femal, “Analyzing the energy-time trade-off in high-performance computing applications,”
IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 6, pp. 835–848, 2007.

18. S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya, “Environment-conscious scheduling of
HPC applications on distributed cloud-oriented data centers,” Journal of Parallel Distributed
Computing, vol. 71, no. 6, pp. 732–749, 2011.

19. R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM J. Appl. Math., vol. 2,
pp. 416-429, 1969.

20. I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, “Power optimization
of variable-voltage core-based systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 18, no. 12, pp. 1702–1714, 1999.

21. C. Im, S. Ha, and H. Kim, “Dynamic voltage scheduling with buffers in low-power multimedia
applications,” ACM Transactions on Embedded Computing Systems, vol. 3, no. 4, pp. 686–705,
2004.

22. Intel, Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor – White Paper,
March 2004.

34 K. Li

23. S. U. Khan and I. Ahmad, “A cooperative game theoretical technique for joint optimization of
energy consumption and response time in computational grids,” IEEE Transactions on Parallel
and Distributed Systems, vol. 20, no. 3, pp. 346–360, 2009.

24. C. M. Krishna and Y.-H. Lee, “Voltage-clock-scaling adaptive scheduling techniques for low
power in hard real-time systems,” IEEE Transactions on Computers, vol. 52, no. 12, pp. 1586–
1593, 2003.

25. W.-C. Kwon and T. Kim, “Optimal voltage allocation techniques for dynamically variable
voltage processors,” ACM Transactions on Embedded Computing Systems, vol. 4, no. 1,
pp. 211–230, 2005.

26. Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling for distributed computing systems
under different operating conditions,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 8, pp. 1374–1381, 2011.

27. Y.-H. Lee and C. M. Krishna, “Voltage-clock scaling for low energy consumption in fixed-
priority real-time systems,” Real-Time Systems, vol. 24, no. 3, pp. 303–317, 2003.

28. K. Li, “Performance analysis of power-aware task scheduling algorithms on multiprocessor
computers with dynamic voltage and speed,” IEEE Transactions on Parallel and Distributed
Systems, vol. 19, no. 11, pp. 1484–1497, 2008.

29. K. Li, “Energy efficient scheduling of parallel tasks on multiprocessor computers,” Journal of
Supercomputing, vol. 60, no. 2, pp. 223–247, 2012.

30. K. Li, “Scheduling precedence constrained tasks with reduced processor energy on multi-
processor computers,” IEEE Transactions on Computers, vol. 61, no. 12, pp. 1668–1681,
2012.

31. K. Li, “Power allocation and task scheduling on multiprocessor computers with energy and
time constraints,” Energy-Efficient Distributed Computing Systems, A. Y. Zomaya and Y. C.
Lee, eds., Chapter 1, pp. 1-37, John Wiley & Sons, 2012.

32. K. Li, “Algorithms and analysis of energy-efficient scheduling of parallel tasks,” Handbook
of Energy-Aware and Green Computing, Vol. 1 (Chapter 15), I. Ahmad and S. Ranka, eds.,
pp. 331-360, CRC Press/Taylor & Francis Group, 2012.

33. M. Li, B. J. Liu, and F. F.Yao, “Min-energy voltage allocation for tree-structured tasks,” Journal
of Combinatorial Optimization, vol. 11, pp. 305–319, 2006.

34. M. Li, A. C. Yao, and F. F. Yao, “Discrete and continuous min-energy schedules for variable
voltage processors,” Proceedings of the National Academy of Sciences USA, vol. 103, no. 11,
pp. 3983–3987, 2006.

35. M. Li and F. F.Yao, “An efficient algorithm for computing optimal discrete voltage schedules,”
SIAM Journal on Computing, vol. 35, no. 3, pp. 658–671, 2006.

36. J. R. Lorch and A. J. Smith, “PACE: a new approach to dynamic voltage scaling,” IEEE
Transactions on Computers, vol. 53, no. 7, pp. 856–869, 2004.

37. R. N. Mahapatra and W. Zhao, “An energy-efficient slack distribution technique for multi-
mode distributed real-time embedded systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 16, no. 7, pp. 650–662, 2005.

38. B. C. Mochocki, X. S. Hu, and G. Quan, “A unified approach to variable voltage scheduling
for nonideal DVS processors,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 23, no. 9, pp. 1370–1377, 2004.

39. G. Quan and X. S. Hu, “Energy efficient DVS schedule for fixed-priority real-time systems,”
ACM Transactions on Embedded Computing Systems, vol. 6, no. 4, Article no. 29, 2007.

40. N. B. Rizvandi, J. Taheri, andA.Y. Zomaya, “Some observations on optimal frequency selection
in DVFS-based energy consumption minimization,” Journal of Parallel Distributed Computing,
vol. 71, no. 8, pp. 1154–1164, 2011.

41. C. Rusu, R. Melhem, D. Mossé, “Maximizing the system value while satisfying time and energy
constraints,” Proceedings of the 23rd IEEE Real-Time Systems Symposium, pp. 256-265, 2002.

42. D. Shin and J. Kim, “Power-aware scheduling of conditional task graphs in real-time multipro-
cessor systems,” Proceedings of the International Symposium on Low Power Electronics and
Design, pp. 408–413, 2003.

Energy-Efficient and High-Performance Processing of Large-Scale . . . 35

43. D. Shin, J. Kim, and S. Lee, “Intra-task voltage scheduling for low-energy hard real-time
applications,” IEEE Design & Test of Computers, vol. 18, no. 2, pp. 20–30, 2001.

44. M. R. Stan and K. Skadron, “Guest editors’ introduction: power-aware computing,” IEEE
Computer, vol. 36, no. 12, pp. 35–38, 2003.

45. O. S. Unsal and I. Koren, “System-level power-aware design techniques in real-time systems,”
Proceedings of the IEEE, vol. 91, no. 7, pp. 1055–1069, 2003.

46. V. Venkatachalam and M. Franz, “Power reduction techniques for microprocessor systems,”
ACM Computing Surveys, vol. 37, no. 3, pp. 195–237, 2005.

47. M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced CPU energy,”
Proceedings of the 1st USENIX Symposium on Operating Systems Design and Implementation,
pp. 13–23, 1994.

48. P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, and R. Lauwereins,
“Energy-aware runtime scheduling for embedded-multiprocessor SOCs,” IEEE Design & Test
of Computers, vol. 18, no. 5, pp. 46–58, 2001.

49. F.Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU energy,” Proceedings
of the 36th IEEE Symposium on Foundations of Computer Science, pp. 374–382, 1995.

50. H.-S. Yun and J. Kim, “On energy-optimal voltage scheduling for fixed-priority hard real-time
systems,” ACM Transactions on Embedded Computing Systems, vol. 2, no. 3, pp. 393–430,
2003.

51. B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and practical limits of dynamic
voltage scaling,” Proceedings of the 41st Design Automation Conference, pp. 868-873, 2004.

52. X. Zhong and C.-Z. Xu, “Energy-aware modeling and scheduling for dynamic voltage scaling
with statistical real-time guarantee,” IEEE Transactions on Computers, vol. 56, no. 3, pp. 358–
372, 2007.

53. D. Zhu, R. Melhem, and B. R. Childers, “Scheduling with dynamic voltage/speed adjustment
using slack reclamation in multiprocessor real-time systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 14, no. 7, pp. 686–700, 2003.

54. D. Zhu, D. Mossé, and R. Melhem, “Power-aware scheduling for AND/OR graphs in real-time
systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 9, pp. 849–864,
2004.

55. J. Zhuo and C. Chakrabarti, “Energy-efficient dynamic task scheduling algorithms for DVS
systems,” ACM Transactions on Embedded Computing Systems, vol. 7, no. 2, Article no. 17,
2008.

56. Z. Zong, A. Manzanares, X. Ruan, and X. Qin, “EAD and PEBD: two energy-aware duplication
scheduling algorithms for parallel tasks on homogeneous clusters,” IEEE Transactions on
Computers, vol. 60, no. 3, pp. 360–374, 2011.

Energy-Aware Algorithms for Task Graph
Scheduling, Replica Placement and Checkpoint
Strategies

Guillaume Aupy, Anne Benoit, Paul Renaud-Goud and Yves Robert

1 Introduction

The energy consumption of computational platforms has recently become a critical
problem, both for economic and environmental reasons [35]. To reduce energy con-
sumption, processors can run at different speeds. Faster speeds allow for a faster
execution, but they also lead to a much higher (superlinear) power consumption.
Energy-aware scheduling aims at minimizing the energy consumed during the exe-
cution of the target application, both for computations and for communications. The
price to pay for a lower energy consumption usually is a much larger execution time,
so the energy-aware approach makes better sense when coupled with some prescribed
performance bound. In other words, we have a bi-criteria optimization problem, with
one objective being energy minimization, and the other being performance-related.

In this chapter, we discuss several problems related to data centers, for which
energy consumption is a crucial matter. Indeed, statistics showed that in 2012, some
data centers consume more electricity than 250,000 european houses. If the cloud
was a country, it would be ranked as the fifth world-wide rank in terms of demands
in electricity, and the need is expected to be multiplied by three before 2020. We

G. Aupy (�) · A. Benoit ·Y. Robert
LIP, Ecole Normale Supérieure de Lyon, Lyon, France
e-mail: Guillaume.Aupy@ens-lyon.fr

A. Benoit ·Y. Robert
Institut Universitaire de France, Paris, France
e-mail: Anne.Benoit@ens-lyon.fr

P. Renaud-Goud
Chalmers University of technology, Gothenburg, Sweden
e-mail: goud@chalmers.se

Y. Robert
University Tennessee Knoxville, Knoxville, USA
e-mail: Yves.Robert@ens-lyon.fr

© Springer Science+Business Media New York 2015 37
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_2

38 G. Aupy et al.

focus mainly on the energy consumption of processors, although a lot of electricity
is now devoted to cooling the machines, and also for network communications.

Energy models are introduced in Sect. 2. Depending on the different research
areas, several different energy models are considered, but they all share the same
core assumption: there is a static energy consumption, which is independent on the
speed at which a processor is running, and a dynamic energy consumption, which
increases superlinearly with the speed. The most common models for speeds are
either to use continuous speeds in a given interval, or to consider a set of discrete
speeds (the latter being more realistic for actual processors). We discuss further
variants of the discrete model: in the VDD-hopping model, the speed of a task can
be changed during execution, hence allowing to simulate the continuous case; the
incremental model is similar to the discrete model with the additional assumption
that the different speeds are spaced regularly. Finally, we propose a literature survey
on energy models, and we provide an example to compare models.

The first case study is about task graph scheduling (see Sect. 3). We consider a task
graph to be executed on a set of processors. We assume that the mapping is given, say
by an ordered list of tasks to execute on each processor, and we aim at optimizing the
energy consumption while enforcing a prescribed bound on the execution time. While
it is not possible to change the allocation of a task, it is possible to change its speed.
Rather than using a local approach such as backfilling, we consider the problem as
a whole and study the impact of several speed variation models on its complexity.
For continuous speeds, we give a closed-form formula for trees and series-parallel
graphs, and we cast the problem into a geometric programming problem for general
directed acyclic graphs. We show that the classical dynamic voltage and frequency
scaling (DVFS) model with discrete speeds leads to an NP-complete problem, even
if the speeds are regularly distributed (an important particular case in practice, which
we analyze as the incremental model). On the contrary, the VDD-hopping model
leads to a polynomial solution. Finally, we provide an approximation algorithm for
the incremental model, which we extend for the general DVFS model.

Then in Sect. 4, we discuss a variant of the replica placement problem aiming at
an efficient power management. We study optimal strategies to place replicas in tree
networks, with the double objective to minimize the total cost of the servers, and/or to
optimize power consumption. The client requests are known beforehand, and some
servers are assumed to pre-exist in the tree. Without power consumption constraints,
the total cost is an arbitrary function of the number of existing servers that are reused,
and of the number of new servers. Whenever creating and operating a new server has
higher cost than reusing an existing one (which is a very natural assumption), cost
optimal strategies have to trade-off between reusing resources and load-balancing
requests on new servers. We provide an optimal dynamic programming algorithm
that returns the optimal cost, thereby extending known results from Wu, Lin and
Liu [33, 43] without pre-existing servers. With power consumption constraints, we
assume that servers operate under a set of M different speeds depending upon the
number of requests that they have to process. In practice, M is a small number,
typically 2 or 3, depending upon the number of allowed voltages [24, 23]. Power
consumption includes a static part, proportional to the total number of servers, and

Energy-Aware Algorithms for Task . . . 39

a dynamic part, proportional to a constant exponent of the server speed, which
depends upon the model for power. The cost function becomes a more complicated
function that takes into account reuse and creation as before, but also upgrading
or downgrading an existing server from one speed to another. We show that with
an arbitrary number of speeds, the power minimization problem is NP-complete,
even without cost constraint, and without static power. Still, we provide an optimal
dynamic programming algorithm that returns the minimal power, given a threshold
value on the total cost; it has exponential complexity in the number of speeds M ,
and its practical usefulness is limited to small values of M . However, experiments
conducted with this algorithm show that it can process large trees in reasonable time,
despite its worst-case complexity.

The last case study investigates checkpointing strategies (see Sect. 5). Nowa-
days, high performance computing is facing a major challenge with the increasing
frequency of failures [18]. There is a need to use fault tolerance or resilience mech-
anisms to ensure the efficient progress and correct termination of the applications in
the presence of failures. A well-established method to deal with failures is check-
pointing: a checkpoint is taken at the end of the execution of each chunk of work.
During the checkpoint, we check for the accuracy of the result; if the result is not
correct, due to a transient failure (such as a memory error or software error), the
chunk is re-executed. This model with transient failures is one of the most used in
the literature, see for instance [17, 48]. In this section, we aim at minimizing the
energy consumption when executing a divisible workload under a bound on the total
execution time, while resilience is provided through checkpointing. We discuss sev-
eral variants of this multi-criteria problem. Given the workload, we need to decide
how many chunks to use, what are the sizes of these chunks, and at which speed
each chunk is executed (under the continuous model). Furthermore, since a failure
may occur during the execution of a chunk, we also need to decide at which speed
a chunk should be re-executed in the event of a failure. The goal is to minimize
the expectation of the total energy consumption, while enforcing a deadline on the
execution time, that should be met either in expectation (soft deadline), or in the
worst case (hard deadline). For each problem instance, we propose either an exact
solution, or a function that can be optimized numerically.

Finally, we provide concluding remarks in Sect. 6.

2 Energy Models

As already mentioned, to help reduce energy dissipation, processors can run at dif-
ferent speeds. Their power consumption is the sum of a static part (the cost for a
processor to be turned on, and the leakage power) and a dynamic part, which is
a strictly convex function of the processor speed, so that the execution of a given
amount of work costs more power if a processor runs in a higher speed [23]. More
precisely, a processor running at speed s dissipates s3 watts [4, 12, 15, 25, 38] per
time-unit, hence consumes s3×d joules when operated during d units of time. Faster

40 G. Aupy et al.

speeds allow for a faster execution, but they also lead to a much higher (superlinear)
power consumption.

In this section, we survey different models for dynamic energy consumption,
taken from the literature. These models are categorized as follows:

CONTINUOUS model. Processors can have arbitrary speeds, and can vary them con-
tinuously within the interval [smin, smax]. This model is unrealistic (any possible
value of the speed, say

√
e
π , cannot be obtained) but it is theoretically appealing

[5]. In the CONTINUOUS model, a processor can change its speed at any time
during execution.

DISCRETE model. Processors have a discrete number of predefined speeds, which
correspond to different voltages and frequencies that the processor can be sub-
jected to [36]. These speeds are denoted as s1, ..., sm. Switching speeds is not
allowed during the execution of a given task, but two different tasks scheduled
on a same processor can be executed at different speeds.

VDD-HOPPING model. This model is similar to the DISCRETE one, with a set of
different speeds s1, ..., sm, except that switching speeds during the execution of a
given task is allowed: any rational speed can be simulated, by simply switching,
at the appropriate time during the execution of a task, between two consecutive
speeds [34]. In the VDD-HOPPING model, the energy consumed during the exe-
cution of one task is the sum, on each time interval with constant speed s, of the
energy consumed during this interval at speed s.

INCREMENTAL model. In this variant of the DISCRETE model, there is a value δ
that corresponds to the minimum permissible speed increment, induced by the
minimum voltage increment that can be achieved when controlling the processor
CPU. Hence, possible speed values are obtained as s = smin + i × δ, where
i is an integer such that 0 ≤ i ≤ smax−smin

δ
. Admissible speeds lie in the interval

[smin, smax]. This model aims at capturing a realistic version of the DISCRETE

model, where the different speeds are spread regularly between s1 = smin and
sm = smax, instead of being arbitrarily chosen. It is intended as the modern
counterpart of a potentiometer knob.

After the literature survey in Sect. 2.1, we provide a simple example in Sect. 2.2, in
order to illustrate the different models.

2.1 Literature Survey

Reducing the energy consumption of computational platforms is an important
research topic, and many techniques at the process, circuit design, and micro-
architectural levels have been proposed [22, 30, 32]. The dynamic voltage and
frequency scaling (DVFS) technique has been extensively studied, since it may lead
to efficient energy/performance trade-offs [5, 14, 20, 26, 29, 42, 45]. Current mi-
croprocessors (for instance, from AMD [1] and Intel [24]) allow the speed to be set
dynamically. Indeed, by lowering supply voltage, hence processor clock frequency,

Energy-Aware Algorithms for Task . . . 41

it is possible to achieve important reductions in power consumption, without neces-
sarily increasing the execution time. We first discuss different optimization problems
that arise in this context, then we review energy models.

2.1.1 DVFS and Optimization Problems

When dealing with energy consumption, the most usual optimization function con-
sists of minimizing the energy consumption, while ensuring a deadline on the
execution time (i.e., a real-time constraint), as discussed in the following papers.

In [36], Okuma et al. demonstrate that voltage scaling is far more effective than
the shutdown approach, which simply stops the power supply when the system is
inactive. Their target processor employs just a few discretely variable voltages. De
Langen and Juurlink [31] discuss leakage-aware scheduling heuristics that inves-
tigate both DVS and processor shutdown, since static power consumption due to
leakage current is expected to increase significantly. Chen et al. [13] consider paral-
lel sparse applications, and they show that when scheduling applications modeled by
a directed acyclic graph with a well-identified critical path, it is possible to lower the
voltage during non-critical execution of tasks, with no impact on the execution time.
Similarly, Wang et al. [42] study the slack time for non-critical jobs, they extend
their execution time and thus reduce the energy consumption without increasing the
total execution time. Kim et al. [29] provide power-aware scheduling algorithms for
bag-of-tasks applications with deadline constraints, based on dynamic voltage scal-
ing. Their goal is to minimize power consumption as well as to meet the deadlines
specified by application users.

For real-time embedded systems, slack reclamation techniques are used. Lee and
Sakurai [32] show how to exploit slack time arising from workload variation, thanks
to a software feedback control of supply voltage. Prathipati [37] discusses techniques
to take advantage of run-time variations in the execution time of tasks; the goal is
to determine the minimum voltage under which each task can be executed, while
guaranteeing the deadlines of each task. Then, experiments are conducted on the
Intel StrongArm SA-1100 processor, which has eleven different frequencies, and the
Intel PXA250 XScale embedded processor with four frequencies. In [44], the goal of
Xu et al. is to schedule a set of independent tasks, given a worst case execution cycle
(WCEC) for each task, and a global deadline, while accounting for time and energy
penalties when the processor frequency is changing. The frequency of the processor
can be lowered when some slack is obtained dynamically, typically when a task runs
faster than its WCEC. Yang and Lin [45] discuss algorithms with preemption, using
DVS techniques; substantial energy can be saved using these algorithms, which
succeed to claim the static and dynamic slack time, with little overhead.

Since an increasing number of systems are powered by batteries, maximizing
battery life also is an important optimization problem. Battery-efficient systems
can be obtained with similar techniques of dynamic voltage and frequency scaling,

42 G. Aupy et al.

as described by Lahiri et al. in [30]. Another optimization criterion is the energy-
delay product, since it accounts for a trade-off between performance and energy
consumption, as for instance discussed by Gonzalez and Horowitz in [21].

2.1.2 Energy Models

Several energy models are considered in the literature, and they can all be categorized
in one of the four models investigated in this paper, i.e., CONTINUOUS, DISCRETE,
VDD-HOPPING or INCREMENTAL.

The CONTINUOUS model is used mainly for theoretical studies. For instance, Yao
et al. [46], followed by Bansal et al. [5], aim at scheduling a collection of tasks (with
release time, deadline and amount of work), and the solution is the time at which
each task is scheduled, but also, the speed at which the task is executed. In these
papers, the speed can take any value, hence following the CONTINUOUS model.

We believe that the most widely used model is the DISCRETE one. Indeed, proces-
sors have currently only a few discrete number of possible frequencies [1, 24, 36, 37].
Therefore, most of the papers discussed above follow this model. Some studies ex-
ploit the continuous model to determine the smallest frequency required to run a
task, and then choose the closest upper discrete value, as for instance [37] and [47].

Recently, a new local dynamic voltage scaling architecture has been developed,
based on the VDD-HOPPING model [6, 7, 34]. It was shown in [32] that signif-
icant power can be saved by using two distinct voltages, and architectures using
this principle have been developed (see for instance [28]). Compared to traditional
power converters, a new design with no needs for large passives or costly technolog-
ical options has been validated in a STMicroelectronics CMOS 65-nm low-power
technology [34].

The INCREMENTAL model was introduced in [2]. The main rationale is that fu-
ture technologies may well have an increased number of possible frequencies, and
these will follow a regular pattern. For instance, note that the SA-1100 processor,
considered in [37], has eleven frequencies that are equidistant, i.e., they follow the
INCREMENTAL model. Lee and Sakurai [32] exploit discrete levels of clock frequency
as f , f/2, f/3, ..., where f is the master (i.e., the higher) system clock frequency.
This model is closer to the DISCRETE model, although it exhibits a regular pattern
similarly to the INCREMENTAL model.

2.2 Example

Energy-aware scheduling aims at minimizing the energy consumed during the exe-
cution of the target application. Obviously, it makes better sense only if it is coupled
with some performance bound to achieve. For instance, whenever static energy can

Energy-Aware Algorithms for Task . . . 43

Fig. 1 Execution graph for
the example

be neglected, the optimal solution always is to run each processor at the slowest possi-
ble speed. In the following, we do neglect static energy and discuss how to minimize
dynamic energy consumption when executing a small task graph onto processors.

Consider an application with four tasks of costs w1 = 3, w2 = 2, w3 = 1 and
w4 = 2, and three precedence constraints, as shown in Fig. 1. We assume that T1 and
T2 are allocated, in this order, onto processor P1, while T3 and T4 are allocated, in
this order, on processor P2. The deadline on the execution time is D = 1.5.

We set the minimum and maximum speeds to smin = 0 and smax = 6 for the
CONTINUOUS model. For the DISCRETE and VDD-HOPPING models, we use the set
of speeds s(d)

1 = 2, s(d)
2 = 5 and s(d)

3 = 6. Finally, for the INCREMENTAL model,
we set δ = 2, smin = 2 and smax = 6, so that possible speeds are s(i)

1 = 2, s(i)
2 = 4

and s(i)
3 = 6. We aim at finding the optimal execution speed si for each task Ti

(1 ≤ i ≤ 4), i.e., the values of si that minimize the energy consumption.
With the CONTINUOUS model, the optimal speeds are non rational values, and we

obtain:

s1 = 2

3
(3 + 351/3)
 4.18; s2 =s1 × 2

351/3

 2.56; s3 =s4 =s1 × 3

351/3

 3.83.

Note that all speeds are in the interval [smin, smax]. These values are obtained
thanks to the formulas derived in Sect. 3.2 below. The energy consumption is
then E(c)

opt =
4
i=1wi × s2

i = 3.s2
1 + 2.s2

2 + 3.s2
3
 109.6. The execution time is

w1
s1

+max
(

w2
s2

, w3+w4
s3

)
, and with this solution, it is equal to the deadlineD (actually,

both processors reach the deadline, otherwise we could slow down the execution of
one task).

For the DISCRETE model, if we execute all tasks at speed s(d)
2 = 5, we obtain

an energy E = 8 × 52 = 200. A better solution is obtained with s1 = s
(d)
3 = 6,

s2 = s3 = s
(d)
1 = 2 and s4 = s

(d)
2 = 5, which turns out to be optimal: E(d)

opt =
3 × 36 + (2 + 1) × 4 + 2 × 25 = 170. Note that E(d)

opt > E
(c)
opt , i.e., the optimal

energy consumption with the DISCRETE model is much higher than the one achieved
with the CONTINUOUS model. Indeed, in this case, even though the first processor
executes during 3/6 + 2/2 = D time units, the second processor remains idle since
3/6+ 1/2+ 2/5 = 1.4 < D. The problem turns out to be NP-hard (see Sect. 3.3.2),
and the solution was found by performing an exhaustive search.

With the VDD-HOPPING model, we set s1 = s(d)
2 = 5; for the other tasks, we run

part of the time at speed s(d)
2 = 5, and part of the time at speed s(d)

1 = 2 in order to use
the idle time and lower the energy consumption. T2 is executed at speed s(d)

1 during
time 5

6 and at speed s(d)
2 during time 2

30 (i.e., the first processor executes during time

44 G. Aupy et al.

3/5+5/6+2/30 = 1.5 = D, and all the work for T2 is done: 2×5/6+5×2/30 =
2 = w2). T3 is executed at speed s(d)

2 (during time 1/5), and finally T4 is executed at
speed s(d)

1 during time 0.5 and at speed s(d)
2 during time 1/5 (i.e., the second processor

executes during time 3/5 + 1/5 + 0.5 + 1/5 = 1.5 = D, and all the work for T4 is
done: 2×0.5+5×1/5 = 2 = w4). This set of speeds turns out to be optimal (i.e., it is
the optimal solution of the linear program introduced in Sect. 3.3.1), with an energy
consumptionE(v)

opt = (3/5 + 2/30 + 1/5 + 1/5) × 53 + (5/6 + 0.5) × 23 = 144.

As expected, E(c)
opt ≤ E(v)

opt ≤ E(d)
opt , i.e., the VDD-HOPPING solution stands between

the optimal CONTINUOUS solution, and the more constrained DISCRETE solution.
For the INCREMENTAL model, the reasoning is similar to the DISCRETE case, and

the optimal solution is obtained by an exhaustive search: all tasks should be executed
at speed s(i)

2 = 4, with an energy consumptionE(i)
opt = 8× 42 = 128 > E(c)

opt . It turns
out to be better than DISCRETE and VDD-HOPPING, since it has different discrete
values of energy that are more appropriate for this example.

3 Minimizing the Energy of a Schedule

In this section, we investigate energy-aware scheduling strategies for executing a task
graph on a set of processors. The main originality is that we assume that the mapping
of the task graph is given, say by an ordered list of tasks to execute on each processor.
There are many situations in which this problem is important, such as optimizing
for legacy applications, or accounting for affinities between tasks and resources, or
even when tasks are pre-allocated [39], for example for security reasons. In such
situations, assume that a list-schedule has been computed for the task graph, and that
its execution time should not exceed a deadline D. We do not have the freedom to
change the assignment of a given task, but we can change its speed to reduce energy
consumption, provided that the deadline D is not exceeded after the speed change.
Rather than using a local approach such as backfilling [37, 42], which only reclaims
gaps in the schedule, we consider the problem as a whole, and we assess the impact
of several speed variation models on its complexity. We give the main complexity
results without proofs (refer to [2] for details).

3.1 Optimization Problem

Consider an application task graph G = (V, E), with n = |V | tasks denoted as
V = {T1, T2, . . . , Tn}, and where the set E denotes the precedence edges between
tasks. Task Ti has a cost wi for 1 ≤ i ≤ n. We assume that the tasks in G have
been allocated onto a parallel platform made up of identical processors. We define
the execution graph generated by this allocation as the graph G = (V ,E), with the
following augmented set of edges:

Energy-Aware Algorithms for Task . . . 45

• E ⊆ E: if an edge exists in the precedence graph, it also exists in the execution
graph;

• if T1 and T2 are executed successively, in this order, on the same processor, then
(T1, T2) ∈ E.

The goal is to the minimize the energy consumed during the execution while enforc-
ing a deadline D on the execution time. We formalize the optimization problem in
the simpler case where each task is executed at constant speed. This strategy is op-
timal for the CONTINUOUS model (by a convexity argument) and for the DISCRETE

and INCREMENTAL models (by definition). For the VDD-HOPPING model, we refor-
mulate the problem in Sect. 3.3.1. Let di be the duration of the execution of task
Ti , ti its completion time, and si the speed at which it is executed. We obtain the
following formulation of the MINENERGY(G,D) problem, given an execution graph
G = (V, E) and a deadlineD; the si values are variables, whose values are constrained
by the energy model:

Minimize
∑n
i=1 s

3
i × di

subject to (i) wi = si × di for each task Ti ∈ V
(ii) ti + dj ≤ tj for each edge (Ti , Tj) ∈ E

(iii) ti ≤ D for each task Ti ∈ V

(1)

Constraint (i) states that the whole task can be executed in time di using speed si .
Constraint (ii) accounts for all dependencies, and constraint (iii) ensures that the
execution time does not exceed the deadline D. The energy consumed throughout
the execution is the objective function. It is the sum, for each task, of the energy
consumed by this task, as we detail in the next section. Note that di = wi/si , and
therefore the objective function can also be expressed as
ni=1 s

2
i × wi .

3.2 The CONTINUOUS Model

With the CONTINUOUS model, processor speeds can take any value between smin

and smax. We assume for simplicity that smin = 0, i.e., there is no minimum speed.
First we prove that, with this model, the processors do not change their speed during
the execution of a task:

Lemma 1 (constant speed per task) With the CONTINUOUS model, each task is
executed at constant speed, i.e., a processor does not change its speed during the
execution of a task.

We derive in Sect. 3.2.1 the optimal speed values for special execution graph
structures, expressed as closed form algebraic formulas, and we show that these
values may be irrational (as already illustrated in the example in Sect. 2.2). Finally,
we formulate the problem for general DAGs as a convex optimization program in
Sect. 3.2.2.

46 G. Aupy et al.

3.2.1 Special Execution Graphs

Consider the problem of minimizing the energy of n independent tasks (i.e., each
task is mapped onto a distinct processor, and there are no precedence constraints in
the execution graph), while enforcing a deadline D.

Proposition 1 (independent tasks) When G is composed of independent tasks
{T1, . . . , Tn}, the optimal solution to MINENERGY(G,D) is obtained when each taskTi
(1 ≤ i ≤ n) is computed at speed si = wi

D
. If there is a task Ti such that si > smax,

then the problem has no solution.
Consider now the problem with a linear chain of tasks. This case corresponds

for instance to n independent tasks {T1, . . . , Tn} executed onto a single processor.
The execution graph is then a linear chain (order of execution of the tasks), with
Ti → Ti+1, for 1 ≤ i < n.

Proposition 2 (linear chain) WhenG is a linear chain of tasks, the optimal solution
to MINENERGY(G,D) is obtained when each task is executed at speed s = W

D
, with

W =
ni=1wi .
If s > smax, then there is no solution.

Corollary 1 A linear chain with n tasks is equivalent to a single task of cost
W =
ni=1wi .

Indeed, in the optimal solution, the n tasks are executed at the same speed, and
they can be replaced by a single task of costW , which is executed at the same speed
and consumes the same amount of energy.

Finally, consider fork and join graphs. Let V ={T1, . . . , Tn}. We consider either
a fork graph G = (V ∪ {T0},E), with E = {(T0, Ti), Ti ∈ V }, or a join graph
G = (V ∪ {T0},E), with E = {(Ti , T0), Ti ∈ V }. T0 is either the source of the fork
or the sink of the join.

Theorem 1 (fork and join graphs) When G is a fork (resp. join) execution graph
with n + 1 tasks T0, T1, . . . , Tn, the optimal solution to MINENERGY(G,D) is the
following:

• the execution speed of the source (resp. sink) T0 is s0 =
(

ni=1w3

i

) 1
3 + w0

D
;

• for the other tasks Ti , 1 ≤ i ≤ n, we have si=s0 × wi(

ni=1w3

i

) 1
3

if s0 ≤ smax.

Otherwise, T0 should be executed at speed s0 = smax, and the other speeds are
si = wi

D′ , withD′ = D− w0
smax

, if they do not exceed smax (Proposition 1 for independent
tasks). Otherwise there is no solution.

If no speed exceeds smax, the corresponding energy consumption is

minE(G,D) =
((∑n

i=1 w3
i

) 1
3 + w0

)3

D2
.

Corollary 2 (equivalent tasks for speed) Consider a fork or join graph with tasks Ti ,
0 ≤ i ≤ n, and a deadline D, and assume that the speeds in the optimal solution

Energy-Aware Algorithms for Task . . . 47

to MINENERGY(G,D) do not exceed smax. Then, these speeds are the same as in the

optimal solution forn+1 independent tasksT ′
0, T ′

1, . . . , T ′
n, where w′

0 = (
ni=1w3
i

) 1
3 +

w0, and, for 1 ≤ i ≤ n, w′
i = w′

0 · wi

(
ni=1w3
i)

1
3

.

Corollary 3 (equivalent tasks for energy) Consider a fork or join graph G and a
deadlineD, and assume that the speeds in the optimal solution to MINENERGY(G,D)
do not exceed smax. We say that the graphG is equivalent to the graphG(eq), consisting

of a single taskT (eq)
0 of weight w(eq)

0 = (
ni=1w3
i

) 1
3 + w0, because the minimum energy

consumption of both graphs are identical: minE(G,D)=minE(G(eq),D).

3.2.2 General DAGs

For arbitrary execution graphs, we can rewrite the MINENERGY(G,D) problem as
follows:

Minimize
∑n
i=1 u−2

i × wi

subject to (i) ti + wj × uj ≤ tj for each edge (Ti , Tj) ∈ E
(ii) ti ≤ D for each task Ti ∈ V

(iii) ui ≥ 1
smax

for each task Ti ∈ V

(2)

Here, ui = 1/si is the inverse of the speed to execute task Ti . We now have a
convex optimization problem to solve, with linear constraints in the non-negative
variables ui and ti . In fact, the objective function is a posynomial, so we have a
geometric programming problem (see [10, Sect. 4.5]) for which efficient numerical
schemes exist. However, as illustrated on simple fork graphs, the optimal speeds are
not expected to be rational numbers but instead arbitrarily complex expressions (we
have the cubic root of the sum of cubes for forks, and nested expressions of this form
for trees). From a computational complexity point of view, we do not know how to
encode such numbers in polynomial size of the input (the rational task weights and
the execution deadline). Still, we can always solve the problem numerically and get
fixed-size numbers that are good approximations of the optimal values.

3.3 Discrete Models

In this section, we present complexity results on the three energy models with a
finite number of possible speeds. The only polynomial instance is for the VDD-
HOPPING model, for which we write a linear program in Sect. 3.3.1. Then, we give
NP-completeness and approximation results in Sect. 3.3.2, for the DISCRETE and
INCREMENTAL models.

48 G. Aupy et al.

3.3.1 The VDD-HOPPING Model

Theorem 2 With the VDD-HOPPING model, MINENERGY(G,D) can be solved in
polynomial time.

Proof LetG be the execution graph of an application with n tasks, andD a deadline.
Let s1, ..., sm be the set of possible processor speeds. We use the following rational
variables: for 1 ≤ i ≤ n and 1 ≤ j ≤ m, bi is the starting time of the execution
of task Ti , and α(i,j) is the time spent at speed sj for executing task Ti . There are
n+ n×m = n(m+ 1) such variables. Note that the total execution time of task Ti
is
mj=1α(i,j). The constraints are:

• ∀1 ≤ i ≤ n, bi ≥ 0: starting times of all tasks are non-negative numbers;
• ∀1 ≤ i ≤ n, bi +
mj=1α(i,j) ≤ D: the deadline is not exceeded by any task;
• ∀1 ≤ i, i ′ ≤ n such that Ti → Ti′ , ti +
mj=1α(i,j) ≤ ti′ : a task cannot start before

its predecessor has completed its execution;
• ∀1 ≤ i ≤ n,
mj=1α(i,j) × sj ≥ wi : task Ti is completely executed.

The objective function is then min
(

ni=1

m
j=1α(i,j)s

3
j

)
.

The size of this linear program is clearly polynomial in the size of the instance,
all n(m+ 1) variables are rational, and therefore it can be solved in polynomial time
[40]. �

3.3.2 NP-Completeness and Approximation Results

Theorem 3 With the INCREMENTAL model (and hence the DISCRETE model),
MINENERGY(G,D) is NP-complete.

Next we explain, for the INCREMENTAL and DISCRETE models, how the solution
to the NP-hard problem can be approximated. Note that, given an execution graph
and a deadline, the optimal energy consumption with the CONTINUOUS model is
always lower than that with the other models, which are more constrained.

Theorem 4 With the INCREMENTAL model, for any integer K > 0, the
MINENERGY(G,D) problem can be approximated within a factor (1+ δ

smin
)2(1+ 1

K
)2,

in a time polynomial in the size of the instance and in K .

Proposition 3

• For any integer δ > 0, any instance of MINENERGY(G,D) with the CONTINUOUS

model can be approximated within a factor (1+ δ
smin

)2 in the INCREMENTAL model
with speed increment δ.

• For any integer K > 0, any instance of MINENERGY(G,D) with the DISCRETE

model can be approximated within a factor (1 + α
s1

)2(1 + 1
K

)2, with α =
max1≤i<m{si+1 − si}, in a time polynomial in the size of the instance and in K .

Energy-Aware Algorithms for Task . . . 49

3.4 Final Remarks

In this section, we have assessed the tractability of a classical scheduling problem,
with task preallocation, under various energy models. We have given several results
related to CONTINUOUS speeds. However, while these are of conceptual importance,
they cannot be achieved with physical devices, and we have analyzed several models
enforcing a bounded number of achievable speeds. In the classical DISCRETE model
that arises from DVFS techniques, admissible speeds can be irregularly distributed,
which motivates the VDD-HOPPING approach that mixes two consecutive speeds
While computing optimal speeds is NP-hard with discrete speeds, it has polynomial
complexity when mixing speeds. Intuitively, the VDD-HOPPING approach allows for
smoothing out the discrete nature of the speeds. An alternate (and simpler in practice)
solution toVDD-HOPPING is the INCREMENTAL model, where one sticks with unique
speeds during task execution as in the DISCRETE model, but where consecutive speeds
are regularly spaced. Such a model can be made arbitrarily efficient, according to our
approximation results. Altogether, these results have laid the theoretical foundations
for a comparative study of energy models.

4 Replica Placement

In this section, we revisit the well-known replica placement problem in tree networks
[8, 16, 43], with two new objectives: reusing pre-existing replicas, and enforcing
an efficient power management. In a nutshell, the replica placement problem is the
following: we are given a tree-shaped network where clients are periodically issuing
requests to be satisfied by servers. The clients are known (both their position in the
tree and their number of requests), while the number and location of the servers are
to be determined. A client is a leaf node of the tree, and its requests can be served by
one internal node. Note that the distribution tree (clients and nodes) is fixed in the
approach. This key assumption is quite natural for a broad spectrum of applications,
such as electronic, ISP, or VOD service delivery (see [16, 27, 33] and additional
references in [43]). The root server has the original copy of the database but cannot
serve all clients directly, so a distribution tree is deployed to provide a hierarchical
and distributed access to replicas of the original data.

In the original problem, there is no replica before execution; when a node is
equipped with a replica, it can process a number of requests, up to its capacity limit.
Nodes equipped with a replica, also called servers, serve all the clients located in
their subtree (so that the root, if equipped with a replica, can serve any client). The
rule of the game is to assign replicas to nodes so that the total number of replicas
is minimized. This problem is well understood: it can be solved in time O(N2)
(dynamic programming algorithm of [16]), or even in time O(N logN) (optimized
greedy algorithm of [43]), where N is the number of nodes.

50 G. Aupy et al.

We study in this section a more realistic model of the replica placement problem,
for a dynamic setting and accounting for the energy consumption. The first contri-
bution is to tackle the replica placement problem when the tree is equipped with
pre-existing replicas before execution. This extension is a first step towards dealing
with dynamic replica management: if the number and location of client requests
evolve over time, the number and location of replicas must evolve accordingly, and
one must decide how to perform a configuration change (at what cost?) and when
(how frequently reconfigurations should occur?).

Another contribution of this section is to extend replica placement algorithms to
cope with power consumption constraints. Minimizing the total power consumed by
the servers has recently become a very important objective, both for economic and
environmental reasons [35]. To help reduce power dissipation, processors equipped
with Dynamic Voltage and Frequency Scaling technique are used, and we assume
that they follow the DISCRETE model. An important result of this section is that
minimizing power consumption is an NP-complete problem, independently of the
incurred cost (in terms of new and pre-existing servers) of the solution. In fact,
this result holds true even without pre-existing replicas, and without static power:
balancing server speeds across the tree already is a hard combinatorial problem.

The cost of the best power-efficient solution may indeed be prohibitive, which
calls for a bi-criteria approach: minimizing power consumption while enforcing a
threshold cost that cannot be exceeded. We investigate the case where there is only a
fixed number of speeds and show that there are polynomial-time algorithms capable
of optimizing power for a bounded cost, even with pre-existing replicas, with static
power and with a complex cost function. This result has a great practical significance,
because state-of-the-art processors can only be operated with a restricted number of
voltage levels, hence with a few speeds [23, 24].

Finally, we run simulations to show the practical utility of our algorithms, despite
their high worst-case complexity. We illustrate the impact of taking pre-existing
servers into account, and how power can be saved thanks to the optimal bi-criteria
algorithm.

The rest of the section is organized as follows. Section 4.1 is devoted to a detailed
presentation of the target optimization problems, and provides a summary of new
complexity results. The next two sections are devoted to the proofs of these results:
Section 4.2 deals with computing the optimal cost of a solution, with pre-existing
replicas in the tree, while Sect. 4.3 addresses all power-oriented problems. We report
the simulation results in Sect. 4.4. Finally, we state some concluding remarks in
Sect. 4.5.

4.1 Framework

This section is devoted to a precise statement of the problem. We start with the general
problem without power consumption constraints, and next we recall the DISCRETE

model of power consumption. Then we state the objective functions (with or without

Energy-Aware Algorithms for Task . . . 51

power), and the associated optimization problems. Finally we give a summary of all
complexity results that we provide in the section.

4.1.1 Replica Servers

We consider a distribution tree whose nodes are partitioned into a set of clients C,
and a set of N nodes, N . The clients are leaf nodes of the tree, while N is the set of
internal nodes. Each client i ∈ C (leaf of the tree) is sending ri requests per time unit
to a database object. Internal nodes equipped with a replica (also called servers) will
process all requests from clients in their subtree. An internal node j ∈ N may have
already been provided with a replica, and we let E ⊆ N be the set of pre-existing
servers. Servers in E will be either reused or deleted in the solution. Note that it
would be easy to allow client-server nodes which play both the rule of a client and
of a node (possibly a server), by dividing such a node into two distinct nodes in the
tree.

Without power consumption constraints, the problem is to find a solution, i.e., a
set of servers capable of handling all requests, that minimizes some cost function. We
formally define a valid solution before detailing its cost. We start with some notations.
Let r be the root of the tree. If j ∈ N , then childrenj ⊆ N ∪ C is the set of children
of node j , and subtreej ⊆ N ∪ C is the subtree rooted in j , excluding j . A solution
is a set R ⊆ N of servers. Each client i is assigned a single server serveri ∈ R
that is responsible for processing all its ri requests, and this server is restricted to
be the first ancestor of i (i.e., the first node in the unique path that leads from i up
to the root r) equipped with a server (hence the name closest for the request service
policy). Such a server must exist in R for each client. In addition, all servers are
identical and have a limited capacity, i.e., they can process a maximum number W
of requests. Let reqj be the number of requests processed by j ∈ R. The capacity
constraint writes

∀j ∈ R, reqj =
∑

i∈C | j=serveri

ri ≤ W. (3)

Now for the cost function, because all servers are identical, the cost of operating a
server can be normalized to 1. When introducing a new server, there is an additional
cost create, so that running a new server costs 1 + create while reusing a server in
E only costs 1. There is also a deletion cost delete associated to deleting each server
in E that is not reused in the solution. Let E = |E | be the number of pre-existing
servers. Let R = |R| be the total number of servers in the solution, and e = |R∩ E |
be the number of reused servers. Altogether, the cost is

cost(R) = R + (R − e) × create + (E − e) × delete. (4)

This cost function is quite general. Because of the create and delete costs, priority
is always given to reusing pre-existing servers. If create + 2 × delete < 1, priority
is given to minimizing the total number of serversR: indeed, if this condition holds, it

52 G. Aupy et al.

is always advantageous to replace two pre-existing servers by a new one (if capacities
permit).

4.1.2 With Power Consumption

With power consumption constraints, we assume that servers may operate under a set
M = {W1, . . . ,WM} of different speeds, depending upon the number of requests that
they have to process per time unit. Here speeds are indexed according to increasing
values, and WM = W , the maximal capacity. If a server j ∈ R processes reqj
requests, with Wi−1 < reqj ≤ Wi , then it is operated at speed Wi , and we let
speed(j) = i. The power consumption of a server j ∈ R obeys the DISCRETE

model

P(j) = P (static) +W 3
speed(j).

The total power consumption P(R) of the solution is the sum of the power
consumption of all server nodes:

P(R) =
∑
j∈R

P(j) = R × P (static) +
∑
j∈R

W 3
speed(j). (5)

With different power speeds, it is natural to refine the cost function, and to include a
cost for changing the speed of a pre-existing server (upgrading it to a higher speed,
or downgrading it to a lower speed). In the most detailed model, we would introduce
createi , the cost for creating a new server operated at speed Wi , changedi,i′ , the
cost for changing the speed of a pre-existing server fromWi toWi′ , and deletei , the
cost for deleting a pre-existing server operated at speedWi .

Note that it is reasonable to let changedi,i = 0 (no change); values of changedi,i′
with i < i ′ correspond to upgrade costs, while values with i ′ < i correspond to
downgrade costs. In accordance with these new cost parameters, given a solution R,
we count the number of servers as follows:

• ni , the number of new servers operated at speedWi ;
• ei,i′ , the number of reused pre-existing servers whose operation speeds have

changed fromWi toWi′ ; and
• ki , the number of pre-existing server operated at speed Wi that have not been

reused.

The cost of the solution R with a total of R =
Mi=1ni +
Mi=1

M
i′=1ei,i′ servers

becomes:

cost(R) = R +
M∑
i=1

createi × ni +
M∑
i=1

deletei × ki

+
M∑
i=1

M∑
i′=1

changedi,i′ × ei,i′ . (6)

Energy-Aware Algorithms for Task . . . 53

Of course, this complicated cost function can be simplified to make the model more
tractable; for instance all creation costs createi can be set identical, all deletion costs
deletei can be set identical, all upgrade and downgrade values changedi,i′ can be
set identical, and the latter can even be neglected.

4.1.3 Objective Functions

Without power consumption constraints, the objective is to minimize the cost, as de-
fined by Eq. (4). We distinguish two optimization problems, either with pre-existing
replicas in the tree or without:

• MINCOST-NOPRE, the classical cost optimization problem [16] without pre-
existing replicas. Indeed, in that case, Eq. (4) reduces to finding a solution with
the minimal number of servers.

• MINCOST-WITHPRE, the cost optimization problem with pre-existing replicas.

With power consumption constraints, the first optimization problem is MINPOWER,
which stands for minimizing power consumption, independently of the incurred cost.
But the cost of the best power-efficient solution may indeed be prohibitive, which calls
for a bi-criteria approach: MINPOWER-BOUNDEDCOST is the problem to minimize
power consumption while enforcing a threshold cost that cannot be exceeded. This
bi-criteria problem can be declined in two versions, without pre-existing replicas
(MINPOWER-BOUNDEDCOST-NOPRE) and with pre-existing replicas (MINPOWER-
BOUNDEDCOST-WITHPRE).

4.1.4 Summary of Results

In this section, we prove the following complexity results for a tree with N nodes:

Theorem 5 MINCOST-WITHPRE can be solved in polynomial time with a dynamic
programming algorithm whose worst case complexity is O(N5).

Theorem 6 MINPOWER is NP-complete.

Theorem 7 With a constant number M of speeds, both versions of MinPower-
BoundedCost can be solved in polynomial time with a dynamic programming
algorithm. The complexity of this algorithm is O(N2M+1) for MINPOWER-
BOUNDEDCOST-NOPRE and O(N2M2+2M+1) for MINPOWER-BOUNDEDCOST-
WITHPRE.

Note that MINPOWER remains NP-complete without pre-existing replicas, and
without static power: the proof of Theorem 6 (see Sect. 4.3.2) shows that balancing
server speeds across the tree already is a hard combinatorial problem. On the contrary,
with a fixed number of speeds, there are polynomial-time algorithms capable of
optimizing power for a bounded cost, even with pre-existing replicas, with static
power and with a complex cost function. These algorithms can be viewed as pseudo-
polynomial solutions to the MinPower-BoundedCost problems.

54 G. Aupy et al.

a b

Fig. 2 Examples

4.2 Complexity Results: Update Strategies

In this section, we focus on the MinCost-WithPre problem: we need to update the
set of replicas in a tree, given a set of pre-existing servers, so as to minimize the cost
function.

In Sect. 4.2.1, we show on an illustrative example that the strategies need to
trade-off between reusing resources and load-balancing requests on new servers: the
greedy algorithm proposed in [43] for the MINCOST-NOPRE problem is no longer
optimal. We provide in Sect. 4.2.2 a dynamic programming algorithm that returns
the optimal solution in polynomial time, and we prove its correctness.

4.2.1 Running Example

We consider the example of Fig. 2a. There is one pre-existing replica in the tree at
nodeB, and we need to decide whether to reuse it or not. For taking decisions locally
at node A, the trade-off is the following:

• either we keep serverB, and there are 7 requests going up in the tree from nodeA;
• either we remove server B and place a new server at node C, hence having only

4 requests going up in the tree from node A;
• either we keep the replica at node B and add one at node A or C, thereby having

no traversing request any more.

The choice cannot be made locally, since it depends upon the remainder of the tree: if
the root r has two client requests, then it was better to keep the pre-existing serverB.

Energy-Aware Algorithms for Task . . . 55

However, if it has four requests, two new servers are needed to satisfy all requests,
and one can then remove server B which becomes useless (i.e., keep one server at
node C and one server at node r).

From this example, it seems very difficult to design a greedy strategy to minimize
the solution cost, while accounting for pre-existing replicas. We propose in the
next section a dynamic programming algorithm that solves the MINCOST-WITHPRE

problem.

4.2.2 Dynamic Programming Algorithm

LetW be the total number of requests that a server can handle, and ri the number of
requests issued by client i ∈ C.

At each node j ∈ N , we fill a table of maximum size (E + 1) × (N − E + 1)
which indicates, for exactly 0 ≤ e ≤ E existing servers and 0 ≤ n ≤ N − E
new servers in the subtree rooted in j (excluding j), the solution which leads to
the minimum number of requests that have not been processed in the subtree. This
solution for (e, n) values at node j is characterized by the minimum number of
requests that is obtained, minrj(e,n), and by the number of requests processed at each

node j ′ ∈ subtreej , req
j

(e,n)(j
′). Note that each entry of the table has a maximum

sizeO(N) (in particular, this size is reached at the root of the tree). The req variables
ensure that it is possible to reconstruct the solution once the traversal of the tree is
complete.

First, tables are initialized to default values (no solution). We set minrj(e,n) =
W + 1 to indicate that there is no solution, because in any valid solution, we
have minrj(e,n) ≤ W . The main algorithm then fills the tables while performing a
bottom-up traversal of the tree, and the solution can be found within the table of
the root node. Initially, we fill the table for nodes j which have only client nodes:
minr

j

(0,0) =
i∈childrenj∩Cri , and minrj(k,l) = W + 1 for k > 0 or l > 0. There are no
nodes in the subtree of j , thus no req variables to set. The variable client(j) keeps
track of the number of requests directly issued by a client at node j . Also, recall that
the decision whether to place a replica at node j or not is not accounted for in the
table of j , but when processing the parent of node j .

Then, for a node j ∈ N , we perform the same initialization, before processing
children nodes one by one. To process child i of node j , first, we copy the current
table of node j into a temporary one, with values tminr and treq. Note that the
table is initially almost empty, but this copy is required since we process children
one after the other, and when we merge the kth children node of j , the table of j
already contains information from the merge with the previous k−1 children nodes.
Then, for 0 ≤ e ≤ E and 0 ≤ n ≤ N − E, we need to compute the new minrj(e,n),

and to update the reqj(e,n) values. We try all combinations with e′ existing replicas
and n′ new replicas in the temporary table (i.e., information about children already
processed), e− e′ existing replicas and n− n′ new replicas in the subtree of child i.
We furthermore try solutions with a replica placed at node i, and we account for it

56 G. Aupy et al.

in the value of e if i ∈ E (i.e., for a given value e′, we place only e− e′ − 1 replica in
the subtree of i, plus one on i); otherwise we account for it in the value of n. Each
time we find a solution which is better than the one previously in the table (in terms
of minr), we copy the values of req from the temporary table and the table of i,
in order to retain all the information about the current best solution. The key of the
algorithm resides in the fact that during this merging process, the optimal solution
will always be one which lets the minimum of requests pass through the subtree (see
Lemma 2).

The solution to the replica placement problem with pre-existing servers MinCost-
WithPre is computed by scanning all solutions in order to return a valid one of
minimum cost. To prove that the algorithm returns an optimal solution, we show first
that the solutions that are discarded while filling the tables, never lead to a better
solution than the one that is finally returned:

Lemma 2 Consider a subtree rooted at node j ∈ N . If an optimal solution uses
e pre-existing servers and places n new servers in this subtree, then there exists an
optimal solution of same cost, for which the placement of these servers minimizes
the number of requests traversing j .

Proof Let Ropt be the set of replicas in the optimal solution with (e, n) servers (i.e.,
e pre-existing and n new in subtreej). We denote by rmin the minimum number
of requests that must traverse j in a solution using (e, n) servers, and by Rloc the
corresponding (local) placement of replicas in subtreej .

If Ropt is such that more than rmin requests are traversing node j , we can build
a new global solution which is similar to Ropt , except for the subtree rooted in j for
which we use the placement of Rloc. The cost of the new solution is identical to the
cost of Ropt , therefore it is an optimal solution. It is still a valid solution, since Rloc

is a valid solution and there are less requests than before to handle in the remaining
of the tree (only rmin requests traversing node j).

This proves that there exists an optimal solution which minimizes the number of
requests traversing each node, given a number of pre-existing and new servers. �

The algorithm computes all local optimal solutions for all values (e, n). During
the merge procedure, we try all possible numbers of pre-existing and new servers
in each subtree, and we minimize the number of traversing requests, thus finding an
optimal local solution. Thanks to Lemma 2, we know that there is a global optimal
solution which builds upon these local optimal solutions.

We can show that the execution time of this algorithm is inO(N × (N −E+ 1)2

×(E+1)2), whereN is the total number of nodes, andE is the number of pre-existing
nodes. This corresponds to the N calls to the merging procedure. The algorithm is
therefore of polynomial complexity, at most O(N5) for a tree with N nodes. This
concludes the proof of Theorem 5. For a formalization of the algorithm and the
details about its execution time, please refer to [9].

Energy-Aware Algorithms for Task . . . 57

4.3 Complexity Results with Power

In this section, we tackle the MINPOWER and MinPower-BoundedCost problems.
First in Sect. 4.3.1, we use an example to show why minimizing the number of
requests traversing the root of a subtree is no longer optimal, and we illustrate the
difficulty to take local decisions even when restricting to the simpler mono-criterion
MINPOWER problem. Then in Sect. 4.3.2, we prove the NP-completeness of the latter
problem with an arbitrary number of speeds (Theorem 6). However, we propose a
pseudo-polynomial algorithm to solve the problem in Sect. 4.3.3. This algorithm
turns out to be polynomial when the number of speeds is constant, hence usable in
a realistic setting with two or three speeds (Theorem 7).

4.3.1 Running Example

Consider the example of Fig. 2b. There are two speeds,W1 = 7 andW2 = 10, and we
focus on the power minimization problem. We assume that the power consumption
of a node running at speed Wi is 400 +W 3

i , for i = 1, 2 (400 is the static power).
We consider the subtree rooted in A. Several decisions can be taken locally:

• place a server at node A, running at speed W2, hence minimizing the number of
traversing requests. Another solution without traversing requests is to have two
servers, one at node B and one at node C, both running at speed W1, but this
would lead to a higher power consumption, since 800 + 2 × 73 > 400 + 103;

• place a server running at speedW1 at nodeC, thus having 3 requests going through
node A.

The choice cannot be made greedily, since it depends upon the rest of the tree: if the
root r has four client requests, then it is better to let some requests through (one server
at node C), since it optimizes power consumption. However, if it has ten requests,
it is necessary to have no request going through A, otherwise node r is not able to
process all its requests.

From this example, it seems very hard to design a greedy strategy to minimize the
power consumption. Similarly, if we would like to reuse the algorithm of Sect. 4.2 to
solve the MinPower-BoundedCost-WithPre bi-criteria problem, we would need
to account for speeds. Indeed, the best solution of subtree A with one server is no
longer always the one that minimizes the number of requests (in this case, placing
one server on node A), since it can be better for power consumption to let three
requests traverse node A and balance the load upper in the tree.

We prove in the next section the NP-completeness of the problem, when the
number of speeds is arbitrary. However, we can adapt the dynamic programming
algorithm, which becomes exponential in the number of speeds, but hence remains
polynomial for a constant number of speeds (see Sect. 4.3.3).

58 G. Aupy et al.

4.3.2 NP-Completeness of MINPOWER

In this section, we prove Theorem 6, i.e., the NP-completeness of the MINPOWER

problem, even with no static power, when there is an arbitrary number of speeds.

Proof of Theorem 6 We consider the associated decision problem: given a total
power consumption P , is there a solution that does not consume more than P?

First, the problem is clearly in NP: given a solution, i.e., a set of servers, and the
speed of each server, it is easy to check in polynomial time that no capacity constraint
is exceeded, and that the power consumption meets the bound.

To establish the completeness, we use a reduction from 2-Partition [19]. We
consider an instance I1 of 2-Partition: given n strictly positive integers a1, a2, . . . , an,
does there exist a subset I of {1, . . . , n} such that
i∈I ai =
i/∈I ai? Let S =
ni=1ai ;
we assume that S is even (otherwise there is no solution).

We build an instance I2 of our problem where each server has n+ 2 speeds. We
assume that the ais are sorted in increasing order, i.e., a1 ≤ · · · ≤ an. The speeds
are then, in increasing order:

• W1 = K;
• ∀1 ≤ i ≤ n,Wi+1 = K + ai ×X;
• Wn+2 = K + S ×X;

where the values of K and X will be determined later.
We furthermore set that there is no static power, and the power consumption for

a server running at capacity Wi is therefore Pi = W 3
i . The idea is to have K large

and X small, so that we have an upper bound on the power consumed by a server
running at capacityWi+1, for 1 ≤ i ≤ n:

W 3
i+1 = (K + ai ×X)3 ≤ K3 + ai + 1

n
. (7)

To ensure that Eq. (7) is satisfied, we set

X = 1

3 ×K2
,

and then we have (K+ai×X)3 = K3(1+ ai
3K3)3, withK > S and therefore ai

3K3 < 1.
We set xi = ai

3K3 , and we want to ensure that:

(1 + xi)3 ≤ 1 + 3 × xi + 1

n×K3
. (8)

To do so, we study the function

f (x) = (1 + x)3 − (1 + 3 × x) − 5x2,

and we show thatf (x) ≤ 0 forx ≤ 1
2 (thanks to the term in−5x2). We havef (0) = 0,

and f ′(x) = 3(1 + x)2 − 3 − 10x.We have f ′(0) = 0, and f ′′(x) = 6(1 + x) − 10.

Energy-Aware Algorithms for Task . . . 59

Fig. 3 Illustration of the
NP-completeness proof

For x ≤ 1
2 , f ′′(x) < 0. We deduce that f ′(x) is non increasing for x ≤ 1

2 , and since
f ′(0) = 0, f ′(x) is negative for x ≤ 1

2 .
Finally, f (x) is non increasing for x ≤ 1

2 , and since f (0) = 0, we have (1+x)3 <

(1 + 3 × x) + 5x2 for x ≤ 1
2 .

Equation (8) is therefore satisfied if 5x2
i ≤ 1

n×K3 , i.e.,K3 ≥ 5a2
i ×n
32 . This condition

is satisfied for
K = n× S2,

and we then have xi < 1
2 , which ensures that the previous reasoning was correct.

Finally, with these values of K and X, Eq. (7) is satisfied.
Then, the distribution tree is the following: the root node r has one client with

K + S
2 × X requests, and n children A1, . . . ,An. Each node Ai has a client with

ai × X requests, and a children node Bi which has K requests. Figure 3 illustrates
the instance of the reduction.

Finally, we ask if we can find a placement of replicas with a maximum power
consumption of:

Pmax = (K + S ×X)3 + n×K3 + S

2
+ n− 1

n
.

Clearly, the size of I2 is polynomial in the size of I1, sinceK andX are of polynomial
size. We now show that I1 has a solution if and only if I2 does.

Let us assume first that I1 has a solution, I . The solution for I2 is then as follows:
there is one server at the root, running at capacity Wn+2. Then, for i ∈ I , we
place a server at node Ai running at capacity W1+i , while for i /∈ I , we place
a server at node Bi running at capacity W1. It is easy to check that all capacity
constraints are satisfied for nodes Ai and Bi . At the root of the tree, there are K +
S
2 ×X +
i/∈I ai ×X, which sums up to K + S ×X. The total power consumption
is then P = (K + S × X)3 +
i∈I (K + ai × X)3 +
i/∈IK3. Thanks to Eq. (7),
P ≤ (K + S ×X)3 +
i∈I

(
K3 + ai + 1

n

)+
i/∈IK3, and finally, P ≤ (K + S ×
X)3 + n × K3 +
i ∈ I ai + n−1

n
. Since I is a solution to 2-Partition, we have

P ≤ Pmax . Finally, I2 has a solution.

60 G. Aupy et al.

Suppose now that I2 has a solution. There is a server at the root node r , which
runs at speed Wn+2, since this is the only way to handle its K + S

2 × X requests.
This server has a power consumption of (K + S ×X)3. Then, there cannot be more
than n other servers. Indeed, if there were n + 1 servers, running at the smallest
speed W1, their power consumption would be (n + 1)K3, which is strictly greater
than n × K3 + S

2 + 1. Therefore, the power consumption would exceed Pmax . So,
there are at most n extra servers.

Consider that there exists i ∈ {1, . . . , n} such that there is no server, neither
on Ai nor on Bi . Then, the number of requests at node r is at least 2K; however,
2K > Wn+2, so the server cannot handle all these requests. Therefore, for each
i ∈ {1, . . . , n}, there is exactly one server either on Ai or on Bi . We define the set I
as the indices for which there is a server at node Ai in the solution. Now we show
that I is a solution to I1, the original instance of 2-Partition.

First, if we sum up the requests at the root node, we have:

K + S

2
×X +

∑
i /∈I
ai ×X ≤ K + S ×X.

Therefore,
i/∈I ai ≤ S
2 .

Now, if we consider the power consumption of the solution, we have:

(K + S ×X)3 +
∑
i∈I

(K + ai ×X)3 +
∑
i /∈I
K3 ≤ Pmax.

Let us assume that
i∈I ai > S
2 . Since the ai are integers, we have
i∈I ai ≥ S

2 +1. It
is easy to see that (K+ai×X)3 > K3+ai . Finally,
i∈I (K + ai×X)3+
i/∈IK3 ≥
n×K3 +
i∈I ai ≥ n×K3 + S

2 + 1. This implies that the total power consumption
is greater than Pmax , which leads to a contradiction, and therefore
i∈I ai ≤ S

2 .
We conclude that
i/∈I ai =
i∈I ai = S

2 , and so the solution I is a 2-Partition for
instance I1. This concludes the proof. �

4.3.3 A Pseudo-polynomial Algorithm for MINPOWER-BOUNDEDCOST

In this section, we sketch how to adapt the algorithm of Sect. 4.2 to account for power
consumption. As illustrated in the example of Sect. 4.3.1, the current algorithm may
lead to a non-optimal solution for the power consumption if used only with the higher
speed for servers. Therefore, we refine it and compute, in each subtree, the optimal
solution with, for 1 ≤ j , j ′ ≤ M ,

• exactly nj new servers running at speedWj ;
• exactly ej ,j ′ pre-existing servers whose operation speeds have changed from Wj

toWj ′ .

Recall that we previously had only two parameters,N the number of new servers, and
E the number of pre-existing servers, thus leading to a total of (N−E+1)2×(E+1)2

Energy-Aware Algorithms for Task . . . 61

iterations for the merging. Now, the number of iterations is (N −E + 1)2M × (E +
1)2M2

, since we have 2 ×M loops of maximum size N −E + 1 over the nj and n′j ,
and 2 ×M2 loops of maximum size E + 1 over the ej ,j ′ and e′j ,j ′ .

The new algorithm is similar, except that during the merge procedure, we must
consider the type of the current node that we are processing (existing or not), and
furthermore set it to all possible speeds: we therefore add a loop of size M . The
principle is similar, except that we need to have larger tables at each node, and to
iterate over all parameters. The complexity of the N calls to this procedure is now
in O(N ×M × (N − E + 1)2M × (E + 1)2M2

).
Of course, we need also to update the initialization and main procedures to account

for the increasing number of parameters. For the algorithm, first we compute all costs,
accounting for the cost of changing speeds, and then we scan all solutions, and return
one whose cost is not greater than the threshold, and which minimizes the power
consumption. The most time-consuming part of the algorithm is still the call to the
merging procedure, hence a complexity inO(N×M×(N−E+1)2M×(E+1)2M2

).
With a constant number of capacities, this algorithm is polynomial, which proves

Theorem 7. For instance, withM = 2, the worst case complexity isO(N13). Without
pre-existing servers, this complexity is reduced to O(N5).

4.4 Simulations

In this section, we compare our algorithms with the algorithms of [43], which do
not account for pre-existing servers and for power consumption. First in Sect. 4.4.1,
we focus on the impact of pre-existing servers. Then we consider the power con-
sumption minimization criterion in Sect. 4.4.2. Note that experiments have been run
sequentially on an Intel Xeon 5250 processor.

4.4.1 Impact of Pre-existing Servers

In this set of experiments, we randomly build a set of distribution trees with N =
100 internal nodes of maximum capacityW = 10. Each internal node has between 6
and 9 children, and clients are distributed randomly throughout the tree: each internal
node has a client with a probability 0.5, and this client has between 1 and 6 requests.

In the first experiment, we draw 200 random trees without any existing replica in
them. Then we randomly add 0 ≤ E ≤ 100 pre-existing servers in each tree. Finally,
we execute both the greedy algorithm (GR) of [43], and the algorithm of Sect. 4.2
(DP) on each tree, and since both algorithms return a solution with the minimum
number of replicas, the cost of the solution is directly related to the number of pre-
existing replicas that are reused. Figure 4a shows the average number of pre-existing
servers that are reused in each solution over the 200 trees, for each value of the
number E of pre-existing servers. When the tree has a very small (E ≈ 0) or very
large (E ≈ N) number of pre-existing replicas, both algorithms return the same

62 G. Aupy et al.

a b

Fig. 4 Experiments 1 and 3

solution. Still, DP achieves an average reuse of 4.13 more servers than GR, and it
can reuse up to 15 more servers.

In a second experiment, we study the behavior of the algorithms in a dynamic
setting, with 20 update steps. At each step, starting from the current solution, we
update the number of requests per client and recompute an optimal solution with
both algorithms, starting from the servers that were placed at the previous step.
Initially, there are no pre-existing servers, and at each step, both algorithms obtain
a different solution. However, they always reach the same total number of servers
since they have the same requests; but after the first step, they may have a different
set of pre-existing servers. Similarly to Experiment 1, the simulation is conducted
on 200 distinct trees, and results are averaged over all trees. In Fig. 5 (left), at each
step, we compare the number of existing replicas in the solutions found by the two
algorithms, and hence the cost of the solutions. We plot the cumulative number of
servers that have been reused so far (hence accounting for all previous steps). As
expected, the DP algorithm makes a better reuse of pre-existing replicas. Figure 5
(right) compares, at each step, the number of pre-existing servers reused by DP
and by GR. We count the average number of steps (over 20) at which each value is
reached. It occasionally happens that the greedy algorithm performs a better reuse,
because it is not starting from the same set of pre-existing servers, but overall this
experiment confirms the better reuse of the dynamic programming algorithm, even
when the algorithms are applied on successive steps.

Note however that taking pre-existing replicas into account has an impact on the
execution time of the algorithm: in these experiments, GR runs in less than one
second per tree, while DP takes around forty seconds per tree. Also, we point out
that the shape of the trees does not seem to modify the results: we present in [9]
similar results with trees where each node has between 2 and 4 children.

Energy-Aware Algorithms for Task . . . 63

a b

Fig. 5 Experiment 2: consecutive executions of the algorithms

4.4.2 With Power Consumption

To study the practical applicability of the bi-criteria algorithm (DP) for the
MinPower-BoundedCost problem (see Sect. 4.3.3), we have implemented it with
two speeds W1 = 5 and W2 = 10, and compared it with the algorithm in [43]; this
algorithm does not account for power minimization, but minimizes the value of the
maximal capacity W when given a cost bound. More precisely, in the experiment
we try all values 5 ≤ W ≤ 10, and compute the corresponding cost and power
consumption. To be fair, when a server has 5 requests or less, we operate it under
the first speed W1. Given a bound on the cost, we keep the solution that minimizes
the power consumption. We call GR this version of the algorithm in [43] modified
for power as explained above.

We randomly build 100 trees with 50 nodes each, and we select 5 nodes as pre-
existing servers. Clients have between 1 and 5 requests, so that a solution with
replicas in the first speed can always be found. The cost function is such that, for any
i, i ′ ∈ {1, 2}, createi = 0.1, deletei = 0.01 and changedi,i′ = 0.001. The power
consumed by a server in speed i is Pi = 1

10W
3
1 +W 3

i . In Fig. 4b, we plot the inverse
of the power of a solution, given a bound on the cost (the higher the better). If the
algorithm fails to find a solution for a tree, the value is 0, and we average the inverse
of the power over the 100 trees, for both algorithms. For intermediate cost values,
our algorithm is much better than the version of [43] in terms of power consumption:
GR consumes in average more than 30 % more power than DP, when the cost bound
is between 29 and 34.

Here again, it takes more time to obtain the optimal solution with DP than to
run the greedy algorithm several times: GR runs in around 1 s per tree, while DP
takes around 5 min per tree. Also, we have performed some more experiments with
slightly different parameters, but got no significant differences, as is shown in [9],
in particular with no pre-existing replicas at all.

64 G. Aupy et al.

4.4.3 Running Time of the Algorithms

Recall that the theoretical complexity of GR is of orderO(N logN) (without power
and without pre-existing servers), while DP is of order O(N5), both for the version
with power (two speeds) but without pre-existing servers, and for the version without
power but with pre-existing servers. In practice, the execution times of GR are always
very small (a few milliseconds). For DP, we have plotted its execution time as a
function of N (see [9]). Run time measurements show that the experimental values
have a shape in N5, which confirms the theoretical complexity. Moreover, our DP
algorithms run in less than N5 microseconds for reasonable values of N , which
allows the use of these algorithms in practical situations.

Indeed, without power, we are able to process trees with 500 nodes and 125 pre-
existing servers in 30 min; with power and no pre-existing server, we can process
trees with 300 nodes in 1 h. The algorithm with power and pre-existing servers is
the most time-consuming: it takes around 1 h to process a tree with 70 nodes and 10
pre-existing servers.

4.5 Concluding Remarks

In this section, we have addressed the problem of updating the placement of replicas
in a tree network. We have provided an optimal dynamic programming algorithm
whose cost is at most O(N5), where N is the number of nodes in the tree. This
complexity may seem high for very large problem sizes, but our implementation of
the algorithm is capable of managing trees with up to 500 nodes in half an hour,
which is reasonable for a large spectrum of applications (e.g., such as database
updates during the night).

The optimal placement update algorithm is a first step towards dealing with dy-
namic replica management. When client requests evolve over time, the placement of
the replicas must be updated at regular intervals, and the overall cost is a trade-off
between two extreme strategies: (i) “lazy” updates, where there is an update only
when the current placement is no longer valid; the update cost is minimized, but
changes in request volume and location since the last placement may well lead to
poor resource usage; and (ii) systematic updates, where there is an update every time
step; this leads to an optimized resource usage but encompasses a high update cost.
Clearly, the rates and amplitudes of the variations of the number of requests issued
by each client in the tree are very important to decide for a good update interval. Still,
establishing the cost of an update is a key result to guide such a decision. When un-
frequent updates are called for, or when resources have a high cost, the best solution
is likely to use our optimal but expensive algorithm. On the contrary, with frequent
updates or low-cost servers, we may prefer to resort to faster (but sub-optimal) update
heuristics.

Our main contribution is to have provided the theoretical foundations for a single
step reconfiguration, whose complexity is important to guide the design of lower-cost

Energy-Aware Algorithms for Task . . . 65

heuristics. Also, we have done a first attempt to take power consumption into account,
in addition to usual performance-related objectives. Power consumption has become
a very important concern, both for economic and environmental reasons, and it is
important to account for it when designing replica placement strategies. Even though
the optimal algorithms have a high worst-case complexity, we have successfully
implemented all of them, including the most time-consuming scheme capable of
optimizing power while enforcing a bounded cost that includes pre-existing servers.
We were able to process trees with a reasonable number of nodes.

As future work, we plan to design polynomial-time heuristics with a lower
complexity than the optimal solution. The idea would be to perform some local
optimizations to better load-balance the number of requests per replica, with the
goal of minimizing the power consumption. These heuristics should be tuned for
dedicated applications, and should (hopefully!) build upon the fundamental results
(complexity and algorithms) that we have provided in this section. Finally, it would
be interesting to add more parameters in the model, such as the cost of routing, or
the introduction of quality of service constraints.

5 Checkpointing Strategies

In this section, we give a motivating example of the use of the CONTINUOUS energy
model introduced in Sect. 2. We aim at minimizing the energy consumption when
executing a divisible workload under a bound on the total execution time, while
resilience is provided through checkpointing. We discuss several variants of this
multi-criteria problem. Given the workloadW , we need to decide how many chunks
to use, what are the sizes of these chunks, and at which speed each chunk is executed.
Furthermore, since a failure may occur during the execution of a chunk, we also
need to decide at which speed a chunk should be re-executed in the event of a failure.
Using more chunks leads to a higher checkpoint cost, but smaller chunks imply
less computation loss (and less re-execution) when a failure occurs. We assume that
a chunk can fail only once, i.e., we re-execute each chunk at most once. Indeed,
the probability that a fault would strike during both the first execution and the re-
execution is negligible. The accuracy of this assumption is discussed in [3].

Due to the probabilistic nature of failure hits, it is natural to study the expectation
E(E) of the energy consumption, because it represents the average cost over many
executions. As for the bound D on execution time (the deadline), there are two
relevant scenarios: either we enforce that this bound is a soft deadline to be met in
expectation, or we enforce that this bound is a hard deadline to be met in the worst
case. The former scenario corresponds to flexible environment where task deadlines
can be viewed as average response times [11], while the latter scenario corresponds
to real-time environments where task deadlines are always strictly enforced [41]. In
both scenarios, we have to determine the number of chunks, their sizes, and the speed
at which to execute (and possibly re-execute) every chunk. The different models are
then compared through an extensive set of experiments.

66 G. Aupy et al.

5.1 Framework

First we formalize this important multi-objective problem. The general problem
consists of finding n, the number of chunks, as well as the speeds for the execution
and the re-execution of each chunk, both for soft and hard deadlines. We identify
and discuss two important sub-cases that help tackling the most general problem
instance: (i) a single chunk (the task is atomic); and (ii) re-execution speed is always
identical to the first execution speed. The main notations are as follows: W is the
total amount of work; s is the processor speed for first execution; σ is the processor
speed for re-execution; TC is the checkpointing time; and EC is the energy spent for
checkpointing.

5.1.1 Model

Consider first the case of a single chunk (or atomic task) of size W , denoted as
SINGLECHUNK. We execute this chunk on a processor that can run at several speeds.
We assume continuous speeds, i.e., the speed of execution can take an arbitrary
positive real value. The execution is subject to failure, and resilience is provided
through the use of checkpointing. The overhead induced by checkpointing is twofold:
execution time TC , and energy consumption EC .

We assume that failures strike with uniform distribution, hence the probability
that a failure occurs during an execution is linearly proportional to the length of this
execution. Consider the first execution of a task of size W executed at speed s: the
execution time is Texec = W/s+TC , hence the failure probability is Pfail = λTexec =
λ(W/s+TC), where λ is the instantaneous failure rate. If there is indeed a failure, we
re-execute the task at speed σ (which may or may not differ from s); the re-execution
time is then Treexec = W/σ + TC so that the expected execution time is

E(T) = Texec + PfailTreexec

= (W/s + TC) + λ(W/s + TC)(W/σ + TC). (9)

Similarly, the worst-case execution time is

Twc = Texec + Treexec

= (W/s + TC) + (W/σ + TC). (10)

Remember that we assume success after re-execution, so we do not account for
second and more re-executions. Along the same line, we could spare the checkpoint
after re-executing the last task in a series of tasks, but this unduly complicates the
analysis. In [3], we show that this model with only a single re-execution is accurate
up to second order terms when compared to the model with an arbitrary number of
failures that follows an Exponential distribution of parameter λ.

What is the expected energy consumed during execution? The energy consumed
during the first execution at speed s isWs2 +EC , where EC is the energy consumed

Energy-Aware Algorithms for Task . . . 67

during a checkpoint. The energy consumed during the second execution at speed
σ is Wσ 2 + EC , and this execution takes place with probability Pfail = λTexec =
λ(W/s + TC), as before. Hence the expectation of the energy consumed is

E(E) = (Ws2+EC)+λ (W/s+TC)
(
Wσ 2+EC

)
. (11)

With multiple chunks (MULTIPLECHUNKS model), the execution times (worst case
or expected) are the sum of the execution times for each chunk, and the expected
energy is the sum of the expected energy for each chunk (by linearity of expectations).

We point out that the failure model is coherent with respect to chunking. Indeed,
assume that a divisible task of weight W is split into two chunks of weights w1

and w2 (where w1 + w2 = W). Then the probability of failure for the first chunk
is P 1

fail = λ(w1/s + TC) and that for the second chunk is P 2
fail = λ(w2/s + TC).

The probability of failure Pfail = λ(W/s + TC) with a single chunk differs from
the probability of failure with two chunks only because of the extra checkpoint that
is taken; if TC = 0, they coincide exactly. If TC > 0, there is an additional risk
to use two chunks, because the execution lasts longer by a duration TC . Of course
this is the price to pay for a shorter re-execution time in case of failure: Equation 9
shows that the expected re-execution time is PfailTreexec, which is quadratic in W .
There is a trade-off between having many small chunks (many TCs to pay, but small
re-execution cost) and a few larger chunks (fewer TCs, but increased re-execution
cost).

5.1.2 Optimization Problems

The optimization problem is stated as follows: given a deadline D and a divisible task
whose total computational load isW , the problem is to partition the task inton chunks
of size wi , where
ni=1wi = W , and choose for each chunk an execution speed si
and a re-execution speed σi in order to minimize the expected energy consumption:

E(E) =
n∑
i=1

(wi s
2
i + EC) + λ

(
wi
si

+ TC
) (

wiσ
2
i + EC

)
,

subject to the constraint that the deadline is met either in expectation or in the worst
case:

Expected-Deadline E(T)=∑n
i=1

(
wi
si
+TC+λ

(
wi
si
+TC

)(
wi
σi
+TC

))
≤D

Hard-Deadline Twc =∑n
i=1

(
wi
si

+ TC + wi
σi

+ TC
)
≤ D

The unknowns are the number of chunks n, the sizes of these chunks wi , the speeds
for the first execution si and the speeds for the second execution σi . We consider two
variants of the problem, depending upon re-execution speeds:

68 G. Aupy et al.

• SINGLESPEED: in this simpler variant, the re-execution speed is always the same
as the speed chosen for the first execution. We then have to determine a single
speed for each chunk: σi = si for all i.

• MULTIPLESPEEDS: in this more general variant, the re-execution speed is freely
chosen, and there are two different speeds to determine for each chunk.

We also consider the variant with a single chunk (SINGLECHUNK), i.e., the task is
atomic and we only need to decide for its execution speed (in the SINGLESPEED

model), or for its execution and re-execution speeds (in the MULTIPLESPEEDS

model). We start the study in Sect. 5.2 with this simpler problem.

5.2 With a Single Chunk

In this section, we consider the SINGLECHUNK model: given a non-divisible
workloadW and a deadline D, find the values of s and σ that minimize

E(E) = (Ws2 + EC) + λ
(
W

s
+ TC

) (
Wσ 2 + EC

)
,

subject to

E(T) =
(
W

s
+ TC

)
+ λ

(
W

s
+ TC

)(
W

σ
+ TC

)
≤ D

in the Expected-Deadline model, and subject to

W

s
+ TC + W

σ
+ TC ≤ D

in the Hard-Deadline model. We first deal with the SINGLESPEED model, where
we enforce σ = s, before moving on to the MULTIPLESPEEDS model.

Note that the formal proofs of this section can be found in [3].

5.2.1 SINGLESPEED Model

In this section, we express E(E) as functions of the speed s. That is, E(E)(s) =
(Ws2 + EC)(1 + λ(W/s + TC)). The following result is valid for both EXPECTED-
DEADLINE and HARD-DEADLINE models.

Lemma 3 E(E) is convex on R
�+. It admits a unique minimum s� which can be

computed numerically.

Energy-Aware Algorithms for Task . . . 69

EXPECTED-DEADLINE: In the SINGLESPEED EXPECTED-DEADLINE model, we
denote E(T)(s) = (W/s + TC)(1 + λ(W/s + TC)) the constraint on the execution
time.

Lemma 4 For any D, if TC + λTC2 ≥ D, then there is no solution. Otherwise, the
constraint on the execution time can be rewritten as s ∈ (s0,+∞(, where

s0 = W 1 + 2λTC +√
4λD + 1

2(D − TC(1 + λTC))
. (12)

Proposition 4 In the SINGLESPEED model, it is possible to numerically compute
the optimal solution for SINGLECHUNK as follows:

1. If TC + λTC2 ≥ D, then there is no solution;
2. Else, the optimal speed is max(s0, s�).

HARD-DEADLINE In the Hard-Deadline model, the bound on the execution time
can be written as 2

(
W
s
+ TC

) ≤ D.

Lemma 5 In the SINGLESPEED Hard-Deadline model, for any D, if 2TC ≥ D,
then there is no solution. Otherwise, the constraint on the execution time can be

rewritten as s ∈
[

W
D
2 −TC ;+∞

(
.

Proposition 5 Let s� be the solution indicated in Lemma 3. In the SINGLESPEED

Hard-Deadline model if 2TC ≥ D, then there is no solution. Otherwise, the

minimum is reached when s = max
(
s�, W

D
2 −TC

)
.

5.2.2 MULTIPLESPEEDS Model

In this section, we consider the general MULTIPLESPEEDS model. We use the
following notations:

E(E)(s, σ) = (Ws2 + EC) + λ(W/s + TC)(Wσ 2 + EC).

EXPECTED-DEADLINE: The execution time in the MULTIPLESPEEDS EXPECTED-
DEADLINE model can be written as

E(T)(s, σ) = (W/s + TC) + λ(W/s + TC)(W/σ + TC).

We start by giving a useful property, namely that the deadline is always tight in the
MULTIPLESPEEDS EXPECTED-DEADLINE model:

Lemma 6 In the MULTIPLESPEEDS EXPECTED-DEADLINE model, in order to
minimize the energy consumption, the deadline should be tight.

70 G. Aupy et al.

This lemma allows us to express σ as a function of s:

σ = λW
D

W
s
+TC − (1 + λTC)

.

Also we reduce the bi-criteria problem to the minimization problem of the single-
variable function:

s �→ Ws2 + EC + λ
(
W

s
+ TC

)⎛⎝W
⎛
⎝ λW

D
W
s
+TC − (1 + λTC)

⎞
⎠

2

+ EC
⎞
⎠, (13)

which can be solved numerically.

HARD-DEADLINE In this model we have similar results as with EXPECTED-
DEADLINE. The constraint on the execution time writes: W

s
+ TC + W

σ
+ TC ≤ D.

Lemma 7 In the MULTIPLESPEEDS EXPECTED-DEADLINE model, in order to
minimize the energy consumption, the deadline should be tight.

This lemma allows us to express σ as a function of s:

σ = W

(D − 2TC)s −W s

Finally, we reduce the bi-criteria problem to the minimization problem of the single-
variable function:

s �→ Ws2 + EC + λ
(
W

s
+ TC

)(
W

(
W

(D − 2TC)s −W s
)2

+ EC
)

, (14)

which can be solved numerically.

5.3 Several Chunks

In this section, we deal with the general problem of a divisible task of sizeW that can
be split into an arbitrary number of chunks. We divide the task into n chunks of size
wi such that
ni=1wi = W . Each chunk is executed once at speed si , and re-executed
(if necessary) at speed σi . The problem is to find the values of n, wi , si and σi that

Energy-Aware Algorithms for Task . . . 71

minimize

E(E)=
∑
i

(
wi s

2
i +EC

)+ λ∑
i

(
wi
si

+TC
)(

wiσ
2
i +EC

)
,

subject to

∑
i

(
wi
si

+ TC
)

+ λ
∑
i

(
wi
si

+ TC
)(

wi
σi

+ TC
)

≤ D

in the EXPECTED-DEADLINE model, and subject to

∑
i

(
wi
si

+ TC
)

+
∑
i

(
wi
σi

+ TC
)

≤ D

in the Hard-Deadline model. We first deal with the SINGLESPEED model, where
we enforce σi = si , before dealing with the MULTIPLESPEEDS model.

Note that the formal proofs of this section can be found in [3].

5.3.1 Single Speed Model

EXPECTED-DEADLINE In this section, we deal with the SINGLESPEED EXPECTED-
DEADLINE model and consider that for all i, σi = si . Then:

E(T)(∪i (wi , si , si))=
∑
i

(
wi
si

+TC
)
+λ
∑
i

(
wi
si

+TC
)2

E(E)(∪i (wi , si , si))=
∑
i

(
wi s

2
i +EC

)(
1+λ

(
wi
si

+TC
))

Theorem 8 In the optimal solution to the problem with the SINGLESPEED

EXPECTED-DEADLINE model, all n chunks are of equal size W/n and executed
at the same speed s.

Thanks to this result, we know that the problem with n chunks can be rewritten
as follows: find s such that

n

(
W

ns
+ TC

)
+ nλ

(
W

ns
+ TC

)2

= W

s
+ nTC + λ

n

(
W

s
+ nTC

)2

≤ D

in order to minimize

n

(
W

n
s2 + EC

)
+ nλ

(
W

ns
+ TC

)(
W

n
s2 + EC

)
=(Ws2 + nEC

)(
1 + λ

n

(
W

s
+ nTC

))
.

One can see that this reduces to the SINGLECHUNK problem with the SINGLESPEED

model (Sect. 5.2.1) up to the following parameter changes:

72 G. Aupy et al.

• λ← λ
n

• TC ← nTC • EC ← nEC

If the number of chunks n is given, we can express the minimum speed such that
there is a solution with n chunks:

s0(n) = W
1 + 2λTC +

√
4 λD
n

+ 1

2(D − nTC(1 + λTC))
. (15)

We can verify that when D ≤ nTC(1 + λn), there is no solution, hence obtaining an
upper bound on n. Therefore, the two variables problem (with unknowns n and s)
can be solved numerically.

HARD-DEADLINE: In the Hard-Deadline model, all results still hold, they are
even easier to prove since we do not need to introduce a second speed.

Theorem 9 In the optimal solution to the problem with the SINGLESPEED Hard-
Deadline model, all n chunks are of equal size W/n and executed at the same
speed s.

5.3.2 Multiple Speeds Model

EXPECTED-DEADLINE In this section, we still deal with the problem of a divisible
task of size W that we can split into an arbitrary number of chunks, but using the
more general MULTIPLESPEEDS model. We start by proving that all re-execution
speeds are equal:

Lemma 8 In the MULTIPLESPEEDS model, all re-execution speeds are equal in the
optimal solution: ∃σ , ∀i, σi = σ , and the deadline is tight.

We can now redefine

E(T)(∪i (wi , si , σi)) = T (∪i (wi , si), σ)

E(E)(∪i (wi , si , σi)) = E(∪i (wi , si), σ)

Theorem 10 In the MULTIPLESPEEDS model, all chunks have the same size wi =
W
n

, and are executed at the same speed s, in the optimal solution.
Thanks to this result, we know that the n chunks problem can be rewritten as

follows: find s such that

• W
s
+ nTC + λ

n

(
W
s
+ nTC

) (
W
σ

+ nTC
) = D

• in order to minimizeWs2 + nEC + λ
n

(
W
s
+ nTC

) (
Wσ 2 + nEC

)
One can see that this reduces to the SINGLECHUNK MULTIPLESPEEDS EXPECTED-
DEADLINE task problem where:

• λ← λ
n

•TC ← nTC • EC ← nEC

Energy-Aware Algorithms for Task . . . 73

and allows us to write the problem to solve as a two-parameter function:

(n, s) �→Ws2 + nEC + λ

n

(
W

s
+ nTC

)⎛
⎝W

⎛
⎝ λ

n
W

D
W
s
+nTC −(1 + λTC)

⎞
⎠

2

+ nEC
⎞
⎠,

(16)

which can be minimized numerically.

Hard-Deadline In this section, the constraint on the execution time can be written as:

∑
i

(
wi
si

+ TC + wi
σi

+ TC
)

≤ D.

Lemma 9 In the MULTIPLESPEEDS Hard-Deadline model with divisible chunk,
the deadline should be tight.

Lemma 10 In the optimal solution, for all i, j , λ
(

wi
si

+ TC
)
σ 3
i = λ

(
wj
sj

+ TC
)
σ 3
j .

Lemma 11 If we enforce the condition that the execution speeds of the chunks are
all equal, and that the re-execution speeds of the chunks are all equal, then all chunks
should have same size in the optimal solution.

We have not been able to prove a stronger result than Lemma 11. However we
conjecture the following result:

Conjecture 1 In the optimal solution of MULTIPLESPEEDS Hard-Deadline, the
re-execution speeds are identical, the deadline is tight. The re-execution speed is
equal to σ = W

(D−2nTC)s−W s. Furthermore the chunks should have the same size W
n

and should be executed at the same speed s.
This conjecture reduces the problem to the SINGLECHUNK MULTIPLESPEEDS

problem where

• λ← λ
n

• TC ← nTC • EC ← nEC

and allows us to write the problem to solve as a two-parameter function:

(n, s) �→ Ws2 + nEC + λ

n

(
W

s
+ nTC

)(
W

(
W

(D − 2nTC)s −W s

)2

+ nEC
)

(17)

which can be solved numerically.

5.4 Simulations

5.4.1 Simulation Settings

We performed a large set of simulations in order to illustrate the differences between
all the models studied in this paper, and to show to which extent each additional

74 G. Aupy et al.

Fig. 6 Comparison with single chunk single speed

degree of freedom improves the results, i.e., allowing for multiple speeds instead
of a single speed, or for multiple smaller chunks instead of a single large chunk.
All these simulations are conducted under both constraint types, expected and hard
deadlines.

We envision reasonable settings by varying parameters within the following
ranges:

• W
D

∈ [0.2, 10];
• TC

D
∈ [10−4, 10−2];

• EC ∈ [10−3, 103];
• λ ∈ [10−8, 1].

In addition, we set the deadline to 1. Note that since we study W
D

and TC
D

instead of
W and TC , we do not need to study how the variation of the deadline impacts the
simulation, this is already taken into account.

We use the Maple software to solve numerically the different minimization prob-
lems. Results are showed from two perspectives: on the one hand (Fig. 6), for
a given constraint (Hard-Deadline or EXPECTED-DEADLINE), we normalize all
variants according to SINGLESPEED SINGLECHUNK, under the considered con-
straint. For instance, on the plots, the energy consumed by MULTIPLECHUNKS

MULTIPLESPEEDS (denoted as MCMS) for Hard-Deadline is divided by the
energy consumed by SINGLECHUNK SINGLESPEED (denoted as SCSS) for Hard-
Deadline, while the energy of MULTIPLECHUNKS SINGLESPEED (denoted as
MCSS) for EXPECTED-DEADLINE is normalized by the energy of SINGLECHUNK

SINGLESPEED for EXPECTED-DEADLINE.

Energy-Aware Algorithms for Task . . . 75

Model (/SCSS) SCMSed MCSSedSCMShd MCSShd MCMSed MCMShd

Fig. 7 Comparison hard deadline versus expected deadline

On the other hand (Fig. 7), we study the impact of the constraint hardness on the
energy consumption. For each solution form (SINGLESPEED or MULTIPLESPEEDS,
and SINGLECHUNK or MULTIPLECHUNKS), we plot the ratio energy consumed for
EXPECTED-DEADLINE over energy consumed for Hard-Deadline.

Note that for each figure, we plot for each function different values that depend
on the different values of TC/D (hence the vertical intervals for points where TC/D
has an impact). In addition, the lower the value of TC/D, the lower the energy
consumption.

5.4.2 Comparison with Single Speed

At first, we observe that the results are identical for any value of W/D, up to a
translation of EC (see (W/D = 0.2,EC = 10−3) vs. (W/D = 5,EC = 1000) or
(W/D = 1,EC = 10−3) vs. (W/D = 5,EC = 0.1) on Fig. 6, for instance).

Then the next observation is that for EXPECTED-DEADLINE, with a small
λ (< 10−2), MULTIPLECHUNKS or MULTIPLESPEEDS models do not improve the
energy ratio. This is due to the fact that, in both expressions for energy and for exe-
cution time, the re-execution term is negligible relative to the execution one, since it
has a weighting factor λ. However, when λ increases, if the energy of a checkpoint
is small relative to the total work (which is the general case), we can see a huge
improvement (between 25 and 75 % energy saving) with MULTIPLECHUNKS.

On the contrary, as expected, for small λs, re-executing at a different speed
has a huge impact for Hard-Deadline, where we can gain up to 75 % energy
when the failure rate is low. We can indeed run at around half speed during the first
execution (leading to the 1/22 = 25 % saving), and at a high speed for the second one,

76 G. Aupy et al.

because the very low failure probability avoids the explosion of the expected energy
consumption. For both MULTIPLECHUNKS and SINGLECHUNK, this saving ratio
increases with λ (the energy consumed by the second execution cannot be neglected
any more, and both executions need to be more balanced), the latter being more
sensitive to λ. But the former is the only configuration where TC has a significant
impact: its performance decreases with TC ; still it remains still it remains strictly
better than SINGLECHUNK MULTIPLESPEEDS.

5.4.3 Comparison Between EXPECTED-DEADLINE and Hard-Deadline

As before, the value of W/D does not change the energy ratios up to translations
of EC . As expected, the difference between the EXPECTED-DEADLINE and Hard-
Deadline models is very important for the SINGLESPEED variant: when the energy
of the re-execution is negligible (because of the failure rate parameter), it would
be better to spend as little time as possible doing the re-execution in order to have
a speed as slow as possible for the first execution, however we are limited in the
SINGLESPEED Hard-Deadline model by the fact that the re-execution time is fully
taken into account (its speed is the same as the first execution, and there is no
parameter λ to render it negligible).

Furthermore, when λ is minimum, MULTIPLESPEEDS consumes the same energy
for EXPECTED-DEADLINE and for Hard-Deadline. Indeed, as expected, the λ in
the energy function makes it possible for the re-execution speed to be maximal: it has
little impact on the energy, and it is optimal for the execution time; this way we can
focus on slowing down the first execution of each chunk. For Hard-Deadline, we
already run the first execution at half speed, thus we cannot save more energy, even
considering EXPECTED-DEADLINE instead. When λ increases, speeds of Hard-
Deadline cannot be lowered but the expected execution time decreases, making
room for a downgrade of the speeds in the EXPECTED-DEADLINE problems.

5.5 Concluding Remarks

In this section, we have studied the energy consumption of a divisible computational
workload on volatile platforms under the CONTINUOUS speed model. In particular,
we have studied the expected energy consumption under different deadline con-
straints: a soft deadline (a deadline for the expected execution time), and a hard
deadline (a deadline for the worst case execution time).

As stated in Sect. 2, the CONTINUOUS speed model is theoretically appealing,
and allowed us to show mathematically, for all cases but one, that when using the
MULTIPLECHUNKS model, then (i) every chunk should be equally sized; (ii) every
execution speed should be equal; and (iii) every re-execution speed should also be
equal. This problem remains open in the MULTIPLESPEEDS Hard-Deadline variant.

Energy-Aware Algorithms for Task . . . 77

Through a set of extensive simulations we have shown the following: (i) when the
fault parameterλ is small, for EXPECTED-DEADLINE constraints, the SINGLECHUNK

SINGLESPEED model leads to almost optimal energy consumption. This is not true for
the Hard-Deadline model, which accounts equally for execution and re-execution,
thereby leading to higher energy consumption. Therefore, for the Hard-Deadline
model and for small values of λ, the model of choice should be the SINGLECHUNK

MULTIPLESPEEDS model, and that is not intuitive. When the fault parameter rate λ
increases, using a single chunk is no longer energy-efficient, and one should focus
on the MULTIPLECHUNKS MULTIPLESPEEDS model for both deadline types.

An interesting direction for future work is to extend this study to the case of
an application workflow: instead of dealing with a single divisible task, we would
deal with a DAG of tasks, that could be either divisible (checkpoints can take place
anytime) or atomic (checkpoints can only take place at the end of the execution of
some tasks). Again, we can envision both soft or hard constraints on the execution
time, and we can keep the same model with a single re-execution per chunk/task, at the
same speed or possibly at a different speed. Deriving complexity results and heuristics
to solve this difficult problem is likely to be very challenging, but could have a
dramatic impact to reduce the energy consumption of many scientific applications.

6 Conclusion

In this chapter, we have discussed several energy-aware algorithms aiming at de-
creasing the energy consumption in data centers. We have started with a description
of various energy models, ranking from the most theoretical model of continuous
speeds to the more realistic discrete model. Indeed, processor speeds can be changed
thanks to the DVFS technique (Dynamic Voltage and Frequency Scaling), hence
decreasing energy consumption when running at a lower speed. Of course, perfor-
mance should not be sacrificed for energy, and a bound on the performance should
always be enforced.

We have first illustrated these models on a task graph scheduling problem where
we can reclaim the energy of a schedule by running some non-critical tasks at a
lower speed. Depending upon the model, the complexity of the problem varies:
while several optimality results can be obtained with continuous speeds, the problem
with discrete speeds is NP-hard. Through this study, we have laid the theoretical
foundations for a comparative study of energy models.

We have then targeted a problem typical of data centers, namely the replica place-
ment problem. The root server has the original copy of the database but cannot serve
all clients directly, so a distribution tree is deployed to provide the clients with a
hierarchical and distributed access to replicas of the original data. The problem is
to decide where to place replicas, and where to serve each client. We have provided
an optimal dynamic programming algorithm that works in a dynamic setting: we as-
sume that client requests can evolve over time, and hence some replicas are already
placed in the network. It is more efficient to re-use some of these replicas if possible.

78 G. Aupy et al.

We have also added a criterion of power consumption to the problem, and proved the
NP-completeness of this problem with a discrete energy model. In addition, some
practical solutions have been proposed.

Finally, a rising concern in data centers, apart from energy consumption, is higher
failure rate. We have therefore discussed checkpointing strategies, in the case of a
divisible workload. Two deadline constraints have been studied: a hard deadline
scenario corresponding to real-time environments where task deadlines are always
strictly enforced, and a soft deadline scenario corresponding to a more flexible envi-
ronment, where an average response time must be enforced. We have conducted this
study under the continuous model, which enabled us to derive theoretical results:
we proved that every chunk should be equally sized, and that every speed should be
equal. In case of failure, we re-execute a chunk, and all re-execution speeds should
also be equal.

Through these three case studies, we have demonstrated the importance and the
complexity of proposing energy-aware solutions to problems that occur in data cen-
ters. We have provided a first step towards energy-efficient data centers by first
discussing energy models, and then designing energy-efficient algorithms for some
typical problems. Several research directions have been opened.

Acknowledgments This work was supported in part by the ANR RESCUE project.

References

1. AMD processors. http://www.amd.com.
2. G. Aupy, A. Benoit, F. Dufossé, and Y. Robert. Reclaiming the energy of a schedule: models

and algorithms. Concurrency and Computation: Practice and Experience, 2012.
3. G. Aupy, A. Benoit, R. Melhem, P. Renaud-Goud, and Y. Robert. Energy-aware checkpoint-

ing of divisible tasks with soft or hard deadlines. In Proceedings of the International Green
Computing Conference (IGCC), Arlington, USA, June 2013.

4. H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor real-time systems. In
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS),
pages 113–121. IEEE CS Press, 2003.

5. N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and temperature. Journal
of the ACM, 54(1):1–39, 2007.

6. E. Beigne, F. Clermidy, J. Durupt, H. Lhermet, S. Miermont,Y. Thonnart, T. Xuan, A.Valentian,
D. Varreau, and P. Vivet. An asynchronous power aware and adaptive NoC based circuit. In
Proceedings of the 2008 IEEE Symposium on VLSI Circuits, pages 190–191, June 2008.

7. E. Beigne, F. Clermidy, S. Miermont,Y. Thonnart, A.Valentian, and P.Vivet. A Localized Power
Control mixing hopping and Super Cut-Off techniques within a GALS NoC. In Proceedings of
the IEEE International Conference on Integrated Circuit Design and Technology and Tutorial
(ICICDT), pages 37–42, June 2008.

8. A. Benoit, V. Rehn-Sonigo, and Y. Robert. Replica placement and access policies in tree
networks. IEEE Trans. Parallel and Distributed Systems, 19(12):1614–1627, 2008.

9. A. Benoit, P. Renaud-Goud, andY. Robert. Power-aware replica placement and update strategies
in tree networks. In Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS), Anchorage, USA, May 2011.

10. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Energy-Aware Algorithms for Task . . . 79

11. G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo. Soft Real-Time Systems: Predictability vs.
Efficiency. Springer series in Computer Science, 2005.

12. A. P. Chandrakasan andA. Sinha. JouleTrack: A Web Based Tool for Software Energy Profiling.
In Design Automation Conference, pages 220–225, Los Alamitos, CA, USA, 2001. IEEE
Computer Society Press.

13. G. Chen, K. Malkowski, M. Kandemir, and P. Raghavan. Reducing power with performance
constraints for parallel sparse applications. In Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS), page 8 pp., Apr. 2005.

14. J.-J. Chen and C.-F. Kuo. Energy-Efficient Scheduling for Real-Time Systems on Dynamic
Voltage Scaling (DVS) Platforms. In Proceedings of the International Workshop on Real-Time
Computing Systems and Applications, pages 28–38, Los Alamitos, CA, USA, 2007. IEEE
Computer Society.

15. J.-J. Chen and T.-W. Kuo. Multiprocessor energy-efficient scheduling for real-time tasks. In
Proceedings of International Conference on Parallel Processing (ICPP), pages 13–20. IEEE
CS Press, 2005.

16. I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic content. Computer Networks,
40:205–218, 2002.

17. V. Degalahal, L. Li, V. Narayanan, M. Kandemir, and M. J. Irwin. Soft errors issues in low-
power caches. IEEE Trans. Very Large Scale Integr. Syst., 13:1157–1166, October 2005.

18. J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka, P. Messina, T. Moore,
R. Stevens, A. Trefethen, and M. Valero. The international exascale software project: a call to
cooperative action by the global high-performance community. Int. J. High Perform. Comput.
Appl., 23(4):309–322, 2009.

19. M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

20. R. Ge, X. Feng, and K. W. Cameron. Performance-constrained distributed DVS scheduling for
scientific applications on power-aware clusters. In Proceedings of the ACM/IEEE conference
on SuperComputing (SC), page 34. IEEE Computer Society, 2005.

21. R. Gonzalez and M. Horowitz. Energy dissipation in general purpose microprocessors. IEEE
Journal of Solid-State Circuits, 31(9):1277–1284, Sept. 1996.

22. P. Grosse, Y. Durand, and P. Feautrier. Methods for power optimization in SOC-based data
flow systems. ACM Trans. Des. Autom. Electron. Syst., 14:38:1–38:20, June 2009.

23. Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D. Takahashi. Profile-based optimiza-
tion of power performance by using dynamic voltage scaling on a pc cluster. In Proceedings
of the International Parallel and Distributed Processing Symposium (IPDPS), page 340, Los
Alamitos, CA, USA, 2006. IEEE Computer Society Press.

24. Intel XScale technology. http://www.intel.com/design/intelxscale.
25. T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable voltage pro-

cessors. In Proceedings of International Symposium on Low Power Electronics and Design
(ISLPED), pages 197–202. ACM Press, 1998.

26. R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling for real-time
embedded systems. In Proceedings of the 41st annual Design Automation Conference (DAC),
pages 275–280, New York, NY, USA, 2004. ACM.

27. K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement of replicas in trees with read,
write, and storage costs. IEEE Trans. Parallel and Distributed Systems, 12(6):628–637, 2001.

28. H. Kawaguchi, G. Zhang, S. Lee, and T. Sakurai. An LSI for VDD-Hopping and MPEG4
System Based on the Chip. In Proceedings of the International Symposium on Circuits and
Systems (ISCAS), May 2001.

29. K. H. Kim, R. Buyya, and J. Kim. Power-Aware Scheduling of Bag-of-Tasks Applications
with Deadline Constraints on DVS-enabled Clusters. In Proceedings of the IEEE International
Symposium on Cluster Computing and the Grid (CCGRID), pages 541–548, May 2007.

80 G. Aupy et al.

30. K. Lahiri, A. Raghunathan, S. Dey, and D. Panigrahi.: a new frontier in low power design.
In Proceedings of the 7th Asia and South Pacific Design Automation Conference and the 15th
International Conference on VLSI Design (ASP-DAC), pages 261–267, 2002.

31. P. Langen and B. Juurlink. Leakage-aware multiprocessor scheduling. J. Signal Process. Syst.,
57(1):73–88, 2009.

32. S. Lee and T. Sakurai. Run-time voltage hopping for low-power real-time systems. In
Proceedings of DAC’2000, the 37th Conference on Design Automation, pages 806–809, 2000.

33. P. Liu, Y.-F. Lin, and J.-J. Wu. Optimal placement of replicas in data grid environments with
locality assurance. In International Conference on Parallel and Distributed Systems (ICPADS).
IEEE Computer Society Press, 2006.

34. S. Miermont, P. Vivet, and M. Renaudin. A Power Supply Selector for Energy- and Area-
Efficient Local Dynamic Voltage Scaling. In Integrated Circuit and System Design. Power and
Timing Modeling, Optimization and Simulation, volume 4644 of Lecture Notes in Computer
Science, pages 556–565. Springer Berlin / Heidelberg, 2007.

35. M. P. Mills. The internet begins with coal. Environment and Climate News, page., 1999.
36. T. Okuma, H. Yasuura, and T. Ishihara. Software energy reduction techniques for variable-

voltage processors. IEEE Design Test of Computers, 18(2):31–41, Mar. 2001.
37. R. B. Prathipati. Energy efficient scheduling techniques for real-time embedded systems.

Master’s thesis, Texas A&M University, May 2004.
38. K. Pruhs, R. van Stee, and P. Uthaisombut. Speed scaling of tasks with precedence constraints.

Theory of Computing Systems, 43:67–80, 2008.
39. V. J. Rayward-Smith, F. W. Burton, and G. J. Janacek. Scheduling parallel programs assuming

preallocation. In P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra, and Z. Liu , editors, Scheduling
Theory and its Applications. John Wiley and Sons, 1995.

40. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of Algorithms
and Combinatorics. Springer-Verlag, 2003.

41. J. A. Stankovic, K. Ramamritham, and M. Spuri. Deadline Scheduling for Real-Time Systems:
EDF and Related Algorithms. Kluwer Academic Publishers, Norwell, MA, USA, 1998.

42. L. Wang, G. von Laszewski, J. Dayal, and F. Wang. Towards Energy Aware Scheduling
for Precedence Constrained Parallel Tasks in a Cluster with DVFS. In Proceedings of the
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGRID), pages
368–377, May 2010.

43. J.-J.Wu,Y.-F. Lin, and P. Liu. Optimal replica placement in hierarchical Data Grids with locality
assurance. Journal of Parallel and Distributed Computing (JPDC), 68(12):1517–1538, 2008.

44. R. Xu, D. Mossé, and R. Melhem. Minimizing expected energy consumption in real-time
systems through dynamic voltage scaling. ACM Trans. Comput. Syst., 25(4):9, 2007.

45. L. Yang and L. Man. On-Line and Off-Line DVS for Fixed Priority with Preemption Thresh-
old Scheduling. In Proceedings of the International Conference on Embedded Software and
Systems (ICESS), pages 273–280, May 2009.

46. F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In Proceed-
ings of the 36th Annual Symposium on Foundations of Computer Science (FOCS), page 374,
Washington, DC, USA, 1995. IEEE Computer Society.

47. Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and voltage selection for energy min-
imization. In Proceedings of the 39th annual Design Automation Conference (DAC), pages
183–188, New York, NY, USA, 2002. ACM.

48. D. Zhu, R. Melhem, and D. Mossé. The effects of energy management on reliability in real-time
embedded systems. In Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 35–40, 2004.

Energy Efficiency in HPC Data Centers: Latest
Advances to Build the Path to Exascale

Sébastien Varrette, Pascal Bouvry, Mateusz Jarus and Ariel Oleksiak

1 Introduction

Nowadays, moderating energy consumption and building eco-friendly computing
infrastructure is a major goal in large data centers. Moreover, data center energy
usage has risen dramatically over the past decade and will continue to grow in-step
with the High Performance Computing (HPC) intensive workloads which are at the
heart of our modern life. The recent advances in the technology has driven the data
center into a new phase of expansion featuring solutions with higher density. To this
end, much has been done to increase server efficiency and IT space utilization. In this
chapter, we will provide a state-of-the-art overview as regards energy-efficiency in
High Performance Computing (HPC) facilities while describing the open challenges
the research community has to face in the coming years to enable the building and
usage of an Exascale platform by 2020.

S. Varrette (�) · P. Bouvry
Computer Science and Communication (CSC) Research Unit, University of Luxembourg, 6,
rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
e-mail: sebastien.varrette@uni.lu

P. Bouvry
e-mail: pascal.bouvry@uni.lu

M. Jarus · A. Oleksiak
Poznań Supercomputing and Networking Center, Noskowskiego 10, Poznań, Poland
e-mail: jarus@man.poznan.pl

A. Oleksiak
e-mail: ariel@man.poznan.pl

© Springer Science+Business Media New York 2015 81
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_3

82 S. Varrette et al.

Table 1 Main HPC performance metrics

Type Metric

Computing capacity/speed Floating point operations per seconds (Flops)

1 GFlops = 109 Flops

1 TFlops = 1012 Flops

1 PFlops = 1015 Flops

Storage capacity Multiples of bytes = 8 bits

1 GB = 109 bytes 1 GiB = 10243 bytes

1 TB = 1012 bytes 1 TiB = 10244 bytes

1 PB = 1015 bytes 1 PiB = 10245 bytes

Transfer rate on a medium Mb/s or MB/s

I/O performance Sequential vs Random R/W speed, IOPS

Computing energy performance Flops/watt

Fig. 1 Evolution of computing systems

2 Computing Systems Architectures

2.1 Architecture of the Current HPC Facilities

Since the advent of computer sciences, applications have been intrinsically restricted
by the computing power available on execution. It led to a race to build more and
more efficient supercomputers, opening the area of High Performance Computing
(HPC). The main performance metrics used in this context are summarized in the
Table 1.

Computing systems used to evolve according to successive generations summa-
rized in the Fig. 1. As of today, computing systems are multi-core i.e. they embedded
several computing units which operate in parallel. Also, the Cloud Computing (CC)
paradigm opens new perspective as regards computing facilities, when mobile pro-
cessors are called to as the leading technology in the processor market for the coming

Energy Efficiency in HPC Data Centers 83

Table 2 Top500 milestones (Gordon Bell Prize)

Date Computing capacity HPC system

1988 1 GFlops Cray Y-MP 8 processors

1998 1 TFlops Cray T3E 1024 processors

2008 1 PFlops Cray XT5 1.5 × 105 processors

2018? 1 EFlops n/a

Fig. 2 Moore’s law illustrated on supercomputer

years—the reasons for this market change will become self-explanatory by the end
of this chapter.

Figure 2 illustrates a famous empirical law due to an engineer at Fairchild Semi-
conductor named Gordon Moore in the 60s, stating that the density of transistors in
a micro-processor are doubling every 18 months. For a couple or years, this law has
been reformulated as follows: the number of cores embedded in an micro-processor
are doubling every 18 months. Nonetheless, this law is validated since the 1990s by
the Top500 [14] project which rank the world’s 500 most powerful computers using
the High-Performance Linpack (HPL) benchmark. We will have the opportunity to
describe more precisely this benchmark, together with its “green” derivative project
named Green 500, in the section 2.3. Nevertheless, it raises the set milestones of
relevance for this chapter summarized in the Table 2.

Different hardware architectures used to permit these milestones to be reached. If
we focus on today’s systems relative to the seminal classification of Flynn [25], we
are now relying on two architectures:

84 S. Varrette et al.

Fig. 3 MMX extension on x86 architectures

1. Single Instruction Multiple Data (SIMD) i.e. vector machines
2. Multiple Instruction Multiple Data (MIMD) with shared or distributed memory.

Vector Machines—General-Purpose Graphics Processing Unit (GPGPU) This
architecture is tuned to performe element-wise operations on entire vectors in a
single instruction. For instance, Fig. 3 illustrates a parallel reduction operated using
the MMX extension on x86 architectures or the AltiVec on PowerPC.

These operations are now typically implemented in General-Purpose Graphics
Processing Unit (GPGPU) cards (such as nVidia Tesla or ATI Radeon cards) which
offer impressive computing performances for a relatively low power consumption.
For instance, in 2010, the ATI Radeon HD 5970 used to feature 3200 stream procs
running at a frequency of 725 MHz (thus achieving a theoretical computing perfor-
mance of 4.64 TFlops), for a maximum power consumption of 294 W. For some
application, it may be worth to adapt to the capabilities of these devices to ensure
large power savings—we will have the opportunity to come back to this later in this
chapter.

MIMD with Shared Memory: Symmetric Multi-Processor (SMPs) Under this
category falls Symmetric Multi-Processor (SMPs) where all processors access the
same memory and I/O. Thus it also applies to multi-core machines. Up to now, most
HPC systems are built on such general purpose multi-core processors that use the
x86 and Power instruction sets (both to ensure backward productivity and enhance
programmers productivity). They are mainly provided by three vendors: Intel (around
71 % of the systems listed in the latest Top500 list1), AMD (12 %) and IBM (11 %).
While initially designed to target the workstation and laptop market, these processors
admittedly offer very good single-thread performance (typically eight operations per
cycle @ 2 GHz i.e. 16 GFlops), yet at the price of a relative low energy efficiency.
For instance, the Table 3 details the Thermal Design Power (TDP) of the top four
processors technologies present in the latest Top500 list.

Other systems, often referred to as Massively Parallel Processors (MPPs), fea-
ture a virtual shared-memory with global address space over physically distributed

1 Top500 List of November 2012—see http://top500.org.

http://top500.org

Energy Efficiency in HPC Data Centers 85

Table 3 TDP of the top 4 processors technologies present in the Top500 List (Nov. 2012)

Processor
technology

Top500 count Model example Max. TDP

Intel Nehalem 225 (45 %) Xeon X5650 6C 2.66 GHz 85 W 14.1 W/core

Intel Sandybridge 134 (26.8 %) Xeon E5-2680 8C 2.7 GHz 130 W 16.25 W/core

AMD x86_64 61 (12.2 %) Opteron 6200 16C “Interlagos” 115 W 7.2 W/core

IBM PowerPC 53 (10.6 %) Power BQC 16C 1.6 GHz 65 W 4.1 W/core

Fig. 4 Overview of the memory hierachy in a computing system

memory. This type of architecture, generally quite expansive, corresponds to 16 %
of the computers present in the latest Top500 list.

MIMD with Distributed Memory: Clusters and Grids A low-cost alternative
to MPPs feature large-scale distributed systems such as clusters and grids. It
corresponds to 83.4 % of the systems listed in the latest Top500 list.

2.2 Overview of the Main HPC Components

At the heart of HPC systems rely the computing components i.e. CPUs (see Table 3)
or GPGPUs. Another important component is the local memory which exists at
a different level as illustrated in the Fig. 4.

The interconnect backbone ensures high-performing communications between
the resources of an HPC data center. The two key criteria at this level are the latency
(i.e. the time to send a minimal (0 byte) message from A to B) and the bandwidth
(the maximum amount of data communicated per unit of time). There exist several
technologies, the main one being listed in the Table 4. The most represented inter-
connect family in the latest Top500 list corresponds to the Infiniband technology
(around 41 %).

86 S. Varrette et al.

Table 4 Overview of the main interconnect technologies.

Technology Effective Bandwidth Latency (μs)

Gigabit ethernet 1 Gb/s 125 MB/s 40–300

Myrinet (Myri-10G) 9.6 Gb/s 1.2 GB/s 2.3

10 Gigabit Ethernet 10 Gb/s 1.25 GB/s 4–5

Infiniband QDR 40 Gb/s 5 GB/s 1.29–2.6

SGI NUMAlink 60 Gb/s 7.5 GB/s 1

Of course, a software stack is mandatory to operate and exploit efficiently an
HPC platform. Nearly every reasonable infrastructure features a Linux Operating
System (OS) (95.2 % of the systems ranked in the latest Top500 list). As regards
the type of architecture deployed in HPC data centers, most of them corresponds to
clusters (83.4 % of the Top500 list). A computing clusters are generally organized in
the configuration illustrated on Fig. 5, thus features

• an access server used as an SSH interface for the user to the cluster that grants
the access to the cluster internals;

• a user frontend (eventually merged with the access node), used to reserve
nodes on the cluster etc.

• an adminfront, often virtualised (typically over the Xen hypervisor [18])
which host the different services required to manage the cluster (either to deploy
the computing nodes or to manage various configuration aspects on the cluster
such as the user authentication (generally via an LDAP directory) or the Resource
and Job Management System (RJMS) (MOAB, OAR, SLURM etc.).

• a shared storage area, typically over a network File system such as NFS, GPFS
or Lustre, used for data sharing (homedirs etc.) among the computing nodes and
the user frontend

• the computing nodes and the fast interconnect equipment (typically based on the
technologies listed in the Table 4).

Data Center Cooling Technologies One of the key factors to operate an HPC
platform and obtain the expected performance is the cooling. There are many aspects
that must be considered before deciding on a cooling approach to use in a given data
center. Energy usage, installation specifics such as the location of the data center
itself (does it stand in a cold area etc.), the density of the data center on a per rack
and kilowatt per square meter level and other user-specific requirements will all
impact this decision. We now review the main cooling technologies that exist.

Historically supercomputers used to be only air-cooled. As the density of com-
puting equipment increases, cooling became a significant challenge. Although more
performance is expected to be delivered by next computing systems, their power
consumption (and thus also power drawn by cooling) should ideally at least stay at
the same level. What is more, high density enclosures often create the potential for
hot spots—places with significantly higher temperatures not able to be cooled by
traditional chillers.

Energy Efficiency in HPC Data Centers 87

Fast local interconnect

1 GbE

Other Clusters
network

Local Institution
Network

10 GbE10 GbE

1 GbE

C
lu

s
te

r A

NFS and/or Lustre

Disk Enclosure

Site Shared Storage Area

PuppetOAR Kadeployoy

supervisioonn etc... Site Computing Nodes

C
lu

s
te

r B

Site router

Fig. 5 General organization of a computing clusters

The power consumed by single racks can vary dramatically, with an average
around 1.7 kW up to 20 kW in high density servers. Server systems require specific
amount of cool air at the intake, depending on their power consumption, and exhausts
the same amount of heated air at the outake. In case the room is not capable of
providing this quantity of air, the server will draw in its own exhaust air. This situation
results in overheating the equipment. Proper cooling design is therefore inevitable
for an uninterraptable server operation.

There are three basic cooling architectures: room-, row- and rack-oriented. In
the first one Computer Room Air Conditioners (CRAC) units are associated with the
room. Cool air supplied by the conditioners may be unrestricted or partially restricted
by ducts or vents. The full rated capacity of the CRAC unit cannot be utilized in most
cases. It results from the fact that the air supply uniformity is poor due to specific
room designs, such as its shape or obstructions. In row-oriented architectures CRAC
units are associated with a row. Its performance is higher, as the airflow paths are
shorter. As a result, required CRAC fan power supply is smaller, which also decreases
the cost of energy. In the last architecture, rack-oriented, CRAC units are associated
with the rack. It allows the cooling to be accurately adjusted to the needs of servers.
The drawback is, on the hand, that it requires a large number of air conditioning
devices.

These three types of cooling architectures may be described in more detail by
taking a closer look at the specific air distribution systems. All of them consist of
a supply system, which distributes the cool air from the CRAC unit to the computing
architectures, and a return system that takes the exhaust air from the loads back to
the CRAC. Each of these types has capabilities and benefits, which cause them to

88 S. Varrette et al.

be preferred for various applications. Both the supply and return systems may be
designed in three ways:

• flooded
• locally ducted
• fully ducted

The first one is the most basic in its design, as no ductwork is used to move the air.
This scenario presents the highest risk of mixing hot and cold air in the room. The
separation of the exhaust and intake air is crucial as it significantly increases the
efficiency and capacity of the cooling system, therefore fully flooded options should
be only used in environments drawing less than 40 kW of power, up to 3 kW per
rack. The advantage of this solution is a low cost of deployment.

In locally ducted designs some ductwork is used to partially supply cold air or
receive hot air from computing systems. It becomes necessary in cases where power
density increases. Locally ducted designs are best suited for computing systems up
to 5 kW per rack.

When specialized equipment provides for direct input air ducting, fully ducted
supply systems may be used. They are also typically used in rooms with raised floor
environments, where cold air may be supplied to servers under floor. Fully ducted
supplies are appropriate for racks drawing up to 15 kW of power.

These architectures may be mixed, resulting in e.g. locally ducted supplies and
fully ducted returns or flooded supplies and locally ducted returns. Altogether they
give nine different cooling systems, all of which are presented in Fig. 6. More
information about them can be found in [36].

Of course despite choosing the right cooling architecture, equally important are
other factors, such as quantity and location of vents, size of the ductwork or location
of CRAC units. All of these aspects must be carefully considered during the server
room design phase.

Despite traditional air-cooled servers, liquid cooling is also recently gaining popu-
larity. In January 2012 IBM and Leibniz Supercomputing Centre announced the start
of hot-water cooled supercomputer, SuperMUC [12]. The computing performance
of this supercomputer is 3 petaflops. The water that cools the computing resources
is conducted away from the machines, carrying heat with it to an exchange in which
it’s used in heating the human-occupied areas of the building.

Similar solutions are also used in other research centers. A prototype supercom-
puter at the Tokyo Institute of Technology, named Tsubame-KFC, is submerged in
a tank of mineral oil. The heat absorbed by oil is transferred into water loops via
heat exchangers. The warm water releases its heat into the air via a cooling tower.
Tsubame-KFC was ranked 1st on the world’s Green500 List of computer systems as
of November 2013 [13].

Different liquids are also used to accomplish the task of cooling systems. Iceotope
[6] submerges computers in liquid fluoroplastic, called Novec 1230. Just like mineral
oil, it does not conduct electricity. Therefore there is no risk of short-circuiting the
equipment or damaging it. Many research experiments proved this type of cooling
to be very efficient. An Iceoptope-based server deployed at Poznan Supercomputing

Energy Efficiency in HPC Data Centers 89

Fig. 6 Different types of cooling systems

and Networking Center (PSNC) proved that this type of cooling is 20 times more
efficient than traditional air-based chillers [28].

2.3 HPC Performance and Energy Efficiency Evaluation

The way that performance is measured is critical, as it can determine if a server or
other equipment will meet a consumer’s needs or be eligible for utility rebates or re-
quired as part of federal or state procurement requirements. Developing performance
metrics for even the simplest types of equipment can prove difficult and controversial.
For this reason, in 1988 the System Performance Evaluation Cooperative (now named
Standard Performance Evaluation Corporation, SPEC) was founded. It is a non-profit
organization that develops benchmarks for computers and is continuously working
on energy-performance protocols—for small to medium-sized servers. Currently it
is one of the more successful performance standardization bodies. It develops suites
of benchmarks intended to measure computer efficiency, aimed to test “real-life”
situations. They are publicly available for a fee covering development and adminis-
trative costs. Thanks to these standardized benchmarks it is possible to compare the
performance of different machines and rank them.

The High-Performance Linpack (HPL) Benchmark and the Green500 Chal-
lenge There are a few initiatives aimed at providing the list of computers in terms of

90 S. Varrette et al.

performance or energy efficiency. One of the most popular is the TOP500 project [14]
mentioned previously. Since 2003 it ranks twice a year the 500 most powerful com-
puter systems in the world. Current fastest supercomputer, Tianhe-2, achieved a score
which is 567,000 times better than the one obtained by the fastest supercomputer in
1993.

The rank in itself relies on results obtained by the running the High-Performance
Linpack (HPL) reference benchmark [35]. HPL is a software package that solves a
(random) dense linear system in double precision (64 bits) arithmetic on distributed-
memory computers. This suit was chosen thanks to it widespread use. The result
does not reflect the overall performance of a given system, but rather reflects the
performance of a dedicated system for solving a dense system of linear equations.
The list was often misinterpreted, often regarded as a general rank that is valid for all
applications. To fully examine the performance of the system, an approach consisting
of different benchmarks, testing different parts of a supercomputer, is required.

One of the main advantages of Linpack is its scalability. It’s been used since the
beginning of the list, making it possible to benchmark systems that cover a perfor-
mance range of 12 orders of magnitude. Moreover, it also measures the reliability
for new HPC systems. Some systems were not able to run the Linpack benchmark
because they were not stable enough.

Many of these supercomputers consume vast amounts of electrical power and
produce so much heat that large cooling facilities must be constructed to ensure
proper performance.

In parallel and for decades, the notion of HPC performance has been synonymous
with speed (as measured in Flops). In order to raise awareness of other performance
metrics than the pure computing speed (as measured in Flops for instance by the HPL
suit), the Green500 project [37] was launched in 2005 to evaluate the “Performance
per Watt” (PpW) and energy efficiency for improved reliability. More precisely, The
PpW metric is defined as follows:

PpW = Rmax (in MFlops)

Power(Rmax) (in W)

This metric is particularly interesting because it is somehow independent of the actual
number of physical nodes.

Current most energy-effective (Green500 list from June) supercomputer is Eurora,
with 3208.83 MFLOPS/W. On the TOP500 list it takes 467th place. By extrapolat-
ing its performance to exascale results, it would result in 312 MW machine. The
electricity bills for such a system would be more than US$ 300 million per year.
Since current requirements for such a system require the power draw not higher than
20–30 MW, it clearly shows the scale of the challenge that is going to be faced before
building an exascale system.

Since the launch of the Green500 list, the energy-efficiency of the highest-ranked
machines has improved by only about 11 %. Their performance has increased at a
higher rate. It was due to the fact that for decades there was an emphasis on speed
as the most important metric. The Green500 seeks to raise awareness in energy
efficiency of supercomputers and treat them equally with speed.

Energy Efficiency in HPC Data Centers 91

The [Green] Graph500 Benchmark Suit Emerging large-data problems have dif-
ferent performance characteristics and archietctural requirements than the floating
point performance oriented problems. Supercomputers are typically optimized for
the 3D simulation of physics. For this reason in 2010 the Graph 500 list was created to
provide information on the suitability of supercomputing systems for data intensive
applications. Three key classes of graph kernels with multiple possible implemen-
tations were proposed: Search, Optimization and Edge Oriented [33]. Paralelly the
Green Graph 500 was created, to complement the Graph 500 list with an energy
metric for data intensive computing.

The emergence of such “green” lists clearly shows much greater importance at-
tached to the power consumed by computing systems. There have been also many
metrics devised that try to quantitatively describe the energy-effectiveness of whole
data centers. One of the most widely used is Power Usage Effectiveness (PUE) [16].
It is the recommended metric for characterizing and reporting overall data centre in-
frastructure efficiency. Its value indicates the relation between the fraction of power
used only for components of the IT (servers, racks, . . .) and the complete power
consumption of a data centre:

The Challenge (HPCC) Recently, the HPL benchmark has been integrated in a
more general benchmark suite, named HPC Challenge (HPCC), which quickly be-
came the industry standard suite used to stress the performance of multiple aspects
of an HPC system, from the pure computing power to the disk/RAM usage or the
network interface efficiency. More precisely, HPCC basically consists of seven tests:

1. HPL (the High-Performance Linpack benchmark), which measures the floating
point rate of execution for solving a linear system of equations.

2. DGEMM - measures the floating point rate of execution of double precision real
matrix-matrix multiplication.

3. STREAM - a simple synthetic benchmark program that measures sustainable mem-
ory bandwidth (in gigabytes per second) and the corresponding computation rate
for simple vector kernel.

4. PTRANS (parallel matrix transpose)—exercises the communications where pairs
of processors communicate with each other simultaneously. It is a useful test of
the total communications capacity of the network.

5. RandomAccess—measures the rate of integer random updates of memory
(GUPS).

6. FFT—measures the floating point rate of execution of double precision complex
one-dimensional Discrete Fourier Transform (DFT).

7. Communication bandwidth and latency—a set of tests to measure latency and
bandwidth of a number of simultaneous communication patterns.

I/O Performance Evaluation: IOZone and IOR IOZone [11] is a complete cross-
platform suite that generates and measures a variety of file operations. Iozone is
useful for performing a broad filesystem analysis of a given computing platform,
covering tests for file I/O performances for many operations (Read, write, re-read,
re-write, read backwards/strided, mmap etc.)

92 S. Varrette et al.

IOR [10] is another I/O benchmark which is of interest when evaluating HPC
Data center components that generally feature shared storage based on distributed
and parallel FS! (FS!) such as Lustre or GPFS. In this context, IOR permits to
benchmark parallel file systems using POSIX, MPIIO, or HDF5 interfaces.

Measuring Data Center Energy Efficiency: The PUE Metric PUE = (Total data
centre energy consumption or power / IT energy consumption or power)

A PUE of 1.0 is the best possible value and only theoretically reachable, since
in that case no power can be spend for cooling and facility. Today, the average data
centre has a PUE of 1.5–2.0, heavily optimized data centres can reach a PUE of 1.1.
When calculating PUE, IT energy consumption should, at a minimum, be measured
at the output of the uninterruptible power supply (UPS). However, the industry should
progressively improve measurement capabilities over time so that measurement of
IT energy consumption directly at the IT load (e.g., servers, storage, network, etc.)
becomes the common practice.

There are also many others metrics used in data centers. GEC is a metric that
quantifies the portion of a facility’s energy that comes from green sources. GEC is
computed as the green energy consumed by the data centre (kilowatt-hour) divided
by total energy consumed by the data centre (kilowatt-hour). For the purposes of
GEC, Green energy is defined as any form of renewable energy for which the data
centre owns the rights to the green energy certificate or renewable energy certificate,
as defined by a local/regional authority. Total energy consumed at the data centre
is the total source energy, calculated identically to the numerator of PUE. ERF is a
metric that identifies the portion of energy that is exported for reuse outside of the data
centre. ERF is computed as reuse energy divided by total energy consumed by the
data centre. Reuse energy is measured as it exits the data centre control volume. Total
energy consumed by the data centre is the total source energy, calculated identically
to the numerator of PUE. CUE is a metric that enables an assessment of the total
GHG emissions of a data centre, relative to its IT energy consumption. CUE is
computed as the total carbon dioxide emission equivalents (CO2eq) from the energy
consumption of the facility divided by the total IT energy consumption, for data
centres with electricity as the only energy source this is mathematically equivalent to
multiplying the PUE by the data centre’s carbon emission factor (CEF). Many others
metrics include: Data Centre infrastructure Efficiency (DCiE), Fixed to Variable
Energy Ratio metric (FVER), Water Usage Effectiveness (WUE), etc.

3 Energy-Efficiency in HPC Data-Center: Overview &
Challenges

3.1 The Exascale Challenge

There are a lot of challenges that need to be faced by the HPC community in the area
of low-power computing devices. One of them is to build an exascale HPC system by

Energy Efficiency in HPC Data Centers 93

2020. The currently fastest supercomputer based on the top500 list, Tianhe-2 [14],
consumes almost 18 MW of power. Currently the most efficient system needs one
to 2 MW per petaflop/s. By multiplying it by 1000, to get the exascale, the re-
quired power becomes unaffordable. The most optimistic current predictions for
exascale computers in 2020 envision a power consumption of 20 to 30 MW. It is,
however, about 1 million times less power efficient than human brain, which con-
sumes 20–40 W. This comparison shows many science challenges that the computing
community needs to take on.

Current measures within a typical blade server estimate that 32.5 % of its supplied
power are distributed to the processor. Thus, some simple arithmetic calculations
permit to estimate the average consumption per core in such an EFlops system:
around 6.4 MW would be dedicated to the computing elements. Their number can
be quantified by dividing the target computing capacity (1 EFlops) by one of the
current computing cores (16 GFlops), thus leading to approximately 62.5 × 106

cores within an Exascale system. Consequently, such a platform requires a maximal
power consumption of 0.1 W per core.

To achieve this goal, alternative low-power processor architectures are required.
There are two main directions currently explored: (1) relying on General-Purpose
Graphics Processing Unit (GPGPU) accelerators or (2) using the low-power proces-
sors. They are often combined, such as in the European Mont Blanc project, which
aims at building an Exascale HPC system. It plans to use ARM CPUs combined
with Nvidia GPUs to achieve high processing speed at low power consumption. The
project aims at decreasing the power consumption at least 15- to 20-fold compared
to current fastest supercomputers.

3.2 Hardware Approaches Using Low-Power processors

Instead of high power and high performance CPUs that have been long used in
datacenters, low-energy processors are more often used in some selected areas. It is
not surprising, taking into account the growth of power consumption in recent years.
All of the main CPU producers released their own low-power architectures to the
market. Some of them targetted mainly the mobile and embedded devices. However,
server-targeted processors are becoming more and more popular. Although the size
of this market still remains unclear, the demand for such products will definitely
grow. Taking into account only the tablets and smartphones shows the popularity of
embedded processors. At the end of 2011 there were 71 million tablets running ARM
processors, which is currently the most popular producer of embedded processors.
This trend is also visible in case of data centers—those that combine many low-power
chips instead of a few high-performance processors provide more computing power
for less money and use less electricity.

The growing popularity of low-power processors is recently particularly well
visible. In June 2013 AMD announced the new Seattle ARM processor for launch in
the second half of 2014, built specifically for servers [2]. Currently the ARM CPUs

94 S. Varrette et al.

Fig. 7 CoolEmAll RECS platform—top view of one example rack featuring different processors

mainly targeted the smartphones and other smaller electronic devices market. This
release marks a step in moving away from power-hungry chips. The competition
in the field of server machines, dominated so far by Intel and AMD processors, is
becoming increasingly fierce, especially in case of low-power CPUs. Other producers
also try to enter this market. Applied Micro Circuits, Hewlett-Packard and Dell are
expected to make low-power ARM servers.

This trend is not a surprise. The average processor requires about 80–100 W of
power in idle state. On the other hand, a multi-core ARM System on Chip (which
integrates also other components, not just the processor) draws only about 4 W of
power. Moreover, such a system produces much less heat, requiring much less energy
to keep the servers cool. It also means that more chips can be installed in the same
server box.

PSNC conducts research on such low-power processors in the CoolEmAll project
[40]. The CoolEmAll Resource Efficient Computing System (RECS) is a platform
is capable to condense capacity of several hundred of servers in high density rack
[39]. It consumes only 35 kW, reducing the operating costs by 75 %. Every RECS
unit has up to 18 energy efficient computing-nodes. The density of this approach is
4–10 times higher than blade servers. Figure 7 presents an example of RECS unit
with three different processor types.

Currently there are three RECS units featuring different models of processors
being monitored and benchmarked. All of them contain 18 nodes based on Intel
Core i7-3615QE [8], Intel Atom N2600 [7] or AMD G-T40N [1] processors. Several
benchmarks were used to measure their performance and energy-efficiency [29].
The experiments performed using a few benchmarks from Phoronix Test Suite, OSU
Micro-Benchmarks, HPL, CoreMark, Fhourstones, Whetstone and Linpack confirm

Energy Efficiency in HPC Data Centers 95

high power-efficiency of these processors, yet at the same time they time they prove
to be good candidates for HPC environments.

Traditional Intel and AMD CPUs are often equipped with additional mechanisms
that aim at reducing the active and static power consumption or providing additional
performance when required. One of them is the Dynamic Voltage and Frequency
Scaling (DVFS), where the clock frequency of the processor is decreased to allow a
corresponding reduction in the supply voltage. As a result, the power consumption is
reduced. However, some tests suggest that the effectiveness of DVFS on server-class
platforms is questionable. The experiments conducted on AMD CPUs in [32] show
that while DVFS is effective on the older platforms, it actually increases energy usage
in some cases on the most recent platform.

Another mechanism are the low-power sleep modes. When the CPU is idle, it can
be commanded to enter a low-power mode, thus saving energy. Each processor has
several power modes and they are called “C-states” or “C-modes”. In each of them
the clock signal and power is cut from idle units inside the CPU. The more units are
stopped, the more energy is saved, but also more time is required for the CPU to
wake up.

Dynamic Power Switching allows power management to supply minimum power
to those domains of the CPU that are not loaded during any given period of time.
Processing in all of the domains must be constantly monitored to change its state to
a lower power mode when necessary.

Despite all those mechanisms, there are several areas where microservers with
low-power processors are the best option. Servers based on low-energy CPUs can
be widely used in data centers running massive web applications, providing hosting,
static workloads, cloud gaming and performing other similar functions. System,
where a modest amount of computing power is required with lots of disk storage
attached to the node is called cold storage. The CPU often runs in a very low power
state. OVH and 1&1, global web-hosting services companies, have tested Intel Atom
C2000 SoCs and plan to deploy them in their entry-level dedicated hosting services
in the last quarter of 2013 [9]. This CPU features up to eight cores, a range of 6–20 W
TDP, integrated ethernet and support for up to 64 GB of memory. Such processors
are also ideal for entry networking platforms that address the specialized needs for
securing and routing Internet traffic. They are ideally suited for routers and security
appliances.

3.3 Energy Efficiency of Virtualization Frameworks over HPC
Workloads

Virtualization is emerging as the prominent approach to mutualize the energy con-
sumed by a single server running multiple Virtual Machines (VMs) instances.
However, little understanding has been obtained about the potential overhead in
energy consumption and the throughput reduction for virtualized servers and/or com-
puting resources, nor if it simply suits an environment as high-demanding as a HPC

96 S. Varrette et al.

platform. Actually, this question is connected with the rise of Cloud Computing (CC)
increasingly advertised as THE solution to most IT problems. Several voices (most
probably commercial ones) emit the wish that CC platforms could also serve HPC
needs and eventually replace in-house HPC platforms.

The central component of any virtualization framework, and thus Cloud mid-
dleware, remain the hypervisor or Virtual Machine Manager. Subsequently, a VM
running under a given hypervisor is called a guest machine. There exist two types of
hypervisors, either native or hosted, yet only the first class (also named bare-metal)
presents an interest for the HPC context. This category of hypervisor runs directly on
the host’s hardware to control the hardware and to manage guest operating systems.
Among the many potential approaches of this type available today, the virtualization
technology of choice for most open platforms over the past 7 years has been the Xen
hypervisor [18]. More recently, the Kernel-based Virtual Machine (KVM) [30] and
VMWare ESXi [17] have also known a widespread deployment within the HPC com-
munity, unlike the remaining frameworks available (such as Microsoft’s Hyper-V or
OpenVZ).

In this context, a couple of recent studies demonstrate that the overhead induced
by the Cloud hypervisors cannot be neglected for a pure HPC workload. For instance,
in [27, 38], the authors propose a performance evaluation and modeling over HPC
benchmarks for the three most widespread hypervisors at the heart of most if not all
CC middleware: Xen, KVM andVMWare ESXi.At this level, the Grid’5000 platform
[5] was used to perform the experimental study. Grid’5000 is a scientific instrument
for the study of large scale parallel and distributed systems. It aims at providing a
highly reconfigurable, controllable and monitorable experimental platform to support
experiment-driven research in all areas of computer science related to parallel, large-
scale or distributed computing and networking, including the CC environments [19].

The study proposed in [38] is relevant of the computing and power performance
of the different hypervisors when compared to a “bare-metal” configuration (also re-
ferred to as the baseline environment corresponding to classical HPC computing
nodes) running in native mode i.e. without any hypervisor.

The scalability of each virtualization middleware is then evaluated under two
perspectives:

1. for a fixed number of physical hosts that run an increasing number of VMs (from
1 to 12)—see Fig. 8. It perfectly illustrates the obvious limitation raised by a
multi-VM environment as the performance is bounded by the maximal capacity
of the physical host running the hypervisors. Also, we can see that for a comput-
ing application as demanding as HPL, the VMWare ESXi hypervisor performs
generally better even if this statement is balanced by the fact that the VMWare
environment appeared particularly unstable (it was impossible to complete suc-
cessfully runs for more than four VMs) when Xen and KVM frameworks both
offer unmatched scalability;

2. for a fixed number of VM (between 1 and 12), increasing the number of physical
hosts (between 1 and 8)—see Fig. 9. It highlights a rather good scalability of the
hypervisors when physical nodes are added.

Energy Efficiency in HPC Data Centers 97

Fig. 8 HPL Performances for fixed numbers of physical nodes with increasing number of VMs per
physical host. Baseline execution uses the number of actual physical nodes

Of importance for this book chapter is the analysis using the virtual resources as
a basis for the comparisons. It means hypervisor executions on N nodes with V
VMs per nodes are compared to baseline executions on N × V physical nodes. As
this approach might appear unfair as the hardware capabilities are not the same, this
illustrates the point-of-view of the user that may not know the underlying hardware
his application is running on in a virtualized environment. In particular, the best
obtained results are displayed in the Fig. 10 which demonstrates the fast degradation
in the computing efficiency when the number for computing nodes is artificially
increased through virtualization.

To highlight the relative performance of each computing node, the iso-efficiency
ISOeffic.(n) metric was defined for a given number of computing nodes n. This
measure is based on the following definitions:

• Perfbasen: HPL performance of the baseline environment involving n computing
nodes;

• Perfbase1: Normalized performance of a bare-metal single node. For this study,
as we only started our measures with two hosts, we approximate this value by
Perfbase1 = Perfbase2

2

98 S. Varrette et al.

Fig. 9 HPL Performances for fixed numbers of VMs with increasing number of physical nodes.
Baseline execution uses the number of actual physical nodes

• Perfhypn: Maximal HPL Performance of the virtualized environment based on the
hypervisor hyp that feature a total of n computing nodes.

Then for a given hypervisor hyp:

ISOhyp
eff (n) = Perfhypn

n× Perfbase1

This definition should not be confused with the classical iso-efficiency metric used
in parallel programs, the objective being here to simply normalize the hypervisor

Energy Efficiency in HPC Data Centers 99

Fig. 10 HPL Efficiency of the considered hypervisors when compared to the baseline environment.

performance with regards to the best performance that can be obtained on a baseline
environment i.e. Perfbase1. Figure 11 expounds the evolution of ISOhyp

eff (n) with n.
Again, this measure confirms that HPC workloads do not suit virtualized environ-
ments from a pure computing capacity point of view. The virtualized environment
shows more available processors to the application. However, this computing re-
sources have reduced performance compared to actual physical processors because
they are shared for differentVMs. This is perfectly highlighted by the HPL benchmark
whose performance are mainly bounded by the performance of the processors.

All these performance evaluations confirm what other studies suggested in the
past, i.e. that the overhead induced by virtualized environments do not suit HPC
workloads. Of interest for this book chapter is the energy-efficiency of the virtualized
environments when running HPC workloads. For instance, Fig. 12 illustrates the
total power profile of a run involving each considered environment in a large scale
execution.

Figure 13 details the evolution of the PpW metric (as defined in the Green500
benchmark—see Sect. 2.3) over the baseline environment for an increasing number
of computing nodes. We have compared these values with the cases where we have
the corresponding PpW measure in the hypervisor environments. This figure outlines
many interesting aspects. First of all, with a PpW measure comprised between 700

100 S. Varrette et al.

Fig. 11 Iso-efficiency evaluation for an increasing number of computing nodes

Fig. 12 Stacked traces of the power draw of hosts for selected runs with 8 physical hosts

and 800 MFlops/W, the baseline platform would be ranked between the 93 and 112
position of the Green500 list. While surprising at first glance, this result is easily
explained by the usage of cutting-edge processors (Sandy-bridge) and the limited
number of involved resources—the linear decrease is evident in the figure. The second
conclusion that can be raised from this figure is that virtualized environments do
not even ensure a more energy-efficient usage during an HPC workload.

3.4 Energy Efficiency in Resource and Job Management Systems
(RJMSs)

The performance of an HPC system and in particular its energy efficiency, is obvi-
ously determined by the unitary performance of the subsystems that compose it, but
also by the efficiency of their interactions and management by the middleware. In
these kind of systems, a central component called the Resource and Job Manage-
ment System (RJMS) is in charge of managing the users’ tasks (jobs) on the system’s
computing resources. The RJMS has a strategic position in the whole HPC software
stack as it has a constant knowledge of both workload and resources.

Energy Efficiency in HPC Data Centers 101

Fig. 13 Green500 PpW metric for the HPL runs over the virtualized frameworks and comparison
to the baseline environments

RJMS middleware has to deal with several problematics to be efficient. First, it
has to be able to equitably distribute the computing resources to user applications.
This is one of the prerequisites for user satisfaction. Then, it has to keep a fairly high
level of utilization of the platform resources and avoid utilization “holes” as much
as possible. In order to provide the best service to the users, RJMS configuration and
scheduling policies have to reflect the user needs and their input workload. Also by
its central position, the RJMS is key to operate energy-efficient decisions, assuming
that the user workload is better modeled and characterized.

Actually, the understanding of users workloads has motivated the study of produc-
tion platform through the collection of traces from such systems and to the proposal
of a standard: The StandardWorkload Format (SWF) [21]. It is an initiative to make
workload data on parallel machines freely available and presented in a common for-
mat. This work, along with workload data collection, are presented in the Parallel
Workload Archive (PWA)2. The idea is to collect and to redistribute several traces
from real production systems built from the logs of computing clusters. With SWF,
one can work with several logs with the same tools and the format enables to be
abstracted from the complexity of mastering different ad-hoc logs from batch sched-
ulers. These contributions enabled the study of numerous workload traces. This also
led to the construction of several models, based on the statistical analysis of the
different workloads from the collection.

In many of the workloads provided in the PWA, it was observed that the system
resources utilization showed unused periods and that the service rate is higher than
the arrival rate [22]. If the low utilization comes from a bad management of the

2 See http://www.cs.huji.ac.il/labs/parallel/workload.

http://www.cs.huji.ac.il/labs/parallel/workload

102 S. Varrette et al.

Fig. 14 Energy consumption for NAS BT benchmark upon a 32 nodes (biCPU) cluster with OAR.
(Courtesy of Yiannis Georgiou; Source: [26])

resources, this will impact the users (and administrators) satisfaction. A platform not
fully used while many jobs are still waiting to be granted for computing resources can
be a symptom of this problem. If the low utilization is caused by an intrinsically low
workload by the users, several techniques to take benefit of this underutilization can
be used, such as energy saving that idles unused resources and save electrical power
[23, 34]. The objective here is to define hibernation strategies that grant computing
node to be powered off when idle during specific intervals. This mode is more and
more present in recent RJMS such as OAR [20] (the RJMS used in Grid5000 or the
UL HPC platform for instance), the idea being to wake up “sleeping” nodes when
there is a job that need the “Powered OFF” resources.

The benefit from such energy saving techniques has already been proved by the
GREEN-NET framework[23] works, as depicted in the Fig. 14. At this level, the
intelligent placement of tasks and the shutdown of unused resources enabled an
interesting energy gain, even with a high utilization of the platform.

Energy Efficiency in HPC Data Centers 103

Fig. 15 System Utilization for TACC Stampede Cluster. (Source: [24])

Research on this topic aims at building an energy efficient scheduling through an
accurate workload prediction model. Indeed, energy demand in cluster environment
is directly proportional to the size of the cluster and the typical usage of the machines
varies with time. This behavior is well visible in Fig. 15, representing TACC Stam-
pede3 cluster System Utilization in its first production months. During daytime, the
load is likely to be more than during night. Similarly, the load drastically decreases
over the weekend. Of course workloads can change upon different cluster configu-
rations and energy saving can occur if this pattern can be captured. Hence a need
for a prediction model arises and the research community currently focuses its effort
onto the characterization of this model. The objective at this level remains to scan
for current and future workload and tries to correlate it with the past load history to
design an accurate energy saving policy.

Nevertheless, having an accurate workload model is not enough to increase the
acceptance level of the users when an energy-saving mode is activated. In practice,
the hibernation strategy described above generally degrades the average slowdown of
the platform. This quantity corresponds for a given job to the ratio between the time
spent by it in the system (wait time + run time) over the effective computation time
(run time). A slowdown of 1 means that the job didn’t wait, a slowdown of 2 means
that the job waited as much as it ran. Thus the slowdown is affected by the delay
required to wake up (i.e. boot) the computing resource. Improving the slowdown of a
platform when an energy-saving mode is enabled assumes the continuous optimiza-
tion of two key parameters associated to every computing resources of the platform:
idle_time and sleep_time as illustrated in the Fig. 16. The first parameter
affects, for a given resource, the time to wait once the last job has finished before
powering off the node. The second depicts how long the machine should remain in a

3 http://www.tacc.utexas.edu/resources/hpc/stampede.

http://www.tacc.utexas.edu/resources/hpc/stampede

104 S. Varrette et al.

Fig. 16 Illustration of the two parameters to be continiously optimized when an hibernation strategy
is in place

sleeping state i.e. powered off. The key challenge is to avoid the next job scheduled
on that resource to be penalized by a delay to powering up such that in the ideal
case, the arrival of a new job is statistically anticipated to power up the machine even
before the submission so as to make the resource available at the time of submission.

4 Conclusion: Open Challenges

In this chapter we presented an overview of the latest advances in energy-efficient
computing systems. Current HPC facilities were described, together with the meth-
ods of evaluating their performance and energy-efficiency. The research community
is about to face many challenges on its way to build faster and more power-efficient
systems. We presented some examples of technological and economical barriers that
have to be overcome before building an exascale system.

The continued demand for new data center capacity and computing power re-
quires particularly careful consideration of computational infrastructure’s power
consumption. The ambitions to create an exascale system by 2020 need to face many
challenges in the design of supercomputers. However, even if this goal will not be
reached, the attempts to build such a system would certainly push forward the fron-
tiers of knowledge and contribute to the development of new, useful technology, just
like CERN’s Large Hadron Collider would have been successful even without discov-
ering the Higgs boson. A few projects worldwide have already been focused directly
on exascale systems, such as the Mont-Blanc project [4] (which aims at designing
new computer architecture that will deliver exascale performance), FastForward [3]
(which supports the development of technology that reduces economic and manufac-
turing barriers to constructing exaflop-sustained systems) or X-Stack program [15]
(which targets the advances in the system software stack that are needed for transi-
tioning to Exascale computing platforms). The outcomes of these projects have the
potential to impact many areas of computing systems, from low-power embedded
processors to cloud computing.

The exascale resources will bring competitive advantage to the country that will
first reach them. The exascale digital design and prototyping will enable rapid de-
livery of new products. It will be the results of minimizing expensive or dangerous
testing. Exascale computing will be an important part of national security. On the

Energy Efficiency in HPC Data Centers 105

other hand, the concern of growing energy demand is becoming more and more
visible nowadays. U.S. government austerity restrictions exert pressure to reduce
investments in exascale computing. The industry will continue to move forward
on its own on exascale projects, however progress will be much slower than with
government assistance. The U.S. government is currently involved in an extensive
consolidation program that promotes the use of Green IT, reduces the cost of data
center hardware, software and operations and shifts IT investments to more effi-
cient computing platforms and technologies. [31] Such initiatives clearly show the
importance of research on energy-efficient computing systems.

Acknowledgments The research presented in this paper is partially funded by a grant from Polish
National Science Center under award number 2013/08/A/ST6/00296.
The experiments presented in this paper were carried out using the HPC facility of the University
of Luxembourg and Poznan Supercomputing and Networking Center.

References

1. AMD G-T40N. http://www.amd.com/us/products/embedded/processors/Pages/g-series.aspx.
2. AMD Unveils Server Strategy and Roadmap. http:/www.amd.com/us/press-releases/Pages/

amd-unveils-2013june18.aspx.
3. DOE Extreme-Scale Technology Acceleration FastForward. https://asc.llnl.gov/fastforward/.
4. European Mont-Blanc Project. http://www.montblanc-project.eu/.
5. Grid’5000. [online] http://grid5000.fr.
6. Iceotope Servers. http://www.iceotope.com/.
7. IntelAtom Processor N2600. http://ark.intel.com/products/58916/intel-atom-processor-n2600-

(1m-cache-1_6-ghz).
8. Intel Core i7-3615QE. http://ark.intel.com/products/65709/Intel-Core-i7-3615QE-Processor-

(6M-Cache-up-to-3_30-GHz).
9. Intel unveils new technologies for efficient cloud datacenters. http://newsroom.intel.com/

community/intel_newsroom/blog/2013/09/04/intel-unveils-new-technologies-for-efficient-
cloud-datacenters.

10. IOR HPC benchmark. [online] http://sourceforge.net/projects/ior-sio/.
11. Iozone filesystem benchmark. [online] http://www.iozone.org/.
12. SuperMUC - First Commercial IBM Hot-Water Cooled Supercomputer. http://www-03.ibm.

com/press/us/en/pressrelease/38065.wss.
13. The Green500 List - November 2013. http://green500.org/lists/green201311.
14. Top500. [online] http://www.top500.org.
15. X-Stack Software. http://www.xstack.org/.
16. PUE (tm): A comprehensive examination of the metric. White paper, The Green Grid, 2012.
17. Q. Ali, V. Kiriansky, J. Simons, and P. Zaroo. Performance evaluation of HPC benchmarks

on VMware’s ESXi server. In Proceedings of the 2011 international conference on Parallel
Processing, Euro-Par’11, pages 213–222, Berlin, Heidelberg, 2012. Springer-Verlag.

18. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A.
Warfield. Xen and the art of virtualization. In Proceedings of the nineteenth ACM symposium
on Operating systems principles, SOSP ’03, pages 164–177, NewYork, NY, USA, 2003. ACM.

19. R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou, S. Lanteri, J.
Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and I.
Touche. Grid’5000: A large scale and highly reconfigurable experimental grid testbed. Int. J.
High Perform. Comput. Appl., 20(4):481–494, Nov. 2006.

http://www.amd.com/us/products/embedded/processors/Pages/g-series.aspx
http:/www.amd.com/us/press-releases/Pages/amd-unveils-2013june18.aspx
http:/www.amd.com/us/press-releases/Pages/amd-unveils-2013june18.aspx
https://asc.llnl.gov/fastforward/
http://www.montblanc-project.eu/
http://grid5000.fr
http://www.iceotope.com/
http://ark.intel.com/products/58916/intel-atom-processor-n2600-(1m-cache-1_6-ghz)
http://ark.intel.com/products/58916/intel-atom-processor-n2600-(1m-cache-1_6-ghz)
http://ark.intel.com/products/65709/Intel-Core-i7-3615QE-Processor-(6M-Cache-up-to-3_30-GHz)
http://ark.intel.com/products/65709/Intel-Core-i7-3615QE-Processor-(6M-Cache-up-to-3_30-GHz)
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/04/intel-unveils-new-technologies-for-efficient-cloud-datacenters
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/04/intel-unveils-new-technologies-for-efficient-cloud-datacenters
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/04/intel-unveils-new-technologies-for-efficient-cloud-datacenters
http://sourceforge.net/projects/ior-sio/
http://www.iozone.org/
http://www-03.ibm.com/press/us/en/pressrelease/38065.wss
http://www-03.ibm.com/press/us/en/pressrelease/38065.wss
http://green500.org/lists/green201311
http://www.top500.org
http://www.xstack.org/

106 S. Varrette et al.

20. N. Capit and al. A batch scheduler with high level components. In Cluster computing and Grid
2005 (CCGrid05), 2005.

21. S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger, U. Schwiegelshohn, W.
Smith, and D. Talby. Benchmarks and standards for the evaluation of parallel job schedulers.
In D. G. Feitelson and L. Rudolph, editors, JSSPP, pages 67–90. 1999. Lect. Notes Comput.
Sci. vol. 1659.

22. D. T. D. G. Feitelson and D. Krakov. Experience with the parallel workloads archive. Technical
report, School of Computer Science and Engineering, The Hebrew University of Jerusalem,
2012.

23. G. Da-Costa, J.-P. Gelas, Y. Georgiou, L. Lefèvre, A.-C. Orgerie, J.-M. Pierson, O. Richard,
and K. Sharma. The green-net framework: Energy efficiency in large scale distributed systems.
In HPPAC 2009, 2009.

24. J. Emeras. Workload Traces Analysis and Replay in Large Scale Distributed Systems. PhD
thesis, LIG, Grenoble - France, To be defended October 1st 2013. currently available at:
https://forge.imag.fr/docman/view.php/359/754/thesis_emeras_28aug13.pdf.

25. M. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on
Computers, C(21):948–960, 1972.

26. Y. Georgiou. Contributions for Resource and Job Management in High Performance Comput-
ing. PhD thesis, LIG, Grenoble - France, Sep 2010.

27. M. Guzek, S. Varrette, V. Plugaru, J. E. Sanchez, and P. Bouvry. A Holistic Model of the
Performance and the Energy-Efficiency of Hypervisors in an HPC Environment. In Proc. of
the Intl. Conf. on Energy Efficiency in Large Scale Distributed Systems (EE-LSDS’13), volume
8046 of LNCS, Vienna, Austria, Apr 2013. Springer Verlag.

28. R. Januszewski, N. Meyer, and J. Nowicka. Evaluation of the impact of direct warm-water
cooling of the HPC servers on the data center ecosystem. In To appear in International
Supercomputing Conference 2014, Leipzig, Germany, 2014.

29. M. Jarus, S. Varette, A. Oleksiak, and P. Bouvry. Performance Evaluation and Energy Effi-
ciency of High-Density HPC Platforms Based on Intel, AMD and ARM Processors. In Energy
Efficiency in Large Scale Distributed Systems, Lecture Notes in Computer Science, pages
182–200. Springer Berlin Heidelberg, 2013.

30. A. Kivity and al. kvm: the Linux virtual machine monitor. In Ottawa Linux Symposium, pages
225–230, July 2007.

31. V. Kundra. Federal data center consolidation initiative. Memorandum for chief information
officers, Office of Management and Budget of the USA, 2010.

32. E. Le Seur and G. Heiser. Dynamic voltage and frequency scaling: the laws of diminishing
returns. In HotPower’10 Proceedings of the 2010 international conference on Power aware
computing and systems, California, USA, 2010. USENIX Association Berkeley.

33. R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang. Introducing the graph 500. In Cray
User Group, 2010.

34. A.-C. Orgerie, L. Lefèvre, and J.-P. Gelas. Save watts in your grid: Green strategies for energy-
aware framework in large scale distributed systems. In 14th IEEE International Conference on
Parallel and Distributed Systems (ICPADS), Melbourne, Australia, Dec. 2008.

35. A. Petitet, C.Whaley, J. Dongarra,A. Cleary, and P. Luszczek. HPL -A Portable Implementation
of the High-Performance Linpack Benchmark for Distributed-Memory Computers.

36. N. Rasmussen. Air DistributionArchitecture Options for Mission Critical Facilities Whitepaper
#55. Technical report, American Power Conversion, 2003.

37. S. Sharma, C.-H. Hsu, and W. chun Feng. Making a case for a Green500 list. In Parallel
and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, pages 8 pp.–,
2006.

38. S. Varrette, M. Guzek, V. Plugaru, X. Besseron, and P. Bouvry. HPC Performance and
Energy-Efficiency of Xen, KVM and VMware Hypervisors. In Proc. of the 25th Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD 2013), Porto de
Galinhas, Brazil, Oct. 2013. IEEE Computer Society.

https://forge.imag.fr/docman/view.php/359/754/thesis_emeras_28aug13.pdf

Energy Efficiency in HPC Data Centers 107

39. M. vor dem Berge, J. Buchholz, L. Cupertino, G. Da Costa, A. Donoghue, G. Gallizo, M. Jarus,
L. Lopez, A. Oleksiak, E. Pages, W. Piatek, J.-M. Pierson, T. Piontek, D. Rathgeb, J. Salom, L.
Siso, E. Volk, W. U., and T. Zilio. CoolEmAll: Models and Tools for Planning and Operating
Energy Efficient Data Centres. To appear in: Samee Khan, Albert Zomaya (eds.) Handbook on
Data Centers.

40. M. vor dem Berge, G. Da Costa, A. Kopecki, A. Oleksiak, J.-M. Pierson, T. Piontek, E. Volk,
and S. Wesner. Modeling and Simulation of Data Center Energy-Efficiency in CoolEmAll.
Energy Efficient Data Centers. Lecture Notes in Computer Science, 7396:25–36, 2012.

Techniques to Achieve Energy Proportionality
in Data Centers: A Survey

Madhurima Pore, Zahra Abbasi, Sandeep K. S. Gupta
and Georgios Varsamopoulos

1 Introduction

A data center is a set of physical and possibly virtual machines along with other
components such as storage, network, cooling, power supplies and management
software, that function together to serve data and information to facilitate information
services to a business or organization. It consists of computing and data dissemination
as the main functions, however there are several other physical elements such as
cooling management and power budgeting that interact with the computing elements,
thusly making a data center to exhibit both a cyber and a physical behavior (see Fig. 1).

The “greening” of data centers has been a focus of both the industrial and academic
research. This is due to the large amount of energy consumed to power the large
number of computers and other equipment in data centers. This enormous energy
consumption imposes a huge cost to data center providers. Specifically, with the
growing demand on data and internet services, data center providers are faced with

This work has been funded in parts by NSF grant CSR #1218505 and CRI #0855277

M. Pore (�) · Z. Abbasi · S. K. S. Gupta · G. Varsamopoulos
Department of Computer Science and Engineering, School of Computing and Informatics,
Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ 85281, USA
e-mail: madhurima.pore@asu.edu

Z. Abbasi
e-mail: zahra.abbasi@asu.edu

S. K. S. Gupta
e-mail: sandeep.gupta@asu.edu

G. Varsamopoulos
e-mail: georgios.varsamopoulos@asu.edu

© Springer Science+Business Media New York 2015 109
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_4

110 M. Pore et al.

Fig. 1 A data center has both
a cyber (computing)
performance aspect as well as
a physical (energy)
performance. Examples of
computing performance are
throughput and response
delay, whereas examples of
physical performance are
energy efficiency, PUE
(power usage effectiveness)
and carbon footprint

Data center
workload

(cyber)
performance

energy
(electr.)

energy
(heat)

physical
performance

env.
Condi�ons

Fig. 2 Power profile of ideal
energy-proportional system

huge computing and cooling energy costs. The challenge is to curb these costs while
accommodating future expansions. In response, computer vendors are developing
power management techniques for computing, storage and networking equipments.
These techniques aim to provide energy-proportional computing at server and data
center level (Fig. 2).

Power management techniques at the component and server level are designed to
(a) switch server components off during idle times, (b) adapt the rate of operation of
active server components to the offered load, and (c) exploit low power states of the
server and its components during low utilization levels.

Further, several power-managing and workload-shaping techniques are proposed
at the data center level or at the cluster level to (i) assign workload in a more energy
efficient way, (ii) move workload off of the under-utilized servers and then switch-
ing those servers to low power modes, i.e., consolidate workload and apply server
provisioning, (iii) select active servers such that less cooling energy is incurred, (iv)

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 111

consolidate heterogeneous applications in fewer servers through virtualization, and
(v) manage workload to leverage electricity price across data centers. The efficiency
of power and workload management techniques at different data center levels comes
from the following:

• Current servers have non-zero idle power and a non-linear power-utilization, i.e.
they are not ideally energy-proportional, despite the technological trend toward
more energy-proportional servers. Ideally energy-proportional servers consume
zero power at idle and have a linear increase of power with respect to utilization.

• Data center workload is not uniform over time and exhibits significant variation,
with the peak workload being two to three times greater than the average [1, 2].

While much has been published in the area of data center, server, and component
level power management, there is no work, to our knowledge, that evaluates these
approaches with respect to each other and analyzes the gaps in the research. In this
chapter we focus on different software management aspects that use the existing
hardware capability to build energy-proportional servers and data centers. We give
an overview of the existing solutions, present their associated challenges and provide
taxonomy of the current research. Further, we compare the data center, server, and
component level power management techniques with respect to their implementation,
reliability, scalability, performance degradation and energy proportionality. The rest
of the chapter is organized as follows: We introduce energy proportionality and review
the need for energy proportionality in Sect. 2. Component level power management
and energy proportionality are discussed in Sect. 3, followed by power management
techniques at server level in Sect. 4. The chapter goes to further depth in server
provisioning schemes (Sect. 5.1), VM management (Sect. 5.2) and other data center
level power management techniques (Sect. 5.3). We compare the data center level
and server level power management techniques in Sect. 8. The chapter concludes in
Sect. 9.

2 Energy Proportionality

The concept of energy proportionality emphasizes the increase in power consumption
of a system in proportion to the work done by the system. The notion of energy-
proportional computing was first coined by Hölzle and Barroso [1] which is inspired
by the near-energy-proportional behavior of the human body: during sleep, the human
body consumes approximately 81 W; while actively working, such as sprinting or
running, it consumes more than 1000 W [3]. An energy-proportional system will have
a low idle power and wide dynamic range as well as linear power increase with respect
to utilization (see Fig. 4a for an ideally energy-proportional server). If the energy
efficiency of a system is the maximum work done per Joule of energy, then “Energy
proportionality” implies constant energy efficiency independent of the utilization
level (see Fig. 4a). Thus, energy proportionality or power proportionality (used
interchangeably hereafter) is important to achieve overall good energy efficiency in

112 M. Pore et al.

a b

c d

Fig. 3 Power profile of various server platforms from SpecPower [7]

data centers, since data centers have periods of low utilization. A study by Google
shows that most of the servers are operated in the lower utilization spectrum at
about 30 % [1]. The main reason for servers being so under utilized is that most of
the data centers over-provision their computing resources to match workload peaks
which are two to three times the average workload rate [1, 2]. Current servers are
far from being ideally energy-proportional: they have non-zero idle power and their
power-utilization curve is nonlinear (see Fig. 3). Therefore, research efforts led to
design of power management techniques both at the server and the data center level
to increase energy proportionality of servers and data centers, respectively. The
following subsections introduces energy proportionality metrics for server level and
data center level.

2.1 Energy Proportionality at the Server Level

A server’s energy proportionality can be described by its power curve with respect to
its utilization. The power-utilization curve depends on the hardware characteristics of
a server as well as the type of workload that is offered to the server [4–6]. Therefore,

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 113

0

0.5

1

1.5

2

 0 0.2 0.4 0.6 0.8 1
utilization

LDR=0, IPR=0
efficiency (utilization/power)

power

a

c

b

d

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1
utilization

LDR=0, IPR>0
efficiency (utilization/power)

power

0

0.5

1

1.5

2

 0 0.2 0.4 0.6 0.8 1
utilization

LDR>0, IPR=0
efficiency (utilization/power)

power

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1
utilization

LDR<0, IPR=0
efficiency (utilization/power)

power

Fig. 4 Server power profiles showing different cases of energy proportionality [4]

the energy proportionality metrics of a server can be defined according to the power-
utilization curve and the type of workload.

Varsamopoulos and Gupta [8] suggested two metrics for measuring energy pro-
portionality according to the servers’power-utilization curve: The idle-to-peak power
ratio (IPR), which measures how close the idle power of a server is to zero, and the
linear deviation ratio (LDR) which measures the deviation of the actual power curve
from a hypothetical linear power curve as shown in Fig. 2. These metrics can be used
to compare the energy proportionality of servers, moreover they help to determine
the utilization level where the system has the most energy efficiency.

Varsamopoulos et al. [8] performed an extensive study of power profiles of current
servers and observed the trend of reduction in the idle power of the server but the
power curve is observed to become more nonlinear. For example, some of the recent
servers have (IPR, LDR) of (0.3, 0.4). Figure 4 shows examples of how energy
efficiency at different utilization levels changes over various IPR and LDR.

Figure 4a shows the power-utilization curve of an ideal energy-proportional server.
It can be seen that the energy efficiency is constant for all the workload utilization
range. Figure 4b shows the power utilization curve of a server with positive IPR value

114 M. Pore et al.

which indicates non-zero idle power. Similarly, Fig. 4c shows the power utilization
curve of a server with positive LDR which indicates that the system has higher energy
efficiency at higher utilization while Fig. 4d shows the power profile of a server with
negative LDR which indicates that the server will be more energy efficient at lower
utilization levels.

The power curves shown in Fig. 3 are based on utilizing the entire server using
CPU-Memory based transactional workload evaluated by SpecPower [7]. However,
there are also some studies that show the dependency of the energy proportionality
of a server to the type of workload offered. Chun et al. [9] observed that different
platforms have different energy proportionality characteristics and exhibit different
power performance with respect to the type of workload (e.g. I/O intensive, CPU in-
tensive and transactions). In case of database analytic workloads on a modern server,
the CPU power used by different operators can vary widely by upto 60 % for the same
CPU utilization, and that the CPU power is not linear with respect to the utilization
[6]. Feng et al. [5] observed that the power consumption varies for different compo-
nents according to the workload type such as memory-bound, CPU-bound, network
or disk-bound hence they motivate the need for power management techniques at the
server level to incorporate the type of workload and consider platform architecture
for improving the energy-proportionality of data centers. Given the wide variety of
heterogeneous applications with different workload types, the task of determining
energy proportionality metrics is a tedious task.

2.2 Energy Proportionality at Data Center Level

The power consumption of a data center consists of the power consumed by the
computing equipment, cooling systems and other sources of power consumption
such as lighting and power losses [10–14]. Power Usage Effectiveness, PUE, is a
widely used metric to measure the energy efficiency of non computing equipment
in data centers [15]. It is calculated as the total power consumed by a data center
facility over the power consumed by the computing equipment only:

PUE = Total Power into the data center

IT equipment power
. (1)

A large PUE is a strong indication of large cooling power consumption, since the
cooling system is the biggest consumer of the non-computing power in a data center
(followed by power conversion and other losses). Power proportionality of a data
center depends on both the power proportionality of servers and the magnitude of
PUE. Ideally, data centers should have a PUE of one. If data centers have PUE of
greater than one, even if the servers are ideally energy-proportional, the data center
is not ideally energy-proportional. To show this, we did a simulation study where
a data center with PUE of 1.3 is fully utilized. In this set up, the thermal profile
of the simulated data center in [11] is used (see Sect. 5.1 on how data centers are
thermally modeled and profiled). Further a linear power-utilization curve for servers

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 115

Fig. 5 Power utilization curve of a data center with PUE= 1.3 for two cases of servers with peak
power of 300 W: case 1, IPR= 0, and case 2, IPR= 0.6

are assumed and their peak power is set to 300 W. We performed two experiments,
where in the first case the servers’have IPR of zero (i.e., ideally energy-proportional),
and in the second case the servers have IPR of 0.6. Figure 5 shows that the power
utilization curve of the data center with ideally energy proportional servers is not
linear because of non-ideal PUE. Figure 6, further shows that at low utilizations,
power proportional servers significantly reduces the total power consumption of the
data center. Prominent data center owners such asYahoo, Facebook and Google have
reported PUEs of around 1.1, while data center statistics show an overall national
PUE of 1.9 in 2011 [16].

2.3 Overview on Power Proportionality Techniques at Different
Data Center Levels

Given existing non-power proportional servers and large PUE of data centers, current
research efforts are towards proposing power management techniques at different
levels, ranging from component to data centers, thermal-aware job placement and
workload shaping to achieve energy proportionality at data centers, summarized
below (also see Table 1):

• Component level: Power management techniques at this level leverage the dy-
namic power state transitioning capabilities available at different components of a

116 M. Pore et al.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Non Energy
Propor onal
Datacenter

Energy Propor onal
Data Center

Po
w

er
(W

a
s)

Fig. 6 Power consumption of two data centers at 30 % workload with PUE = 1.3 for two cases of
servers with peak power of 300 W: case 1, IPR = 0, and case 2, IPR = 0.6

Table 1 A taxonomy of research in energy proportionality at different levels in data centers

Level Power management technique Articles

Component-CPU Active power transition i.e., DVFS [2, 17–20]

Component-Memory Architecture modification i.e. rank subsetting, DVFS [21–23]

Component-Network Sleep mode transitioning, architectural modifications [24–28]

Component-Cooling Fan speed control [29]

Server Inactive power mode transitioning [30]

Data center/cluster Server provisioning [12, 31–37]

VM management [38–41]

Workload shaping [12, 34, 42, 43]

Hybrid data center [9, 36, 44, 45]

Global level Workload and server management across data centers [46–52]

server (such as CPU and memory), in order to improve the energy proportionality
of the server.

• Server level: Modern servers have different power states including hibernate,
active mode and inactive mode, with fast power state transitioning capabilities
enabled with Wake-On-LAN technique. Existing server level power manage-
ment techniques leverage this capability to control the power state of the servers
depending on the availability of the workload at a given time interval.

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 117

Fig. 7 Power profile of an example data center as a result of using different management schemes.
The data center consist of mixed equipment of different power and workload-capacity ratings and
cyber physical interactions

• Data center/cluster level: In the warehouse scale of computing, data center
applications require large number of servers to run, with the total number of servers
required is decided based on the peak workload. Hardware and software resources
in such a massive scale work continuously and efficiently to maintain Internet
service performance. Design and deployment of their power management schemes
at data center/cluster level (server power provisioning) leverage the variation of
the workload, physical layout of the data centers, and heterogeneity of servers
to dynamically decide on the active server set, in order to remove unnecessary
idle power and reduce the cooling power. Workload shaping and Virtual Machine
(VM) management are also performed in the data center level, where the former
concerns power efficient workload distribution across active servers, and the later
concerns, power efficient VM placement/ migration across servers of a cluster.

• Global level (across data centers): Large scale Internet applications tends to be
replicated across several geo-distributed data centers primarily to provide timely,
reliable, and scalable services to their global users. Power and cost management
techniques at this level concerns designing workload distribution policies to lever-
age the spatio-temporal variation of data centers power and energy cost without
compromising the desired quality of service.

The above solutions often complement each other to make power proportional data
centers. Power efficiency of each of these techniques is constrained by the hardware
power management capability available at each level, workload characteristics and
the physical layout of the data center. Figure 7 gives an example of how a mix of
such management techniques can help to improve the power proportionality of data
center. In the following sections, we give a detailed description of the above power
management solutions.

118 M. Pore et al.

Table 2 Breakdown of power
consumption in servers. (Data
source: Fan et al. [54])

Component Peak power (W)

CPU 80

Memory 36

Disks 12

Peripheral slots 50

Motherboard 25

Fan 10

Power supply unit 38

Total 251

3 Energy Proportionality at Component Level

Many of the current server components support only two power states, i.e., on-off,
yet the technology has started allowing component-level energy proportionality by
providing multiple levels of operating frequency (clock) of the device, duty cycling,
or reducing the operating voltage [53]. Traditionally, CPU has been the largest, yet
not dominant, contributor to the power consumption (Table 2). However currently
energy consumption of other components such as the disk drives and network and
cooling equipment is becoming significant (see Table 2).

The components in the server can be used in different power and performance
states. The specifications of power states are given by the Advanced Configuration
and Power Interface (ACPI) which provides a standard interface for hardware vendors
and developers to make use of the available power and performance management at
global level (for entire server system) or component level [55]. ACPI defines a scales
of P which are performance states, P0, P1 etc., and C which are sleep states, C0, C1
etc.

3.1 Energy Proportionality at the CPU

1) Dynamic Voltage Frequency Scaling (DVFS): It is a mechanism that adjusts the
clock frequency of the CPU. Reducing the operating frequency of CPU, the power
consumption incurred by the CPU can be reduced. However, the lowest operating
frequency is limited by the stable voltage requirements of the circuit. The power
consumption by DVFS at a frequency f is given by:

P (f) = CNswV
2

ddf,

where C, is the capacitance of the circuit, a significant percentage of which is wire-
related, Nsw is the average number of circuit switches per clock cycle and Vdd is the
supply voltage to the CPU [56]. As the maximum frequency is linearly dependent

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 119

on the supply voltage, DVFS has a cubic effect on the power savings. The estimated
power using DVFS is given by:

P (f) = Pmax

(
1 −

(
f

fmax

)3
)
. (2)

DVFS reduces the instantaneous power consumption, yet increases the execution
time of the application or the response time of the requests. It is worth noting that,
the overall energy efficiency of DVFS scheme is because power reduction is cubic
effect of frequency at the cost of increase in the execution time which is inversely
proportional to the frequency. In the case of delay sensitive applications (e.g., in-
ternet services) applications it is essential to maintain the response time within a
certain limits. Therefore, the challenging task is to design an online DVFS control
scheme that scales frequency proportional to the input workload without violating
the response time. The design of such a control system requires to take into account
different factors such as (i) adaption time of the system i.e. the time required by the
server to adjust the new frequency setting, (ii) workload characteristics such as work-
load arrival rate, and (iii) application’s response time constraints. Existing solutions
adapt techniques from control theory and queuing theory (e.g., M/G/1) to explore
the energy delay trade-off of DVFS schemes.

Similarly, in the case of delay tolerant applications (e.g., compution intensive
scientific applications), DVFS increases the overall execution time of the task. As a
result, even if the instantaneous power savings may be obtained there exist a penalty
in the form of increase in the execution time. The energy delay trade-off can be
explored to maximize the energy savings without exceeding the deadline.

2) Core Power Gating Power Gating involves removing the power supply to a CPU
core. This is achieved by inserting a sleep transistor in path of power supply and
core. The gated block is entirely cut off from the power supply which results in no
power consumption in the gated block. In other words, it eliminates the idle power
of the core entirely. Many of the server machines do not provide a knob to the user to
use the power gating. However, if this knob is provided, it is one more step towards
reducing the CPU power by consolidating the workload during low utilization on
fewer cores. The main considerations to design a power management scheme for
power gating is the delay to get the core back to active state. Power management
based on workload prediction can benefit from power gating to adjust the available
CPU resources according to the varying intensity of workload.

Examples from the Literature
A wide research has been done in the past few years in order to design online

control schemes for CPU power management (see Table 3). Several algorithms such
as model predictive control (MPC) [65], control loop, preemptive or reactive control
[10], or proportional-integrative-derivative (PID) control [66] have been used to
obtain power and energy savings using DVFS. Study by Andrew et al. [57, 58]
suggest that, if the mean value of workload is known, then better energy efficiency
is achieved, e.g., using algorithms such as shortest remaining time first [57]. In this

120 M. Pore et al.

Table 3 Taxonomy of researches on CPU power management

Scheme Types Articles

DVFS control Static, dynamic scheduling [57, 58]

Heterogenous workload Memory, CPU [59, 60]

Multiprocessor DVFS [58, 61]

Thermal-awareness for single and multicore [62, 63]

Power gating [64]

(static) scheduling scheme, a single value of frequency is set in DVFS. However, for
bursty workload, dynamic speed scaling solutions are proven to be better. Analytical
study by Cho et al. [67, 68] obtained the performance for multicore when DVFS is
used for energy minimization of parallel applications. Although DVFS dominantly
affects the performance of CPU-bound applications, its effect on memory-bound
applications is shown by Dhiman and Rosing [60]. An online control algorithm is
suggested for heterogeneous applications (i.e. a mixture of CPU-bound and memory-
bound) by Ge et al. [59]. Apart from managing performance versus energy savings
trade-off, DVFS is also used for thermal management of servers [63, 69].

Few works also use core power gating. In particular, a group from HP [64],
demonstrated the efficacy of power gating for multi core architectures comparing
energy savings and performance degradations for several database applications used
in their data centers.

3.2 Energy Proportionality at the Memory

Main memory now contributes to a significant portion of a server’s power consump-
tion; in contemporary systems, it accounts for almost 40 % of the power consumption.
Recent technology progress has allowed a few major companies to develop mem-
ory with various power states. Any memory power management should ensure the
performance of memory if DRAM low power states are used.

The main memory (DRAM) exhibits static and dynamic energy consumption.
Dynamic energy is consumed in the decoding of address and fetching the data from
the memory. The static energy is consumed during the active period amortized over
number of data transfers. If Erw is energy per read or write, BWrw is the read or
write bandwidth,D are the total DRAM channels, EAP is energy to activate and pre-
charge, fAP their frequency then the energy consumption for each DRAM channel
is given by [22]:

EDRAM = StaticEnergy + ErwBWrw +DEAPfAP . (3)

The time required to retrieve data from main memory affects the performance of the
memory based applications. For fetching data from main memory, the probability of

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 121

hit and miss of the previous level of memory i.e. caches can be considered. If the hit
probability is phit, miss probability is given by pmiss = 1 − phit. The time required
to fetch a data from main memory with one level of cache is given by:

tDRAM = phittaccess + pmisstmiss. (4)

1) Memory Architecture Modifications One of the promising energy saving tech-
nique for improving energy consumption is using memory rank subset where memory
is divided into smaller chunks. A small hardware modification enables the access to
the memory rank subsets. Dividing the memory into ranks and using smaller subset
of memory instead of whole memory results into saving of activation and pre-charge
energy associated with the rank subsets that are not accessed. However, immediate
effect of this technique is that the data path for each access becomes longer. The
design of memory scheme includes different factors such as load balancing across
memory ranks, number of memory ranks that affect the effective bandwidth as well
as the application characteristics. Several other methods of power saving include
managing the refresh rates of memory, use of memory buffer, etc.

2) Memory Low Power Modes The memory now has more power states e.g.,
RDRAM (Rambus DRAM) provides four different power states: active, standby,
nap and shutdown. Power management schemes for the memory use these states to
reduce the energy consumption.

• Static power management: In this scheme, the memory is assigned a low power
state. When the memory access occurs, the chip has to resume to the active power
state.

• Dynamic Power management: In this scheme, the time interval of a low power
state is varied according to the access pattern. The threshold time interval after
which the memory is in low power state is a critical design aspect of the power
management. This threshold is determined such that energy savings are improved
but delay are within the time constraints of the application.

Examples from the literature
Control strategies using proactive and reactive techniques limit the delay within

constraints of the applications to increase the power savings [70–72]. In the Rank
subset scheme proposed by Ahn et al. [73], frequency scaling of access has been
used to gain energy savings. Further, Deng et al. [21] proposed reducing the voltage
across memory channels in addition to actively changing the frequency of memory
access depending on the workload, i.e., performing both DVFS and DFS for the
memory. Using such a scheme they target the idle memory power consumption as
well as dynamically scale the power consumption with changing rate of memory
accesses. More energy savings are obtained with techniques that co-ordinate the
memory accesses, reduce memory conflicts and exploit more data locality (e.g.,
using address mapping schemes or transaction order schemes).

122 M. Pore et al.

3.3 Energy Proportionality at the Disk

Most of the storage disk have capability to transition to on-off power states. When the
disks are not in use, they are either in idle state, standby state or off state . Consider
that dn total number of memory fetches in the storage disk, Pactive is proportional to
dn by a constant factor d , Pstandby is the power dissipated during disk I/O in the low
power state, tactive is time spent in active state and tstandby is time spent in the low
power state, then the energy consumption is given by:

Edisk = dPactivetactive + Pstandbytstandby. (5)

The time required to fetch data from disk is important in designing a disk power
management scheme. If tseek is seek time, tRL is the rotational latency and ttt is the
transfer time from disk to higher level cache, then the time required to fetch a data
from disk is given by:

tdisk = dn(tseek + tRL + ttt). (6)

1) Disk Spinning Down The most common technique of power management in the
disks is spinning down (i.e., switching the power off) of the disk when not in use.
However, the time to restore the disk to active state is of the order of few seconds
and there are sudden variations in the data center workload, such a scheme may
degrade the performance of delay sensitive applications severely. In other words, the
reactive schemes such as simple spin down with timeout may not be effective for
data center with high workload variations. Proactive power management schemes for
disk can be designed for specific workload type, application constraints, workload
arrival rates. Such schemes can use prediction based techniques to schedule the disk
spinning down in the idle period in the workloads thereby reducing the performance
degradation of the applications due to power state transitions.

2) Managing Data Storage and Replication Data center applications usually have
a large data set stored in multiple storage disks. In applications that involve popular
data (e.g., search engines) some of the data is more frequently accessed than the
rest of the data. The popular data can be identified and stored on fewer disks and
replicated for performance, where as the remaining data is stored on remaining disks.
The disk with popular data are always in active state while more power management
schemes are applied to remaining disks. Other power management scheme consist
of using hybrid disk types such as combination of Solid State Drives (SSD), Flash
Storage Devices and Dynamic RandomAccess Memory (DRAM) to manage the data
storage based on the combination of their power and performance characteristics and
their costs. Popular data is migrated to more energy efficient disks. However, moving
the data frequently may exceed the savings obtained by a spinning down of disks.

Examples from the Literature In analytical study of disk based storage devices,
the performance effect of disk spin down technique is evaluated by modeling the

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 123

probability of transitions of disk into different power states using a queuing model
[74]. Popular power management schemes proposed for disk power proportionality
in the research are:

• Consolidation: The data is moved to a fewer number of storages [75] and the use
of scale out (data not shared) architecture is discussed by Tsirogiannis et al. [76].

• Migration: Data is stored in more power efficient devices, e.g., SSD [76, 77], hy-
brid disks such as NAND flash storage and DRAM [78] or according to popularity
of data [79].

• Aggregation: Read or writes are postponed in order to increase the idle times
between the operations to create more opportunity for energy savings [25].

• Disk spin down: Spinning down the disk during idle periods is used independently
or in combination of other management policies [75].

• Compression: Compression of data is used in some cases of workload [25].

Many works in this area suggest that combination of different techniques that can give
better energy-proportional behavior for disk storage devices for different workload
types and application requirements [75, 80].

3.4 Energy Proportionality at the Networking Interface

The average utilization in the data center is very low and idle networks components
such as ports, line cards, switches, are one of the significant consumers of energy in
the low utilization periods [25]. Popular power management technique for network
devices is to switch off the network components during idle periods [28]. To model
the switching of network components, a linear power model is assumed. When the
network components are not in use they are either in idle state or standby state. If
Pactive is the active state power and Pstandby is the power in the standby state, tactive is
time spent in the active state and tstandby is the idle period,Es is the energy required for
switching between the power states and ns is the number of switching that occurred,
then the energy consumption is given by:

Enet = Pactivetactive + Pstandbytstandby + nsEs. (7)

The time required to transfer the data through a network component is given by:

tnet = ttransf er + tswitching. (8)

1) Switching off the Network Component The most popular technique to save net-
work power switch off network devices during the idle times. Some of the techniques
use a reactive scheme that switches-off the network component for a certain time
after observing that there is no workload for few seconds. Some techniques involve
proactive schemes where network interfaces are continuously monitored to learn the

124 M. Pore et al.

inter-arrival time between packets in a window based scheme. Based on the his-
tory of workload, the network devices are switched off until the predicted arrival of
workload.

2) Managing the Workload These scheme involve managing the data path of the
workload by routing the network data through a certain section of network. Hence,
the network components in the remaining sections can be switched off. If the applica-
tion deadlines are not stringent the data can be aggregated, stored in buffers for some
time and sent. This will allow the network components to be switched off during idle
period. The main focus of such algorithms is to create more opportunity of idle pe-
riod in network components with minimal performance degradation. Unpredictable
workload is a major hurdle in the design of network power management schemes.
Some of the schemes require modifications to the existing network architecture. In
such cases, the deployment of such a scheme may not be feasible.

Examples from the Literature Various techniques have been explained in the lit-
erature to save energy in the network devices but network components used have a
limited capability to support multiple low power states.

• Sleep: In this scheme, the network components such as switches, routers are put
to sleep or switched off in the idle period in between of workload arrivals [24, 25].

• Aggregation: Modifying the network topology Nedevschi et al. [24] consolidated
the network flow on fewest possible routes such that the data is sent on minimum
active set of network devices.

• Rate adaptation: Use of rate adaptation technique is demonstrated by adjusting
the workload rate such that traffic is serviced within the required time constraints
[25].

• Traffic shaping: In ElasticTree scheme [27], the traffic is split into bursts, such that
traffic to same destinations is buffered before it is routed. This scheme increased
the idle periods between the traffic bursts used to transition the network devices
into low power states.

Also Nedevschi et al. [24] performed a study comparing energy savings from different
power management schemes such as sleep and link rate adaptation using supported
hardware. Their schemes show energy savings obtained are comparable to the optimal
scheme. Above mentioned techniques give significant energy savings in data center
networks where devices are mostly utilized at around 20 %.

Different techniques to reduce the power in various components of servers are
summarized in Table 4.

4 Power Management Techniques at Server Level

The low power states available in current servers may not contribute to significant
power savings. Hence servers are put into sleep state or power down to achieve more
power savings. However the time required to reinstate to active working state is

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 125

Table 4 A Taxonomy of researches for energy proportionality at different levels in data centers

Level Power management technique Articles

Server Inactive power mode transitioning [30]

Component-CPU Static and dynamic DVFS [10, 65, 66]

Component-Memory Power state management [70–72]

Rank sub-setting (modifying architecture) [73]

Frequency scaling [21]

Component-Storage Disk Consolidation [75]

Migration Devices [77, 78],
data popularity [79]

Aggregation [80]

Disk spin down [80]

Component-Network Sleep [25]

Aggregation [24]

Rate adaptation [24]

Traffic shaping [24]

Low power states [25]

Component-Cooling Fan speed control [29]

critical in the design of power management scheme. To obtain energy proportionality
inactive power transition scheme is used where idle servers are put in the low power
state, and they wake up on arrival of workload. On arrival of workload, if the system
is active, then workload is processed immediately else it processed after transition
delay.

For workload x(t), arriving at time t , the system state is:

State = Sactive x(t) �= 0,

= Sidle x(t) = 0,

where, Sactive and Sidle are the active and idle server states, respectively.
The server is modeled as M/G/1 queue. The workload can be modeled using

various parameters such as the rate of workload and transition time to active server
state and service rate. It can be evaluated for energy savings using performance
constraints for servicing that workload. The main issue is that currently such highly
efficient server machines with much lower transition rates as comparable to inter
arrival periods of workloads are not available. The model can then be used to optimize
power consumption, energy consumption, performance or energy delay trade-off.

Server Power Model Many works that model data center, commonly assume linear
power models for servers [4, 81]. The power at idle state is constant, and it linearly
increases with utilization. If ut is CPU utilization of server at time t , α is the propor-
tional constant and Pidle is the idle power of the server when no workload is running,

126 M. Pore et al.

server power is given by:

PServer = αut + Pidle. (9)

However more servers are becoming non linear as shown by study of several
SpecPower results by Varsamopoulos et al. [4]. Also, a group of researchers from
Oak Ridge National laboratories have investigated CPU intensive applications and
suggest that the nonlinearity of power is due to several factors such as number of
cores, sleep time due to power management techniques [81].

Server Performance Model Many of the works show analytical study of server
performance by modeling it as M/G/1 queue. Considering the transition overheads
of sleep time, transition time, wake up, service time within the constraint of response
time, this study shows the performance of these models for different transition time
using the Poisson arrival [82].

Examples from the Literature The low power active working states are not available
for the current server systems hence the power management algorithms try to put
the server into lowest power consumption mode during the idle periods in workload.
Initial work for servers showed promising energy saving benefits for switching of the
servers when idle [83]. Many research work have shown different server provisioning
algorithms that use consolidation of workload on fewer servers while switching off
the remaining servers (See Sect. 5.1). Very few works focus on server power transition
[29, 30]. To obtain energy savings, the server is transitioned to a lower power state
between the bursts of workloads as well as during the idle period between the arrival
of workloads. The decision to transition a server state into a sleep state e.g. PowerNap
or use one of the active low power state e.g. DVFS depends on the trade-off between
the time required for reinstate the server, the rate of workload arrival and the SLA
constraints [82]. Meisner et al. [30] investigate the observed idle times for different
types of data centers workloads. Detailed study of live traces of data center showed
that in the current data center workload, the idle periods (mean 100ms) particularly
for web and IT workloads can be exploited to obtain power savings if fast transitions
to low power state are available for a server while sleep states are not very useful
in data base analytic workload [84]. Using live data traces and analysis, Gandhi
et al. [85] show that power savings can be obtained for different characteristics of
traces. On a multicore platform, the challenge is to co-ordinate the sleep time of the
cores. Few of the research use control theory based approach to predict the arrival
of workload and control the sleep time (or time in the low power state) [86, 87] such
that the response time constraints are satisfied.

5 Data Center/Cluster Level Power Management

Warehouse scale of computers is a huge data center of servers equipped with sup-
porting resources such as network, cooling infrastructure for providing continuous
services. Energy consumption of such data center is a huge problem and the data cen-
ter operators require to employ different power management techniques to address

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 127

this. This section describes different schemes for increasing the energy efficiency of
the data center, their trade-offs in maintaining the quality of service requirements
and their design challenges in detail.

5.1 Server Provisioning in Internet Data Centers (IDCs)

The idea of server provisioning is to adjust the number of active servers in a server
farm to the offered workload and suspend the rest. This is based on the assumption that
all servers of the server farm are capable of executing the incoming workload albeit
at different speed. The effectiveness of this method is based on (i) the difference in
traffic intensity between workload peaks and low periods; peak traffic is about two to
three times as intense [1, 31, 88]; and (ii) current computing systems are not energy-
proportional. Server provisioning has some challenges. Especially suspending the
servers incurs energy costs, as servers consume energy to be turned back on. Also,
there is a switching delay, that may violate the availability of service, because of
suspending the servers which are still in service. Frequent on-off transitions increase
the wear and tear of the server components. Further, server provisioning is a proactive
approach, where a prediction of the incoming workload is used to determine the
number of active servers. However, accurate prediction of workload under stochastic
and dynamic nature of the data center workload is highly unlikely. Therefore, server
provisioning suffers from over-provisioning and under-provisioning problems. This
section presents the challenges regarding its modeling, the recent developments, and
the proposed algorithms.

1) Modeling Issues in Server Provisioning To optimize the number of active servers,
one needs to provide performance and SLA model, power consumption model as
well as the switching cost model.

Power Consumption Model of a Server The power model of a server in a data
center specifies how the server consumes power with respect to its utilization (i.e.,
average utilization for all components). The power model is a key in the server
provisioning problem, as correct modeling of the system power behavior at varying
utilization levels provides a key to select appropriate energy-efficient servers. The
modeling of the utilization level is a challenge in itself. Some research efforts suggest
that CPU utilization is a good estimator for power usage [14, 31, 89]. In this way,
power consumption of a server can be calculated through CPU utilization which
is an indication of total power consumption of a typical server [31, 89]; the CPU
is not the dominant contributor in power consumption of a server though [1, 54]
(see Table 2). There are also other studies that assume a general utilization of the
server which is either derived by a queuing model of the server [34] or empirical
data such as the ones that are reported by SpecPower [4, 81]. The power-utilization
relationship as already mentioned in Eq. 9 is mostly modeled as a linear function
[14, 31–33, 89] where the power consumption increases linearly with respect to
the utilization, i.e., p = aputil + pidle, where pidle is the idle power consumption,

128 M. Pore et al.

0 � a � 1, and pidle + putil denotes the peak power consumption of a server. The
linear power consumption model simplifies the solution for the server provisioning
problem, however recent literature [4, 81] show that power-utilization model of a
server exhibits nonlinearity. As a side effect, the authors show that the peak energy
efficiency may not be at the maximum utilization. This affects the server provisioning
problem, since an absolute minimum number of active servers may not be the most
energy-efficient set.

Performance Modeling In Internet data centers, performance is usually expressed
in throughput, response time and turn-around time. In this context, the SLA sta-
tistically imposes an upper bound on the response time: Prob[response_time >
response_thresholdSLA] < probability_thresholdSLA.

To model the response time as a function of number of active servers, the liter-
ature suggests using a queuing model of servers such as GI/G/n [32, 34, 90] and
M/M/n [37] as well as linear models [12, 31, 33]. TheGI/G/n is n-server queuing
system serving requests with generalized arrival and service time distribution. There
exist some approximation models [91] forGI/G/nwhich can capture the average re-
sponse time as a function of coefficient of variation and average of arrival and service
time as well as number of servers. TheM/M/n is based on exponential distribution
assumption for inter arrival time of requests as well as their service time. Although
the Internet workload does not exhibit Poisson distribution [92], theM/M/n is fre-
quently used in the literature due to its simplicity [30, 37]. Finally, the linear model
is based on the strong correlation between CPU utilization, throughput and service
time of requests which is observed by empirical studies [12, 33]. The model suggests
that, by posing a bound to the utilization (e.g., CPU utilization), i.e., preventing
overloading the server so that its utilization does not exceed a threshold value, one
automatically poses a bound on the average response time, and that the utilization
linearly increases with the workload as long as the server is not overloaded. In the
cost-optimization model, the revenue generated by each service is specified via a
pricing scheme or service-level agreement (SLA) that relates the achieved response
time to a dollar value that the client is willing to pay. The pricing model is usually
a step-wise function which specifies the provider’s revenue for various classes of
response time.

Switching Cost Switching of servers increases the wear and tear of servers [35],
incurs extra power consumption [32], and imposes migration cost for turning off
extra servers that are still in service [29]. However, there is no general model that can
accurately capture these costs. Kusic et al. [32] profile the extra power consumption
caused by switching a server on, and incorporate it into the total power consumption
cost. Guenter et al. [35] model reliability costs of server components due to on-off
cycles as follows: First, they divide the total cost (procurement and replacement) per
component by its MTTF (Mean Time to Failure), available via datasheets or empirical
analysis. Second, they calculate the sum of per-cycle costs across all components.
Lin et al. [37] assume that switching cost is incurred when servers are switched on,
and model this cost as a constant parameter and derive theoretical results. However,

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 129

this is not true in all cases, since switching servers off sometimes incurs a migration
cost.

2) Algorithmic Issues of Server Provisioning Proposed approaches for server provi-
sioning range from analytical-oriented work that focus on developing algorithms with
provable guarantees to systems-oriented work that focus purely on implementation.
While much has been published in the systems area, there is very little work in the
analytical area. Examples of systems work is as follows: Chen et al. [31] proposed
dynamic server provisioning for long-lived TCP-based services. Their study used
data traces of Windows Live Messenger and built a forecasting model to periodically
estimate the number of required servers, at a period of about 30 min. Chase et al. [33],
propose a server provisioning scheme for hosting data centers where they provide
different levels of service for different customers. They use an economic approach,
where services “bid” for resources based on their SLA utility function. The objective
is to maximize the profit according to a cost-benefit utility. Krioukov et al. [36] try
to achieve a energy proportional cluster by using the set of heterogeneous machines
such as low power platforms e.g., Atom and high performance servers. They de-
sign a power-aware cluster, namely NapSAC, which assigns the average smooth part
of workload to high performance servers and workload tails to the Atom servers.
Guenter et al. [35] proposed Marlowe, an automated server provisioning system that
aims to meet workload demand while minimizing energy consumption and reliability
in data centers. They predict workload in a large window of prediction and optimize
the number of active servers over the length of window.

Lin et al. [37] perform an analytical study on the server provisioning problem for
a homogeneous data centers. Due to the switching cost in the server provisioning
problem, solution at every time depends on the solutions at other times. For that,
an online algorithm is suggested that has competitive bound of 3 compared to the
offline optimal solution. The authors further extend their work on heterogeneous data
centers, and prove that the competitive ratio in this case depends on the prediction
window size over which the online server provisioning is performed [93].

3) Server Provisioning Decision Interval One of the design challenges for server
provisioning is the period (i.e. granularity) of the decision making. A low-bounding
factor on this period are: (i) the delay of server state transition between off and on,
typically considered to be between 30 s and 2 min, and (ii) switching cost, because
short time interval increases the frequency of switching and thusly the switching cost.
An upper-bound factor is the inefficiency in active server set selection caused by the
coarse granularity in decision making, leading to energy wastage. Krioukov et al. [36]
and Guenter et al. [35] propose using low power modes which draw idle power (2–
5 W), and incur a delay of 30 s–60 s to boot up the machine (e.g., hibernation mode).
Other studies such as [12, 31, 32] assume decision intervals of half an hour or more.

4) Workload Prediction The efficiency of server provisioning problem comes from
variation of workload which consists of the number of periods of low workload.
Intensity variation in web traffic has been witnessed in several research efforts [94–
96]. The variation originates from the various sizes of files communicated, which

130 M. Pore et al.

Fig. 8 Demonstration of the variation and cyclic behavior of web traffic for three popular web sites
(source: www.alexa.com)

forms a fine-scale variation (fluctuation in time scale of a few seconds), and user
behavior, which forms a coarse-scale (daily or weekly) cyclic variation (see example
in Fig. 8).

Due to the switching cost, and to maintain performance goals, server provisioning
is either managed proactively [12, 31–33, 35], or as a hybrid of proactive and reactive
approaches [34, 36, 97]. In proactive approaches, the workload (request arrival rate)
is predicted over one period of decision interval, and number of active servers are
determined accordingly. The number of active servers is such that they can afford
the peak workload during the server provisioning decision interval. Therefore, the
peak workload arrival rate during the decision interval should be predicted. For
that, workload is usually predicted in two stages. First average workload arrival
rate is predicted, and then peak arrival rate is estimated from the average workload
arrival rate. There are two approaches that are frequently used to predict average
workload arrival rate: offline [31, 97], and online [12, 32, 35, 36]. In the offline
approaches, time series prediction models and offline regression models are used
to build a prediction model from historical data. For example Chen et al. [31] used
data traces of Windows Live Messenger, and built a forecasting model (i.e., seasonal
regression model) to periodically predict the average workload arrival rate. In the
online model, the prediction model is adaptively changed by observing new data over
time. Examples of such models are Kalman Filtering [12, 32], exponential weighted
average [36], and online least square [35]. A simple example of Kalman Filtering
approach is building an AR (autoregressive) model, where the state variables in the
Kalman Filtering models the coefficients of theAR model, and are adaptively updated
by observing every new data.

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 131

Fig. 9 Cold-hot aisle server arrangement and heat recirculation within data center room

The peak workload is either a predicted average workload estimated using the
standard deviation of workload [12, 31, 32] or setting a fixed slack of the average
workload [34], or is obtained from offline regression models. The insight behind
using standard deviation is Chebyshev inequality which statistically bounds the de-
viation from the average. Also setting a fixed slack to the average workload arrival
rate is due to empirical data that suggest peak arrival rate is usually a certain value
more than average [34].

The workload prediction scheme cannot perform prediction perfectly, especially
when the workload in a time period deviates from its behavior in the past. Further,
periods of load spikes or flash crowds as well as sudden periods of low workload are
unpredictable phenomena. Therefore, reactive provisioning is used to swiftly handle
to such unforeseen events [34, 36, 97]. In this model, workload is closely monitored
and whenever a spike is observed, more servers are activated in response. However,
the server activation delay, may degrade the performance of reactive approaches. For
that, Bodik et al. [97] propose to maintain a pool of standby servers to swiftly react
to surge in workload. Such a scheme, called NapSAC [36], used Atom servers to
handle sudden spikes in the workload. The authors argue that Atom servers have a
very less off-on transition delay compared to high performance servers, and can be
used to swiftly react to the surge in workload.

5) Thermal-Aware Server Provisioning Thermal-aware workload and power man-
agement in data centers deals with the minimization of heat interference among
servers. The heat interference amongst the servers comes from the physical layout

132 M. Pore et al.

of contemporary air-cooled data centers, usually it being the hot-aisle, cold-aisle
arrangement. In that layout, the air flow makes recirculation of the hot air from the
air outlet of the computing servers into their inlet air (see Fig. 9). The heat recircu-
lation forces data center operators to operate their computer room air conditioners
(CRACs) to supply cold air, denoted as Tsup, at a much lower temperature than the
servers’ redline temperature, Tred , the manufacturer-specified highest temperature
for the safe operation. The amount of heat recirculation depends on the physical
layout/airflow of data center room and is not uniform. In other words, servers do
not equally contribute in the heat recirculation nor do they equally receive it. While
computer server provisioning that is power-aware only deals with minimization of
computing power, thermal-aware server provisioning deals with minimizing the total
sum of computing and cooling power. Thermal-aware server provisioning problem
can be stated as follows: given a data center with its physical layout, a set of servers, a
time varying workload, determine how many and which physical servers are required
during each decision interval to service the workload and minimize the total power
(cooling and computing). Similarly, thermal-aware workload distribution aims to
distribute workload among servers such that thermal hot spots and cooling power are
minimized.

There are research works that focus on thermal-aware workload and server
management. Notable conclusion from the literature are: (i) due to non-uniform
temperature distribution and to power heterogeneity of servers, in some data centers
[99, 100], active server set selection affects the total power [4, 12], and (ii) in data
centers with high PUE, consolidating workload to fewer servers may incur higher
cooling power due to hot spots created by concentrating the data center load on fewer
active servers [34]. Therefore, the cooling power increase caused by server provi-
sioning may outweigh the computing power decrease, especially when modern low
idle power servers are used.

Example of Thermal-Aware Server Provisioning from Literature Moore et al. [100,
101], and Bash and Forman [13] show that thermal-aware workload placement can
save energy in data centers. Mukherjee et al. [11] and Tang et al. [99] model the heat
that is recirculated among the servers; using this model, they propose spatio-temporal
thermal-aware job scheduling algorithms for HPC batch job data centers.

Thermal-aware workload and server management for Internet Data Centers (IDCs)
is also investigated in some papers. Sharma et al. [43], introduced thermal load
balancing and show that dynamic thermal management based upon asymmetric
workload placement can promote uniform temperature distribution and reduces the
cooling energy. Parolini et al. [102] provide analytical formulation to manage work-
load distribution among servers. Faraz et al. [34] proposed PowerTrade-d, a dynamic
thermal aware server provisioning which trades off the idle power and cooling power
for each other. They argued, reducing the active server set size may not always reduce
the total power, as it may increase the cooling power. PowerTrade-d manages the
trade-off through a dynamic refinement process such that whenever a change in the
size of active server set is required, extra servers are activated or deactivated one by
one to ensure the desired balance between cooling power and idle power. Finally,

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 133

Abbasi et al. [12] designed TASP and TAWD, thermal-aware server provisioning and
workload distribution. TASP predicts the peak workload in an interval of about 1 h
and then solves an optimization problem to choose the optimal active server set that
services the predicted workload and minimizes the total power in the data center.

Challenges and Trade-Offs in Holistic, Thermal-Aware Server Provisioning From
the above, it is logical to conclude that a holistic approach constituting of server
provisioning and workload management (i.e. workload distribution) would yield
synergistic benefits on saving energy. Such a holistic approach should take into
account the nature of the workload, the energy proportionality of systems, the het-
erogeneity of systems, the impact of server provisioning on the cooling power and the
non-uniform temperature distribution within a data center. There are some intrinsic
challenges that relate to trade-offs in a data center:

• The trade-off between QoS and energy efficiency: As web traffic intensity
varies over time [94, 96], the active server set should be determined according to
the peak traffic to be observed during the operation of that active set to ensure QoS
[31]. This practice results in over-provisioning during all non-peak periods of web
traffic as the servers are under-utilized over that active server set’s duration.

• The trade-off between cooling and computing power: According to a recent
study, there is a trade-off between idle power and cooling power that can manifest
when performing server provisioning to decrease total idle power [34]. This trade-
off is due to the consolidation of the workload to one “side” of the data center,
thus causing un-evenness of heat distribution, which may make it hard for the
cooling units to address.

• The trade-off between finding an efficient active server set and the time to
find it: The problem of server and workload management is exacerbated when
considering the impact of active server selection on the cooling energy. Such con-
sideration makes the server selection problem nonlinear because of the nonlinear
relationship between computing and cooling power and the nonlinear nature of
cooling system’s coefficient of performance (CoP), i.e., the ratio of the power
extracted over the power required by the cooling unit [100]. These nonlinear ef-
fects increase the solution time for the online problem of server and workload
management.

Abbasi et al. [103] propose to address the first trade-off by enforcing a two-tier re-
source management architecture called TACOMA (see Fig. 10); the first tier performs
server provisioning by deciding on the active server set for each period, whereas the
second tier works at a finer time granularity and distributes the workload among
active servers to further minimize the “over-provisioning” effect during that period.
They show that the trade-off between computing power and cooling power does not
always manifest, and provide necessary and sufficient conditions to the occurrence
of the trade-off, based on the structure of the heat recirculation matrix, an abstract
model of the heat recirculated in the data center; they also argue that high IPR and
low PUE disfavor the occurrence of the trade-off. Lastly, they propose heuristics

134 M. Pore et al.

Server 2 Server N

Load
Dispatcher

……

λ requests/sec

power
control

Traffic flow

Parameters

Control data

Server 1 Server 3 Server N-1

λ2 λN ∑λi= λ

Long term traffic
fluctua on

0 100 200 300 400 500 600 700 800 900 1000
550

600

650

700

750

800

850

900

950

1000

N
um

be
r

of
 r

eq
ue

st
 a

rr
iv

al
s

ev
er

y
5

se
co

nd
s

Time index (every half an hour) over one month

Peak arrival rate

Tr
affi

c
in

te
ns

ity

{λi}

Time

Short term
fluctua on

TAWD Tier (Slots)

Performance of
n servers

Performance of
one server

CoP Heat Recircula on

active server set S ́

Compu ng
power

Cooling
power

TASP Tier (Epochs)

Find peak and
minimum # of
servers n

Find which n
servers minimize
energy

n

Compute maximum
affordable workload
λthres for each server

Find how to
distribute λ to {λi} for

the server set S´

{λthres}

Models

Data Center

TACOMA

Fig. 10 A two-tier architecture for thermal aware server and workload management of Internet
data centers. The first tier works on long time intervals, determines the minimum number of active
servers and chooses the active server set to minimize the total energy. The second tier works on
shorter time intervals and decides on the workload distribution across the active servers to minimize
their energy consumption. Legend: λ is the rate of incoming workload; λi is the workload share for
server i; λthres is the maximum sustainable workload rate for any server (assuming identical servers)

to the thermal-aware server provisioning and workload distribution problems that
address the trade-off between computation time and solution efficacy.

7) Taxonomy of Server Provisioning Research Summary of research in server provi-
sioning is shown in Table 5 indicates that the energy efficiency of server provisioning
under various applications is shown by lot of studies. Efficient solutions to the prob-
lem are proposed in many articles, however, most of the solutions are either heuristic
or greedy, whose efficiency is not analytically demonstrated. There are studies that
analyze the problem theoretically [37], but they make simplified assumptions that
rendered the studies impractical. Moreover, many studies show the switching cost
overhead [32, 35, 37], but the accurate modeling of the switching cost has not yet
been studied (i.e., cost of switching a server from on to off and vice versa). Finally,
server provisioning and server level active power management are not orthogonal.
However a comparison of their energy efficiency and their applicability in various
applications has not been sufficiently addressed in the research.

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 135

Table 5 Taxonomy of research on server provisioning

Modeling issue Approach Articles

Power consumption Linear (non zero idle power) [12, 31–34, 36]

Nonlinear [4]

Linear proportional (zero idle power) [37]

Full power consumption [35]

Performance modeling Linear model [4, 12, 31–33, 35, 36]

M/M/n [37, 98]

GI/G/n [32, 34, 90]

Algorithmic issues System [12, 31, 33, 35]

Analytic [37, 98]

Workload prediction Adaptive linear (Kalman Filter, least
square,moving average)

[12, 32, 36, 35]

Offline regression [31]

Thermal-awareness Using heat recirculation matrix [4, 12, 34]

5.2 Virtual Machine Management

Cloud Computing enables the user to access the services, data center hardware over
Internet at low cost as the user pays only for the used resources. Many Internet
applications now run as service in the cloud in the form of their virtual machine
applications. Virtualization allows consolidation of heterogeneous applications in
few active servers, it thusly helps to minimize the power consumption within a cloud
infrastructure. However, to deploy efficient virtualization schemes, it is necessary to
decide on the assignment of a VM to a physical machine and on live VM migration
during overloading conditions. In practice, these problems are challenging due to
the uncertainty in the workload and resource requirements of applications, and the
combinatorial nature of problems where the decision vector (where and when a VM
should be assigned or migrated to) is discrete variables.

Many modeling issues of VM management in cloud computing such as perfor-
mance model and workload prediction can be managed similar to server provisioning,
thus we don’t go into their details in this section.

VM Management Problem Statement Consider a virtualized data center with servers
that host a subset of applications by providing a virtual machine (VM) for every
application hosted on it. An application may have multiple tiers and there may be
multiple instances of each tier running across different VMs in the data center (see
Fig.11). TheVM management decides on the following: how manyVMs are required
for each tier of an application, how workload should be distributed among multiple
instances of the application for each tier, how resource should be shared among VMs

136 M. Pore et al.

Fig. 11 A pictorial example of VM management components

that are collocated in a VM, when and how VM migration should be performed, how
resources should be shared among collocated VMs.

1) VM Assignment and Migration Consider a discrete time system, where at each
time the assignment of VMs to a set of (possibly heterogeneous) servers is re-
computed. If we assume that VM migration cost is negligible, and the resource
requirements of VMs are known at the beginning of each time interval, then VM
assignment in each time interval is a bin-packing problem which is a well-known
NP-hard problem [38]. In practice, VM assignment is even harder due to the VM
migration overhead and the uncertainty associated with the resource requirements
of the VMs. The overhead of VM migration incurs a cost of VM assignment which
not time-independent. Therefore, the optimal solution for the VM assignment prob-
lem in which migration cost is non-negligible, can be only found offline where the
information of resource requirement of VMs are known over all times in advance.

Since VM assignment is very similar to job (preemptive) scheduling problem, the
theoretical study in that area is also applicable to VM assignment such as the one
proposed by [104].

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 137

There has been much work to address the problem of VM assignment and mi-
gration in the research related to cloud computing that may or may not provide
theoretical guarantee. Overview of this work is provided in the following section.

Examples from the Literature Dhiman et al. [40] identify the difference in the power
consumption for CPU-intensive and IO-intensive applications through experiments.
They argue that since applications have different resource requirement at differ-
ent times, VM allocation in physical server can be performed such that their peak
power does not simultaneously happen. They also claim that collocating a hybrid of
CPU-intensive and I/O-intensive application in a physical server incurs less power
consumption compared to any other combination. They design an open control loop
to manage the VMs and support their claims through experiments.

The problem of allocation virtual machines to physical machines is formulated
as constraint programming in [38]. The objective is to have fully utilized physical
machines such that the wastage of resources in active physical machines can be
minimized. The problem of having fully utilized machines is that the VMs need to be
dynamically managed, as the resource requirement of transaction based applications
(e.g. web based application) and the resource requirement of batch jobs are different.
In case of batch jobs, when a job ends, its resource requirement may not match
the resource requirement for the new job, hence, VMs should be reallocated to
the physical machines to have fully utilized machines. Hermenier et al., develop
a dynamic constraint programming based VM manager namely Entropy. Entropy
manages VMs such that whenever an unallocated VM is available, it is assigned to a
physical machine that can meet its resource requirement. Every new assignment may
cause some live virtual machine migration in order to satisfy the objective function.

A recent experimental-based study [39] suggests that VM migration not only
degrades the performance of the migrated VM but also the performance of other VMs
that are collocated with the migratedVM in the source and destination machine. They
also suggest a VM migration management scheme that is aware of this behavior.

2) VM Dynamic Resource Allocation The cloud provides autonomous management
of available physical resources make the services in the form of VM applications
available. There are two approaches for autonomic resource allocation to VMs: (i)
static resource allocation [38], and (ii) dynamic resource allocation [87, 105, 106].
The static resource allocation model is based on either of following assumptions: (i)
the resource requirement of VMs is known in advance and that the VMs’ resource
requirement does not change significantly during their life. This assumption is mainly
applicable for batch jobs, where an estimation of resource requirement of the job
can be either provided by users or obtained from its runtime history, and (ii) VM
assignment is performed according to peak resource requirement of the application.
The dynamic resource allocation is mainly studied for web based application where
their traffic behavior is highly fluctuating and varies over time. The idea of resource
management here is to dynamically change CPU share, memory share and other
resource among VMs such that the applications’performance goal is guaranteed, and
other system objectives such as power capping goals are satisfied. Since different
applications have different peak time traffic, in practice dynamic resource allocation

138 M. Pore et al.

is very beneficial. The dynamic resource allocation can be managed in two tiers. The
first tier deals with workload distribution over multiple instances of an application,
and the second tier deals with resource assignment among VMs that are collocated
in a single physical machine.

The proposed schemes in literatures for dynamic resource allocation range from
optimizing a utility model that captures both SLA revenue cost as well as energy
cost [41, 90, 105], machine learning technique to learn resource requirement of
applications [107], and control theory approaches [87].

Examples from the Literature Padala et al. [105], used an adaptive control scheme
to decide on VM resource share of multi-tier web based applications. They assume
web based applications can be developed in multiple tiers where each tier can be
assigned to a VM. The problem is how to manage the resource allocation of multiple
VMs of applications to meet their performance goal. They design Autocontrol, a
two level controller schemes. AutoControl is a combination of an online model
estimator and a multi-input, multi-output (MIMO) resource controller. The model
at the top level, operating across applications, estimates and captures the complex
relationship between application performance and resource allocation. While the
MIMO controller acting in physical machines allocates the right amount of resources
to achieve applications’ SLOs (Service Level Objectives).

Urgaonkar et al. [90] use an optimal control technique to decide resource al-
location and power management for time-varying workloads and heterogeneous
applications. They make use of the queuing information available in the system
to make online control decisions by using Lyapunov Optimization technique. The
algorithm decides on the number of physical servers, online admission control, rout-
ing, and resource allocation algorithm for VMs by maximizing a joint utility of the
average application throughput and energy costs of the data center.

Power capping in a virtualized cluster is studied by Wang et al. [87] to design a
closed control loop by using Model Predictive Control and PI controller to manage
both the power consumption and performance goals of applications in a coordinated
way. The controller at the high level loop is a cluster-level power control loop, which
uses MPC method to manage the frequency of CPU to meet the power budget by
power capping. The controller at the second level is a performance control loop for
each virtual machine, which uses PID method to control response time of applications
by controlling CPU share of each VM.

Ardagna et al. [41] study VM assignment and resource allocation in a coordinated
way. They consider a multi-tier virtualized system with the goal of maximizing the
SLAs revenue while minimizing energy cost. They developed resource management
to actuate the allocation of virtual machines to servers, load balancing, capacity
allocation, server power tuning and dynamic voltage scaling. The authors show that
the resource allocation is NP-hard mixed integer non-linear programming problem,
and propose a local search procedure to solve it. They evaluated their scheme through
experimental and simulation based study.

Urgoankar et al. [90], propose a dynamic provisioning technique for multi-tier
Internet applications that employs a queuing model to determine how much resource

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 139

Table 6 A taxonomy of
research in VM management VM Management aspect Articles

VM assignment [38, 39]

VM migration [38, 39]

Adaptive resource management [41, 87, 90, 105]

to allocate to each tier of application and a hybrid of predictive and reactive methods
that determine when to provision these resources.

Taxonomy of Researches for VM Management VM assignment and migration man-
agement has been widely addressed in the literatures which suggest incorporating the
type of jobs and as well VM migration overhead in the VM assignment problem (see
Table 6). Also many works address the need for dynamic resource share manage-
ment using adaptive control theory based approaches shown to be efficient solutions
(see Table 6). However, there are still challenges in the VM management. A recent
research shows that VM migration overhead degrades not only the performance of
the migrated VM but also the performance of the VMs collocated in the source and
destination physical machine [39]. However, many studies based on constant cost
per each migration [104]. Moreover, VM assignment and resource management are
shown to be NP-hard, however most of the proposed solutions are greedy or heuristic
whose approximation ratio compared to optimal solutions are not derived. Finally
virtualization technology is introduced to facilitate dynamic power management and
reduce power consumption, however the applicability of the virtualization under
various applications (e.eg, real-time applications) are not well studied. This is im-
portant, since due to the VM overhead, the delay requirement of some application in
a underutilized VM may not be respected.

5.3 Other Data Center Level Power Management Techniques

1) Workload Shaping The idea of workload shaping is to distribute workload in such
a way that the efficiency of power management technique increases. Some examples
of workload shaping that are proposed in literatures include the following:

• Isolation of smooth part of workload from the tail in order to prevent performance
degradation of large part of workload in the presence of surge and to decrease
number of active servers for power minimization purpose [42]. Long term server
provisioning is usually used along with over provisioning, where the number of
active servers is determined according to the peak workload during the decision
time interval. Liu et al. [42] proposed a workload shaping algorithm to allevi-
ate this problem. The idea is to relax the performance requirement for a small
fraction of the workload which form the peak part of the workload. The resource
provisioning is carried out according to the well-behaved portions of the request

140 M. Pore et al.

stream; the portions of the workload comprising the tail are identified and iso-
lated so that their effects are localized. To this end, authors design an algorithm
as follows: each input request is placed in one of two reserved queues, where the
response time of requests in the first queue is guaranteed and the response time of
requests in the second queue is not guaranteed. The algorithm accepts workload in
the first queue as long as the queue length does not exceed the max queue length,
where the server can provide the queued requests with guaranteed response time.
All other requests are placed in the second queue which can be served through
another reserved server or during low traffic time. The main idea behind this ap-
proach is that peak workload rate is usually many times greater than average and
form a small fraction of the workload over a long time, thus by sacrificing the
performance of a small fraction of workload without compromising the quality
of service of the rest of workload, significant power can be saved.

• Workload allocation in thermal oriented way, such that the temperature within data
center room is uniformly distributed and thusly the energy efficiency of cooling
system is increased [43, 100].

• Skew the workload toward energy efficient servers to tackle over provisioning
problem in server provisioning. The authors propose two tier architecture, where
the first tier determines number of active servers according to peak workload in
the long decision time interval called “epoch”. Under server provisioning, servers
are still underutilized on average due to short term workload fluctuation. Hence,
authors design a workload shaping algorithm to predict workload at fine time slots
and skew it toward thermal and power efficient servers, thus increasing energy
efficiency of systems through increasing the per-server utilization.

• Queue the energy consuming task together and then send them at once for achiev-
ing energy-proportional networking [24, 53]. The example of aggregation is
implemented for network data by Nedevschi et al. [24], where the authors propose
to queue tasks such that the idle time of network equipment is maximized. Then
they proposed to use inactive power mode and link rate adaptation to reduce the
power in the network, thus achieving energy-proportional networking.

2) Heterogeneity in Workload Collocation In virtualized data center consolidation
of workload is done in order to increase the utilization of servers. In this scenario,
different tiers of an application e.g. data base tier, front end, management tier are
collocated and result in different workload type such as CPU, I/O, network, Memory
workloads being served by underlying physical hardware which may also be vary in
terms of cores, memory configuration, etc. Research in this area is targeted to analyze
the performance degradation due to collocation in order to avoid SLA violation while
some attempt energy aware collocation of heterogeneous workload. The contention
in shared resources of the underlying platform may result in the performance degra-
dation of applications, termed as “Interference”. The variations in performance can
be observed not only due to impact of co-runner application (i.e. application that runs
simultaneously) but also due to the heterogeneity of the underlying hardware. This
heterogeneity in data center applications running on heterogeneous hardware can be

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 141

leveraged for more energy savings by collocating the applications to maximize the
use of server resources without causing the performance degradation of applications.

Examples from the Literature

• Interference in Collocated Applications:
The interference effect of collocated applications on their performance has been
studied in some recent works [108, 109]. Fedorova et al. [110] attribute the reason
for contention to misses in the last level cache, as well as other shared resources,
such as front-side bus, prefetching resources, and memory controller. Mars et
al. [108, 109, 111] estimate the interference effect and hence the performance
degradation of the collocated applications by profiling each application for the
pressure they exert on the memory subsystem as well applications sensitivity
to memory pressure. Chiang and Huang [112] characterized the interference of
I/O in data intensive application in virtual environment by statistical modeling
methods to estimate the performance degradation while other group empirically
characterized the interference effects of communication over computation, corre-
lating computation size, communication packet size, frequency of communication
with sending and receiving using empirical methods [113]. In pScimapper [114],
a workload collocation scheme for scientific applications, interference amongst
applications is measured offline using correlation analysis and further used to
address the VM management as a hierarchical clustering problem. Network in-
tensive I/O intensive workload results in excess of context switching [115], while
database, memory or file I/O workload interference is shown by increase in last
level cache accesses [116]. Using such statistical parameters, interference aware
management scheme is developed for live Google data center applications [117].

• Energy aware Collocation of VMs: With increasing use of VM consolidation to
address the energy concerns in data centers, many researchers have considered
energy impact of collocation of applications. Most common approach is to in-
crease collocation by correctly estimating and avoiding performance degradation,
thereby consolidating more VMs on single hardware. Few of these research ef-
forts emphasize on estimating energy footprints with different collocation policies
[40, 118, 119]. Scheme proposed by vGreen [40] is designed as an open control
loop to manage the application assignments (VM) to the physical servers such
that a collocation of different workload types is always preferred over the other
policies. Some research efforts propose resource allocation while considering the
energy impact. Verma et al. use the dynamic cache footprint and and working set
size to manage power in virtual environment [120] while Buyya et al. [121] focus
on CPU usage while managing VMs. Merkel et al. [122], address the problem of
energy efficient management of collocated heterogeneous application by dividing
the applications into tasks, based on their resource requirements. The idea behind
sorted co-scheduling is to group the cores into pairs of two and to execute tasks
with complementary resource demands on each of them.

• Collocation of application with heterogeneous hardware: Data center inherently
possess hardware heterogeneity due to the servers, other data center hardware
that are replaced over time result in mix of hardware in the data center. Few of

142 M. Pore et al.

Table 7 A Taxonomy of research in collocation of workload in VM environments

Category Collocation Interference Performance Energy Heterogeneous
workload

Interference in
collocated application
[108, 109, 113, 122]

� � �

Workload type aware
Collocation management
for VM [40, 118]

� � � �

Collocation of
application with
heterogeneous hardware
[123, 36]

� � � �

the research groups have recently suggested the use of low power machines for
servicing data center workload [36]. Mars et al. [123] evaluate a application’s
sensitivity on the basis of collocated applications as well as underlying heteroge-
neous hardware. They develop a collocation scheme such that the most sensitive
applications are least affected. In order to account for the heterogeneity of un-
derlying hardware, the authors estimated the co-runner application’s interference
when run on the same core versus cross core [109, 123].

Table 7 shows different research work in the area for performance and energy man-
agement of collocation of heterogeneous workloads. In summary, the management
policy to minimize the interference of application collocation has to consider (i) sen-
sitivity to the co-runner application’s (ii) sensitivity of application to the underlying
micro architecture (hardware) (iii) pressure created by the application on the shared
subsystem.

3) Hybrid Data Center The notion of hybrid data center is proposed to increase
energy efficiency of data centers. The power performance of servers in terms of idle
power magnitude, power-utilization curve and on-off transition delay are different.
Further, power-utilization curve of servers for different types of workload are not
identical. Therefore, some of the research propose to match the workload to suitable
type of platform [9, 36]. The difference in power performance of platforms with
respect to type of workload is observed by some researchers. Experiments have
shown that, the CPU power used by different operations (i.e. in case of different
database applications) can vary widely, by up to 60 % for the same CPU utilization,
and that the CPU power is not linear with utilization [6]. In a similar experimental
study, authors observed that different platforms have different energy proportionality
characteristics and exhibit different power performance with respect to the type of
workload (e.g. memory intensive, CPU intensive and transactions) [9]. Hence, the
authors proposed to design a hybrid data-center that mix low power platforms with
high performance ones. Finally, Krioukov et al. [36] designed a power-proportional
cluster by considering the power-performance of systems consisting of a power-aware
cluster and a set of heterogeneous machines including high performance servers and

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 143

Atoms. They proposed to use Atom platforms to handle spikes in the workload
leveraging its lower wake up time and use high performance servers to service the
smooth part of workload. Use of alternative hardware such as embedded processors
is suggested in [44, 45]. The assignment of appropriate workload on specific type of
platform gives more energy proportionality.

6 Energy Cost Minimization Through Workload Distribution
Across Data Centers

Cloud computing is an emerging paradigm based on virtualization which facilitates
a dynamic, demand-driven allocation of computation load across physical servers
and data centers [124]. Leveraging the cloud infrastructure, recent researchers have
shown a growing interest in optimizing a geo-distributed data centers’ operational
cost and carbon footprint through exploring temporal and spatial diversities among
participating data centers [125].

Current large-scale Internet services tend to be replicated over several data cen-
ters around the world. These geo-distributed data centers are primarily deployed
by large-scale Internet service providers such as Google to serve users across the
world efficiently and reliably. Accordingly, the workload distribution policy across
data centers is conventionally performed to minimize the delay experienced by the
users. However, recent literature propose energy aware global workload manage-
ment schemes which not only meet the quality of service requirements of users (e.g.,
delay) in different locations, but also reduce the electricity cost (dollar per Joule) and
reduce the carbon footprint (CO2 emission per Joule) of the cloud. The idea is to
shift the workload toward data centers that offer green power or low electricity cost
at a given time, and adjust the number of active servers in proportion to the input
workload.

Data centers in a cloud are usually diverse in terms of their energy efficiency
(e.g, MIPS/joule), electricity cost and carbon emission factors. Servers in different
data centers have different computation capabilities and power consumption char-
acteristics. Therefore, depending upon the types of physical servers in data centers,
computing power performance of data centers can be different. Also, Power Usage
Efficiency (PUE) (see Eq. 1), may vary for different data centers. For example, ac-
cording to US Department of Energy [126] data centers usually have an average PUE
of 1.7, whereas Google’s modern data centers have PUE of 1.18 [127].

Further, data centers get their primary power from the grid. Various parameters
such as the availability of fuel type, the market, the environment, and the time of day
affect the electricity cost and the carbon emission of utilities. Furthermore, many
data centers utilize on-site renewable energy sources, with solar and wind energy
being the most popular ones. Despite progress in growing renewable-energy-powered
data centers, utilizing the available on-site renewable energy sources is challenging
without large-scale Energy Storage Devices (ESDs). This is due to the intermittent
nature of the renewable energy sources as well as fluctuation in the power demand.

144 M. Pore et al.

In response, energy aware global workload management schemes which are de-
veloped on “follow-the-moon” philosophy [128], leveraging the spatial and temporal
variation of the aforementioned factors, help to increase the utilization of the avail-
able renewable energy sources without the need to use large-scale energy storage
devices. The energy aware global workload management scheme deals with work-
load distribution of each front-end to data centers such that a set of energy related
objectives (e.g., energy cost and carbon footprint) is optimized without violating the
delay requirement of the users (see Fig. 13). Many modeling issues of the global
workload management such as performance model and workload prediction can
be managed similar to server provisioning, thus we don’t go into their details in
this section. However, some more modeling, algorithmic, and implementation chal-
lenges come into play when designing global workload management compared to
server/workload management for an individual data centers, as such: (i) the perfor-
mance/cost model needs to be aware of communication overhead between users and
the different data centers, (ii) the algorithm needs to be aware of migration overhead
of stateful applications (stateful applications stores the state of users/applications,
e.g., game applications) across data centers, and (iii) the global workload manage-
ment can be implemented in either central way, or distributed way across data centers
and front-ends, each associated with pros and cons including network overhead, scal-
ability, and confidentiality regarding the data centers’ information exchange. Some
of these problems and challenges are addresses in the literature as described below.

Example from Literatures The result of the current literature highlights that work-
load management across data centers can significantly reduce the electricity bill [49,
125, 129, 130–132], and can potentially be a significant aid in reducing the carbon
footprint of data centers without requiring large-scale energy storage devices [125,
130, 133–136].

Qureshi et al. [49] identified the temporal and spatial fluctuation of electricity
price (see Fig. 12). They used heuristics to quantify the potential economic gain
of considering electricity price in the location of computation. Through simulation
of realistic historical electricity price and real workload, they report that judicious
location of computation load may save millions of dollars on the total operation
costs of data centers. Another scheme for workload scheduling across data centers
has been developed by Ley et al. [47], where the problem is modeled as a linear
programming problem. This problem is further studied by Abbasi et al. [132], where
authors prove the NP-hardness of the problem and evaluate the proposed greedy
solutions for energy cost management of stateful and stateless Internet applications.
Dynamically hosting applications in data centers should be aware of the network
delay and bandwidth overhead during migration (e.g., user state data). This overhead
depends on the type of Web applications, which can be either stateless or stateful.
In stateless applications, for example, search engines, the state of online users is
not recorded; whereas stateful applications, for example, multiplayer online games,
keep track of the state of users. Therefore, stateful applications tend to induce higher
migration cost. Abbasi et al. studied the problem modeling and energy cost benefit
of global workload management for both stateful and stateless applications [132].

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 145

App3,�er1(web)

app1, �er 3 (DB)

App3,�er2(app)

App2,�er2(app)

app1, �er 2 (DB)

App2,�er3(DB)

Admission control

VM assignment and
migra�on management

Load balancing

Resource share management

App2,�er1(web)

app1, �er 1 (web)

App3,�er3(DB)

Resource share management

Resource share management

Server1

Server 2

Server 3

Global VM controller

Fig. 12 Hourly electricity price data for three major location of google IDCs on May 2nd, 2009
[46]

In an analytical and experimental study on geographical load balancing Liu et
al. [134] derive two distributed algorithms for achieving optimal geographical load
balancing. The algorithms allow front ends and data centers separately decide on
workload distribution, number of active servers as well as voltage scaling of CPUs.
The authors also show that if electricity is dynamically priced in proportion to the
instantaneous fraction of the total energy that is brown, then geographical load
balancing provides significant reductions in brown energy use.

Buchbinder et al. [52] propose online algorithms for migrating batch jobs between
data centers to handle the fundamental trade-off between energy and bandwidth costs.
They argue migration overhead for stateful jobs may be significant. They provide
competitive-analysis, to establish worst case performance bounds for the proposed
online algorithm. Authors also propose a practical, easy-to-implement version of the
online algorithm, and evaluate it through simulations on real electricity pricing and
job workload data.

The related works also highlight that global workload management can help to
efficiently utilize renewable energy. Liu et al. [134] propose a convex-optimization
framework to study the economic and environmental benefits of renewable energy
when using geographical load balancing. Using a trace-based simulation study Lui et
al. investigate how workload management across data centers can reduce the required

146 M. Pore et al.

size of energy storage devices to maximally utilize renewables. Finally, Akoush et
al. [130] propose to maximize the use of renewable energy by workload migration.

The variation of electricity price has been also leveraged for cost efficient energy
buffering in data centers. The idea is to store energy in UPS batteries during valleys
-periods of lower demand, which can be drained during peaks periods of higher
demand [50, 51]. Particularly, Urgaonkar et al. develop an on-line control algorithm
using Lyapunov optimization to exploit UPS devices to reduce cost in data centers
[51]. Govindan et al. perform a comprehensive study on the feasibility of utilizing
UPS to store low-cost energy, and design a Markovian based solution to schedule
batteries [50]. Palasamudram et al. perform a trace-based simulation using Akamai
CDN workload traces to investigate the energy cost saving that can be achieved by
using batteries to shave the peak power draw from the grid [137]. Govindan et al.,
propose to leverage existing UPSes to temporarily augment the utility supply during
emergencies (i.e., peak power) [138]. Finally, Kontorinis et al. [139] presents an
energy buffering management policy for distributed per-server UPSes to smoothen
power draw from grid. Wang et al. investigate how data centers can leverage the
existing huge set of heterogeneous ESDs [140]. The authors in this work study the
physical characteristics of different types of ESDs, and their cost-benefit for utilizing
them in data centers. The authors also develop an offline optimization framework to
decide on how heterogeneous set of ESDs can be placed in different levels of data
centers power hierarchy (i.e., data center, rack, and server levels) in order to minimize
the data center operational energy cost. The management scheme is mainly developed
for the data center design, not for dynamic workload management, since it is based
on the assumption that both short and long term variation of power demand for a
long time horizon is given in advance. Finally, Abbasi et al. propose two-tier online
workload and energy buffering management scheme which is aware of the long-term
and short term variations of the workload workload, the available renewable power,
the electricity pricing as well as the existing set of heterogeneous energy storage
devices. The authors, propose an analytical study of multi-tier workload and energy
buffering management technique that frames each tier as an optimization problem
and solves them in an online and proactive way using Receding Horizon Control
(RHC). This study shows that multi-tier energy buffering management increases the
utilization of the renewables by upto two times compared to one-tier management
(Fig.13)

Finally, there are some recent works which propose joint optimization of energy
cost and carbon footprint across data centers [136, 141–146]. This is challenging,
primarily because usually there is no coordination between energy cost and carbon
footprint of utilities across different locations. Le et al., devised a heuristic online
global workload management to dynamically solve green and brown energy mix
of data centers in a cloud in order to minimize the electricity cost while operating
under carbon cap-and-trade policy. Similarly, Gao et al. [142] and Doyle [146] utilize
multi-object optimization and Vornoi partitions, respectively, to determine how to
balance the workload across data centers based on the cloud operator’s priorities on
minimizing the network delay, the electricity cost, and the carbon footprint. Ren et
al., and Mahmud et al., focused on designing a Lyapunov based online electricity cost

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 147

Fig. 13 Pictorial view of workload distribution considering the spatio-temporal variations across
data centers

aware workload management to achieve carbon neutrality for a single data center
[143, 144]. The authors prove the optimality of their solutions through analytical and
experimental studies. Lyapunov based optimization is further used by Zhou et al. and
Abbasi et al. to design cost aware and carbon aware global workload management
[136, 145, 146]. In particular, Abbasi et al. propose an online global workload
management to minimize the electricity cost without violation of carbon footprint
target of the cloud specified by the cloud operator. The authors prove that their online
solution achieves a near optimal operational cost (electricity cost) compared to the
optimal algorithm with future information, while bounding the potential violation
of carbon footprint target, depending on the Lyapunov control parameter, namely V.
The authors also give a heuristic for finding the Lyapunov control parameter (i.e., V).

Taxonomy of Researches for Workload Distribution Across Data Center There are
significant amount of work which deals with identifying and leveraging the oppor-
tunities in cloud and data centers by developing cost and carbon efficient workload
placement algorithms. A taxonomy of the aforementioned researches according to
their covered problems is shown in Table 8. Research in designing energy efficient
techniques in data centers is still in the preliminary stages. In particular, most of the
existing solutions are evaluated using only trace based simulation studies. Further,

148 M. Pore et al.

Table 8 A Taxonomy of research in power aware workload management across data centers

Application type Management type Articles

Stateless Workload management [47, 49]

Cost aware workload and server management [46, 134]

Cost aware workload and energy buffering management [50, 51]

Cost and carbon aware workload and server management [136, 141–146]

Cost and renewable energy aware workload and server
management

[130, 133–135]

Statefull Cost aware server management [48, 52, 132, 147]

the cost aware and carbon aware global workload management favors an offline solu-
tion, due to the time coupling to manage energy storage and carbon capping. Yet the
online algorithms are often designed to address each of the aforementioned coupling
factors separately, disregarding their management implications on each other and the
practical considerations.

7 Data Center Simulation Tools

To assess the energy efficiency of the existing techniques, researchers either use ex-
perimental studies on an actual data center, prototypes, or simulation environment.
Testing the solutions in an actual data center is impractical because it requires ex-
clusive use of the data center while testing, something that cannot be easily granted
with production data centers. Further, prototype evaluation studies often provide
partial evaluation of the solutions depending on their scales and design. Simulation
tools, however, are easy to deploy and can provide a holistic evaluation environment
depending on the capability of the simulation tool and its accuracy. In this context,
the simulation tool needs to holistically account for data centers’ cyber (e.g., servers’
compution capabilities) and physical factors (e.g., data center physical layout), as
both of which affect the performance and the energy consumption.

A tool that partially simulates data center processes, similar to prototype evalu-
ation, might lead to unrealistic results. For example, a simulation tool which only
considers the cyber factors cannot capture the physical phenomenon such as server
shutdown, throttling, or physical damage in the case of thermal failures.

A holistic simulation tool is also important to account for the interrelation of
different power management techniques, when they are deployed together in a data
center/cloud. In other words, a combination of the energy management techniques,
ranging from component level power management to data center thermal aware
power management schemes can be utilized depending on data center circumstances
in order to improve the energy proportionality. However, when combined, one needs
to account for their interaction on each other due to the cyber and the physical energy
and performance factors, e.g., response time which is affected by both DVFS and
server provisioning and energy which is affected by both computing and cooling

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 149

power. Therefore, their evaluation must be holistically considered to effectively
assess their efficiency (in improving energy proportionality without compromising
the quality of service) for their combined deployment.

Despite importance, the data center simulation tools have not been sufficiently
studied in the literature. In particular, most of the existing tools provide partial (either
cyber or physical) simulation of a data center. In the following we give an overview
on these tools.

Overview on the Existing Data Center Simulation Tools Prior work exists in the
area of data center simulation, with some focus on the end goal of investigation
for energy savings. For the purpose of simulating cyber-physical interdependencies,
however, these tools tend to be piecemeal.

On the cyber side, Lim et al. [148] develop MDCSim to evaluate the data center
power efficiency through simulating the cyber aspects of data centers. The tool uses
steady-state queuing models to simulate a data center servicing multi-tier web appli-
cations. BigHouse [149] further improves the MDCSim models though introducing
stochastic queuing system which provides a stochastic discrete time simulation of
generalized queuing models to simulate the performance of the data center applica-
tions in more detail than that of MDCSim [148]. CloudSim, is capable of simulating
the per-server power and performance metrics, where the main abstraction unit is
a VM [150]. The above tools ignore simulating the physical aspect of data centers
and the potential interaction between cyber and physical aspects. They rely on the
steady-state models to estimate the power consumption and performance of servers,
lacking simulating the transient processes that can have long-time effects on data
center (e.g., redlining).

On the physical side, computational fluid dynamics (CFD) simulators can be used
to test the efficiency of a physical design [151–153] and can be used for thermal-
map model (temperature distribution within data center room) learning in an offline
setting [101]. However, each of these tools requires domain specific expertise, and
are very time consuming. There exists some previous work attempting to alleviate
this problem. Weatherman by Moore et al. [101] avoids this problem by inducing a
physical model of the data center in a “learning process”. This model can thereafter
be used in lieu of computationally expensive CFD simulation.

GDCSim, is a recently proposed simulator which simulate both the data center cy-
ber and physical processes and their interactions [154, 155]. Similar, to Weatherman,
GDCSim utilizes a light-weight heat recirculation model to simulate the temperature
distribution in a data center. It also unifies the operationally relevant computation
subsystems (e.g., servers, and workload) of a data center required to simulate and
characterize the overall efficiency (i.e., performance and energy efficiency) of the
data center system. GDCSim is developed as a part of a research project named
BlueTool whose goal is to provide an open platform for the analysis and develop-
ment of state-of-the-art techniques. GDCSim, in its current state, does not account
for a combination of power management techniques and their interactions. Further,
it accounts for both batch and transactional jobs, however it relies on steady-state
models to estimate the metrics related to cyber and physical aspect of data centers.

150 M. Pore et al.

Lastly, Banerjee et al. [156] propose a cyber-physical hybrid simulator to simulate
both interactive and batch workload, while considering the transient models of cyber
factors (transient workload variation) and physical factors of data centers (transient
temperature variation). The authors also provide an error analysis to specify the
confidence intervals of the simulation results. The proposed hybrid simulator does
not provide a capability to evaluate a combination deployment of power management
techniques at different levels.

8 Performance of Server and Data Center Level Power
Management Techniques

As mentioned earlier, the aforementioned techniques are often complementary and
can be implemented together in a system. In practice, however, not all of the technique
are feasible to deploy depending on the application requirements, and data center
infrastructure. One need to decide the feasible and the most power efficient technique
for a given data center and a given application based on pros and cons associated
with each technique, as given below:

SLA violation/Response Time
All power management and workload shaping techniques trade performance for
power saving. The amount of response time overhead however varies over the ap-
plication and the power management technique. For example, the response time
overhead of server level power management is incurred because of transition delay
from inactive mode to the active mode. This method is reactive approach and there
is no need for workload prediction. In other words, if transition delay is very less
than an average response time, then its response time overhead is negligible. In case
for DVFS, the response time overhead incurs due to transition between different
states, as well as decreasing the frequency. If the scale is inappropriately adjusted,
the response time can be severely affected. However, since scaling is managed at
a very short time interval, this is unlikely to happen. Data center level power man-
agement techniques are more prone to violate the response time. The reason is the
unpredictable variations in the workload.

Energy Proportionality
In an ideal case both server provisioning in data center level and server level power
management schemes should provide ideal energy-proportional servers and data
center, however in reality it is unlikely to happen. For data centers which have
non-uniform temperature distribution within the data center room, ideal energy-
proportional servers cannot make an energy-proportional data center [4]. Further, the
server provisioning is usually with under provisioning and over provisioning problem
due to uncertainty associated with workload. The performance of low power mode
schemes such as PowerNap, are also degraded by the nature of workload and PDUs.
For the same condition of workload, where both low power mode schemes and server
provisioning are applicable, and live migration is no longer required (stateless and

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 151

short transaction), server provisioning is more preferred due to its higher reliability,
higher efficiency and also because of thermal-awareness of the policies implemented
in that data center.

Since active power modes such as DVFS does not remove idle power, the en-
ergy savings obtained is less than server level power management schemes for the
condition where they are both applicable.

Reliability
Frequent on-off cycles increase the wear-and-tear of server components (e.g., CPU
disks, fans), incur costs for their procurement and replacement, and affects the
performance of current running services [35]. Therefore the reliability of power
management techniques can be evaluated according to their impact on the frequency
of on-off cycles. That frequency depends on the decision time interval. Since de-
cision time interval of server provisioning are much higher than server level power
management schemes, they are less prone to affect the reliability of servers compared
to low power mode schemes. In low utilization periods in the workload (i.e. order of
milliseconds) server level power management schemes can result in frequent on-off
cycles.

Thermal-Awareness in Workload Scheduling and Power Management Tech-
niques
The incorporation of thermal-awareness and its efficiency over various power and
workload management is different. Thermal-awareness can be either applied to the
server provisioning or workload shaping, however its efficiency is increased when it
is applied to the server provisioning compared to workload shaping [12, 34].

Applicability
The power management technique applied depends on data center hardware, type of
workload and the applications. In case for server level power management techniques,
the applicability depends on the workload statistics. For example the inter arrival
times between the requests is a factor that can decide the applicability of server
level power management scheme. If the average inter-arrival time of requests is
less than power mode transition time, the performance of the server level power
management is almost zero. For example Meisner et al. [84] did extensive data
analysis of Google data centers and observed that server level power management
technique is inappropriate for the Google data intensive workload classes because
periods of full-system idleness are scarce in such workloads.

The applicability of active power mode also depends on the latency-power trade-
off. The scaling should be in such a way that the energy consumption over time does
not increase.

The applicability of server provisioning is based on fluctuation of workload be-
tween low and peak periods. It also depends on the type of applications. For example
according to Meisner et al. [84] server provisioning is inapplicable to Google data
intensive services because the number of servers provisioned in a cluster is fixed. In
this application cluster sizing is determined primarily based on data set size instead
of incoming workload arrival rates. For a cluster to process a transaction data set for

152 M. Pore et al.

even a single query with acceptable latency, the data set must be partitioned over
thousands of servers that act in parallel.

Ease of Implementation
Implementation of server provisioning techniques requires extra hardware and soft-
ware to shutdown servers remotely and to perform live migration whenever it is
required. Therefore, it may not be applicable for some data centers whose manager
kit does not support it. Most of processors support DVFS, therefore DVFS is very
easy to implement. In case for server level power management, current modern sys-
tem use Wake-On-Lan capability of current network interfaces to transition from idle
to active state. However, there are challenges for implementing server level power
management. The efficiency of PDU is higher for larger power consumption but de-
grades for lower loads. Hence by using server level power management techniques
such as PowerNap [30], the overall power consumption over a cluster may not change
significantly. The efficiency of PDUs’ can be improved by techniques proposed in
PowerNap by using extra hardware to combine several PDUs.

Scalability
Scalability of techniques can be analyzed from two perspectives: software and hard-
ware implementation, and the performance of schemes in terms of computation
overhead. The computation overhead of server level power management techniques
are usually negligible, since they are applied for an individual server. Server level
power managements may need to combine PDUs [30] to increase energy efficiency
(PDUs are more energy efficient at high power consumption level) which may not
be scalable for large data centers. In case for server provisioning, the scalability is
tightly correlated with the server provisioning algorithm. The computation overhead
of server provisioning algorithms is usually a function of number of servers, and
it may not be scalable depending on the algorithm. The scalability of the server
provisioning is also limited for the extra hardware and software that is required for
shutting down servers and live migration.

9 Conclusions

To conclude, we highlight the importance of workload and power management tech-
niques to achieve energy proportionality and cost efficiency at data centers. This is
due to characteristics of computing systems which has non zero energy consumption
when they are idle, which reduce the energy efficiency of data centers in the periods
of low utilization. Further, current data centers have PUE of greater than one which
motivates the use of thermal-aware workload and power management techniques
to improve cooling energy efficiency. The research community proposes workload
and power management techniques to increase the energy efficiency of data centers
ranging from component level to data center level. While much has been published
in this area, the research is still active to expand the dynamic power management for
different systems components such as memory, and network, and improve solutions

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 153

for VM management and server provisioning to have theoretical performance bound
and capture the accurate behavior of the system (i.e., VM migration overhead). Green
data center schemes are designed to manage the workload across data centers where
some aspect of problem such as reducing the energy cost by energy buffering during
periods of low energy cost in the workload management are addressed. However, to
achieve the ultimate goal of green and sustainable data centers, sophisticated power
and workload management which is aware of the cooling energy, applications perfor-
mance goals, the energy cost and the uncertainty associated with availability of green
energy sources is required. The other remarkable conclusion from the above litera-
ture survey is that to achieve the energy efficient data centers, power and workload
management at different levels is required. Further, the applicability and efficiency
of power management techniques depends on the workload offered to the data center.

References

1. L. A. Barroso and U. Hölzle, “The case for energy-proportional computing,” Computer,
vol. 40, no. 12, pp. 33–37, Dec. 2007.

2. P. Ranganathan, P. Leech, D. Irwin, and J. Chase, “Ensemble-level power management for
dense blade servers,” SIGARCH Comput. Archit. News, vol. 34, pp. 66–77, May 2006.
[Online]. Available: http://doi.acm.org/10.1145/1150019.1136492.

3. T. Starner, “Human-powered wearable computing,” IBM Systems Journal, vol. 35, no. 3.4,
pp. 618–629, 1996.

4. G.Varsamopoulos, Z.Abbasi, and S. K. S. Gupta, “Trends and effects of energy proportionality
on server provisioning in data centers,” in International Conference on High performance
Computing (HiPC2010), Goa, India, Dec. 2010.

5. X. Feng, R. Ge, and K. W. Cameron, “Power and energy profiling of scientific applications
on distributed systems,” in Proceedings. 19th IEEE International Parallel and Distributed
Processing Symposium, 2005. IEEE, 2005, p. 34.

6. D. Tsirogiannis, S. Harizopoulos, and M. A. Shah, “Analyzing the energy efficiency of a
database server,” in Proceedings of the 2010 international conference on Management of
data SIGMOD’10. ACM, 2010, pp. 231–242.

7. “Standard performance evaluation corporation specweb 2009.”
8. G. Varsamopoulos and S. K. Gupta, “Energy proportionality and the future: Metrics and

directions,” in Proceedings of the 2010 39th International Conference on Parallel Processing
Workshops, ser. ICPPW’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 461–
467. [Online]. Available: http://dx.doi.org/10.1109/ICPPW.2010.68.

9. B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz, G. Lee, and L. Niccolini, “An energy case
for hybrid datacenters,” ACM SIGOPS Operating Systems Review, vol. 44, no. 1, pp. 76–80,
2010.

10. R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No “power” struggles:
coordinated multi-level power management for the data center,” SIGARCH Comput. Ar-
chit. News, vol. 36, pp. 48–59, March 2008. [Online]. Available: http://doi.acm.org/10.1145/
1353534.1346289.

11. T. Mukherjee, A. Banerjee, G. Varsamopoulos, S. K. S. Gupta, and S. Rungta, “Spatio-
temporal thermal-aware job scheduling to minimize energy consumption in virtualized
heterogeneous data centers,” Computer Networks, June 2009. [Online]. Available: http://dx.
doi.org/10.1016/j.comnet.2009.06.008.

http://doi.acm.org/10.1145/1150019.1136492
http://dx.doi.org/10.1109/ICPPW.2010.68
http://doi.acm.org/10.1145/1353534.1346289
http://doi.acm.org/10.1145/1353534.1346289
http://dx.doi.org/10.1016/j.comnet.2009.06.008
http://dx.doi.org/10.1016/j.comnet.2009.06.008

154 M. Pore et al.

12. Z. Abbasi, G. Varsamopoulos, and S. K. S. Gupta, “Thermal aware server provisioning and
workload distribution for internet data centers,” in ACM International Symposium on High
Performance Distributed Computing (HPDC10), Chicago, IL, June 2010.

13. C. Bash and G. Forman, “Cool job allocation: Measuring the power savings of placing jobs
at cooling-efficient locations in the data center,” HP Laboratories Palo Alto, Tech. Rep.
HPL-2007-62, August 2007.

14. X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized com-
puter,” in Proceedings of the 34th annual international symposium on Computer architecture.
ACM, 2007, pp. 13–23.

15. J. Racino, “PUE.” [Online]. Available: http://www.thegreengrid.org.
16. “Environmental protection agency, energy star program, report to congress on server and data

energy efficiency,” 2007. [Online]. Available: http://www.energystar.gov/ia/partners/prod_
development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf.

17. A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy, “Optimal power allocation in server
farms,” in Proceedings of the eleventh international joint conference on Measurement and
modeling of computer systems, ser. SIGMETRICS ’09. New York, NY, USA: ACM, 2009,
pp. 157–168. [Online]. Available: http://doi.acm.org/10.1145/1555349.1555368.

18. R. Ge, X. Feng, W. Chun Feng, and K. Cameron, “CPU MISER:A performance-directed, run-
time system for power-aware clusters,” in International Conference on Parallel Processing,
2007. ICPP 2007, Sept. 2007, p. 18.

19. D. Meisner, B. T. Gold, and T. F. Wenisch, “The powernap server architecture,” ACM Trans.
Comput. Syst., vol. 29, pp. 3:1–3:24, February 2011. [Online]. Available: http://doi.acm.org/
10.1145/1925109.1925112.

20. J. E. Moreira and J. P. Karidis, “The case for full-throttle computing: An alternative datacenter
design strategy,” Micro, IEEE, vol. 30, no. 4, pp. 25–28, July–Aug. 2010.

21. Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini, “Memscale: active low-
power modes for main memory,” in Proceedings of the sixteenth international conference on
Architectural support for programming languages and operating systems, ser. ASPLOS’11.
New York, NY, USA: ACM, 2011, pp. 225–238. [Online]. Available: http://doi.acm.org/
10.1145/1950365.1950392.

22. J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber, “Future scaling
of processor-memory interfaces,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC’09. NewYork, NY, USA: ACM, 2009,
pp. 42:1–42:12. [Online]. Available: http://doi.acm.org/10.1145/1654059.1654102.

23. H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu, “Mini-rank: Adaptive dram
architecture for improving memory power efficiency,” in Proceedings of the 41st annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO 41. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 210–221. [Online]. Available: http://dx.doi.org/
10.1109/MICRO.2008.4771792.

24. S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wetherall, “Reducing network
energy consumption via sleeping and rate-adaptation,” in Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation, ser. NSDI’08. Berkeley,
CA, USA: USENIX Association, 2008, pp. 323–336. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1387589.1387612.

25. M. Gupta and S. Singh, “Using low-power modes for energy conservation in ethernet lans,” in
INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE,
may 2007, pp. 2451–2455.

26. G. Ananthanarayanan and R. H. Katz, “Greening the switch,” in Proceedings of the 2008 con-
ference on Power aware computing and systems, ser. HotPower’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 7–7. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1855610.1855617.

27. B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown, “Elastictree: saving energy in data center networks,” in Proceedings

http://www.thegreengrid.org
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
http://doi.acm.org/10.1145/1555349.1555368
http://doi.acm.org/10.1145/1925109.1925112
http://doi.acm.org/10.1145/1925109.1925112
http://doi.acm.org/10.1145/1950365.1950392
http://doi.acm.org/10.1145/1950365.1950392
http://doi.acm.org/10.1145/1654059.1654102
http://dx.doi.org/10.1109/MICRO.2008.4771792
http://dx.doi.org/10.1109/MICRO.2008.4771792
http://dl.acm.org/citation.cfm?id=1387589.1387612
http://dl.acm.org/citation.cfm?id=1387589.1387612
http://portal.acm.org/citation.cfm?id=1855610.1855617
http://portal.acm.org/citation.cfm?id=1855610.1855617

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 155

of the 7th USENIX conference on Networked systems design and implementation, ser.
NSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 17–17. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1855711.1855728.

28. M. Gupta and S. Singh, “Greening of the internet,” in Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer communications,
ser. SIGCOMM’03. New York, NY, USA: ACM, 2003, pp. 19–26. [Online]. Available:
http://doi.acm.org/10.1145/863955.863959.

29. N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X. Zhu, “Delivering energy
proportionality with non energy-proportional systems: optimizing the ensemble,” in Proceed-
ings of the 2008 conference on Power aware computing and systems. USENIX Association,
2008, pp. 2–2.

30. D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminating server idle power,”
SIGPLAN Notices, vol. 44, pp. 205–216, March 2009. [Online]. Available: http://doi.acm.org/
10.1145/1508284.1508269.

31. G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-aware
server provisioning and load dispatching for connection-intensive internet services,” in
NSDI’08: Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation. Berkeley, CA, USA: USENIX Association, 2008, pp. 337–350.

32. D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang, “Power and perfor-
mance management of virtualized computing environments via lookahead control,” Cluster
Computing, vol. 12, pp. 1–15, 2009.

33. J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle, “Managing energy and server
resources in hosting centers,” in SOSP’01: Proceedings of the eighteenth ACM symposium
on Operating systems principles. New York, NY, USA: ACM, 2001, pp. 103–116.

34. A. Faraz and T. Vijaykumar, “Joint optimization of idle and cooling power in data centers
while maintaining response time,” ACM SIGARCH Computer Architecture News, vol. 38,
no. 1, pp. 243–256, 2010.

35. B. Guenter, N. Jain, and C. Williams, “Managing cost, performance, and reliability tradeoffs
for energy-aware server provisioning,” in Proc. IEEE INFOCOM, Shanghai, China. IEEE,
2011, pp. 702–710.

36. A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz, “Napsac: design
and implementation of a power-proportional web cluster,” in Proceedings of the first ACM
SIGCOMM workshop on Green networking. ACM, 2010, pp. 15–22.

37. M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic right-sizing for power-
proportional data centers,” in Proc. IEEE INFOCOM, Shanghai, China, 2011, pp. 10–15.

38. F. Hermenier, X. Lorca, J. M. Menaud, G. Muller, and J. Lawall, “Entropy: a consolida-
tion manager for clusters,” in ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environment, Washington, DC, USA, March 2009, pp. 41–50.

39. S.-H. Lim, J.-S. Huh, Y. Kim, and C. R. Das, “Migration, assignment, and scheduling of jobs
in virtualized environment,” in HotCloud, June, 2011.

40. G. Dhiman, G. Marchetti, and T. Rosing, “vgreen: A system for energy-efficient manage-
ment of virtual machines,” ACM Trans. Des. Autom. Electron. Syst., vol. 16, pp. 6:1–6:27,
November 2010. [Online]. Available: http://doi.acm.org/10.1145/1870109.1870115.

41. D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang, “Energy-aware autonomic resource
allocation in multi-tier virtualized environments,” IEEE Transactions on Services Computing,
vol. 99, no. PrePrints, 2010.

42. L. Lu, P. J.Varman, and K. Doshi, “Decomposing workload bursts for efficient storage resource
management,” IEEE Transactions on Parallel and Distributed Systems, pp. 860–873, 2010.

43. R. K. Sharma, C. E. Bash, C. D. Patel, R. J. Friedrich, and J. S. Chase, “Balance of power:
Dynamic thermal management for internet data centers,” IEEE Internet Computing, pp. 42–49,
2005.

44. V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan, J. Franklin, and I. Moraru, “Energy-
efficient cluster computing with fawn: workloads and implications,” in Proceedings of the 1st

http://portal.acm.org/citation.cfm?id=1855711.1855728
http://doi.acm.org/10.1145/863955.863959
http://doi.acm.org/10.1145/1508284.1508269
http://doi.acm.org/10.1145/1508284.1508269
http://doi.acm.org/10.1145/1870109.1870115

156 M. Pore et al.

International Conference on Energy-Efficient Computing and Networking, ser. e-Energy’10.
New York, NY, USA: ACM, 2010, pp. 195–204. [Online]. Available: http://doi.acm.org/
10.1145/1791314.1791347.

45. K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt, “Understanding
and designing new server architectures for emerging warehouse-computing environments,”
SIGARCH Comput. Archit. News, vol. 36, pp. 315–326, June 2008. [Online]. Available:
http://doi.acm.org/10.1145/1394608.1382148.

46. L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost: optimization of dis-
tributed internet data centers in a multi-electricity-market environment,” in INFOCOM, 2010
Proceedings. IEEE, 2010, pp. 1–9.

47. K. Ley, R. Bianchiniy, M. Martonosiz, and T. D. Nguyeny, “Cost and energy aware
load distribution across data centers,” in SOSP Workshop on Power Aware Computing and
Systems(HotPower’09), 2009.

48. Z. Abbasi, T. Mukherjee, G. Varsamopoulos, and S. K. S. Gupta, “Dynamic hosting man-
agement of web based applications over clouds,” in International Conference on High
performance Computing (HiPC2011), India, Dec. 2011.

49. A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, “Cutting the electric bill
for internet-scale systems,” in Proceedings of the ACM SIGCOMM 2009 conference on Data
communication. ACM, 2009, pp. 123–134.

50. S. Govindan, A. Sivasubramaniam, and B. Urgaonkar, “Benefits and limitations of tapping
into stored energy for datacenters,” in Proc. The 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, USA, June 2011.

51. R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubramaniam, “Optimal power cost
management using stored energy in data centers,” Arxiv preprint arXiv:1103.3099, 2011.

52. N. Buchbinder, N. Jain, and I. Menache, “Online job-migration for reducing the electricity
bill in the cloud,” NETWORKING 2011, pp. 172–185, 2011.

53. P. Ranganathan, “Recipe for efficiency: Principles of power-aware computing,” in Commun.
ACM, vol. 53, no. 4. New York, NY, USA: ACM, Apr. 2010, pp. 60–67. [Online]. Available:
http://doi.acm.org/10.1145/1721654.1721673.

54. X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized compute
r,” SIGARCH Comput. Archit. News, vol. 35, pp. 13–23, June 2007. [Online]. Available:
http://doi.acm.org/10.1145/1273440.1250665.

55. D.Wei, “ACPI advanced configuration and power interface,” March 2013. [Online]. Available:
http://www.acpi.info/.

56. S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto, “Survey of energy-
cognizant scheduling techniques,” IEEE Transactions on Parallel and Distributed Systems,
vol. 99, no. PrePrints, 2012.

57. L. L. Andrew, M. Lin, and A. Wierman, “Optimality, fairness, and robustness in speed scaling
designs,” in Proceedings of the ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, ser. SIGMETRICS’10. NewYork, NY, USA: ACM, 2010,
pp. 37-48. [Online]. Available: http://doi.acm.org/10.1145/1811039.1811044.

58. A. Wierman, L. Andrew, and A. Tang, “Power-aware speed scaling in processor sharing
systems,” in INFOCOM 2009, IEEE, April 2009, pp. 2007–2015.

59. R. Ge, X. Feng, W. chun Feng, and K. Cameron, “Cpu miser: A performance-directed,
run-time system for power-aware clusters,” in Parallel Processing, 2007. ICPP 2007.
International Conference on, Sept. 2007, p. 18.

60. G. Dhiman and T. S. Rosing, “Dynamic voltage frequency scaling for multi-tasking systems
using online learning,” in Proceedings of the 2007 international symposium on Low power
electronics and design, ser. ISLPED’07. New York, NY, USA: ACM, 2007, pp. 207–212.
[Online]. Available: http://doi.acm.org/10.1145/1283780.1283825.

61. M. Ghasemazar, E. Pakbaznia, and M. Pedram, “Minimizing energy consumption of a chip
multiprocessor through simultaneous core consolidation and DVFS,” in Proceedings of 2010

http://doi.acm.org/10.1145/1791314.1791347
http://doi.acm.org/10.1145/1791314.1791347
http://doi.acm.org/10.1145/1394608.1382148
http://doi.acm.org/10.1145/1721654.1721673
http://doi.acm.org/10.1145/1273440.1250665
ttp://www.acpi.info/
http://doi.acm.org/10.1145/1811039.1811044
http://doi.acm.org/10.1145/1283780.1283825

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 157

IEEE International Symposium on Circuits and Systems (ISCAS), 30 2010-June 2 2010,
pp. 49–52.

62. P. Bailis, V. Reddi, S. Gandhi, D. Brooks, and M. Seltzer, “Dimetrodon: Processor-level
preventive thermal management via idle cycle injection,” in Design Automation Conference
(DAC), 2011 48th ACM/EDAC/IEEE, June 2011, pp. 89–94.

63. K. Kang, J. Kim, S.Yoo, and C.-M. Kyung, “Temperature-aware integrated DVFS and power
gating for executing tasks with runtime distribution,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 29, no. 9, pp. 1381–1394, Sept. 2010.

64. J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis, “Power management
of datacenter workloads using per-core power gating,” IEEE Comput. Archit. Lett., vol. 8, no.
2, pp. 48–51, July 2009. [Online]. Available: http://dx.doi.org/10.1109/L-CA.2009.46.

65. X. Wang and Y. Wang, “Coordinating power control and performance management for vir-
tualized server clusters,” IEEE Transactions on Parallel and Distributed Systems, vol. 22,
pp. 245–259, 2011.

66. R. Ayoub, U. Ogras, E. Gorbatov, Y. Jin, T. Kam, P. Diefenbaugh, and T. Rosing, “OS-
level power minimization under tight performance constraints in general purpose systems,”
in International Symposium on Low Power Electronics and Design (ISLPED) 2011, Aug.
2011, pp. 321–326.

67. S. Cho and R. G. Melhem, “Corollaries to Amdahl’s law for energy,” Computer Architecture
Letters, vol. 7, no. 1, pp. 25–28, 2008.

68. S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors,” in ACM/IEEE International Symposium on Low Power Electronics and
Design (ISLPED), 2007, Aug. 2007, pp. 38–43.

69. S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto, “Survey of energy-
cognizant scheduling techniques,” IEEE Transactions on Parallel and Distributed Systems,
vol. 99, no. PrePrints, 2012.

70. X. Fan, C. Ellis, and A. Lebeck, “Memory controller policies for dram power manage-
ment,” in Proceedings of the 2001 international symposium on Low power electronics and
design, ser. ISLPED’01. NewYork, NY, USA: ACM, 2001, pp. 129–134. [Online]. Available:
http://doi.acm.org/10.1145/383082.383118.

71. H. Huang, P. Pillai, and K. G. Shin, “Design and implementation of power-aware virtual
memory,” in Proceedings of the annual conference on USENIX Annual Technical Con-
ference. Berkeley, CA, USA: USENIX Association, 2003, pp. 5–5. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1247340.1247345.

72. X. Li, Z. Li, F. David, P. Zhou,Y. Zhou, S. Adve, and S. Kumar, “Performance directed energy
management for main memory and disks,” SIGARCH Comput. Archit. News, vol. 32, pp. 271–
283, October 2004. [Online]. Available: http://doi.acm.org/10.1145/1037947.1024425.

73. J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber, “Future scaling
of processor-memory interfaces,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC’09. NewYork, NY, USA: ACM, 2009,
pp. 42:1–42:12. [Online]. Available: http://doi.acm.org/10.1145/1654059.1654102.

74. Q. Zou, “An analytical performance and power model based on the transition probability for
hard disks,” in 3rd International Conference on Awareness Science and Technology (iCAST),
2011, Sept. 2011, pp. 111–116.

75. A. Verma, R. Koller, L. Useche, and R. Rangaswami, “Srcmap: energy proportional storage
using dynamic consolidation,” in Proceedings of the 8th USENIX conference on File and
storage technologies, ser. FAST’10. Berkeley, CA, USA: USENIXAssociation, 2010, pp. 20–
20. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855511.1855531.

76. D. Tsirogiannis, S. Harizopoulos, and M. A. Shah, “Analyzing the energy efficiency of a
database server,” in Proceedings of the 2010 international conference on Management of
data, ser. SIGMOD’10. New York, NY, USA: ACM, 2010, pp. 231–242. [Online]. Available:
http://doi.acm.org/10.1145/1807167.1807194.

http://dx.doi.org/10.1109/L-CA.2009.46
http://doi.acm.org/10.1145/383082.383118
http://portal.acm.org/citation.cfm?id=1247340.1247345
http://doi.acm.org/10.1145/1037947.1024425
http://doi.acm.org/10.1145/1654059.1654102
http://dl.acm.org/citation.cfm?id=1855511.1855531
http://doi.acm.org/10.1145/1807167.1807194

158 M. Pore et al.

77. T. Härder, V. Hudlet, Y. Ou, and D. Schall, “Energy efficiency is not enough, energy pro-
portionality is needed!” in Proceedings of the 16th international conference on Database
systems for advanced applications, ser. DASFAA’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 226–239. [Online]. Available: http://dl.acm.org/citation.cfm?id=1996686.1996716.

78. Y. Deng, “What is the future of disk drives, death or rebirth?” ACM Comput. Surv., vol. 43,
no. 3, pp. 23:1–23:27, Apr. 2011. [Online]. Available: http://doi.acm.org.ezproxy1.lib.asu.
edu/10.1145/1922649.1922660.

79. H.Amur, J. Cipar, V. Gupta, G. R. Ganger, M.A. Kozuch, and K. Schwan, “Robust and flexible
power-proportional storage,” in Proceedings of the 1st ACM symposium on Cloud comput-
ing, ser. SoCC’10. New York, NY, USA: ACM, 2010, pp. 217–228. [Online]. Available:
http://doi.acm.org.ezproxy1.lib.asu.edu/10.1145/1807128.1807164.

80. J. Guerra, W. Belluomini, J. Glider, K. Gupta, and H. Pucha, “Energy proportionality for
storage: impact and feasibility,” SIGOPS Oper. Syst. Rev., vol. 44, pp. 35–39, March 2010.
[Online]. Available: http://doi.acm.org.ezproxy1.lib.asu.edu/10.1145/1740390.1740399.

81. C. H. Hsu and S. W. Poole, “Power signature analysis of the specpower_ssj2008 benchmark,”
in IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),
2011. IEEE, 2011, pp. 227–236.

82. S. Wang, J. Liu, J.-J. Chen, and X. Liu, “Powersleep: A smart power-saving scheme with
sleep for servers under response time constraint,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 1, no. 3, pp. 289–298, Sept. 2011.

83. E. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient server clusters,” in Power-Aware
Computer Systems, ser. Lecture Notes in Computer Science, B. Falsafi and T. Vijaykumar,
Eds. Springer Berlin / Heidelberg, 2003, vol. 2325, pp. 179–197.

84. D. Meisner, C. M. Sadler, L.A. Barroso, W.-D.Weber, and T. F.Wenisch, “Power management
of online data-intensive services,” in Proceeding of the 38th annual international symposium
on Computer architecture, ser. ISCA’11. New York, NY, USA: ACM, 2011, pp. 319–330.
[Online]. Available: http://doi.acm.org/10.1145/2000064.2000103.

85. A. Gandhi, M. Harchol-Balter, and M. A. Kozuch, “The case for sleep states in
servers,” in Proceedings of the 4th Workshop on Power-Aware Computing and Systems,
ser. HotPower’11. New York, NY, USA: ACM, 2011, pp. 2:1–2:5. [Online]. Available:
http://doi.acm.org/10.1145/2039252.2039254.

86. Y. Wang, X. Wang, M. Chen, and X. Zhu, “Power-efficient response time guarantees for
virtualized enterprise servers,” in Real-Time Systems Symposium, 2008, 30 2008-Dec. 3
2008, pp. 303–312.

87. X. Wang andY. Wang, “Coordinating Power Control and Performance Management for Virtu-
alized Server Clusters,” IEEE Transactions on Parallel and Distributed Systems, pp. 245–259,
2010.

88. P. Ranganathan, P. Leech, D. Irwin, and J. Chase, “Ensemble-level power management
for dense blade servers,” in Computer Architecture, 2006. ISCA’06. 33rd International
Symposium on, 0-0 2006, pp. 66–77.

89. T. Mukherjee, G. Varsamopoulos, S. Sandeep K. Gupta, and S. Rungta, “Measurement-based
power profiling of data center equipment,” in IEEE International Conference on Cluster
Computing., Austin, Texas, USA, Sept. 2007, pp. 476–477.

90. B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile dynamic provisioning of
multi-tier internet applications,” ACM Trans. Auton. Adapt. Syst., vol. 3, pp. 1:1–1:39, March
2008. [Online]. Available: http://doi.acm.org/10.1145/1342171.1342172.

91. A. O. Allen, Probability, statistics and queuing theory with computer science applications.
Academic Press Inc., 1990.

92. S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy, “An analysis of Internet
content delivery systems,” ACM SIGOPS Operating Systems Review, pp. 315–327, 2002.

93. M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew, “Online algorithms for geographical load
balancing,” in Proc. of International Green Computing Conference (IGCC11). IEEE, June
2012.

http://dl.acm.org/citation.cfm?id=1996686.1996716
http://doi.acm.org.ezproxy1.lib.asu.edu/10.1145/1922649.1922660
http://doi.acm.org.ezproxy1.lib.asu.edu/10.1145/1922649.1922660
http://doi.acm.org.ezproxy1.lib.asu.edu/10.1145/1807128.1807164
http://doi.acm.org.ezproxy1.lib.asu.edu/10.1145/1740390.1740399
http://doi.acm.org/10.1145/2000064.2000103
http://doi.acm.org/10.1145/2039252.2039254
http://doi.acm.org/10.1145/1342171.1342172

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 159

94. P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell, and R. Rajamony,
“The case for power management in web servers,” pp. 261–289, 2002.

95. P. Barford and M. Crovella, “Generating representative web workloads for network and
server performance evaluation,” in Proceedings of the 1998 ACM SIGMETRICS joint
international conference on Measurement and modeling of computer systems, ser. SIGMET-
RICS’98/PERFORMANCE’98. New York, NY, USA: ACM, 1998, pp. 151–160. [Online].
Available: http://doi.acm.org/10.1145/277851.277897.

96. Y. Chen,A. Das, W. Qin,A. Sivasubramaniam, Q.Wang, and N. Gautam, “Managing server en-
ergy and operational costs in hosting centers,” SIGMETRICS Performance Evaluation Review,
vol. 33, no. 1, pp. 303–314, 2005.

97. P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jordan, and D. A. Patterson, “Automatic explo-
ration of datacenter performance regimes,” in Proceedings of the 1st workshop on Automated
control for datacenters and clouds, ser. ACDC’09. NewYork, NY, USA: ACM, 2009, pp. 1–6.
[Online]. Available: http://doi.acm.org/10.1145/1555271.1555273.

98. I. Cunha, I. Viana, J. Palotti, J. Almeida, and V. Almeida, “Analyzing security and en-
ergy tradeoffs in autonomic capacity management,” in Network Operations and Management
Symposium, 2008. NOMS 2008. IEEE. IEEE, 2008, pp. 302–309.

99. Q. Tang, S. K. S. Gupta, and G.Varsamopoulos, “Energy-efficient thermal-aware task schedul-
ing for homogeneous high-performance computing data centers: A cyber-physical approach,”
IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 11, pp. 1458–1472, 2008.

100. J. Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making scheduling “cool”: temperature-
aware workload placement in data centers,” inATEC’05: Proceedings of the annual conference
on USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX Association, 2005,
pp. 5–5.

101. J. Moore, J. Chase, and P. Ranganathan, “Weatherman: Automated, online, and predictive
thermal mapping and management for data centers,” in IEEE International Conference on
Autonomic Computing (ICAC), June 2006, pp. 155–164.

102. L. Parolini, N. Toliaz, B. Sinopoliy, and B. H. Kroghy, “A cyber-physical systems approach
to energy management in data centers,” in ACM ICCPS’10, Stockholm, Sweden, April 2010.

103. Z. Abbasi, G. Varsamopoulos, and S. K. S. Gupta, “TACOMA: Server and workload man-
agement in internet data centers considering cooling-computing power trade-off and energy
proportionality,” ACM Trans. Archit. Code Optim., vol. 9, no. 2, pp. 11:1–11:37, June 2012.

104. P. Sanders, N. Sivadasan, and M. Skutella, “Online scheduling with bounded migration,”
Math. Oper. Res., vol. 34, no. 2, pp. 481–498, May 2009. [Online]. Available: http://dx.doi.
org/10.1287/moor.1090.0381.

105. P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and A. Mer-
chant, “Automated control of multiple virtualized resources,” in Proceedings of the 4th ACM
European conference on Computer systems. ACM, 2009, pp. 13–26.

106. R. Nathuji and K. Schwan, “Virtualpower: coordinated power management in virtualized
enterprise systems,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 265–278, Oct. 2007. [Online].
Available: http://doi.acm.org/10.1145/1323293.1294287.

107. T. Gerald, K. J. Nicholas, D. Rajarshi, and N. B. Mohamed, “A hybrid reinforcement learning
approach to autonomic resource allocation,” in IEEE International Conference on Autonomic
Computing. IEEE, 2006, pp. 65–73.

108. J. Mars, L. Tang, R. Hundt, K. Skadron, and M. Soffa, “Bubble-up: Increasing utiliza-
tion in modern warehouse scale computers via sensible co-locations,” in Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-44.
New York, NY, USA: ACM, 2011, pp. 248–259. [Online]. Available: http://doi.acm.org/
10.1145/2155620.2155650.

109. J. Mars, L. Tang, and M. L. Soffa, “Directly characterizing cross core interference through
contention synthesis,” in Proceedings of the 6th International Conference on High Perfor-
mance and Embedded Architectures and Compilers, ser. HiPEAC’11. New York, NY, USA:
ACM, 2011, pp. 167–176. [Online]. Available: http://doi.acm.org/10.1145/1944862.1944887.

http://doi.acm.org/10.1145/277851.277897
http://doi.acm.org/10.1145/1555271.1555273
http://dx.doi.org/10.1287/moor.1090.0381
http://dx.doi.org/10.1287/moor.1090.0381
http://doi.acm.org/10.1145/1323293.1294287
http://doi.acm.org/10.1145/2155620.2155650
http://doi.acm.org/10.1145/2155620.2155650
http://doi.acm.org/10.1145/1944862.1944887

160 M. Pore et al.

110. A. Fedorova, S. Blagodurov, and S. Zhuravlev, “Managing contention for shared resources
on multicore processors,” Commun. ACM, vol. 53, no. 2, pp. 49–57, Feb. 2010. [Online].
Available: http://doi.acm.org/10.1145/1646353.1646371.

111. L. Tang, J. Mars, and M. L. Soffa, “Contentiousness vs. sensitivity: improving con-
tention aware runtime systems on multicore architectures,” in Proceedings of the 1st
International Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era,
ser. EXADAPT’11. New York, NY, USA: ACM, 2011, pp. 12–21. [Online]. Available:
http://doi.acm.org/10.1145/2000417.2000419.

112. R. C. Chiang and H. H. Huang, “Tracon: interference-aware scheduling for data-intensive
applications in virtualized environments,” in Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, ser. SC’11.
New York, NY, USA: ACM, 2011, pp. 47:1–47:12. [Online]. Available: http://doi.acm.org/
10.1145/2063384.2063447.

113. B. Kreaseck, L. Carter, H. Casanova, and J. Ferrante, “On the interference of communica-
tion on computation in Java,” International Parallel and Distributed Processing Symposium,
vol. 15, p. 246, 2004.

114. Q. Zhu, J. Zhu, and G. Agrawal, “Power-aware consolidation of scientific workflows in
virtualized environments,” in Proceedings of the 2010 ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, ser. SC’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–12. [Online]. Available:
http://dx.doi.org/10.1109/SC.2010.43.

115. X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, Y. Cao, and L. Liu, “Who is your neighbor:
Net i/o performance interference in virtualized clouds,” vol. PP, no. 99, 2012, pp. 1–1.

116. I. Paul., S.Yalamanchili., and L. K. J. John, “Performance impact of virtual machine placement
in a datacenter,” in Performance Computing and Communications Conference (IPCCC), 2012
IEEE 31st International, 2012, pp. 424–431.

117. M. Kambadur, T. Moseley, R. Hank, and M. A. Kim, “Measuring interference between
live datacenter applications,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC’12. Los Alamitos,
CA, USA: IEEE Computer Society Press, 2012, pp. 51:1–51:12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389066.

118. F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, “Entropy: a consolidation
manager for clusters,” in Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, ser. VEE’09. New York, NY, USA: ACM,
2009, pp. 41–50. [Online]. Available: http://doi.acm.org/10.1145/1508293.1508300.

119. M. Pore, Z. Abbasi, S. Gupta, and G. Varsamopoulos, “Energy aware colocation of workload
in data centers,” in 19th International Conference on High Performance Computing (HiPC),
2012, 2012, pp. 1–6.

120. A. Verma, P. Ahuja, and A. Neogi, “pmapper: power and migration cost aware appli-
cation placement in virtualized systems,” in Proceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware, ser. Middleware’08. NewYork, NY, USA: Springer-
Verlag New York, Inc., 2008, pp. 243–264. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1496950.1496966.

121. R. Buyya, A. Beloglazov, and J. H. Abawajy, “Energy-efficient management of data center
resources for cloud computing: A vision, architectural elements, and open challenges,” CoRR,
vol. abs/1006. 0308, 2010.

122. A. Merkel, J. Stoess, and F. Bellosa, “Resource-conscious scheduling for energy efficiency
on multicore processors,” in Proceedings of the 5th European conference on Computer sys-
tems, ser. EuroSys’10. New York, NY, USA: ACM, 2010, pp. 153–166. [Online]. Available:
http://doi.acm.org/10.1145/1755913.1755930.

123. J. Mars, L. Tang, and R. Hundt, “Heterogeneity in homogeneous warehouse-scale computers:
A performance opportunity,” Computer Architecture Letters, vol. 10, no. 2, pp. 29–32, July–
Dec. 2011.

http://doi.acm.org/10.1145/1646353.1646371
http://doi.acm.org/10.1145/2000417.2000419
http://doi.acm.org/10.1145/2063384.2063447
http://dx.doi.org/10.1109/SC.2010.43
http://dl.acm.org/citation.cfm?id=2388996.2389066
http://doi.acm.org/10.1145/1508293.1508300
http://dl.acm.org/citation.cfm?id=1496950.1496966
http://dl.acm.org/citation.cfm?id=1496950.1496966
http://doi.acm.org/10.1145/1755913.1755930

Techniques to Achieve Energy Proportionality in Data Centers: A Survey 161

124. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A.
Patterson, A. Rabkin, and M. Zaharia, “Above the clouds: A berkeley view of cloud comput-
ing,” in Technical Report No. UCB/EECS-2009-28, University of California at Berkley, USA,
February 2009.

125. K. Le, O. Bilgir, R. Bianchini, M. Martonosi, and T. D. Nguyen, “Managing the cost, energy
consumption, and carbon footprint of internet services,” in Proceedings of the ACM SIG-
METRICS international conference on Measurement and modeling of computer systems, ser.
SIGMETRICS’10. New York, NY, USA: ACM, 2010, pp. 357–358.

126. “Quick start guide to increase data center energy efficiency,” U.S. Department of Energy,
Tech. Rep., September 2010.

127. “Google data center more efficient that the industry average,” http://gigaom.com/2008/10/
01/google-data-centers-more-efficient-than-the-industry-average/.

128. J. Caruso, “Follow the moon, and save millions researchers highlight possibilities of
data center energy savings.” March 2014. [Online]. Available: http://www.networkworld.
com/newsletters/lans/2009/081709lan2.html.

129. L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost: Optimization of dis-
tributed internet data centers in a multi-electricity-market environment,” in INFOCOM, 2010
Proceedings IEEE, March 2010, pp. 1–9.

130. S.Akoush, R. Sohan, A. Rice, A. W. Moore, andA. Hopper, “Free lunch: exploiting renewable
energy for computing,” in Proceedings of HotOS, 2011.

131. M. Etinski, M. Martonosi, K. Le, R. Bianchini, and T. D. Nguyen, “Optimizing the use of
request distribution and stored energy for cost reduction in multi-site internet services,” in
Sustainable Internet and ICT for Sustainability (SustainIT), 2012. IEEE, 2012, pp. 1–10.

132. Z.Abbasi, T. Mukherjee, G.Varsamopoulos, and S. K. S. Gupta, “Dahm: A green and dynamic
web application hosting manager across geographically distributed data centers,” J. Emerg.
Technol. Comput. Syst., vol. 8, no. 4, pp. 34:1–34:22, Nov. 2012.

133. Y. Zhang, Y. Wang, and X. Wang, “Greenware: greening cloud-scale data centers to maximize
the use of renewable energy,” Middleware 2011, pp. 143–164, 2011.

134. Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew, “Geographical load balancing
with renewables,” ACM SIGMETRICS Performance Evaluation Review, vol. 39, no. 3, pp. 62–
66, 2011.

135. C. Stewart and K. Shen, “Some joules are more precious than others: Managing renewable
energy in the datacenter,” in Proceedings of the Workshop on Power Aware Computing and
Systems, 2009.

136. Z. Abbasi, M. Pore, and S. K. Gupta, “Online server and workload management for joint
optimization of electricity cost and carbon footprint across data centers,” in 28th IEEE
International Parallel & Distributed Processing Symposium (IPDPS), 2014.

137. D. S. Palasamudram, R. K. Sitaramanz, B. Urgaonkar, and R. Urgaonkar, “Using batteries to
reduce the power costs of internet-scale distributed networks,” in Proceedings of 2012 ACM
Symposium on Cloud Computing. ACM, Oct. 2012, Palasamudram 2012 using.

138. S. Govindan, D. Wang, Anand, Sivasubramaniam, and B. Urgaonkar, “Leveraging stored
energy for handling power emergencies in aggressively provisioned datacenters,” in Proceed-
ings of the seventeenth international conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2012, pp. 75–86.

139. V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pettis, D. M. Tullsen,
and T. S. Rosing, “Managing distributed ups energy for effective power capping in data
centers,” in Proceedings of the 39th International Symposium on Computer Architecture,
ser. ISCA’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 488–499. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337159.2337216.

140. D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H. Fathy, “Energy storage in
datacenters: what, where, and how much?” in Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on Measurement and Modeling of

http://gigaom.com/2008/10/01/google-data-centers-more-efficient-than-the-industry-average/
http://gigaom.com/2008/10/01/google-data-centers-more-efficient-than-the-industry-average/
http://www.networkworld.com/newsletters/lans/2009/081709lan2.html
http://www.networkworld.com/newsletters/lans/2009/081709lan2.html
http://dl.acm.org/citation.cfm?id=2337159.2337216

162 M. Pore et al.

Computer Systems, ser. SIGMETRICS’12. New York, NY, USA: ACM, 2012, pp. 187–198,
wang2012-energy-storage.

141. K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir, and M. Martonosi, “Capping the brown en-
ergy consumption of internet services at low cost,” in Green Computing Conference, 2010
International. IEEE, 2010, pp. 3–14.

142. P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, “It’s not easy being green,” ACM SIGCOMM
Computer Communication Review, vol. 42, no. 4, pp. 211–222, 2012.

143. S. Ren and Y. He, “Coca: Online distributed resource management for cost minimiza-
tion and carbon neutrality in data centers,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, ser. SC’13. New
York, NY, USA: ACM, 2013, pp. 39:1–39:12. [Online]. Available: http://doi.acm.org/
10.1145/2503210.2503248.

144. A. H. Mahmud and S. Ren, “Online capacity provisioning for carbon-neutral data center with
demand-responsive electricity prices,” ACM SIGMETRICS Performance Evaluation Review,
vol. 41, no. 2, pp. 26–37, 2013.

145. Z. Zhou, F. Liu, Y. Xu, R. Zou, H. Xu, J. C. S. Lui, and H. Jin, “Carbon-aware load balancing
for geo-distributed cloud services,” in Proceedings of the 2013 IEEE 21st International Sym-
posium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems,
ser. MASCOTS’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 232–241.
[Online]. Available: http://dx.doi.org/10.1109/MASCOTS.2013.31.

146. J. Doyle, R. Shorten, and D. O’Mahony, “Stratus: Load balancing the cloud for carbon
emissions control,” Cloud Computing, IEEE Transactions on, vol. 1, no. 1, pp. 1–1, Jan 2013.

147. D. Xu and X. Liu, “Geographic trough filling for internet datacenters,” in IEEE Proceedings
INFOCOM. IEEE, 2012, pp. 2881–2885.

148. S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. Das, “Mdcsim: A multi-tier data center
simulation, platform,” in Cluster Computing and Workshops, 2009. CLUSTER’09. IEEE
International Conference on, Aug. 2009, pp. 1–9.

149. D. Meisner, J. Wu, and T. Wenisch, “Bighouse: A simulation infrastructure for data center sys-
tems,” in Performance Analysis of Systems and Software (ISPASS), 2012 IEEE International
Symposium on, April 2012, pp. 35–45.

150. R. N. Calheiros, R. Ranjan, A. Beloglazov, C.A. De Rose, and R. Buyya, “Cloudsim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–50,
2011.

151. C. Patel, C. E. Bash, C. Belady, L. Stahl, and D. Sullivan, “Computational fluid dynamics
modeling of high compute density data centers to assure system inlet air specifications,” in
ASME International Electronic Packaging Technical Conference and Exhibition (IPACK’01),
2001, patel_ipack2001.

152. L. Marshall and P. Bems, “Using cfd for data center design and analysis,” Applied Math
Modeling, Tech. Rep., Jan. 2011, White Paper.

153. U. Singh, “Cfd-based operational thermal efficiency improvement of a production data center,”
in Proceedings of the First USENIX conference on Sustainable information technology, ser.
SustainIT’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 6–6, sI2010USENIX.

154. S. K. S. Gupta, R. R. Gilbert, A. Banerjee, Z. Abbasi, T. Mukherjee, and G. Varsamopoulos,
“GDCSim - an integrated tool chain for analyzing green data center physical design and
resource management techniques,” in International Green Computing Conference (IGCC),
Orlando, FL, 2011, pp. 1–8.

155. S. K. S. Gupta, A. Banerjee, Z. Abbasi, G. Varsamopoulos, M. Jonas, J. Ferguson, R. R.
Gilbert, and T. Mukherjee, “Gdcsim: A simulator for green data center design and analysis,”
ACM Trans. Model. Comput. Simul., vol. 24, no. 1, pp. 3:1–3:27, Jan. 2014. [Online].
Available: http://doi.acm.org/10.1145/2553083.

156. A. Banerjee, J. Banerjee, G. Varsamopoulos, Z. Abbasi, and S. K. Gupta, “Hybrid simulator
for cyber-physical energy systems,” in 2013 Workshop on Modeling and Simulation of Cyber-
Physical Energy Systems (MSCPES). IEEE, 2013, pp. 1–6.

http://doi.acm.org/10.1145/2503210.2503248
http://doi.acm.org/10.1145/2503210.2503248
http://dx.doi.org/10.1109/MASCOTS.2013.31
http://doi.acm.org/10.1145/2553083

A Power-Aware Autonomic Approach for
Performance Management of Scientific
Applications in a Data Center Environment

Rajat Mehrotra, Ioana Banicescu, Srishti Srivastava and Sherif Abdelwahed

1 Introduction

The amount of electricity used by servers and data centers has become an important
issue in recent years because the demands for high performance computing (HPC)
services have become widespread. The recent advancements in the HPC system size
and processing power at computing nodes led to a significant increase in power
consumption. A study commissioned by the U.S. Environmental Protection Agency
estimated that the worldwide power consumed by servers increased by a factor of
two between 2000 and 2006 worldwide [1]. In addition to this, an increase in power
consumption results in increased temperature, which in turn translates into increased
heat dissipation issues, resulting in increased system failure rate that leads to a
downtime penalty of extremely high values for the service providers [2]. According
to Arrhenius’ equation when applied to HPC hardware, a ten degree increase in
system’s temperature doubles the system failure rate [3]. Therefore, an increase in
system temperature resulting from an increase in power consumption can lead to
a degradation in the execution performance of scientific applications running on
HPC systems. Such HPC systems with enormous heat dissipation need aggressive

R. Mehrotra (�) · S. Abdelwahed
Department of Electrical and Computer Engineering, NSF Center for Cloud and Autonomic
Computing, Mississippi State University, MS, USA
e-mail: rajat.meh@gmail.com

S. Abdelwahed
e-mail: sherif@ece.msstate.edu

I. Banicescu · S. Srivastava
Department of Computer Science and Engineering, NSF Center for Cloud and Autonomic
Computing, Mississippi State University, MS, USA

I. Banicescu
e-mail: ioana@cse.msstate.edu

S. Srivastava
e-mail: srishti@hpc.msstate.edu

© Springer Science+Business Media New York 2015 163
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_5

164 R. Mehrotra et al.

cooling systems. However, the additional deployment of aggressive cooling systems
contribute even more to the total power consumption of the infrastructure, resulting
in an increased operational cost. Another solution to the heat dissipation problem
is to increase the physical space between different computing nodes. However, this
approach results in a high infrastructure cost, due to the use of larger space for fewer
computing nodes. Both of these solutions ignore the performance versus operational
cost and performance versus space cost metrics of the system, which have become
significant to the service providers in the current scenario.

Solutions to the increased concerns of outrageous amounts of power consumption
in HPC environments have led to the development of Green Supercomputing or En-
ergy Efficient Computing technologies. Green Destiny, the first major instantiation
of the supercomputing in the Small Spaces Project at Los Alamos National Labora-
tory was the first supercomputing system built with energy efficiency as its guiding
principle [4]. The main approach is to use low power components with performance
that could be optimized for supercomputing. Green Supercomputing provides two
major approaches for minimizing power consumption in HPC environments while
maintaining the desired performance: a low-power and a power-aware approach.

In a low-power approach, the HPC system consists of many low power nodes
which can be configured for a supercomputing environment. Green Destiny was the
first low power supercomputer developed at Los Alamos National Laboratory [4].
It consists of 240 computing nodes working at the rate of 240 gigaflops on a linux-
based cluster. It fits into a six square feet surface, consumes only 3.2 KW of power,
and extra cooling or space are not required. The design of this supercomputer led
to a breakthrough in the technology of HPC environments, and shifted the focus
towards efficiency, availability, and reliability of computing systems, in addition to
their speed.

In a power-aware approach, the HPC system is considered to be aware of the
power requirements of the system on which the scientific applications are executing.
In these systems, the power can be dynamically adjusted based on the demands of the
application, while maintaining the performance at desired levels [5–7]. In most HPC
systems, the power-aware functionality is achieved through dynamic voltage and
frequency scaling (DVFS) approach in which the power consumption by a processor
directly depends upon the frequency and the square of the CPU supplied voltage. The
frequency or the voltage across the processor can be decreased when CPU is mostly
idle (not doing any or much useful work). This approach translates into considerable
power savings.

In addition, the primary objective for designing high performance computing
(HPC) systems is performance-to solve scientific problems in minimum time with
efficient or maximum utilization of the allocated computing resources. An efficient
utilization of the allocated computing resources is achieved by following two objec-
tives: (i) decreasing the computational and interprocess communication overheads,
and (ii) ensuring that computing resources are effectively utilized in doing useful
work at their peak performance all the time.

A Power-Aware Autonomic Approach for Performance Management . . . 165

In general, scientific applications are large, highly irregular, computationally in-
tensive, and data parallel. One of the major challenges in achieving performance
objectives when running scientific applications in heterogeneous HPC environments
is often their stochastic behavior [8]. This stochastic behavior results in a high load
imbalance, which severely degrades the performance of the overall HPC system,
and becomes a potential threat for missing a pre-specified execution deadline. More-
over, the variations in the availability of the non-dedicated computing nodes, due
to unpredictable changes in the usage patterns of other applications running on the
same computing node in a space shared manner, represents an additional source of
overhead for meeting the deadline in HPC systems. Therefore, to address these chal-
lenges, a runtime monitoring and corrective management module is required that
can reallocate or reconfigure the computational resources for achieving an optimal
execution performance of scientific applications, such that the corrective employed
strategy incurs minimal overhead.

Parallel loops are the dominant source of parallelism in scientific computing ap-
plications. For minimizing the computation time of an application, the loop iterations
need to be executed efficiently over the network of available computing nodes. In
recent years, various dynamic loop scheduling techniques based on probabilistic
analyses have been developed and applied to effectively allocate these iterations to
different computing nodes and improve the performance of scientific applications
via dynamic load balancing. Details regarding these techniques can be found in the
related literature on dynamic loop scheduling [8]. However, these loop scheduling
algorithms do not consider power-awareness, reallocation of computing resources,
and application deadline.

In this chapter, a control theoretic, model-based, and power-aware approach for
parallel loop execution is presented, where system performance and power require-
ments can be adjusted dynamically, while maintaining the predefined quality of
service (QoS) goals in the presence of perturbations such as load imbalance due to
variations in the availability of computational resources. In this approach, a target
turnaround time for the application is identified or supplied, and it is responsible
for guiding an appropriate adjustment of the voltage and frequency. The adjustment
is performed with the help of a control theoretic approach at the computational re-
source to ensure that the application finishes execution by the pre-specified deadline
(within an acceptable or chosen tolerance value). The control theoretic approach also
ensures a load-balanced execution of the scientific application because all the pro-
cessing nodes simultaneously finish execution within an acceptable tolerance value.
The general framework of this work considers deadline driven applications executing
over a set of non-dedicated computational resources. This approach is autonomic,
performance directed, dynamically controlled, and independent of (does not inter-
fere with) the execution of the application. A few initial results were presented in
[9].

The rest of the chapter is organized as follows. Preliminary information regarding
power consumption issues and power management techniques in HPC systems are
presented in Sect. 2. In the same section, the earlier research efforts on parallel loop
scheduling with and without power-aware knowledge are discussed. In addition to

166 R. Mehrotra et al.

this, key elements of a control system are described with their prior applications. De-
tails of the proposed power-aware autonomic approach are presented in Sect. 3. The
basic architecture and key components of the proposed approach are also discussed
in this section. A case study for managing response time and power consumption in
a parallel loop execution environment by using the proposed approach is discussed
in Sect. 5. The significance of applying this approach is demonstrated by using three
different experiments, where the performance of the hosted applications with differ-
ent priorities are adjusted according to the response time and power consumption
in varying operational settings. The benefits of the proposed approach and major
contributions are highlighted in Sect. 5. An extension of the proposed approach
that combines dynamic loop scheduling techniques with the proposed approach, is
discussed in Sect. 6. Finally, conclusions and future work are presented in Sect. 5.

2 Background

In this section, past and ongoing research efforts are discussed, such as approaches
based on power-aware computing, loop scheduling, and control theory for HPC
systems.

A. Power Consumption Management in HPC Systems
Since the beginning of the HPC systems in 1960, processing power and performance
of the HPC systems were the only concern among designers of these systems. The
power consumption cost and carbon footprint of these systems were never in con-
sideration while designing the size and computational power of these systems. As
a result, over the years, the power consumption and the cooling cost of these HPC
systems kept increasing exponentially. These additional costs further increased the
setting up and operating cost of the infrastructure. In addition, the CO2 emission
of the HPC systems also increased its share in the total global emission. Therefore,
researchers in academia and industry were inspired to design HPC systems that con-
sume less energy while keeping the processing capabilities within similar range. The
basic idea for designing an energy efficient HPC system is to increase the energy
efficiency by utilizing the maximum amount of the available energy for doing useful
work (computation) and a minimum amount of it for overheads and infrastructure.
The primary reasons of power consumption and power consumption management in
a computing system are described in the following subsection.

1) Power Consumption in Computing Systems Modern electronic components are in
general built using the Complementary Metal Oxide Semiconductor (CMOS) tech-
nology. Advances in CMOS technology during the last decade has allowed chip
vendors to increase clock rates by stacking more transistors on the die, and that led
to an increase in power consumption. At the transistor level, the power consumption
can be attributed to three factors: switching (dynamic) power consumption, leakage
(static) current power consumption, and short circuit power consumption. Dynamic
power consumption is the amount of power consumed while charging the capacitor

A Power-Aware Autonomic Approach for Performance Management . . . 167

present in CMOS Field Effect Transistor (FET). Static current power consumption is
due to the leakage current flowing through the transistor while it is in the “off” state.
A short circuit power consumption is present in CMOS due to a short circuit current
on a short circuit path between supply rails and ground. Currently, power loss due
to leakage current is 40 % of the total power budget. Lowering the voltage across
the chip increases the leakage current. Increasing the leakage current in transistors
results increasing power consumption of the microprocessor [10]. In addition, high
operating temperature of a microprocessor increases the power consumption signif-
icantly due to leakage current. In the past, dynamic power loss has been the main
component of the total power loss. Moreover, lately the percentage of static power
loss is also increasing as feature sizes in CMOS have been decreasing. These factors
are applicable to all the electronic systems of the computer, including the CPU, the
memory and even the hard drive. In the hard drive, there are some other mechani-
cal factors that lead to increased power consumption. Discussion on these factors is
beyond the scope of this chapter.

2) Power Management in Computing Systems The power consumption issues of
the computing system infrastructure have been handled by researchers in academia
and industry in the following ways by using: efficient thermal management, energy-
aware HPC design, microprocessor power management, and application level power
management.

Efficient thermal management techniques are used in the HPC infrastructure for
managing the overall power consumption including the power consumed inside the
cooling infrastructure. The increased demand for higher computational power in HPC
systems has resulted in increased power consumption and heat dissipation. This in-
creased power consumption and heat generation requires an effective and aggressive
cooling infrastructure to lower the temperature of the components of the HPC sys-
tems. This aggressive cooling infrastructure contributes to the infrastructure cost, as
well as to the operating cost due to its own power consumption. According to an ear-
lier study, the power consumption due to the cooling infrastructure accounts for two
thirds of the actual HPC infrastructure power consumption [11]. As a results, the total
cost of ownership of HPC infrastructure reaches extremely high values and becomes
a primary concern for the infrastructure providers. Recently, a few efficient cooling
infrastructures are designed by the researchers. These efficient cooling infrastruc-
tures suggest efficient heat management in the HPC systems, either through airflow
designs [12, 13], or through redistributing the workload in processing [14–16]. A
proactive approach for efficient thermal management uses the workload behaviour
to minimize the energy consumption in a cooling infrastructure [17].

In energy-aware HPC design, these systems are designed in a space and power
efficient way that reduces the total cost of ownership for the HPC systems. The first
low power supercomputer “Green Destiny” was developed at Los Alamos National
Laboratory in 2001 [4]. This project was instrumental in ushering a new research
area of “system-on-chips”, which was further taken up by IBM by developing an
entire family of supercomputers named “Blue Gene” [18]. These supercomputers
are developed using low power and reliable embedded chips connected through

168 R. Mehrotra et al.

specialized networks. These supercomputers are designed using racks which can
be scaled up or down according to the requirements. The “Blue Gene” family of
supercomputers delivered speed, scalability, and power efficiency in a single design.
Another approach of designing energy efficient clusters was developed, that used
warm water to cool down processors instead of using a traditional air cooling system
[19]. In this approach, warm water of temperature 140◦F is used to transfer heat
from the processing nodes. After heat transfer, once the final temperature of the
water reaches about 185◦F , it is further utilized in the building for other purposes.
This approach shows that 80 % of the recovered heat (from the supercomputers) can
be utilized for heating up the office building, which in turn reduces the operating
cost of the infrastructure.

The primary focus of the academia and industry with respect to power man-
agement in computing systems has been to target the power consumption of the
microprocessors. Various methods, such as dynamic power switching, standby leak-
age management, and dynamic voltage and frequency scaling have been proposed to
control the power consumption in microprocessors through system and application
level techniques.

The dynamic power switching (DPS) approach tries to maximize the system idle
time that in turn forces a processor to make transition to idle or low power mode
for reducing the power consumption [10]. The only concern is to keep track of the
wakeup latency for the processor. It tries to finish the assigned tasks as quickly as
possible, such that the rest of the time can be considered as idle time for the processor.
This method reduces only the leakage current power consumption, while at the same
time it increases the dynamic power consumption due to excessive mode switching
of the processor.

The standby leakage management (SLM) method is close to the strategy used in
DPS by keeping the system in low power mode [10]. However, this strategy comes
into the effect only when there is no application executing in the system and the
system just needs to take care of its responsiveness towards user related wake up
events (e.g. GUI interaction, key press, or mouse click).

In contrast to the DPS, in the dynamic voltage and frequency scaling (DVFS)
method, the voltage across the chip and the clock frequency of the transistor are
varied (increased or decreased), to lower the power consumption and maintain the
processing speed at the same time [10]. This method is helpful in preventing the
computer systems from an overheating that can result in a system crash. However,
the voltage applied should be kept at the level suggested by the manufacturer, to
keep the system stable for safe operation. DVFS reduces the processor idle time
by lowering the voltage or frequency, by allowing the assigned tasks to continue to
be processed within a permissible amount of time, with minimum possible power
consumption. This approach reduces the dynamic power loss.

B. Power-Aware Approaches with DVFS
Power-Aware computing has recently gained attention in the HPC research com-
munities with the purpose of lowering the power consumption, for increasing the
overall system availability and reliability. The proposed power-aware approaches

A Power-Aware Autonomic Approach for Performance Management . . . 169

attempt to model the power consumption pattern of the scientific application, or that
of the entire HPC system, based on the application and/or system performance, to
minimize the power consumption of the HPC system with minimal or no impact on
the application and system performance.

Recently, application developers have started developing applications using en-
ergy efficient algorithms that either require less energy or can take advantage of the
energy efficient features of the system hardware. An effort to minimize the power
consumption of a HPC system through identifying the different execution phases
(memory access, I/O access, and system idle) and their performance requirements
while executing scientific applications is highlighted in [5]. In this approach, a min-
imum frequency for each execution phase is determined and applied to the system
for achieving the desired system performance. Another approach presents a speedup
model to minimize the power consumption while maintaining the similar application
performance through identifying the relationship between the parallel overhead and
the power requirement of an application via their impact on the execution time [6].
Through this model, the parallel overhead and the power-aware performance can be
predicted over several system configurations. A DVFS based approach detects the
level of CPU-Boundness of the scientific application at runtime via dynamic regres-
sion and adjusts the CPU frequency accordingly [20]. Another approach that utilizes
the multiple power-performance state and shows that a power scalable system can
save significant amount of energy with negligible time penalty while maintaining the
system QoS parameters [21]. A detailed survey of the energy efficient HPC systems
is presented in [22].

C. Loop Scheduling
In the past years, extensive work has been performed in academia and industry to
improve the performance of scientific applications through achieving load balancing
via scheduling of parallel loops prevalent in these applications. There are two primary
methods for loop scheduling: static loop scheduling and dynamic loop scheduling
(DLS).

In case of static loop scheduling, the iterations of a parallel loop are assigned to
multiple processing elements (computing nodes) in chunks of fixed sizes equal to the
ratio between the number of loop iterations and the number of processing elements.
These chunks of loop iterations are executed uninterrupted until completion on the
designated processing elements. The chunks contain iterations of variable execution
times, thus causing load imbalance among processors. In dynamic loop scheduling,
the parallel loop iterations are assigned at runtime one by one in a group of iterations
or chunks. Each processing element executes a chunk of loop iterations until all of
them are finished, after which, according to a scheduling policy, it receives a new
assigned chunk of loop iterations. The simplest of these schemes is self-scheduling
[23] where each processing element executes only one iteration of the loop at a time,
until all the iterations are completed. This scheme achieves near-optimal load bal-
ancing among the processing elements at the cost of a high scheduling overhead.
The scheduling techniques, static and self scheduling, discussed above are extreme
examples. Other scheduling methods have been developed, that attempt to minimize

170 R. Mehrotra et al.

the cumulative contribution of uneven processor finishing times leading to load im-
balance, and that of the scheduling overhead. Such techniques schedule iterations in
chunks of sizes greater than one, where a size is the number of iterations in the chunk.
Both fixed-size and variable-size chunking methods have been proposed. These ap-
proaches, presented in [24–27], consider the profile of the integrations, availability
of processing elements, chunk size, or locality of the data elements, when assigning
the iterations to processors at runtime.

In the past, the loop scheduling methods addressed load imbalance and did not take
into account the fact that the application performance may vary both due to algorith-
mic characteristic of the application and system related issues (interference by other
applications running on the same system, thus taking away a part of the computational
power of the resources). However, recent techniques are based on probabilistic anal-
ysis and take into account these factors when assigning loop iterations to processors
at runtime [24–28].

There are also several adaptive approaches offering better performances, as
described in [8, 29–31]. These approaches consider the processor speed and per-
formance while distributing the loop iterations, resulting into better results. In [28],
the ratio of job distribution is determined based on the relative processor speed.
However, it does not take into account the fact that the processor speed may vary due
to the algorithmic characteristics of the application, or due to system related issues
(such as, data access latency, operating system interference, and others). A similar
kind of approach is described in [29–31], where the distribution of loop iterations
depends upon the processor performance at runtime. Each processor is assigned a
weight based on its performance at the last sample period and receives a chunk of
appropriate size, such that all the processors finish at the same time with high prob-
ability. These weights are dynamically computed each time a processor is allocated
a chunk of loop iterations. The above mentioned DLS methods utilize a variable
size chunking scheme, where the chunks are scheduled in decreasing size, or the
technique assigns decreasing size chunks of loop iterations to processors in batches.
Further, a more recent DLS method with a higher degree of generality has been de-
veloped to allocate variable size (increasing or decreasing) chunks of loop iterations
[32]. The advanced DLS methods employ a probabilistic and statistical model for
the dynamic allocation of chunks of loop iterations to each processor, such that the
average finishing time for completion of all chunks occurs within optimal time with
high probability.

Most loop scheduling methods on message-passing distributed systems are imple-
mented using a foreman-worker strategy. A straight-forward foreman-worker parallel
programming strategy is illustrated in Fig. 1. The foreman is responsible for comput-
ing start and size, keeping track of the remaining iterations, directing the movement
of data if necessary, and detecting loop completion. These administrative computa-
tions do not justify a dedicated processor, hence the foreman is also a worker. An
MPI implementation of this strategy utilizes a partitioned work queue of iterations
and interleaves computations with communications. A disadvantage of the foreman-
worker parallel programming strategy, especially in message- passing systems, is
its limited practical scalability. When the number of processors is increasing, the

A Power-Aware Autonomic Approach for Performance Management . . . 171

Fig. 1 Basic foreman worker
strategy [33]

Fig. 2 Foreman worker
strategy: two level scheduling
[33]

foreman becomes a communication bottleneck, resulting in increased idle times for
some workers. To address the bottleneck limitations, a useful modification of the
strategy is to utilize multiple foremen as illustrated in Fig. 2. Initially, the processors
are divided into a few groups, where each group is assigned a portion of the iteration
space. Each group executes the foreman-worker âŁœfirst levelâŁž strategy similar
to the one shown in Fig. 1. Load balancing is achieved within each group for the
work owned by the group, and a foreman communicates only with the processors
in its group. However, if the computational requirements in different regions of the
iteration space vary, or if the processors are effectively heterogeneous, then some
groups may finish earlier than others. Thus, load balancing is also necessary among
the groups. Fig. 2 illustrates the required coordination in this “second level” strategy
for load balancing among groups. A more elaborated description of the interactions
and coordination among processors using the foreman-worker setting is given in
[33].

D. DVFS Based Loop Scheduling
DVFS based loop scheduling techniques consider multiple power modes that pro-
cessing elements can have for addressing load imbalance in the execution of the
scientific application. The power consumption of the executing system is reduced by

172 R. Mehrotra et al.

lowering down the speed or shutting down the idle processing element. These ap-
proaches utilize the notion of DVFS by using one of the following three techniques:
shut down based, DVFS with static scheduling, and DVFS with dynamic scheduling.

In the shut down based techniques, a fixed size chunks of loop iterations are
assigned to each processor within a group of processors at the beginning, after
which, the processors start executing their assignment. As soon as a processor finishes
the execution of its assigned iterations, the system lowers the processor frequency
to its minimum frequency (standby). This scheme does not ensure load balancing
(simultaneous completion of the execution of iterations by processors). However, it
offers minimal power consumption by lowering the frequency of the idle processors
to their minimum frequency, which leaves them in the a low power mode.

In the DVFS with static scheduling, fixed size chunks of loop iterations are as-
signed to each processor within a group of the processors before they start executing
their assignments. Each processor is assigned the optimal frequency of system oper-
ation, where the optimal frequency is calculated with respect to the execution time
taken by the slowest processor (at the beginning). The processors then proceed with
the execution of their fixed size assigned chunks [34]. This approach needs prior
information regarding the execution time of loop iterations at different processors
to select the slowest processor. In another approach, at the beginning of the execu-
tion, processors are assigned the optimal frequency considering the total execution
of the slowest processor, which is the limiting factor [34]. Each of the processors is
re-assigned a new fixed chunk of loop iterations every time it finishes the previous
chunk of iterations.

In the DVFS with dynamic scheduling scheme, to minimize the power consump-
tion, the chunks of loop iterations are assigned to a group of processors at runtime,
and the processor that finishes before the slowest processor is kept at a minimum fre-
quency. This approach is an extension of the shut down based techniques by including
dynamic loop scheduling.

E. Elements of Control Theory
Control theory concepts offer a powerful tool to enable resource management, and an-
alyze the impact of uncertain changes, as well as system disturbance issues. Recently,
control theoretic approaches have successfully been applied to selected resource
management problems including task scheduling [35], bandwidth allocation, QoS
adaptation in web servers [36, 37], multi-tier websites [38–40], load balancing in
e-mail and file servers [38], and processor power management [41]. Control the-
ory provides a taxonomy for designing an automated, self-managed and effective
resource management or partition scheme by a continuous monitoring of the system
states, of the changes in the environmental input, and of the system response to these
changes. This scheme ensures that the system is always operating in a region of safe
operational states, while maintaining the QoS demands of the service provider.

A typical control system consists of the components shown in Fig. 3 [42]. The
System Set Point is the desired state of the system considered as a target to achieve
during its operation. The Control Error indicates the difference between the desired
system set point and the measured output during system operation. The Control Inputs

A Power-Aware Autonomic Approach for Performance Management . . . 173

Fig. 3 A general structure of a control system

are the set of system parameters which are dynamically applied to the system for
dynamically changing the performance level. The Controller Module monitors the
measured output and provides the optimal combination of different control inputs
to achieve the desired set point. The Estimator Module provides estimates of the
unknown parameters for the system based on the previous history using statistical
methods. The Disturbance input can be considered as the environment input that
affects the system performance. The Target system is the system in consideration,
while the System Model is the mathematical model of the system, which defines the
relationship between its input and output variables. The Learning Module collects
the output through the monitor and extracts information based on statistical methods.
Typically, the System State defines the relationship between the control or the input
variables, and the performance parameters of the system.

3 An Online Look-Ahead Control-based Management
Approach

The design of a generic control structure has been presented in [43] for managing the
performance of the application instance hosted on a computing system. In this control
structure, the controller optimizes the multi-dimensional QoS objective function that
is a sum of the cost of utilizing computational resources (operating cost) and QoS
violation penalties (loss). This optimization is performed by choosing an appropriate
control action after continuous monitoring of the system performance with respect
to the disturbance (environment input) in the system. The chosen value of the control

174 R. Mehrotra et al.

action maximizes the system profitability by minimizing the system operating cost,
while at the same time maximizing the profitability.

The Parallel Loop Execution Problem A recent work on scheduling large number
of parallel loop iterations in multiprocessor environment utilized DVFS for minimiz-
ing the parallel loop execution time while addressing load imbalance in the execution
environment [34]. In this approach, N loop iterations are equally distributed to each
of the P processors initially. Each of these processors are assigned various values of
CPU core frequencies (fi , where i ∈ [1...P]) according to their relative speed of ex-
ecution which enables these processors to simultaneously reach the goal of finishing
the execution of loop iterations with minimum load imbalance and minimum total
execution time. However, this approach ignores the fluctuations in the availability
of computational resources (such as CPU), which can be caused by the utilization
of a same resource by other applications (such as I/O or OS), when executing on
the same computing node. In addition, this perturbation in the amount of available
CPU at different computing nodes may result in severe load imbalance, which in turn
may lead to deadline violation. Therefore, the loop execution management approach
should also consider the variation in available computational resources and perform
control actions accordingly.

The performance management approach presented in this chapter employs an ef-
fective technique for continuous monitoring of the loop execution environment at
a prespecified rate (sample time T), and for re-adjusting the CPU core frequency.
This approach facilitates achieving the desired execution deadline Td with mini-
mum power consumption. This approach also ensures that all of the processing
nodes finish the execution at the same time for minimizing the load imbalance. This
control action of changing the CPU core frequency value ensures that sufficient
amount of CPU cycles are available to the loop execution environment to finish
the assigned loop iterations within the deadline Td , while minimizing the multi-
dimensional utility function that includes the execution time as QoS parameter and
the power consumption as operating cost at the computing node.

The proposed management structure is shown in Fig. 4 and contains two levels to
effectively manage the loop execution environment. At the top level, the incoming
tasks (loop iterations) with the execution deadline (Td) are assigned to the processors
executing at the bottom level. In case of static scheduling, each of these processors
(processing elementsPE) is assigned an equal number of loop iterations. The bottom
level monitors the performance of the individual processors with respect to the num-
ber of loop iterations executed during a time sample (T), and the remaining number
of loop iterations from the total number of iterations assigned at the beginning of
the computation. The bottom level optimizes the performance of the loop execution
environment, and that of the HPC system through choosing an appropriate value of
the CPU core frequency that minimizes the power consumption, while at the same
time meeting the requirement of the execution deadline. The bottom level consists
of two layers with different functionalities: an application layer and a control layer.
The application layer contains the loop execution environment and uses independent
processors to execute an assigned chunk of loop iterations. This layer also contains

A Power-Aware Autonomic Approach for Performance Management . . . 175

Fig. 4 The proposed two-level approach for performance management

the monitoring elements that record the performance logs of the execution environ-
ment regarding the finishing times of each chunk of iterations in each sample and the
remaining iterations. The control layer contains the developed controllers that exe-
cute the optimization functions (with inputs from the application layer’s monitoring
element) to calculate the appropriate CPU core frequency and assigns the appropri-
ate value to the processing element. The control layer receives the deadline of the
loop execution from the top level as performance specification. Each local controller
interacts with the processing element at the same node for exchanging performance
measurements and assigning optimal values for the CPU core frequency.

The proposed control framework consists of the following key components:

The System Model This component describes the dynamics of an active state pro-
cessing element. The state update dynamics can be described through the following
state space equation:

x(k + 1) = φ(x(k), u(k),ω(k)) (1)

where x(k) is the system state at time k, u(k) is the set of user controlled system
control inputs (CPU core frequency at time k), and ω(k) is the environment input
(the percentage of the CPU available to the loop execution environment) at time k.
The number of loop iterations that finished execution at time k are shown as l(k),
and the number of loop iterations remaining unexecuted at time k are shown as L(k).
Here, x(k) ⊂ Rn and u(k) ⊂ Rm, whereRn andRm represent the set of system states
and control inputs, respectively. System state x(k) at time k can be defined as the set
of loop iterations executed at current time l(k), with the remaining number of loop
iterations L(k),

x(k) = [l(k) L(k)] (2)

176 R. Mehrotra et al.

where,

l(k) = ω(k)

100

α(k)

Ŵf
∗ T (3)

and

L(k + 1) = L(k) − l(k) (4)

α(k) is a scaling factor defined as u(k)
um , where u(k) ∈ U is the frequency at time k

(U is the finite set of all possible frequencies that the system can take), um is the
maximum supported frequency of the processor. Ŵf is the predicted average service
time (work factor in units of time) required to execute a single loop iteration at
maximum frequency um, and T is the sampling time of the system.

The Power Consumption The power consumed by a processing element is directly
proportional to the supplied core frequency and the square of the applied voltage
across the processor. Experiments have shown that this relationship is close to linear
[44]. In addition, in a production environment, only the total power consumption of
a computing system due to all of the devices attached inside the system (e.g. CPU,
memory, hard disk, CD-Rom, CPU cooling fan etc.) can be measured through an
external wattmeter. In the case of executing CPU intensive applications, the obtained
measurements show a nonlinear relationship with the CPU core frequency and CPU
utilization [42]. Therefore, a look-up table with near neighbor interpolation is a best
fit power consumption model for a physical computing node. In a previous work [42],
a power consumption model was developed using multiple CPU core frequencies,
CPU utilization, and corresponding power consumption values. A loop execution
environment utilizes the maximum available CPU that always results in 100 % CPU
utilization. Therefore, the power consumption model used in the proposed approach is
only dependent upon the CPU core frequency for keeping CPU utilization constant at
100 %. We denoteE(k) as the power consumed by the processor at current frequency
u(k).

Estimating the CPU Availability In the proposed management approach, an es-
timation of the available percentage of CPU (CPU cycles) for the loop execution
process is necessary for computing the system state estimation according to Eq. (3).
An autoregressive integrated moving average (ARIMA) filter is used for estimat-
ing the percentage of CPU availability for the loop execution process, according to
Eq. (5). In this approach, the estimation of the CPU availability for the loop execution
process is estimated indirectly, by estimating the CPU utilized by other applications
executing on the computing node. If these applications utilize σ (k) percentage of
the CPU at time k, the available CPU of the loop execution process is equal to
100−σ (k), and that is considered as ω(k). The estimation of CPU utilization for the
loop execution process is σ (k + 1), which is estimated by the ARIMA filter as:

σ (k + 1) = β σ (k) + (1 − β) σavg(k − 1, r), (5)

A Power-Aware Autonomic Approach for Performance Management . . . 177

where β is the weight on the available CPU utilization in the previous sampling
time. A high value of β pushes the estimate towards current CPU utilization by other
applications. A low value of β shows a bias towards the average CPU utilization
in a past history window by the other applications. σavg(k − 1, r) represents the
average value of CPU utilization between the time samples (k − 1) and (k − 1 − r).
Instead of using static β, an adaptive estimator can be used for better estimation by
accommodating the error in estimation at previous sample [43].

δ(k) = γ δ + (1 − γ) |σ (k − 1) − σ (k)|, (6)

where δ(k) denotes the error between the observed and the estimated CPU availability
at time t, δ denotes the mean error over a certain history period and γ is determined
by the experiments. The weight β(k) for the ARIMA filter can be calculated as:

β(k) = 1 − δ(k)

δmax
, (7)

where δmax denotes the maximum error observed over a certain historical period.

Model Based Control Algorithm and Performance Specification of the Loop
Execution Environment At each time sample k, the controller on each of the pro-
cessors P calculates the optimal value of the CPU core frequency f for the next time
interval from k to (k + 1) that minimizes the cost function J (k + 1), as per Eq. (8).
This cost function J (k+ 1) combines the QoS violation penalty (xs) and the operat-
ing cost E(k) with different relative priorities. In this approach, xs is considered as
the expected number of loop iterations that are executed by the processor P during
the time interval k + 1 to achieve the deadline Td from all of the assigned iterations
(N
P

). Therefore, the controller updates the xs after every time sample according to
the remaining unexecuted number of loop iterations at each processor.

In this approach, xs = [l∗,L∗], where l∗ is the optimal number of loop iterations
desired for execution in the given time interval k, andL∗ is the optimal number of loop
iterations remaining for execution at time sample k, in order to finish the execution by
the deadline Td . The cost function J (k+ 1) used at control is formulated as follows:

J (x(k), u(k)) = ‖x(k) − xs‖Q + ‖E(u(k)‖R (8)

where Q and R are user specified relative weights for the drift from the optimal
number of executed loop iterations xs , and operating cost (power consumption),
respectively. The optimization problem from the controller can be described as mini-
mizing the total cost of operating the system J , using a look-ahead prediction horizon
with k = 1, 2, 3, ...H steps. Finally, the value of a chosen control input u(k0) at time
sample k0 is:

u(k0) = arg min
u(k)∈U

{
k=k0+H∑
k=k0+1

J (x(k), u(k))

}
(9)

After calculating the value of the control input u(k0), this value will be assigned to
the CPU core for the next time interval k0 + 1.

178 R. Mehrotra et al.

Fig. 5 The main components of the proposed control structure

A schematic representation of the controller and its various components is shown
in Fig. 5. In this figure, Predictive Filter represents the ARIMA estimator, which
estimates the available percentage of CPU to the process computing loop iterations.
System Model represents the mathematical representation of the loop execution pro-
cess in terms of loop iterations l(k) executed at time instant k, with the remaining
number of loop iterations L(k). Optimizer represents the optimization library, which
contains various tree search techniques (greedy, pruning, heuristics, andA∗) to com-
pute the optimal value of control inputs [45]. System represents the actual process,
which is computing the loop iterations.

4 Case Study: Performance Management of a Parallel Loop
Execution Environment

The proposed approach is simulated in MATLAB R2010 for managing loop execution
of a parallel application by applying static loop scheduling at the top level and DVFS
at the lower level for maintaing the prespecified execution deadlines. Simulations
details are described in the following subsections.

A. Simulation Setup
A cluster of four computing nodes is simulated on a 3.0 GHz machine with 3 GB of
RAM for demonstrating the performance of the proposed approach. These computing
nodes support five discrete values of CPU frequencies (1.0,1.2,1.4,1.7,2.0) in GHz.
The sample time (T) for observation is considered as 30 seconds, and the execution
time (work factor) for each individual loop iteration is fixed at 2x10−4 seconds.
In addition, the look ahead horizon (H) for the simulation is kept constant at two
steps for balancing the performance and computing overhead. The total number of
loop iterations executed at four computing nodes are equal to 108. During these
simulations, synthetic time series data are utilized that represent the CPU resources

A Power-Aware Autonomic Approach for Performance Management . . . 179

Fig. 6 Percentage of CPU utilized by OS Applications (other than the loop execution process) at
four computing nodes. Each of the computing nodes has different CPU utilization characteristic
represend by different colors (red, green, blue, and black)

consumed by the other OS applications executing at each computing nodes. This
synthetic time series were generated using random functions in MATLAB for each
computing nodes, and shown as percentages of the total CPU availability in Fig. 6.
The deadline for the execution is varied between 200 to 800 samples (where 1 sample
is equal to T seconds) depending upon the experiment settings. Experiments with this
proposed framework are performed with various amount of perturbations at different
processors, and the results demonstrate whether the QoS objectives (deadline and
power consumption) have or not been achieved.

Performance of the proposed approach is exhibited using three different experi-
ments with specific purposes as follows: Experiment-1 demonstrates the impact of
the perturbations related to CPU availability on the parallel loop execution dead-
lines; Experiment-2 demonstrates the impact of the proposed approach when the
loop execution time suffers due to perturbations in CPU availability, and its impact
on deadline violations; and Experiment-3 demonstrates the impact of choosing var-
ious priorities of deadline violation and power consumption inside the controller on
the QoS objectives (deadline and power consumption);

Various experiments, their settings, and their observations are described in the
following subsections.

B. Experiment-1
During this experiment, 108 loop iterations are assigned to a cluster of four computing
nodes with a deadline of 500 samples, where each sample corresponds to 30 seconds.
All the CPUs are assigned their average frequencies (1.4 GHz.) from the set of
supported discrete frequency values. This experiment is performed in the following
two steps, to show the impact of the perturbations in CPU availability on the loop
execution deadline.

Simulation Without Perturbations This experiment is performed when other
applications executing on the processing nodes consume negligible amount of com-
putational resources, and almost the entire CPU is available for the loop execution
environment. The results of this experiment are presented in Fig. 7 under the tag
“No Disturbance”. The results from each of the processors are plotted separately
indicating the number of loop iterations executed at each time sample, and the num-
ber of time samples spent before finishing the execution of total numbers of loop

180 R. Mehrotra et al.

Fig. 7 Experiment-1 performed with and without perturbation in CPU availability with deadline =
500 samples

A Power-Aware Autonomic Approach for Performance Management . . . 181

iterations (108). These results indicate that the execution deadline (of 500 samples)
of the loop execution is achieved. In addition, each processors finish the execution
almost simultaneously indicating near perfect load balancing.

Simulation with Perturbations This experiment is performed in similar settings
as the previous one, with the addition of CPU perturbations at each processor due
to a significant computational resource (CPU cycles) utilized by other local OS
applications executing on the same node. Each of the processing nodes has different
amount of perturbations that result in different amount of CPU availability (shown
in Fig. 6) for the execution environment. The results of this experiment are shown in
Fig. 7 under the tag “With Disturbance”. The results for each of the processors are
plotted separately in sub-figures. According to Fig. 7, in the presence of perturbations
in CPU availability, processors fail severely to achieve the execution deadline (of 500
samples). The processors with low perturbation values for CPU availability miss the
deadline less severely compared to the processors having high perturbation values.
Also, severe load imbalance is observed as all of the four processors finish their
execution at different time samples.

To address these issues, the easiest solution is to assign the highest operating
CPU core frequency of execution to the processors, which will ensure the avail-
ability of maximum computational resources (CPU cycles) to the loop execution
environment. However, this highest operating CPU core frequency results in ex-
tremely high value for the power consumption and reliability risk at the processor
node. Therefore, a monitoring and reconfiguring approach is required, that can re-
configure the computational resources as and when required to meet the execution
deadlines.

C. Experiment-2
This experiment is performed with similar simulation settings as the previous one, in
the presence of the model-based online controller as described in the Sect. 3. During
this experiment, the controller is deployed at each computing node and monitors
the loop iterations executed at each processor with respect to the execution deadline
and available CPU resources. This controller re-assigns the optimal value of CPU
core frequency that results in achieving the deadline of execution with minimum
power consumption. The results of this experiment for each processor are shown in
Fig. 8. These plots show the optimal value of the CPU core frequency assigned by
the controller and the loop iterations completed by each processor at different time
samples. All the processors finish execution within 500 time samples. As shown
in Fig. 8, the loop execution deadline is easily achieved even in the presence of
perturbations by re-assigning the computational resources according to the control
algorithm developed in the proposed approach. Moreover, the power consumption
is also lowered in this case, because the processors are not executing at their highest
frequencies all the time, compared to the cases in which processors execute at the
highest frequency for maximum availability of computational resources, even in the
presence of perturbations. Furthermore, all the processors finish at the same time
sample (of 500) indicating the near perfect load balancing.

182 R. Mehrotra et al.

Fig. 8 Experiment-2 performed with perturbation in CPU availability with deadline = 500 samples

A Power-Aware Autonomic Approach for Performance Management . . . 183

In addition to achieving the execution deadline, Fig. 8 shows that the controllers
do not change the CPU core frequency of the computing node too frequently even
if the CPU availability is varying continuously (as shown in Fig. 6). This demon-
strates that the developed control approach is not extremely sensitive to the changes
in the CPU availability. The controllers suggest a change in CPU core frequency
(increase or decrease) only when the controller predicts a possible deadline viola-
tion by increasing the frequency, or a significant power saving by decreasing the
frequency. Furthermore, the frequency of changes in CPU core frequency can be
further minimized by adding frequency switching cost in the overall cost function J
in Eq. (8).

D. Experiment-3
This experiment is performed to exhibit the impact of choosing different relative
priorities for the loop execution deadline and power consumption as described by
Eq. (8). Three different sets of simulations are performed during this experiment
with different relative priorities of deadline versus power consumption as (1 : 1, 2 :
1, 4 : 1) to demonstrate their impact on achieving the deadline of 800 samples. The
results of these experiments at one of the processors (CPU-4) are plotted in Fig. 9
with different labels corresponding to the chosen priority ratio. According to this
figure, the controller keeps the processor at the minimum frequency (1.0 GHz.) to
keep the power consumption low in case of 1 : 1 priority due to the high relative
priority assigned to the power consumption compared to the priorities 2 : 1 and 4 : 1.
However, this conservative selection of the CPU core frequency leads to an execution
of a lower number of loop iterations in the case of 1 : 1 and 2 : 1 priorities. This slow
rate of loop execution results in violation of deadlines (of 800 samples) in the case
of 1 : 1 and 2 : 1 priorities. However, in the case of the 4 : 1 relative priority, the
controller selects higher values for the CPU core frequency at different time samples
to execute a higher number of loop iterations, which finally leads to meeting the loop
execution deadlines. In a real environment (HPC settings), these relative priorities
can be chosen according to the violation penalties (in dollar amount) and power
consumption cost (in dollar per KWh) to compute the total cost of hosting the loop
execution environment in dollar values.

E. Other Experiments
A few more experiments are performed with different values of deadlines and amount
of perturbations in computational resources. These simulations use tougher execution
deadlines, 400 samples or even only 200 samples. In both of these approaches, the
controller either assigns higher values for CPU core frequencies compared to the
ones in the Experiment 2, or the highest value of frequency for the extreme (may be
unrealistic) deadline until all the loop iterations are completed.

184 R. Mehrotra et al.

Fig. 9 Experiment-3 shows the impact of relative weights to the deadline and the power consumption
with perturbation in CPU availability and deadline = 800 samples

5 Benefits of the Proposed Approach

The proposed two-level approach is using a model-based control theoretic frame-
work for performance management of a parallel loop execution environment with
fixed execution deadline and power consumption, and in the presence of computa-
tional resource related perturbations. The proposed management approach is using a
model-based predictive controller for performance management of the parallel loop
execution environment with respect to its execution deadline and power consumption
budget, by considering perturbations in the availability of computational resources.

This approach does not interfere with the execution of the scientific application.
The controller executes its routines separate from the application, and monitors only
the application performance dynamically while the application is executing. The
proposed approach uses performance logs related to the completion of loop itera-
tions and to the availability of computational resources in the execution environment.
It tunes the performance of the executing application for achieving loop execution
deadline while minimizing the power consumption. Thus, it can be used for executing
scientific applications of high complexity on a cluster of heterogeneous computing
nodes. Moreover, there is no need for code profiling and code modification in the
executing application, except for creating the log environment for the application

A Power-Aware Autonomic Approach for Performance Management . . . 185

performance statistics. According to the simulations presented in the previous sec-
tions, the proposed approach allocates the optimal value of the CPU core frequency
to the processors in order to minimize the power consumption and achieve the desired
deadline of loop execution, with consideration given to the chosen relative priorities
towards achieving their target. Moreover, the execution using this approach leads
to an adequate load balancing among the computing nodes. This approach can be
applied to any cluster of computing nodes that supports DVFS techniques. For the
HPC clusters, this approach is a trade-off between response time and power consump-
tion, and can be considered as one of the solutions for achieving multi-dimensional
objectives.

6 Combining DLS Techniques with the Proposed Approach

The proposed approach (Fig. 4) is two-level, hierarchical, model-based, and power-
aware. As an extension to the approach proposed in this paper, another approach
can be used, where the present approach is combined with one of the state-of-the-art
DLS techniques for performance optimization of scientific applications running in
heterogeneous environments. In this extended approach, DLS techniques are applied
at the higher level, while the lower level uses a power-aware approach as described in
Sect. 3. In this extended approach, each level works independently towards achieving
its own individual objective, while at the same time the combined approach achieves
the overall performance objective of the application. In other words, the top level
ensures that the coefficient of variation of processors finishing times will be very
low via an effective load-balancing, while the bottom level ensures that the desired
application response time at each processor is achieved with minimum power con-
sumption. The value of sampling time Th at the top level is much higher than that at
the bottom level T .

This difference in sampling times ensures that at the higher level, changes in the
allocation size of the iterations can be made after monitoring the performance at the
bottom level for a few sampling times. This extended approach is expected to offer
superior performance compared to the one obtained when using either of the above
mentioned techniques in isolation. Descriptions of the strategies used at the top and
at the bottom levels are given in the next paragraphs.

The strategy at the top level, is an implementation of an optimal task distribution
with algorithmic guarantee for a scientific application running on a HPC system by
using DLS techniques, which are based on probabilistic analyses. These DLS al-
gorithms ensure that the application will complete its execution at the cluster nodes
within the optimal time with high probability while using the available computational
resources. While executing the scientific application, the top level is primarily respon-
sible for achieving an optimal execution time, as well as achieving load-balancing
with the given set of computational resources. At the top level, an extension of a
dynamic load balancing tool is implemented. In the current approach, the dynamic
load balancing tool is used for being integrated within the scientific application for

186 R. Mehrotra et al.

the purpose of scheduling, and also for maintaining interactions with the bottom level
with the purpose to compute the appropriate size of the chunks of iterations to be
distributed, as well as to meet the recommended deadlines. The top level estimates
the work factor (Wf = Response T ime

No. of I terations
) of iterations by continuously monitoring

the execution of the processor with respect to the number of iterations submitted
for execution and the corresponding response time. The work factor information is
passed to the bottom level together with the size of the chunk of iterations, with the
purpose to calculate the recommended response time to the bottom level.

At the bottom level, an effective resource allocation strategy is implemented.
This allocation strategy is based on a control theoretic approach by processing the
assigned task within the given constraints of an optimal response time and minimum
power consumption. This level optimizes the application execution as well as the
HPC system performance through balancing the need between using the minimum
power consumption and a chosen average response time. The bottom level receives
performance specification for the scientific application in terms of a recommended
deadline (Td) from the top level, and attempts to achieve this objective with minimum
power consumption.

7 Conclusion

In this chapter, a model-based control theoretic performance management approach
is presented for executing a parallel scientific application hosted in a data center
environment that is using loop scheduling. This approach is well suited for the sci-
entific applications of high complexity with prespecified deadline. According to the
simulation results presented in this chapter, the proposed approach leads to a mini-
mized power consumption of the deployment, while achieving the target execution
deadline. In addition, the proposed approach provides a tuning option for the system
administrator for choosing the best or the appropriate trade-off between the QoS
specifications (response time) and the operating cost (power consumption) of the
deployment. A possible extension of the proposed approach is also discussed in this
chapter, where this approach can be combined with various dynamic loop scheduling
methods for increasing the performance of the overall system in terms of minimizing
the total loop or application execution time.

Acknowledgment The authors would like to thank the National Science Foundation (NSF) for
its support of this work through the grant NSF IIP-1034897.

A Power-Aware Autonomic Approach for Performance Management . . . 187

References

1. Report to congress on server and data center energy efficiency public law 109-431. Technical
report, U.S. Environmental Protection Agency ENERGY STAR Program, August 2 2007.

2. A simple way to estimate the cost of downtime. In Proceedings of the 16th USENIX conference
on System administration (LISA ’02), pages 185–188, Berkeley, CA, USA, 2002. USENIX
Association.

3. Wu chun Feng, Xizhou Feng, and Rong Ge. Green supercomputing comes of age. IT
Professional, 10(1):17–23, 2008.

4. W. Feng. Green destiny + mpiblast = bioinfomagic. In 10th International Conference on
Parallel Computing (PARCO), pages 653–660, 2003.

5. Rong Ge, Xizhou Feng, Wu-chun Feng, and Kirk W. Cameron. Cpu miser: A performance-
directed, run-time system for power-aware clusters. In Proceedings of the 2007 International
Conference on Parallel Processing (ICPP ’07), page 18, Washington, DC, USA, 2007. IEEE
Computer Society.

6. R. Ge and K.W. Cameron. Power-aware speedup. In Proceedings of the IEEE International on
Parallel and Distributed Processing Symposium (IPDPS)., pages 1–10, March 2007.

7. Chung-hsing Hsu and Wu-chun Feng. A power-aware run-time system for high-performance
computing. In Proceedings of the ACM/IEEE conference on Supercomputing (SC ’05), page 1,
Washington, DC, USA, 2005. IEEE Computer Society.

8. Ioana Banicescu and Ricolindo L. Carino. Addressing the stochastic nature of scientific compu-
tations via dynamic loop scheduling. Electronic Transactions on Numerical Analysis 21:66-80,
2005.

9. Rajat Mehrotra, Ioana Banicescu, and Srishti Srivastava. A utility based power-aware auto-
nomic approach for running scientific applications. In Proceedings of IEEE 26th International
Parallel and Distributed Processing Symposium (IPDPS), pages 1457–1466, 2012.

10. David A. Patterson and John L. Hennessy. Computer Organization and Design, The
Hardware/Software Interface, 4th Edition. Morgan Kaufmann, 2008.

11. Yongpeng Liu and Hong Zhu. A survey of the research on power management techniques
for high-performance systems. Software: Practice and Experience, 40(11):943–964, October
2010.

12. M. Nakao, H. Hayama, and M. Nishioka. Which cooling air supply system is better for a high
heat density room: underfloor or overhead? In Proceedings of Telecommunications Energy
Conference, (INTELEC ’91), pages 393–400, 1991.

13. H. Hayama and M. Nakao. Air flow systems for telecommunications equipment rooms. In
Proceedings of Telecommunications Energy Conference (INTELEC ’89), pages 8.3/1–8.3/7
vol.1, 1989.

14. Taliver Heath, Ana Paula Centeno, Pradeep George, Luiz Ramos, Yogesh Jaluria, and Ricardo
Bianchini. Mercury and freon: temperature emulation and management for server systems. In
Proceedings of the 12th international conference on Architectural support for programming
languages and operating systems, ASPLOS XII, pages 106–116, New York, NY, USA, 2006.
ACM.

15. Justin Moore, Jeff Chase, Parthasarathy Ranganathan, and Ratnesh Sharma. Making scheduling
“cool”: temperature-aware workload placement in data centers. In Proceedings of the annual
conference on USENIX Annual Technical Conference, ATEC ’05, pages 5–5, Berkeley, CA,
USA, 2005. USENIX Association.

16. Tridib Mukherjee, Ayan Banerjee, Georgios Varsamopoulos, Sandeep K. S. Gupta, and Sanjay
Rungta. Spatio-temporal thermal-aware job scheduling to minimize energy consumption in
virtualized heterogeneous data centers. Computer Networks, 53(17):2888–2904, December
2009.

17. Eun Kyung Lee, Indraneel Kulkarni, Dario Pompili, and Manish Parashar. Proactive thermal
management in green datacenters. Journal of Supercomput., 60(2):165–195, May 2012.

18. Blue gene. http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/bluegene/ [May 2013].

188 R. Mehrotra et al.

19. Severin Zimmermann, Ingmar Meijer, Manish K. Tiwari, Stephan Paredes, Bruno Michel, and
Dimos Poulikakos. Aquasar: A hot water cooled data center with direct energy reuse. Energy,
43(1):237–245, 2012. 2nd International Meeting on Cleaner Combustion (CM0901-Detailed
Chemical Models for Cleaner Combustion).

20. Chung-Hsing Hsu and Wu-Chun Feng. Effective dynamic voltage scaling through cpu-
boundedness detection. In In Workshop on Power Aware Computing Systems, pages 135–149,
2004.

21. Vincent W. Freeh, David K. Lowenthal, Feng Pan, Nandini Kappiah, Rob Springer, Barry L.
Rountree, and Mark E. Femal. Analyzing the energy-time trade-off in high-performance
computing applications. IEEE Trans. Parallel Distrib. Syst., 18:835–848, June 2007.

22. Michael Knobloch. Chapter 1 - energy-aware high performance computing—a survey. In
Ali Hurson, editor, Green and Sustainable Computing: Part II, volume 88 of Advances in
Computers, pages 1–78. Elsevier, 2013.

23. B. J. Smith. Architecture and applications of the hep multiprocessor computer system. In SPIE
- Real-Time Signal Processing IV, pages 241–248, 1981.

24. Clyde P. Kruskal andAlan Weiss. Allocating independent subtasks on parallel processors. IEEE
Trans. Softw. Eng., 11(10):1001–1016, 1985.

25. T. H. Tzen and L. M. Ni. Trapezoid self-scheduling: A practical scheduling scheme for parallel
compilers. IEEE Trans. Parallel Distrib. Syst., 4(1):87–98, 1993.

26. Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. Factoring: a method for
scheduling parallel loops. Communication of ACM, 35(8):90–101, 1992.

27. Ioana Banicescu and Susan Flynn Hummel. Balancing processor loads and exploiting data
locality in n-body simulations. In Proceedings of the 1995 ACM/IEEE Conference on Su-
percomputing, Supercomputing ’95 (on CDROM), pages 43–55, New York, NY, USA, 1995.
ACM.

28. Susan Flynn Hummel, Jeanette Schmidt, R. N. Uma, and Joel Wein. Load-sharing in hetero-
geneous systems via weighted factoring. In Proceedings of the eighth annual ACM symposium
on Parallel algorithms and architectures (SPAA ’96), pages 318–328, New York, NY, USA,
1996. ACM.

29. Ioana Banicescu and Vijay Velusamy. Performance of scheduling scientific applications with
adaptive weighted factoring. In Proceedings of the 15th International Parallel & Distributed
Processing Symposium (IPDPS ’01), page 84, Washington, DC, USA, 2001. IEEE Computer
Society.

30. Ricolindo L. Carino Cariño and Ioana Banicescu. Dynamic load balancing with adaptive
factoring methods in scientific applications. The Journal of Supercomputing, 44(1):41–63,
2008.

31. Ioana Banicescu, Vijay Velusamy, and Johnny Devaprasad. On the scalability of dynamic
scheduling scientific applications with adaptive weighted factoring. Cluster Computing,
6(3):215–226, 2003.

32. Ioana Banicescu and Vijay Velusamy. Load balancing highly irregular computations with
the adaptive factoring. In 16th International Parallel and Distributed Processing Symposium
(IPDPS 2002), 15-19 April 2002, Fort Lauderdale, FL, USA, CD-ROM/Abstracts Proceedings.
IEEE Computer Society, 2002.

33. Ricolindo Cariño, Ioana Banicescu, Thomas Rauber, and Gudula Rünger. Dynamic loop
scheduling with processor groups. In Proceedings of the ISCA Parallel and distributed
Computing Symposium (PDCS), pages 78–84, 2004.

34. Yong Dong, Juan Chen, Xuejun Yang, Lin Deng, and Xuemeng Zhang. Energy-oriented
openmp parallel loop scheduling. In Proceedings of the 2008 IEEE International Symposium
on Parallel and Distributed Processing with Applications, pages 162–169, Washington, DC,
USA, 2008. IEEE Computer Society.

35. Anton Cervin, Johan Eker, Bo Bernhardsson, and Karl-Erik Arzen. Feedback–feedforward
scheduling of control tasks. Real-Time Systems, 23(1/2):25–53, 2002.

A Power-Aware Autonomic Approach for Performance Management . . . 189

36. T.F. Abdelzaher, K.G. Shin, and N. Bhatti. Performance guarantees for web server end-
systems: a control-theoretical approach. IEEE Transactions on Parallel and Distributed
Systems, 13(1):80–96, Jan 2002.

37. R. Mehrotra, A. Dubey, S. Abdelwahed, and W. Monceaux. Large scale monitoring and online
analysis in a distributed virtualized environment. In 8th IEEE International Conference and
Workshops on Engineering of Autonomic and Autonomous Systems (EASe), 2011, pages 1–9,
2011.

38. Chenyang Lu, Guillermo A. Alvarez, and John Wilkes. Aqueduct: Online data migration with
performance guarantees. In FAST ’02: Proceedings of the 1st USENIX Conference on File and
Storage Technologies, page 21, Berkeley, CA, USA, 2002. USENIX Association.

39. R. Mehrotra, A. Dubey, S. Abdelwahed, and A. Tantawi. Integrated monitoring and control
for performance management of distributed enterprise systems. In 2010 IEEE International
Symposium on Modeling, Analysis Simulation of Computer and Telecommunication Systems
(MASCOTS), pages 424–426, 2010.

40. Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwahed, and Asser Tantawi. A Power-aware
Modeling and Autonomic Management Framework for Distributed Computing Systems. CRC
Press, 2011.

41. Dara Kusic, Nagarajan Kandasamy, and Guofei Jiang. Approximation modeling for the online
performance management of distributed computing systems. In ICAC ’07: Proceedings of the
Fourth International Conference on Autonomic Computing, page 23, Washington, DC, USA,
2007. IEEE Computer Society.

42. Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwahed, and Asser Tantawi. Model identification
for performance management of distributed enterprise systems. (ISIS-10-104), 2010.

43. S. Abdelwahed, Nagarajan Kandasamy, and Sandeep Neema. Online control for self-
management in computing systems. In Proceedings of Real-Time and Embedded Technology
and Applications Symposium,(RTAS) 2004., pages 368–375, 2004.

44. Abhishek Dubey, Rajat Mehrotra, SherifAbdelwahed, andAsser Tantawi. Performance model-
ing of distributed multi-tier enterprise systems. SIGMETRICS Performance Evaluation Review,
37(2):9–11, 2009.

45. S. Abdelwahed, Jia Bai, Rong Su, and Nagarajan Kandasamy. On the application of predic-
tive control techniques for adaptive performance management of computing systems. IEEE
Transactions on Network and Service Management, 6(4):212–225, 2009.

CoolEmAll: Models and Tools for Planning
and Operating Energy Efficient Data Centres

Micha vor dem Berge, Jochen Buchholz, Leandro Cupertino,
Georges Da Costa, Andrew Donoghue, Georgina Gallizo,
Mateusz Jarus, Lara Lopez, Ariel Oleksiak, Enric Pages,
Wojciech Piątek, Jean-Marc Pierson, Tomasz Piontek, Daniel Rathgeb,
Jaume Salom, Laura Sisó, Eugen Volk, Uwe Wössner and Thomas Zilio

1 Introduction

The need to improve how efficiently data centre operate is increasing due to the
continued high demand for new data centre capacity combined with other factors
such as the increased competition for energy resources. The financial crisis may have

M. vor dem Berge (�)
christmann informationstechnik + medien GmbH & Co. KG,
Ilseder Huette 10c, 31241 Ilsede, Germany
e-mail: micha.vordemberge@christmann.info

J. Buchholz · G. Gallizo · D. Rathgeb · E. Volk · U. Wössner
High Performance Computing Center Stuttgart (HLRS), University of Stuttgart,
Nobelstr. 19, 70569 Stuttgart, Germany
e-mail: buchholz@hlrs.de

G. Gallizo
e-mail: ggallizo@gmail.com

D. Rathgeb
e-mail: rathgeb@hlrs.de

E. Volk
e-mail: volk@hlrs.de

U. Wössner
e-mail: woessner@hlrs.de

L. Cupertino · G. Da Costa · J.-M. Pierson · T. Zilio
Institute for Research in Informatics of Toulouse (IRIT),
Université Paul Sabatier, 118 Route de Narbonne,
31062 Toulouse Cedex 9, France
e-mail: fontoura@irit.fr

G. Da Cost
e-mail: dacosta@irit.fr

© Springer Science+Business Media New York 2015 191
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_6

192 M. vor dem Berge et al.

dampened data centre demand temporarily, but current projections indicate strong
growth ahead. By 2020, it is estimated that annual investment in the construction of
new data centres will rise to $ 50 bn in the US, and $ 220 bn worldwide [23].

According to a survey by the Uptime Institute in 2011, approximately 80 % of
data centre owners and operators have built or renovated data centre space in the past
5 years [56]. Furthermore, 36 % of survey respondents reported that they would run
out of capacity by 2012, and a significant proportion of those indicated that they are
planning to build a new facility in the near future. Despite this overall trend toward
expansion, large organizations are also increasingly aware of the need to improve the
productivity of existing facilities and consolidate excess or inefficient capacity. The
US government, for example, driven by the need to tackle its considerable deficit, is
currently involved in an extensive consolidation program, which will see more than
800 of its 2000-plus data centres shut by 2014 [41].

J.-M. Pierson
e-mail: pierson@irit.fr

T. Zilio
e-mail: zilio@irit.fr

A. Donoghue
Paxton House (5th floor)30, Artillery Lane, E1 7LS, London, UK
e-mail: andrew.donoghue@451research.com

M. Jarus · A. Oleksiak · W. Piaątek · T. Piontek
Poznan Supercomputing and Networking Center (PSNC),
Applications Department, ul. Noskowskiego 10, 61-704, Poznan, Poland
e-mail: jarus@man.poznan.pl

A. Oleksiak
e-mail: ariel@man.poznan.pl

W. Piaątek
e-mail: piatek@man.poznan.pl

T. Piontek
e-mail: piontek@man.poznan.pl

L. Lopez · E. Pages
Atos Spain, S.A. (ATOS), Albarracín, 25, 28037 Madrid, Spain
e-mail: lara.lopez@atos.net

E. Pages
e-mail: enric.pages@atos.net

J. Salom · L. Sisó
Catalonia Institute for Energy Research (IREC),
Jardins de les dones de negre, 1, 2 floor (08930) Sant Adrià de Besòs,
Barcelona, Spain
e-mail: jsalom@irec.cat

L. Sisó
e-mail: lsiso@irec.cat

CoolEmAll: Models and Tools for Planning and Operating . . . 193

Some recent high-profile cloud-related data centre builds by the likes of Apple,
Google and Facebook have increased awareness of both the financial and environ-
mental costs of data centres. They have also raised awareness of the efficiencies that
can be realized by smarter data centre design and operation. Environmental cam-
paigners have begun to target carbon-intensive data centres with campaign tactics
traditionally reserved for heavy industry. Environmentalists argue that data centre
owners, and particularly cloud providers, could be more transparent about their en-
ergy use and efforts to improve efficiency. Greenpeace, for example, is concerned
about whether providers are putting electricity costs above carbon intensity when
constructing new facilities in locations with cheap, coal-based electricity generation.
Data centre operators have responded to this scrutiny with marketing initiatives,
but also by developing some genuinely innovative sustainability initiatives, such as
Facebook’s Open Compute strategy. Cloud providers also maintain that concentrat-
ing IT in large centralized facilities has enormous benefits in terms of how energy
is consumed and managed. The emergence of more professionally run “information
factories” could ultimately mean fewer inefficient private facilities. Cloud service
suppliers also point to their innovations around data centre energy efficiency. Mean-
while, government regulators have also begun to take more notice of data centre
energy use. For example, the UK’s CRC Energy Efficiency Scheme represented the
first real “carbon tax” to include data centres. Other governments are expected to
follow suit.

All of these factors are gradually shifting the traditional uptime-and-availability-
focused view of data centre owners and operators to encompass energy efficiency and
sustainability issues. This rise in energy awareness has helped drive the development
of an increasing range of eco-efficient data centre strategies and technologies by
traditional data centre suppliers, specialist start-ups and consultants. Implemented in
the correct way, these tools and approaches can help achieve financial savings, “rep-
utational savings” associated with environmental issues, and operational flexibility
associated with freed-up energy.

Development and selection of right energy-savings strategies is driven by iden-
tification and optimization of energy-waste causing processes and components. In
particular, in many current data centers the actual IT equipment uses only half of the
total energy while the remaining part is required for cooling and air movement. This
results in poor cooling-efficiency and energy-efficiency, leading to significant CO2
emissions. For this purpose issues related to cooling, heat transfer, IT infrastructure
configuration, management, location as well as workload management strategies are
more and more carefully studied during planning and operation of data centres. The
goal of the CoolEmAll project is to enable designers and operators of next genera-
tion data center to reduce its energy impact by combining optimization of IT, cooling
and workload management in a holistic and comprehensive way, taking aspects into
account that were considered traditionally separately. In the next section we describe
objectives and outcomes of the CoolEmAll project.

194 M. vor dem Berge et al.

1.1 The CoolEmAll Project

CoolEmAll is a European Commission funded project which addresses the complex
problem of how to make data centres more energy, and resource, efficient. CoolEmAll
is developing a range of tools to enable data centre d esigners, operators, suppliers
and researchers to plan and operate facilities more efficiently. The participants in the
project include a range of scientific and commercial organisations with expertise in
data centres, high performance computing, energy efficient server design, and energy
efficient metrics.

The defining characteristic of the CoolEmAll project is that it will bridge this tra-
ditional gap between IT and facilities approaches to efficiency. The main outcomes
of CoolEmAll will be based on a holistic rethinking of data centre efficiency that
is crucially based on the interaction of all the factors involved rather just one set of
technologies. The expected results of the project include a data centre monitoring,
simulation and visualisation software, namely SVD toolkit, designs of energy effi-
cient IT hardware, contribution to existing (and help define new) energy efficiency
metrics.

Some commercial suppliers (most notably Data centre Infrastructure Management
suppliers) and consultants have recently begun to take a more all-encompassing
approach to the problem by straddling both IT and facilities equipment. However,
few suppliers or researchers up to now have attempted to include the crucial role of
workloads and applications. That is beginning to change, and it is likely that projects
such as CoolEmAll can advance the state of the art in this area.

As noted [60], the objective of the CoolEmAll project is to enable designers
and operators of a data centre to reduce its energy impact by combining the opti-
mization of IT, cooling and workload management. For this purpose CoolEmAll
project investigates in a holistic approach how cooling, heat transfer, IT infrastruc-
ture, and application-workloads influence overall cooling- and energy-efficiency of
data-centres, taking aspects into account that traditionally have been considered
separately.

In order to achieve this objective CoolEmAll provides two main outcomes:

• Design of diverse types of data centre efficiency building blocks (DEBBs) re-
flecting configuration of IT equipment and data centre facilities on different
granularity levels, well defined by hardware specifications, physical dimensions,
position of components, and energy efficiency metrics, assessing energy- &
cooling-efficiency of building blocks.

• Development of the Simulation, Visualization and Decision support toolkit (SVD
Toolkit) enabling the analysis and user driven optimization of data centres and IT
infrastructures built of these building blocks.

Both building blocks and the toolkit take into account four aspects that have a major
impact on the actual energy consumption: characteristics of building blocks un-
der variable loads, cooling models, properties of applications and workloads, and
workload and resource management policies. To simplify selection of right building

CoolEmAll: Models and Tools for Planning and Operating . . . 195

Simulation, Visualisation and
Decision Support Toolkit

...

Modular Approach

ComputeBox
Blueprint 1

ComputeBox
Blueprint 2

Cooling Approaches

Efficiency of Cooling
Methods

Waste Heat Re-use

Next-gen Efficient
Data Centers

Optimal Arrangement

Thermal Distribution

Efficient Airflow

Energy- and Thermal-aware Management

Workload
Management Policies

Application
Characteristics

Fig. 1 The CoolEmAll concept

blocks used to design data centres adjusted to particular needs, data centre efficiency
building blocks are precisely defined by a set of metrics expressing relations between
the energy efficiency and essential factors listed above. In addition to common static
approaches, the CoolEmAll approach also enables studies and assessment of dy-
namic states of data centres based on changing workloads, management policies,
cooling methods, environmental conditions and ambient temperature. This enables
assessment and optimization of data centre energy/cooling efficiency also for low
and variable loads rather than just for peak loads as it is usually done today. The
main concept of the project is presented in Fig. 1.

As pointed out, the CoolEmAll approach is realized by the SVD Toolkit, which
allows assessment of energy- & cooling efficiency and facilitates optimization of
DEBBs (reflecting various configurations of a data centre and its components on
various scale level) by means of coupled workload and thermal-airflow simulation.
Both, SVD Toolkit and models described in scope of DEBBs are verified within the
validation scenarios using testing environment based on Resource Efficient Com-
puting & Storage (RECS) servers, allowing fine grained monitoring and control of
resources.

This chapter is based on CoolEmAll’s project deliverables [26, 27, 47, 48, 50, 62]
and is organized as follows. Section 2 introduces the architectural concept of the
main software output of the CoolEmAll project: the Simulation, Visualisation and
Decision support (SVD) Toolkit. Section 3 presents the data centre infrastructure
description through the Data centre Efficiency Building Blocks (DEBB). Section 4
shows the metrics used to define energy efficiency in a data centre. Section 5 describes
the hardware and methodology used to validate the different aspects of the project. In
Sect. 6, a report on the impact of the projects’ outputs on the market is done. Finally,
Sect. 7 summarizes the status of the project as well as future perspectives.

196 M. vor dem Berge et al.

1.2 Related Work

Issues related to cooling, heat transfer, IT infrastructure configuration, IT-
management, arrangement of IT-infrastructure as well as workload management
are gaining more and more interest and importance, as reflected in many ongoing
works both in industry and research, described in [17]. There are already software
tools available on the market capable to simulate and analyze thermal processes in
data centers. Examples of such software are simulation codes along with more than
600 models of servers from Future Facilities [32] with its DC6sigma products [31],
CA tools [21], or the TileFlow [36] application. In most cases these simulation tools
are complex and expensive solutions that allow modeling and simulation of heat
transfer processes in data centers. To simplify the analysis process Romonet [52]
introduced a simulator, which concentrates only on costs analysis using simplified
computational and cost models, disclaiming analysis of heat transfer processes
using Computational Fluid Dynamics (CFD) simulations. Common problem in case
of commercial data center modeling tools is that they use closed limited databases
of data center hardware. Although some of providers as Future Facilities have
impressive databases, extensions of these databases and use of models across various
tools is limited. To cope with this issue Schneider have introduced the GENOME
Project that aims at collecting “genes” which are used to build data centers. They
contain details of data center components and are publicly available on the Schneider
website [30]. Nevertheless, the components are described by static parameters such
as “nameplate” power values rather than details that enable simulating and assessing
their energy efficiency in various conditions. Another initiative aiming at collection
of designs of data centers is the Open Compute Project [29]. Started by Facebook
which published its data center design details, consists of multiple members
describing data centers’ designs. However, Open Compute Project blueprints are
designed for description of good practices rather than to be applied to simulations.

In addition to industrial solutions significant research effort was performed in
the area of energy efficiency modeling and optimization. For example, models of
servers’ power usage were presented in [51] whereas application of these models to
energy-aware scheduling in [44]. Additionally, authors in [33, 61] proposed method-
ologies of modeling and estimation of power by specific application classes. There
were also attempts to use thermodynamic information in scheduling as in [45]. Nev-
ertheless, the above works are focused on research aspects and optimization rather
than providing models to simulate real data centers. In [49], the authors propose
a power management solution that coordinates different individual approaches. the
solution is validated using simulations based on 180 server traces from nine different
real-world enterprises. Second, using a unified architecture as the base, they perform
a quantitative sensitivity analysis on the impact of different architectures, implemen-
tations, workloads, and system design choices. Shah [53] explores the possibility of
globally staggering compute workloads to take advantage of local climatic conditions
as a means to reduce cooling energy costs, by performing an in-depth analysis of
the environmental and economic burden of managing the thermal infrastructure of a

CoolEmAll: Models and Tools for Planning and Operating . . . 197

globally connected data centre network. SimWare [63] is a data warehouse simulator
which compute its energy efficiency by: (a) decoupling the fan power from the com-
puter power by using a fan power model; (b) taking into account the air travel time
from the CRAC to the nodes; (c) considering the relationship between nodes by the
use of a heat distribution matrix. CoolEmAll’s SVD Toolkit approach differs from
SimWare once it uses computation fluid dynamics instead of a static heat distribution
matrix. This makes the simulation more precise and susceptible to flow changes due
to changes of fan speeds.

2 Simulation, Visualisation and Decision Support Toolkit

The Simulation, Visualization and Decision Support Toolkit (SVD Toolkit) is a plat-
form for interactive analysis and user driven optimization of energy- & cooling
efficiency in data centres. It can be used to optimize design of new data centres or
to improve operation of existing ones. The simulation platform follows a holistic
approach and integrates models of applications, workloads, workload scheduling
policies, hardware characteristics and cooling, capable to perform simulation on
various scale level. The results of this platform include (i) estimations of energy con-
sumption of workloads obtained from the workload simulation, (ii) thermal air-flows
distribution obtained from the computational fluid dynamics (CFD) simulations, and
(iii) energy- and cooling efficiency metrics assessing various configurations of data
centres on various granularity levels. The SVD Toolkit provides also means for ad-
vanced visualization and interactive steering of simulation parameters, facilitating
user-driven optimization process.

The overall optimization cycle consists of several steps. Before the simulation pro-
cess can be started, Data centre Efficiency Building Blocks (DEBBs) are loaded from
the repository or generated using DEBB configuration GUI. As noted, DEBBs reflect
configuration of IT equipment or data centre facilities on different granularity levels,
containing models necessary for simulation. In the next step, particular application
profiles are loaded from the repository, or generated using application profiler. Pro-
files resemble the requirements that particular applications usually have. With these
application profiles, synthetic workloads are generated and used by workload simu-
lator to determine the power dissipated by individual hardware components, based
on power characteristics described in DEBBs. Dissipated power is turned into heat
and is used as input for a Computational Fluid Dynamics (CFD) Solver that calcu-
lates heat-flow distribution described by temperature- and airflow distribution map.
The results of the workload simulation and CFD simulation are stored in a central
database, ready to be processed by other components. In the final step, these results
are assessed by efficiency metrics calculated by metrics-calculator and visualized
by CoolEmAll web GUI. After getting efficiency assessment results, a user might
decide to change configuration or particular parameters (i.e. position of the racks in
the room) and repeat the simulation process again to evaluate new settings. In this
way a user can adjust various parameters (i.e. server-room layout) at each iteration,

198 M. vor dem Berge et al.

Fig. 2 SVD Toolkit architecture overview [62]

to optimize the design and/or operation of a data centre, driven by visualization and
evaluation of results for each cycle-iteration, defined as a trial.

In this section we describe architecture of the SVD Toolkit, presenting its core
components and interaction between them.

2.1 Architecture

The SVD Toolkit is a set of loosely coupled tools which, either combined with each
other or standalone, provide the user with a set of features to perform simulation
and visualisation tasks. This section introduces each component of the SVD Toolkit.
Figure 2 summarizes the SVD Toolkit architecture, showing the interactions between
its major building blocks along with their data flow. Each step of the data flow is
indicated by the numbers in bracket.

The Application Profiler is capable of analysing (step 0) applications running on
a reference hardware and generating application profiles. Such profiles describe the
impact of different application phases (tasks) on the resources that execute it. An
application profile consists of a sequence of application phases, each described by
usage level of resources, such as CPU, Memory, Disk and Network. Application pro-
files are stored in the Repository, and are referenced in workloads, used by the “Data

CoolEmAll: Models and Tools for Planning and Operating . . . 199

centre Workload and Resource Management Simulator” to calculate power-usage
(heat dissipation) of workloads being virtually executed (simulated) on hardware
resources represented by DEBBs, stored also in the Repository.

The Repository allows storing, editing and accessing of files remotely, while
ensuring consistency of several files belonging to the same version, representing
the configuration for a single iteration of the optimization process. The repository
is realized by Apache Subversion and contains application profiles, workloads, and
DEBBs, each of them in a distinct repository.

The Data centre Workload and Resource Management Simulator (DCworms) is
a simulation tool for experimental studies of resource management and schedul-
ing policies in distributed computing systems, providing assessment of the power
consumption of a workload (step 1). Within the workload simulation, a workload
is “virtually executed” on scheduled “virtual nodes”, specified by a power-profile
described in a DEBB (step 2). The power profile contains the power usage of the
“virtual node” for all possible usage-levels of CPU, Memory, Network and Disk. To
calculate the actual power-usage of the workload, DCworms maps the usage level in
the application profile of the workload, to the usage level in the power-profile of the
“virtual node” described in DEBB. In addition to power assessment, the Data centre
simulator allows also to calculate air throughput on inlets/outlets of the physical
resource (server, rack) represented in DEBBs. Results of the workload simulation
(power usage and air throughput) are written into the Database (step 3), being ready
to be processed by the Computational Fluid Dynamics (CFD) Solver.

The Database is responsible for accessing, managing and updating following
data: (a) workload simulation results (air throughput and power dissipation) updated
by DCworms (step 3) and retrieved by Simulation Workflow/COVISE for the CFD
simulation (step 4); (b) CFD simulation results (provided by COVISE in step 8)
containing temperature history for particular sample points; and (c) energy- and
heat-aware metrics provided by the Metric Calculator assessing simulation results.
All the results of the simulations (workload and CFD) as well as the assessment of the
simulation results are retrieved and visualized by the CoolEmAll Web GUI (step 11).

The Simulation Workflow COVISE (Collaborative Visualisation and Simulation
Environment) [14], is an extensible distributed software environment capable to in-
tegrate simulations, post-processing and visualization functionalities in a seamless
manner. The CFD Solver performing CFD simulation is directly integrated into the
COVISE workflow, including all necessary pre- and post-processing tasks. COVISE
offers a networked SOAP based API and is accessible by all components that can
make use of Web Service based components. In CoolEmAll, COVISE firstly retrieves
simulation relevant data (step 4) from the DEBB repository (containing geometry
data and position of objects) and from the Database (containing results from DC-
worms, i.e., power usage and air throughput), passes over these data to the CFD
Solver (step 5), receives results from the CFD Solver (step 6), post processes and
visualizes simulation results allowing at the same time modification of certain pa-
rameters (step 7) such as the arrangement of objects. Results of the simulation are
written back into the Database (step 8), while modified geometrical parameters and

200 M. vor dem Berge et al.

arrangement of objects are used to update DEBBs (step 8), to be stored in the DEBB
repository (step 12). Using COVISE, users can analyse their datasets intuitively and
interactively in a fully immersible environment through state of the art visualization
techniques, including volume and fast sphere rendering.

The Computational Fluid Dynamics (CFD) Solver is directly integrated into the
COVISE workflow and enables to simulate and analyse complex heat flow and
dissipation processes, and their consequences on flow guiding structures, such as
compute-building blocks (DEBBs) in data centres. For this purpose a heat flow
model defined by partial differential equations is defined. CFD solvers are using
this model to calculate and simulate the interaction of liquids and gases with sur-
faces defined by boundary conditions of DEBB’s geometry and other parameters
(step 5). The results of a simulation, a heat-flow distribution map, are passed over to
Simulation Workflow/COVISE (step 6) and can be visualized using COVISE GUI.
In addition, the temperature and air-flow on inlet/outlets of the building blocks are
extracted from the heat-flow distribution map and stored in the Database (step 8).

The Metric Calculator is responsible for the assessment of the simulation re-
sults. Based on metrics identified and defined in Sect. 4, it assesses and calculates
energy- and heat-efficiency of building blocks (DEBBs) under corresponding bound-
ary conditions. The calculation itself is based on data/metrics that are retrieved from
the Database (step 9). Results of the calculation are written back (step 10) into the
database to be retrieved and visualized by CoolEmAll Web GUI (step 11).

The CoolEmAll Web GUI provides a web based user interface allowing to in-
teract with the SVD toolkit and visualize its results. It comprises several GUIs
integrated into common web based GUI environment. It consists of the follow-
ing GUIs: Experiment configuration GUI (for configuration of the simulation
process/experiment/trial), DEBB configuration GUI (for configuration of DEBB),
DCworms GUI (for configuration of DCworms), MOP GUI (for visualization and
comparison of results provided by simulation and real measurements from the ex-
ecution of real experiments), COVISE GUI (for configuration of CFD simulation,
adjusting of CFD related parameters and visualization of heat-flow processes), Report
GUI (presenting efficiency-metrics for assessment of the entire experiment).

In next sections we describe more detailed the core components of the SVD
Toolkit.

2.2 Application Profiler

The focus of CoolEmAll simulations is on power-, energy- and thermal-impact of
decisions on the system. In order to have realistic simulations, a precise evaluation of
resource consumption is necessary. The Application Profiler is used to create profiles
of applications that can be read by DCworms for simulation purpose. It uses data
obtained during runtime and stored in MOP Database by the monitoring infrastructure
as inputs to the power model described in Sect. 4. These data contains information
regarding dissipated power, disk IO, memory and CPU usage, NIC sent/received

CoolEmAll: Models and Tools for Planning and Operating . . . 201

bytes and CPU frequency. Using these data, it creates a description of applications
based on their phases.

The profile of an application is a set of technical attributes that characterize and
delivers details of a given application. The application profile purpose is enable
finding of the “best” match; it means to get the best performance of the application
on the different computing building blocks. Performance is taken here from the point
of view of the CoolEmAll project, i.e. taking into account speed, but also power,
energy and heat metrics.

Generally application profiling is used for applications that require long executions
and a high amount of resources to run. Hence, it is true that application profiling
is mostly applied to HPC applications or cloud services that run on data centres.
Profiling techniques at development and testing time will allow the developer to
optimize and identify different bottlenecks during the software execution.

Having a better understanding of a running application is a key feature for both
application developers and hosting platform administrators. While the former have
access to the source codes of their application, the latter have usually no a-priori
clue on the actual behaviour of an application. Having such information allows for
a better and more transparent evaluation of the resource usage per application when
several customers share the same physical infrastructure. Platform providers (and
the underlying management middleware) can better consolidate applications on a
smaller number of actual nodes. Platform provider can provide token-free license
where the observation of the system permits to determine the usage of a commercial
application without bothering users with the token management.

Classifying applications using a limited number of parameters allows for a fast
response on their characterization, suitable for real-time usage. The impact of the
monitoring infrastructure is an important characteristic in order not to disturb the
production applications.

2.3 Data Center Workload and Resource Management Simulator

Data Center Workload and Resource Management Simulator (DCworms) is a simu-
lation tool based on GSSIM framework [18]. GSSIM has been proposed to provide
an automated tool for experimental studies of various resource management and
scheduling policies in distributed computing systems. DCworms extends its basic
functionality and adds supplementary features providing complex energy-aware sim-
ulation environment. In the following sections we will introduce the functionality of
the simulator in terms of modelling and simulation of energy efficient data centres.

2.3.1 Architecture

DCworms is a Java-based, event-driven simulation tool. In general, input data for the
simulator consist of a description of workload and resources. These characteristics

202 M. vor dem Berge et al.

Fig. 3 DCworms architecture [62]

can be defined by user, read from real traces or generated using the generator module
facilitating the process of synthetic workload creation. However, the key elements of
the presented architecture are plugins. They allow a researcher to configure and adapt
the simulation framework to his/her experiment scenario starting from modelling job
performance, through energy estimations up to implementation of resource manage-
ment and scheduling policies. Politics and models provided by the plugins affects
the simulated environment and are applied after each change of its state. Plugins can
be implemented independently and plugged into a specific experiment. Results of
experiments are collected, aggregated, and visualized using the statistics tool. Due
to a modular and plug-able architecture DCworms enables adapting it to specific re-
source management problems and users’ requirements. Figure 3 presents the overall
architecture of the workload simulator.

2.3.2 Workload Modelling

Experiments performed in DCworms require a description of applications that will
be scheduled during the simulation. As a basic description, DCworms uses files in
the Standard Workload Format (SWF) [1] or its extension Grid Workload Format
(GWF) [37]. In addition to the SWF file, some more detailed description of a job
and task can be provided in an additional XML file. This form of description pro-
vides the scheduler with more detailed information about application profile, task
requirements, user preferences. In addition, DCworms enables reading traces from
real resource management systems like SLURM [54] and Torque [57]. Further, the
simulator is complemented with an advanced workload generator tool that allows
creating synthetic workloads.

CoolEmAll: Models and Tools for Planning and Operating . . . 203

DCworms provides user flexibility in defining the application model. Considered
workloads may have various shapes and levels of complexity that range from multiple
independent jobs, through large-scale parallel applications, up to whole workflows
containing time dependencies between jobs. Moreover, DCworms is able to handle
rigid and mouldable jobs, as well as pre-emptive jobs. Each job may consist of one or
more tasks. Thus, if preceding constraints are defined, a job may be a whole workflow.
To model the particular application profile in more detail, DCworms follows the DNA
approach proposed in [22]. Accordingly, each task can be presented as a sequence
of phases, which shows the impact of this task on the resources that run it. Phases
are then periods of time where the system is stable (load, network, memory) given a
certain threshold. This form of representation allows users to define a wide range of
workloads: HPC (long jobs, cpu-intensive, hard to migrate) or virtualization (short
requests) that are typical for cloud data centres environments.

2.3.3 Resource Description

The second part of input data that must be delivered to simulation is a description
of the simulated resources. It contains information concerning available resources
and scheduling entities with their characteristics. Additionally, DCworms is able to
handle DEBB description file format by transforming it to the native format supported
by the simulator.

The resource description provides structure and parameters of available resources.
Flexible resource definition allows modelling various computing entities consisting
of compute nodes, processors and cores. In addition, new resources and computing
entities can easily be added. Moreover, detailed location of the given resources can
be provided in order to group them and form physical structures such as racks and
containers. Each of the components may be described by different parameters spec-
ifying available memory, storage capabilities, processor speed etc. In this manner,
power distribution system and cooling devices can be defined as well. Due to an
extensible description, users are able to define a number of experiment-specific and
hypothetical characteristics. With every component, a specific profile can be asso-
ciated that determines, among others, power, thermal and air throughput properties.
The energy estimation plugin can be bundled with each resource.

Scheduling entities allow providing data related to the queuing system charac-
teristics. Thus, information about available queues, resources assigned to them and
their parameters like priority can be defined. Moreover, allocation strategy for each
scheduling level can be introduced in form of the reference to an appropriate plugin.

In this way, DCworms allows simulating a wide scope of physical and logical
architectural patterns that may span from a single computing resource up to whole
data centres or geographically distributed grids and clouds. In particular, it supports
simulating complex distributed architectures containing models of the whole data
centres, containers, racks, nodes, etc. Granularity of such topologies may also differ
from coarse-grained to very fine-grained modelling single cores, memory hierarchies
and other hardware details.

204 M. vor dem Berge et al.

2.3.4 Simulation of Energy Efficiency

DCworms allows researchers to take into account energy efficiency and thermo-
dynamic issues in distributed computing experiments. That can be achieved by
the means of appropriate models and profiles. In general, the main goal of the
models is to emulate the behaviour of the real computing resources, while profiles
support models by providing required data. Introducing particular models into
the simulation environment is possible through selection or implementation of
dedicated energy plugins that contain methods to calculate power usage of resources,
their temperature and air throughput values. Presence of detailed resource usage
information, current resource energy and thermal state description and a functional
management interface enables an implementation of energy and thermal aware
scheduling algorithms. Energy efficient metrics become in this context an additional
criterion in the resource management process. Scheduling plugins are provided
with dedicated interfaces, which allow them to collect detailed information about
computing resource components and to affect their behaviour.

Power Management Concept
DCworms provides a functionality to define the energy efficiency of resources, de-
pendency of energy consumption on resource load and specific applications, and to
manage power modes of resources. Furthermore, it extends the energy management
concept presented in GSSIM [40] by proposing a much more granular approach
with the possibility of plugging energy consumption models and profiles into each
resource level.

Power profiles allow introducing information about power usage of resources. De-
pending on the accuracy of a model, users may provide additional information about
power states which are supported by the resources, amounts of energy consumed in
these states, as well as general power profiles that provide means to calculate the total
energy consumed by the resource during runtime. The above parameter categories
may be defined for each element of a computing resource system. It is possible to
define any number of resource specific states, e.g. the P-states in which processor
can operate.

Power consumption models emulate the behaviour of the real computing re-
sources and the way they consume energy. Due to a rich functionality and flexible
environment description, DCworms can be used to verify a number of theoretical
assumptions and develop new energy consumption models. The energy estimation
plugin can then be used to calculate energy consumption based on information about
the resources power profile, resource utilization, and the application profile including
energy consumption and heat production metrics. Users can easily switch between
the given models and incorporate new, visionary scenarios.

CoolEmAll: Models and Tools for Planning and Operating . . . 205

Air Throughput Management Concept
The presence of an air throughput concept addresses the issue of resource air-cooling
facilities provisioning. Using the air throughput profiles and models allows antici-
pating the air flow level on output of the fans and other air-cooling devices, being
the effect of their management policy.

The air throughput profile, analogously to the power profile, allows specifying
known and available operating states of air-cooling devices. Each air throughput
state definition can consists of an air flow value and a corresponding power draw. It
can represent, for instance, a fan working state. Possibility of introducing additional
parameters makes the air throughput description extensible for new characteristics.

Similar to energy consumption models, the user is provided with a dedicated
interface that allows him to describe the resulting air throughput of the computing
system components like cabinets or server fans. Accordingly, air flow estimations can
be based on detailed information about the involved resources and cooling devices,
including their working states and temperature level.

Thermal Management Concept
The primary motivation behind the incorporation of thermal aspects in DCworms
is to exceed the commonly adopted energy use-cases and apply more sophisticated
scenarios. By the means of dedicated profiles and interfaces, it is possible to perform
experimental studies involving thermal-aware workload placement.

Thermal profile expresses the thermal specification of resources. It may consist
of the definition of the thermal design power (TDP), thermal resistance and thermal
states that describe how the temperature depends on dissipated heat. For the purposes
of more complex experiments, introducing of new, user-defined characteristics is
supported. The aforementioned values may be provided for all computing system
components distinguishing them, for instance, according to their material parameters
and models.

Thermal profile, complemented with the implementation of temperature predic-
tion model can be used to introduce temperature sensors emulation. In this way, users
have means to approximately estimate the temperature of the simulated objects. The
proposed approach assumes some simplifications that ignore heating and cooling
processes that can be addressed in detail by the CFD simulations.

2.3.5 Application Performance Modelling

In general, DCworms models applications by describing their computational, com-
municational and power characteristics. Additionally, it also provides means to
include complex and specific application performance models during simulations.
These models can be plugged into the simulation environment through a dedicated
API. Implementation of this plugin allows researchers to introduce specific ways of
calculating task execution time. The number of parameters including: task length
(number of CPU instructions); task requirements; detailed description of allocated
resources (processor type and parameters, available memory); input data size; and

206 M. vor dem Berge et al.

Fig. 4 Simulation workflow steering CFD simulation [62]

network parameters can be applied to specify the execution time of a task. Using
these parameters, user can for instance take into account the architectures of the
underlying systems, such as multi-core processors, or virtualization overheads, and
their impact on the final performance of applications.

2.4 Interactive Computational Fluid Dynamics Simulation

One of the main capabilities of the SVD toolkit is the interactive simulation of air-
flow and temperature distribution within server rooms, racks and servers to identify
hot-spots. To this end, the heat-flow simulation requires the execution of several
steps, as presented in Fig. 4, involving: geometry and grid generation, boundary
condition definition, domain partitioning, simulation, post-processing, data render-
ing and storage. Most of the components are modelled as COVISE Modules which
allows defining and executing the whole workflow. Data is passed from one module
to the other automatically and data conversion is carried out as needed, even if the
different processing steps run on physically distributed machines, such as Pre- and
Post-Processing servers, Supercomputers, Visualisation workstations or clusters.

The geometry generation step takes as input the DEBB with the geometry mod-
els of the concrete resources involved in the simulated environment. It parses the
DEBBs models, extracts all relevant info and merges the individual geometry files
of the individual components into one overall dataset for the next step. Geometry
definition is read from the models specified in DEBBs in two ways: (a) simple box
type modelling where components can be composed from an arbitrary number of
boxes where the size of each box cannot be smaller than the discretization of the

CoolEmAll: Models and Tools for Planning and Operating . . . 207

computational mesh; (b) each component is modelled as STL files containing any
number of patches. A name must be assigned to each of these patches which allows
referencing them in order to assign boundary conditions.

Two types of grid generation modules are developed. In the first one, box type
meshes are automatically meshed by a custom grid generator which creates an un-
structured grid, consisting of hexahedron cells only. In the second one, meshes for
STL geometry is created using SnappyHexMesh from OpenFOAM. This also creates
an unstructured grid consisting of mostly hexahedron cells but between the surface
mesh and different mesh resolutions, it adds Polyhedron cells.

The definition of boundary conditions are not modelled as a separate module but
are carried out directly by the grid generation module. Global boundary conditions
such as initial temperature and velocity field, as well as the individual parameters
such as air vent velocities or power consumption of a certain node or rack are read
from the database and assigned to the relevant surface patches. This allows simulating
current conditions by accessing life measurements as well as simulated conditions
as defined by the workload simulation which will also store the relevant parameters
in the database.

In order to carry out parallel simulations on todays distributed memory HPC
systems, the computational mesh needs to be split into smaller parts, one for each
compute node. Depending on the solver, this process is either an integral part of the
solver itself or it is modelled as a separate COVISE module. When using ANSYS
CFX as the solver, domain decomposition is carried out by the solver itself, CFX
does not support reading pre partitioned meshes. The first release of the SVD Toolkit
uses the open source simulation framework OpenFOAM to do the CFD simulation.
Therefore, the parallel version of the OpenFOAM domain decomposition will be
integrated as a module within COVISE.

For a initial prototype, the CFD simulation used integrated ANSYS CFX as solver
within the SVD toolkit. In the final Version of the SVD Toolkit the Open Source
Package OpenFOAM will be used as a solver, integrated into COVISE as mentioned
before. This approach makes sure that the architecture can easily be extended by new
types of solvers in the future and allows accelerating the development by reusing
many existing components.

Existing COVISE post processing modules can be reused to interactively extract
data, compute particle traces and visualize 3D flow phenomena. An additional post
processing module will be developed which extract measurement values from the
simulation results. Those values will be stored in the database for further calculation
of assessment metrics and visualization in the CoolEmAll WEB-GUI.

Direct 3D Rendering with COVISE Virtual Reality environment renderer allows
interactive in depth analysis of the 3D Air Flow for engineers to optimize the data
centre during the planning phase or for modifications. During the operational phase
the 3D Rendering will be omitted and only key values will be extracted and presented
in the CoolEmAll WEB-GUI.

Interaction by the end user are possible, after obtaining the results from the initial
simulation, consisting in the following options: change geometry, e.g. re-arrange
racks within server room, modify boundary conditions, e.g. change an inlet air

208 M. vor dem Berge et al.

temperature, adapt decomposition, apply post-processing and restart simulation. In
this way various configuration of server-room can be evaluated interactively, to find
the best solution.

2.5 Visualization

As noted, the CoolEmAll Web GUI provides a web based user interface which allows
interacting with the SVD toolkit and visualizing its results. It comprises several GUIs
integrated into common web based GUI environment. Experiment configuration GUI
supports configuration of the experiment/trial specifying simulation parameters. The
DEBB configuration GUI allows defining, selecting and configuring DEBBs on var-
ious granularity levels. DCworms GUI allows selecting applications, workloads and
scheduling policies, and presenting the results of the workload scheduling in a GUI.
COVISE GUI presents entire simulation results of the CFD-simulation, visualiz-
ing air flow across all building blocks (DEBBs) and enabling interaction with the
simulation, allowing to interactively change the simulation parameters that affects
position (arrangement) of objects. MOP GUI visualizes DEBB surfaces along with
data stored in the Database, containing workload simulation results, CFD simulation
results limited to temperature and airflow history for particular sample points on
object surfaces, and heat- and energy-efficiency metrics assessing experiment result.
As both, real data obtained from measurements (e.g. temperatures, system load) and
simulated data from CFD and Workload Simulation will be stored in the database,
both of them will be displayed in the MOP GUI to compare results and validate
models. Finally, the Report page provides assessment metrics that evaluate energy-
and cooling efficiency of the simulation results, applying metrics calculated by the
metric calculator to assess configurations.

To facilitate insight into heat-flow processes and conditions within the compute
room or rack it is necessary to post-process and visualize the data generated by
the CFD-simulation in an appropriate manner. As noted, COVISE already includes
extensive visualization capabilities that can be used to an advantage. All necessary
post-processing steps can be included into the simulation workflow for immediate
analysis. The simulation progress will be constantly monitored even while the sim-
ulation is running. The in-situ approach allows early assessments of the simulation
results and shortens the evaluation cycles. COVISE visualization results can be ex-
plored on the desktop or in Virtual Reality, as well as on mobile devices. It is also
possible to use Augmented Reality techniques to compare the simulation results with
actual experimental data.

CoolEmAll: Models and Tools for Planning and Operating . . . 209

3 Data centre Efficiency Building Blocks

As noted previously, one of the main outcomes of the CoolEmAll project are Data
centre Efficiency Building Blocks (DEBBs), designed to model data-centre building
blocks on different granularity levels and containing models necessary for workload,
heat and airflow simulation. These granularities reach from a single node up to a
complete data centre and will help users to model and simulate a virtual data centre
for e.g. planning or reviewing processes.

Most data centres are based on server racks, aligned as rows. Each rack contains
a variety of servers, storage-systems and peripheral equipment. These racks are
in most cases build up step by step and there is some effort to invest to integrate
all components. For building up big data centres, some vendors and data centre
providers have done some efforts for new concepts of a higher integration level for
the computing and storage infrastructure, mostly based on container-modules. Using
DEBB concept and DEBB configuration tool, various configurations of the data
centres and their components can be modelled on various scale level, to assess their
energy and thermal behaviour in simulations, under various boundary conditions. In
the following subsections we describe the DEBB concept and models used to realize
simulations.

3.1 DEBB Concept and Structure

A DEBB is an abstract description of a piece of hardware and other components,
reflecting a data-centre configuration/assembly on different granularity levels. A
DEBB contains hardware- and thermodynamic models used by SVD toolkit [16] to
simulate workload, heat- and airflow, enabling (energy-efficiency) assessment and
optimization of different configurations of data centres built of these building blocks
(DEBBs).

A DEBB is organized hierarchically and can be described on the following
granularity levels:

1. Node Unit reflects the finest granularity of building blocks to be modelled i.e.,
a single blade CPU module, a so-called “pizza box”, or a RECS CPU module.
A Node Unit consists of the following components: Main-Boards (including net-
work), potentially additional cards put in slot of the MB, CPUs (including possible
operating frequencies), memory modules, cooling elements (including fan), and,
optionally, storage elements.

2. Node Group reflects an assembled unit of building blocks of level 1 (node units),
e.g. a complete blade centre or a complete RECS unit (currently consisting of 18
node-units), main pane to which all node units are connected, and might contain
a power supply unit (PSU).

3. ComputeBox1 (CB1) reflects a typical rack within a data centre, consisting of
the building blocks of level 2 (Node Groups), secondary components (such as

210 M. vor dem Berge et al.

Metrics

Hierarchy with
position of objects

DEBB

Power
Profile

Components
Description

Thermodynamic
Profile

Geometry Data
for CFD
(shapes)

Geometry Data
for visualization

Fig. 5 DEBB concept [62]

interconnect), power distribution unit (PDU), power supply units (PSUs), and
integrated cooling devices. CB1 contains in principle the same information as a
node group but only on a higher level.

4. ComputeBox2 (CB2) building blocks are assembled of units of level 3, e.g.
reflecting a container or even complete compute rooms, filled with racks, Unin-
terruptable Power System (UPS), cooling devices, etc.. Additionally to the same
content as CB1 it contains ICT infrastructure interconnecting multiple Compute-
Box1 and facility cooling devices. Since cooling devices may be part of rooms
(CB2) and racks (CB1) and in rare cases even within node groups or nodes and
represent a main part of the energy consumption depending on the IT load, they
are treated separately and then handled like any other.

A DEBB on each level (starting from level 2) can be described by the formal
DEBB specification. The formal structure of the DEBB, presented in Fig. 5 and
fully described in [35], consists of the specification:

• DEBB hierarchy with a reference to and positions of its objects or their aggre-
gation (lower level DEBBs) within the scene (high level DEBB builds up by
the hierarchy). The DEBB hierarchy is described in PLMXML format, allowing
references to description of models or profiles in different formats, listed below.

• Geometrical data describing object-shapes, necessary for CFD simulation, are ex-
pressed in STL format, and is referenced from the object description in PLMXML

CoolEmAll: Models and Tools for Planning and Operating . . . 211

file. The combination of these two formats: PLMXML for description of the
DEBB hierarchy with position of its objects (lower level DEBBs) and STL for
description of object-shapes, enables to model any scene definition (needed for
CFD simulation) on different granularity levels, such as a server-room consisting
of cooling components, racks, power-units, and other devices.

• DEBB Components describing a single object as it is delivered like server, cool-
ing device, empty rack containing only rack specific equipment like sensors or
power distribution etc., empty room etc. This description is defined in a way that
a manufacturer can provide it for any type of hardware, based on naming con-
ventions used in CIM format. The component file describes in details the type
and technical attributes references to 3D models if added, and any type of pro-
files useful to describe the behaviour and power consumption of the component.
The PLMXML file, describing DEBB hierarchy, contains for each object a cor-
responding reference to the component and therefore to its technical description.
This allows a workload simulator to identify the node type being selected for the
workload execution and correlate it with its power-usage profile.

• Power-usage profiles necessary for the workload simulation is embedded into
DEBB Component. A power-profile describes for each state/load level (i.e. 20 %
rise per level)) of a particular component its corresponding power-usage, enabling
calculating and simulating power consumption and heat load for different utiliza-
tion levels during the simulation of the workload execution. This allows assessing
power-usage of workload being executed on particular component types, such as
node-types.

• Thermodynamic profile, stating air-throughput of fans for different levels and
cooling capacity of cooling devices is defined in scope of DEBB Component
definition. Thermodynamic profile is used by workload simulator to calculate
air flow-initial boundary conditions necessary for airflow and heat-distribution
simulation. The entire XSD schema for specification of thermodynamic-profile
is described in scope of Component Description schema, in D3.2.

• Geometrical data for visualization of DEBB and their shapes in MOP-GUI is
described in VRML format. It is referenced from PLMXML in the same manner
as geometric shapes (STL format) objects for CFD simulation.

• Metrics assessing energy-efficiency of building blocks (DEBB) are embedded
into PLMXML file (specifying DEBB hierarchy) with user-defined values.

As mentioned, a DEBB contains models used by SVD toolkit to simulate (i)
workload- and (ii) airflow, enabling assessment and optimization of different con-
figurations of data centres built of building blocks (lower level DEBBs). Thereby, a
simulation of a DEBB on level n (i.e. ComputeBox2 level), requires DEBBs of level
n-1 (i.e. ComputeBox1). For example, in order to enable a simulation of power, heat
and airflow behaviour within the computing room (the ComputeBox2 level), corre-
sponding objects must be defined or referenced on the ComputeBox1 level within
the DEBB-hierarchy. These objects can be racks or cooling devices (e.g. compute
room air conditional, air handler, chillers, heat-exchanger, fans, etc.). As the focus
of CoolEmAll is to simulate energy and thermal behaviour of DEBBs in order to

212 M. vor dem Berge et al.

assess their efficiency and optimise design, it is modelled as the smallest unit in the
thermodynamic modelling process. Therefore, the complete Node Unit is the small-
est feature that will be present in a simulation. The thermodynamic processes within
a Node Group are modelled using Node-Unit models (node-unit DEBB), enabling to
simulate accurate heat distribution within the Node-Group. The ComputeBox1 sim-
ulations will require-besides the arrangement of the Node Groups-the velocity field
and temperature at the Node Group outlets over time as inbound boundary condition
and will provide the room temperature over time at the outlet of the Node Group as
outgoing boundary condition. Similarly, the simulation of a computing room (Com-
puteBox2) or container will require the velocity field and temperature on inlets and
outlets of racks (ComputeBox1), reducing simulation models to the required level
[17].

3.2 Hardware Models for Workload Simulation

In this section we present hardware models (hardware profiles) used to estimate power
consumption of computing resources, air flow values of cooling equipment and air
temperature. Section 3.2.1 presents the hardware modelling in DCworms workload
simulator [42], while Sect. 3.2.2 presents profiles created from data collected on the
CoolEmAll RECS platform.

Hardware profiles are measures that define the changes in energy consumption,
air temperature or other parameters of hardware under different conditions. Profiles
consist of the energy efficiency (power profile models), air temperature (thermody-
namic profile) and air throughput (air throughput profiles). The energy efficiency
was carefully examined in the tests, giving exact values of hardware power con-
sumption under changing conditions. Air temperature is precisely simulated by CFD
simulations. However, simple models can also be created based on the values from
temperature sensors located in the front and back of servers. The air throughput could
not be precisely measured due to the limitations of the sensors. They only provide
information about the presence or absence of air flow, with no exact values. When
more accurate sensors will be purchased in the future, additional experiments will
be conducted to create air throughput profiles.

3.2.1 Hardware Modelling in DCworms Workload Simulator

Being part of hardware description, power and thermodynamic profile are provided
as an input to the workload simulator. Therefore, they can be used to estimate the
power draw of computing system components and to calculate the air flow values
resulting from the cooling equipment. Moreover, they can become an additional
criterion in the workload management process.

CoolEmAll: Models and Tools for Planning and Operating . . . 213

The main aim of incorporating power profiles to the workload simulator is to
provide a definition of energy efficiency of resources, dependency of energy con-
sumption on resource load and specific applications, and to manage power modes of
resources.

As mentioned in 2.3.4, power profiles allow introducing information about power
usage of resources. Depending on the accuracy of a model and available data (both
derived from experiments or manufacturers specification), information about sup-
ported power states and corresponding power consumption can be provided. That
allows optimizing the simulation model with respect to the real-world data. For
particular computing resources, it is possible to define resource specific states, for
example so called P-states, in which processor can operate. Additionally, power draw
can be associated with particular load levels of the system or cooling devices working
states.

Based on the delivered power profiles, workload simulator will estimate the power
consumption of particular resources and, thus the whole data centre. Hence, calcu-
lating and simulating power usage will follow changes of resource power states and
real-time resource usage. To ensure the appropriate accuracy, DCworms takes differ-
ences in the amount of energy required for executing various types of applications at
diverse computing resources. It considers all defined system elements (processors,
memory, disk, cooling devices, lighting, etc.), which are significant in total energy
consumption. Moreover, it also assumes that each of these components can be uti-
lized in a different way during the experiment and thus have different impact on total
energy consumption.

Using the air throughput profiles and models allows anticipating the air flow
within the data centre, being the result of air-cooling equipment management. Since
the air throughput profile can be bounded with fans and other air-cooling facilities,
the air flow value related to the particular server outlets can be estimated during
the workload simulation. The air flow level can be determined with respect to the
current resource state but also to its temperature. Moreover, mutual impact of several
air flows may be considered.

Beside the detailed simulation of power consumption and calculations of air flow,
profiles specification can be used during the workload and resource management
process. To this end, DCworms provides access to the profiles data which allows
acquiring detailed information concerning current system performance, power con-
sumption and air throughput conditions. Moreover, it is possible to perform various
operations on the given resources, including dynamically changing the frequency
level of a single processor, turning off unused resources and managing cooling
devices working states.

The outcome of the workload simulation phase is a distribution of power usage
and air throughput for the hardware components specified within the DEBB. These
statistics may be analyzed directly and/or provided as an input to the CFD simu-
lation phase. The former case allows studying how the above metrics change over
time, while the latter harness CFD simulations to identify, for example, temperature
differences between the computing modules, called hot spots.

214 M. vor dem Berge et al.

Table 1 Technical specification of CoolEmAll RECS 2.0 processors

RECS Count Processor Clock rate (GHz) RAM memory (GB) Number of cores

1 18 AMD G-T40N 1.0 4 2

2 14 Intel Atom N2600 1.6 2 2 (4 logical)

2 4 Intel Atom D510 1.6 4 2 (4 logical)

3 4 Intel i7-2715QE 2.1 16 4 (8 logical)

3 14 Intel i7-3615QE 2.3 16 4 (8 logical)

3.2.2 Hardware Power Profiles

The power profiles were created on the CoolEmAll RECS 2.0 testbed used in the
project. It consists of three RECS, each featuring different types of processors. The
technical specifications of these processors are presented in Table 1.

To create the power profiles of presented processors, the power usage of the nodes
were monitored while executing different applications. Separate tests were performed
for different CPU frequency values (ranging from the lowest to the highest available)
and processor load (25, 50, 75 and 100 % in case of Intel i7 and 25, 50 and 100 % in
case of the rest of CPUs). The following applications were selected:

• C-ray: a simple ray-tracing benchmark, usually involving only a small amount
of data. This software measures floating-point CPU performance. The test is
configured with a significantly big scene, requiring about 60s of computation but
the resulting image is written to /dev/null to avoid disk overhead [58].

• Hmmer: a sequence analysis software. Its general usage is to identify homologous
protein or nucleotide sequences. This type of problem was chosen because it
requires a relatively big input size (hundreds of MB) and requires specific types
of operations related to sequences [28].

• Pybench: a benchmark to measure the performance of Python implementations. In
the past it has been used to track down performance bottlenecks or to demonstrate
the impact of optimization and new features in Python. In contrast to the other
benchmarks, it was run on one core only to test the power profile of servers running
single-threaded applications.

The power profiles model the CPU power consumption for a given processor load
and P-State (with different clock rates). Using these profiles it is possible to esti-
mate average values of power consumption or power usage while running a given
application.

3.2.3 Electrical Model of the Power Supply Unit 2.0

To calculate the actual power usage of the rack (ComputeBox1), DCworms re-
quires in addition to hardware power profiles also models of the power supply
units. The Power Supply Unit 2.0 which is used to supply the needed 12 V DC

CoolEmAll: Models and Tools for Planning and Operating . . . 215

Fig. 6 Efficiency of the power supply unit (Box power unit 2.0)

for the RECS 2.0 can mainly be described via the energy efficiency and a schematic
sketch. Internally, the Power Supply Unit 2.0 is based on six single Power Units by
the German manufacturer Block Transformatoren, the PVSE 230/12-15 (BLOCK
Transformatoren-Elektronik GmbH). To model the electrical characteristics, a se-
ries of measurements has been done. These measurements compare the input power
to the output power which can be used to determine the load dependent efficiency.
The difference between the input and output power is power dissipation which is
converted to heat emitted to the air. The result is shown in Fig. 6.

3.3 Hardware Models for Thermodynamic Profiles and Cooling
Equipment

The node DEBB will be modelled in CoolEmAll as the smallest unit in the ther-
modynamic modelling process. As such, the complete node unit is the smallest
feature that will be present in a simulation. The thermodynamic processes within
a node group are only coarsely modelled as they are merely interesting for provid-
ing boundary conditions for the ComputeBox1 and ComputeBox2 simulations. The
ComputeBox1 simulations requires—besides the arrangement of the node groups—
the velocity field and temperature at the Node Group outlets over time as inbound
boundary condition and will provide the room temperature over time at the outlet of
the Node Group as outgoing boundary condition. Additionally, the heat generation of
the PSU, switches, and other components have to be specified for a complete model
of the ComputeBox1. For ComputeBox2, the same boundary conditions have to be
defined as for the ComputeBox1 along with all other heat supplicants present in the

216 M. vor dem Berge et al.

room. Using the DEBB concept, the thermodynamic modelling can be tackled in a
hierarchical way, reducing the complexity of the resulting overall model.

The objective of cooling models is to assess how the power consumption of cooling
equipment varies with the variation of power usage related with IT workload. The
elements that have power consumption are the following: fans at RECS level; CRAH
(Compute room air-handling unit composed by fans and cooling coil); compressor
of chiller; heat rejection equipment (dry cooler or cooling tower); auxiliary elements
(pumping and automatic valves).

However, not only the IT workload affects the model but also several surrounding
factors influence the approach of the model. A first step is to identify these factors
in order to discriminate the ones relevant for power consumption calculation and the
ones suitable to be neglected. These are the following:

• Thermal load (Qload): it is generated not only by IT equipment but also by other
elements (thermal load of fans, lights, electricity equipment, control and security
equipment) in the control volume.

• Cooling system type: cooling medium can be air, water or refrigerant, mainly.
Different operation temperatures will be required depending on the type of cooling
systems. Besides that, different elements will compose the cooling system, with
different efficiency of each one and more or less losses depending of the different
number of heat exchanger processes. Also, free-cooling option will be different
depending on the type of cooling configuration (i.e. direct air free-cooling, indirect
free cooling with dry cooler or indirect free cooling with cooling tower).
– Heat-rejection type: the type of heat rejection affects directly the temperature

of operation of condenser of the chiller and the chiller efficiency, as it is ex-
plained in the next point (ambient temperatures item). The heat rejection can be
done by air, with dry-cooler, or by water, with a wet cooling tower. Wet cooling
towers are necessary when temperature of condenser is lower and the climate
is hot (particularly on summer). However, the lower temperature level of oper-
ation of condenser improves the efficiency of chiller. Besides that, the power
consumption is lower in wet cooling towers than in dry-coolers. The main
disadvantage of wet cooling towers is the high amount of water consumption.

• Efficiency of the chiller: Energy Efficiency Ratio (EER): energy efficiency ratio
is a function of four parameters, at least.
– Compressor chiller type and nominal capacity: different kind of compressor

is appropriate for different levels of nominal cooling capacity. The EER is
directly related with the compressor type. There are also variations between
manufacturers.

– Partial load: EER will be directly related with partial cooling load; the cooling
load variation will be directly related with IT load and therefore IT power
consumption.

– Supply temperature of chiller: this parameter influences directly the EER. The
higher supply temperature of the chiller, the better EER.

– Ambient temperatures: outside temperature of ambient air will affect the tem-
perature of operation of condenser of the chiller, as well as the suitable type of

CoolEmAll: Models and Tools for Planning and Operating . . . 217

heat rejection element (dry cooler, wet cooling tower) and it directly influences
the EER. For instance, if it is considered a heat rejection temperature of 35 ◦C,
in soft climates as in Central Europe, dry coolers can operate in appropriate
conditions in summer, but in Mediterranean climates, are necessary wet cool-
ing towers to guarantee an energy efficient system. It is due to cooling tower
uses wet-bulb temperature of air instead of dry-bulb temperature, which is a
lower value. The lower ambient temperature, the lower condenser temperature,
the better EER.

• Fan operation: air circulation is directly related with chiller consumption or chiller
EER. To show an example, increasing the air flow, fan power consumption will
increase but delta-T of air could be lower, then supply temperature of chiller will
increase and the chiller would consume less energy.

• Dehumidification requirement: the control of humidity has also a relevant in-
fluence on the cooling load. Moreover, the need of dehumidification causes a
decreasing of supply temperature of chiller so that a reduction of EER.

The definition of each of the models will be referred to a control volume. The control
volume is the reference space that determines the boundary conditions to calculate
a thermodynamic energy balance and the processes of heat transfer. This limits the
internal thermal loads that will affect the heat dissipation and will permit to determine
the boundary conditions regarding flows of energy going inside and outside of the
control volume.

3.4 Hardware Models for CFD Simulation

As noted previously, CFD simulation is simulating airflow and temperature distri-
bution within server rooms, racks and servers. Such a CFD simulation requires the
execution of several steps, detailed in the following bullets:

• Geometry Generation, taking as input the defined DEBB with geometry models
of the concrete resources involved in the simulated environment.

• Grid Generation, with the support of meshing tools, resulting in the corresponding
computational mesh.

• Definition of boundary conditions which are queried from the Database and as-
signed to the relevant surface patches. Additionally, boundary conditions are set
based on results obtained by simulation of workload execution and specific ap-
plication profiles. These results include power usage and outlet air throughput of
IT equipment.

• Domain Partitioning, taking as input the previously generated mesh, together with
the boundary conditions.

• Simulation, performed by the CFD Solver.
• Post-processing is performed with the resulting data from the simulation.
• Rendering is performed for the visualization of the simulation results. Some of

this is, in fact, already part of the visualization usage phase (see below).

218 M. vor dem Berge et al.

Fig. 7 Geometry data of a node and a node-group (RECS server) [59]

As pointed out, the generation of the geometry data is extracted from the DEBB
(main PLMXLM file), containing references to geometric objects specified in STL
files. The geometric objects are composed of faces. There are four significant faces
for CFD, hat are handled in simulation in different way:

• inlet (source of airflow)
• outlet (exhausting airflow)
• heatsink (source of heat)
• wall (surface reflecting the airflow)

For specification of the boundary patch, such as “inlet”, the name attribute of the
corresponding ProductInstance-Element (describing reference to particular object)
within the PLMXML file contains the keyword, specifying the face-type (for inlet
this keyword is “inlet”). In case of absence of face-type, “wall” face-type is pre-
sumed. To distinguish between different types boundary conditions (such as airflow,
temperature) for particular face-types, these are explicitly defined as user values
(within PLMXML file) with title attribute “airflow-volume-sensor” for airflow, and
“temperature-sensor” for temperature. In order to setup simulation with right pa-
rameters (boundary conditions) belonging to corresponding geometry-object, such
as airspeed at “inlet” of a rack, these parameters are queried from the database us-
ing full object-path to particular geometrical object. Full object-path is built as a
concatenation of all object-names in the hierarchy of PLMXML file.

An example of the geometry model of a node and a node-group is presented in
Fig. 7. The node-board consists of connection (serving as a wall surface) and the
heat sink (heat sink surface). Nodes with different CPUs and heat-sink have different
geometry models (STL files). The node-group shows geometry of the RECS server
equipped with 18 nodes.

CoolEmAll: Models and Tools for Planning and Operating . . . 219

3.5 Assessment of DEBBs

As mentioned before, a (DEBB) concept describes energy efficiency of data-centre
building block on different levels of system granularity. A possible characterization of
DEBBs in the terms of energy efficiency can be done according to Green Performance
Indicators (GPIs), as defined in GAMES project [38, 39]. GPIs are a measurement
of the index of greenness of an IT system indicating the energy consumption, energy
efficiency, energy saving potential and all energy related factors on different systems
levels within IT service centre, including application and execution environment. In
order to assess the global greenness of an application and IT infrastructure, GPIs
were classified into four clusters: IT Resource Usage GPI, Application Lifecycle
KPIs, Energy Impact GPIs and Organizational GPIs. Such a classification enables
assessment of the energy efficiency of an IT centre from the business (organisational)
level down to the technical level. GPIs allow also for considering, among others, the
trade-off between performance and energy consumption at facility, application and
compute node (IT infrastructure) level. As a DEBB is an abstraction of data centre
building blocks on various levels of granularity, GPIs can be used for characterization
of DEBBs on node level, node-group level, rack level and container level or entire
IT centre. Section 4 describes metrics used in the project for the assessment of
the cooling- and energy-efficiency of DEBBs within various boundary conditions
evaluated within the experiments.

4 Energy Efficiency Metrics

The present tendencies on assessing the Energy Efficiency of data centres are based
on global metrics, mainly focused on power consumption as, for instance, the Power
Usage Effectiveness (PUE) metric [13]. It is usual to consider the peak or average
loads in a static analysis, focusing interest in power consumption instead of energy
consumption. This strategy faces many limits as it does not allow predictions of
energy performance to improve the energy efficiency. With this strategy cooling de-
mand is only a part of all the components that influences the metrics related with
power. As a consequence, cooling impact cannot be properly identified. Only assess-
ing the power consumption do not permit to detect the origin of high heat transfer
issues.

CoolEmAll tries to address an energy and thermal based assessment of data cen-
tres. In that sense the main goal of the project is to enable designers and operators of
data centre to reduce the energy footprint by combining optimization of IT, cooling
and workload management. To facilitate that, CoolEmAll provides some particular
metrics that enable minimization of data centre energy consumption also for low and
variable loads rather than just for peak loads as it is usually done nowadays.

In this chapter, it has been included a summary of the state of the art about energy-
efficiency metrics for data centres and the description of the metrics that have been
selected to be included in the tool.

220 M. vor dem Berge et al.

4.1 State of the Art

Day after day the energy footprint is becoming one relevant issue in the management
department of data centres. The awareness of data centre energy consumption and
the increase in energy prices have driven research about metrics suitable to define and
quantify the energy efficiency of data centres. A first step towards this direction was
taken by the Uptime Institute in 2003 with the introduction of the Triton Coefficient
of Effectiveness, defined as the total utility power required for operating a data centre
divided by the critical load in the computer room [55]. Up to this date, the assessment
was just based on raw performance, defined by simple metrics such as operation per
second [25] or request per second [20]. Since then, the urgent need of defining energy
efficiency evaluation methodologies pushed the stakeholders in the field to set own
metrics, leading to the advent of several figures. Among them, the PUE (Power
Usage Effectiveness) [43] has been widely adopted since 2007, with the support of
The Green Grid institution [2]. Actually the wide adoption of PUE has resulted in a
corresponding common understanding or a shared calculation methodology for PUE
[13].

The Task Forces are platforms that permit the cooperation between industry play-
ers and government agencies to establish common metrics. The Data Centre Metrics
Coordination Task Force (U.S. Regional Task Force) [10] and the Global Harmoniza-
tion of Data Centre Efficiency Metrics Task Force (Global Task Force) [7, 12] are the
main of them. They endorse metrics for measuring infrastructure energy efficiency
in data centres and define the methodology and criteria for an appropriate calcula-
tion. These Task Forces agreed on using PUE as a standard metric. Besides that,
the Global Task Force promotes other metrics focused on renewable energy systems
and re-use of energy to reduce carbon emissions as ERE (Energy Reuse Effective-
ness) [5], CUE (Carbon Usage Effectiveness) [4], OGE (On-site Energy Generation
Efficiency) and ECI (Energy Carbon Intensity) [9]. Also the water consumption is
in the focus of those organizations and WUE (Water Usage Effectiveness) is the
recommended metric [11].

One important issue to evaluate is the energy necessary to keep the system avail-
able but without any useful work produced. In that sense, FVER (Fixed to Variable
Energy Ratio) [46], introduced by the British Computer Society, correlates the energy
directly related to useful work to the energy susceptible to be eliminated [46].

KPI (Key Performance Indicator) [19] is a combination of up to four indicators:
KPIEC (Energy Consumption),KPIREN (Renewable Energy),KPIREUSE (Energy
Reuse) andKPITE (Task Efficiency) and reflects energy impact at global level. Other
holistic metric is DPPE (Data centre Performance per Energy) developed by the
Green IT Promotion Council (GIPC) [6, 8]. DPPE aims to integrate several energy
efficiency parameters in one. It includes the assessment of facility efficiency using
PUE, the CO2 emissions associated to energy purchased, the efficiency features of
IT equipment and the IT equipment utilization.

Regarding heat-aware on data centre some metrics already exist on literature
background and they are also used in some tools. One of them is the RCI (Rack

CoolEmAll: Models and Tools for Planning and Operating . . . 221

Cooling Index). It was proposed by Herrlin [34] as an indicator of how effectively
the racks are cooled within industrial thermal standards or guidelines. This metric is
useful for CFD results analysis due to the difficulty of getting conclusions from the
great amount of data produced by a CFD simulation.

Some other metrics points to configuration of IT server. A relevant one reflects the
degree of hardware used during a period of time, named DH-UR (Deployed Hardware
Utilization Ration). Other metric is SWAP (Space, Watts and Performance) which
links space occupation, rated power usage and rated performance of a single server
[38].

Several metrics at the level of IT components appear in the literature. In that sense,
it can be found power-based metrics or resource usage metrics. Regarding power-
based metrics, the Node Power Usage [39] assesses the ratio of power used regarding
the maximum capacity. In [38] indicator frequency/Watt assesses how efficiently is
used a certain CPU (Central Processing Unit) or indicator bandwidth/Watt shows how
much data is moved per unit of time and power. In case of resource usage metrics
several metrics are stated on [3] as percentage over the maximum capacity of storage
usage, memory usage, network bandwidth used and activity of the CPU. Other
interesting metric about resource usage is the total amount of CPU used regarding
the CPU allocated, named CPU Usage on [38].

CoolEmAll has collected the present status of metrics based on the state-of-the-art
literature. Many significant metrics were selected for implementation in the CoolE-
mAll SVD (Simulation, Visualisation and Decision) toolkit. Additionally, some new
metrics are proposed in order to introduce heat-aware and holistic analysis on a
transient period of time.

4.2 Selected Metrics for CoolEmAll

The selected metrics for Coolemall approach focus on heat-aware of data centre
in order to optimize its performance directly from the former site where energy
consumption is originated, the node. In that sense, four levels of granularity (node,
node-group, rack level and room level) will be permitted on the analysis in order
to optimize the performance taking into account different scenarios. Metrics will be
defined in these four levels:

• Node unit is the smallest element of a data centre to be modelled. This unit reflects
a single computing node, e.g. a single blade CPU module.

• Node-group reflects an assembled unit of node units, of level 1, e.g. a complete
blade centre or a rack unit consisting of 18 server nodes.

• Rack level reflects the well-known element within an IT service centre, including
blocks of node-groups, power supply units and integrated cooling devices.

• Room of a data centre is considered as joined units of racks, placed in a container or
even complete compute rooms, with the corresponding CRAC/CRAH (Compute

222 M. vor dem Berge et al.

Room Air Conditioner or Air-Handling Unit), chiller, power distribution units,
lighting and other auxiliary facilities.

Metrics of CoolEmAll will provide the design concept with the highest energy effi-
ciency and the lowest green-house emissions from the node level to the room level.
Most of them are already on use on other applications but some ones are new metrics
developed on CoolEmAll. The new ones are the following listed:

• Imbalance of Temperature of CPU, node-group and racks.
• Rack Cooling Index adapted to a node-group.

The next subsections describe the selected metrics. These are classified in three main
groups depending on the focus of the assessment:

• Resource usage metrics refers to the ratio of use of a certain resource (CPU, mem-
ory, bandwidth, storage capacity, etc) respect the total amount of that resource,
concerning a component (node) or a set of components (node-group, rack).

• Energy based metrics are defined as the consumption of power along a period of
time.

• Heat-aware metrics take into account temperature as main variable to define the
behavior of data centre.

4.2.1 Resource Usage Metrics

CPU Usage: this metric provides the percentage of amount of time that the allocated
CPU spends for processing the instructions of the applications [38].

CPU_Usage = Amount_CPUused

Amount_CPUallocated
. (1)

Power Usage: referred to the ratio of power used regarding the maximum capacity,
or power rated given by the manufacturer.

PowerUsage = Pnode

Pnode,rated
, (2)

where P means power consumption in a given time step expressed in Watt (W).
Deployed Hardware Utilization Ratio (DH_UR): in a node-group it reflects the

degree of hardware used during execution time period. Knowing the quantity of
nodes running live applications from the total number of deployed nodes is an indi-
cator of the energy consumption of computing equipment required for the different
workloads. For instance if 50 % of the nodes are sufficient to handle average load
and are running all the time, then the rest could be shut-down to save energy [38].
Efficient deployments should reach DH-UR as close to the unit as possible.

DH_UR = Nuseful_node

N
, (3)

CoolEmAll: Models and Tools for Planning and Operating . . . 223

where Nusef ul_node is the quantity of nodes in the node-group that are running
applications producing useful work and N is the total number of nodes in the
node-group.

4.2.2 Energy Based Metrics

Productivity of node: this depends on the type of service provided and can be calcu-
lated as the ratio of the measurable produced work and the energy consumed by the
node during the time execution.

Productivity_node = Wnode

Enode
, (4)

whereW means units of useful work andEmeans energy in Watts per hour (Wh). The
useful work produced by the node depends on the services provided. For instance, on
HPC environments it is measured in FLOPS and in the Cloud it is usually measured
in number of service invocations and in general-purpose services it can be mea-
sured in number of transactions. This metric can be applied at all levels of granularity.

Power Usage Effectiveness (PUE) this metrics consist on dividing power used by
the data centre between power used by the IT equipment. It can be defined at in-
stantaneous or aggregated level on a period of time. The level of accuracy of the
metric is related with the point of measurement of IT power, that can be the UPS
(Uninterruptible Power Supply Unit), the PDU (Power Distribution Unit) or the IT
itself.

PUE1 = EDC/EUPS , (5)

PUE2 = EDC/EPDU , (6)

PUE3 = EDC/EIT , (7)

where E means energy.
Data centre infrastructure efficiency (DCiE): corresponds to the inverse of PUE

and it is usually referred to instantaneous power consumption

DCiE = PIT/PDC , (8)

where P means instantaneous power consumption.
Fixed to variable energy ratio (FVER): is calculated comparing the fixed and the

variable energy consumption.

FVER = 1 + (Fixed Energy/Variable Energy) (9)

Developed by the BCS (British Computer Society) [46], it provides information
about how much energy is directly related to the useful work produced in a data

224 M. vor dem Berge et al.

centre and how much could be eliminated. It is a fact that even a data centre is
not producing any useful work it can consume around 80 % of the peak energy
consumption showing a flat behaviour during all data centre operation time. This
evidences that a lot of energy can be saved during the idle periods. As it is affirmed
in the cited paper, despite all efforts trying to measure the useful work in a data
centre, no method of measuring provides values which can be compared between
different data centres due to the subjectivity of the methodology, being the principle
obstacle for a wide adoption.

4.2.3 Heat-Aware Metrics

Node cooling index high (HI) and low (LO): these metrics aim to provide early
detection of cooling requirements from measuring the temperature rise at node level
over a certain threshold.

NCInode,LO = TCPU/TCPU,min−all, (10)

NCInode,HI = TCPU/TCPU,max−all, (11)

where, TCPU is the temperature of the CPU; TCPU ,min−all is the CPU minimum
allowable temperature according manufacturer specifications; TCPU ,max−all is the
CPU maximum allowable temperature according manufacturer specifications.

The metric named Imbalance of temperature of CPU provides a quick overview of
a possible unbalanced distribution of workload at node-group level. This fact usually
causes an overheating of a certain node, loosing capacity of other nodes not used, with
bad resulting consequences. To avoid this situation, the managers of data centres keep
low operation temperatures on the cooling system with the corresponding increase
of energy consumption. An early and quick foreseen of this situation can help the
designers and operators to manage more efficiently their data centres.

Imbalance of temperature of CPU: this metric is calculated as the difference
between the maximum and the minimum values of CPU temperature divided by the
average of all nodes in a same time step. Values close to zero of this metric indicate
a good temperature balance.

ImNG,temp = TCPU,max − TCPU,min

TCPU,avg
× 100, (12)

TCPU,avg = 1

N

N∑
i

TCPU,i, (13)

where TCPU ,max is the maximum temperature reached by the CPU in the node-group
in a certain time step; TCPU ,min is the minimum temperature in the same time step;
TCPU ,avg is the average temperature between the nodes in the same time step; TCPU ,i

is the temperature of each i CPU in the node-group in this time step and N is
the number of nodes in the group. This metric is assessed continuously on time of

CoolEmAll: Models and Tools for Planning and Operating . . . 225

execution of a certain test. The same metric can be extended to rack level or data
centre level. In this case, the imbalance considers the average temperature of the
CPU of each node-group or rack respectively.

Rack cooling index high (HI) and low (LO): provide information about the dis-
tribution of temperatures in a group of nodes to detect if they are operated in an
acceptable range according the limits recommended and allowed by certain standard.
This metric was originally proposed by Herrlin as an indicator of how effectively the
racks are cooled [34]. Combination of this metric with CFD will provide a general
overview about where are the points of a node-group where temperature is higher
than expected. The early detection will permit to implement strategies for minimiz-
ing energy consumption. For instance, in case of a data centre operator this approach
is useful to manage the workload foreseen which will be the energy performance.

RCIHI = 1 −
∑(

Track,x − Tmax−rec
)
Track,x>Tmax−rec

(Tmax−all − Tmax−rec) ∗ n , (14)

RCILO = 1 −
∑(

Tmin−rec − Track,x
)
Track,x<Tmin−rec

(Tmin−rec − Tmin−all) ∗ n , (15)

where, Track,x is the temperature at rack air intake (average of node-group), in a certain
time step, max means maximum, min means minimum, rec means recommended,
all means allowed and n is the total number of node-groups. The same metric can
be adapted to node-group level. Then Track,x is substituted by TNG,x that is the node
air intake temperature in a certain time step.

4.3 Application Power Model

Application profiling is generally based on a few parameters of the application and
as said before the main concept behind an application profiling is the optimization
of the execution of the application and the identification of problems at runtime.

The main issue when modelling the power of application is to validate it since it
is impossible to directly measure its power with a watt meter. Therefore, one needs
to make some assumptions to correlate the power drained by the machine with the
one dissipated by the applications that it executes. In our case, we assume that the
power of each application running on a machine is independent and that they can
be aggregated in order to sum the total power consumption of the entire machine as
follows:

Pmac =
∑

pid∈RP

Ppid , (16)

wherePmac andPpid are, respectively, the machine and process power, andRP is the
set of all processes currently running on the machine. Based on this conjecture one
can validate its model by using a power meter and comparing the measured power

226 M. vor dem Berge et al.

with the sum of all the processes’estimation. Some authors prefer to consider the idle
power to be independent of the process, we believe that if the machine is turned on,
it must be running at least one process, even if it is a kernel process and this process
needs to account the idle power, otherwise this machine should be shut down.

Good models need accurate power indicators, i.e. variables. For this purpose, we
implemented an open source library, namely libec [24], with several power indicators
which uses system information and hardware performance counters to generate high
level variables. At first the power estimation is done based on a CPU proportional
model given by:

Ppid = Pmin

RP
+ (Pmax − Pmin)CPU_Usagepid , (17)

where RP is the number of running processes in a given time, Pmin and Pmax are the
minimum and maximum power dissipated by the machine, CPU_Usagepid is the
CPU time usage of process pid and Ppid is the estimated power of the same process.
Although the CPU is responsible for most of the power dissipated on a machine,
more accurate model will be available soon, considering not only the CPU, but also
memory, network and disk usage.

5 Validation of the CoolEmAll Approach

In this section we present description of the validation approach, provide detailed def-
inition and evaluation of CoolEmAll trials for SVD toolkit, specifying their settings
and parameters, and, present results of these trials.

5.1 Validation Approach

The general purpose of validation scenarios is to validate and verify the CoolEmAll
approach, demonstrating its capability to optimize ComputeBoxes under various
boundary conditions, i.e. increase their energy and cooling efficiency. The scenarios
execute and evaluate experiments on physical testbed and simulated environment
using Module Operation Platform (MOP) and SVD Toolkit, respectively. Experi-
ments are defined by boundary conditions (fixed parameters) and variable parameters
that can be changed independently at the beginning of the experiment, and can be
adapted after each execution-step. The selection of these parameters depends on
particular purpose and focus of the optimization. The general optimization process,
described according to Deming optimisation life-cycle, follows plan, do, check and
act phases. The purpose of the plan phase is to establish the objectives of the ex-
periment necessary to deliver results in accordance with the expected output. The
do phase implements the plan, and execute the experiment according to settings
and parameters of the plan phase. During the check phase, the actual results of the

CoolEmAll: Models and Tools for Planning and Operating . . . 227

Table 2 Executing experiment in simulated environment (Optimization loop by simulation)

Phase Description SVD Components

Plan DEBB (HW type, profile, geometry, position) Var

(prepare experiment) (Re)Arrangement Var

Workload Var

Policies Var

Cooling Var

Do Simulate workload DCworms

(simulate experiment) Simulate CFD COVISE / CFD Solver

Check Monitoring experiment MOP Database

(visualize & assess
experiment results)

Assessing results of experiment Metric calculator

Vizualize results CoolEmAll Web-GUI

Act Decide on changes Done by human

experiment are visualized and analysed. The analysis involves comparison of the
experiment results against expected results. During the act phase, deviation between
actual and planned experiment results is assessed, and corrective actions to improve
them are determined.

The adapted optimization process within the CoolEmAll can be described as
follow:

• Plan: during the plan phase, user decides on focus of optimisation and on param-
eters that are fixed or variable (marked as var) involving: Selection of DEBBs,
(Re) arrangement of components, Selection of Workload, Selection of resource
management and scheduling policies, Selection of cooling techniques

• Do: during the do phase, experiments with preselected settings are executed in
simulation environment using DCworms and/or CFD component.

• Check: during the execution of experiments in simulated environment, after each
simulation run, simulation results are written into the MOP database. During the
check phase, collected simulation results are assessed and visualized

• Act: during the act-phase, user decides whether the experiment results are accept-
able or not. If not, he/she determines parameter changes, to be applied in next
optimisation-cycle iteration.

During the execution of experiments in simulated environment, several components
of SVD-toolkit are involved. The overview on usage of SVD-toolkit components
during the execution of experiments is presented in Table 2.

The above mentioned approach is detailed and elaborated in main use-cases and
trials. The three main CoolEmAll Use-Cases aiming at validating SVD Toolkit and
CoolEmAll approach are:

• Capacity management based on coupled simulations of dynamic workloads and
heat transfer with the goal to select the optimal configuration of hardware and

228 M. vor dem Berge et al.

management software for given application types factoring in performance and
energy-efficiency constraints.

• Optimisation of rack arrangement in a server room using open data centre building
blocks with the goal to find an optimal arrangement of racks and aisles containment
to prevent hot and cold air mixing and minimise risk of hot spots.

• Analysis of free cooling efficiency for various inlet temperatures with the goal
to find a maximum inlet temperature in which data centre can operate for given
workloads.

These scenarios are detailed in the following subsections.

5.1.1 Capacity Management

The goal of the capacity management is to ensure that an IT capacity meets current
and future business requirements in a cost-effective manner. In case of data centres
it must include an analysis of both performance and energy efficiency for specific
workloads. Using SVD Toolkit, data centre planners and operators who plan to
extend or exchange IT equipment can analyse several options (at a CPU, server or
rack level) to check if the required performance is delivered without exceeding pre-
defined thermal envelopes and power usage limits. The goal thereby is to select the
optimal configuration of hardware and management software for given application
types factoring in performance and energy and cooling efficiency constraints.

Capacity management is a common process for IT managers. CoolEmAll will
enable an unprecedented level of analysis of this process through the integration
of IT equipment and infrastructure simulations. The project software will enable
users to simulate the execution of specific workloads on a range of IT hardware
configurations. This will then be seamlessly combined with simulations of the re-
sulting thermal processes. Users will also be able to model dynamic processes such
as changes of workload in time or impact of management policies.

SVD Toolkit provides advanced support to capacity management by combining
simulations of hardware, applications, and heat transfer. It introduces new higher
levels of customization of workloads, application profiles, management policies,
and hardware models. In this way data centre operators can analyse energy efficiency
of IT equipment for HPC, service-based, and virtualized workloads. SVD Toolkit
also allows users to observe impact of management policies, for instance effect
of consolidation on energy consumption but also temperature distribution and heat
transfer. More details of capacity management steps and examples of analysis are
presented in Sect. 5.3.1.

5.1.2 Optimisation of Rack Arrangement in a Compute Room Using Open
Data Centre Building Blocks

One of the most common problems in data centres is ensuring that the heat pro-
duced by servers is dissipated as efficiently as possible. In most cases, servers are

CoolEmAll: Models and Tools for Planning and Operating . . . 229

located in racks arranged in rows within a server room. The efficiency of the cooling
systems within the facility is heavily dependent on a range of factors including the
arrangement of the racks, their heat density, placement of aisle containment, and
how hot air is ducted from cabinets. Using SVD Toolkit, optimisation of existing
or new facilities can be supported by simulating how various arrangements of the
equipment in a computing room affect heat transfer. The goal thereby is to find an
optimal arrangement of racks and aisles containment to prevent hot and cold air
mixing and minimize risk of hot spots.

Although this is a quite common use case in today’s data centres and DC planning
software, the CoolEmAll approach provides a number of advantages. First of all, a
server room model can be built upon predefined open data centre building blocks.
These building blocks will be based on a specification designed by CoolEmAll and
freely available from the project website. These building blocks will include on one
hand low-power processor servers and, on the other hand, larger data centre modules
such as shipping containers. This approach should facilitate and speed up the process
of server room design and rearrangement. CoolEmAll’s approach will also enable
users to perform simulations in an interactive manner to see results quickly after
introducing changes. Finally, an advanced 3D visualisation environment will allow
users to modify a server room and watch results in an intuitive and detailed way.

5.1.3 Analysis of Free Cooling Efficiency for Various Inlet Temperatures

Data centre designers and operators are increasingly investigating the benefits of so-
called free cooling (the use of outside air rather than mechanical cooling systems) to
dissipate heat produced by IT equipment. This approach is closely coupled to another
trend – raising the operating temperature (inlet temperature) of the facility (according
to recent ASHRAE recommendations concerning server inlet temperatures). Raising
operating temperatures sufficiently could allow a data centre planner to design a
facility that does not require expensive mechanical chillers which has significant
capital and operating costs implications. However, the use of such approaches has
traditionally been held back by concerns over impacts on uptime and availability
(if IT equipment gets too hot it can fail). Thanks to the predefined building blocks
developed in the project, SVD Toolkit users will be able to analyse the impact of input
temperature (and humidity) easily, allowing to find a maximum inlet temperature in
which a data centre can operate safely for given workloads.

5.2 Testbed

Energy efficient operation of servers requires infrastructure allowing monitoring,
controlling and managing cluster servers energy efficiently, adapting to fluctuating
resource-demands, applications and environmental conditions. In this section we
describe RECS servers with integrated monitoring and controlling capabilities, and

230 M. vor dem Berge et al.

Table 3 Physical interfaces of the RECS cluster system

Connector/Button Placement

USB On each baseboard and two at the front panel of the server
enclosure (for Compute Node 9)

2x SATA On each baseboard

VGA On each baseboard and one at the front panel of the server
enclosure (for Compute Node 9)

18x Gigabit Ethernet Front panel of the server enclosure

Fast Ethernet for monitoring Front panel of the server enclosure

Power connector 12V Back side of the server enclosure and on each baseboard

Power & reset button On each baseboard

Control buttons for monitoring Front panel of the server enclosure

LCD display for monitoring Front panel of the server enclosure

provide an architecture allowing monitoring and managing rack consisting of several
RECS and other components.

As described in the CoolEmAll deliverable 3.1 [15], the cluster server RECS
consists of 18 single CPU modules, each of them can be treated as an individual
PC. The mainboards are COM Express based CPU modules, each mounted on a
standardized baseboard which makes it possible to use every available COM Express
mainboard that has the “basic” size. In CoolEmAll we will evaluate which CPU
module will be the best for each particular use-case. Each baseboard is connected to
a central backplane. This backplane has two functions, first it forwards each Gigabit
Ethernet Network of the CPU modules to the front panel of the server, and second it
connects the baseboards’ microcontrollers to the central master-microcontroller. For
debugging purposes it has been quite useful in the past to have direct access to single
mainboards, therefore every baseboard has several connectors as listed in Table 3.

All components within the cluster server share a common Power Supply Unit
(PSU) that provides 12 V with a typical efficiency of more than 92 %. The several
potentials needed for the mainboard chipset, CPUs and other components are pro-
vided by both, the baseboards and the mainboard potential transformers in the cluster
server itself.

The novel monitoring approach of the RECS Cluster System is to reduce network
load, avoid the dependency of polling every single compute node at operation system
layer and build up a basis on which new monitoring- and controlling-concepts can be
developed. Therefore the status of each compute node of the RECS Cluster Server is
connected to an additional independent microcontroller in order to manage the mea-
sured data. The main advantage of the RECS Cluster System is to avoid the potential
overheads caused by measuring and transferring data, which would consume lots
of computing capabilities; in particular in a large-scale environment this approach
can play a significant role. On the other hand, the microcontrollers also consume
additional energy. Comparing with the potential saved energy, it is expected that

CoolEmAll: Models and Tools for Planning and Operating . . . 231

the additional energy consumption could be neglected. This microcontroller-based
monitoring architecture is accessible to the user by a dedicated network port and
has to be read out only once to get all information about the installed computing
nodes. If a user monitors e.g. 10 metrics on all 18 nodes, he would have to perform
180 pulls which can now be reduced to only one. This example shows the immense
capabilities of a dedicated, aggregating monitoring architecture.

The monitoring architecture is realized by a master-slave microcontroller architec-
ture which collects data from connected sensors and reads out the information every
mainboard provides via SMBus or I C. Each baseboard is equipped with a thermal
and current sensor. All sensor data are read out by one microcontroller per baseboard
which acts as a slave and thus waits to be pulled by the master microcontroller. The
master microcontroller and thus the monitoring- and controlling-architecture, are
accessible to the user by a dedicated network port and additionally by a LCD display
at the front of the server enclosure.

Additionally to the monitoring approach, the described infrastructure can be used
to control every single compute node. Right now it is possible to virtually press the
power- and reset-button of each mainboard. It is even possible to have a mixed setup
of energy consumption where some nodes are under full load, others are completely
switched off and some nodes are waiting in a low-energy state for computing tasks.

5.3 Analysis and Optimization of Data Centre Efficiency

5.3.1 Capacity Management

SVD Toolkit enables data centre operators and IT equipment suppliers to perform
capacity management on various levels data centre architecture taking into account all
major aspects that impact on energy efficiency. Users can study efficiency of specific
IT equipment configuration with respect to various aspects such as characteristics
of the workload, types of applications to be executed, management policies, and
parameters of cooling devices.

The usual steps that are performed to do capacity management using SVD Toolkit
are as follows:

1. Selection of a DEBB. Users select existing data centre building blocks from a
repository to use them for simulations or they can use the DEBB Configurator
tool to create to blocks (e.g. a rack filled with a given model of servers).

2. Selection of workload. Users select a workload to simulated in an infrastructure.
They can adjust its level (e.g. % of utilization) or details (e.g. number of tasks
per time unit, size of tasks, etc.). Workload can be modelled using probabilistic
distributions and can reflect various situations in a data centre such as variability
of load.

3. Selection of application models. In addition, users can select models of specific
applications associated to tasks of the workload. They can select models of cloud

232 M. vor dem Berge et al.

Fig. 8 Visualization of node temperatures in a single RECS system

or High Performance Computing applications depending on a purpose of the data
centre. Application profiles describes details such as detailed characteristics of
application (e.g. CPU- or IO-intensive) and its impact on power usage.

4. Selection of management policy. Users can select a management policy to model
how applications in their data centre are distributed. For example, they can inves-
tigate various workload consolidation schemas that may have significant impact
on heat distribution in a data centre.

5. Running workload simulation. Users run simulation of selected workload on
IT hardware. As a result they obtain execution times, resource utilization, power
usage in time, and further details needed to further analysis and heat transfer
simulations.

6. Visualization of results. Users can watch obtained results using 3D model of
simulated data centre building blocks and charts of metrics values in time. Exam-
ple of visualization for a single racks with three RECS systems is illustrated in
Fig. 8. Users can analyze values of resource utilization, power usage, and energy-
efficiency metrics for selected parts of hierarchy. If needed users can come back to
previous steps to change for instance hardware configuration or workload and see
updated results (after repeating workload simulations). Additionally, two different
configurations can be compared using SVD Toolkit visualization component.

7. Calculation of airflows and temperature distribution for selected time points.
Users can select interesting point in time (e.g. peak load, consolidation of
workload) and start a heat transfer simulation for this point in time.

8. Analysis of results. Users can watch results in the same way as in step 6. but
including data about airflows and temperature distribution. Results can be also
compared for various DEBBs and workloads using statistical data and graphical
charts. If validation of results is needed users can compare simulation results with
real measurements.

CoolEmAll: Models and Tools for Planning and Operating . . . 233

Fig. 9 Airflow through a couple of nodes in a RECS system

9. Calculation of a report with values of metrics. In addition to detailed anal-
ysis using graphical tools in previous steps, users obtain a report with values
of important metrics such as total energy consumption, maximum power usage,
mean/max temperatures, temperature/heat imbalance, nodes/rack cooling index,
performance per Watt/Joule, pPUE, and others (see Sect. 4 for detailed list of
selected metrics).

Of course, users can switch between these steps more times, e.g. to analyze sev-
eral diverse workloads, application types, management algorithms, or hardware
architectures.

In this Section we present an example of capacity management performed for
a rack consisting of RECS systems. Architecture of these systems is not typical as
presented in 5.2. Computing nodes are located with a high density and have separated
fans. Moreover, airflow goes through couples of nodes located closer to the air inlet
(called inlet nodes) and air outlet (outlet nodes). The airflow going through a couple
of RECS nodes is presented in Fig. 9 whereas thermodynamic formula describing
this flow is given in (18) (for more details see [17]).

Tout = Tin + δ1
P1

ρ ·Q1 · C + δ2
P2

ρ ·Q2 · C , (18)

Proposed architecture provides some advantages (such as better energy- and resource-
efficiency), however causes also additional dependencies and heat effects. Therefore,
analysis of performance, energy consumption and related heat transfer processes is
important even on the level of particular chassis of a rack. Figure 10 illustrates one of
possible extreme loads of RECS. In this case, inlet nodes are idle (but switched on)
while outlet nodes loaded. In other cases nodes can be also switched off and obviously
load can be distributed in a different way. All these facts affects total energy usage
and temperature distribution as switching nodes on and off causes also switching on
and off fans. As presented in [17] for various configurations we observed differences
in outlet temperatures depending on states and level of loads.

For instance, between the state presented in the figure and its opposite configu-
ration (inlet nodes loaded, outlet nodes idle) are negligible. However, for the latter
state are much higher (2−2.5 C) than for state in which idle nodes are switched off.
Similarly, for switched off inlet nodes are significantly higher then for switched off
outlet nodes (0.6−2.6 C). Interesting case is the difference between inlet nodes idle
and switched off. For the highest load outlet temperatures are higher in the latter case
(by around 0.5 C) than in former case while for lower loads opposite occurs. For

234 M. vor dem Berge et al.

IDLE

LOAD

IDLE

LOAD

IDLE

LOAD

IDLE

LOAD

IDLE

LOAD

IDLE

LOAD

IDLE

LOAD

IDLE

LOAD

IDLE

LOAD

AIR INPUT

AIR OUTPUT

Fig. 10 Example of RECS load: inlet nodes idle, outlet nodes loaded

loads 0.75, 0.5, 0.25 and 0.125, outlet temperature in case with switched off is lower
than in state 1 by 0.3, 1.0, 1.1 and 1.5 C, respectively. This uncommon behavior
can be explained by a support in removing hot air by a second fan of idle node in a
state with idle nodes on. If load of the outlet node decreases gain from additional fan
is reduced compared to heat dissipated by the idle node. Additionally, we noticed
usual increase of temperatures for nodes under significant load close to measurement
points (0.1−0.7 C). As it also happened for inlet temperatures it suggests that this
change is caused by heat dissipated in other ways than passed by flowing air.

Impact of Workloads and Management Policies
The first phase to perform the capacity management using the CoolEmAll approach
is modelling and simulation of a workload execution in given IT hardware con-
figuration. Based on the models obtained for the considered set of resources and
applications we evaluated a set of resource management strategies in terms of en-
ergy consumption needed to execute four workloads varying in load intensity (10 %,
30 %, 50 %, 70 %). The differences in the load were obtained by applying various
intervals (3000, 1200, 720 and 520 s, respectively) related to submission times of
two successive tasks. In all cases the number of tasks was equal to 1000. Moreover,
we differentiated the applications in terms of number of cores allocated by them and
their type. Further details of the applied workloads can be found in [42].

For these workloads we defined two resource management policies that take into
account differences in applications and hardware profiles by trying to find the most
energy efficient assignment. The first policy-Energy Usage Optimization-assumes
that there is no possibility to switch off unused nodes, thus for the whole time
needed to execute workload nodes consume at least power for idle state. Taking into
account that the system is running al the time, first we try to assign tasks to the
nodes in the manner that results in the lowest increase of energy consumption for the
given type of node and class of application. In other words, we investigate (for the
given workload a resource configuration) whether the energy gain from executing
the particular application on the given type of node can compensate possible energy
losses from prolongation of the overall workload execution time. To evaluate this
approach, tasks have to be assigned to the nodes of type for which the difference

CoolEmAll: Models and Tools for Planning and Operating . . . 235

Fig. 11 Power usage in time using the EN-OPT (left) and EN-OPT-NODE-ON-OFF policy (right)

between energy consumption for the node running the application and in the idle
state is minimal. As mentioned, we assign tasks to nodes minimizing the value of
expression:

(P − Pidle) ∗ exec_time, (19)

where P denotes observed power of the node running the particular application and
exec_t ime refers to the measured application running time.

The second policy-Energy Usage Optimization with switching off unused nodes-
makes the assignment of task to the node, we still take into consideration application
and hardware profiles, but in that case we assume that the system supports possibil-
ity of switching off unused nodes. In this case the minimal energy consumption is
achieved by assigning the task to the node for which the product of power consump-
tion and time of execution is minimal. In other words we minimized the following
expression:

P ∗ exec_time, (20)

All tasks were assigned to nodes with the condition that they can be assigned only
to nodes of the type on which the application was able to run (in other words-we
had the corresponding value of power consumption and execution time). Differences
between power usage in time for these both policies are presented in Fig. 11. It can be
easily seen that that peaks are on the same level whereas in periods with lower load the
Energy Usage Optimization with switching off unused nodes provides significantly
lower power usage.

The last considered by use case is a modification of the random strategy. We
assume that tasks do not have deadlines and the only criterion that is taken into
consideration is the total energy consumption. In this experiment we configured the
simulated infrastructure for the lowest possible frequencies of CPUs. The experiment
was intended to check if the benefit of running the workload on less power-consuming
frequency of CPU is not levelled by the prolonged time of execution of the work-
load. The values of the evaluated criteria are as follows: workload completion

236 M. vor dem Berge et al.

Fig. 12 Power usage in time using the DFS policy

time: 1 065 356 s and total energy usage: 77.109 kWh. As we can see, for the
given load of the system (70 %), the cost of running the workload that requires al-
most twice more time, cannot be compensated by the lower power draw. Moreover, it
can be observed that the execution times on the slowest nodes (Atom D510) visibly
exceed the corresponding values on other servers. Compared to the two previous
policies power usage is less variable with lower peak usage however without periods
with significantly lower power usage as can be seen in Fig. 12.

As we were looking for the trade-off between total completion time and energy
usage, we were searching for the workload load level that can benefit from the lower
system performance in terms of energy-efficiency. For the frequency downgrading
policy, we noticed the improvement on the energy usage criterion only for the work-
load resulting in 10 % system load. For this threshold we observed that slowdown in
task execution does not affect the subsequent tasks in the system and thus the total
completion time of the whole workload. More details can be found in [42].

Analysis of Heat Transfer
To understand heat-flow distribution within a RECS, a CFD simulation was done.
Figure 13 presents the temperature distribution and air-flow inside RECS geometry
equipped with Intel i7 nodes, and the corresponding initial and boundary conditions.

CoolEmAll: Models and Tools for Planning and Operating . . . 237

Fig. 13 Heat- and air-flow distribution within one quarter of the RECS of i7 nodes, load at 50 W
(each node), room-temperature 22.5 ◦C

During the tests of the SVD toolkit several simulations were done. For speedup
purposes and symmetry reasons there was one quarter of a standard RECS simulated,
consisting of 4 nodes of i7, running at 50 W load each node. It is obvious that the
temperature is not evenly distributed inside the geometry. The channels of the heat
sink which are blocked are facing a much higher temperature than the parts of the
heat sinks where the flow can easily pass through. Also it is easily visible how the
flow heats while passing over the heat sink. This is done by observing the temperature
at different places of the heat sinks. The locations downstream have a considerably
higher temperature. This shows how the heat is transferred from the heat sink to
the flow. If the flow is observed parallel to the temperature distribution it is easily
visible how flow and heat transfer a coupled. In regions where there is hardly any
flow visible the temperature is high because there is almost no heat transferred. This
fact leads to higher temperatures at places of the heat sinks where the actual flow
channels are blocked. However, comparing the temperature of the heat sink (229 K)
with the maximum permissible operating range of CPU (378 K)-we can see that it
is still within the permissible range.

Next it is a good idea to have a comparing look at the RECS cooled with air at
higher input temperature (27.5 ◦C), presented in Fig. 14.

238 M. vor dem Berge et al.

Fig. 14 Heat- and air-flow distribution within one quarter of the RECS of i7 nodes, load at 50 W
(each node), room-temperature 27.5 ◦C

Again there are no surprised compared to the temperature distribution at lower
temperature levels. The temperature downstream again is higher than upstream as
the flow heats up while passing over the heat sinks. This was expected by earlier
simulation. But again, the maximum temperature is about the value higher the inlet
temperature is increased. The deviation is caused by keeping the wall temperature
constant.

As a conclusion, it can be said, that the RECS at higher temperatures behaves
exactly as it behaves at lower temperatures. This means that an increase in inlet or
cooling fluid temperature leads directly to an increase in component temperature. So
it is possible to increase the inlet temperature of the cooling fluid for energy efficiency
reasons as long as the maximum component temperature for safe and stable operation
is not reached.

5.3.2 Analysing Cooling Efficiency in Compute-room

In this section we describe scenarios showing benefits of SVD Toolkit to optimize
cooing and energy-efficiency in data-centres, and present recently achieved results.

CoolEmAll: Models and Tools for Planning and Operating . . . 239

Fig. 15 Heat and airflow simulation within the compute-room with uneven distribution of heat

Evaluation results presented in this section refers to optimization of rack arrangement
in a compute room use-case, described in 5.1.2, assessing cooling efficiency in
compute room, described in [60]. Basic case evaluated during the development of
the SVD Toolkit was a generic compute room: 12 m wide, 20 m long and 3 m high.
Inside there are 24 racks located, placed in one half of the room to achieve an uneven
distribution. Air is considered as a cooling fluid and enters the rooms via the tops of
the racks. The outlet for the cooling fluid is located in a side wall of the room on the
opposite site compared with the racks [60].

Figure 15 presents overview of the flow in the room. As one can see the air enters
trough the grey coloured squared resembling the top of the racks and exits through
the grey opening to the right, with velocity distribution represented by streamlines
and velocity vectors. Colour resembles the values, blue for low values and red for
high values. Heat distribution is represented by the colour of the cutting plane. The
colours are chosen the same way as for flow. In the upper half of the picture one
can see an accumulation of heat although there are almost no racks located. This
proves the use of a tool like the SVD Toolkit viable, as nobody had expected heat
accumulating in that place.

Figure 16 presents heat and airflow distribution for another compute-room con-
figuration. Colours correspond to temperature, according to colour-chart depicted.
We can observe that there are several hotspots in the compute-room due to insuf-
ficient airflow. The upper left and the most right rack in the figure have quite high
temperatures, indicating deficits on airflow circulation leading to heat accumulation.

In this fashion it is possible to model and assess all types of compute rooms. In
particular it is possible to simulate compute rooms with hot and cold aisles, allowing
to evaluate different cooling methods.

240 M. vor dem Berge et al.

Fig. 16 Heat and airflow simulation within the compute-room

6 Business Impact

The defining characteristic of the CoolEmAll project is that it will bridge this tra-
ditional gap between IT and facilities approaches to efficiency. The main outcomes
of CoolEmAll project are: Simulation, Visualization and Decision support (SVD)
Toolkit; Data centre Efficiency Building Blocks (DEBBs); Enhanced data centre
efficiency metrics; and Module Operation Platform (Not primary outcome but will
allow for visualisation of monitoring data). Some commercial suppliers (most no-
tably Data Center Infrastructure Management (DCIM) suppliers) and consultants
have recently begun to take a more all-encompassing approach to the problem by
straddling both IT and facilities equipment. However, few suppliers or researchers
up to now have attempted to include the crucial role of workloads and applications.
That is beginning to change, and it is likely that projects such as CoolEmAll can
advance the state of the art in this area.

The consortium describes the SVD toolkit as a data centre modelling, simulation
and decision supporting tool. Using a combination proprietary code plus elements
of existing tools (COVISE and OpenFOAM), the SVD Toolkit will allow data centre
planners to model the energy efficiency implications of physical placement of servers
within the facility or different approaches to cooling. Some of these functions are
found in existing DCIM tools; however the SVD Toolkit will add an applications

CoolEmAll: Models and Tools for Planning and Operating . . . 241

and workload simulation functions not currently found in existing DCIM tools. How
each of the planned components of the SVD Toolkit compares with existing tools
(based on information from the market assessment deliverable) is outlined below.

Computational fluid dynamics (CFD) creates a detailed mathematical model of
airflows, temperatures and other environmental variables within a space. It is likely
that the bulk of the SVD Toolkit will be developed from elements of the open source
CFD application OpenFOAM and a simulation and visualization tool developed by
project partner HLRS—The Collaborative Visualization and Simulation Environ-
ment (COVISE). However, a wide range of such tools exists and will be evaluated
through the course of the project. (The consortium maintains that there currently is
no one offering that covers all the functions the project plans to develop.)

However, most CFD modelling applications are not real-time tools (although
some suppliers are trying to develop these) and are used for prediction rather than
monitoring purposes. Many suppliers in this are still questioning how to use them
with dynamic, virtualized environments in which IT heat output changes with varying
workload. CoolEmAll will look to tackle this issue of real-time monitoring and
how thermal characteristics change with workload. Suppliers of commercial CFD
tools include Applied Math Modelling (CoolSim), Future Facilities (6SigmaDC),
Innovative Research Inc (TileFlow), and Data Research (CoolitDC).

A range of tools already exists that can be used to help data centre owners and
operators capture energy use information (for use in calculating data centre PUE for
example). These include DC-Pro from the US EPA, the Data Centre Efficiency calcu-
lator from APC (Schneider Electric) or the BCS Data centre Strategy Group/Carbon
Trust Data centre Simulator. These tools are limited in scope, however, and do not
addresses the application or workload layer contribution in the granular way it is
intended the CoolEmAll SVD Toolkit will.

The emerging, and important, data centre infrastructure management sector
(DCIM) has some broad similarities with the holistic approach that underpins the
CoolEmAll project. DCIM is difficult to define precisely. It is multifunctional, has
many components, attempts to address various technical and business issues, and may
consist of numerous subsystems that appear to duplicate or overlap with other sys-
tems. However, CoolEmAll is more focused on data centre planning and simulation
than the operational focus that most DCIM systems take. DCIM suppliers include
nlyte Software, iTRACS, Schneider, Emerson Network Power, CA Technologies
and Modius.

The consortium also plans to include thermal and energy-aware resource man-
agement functions in the SVD Toolkit—moving virtual workloads between servers
or even between data centres for energy-efficiency reasons. Tools such as VMware
vSphere, or Ovirt or Platform VM Orchestrator, enable VMs to be managed accord-
ing to set policies and some of these suppliers have integrated their technology with
existing DCIM tools. However, the level of integration between traditional DCIM
functions and virtual machine management is still very immature, and CoolEmAll
hopes to advance the state of the art in this area.

The SVD Toolkit may also overlap with technology separate but closely aligned to
DCIM, which is sometimes called DCPM. DCPM tools, such as Romonet’s Prognose

242 M. vor dem Berge et al.

and Lumina Decision Systems’Analytical Data Center Capacity Planning Tool, can
be used for detailed data centre planning. Prognose, for example, allows a user to
create a detailed model of a facility and then run a mathematical simulation to predict
energy and cost performance. By changing the model and rerunning the simulation,
users can experiment with different data centre designs or operational strategies.

A data centre designer might use the tool to compare the predicted performance of
different cooling technologies, and to see how the answer might change in different
climate zones. A data centre operator with an active site might use the model to esti-
mate cost and energy savings from a change in temperature set point or an efficiency
retrofit. The BCS and Carbon Trust developed an open source DCPM tool, called
the Data Centre Simulatoriii. (Romonet’s Prognose tool was originally based on the
Data centre Simulator, but has been significantly developed since.) It is possible
that some DCPM functions could be added to the SVD toolkit by integrating with
elements of the open source Data centre Simulator.

Other data centre monitoring and management tools that should be considered
when developing the SVD Toolkit include those developed by IT suppliers—most
notable Intel (Data Centre Manager) but also server suppliers including HP and Dell.
These tools include functions for monitoring and measuring power and temperature,
but also some degree of control including power capping.

The other main outcome of the project will be a set of hardware designs. These
designs/blueprints are defined by the project as Data centre Efficiency Building
Blocks (DEBBs). The DEBB is effectively an abstraction for computing and storage
hardware and describes energy efficiency of data-centre building block on different
granularity-levels.

Where relevant, the consortium will look to collaborate with existing standards
bodies and other organisations in the development of existing and new metrics. This
will help ensure that the technology that results from the project is useful to the wider
data centre industry, both in terms of research but also in commercial adoption by
data centre technology suppliers, and data centre owners and operators.

The project will look to engage with organisations developing new metrics such
as Green Grid, as well as efforts to harmonize the development of metrics inter-
nationally through groups such as the Global Harmonisation of Metrics Task Force
(EC, METI/GIPC, US EPA/DOE and Green Grid). Relevant developments in metrics
include the likelihood that Power Usage Effectiveness will be accepted as an ISO
Standard in 2012/2013. This may have implications for how PUE is measured and
reported which should be integrated into the metrics work within the project.

7 Summary

In this chapter we presented an overview of CoolEmAll models and tools that can be
used for optimization of data centres’energy-efficiency and reduction of their carbon
footprint. The CoolEmAll’s Simulation, Visualization and Decision Support Toolkit
(SVD Toolkit) enables careful planning of both data centre hardware and software

CoolEmAll: Models and Tools for Planning and Operating . . . 243

configuration. To this end, the project took a holistic approach by integrating effects
of cooling, IT equipment, and workloads into the analysis. We presented some
examples of the SVD Toolkit application to scenarios such as capacity management
in a data centre as well as optimization of cooling efficiency in a server room.

The future work includes developing a larger spectrum of hardware models,
workload profiles, and power consumption models to enable comparison of var-
ious alternatives of data centre equipment. We are also working on energy- and
thermal-aware management policies, a final set of benchmarks, and further evalu-
ation of energy-efficiency metrics. The final prototype of CoolEmAll models and
tools will also contain integrated web-based user graphical interfaces allowing users
to perform the modeling and simulation flow remotely. In the last phase of the project
we also plan more tight collaboration with end users and suppliers.

Acknowledgment The results presented in this chapter were funded by the European Commission
under contract 288701 through the project CoolEmAll.

References

1. Parallel Workload Archive. (2006). URL http://www.cs.huji.ac.il/labs/parallel/workload/.
2. Green grid data center power efficiency metrics: PUE and DCIE. Tech. rep., The Green Grid

(2008).
3. Productivity indicator. Tech. rep., The Green Grid (2008).
4. Carbon usage effectiveness (cue): A green grid data center sustainability metric. Tech. rep.,

The Green Grid (2010).
5. ERE: A metric for measuring the benefit of reuse energy from a data center. White paper, The

Green Grid (2010).
6. Enhancing the energy efficiency and use of green energy in data centers. Tech. rep., Green IT

Promotion Council (2011).
7. Harmonizing global metrics for data center energy efficiency. Global taskforce reaches agree-

ment on measurement protocols for PUE continues discussion of additional energy efficiency
metrics. Tech. rep., Global Metrics Harmonization Task Force (2011).

8. New data center energy efficiency evaluation index. dppe (datacenter performance per energy).
measurement guidelines (ver 2.05). Tech. rep., Green IT Promotion Council (2011).

9. On-site energy generation efficiency (oge) and energy carbon intensity (eci). Tech. rep., Green
IT Promotion Council (2011).

10. Recommendations for measuring and reporting overall data center efficiency. version 2 –
measuring PUE for data centers. Tech. rep., Data Center Efficiency Task Force (2011).

11. Water usage effectiveness. Tech. rep., The Green Grid (2011).
12. Global taskforce reaches agreement on measurement protocols for GEC, ERF, and CUE

– continues discussion of additional energy efficiency metrics. Tech. rep., Global Metrics
Harmonization Task Force (2012).

13. PUE (tm): A comprehensive examination of the metric. confidential report. White paper, The
Green Grid (2012).

14. Aumueller, M., Schulze-Doebold, J., Lang, R., Rainer, D., Werner, A., Woessner, U., Wol, P.:
COVISE User’s Guide (2013).

15. vor dem Berge, M.: First definition of the flexible rack-level compute box with integrated
cooling. Tech report, CoolEmAll (2012).

244 M. vor dem Berge et al.

16. vor dem Berge, M., Christmann, W., Volk, E., Wesner, S., Oleksiak,A., Piontek, T., Costa, G.D.,
Pierson, J.M.: CoolEmAll - Models and tools for optimization of data center energy-efficiency.
In: Sustainable Internet and ICT for Sustainability (SustainIT), pp. 1–5 (2012).

17. vor dem Berge, M., Da Costa, G., Jarus, M., Oleksiak, A., Piatek, W., Volk, E.: Modeling Data
Center Building Blocks for Energy-efficiency and Thermal Solutions. Springer (2013).

18. Bąk, S., Krystek, M., Kurowski, K., Oleksiak, A., Piątek, W., Wąglarz, J.: GSSIM – A tool
for distributed computing experiments. Scientific Programming 19(4), 231–251 (2011). DOI
10.3233/SPR-2011-0332.

19. Bolla, R.: STF439 - global KPIs for energy efficiency of deployed broadband. In: ETSI
Workshop on Energy Efficiency (2012).

20. Bosque, A., Ibañez, P., Viñals, V., Stenström, P., Llabería, J.M.: Characterization of
Apache web server with Specweb2005. In: Proceedings of the 2007 workshop on MEm-
ory performance: DEaling with Applications, systems and architecture, MEDEA ’07,
pp. 65–72. ACM, New York, NY, USA (2007). DOI 10.1145/1327171.1327179. URL
http://doi.acm.org/10.1145/1327171.1327179.

21. CA: Web-page of the ca company (2014). URL www.ca.com.
22. Chetsa, G.L.T., Lefevre, L., Pierson, J.M., Stolf, P., Da Costa, G.: DNA-inspired scheme for

building the energy profile of HPC systems. In: International Workshop on Energy-Efficient
Data Centres, Springer (2012).

23. Christian, L., Belady, P.: Projecting annual new data center construction market size. Tech.
rep., Microsoft Global Foundation Services (2011).

24. Cupertino, L.F., Costa, G., Sayah, A., Pierson, J.M.: Energy consumption library. In: J.M.
Pierson, G. Da Costa, L. Dittmann (eds.) Energy Efficiency in Large Scale Distributed Systems,
Lecture Notes in Computer Science, pp. 51–57. Springer Berlin Heidelberg (2013). DOI
10.1007/978-3-642-40517-4_4. URL http://dx.doi.org/10.1007/978-3-642-40517-4_4.

25. Dongarra, J.J., Meuer, H.W., Strohmaier, E., et al.: Top500 supercomputer sites. Supercom-
puter 67, 89–111 (1997).

26. Donoghue, A.: Market assessment report. Tech report, CoolEmAll (2012).
27. Donoghue, A.: Preliminary exploitation plan. Tech report, CoolEmAll (2012).
28. Eddy, S.R., Wheeler, T.J.: Hmmer user’s guide: Biological sequence analysis using profile

hidden markov models (2013). URL http://www.hmmer.org/.
29. Electric, S.: Web-page of the data center genome project (2014). URL http://

datacentergenome.com.
30. Facebook: Web-page of the open compute project (2014). URL http://www.opencompute.

org.
31. Facilities, F.: Dc6sigma products of future facilities (2014). URL http://www.futurefacilities.

com/.
32. Facilities, F.: Web-site of future facilities company (2014). URL http://www.futurefacilities.

com/.
33. Georges, D.C., Helmut, H., Karin, H., Jean-Marc, P.: Modeling the Energy Consumption of

Distributed Applications. CRC Press (2012).
34. Herrlin, M.: Rack cooling effectiveness in data centers and telecom central offices: The rack

cooling index (RCI). In: ASHRAE Transactions [0001-2505], pp. 725 –731 (2005).
35. Hoyer, M., vor dem Berge, M., Volk, E., Gallizo, G., Buchholz, J., Fornós, R., L. Sisó, W.P.:

First definition of the modular compute box with integrated cooling. Tech report, CoolEmAll
(2012).

36. Innovative Research, I.: Tileflow product of innovative research inc. (2014). URL
http://inres.com/products/tileflow/overview.html.

37. Iosup, A., Li, H., Dumitrescu, C., Wolters, L., Epema, D.: The Grid Workload Format (2006).
38. Jiang, T., Kipp, A., Cappiello, C., Fugini, M., Gangadharan, G., Ferreira, A.M., Pernici, B.,

Plebani, P., Salomie, I., Cioara, T., Anghel, I., Christmann, W., Henis, E., Kat, R., Lazzaro, M.,
Ciuca, A., Hatiegan, D.: Layered green performance indicators definitions. Project deliverable,
GAMES project (2010).

http://datacentergenome.com
http://datacentergenome.com
http://www.opencompute.org
http://www.opencompute.org
http://www.futurefacilities.com/
http://www.futurefacilities.com/
http://www.futurefacilities.com/
http://www.futurefacilities.com/

CoolEmAll: Models and Tools for Planning and Operating . . . 245

39. Kipp, A., Jiang, T., Fugini, M., Salomie, I.: Layered green performance indicators. Fu-
ture Gener. Comput. Syst. 28(2), 478–489 (2012). DOI 10.1016/j.future.2011.05.005. URL
http://dx.doi.org/10.1016/j.future.2011.05.005.

40. Krystek, M., Kurowski, K., Oleksiak, A., Piatek, W.: Energy-aware simulations with GSSIM.
In: Energy Efficiency in Large Scale Distributed Systems (EE-LSDS), pp. 55–58 (2010).

41. Kundra, V.: Federal data center consolidation initiative. Memorandum for chief information
officers, Office of Management and Budget of the USA, Washington, DC (2010).

42. Kurowski, K., Oleksiak, A., Piatek, W., Piontek, T., Przybyszewski, A., Weglarz, J.: DC-
WoRMS - a tool for simulation of energy efficiency in distributed computing infrastructures.
Simulation Modelling Practice and Theory (2013). DOI 10.1016/j.simpat.2013.08.007. URL
http://dx.doi.org/10.1016/j.simpat.2013.08.007.

43. Malone, C., Belady, C.: Metrics to characterize data center & IT equipment energy use. In:
Proceedings of the Digital Power Forum (2006).

44. Mammela, O., Majanen, M., Basmadjian, R., Meer, H.D., Giesler, A., Homberg, W.: Energy-
aware job scheduler for high-performance computing. Computer Science - Research and
Development 27(4), 265–275 (2012).

45. Mukherjee, T., Banerjee, A., Varsamopoulos, G., Gupta, S.K.S.: Model-driven coordinated
management of data centers. Comput. Networks (2010).

46. Newcombe, L., Limbuwala, Z., Latham, P., Smith, V.: Data center fixed to variable energy
ratio metric dc-fver. Tech. rep., BCS The Chartered Institute for IT (2012).

47. Prieto, J.L., Costa, G.D.: Energy and heat-aware classification of application. Tech report,
CoolEmAll (2013).

48. Prieto, J.L., Gallizo, G., Oleksiak, A.: Validation scenarios, methodology and metrics. Tech
report, CoolEmAll (2012).

49. Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., Zhu, X.: No “power” strug-
gles: coordinated multi-level power management for the data center. In: Proceedings of
the 13th international conference on Architectural support for programming languages and
operating systems, ASPLOS XIII, pp. 48–59. ACM, New York, NY, USA (2008). DOI
10.1145/1346281.1346289. URL http://doi.acm.org/10.1145/1346281.1346289.

50. Rathgeb, D., Volk, E.: First release of the simulation and visualisation toolkit. Tech report,
CoolEmAll (2013).

51. Robert, B., Ali, N., Florian, N., de Meer, H., Giuliani, G.: A methodology to predict the power
consumption of servers in data centers. Proceedings of the 2nd international conference on
energy-efficient computing and networking (2011).

52. Romonet: Romonet products overview (2014). URL http://www.romonet.com/overview.
53. Shah, A., Krishnan, N.: Optimization of global data center thermal management workload

for minimal environmental and economic burden. Components and Packaging Technologies,
IEEE Transactions on 31(1), 39–45 (2008). DOI 10.1109/TCAPT.2007.906721.

54. Slurm: Slurm workload manager (2013).
55. Stanley, J.R., Brill, K.G., Koomey, J.: Four metrics define data center “greenness”. Tech. rep.,

Uptime Institute (2007).
56. Stansberry, M.: Data center industry survey results 2011. Tech. rep., Uptime Institute (2011).
57. Torque: Torque resource manager (2013).
58. Tsiombikas, J.: C-Ray simple raytracing tests (2008).
59. Volk, E., Piątek, W., Jarus, M., Costa, G.D., Sisó, L., vor dem Berge, M.: First definition of

the hardware and software models. Tech report, CoolEmAll (2012).
60. Volk, E., Rathgeb, D., Oleksiak, A.: Coolemall – optimising cooling efficiency in data centres.

Computer Science - Research and Development (2013). DOI 10.1007/s00450-013-0246-4.
61. Witkowski, M., Oleksiak, A., Piontek, T., Weglarz, J.: Practical power consumption estimation

for real life hpc applications. Future Generation Computer Systems (2012).
62. Woessner, U., Volk, E., Gallizo, G.: Design of the CoolEmAll simulation and visualisation

environment. Tech report, CoolEmAll (2012).
63. Yeo, S., Lee, H.H.: SimWare: A Holistic Warehouse-Scale Computer Simulator. Computer

45(9), 48–55 (2012). DOI 10.1109/MC.2012.251.

Smart Data Center

Muhammad Usman Shahid Khan and Samee U. Khan

1 Introduction

All the internet services available these days are dependant and running in data
centers. Companies like Google, Facebook, and Microsoft hosts millions of servers
in their data centers to provide services to their users [19]. The enormous size of data
centers leads to huge energy consumption. According to a news article, Google drew
260 MW of power in 2011 [6] that cost millions of dollars.

Recently, the researchers have focused on reducing the data center energy cost.
The researchers have focused on migration of the workload from one geographical
location to another to use the time and location dependent electricity prices [2] [21].
Similarly, researchers have also focused on the use of Uninterrupted Power Supply
(UPS) in data centers to shave off the peak power demands [24]. UPS has also been
used to safe the data center from the unexpected power outages. The power outages
also cost millions of dollars to data centers. Amazon was hit a severe power outage
in 2012 that cost Amazon millions of dollars [17].

The modern smart grid provides the needed electricity to the data centers. Smart
grids provide different pricing schemes for electricity based on different time scales
[10, 18]. Due to huge electricity demands, the data centers acquires electricity from
grids using long term contracts in day ahead market. The long term contracts cost
lower than the real time market price of electricity [18]. In this paper, we propose
the idea to buy electricity from more than one smart grid. The local power grid will
act as the main power source for the data center. However, data center will also be
powered by the remote grid with the surplus power. The data center can purchase the
available surplus power from remote grids at lower prices than local grid long term

M. U. S. Khan (�) · S. U. Khan
Electrical and Computer Engineering Department,
North Dakota State University, 58102 Fargo, ND, USA
e-mail: ushahid.khan@ndsu.edu

S. U. Khan
e-mail: samee.khan@ndsu.edu

© Springer Science+Business Media New York 2015 247
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_7

248 M. U. S. Khan and S. U. Khan

market and real time market prices. The sale of surplus energy is advantageous to the
remote grids as the surplus energy is mostly wasted [14]. The amount of available
surplus power could vary over time. UPS available in the data center for backup can
be used to store surplus power from the remote grid or when price from the local
grid is low. When the surplus power from the remote grid is insufficient or the price
of electricity at local grid is high, the stored power in the UPS batteries can be used.

In this work, we have targeted the key problem in the data center that how to
minimize the long term running cost of the data center? Several sub problems are
investigated to answer the key problem. How much power should be purchased from
the local grid in long term and real time price rates? How to efficiently use the
available surplus power from the remote grid? How to best use the UPS for power
saving and for backup while saving the life of battery for longer time? To optimally
utilize the data center with multiple sources while minimizing the operational cost
is really challenging task. There are numerous uncertainties both in power demand
and supply side. The power demands of the data center are time varying and job
dependent. Each job can consume different amounts of power as they may utilize
different number of machines. Similarly on the supply side, availability of surplus
energy is an uncertain and long term and real time prices from local grids can change
with time.

Previous works on reducing the power consumption and cost of electricity for
data center, assume the prior knowledge of the power demand to predict the future
power demands [25]. The previous works do not consider the scenario of providing
the power to the data center from multiple power grids. In contrast to the previous
works, we aim to design efficient strategy to reduce the long term operational cost
of the data center while having the constraints of dynamic power demand with no
previous knowledge and uncertain availability of surplus power from remote grid.

We develop an algorithm titled “Smart Data center” to make a data center smarter
using two stage Lyapunov optimization techniques. Smart Data center computes the
amount of power to be purchased from the local grid in a long term contract. The
amount of electricity to be purchased from the local grid on real time market rate and
amount of the electricity to be stored and retrieved from the UPS are also computed
by the Smart Data center algorithm. We analyze the performance of the Smart Data
center algorithm through rigorous theoretical analysis in this work.

2 System Model

We assume a discrete time model for the working of a data center. The notations
and their meanings in the model are presented in the Table 1. Time for the model is
divided into k slots each of length T. The length T depends on the intervals provided
by the grids in long term contracts. Each time slot is further divided into fine grained
slots of length L. We also assumed that power demand of the data center d(t) and
available surplus power of remote grid r(t) are random variables. The operations of
the data center in a system model include following key decisions.

Smart Data Center 249

Table 1 Notations and their
meanings Notation Meaning

t Coarse grain time slot

τ Fine grain time slot

d(t) Power demand

r(t) Surplus power at remote grid

Pmax Maximum purchasing power capacity

Ef ull(t) Electric power units purchased in long term
for time t

Elt (t) Electric power units purchased in long term
for time τ

r(t) Units of surplus power purchased from remote
grid

plt (t) Unit price of electricity in long term market

prt (t) Unit price of electricity in real time market

ps (t) Unit price of surplus power from remote grid

Pgrid Maximum capacity of local grid

Eu(τ) Level of power in the UPS

Eu max, Maximum and minimum capacity of UPS

Eu min

D(τ) Amount of power discharge from battery at
time τ

R(τ) Amount of power (Re)charged in battery at
time τ

η Efficiency of the UPS

2.1 Long Term Power Purchase

The data center takes notes of the power demand d(t) and available surplus power at
the remote grid r(t) at the start of each coarse grained time slot t. The data center is
provided with a maximum threshold limit Pmax as a maximum purchasing power
capacity. Based on the observations, the data center takes the decision that how
much electric power units Efull (t) should be purchased from the local grid at price
plt(t) within the purchasing capacity at the start of coarse grain time slot. After the
purchase, the data center divides the electric power units equally to be used in all the
fine grain time slots.

Elt (t) = Efull(t)

L
. (1)

For example, suppose the data center decides to purchase 720 KW when the length of
the coarse grained time slot is one day and fine grained time slot is 1 h. In the above

250 M. U. S. Khan and S. U. Khan

mentioned case, the data center will distribute the 500 KW equally, i.e., 500/24=
30 KW for each fine grained time slot.

2.2 Real Time Power Purchase

We have assumed that the cost of the surplus power at the remote grid is lower than
the local grid long term and real time power purchase. Whenever there is a surplus
power available on the remote grid in time slot t, the data center tries to use it as
much as possible. In case when surplus power is more than the power demand, the
excess power is used to charge the UPS. At each fine grained time slot τ, the UPS
will not be needed to charge or discharge if the sum of long term power purchase
from local grid and surplus power from the remote grid is less than the total power
demand from the data center.

Elt (t) + r(τ) ≥ d(τ). (2)

Otherwise, if the power demand is more than the sum (left hand side of the Equation)
than the data center has to make the decision to discharge the power from the batteries
D(τ) of the UPS. If the UPS power is not enough for the remaining power demand,
more electric power units Ert(τ) are purchased from the local grid at real time price
rateprt(τ) To balance out the equation, any surplus purchased power is used to charge
the batteries of the UPS C(τ). We have an overall equation of the data center as

Elt (t) + Ert (τ) +D(τ) + r(τ) − C(τ) = d(τ),

0 ≤ Elt (t) + Ert (τ) ≤ Pgrid. (3)

3 Constraints

There are a number of constraints that must be satisfied by the data center.

3.1 Purchasing Accuracy and Cost

The price of surplus electricity from the remote grid is lower than the electricity
prices in the long term contract and real time market price rates from local grids.

prt (τ) > plt (t) > ps(τ). (4)

However, availability of surplus electricity from the remote grid is dynamic in nature.
Similarly, the data center can purchase electricity from real time market but that is

Smart Data Center 251

the most expensive. Therefore, the data center has to make a decision of purchase of
electricity with accuracy to keep the overall cost of the electricity purchased to be
minimized.

3.2 Data Center Availability

Let Eu(τ) be the level of the power in the UPS batteries at time τ. Power in the
batteries of the UPS is affected by the efficiency of USP (dis)charging. We assumed
that efficiency for discharging and charging η ∈ [0,1] is same. The dynamics of the
UPS power level can be expressed by the following equation

Eu(τ + 1) = Eu(τ) + ηR(τ) − D(τ)

η
. (5)

To guarantee the availability of the data center in case of power outages, minimum
level of power must be maintained in the batteries of the UPS. If the maximum power
storage capacity of the UPS is Eu max than we have

Eu min < Eu(τ) < Eu max. (6)

3.3 UPS Lifetime

At given time t, the amount of power that can be stored or retrieved from the batteries
of the UPS is limited by their maximum amounts

0 ≤ D(t) ≤ D max, 0 ≤ R(t) ≤ R max. (7)

The lifetime of the UPS is constrained within the number of cycles of UPS charging
and discharging [24]. The operating cost of the UPS also depends upon UPS charging
and discharging cycles. We assume that cost of UPS Cr is same in both cases of
charging and discharging. If the purchase cost of a new UPS is Cpurchase that can
sustainMcycles than we have

Cr = Cpurchase

Mcycles

. (8)

If the life of UPS is defined as Life, than the maximum number of times the batteries
of the UPS are allowed to charge and discharge over a longer period of time [0, t− 1]
and t ∈ kT, will be

Nmax = Mcycles ∗ kT
Life

. (9)

252 M. U. S. Khan and S. U. Khan

The variable kT is the total time for modeling, i.e., k coarse grain slots of length T.
Therefore, Nmax satisfies the following equation

0 ≤
t−1∑
τ=0

∂(τ) ≤ Nmax. (10)

In the above equation, ∂(τ) denotes the usability of the batteries of UPS in time τ.
The variable ∂(τ) will be 1 if the discharge or recharge occurs otherwise the variable
takes the zero value. The operational cost of the UPS can now be calculated as the
product of usability of the batteries of UPS and cost of UPS in time slot t.

Cost of UPSopertional = ∂(t) ∗ Cr. (11)

4 Cost Minimization

The operational cost of the data center at a fine grained time slot τ is the sum of the
costs for purchasing electricity from the local grid, remote grid, and the operational
cost of the UPS.

Cost of data centeropertiaonal(τ) (12)

= Elt (t)plt (t) + Ert (τ)prt (τ) + r(t)ps(t) + ∂(t)Cr.

In this work, we aimed at designing the algorithm that can make decisions by solving
the following minimization problem

min Cost of data centeravg
∼= lim

t→∞

1

t

t−1∑
τ=0

Cost of data centeropertiaonal (τ),

∀t: Constraints (3) (6) (7) (8)

(13)

5 Algorithm Design

We design our algorithm using the Lyapunov optimization technique to achieve the
near optimal solution. The algorithm does not use the prior knowledge of power
demand. To guarantee the availability of data center, the algorithm has to track the
status of power level in the batteries of the UPS. Tracking the status of power level in
the batteries is necessary as we want to ensure that each time the power is discharged
or charged from the batteries of the UPS, there should be enough power remain in
the battery that can be used during blackouts as backup. To track the battery power
of the UPS, we use the supporting variable X(t) defined as follows:

X(t) = Eu(t) − VPmax

T
− Eu min − D max

η
. (14)

Smart Data Center 253

In the above equation, V is a control variable that ensures that whenever batteries of
UPS is charged or discharged, the power in the batteries should lie in the minimum
and maximum level. With increment in the time slot t, the variable X(t) changes as

X(t + 1) = X(t) + ηR(t) − D(τ)

η
. (15)

We consider the constraint of availability of power level in the batteries of the UPS as
a queue problem and transform the constraint into queue stability problem, similar to
the work presented in [23]. We define the Lyapunov function to represent the scalar
metric of queue congestion as

L(t) ∼= 1

2
X2(t). (16)

We use the Lyapunov drift to stabilize the system that pushes the Lyapunov function
towards lower congestion state. The Lyapunov drift over time period T is defined as

�LDT ∼= L(t + T) − L(t)|X(t). (17)

We obtained the drift penalty term by following the Lyapunov drift penalty framework
[5]. In every time frame of length T, the Smart Data center algorithm makes a decision
to minimize the upper bound on the drift plus penalty. The upper bound can be
obtained by adding the operational cost to the drift plus penalty as:

�LDT (t) + V ∗
t+T−1∑
τ=0

Cost of data centeropertiaonal (τ) | X(t). (18)

The data center chooses the control parameter V to adjust the tradeoff between the
level of power in the UPS for backup and minimizing the operational cost of the data
center. For optimal cost minimization, V has to be set high and for more power back
up, the value of V needs to be small.

5.1 Drift Plus Penalty Upper Bound

A key question is to find out the upper bound for the value of V. The upper bound of
drift plus penalty helps in finding the maximum operational cost of the data center
that can be saved under the constraint of keeping the power in the batteries of the
UPS for backup. To find out the upper bound we assume that Lyapunov function
L(0)> ∞, t =KT, τ ∈ [t, t +T−1], and V > 0. We take the squares of the Eq. (15)
on both sides.

254 M. U. S. Khan and S. U. Khan

X (τ + 1) = X (τ)+ ηR (t)− D (τ)

η
,

X2 (τ + 1) = X2 (τ)+ 2 ∗X (τ) ∗
[
ηR (t)− D (τ)

η

]
+
[
ηR (t)− D (τ)

η

]2

,

[
X2 (τ + 1)−X2 (τ)

]
2

= X (τ) ∗
[
ηR (t)− D (τ)

η

]
+
[
ηR (t)− D(τ)

η

]2

2
.

As R(t) ∈ [0, Rmax] and D(t) ∈ [0, Dmax], the above equation is transformed into the
following equation[

X2 (τ + 1)−X2 (τ)
]

2
≤ X (τ) ∗

[
ηR (t)− D (τ)

η

]

+1

2
max

[
η2R2 (t),

D2 (τ)

η2

]
. (19)

We get the 1-time slot conditional Laypunov drift by taking the expectation over
power demand, available surplus power and its price in the remote grid, and the price
of the electricity in long term contract and real time market in the local grid on the
auxiliary variable X(t) as

�LD1 (t) ≤ X (τ) ∗
[
ηR (t)− D (τ)

η

]
+ 1

2
max

[
η2R2 (t),

D2 (τ)

η2

]
. (20)

By taking the sum of all inequalities over τ ∈ [t, t + 1, t +T− 1], we obtain
the T -time slot Laypunov drift

�LDT (t) ≤ X (τ) ∗
[
ηR (t)− D (τ)

η

]
+ T ∗

{
1

2
max

[
η2R2 (t),

D2 (τ)
η2

]}
.

(21)

Finally we add the operational cost on both sides of the equation and get the upper
bound on the T -time slot Lypunov drift plus penalty.

�LDT (t)+ V ∗
t+T−1∑
τ=0

Cost of data centeropertiaonal (τ) | X (t)

≤ X (τ) ∗
[
ηR (t)− D (τ)

η

]
+ T

∗
{

1

2
max

[
η2R2 (t),

D2 (τ)

η2

]}
+ V

∗
t+T−1∑
τ=0

Cost of data centeropertiaonal (τ) | X (t). (22)

The Smart data center algorithm follows the drift plus penalty principle and tries to
minimize the right hand side of the Equation.

Smart Data Center 255

5.2 Relaxed Optimization

In order to minimize the right hand side of the Eq. (22), the data center needs to
know the queue backlog X(t) over time τ ∈ [t, t +T− 1]. The amount of available
surplus power in the remote grid, the power level in the batteries of the UPS, and the
power demand affects the queue X(t). Moreover, the dynamic nature of electricity
prices, available surplus power, and power demand are major constraints for taking
the decision. The researchers have used forecasting techniques to predict the variable
nature of the parameters. However, one day head forecasting techniques causes daily
mean errors of approximately 8.7 % [16]. Therefore, in order to remove the need
of forecasting techniques we used the near-future queue blog statistics. We used the
current values of the queue, i.e., X(τ)=X(t) for the time period t<τ ≤ t +T− 1 for
the backlog statistics. However, the use of near future queue backlog result in slightly
“loosening” of the upper bound on the drift plus penalty term. We have proved this
loosening of the upper bound in Corollary 1.

Corollary 1 (Loosening Drift plus penalty bound) Suppose the control parameter
V is positive and for some nonnegative integer K, the time slot t is equal to KT. By
changing the time period from τ to t in the queue X, the drift plus penalty satisfies:

�LDT (t)+ VE{
t+T−1∑
τ=t

Cost of data centeropertiaonal (τ) |X (t)}

≤
{

1

2
max

[
η2R2 (t),

D2 (τ)

η2

]}

+
T (T − 1)

[
η2R2 (t), D2(τ)

η2

]
2

+ E

{
t+T−1∑
τ=t

X (t) ∗
[
ηR(τ)− D (τ)

η

]
|X(t)

}
(23)

Proof According to the Eq. (15), for any τ ∈ [t, t+T− 1], we get

X(t) − (τ − t)Dmax
η

≤ X(τ),

and X(τ) ≤ (τ − t)ηRmax.
Therefore, recalling each term in Eq. (22), we have

t+T−1∑
τ=t

X(τ) [R (τ) η − D (τ)/η]

≤
t+T−1∑
τ=t

[X(t)+ (τ − t) ηRmax]R(τ)η

256 M. U. S. Khan and S. U. Khan

−
t+T−1∑
τ=t

[X(t)− (τ − t)Dmax/η]D(τ)/η

=>
t+T−1∑
τ=t

X(τ) [R(τ) η −D(τ) /η]

+
t+T−1∑
τ=t

[
(τ − t)η2RmaxR(τ)−DmaxD(τ)/η2

]

≤
t+T−1∑
τ=t

X(τ)[R(τ) η −D(τ)/η]

+
T (T − 1)

[
η2R2 (t), D2(τ)

η2

]
2

By substituting the above inequalities into Eq. (22), the corollary is proved.

5.3 Two Timescale Smart Data Center Algorithm

We see that the upper bound that can be achieved using Eq. (23) is larger than the one
in Eq. (22). The Smart Data center algorithm aims to make the decision to minimize
the right hand side of the Eq. (23). Depending on the available surplus power at
the remote grid r(t), the algorithm has to make the decision to purchase Efull(t) at
the start of the each coarse grained timeslot t. Moreover, at the beginning of each
fine grain time slot τ, the Smart Data center algorithm has to make the decision
for Ert (τ),D(τ), andR(τ). Consequently, the problem can be separated into two
timescales as two subproblems. In the coarse grain time slot, the algorithm has to
make the decision to ensure that current energy demand is fullfiled and batteries of
the UPS should be charged with enough power for the future use. The decisions for
UPS charging and discharging along with purchase of electricity on real time rate
from the local grid are made by algorithm at the start of each fine grain timeslot. The
queue statistics are updated at the end of each time slot.

Algorithm 1 The Smart Data center Algorithm

1. Long term planning: The data center decides the optimal power purchaseEf ull(t)
at the start of each coarse-grained time slot t = kT where k is nonnegative integer.
The long term ahead power purchase is to minimize the following problem

min E

{
t+T−1∑
τ=t

V [Elt (t)plt (t)+ Ert (τ)prt (τ)+ r(τ)ps (τ)] |X(t)
}

+ E

{
t+T−1∑
τ=t

X(τ)[R(τ)η −D(τ)/η]|X (t)
}

s.t. (3)

Smart Data Center 257

2. Real time power balancing: The data center divides the power purchased in long
term equallyElt (t) = Efull(t)

L
among all the fine grained time slots τ ε [t, t+T− 1].

The data center decides real time purchase of power Ert (τ) from the local grid,
charging R(τ) and discharging D(τ) of batteries of the UPS to minimize the
following problem

minVErt (τ)prt (τ) + r(τ)ps(τ) +X(t) [R(τ)η − D(τ)/η]

s.t. (3)(6)(7)(8)

3. Queue update: Update the queues using Eqs. (5) and (15).

6 Performance Analysis

In this section, we analyze the performance bound of the Smart Data center algorithm.

Theorem (Performance Bound) The time-averaged cost ηRmax achieved by the
Smart Data center algorithm based on accurate knowledge of X(τ) in the future
coarse-grained interval satisfies the following bound with any nonnegative value of
decision parameter V :

1. The time-average cost Cost of data centeravg achieved by the algorithm satisfies
the following bound:

Cost of data centeravg
∼= lim
t→∞1/t

t+T−1∑
τ=0

E
[
Cost of data centeropertiaonal (τ)

]

≤ Øopt +
[{

1

2
max

[
η2R2 (t),

D2 (τ)

η2

]}

+
T (T − 1)

[
η2R2 (t), D2(τ)

η2

]
2

⎤
⎦ /V

Where, Øopt is an optimal solution
Proof: Let t= kT for nonnegative k and τ ∈ [t , t + T − 1]. We first look at

the optimal solution. In optimal solution, all the future statistics including power
demand, surplus energy from the grid and energy prices are kown to the data center
in advance. Due to knowledge of future, the data center can manage to reduce the
real time purchase to zero. We can say the optimal solution is

Øopt ∼= min {Elt (t) plt (t)+ r(τ)ps (τ)+ ∂ (t) ∗ Cr}
s.t. Elt (t)+ D(τ)+ r(τ)− C(τ) = d(τ),
0 ≤ Elt (t) ≤ Pgrid,

∀t: constraints (6) (7) (10).

258 M. U. S. Khan and S. U. Khan

By using the optimal solution in right hand side of the Eq. (23), we get

�LDT (t)+ VE

{
t+T−1∑
τ=t

Cost of data centeropertiaonal (τ)|X (t)
}

≤
{

1

2
max

[
η2R2 (t),

D2 (τ)

η2

]}

+
T (T − 1)

[
η2R2 (t), D2(τ)

η2

]
2

+ VØopt

Taking the expectation of the both sides and rearranging terms we get

E {L (t + T)− L (t)} + V TE

{
t+T−1∑
τ=t

Cost of data centeropertiaonal (τ)|X(t)
}

≤
{{

1

2
max

[
η2R2(t),

D2(τ)

η2

]}

+
T (T − 1)

[
η2R2 (t), D2(τ)

η2

]
2

+
⎫⎬
⎭ T + V TØopt .

By taking the sum over t = kT, k = 0,1,2,. . . , k − 1 and dividing both sides by VKT,
we get

1

kT
E

{
kT−1∑
τ=0

Cost of data centeropertiaonal (τ)

}

≤

⎧⎨
⎩
{

1
2max

[
η2R2 (t), D2(τ)

η2

]}
+

T (T−1)

[
η2R2(t), D

2(τ)
η2

]

2 +
⎫⎬
⎭

V
+ Øopt .

As the variable k approaches to infinity, k → ∞, the theorem is proved.

2. The UPS battery level Eu(t) is bounded in the range [Eumin, Eumax]. There is
always power remained in the batteries for backup in case of black out.

Proof: We first prove that

−VPmax

T
− Dmax

η
≤ X(t) ≤ Eumax − VPmax

T
− Eumin − Dmax

η

We prove this by induction. For t= 0 we have

X(0) = Eu(0) − VPmax

T
− Eumin − Dmax

η

Smart Data Center 259

and Eumin ≤ Eu(0) ≤ Eumax. So we get

−VPmax

T
− Dmax

η
≤ X(0) ≤ Eumax − VPmax

T
− Eumin − Dmax

η

Now we consider 0 ≤ X(t) ≤ Eumax − VPmax
T

− Eumin − Dmax
η

, therefore, there
is no battery recharging, i.e., R(t)= 0. The maximum amount of power that can be
discharged each time is Dmax

η
.

Now we have

−VPmax

T
− Dmax

η
< −Dmax

η
< X(t + 1) ≤ X(t)

≤ Eumax − VPmax

T
− Eumin − Dmax

η
.

For the case when −VPmax
T

< X(t) ≤ 0,D(t) = 0. The amount of power that can be
charged and discharged at maximum each time are ηRmax and Dmax

η
, respectively.

We get

−VPmax

T
− Dmax

η
< X(t + 1) ≤ X(t) + ηRmax

≤ Eumax − VPmax

T
− Eumin − Dmax

η
.

Finally consider the case, when −VPmax
T

− Dmax
η

≤ X(t) ≤ −VPmax
T

again D(t)= 0 as

X(t) ≤ −VPmax
T
. We get

−VPmax

T
− Dmax

η
< X(t)≤X(t + 1) ≤Eumax − VPmax

T
− Eumin − Dmax

η
.

Using Equ. 14, we have

−VPmax

T
− Dmax

η
≤ X(t) = Eu(t) − VPmax

T

−Eumin − Dmax

η
≤ Eumax − VPmax

T
− Eumin − Dmax

η
.

From all the cases, we can conclude that

Eu min < Eu(τ) < Eu max.

3. All decisions are feasible.

The smart data center algorithm makes decision to satisfy all the constraints.
Therefore, the Smart Data center algorithm is feasible.

260 M. U. S. Khan and S. U. Khan

7 Related Work

The past decade has witnessed the enormous growth in the online applications and
services. The online applications and services are hosted in data centers. With the
increase demand of online services, the cost of power consumption in the data cen-
ters is increasing significantly. There is extensive existing research on the power
management of data centers [1, 13, 22]. Most of the works focus on the reducing
the power consumption in the data center using different schemes like voltage scal-
ing, frequency scaling, and dynamic shutdown. However, the earlier works have not
focused on reducing the overall cost of the power used in the data center.

Recently, the researchers have started to focus on reducing the cost of power
utilized in the data center. Ref. [2, 20, 21], focused on migration of workload between
different data centers to utilize the low electricity prices in different geographical
locations. However, the emphasis is not on reducing the cost of a single data center.

For reducing the cost of a single data center, the researchers have emphasis on
the power storage in the data centers. In [7–9, 23] and [24], the researchers have
shown the importance of using UPS in the data center for reducing the overall cost
of electricity in a single data center. However, the aforementioned works have not
considered the multiple price markets to power up the data center.

In [10–12, 15] the authors have worked on energy procurement from long term,
intermediate, real time markets. However, the approaches in the aforementioned
schemes depends upon the forecasting techniques, such as dynamic programming
and Markov decisions to know the power demand in advance. Similar to our work,
Deng et al. [3, 4] have used two timescale Lyapunov optimization technique to reduce
the cost of a single data center. They have utilized the long term and real time price
market of a smart grid along with the On-Site wind or solar green energy. However,
they have ignored the cost of On-Site wind or solar energy. We have considered the
scenario of providing the power to the data center from multiple power grids, local
grid for long term and real time market, whereas remote grid for low cost surplus
energy.

8 Conclusions

In this work, we have targeted the key problem that how to minimize the cost of
power consumption in the data center? We proposed the new idea to power up the
data center from more than one Smart grid. We exploited the long term and real
time price market from the local grid and low cost surplus power from the remote
grid. We developed the algorithm titled “Smart Data center” that decide how much
power to be purchased from the long term and real time market. We also utilized the
Uninterrupted Power Supply (UPS) as back up in the data center. The performance
of the “Smart Data center” algorithm is analyzed using theoretical analysis. The
performance analysis of the algorithm using real world traces are left for future
work.

Smart Data Center 261

References

1. K. Bilal, S. U. R. Malik, O. Khalid, A. Hameed, E. Alvarez, V. Wijaysekara, R. Irfan, S.
Shrestha, D. Dwivedy, M. Ali, U. S. Khan, A. Abbas, N. Jalil, and S. U. Khan, “A Taxonomy
and Survey on Green Data Center Networks,” Future Generation Computer Systems, 2013.

2. N. Buchbinder, N. Jain, and I. Menache. “Online job-migration for reducing the electricity bill
in the cloud.” In NETWORKING, Springer, 2011, pp. 172–185.

3. W. Deng, F. Liu, H. Jin, and C. Wu. “SmartDPSS: Cost-Minimizing Multi-source Power Supply
for Datacenters with Arbitrary Demand.” In Proceedings of the 13th International Conference
on Distributed Computing Systems (ICDCS-13). 2013.

4. W. Deng, F. Liu, H. Jin, C. Wu, and X. Liu, “MultiGreen: cost-minimizing multi-source data-
center power supply with online control,” In Proceedings of the fourth international conference
on Future energy systems, pp. 149–160. ACM, 2013.

5. L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource allocation and cross-layer control in
wireless networks. Now Publishers Inc, 2006.

6. J.Glanz, “Google details, and defends, its use of electricity,” The New York
Times, 2011, http://www.nytimes.com/2011/09/09/technology/google-details-and-defends-
its-use-of-electricity.html, accessed August 2013.

7. S. Govindan, A. Sivasubramaniam, and B. Urgaonkar, “Benefits and limitations of tapping
into stored energy for datacenters,” In 38th Annual International Symposium on Computer
Architecture (ISCA), 2011, pp. 341–351. IEEE, 2011.

8. S. Govindan, D. Wang, A. Sivasubramaniam, and B. Urgaonkar, “Leveraging stored energy
for handling power emergencies in aggressively provisioned datacenters,” In ACM SIGARCH
Computer Architecture News, ACM, Vol. 40, No. 1, 2012, pp. 75–86.

9. Y. Guo, Z. Ding, Y. Fang, and D. Wu, “Cutting down electricity cost in internet data centers by
using energy storage,” In Global Telecommunications Conference (GLOBECOM 2011), 2011
IEEE, pp. 1–5. IEEE, 2011.

10. M. He, S. Murugesan, and J. Zhang, “Multiple timescale dispatch and scheduling for stochastic
reliability in smart grids with wind generation integration,” In INFOCOM, 2011 Proceedings
IEEE, 2011, pp. 461–465.

11. L. Huang, J. Walrand, and K. Ramchandran, “Optimal power procurement and demand re-
sponse with quality-of-usage guarantees,” In Power and Energy Society General Meeting,
IEEE, 2012, pp. 1–8.

12. L. Jiang and S. Low, “Multi-period optimal procurement and demand responses in the presence
of uncrtain supply,” In Proceedings of IEEE Conference on Decision and Control (CDC). 2011.

13. D. Kliazovich, P. Bouvry, and S. U. Khan, “GreenCloud: A Packet-level Simulator of Energy-
aware Cloud Computing Data Centers,” Journal of Supercomputing, Vol. 62, No. 3, pp. 1263–
1283, 2012.

14. J. A. P. Lopes, F. J. Soares, P. M. Almeida, and M. Moreira da Silva, “Smart charging strategies
for electric vehicles: Enhancing grid performance and maximizing the use of variable renewable
energy resources,” In EVS24 Intenational Battery, Hybrid and Fuell Cell Electric Vehicle
Symposium, Stavanger, Norveška. 2009.

15. J. Nair, S. Adlakha, and A. Wierman, Energy procurement strategies in the presence of
intermittent sources. Caltech Technical Report, 2012.

16. F. Nogales and J. Conttreas, “Forecasting Next Day Electricity Prices by Time series Models”,
IEEE Transaction on power systems, Vol. 17, No, 2, May 2002.

17. F. Paraiso, P. Merle, and L. Seinturier, “Managing elasticity across multiple cloud providers,”
In Proceedings of the 2013 international workshop on Multi-cloud applications and federated
clouds, pp. 53–60. ACM, 2013.

18. A. Qureshi, “Power-demand routing in massive geo-distributed systems,” PhD diss., Mas-
sachusetts Institute of Technology, 2010.

262 M. U. S. Khan and S. U. Khan

19. A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs. “Cutting the electricity bill
for Internet-scale systems.” ACM SIGCOMM Computer Communication Review, Vol. 39, No.
4, 2009, pp. 123–134.

20. L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost: optimization of distributed in-
ternet data centers in a multi-electricity-market environment,” In INFOCOM, 2010 Proceedings
IEEE, pp. 1–9. IEEE, 2010.

21. L. Rao, Lei, X. Liu, M. D. Ilic, and Jie Liu, “Distributed coordination of internet data centers
under multiregional electricity markets.” Proceedings of the IEEE, Vol. 100, No. 1,2012 pp.
269–282.

22. R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No ‘power’ struggles:
Coordinated multi-level power management for the data center,” ACM SIGARCH Computer
Architecture News, Vol. 36, Mar. 2008, pp. 48–59.

23. R. Urgaonkar, B. Urgaonkar, M. l. J. Neely, and A. Sivasubramaniam, “Optimal power cost
management using stored energy in data centers,” In Proceedings of the ACM SIGMETRICS
joint international conference on Measurement and modeling of computer systems, pp. 221–
232. ACM, 2011.

24. D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H. Fathy, “Energy storage in
datacenters: what, where, and how much?,” In ACM SIGMETRICS Performance Evaluation
Review, Vol. 40, No. 1, ACM, 2012, pp. 187–198.

25. X. Lu, Xin, Z. Y. Dong, and X. Li. “Electricity market price spike forecast with data mining
techniques.” Electric power systems research, Vol. 73, No. 1, 2005, pp. 19–29.

Power and Thermal Efficient Numerical
Processing

Wei Liu and Alberto Nannarelli

1 Introduction

Numerical processing is at the core of applications in many areas ranging from
scientific and engineering calculations to financial computing. These applications
are usually executed on large servers or supercomputers to exploit their high speed,
high level of parallelism and high bandwidth to memory.

As of 2013, the performance of the world’s top supercomputers are measured
at petaflops (∼1015 floating-point operations per second, or FLOPS). To reach the
next level of computing, which is exa-scale (exa is E = 1018), the performance
has to increase by 30 times. In particular, the U.S. Department of Energy has asked
the industry to reach that goal while staying within a 20 MW power envelope. This
directly leads to a performance efficiency requirement of 50 GFLOPS/W, which
is about 20 times higher than where we are today. This gap cannot be fulfilled by
semiconductor process evolution alone.

High power dissipation might result in excessive heating. Because silicon is not
a good heat conductor, “hotspots” might form on the die in areas with high power
density.

One of the consequence of increased die temperature is an increased leakage
power that contributes to the rise of temperature in the hotspot. This is clearly a
positive-feedback loop which might compromise (burn-down) the device.

Moreover, high temperatures have a negative impact on reliability. Beside the ex-
treme effect of burn-down, with device scaling positive/negative biased temperature
instability (P/NBTI) is becoming one of the major reliability concerns that can limit
the device’s lifetime. The NBTI effect primarily affects PMOS transistors (PBTI

W. Liu (�)
Oticon A/S, Smørum, Denmark
e-mail: wli@oticon.dk

A. Nannarelli
DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
e-mail: alna@dtu.dk

© Springer Science+Business Media New York 2015 263
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_8

264 W. Liu and A. Nannarelli

affects NMOS transistors) and can lead to a significant shift in the threshold volt-
age over time. The delay increase induced by P/NBTI aging can severely degrade
performance and, in the worst case, result in system failure [1, 2].

Another not negligible aspect of running data centers is the cost of electricity.
Electrical power is not only used to perform the computation, but also to cool
down the machines [3]. At today’s power efficiency, the cost of running an exascale
supercomputer would be more than $ 2 billion per year [4].

Therefore, to meet the power efficiency challenge, we need to think at all levels
of abstraction.

Floating-point units (FPUs) are a good case study for power and thermal aware
design. FPUs are found in a wide variety of processors ranging from server and desk-
top microprocessors, to graphic processing units (GPUs), to digital signal processors
(DSPs), mobile Internet devices and embedded systems.

Floating-point operations are much more complex than their integer and fixed-
point counterparts. Consequently, FPUs usually occupy a significant amount of
silicon area and can consume a large fraction of power and energy in a chip. For
scientific and graphics intensive applications, the high power consumption in the
FPU can make it the hotspot on the die.

In this chapter, we first review the floating-point representation and the ba-
sic operations on floating-point numbers, including addition, multiplication, fused
multiply-add and division. In particular, we demonstrate different approaches to
implement division, namely the digit recurrence method and the Newton-Raphson
method. The first method uses only adders and shifters and produce one digit of
quotient per iteration. The second method, on the other hand, uses a floating-point
multiplier and requires less iterations. We then analyze the power dissipation in the
implementation of these operations for different approaches in the design of floating-
point units. To compare the energy consumption between different design choices,
we evaluate different FPUs’configurations when executing realistic workloads. Since
the consumed power is mostly dissipated in the form of heat, we also compare the
different designs in terms of thermal distribution, namely peak temperature and ther-
mal gradient. Finally, we discuss floating-point unit design for the next generation
processors.

2 Floating-Point Representation

A floating-point representation is used to represent real numbers in a finite number of
bits. Since the set of real numbers is infinite, it is only possible to exactly represent
a subset of real numbers in the floating-point representation. The rest of the real
numbers either fall outside the range of representation (overflow or underflow), or
they are approximated by other floating-point numbers (roundoff). The most used
representation is sign-and-magnitude, in which case a floating-point number x is
represented by (Sx ,Mx , Ex):

x = (−1)Sx ×Mx × bEx (1)

Power and Thermal Efficient Numerical Processing 265

where Sx ∈ {0, 1} is the sign, Mx denotes the magnitude of the significand, b is a
constant called the base and Ex is the exponent.

A floating-point representation system involves many parameters and historically
many floating-point processors were designed using a variety of representation sys-
tems. To avoid incompatibilities between different systems, the IEEE Floating-point
Standard 754 was developed, which is followed by most floating-point processors
today. The latest version of the standard (IEEE 754-2008 [5]) defines the arithmetic
formats of binary and decimal floating-point numbers as well as the operations that
perform on these numbers. We briefly summarize the main parts of the IEEE Standard
754 for binary numbers in this section.

2.1 Formats

The magnitude of the significandMx is represented in radix 2 normalized form with
one integer bit:

1.F

where F is called the fraction and the leading 1 is called the hidden bit. The exponent
Ex is base 2 and in biased representation with

B = 2e−1 − 1

where e is the number of bits of the exponent field. When Ex = 0 and F is non-
zero, the number is called subnormal, and the hidden bit in its representation is a 0.
Consequently, the value of a normal floating-point number represented in the IEEE
format can be obtained as:

x = (−1)Sx × 1.Fx × bEx−B (2)

The three components are packed into one word with the order of the fields in S, E
and F . The IEEE standard 754 defines four binary floating-point formats [5]:

• binary16 (Half): S(1), E(5), F(10).
• binary32 (Single): S(1), E(8), F(23).
• binary64 (Double): S(1), E(11), F(52).
• binary128 (Quad): S(1), E(15), F(112).

2.2 Rounding Modes

The standard defines five rounding modes, divided in two categories:

• Round to nearest: Round to nearest, ties to even (default); Round to nearest, ties
away from zero.

• Directed: Round toward 0 (truncated); Round toward +∞; Round toward −∞.

266 W. Liu and A. Nannarelli

2.3 Operations

Required operations include:

• Numerical: add, subtract, multiply, divide, remainder, square root, fused multiply-
add, etc.

• Conversions: floating to integer, binary to decimal (integer), binary to decimal
(floating), etc.

• Miscellaneous: change formats, test and set condition flags, etc.

2.4 Exceptions

The standard defines five exceptions, each of which sets a corresponding status flag
when raised and by default the computation continues.

• overflow (result is too large to be represented).
• underflow (result is too small to be represented).
• division by zero.
• inexact result (result is not an exact floating-point number).
• invalid operation (when a Not-A-Number result is produced).

In the following sections, we describe the algorithm and implementation for floating-
point operations. In specific, the operations described are: add/subtract, multiply,
fused multiply-add and divide. Of all these operations, division is the most com-
plex and we will present several algorithms and implementations for the division
operation.

For each operation, we first present a high level description of the steps to be
performed in generic form. Then, a hardware implementation of the operation is
given to illustrate the execution of different algorithms. We assume the operands and
results are represented by the triplet (S,M , E) as previously described. To simplify
the description of algorithms, letM∗ = (−1)SM represent the signed significand.

3 Floating-Point Addition

The addition/subtraction is described by the following expression:

z = x ± y
The high level description of this operation is composed of the following steps:

1. Add/subtract significands and set exponent.

M∗
z =

⎧⎨
⎩

(M∗
x ± (M∗

y × b(Ey−Ex))) × bEx if Ex ≥ Ey
((M∗

x × b(Ex−Ey)) ±M∗
y) × bEy if Ex < Ey

Power and Thermal Efficient Numerical Processing 267

Compare Swap

Bit-invert
control R-Shifter

Inverter Inverter

LZA Adder

L-Shifter L1/R1-Shifter

MUX

ROUND

Exponent
Difference

Mux

Exponent
UpdateSign

EzSz Mz

d
sgn(d)

Ex Ey

sub

d

sgn(d)

ovf

ovf_rndovf

EOP
zero(d)

Mx My

3 ms bits of
adder output

cmp
EOP

Sy

Sxsgn(d)
zero(d)

cmp

01
3 ms bits of
adder output

Fig. 1 Single path floating-point addition

Ez = max(Ex,Ey)

2. Normalize significand and update exponent.
3. Round, normalize and adjust exponent.
4. Set flags for special cases.

A single path implementation of the floating-point add operation is shown in Fig. 1.
The figure is derived from [6], where a more detailed description of the unit is given.
To avoid having two alignment shifters, the operands are swapped according to the
sign of the exponent difference. A two’s complement adder performs the sign-and-
magnitude addition in step 1. When the effective operation is subtraction (determined
by the operation and the signs of the operands), the smaller operand is complemented
by bit-inversion plus carry-in to the adder. This is to avoid complementing the output
of the adder when the result is negative. The leading zero anticipation (LZA) unit
determines the position of the leading one in the result in parallel with the addition.

In the normalization step, two cases can occur. In the first case, the effective
operation is subtraction and the output of the adder might have many leading zeros,
which requires a massive left shift of the result and no roundup is necessary since the

268 W. Liu and A. Nannarelli

exponents difference is less than 2 and no initial massive right shift was performed.
In the second case, the output of the adder contains only one leading zero or has an
overflow due to addition. In this case, a shifting of only one position to the left or to
the right is required and subsequently a roundup is necessary. The two cases can be
designed into separate paths in order to reduce the latency in both paths [7].

4 Floating-Point Multiplication

The multiplication of two floating-point numbers x and y is defined as:

z = x × y
The high level description of this operation is composed of the following steps:

1. Multiply significands and add exponents.

M∗
z = M∗

x ×M∗
y

Ez = Ex + Ey + B
2. NormalizeM∗

z and update exponent.
3. Round.
4. Determine exception flags and special values.

The basic implementation of floating-point multiplication is shown in Fig. 2. For
the sake of simplicity, we only show the data paths for the significands in block
diagrams. Parallel multiplication (combinational) is a three steps computation [6].
We indicate with

z = x × y
the product z (n+m bits) of a n-bit operand x and a m-bit operand y.

1. First, m partial products

zi = 2ix · yi i = 0, . . . ,m− 1

are generated. Because yi = {0, 1}, this step can be realized with a n × m array
of AND-2 gates1

2. Then, the m partial products are reduced to 2 by an adder tree

m−1∑
i=0

2ix · yi = zs + zc.

3. Finally, the carry-save product zs , zc is assimilated by a carry-propagate adder
(CPA).

z = zs + zc.

Power and Thermal Efficient Numerical Processing 269

Fig. 2 Implementation of
floating-point multiplication
(significands only)

The delay in the adder tree and its area depend on the number of addends to be reduced
(m : 2). By radix-4 recoding the multiplier y, often referred as Booth’s recoding,
the number of partial products is halved m

2 . As a consequence, the multiplier’s adder
tree is smaller and faster. However, in terms of delay, the reduction in the adder tree
is offset by a slower partial product generation, due to the recoding [6]. On the other
hand, the reduction in area is significant, and the power dissipation is reduced as well

1 Shifting (2i) is done by hard-wiring the AND-2 array’s output bits.

270 W. Liu and A. Nannarelli

due to both the reduced capacitance (area) and the nodes’ activity because sequences
of 1’s are recoded into sequences of 0’s resulting in less transitions.

The significand of the product might have an overflow in which case it is necessary
to shift the result one position to the right and increment the exponent. Finally,
rounding is performed according to the specified mode.

5 Floating-Point Fused Multiply-Add

The fused multiply-add (FMA) operation is a three operand operation defined by the
following expression:

z = a + b × c
The high level description of this operation is composed of the following steps:

1. Multiply significands M∗
b and M∗

c , add exponents Eb and Ec, and determine the
amount of alignment shift of a.

2. Add the product ofM∗
b ×M∗

c and the alignedM∗
a .

3. Normalize the adder output and update the result exponent.
4. Round.
5. Determine exception flags and special values.

The multiply-add operation is fundamental in many scientific and engineering ap-
plications. Many commercial processors include a FMA unit in the floating-point
unit to perform double-precision floating point fused multiply-add operation as a sin-
gle instruction. The main advantages of the fused implementation over the separate
implementation of multiplication and addition are:

• The high occurrence of expressions of that type in scientific computation, and the
consequent reduction in overhead to adjust the operands from the IEEE format to
the machine internal representation (de-normalization, etc.).

• Improvement in precision, as the result of multiplication is added in full precision
and the rounding is performed on a + b × c.

The drawback is that if a large percentage of multiply and add cannot be fused, the
overhead in delay and power is large especially for addition.

The architecture of an FMA unit for binary64 (double precision) significands,
shown in Fig. 3, is derived from the basic scheme in [6] and [8]. Registers A, B
and C contain the input operands and register Z contains the final result. To prevent
shifting both a and the product of b and c, a is initially positioned two bits to the left
of the most significant bit (MSB) of b× c so that only a right shift is needed to align
a and the product. The zero bits inserted in the two least-significant (LS) positions
are used as the guard and round bits when the result significand is a. The amount of
shift depends on the difference between the exponents of a and b × c. Moreover, a
is conditionally inverted when the effective operation is subtraction.

Power and Thermal Efficient Numerical Processing 271

CBA

INV

RSHIFTER

Z

MULTIPLIER

CSA3:2

ADDER

INV

LSHIFTERLOD

53
53 53

106 106
161

161

53

10655

161 161

Stage1

Stage2

Stage3

ROUNDING
Stage4

Fig. 3 Scheme of an FMA unit (significands only)

A Booth encoded tree multiplier computes the product of b and c and the result
is output in carry-save format to be added with the shifted a. Since the product has
106 bits, only the 106 LSBs of the shifted a are needed in the carry-save adder (CSA).
The 55 MSBs of the shifted a are concatenated with the sum of the CSA to form
input to the adder. Since the carry in the output of the CSA has 106 bits, only one of
the input to the adder has 161 bits.

Consequently, the leftmost 55 bits portion of the adder is implemented as an
incrementer with the carry-out of the lower part as the increment input. The adder
also performs end-around-carry adjustment for effective subtraction. As the result
might be negative, an array of inverters is required at the output of the adder.

Once the result of the addition is obtained, the amount of normalization shift is
determined by the leading one detector (LOD). No right shift for normalization is
required due to the initial position of a.

272 W. Liu and A. Nannarelli

To increase the throughput, the FMA unit is implemented in a four-stage pipeline.
The position of the pipeline registers is indicated with dashed horizontal lines in
Fig. 3.

The FMA unit can be used to perform floating-point addition by making b = 1
(or c = 1) and multiplication by making a = 0.

6 Floating-Point Division

The division operation is defined by the following expressions:

x = q · d + rem
and

|rem| < |d| · ulp and sign(rem) = sign(x)

where the dividend x and the divisor d are the operands and the results are the quotient
q and the remainder rem.

The high-level description of the floating-point division algorithm is composed
of the following steps:

1. Divide significands and subtract exponents.

M∗
q = M∗

x /M
∗
d

Eq = Ex − Ed − B
2. NormalizeM∗

q and update exponent accordingly.
3. Round.
4. Determine exception flags and special values.

Division is implemented in hardware in all general purpose CPUs and in most pro-
cessors used in embedded systems. Several classes of algorithms exist to implement
the division operation in hardware, the most used being the digit recurrence method,
the multiplicative method and various approximation methods.

In the following, we briefly review these algorithms and implementations. Due
to the differences in the algorithms, a comparison among their implementation in
terms of performance and precision is sometimes hard to make. In Sect. 7.2, we will
use power dissipation and energy consumption as metrics to compare among these
different classes of algorithms.

6.1 Division by Digit Recurrence

The digit-recurrence algorithm [9] is a direct method to compute the quotient of the
division

x = qd + rem

Power and Thermal Efficient Numerical Processing 273

The radix-r digit-recurrence division algorithm is implemented by the residual
recurrence

w[j + 1] = rw[j] − qj+1d j = 0, 1, . . . , n

with the initial value w[0] = x. The quotient-digit qj+1, normally in signed-digit
format to simplify the selection function, provides log2 r bits of the quotient at each
iteration. The quotient-digit selection is

qj+1 = SEL(dδ , y) qj+1 ∈ [− a, a]

where dδ is d truncated after the δ-th fractional bit and the estimated residual, y =
rw[j]t , is truncated after t fractional bits. Both δ and t depend on the radix and the
redundancy (a). The residual w[j] is normally kept in carry-save format to have a
shorter cycle time.

The divider is completed by a on-the-fly convert-and-round unit [9] which converts
the quotient digits qj+1 from the signed-digit to the conventional representation, and
performs the rounding based on the sign of the remainder computed by a sign-zero
detect (SZD) block. The conversion is done as the digits are produced and does not
require a carry-propagate adder.

The digit-recurrence algorithm is quite a good choice for the hardware implemen-
tation because it provides a good compromise between latency, area and power and
rounding is simple (the remainder is computed at each iteration). A radix-4 division
scheme is implemented in Intel Pentium CPUs [10], in ARM processors [11] and in
some IBM FPUs [12].

6.1.1 Radix-4 Division Algorithm

We now briefly summarize the algorithm for radix-4 with the quotient digit selected
by comparison and speculative residual generation [11]. The radix-4 recurrence is

w[j + 1] = 4w[j] − qj+1d j = 0, 1, . . . , n

with qj+1 = {−2,−1, 0, 1, 2}.
The quotient-digit qj+1 is determined by performing a comparison of the truncated

residualy = 4̂w[j] (carry-save) with the four values (mk) representing the boundaries
to select the digit for the given d . That is,

y ≥ m2 → qj+1 = 2

m1 ≤ y < m2 → qj+1 = 1

m0 ≤ y < m1 → qj+1 = 0

m−1 ≤ y < m0 → qj+1 = −1

y < m−1 → qj+1 = −2

274 W. Liu and A. Nannarelli

4

CSA 3:2 CSA 3:2 CSA 3:2 CSA 3:2

sign−det. sign−det. sign−det. sign−det.

coder

q
j+1

8 8

m2 m 1 m0 m−1

sy cy

y
s

c
y

CSA 3:2CSA 3:2 CSA 3:2CSA 3:2

M U X 5 : 1

QSL

4
q
j+1

8 8

mks

s

cw [j] w [j]s

cw [j+1]w [j+1]

nn 2dd−d−2d

a b

Fig. 4 a Selection by comparison (QSL). b Single radix-4 division stage

This selection can be implemented with a unit (QSL) similar to that depicted in Fig. 4a
where four 8-bit comparators (sign-det.) are used to detect in which range y lies. The
coder then encodes qj+1 in 1-out-4 code which is suitable to drive multiplexers.

In parallel, all partial remainders wk[j + 1] are computed speculatively (Fig. 4b),
and then one of them is selected once qj+1 is determined.

The critical path of the unit in Fig. 4 is

tREG + tQSLCSA + tQSL8b−CPA + tbuff er + tMUX

6.1.2 Intel Penryn Division Unit

The division unit implemented in the Intel Core2 (Penryn) family is sketched in Fig. 5
[10]. It implements IEEE binary32/binary64 compliant division, plus extended pre-
cision (64 bits significand) and integer division. The unit consists of three main parts:
the pre-processing stage necessary to normalize integer operands to ensure conver-
gence; the recurrence stage; and the post-processing stage where the rounding is
performed.

The recurrence is composed of two cascaded radix-4 stages synchronized by a
two-phase clock to form a radix-16 stage (4 bits of quotient computed) over a whole
clock cycle. Each radix-4 stage is realized with a scheme similar to that of [11] shown
in Fig. 4.

This scheme was selected by Intel because of the reduced logical depth. However,
the speculation on the whole w-word (54 bits for [11], 68 bit for the Core2 format)
is quite expensive in terms of area and power dissipation.

According to [10], a maximum of 6 + 15 = 21 cycles are required to perform a
division on binary64 (double-precision) operands.

6.1.3 Radix-16 by Overlapping Two Radix-4 Stages

An alternative to the Penryn solution, is to have a radix-16 divider obtained by
overlapping (and not cascading) two radix-4 stages. In this scheme, the speculation

Power and Thermal Efficient Numerical Processing 275

Fig. 5 Architecture of Penryn
divider (significands only) dx

MU X

MU X

<<2

<<2

Post processing

Pre processing

Quotient/remainder

QSL Hybrid 68b
Adder

QSL Hybrid 68b
Adder

Radix 4

Radix 4

Latch/Register

Latch/Register

is applied to the narrower y-path as explained next. Examples of radix-16 dividers
by radix-4 overlapping are reported in [9] and [13].

The radix-16 retimed recurrence, illustrated in Fig. 6a, is

v[j] = 16w[j − 1] − qHj (4d)

w[j] = v[j] − qLjd
with qHj ∈ {−2,−1, 0, 1, 2}, qLj ∈ {−2,−1, 0, 1, 2}, and w[0] = x (eventually
shifted to ensure convergence). In Fig. 6a, the position of the registers is indicated
with a dashed horizontal line. The recurrence is retimed (the selection function is
accessed at the end of the cycle) to increase the time slack in the bits of the wide
w-path (at right) so that these cells can be redesigned for low power [13].

The block QSL in Fig. 6b is the same as that of Fig. 4a. In this case, while qH is
computed, all five possible outcomes of qL are computed speculatively. Therefore
the computation of qL is overlapped to that of qH , and qL is obtained with a small
additional delay.

276 W. Liu and A. Nannarelli

L
q

q
H

q
HL

q

Mux 2:1

−2d −d0d 2d

Mult/mux

vcvs

wcws

C S A

C S A

x

y
s

c
y

Selection Function

Mult/mux

0−8d 8d

m1m2 m0 m−1

d

Tablekm

3

−2d 2d

10

10

10

s16w

c16w

s16w
c16w

nn

n

nn

CSA CSA CSA CSA

M U X

10 10

−2d d−d 2d

q
H

q
L

QSL QSL QSL QSL QSL QSL

4

4 4

sy cy

8 8

mks

a b

Fig. 6 a Recurrence radix-16. b Overlapped selection function

The total number of iterations to compute a binary64 division, including
initialization and rounding, is 18.

6.2 Division by Multiplication

The quotientq of the division can also be computed by multiplication of the reciprocal
of d and the dividend x

q = 1

d
· x

This is implemented by the approximation of the reciprocal R = 1/d, followed by
the multiplication q = R · x.

By determining R[0] as the first approximation of 1/d , R can be approximated
in m steps by the Newton-Raphson (NR) approximation [6]

R[j + 1] = R[j](2 − R[j]d) j = 0, 1, . . . ,m

Each iteration requires two multiplications and one subtraction. The convergence is
quadratic and the number of iterationsm needed depends on the initial approximation
R[0], which is usually implemented by a look-up table.

Once R[m] has been computed, the quotient is obtained by an additional mul-
tiplication Q = R[m] · x. To have rounding compliant with IEEE standard, extra
iterations are required to compute the remainder and perform the rounding according
to the specified mode [6]:

• rem = Qd − x
• q = ROUND(Q, rem,mode).

Power and Thermal Efficient Numerical Processing 277

The NR algorithm for binary64 division (m = 2) with an initial approximation of 8
bits is summarized below.

R[0] = LUT(d);
FOR i := 0 TO 2 LOOP

W = 2 - d *R[i];
R[i+1] = R[i] * W;

END LOOP;
Q = x * R[3];
rem = x - d * Q;
q = ROUND(Q,rem,mode);

Although division by iterative multiplication is expensive in power, it has been chosen
to implement division in AMD processors [14], NVIDIA GPUs [15], and in Intel
Itanium CPUs utilizing the FMA unit.

To implement the NR algorithm using the existing FMA instruction, the look-up
table for the initial approximation has to be performed in software. Subsequently,
the NR iterations can be executed directly in the FMA unit in Fig. 3. An extra clock
cycle is required to forward the result from the output register to the input register
between each FMA instruction. Thus, excluding the initial approximation a total of
8 × 5 + 1 = 41 cycles is required to implement division in software.

As a result, the latency of the software implementation is quite long. In the fol-
lowing, we illustrate how to implement the NR algorithm in hardware based on the
FMA unit shown in Fig. 3. In order to achieve the initial approximation and im-
plement the NR algorithm, the FMA unit in Fig. 3 needs to be augmented with a
look-up table and several multiplexers and registers to bypass intermediate results.
The implementation of the multiplicative method based on a FMA unit is shown in
Fig. 7.

A look-up table, providing an 8-bit initial approximation is generated using the
midpoint reciprocal method [16], of which the entries are the reciprocals of midpoints
of the input intervals. The dividend x is stored in register B and divisor d in register
C.

The first cycle is to obtain the initial approximation R[0]. After that, the opera-
tions performed in the 4-stage pipelined unit of Fig. 7 are the following (Stage 1 is
abbreviated S1, etc.):

S1 The initial approximation R[0] is multiplied by d using the tree multiplier.
S2 The product is subtracted from 2 to obtain 2−R[0]d . This is achieved by setting

register A to the value of 2 in the previous stage. The result is stored in register
W (W [1] ← (2 − R[0]d)).

S1 W [1] is multiplied by R[0].
S2 The new approximation R[1] ← W [1]R[0] is stored in register R. The new

approximated reciprocal has a precision of 16 bits.

The above four steps have to be repeated two more times to have R[3] with the
precision necessary for binary64 division.

Once the correct approximation of 1/d has been computed, another two iterations
in the multiplier are required to compute:

278 W. Liu and A. Nannarelli

CBA

INV

RSHIFTER

W

MULTIPLIER

CSA3:2

ADDER

INV

LSHIFTERLOD

53
53 53

106 106
161

161

53

10655

161 161

Stage 1

Stage 2

Stage 3

MU X

Approx

MU X

Lookup
Table

MU X

R

53

MU X

W

W

R

R

MU X

Z

53

ROUNDING Stage 4

Fig. 7 Scheme of the modified FMA unit to support division

Power and Thermal Efficient Numerical Processing 279

Table 1 Cycles for binary64
division in FMA unit Cycles

Initial approx. R[0] 1

Three NR iterations 3 × 4 = 12

Non-rounded quotientQ = x · R[3] 2

Remainder rem = Q · d − x 2

Rounding 1

Total cycles 18

1. the non-rounded quotient:Q = x · R[3];
2. the remainder: rem = Q · d − x necessary for IEEE compliant rounding.

Finally,Q is rounded according to the remainder and the specified rounding mode

q = ROUND(Q, rem,mode) .

Summarizing, the number of clock cycles required for the implementation of the
division algorithm with the unit of Fig. 7 is 18 as detailed in Table 1. The intermediate
results are stored in denormalized format and consequently the normalization and
rounding stages can be bypassed between iterations.

7 Energy dissipation in FP-units

7.1 Energy Metrics

At the algorithm level of design abstraction, a problem can usually be approached
by different methods. For example, an application can be implemented in different
ways with different timing and latency. When power is a primary design constraint, a
common measure of the power and energy dissipation is required in order to evaluate
and compare different algorithms.

Because the algorithms are in general different and the latency of the operations
varies from case to case, it is convenient to have a measure of the energy dissipated
to complete an operation. This energy-per-operation is given by

Eop =
∫
top

vi dt [J] (3)

where top is the time elapsed to perform the operation. Operations are usually per-
formed in more than one cycle (in n cycles) of clock period TC and the expression
of top is typically top = TC ×n. By dividing the energy-per-operation by the number
of cycles we obtain the energy-per-cycle

Epc = Eop

n
[J]. (4)

280 W. Liu and A. Nannarelli

This term is proportional to the average power dissipation that can be expressed in
its equivalent forms:

Pave = Epc

TC
= Epcf = Eop

top
= VDDIave [W] (5)

where VDD is the unit supply voltage and Iave its average current. By rearranging (5)
and substituting top we obtain

Eop = Pave × TC × n [J] (6)

The term Pave has an impact on the sizing of the power grid in the chip and on the
die temperature gradient, while the term Eop impacts the electricity costs, and the
battery lifetime in portable systems.

7.2 Implementation of the FP-Units

To analyze the impact on power dissipation of the different units and to evaluate the
different approaches to division, we implemented the following units for binary64:

• FPadd is the floating-point add unit of Fig. 1.
• FPmul is the floating-point multiply unit of Fig. 2.
• FMA is the fused multiply-add unit of Fig. 7 modified to execute the Newton-

Raphson (NR) division algorithm.
• FMA-soft is the fused multiply-add unit of Fig. 3 to execute the NR division

algorithm in software.
• FPdiv (or r16div) is the radix-16 divide unit of Fig. 6 completed with convert-

and-round unit and sign and exponent computation and update.

All units are synthesized, using a commercial 65 nm library of standard cells, to
obtain the maximum speed.

Power estimation is based on randomly generated input vectors conformed to
IEEE 754 binary64 format. The synthesis results are summarized in Table 2, where
Tc is the minimum clock period, Cycles is the number of clock cycles to finish an FP
operation and Latency is the total delay from applying inputs to obtaining results,
that is Tc × Cycles. The average power dissipation Pave is normalized for all units
at 1.3 GHz. The power dissipation data for the FMA unit are divided by operation.

As described in Sect. 5, the FMA unit has four pipeline stages. For the three
operations: ADD, MUL and MA fused, the power was measured with the pipeline full
to get the worst case power dissipation (PWC) necessary to characterize the thermal
behavior (Sect. 7.4) of the units. For division operations, being an iterative algorithm,
a new instruction has to wait until the previous instruction finished execution and the
power was measured per single operation (Psg).

From the data of Table 2, it can be seen that anADD operation in a FMA consumes
much less power than a MUL operation but the latency is the same. For floating-
point division, it is clear that the digit-recurrence approach (r16div) is much more

Power and Thermal Efficient Numerical Processing 281

Table 2 Results of implementations

Area Tc Cycles Latency Oper. PWC Psg Eop

Unit [μm2] [ns] [ns] [mW] [mW] [pJ]

FPadd 16,461 0.75 3 2.25 39.3 18.9 42.5

FPmul 62,531 0.75 3 2.25 183.4 90.2 203.0

FMA 114,816 0.75 4 3.00 ADD 131.9 68.4 205.3

MUL 266.8 110.9 332.8

MA 290.7 119.5 358.5

18 13.50 DIV 171.1 2309.6

FMA-soft 94,130 0.75 41 30.75 DIV 72.4 2226.6

FPdiv 14,054 0.75 18 13.50 27.0 365.0

PWC and Psg are average power measured at 1.3 GHz (f = 1/TC).
PWC is worst-case scenario with full pipeline.
Psg is average power per single operation in pipeline

convenient in terms of latency, area and power dissipation. For example, with the
same latency, FMA DIV consumes more than six times power than FPdiv.

In terms of energy per operation, the results in Table 2 show that in a FMA unit,
the ratio of Eop between ADD and MUL is about 1 / 2 and MA fused consumes
slightly more than MUL operations. With the same latency, the energy per operation
Eop is proportional to average power Psg , thus implementing division in a FMA
unit consumes much more energy than in FPdiv. On the other hand, although DIV
operation in FPdiv has the lowest power consumption, the energy consumed in this
unit is much larger than ADD operations due to the long latency in DIV operations.
The latter observation motivates the optimization for power consumption in division.

The only argument in favor of the FMA DIV is that division is much less frequent
than addition and multiplication, and a larger power dissipation for the operation
can be tolerated. The software implementation of division in FMA has a even longer
latency (as shown in Table 2), since each iteration has to go through all the pipeline
stages and intermediate results have to be saved in the register file. The Eop for the
hardware and software implementations of division in FMA is almost the same, but
the former has a much shorter latency. Therefore in all the experiment results shown
hereafter, we refer to the modified FMA with hardware support for division when
comparing division by multiplication in a FMA and division by digit-recurrence.

7.3 Energy Consumption in Floating-Point Workloads

In this section, we evaluate the impact of the different floating-point operations, and
their implementation, on the power dissipation of the whole FP-unit. We consider
the instruction mix of the SPEC2006 floating-point benchmark suite profiled in [17]
(Table 3). In [18], for the SPECfp92 benchmark suite, it is reported that the FP adder

282 W. Liu and A. Nannarelli

Table 3 Instruction mix in
floating-point SPEC2006 FP-operation Profiled in [17] (%) In FP-unit (%)

Add 19.4 52

Mul 17.4 47

Div 0.4 1

Total 37.2 100

consumes nearly 50 % of the multiply results which explains why fused multiply-add
units are often used in modern processors.

Based on the implementation data in Table 2, we can obtain the clock cycle
distribution for all FP operations (shown in Fig. 8) with the instruction mix in Table 3.
Due to the much longer latency of DIV operation, the percentage of cycles spent
in DIV operation is significantly larger than its percentage of instructions, which
emphasizes the importance of optimizing DIV operation in terms of delay, power
and energy consumption.

As for the power dissipation and energy consumption, we test two FP-unit
configurations:

C1 composed of the stand-alone units FPadd, FPmul, FPdiv.
C2 where all the FP operations are executed in the FMA.

Moreover, for configuration C2, we consider what percent of multiplications can be
fused with addition.

The comparison of configuration C1 and C2 is obtained by combining the values
of Eop and PWC of Table 2 and the mix of Table 3. In this way, we obtain the values
of Eop and PWC averaged on the frequency of the operations.

The results in Table 4 shows that:

1. the area of C1 is slightly smaller, but C1 dissipates significantly less power;
2. the implementation of FPadd and FPmul with stand-alone units is more

power/energy efficient;

 0

 10

 20

 30

 40

 50

 60

ADD MUL FMA DIV

P
er

ce
nt

ag
e

(%
)

FP Operation

 0

 10

 20

 30

 40

 50

 60

ADD MUL FMA DIV

P
er

ce
nt

ag
e

(%
)

FP Operation

Fig. 8 Clock cycle distribution for all FP operations: not fused (above) and fused (below)

Power and Thermal Efficient Numerical Processing 283

Table 4 Characteristics of the two configurations C1 and C2

Config. Area Fused Eop (pJ)

(μm2) % Add Mult Fused Div AVE Ratio Ediv/Eop

C1 93,046 22.1 95.4 3.7 121.2 1.00 0.03

C2 114,816 0 106.8 156.4 0.0 23.1 286.2 2.36 0.08

25 93.6 132.9 47.7 26.2 300.4 2.48 0.09

50 76.5 102.2 110.1 30.2 319.0 2.63 0.09

75 53.1 60.4 195.2 35.7 344.3 2.84 0.10

100 19.4 0.0 317.9 43.6 380.9 3.14 0.11

Ratio 0.81

Config. Fused PWC (mW)

% Add Mult Fused Div AVE Ratio P div/PWC

C1 20.4 86.2 0.3 106.9 1.00 0.003

C2 0 68.6 125.4 0.0 1.7 195.7 1.83 0.009

25 60.2 106.6 38.7 1.9 207.4 1.94 0.009

50 49.1 81.9 89.3 2.2 222.6 2.08 0.010

75 34.1 48.4 158.2 2.6 243.4 2.28 0.011

100 12.4 0.0 257.8 3.2 273.4 2.56 0.012

3. the most efficient workload for C2 is when all multiplicantions can be fused with
addition (unrealistic scenario), and that for a 50 % of fused operations C1 is about
twice more power efficient;

4. the impact of division operations on the energy of the whole unit is 3 % in C1
(digit–recurrence) and about 10 % in C2 (Newton-Raphson).

7.4 Thermal Analysis

Due to the large difference in power consumption between the two solutions, we also
investigated the runtime thermal effect by performing steady-state thermal analysis.

To perform the thermal analysis, we use the model proposed in [19], which
consists of a conventional RC model of the heat conduction paths around each thermal
element. The differential equation modeling heat transfer according to the Fourier’s
law is solved by first transforming it into a difference equation, and using the electrical
simulator SPICE to solve the equivalent RC circuit.

Figure 9 shows the RC equivalent model and the geometrical structure for a
thermal cell. A circuit is meshed into three-dimensional thermal cells. The z direction
is discretized into 9 layers and on each layer x and y directions are both discretized
into 20 units which result in a grid of 20 × 20 × 9 = 3600 cells in total. This
provides us accurate temperature estimations at standard cell level with a reasonable

284 W. Liu and A. Nannarelli

Fig. 9 Equivalent model of a
thermal cell

y

x
z

Y

X

Z
power

simulation overhead. Cells inside the grid are connected to each other while cells on
the boundary are connected to voltage sources that model the ambient temperature.
In our thermal model, we adopted the thermal conductivities of different layers from
[20]. The thermal map obtained for configuration C2 is shown in Fig. 10.

The thermal analysis results show that the peak temperature rise in C1 and C2
(FMA) are 8.5 and 28.8 ◦C, respectively. Due to the small circuit size, the temperature
gradients (difference between maximum and minimum value) in the two circuits are
insignificant.

It is obvious that C1 has a much lower temperature than C2 as for every instruction
type, C1 consumes less power than C2. Furthermore, the components of C1, can
remain in idle mode when the instruction is irrelevant to the component. The FMA,
on the other hand, is used in all operations and all its parts have to participate in the
execution.

 0 2 4 6 8 10 12 14 16 18 20
 0

 5

 10

 15

 20

 51.8

 52

 52.2

 52.4

 52.6

 52.8

 53

 53.2

 53.4

 53.6

 53.8

 54

FMA

Fig. 10 Thermal map for configuration C2 (FMA). Temperature scale is in degree Celsius

Power and Thermal Efficient Numerical Processing 285

8 Conclusions and Outlook on FP-Units

To get more floating-point operations completed in a given power envelope (higher
FLOPS/W), it is necessary to have more power efficient FP-units. The trend to use
fused multiply-add units (FMAs) in modern processors is justified by the presence of
multiplications concatenated to additions in the benchmarks, but our analysis shows
that this approach is less power efficient than having separate FPadd and FPmul units.

On the other hand, FMAs can increase the throughput (FLOPS) as two FP op-
erations are merged in one, and, consequently, higher throughput can be traded-off
with lower power consumption.

As the trend in supercomputers and in servers for scientific computations is a
massive use of accelerators-in the form of GPUs or coprocessors, such as the Intel
Xeon Phi-which are based on multicore architectures, it is advisable that operations
such as division are implemented in the most efficient way to have low latency, low
power dissipation and efficient use of chip area. Implementing division by multi-
plicative algorithms in the FMA is not power efficient, and the long latency of these
algorithms might have an impact on the throughput as it keeps the FMA busy for
several clock cycles.

Another way to have power efficient computation for applications requiring
complex, but rather fixed, algorithms is to have application specific accelerators
implemented on FPGAs. FPGA based accelerators allow efficient computation and
flexibility for applications in which the market segment has not enough volume to
justify the production of application specific processors on a chip (ASIC). FPGAs
can exploit the parallelism of the algorithms, be re-configured (re-programmable)
and can implement processors in non-common number systems, such as the decimal
number system for financial applications [21].

Finally, lowering the power dissipation in FP-units reduces the temperature of the
chip having a two-fold impact on costs: the cost of energy to perform the computation,
and the cost of energy to cool down the servers.

References

1. S. Borkar, “Electronics beyond nano-scale CMOS,” Proc. of the 43rd ACM/IEEE Design
Automation Conference, pp. 807–808, 2006.

2. D. K. Schroder and J. A. Babcock, “Negative bias temperature instability: Road to cross in
deep submicron silicon semiconductor manufacturing,” Journal of Applied Physics, vol. 94,
no. 1, pp. 1–18, July 2003.

3. X. Fan, W.-D. Weber, and L. A. Barroso, “Power Provisioning for a Warehouse-sized
Computer,” Proc. of ACM International Symposium on Computer Architecture, June 2007.

4. M. Cornea, “Precision, Accuracy, and Rounding Error Propagation in Exascale Computing,”
Proc. of 21st IEEE Symposium on Computer Arithmetic, pp. 231–234, Apr. 2013.

5. IEEE Standard for Floating-Point Arithmetic, IEEE Computer Society Std. 754, 2008.
6. M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann Publishers, 2004.
7. S. Oberman, G. Favor, and F. Weber, “AMD 3DNow! technology: architecture and

implementations,” IEEE Micro, vol. 19, no. 2, pp. 37–48, Mar./Apr. 1999.

286 W. Liu and A. Nannarelli

8. T. Lang and J. Bruguera, “Floating-point multiply-add-fused with reduced latency,” IEEE
Transactions on Computers, vol. 53, no. 8, pp. 988–1003, Aug. 2004.

9. M. D. Ercegovac and T. Lang, Division and Square Root: Digit Recurrence Algorithms and
Implementations. Kluwer Academic Publisher, 1994.

10. H. Baliga, N. Cooray, E. Gamsaragan, P. Smith, K. Yoon, J. Abel, and A. Valles, “Improve-
ments in the Intel Core2 Penryn Processor Family Architecture and Microarchitecture,” Intel
Technology Journal, pp. 179–192, Oct. 2008.

11. N. Burgess and C. Hinds, “Design issues in radix-4 SRT square root and divide unit,” Con-
ference Record of 35th Asilomar Conference on Signals, Systems and Computers, vol. 2,
pp. 1646–1650, 2001.

12. G. Gerwig, H. Wetter, E. Schwarz, and J. Haess, “High performance floating-point unit with
116 bit wide divider,” Proc. of 16th IEEE Symposium on Computer Arithmetic, pp. 87–94, Jun.
2003.

13. A. Nannarelli and T. Lang, “Low-power division: comparison among implementations of radix
4, 8 and 16,” Proc. of 14th IEEE Symposium on Computer Arithmetic, pp. 60–67, 1999.

14. S. Oberman, “Floating point division and square root algorithms and implementation in the
AMD-K7 microprocessor,” Proc. of 14th IEEE Symposium on Computer Arithmetic, pp. 106–
115, 1999.

15. NVIDIA. “Fermi. NVIDIA’s Next Generation CUDA Compute Architecture”. Whitepa-
per. [Online]. Available: http://www.nvidia.com/content/PDF/fermi_white_papers/ NVIDIA_
Fermi_Compute_Architecture_Whitepaper.pdf

16. D. DasSarma and D. Matula, “Measuring the accuracy of ROM reciprocal tables,” IEEE
Transactions on Computers, vol. 43, no. 8, pp. 932–940, Aug. 1994.

17. D. A. Patterson and J. L. Hennessy, Computer Organization and Design-the hardware/software
interface, 4th ed.Morgan Kaufmann Publishers Inc., 2009.

18. S. Oberman and M. Flynn, “Design issues in division and other floating-point operations,”
IEEE Transactions on Computers, vol. 46, no. 2, pp. 154–161, Feb. 1997.

19. W. Liu, A. Calimera, A. Nannarelli, E. Macii, and M. Poncino, “On-chip Thermal Modeling
Based on SPICE Simulation,” Proc. of 19th International Workshop on Power And Timing
Modeling, Optimization and Simulation (PATMOS 2009), pp. 66–75, Sept. 2009.

20. T. Sato, J. Ichimiya, N. Ono, K. Hachiya, and M. Hashimoto, “On-chip thermal gradient
analysis and temperature flattening for SoC design,” Proc. of the 2005 Asia and South Pacific
Design Automation Conference (ASP-DAC), vol. 2, pp. 1074–1077, Jan. 2005.

21. A. Nannarelli, “FPGA Based Acceleration of Decimal Operations,” in Proc. of International
Conference on ReConFigurable Computing and FPGA’s, Dec. 2011, pp. 146–151.

http://www.nvidia.com/content/PDF/fermi_white_papers/ NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/ NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Providing Green Services in HPC Data Centers:
A Methodology Based on Energy Estimation

Mohammed El Mehdi Diouri, Olivier Glück, Laurent Lefèvre and
Jean-Christophe Mignot

1 Introduction

A supercomputer is an infrastructure built from an interconnection of computers
capable of performing tasks in parallel in order to achieve very high performance.
They are used in order to run scientific applications in various fields like the prediction
of severe weather phenomena and seismic waves. To meet new scientific challenges,
the HPC community has set a new performance objective for the end of the decade:
Exascale. To achieve such performance (1018 FLoat Operations Per Second), an
exascale supercomputer will gather several millions of CPU cores running up to a
billion trends and will consume several megawatts. The energy consumption issue
at the exascale becomes even more worrying when we know that we already reach
energy consumptions higher than 17 MW at the petascale while the DARPA set to
20 MW the threshold for exascale supercomputers [2]. Hence, these systems that
will be 30 times more performant than the current systems have to achieve an energy
efficiency of 50 gigaFLOPS per watt while the current ones achieve between 2 and 3
gigaFLOPS per watt. As a consequence, reducing the energy consumption of high-
performance computing infrastructures is a major challenge for the next years in
order to be able to move to the exascale era.

M. E. M. Diouri (�)
Institut supérieur du Génie Appliqué – Casablanca (IGA Casablanca), Casablanca, Morocco
e-mail: mehdi.diouri@iga-casablanca.ma

O. Glück · L. Lefèvre · J.-C. Mignot
INRIA Avalon team, LIP Laboratory, ENS Lyon, Lyon, France

O. Glück
e-mail: olivier.gluck@ens-lyon.fr

L. Lefèvre
e-mail: laurent.lefevre@ens-lyon.fr

J.-C. Mignot
e-mail: jean-christophe.mignot@ens-lyon.fr

© Springer Science+Business Media New York 2015 287
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_9

288 M. E. M. Diouri et al.

While the future exascale applications are not yet designed and developed, services
are highly studied. We call a service a software component that fulfills a given
functionality for the successful execution of the application and that is expected to be
necessary for all high performance computing applications. Besides being necessary
for the successful execution of applications, their energy consumptions are expected
to grow highly at the exascale. For these reasons, the goal of this chapter is to reduce
the energy consumption of services instead of applications. In this chapter, we focus
particularly on two services: fault tolerance and data broadcasting. Fault tolerance is
an unavoidable service since it is anticipated that exascale systems will experience
various kind of faults many times per day [5]. Furthermore, the applications executed
on these systems will involve hundreds of exabytes [1]. There are several ways of
implementing each of these two services.

We identify two classes of fault tolerance protocols: coordinated and unco-
ordinated protocols. These two protocols rely on checkpointing regularly (each
checkpoint interval) the global state of the application in order to restart it in case of
failure from the last checkpoint instead of re-executing the whole application. The
problem of checkpointing is to ensure a global coherent state of the system. A global
state is considered as coherent if it does not contain messages that are received but
that were not sent. Coordinated protocols are currently the most used fault tolerance
protocols in high performance computing applications. In order to ensure the global
coherent state of the system, the coordinated protocol relies on a coordination that
consists of synchronizing all the processes before checkpointing [20]. Coordination
may result in a huge waste in terms of performances. Indeed in order to synchronize
all the processes, it is necessary to wait for all the inflight messages to be trans-
mitted and received. Moreover, in case of failure with the coordinated protocol, all
the processes have to be restarted from the last checkpoint even if a single process
has crashed. This results in a huge waste in terms of energy consumption since all
the processes even the non-crashed ones have to redo all the computations and the
communications from the last checkpoint. The uncoordinated protocol with mes-
sage logging addresses this issue by restarting only the failed processes. Thus, the
power consumption in recovery is supposed to be much smaller than for coordinated
checkpointing. However, in order to ensure a global coherent state of the system, all
message logging protocols need to log all messages sent by all processes during the
whole execution and this impacts the performance [3]. Hence, in case of failure, the
non-crashed processes send to the crashed ones the messages that they have logged.

As concern data broadcasting algorithms, two main MPI implementations exist:
MPICH21 and OpenMPI2. Each implementation uses different data broadcasting
algorithms. As a matter of fact, to broadcast a volume of data large enough (more
than 128 Kbytes) to a number of professes large enough (more than 8 professes),
OpenMPI uses the Pipeline algorithm with a configurable chunk size while MPICH2
Scatters pieces of the broadcasted data and perform an AllGather in order to make

1 MPICH2 : http://www.mcs.anl.gov/research/projects/mpich2/.
2 OpenMPI : http://www.open-mpi.org/.

Providing Green Services in HPC Data Centers 289

all the processes gather the remaining pieces of the broadcasted data. The Scatter
algorithm used in MPICH2 is implemented using a binomial tree with a packet
size equal to the total volume of data to broadcast divided by the total number
of processes. Another promising approach for broadcasting data is to use hybrid
programming by combining MPI for internode communications with OpenMP for
intranode communications [23]. Indeed, MPI is optimized for architectures using
distributed memory while OpenMP is more performant to program shared memories.
With an hybrid data broadcasting algorithm, the root process uses MPI to broadcast
the data to a single MPI process in each node. Then, each MPI process uses OpenMP
to share the data broadcasted with all the others processes located in the same node. In
this chapter, we focus on the two MPI broadcasting algorithms (Scatter & AllGather
on the one hand and Pipeline on the other hand) and on the two hybrid algorithms
that combine OpenMP to these two MPI algorithms.

Although some devices allow to measure the power and energy consumption of a
service [9], measuring the energy consumption requires always to run the service at a
large scale and this in all execution contexts. To reduce the number of measurements,
we must be able to estimate accurately the energy consumption of a service, for any
execution context and for any experimental platform. The advantage of such energy
estimation is to evaluate the energy consumption of a service without pre-executing
in each execution context, and in this order to be able to choose the version of the
service that consumes less energy.

In order to adapt the energy estimations to the execution platform, we need to
collect a set of power measurements of the nodes of the platform during the various
operations that compose an application service. However, we learned from [10],
that the nodes of a same cluster can have an heterogeneous idle power consumption
while they have the same extra power consumption due to the execution of an giving
operation. We deduce that we need to measure the idle power consumption of each
node of a same cluster but we need to measure the extra power consumption due to
an operation only for each type of node. Moreover, in order to estimate the energy
consumption according to the execution platform, we also need to measure the exe-
cution time of each operation on this platform. However, we have shown in [10] that
the nodes of a cluster are homogeneous in terms of performance. We deduce that we
do not need to measure the execution time due to an operation for each type of node.
In order to adapt the energy estimations to the execution context, our estimation
approach is also based on a description of the parameters execution provided by the
user.

In this chapter, we explain our estimation methodology from the identification of
the operations found in a service to the energy estimation models of these operation,
through a description of the calibration and the execution parameters that we need.
We apply each step of our methodology to the fault tolerance protocols [11, 13]
and to the data broadcasting algorithms [12] that we have presented. In Sect. 2,
we identify the various operations for both studied services. Section 3 presents our
methodology for calibrating the power consumption and the execution time of the
identified operations. Section 4 shows how we estimate the energy consumption
of the different operations by relying on the energy calibration and the different

290 M. E. M. Diouri et al.

execution parameters. In Sect. 5, we evaluate the precision of the estimates for each
of the two services by comparing then to the real energy measurements. In Sect. 6, we
show how such energy estimations can be used in order to choose the energy-aware
version of a service. Section 7 presents the conclusions of the chapter.

2 Identifying Operations in a Service

The first step of our methodology consists of identifying the various operations that
we find in the different versions of a service. An operation is a task that the service
may need to perform several times during the execution of an application. In Sects. 2.1
and 2.2, we identify the various operations of the services of fault tolerance and data
broadcasting. In Sect. 2.3, we present the various parameters of which depends the
energy consumption of the operations related to fault tolerance and data broadcasting.

2.1 Fault Tolerance Case

As described in Sect. 1, we study the two families of fault tolerance protocols: coor-
dinated and uncoordinated protocols. For each of these two families, we distinguish
two major phases: on the one hand, the checkpointing that occurs during a fault free
execution (i.e., without failure) of an application, and on the other hand, the recovery
which occurs whenever a failure occurs. In our study, we focus on the checkpointing
phase.

We consider an application using the fault tolerance protocol that is running on
N nodes with p processes per node and where p is identical in the N nodes. In
fault-tolerant protocols, we identify the following operations:

• Checkpointing: performed in both coordinated and uncoordinated protocols, it
consists in storing a snapshot image of the current application state that can be
later on used for restarting the execution in case of failure. In our study, we con-
sider the system level checkpointing at the system level and not checkpointing
at the application level. Such a choice is motivated by the fact that not all the
applications embed global checkpointing and that we cannot select the optimal
checkpointing interval with the applicative checkpointing. We consider the check-
pointing provided in the Berkeley Lab Checkpoint/Restart library (BLCR), and
available in the MPICH2 implementation. In checkpointing, the basic operation
is to write a checkpoint of Vdata size on a reliable media storage. For our study,
we consider only the HDD since RAM is not reliable.

• Message logging: performed in uncoordinated protocols, it consists in saving
on each sender process the messages sent on a specific storage medium (RAM,
HDD, NFS, . . .). In case of failure, thanks to message logging, only the crashed
processes need to restart. In message logging, the basic operation is to write the

Providing Green Services in HPC Data Centers 291

message of Vdata size on a given media storage. For our study, we consider the
RAM and the HDD.

• Coordination: performed in coordinated protocols, it consists in synchronizing the
processes before taking the checkpoints. If some processes have inflight messages
at the coordination time, all the other ones are actively polling until these messages
are sent. This ensures that there will be no orphan messages: messages sent
before taking the checkpoints but received after checkpointing. When there is no
more inflight message, all the processes exchange a synchronization marker. In
coordination, the basic operations are the active polling during the transmission
of inflight messages of Vdata and the synchronization of N × p processes that
occurs when there is no more inflight message.

2.2 Data Broadcasting Case

We study the four data broadcasting algorithms that we described in Sect. 1, namely
the two algorithms used in MPI MPI/SAG and MPI/Pipeline and two hybrid al-
gorithms (MPI + OpenMP) Hybrid/SAG and Hybrid/Pipeline. In the two hybrid
algorithms, the root process uses MPI to distribute the data to a master MPI process
per node. Then, each MPI master process uses OpenMP to share the broadcasted
data with all other processes that are in the same node: the routine used in OpenMP is
CopyPrivate. We consider the broadcast of Vdata among N nodes with p processes
per node. We assume that the number p processes per node is identical in the N
nodes.

Figure 1 presents the four broadcasting algorithms that we consider and shows
the sizes of the messages exchanged between the different processes. In these four
algorithms, we identify the following operations:

• Scatter: It consists of dividing a data into a number of smaller parts equal to the
number of processes and sending a piece of data to each process using a binomial
tree topology. It is used in MPI/SAG and Hybrid/SAG.

• AllGather: Given a set of elements distributed across all processes, AllGather
will gather all of the elements to all the processes using a ring topology. It is used
in MPI/SAG and Hybrid/SAG.

• Pipeline: It consists of splitting the source message into an arbitrary number of
packets (called chunks) which are routed in a pipelined fashion. In Figure 1, the
number of chunks is denoted byC. It is used in MPI/Pipeline and Hybrid/Pipeline.

• CopyPrivate: It consists of copying a data stored in a variable from one thread to
the corresponding variables of all other threads within the same node. It is used
in Hybrid/SAG and Hybrid/Pipeline.

292 M. E. M. Diouri et al.

Fig. 1 Data broadcasting algorithms and associated parameters

2.3 Associated Parameters

In order to estimate the energy consumption of these operations, we need to take
into account a large set of parameters. These operations are associated to parame-
ters that depend not only on the protocols but also on the application features, and
on the hardware used. Thus, in order to estimate accurately the energy consump-
tion due to a specific implementation of a fault tolerance protocol, the estimator
needs to take into consideration all the protocol parameters (checkpointing interval,
checkpointing storage destination, etc.), all the application specifications (number
of processes, number and size of messages exchanged, volume of data written/read
by each process, etc.) and all the hardware parameters (number of cores per node,
memory architecture, type of hard disk drives, etc.).

• service and application parameters: checkpointing interval, checkpointing storage
destination, volume of data to broadcast, number of processes, number and size
of messages exchanged between processes, type of storage media used (RAM,
HDD, NFS, etc), volume of data written/read by each process, etc.

• hardware parameters: number of nodes, number of sockets per node, number of
cores per socket, network topology, memory architecture, network technologies

Providing Green Services in HPC Data Centers 293

(Infiniband, Gigabit Ethernet, proprietary solutions, etc), type of hard disk drives
(SSD, SATA, SCSI, etc), etc.

We consider that a parameter is a variable of our estimator only if a variation of
this parameter generates a significant variation of the energy consumption while all
the other parameters are fixed. It is necessary to calibrate the execution platform by
taking into account all the parameters to estimate the energy consumption.

3 Energy Calibration Methodology

Energy consumption depends strongly on the hardware used in the execution plat-
form. For instance, the energy consumption of checkpointing depends on the
checkpointing storage destination (SSD, SATA, SCSI, etc.), on the read and write
speeds and on the access times to the resource. The goal of the calibration process is
to gather energy knowledge of all the identified operations according to the hardware
used in the supercomputer. To this end, we gather the information about the energy
consumption of the operations by running a set of benchmarks allowing to collect
at set of power measurements and execution times of the various operations. The
goal of such calibration approach is to adapt to the supercomputer used, the energy
evaluations computed from the theoretical estimation models, and this in order to
make our energy estimations accurate on any supercomputer, regardless of specifi-
cations. Although this knowledge base has a significant size, it needs to be done only
occasionally, for example when there is a change in the hardware (like a new hard
disk drive).

To estimate the energy consumption of a node performing an operation op, we
need to obtain the power consumption of the node during the execution of op and
the execution time of this operation. We know from [10] that the nodes from a same
cluster are homogeneous in terms of performance. Therefore, we do need to measure
and estimate the execution time due to an operation only for each type of nodes. Thus,
the energy ξNodeiop consumed by a node i performing an operation op is:

ξNodeiop = ρNodeiop · top
Analogously, the energy consumption ξ

Switchj
op of a (switch) j during the operation

op is:

ξ
Switchj
op = ρSwitchj

op · top
top is the time required to perform op by un type of nodes.
ρNodeiop is the power consumed by the node i during top.

ρ
Switchj
op is the power consumed by the switch j during top.

As a consequence, in order to calibration the energy consumption, we need a cal-
ibrator for the power consumption described in Sect. 3.1 and a calibrator for the
execution time described in Sect. 3.2.

294 M. E. M. Diouri et al.

3.1 Calibration of the Power Consumption ρop

We showed in [10] that the power consumption of a node i performing an operation
op is composed of a static part, ρNodeiidle , which is the power consumption of the node
i when it is idle and a dynamic part �ρNodeiop , which is the extra power cost related

to the operation op. We have shown that ρNodeiidle can be different even for identical
nodes from homogeneous clusters. Therefore, we measure ρNodeiidle for each node i.
We also have shown in [10] that�ρNodeiop is the same for identical nodes running the
same operation op. Consequently, we measure�ρNodeiop , for each operation op, once
for each type of nodes,

In [10], we have also highlighted that the number p of processes used per node
may influence the power consumed by the node. Therefore, we need to measure
ρNodeiop (p) for every operation op and for different values of p. Thus, the power
consumption ρNodeiop (p) of a node i during an operation op using p processes of this
node is:

ρNodeiop (p) = ρNodeiidle +�ρNodeop (p)

Analogously, the power consumption ρ
Switchj
op of a switch j during the operation op

is:

ρ
Switchj
op = ρSwitchj

idle +�ρSwitch
op

ρ
Nodei
idle (or ρ

Switchj
idle) is the power consumption of a node i (or of a switch j) when

it is idle (i.e., switched on but executed nothing except the operating system) and
�ρNodeiop (or �ρ

Switchj
op) is the extra power consumption due to the execution of the

operation op.
In order to compute�ρNodeop (p) (or�ρSwitch

op), we measure ρNodeiop (p) (or ρ
Switchj
op)

for a given node i (or a switch j) and subtract the static part of the power consumption
which corresponds to the idle power consumption of the node i (or switch j). We
measure ρNodeiop (p) (or ρ

Switchj
op) by making the operation last a few seconds. There-

fore, it is an mean extra power consumption because it is computed from the average
of several power measurements (one every second).

Moreover, ρNodeiop (p) and so �ρNodeop (p) may vary depending on the number p
of processes used by the node i. Therefore, we need to calculate �ρNodeop (p) and
thus to measure ρNodeiop (p) for different values of p in order to be able to estimate
�ρNodeop (p) for a number p of processes executing the operation op. To do this, we
should be able to know how �ρNodeop (p) evolves according to p (and this for each
type of nodes). We do not know such information a priori. To this end, we rely on
four possible models presented in the table below:

Providing Green Services in HPC Data Centers 295

Linear �ρNodeop (p) = αp + β
Logarithmic �ρNodeop (p) = αln(p) + β
Power �ρNodeop (p) = βpα
Exponential �ρNodeop (p) = αp + β

For each type of nodes, we measure �ρNodeop (p) for five different numbers of
processes:

• the smallest possible value p denoted pmin, which is equal to 1;
• the highest possible value p denoted pmax , which corresponds to the number of

cores available in the node;
• the median value denoted p2 which corresponds to half of the number of cores

available in the node;
• the number p1 which is located in the middle of the interval [pmin; p2];
• the number p3 which is located in the middle of the interval [p2; pmax]

Then, we determine thanks to the least squares method [24] the coefficients (α and
β) of each of the four models according to the five measured values for �ρNodeop (p).
We compute the coefficient of determination R2 corresponding to each of the four
adjusted models obtained with the least squares method. We consider �ρNodeop (p)
evolves according to the adjusted model for which the coefficient of determination
is the highest one (i.e., that is to say, the closest to 1) .

For our measurements of �ρNodeop (p) (deduced from the measurements of
ρNodeiop (p)), we use an external wattmeter capable to provide us the mean power
measurements with a sufficiently high frequency (1 Hz). We have shown in [9] that
the OmegaWatt wattmeter is a good candidate to collect such power measurements.

3.2 Calibration of the Execution Time top

The execution time top depends on one or many parameters according to the operation
op. To take into account the possible effects of congestion, we consider that the
number p of the same process node performing the same operation simultaneously
op is a parameter to consider in our calibration of top. For example, this may occur
if multiple processes on the same node try to write data simultaneously on the local
hard drive.

To calibrate top, we need to measure the execution time by varying different pa-
rameters. To do this, we measure top for five values uniformly distributed between the
minimum and maximum for each parameter (while fixing all the other parameters).
The five values of each parameter are chosen similarly to what we have previously
reported with the parameter p for the calibration of �ρNodeop (p).

We consider two cases:

296 M. E. M. Diouri et al.

1. “Known model” case: we know a model a model where top evolves with respect
to the parameters. We know it from the literature, with the knowledge of the
algorithm used in the operation op or resource requested by the operation op. In
this case, we determine the coefficients of the theoretical model using the least
squares method [24] based on the values of the five parameters.

2. “No model known” case: we do not know how top evolves with respect to the
parameters. In this case, for each parameter, we proceed to the determination by
the adjusted least squares method as presented for the calibration of �ρNodeop (p)
relying on the four models (linear, logarithmic, exponential and power).

To measure top, we instrument the code of the algorithm or the protocol of the
operation op, in order to obtain the corresponding execution time. To ensure that the
calibration of the execution time is accurate, we realize each measurement 30 times
and we compute the mean value of the 30 measurements.

3.2.1 Fault Tolerance Case

In this section, we describe the models used for the execution times of each operation
of the fault tolerance protocols. For each operation op, top depends on different
parameters.

We remind that the calibration of top is required for each type of nodes. In other
words, we do not need to calibrate top on all nodes when they are all identical.

For each type of nodes, the time tcheckpointing required for checkpointing a volume
of data Vdata is:

tcheckpointing(p,Vdata) = taccess(p) + ttransfer (p,Vdata) = taccess(p) + Vdata

rtransfer (p)

Similarly, the time tlogging required to log a message with a size equal to Vdata is:

tlogging(Vdata) = taccess + ttransfer (Vdata) = taccess + Vdata

rtransfer

p is the number of processes within the same node simultaneously trying to perform
the checkpointing operation. taccess is the time required to access the storage media
where the checkpoint will be saved or the message logged. ttransfer is the time required
to write data size Vdata on the storage medium. rtransfer is the transmission rate when
writing on storage medium.

In the case of checkpointing, taccess and rtransfer (and ttransfer) depend on the
number p of processes per node since the p processes save their checkpoints simul-
taneously on the same storage media as the frequency of checkpoints writing is the
same for all processes of an application.

A message is logged on a storage medium once it has been sent by a process of
the node through the network interface used by the node. Thus, if several processes

Providing Green Services in HPC Data Centers 297

of the node try to send messages, there will be a traffic congestion at the network
interface and the time for the current message will overlap the time of writing the
message previously sent. In other words, this means that we consider that we can not
find themselves in a situation where multiple messages are logged simultaneously
by p processes of the node. Therefore, in the case of message logging, taccess and
rtransfer (and ttransfer) do not depend on the number p process per node.

As explained in Sect. 3.2, we measure tcheckpointing considering both p and Vdata
parameters.

We know the theoretical model of tcheckpointing based on Vdata so for this param-
eter, we proceed to the determination of the coefficients of the theoretical model as
explained in the case “with known model” (Sect. 3.2).

For p parameter, we do not have theoretical model giving tcheckpointing based on
p and therefore proceed as explained in the case of “no known model” (Sect. 3.2).

Regarding tlogging , it depends only on Vdata and we have the theoretical model
giving tlogging depending on this parameter. So we proceed as explained in the “with
known model” case.

We calibrate tcheckpointing and tlogging with respect to various storage media
available on each node of the platform (RAM, local hard disk, flash SSD, etc..).

As we consider checkpointing at system-level, coordinated protocol requires a
coordination between all processes.

The execution time for coordination between all processes is:

tcoordination(N ,p,Vdata) = tpolling(Vdata) + tsynchro(N ,p)

= Vdata

Rtransfer
+ tsynchro(N ,p)

p is the number of processes of the node i trying to perform coordination.
tsynchro(N ,p) is the time required to exchange a marker synchronization between
all processes. tsynchro(N ,p) depends on the number of nodes and the number of
processes per node involved in the synchronization. We do not have a theoretical
model for tsynchro(N ,p) neither in terms ofN nor based on p. For the calibration, we
proceed as explained in the “without known model” case (Sect. 3.2). tpolling(Vdata)
is the time required to finish transmitting the messages being transmitted at the time
of coordination. In other words, tpolling(Vdata) is equal to the time required to trans-
fer the larger application message. Rtransfer is the transmission rate in the network
infrastructure used for the platform.

Regarding the polling time, tpolling(Vdata), we have a theoretical model giving
tpolling(Vdata). For the calibration, we proceed as in the “known model” case for
Vdata parameter.

3.2.2 Data Broadcasting Case

In this section, we describe the models of the execution times that we consider for
each operation op.

298 M. E. M. Diouri et al.

In [25], the authors present theoretical models for the operations Scatter, All-
Gather and Pipepline. However, these models assume that there is only one process
per node.

We adjusted the theoretical models presented in [25] in order to take into
consideration the number p of processes per node (see Fig. 1).

Thus, the time required to perform a Scatter, a AllGather or a Pipeline with a
volume of data Vdata from N nodes with p processes per node is:

tScatter (N ,p,Vdata) = tAllGather (N ,p,Vdata)

= (TSnet (N ,p) + Vdata

Rnet (N ,p)
) · Np − 1

Np

tP ipeline(N ,p,Vdata) = (TSnet (N ,p) + Vdata

Rnet (N ,p)
) · C +Np − 2

C

TSnet (N ,p) is the time needed to start the network link and Rnet (N ,p) is the transfer
rate to transmit a data volume Vdata . C is the number of parts (of equal size) in which
the data is divided into for MPI/Pipeline. It is equal to the total volume of data to be
broadcasted divided by the size of each piece of data. Thus, the size of each piece and
therefore C depends on the chosen implementation for the algorithm MPI/Pipeline.

Regarding tScatter , tAllGather and tP ipeline, we have the theoretical models based on
the parametersN , p andVdata . Therefore, for the calibration of the execution of these
operations, we proceed as explained in the case “with known model” (Sect. 3.2).

The time required to copy data to all processes located on the same node is a
function of the number of processes per node p and the volume of data to be copied
Vdata:

tCopyP rivate(p,Vdata) = taccess(p) + Vdata

rtransfer (p)

taccess is the time required to access the RAM memory in which the dataVdata is stored
following an operation AllGather or Pipeline. rtransfer is the transmission rate for a
given copy in RAM. As explained in Sect. 3.2, we measure tCopyP rivate considering
both p and Vdata parameters. We have the theoretical model tCopyP rivate based on
Vdata so for this parameter, we proceed to the determination of the coefficients of
the theoretical model as explained in the case “with known model” (Sect. 3.2). We
do not have a theoretical model giving tCopyP rivate based on p and then proceed as
explained in the “no known model” case (Sect. 3.2).

4 Energy Estimation Methodology

We have previously described how we realize the energy calibration. Once the cal-
ibration is done, the estimator is able to provide estimates of the energy consumed
by the various operations identified for each studied service. Figure 2 shows the
framework components related to the estimation of the energy consumed.

Providing Green Services in HPC Data Centers 299

Fig. 2 Framework to estimate the energy consumption of services

We can now describe how to estimate the energy consumed by each of the identi-
fied operations. To this end, we rely on the parameters provided by the user and the
data measured by our calibrator.

Once the administrator has provided the hardware settings of the platform, the
calibrator performs the various steps required to build the knowledge base on the
power consumption and the execution time of the various identified operations. Then,
based on the calibration results and a description of the application (volume of data
to broadcast, the application memory size, etc..) and runtime parameters (number of
nodes used, number of processes per node, etc..) provided by the user, the estimator
calculates the energy consumption of different versions of the service.

The parameters that we get from the user for the estimation depend on each
operation to estimate. In case these parameters correspond to the values that we have
measured during calibration, estimation directly uses these values to calculate the
energy consumed by the operation. If this is not the case, that is to say, if there is a
lack of measurement points in the calibrator, the estimator is uses the models created
with the least squares method [24] during calibration. In Sects. 4.1 and 4.2, we show
respectively how this method applies to the fault tolerance and data broadcasting
services.

4.1 Fault Tolerance Case

This section describes how we estimate the energy consumed by each operation iden-
tified in the protocols of fault tolerance. For this, we show the necessary information:
the parameters provided by the user and the data measured by our calibrator.

300 M. E. M. Diouri et al.

4.1.1 Checkpointing

To estimate the energy consumption of checkpointing, the estimator gets from the
user the total memory size required by the application to run, the number of nodes
N and the number p of processes per node.

From this information, the estimator calculates the average memory size V meanmemory

required by each process (total memory size divided by the number of pro-
cesses). Then the estimator gets from the calibrator the extra power consumption
�ρcheckpointing(p) and the execution time tcheckpointing(p,V meanmemory) depending on the
models obtained by the least squares method in the step of the calibration.

It also gets the measurement ρNodeiidle for each node i. We denote respectively by
ξ
Nodei
checkpointing(p) and ρNodeicheckpointing(p) the energy consumption and the average power

consumption of each node i performing checkpointing. The estimation of the energy
consumption of a single checkpointing is given by:

Echeckpointing =
N∑
i=1

ξ
Nodei
checkpointing(p)

=
N∑
i=1

ρ
Nodei
checkpointing(p) · tcheckpointing

(
p,V meanmemory

)

= tcheckpointing
(
p,V meanmemory

) ·
N∑
i=1

(
ρ
Nodei
idle +�ρcheckpointing(p)

)

= tcheckpointing
(
p,V meanmemory

) ·
(
N ·�ρcheckpointing(p) +

(
N∑
i=1

ρ
Nodei
idle

))

4.1.2 Message Logging

To estimate the energy consumption of message logging, the estimator gets from the
user the number of nodes N , the number p of processes per node, the number and
total size of all messages sent during the application that he wants to run.

With this information, the estimator calculates the average volume V meandata of data
sent and therefore logged on each node (total size of all messages sent divided by
the number of nodesN). Then, the estimator gets from the calibrator the extra power
consumption �ρlogging and the execution time tlogging(p,V meandata) depending on the
models obtained with least squares method in the step of the calibration. It also
receives the measurement of ρNodeiidle for each node i.

Providing Green Services in HPC Data Centers 301

The estimation of the energy consumption of messages logging is given by:

Elogging =
N∑
i=1

ξ
Nodei
logging (p)

=
N∑
i=1

ρ
Nodei
logging (p) · tlogging

(
V meandata

)

= tlogging
(
V meandata

) ·
N∑
i=1

(
ρ
Nodei
idle +�ρlogging (p)

)

= tlogging
(
V meandata

) ·
(
N ·�ρlogging (p)+

(
N∑
i=1

ρ
Nodei
idle

))

4.1.3 Coordination

We remind that the coordination is divided into two phases: the active polling during
the transmission of the inflight messages followed by the synchronization of all
processes. To estimate the energy consumption of the coordination, the estimator
calculates the average message size V meanmessage as the total size of messages divided by
the total number of messages exchanged. The estimator also uses the total number of
nodes N and the number of processes per node p. Then the estimator gets from the
calibrator the extra power consumption�ρsync(p) and the execution time tsync(N ,p)
depending on the models obtained with the least squares method in calibration step.
It also receives the measurement ρNodeiidle for each node i. The estimation of the energy
consumption Esynchro of synchronization is given by:

Esynchro =
N∑
i=1

ξ
Nodei
synchro (N ,p)

=
N∑
i=1

ρ
Nodei
synchro (p) · tsynchro (N ,p)

= tsynchro (N ,p) ·
N∑
i=1

(
ρ
Nodei
idle +�ρsynchro (p)

)

= tsynchro (N ,p) ·
(
N ·�ρsynchro (p)+

(
N∑
i=1

ρ
Nodei
idle

))

Regarding active polling, the estimator gets from the calibrator the extra power con-
sumption �ρpolling(p) and the execution time tpolling(N ,p,V meanmessage) depending on
the models obtained with least squares method in the calibration step. The estimation

302 M. E. M. Diouri et al.

of the energy consumption of active polling is given by:

Epolling =
N∑
i=1

ξ
Nodei
polling(N ,p)

=
N∑
i=1

ρ
Nodei
polling(p) · tpolling

(
V meanmessage

)

= tpolling
(
V meanmessage

) ·
N∑
i=1

(
ρ
Nodei
idle +�ρpolling(p)

)

= tpolling
(
V meanmessage

) ·
(
N ·�ρpolling(p) +

(
N∑
i=1

ρ
Nodei
idle

))

The estimator computes the energy consumption of coordination as follows:

Ecoordination = Epolling + Esynchro

4.2 Data Broadcasting Case

This section describes how we estimate the energy consumed by each operation
identified in the algorithms for data broadcasting. For this, we show the necessary
information including: the parameters provided by the user and the data measured
by our calibrator.

4.2.1 MPI/SAG and Hybrid/SAG

To estimate the energy consumption of the MPI/SAG and Hybrid/SAG, the estimator
retrieves from the user the number of nodes N , the number p of processes per node,
and the size of the data to be broadcasted Vdata . With this information, the esti-
mator then gets from the calibrator �ρScatter (p), �ρAllGather (p), �ρCopyP rivate(p),
tScatter (N ,p,Vdata), tAllGather (N ,p,Vdata) and tCopyP rivate(p,Vdata) according to
models obtained with least squares method in the calibration step. Moreover, the
estimator retrieves from the calibrator the numberM of network switches based on
the physical description of the platform made by the administrator. The estimation
of the energy consumption of the algorithm MPI / SAG is given by:

EMPI/SAG =
N∑
i=1

ξ
Nodei
MPI/SAG +

M∑
j=1

ξ
Switchj
MPI/SAG

= tScatter (N ,p,Vdata) ·
⎛
⎝ N∑
i=1

ρ
Nodei
Scatter (p)+

M∑
j=1

ρ
Switchj
Scatter

⎞
⎠

+ tAllGather (N ,p,Vdata) ·
⎛
⎝ N∑
i=1

ρ
Nodei
AllGather (p)+

M∑
j=1

ρ
Switchj
AllGather

⎞
⎠

Providing Green Services in HPC Data Centers 303

The estimation of the energy consumption of the algorithm Hybrid/SAG is given by:

EHybrid/SAG =
N∑
i=1

ξ
Nodei
Hybrid/SAG +

M∑
j=1

ξ
Switchj
Hybrid/SAG

= tScatter (N , 1) ·
⎛
⎝ N∑
i=1

ρ
Nodei
Scatter (1)+

M∑
j=1

ρ
Switchj
Scatter

⎞
⎠

+ tAllGather (N , 1) ·
⎛
⎝ N∑
i=1

ρ
Nodei
AllGather (1)+

M∑
j=1

ρ
Switchj
AllGather

⎞
⎠

+ tCopyP rivate (p,Vdata) ·
N∑
i=1

(
ρ
Nodei
CopyP rivate (p)

)

4.2.2 MPI/Pipeline and Hybrid/Pipeline

Compared to the estimate of MPI/SAG and Hybrid/SAG, the estimator gets from
the user an additional parameter which is the size of each piece (chunk) in or-
der to estimate the energy consumption the MPI/Pipeline and Hybrid/Pipeline.
This parameter is required for the determination of the performance of Pipeline
since tP ipeline(N ,p,Vdata) depends on the constant C. From the calibrator, the es-
timator gets �ρPipeline(p) and tP ipeline(N ,p,Vdata). The estimation of the energy
consumption of the algorithm MPI/Pipeline is given by:

EMPI/P ipeline =
N∑
i=1

ξ
Nodei
MPI/P ipeline +

M∑
j=1

ξ
Switchj
MPI/P ipeline

= tP ipeline (N ,p,Vdata) ·
⎛
⎝ N∑
i=1

ρ
Nodei
P ipeline (p)+

M∑
j=1

ρ
Switchj
P ipeline

⎞
⎠

The estimation of the energy consumption of the algorithm Hybrid / Pipeline is given
by:

EHybrid/P ipeline =
N∑
i=1

ξ
Nodei
Hybrid/P ipeline +

M∑
j=1

ξ
Switchj
Hybrid/P ipeline

= tP ipeline (N , 1) ·
⎛
⎝ N∑
i=1

ρ
Nodei
P ipeline (1)+

M∑
j=1

ρ
Switchj
P ipeline

⎞
⎠

+
N∑
i=1

(
tCopyP rivate (p) · ρNodeiCopyP rivate (p)

)

304 M. E. M. Diouri et al.

5 Validation of the Estimations

To validate our estimations, we perform various real applications of high performance
computing with different fault tolerance protocols or with different scenarios of data
broadcasting on a homogeneous cluster of the experimental distributed platform for
large-scale computing, Grid’5000 [4], then we compare the energy consumption
actually measured to the energy consumption evaluated by our estimator. For the
experiments to validate our estimations, we used a cluster of the Grid’5000 distributed
platform. The cluster we used for our experiments offers 16 identical nodes Dell
R720. Each node contains 2 Intel Xeon CPU 2.3 GHz, with 6 cores each; 32 GB of
memory; a 10 Gigabit Ethernet network; a SCSI hard disk with a storage capacity of
598 GB. We monitor this cluster with an energy- sensing infrastructure of external
wattmeters from the SME Omegawatt. This energy-sensing infrastructure, which
was also used in [8], enables to get the instantaneous consumption in Watts, at
each second for each monitored node [7]. Logs provided by the energy-sensing
infrastructure are displayed lively and stored into a database, in order to enable users
to get the power and the energy consumption of one or more nodes between a start
date and an end date. We ran each experiment 30 times and computed the mean
value over the 30 values. We use the same notations as in previous sections: N is the
number of nodes, p is the number of processes and op denotes one of the identified
operations (checkpointing, Pipeline, etc).

5.1 Calibration Results of the Platform

In this section, we present some of the calibration results on the considered plat-
form according to the methodology described in Sect. 3. The considered platform
is composed only of identical nodes: thus there is only one type of nodes. They are
interconnected using a single network switch.

5.1.1 Calibrating the Power Consumption

First, we measure the idle power consumption ρiidle for each node i of the experimen-
tal cluster. Figure 3 shows the idle power consumption of the 16 nodes belonging to
the considered cluster. From this figure, even if the cluster is composed of homoge-
neous nodes, we notice the need to calibrate the electrical power when idle of each
node.

For each identified operation op and for each of the cluster nodes, we calibrate
with OmegaWatt the average additional cost of electrical power due to the op
operation, �ρop(p), as explained in Sect. 3.1. Since each node of the Taurus cluster
has 12 processing cores, the five values of p we choose to calibrate �ρop(p) are 1,
4, 6, 9 and 12 processes per node. Figures 4 and 5 show the measurements�ρop(p)
for the five values of p and for each operation op identified respectively in fault
tolerance protocols and for data broadcasting algorithms.

Providing Green Services in HPC Data Centers 305

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
93

94

95

96

97

98

99

100

101

102

Nodes of the considered cluster

Id
le

 p
ow

er
 c

on
su

m
pt

io
n

(in
 W

at
ts

)

Fig. 3 Idle power consumption of the nodes of the cluster Taurus

Fig. 4 Extra power consumption of operations related to fault tolerance protocols

We note in Figs. 4 and 5 that for some operations, �ρop(p) does vary depend-
ing on the number of cores per node that perform the same operation. For some
operations, such as checkpointing �ρop(p) is almost a constant function of p. For
�ρop(p) of these operations, we obtain one of the four models of the calibrator (see

306 M. E. M. Diouri et al.

Fig. 5 Extra power consumption of operations related to data broadcasting algorithms

Sect. 3.1) with a coefficient α very close to 0 and a value of β very close to the con-
stant value of�ρop(p) (i.e., that is to say, quasi-stationary model). For example, the
model of �ρcheckpointing(p) adjusted by the least squares method for the five values
of p is:

�ρcheckpointing(p) = 17.22 · p0.0084271

Although the fitted model is a power model, the very low coefficient α implies that
�ρcheckpointing(p) is a quasi-stationary function p. The coefficient of determination
R2 corresponding to this model is 0.976, which is very close to 1. For other operations
such as Pipeline,�ρop(p) increases withp. For example, the model of�ρPipeline(p)
obtained in the calibration is:

�ρPipeline(p) = 33.85 · p0.518956

The fact that α is very close to 0.5 means that �ρPipeline(p) is almost expressed in
terms of

√
p. The coefficient of determination R2 corresponding to this model is

0.999, which is also very close to 1.
In addition, we measure the energy consumption when idle of 10 Gigabit Ethernet

switch for 300 s followed by the electrical power during heavy network traffic for
300 s. To measure its electrical power when idle, we ensure that there is no network
traffic by turning off all nodes that are interconnected by the network switch. To
measure its electrical power during heavy network traffic, we run iperf in server
mode on one of the nodes and iperf in client mode on all other interconnected
nodes. Figure 6 shows the electrical measurements.

From Fig. 6, we note that the electric power switch remains almost constant
throughout the duration of the experiment. In other words, the electrical power

Providing Green Services in HPC Data Centers 307

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

Execution time (s)

P
ow

er
 c

on
su

m
pt

io
n

(in
 W

at
ts

)

idle network traffic

Fig. 6 Power consumption of the switch when idle for 300 s and with an intense network load for
300 s

network switch does not vary depending on the network traffic. This means that

�ρSwitch
op is (almost) equal to 0 for all operations

(
∀op, ρ

Switchj
op = ρSwitchj

idle

)
. A recent

study [17, 19] confirms this fact in evaluating and demonstrating that the electrical
power of multiple network devices is not affected by network traffic. That said, even
if the electrical power of a network switch would depend on network traffic, our
approach to calibration would allow to take into account in measuring �ρSwitch

op for
each operation op.

5.1.2 Calibration of the Execution Time

Based on the methodology presented in Sect. 3.2, we calibrate the execution time
for each operation on each type of node of the experimental platform.

Fault Tolerance Case To calibrate the execution time of checkpointing on local
hard drive, we consider a variable number of cores per node simultaneously check-
pointing and we measure the time for different sizes of checkpoints Vdata for one
node of the experimental platform. Each node process saves a checkpoint with a
size equal to Vdata . In other words,when there are p processes that save checkpoints
simultaneously a volume of p ·Vdata is saved on the local hard drive. Figure 7 shows
the measured time for checkpointing on a node of the experimental platform. As
explained in 3.2, we choose 1, 4, 6, 9 and 12 processes per node for the five values

308 M. E. M. Diouri et al.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

Checkpoint size (in MBytes)

E
xe

cu
tio

n
tim

e
(in

 s
)

1 core 4 cores 6 cores 9 cores 12 cores

Fig. 7 Calibration of checkpointing on local hard drive

of p and 0 MB, 500 MB, 1000 MB, 1500 MB and 2000 MB for the five values of
Vdata . The choice of 2000 MB as the maximum size of checkpoint is motivated by the
fact that each node has only 32 GB of memory that can be shared by 12 processing
cores. For different values of p, Figure shows how evolves tcheckpointing with respect
to Vdata .

First, we observe that the curves have a linear trend according to Vdata for p fixed.
For example, for p = 4, the model for tcheckpointing adjusted by the least squares
method from the five values of Vdata:

tcheckpointing(4,Vdata) = 1

0.56569 · 109
· Vdata + 0.09433 · 10−3

We also note that for Vdata fixed tcheckpointing increases when p grows this is because
of the congestion of the input-output generated by concurrent access by p process
on local hard drive. For Vdata = 1000MB the model of tcheckpointing adjusted by the
least squares method from the five values of p:

tcheckpointing(p, 1000Mo) = 4.91359 · p − 1.5026

If for example we want to estimate the time tcheckpointing(3, 800MB), that is to say,
for values of p and Vdata which booth are not belonging to the five measured values,
we calculate:

Providing Green Services in HPC Data Centers 309

• on one side: tcheckpointing(1, 800Mo), tcheckpointing(4, 800Mo),
tcheckpointing(6, 800Mo), tcheckpointing(9, 800Mo) et tcheckpointing(12, 800Mo), re-
spectively from the equations tcheckpointing(1,Vdata), tcheckpointing(4,Vdata),
tcheckpointing(6,Vdata), tcheckpointing(9,Vdata) and tcheckpointing(12,Vdata);

• on the other side: tcheckpointing(3, 0Mo), tcheckpointing(3, 500Mo),
tcheckpointing(3, 1000Mo), tcheckpointing(3, 1500Mo), tcheckpointing(3, 2000Mo), re-
spectively from the equations tcheckpointing(p, 0Mo), tcheckpointing(p, 500Mo),
tcheckpointing(p, 1000Mo), tcheckpointing(p, 1500Mo), tcheckpointing(p, 2000Mo).

From the calculated values tcheckpointing(1, 800Mo), tcheckpointing(4, 800Mo),
tcheckpointing(6, 800Mo), tcheckpointing(9, 800Mo) and tcheckpointing(12, 800Mo), we

determine by the least squares method, the model giving tcheckpointing(p, 800Mo) as
a function of p (as explained in Sect. 3.2) and calculate the determination coefficient
R2 corresponding to the adjusted model.

Similarly, from the values tcheckpointing(3, 0Mo), tcheckpointing(3, 500Mo),
tcheckpointing(3, 1000Mo), tcheckpointing(3, 1500 Mo), tcheckpointing(3, 2000 Mo), we
determine the model giving tcheckpointing(3,Vdata) as a function of Vdata and calcu-
late the determination coefficient R2 corresponding to the thereby adjusted model.
Then between tcheckpointing(p, 800Mo) and tcheckpointing(3,Vdata), we choose the
model for which the determination coefficient is the closest to 1. Then we calculate
tcheckpointing(3, 800Mo) with the choosen model.

Figure 8 presents the execution time for message logging in RAM and on a HDD.
To calibrate the execution time of message logging on memory or on disk, we measure
the time for different message sizes Vdata for one node of the experimental platform.
The values choosen for Vdata are 0 Ko, 500 Ko, 1000 Ko, 1500 Ko et 2000 Ko. As
explained in Sect. 3.2.1, we do not need to calibrate tlogging as a function ofp because
the processes do not write simultaneously the messages on the medium storage due
to the contention during message sending. We measure the execution time when a
single process (p = 1) of the node executes the message logging operation.

We observe that the curves have a linear trend and this as well for message logging
on RAM on local hard drive. The message logging time on local hard drive is higher
than the RAM one and this regardless of the size of the logged message. Similarly
to checkpointing, we get the following adjusted models for tlogging:

In RAM : tlogging(Vdata) = 1

4.4342 · 109
· Vdata + 0.0426 · 10−3

On the local HDD : tlogging(Vdata) = 1

1.0552 · 109
· Vdata + 0.0858 · 10−3

Regarding coordination, we need to calibrate the time of the synchronization as well
as the transfer time of a message.

To calibrate the synchronization time tsynchro(N ,p) of Np process, we measure
this time for different values ofN and for different values of p The measured values
of p and N are chosen as explained in Sect. 3.2. In our case, the measured values
of p are 1, 4, 6, 9 and 12 while the measured values for N are 1, 4, 8, 12 and 16.
Figure 9 presents the synchronization time measured by the calibrator. For example,

310 M. E. M. Diouri et al.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

Size of the logged message (in Ko)

E
xe

cu
tio

n
tim

e
(in

 m
s)

Logging on RAM Logging on HDD

Fig. 8 Calibration of message logging on RAM and local disk

2 4 6 8 10 12 14 16
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of nodes

E
xe

cu
tio

n
tim

e
(in

 s
)

1 core 4 cores 6 cores 9 cores 12 cores

Fig. 9 Calibration of the synchronization time of the experimental platform

Providing Green Services in HPC Data Centers 311

point 4 cores / 8 nodes is the time required to synchronize 32 processes 32 uniformly
distributed over 8 nodes. First, we find that the time to synchronize processes located
on the same node is lower than for processes located on different nodes. Indeed, it
requires much less time to synchronize processes located on the same node than for
processes located on different nodes. The transmission rate of the network is much
lower than the transmission rate within a single node.

For example, for p = 4, the model for tsynchro adjusted by the least squares
method from the five values of N is:

tsynchro(N , 4) = 0.0103757 · ln(N) + 0.00445945

For N = 8, the model for tsynchro adjusted by the least squares method from the five
values of N is:

tsynchro(8,p) = 0.00443799 · ln(p) + 0.02225942

If for example we want to estimate the time tsynchro(N ,p), that is to say, for values of
N and p which booth are not belonging to the five measured values, then we proceed
in a manner similar to that explained for tcheckpointing(p,Vdata).

We calibrate the time needed to transfer a message (i.e., the active polling oc-
curring at the time of coordination) on the experimental platform by varying the of
size Vdata of the message to transfer. To do this, we measure the execution time
tpolling(Vdata) to transfer a message sent using MPI_Send by a process located on a
given node to a process on a different node. In the general case, we must make this
measurement for each pair of processes at different levels of the network hierarchy,
ie for two processes that need to cross a single network switch, then for two processes
that need to cross two network switches, etc. In our experimental platform, a single
network switch interconnects all nodes so we only need to measure the time for a
couple of processes on different nodes.

To calibrate the execution time to transfer a message over the network , we measure
the time for different message sizes Vdata for a couple of processes located on two
separate nodes. The values chosen for Vdata are 0 KB, 500 KB, 1000 KB, 1500
KB and 2000 KB. On Fig. 10, we present the calibration of the transfer time of a
message.

The measured transfer time depends linearly on the size of the message transferred.
Similarly to checkpointing, we get the following adjusted model for tpolling:

tpolling(Vdata) = 1

0.60148 · 109
· Vdata + 3.6222 · 10−3

Data Broadcasting Case To calibrate the execution times (tScatter (N ,p,Vdata),
tAllGather (N ,p,Vdata) and tP ipeline(N ,p,Vdata)), we measure this execution times
for different values ofN , de p and Vdata . As explained in Sect. 3.2.2, since we know
a theoretical model for these operations as a function of all the parameters (N , p et
Vdata), we determine the coefficients TSnet (N ,p) et Rnet (N ,p) that are present for
the 3 models, using the least squares method.

312 M. E. M. Diouri et al.

0 500 1000 1500 2000
3.5

4

4.5

5

5.5

6

6.5

7

Size of the transferred message (in KBytes)

E
xe

cu
tio

n
tim

e
(in

 m
s)

Fig. 10 Calibration of the active polling for the experimental platform

We present some of the results of the calibration of the execution times for opera-
tions scatter and Pipeline on Fig. 11 for a variable number of nodes (4, 8, 12, 16), for
a process per node and for a data volume from 0 MB to 2000 MB through the values
500 MB, 1000 MB and 1500 MB (as explained in Sect. 3.2). In this figure, we have
not shown the execution time measurements for the operation AllGather because the
curves obtained for this operation are overlaid with those of the operation Scatter
because the theoretical models are the same for these two operations (see Sect. 3.2.2).

In order not to overload the Fig. 11 (25 × 2 curves instead of 5 × 2 because
two operations shown), we have presented the measurements for a fixed number of
processes per node. The choice to present these measurements for a number p = 1
is motivated by the fact that we also use tScatter (N , 1,Vdata), tAllGather (N , 1,Vdata) et
tP ipeline(N , 1,Vdata) for the energy estimation of hybrid broadcast (which is not the
case for p > 1).

ForN and p fixed, Fig. 11 shows that tScatter and tP ipeline evolve linearly with re-
spect to Vdata . In other words, TSnet (N ,p) andRnet (N ,p) are constant if we consider
a fixed number of nodes and a given number of processes per node. For a single fixed
parameter p (or N), we determine TSnet (N ,p) and Rnet (N ,p) by applying the least
squares method according on the other parameter N (or p respectively), similarly
to what was presented for tcheckpointing(p,Vdata). Thanks to these models we can
estimate TSnet et Rnet for values of N and p given by the user when one of the two
parameters is one of five values measured. When none of the two parameters were
measured by our calibrator, we proceed in a manner similar to what is presented for
checkpointing (see Sect. 5.1.2).

Providing Green Services in HPC Data Centers 313

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

Volume of data (in MBytes)

E
xe

cu
tio

n
tim

e
(in

 s
)

4 nodes 8 nodes 12 nodes 16 nodes

Scatter

Pipeline

Fig. 11 Calibration of tScatter (N , 1) et tP ipeline(N , 1)

Regarding tCopyP rivate(p,Vdata), we calibrate in a manner similar as checkpointing
(see Sect. 5.1.2) but with the RAM as support storage. For different numbers (1, 4,
6, 9, 12) of processes located on the same node, we measure tCopyP rivate(p,Vdata)
for variable sizes of data (0 MB, 500 MB , 1000 MB, 1500 MB, 2000 MB).

Figure 12, presents the results of the calibration for tCopyP rivate(p,Vdata).
tCopyP rivate(1,Vdata) is equal to tlogging(Vdata) for writing a message in the RAM.

We need to take into account tCopyP rivate(p,Vdata) when we consider multiple
processes per node with hybrid broadcasting algorithms because this time is not
negligible. In addition, for a fixed volume of data , we see that tCopyP rivate(p,Vdata)
remains almost unchanged when we consider an increasing number of processes per
node. This is explained by the fact that the shared data is simultaneously without
congestion in the RAM of the node.

5.2 Accuracy of the Estimations

In this section, we seek to compare the energy consumption achieved by our estimator
once the calibration is made (but before executing the application) to the energy
actually measured by the meters OmegaWatt during the execution of the application.

314 M. E. M. Diouri et al.

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

Volume of data stored with CopyPrivate (in MBytes)

E
xe

cu
tio

n
tim

e
(in

 s
)

1 core 4 cores 6 cores 9 cores 12 cores

Fig. 12 Calibration of tNodeiCopyP rivate(p)

5.2.1 Fault Tolerance Case

We consider 4 HPC applications : CM13 with a 2400x2400x40 resolution and 3
NAS4 of class D (SP, BT, et EP) executed on 144 processes (i.e., 12 nodes with 12
cores per node) of the considered cluster.

With the infrastructure of external wattmeter OmegaWatt, we measure for each
application the energy consumption during the execution of the application with and
without activation of the fault tolerance service. Specifically, we instrumented the
source code implementations of the different protocols of fault tolerance in order
to enable/disable each of the operations described above: checkpointing, message
logging (on local disk or RAM disk) and coordination. Thus, we obtain the actual
energy consumption for each operation. Each energy measurement is performed 30
times, and we consider the average values.

As concerns the uncoordinated protocol, we estimated and measured the energy
consumption of all message logging. As concerns the coordinated protocol, we esti-
mated and measured the energy consumption of a single checkpointing and therefore
for one single coordination. To measure the energy consumption of a single check-
pointing, we used a checkpoint interval greater than half of the application duration.
Thus, the first (and only) checkpoint will occur in the second half of the application.

3 Cloud Model 1: http://www.mmm.ucar.edu/people/bryan/cm1/.
4 NAS: http://www.nas.nasa.gov/publications/npb.html.

Providing Green Services in HPC Data Centers 315

Fig. 13 Energy estimations (in kJ) of operations related to fault tolerance

Fig. 14 Relative differences (in %) between the estimated and measured energy consumption of
the operations related to fault tolerance

In Fig. 13, we show the energy estimations for different operations identified in the
protocols of fault tolerance. In Fig. 14, we show the relative differences (in percent)
between the estimated and the actual energy consumption. Figure 14 shows that the
energy estimations provided in Fig. 13 are accurate. Indeed, the relative differences
between the estimated and measured energy consumption is low. The worst estimate
shows a gap of 7.6 % compared to the measured coordination with EP value. The
average deviation of all tests is 4.9 %.

In comparison with message logging and checkpointing, we find that we estimate
a little less coordination. This is due to the fact that this process takes much less time

316 M. E. M. Diouri et al.

Table 1 Execution contexts considered for the four data broadcasting applications

Name Number of messages Size of each
message

Number of nodes Number of
processes per node

A 2000 1 MB 14 8

B 80 25 MB 16 1

C 4 500 MB 10 4

D 1 1.75 GB 6 12

than message logging. This is also due to the fact that this operation is evaluated
from the estimated two sub-operations (tpolling et tsynchro) which generates more
inaccuracies in our estimation We will show in Sect. 6 how such energy estimations
can reduce energy consumption related to protocols of fault tolerance when they are
known before pre-executing the application.

5.2.2 Data Broadcasting Case

We consider four classes of data broadcasting applications involving the different
execution contexts presented in Table 1.

For the four execution scenarios, we choose a large enough total volume of data
for all broadcast messages so that each scenario execution lasts several seconds and
so that the energy measurements are possible using the wattmeters OmegaWatt. The
size parameters of the broadcast, the number of nodes and the number of processes
per node messages are chosen such that:

• one parameter was not measured (applications B and D);
• two parameters were not measured (application C);
• three parameters were not measured (application A)

Each application (A, B, C, D) and for each algorithm of data broadcasting (MPI/SAG,
MPI/Pipeline, Hybrid/SAG, Hybrid/Pipeline), we estimate the energy consumption
by adding the energy consumed by the various operations identified in each algorithm.
We estimate the energy of each operation by multiplying the energy associated with
the data broadcasting of a single message by the number of application messages (A,
B, C or D).

On the other hand, we measure the energy consumption for each algorithm and
for each application. In our experiments, the operation Pipeline is performed with a
fixed piece size of 128 KBytes in the implementation of the algorithm Each energy
measurement is performed 30 times, and we consider the average values.

In Fig. 15, we show the energy estimations for the various broadcasting algorithms.
In Fig. 16, we show the relative differences (in percent) between the estimated and
the measured energy consumption. To get the energy estimation of a broadcast of
a single message, we only need to divide the energy estimation displayed for all
application messages (A, B or C) by the number of broadcasted messages.

Providing Green Services in HPC Data Centers 317

Fig. 15 Estimations of energy consumption (kJ) of the four broadcasting algorithms for the four
applications

Fig. 16 Relative differences (in %) between measured and estimated energy consumption for the
four broadcasting algorithms

Figure 16 shows that energy estimations provided in Fig. 15 are accurate. Indeed,
the relative differences between the estimated and measured energy consumption are
low. The worst estimation shows a difference of −6.82 % compared to the measured
value for the algorithm Hybrid/SAG with D application. We will show in the next
section how such energy estimations can reduce the energy consumption of data
broadcasting if they are known in advance.

318 M. E. M. Diouri et al.

6 Energy-Aware Choice of Services for HPC applications

In this section, we show how we can rely on energy estimations in order to reduce
the energy consumption of the services executed with high-performance computing
applications. Several implementations may exist for a same service. The version
of the service that consumes less energy may change depending on the considered
application. The energy estimation that we are able to provide allows the users to
choose the best version of service in terms of energy consumption according to the
execution context. By making such choice, the user is able to reduce the energy
consumption of the executed HPC services. We illustrate this in Sect. 6.1 in the
case of fault tolerance protocols and in Sect. 6.2 in the case of data broadcasting
algorithms.

6.1 Fault Tolerance Protocols

The two families of fault tolerance protocols that we considered are the coordinated
and the uncoordinated protocols. We consider the 4 HPC applications that we studied
in Sect. 5.2.1 : CM1 with a resolution of 2400 × 2400 × 40 and 3 NAS in Class
D (SP, BT, and EP) running over 144 processes (i.e. 12 nodes with 12 cores per
node). For each application and for each fault tolerance protocol, we estimate the
energy consumption by considering the different operations that we have identified in
Sect. 2. First, we highlight that the energy consumption of an fault tolerance operation
depends highly on the application. Then, we show how the energy estimations of
the different operations identified in Sect. 2.1 help the user in the choice of the fault
tolerance protocol that consumes the less energy.

Figure 13 shows that energy consumption of the operations are not the same from
one application to another. For instance, the energy consumption of RAM logging in
SP is more than 10 times the one in CM1. This is because CM1 exchanges much less
messages compared to SP. Another example is that checkpointing in CM1 is more
than 20 times the one in EP. Indeed, the execution time of CM1 is much higher than
EP so the number of checkpoints is more important in CM1. Moreover, the volume of
data to checkpoint is more important in CM1 as it involves a more important volume
of data in memory.

We can obtain the overall energy estimation of the entire fault-tolerant protocols
by summing the energy consumptions of the operations considered in each proto-
col. For fault free uncoordinated checkpointing, we add the energy consumed by
checkpointing to the energy consumption of message logging. For fault free coordi-
nated checkpointing, we add the energy consumed by checkpointing to the energy
consumption of coordinations.

Both of uncoordinated and coordinated protocols rely on checkpointing. To ob-
tain a coherent global state, checkpointing is combined with message logging in
uncoordinated protocols and with coordination in coordinated protocols. Therefore,
to compare coordinated and uncoordinated protocols from an energy consumption

Providing Green Services in HPC Data Centers 319

point of view, we compare the energy cost of coordinations to message logging. In
our experiments we considered message logging either in RAM or in HDD. Co-
ordination will consume as much as there are still bulked messages that are being
transferred at the moments of the processes synchronization. Message logging will
consume as much as the number and the size of exchanged messages during the
application are important.

Figure 13 shows that from one application to another the less energy consuming
protocol is not always the same. In general, determining the less consuming protocol
depends on the trade-off between the volume of logged data and the coordination cost.
For BT, SP and CM1, the less energy consuming protocol is the coordinated protocol
(Coordination values on Fig. 13 lower to the RAM and HDD logging values) since
the volume of data to log for these applications is relatively important and leads to
a higher energy consumption. Oppositely, the less energy consuming fault tolerance
protocol for EP is the uncoordinated one.

These conclusions are specific to the case where there is only one checkpointing
and so one coordination during the execution of these applications. If the user is
interested in more reliability, and this specifically for the applications that last long
(several hours), he should choose a smaller checkpoint interval and so a higher
number of checkpointing and coordinations. This checkpoint interval can influence
the choice of the fault tolerance protocol that consumes the less energy. Indeed, if
for instance during the execution of SP, there are more than 19 checkpointing and
therefore more than 19 coordinations, the energy consumption of coordinations will
be higher than the one of RAM logging. As a consequence, as opposed to what we
have seen previously, it would be better to use the uncoordinated protocol to reduce
the energy consumption of fault tolerance.

This checkpoint interval can be selected by considering the models that define the
optimal interval: the one that enables to maximize the reliability by minimizing the
performance degradation [6, 26].

In case we use a higher number of processes for the execution of a same appli-
cation, the energy consumption of coordination will be more important. However,
the energy consumption of message logging may also increase since there may be
more communications with an increased number of processes. Therefore, there will
be more message to send and so more message to log.

Thus, by providing such energy estimations before executing the HPC applica-
tion, we help the user to select the best fault tolerance protocol in terms of energy
consumption depending on the number of checkpoints that he would like to perform
during the execution of his application.

6.2 Data Broadcasting Algorithms

The four data broadcasting algorithms that we take into consideration are MPI/SAG,
MPI/Pipeline, Hybrid/SAG and Hybrid/Pipeline. Our goal is to compare these

320 M. E. M. Diouri et al.

four algorithms in terms of energy consumption when they are used with the data
broadcasting applications that we have studied in Sect. 5.2.2.

For each application (A, B, C, D) presented in Sect. 5.2.2 and for each data broad-
casting algorithm (MPI/SAG, MPI/Pipeline, Hybrid/SAG and Hybrid/Pipeline), we
estimate the energy consumption by adding the energy consumptions of the different
operations that we have identified in each algorithm. In our experiments, the Pipeline
operation is performed with a chunk size fixed to 128 KBytes.

Figure 15 shows that from one application to another the less energy consum-
ing algorithm is not always the same. First, we notice that each hybrid algorithm
consumes less energy compared to its homologous version that uses MPI only, and
this particularly when we consider several processes per node (applications A, C and
D). In general, determining the less consuming algorithm depends on the trade-off
between the volume of broadcasted data and the number of nodes involved. For A,
the less energy consuming algorithm is Hybrid/SAG since the number of pipelined
chunks is relatively low as the volume of data to broadcast is small. Oppositely, the
less energy consuming broadcasting algorithm for B, C and D is Hybrid/Pipeline
since the number of pipelined chunks starts to be high enough compared to the
number of processes involved.

Thus, by providing such energy estimations before executing an application, we
can select the best data broadcasting algorithm in terms of energy consumption.
One may think that energy consumption of an algorithm is completely linked to its
execution time. Our study shows that it is not true. Indeed, although Fig. 15 shows
that the energy consumptions of hybrid algorithms are lower compared to the energy
consumptions of MPI algorithms in applications A, C and D, the corresponding
estimated execution times of the hybrid algorithms are slightly higher to the execution
time of the MPI algorithms. Indeed, the power consumption of hybrid algorithms
during MPI operations (Scatter, AllGather and Pipeline) is much lower than the one
of MPI broadcasting algorithms (see Fig. 4). This is because in hybrid broadcasting,
only one process is active during Scatter, AllGather and Pipeline while in pure MPI
broadcasting algorithms, all the processes are active during MPI operations.

7 Conclusion

In this chapter, we presented our approach to accurately estimate the energy con-
sumption of a given service. In particular, we applied our approach to fault tolerance
protocols and algorithms for data broadcasting. Regarding fault tolerance, we fo-
cused on the phase without failure. We considered the case of coordinated protocols
and uncoordinated protocols. Regarding the broadcasting of data, we considered
two algorithms used in MPI (MPI/SAG et MPI/Pipeline) and two hybrid algorithms
combining each of the two algorithms with OpenMP (respectively Hybrid/SAG and
Hybrid/Pipeline).

Our estimation approach is to first identify the operations that we find in the
different protocols or algorithms of the studied service. Then, in order to adapt

Providing Green Services in HPC Data Centers 321

our theoretical models to the specificities of the considered platform, we perform
an energy calibration that consists in gathering a set of measurements of the elec-
trical power and execution times of each of the identified operations. To calibrate
the considered platform, the calibrator collects parameters describing the execution
platform, such as the number of nodes or the number of cores per node. With this
calibration, energy estimations that we provide can adapt to any platform. Once
the calibration is complete, the estimator is based on the calibration results as well
as a description of the execution context to provide an estimation of the energy
consumption of the studied service.

We have shown in this chapter that our energy estimations are accurate for each
operation whether for fault tolerance or for broadcasting. Indeed, comparing the
energy measurements for each operation to energy estimations that we are able to
provide, we have shown that the relative differences were small. Regarding fault
tolerance, the relative differences between the estimates and energy measures are
equal to 4.9 % on average and do not exceed 7.6 %. Regarding the broadcasting of
data, the relative differences do not exceed 6.82 % for different execution contexts
considered.

We described in the last section of this chapter, the way to use our estimations in
order to consume less energy. By providing energy consumption estimations before
the execution of the application, we showed that it is possible to choose the fault
tolerance protocol or the broadcast algorithm which is consuming the less energy for
a particular application in a given execution context.

We showed that the energy consumption of an application service was not always
linked to the execution time. The impact of this is that users have the opportunity to
make a choice between energy consumption and performance (execution time). The
ability of the estimator to provide an estimation of the execution time gives the means
to apply a realistic bi-criteria choice between energy consumption and performance.
Providing a clear interface to help users with this choice is one of our short-time
perspective.

Besides, thanks to the energy estimations, understanding the energy behaviour
of the different versions of a service let us consider others solutions in order to
reduce the energy consumption of a fault tolerance protocol or a data broadcasting
algorithm. Indeed, by predicting the idle periods and the active polling periods, we
would be able to apply some green levers such as slowing down resources (like DVFS
[14, 15, 18]) or even shutting down [16, 22] some components if these idle or active
polling periods are long enough [21].

Acknowledgment Experiments presented in this chapter were carried out using the Grid’5000
experimental testbed, being developed under the INRIA ALADDIN development action with
support from CNRS, RENATER and several Universities as well as other funding bodies (see
http://www.grid5000.fr).

322 M. E. M. Diouri et al.

References

1. Aloisio, G. and Fiore, S. (2009). Towards Exascale Distributed Data Management. IJHPCA,
23(4):398–400.

2. Bergman, K., Borkar, S., Campbell, D., and others (2008). ExaScale Computing Study:
Technology Challenges in Achieving Exascale Systems. In DARPA Information Processing
Techniques Office, page pp. 278, Washington, DC.

3. Bouteiller, A., Bosilca, G., and Dongarra, J. (2010). Redesigning the message logging model
for high performance. Concurrency and Computation: Practice and Experience, 22(16):2196–
2211.

4. Cappello, F., Caron, E., Daydé, M. J., Desprez, F., Jégou, Y., Primet, P. V.-B., Jeannot, E.,
Lanteri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Quétier, B., and Richard., O. (2005).
Grid’5000: A Large Scale, Reconfigurable, Controlable and Monitorable Grid Platform. In
IEEE/ACM Grid 2005, Seattle, Washington, USA.

5. Cappello, F., Geist, A., Gropp, B., Kale, S., Kramer, B., and Snir, M. (2009). Toward exascale
resilience. International Journal of High Performance Computing Applications, 23:374–388.

6. Daly, J. T. (2006). A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Generation Comp. Syst., 22(3):303–312.

7. Dias deAssuncao, M., Gelas, J.-P., Lefèvre, L., and Orgerie,A.-C. (2010a). The green grid5000:
Instrumenting a grid with energy sensors. In 5th International Workshop on Distributed
Cooperative Laboratories: Instrumenting the Grid (INGRID 2010), Poznan, Poland.

8. Dias de Assuncao, M., Orgerie, A.-C., and Lefèvre, L. (2010b). An analysis of power con-
sumption logs from a monitored grid site. In IEEE/ACM International Conference on Green
Computing and Communications (GreenCom-2010), pages 61–68, Hangzhou, China.

9. Diouri, M. E. M., Dolz, M. F., Glück, O., Lefèvre, L., Alonso, P., Catalán, S., Mayo, R., and
Quintana-Ortí, E. S. (2013a). Solving some mysteries in power monitoring of servers: Take
care of your wattmeters! In Energy Efficiency in Large Scale Distributed Systems (EE-LSDS),
Vienna, Austria, April, 22–24 2013.

10. Diouri, M. E. M., Glück, O., and Lefèvre, L. (2013b).Your Cluster is not Power Homogeneous:
Take Care when Designing Green Schedulers! In 4th IEEE International Green Computing
Conference (IGCC), Arlington, VA USA.

11. Diouri, M. E. M., Glück, O., Lefèvre, L., and Cappello, F. (2013c). ECOFIT: A Framework to
Estimate Energy Consumption of Fault Tolerance protocols during HPC executions. In 13th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), Delft,
Netherlands.

12. Diouri, M. E. M., Glück, O., Lefèvre, L., and Mignot, J.-C. (2013d). Energy Estimation for
MPI Broadcasting Algorithms in Large Scale HPC Systems. In 20th European MPI Users’
Group Meeting on Recent Advances in Message Passing Interface (EuroMPI 2013), Madrid,
Spain.

13. Diouri, M. E. M., Tsafack Chetsa, G. L., Glück, O., Lefèvre, L., Pierson, J.-M., Stolf, P.,
and Da Costa, G. (2013e). Energy efficiency in high-performance computing with and without
knowledge of applications and services. International Journal of High Performance Computing
Applications (IJHPCA), 27(3):232–243.

14. Etinski, M., Corbalan, J., Labarta, J., and Valero, M. (2010). Utilization driven power-aware
parallel job scheduling. Computer Science - Research and Development, 25(3–4):207–216.

15. Freeh, V. W., Lowenthal, D. K., Pan, F., Kappiah, N., Springer, R., Rountree, B., and Femal, M.
E. (2007). Analyzing the energy-time trade-off in high-performance computing applications.
IEEE Trans. Parallel Distrib. Syst., 18(6):835–848.

16. Hermenier, F., Loriant, N., and Menaud, J.-M. (2006). Power Management in Grid Com-
puting with Xen. In Frontiers of High Performance Computing and Networking - ISPA 2006
International Workshops, volume 4331 of Lecture Notes in Computer Science, pages 407–416,
Sorrento, Italy.

Providing Green Services in HPC Data Centers 323

17. Hlavacs, H., Da Costa, G., and Pierson, J.-M. (2009). Energy consumption of residential and
professional switches. In IEEE CSE.

18. Hotta, Y., Sato, M., Kimura, H., Matsuoka, S., Boku, T., and Takahashi, D. (2006). Profile-
based optimization of power performance by using dynamic voltage scaling on a pc cluster.
In Proceedings of the 20th International in Parallel and Distributed Processing Symposium,
IPDPS 2006.

19. Mahadevan, P., Sharma, P., Banerjee, S., and Ranganathan, P. (2009). A power benchmarking
framework for network devices. In NETWORKING 2009 Conference, Aachen, Germany, May
11–15, 2009., pages 795–808.

20. Netzer, R. H. B. and Xu, J. (1995). Necessary and sufficient conditions for consistent global
snapshots. IEEE Transactions on Parallel and Distributed Systems, 6(2):165–169.

21. Orgerie, A.-C., Lefevre, L., and Gelas, J.-P. (2008). Save Watts in your Grid: Green Strategies
for Energy-Aware Framework in Large Scale Distributed Systems. In ICPADS 2008 : The 14th
IEEE International Conference on Parallel and Distributed Systems, Melbourne, Australia.

22. Pinheiro, E., Bianchini, R., Carrera, E. V., and Heath, T. (2001). Load balancing and unbalanc-
ing for power and performance in cluster-based systems. In IN WORKSHOP ON COMPILERS
AND OPERATING SYSTEMS FOR LOW POWER.

23. Rabenseifner, R., Hager, G., and Jost, G. (2009). Hybrid mpi/openmp parallel programming
on clusters of multi-core smp nodes. In Parallel, Distributed and Network-based Processing,
2009 17th Euromicro International Conference on, pages 427 –436.

24. Rao, C., Toutenburg, H., Fieger, A., Heumann, C., Nittner, T., and Scheid, S. (1999). Linear
models: Least squares and alternatives. Springer Series in Statistics.

25. Wadsworth, D. M. and Chen, Z. (2008). Performance of MPI broadcast algorithms. In IEEE
IPDPS 2008, Miami, Florida USA, April 14–18, 2008, pages 1–7.

26. Young, J. W. (1974). A first order approximation to the optimum checkpoint interval. Commun.
ACM, 17(9):530–531.

Part II
Networking

Network Virtualization in Data Centers:
A Data Plane Perspective

Weirong Jiang and Viktor K. Prasanna

1 Introduction

A data center is a facility to provide large-scale computing resources. It consists of a
great number of servers which are interconnected through high-bandwidth networks.
While the servers in a data center have long been virtualized, the virtualization of data
center networks has not attracted much attention until recently [1]. The data center
network is virtualized to accommodate multiple tenants of the data center. By virtu-
alizing the data center network, multiple virtual networks (VNs) on top of a shared
physical network substrate can be created. Each virtual network is isolated from the
physical network as well as from one another. This allows the network operators of
each data center tenant to configure and manage their own virtual network flexibly
and dynamically. The network infrastructure of a data center includes network links
and network nodes (i.e. networking devices such as routers and switches). Hence
data center network virtualization involves virtualizing the network links and/or the
network nodes. Figure 1 shows an example of two virtual networks (VNs) created
over the same physical data center network, where both network links and network
nodes are virtualized.

Both network link virtualization and network node virtualization require supports
from the networking devices such as routers and switches. A networking device
is normally architected into two planes: control plane and data plane. While the
control plane handles all kinds of control information such as routing protocol and
administrative input, the data plane performs the heavy-duty job of processing every
network packet. The volume of network traffic in a data center can be enormous. This

W. Jiang (�)
Xilinx Research Labs, 2100 Logic Drive, San Jose, CA 95124, USA
e-mail: weirongj@acm.org

V. K. Prasanna
University of Southern California, 3740 McClintock Avenue, Los Angeles, CA 90089, USA
e-mail: prasanna@usc.edu

© Springer Science+Business Media New York 2015 327
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_10

328 W. Jiang and V. K. Prasanna

Fig. 1 Example of data center network virtualization

poses a great challenge on the data plane to meet performance requirements including
high throughput and low power consumption, both of which are critical to modern
data centers. While the control plane of today’s networking devices is normally
implemented as software, the data plane is usually built as dedicated hardware to
achieve high performance. In this chapter we discuss network link virtualization and
network node virtualization from the data plane perspective.

1.1 Network Link Virtualization

Network links carry the traffic in terms of network packets. The packets with the
same source and destination endpoints comprise a flow. We can visualize a network
link as a pipe carrying various flows. To enable multiple virtualize networks to share
the same physical network link, we need to assign and classify the flows to different
virtual networks. The traditional method is Virtual Local Area Network (VLAN)
tagging. The packets tagged with the same VLAN ID belong to the same virtual
network. Network nodes classify the flows by matching the VLAN ID. VLAN is
limited to Layer 2 headers and cannot support finer-grained or more complicated flow
definitions. For example, we may need a virtual network dedicated for HTTP traffic.
Various solutions have been proposed to enable flexible flow matching in the data
plane of the network. The most successful story to date is the OpenFlow technique
[2] which defines flows using any combination of numerous packet headers.

1.2 Network Node Virtualization

Network nodes such as routers and switches connect multiple network links and
forward packets from one port to another. Where a packet should be forwarded is

Network Virtualization in Data Centers: A Data Plane Perspective 329

determined by looking up the destination address of the packet against a forwarding
table. The forwarding table is populated by the control plane based on the addressing
and routing scheme. In a virtualized data center network, different virtual networks
may employ different addressing and routing scheme. By virtualizing the network
node, each virtual network gets its own virtual instance, called the virtual network
node. Each virtual network node takes a slice of the physical resources and main-
tains a separate forwarding table based on the addressing and routing scheme of the
associated virtual network. The size of a forwarding table can be large for a virtual
network serving a large number of virtual machines. It may consume a large amount
of memory and power to store and search the large flow tables. Thus the number of
virtual networks is limited by the power budget and the available memory resources
in the data plane. A promising solution is to consolidate the forwarding tables while
isolating the traffic for different virtual networks.

1.3 Organization

The rest of the chapter is organized as follows. Section II presents the challenges
and the solutions for flexible flow matching that enables fine-grained network link
virtualization. Section III discusses the schemes for consolidating forwarding tables
associated with different virtual networks. Section IV summarizes the chapter and
provides our insights on the future research in this field.

2 Flexible Flow Matching for Network Link Virtualization

Due to the emerging network requirements such as user-level and fine-grained se-
curity, mobility and reconfigurability, fine-grained network link virtualization has
been an essential feature for data center and cloud computing networks. Also ma-
jor networking device vendors have recently initiated programs to open up their data
plane to allow users to develop software extensions for proprietary hardware [3]. The
key trend behind these moves is the so-called software-defined networking (SDN).
Both fine-grained network virtualization and SDN require the underlying forwarding
hardware to be flexible with rich flow definitions. The most successful story to date is
the OpenFlow technique that employs flow tables with highly flexible flow definition
at the data plane [2].

2.1 Background

The kernel operation in flexible forwarding hardware is matching each packet against
a table of flow rules. The definition of a flow rule can be as flexible as users want.

330 W. Jiang and V. K. Prasanna

Table 1 Example OpenFlow rule table

Rule Ingress
port

MAC
Src

MAC
Dst

Ether
type

VLAN
ID

VLAN
priority

IP
Src

IP
Dst

IP
Proto

IP
ToS

Port
Src

Port
Dst

R1 * 00:01 20:01 * * * 0/0 0/0 * * * *

R2 1 20:02 00:02 * * * 0/0 0/0 * * * *

R3 * * 00:ff * * * 0/0 0/0 * * * *

R4 * 20:0f * 0 × 8100 10 5 0/0 0/0 * * * *

R5 0 * * 0 × 0800 * * 0/0 64/2 * * * *

R6 1 * * 0 × 0800 * * 32/3 192/2 TCP * 1080 80

R7 * * * 0 × 0800 * * 32/3 192/2 UDP * 2000 6

R8 * * * 0 × 0800 * * 128/3 192/3 * * 1080 6

R9 3 00:ff 20:00 0 × 8100 1982 3 48/4 192/4 TCP 0 2000 80

R10 * 20:0f 00:aa 0 × 8100 1982 3 65 163 TCP 0 2001 80

Taking the OpenFlow 1.0 specification as an example, up to 12 header fields extracted
from a packet can be used to define a flow. The 12 header fields supported in the
OpenFlow 1.0 specification include the ingress port1, 48-bit source/destination Eth-
ernet (MAC) addresses, 16-bit Ethernet type, 12-bit VLAN ID, 3-bit VLAN priority,
32-bit source/destination IP addresses, 8-bit IP protocol, 6-bit IP Type of Service
(ToS) bits, and 16-bit source/destination port numbers. Each field of a flow rule can
be specified as an exact number or a wildcard. IP address fields can also be specified
as a prefix. Table 1 shows a simplified example of OpenFlow rule table, where we
assume MAC addresses to be 16-bit and IP addresses 8-bit. Let SA/DA denote the
source/destination IP addresses and SP/DP the source/destination port numbers. We
have following definitions:

• Simple rule is the flow rule where all the fields are specified as exact values, e.g.
R10 in Table 1.

• Complex rule is the flow rule containing wildcards or prefixes, e.g. R1∼ 9 in
Table 1.

A packet is considered matching a rule if and only if its header values match all the
specified fields within that rule. If a packet matches multiple rules, the matching
rule with the highest priority is used. In OpenFlow, a simple rule always has the
highest priority. If a packet does not match any rule, the packet is forwarded to the
centralized server (i.e., OpenFlow controller). The server determines how to handle
it and may register a new rule in the switches. Hence dynamic rule updating needs
to be supported.

1 The width of the ingress port is determined by the number of ports of the networking device. For
example, 6-bit ingress port indicates that the networking device has up to 63 ports.

Network Virtualization in Data Centers: A Data Plane Perspective 331

Fig. 2 A 3 × 4 bits TCAM

2.2 Existing Solutions

While OpenFlow technology is evolving, little attention has been paid on improving
the performance of flexible flow matching. Most of the existing flexible forwarding
hardware is focused on the functionality and simply adopts ternary content address-
able memory (TCAM). TCAM is a specialized associative memory where each bit
can be 0, 1, or “don’t care” (i.e. “*”). For each input key, TCAM performs parallel
search over all stored words and identifies the matching word(s) in a single clock
cycle. A priority encoder is needed to obtain the index of the matching word with the
highest priority. The word with lower index usually has the higher priority. Figure 2
shows a TCAM storing three 4-bit words: 10*1, 1*0*, and *01*. The input key 1011
matches both Word 0 and Word 2. Because Word 0 has a higher priority than Word
2, the output word index is 0.

TCAM has been widely used in the data plane of network infrastructure for var-
ious search functions. However, TCAMs are power-hungry, and do not scale well
with respect to area and clock rate [4]. The power consumption per bit of TCAMs is
150 times that for static random access memories (SRAMs) [5]. On the other hand,
field programmable gate array (FPGA) technology has become an attractive option
for implementing real-time network processing engines [4]. A modern FPGA is a
parallel assemblage of diverse programmable components, including millions of pro-
grammable logic gates, with a programmable interconnection network between these
components. State-of-the-art SRAM-based FPGA devices such as Xilinx Virtex-7
[6] provide high clock rate, low power dissipation and large amounts of on-chip
dual-port memory with configurable word width.

Naous et al. [7] implement an OpenFlow switch on NetFPGA which is a Xilinx
Virtex-2 Pro 50 FPGA board tailored for network applications. A small TCAM is
implemented on FPGA for complex rules. Due to the high cost to implement TCAM
on FPGA, their design can support no more than few tens of complex rules. Though
it is possible to use external TCAMs for large rule tables, high power consumption
of TCAMs remains a big challenge. Luo et al. [8] propose using network processors
to accelerate the OpenFlow switching. Similar to the software implementation of
the OpenFlow switching, hashing is adopted for simple rules while linear search is

332 W. Jiang and V. K. Prasanna

performed on the complex rules. When the number of complex rules becomes large,
using linear search leads to low throughput.

As the flexible forwarding hardware is still a concept under development, most
of existing work focuses on the functionality rather than performance. Little work
has been done in exploiting the algorithmic solutions and the power of state-of-the-
art FPGA technology to achieve high-performance flexible flow matching. Few of
existing schemes for OpenFlow-like flexible flow matching can support more than
hundreds of complex rules while sustaining throughput above 10 Gbps in the worst
case where packets are of minimum size i.e. 40 bytes.

2.3 Algorithmic Solution for Efficient Flexible Flow Matching

2.3.1 Motivations

Flexible flow matching can be viewed as an extension from the traditional five-
field packet classification whose solutions have been extensively studied in the past
decade. Comprehensive surveys for packet classification algorithms can be found in
[5]. Among the existing packet classification solutions, decision-tree-based designs
are considered the most scalable with respect to memory requirement [4, 5]. Traversal
of the tree can be pipelined to achieve high throughput [4].

Decision-tree-based algorithms (e.g., HyperCuts [9]), take the geometric view of
the packet classification problem. Each rule defines a hypercube in a d-dimensional
space where d is the number of header fields considered for packet classification.
Each packet defines a point in this d-dimensional space. The decision tree construc-
tion algorithm employs several heuristics to cut the space recursively into smaller
subspaces. Each subspace ends up with fewer rules. The cutting process is performed
until the number of rules contained by a subspace is small enough to allow a low-cost
linear search to find the best matching rule. Such algorithms scale well and are suit-
able for rule sets where the rules have little overlap with each other. But they suffer
from rule duplication which can result in 0(Nd) memory explosion in the worst case,
where N denotes the number of rules. Moreover, the depth of a decision tree can be
as large as O(W), where W denotes the total number of bits per packet for lookup.
Note that d = 12, W > 237 according to OpenFlow 1.0.

We aim to apply decision-tree-based algorithms to flexible flow matching while
addressing their drawbacks, i.e. memory explosion and large tree depth. We observe
that different complex rules in a flexible flow table may specify only a small number
of fields while leaving other fields to be wildcards. This phenomenon is fundamen-
tally due to the concept of flexible forwarding hardware which was proposed to
support various applications on the same substrate. For example, both IP routing
and Ethernet forwarding can be implemented in OpenFlow. IP routing will specify
only the destination IP address field while Ethernet forwarding will use only the
destination Ethernet address.

Network Virtualization in Data Centers: A Data Plane Perspective 333

Fig. 3 HyperCuts for the example OpenFlow rules

The memory explosion for decision-tree-based algorithms in the worst case has
been identified as a result of rule duplication [4]. A less specified field is more likely to
cause rule duplication. Consider the example of OpenFlow table shown in Table 1.
All the ten rules can be represented geometrically on a two-dimensional space as
depicted in Fig. 3 where only the SA and DA fields are concerned. Decision-tree-
based algorithms such as HyperCuts [9] cut the space recursively based on the values
from SA and DA fields. As shown in Fig. 3, no matter how to cut the space, R1∼ 4 will
be duplicated to all children nodes. This is because their SA/DA fields are wildcards,
i.e. not specified. Similarly, if we build the decision tree based on source/destination
Ethernet addresses, R5∼ 8 will be duplicated to all children nodes, no matter how
the cutting is performed. The characteristics of real-life flexible flow table rules, i.e.
sparse specified values with lots of wildcards, may cause severe memory explosion
especially when the rule set becomes large.

An intuitive idea is to split a table of complex rules into multiple subsets. The
rules within the same subset specify the same set of header fields. The number of
header fields specified in a subset should be far smaller than that in the original rule
table. For each rule subset, we build the decision tree based on the specified fields
used by the rules within this subset. For instance, the example rule table can be
partitioned into two subsets: one contains R1∼ 4 and the other contains R5∼ 10.
We can use only source/destination Ethernet addresses to build the decision tree for
the first subset while only SA/DA fields for the second subset. As a result, the rule
duplication will be dramatically reduced. Meanwhile, since each decision tree after
such partitioning employs a much smaller number of fields than the single decision

334 W. Jiang and V. K. Prasanna

tree without partitioning, we can expect considerable resource savings in hardware
implementation. We call such an algorithm decision forest, which consists of multiple
decision trees.

2.3.2 Algorithms

We develop the decision forest construction algorithms to achieve the following
goals:

• Reduce the overall memory requirement.
• Bound the depth of each decision tree.
• Bound the number of decision trees.

Building a decision forest involves partitioning the rule set. Fong et al. [10] have
shown that it can be computation-intensive for efficient rule set partitioning. In-
stead of performing the rule set partitioning and the decision tree construction in
two phases, we combine them efficiently as shown in Algorithm 1. The rule set is
partitioned dynamically during the construction of each decision tree. The function
for building a decision tree, i.e. BuildTree, is shown in Algorithm 2. The parameter
P bounds the number of decision trees in a decision forest. We have the rule setRi to
build the i-th tree whose construction process will split out the rule set Ri+1, i = 0,1,
. . . , P−1. In other words, the rules in Ri−Ri+1 are actually stored in the i-th tree.
The parameter split determines if the rest of the rule set will be partitioned. When
building the last decision tree (i =P−1), split is turned to be FALSE so that all the
remaining rules are used to construct the last tree. Other parameters include depth-
Bound which bounds the depth of each decision tree, and listSize which is inherited
from the original HyperCuts algorithm to determine the maximum number of rules
allowed to be contained in a leaf node.

Algorithm 1: Building the decision forest

Algorithm 2 is based on the original HyperCuts algorithm, where Lines 6∼ 7 and
12∼ 14 are the major changes. Lines 6∼ 7 are used to bound the depth of a tree.
After determining the optimal cutting information (including the cutting fields and
the number of cuts on these fields) for the current node (Lines 8∼ 11), we identify the
rules which may be duplicated to the children nodes (shown as the PotentialDupli-
catedRule function). These rules are then split out of the current rule set and pushed
into the split-out rule set Rremain. The split-out rule set will be used to build the next
decision tree(s). The rule duplication in the first P − 1 trees will thus be reduced.

Network Virtualization in Data Centers: A Data Plane Perspective 335

Algorithm 2: Building the decision tree and the split-out set

2.3.3 Architecture

To achieve line-rate throughput, we map the decision forest including P trees onto
a parallel multi-pipeline architecture with P linear pipelines, as shown in Fig. 4.
Each pipeline is used for traversing a decision tree as well as matching the rule lists
attached to the leaf nodes. The pipeline stages for tree traversal are called the tree
stages while those for rule list matching are called the rule stages. Each tree stage
includes a memory block storing the tree nodes and the cutting logic which generates
the memory access address based on the input packet header values. At the end of
tree traversal, the index of the corresponding leaf node is retrieved to access the rule
stages. Since a leaf node contains a list of listSize rules, we need listSize rule stages
for matching these rules. All the leaf nodes of a tree have their rule lists mapped
onto these listSize rule stages. Each rule stage includes a memory block storing the
full content of rules and the matching logic which performs parallel matching on all
header fields. Each incoming packet goes through all the P pipelines in parallel. A
different subset of header fields of the packet may be used to traverse the trees in
different pipelines. Each pipeline outputs a flow ID. The priority resolver picks the
result with the highest priority in case of multiple flow matches among the outputs
from the P pipelines. It takes H + listSize clock cycles for each packet to go through
the architecture, where H denotes the number of tree stages. To further improve
the throughput, we exploit the dual-port on-chip RAMs provided by state-of-the-art
FPGAs so that two packets are processed every clock cycle.

The size of the memory in each pipeline stage must be determined before hardware
implementation. When simply mapping each level of the decision tree onto a separate
stage, the memory distribution across stages can vary widely. Allocating memory

336 W. Jiang and V. K. Prasanna

Fig. 4 Multi-pipeline architecture for searching the decision forest

with the maximum size for each stage results in large memory wastage [4]. We
need to map tree nodes onto pipeline stages while balancing the memory distribution
across stages. We adopt the heuristic that allows the nodes on the same level of the
tree to be mapped onto different stages. This provides more flexibility to map the
tree nodes. Only one constraint must be followed: If node A is an ancestor of node B
in the tree, then A must be mapped to a stage preceding the stage where B is stored.
Such a heuristic is enabled by adding an extra field to each tree node: the distance to
the pipeline stage where the child node is stored. When a packet is passed through
the pipeline, the distance value is decremented by one when it goes through every
stage. When the distance value becomes zero, the child node’s address is used to
access the memory in that stage.

The architecture supports dynamic rule updates by inserting write bubbles into
the pipelines. The new content of the memory is computed offline. When an update is
initiated, a write bubble is inserted into the pipelines. Each write bubble is assigned
an ID. There is one write bubble table in each stage, storing the update information
associated with the write bubble ID. When a write bubble arrives at the stage prior
to the stage to be updated, the write bubble uses its ID to look up the write bubble
table and retrieves: (1) the memory address to be updated in the next stage, (2) the
new content for that memory location, and (3) a write enable bit. If the write enable
bit is set, the write bubble will use the new content to update the memory location
in the next stage. Since the architecture is linear, all packets preceding or following
the write bubble can perform their operations while the write bubble performs an
update.

Network Virtualization in Data Centers: A Data Plane Perspective 337

2.4 Performance Evaluation

We have conducted extensive experiments to evaluate the performance of the deci-
sion forest solution including the algorithms and the FPGA implementation of the
architecture.

2.4.1 Experimental Setup

Due to the lack of large-scale real-life flexible flow rules, we generate synthetic
12-tuple OpenFlow-like rules to examine the effectiveness of the decision forest
solution. Each rule is composed of 12 header fields that follow the OpenFlow 1.0
specification [2]. We use 6-bit field for the ingress port and randomly set each field
value. Concretely, we generate each rule as follows:

a. Each field is randomly set as a wildcard. When the field is not set as a wildcard,
the following steps are executed.

b. For source/destination IP address fields, the prefix length is set randomly from
between 1 and 32, and then the value is set randomly from its possible values.

c. For other fields, the value is set randomly from its possible values.

In this way, we generate four OpenFlow-like 12-tuple rule sets with 100, 200, 500,
and 1K rules, each of which is independent of the others. Note that our generated
rule sets include many impractical rules because each field value is set at random.
But we argue that the lower bound of the performance of the decision forest scheme
is approximated by using such randomly generated rule sets which do not match well
the characteristics observed in real-life flexible flow table rules. Better performance
may be expected for large sets of real-life flexible flow rules which however are not
available to date.

2.4.2 Algorithm Evaluation

To evaluate the performance of the decision forest algorithms, we use following
performance metrics:

• Average memory requirement (bytes) per rule: It is computed as the total memory
requirement of a decision forest divided by the total number of rules for building
the forest.

• Tree depth: It is defined as the maximum directed distance from the tree root
to a leaf node. For a decision forest including multiple trees, we consider the
maximum tree depth among these trees. A smaller tree depth leads to shorter
pipelines and thus lower latency.

• Number of cutting fields (denoted Ncf) for building a decision tree: The Ncf of a
decision forest is defined as the maximumNcf among the trees in the forest. Using a
smaller number of cutting fields results in less hardware for implementing cutting
logic and smaller memory for storing cutting formation of each node.

338 W. Jiang and V. K. Prasanna

Fig. 5 Average memory requirement with increasing the number of trees

Fig. 6 a Tree depth and b Ncf, with increasing the number of trees

We set listSize = 64, depthBound = 16, and vary the number of trees P = 1, 2, 3, 4.
Figure 5 shows the average memory requirement per rule, where logarithmic plot is
used for the Y axis. In the case of P = 1, we can observe memory explosion when
the number of rules is increased from 100 to 1K. On the other hand, increasing
P dramatically reduces the memory consumption, especially for the larger rule set.
Almost 100-fold reduction in memory consumption is achieved for the 1K rules, when
P is increased just from 1 to 2. With P = 3 or 4, the average memory requirement
per rule remains on the same order of magnitude for different size of rule sets.

Figure 6 shows that the tree depth and the number of cutting fields are reduced by
increasing P. With P = 3 or 4, 6-fold and 3-fold reductions are achieved, respectively,
in the tree depth and the number of cutting fields, compared with the case (P = 1)
using a single decision tree.

Network Virtualization in Data Centers: A Data Plane Perspective 339

Table 2 Breakdown of a
decision forest (P = 4) Trees # of

rules
of tree
nodes

Memory
(bytes/rule)

Tree
depth

of cutting
fields

Tree #1 712 545 78.70 2 3

Tree #2 184 265 84.70 2 5

Tree #3 65 17 41.78 1 2

Tree #4 39 9 45.23 1 2

Overall 1000 836 76.10 2 5

Table 3 Resource utilization
Available Used Utilization (%)

of slices 30,720 11,720 38

of block RAMs 456 256 56

of I/O pins 960 303 31

2.4.3 Hardware Implementation

To implement the decision forest for 1K rules in hardware, we examine the perfor-
mance results of each tree in a decision forest. Table 2 shows the breakdown with
P = 4, listSize = 32, depthBound = 4. We map the above decision forest onto the
4-pipeline architecture. The design is implemented on FPGA using Xilinx ISE 10.1
development tools. The target device is Virtex-5 XC5VFX200T with -2 speed grade.
Post place and route results show that the design achieves a clock frequency of 125
MHz. The resulting throughput is 40 Gbps for minimum size (40 bytes) packets.
Table 3 summarizes the resource utilization of the design. To the best of our knowl-
edge, this is among the first single-chip hardware designs for flexible flow matching
to achieve over 10 Gbps throughput while supporting 1K complex rules.

3 Resource Consolidation in Network Node Virtualization

Network node virtualization requires the networking device to maintain multiple
forwarding tables for different virtual networks. Two general approaches for network
node virtualization exist in literature. One is the isolation approach which stores a
separate forwarding table for each virtual network. The other is the consolidation
approach where all the forwarding tables are merged into a single one. The main
limitation in virtualizing a network node is scalability. By scalability, we refer to the
number of virtual networks supported on the available physical resources. Unless
there are abundant resources, techniques to reduce the resource requirement should
be considered in order to improve the scalability. The isolation approach is easier for
management but requires more resources than the consolidation approach. We focus
on the consolidation approach which has recently attracted growing interests from
the community.

340 W. Jiang and V. K. Prasanna

Fig. 7 a Prefix entries b Uni-bit trie c Leaf-pushed trie

3.1 Background

Several networking device manufacturers have introduced network node virtualiza-
tion in their routers and switches to support up to hundreds of virtual networks. Cisco
Systems [11] proposes a software and hardware virtualized router. Juniper Networks
[12] achieves router virtualization by instantiating multiple router instances on a
single hardware router to enforce security and isolation among virtual routers. The
amount of physical resources limits the number of virtual network nodes that can be
supported. For example, in a Juniper Networks router running logical router services,
only up to 16 virtual routers are supported [13].

The primary function of routers and switches is to forward packets, where the
destination address (e.g., IP address) extracted from each packet is looked up in the
forwarding table. The entries in the forwarding table are specified using prefixes.
The kernel of packet forwarding is IP lookup i.e. longest prefix matching. The most
common data structure for IP lookup is some form of trie [13]. A trie is a binary
tree, where a prefix is represented by a node. The value of the prefix corresponds to
the path from the root of the tree to the node representing the prefix. The branching
decisions are made based on the consecutive bits in the prefix. A trie is called a uni-bit
trie if only one bit at a time is used to make branching decisions. The prefix entries
in Fig. 7a correspond to the uni-bit trie shown in Fig. 7b. Each trie node contains
two fields: the represented prefix and the pointer to the child nodes. By using the
optimization called leaf pushing [14], each node needs only one field: either the
pointer to the next-hop address or the pointer to the child nodes. Figure 7c shows the
leaf-pushed uni-bit trie that is derived from Fig. 7 and 7b.

Given a uni-bit trie, IP lookup is performed by traversing the trie according to
the bits in the IP address. When a leaf is reached, the last seen prefix along the path
to the leaf is the longest matching prefix for the IP address. The time to look up a
uni-bit trie is equal to the prefix length.

Network Virtualization in Data Centers: A Data Plane Perspective 341

3.2 Existing Solutions

In [15] Fu and Rexford present a memory-efficient data structure for IP lookup in a
virtualized router. They achieve significant memory saving by using a shared data
structure. Their algorithm performs well when the different forwarding tables have
similar structures. Otherwise, the memory requirement increases significantly. Song
et al. [13] propose a novel approach to increase the overlap among the multiple
tries that are to be merged. They introduce braiding bits at each node which allows
swapping the left and the right branches for each node. This however increases the
complexity for construction and update. Even though memory efficiency is claimed,
the complexity of this algorithm may make it less appealing to real networking
environments.

3.3 Efficient Algorithm for Resource Consolidation

We take the consolidation approach for network node virtualization by using a shared
trie data structure. We propose a potential scheme to realize high memory efficiency.
This method exploits the address space allocation of data center networks to minimize
the memory requirement of the data plane.

3.3.1 Motivations

Each virtual network employs its own addressing scheme. Their addresses are most
likely to be defined in a specific range. Packet forwarding in such networks is per-
formed within a relatively small range in the address space of either IPv4 or IPv6.
When such a network is mapped on to a trie, the range of IP addresses are located at
a specific branch of the trie starting at the root. This is illustrated in Fig. 8 where the
forwarding tables corresponding to three virtual networks A, B and C are mapped
on to three uni-bit tries. It can be seen that the prefixes in a particular network have
a common portion. We call this common portion as common prefix. The common
prefixes of the three example tries are listed in Table 4. The structure and the size of
the virtual network forwarding tables can be significantly different from one another.
But we argue that the most significant difference is reflected at the common prefix
while the structure of the sub-trie below the split node intends to be similar. This is
because network operators intend to segment the network hierarchically in a similar
way.

We use an example to show why we need a more efficient algorithm than the
existing solutions for network node virtualization in a data center. Consider the two
tries A and C in Fig. 8. These two tries reside in the two branches of the full trie2

2 A full trie is defined as a complete binary trie covering all possible prefixes.

342 W. Jiang and V. K. Prasanna

Fig. 8 Example tries for three
different forwarding tables

Table 4 Common prefixes
for the three example tries Forwarding table Common prefix Common prefix

length

A 0* 1

B 001* 3

C 10* 2

starting from the root: A on the left sub-trie and C on the right sub-trie. For simplicity,
let us assume that we merge A on to C. As shown in Fig. 9a, merging them using
the simple overlaying approach of [15] will create a new set of leaf and non-leaf
nodes corresponding to A. This may result in a merged trie with a larger memory
requirement than the sum of the memory requirements of the two tries. The memory
requirement becomes larger because each leaf node in the merged trie has to store
next hop information for both forwarding tables. While trie braiding [13] may result
in maximum overlap between the two tries, the memory requirement at each node
increase. This is because all the non-leaf nodes have to store braiding bits for each
forwarding table. Also trie braiding achieves the best memory efficiency when the
multiple forwarding tables have the same length of common prefixes. As shown in
Fig. 9b, trie braiding does not work well for our specific example where the lengths
of the common prefixes of different forwarding tables are different.

Instead we propose a scheme as illustrated in Fig. 9c. The key idea is to use the
common prefix to identify different virtual networks while merging the forwarding
tables at lower levels. We define the first node that has both left and right branches
as the split node. For example, the trie corresponding to B in Fig. 8 starts to split
at the sub-trie starting at 001*. Actually the prefix represented by the split node is

Network Virtualization in Data Centers: A Data Plane Perspective 343

Fig. 9 Merging A and C a using [15] b using [13] c using our scheme

the common prefix. As shown in Fig. 9c, the amount of overlap between the tries A
and C using our scheme is much higher than that of Figs. 9a, 9b. This is because we
merge the tries at the split node rather than the top root node. Also we do not require
any extra information to traverse the trie. As a result, our approach could require less
memory than [13, 15].

3.3.2 Trie Merging

In order to take advantage of the characteristics of forwarding tables in virtualized
data center networks, we use an effective trie merging algorithm to reduce the overall
memory requirement without increasing the lookup complexity. Initially, we build a
uni-bit trie for each virtual network forwarding table. Then we execute a recursive
algorithm to find the split node at which the uni-bit trie starts its first split. After the
split node is found, we truncate the constructed uni-bit trie at the split node. Then,
we merge this truncated trie on to a merged trie. The merged trie is the trie that holds
forwarding information for all the considered virtual networks (initially, the merged
trie is an empty trie). The same process is repeated for all the other tries, where the
merged trie is augmented. Once all the forwarding tables are merged this way, we
do a leaf push to bring all the forwarding information down to the leaf nodes.

In addition to the above process, the information about the split nodes of all
the tries is stored as a lookup table at the root node. This table is used for the initial
lookup. When a packet arrives, the virtual network ID associated with the packet will

344 W. Jiang and V. K. Prasanna

be used to access the table to retrieve the necessary information to start traversing
the merged trie.

In the original trie for a given virtual forwarding table, we may encounter a case
where there might be an IP prefix above the split node. For example, the default
gateway of a router is specified for the prefix 0.0.0.0/0 (default gateway) so that if
there is no match for an incoming packet, this information will be used for packet
forwarding. If such a case occurs, we can store that next hop information in a separate
table. This information can be carried along with the packet and if there is no other
match, the default next hop information can be used to forward the packet.

We name our approach multiroot, where multiple logical roots (i.e. the split nodes)
are mapped to the root of the merged trie. Note that for a set of core routing tables,
our algorithm will perform exactly like [15]. This is because the IP address range for
a core routing table is fairly wide, and it might span over the entire IP address range.
Hence there is no common prefix and the root node becomes the split node.

3.3.3 Lookup Process

The lookup process in our scheme is very similar to the existing trie-based IP lookup
schemes proposed in the literature. The major differences in our scheme appear in
the initial lookup stage and when accessing a leaf node. When a packet arrives,
its destination IP and the Virtual Network Identifier (VNID, such as VLAN ID) are
extracted. TheVNID is used to access the initial lookup table to find the corresponding
common prefix (CP) and the table index. The table index is an internal mapping for
VNID to simplify the lookup process. When this information is looked up in the
table, the destination IP address is compared with the common prefix corresponding
to that forwarding table. In our scheme, the root of the merged trie might not be the
root of the original trie corresponding to the forwarding table. Therefore, we cannot
start the lookup process at the first bit of the incoming IP address. We use the length
of the common prefix to give an offset to the index of the IP address bit where we
start the traversal within the merged trie. Take Fig. 9c as an example. All packets
belonging to A start traversing the merged trie using the second bit of the IP address
while those belonging to C use the third bit of their IP addresses to start the traversal.

3.3.4 Traffic Isolation

In network virtualization, security is of utmost importance. Even though the hardware
is shared among multiple virtual network nodes, packets that belong to a specific
virtual network should not interfere with traffic from any other virtual network. The
isolation and the consolidation approaches for network node virtualization enforce
the security in two different ways. The former uses hard isolation by implementing
multiple separate router instances, whereas the latter uses soft isolation in the data
structure. As we take the consolidation approach, we use the leaf node data structure
to isolate traffic from different virtual networks. There is an entry for each forwarding

Network Virtualization in Data Centers: A Data Plane Perspective 345

Table 5 Theoretical
comparison Method Memory requirement Execution time

Simple overlaying [15] �(M ∗Nmax) 0(N logN)

Trie braiding [13] �(M ∗Nmax) 0(N2)

Our scheme (multiroot) �(M ∗Nmax) 0(MN)

table in every leaf node. Such an entry contains the forwarding information related
to a specific forwarding table. When a leaf node is reached, the next hop information
will be accessed using the table index. On the other hand, the non-leaf nodes (which
are used to traverse the trie to locate the leaf node) are common to all the virtual
networks.

3.4 Analysis and Evaluation

Our scheme is evaluated with respect to the memory requirement and the execution
time to construct the data structure. The execution time is critical for quick updates.
We also analyze the impact of common prefix length to the overall performance of
our algorithm.

3.4.1 Theoretical Comparison

The existing network node virtualization methods exhibit similar construction pro-
cedure. Table 5 compares these methods with respect to the memory requirement
and the execution time. Here, N is the average number of nodes in a trie and M is
the number of virtual network nodes. Nmax is the maximum trie size (in terms of the
number of trie nodes) among the multiple tries that are being merged.

It should be noted thatNmax in our scheme is smaller than that in simple overlaying
or trie braiding. This is due to the common prefix extraction in our scheme, which
reduces the number of prefix bits to be used to build the tries. Overall our scheme
achieves high memory efficiency and fast execution time.

3.4.2 Experimental Setup

We focus on data center networks. But we do not have access to any data center
network forwarding tables. Partitioning existing core routing tables may result in
unrealistic forwarding tables. To overcome these problems, we use FRuG [16], a
synthetic rule generator, to generate forwarding tables. FRuG provides us the flexi-
bility to generate close-to-real synthetic forwarding tables with different structures
and various common prefixes. We generate 16 forwarding tables, each having 100K
prefixes to illustrate the performance of our algorithm for a worst case scenario in

346 W. Jiang and V. K. Prasanna

Fig. 10 Scalability comparison

data center networks. These tables are generated in such a way that each forwarding
table follows the structure of one of the core routing tables in real life listed in [17].

3.4.3 Scalability

First, the experiments are conducted using forwarding tables with random common
prefixes. The prefix lengths range from 2 to 5. Figure 10a illustrates the total number
of leaf nodes in the merged trie. It shows that as we increase the number of forwarding
tables, the total number of nodes starts to saturate. This is because the merged trie
becomes dense and complete with more tries to be merged. Therefore, adding more
tries does not necessarily result in more nodes. Figure 10b depicts the total memory
requirement of the merged trie including the leaf and non-leaf nodes. The size of a
leaf node is calculated as M*H where M is the number of virtual networks and H is
the bit width of each next hop field. In our analysis we consider each non-leaf node to
be of 32-bit size (2*16-bit pointers) and H = 6 for leaf nodes. These results show that
our solution requires much less memory compared with the existing methods. We
achieve 6 fold and 5 fold memory reduction compared with the isolation approach
and the simple overlaying [15], respectively.

While Fig. 10 is based on random common prefix, Fig. 11 compares the memory
requirement for the common prefix with random length and with controlled length.
L corresponds to the length of the common prefix. As shown in Fig. 11, the memory
requirement of the merged trie can be further reduced significantly by merging the
forwarding tables with the same length common prefix.

Network Virtualization in Data Centers: A Data Plane Perspective 347

Fig. 11 Memory requirement with various common prefix lengths

3.4.4 Execution Time

In network node virtualization, adding a new virtual network to the existing virtual-
ized network node should be done fairly quickly. Forwarding table updates should
be performed in a timely fashion. Therefore the time overhead involved in these
operations should be minimized. As shown in Table 5, our scheme has a lower time
complexity compared to the existing approaches. The simplicity of our merging
process reduces the time taken to reconstruct the merged forwarding data structure.
Even though our experiments are conducted for fairly large forwarding tables, our
algorithm completes the merging process for the 16 forwarding tables in 3.2s on a
Quad-core AMD Opteron processor running at 2.00 GHz.

4 Summary and Discussion

In this chapter we discuss two issues associated with data plane for data center
network virtualization. The first issue is flexible flow matching which enables fine-
grained network link virtualization. The second issue is resource consolidation in
network node virtualization to achieve high scalability.

Little research has been done so far on high-performance flexible flow matching.
We present the decision forest, a parallel architecture to address the performance

348 W. Jiang and V. K. Prasanna

challenges for flexible flow matching. We develop a framework to partition a set of
complex flow rules into multiple subsets and build each rule subset into a depth-
bounded decision tree. The partitioning scheme is designed so that both the overall
memory requirement and the number of packet header fields for constructing the
decision trees are reduced. We implement the design on FPGA, a reconfigurable
device. Experimental results demonstrate the effectiveness of the decision forest.
The FPGA design supports 1K OpenFlow-like complex rules and sustains 40 Gbps
throughput for minimum size (40 bytes) packets.

While some recent work has been done on merging multiple forwarding tables
for network node virtualization, none of them consider the characteristics of data
center networks. We present a novel approach called multiroot for efficient resource
consolidation for network node virtualization in data centers. Our scheme improves
the memory efficiency by merging multiple forwarding tables in an efficient way
that exploits the address space allocation in data center networks. The key idea is
to merge sub-tries from the optimal nodes rather than to merge the entire tries from
the top root node. Experimental results show that our scheme outperforms existing
solutions with respect to both memory efficiency and execution time.

In this chapter, we study the data plane problems associated with network link
virtualization and network node virtualization, separately. It can be interesting to
study both problems in an integrated context. For example, a virtual network assigned
to a data center tenant may maintain a forwarding table with flexible flow definitions
so as to slice the network into multiple overlays. Then it becomes a challenge in
efficient merging of multiple forwarding tables, each of which may employ a different
flow definition.

The techniques for data center network virtualization are still evolving. A lot of
issues remain open in data plane to support efficient data center network virtualiza-
tion. Neither flexible flow matching nor resource consolidation has been completely
solved in our schemes. For example, the decision forest supports no more than 1K
complex 12-tuple rules. The latest OpenFlow specification requires the data plane
to support more than 20 header fields which account for over 600 bits to match.
Another challenge in research is the lack of benchmarks and real-life data sets. Nei-
ther real-life flexible flow rule tables nor data center network forwarding tables are
publicly available to date. While FRuG [16] represents an early attempt to solve the
challenge, substantial collaboration between academia and industry are needed.

Acknowledgement This work is partly supported by the United States National Science Founda-
tion under grant CCF-1116781. Equipment grant from Xilinx Inc. is gratefully acknowledged.

References

1. M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G. Rabbani, Q. Zhang and
M. F. Zhani, “Data Center Network Virtualization: A Survey,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 2, pp. 909–928, 2013.

2. OpenFlow, “Enabling Innovation in Your Network,” [Online]. Available: www.openflow.org.

Network Virtualization in Data Centers: A Data Plane Perspective 349

3. J. C. Mogul, P. Yalag, J. Tourrilhes, R. Mcgeer, S. Banerjee, T. Connors and P. Sharma, “API
design challenges for open router platforms on proprietary hardware,” in Proceedings of the
ACM Workshop on Hot Topics in Networks (HotNets), 2008.

4. W. Jiang and V. K. Prasanna, “Scalable Packet Classification on FPGA,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 9, pp. 1668–1680, 2012.

5. D. E. Taylor, “Survey and taxonomy of packet classification techniques,” ACM Comput. Surv.,
vol. 37, no. 3, p. 238–275, 2005.

6. “Virtex-7 FPGA Family,” Xilinx, [Online]. Available: http://www.xilinx.com/products/silicon-
devices/fpga/virtex-7/index.htm.

7. J. Naous, D. Erickson, G. A. Covington, G. Appenzeller and N. McKeown, “Implementing an
OpenFlow Switch on the NetFPGA Platform,” in Proceedings of the 4th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS ’08), 2008.

8. Y. Luo, P. Cascon, E. Murray and J. Ortega, “Accelerating OpenFlow Switching with Network
Processors,” in Proceedings of ACM/IEEE ANCS, 2009.

9. S. Singh, F. Baboescu, G. Varghese and J. Wang, “Packet classification using multidimensional
cutting,” in Proceedings of ACM SIGCOMM, 2003.

10. J. Fong, X. Wang, Y. Qi, J. Li and W. Jiang, “ParaSplit: A Scalable Architecture on FPGA for
Terabit Packet Classification,” in Proceedings of IEEE HOTI, 2012.

11. Cisco Systems, Inc, [Online]. Available: www.cisco.com.
12. Juniper Networks, Inc., [Online]. Available: www.juniper.net.
13. H. Song, M. Kodialam, F. Hao and T. V. Lakshman, “Building Scalable Virtual Routers with

Trie Braiding,” in Proceedings of IEEE Infocom, 2010.
14. V. Srinivasan and G. Varghese, “Fast address lookups using controlled prefix expansion,” ACM

Trans. Comput. Syst., vol. 17, pp. 1–40, 1999.
15. J. Fu and J. Rexford, “Efficient IP-Address Lookup with a Shared Forwarding Table for Multiple

Virtual Routers,” in Proceedings of ACM CoNext, 2008.
16. T. Ganegedara, W. Jiang and V. K. Prasanna, “FRuG: A Benchmark for Packet Forwarding in

Future Networks,” in Proceedings of IEEE IPCCC, 2010.
17. Routing Information Service (RIS), [Online]. Available: http://www.ripe.net/ris/.

http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm

Optical Data Center Networks: Architecture,
Performance, and Energy Efficiency

Yuichi Ohsita and Masayuki Murata

1 Introduction

Online services such as cloud computing have recently become popular and the
amounts of data that need to be processed by such online services are increasing.
Large data centers with hundreds of thousands of servers have been built to handle
such large amounts of data.

Large amounts of data are stored in large data centers in the memories or storage
of numerous servers by using distributed file systems such as the Google File System
[1]. Such large amounts of data are then handled by distributed computing frame-
works such as MapReduce [2]. The distributed file systems or distributed computing
frameworks require servers within a data center to communicate. Thus, the data
center network plays an important role in data centers and affects their performance.

The data center network should provide communication with a sufficiently high
bandwidth between communicating server pairs to prevent the network from becom-
ing a bottleneck for data centers. The lack of bandwidth between servers may prevent
communication between servers, and increases the time to obtain the required data.
This degrades the performance of data centers. However, traditional data center net-
works, which are constructed with tree topologies, cannot provide communication
with a sufficiently large bandwidth between servers because the root of tree topolo-
gies becomes a bottleneck and the number of hops between servers increases as the
number of servers at data centers increases.

Another serious problem at data centers is energy consumption. The energy con-
sumed by data centers increases as the amounts of data they handle rise. The energy
consumed by data center networks is a non-negligible fraction of the total energy

Y. Ohsita (�) · M. Murata
Graduate School of Information Science and Technology,
Osaka University, Suita, Japan
e-mail: y-ohsita@ist.osaka-u.ac.jp

M. Murata
e-mail: murata@ist.osaka-u.ac.jp

© Springer Science+Business Media New York 2015 351
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_11

352 Y. Ohsita and M. Murata

consumed by data centers [3] but increases as the networks grow. Thus, the energy
consumed by data center networks should be reduced to reduce the energy consumed
by large data centers.

There has been much research to construct data centers with sufficient perfor-
mance or limited energy consumption [4–12]. For example, Al-Fares et al. proposed
a topology called FatTree [4] that provided a sufficient bandwidth between all server
pairs. The FatTree was a tree with multiple root nodes. Each node in this topology
used half of its ports to connect it to the nodes of the upper layer, and the other
half of its ports to connect it to the nodes of the lower layer. Another topology to
provide sufficient bandwidth was proposed by Kim et al. [5] that was called the flat-
tened butterfly, which provided enough bandwidth between servers and decreased
the number of hops between servers by using nodes with large numbers of ports
instead of constructing a tree.

Even though many data center network structures constructed of electronic
switches have been proposed, it is difficult to achieve both sufficient bandwidth and
small energy consumption by only using electronic switches. Electronic switches
with many ports that provide communication with large bandwidths consume large
amounts of energy. Although electronic switches with few ports consume less energy
than switches with many ports, we need many switches to connect all servers in large
data centers if we construct data center networks by using switches with few ports.

One approach to supplying sufficient bandwidth with lower energy consumption
is through optical data center networks that use optical switches, which consume
much less energy than electronic switches and provide communication with large
bandwidths between their ports. There are two kinds of optical switches: optical
packet and optical circuit switches. Optical packet switches relay packets constructed
of optical signals without converting the signals to electronic signals. The destination
port at each optical packet switch is determined based on the labels of the packets.
Furthermore, multiple packets from different input ports share the same output port
of each optical packet switch by waiting for the output port to become free at the
buffer when the output port is busy. Optical circuit switches connect each input port
with one of the output ports based on the configuration. The output ports of the optical
circuit switch cannot be shared by multiple flows from different input ports unlike
optical packet switches. However, the energy consumed by optical circuit switches
is much less than that by optical packet switches because they do not require label
processing.

This chapter introduces two approaches using optical switches. The first is aimed
at providing large bandwidths between all servers by using optical packet switches
because many ports are required to immediately provide communication between all
servers if packets from different input ports cannot share the same output port. The
second approach is aimed at minimizing energy consumption by using optical circuit
switches because they consume much less energy. Optical circuit switches in this
approach are deployed at the core of data centers and packet switches are connected
to the optical circuit switches. The connections of packet switches can be changed in
this network by configuring the optical circuit switches. Thus, we provide a sufficient
bandwidth with small energy consumption by configuring the connections between

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 353

packet switches to satisfy the current requirements and shutting down unused ports
of packet switches.

The rest of this chapter is organized as follows. Sect. 2 overviews the optical
switch architectures and Sect. 3 introduces the approach to providing a large band-
width to all-to-all communication by using optical packet switches. Sect. 4 introduces
an approach to achieving lower energy consumption and Sect. 5 is the conclusion.

2 Optical Switches Used in Optical Data Center Networks

Two kinds of switches, i.e., optical packet and optical circuit switches, are used in
optical data center networks. This section overviews their architectures.

2.1 Optical Packet Switches

Optical packet switches relay optical packets constructed of optical signals without
converting the signals to electronic signals. All optical packets have labels that in-
dicate their destination. Optical packet switches receiving optical packets relay the
packets to output ports based on the labels.

Figure 4 has a model of an optical packet switch, which is constructed of label
processors, controllers, switching fabrics, and buffers. The label processors in the
optical packet switch identify the labels of the optical packets. The controller then
determines the destination ports for the optical packets and configures the switching
fabrics based on the labels of the incoming optical packets. After the switching fabrics
are configured, the incoming optical packets are relayed to output ports.

Multiple packets to the same output port may arrive simultaneously in packet
switches. Buffers are deployed in optical packet switches to avoid packet loss.

The buffers may be constructed with fiber delay lines (FDLs) or electronic mem-
ories. The optical packets in FDL-based buffers can be stored without converting
them into electronic packets. However, it is difficult to construct large buffers.
However, large buffers can easily be implemented for electronic buffers, although
optical packets must be converted into electronic packets before the packets are stored
(Fig. 1).

The switching fabrics relay incoming optical packets to the required destination
ports without converting optical signals into electronic signals. The switching fabrics
can be constructed with arrayed waveguide grating routers (AWGRs)[13] or broad-
cast and select switching (B&S) [14]. AWGR is a passive switching fabric where
the output port of the input signal depends on the wavelength of the input signal.
Thus, the packets in the switching fabric constructed with AWGR are relayed to the
destination port by changing the wavelength of the input signal according to the re-
quired output port. Wavelength converters or tunable lasers are deployed at all input
ports of AWGR to change the wavelength. B&S is based on the wavelength-division

354 Y. Ohsita and M. Murata

Fig. 1 Model of optical packet switch

multiplexing (WDM) star coupler. The input signals in B&S are broadcast through
a splitter to all the output ports. Then, the optical signals are relayed to their output
ports by setting each output port to select the signal corresponding to the port. Both
types of switching fabrics can change the destination port immediately by setting
the wavelength of the input signal or setting the selector. Thus, we can change the
configuration for the switching fabrics each time a packet arrives.

Optical packet switches provide large bandwidths between their ports with less
energy consumption, compared with electronic packet switches because they relay
optical packets without converting optical signals into electronic signals. Thus, one
approach to providing large bandwidths with less energy consumption is to use optical
packet switches.

2.2 Optical Circuit Switches

Optical circuit switches relay input optical signals to output ports based on the
configuration.

One of the most popular optical circuit switches is the micro-electronic-
mechanical systems (MEMS) based optical circuit switch outlined in Fig. 2 [15]
in which micro-mirrors are deployed. The input optical signals are reflected by the

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 355

Fig. 2 MEMS optical circuit switch

micro-mirrors to output ports. Tiny motors are attached to the mirrors, whose angles
can be changed. The output ports of input signals can be changed by changing the
angles of the micro-mirrors.

A MEMS optical circuit switch can be configured with commands from a remote
node. The configuration commands indicate the output ports that correspond to input
ports. The controller within the MEMS optical switch controls the tiny motors that set
the angles of the micro-mirrors so that the input signals are reflected to corresponding
output ports.

The optical circuit switch only consumes a little energy because it only reflects
the optical signals to their output ports with the micro-mirrors. However, the change
in the angles of the mirrors takes a certain time. Thus, MEMS based optical circuit
switches cannot be used as the switching fabrics of optical packet switches.

One of the most important applications of optical circuit switches is in the con-
struction of virtual networks, where the core network is constructed of these switches.
Packet switches are then connected to the ports of the optical circuit switches. By
configuring the optical circuit switches, lightpaths called optical paths are estab-
lished between the packet switches. The set of optical paths and packet switches
forms a virtual network. The virtual network can be changed by reconfiguring the
optical circuit switches based on the current amount of traffic.

356 Y. Ohsita and M. Murata

Fig. 3 Data center network using optical packet switches

3 Approach 1: Optical Data Center Networks to Provide Large
Bandwidth for All-to-All Communication

Numerous servers cooperate in data centers that handle large amounts of data. The
data center networks should accommodate all-to-all communication to enable co-
operation between any server pairs. In addition, the lack of bandwidth between
communications may increase the time to obtain the required data from other servers.
Thus, data center networks should provide large bandwidth communication between
all server pairs.

All-to-all communication requires packet switches, because circuit switch net-
works cannot accommodate all-to-all communications since multiple flows from
different input ports cannot share the same output ports of circuit switches. This
section discusses a network structure that uses optical packet switches to provide
large bandwidths between all server pairs based on our research [16].

Optical packet switches provide large bandwidths with less energy consump-
tion. Several optical packet switch architectures for data centers have been proposed
[17–19]. Some of them are optical packet switches with many ports [18, 19]. How-
ever, networks using optical packet switches with many ports are vulnerable to failure
by these switches because most of the traffic between servers traverses the switches.

This section introduces a network structure using optical packet switches with
few ports that can provide sufficient bandwidths between all server pairs even when
failures occur. Optical packet switches are used in this network structure to construct
the core network of a data center. Figure 3 outlines the structure for a data center

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 357

network using optical packet switches that are used to construct the core network so
as to use the large bandwidth of these switches.

We deployed a top of rack (ToR) switch in each server rack similarly to that in
conventional data centers. All servers in a server rack are connected to one ToR
switch. The ToR switches are connected to the core network by connecting them
to optical packet switches. Each optical packet switch is connected to multiple ToR
switches, and it aggregates traffic from them to efficiently use the large bandwidth
between optical packet switches. Each ToR switch is also connected to multiple
optical packet switches to retain connectivity even when optical packet switches fail.

The packets from a server rack in this network are converted into optical packets
at the first optical packet switch connected to the source server rack. Then, the
optical packets are relayed in the core network constructed of optical packet switches.
Finally, the optical packets are converted into electronic packets at the optical packet
switches connected to the destination server rack, and are relayed to the destination
server rack. Each ToR switch in this network only relays the electronic packets from
or to the corresponding server rack, and does not relay the packets from or to the
other server racks.

The details on a network structure suitable for data center networks using optical
packet switches are discussed in the rest of this section.

3.1 Optical Packet Switches with Large Bandwidth

One approach to providing a large bandwidth between server racks is to use optical
packet switches with a large bandwidth. This subsection introduces an optical packet
switch architecture that provides a large bandwidth between its ports, which is used
as an example of optical packet switches.

A large bandwidth is provided in optical networks by using multiple wavelengths.
Using multi-wavelength packets is one approach to attaining multiple wavelengths.
Multi-wavelength packets are constructed by dividing a packet into multiple wave-
length signals. We can provide a large bandwidth to each port by using multiple
wavelengths (Fig. 4).

Urata et al. [17] proposed and implemented an optical packet switch based on
multi-wavelength packet technology. Figure 1 outlines an optical packet switch ar-
chitecture. Optical packets constructed of multiple wavelengths are relayed in this
architecture between optical packet switches. The optical packets from other opti-
cal packet switches are demultiplexed into the optical signals of each wavelength.
Then, the optical signals are relayed to the destination port after label processing
and multiplexed into optical packets. The optical packets are stored in the shared
buffer constructed with a complementary metal oxide semiconductor (CMOS) after
serial-to-parallel conversion in the case of collisions. We then try to relay the packets
again after parallel-to-serial conversion.

This optical packet switch also has electronic ports in the data center, which
can be used to connect them to the ToR switches. Packets from ToR switches are

358 Y. Ohsita and M. Murata

匝

惣

Fig. 4 Optical electronic packet switch

aggregated to the optical packets and stored in the shared buffer. Then, the packets
are relayed after parallel-to-serial conversion. Optical packets whose destination is
the ToR switches connected to the optical packet switch are also stored in the shared
buffer. The packets are then sent to the destination ToR switches after the optical
packets are demultiplexed into packets to each ToR switch.

3.2 Data Center Network Structure Using Optical Packet Switches

This section introduces a network structure that satisfies (1) the efficient use of links
between optical packet switches, whose bandwidths are much larger than those of
the ports of ToR switches, by aggregating traffic from multiple ToR switches and
(2) the connectivity between all servers even when optical packet switches fail by
connecting each ToR switch to multiple optical packet switches.

We divided the data center network in our topology into multiple groups. We
avoided long links between optical packet switches and ToR switches by connecting
each ToR switch to optical packet switches belonging to the same group. We respec-
tively denote the number of ToR switches in each group, the number of optical packet
switches in each group, and the number of groups asN tor

in , Nopt
in , andG. Each optical

packet usesPin ports to connect optical packet switches belonging to the same group,
and Pgr ports to connect optical packet switches belonging to other groups. We also
denote the number of servers connected to each ToR switch as P svr

tor . The number of

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 359

Fig. 5 Connection within group

ToR switches connected to each optical packet switch is denoted as P opt
tor , and the

number of optical packet switches connected to each ToR switch is denoted as P tor
opt .

We also divide each group into P tor
opt subgroups. Each ToR switch is connected

to optical packet switches belonging to different subgroups. All Pin ports of each
optical packet switch are used to connect optical packet switches belonging to the
same subgroup. No links are constructed between optical packet switches belonging
to different subgroups as seen in Fig. 5.

We have P tor
opt distinct paths between all ToR switch pairs in this topology. Thus,

we can retain the connectivity between all ToR switch pairs even when optical packet
switches fail.

In addition, this topology effectively uses the ports of optical packet switches.
The set of ToR switches connected to each subgroup is the same. Thus, no links
between optical packet switches belonging to different subgroups are required. We
greatly reduce the number of hops between ToR switches and optical packet switches
by using all Pin ports of each switch to connect optical packet switches of the same
subgroup.

We assign unique IDs to the groups, the subgroups in each group, and the optical
packet switches in each subgroup. We respectively denote the group ID, the subgroup
ID, and the optical packet switch ID of optical packet switch s as Dgr(s), Dsub(s),
and Dopt(s).

The rest of this subsection explains details on the connection within a group and
that between groups.

360 Y. Ohsita and M. Murata

3.2.1 Connection Within Group

We first connect optical packet switches belonging to the same subgroups. We then
connect each ToR switch to P tor

opt optical packet switches belonging to different
subgroups.

Optical packet switches belonging to the same subgroup are connected through
the following steps. First, we construct a ring topology by connecting optical packet
switches of the nearest optical packet switch IDs. Then, we add links between optical
packet switches S1 and S2 if constraint

Dopt(S2) = �Dopt(S1) + iNsub/(Pin − 1)�mod Nsub (1)

is satisfied, where Nsub is the number of optical packet switches belonging to each
subgroup and i is a positive integer. If the optical packet switch, S2, satisfying Eq. (1)
does not have enough ports to enable connection within a group, we connect S1 to
the optical packet switch that has sufficient ports and has an optical packet switch
ID close to S2.

3.2.2 Connection Between Groups

We connect groups by adding links between optical packet switches belonging to
different groups. The number of links used to connect a group to other groups is
N

opt
in Pgr. If Nopt

in Pgr ≥ G − 1, we can add links between all group pairs. We have
assumed that we can add links between all group pairs in this subsection.

We select optical packet switches on both ends of links between groups to connect
them. We select optical packet switch S1 as the optical packet switch to be connected
to the Kth link between groups Dgr(S1) and Dgr(S2) if the constraint

Din(S1) =
⎧⎨
⎩

�Dgr(S2)+K(G−1)
Pgr

� (Dgr(S1) ≥ Dgr(S2))

�Dgr(S2)+K(G−1)−1
Pgr

� (Otherwise)
, (2)

is satisfied, where Din is the number defined by

Din(S1) = Dsub(S1)
N

opt
in

P tor
opt

+Dopt(S1).

3.2.3 Routing in Topology

We can calculate routes from ToR switches to optical packet switches and from
optical packet switches to ToR switches in our topology by using the IDs assigned to
optical packet switches, [Dgr(s),Dsub(s), andDopt(s)] without exchanging any route
information.

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 361

Routes from ToR Switches to Optical Packet Switches The routes from the ToR
switch in groupDgr(s) to optical packet switch d are calculated through the following
steps.

If the destination optical packet switch, d , belongs to Dgr(s), the source ToR
switch first sends the packet to the optical packet switch that is directly connected
to the source ToR switch and belongs to the same subgroup as destination optical
packet switch d, (i.e., subgroup Dsub(d)). The intermediate optical packet switch
selects the next hop by calculating H (d , a), defined by Eq. (3), for all neighboring
optical packet switches a.

H (d , a) = |Dopt(d) −Dopt(a)| (3)

The optical packet switch, a, having the smallest H (d, a) is close to destination
optical packet switch d . Thus, we select the optical packet switch having the smallest
H (d, a) as the next-hop optical packet switch. If there are multiple optical packet
switches having the smallest H (d , a), we regard all optical packet switches having
the smallestH (d, a) as candidates for the next hop, and balance the load by selecting
the next-hop optical packet switch randomly from the candidates.

If the destination optical packet switch does not belong toDgr(s), we first select the
intermediate optical packet switch in groupDgr(s) having a link to an optical packet
switch belonging to subgroup Dsub(d) in group Dgr(d). An intermediate optical
packet switch is selected through the following steps. First, we calculate the range
of k̃ in Eq. (2) where the k̃th link between groupsDgr(s) andDgr(d) is connected to
optical packet switches belonging to subgroup Dsub(d) in group Dgr(d) by solving
the inequation

Dsub(d)
N

opt
in

P tor
opt

≤ D̃in(d) < (Dsub(d) + 1)
N

opt
in

P tor
opt

, (4)

where

D̃in(d) =
⎧⎨
⎩

�Dgr(s)+k̃(G−1)
Pgr

� (Dgr(d) ≥ Dgr(s))

�Dgr(s)+k̃(G−1)−1
Pgr

� (Otherwise)

Then, we identify the optical packet switch, s ′, connected to an optical packet switch
belonging to subgroup Dsub(d) in group Dgr(d) by substituting k̃ for K , s ′ for S1,
and d for S2 in Eq. (2).

After the intermediate optical packet switch is selected, we calculate the routes
from the source ToR switch to the intermediate optical packet switch and from the
intermediate optical packet switch to the destination optical packet switch by using
the same steps as those for destination optical packet switch d that belongs toDgr(s).

Routes from optical packet switches toToR switches If the destination ToR switch
belongs to the same group as the source optical packet switch, we first select inter-
mediate optical packet switch dopt that belongs to the same subgroup as the source
optical packet switches and this is directly connected to the destination ToR switch.

362 Y. Ohsita and M. Murata

We have assumed that each optical packet switch knows the connections between
all optical packet switches and all ToR switches within its group in this subsection.
Thus, each optical packet switch can calculate dopt. Then, we calculate the routes
from the source optical packet switch to intermediate optical packet switch dopt by
using H (dopt, a) in the same manner as that for routes from the ToR switch to the
optical packet switch.

If the destination ToR switch does not belong to the same group as the source
optical packet switch, we select an intermediate optical packet switch having a link
to the group of the destination ToR switch. The intermediate optical packet switches
having a link to the group of the destination ToR switch are obtained with Eq. (2).
We then calculate the routes from the source optical packet switch to the interme-
diate optical packet switch, and from the intermediate optical packet switch to the
destination ToR switch by using the same steps as where the destination ToR switch
belonged to the same group as the source optical packet switch.

Routes between ToR Switches We can calculate routes between ToR switches by
selecting an intermediate optical packet switch and calculating the routes from the
source ToR switch to the intermediate optical packet switch and from the intermediate
optical packet switch to the destination ToR switch. We can avoid large hop counts
between ToR switches by selecting an intermediate optical packet switch at the end
of a link between the group of the source ToR switch and the group of the destination
ToR switch based on Eq. (2).

Handling Failures If optical packet switch S1 cannot find any suitable next-hop
optical packet switches for destination d because of failures, it returns the packet to
the previous-hop optical packet switch, S2. S2 knows that S1 has no suitable paths
to destination d by receiving the returned packet. Thus, S2 removes S1 from the
candidates of next-hop optical packet switches to d, and relays the packet to one
of the other candidates. If S2 also cannot find any suitable next-hop optical packet
switches after S1 is removed from the candidates, S2 also returns the packet to the
previous hop of S2. All optical packet switches can remove switches with no suitable
routes to d from their candidates for the next-hop switch to d by continuing these
steps.

3.3 Parameter Settings

Our topology has three kinds of parameters, Pgr, Pin, and connection between the
ToR switches and the optical packet switches. We set these parameters so that our
topology could accommodate any traffic without limiting the bandwidth between
servers.

We have assumed each server has a link with 1 Gbps connected to a ToR switch
in this subsection. The bandwidth of each link between optical packet switches is
Bopt Gbps.

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 363

We assumed that traffic was balanced by Valiant Load Balancing (VLB) [20]
when setting the parameters. We selected the intermediate nodes randomly in VLB,
regardless of the destination, to avoid traffic from concentrating on certain links even
when certain node pairs had a large volume of traffic.

We selected an intermediate optical packet switch randomly with a probability of
1

N
opt
in G

by applying VLB to this topology. Traffic was then sent via the intermediate

optical packet switch that was selected. The volume of traffic from a ToR switch to
an optical packet switch, Ttor,opt, and the volume of traffic from an optical packet
switch to a ToR switch, Topt,tor, satisfied two conditions by applying VLB:

Ttor,opt ≤ P svr
tor

N
opt
in G

and (5)

Topt,tor ≤ P svr
tor

N
opt
in G

. (6)

Thus, we set the parameters of our topology to accommodate the traffic of T max
tor,opt =

T max
opt,tor = P svr

tor

N
opt
in G

between all ToR switch and optical packet switch pairs.

3.3.1 Parameters for Connection Between Groups

The total traffic sent between a certain group pair, T gr, is constrained by applying
VLB by

T gr ≤ (T max
tor,opt + T max

opt,tor)N
opt
in N

tor
in .

We have PgrN
opt
in

G−1 bidirectional links between each group pair whose bandwidths are
Bopt Gbps. Thus, we set Pgr to satisfy the following condition to avoid congestion
on the links between groups:

2BoptPgrN
opt
in

G− 1
≥ (T max

tor,opt + T max
opt,tor)N

opt
in N

tor
in . (7)

3.3.2 Parameters for Connection within Group

We denote the amount of traffic on link l as Xl and the set of links between optical
packet switches within a group as L. We also denote the set of traffic from a ToR
switch to an optical packet switch as F tor

opt , and the set of traffic from an optical packet

switch to a ToR switch as F opt
tor .

364 Y. Ohsita and M. Murata

The total amount of traffic traversing the links within a certain group,
∑
l∈L Xl ,

satisfies the following condition:∑
l∈L
Xl ≤

∑
i∈F tor

opt

MiT
max

tor,opt +
∑
i∈F opt

tor

MiT
max

opt,tor,

whereMi is the number of links within the group passed by traffic i.

We have PinN
opt
in

2 bidirectional links between optical packet switches within a group.

Thus, the total bandwidth of the links within a group isBoptPinN
opt
in . Therefore, Eq. (8)

should be satisfied to provide sufficient bandwidth between all ToR switches.

BoptPinN
opt
in ≥

∑
i∈F tor

opt

MiT
max

tor,opt +
∑
i∈F opt

tor

MiT
max

opt,tor (8)

Eq. (8) indicates that one approach to providing enough bandwidth between ToR
switches is to reduce the average number of hops between ToR switches and opti-
cal packet switches. Thus, we connect ToR switches to optical packet switches to
minimize the average number of hops between them. Then, we check whether the
condition in Eq. (8) is satisfied. If the condition in Eq. (8) is not satisfied, we add
more links between optical packet switches within the group.

We set parameterPin and the connections between ToR switches and optical packet
switches in five steps.

Step 1 Initialize Pin to two.
Step 2 Construct the topology between optical packet switches including both intra-

and inter-group connections based on the current parameter, Pin.
Step 3 Connect ToR switches to optical packet switches so that the average number

of hops between ToR switches and optical packet switches is minimized.
Step 4 Check whether Eq. (8) is satisfied for all groups. If Eq. (8) is satisfied, go to

Step 5. Otherwise, go back to Step 2 after incrementing Pin by one.
Step 5 End.

We need to minimize the average number of hops between ToR switches and optical
packet switches in Step 2. However, it is difficult to obtain optimal connections
between ToR switches and optical packet switches from all possible solutions. We
selected one optical packet switch to be connected to a certain ToR switch to minimize
the average number of hops from the ToR switch to all optical packet switches in
each step, instead of finding the optimal solution from all possible solutions. We
connected all ToR switches to optical packet switches by continuing this step.

3.4 Evaluation

3.4.1 Topologies

We evaluated our topology by comparing it with the topologies in Table 1, which is
explained in this subsection.

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 365

Table 1 Topologies used
in our evaluation

of # of optical # of links
Servers Packet SWs Between optical SWs

Our topology 2400 24 48

Full torus 2400 24 48

Parallel torus 2400 24 48

FatTree (3 layers) 2400 20 32

FatTree (4 layers) 2400 56 140

Switch-based
DCell

2400 30 60

Our Topology We set the number of optical packet switches connected to one ToR
switch, P tor

opt , to two in our evaluation, and the number of ToR switches connected to

one optical packet switch, P opt
tor , to 10. Each ToR switch was connected to 20 servers

within a rack. We set the number of optical packet switches within a group, Nopt
in ,

to six, and the number of groups, G, to four. Thus, there were 24 optical packet
switches in our topology. We set the parameters, Pgroup and Pin, according to the
steps described in Sect. 3.3 and set Bopt to 100 Gbps. As a result, Pgroup and Pin were
set to two.

Full Torus We constructed the torus topology using the same number of optical
packet switches and the same number of links as those in our topology. Each optical
packet switch in our topology had four ports in this evaluation. Thus, we also used
optical packet switches with four ports in the full torus topology, and we connected
optical packet switches as a 4 × 6 torus. We connected each ToR switch to two
optical packet switches and each optical packet switch to ten ToR switches, which
was similar to our topology.

Parallel Torus We constructed P tor
opt torus topologies without links between the

different torus topologies. We connected each ToR switch to optical packet switches
in the different torus topologies. We use the same number of optical packet switches
and the same number of links as our topology. That is, we used 24 optical packet
switches with four ports in this evaluation, and constructed two 3×4 torus topologies.
We connected each ToR switch to two optical packet switches and each optical packet
switch to ten ToR switches, which was similar to our topology.

FatTree We constructed the FatTree topology using optical packet switches with
four ports with the method proposed by Al-Fares et al. [4]. This topology was a tree
topology with multiple roots, where half the ports of an optical packet switch were
used to connect it to nodes in the upper layer and the other half of the ports of an
optical packet switch were used to connect it to nodes in the lower layer.

Although the method proposed by Al-Fares et al. [4] was used to construct a
3-layer FatTree, which was constructed of root switches and pods containing two
layers of switches, we could construct higher-layer FatTree topologies. The k-layer

366 Y. Ohsita and M. Murata

FatTree constructed of optical packet switches with four ports included (2k−1)2k−1

optical packet switches.
We constructed two kinds of FatTree topologies for our evaluation, i.e., 3- and

4-layer FatTree topologies using optical packet switches with four ports. We only
connected the ToR switches to optical packet switches in the lowest layer. We con-
nected the same number of ToR switches as that in our topology to both topologies.
We set the number of optical packet switches connected to each ToR switch to two.
There were 30 ToR switches connected to each optical packet switch and 15 each
for the 3- and 4-layer FatTree topologies.

Switch-based DCell DCell represent a topology for data center networks proposed
by Guo et al. [6]. Since the original DCell was constructed by directly connect-
ing server ports, we modified them for use in connections between optical packet
switches. We called the modified version of the DCell switch-based DCell.

High-layer DCell are constructed from low-layer DCells in switch-based DCell.
We denote the number of optical packet switches in one layer-k DCell as NDCell

k .
Switch-based DCell are constructed in the following steps. First, layer-0 DCell is
constructed by adding links between all pairs of NDCell

0 optical packet switches.
Then, layer-k DCell is constructed from NDCell

k−1 + 1 layer-k − 1 DCells so that each
layer-k − 1 DCell is connected to all other layer-k − 1 DCells with one link.

We constructed layer-1 switch-based DCell with NDCell
0 = 5 in our evaluation.

Thus, there were 30 optical packet switches and five ports per optical packet switch,
which were more than those in our topology. We connected the same number of ToR
switches as those in our topology and set two as the number of optical packet switches
connected to each ToR switch. Thus, there were eight ToR switches connected to
one optical packet switch. We clarified that our topology could accommodate more
traffic than switch-based DCell by comparing our topology with this topology, even
though switch-based DCell had more links.

3.4.2 Properties of Topologies

We compared the topologies with two metrics.

Edge Betweenness The edge betweenness of link l, Cl is defined by

Cl =
∑

s,d∈V ,l∈L

|Fs,l,d |
|Fs,d | ,

where V is the set of nodes that are the source or destination nodes of traffic, L is
the set of links, Fs,l,d is the set of the shortest paths from nodes s to d passing link
l, and Fs,d is the set of the shortest paths from nodes s to d. The edge betweenness
indicates the expected amount of traffic passing the link. Thus, a topology that
has a large edge betweenness is easily congested. We calculated the maximum
edge betweenness for traffic between ToR switches in our evaluation.

Minimum Cut The minimum cut indicates the smallest number of link failures to
make the source node unable to reach the destination node. We calculated the

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 367

Table 2 Properties of
topologies Edge betweenness Minimum

cut

Our topology 1000 2

Full torus 1600 2

Parallel torus 1200 2

FatTree (3 layer) 2700 2

FatTree (4 layer) 1575 2

Switch-based DCell 2065 2

minimum cut for all ToR switch pairs in our evaluation. Each ToR switch in all
the topologies we used in our evaluation was connected to two optical packet
switches. Thus, there were at most two minimal cuts.

Table 2 summarizes the results, where there are two minimum cuts for all topologies.
That is, all server pairs could communicate even when one link failed in all the
topologies.

The FatTree topologies have large edge betweenness regardless of the number of
layers. Even though the 4-layer FatTree, especially, uses more than double the optical
packet switches and links between optical packet switches compared with other
topologies, its edge betweenness is larger than that in our topology and the parallel
torus, and is similar to that in the full torus. This is caused by the large average number
of hops between ToR switches. A large amount of traffic in the FatTree topologies
passes root optical packet switches, which causes the large average number of hops.
The large average number of hops leads to the large expected amount of traffic passing
links.

The switch-based DCell also has large edge betweenness, even though the switch-
based DCell used in our evaluations had more links than those in our topology and
torus topologies. This is because the switch-based DCell had only one link between
each layer-0 DCell pair. We connected many layer-0 DCell pairs in the switch-based
DCell by limiting the number of links between each layer-0 DCell pair to one.
This greatly reduced the number of hops between optical packet switches. One link
between each layer-0 DCell pair, however, cannot provide enough bandwidth.

The parallel torus had smaller edge betweenness than the full torus. This was
caused by the close connections between optical packet switches connected to differ-
ent ToR switches. The parallel torus had more links between optical packet switches
connected to different ToR switches instead of connecting optical packet switches
coupled to the same ToR switch, while the full torus had links between optical packet
switches connected to the same ToR switch. This close connection between optical
packet switches coupled to different ToR switches greatly decreased the number
of links passed by traffic between ToR switches, and reduced the amount of traffic
between ToR switches passing each link.

Our topology had the smallest edge betweenness of the topologies used in our
evaluation. Our topology used more links between optical packet switches connected

368 Y. Ohsita and M. Murata

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.02 0.04 0.06 0.08 0.1 0.12

M
ax

im
um

 E
dg

e
B

et
w

ee
nn

es
s

Failure Rate

Our topology
Full Torus

Parallel Torus
FatTree (3 layer)
FatTree (4 layer)

Switch-based DCell

Fig. 6 Edge betweenness in case of failure

to different ToR switches instead of connecting optical packet switches connected to
the same ToR switches, which was similar to the parallel torus. In addition, the pa-
rameters in our topology were set according to the steps described in Sect. 3.3, which
aimed at avoiding concentrations of traffic on certain links. As a result, the parameters
for our topology were set to greatly reduce the maximum edge betweenness.

We also compared the maximum edge betweenness when randomly selected
optical packet switches failed by generating 100 patterns of random failures and cal-
culating the average maximum edge betweenness for cases where all servers could
mutually communicate. We compared the possibility that congestion occurred when
some optical packet switches failed by using this metric. Figure 6 plots the results,
where the horizontal axis indicates the failure rates for optical packet switches and
the vertical axis indicates the maximum edge betweenness.

As we can see from Fig. 6, the maximum edge betweennesses of the FatTree
topologies increase faster than those of the other topologies as the failure rate in-
creases. Because there are many shortest paths between ToR switches passing each
link in the FatTree topologies, the failure of each optical packet switch affects many
ToR switch pairs. Moreover, the paths between the ToR switch pairs affected by
failure also pass many links. As a result, failure in each optical packet switch has a
large impact on the edge betweennesses of many links.

Figure 6 also indicates that our topology has the smallest edge betweenness even
when some optical packet switches fail. As previously discussed, our topology has
the smallest edge betweenness when there are no failures. In addition, because there
are few shortest paths between ToR switches passing each link and few average
number of hops between ToR switches, failure in each optical packet switch only
affects few paths between ToR switch pairs and few links, unlike that in the FatTree
topologies. As a result, the edge betweenness with our method remains the smallest
even when some optical packet switches fail.

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 369

We have also confirmed that the edge betweenness of our topology does not in-
crease even when the failure rate reaches more than 0.12. However, there is the
probability that ToR switch pairs being unable to communicate will rise as the fail-
ure rate increases in our topology. Any optical packet switch in our topology has
important links that connect different groups. Thus, as the failure rate increases, the
number of redundant paths between groups decreases. Finally, when the number
of paths between groups becomes zero due to failures, the ToR switches belonging
to different groups become unable to communicate. However, as listed in Table 2
no topologies are more robust to the worst cases of failures than our topology. In
addition, we can make our topology more robust to failures by setting P tor

opt to a large
value.

3.4.3 Maximum Link Load

We define the link load as the total volume of traffic passing the link, and we compare
the maximum link load without limiting the total volume of traffic passing each link
in this subsection. We generated two kinds of traffic in this evaluation.

Uniform random Traffic was generated between all server pairs. We added traffic,
whose volume was randomly generated, between randomly selected server pairs
until the network interface cards of all servers had no remaining bandwidth.

Certain SW pair All the servers connected to the same ToR switch communicated
with the servers connected to a certain ToR switch.

We randomly generated 20 patterns of traffic and calculated the maximum link load
for each type of traffic.

Routes of traffic between ToR switches were calculated with two policies in our
evaluation.

ECMP Traffic between ToR switches was equally divided among all shortest paths.
VLB One intermediate optical packet switch was randomly selected regardless of

the destination. The traffic was then sent from the source ToR switch to the
selected intermediate optical packet switch, and from the intermediate optical
packet switch to the destination ToR switch.

We generated random failure in optical packet switches and investigated the maxi-
mum link utilization when all servers could communicate in this evaluation, which
was similar to the scenario in Fig. 6. Figure 7 plots the results, where the horizon-
tal axis indicates the failure rate for optical packet switches and the vertical axis
indicates the maximum link loads.

Figures 7a and b indicate that our topology has the smallest link loads for uni-
form random traffic regardless of routing. Link loads for uniform random traffic are
proportional to edge betweennesses. Thus, our topology that has the smallest edge
betweenness shown in Fig. 6 has the smallest link loads.

Our topology using ECMP has much larger link loads than the parallel torus for
certain switch pair traffic. This is caused by the number of distinct shortest paths.

370 Y. Ohsita and M. Murata

 0

 50

 100

 150

 200

 250

 300

 0 0.02 0.04 0.06 0.08 0.1 0.12

M
ax

im
um

 L
in

k
Lo

ad
 (

G
bp

s)

Failure Rate

Uniform random traffic, ECMP Uniform random traffic, VLB

Certain SW pair traffic, VLBCertain SW pair traffic, ECMP

Our topology
Full Torus

Parallel Torus
FatTree (4 layer)

Switch-based DCell

 0

 50

 100

 150

 200

 250

 300

 0 0.02 0.04 0.06 0.08 0.1 0.12

M
ax

im
um

 L
in

k
Lo

ad
 (

G
bp

s)

Failure Rate

Our topology
Full Torus

Parallel Torus
FatTree (4 layer)

Switch-based DCell

 0

 50

 100

 150

 200

 250

 300

 0 0.02 0.04 0.06 0.08 0.1 0.12

M
ax

im
um

 L
in

k
Lo

ad
 (

G
bp

s)

Failure Rate

Our topology
Full Torus

Parallel Torus
FatTree (4 layer)

Switch-based DCell

 0

 50

 100

 150

 200

 250

 300

 0 0.02 0.04 0.06 0.08 0.1 0.12

M
ax

im
um

 L
in

k
Lo

ad
 (

G
bp

s)

Failure Rate

Our topology
Full Torus

Parallel Torus
FatTree (4 layer)

Switch-based DCell

a b

c d

Fig. 7 Maximum link load

While the torus has many distinct shortest paths, there are few distinct shortest paths
in our topology, which causes traffic to concentrate on certain links.

However, our topology achieves the smallest link loads even for certain switch
pair traffic by calculating routes with VLB. This is because the parameters of our
topology are set to avoid traffic from concentrating on certain links when the routes are
calculated with VLB. As seen in Fig. 7, of all pairs of topologies and routing methods
used in our evaluation, only the 4-layer FatTree topology using ECMP achieves
slightly smaller link loads than those with our topology when there are no failures.
The 4-layer FatTree, however, uses more than double the optical packet switches
and links between optical packet switches in our topology. In addition, similar to the
edge betweenness in Fig. 6, the link loads of the 4-layer FatTree increase rapidly as
the failure rate increases. Therefore, our topology is the most suitable topology for
accommodating traffic between ToR switches when some optical packet switches
fail.

4 Approach 2: Networks to Achieve Low Energy Consumption

This section focuses on the energy consumption by data center networks, while
the previous section focused on the bandwidth provided between servers. Energy
consumption by data center networks is a non-negligible fraction of the total energy

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 371

consumed by data centers [3] but increases as the size of the networks increases.
Thus, the energy consumed by data center networks should be decreased to reduce
the energy consumed by large data centers.

One approach to reducing energy consumption is to construct data center networks
that accommodate traffic within the center with limited energy. Networks that are
suitable for data centers depend on the applications and current loads of data centers.
Networks should provide a large bandwidth between all servers related to applications
where servers exchange large amounts of data. A small bandwidth, on the other hand,
is sufficient where servers only exchange a small amount of data for applications and
a network structure with only a small number of devices is preferable to reduce
energy consumption.

However, the traffic demand at data centers changes over time [21]. Moreover,
servers related to applications that suddenly become popular may start exchanging
large amounts of data. Additional servers related to applications may be implemented
to handle the abruptly increased demand for applications. As a result, data center
networks are no longer suitable for current applications and loads. Although we can
avoid the lack of bandwidth or large delays by constructing redundant networks, this
approach consumes large amounts of energy.

Therefore, network structures based on current traffic demand within data centers
need to be reconfigured to accommodate current traffic with only limited amounts
of energy consumption. Networks using optical circuit switches enable network
structures to be reconfigured, where the core of data center networks is constructed
by using optical circuit switches and optical fibers. Electronic packet switches, de-
ployed in each server rack, are then connected to the core network by connecting
them to optical circuit switches. An optical path is established between two packet
switches by configuring the optical circuit switches along the route between the elec-
tronic switches. A set of optical paths and electronic packet switches forms a virtual
network. Traffic between electronic switches is carried over a virtual network.

The energy consumed by the data center network in this network is minimized by
minimizing the number of ports of electronic switches used in the virtual network and
shutting down unused ports because the energy consumed by electronic switches is
much larger than that by optical circuit switches. When there are changes in demand,
we need to maintain a sufficiently large bandwidth, short delays between servers,
and low energy consumption by reconfiguring the virtual network.

Dynamic reconfiguration of virtual networks constructed over optical networks
has also been discussed by many researchers [22–26]. However, most of them have
aimed at optimizing virtual networks using monitored or estimated traffic demand,
and their research has not been applied to data center networks, where traffic can
change within a second [27], because their calculation time has been too long for
large data centers.

Therefore, we have proposed a method of reconfiguring a virtual network that is
suitable for a large data center network [28]. This section introduces this proposed
method [28], in which traffic changes within short periods are handled by load
balancing [20] over the virtual network. We designed the virtual network to achieve
a sufficiently large bandwidth and small delay with low energy consumption by

372 Y. Ohsita and M. Murata

considering load balancing. The virtual network is reconfigured if the current virtual
network cannot satisfy current demand. Our method reconfigures the virtual network
by setting the parameters of the topology to avoid long calculation times at large data
centers. We introduce a topology called the Generalized Flattened Butterfly (GFB)
that we used to configure the virtual network. We also introduce a method of setting
the parameters to match the current conditions.

4.1 Overview

This section introduces the virtual network configured over a data center network
constructed of optical circuit and the electronic switches, where the core of the data
center network is constructed by using optical circuit switches and optical fibers.
Each ToR switch, which is an electronic packet switch, is connected to the core of
the data center by connecting it to one of the ports of the optical circuit switches.
An optical path is established between two electronic switches by configuring the
optical packet switches along the route between the electronic switches. A set of
optical paths and ToR switches forms a virtual network, where each optical path is
regarded as a link and each ToR switch is regarded as a node in the virtual network.
Traffic between electronic switches is carried over the virtual network. The energy
consumed by the data center network can be minimized by minimizing the number
of ports of electronic switches used in the virtual network and shutting down unused
ports because the energy consumed by electronic switches is much greater than that
by optical circuit switches.

The virtual network can easily be reconfigured by adding or deleting optical
paths if the current virtual network is no longer suitable. We maintain a sufficiently
large bandwidth, short delays between servers, and low energy consumption by
reconfiguring the virtual network when there are changes in demand. Moreover,
servers related to applications that suddenly become popular may start exchanging
large amounts of data at the data center. A method of reconfiguring the virtual network
is needed to handle such changes in traffic within a short period. However, existing
methods of reconfiguring virtual networks [23, 24] cannot be applied to large data
center networks because these methods require long calculation times to optimize
virtual networks in large data center networks (Fig. 8).

Therefore, we introduce the method to reconfigure the virtual network by setting
parameters of a topology so as to avoid large calculation time in a data center. As
the topology used in the virtual network configuration, We introduce the topology
called Generalized Flattened Butterfly (GFB). We also introduce a method to set the
parameters so as to suit the current condition.

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 373

Fig. 8 Data center network using optical circuit switches

4.2 Virtual Network Topologies Suitable for Optical Data Center
Networks

Because it is difficult to obtain the optimal topology for large data center networks
within a short time, our method of reconfiguring the virtual network constructs the
network by setting the parameters of its topology, which is suitable for data center
networks, instead of calculating the optimal topology that achieves a sufficiently
large bandwidth, short delays between servers, and low energy consumption.

This subsection discusses the requirements for the topology used in our reconfig-
uration of the virtual network. We then introduce the new topology that can be used
to construct various data center networks by setting parameters.

4.2.1 Requirements

The virtual network should satisfy three main requirements.

374 Y. Ohsita and M. Murata

Low Energy Consumption The energy consumed by the network is a non-
negligible fraction of the total energy consumed by the data center. The energy
consumed by the data center network should be reduced to decrease the energy
consumed by the data center.

Most of the energy in the data center network discussed in this section is consumed
by ToR switches because the energy consumed by optical circuit switches is much
less than that by ToR switches. The energy consumed by ToR switches can be reduced
by shutting down their unused ports. Thus, the energy consumed by the data center
network can be minimized by constructing the virtual network with the smallest
number of ports for ToR switches.

Large Bandwidth between Servers Large amounts of data are exchanged between
servers in some applications such as distributed file systems. The bandwidth provided
between servers is important for such applications because the lack of bandwidth
increases the time required to transport data. Therefore, the virtual network should
provide sufficient bandwidth between servers.

Short Delays between Servers Data centers handle large amounts of data by using
distributed computing frameworks in which a large number of servers communicate.
If the delays between servers are long, it takes a long time to obtain the required data
from other servers, which degrades the performance of data centers. Thus, delay
should be kept sufficiently short for the applications of data centers.

The delays between servers are difficult to forecast when constructing a virtual
network, because they are affected by traffic load. We kept the delay short between
servers by constructing a virtual network that could provide sufficient bandwidth and
decreasing the number of hops between servers.

4.2.2 Existing Network Structures for Data Centers

We will introduce the existing network structures for data centers as the candidate
topologies used in virtual networks before presenting our network topology.

FatTree One of the most popular network structures for data centers is the topology
called FatTree proposed by Al-Fares et al. [4] that uses switches with few ports.
FatTree is a tree topology constructed of multiple roots and multiple pods containing
the multi-layer switches outlined in Fig. 9.

Each pod is regarded as a virtual switch with many ports constructed by using
multiple switches that have few ports. Pods are constructed with a butterfly topology,
where each switch uses half of its ports to connect it to switches in the upper layer,
and the other half of its ports to connect it to switches in the lower layer. The switches
in the lowest layer are connected to servers.

Although the method proposed by Al-Fares et al. [4] is used to construct a 3-
layer FatTree, which is constructed of root switches and pods containing two layers
of switches, we can construct higher-layer FatTree topologies. The k-layer FatTree
constructed of switches with n ports includes (2k − 1) n2

k−1 switches.

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 375

Fig. 9 FatTree

The number of links from the lower-layer switches in FatTree equals the number
of links to the upper-layer switches at each switch. That is, the total bandwidth from
a switch to the upper layer equals that from the lower layer to a switch. Therefore,
no switches become bottlenecks, and we can provide a sufficiently large bandwidth
between all servers.

However, FatTree is not suitable for virtual networks constructed of ToR switches.
The switches in the upper layer are not connected to servers in FatTree. This means
that ToR switches that are not connected to servers should be powered on, which
consumes large amounts of energy.

Flattened Butterfly Kim et al. [5] proposed a data center network topology called
the flattened butterfly, which was constructed by flattening the butterfly topology in
Fig. 10. We combined the switches in each row of the butterfly topology into a single
switch.

The flattened butterfly provides a sufficiently large bandwidth between all servers
with lower energy consumption than FatTree [4]. In addition, all switches in the flat-
tened butterfly are connected to servers. Thus, all ToR switches that are not connected
to any working servers can be shut down if the flattened butterfly is constructed as
a virtual network, unlike FatTree. However, the flattened butterfly requires switches
with a large number of ports to construct a large data center network. Thus, the
flattened butterfly is not preferred when there is little traffic demand.

DCell Guo et al. proposed a data center network comprised of DCell that was
constructed from a small number of switches and servers with multiple ports, as
shown in Fig. 11 [6]. The DCell uses a recursively-defined structure and the level-0
DCell is constructed by connecting one switch with n ports to n servers, and the
level-k DCell is constructed by connecting servers belonging to different level-k− 1
DCells.

DCell reduces the number of switches required to construct a large data center
network by directly connecting server ports. However, DCell was not used as the
topology for the virtual network introduced in this section, which was constructed
of ToR switches.

376 Y. Ohsita and M. Murata

Fig. 10 Flattened butterfly

Therefore, we introduce a topology called switch-based DCell, where the level-0
DCells are replaced with a fully-connected network constructed of switches, as shown
in Fig. 12. Similar to DCell, the switch-based DCell can construct a large data center
network by using switches with few ports. That is, the switch-based DCell achieves
low energy consumption. However, the switch-based DCell cannot provide large
bandwidth between all servers, because they have only one link between lower-level
DCells (Fig. 13).

4.2.3 Generalized Flattened Butterfly

As discussed above, the flattened butterfly [5] provides sufficient bandwidth between
all server pairs but requires large amounts of energy. DCell [6] can be used to construct
a topology that includes many servers using few ports but cannot provide sufficient
bandwidth.

This subsection introduces a topology called the Generalized Flattened Butterfly
(GFB), in which the number of required ports, the maximum number of hops, and the
bandwidth provided between servers can be changed by setting the parameters. GFB
is constructed hierarchically and the upper-layer GFB is constructed by connecting
multiple lower-layer GFBs. GFB has three parameters.

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 377

Fig. 11 DCell

Fig. 12 Switch-based DCell

378 Y. Ohsita and M. Murata

Fig. 13 Generalized flattened butterfly

• Number of layers: k
• Number of links per node used to construct layer-k GFB: Lk
• Number of layer-k − 1 GFBs used to construct layer-k GFB: Nk

We can construct various topologies including the flattened butterfly and switch-
based DCell by setting these parameters.

Steps to Construct Generalized Flattened Butterfly The layer-k GFB is con-
structed in two steps.

Step I Construct the connections between the layer-k − 1 GFBs.
Step II Select the switches connected to the links between each layer-k− 1 GFB

pair.

We use the IDs assigned to the GFBs of each layer in these steps. A switch can be
identified by the set of IDs of the GFBs the switch belongs to. We denote the ID of
the layer-k GFB switch s belongs to asDGFBk (s). We define the ID of switch s in the
layer-k GFB by

Dswk (s) =
∑

1≤ i ≤ k

⎛
⎝DGFBi (s)

i−1∏
j=1

Nj

⎞
⎠ .

Connections between layer-k − 1 GFBs We construct the connections between
layer-k − 1 GFBs in four steps.

Step I.I Calculate the number of links used to connect one layer-k − 1 GFB to
the other layer-k − 1 GFBs, LGFBk , with

LGFBk = Lk
k−1∏
i=1

Ni (9)

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 379

Step I.II IfLGFBk is larger than (Nk−1), we can connect all layer-k−1 GFB pairs.
Otherwise, construct the ring topology by connecting the GFBs having
the nearest ID.

Step I.III Calculate the number of residual links L
′GFB
k that can be used to connect

one layer-k − 1 GFB to the other layer-k − 1 GFBs with

L
′GFB
k = LGFBk − L̄GFBk , (10)

where L̄GFBk is the number of links per layer-k − 1 GFB constructed in
Step I.II.

Step I.IV Check whether layer-k−1 GFBs have residual links to be used to connect
layer-k− 1 GFBs. If yes, connect the GFB of IDDGFBk−1 (a) to the GFB of
ID DGFBk−1 (b) where the following equation is satisfied.

DGFBk−1 (b) = (DGFBk−1 (a) + pk! + C�pk�) mod Nk. (11)

C is the integer value and pk is the value that defines the distance of
connected layer-k − 1 GFBs, and is calculated as

pk = Nk

L
′gf b
k + 1

.. (12)

The links in the GFBs are connected at an equal distance of the ID for the layer-k
GFBs to minimize the maximum number of hops between the layer-k GFBs.

Selection of switches used to connect layer-k−1 GFBs After the connections
between layer-k−1 GFBs are constructed, we select switches that are used to connect
layer-k − 1 GFB pairs. The switch Dsw(s) included in the GFB of ID DGFBk−1 (a) is
connected to the GFB of ID DGFBk−1 (b) when the following condition is satisfied.

Dsw(s) = Dgfbk−1(b) +
⌊

Cn
D
gfb
k−1(a)

l(Dgfbk−1(a),Dgfbk−1(b))

⌋

where C is an integer value, n
D
gfb
k−1(a) is the number of switches in the GFB of ID

D
gfb

k−1(a), and l(Dgfbk−1(a),Dgfbk−1(b)) is the number of links to be constructed between the

GFBs of IDs Dgfbk−1(a) and Dgfbk−1(b). By connecting switches using the above condi-
tion, the intervals of switches connected to the same GFB become constant, and we
can avoid the large number of hops from a switch to the other GFBs.

Properties of GFBs The maximum number of hops in GFBs or the number of paths
passing each link can be calculated from the parameters described below.

Maximum Number of Hops The maximum number of hops between switches in
the layer-k GFB, Hk , is calculated as

Hk = (hk + 1)Hk−1 + hk , (13)

380 Y. Ohsita and M. Murata

Fig. 14 Example of number of hops in topology constructed of low-layer GFBs (L
′GFB
k = 1)

where hk is the most links between layer-k − 1 GFBs passed by the traffic between
layer-k − 1 GFBs. Hk is obtained by calculating hk . The rest of this paragraph
discusses how hk is calculated from the parameters of GFBs.

If Lgfbk defined by Eq. (9) is larger than Mk(Nk − 1), we add links between all
pairs of layer-k − 1 GFBs. Thus, hk = 1.

If LGFBk is smaller than Nk − 1 and L
′GFB
k defined in Eq. (10) is zero, the

connections between layer-k − 1 GFBs form a ring topology. In this case, hk is
 Nk2 !.

IfLGFBk is smaller than (Nk−1) andL
′GFB
k is a positive value, we add links to the

GFBs satisfying Eq. (11). In this case, we discuss the calculation of hk by dividing
the topology constructed of layer-k − 1 GFBs into modules so that each module
includes the GFB whose ID is within the range from Cpk to (C + 1)pk where C is
a integer variable and pk is defined by Eq. (12). Then, we calculate the maximum
number of hops from the source GFB whose ID is zero. Since all low-layer GFBs
play the same role in high-layer GFBs, hk is calculated by calculating the maximum
number of hops from a GFB whose ID is zero.

If L
′GFB
k is one, the topology constructed of layer k − 1 GFBs is divided into the

two modules in Fig. 14. Here, each module becomes a ring topology with pk nodes.
That is, hk is pk2 ! in this case.

IfL
′GFB
k is more than one, the topology constructed of layer k−1 GFBs is divided

into more than two modules. Here, at least one module does not include the source
GFB, and the module without the source GFB includes a GFB whose number of hops

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 381

Fig. 15 Example of number of hops in topology constructed of low-layer GFBs (L
′GFB
k > 1)

from the source GFB is the largest. The modules without the source GFB includes
�pk� GFBs. The GFBs at both edges of the module are connected to the source GFB,
as shown in Fig. 15, where the source GFB and the GFB included in the modules
form a ring topology with �pk� + 2 nodes. Thus, hk is �pk�+2

2 ! in this case.
Summarizing the above discussion, hk is calculated as

hk =

⎧⎪⎪⎨
⎪⎪⎩

1 (LGFBk ≥ (Nk − 1))

 pk2 ! (LGFBk < (Nk − 1) and L
′GFB
k = 0, 1)

 �pk�+2
2 ! (Otherwise)

(14)

382 Y. Ohsita and M. Murata

hk is defined by constructing the layer-k GFB in Step. I, and hk can be calculated
with the parameters. If the links are added between all pairs of layer-k− 1 GFBs, hk
is 1. Otherwise, the links are added to the layer-k − 1 GFB satisfying Eq. (11). In
this case, hk is defined by pk .

Number of Flows through a Link The number of layer-k − 1 GFB pairs whose
traffic passes link l between layer-k − 1 GFBs xkl is obtained by calculating the
number of flows passing the link in an abstracted topology where the layer-k − 1
GFB is regarded as a single node. Then, by multiplying it with the number of flows
passing layer-k − 1 GFB pairs, we obtain the number of flows passing each link.
Since all layer-k GFBs play the same role, the number of flows passing between the
layer-k − 1 GFB pair is independent of the IDs of the GFBs.

Thus, the number of flows passing link l between layer-k−1 GFBsXkl is obtained
as

Xkl = Fkxkl ,

where Fk is the number of flows from a layer-k−1 GFB to another layer-k−1 GFB.
After this, we will calculate xkl and Fk .

We will first calculate xkl . There are two kinds of links in the abstracted topology,
where a lower-layer GFB is regarded as a single node. The first is a link on the ring
topology (we will call this link a ring link after this), and the second is a link added
to give the ring topology a shortcut (we will call this link a shortcut link after this).

Since all layer-k − 1 GFBs play the same role in the layer-k GFB, the number
of flows passing each ring link is independent of the GFBs connected to the link.
Similarly, the number of flows passing each shortcut link is also independent of the
GFBs connected to the link. Therefore,

xkl =
⎧⎨
⎩

M
ring
k

2
∏k
i=1 Ni

(l is a ring link)
Mshortcut
k

(Lk−2)
∏k
i=1 Ni

(l is a shortcut link)
. (15)

where M ring
k is the total ring links passed by the traffic between layer-k − 1 GFB

pairs, andMshortcut
k is the total shortcut links passed by the traffic between layer-k−1

GFB pairs. 2
∏k
i=1Ni is the number of ring links between layer-k − 1 GFBs, and

(Lk − 2)
∏k
i=1Ni is the number of shortcut links between layer-k − 1 GFBs.

The traffic between layer-k−1 GFBs passes at most one shortcut link because the
interval of the IDs of the GFBs connected to a certain GFB is constant. 2hk

∏k
i=1Ni

flows do not pass the shortcut link. Thus,

Mshortcut =
k∏
i=1

Ni(
k∏
i=1

Ni − 1) − 2hk

k∏
i=1

Ni.

In addition,M ring is obtained by subtractingMshortcut from the total number of links
passed by the traffic between layer-k − 1 GFBs:

M ring =
hk∑
i=1

isk(i) −Mshortcut ,

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 383

where sk(i) is the number of layer k− 1 GFB pairs whose traffic passes i links in the
abstracted topology.
sk(i) is obtained as follows. sk(1) is the same value as the number of links in the

layer-k GFB. That is,

sk(1) =
⎧⎨
⎩
Nk(Nk − 1) (LGFBk ≥ (Nk − 1))

NkLk
∏k−1
i=1 Ni (otherwise)

. (16)

sk(i) for i > 1 is calculated by dividing the topology constructed of layer-k−1 GFBs
into groups similar to the case of calculating hk . By dividing the topology, sk(i) is
calculated by the sum of the number of layer-k − 1 GFBs that are i hops away from
the source layer-k − 1 GFB in each group. Thus, sk(i) is calculated as

sk(i) = Nk
∑
mj∈M

U(k,mj)(i), (17)

where U(k,mj)(i) is the number of layer-k − 1 GFBs that are i hops away from the
source layer-k − 1 GFB in group mj . Since GFBs are included in each group, the
source GFB and the GFBs directly connected to it form a ring topology:

U(k,mj)(i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
(
i >

⌈
mj+2

2

⌉)
1
(
i =

⌈
mj+2

2

⌉
and |mj | is odd

)
2 (Otherwise)

. (18)

We calculate the number of flows between each layer-k−1 GFB pair, Fk . The number
of flows between each layer-k−1 GFB pair is independent of the IDs of the source or
destination GFB. Thus, we calculate the number of flows passing between layer-k−1
GFBs s and d, F s→dk .
F s→dk is calculated as

F s→dk = f s→s→d→dk +
∑
n∈G
f n→s→d→dk

+
∑
n∈G
f s→s→d→nk +

∑
n1,n2∈G

f
n1→s→d→n2
k , (19)

where f a→b→c→d is the number of flows whose source and destination switches
belong to the layer-k − 1 GFBs, a and d , and that traverse the layer k − 1 GFBs, b
and c. G is the set of switches that do not belong to the layer-k GFB including the
layer-k − 1 GFBs, s and d .
f s→s→d→dk is calculated by the product of the number of switches included in the

layer-k − 1 GFB s and that included in the layer-k − 1 GFB d. That is,

f s→s→d→dk =
k−1∏
i=1

(Ni)
2. (20)

384 Y. Ohsita and M. Murata

∑
n∈G f

s→s→d→n
k indicates the number of flows from the layer-k − 1 GFB s to the

outside of the layer k GFB via the layer k − 1 GFB d. Because all layer-k − 1
GFBs play the same role in the GFB,

∑
n∈G f

s→s→d→n
k is calculated by dividing

the number of flows whose source switches belong to the layer-k − 1 GFB s and
destination switches belong to the different layer-k GFB by the number of layer-k−1
GFBs in the layer-k GFB.

∑
n∈G
f s→s→d→nk = (

∏k−1
i=1 Ni)(

∏Kmax
i=1 Ni −

∏k
i=1Ni)

Nk
. (21)

Similarly,
∑
n∈G f

n→s→d→d
k is calculated as

∑
n∈G
f n→s→d→dk = (

∏k−1
i=1 Ni)(

∏Kmax
i=1 Ni −

∏k
i=1Ni)

Nk
. (22)

∑
n1,n2∈G f

n1→s→d→n2
k indicates the number of flows that arrive from outside the

layer-k GFB via the layer-k− 1 GFB s and go outside the layer-k GFB via the layer-
k − 1 GFB d. The number of flows arriving from outside the layer-k GFB via the
layer-k− 1 GFB s is the total flows on links that connect switches in the layer-k− 1
GFB s and the switches outside the layer-k GFB, which is calculated as

k−1∏
j=1

Nj

K∑
i=k+1

(XilLi). (23)

We obtain the number of flows that arrive from outside the layer-k GFB via the
layer-k− 1 GFB s and that are sent to the layer-k− 1 GFB d by dividing Eq. (23) by
the number of layer-k − 1 GFBs in the layer-k GFB. This calculated value includes
flows whose destination switches belong to the layer-k − 1 GFB d, whose number
is
∑
n1∈G f

n1→s→d→d
k . Therefore,

∑
n1,n2∈G f

n1→s→d→n2
k is calculated as

∑
n1,n2∈G

f
n1→s→d→n2
k =

∏k−1
j=1Nj

∑K
i=k+1 (XilLi)

Nk

−
∑
n1∈G

f
n1→s→d→d
k . (24)

4.3 Control of Virtual Network Topology to Achieve Low Energy
Consumption

4.3.1 Outline

The virtual network is constructed with our method to minimize the number of used
ports taking two kinds of requirements into consideration, i.e., bandwidths and delays
between servers.

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 385

One approach to providing sufficient bandwidths between servers is to construct
the virtual network so that it can accommodate current traffic demand between
servers. However, traffic at data center can change within a second [27]. Thus, if
the virtual network is optimized for the current traffic demand, it may need to be re-
configured every second. However, the calculation time to optimize virtual networks
for current traffic demand becomes too long at large data centers. Therefore, a vir-
tual network cannot be constructed to accommodate current traffic demand between
servers.

The traffic changes within short periods are handled in our method by load bal-
ancing [20] over the virtual network. We also designed the virtual network to achieve
a sufficiently large bandwidth and short delay with small energy consumption, by
taking load balancing into account.

We used a load balancing technique called Valiant Load Balancing (VLB) [20].
We randomly selected intermediate nodes in VLB regardless of the destination to
avoid traffic from concentrating on certain links even when a certain node pair had a
large amount of traffic. Then, traffic was sent from the source node to an intermediate
node and from the intermediate node to the destination node. The amount of traffic
between each ToR switch pair T is calculated by applying VLB as

T ≤ T SWto + T SWf rom
Nall

. (25)

The T SWto in this equation is the maximum amount of traffic to a ToR switch,
T SWf rom is the maximum amount of traffic from a ToR switch, andNall is the number
of ToR switches in the virtual network. Thus, we can provide sufficient bandwidth by
making the number of flows passing a link less than a threshold, which is calculated
by dividing the capacity of an optical path by the amount of traffic between each
switch pair calculated with Eq.(25).

Delay is also hard to forecast when designing the virtual network. We avoided
overly long delay by providing enough bandwidth and making the maximum number
of hops less than the threshold, which is discussed in this section.

4.3.2 Control of Topology to Satisfy Requirements

This subsection introduces a method of setting the parameters of the GFB to mini-
mize the number of used ports and satisfy the requirements for bandwidth and the
maximum number of hops between servers.

The number of switches connected in the virtual network, Nall , the acceptable
maximum number of hops,Hmax , the maximum amount of traffic from a ToR switch,
T SWf rom, and the maximum amount of traffic to a ToR switch, T SWto are given. Our
method sets the parameters according to the following steps.

First, we calculate the candidates for the number of layers. Because we cannot
make the maximum number of hops of the GFB less than the case where hk = 1 in
Eq. (13) for all layers, the number of layers Kmax must satisfy the condition below

386 Y. Ohsita and M. Murata

to make the maximum number of hops less than Hmax .

2Kmax − 1 ≤ Hmax (26)

We consider all Kmax that satisfy the above condition as candidates for the number
of layers. We set suitable parameters according to two steps for each candidate.

Step 1 Set the parameters by considering the acceptable number of hops.
Step 2 Modify the parameters to provide a sufficient bandwidth.

Then, we construct a topology that uses the fewest virtual links for the candidates.
The details of the two steps are described in the following.

Parameter Settings Considering Acceptable Number of Hops We set parameters
Nk and Lk to make the maximum hops less than Hmax . We set Nk to

∏k−1
i=1 Ni + 1

for 1 < k < Kmax in these steps to reduce the number of variables. By doing so, hk
becomes one even when Lk = 1.
NKmax must satisfy

NKmax =
⌈

Nall∏k−1
i=1 Ni

⌉
(27)

to connect Nall switches. We also set LKmax in these steps so that hKmax becomes one
to reduce the number of variables.
LKmax should satisfy

LKmax =
⌈
NKmax∏k−1
i=1 Ni

⌉
(28)

to make hKmax one. h1 must satisfy

h1 ≤
⌈
Hmax + 1

2K−1
− 1

⌉
. (29)

to make the maximum number of hops less than Hmax according to Eq. (14). L1

should satisfy

L1 =

⎧⎪⎪⎨
⎪⎪⎩
N1 − 1 (h1 = 1)

2 (h1 ≥ �N1
2 �)

� N1
2h1

+ 1� (Otherwise)

(30)

to satisfy Eq. (29). All Nk (k > 1) and Lk are calculated with N1 under the above
condition. Our objective in setting the parameters is to minimize the number of used
ports for ToR switches. That is, we minimize

∑
1≤k≤K Lk . Since

∑
1≤k≤K Lk is the

convex function of N1, we find N1 that minimizes
∑

1≤k≤Kmax
Lk by incrementing

N1 as long as
∑

1≤k≤Kmax
Lk decreases.

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 387

Parameter Modifications to Provide Sufficient Bandwidth If the GFB with the
parameters set in Step 1 cannot provide sufficient bandwidth, we add the links to a
layer where sufficient bandwidth cannot be provided. To detect the lack of bandwidth,
we check whether condition

TXkl ≤ B (31)

is satisfied for each layer k to detect the lack of bandwidth, where B is the bandwidth
of one link, and T is calculated with Eq. (25). If Eq. (31) is not satisfied, we add Lk
until it is satisfied.

4.4 Evaluation

We investigated the number of ports needed for ToR switches to satisfy the require-
ments. All topologies in this comparison included 420 ToR switches. We compared
the topology constructed with our method with the four topologies of FatTree, torus,
switch-based DCell [6], and the Flattened Butterfly [5]. Unlike the FatTree topology
proposed by Al-Fares et al. [4], we assumed that traffic was not only generated from
switches in the lowest layer but also from switches in the upper layer in the FatTree
used in this evaluation, since powering up additional switches consumes more en-
ergy. The parameters of each topology in our evaluation were set to minimize the
number of ports required by the topology under the constraint that it could provide
sufficient bandwidth and the maximum number of hops was less than Hmax .

We assumed that the number of wavelengths on optical fibers was sufficient in
this evaluation. We set the bandwidth of one optical path to 10 Gbps.

We compared the number of virtual optical paths per ToR switch needed to satisfy
the requirements by changing the maximum amount of traffic from or to each ToR
switch. We set the acceptable maximum number of hops to a sufficiently large value
in this comparison. That is, the bandwidth provided to each ToR switch was the main
requirement for the virtual network.

Figure 16 presents the results, where the horizontal axis indicates the maximum
amount of traffic from or to ToR switches that was required to be accommodated, and
the vertical axis indicates the number of virtual links per ToR switch that was needed
to satisfy the requirements. As we can see from this figure, the switch-based DCell
could not accommodate more than 1 Gbps of traffic, and FatTree and torus could not
accommodate more than 6 Gbps of traffic per ToR switch. The link between level-0
DCells became a bottleneck in switch-based DCell, which could not be solved by
setting the parameters. We could not construct FatTree topologies having more links
than the 3-layer FatTree. Thus, FatTree could not accommodate more traffic than
that in the 3-layer FatTree. Similarly, torus could not accommodate more traffic than
that in the torus with the largest dimensions of those constructed with 420 switches.

Although the flattened butterfly could accommodate a large amount of traffic, it
required many virtual links. Fig. 16 indicates that our method used the least virtual

388 Y. Ohsita and M. Murata

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14

N
um

be
r

of
 li

nk
s

pe
r

T
oR

 s
w

itc
h

Traffic volume from ToR switch [Gbps]

Fattree
Torus

Switch-based DCell
Flattened Butterfly

GFB

Fig. 16 Number of virtual links required to accommodate traffic from ToR switches

links to accommodate traffic regardless of the amount of traffic. This was because
our method of setting the parameters of GFB only added links that were necessary to
accommodate traffic. Therefore, the topology constructed with our method satisfied
the requirement for bandwidth with the lowest energy consumption.

We also compared the number of virtual links per ToR switch needed to satisfy the
requirements by changing the acceptable maximum number of hops. We assumed
that the capacity of each virtual link was sufficient in this comparison. That is,
the acceptable maximum number of hops was the only requirement for the virtual
network.

Figure 17 plots the results, where the horizontal axis indicates the maximum
number of hops, and the vertical axis indicates the number of virtual links per ToR
switch needed to satisfy the requirements. As shown in this figure, the flattened
butterfly required a large number of virtual links even if there were many acceptable
maximum numbers of hops.

Conversely, the switch-based DCell and FatTree could construct a topology by
using few links when there were many acceptable maximum numbers of hops. How-
ever, these topologies required many virtual links when there were few acceptable
maximum numbers of hops. The maximum number of hops in these topologies was
defined by the number of layers. These topologies required few layers when there
were few acceptable maximum numbers of hops. However, fewer layers required
many links in these topologies constructed of 420 switches. The torus constructed of
420 switches could not accommodate fewer than seven acceptable numbers of hops.

The topology constructed with our method used the least virtual links to satisfy
the requirements as can be seen from Fig. 17 in all cases of the acceptable maximum
number of hops. This is because our method of setting the parameters of GFB only
added links that were necessary to achieve the maximum number of hops. Therefore,

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 389

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14

N
um

be
r

of
 li

nk
s

pe
r

T
oR

 s
w

itc
h

Maximum number of hops

Fattree
Torus

Switch-based DCell
Flattened Butterfly

GFB

Fig. 17 Number of virtual links required to make maximum number of hops less than target value

the topology constructed with our method satisfied the requirement for the maximum
number of hops with the lowest energy consumption.

5 Conclusion

Optical data center networks represent one approach to constructing data center net-
works that provide large bandwidths between servers with low energy consumption.
We can use two types of optical switches in optical data center networks, i.e., optical
packet and optical circuit switches.

This chapter introduced two approaches of our research [16, 28]. The first was
introduced as an application of optical packet switches that focused on the bandwidth
provided to all-to-all communication. We deployed optical packet switches in this
approach and constructed a network structure that efficiently used the large bandwidth
provided by these switches.

The second approach was introduced as an application of optical circuit switches
and was aimed at minimizing energy consumption, where the switches were placed
at the core of a data center network. ToR switches were connected to one of the ports
of the optical circuit switches. The virtual network constructed of ToR switches
was constructed by setting the optical circuit switches and the topology of the virtual
network was changed by reconfiguring the switches. We reduced energy consumption
by setting the optical circuit switches to minimize the number of ports required by
packet switches. We also introduced a method of calculating suitable settings for the
optical circuit switches in this approach.

One future direction is to combine these two approaches. Although optical packet
switches consume less energy than electronic packet switches, they consume more

390 Y. Ohsita and M. Murata

energy than the optical circuit switches because they require label processing and
buffers. Thus, our method of constructing a virtual network of optical packet switches
by setting optical circuit switches could accommodate more traffic with less energy
consumption, which was similar to the second approach explained in this chapter.

Acknowledgements The research introduced in this chapter was done as part of the “Research &
Development of Basic Technologies for High Performance Opto-electronic Hybrid Packet Routers”
supported by the National Institute of Information and Communications Technology (NICT).

References

1. S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,” in Proceeding of ACM
SIGOPS Operating Systems Review, vol. 37, pp. 29–43, ACM, Dec. 2003.

2. J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

3. D.Abts, M. Marty, P.Wells, P. Klausler, and H. Liu, “Energy proportional datacenter networks,”
ACM SIGARCH Computer Architecture News, vol. 38, pp. 338–347, June 2010.

4. M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network
architecture,” in Proceedings of ACM SIGCOMM, vol. 38, pp. 63–74, Aug. 2008.

5. J. Kim, W. Dally, and D. Abts “Flattened butterfly: a cost-efficient topology for highradix
networks,” in Proceedings of ISCA, vol. 35, pp. 126–137, June 2007.

6. C. Guo, H.Wu, K. Tan, L. Shi,Y. Zhang, and S. Lu “DCell: A scalable and fault-tolerant network
structure for data centers,” ACM SIGCOMM Computer Communication Review, vol. 38, pp. 75–
86, Aug. 2008.

7. C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu “BCube: A high
performance, server-centric network architecture for modular data centers,” ACM SIGCOMM
Computer Communication Review, vol. 39, pp. 63–74, Aug. 2009.

8. D. Guo, T. Chen, D. Li, Y. Liu, X. Liu, and G. Chen “BCN: expansible network structures for
data centers using hierarchical compound graphs,” in Proceedings of INFOCOM, pp. 61–65,
Apr. 2011.

9. D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, S. Lu, and J. Wu “Scalable and cost-effective
interconnection of data-center servers using dual server ports,” IEEE/ACM Transactions on
Networking, vol. 19, pp. 102–114, Feb. 2011.

10. Y. Liao, D. Yin, and L. Gao, “Dpillar: Scalable dual-port server interconnection for data center
networks,” in Proceedings of ICCCN, pp. 1–6, Aug. 2010.

11. A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel, and S.
Sengupta, “VL2: A scalable and flexible data center network,” ACM SIGCOMM Computer
Communication Review, vol. 39, pp. 51–62, Aug. 2009.

12. R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, V. Subra-
manya, and A. Vahdat, “PortLand: A scalable fault-tolerant layer 2 data center network fabric,”
ACM SIGCOMM Computer Communication Review, vol. 39, pp. 39–50, Aug. 2009.

13. K. A. McGreer, “Arrayed waveguide gratings for wavelength routing,” IEEE Communications
Magazine, vol. 36, Dec. 1998.

14. B. Li, Y. Quin, X. R. Cao, K. M. Sivaligam, and Y. Danziger, “Photonic packet switching:
Architecture and performance,” Optical Networks Magazine, vol. 2, pp. 27–39, Jan. 2001.

15. P. Beebe, J. M. Ballantyne, and M. F. Tung, “An introduction to mems optical switches.”
http://courses.cit.cornell.edu/engrwords/final_reports/Tung_MF_issue_1.pdf, Dec. 2001.

16. Y. Ohsita and M. Murata, “Data center network topologies using optical packet switches,” in
Proceedings of DCPerf, pp. 57–64, June 2012.

Optical Data Center Networks: Architecture, Performance, and Energy Efficiency 391

17. R. Urata, T. Nakahara, H. Takenouchi, T. Segawa, H. Ishikawa, A. Ohki, H. Sugiyama, S.
Nishihara, and R. Takahashi, “4x4 optical packet switching of asynchronous burst optical
packets with a prototype, 4x4 label processing and switching sub-system,” Optics Express,
vol. 18, pp. 15283–15288, July 2010.

18. H. J. Chao and K. Xi, “Bufferless optical clos switches for data centers,” in Proceedings of
OFC, Mar. 2011.

19. K. Xi, Y. H. Kao, M. Yang, and H. J. Chao, “Petabit optical switch for data
center networks.” Technical Report, Polytechnic Institute of New York University,
http://eeweb.poly.edu/chao/publications/petasw.pdf.

20. M. Kodialam, T. V. Lakshman, and S. Sengupta, “Efficient and robust routing of highly variable
traffic,” in Proceedings of HotNets, Nov. 2004.

21. T. Benson, A. Akella, and D. A. Maltz “Network traffic characteristics of data centers in the
wild,” in Proceedings of Internet Measurement Conference, Nov. 2010.

22. Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accurate computation of large-
scale IP traffic matrices from link loads,” in Proceedings of ACM SIGMETRICS Performance
Evaluation Review, vol. 31, pp. 206–217, June 2003.

23. Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto, and M. Murata “Gradu-
ally reconfiguring virtual network topologies based on estimated traffic matrices,” IEEE/ACM
Transactions on Networking, vol. 18, pp. 177–189, Feb. 2010.

24. M. Zhang, C. Yi, B. Liu, and B. Zhang, “GreenTE: power-aware traffic engineering,” in
Proceedings of ICNP, pp. 21–30, Oct. 2010.

25. A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, “Proteus: a topology malleable
data center network,” in Proceedings of ACM SIGCOMM Workshop on Hot Topics in Networks,
pp. 8–13, Oct. 2010.

26. N. Farrington, G. Porter, S. Radhakrishnan, H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen,
andA.Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,”
in Proceedings of ACM SIGCOMM Computer Communication Review, pp. 339–350, Oct. 2010.

27. T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine Grained Traffic Engineering
for Data Centers,” in Proceedings of ACM CoNEXT, pp. 1–12, Dec. 2011.

28. Y. Tarutani, Y. Ohsita, and M. Murata, “A virtual network to achieve low energy consump-
tion in optical large-scale datacenter,” in Proceedings of IEEE International Conference on
Communication Systems (ICCS 2012), Nov. 2012.

Scalable Network Communication Using
Unreliable RDMA

Ryan E. Grant, Mohammad J. Rashti, Pavan Balaji and Ahmad Afsahi

1 Introduction

High-performance interconnects play a pivotal and essential role in the performance
and functionality of modern large-scale computational systems, including datacen-
ters and high-performance computing (HPC) architectures. Commercial datacenter
applications require that a large number of small independent tasks be performed
rapidly in parallel with upper bounds on individual task delays. This emphasis on
large numbers of tasks and limited intertask dependencies leads to such computing
being known as capacity computing. The term high-performance computing tradi-
tionally refers to large-scale applications running exclusively on a large system. This
type of computing is referred to as capability computing. It requires that the system
coordinate a small number of applications over a large number of resources (e.g.,

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

R. E. Grant (�)
Scalable System Software Department, Sandia National Laboratories, MS-1319, P.O. Box 5800,
Albuquerque, NM 87185-1319, USA
e-mail: regrant@sandia.gov

M. J. Rashti
RNET Technologies Inc., 240 W. Elmwood Dr., Dayton, OH 45459-4248, USA
e-mail: mrashti@rnet-tech.com

P. Balaji
Mathematics and Computer Science Division, Argonne National Laboratory, Bldg. 240, Rm.
3146, Argonne, IL, 60439, USA
e-mail: balaji@mcs.anl.gov

A. Afsahi
Department of Electrical and Computer Engineering, Queen’s University, 19 Union Street, Walter
Light Hall, Kingston, ON K7L 3N6, Canada
e-mail: ahmad.afsahi@queensu.ca

© Springer Science+Business Media New York 2015 393
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_12

394 R. E. Grant et al.

nodes). Capability computing is generally most useful for computation-intensive
scientific applications. Cloud computing has begun to move HPC applications from
dedicated machines into the cloud, where they can take advantage of commercial
datacenter infrastructure.

Datacenter computing with commercial applications does not require as many
interprocess connections as high-performance computing does. The reason for this is
the significantly smaller number of interprocess dependencies in capacity computing
than in HPC. Many of the scalability issues that exist in HPC are not present in
capacity computing. For example, capacity computing has no requirements to have
many nodes coordinate their computation. However, the overhead associated with
managing many small tasks and potentially many client connections can still be
significant. Some datacenter applications are much more tolerant of network packet
loss than HPC applications. Applications such as audio and video streaming can
tolerate a small amount of data loss with little noticeable effect. Datacenters benefit
from networks that reduce overhead; freeing more resources for processing tasks and
thus increasing system capacity.

High-performance computing offers several major challenges. Since a large sys-
tem must be made to cooperate on a small number of jobs, synchronization between
processes and parallelism of individual tasks is nontrivial. Unlike a system han-
dling many independent jobs, the dependencies between processes create bottlenecks
where the progress of the whole system can be impeded by a single straggling process.
In addition, because the individual processes are working cooperatively, contention
for shared resources can be a major issue, since certain execution phases will re-
quire that processes need shared resources at the same time. Another major issue
is scalability. As the number of nodes and processes involved in a given job grows,
the number of potential communication partners does as well. Hence, networks de-
signed to handle thousands to tens of thousands of communication partners may not
be suited to handle hundreds of thousands or millions of partners.

Designing high-performance networks that meet the needs of traditional dat-
acenter and HPC applications is challenging. Although the requirements of both
application spaces may seem to be noncomplementary, design solutions have been
developed that are applicable to both. Traditional datacenter computing and HPC dat-
acenters are both concerned with the fast and efficient movement of large amounts of
data. In HPC this communication happens between computational peers, whereas in
datacenters communication happens between small groups of nodes in the datacenter
and out to clients over a wide area network (WAN).

1.1 The Significance of Data Communication

In parallel applications running over multinode distributed systems, data is frequently
communicated among different application components over high-performance in-
terconnects. Data movement is a key factor in the performance of datacenter services.
It has become even more important with the emergence of the big-data paradigm,

Scalable Network Communication Using Unreliable RDMA 395

virtualization, and increased demand for distributed elastic storage and computing
services (i.e., cloud computing). In many scientific applications, communication
of intermediate computing results among processing elements accounts for a sig-
nificant portion of the overall execution time. With the ever-increasing computing
capabilities in modern distributed systems, the scalability of internode communica-
tion architecture has become critical for application performance in extreme-scale
systems.

Several features of an interconnect are essential for the scalability and efficiency
of distributed applications. The resource requirements of the hardware as well as the
runtime and communication software are important for scalability. The complexity
and synchronization requirements of communication protocols, as well as operating
system (OS) involvement in the process of data movement, can also affect the ability
of an application to efficiently utilize the available computing resources of a large-
scale machine.

In modern communication subsystems, several techniques have been employed to
provide efficient and scalable interconnects. Nonblocking communication is a tech-
nique that substantially reduces resource blockage by liberating essential computing
resources. For example, asynchronous placement and capture of data can signifi-
cantly reduce the utilization of a data server’s processing power for data movement,
increasing its capability for handling other relevant tasks or its capacity to serve more
clients. Nonblocking network application programming interfaces (APIs) allow for
computation to “overlap” communication, so that the CPU can continue doing useful
work while it waits for a network operation to complete. This ability is especially
useful when the communication tasks can be offloaded to networking hardware. Such
asynchronous communication should not be confused with the term used to denote
data transmissions without an external clock signal. OS bypass is another technique
that reduces resource usage and prevents the OS from becoming a bottleneck to data
movement, thus reducing communication latency and improving capacity. Virtual
machine monitor (VMM) bypass is a concept analogous to OS bypass that is used
for overcoming VMM-related communication bottlenecks in cloud datacenters.

Remote direct memory access (RDMA) leverages many of the performance-
enhancing networking techniques and is the de facto communication technology in
modern high-performance interconnects. RDMA refers to the capability to directly
access a remote memory location for different purposes, including read, update, or
atomic operations. RDMA operations are usually performed without the interven-
tion of the host software in actual data transfer, and DMA technologies at both the
data source and data sink are utilized to perform the bulk transfer of data. RDMA
combines some of the above techniques to provide a low-overhead asynchronous
substrate that has significantly contributed to increased efficiency of data movement
in clusters and datacenters over the past decade. While RDMA can now be seen
as the communication centerpiece in many data-processing systems, some applica-
tions still have not been able to utilize such technologies. This chapter discusses
how RDMA networks can be made accessible to a larger application space and the
changes needed in modern RDMA interconnects to allow this ability.

396 R. E. Grant et al.

1.2 Datacenter Computing and RDMA

Datacenter computing serves commercial computing applications. As pointed out
earlier, unlike HPC, datacenter systems are referred to as “capacity” systems because
the workload in a commercial datacenter is typically made up of many independent
tasks. The individual systems making up the datacenter are not required to work
cooperatively on a single large problem; they can operate independently on their
small-scale tasks with no need for global synchronization. If one considers a typical
web-serving datacenter, a small amount of internode cooperation may occur, for
example, a web server communicating with a database server for dynamic data.
However, there is never a requirement for all the web servers to communicate with
each other in order to synchronize their execution.

The “capacity” nature of commercial workloads means that they typically have
many independent tasks that need to be completed within a deadline. The speed
at which each individual task can be accomplished is important to meeting this
deadline. Therefore, throughput is the most desired attribute of these systems, with
the constraint that tasks must be completed within a given deadline.

Traditional non-offloaded networks create an additional CPU load for network
processing and introduce additional latency through kernel-based software net-
working stacks, which could adversely affect both the deadline and throughput
requirements of a datacenter application. RDMA offload-capable networks alleviate
these overheads by bypassing the kernel and providing network processing on the
RDMA-capable network interface card (RNIC).

Despite obvious benefits of RDMA, connection-based RDMA networks still im-
pose overhead for storing the data associated with many connections, with each client
using one or more unique connections to the system. Although not restrictive on small
scale systems, these resource requirements impose huge limitations on the capacity
of large scale systems, in addition to potential adverse effects on the performance
of individual applications. Datagram-based approaches resolve this issue by using
only a limited number of system resources to serve a large number of clients. This
capability is accomplished by keeping minimal or no state information about the
communication with the client. Such capability will certainly improve the capacity
of datacenter servers.

1.3 High-Performance Computing and RDMA

HPC utilizes supercomputers to solve a single large problem in as little time as
possible. Applications of HPC range from fundamental science simulations to com-
putationally complex commercial applications such as oil and gas discovery and
pharmaceutical research. HPC applications typically use very large datasets and can
communicate large amounts of data through both shared memory and network com-
munications. They require the coordination of many parallel tasks (e.g., threads or
processes) and hence require low-latency interconnection links for synchronization

Scalable Network Communication Using Unreliable RDMA 397

and small-message transmission. Many HPC applications follow the bulk syn-
chronous parallel program (BSP) model [1]. In this model, the computer comprises
many processors connected by a communication network. Program progress is made
in supersteps where, for each superstep, individual processes perform a combina-
tion of computation and communication (both sending and receiving messages). The
superstep concludes with a global synchronization of all the processes to ensure that
each has successfully completed its assigned superstep tasks.

Modern HPC applications significantly benefit from RDMA-capable networks.
Low overhead and asynchronous nature of RDMA-based communication play a sig-
nificant role in improving the performance, scalability, and resource efficiency of
HPC systems. RDMA offload-capable networks constitute the majority of intercon-
nects in the world’s top supercomputers. Therefore, improving the capability and
scalability of RDMA-enabled networks will undoubtedly improve the performance
of a wide range of HPC applications.

1.4 RDMA and the Current Unreliable Datagram Network
Transports

Unreliable network transports are an important mechanism for providing high-
performance and low-latency communications. Unreliable transports (such as UDP)
operate over many networks including Ethernet, one of the most ubiquitous computer
networks in use today. Ethernet’s wide adoption has made such networks available
at lower cost than that of competing high-speed networks. Compatibility and cost
lead to Ethernet’s domination despite Ethernet’s lack of cutting-edge network perfor-
mance. However, Ethernet is not the only network that supports unreliable transports.
Other high-speed networks such as InfiniBand provide unreliable transports as well
(e.g. unreliable datagrams and unreliable connections).

Despite limited existing support for unreliable remote memory access in networks
such as InfiniBand, none of the unreliable network transports available today support
one-sided RDMA operations. InfiniBand’s support is limited to two-sided send/recv
operations over its unreliable datagram transport, and there is no specification for
one-sided put and get operations. iWARP, which defines RDMA functionality of IP
networks, provides operations only over reliable transports such as TCP and SCTP.
Other network specifications such as Portals (used in Cray interconnects) do not
currently support unreliable transports, although the Portals network specification
[2] is connection agnostic.

Because of the large existing Ethernet infrastructure, it is desirable to upgrade
existing networks piece by piece rather than overhauling networks by complete net-
working infrastructure replacement. Therefore, a high-speed Ethernet networking
solution that can leverage the performance benefits of advanced networks such as
operating system bypass, RDMA, and offloading for both TCP and UDP traffic is
attractive.

398 R. E. Grant et al.

In this chapter, we provide an overview of the RDMA technology and address
the use of RDMA over unreliable transports, particularly over Ethernet. We discuss
adding one-sided RDMA capability to unreliable datagrams and extending iWARP as
a platform for utilizing RDMA with unreliable transports. We also present a software
implementation of an unreliable datagram-based RDMA solution and compare its
performance with that of a traditional connection-based solution.

2 Overview of RDMA Technology

Remote direct memory access is typically accomplished via two paradigms that rely
on a queue-pair based communication model. The first one, where data placement is
handled by the target node, is referred to as “channel” semantics and uses operations
called Send and Receive (recv). Prior to the RDMA operation beginning, the target
node places an entry into its receive queue that indicates the location in memory
where a matching incoming message should be placed as well as the length of the
available buffer and information used to match the recv entry to an incoming send.
When an RDMA operation is to be performed, the initiator node posts a send request
into its send queue, making the RDMA layer send the request along with the data to
the target node. The target node matches the incoming send request with an entry in
the target node’s recv queue. It then places the incoming message directly into the
memory location specified by the recv queue entry.

The second paradigm for RDMA provides memory semantics. This type of
RDMA is closely related to how local memory accesses are described, with the
exception that the target of the operation is a remote node. The operations used in
memory semantics are Write and Read (also referred to as Put and Get). Prior to
any operation being performed, the target node must expose its memory to any node
that it allows RDMA operations from. Whether this information is broadcast as an
advertisement to many nodes or exchanged only with a single node by request is
implementation dependent. Once the information on the target’s memory (the ad-
dress of the start of the region and its size) is available, the initiator can compose the
entire message with information about where the data is to be placed on the target
node. When the target node receives the message, all the node needs to do is write
the message into the appropriate memory location.

Because of the differences in how the paradigms work, send/recv is sometimes
referred to as two-sided communication, since it requires both sides to actively
participate in the communication. RDMA Write/Read is referred to as one-sided
communication, since the actual message transmission does not require the target
node to post any a priori information about the incoming data to its recv queue.

The following provides a brief overview of two of today’s major RDMA-based
interconnection standards: iWARP Ethernet and InfiniBand.

Scalable Network Communication Using Unreliable RDMA 399

Fig. 1 iWARP stack compared with host-based TCP/IP

2.1 Overview of the iWARP Standard

The specifications for iWARP, or Internet Wide-Area RDMA Protocol, were first
proposed in 2002 by the RDMA Consortium [3] to the Internet Engineering Task
Force [4]. Utilizing a queue pair design and a communication semantic called verbs,
it reflected many of the basic design choices used in Virtual Interface Architecture
(VIA) based [5] architectures for high-speed communication. Much like the VIA
architecture, the communication stack is intended to completely bypass the operating
system, avoiding extra memory copies of data as well as any context switching that
would be required when utilizing the OS communication stack. An iWARP adapter
provides fully offloaded iWARP stack processing and therefore also requires fully
offloaded lower-layer networking transport processing. Hence, hardware for iWARP
stack processing as well as a full TCP Offload Engine (TOE) is needed in order to
provide all the benefits of OS bypass and zero-copy operation. An overview of the
iWARP stack compared with the traditional kernel communication stack is illustrated
in Fig. 1.

The iWARP stack comprises three layers, with a fourth layer added for operation
over a TCP transport layer. The layers are the verbs layer [6], the Remote Direct

400 R. E. Grant et al.

Memory Access Protocol (RDMAP) layer [7], the Direct Data Placement (DDP)
layer [8], and, if operating over TCP, the Marker PDU Alignment (MPA) layer [9].

The verbs layer is the direct middleware or application interface to the networking
stack; it directly interfaces with the RDMAP layer. The RDMAP layer services all
the communication primitives (send, recv, RDMA Write, and RDMA Read). Verbs
requests to the RDMAP layer must take the form of a work request (WR) for a given
queue pair. Although all requests from the RDMAP layer must be passed in order to
the DDP layer, the individual WRs are processed asynchronously on the RNIC. The
completion of a given WR typically results in the creation of a completion queue
(CQ) entry. Some operations (e.g., send with solicited event) can trigger an event,
with the event being an interrupt to signal completion. Most RDMAP operations
require only a single operation from the RNIC, sending data to an indicated target or,
in the case of RDMA Write, a specific memory location at a given target node. Others,
such as RDMA Read, require that state information about the ongoing operation be
kept, since they involve a multistep operation. In the case of an RDMA Read, the
initiating node requests certain data from the target node, which serves this data back
to the node that initiated the request.

The DDP layer [8] is responsible for transferring data to and from the RNIC to
the specified user-level buffers. The goal is to do so without any additional memory
copies (zero copies from reception to buffer placement). The DDP layer achieves
this through two methods: tagged (RDMA Write/Read) and untagged (send/recv).

The tagged method specifies directly in the data header where the data is to be
placed, via a steering tag (STag), offset value, and the length of the incoming data.
For this model to work, the source node must be aware of the valid areas of memory at
the target node in order to create a valid message header. This requires that prior to the
data transfer taking place, the nodes exchange data on the STags and lengths of valid
memory locations. Headers are checked upon arrival to ensure that the placement
occurs at valid addresses only.

The untagged model does not require knowledge of valid locations in memory at
the target node. Data buffers at the target nodes are handled via posted recv requests
that specify the location in memory to place the data. All incoming data is matched to
the posted recv requests. Unmatched (e.g., unexpected) data results in an error being
passed to the Upper Layer Protocol (ULP), since no buffer is available for reception.

The MPA layer [9] is the lowest layer of the iWARP stack. The DDP layer is
message-based; therefore, in order to protect DDP messages from being unrecover-
able as a result of fragmentation that may occur on the network (called middlebox
fragmentation), the MPA layer was developed. This layer overcomes the middlebox
fragmentation issues for stream-based transport protocols by inserting markers into
the data to be transmitted, in order to point to the correct DDP header for that data,
should it become fragmented. This strategy requires modifying the outgoing data to
insert the markers and removing the markers from the incoming data before passing
it to the DDP layer. The MPA layer is required only for operation over stream-based
transports such as TCP. Message-based transports such as SCTP and UDP do not
require this costly operation because their message boundaries are clear.

Scalable Network Communication Using Unreliable RDMA 401

Existing solutions to high-speed Ethernet have taken advantage of several offload-
ing technologies, with many offering abilities such as stateless offloading, performing
segmentation on the network adapter and calculating checksums. Solutions for state-
ful protocol offloading also exist, typically referred to as TCP offload engines, or
TOEs. Existing iWARP-compatible network adapters offer stateless and stateful of-
floading capabilities in addition to RDMA capabilities, enabling them to perform
zero-copy-based communications as well as bypassing the operating system, pro-
viding greater CPU availability, increased network throughput, and decreased latency
[10]. These capabilities are available in existing iWARP networking hardware for
TCP-based traffic.

2.2 Overview of the InfiniBand Standard

The InfiniBandArchitecture Specifications [11] detail the requirements of InfiniBand
(IB) compliant hardware. InfiniBand, like iWARP, uses a verbs programming inter-
face. Unlike iWARP, IB networks require software for subnet management, which
is responsible for bootstrapping the network and is required whenever any changes
are made to the network or its settings. Existing IB solutions also support high band-
widths with an EDR 4X InfiniBand fabric having a bandwidth of 100 Gb/s (an actual
data rate of ∼97 Gb/s once encoding is taken into account).

InfiniBand has several different transports: Reliable Connection (RC), Unreliable
Connection (UC), Reliable Datagram (RD), and Unreliable Datagram (UD). For UD,
InfiniBand supports only send/recv messaging; write/read support is not available.
No current hardware implementations support RD, although with reliable datagrams
both send/recv and write/read can be supported. Throughout this chapter, we will
use the same notions of RC and UD for reliable connection-based (TCP-based) and
unreliable connection-less (UDP-based) communication in iWARP as well.

In the rest of this chapter we discuss the support for RDMA over unreliable
transports in high-performance interconnects such as iWARP Ethernet. Section 3
discusses the benefits of an unreliable underlying transport for RDMA transfers, and
particularly for iWARP and Ethernet. Section 4 outlines a proposed solution for sup-
porting both channel (two-sided) and memory (one-sided) communication semantics
of RDMA in high-performance RDMA-enabled networks, with a focus on iWARP.
In particular, after a discussion in Sect. 4.1 of iWARP’s historical development and
related technologies, we turn in Sect. 4.2 to a discussion of the proposed design
for extending the iWARP standard for datagram-based RDMA support. Section 5
describes our prototype implementation of iWARP over UDP, followed in Sect. 6
by our experimental results, including the evaluation of send/recv and RDMA Write
communication for traditional commercial datacenters.

402 R. E. Grant et al.

3 The Case for RDMA over Unreliable Transports

In this section we discuss the reasons for needing unreliable connectionless RDMA
and the benefits it can offer.

3.1 Importance of Unreliable Connectionless RDMA

Current high-speed networks provide high levels of performance for reliable trans-
ports in LAN and/or WAN environments. The limitations of connection-based
transports such as nonscalable resource requirements and complex hardware pro-
tocols (e.g. TOEs) could represent a problem for future systems. Local computing
systems will have increased node and core counts, and wide-area systems will serve
more clients per node than current hardware is capable of handling. The exist-
ing iWARP RNICs are limited by the complexity of processing required for TCP
streams and the behavior of TCP itself. Additional overhead is imposed the MPA
layer handling, which is a result of the mismatch between message layers and stream
transports.

Current high-performance networks do not allow for RDMA Write/Read oper-
ations to occur over a connectionless and/or unreliable transport. Moreover, they
typically require that the underlying networking layers provide a reliable, in-order
delivery of data for such operations (InfiniBand’s unreliable datagrams allow unre-
liable send/recvs only). This requirement brings limitations compared with a design
that allows for unreliable data transmission and does not require the storage and
manipulation of data associated with ongoing network connections. For very large
systems or for systems serving a very large number of clients, the administration and
storage of the data associated with these many individual connections can be onerous.
Existing high-speed networking technologies such as InfiniBand have acknowledged
such limitations in connection-based networks by introducing technologies such as
eXtended Reliable Connections (XRC) [12]. These technologies help mitigate the
overhead incurred as a result of connections. Connectionless approaches eliminate
this concern to a greater extent, by not incurring the overhead of connections in the
first place.

A datagram-based solution offers flexibility to application developers in adapt-
ing the overhead of the network directly to their individual needs. For example, for
a streaming application that requires time-dependent data, a reliable data stream
may not be required because any data that had to be retransmitted would no longer
be current enough to be of use. Alternatively, an application could require reliable
communication but not need the flow control capabilities of TCP [13]. The reduced
complexity of a datagram approach provides for faster communication and lower
overhead than either of the current iWARP transports, TCP and Stream Control
Transmission Protocol [14]. A datagram-based iWARP can also reduce the com-
plexity of the networking stack by not requiring use of the Marker PDU Alignment
layer (MPA) [9], since middle-box fragmentation is not an issue when going over

Scalable Network Communication Using Unreliable RDMA 403

datagram transports. This feature is helpful in enhancing performance as well as
reducing the complexity of datagram-iWARP hardware solutions, leading to more
scalability and efficiency. Moreover, datagram-enabled iWARP allows for the use of
a much wider variety of applications than does traditional iWARP. In particular, it
allows wide-area datacenter datagram-base applications to use iWARP.

Applications that can traditionally make use of datagram-based communication,
such as streaming media or real-time financial trading applications, are part of the
application set poised to make up ~ 90 % of all Internet consumer traffic [15]. VOIP
and streaming media applications are typically built on top of protocols such as RTP
[16], which can utilize UDP (datagrams) as a lower layer. Such applications have
large throughput requirements, and therefore a hardware networking solution that is
RDMA capable can reduce the burden on the CPU in transferring such large amounts
of data to and from memory, thus freeing up the CPU for other important tasks.
This solution translates into potentially reduced CPU requirements for a system,
thereby providing both a power savings and a cost savings in initial costs as well
as upkeep. Alternatively, this solution can result in increased system throughput,
thereby increasing overall system efficiency.

The use of datagrams in HPC communication middleware can also provide per-
formance and scalability improvements for traditional scientific applications. Such
applications are able to leverage RDMA capabilities by using connection-based com-
munication. However, RDMA Write operations over a datagram transport are not
currently unavailable.

3.2 Benefits of RDMA over Unreliable Datagrams for iWARP

iWARP is an excellent high-performance networking candidate for unreliable get/put
operations. The scalability of iWARP can be enhanced through the use of non-
connection-based transport provisioning. While the main benefits of providing
unreliable RDMA are scalability and better performance for data-loss-tolerant ap-
plications, some additional side benefits are also realizable. First, the removal of the
MPA layer can provide increased performance. The reduced complexity of connec-
tionless transports also provides the benefit of easy adoption of datagram-iWARP into
existing iWARP silicon. Alternatively, datagram-iWARP provides the opportunity
for a datagram offloaded iWARP solution while offering onloaded TCP process-
ing. Such a solution would be much less expensive to produce, given its lack of a
TOE and MPA processing, and hence would be potentially attractive for commer-
cial datacenters, where applications that can tolerate loss can benefit the most from
our proposed extensions. Furthermore, datagram-iWARP provides the opportunity
to support broadcast and multicast operations that could be useful in a variety of
applications including media streaming and HPC for collective operations. Since
the iWARP RNIC is compatible with the OpenFabrics verbs API [17], methods de-
veloped for iWARP can also be easily adapted for use with other verbs-compatible
interfaces such as InfiniBand.

404 R. E. Grant et al.

iWARP’s WAN support is also an important feature for leveraging datagram
support, since many datagram-based applications require WAN capabilities. Ap-
plications such as online gaming use unreliable datagram transports such as UDP.
The overhead imposed by reliable transports is detrimental to such applications be-
cause individual data is time dependent and limited to short time periods. Examples
of time-dependent data include the current heading and location of a moving object
or a single frame of a video. Another important application for on-time delivery is
high-frequency trading systems for automated financial market trading. Receiving
time-sensitive information after more recent information has arrived is unnecessary.
In the case of packet loss, TCP and SCTP both guarantee in-order delivery of data.
Therefore, network jitter is experienced because there is a delay in delivering data
that has already arrived but is blocked by an incomplete message at the head of
the receive queue. For a datagram transport such as UDP, data is delivered as it ar-
rives, and this approach helps reduce network jitter, particularly for time-dependent
data transmissions. These applications can make use of datagram-iWARP, enhancing
their performance by using OS bypass, offloading, and zero-copy techniques. These
performance-enhancing networking features are unavailable for such applications in
traditional iWARP.

Scalability is a prime concern of high-performance networks. The communica-
tion channel isolation of connection-based transports is excellent for flow control and
reliability of individual data streams, but it limits the resource sharing that can occur
between the connections. Connections must have a current state, and communication
over a connection can occur only to a single destination point. Offloading RNICs
enables individual systems to have the capacity to serve more clients and therefore
incur more connection-based transport overhead. Datagram transports do not have to
keep state information as a connection-based transport does. For connection-based
iWARP implementations, state information is kept in local memory on the RNIC.
Alternatively it can be kept in system memory, in which case it must be accessed
through slower requests over the system buses. Reducing the complexity of the net-
working protocols through the use of unreliable transports such as UDP will help
reduce message latency and close the latency gap between iWARP and other high-
speed interconnects. Offloading the network processing onto the RNIC will reduce
the CPU requirements of providing high-throughput traffic for datagram applica-
tions by lessening the data movement responsibilities of the CPU. This will enable
businesses to concentrate their infrastructure investments directly into networking
technologies and capacity, thereby reducing the amount spent on CPU hardware
while still supporting high bandwidth and low latency. This is a common benefit of
WAN-capable RNICs that can support both WAN- and LAN-based applications. An-
other performance advantage of using datagram-iWARP is the existence of message
boundaries. Unlike stream-based connections, having message boundaries recog-
nized by the lower layer protocol (LLP) avoids having to mark packets in order to
determine message boundaries later. Packet marking can be a high overhead activ-
ity and can be expensive to implement in hardware [9]. Therefore, avoiding it in
datagram-based iWARP is a significant advantage over TCP. SCTP does allow mes-
sage boundaries like UDP; however, it provides even more features than those in

Scalable Network Communication Using Unreliable RDMA 405

TCP and consequently is more complicated. SCTP is also not as mature as either
TCP or UDP and therefore does not have as much application support nor as long a
history of performance tuning as does either TCP or UDP.

The elements of datagram-iWARP design that improve performance also have a
beneficial effect on the implementation cost. Adding datagram-iWARP functionality
to existing iWARP RNICs would be relatively easy and inexpensive, and the most
likely form in which datagram-iWARP can be leveraged for real devices. The cre-
ation of a datagram-iWARP-only RNIC would be less complex and less expensive
than a TCP-based iWARP RNIC. Because of the reduced silicon size, datagram-
iWARP could also be used to create a highly parallelized RNIC capable of handling
many simultaneous requests by multiplicating the communications stack processing
pipelines. This would help increase network throughput by helping systems with
many cores avoid delays due to resource availability conflicts.

4 RDMA over Unreliable Datagrams

Given the potential benefits of a datagram-based unreliable RDMA iWARP, it is im-
portant to examine how such a scheme can be designed. The RDMA Write-Record
technique introduced in [18] is, to our knowledge, the first RDMA Write opera-
tion that can work over datagram-based unreliable transports. This solution seeks
to provide RDMA functionality to a complete subset of applications (those using
datagrams) that previously was not able to utilize such high-performance network-
ing technology. In addition, it seeks to improve existing high-performance networks
by offering a scalable (unreliable) communication option that can provide good per-
formance while allowing for application-level reliability provisioning depending on
runtime system characteristics and individual application needs.

With these capabilities, it has the potential to bring advanced networking perfor-
mance and scalability to an entirely new area of applications that run over wide-area
networks served by Ethernet. RDMA Write-Record can also be of potential use on
other high-speed networking architectures, such as InfiniBand.

To increase the adoption of the datagram-iWARP among data-centric applica-
tions, we require a matching application interface that could reduce the amount of
application development rework and ideally enable such applications to seamlessly
run on the new transport. The verbs networking API is not immediately compatible
with traditional socket-based network interfaces. Since the onerous task of rewriting
a wide spectrum of datacenter application code to use a verb-based interface is nei-
ther desirable nor practical, a middleware layer is required to translate sockets-based
applications to use the verbs interface. The Sockets Direct Protocol (SDP) [19] is
an example of such layer that is used for TCP-based iWARP (as well as InfiniBand
RC) to provide a socket-based interface to the verbs-based RDMA stack. SDP trans-
lates traditional TCP-based socket interface into the set of RDMA communication
verbs. SDP, however, provides support only for applications using connection-based
communication (e.g. TCP), not for datagram-based applications. In addition, since

406 R. E. Grant et al.

SDP is designed specifically for stream-based protocols, it is not easily adaptable to
use datagram-based protocols. Rsockets [20] is a new alternative to SDP, providing
a user-level sockets-compatible interface for OpenFabrics stack-compatible RDMA
methods. However, since OpenFabrics-based stacks do not support datagram RDMA
Write/Read, a custom socket interface needed to be designed that could translate
datagram-based networking calls to use the datagram-iWARP verbs. Such inter-
face enables applications to utilize datagram-based RDMA communication without
requiring any software rewrite.

4.1 Related Work and Development History

The current leading solution for improving existing Ethernet directly without the
use of a new upper-layer networking stack is Converged Enhanced Ethernet (CEE)
[21–26]. CEE consists of a set of compatible RFCs that are designed to add advanced
functionality to the Ethernet standard. The flagship feature of CEE is error-free trans-
mission channel for applications, offering capabilities such as priority flow control,
shortest path bridging, enhanced transmission selection, and congestion notification.
Given the availability of such a hardware-managed reliable channel, RDMA over
Converged Enhanced Ethernet (RoCE) [27] has been designed to take advantage of
the reliabile channel to provide RDMA operations. RoCE uses InfiniBand’s RDMA
stack directly, using Ethernet as the link/physical layer. This leads to the most high-
lighted disadvantage of RoCE, which is the lack of support for IP routing, making it
applicable only to LANs and WANs supporting non-IP traffic. RoCE works only over
the transport modes provided with InfiniBand (no unreliable RDMA Write/Read),
and the potential addition of datagram-based RDMA Write-Record operation to In-
finiBand can boost RoCE’s functionality by making RDMA capable of working
over unreliable transports for both channel and memory semantics (i.e., send/recv
and RDMA Write/Read). Other alternatives to iWARP have been suggested in order
to improve Ethernet. Open-MX allows for Myrinet Express networking traffic to
function over Ethernet hardware (MXoE) [28].

Datagram-iWARP was first proposed in [29] using the UDP transport for send/recv
based iWARP. The results demonstrated runtime improvements of up to 40 % over
connection-oriented iWARP (with TCP) for MPI-based HPC applications, particu-
larly for applications that perform a great deal of communication. Datagram-iWARP
can also provide as much as a 30 % improvement in memory usage for moderately
sized HPC clusters. RDMA Write-Record was first proposed and analyzed in [18]
along with the iWARP socket interface for commercial datacenter applications. In
this chapter an integrated view of the aforementioned work is presented. The rest of
the chapter elaborates on the details of the datagram-iWARP methodology.

Scalable Network Communication Using Unreliable RDMA 407

4.2 iWARP Extension Methodology

Datagram-iWARP represents a significant shift in the overall design of iWARP, since
the current standard is based entirely on reliable connection-based transports that
provide ordered data delivery. In contrast, datagram-iWARP is designed for an
unreliable, nonordered network fabric. This requires a change in the existing as-
sumptions made in the iWARP standard regarding the LLP data delivery and the
ULP assumptions. We first outline the changes required to enable both two-sided
(channel-based) and one-sided (memory-based) methods of communication to run
on unreliable datagram-based transports. These include changes to the iWARP stan-
dard and behavioral requirements. The design of the RDMA Write-Record and its
significant differences from a traditional iWARP RDMA Write operation then are
discussed.

4.3 iWARP Design Changes

Adding support for connection-less communication mandates a number of transport-
level changes that need to be performed in iWARP standard. In this section we briefly
refer to some of these requirements. A high-level overview of the changes required
for datagram-iWARP is shown in Fig. 2.

1) Verbs-Level Changes In a connectionless UDP flow, the source IP address and
port of the incoming packets need to be reported to the application receiving the
data in order to perform necessary flow matching. Therefore, either modification to
existing verbs or introduction of new datagram-based verbs is required to pass along
the required data structures for datagram-based traffic. Since existing OpenFabrics
(OF) [17] verbs specification allows for datagram-based traffic (currently as send/recv
datagram traffic InfiniBand), the underlying iWARP-specific verbs can be redesigned
or added to be compatible with OF verbs. Additional changes to verbs for polling
the completion queue are also required, as are changes to verbs for creating and
modifying queue pairs for datagram-based communication.

Since datagram QPs require different initialization information from that of con-
nected QPs, alterations of the QP creation or modification verbs are needed to accept
datagram-related inputs that are different from those of existing connection-based
verbs.

Communication transmission verbs (send and RDMA Write-Record) must be
altered so that they receive a valid destination (IP address) and port with every
operation, since they cannot rely on past behavior to determine the destination for a
given data transmission. For connection-based communication, this is not an issue
because data over a given connection always flows to the same destination. Likewise,
the verbs for receiving data must be altered such that they deliver the address and port
of the source of the transmission. For recv, this alteration is relatively straightforward,

408 R. E. Grant et al.

Fig. 2 Changes for datagram-iWARP

through the addition of data structures to relay this information. However, this is not
done in the recv verb itself, but rather as a common change to both recv and RDMA
Write-Record, by reporting the source address and port in the completion queue
element passed back to the requesting process after a completion queue poll request.

2) Required Changes to the Core iWARP Layers One of the major conceptual
changes is in the notion of work completion. In a reliable connection iWARP model,
a work request completion is assured as soon as its delivery can be guaranteed,
which essentially occurs upon passing the data to the underlying transport layer.
For an unreliable transport however, such assurances can never be provided by the
transport. Therefore, for datagram-iWARP, a work request completion is defined to
occur when the data is passed to the LLP for delivery, without the expectation that it
is guaranteed to be delivered.

The lack of guaranteed delivery for UD-iWARP requires that the polling for the
completion of a recv operation as well as the completion of an RDMA Write-Record
operation have a timeout period associated with the polling request. Otherwise, an
infinite polling loop may result, which would cause an application to fail.

The RDMAP specifications in the iWARP standard [6] Sect. 5.1 states that LLPs
must provide reliable in-order delivery of messages. The DDP standard [8], Sect. 5,
item 3, states that the LLP must reliably deliver all packets. These specifications
must be changed to allow for the operation of datagram-iWARP.

Scalable Network Communication Using Unreliable RDMA 409

The DDP standard, Sect. 5, item 8, states that errors that occur on an LLP stream
must result in the stream being marked as erroneous and that further traffic over
the marked stream is not permitted. Likewise, the RDMAP specification requires
an abortive teardown of an entire communication stream should an error occur on
that stream. Such requirements need to be relaxed for these layers of the datagram-
iWARP. For a datagram QP, the error must be reported to the corresponding upper
layer; but no teardown is required, and traffic can continue to flow across the same
QP without transition into an error state. This approach is necessary because of the
possibility of the QP concurrently communicating with multiple targets. In addition,
recovery from an error occurring over an unreliable transport might be possible at
the ULP.

3) iWARP Behavioral Adaptations The iWARP standard has been designed for an
LLP that offers guaranteed in-order delivery of data. In order to be compatible with an
unreliable transport, the behavior of the communication stack needs to be adapted. In
many cases, the applications utilizing datagram-iWARP must be aware of its unreli-
able nature and have provisions to deal with data loss and reordering. This is the case
for applications that stream media over a lossy network. Another example is some
implementations of HPC application middleware such as the Message Passing Inter-
face (MPI), which communicate over an extremely low-loss-rate LAN where simple
and low-overhead middleware-level reliability measures can effectively provide the
required delivery assurance of data.

Connection establishment and teardown procedures are not required for datagram-
iWARP. For datagram-iWARP, a QP can be transitioned into an RTS state after it
is created and an LLP (i.e. UDP) socket is assigned to it. Since this setup can be
accomplished without any transmissions to the target of the datagram QP, the other
parameters used for the QP, such as the use of a cyclic redundancy check (CRC),
must be configured by the ULP. Doing so also eliminates the requirement that the
ULP configure both sides of the QP (target and source) at the same time.

The other set of changes is related to the error management behavior of the iWARP
stack. For datagram-iWARP, errors must be tolerated, by reporting errors as they hap-
pen to the upper layer, but not causing a complete teardown of the QP. Consequently,
the application may decide on the course of action to take upon notification that a
communication error has occurred.

This approach requires that an error message detailing the error (and, in the case
of a RDMA Write or Read communication, the message sequence number) be sent to
the message source. The error message is locally placed in an error queue as opposed
to the termination queue used in traditional iWARP.

Message segmentation and the requirement for marking of messages are signifi-
cantly different for datagram-iWARP. Since the proposed LLP, UDP, has a maximum
message size of 64 kB and since UDP delivers the message in its entirety, message
segmentation is not needed in the iWARP stack. The application layer is responsible
for ensuring that data transfers larger than 64 kB are segmented and reassembled
properly.

410 R. E. Grant et al.

The MPA layer and its marking of packets in order to facilitate reassembly are also
not needed. Once datagram packets are segmented into maximum transmission unit
(MTU)-sized frames by the IP layer they are not permitted to be further segmented
by network hardware along the transmission route (unlike TCP traffic). Therefore,
there is no need to perform the costly activity of marking the packets so they can be
reassembled correctly at the target system.

4) Optional iWARP Changes Datagram-iWARP always requires the use of a CRC
when sending messages. This requirement allows for the creation of datagram QPs
without any communication between the source and target nodes. It also ensures that
no CRC usage conflicts occur over a datagram QP, given that it can communicate
with several other systems. Since the proposed LLP for the UD transport, UDP, does
not require the use of a checksum and since its checksum is inferior to a CRC, a CRC
check must be performed in the iWARP stack such that data transmission errors are
identifiable.

4.4 RDMA Write-Record

In this section we define a one-sided RDMA Write operation over an unreliable
transport. None of the existing interconnects supporting one-sided RDMA define
support for such operations over unreliable datagrams. Because of the data-source-
oriented nature of one-sided RDMA operations, the target host is not aware that an
incoming transmission may be occurring. Over a network that provides guaranteed
in-order delivery, the source can be assured that data passed to the lower layer
networking protocols will arrive properly at the target node. Such a guarantee cannot
be made for an unreliable datagram-based transport.

Current specifications require the use of a subsequent two-sided (send/recv) mes-
sage after an RDMA Write operation has completed, in order to notify the target node
that the data has been successfully placed in its local memory [3]. An optimization of
this basic method allows the target node to determine whether the data is valid, not
by an additional message, but by the modification of a given bit in memory once the
operation is complete. Both methods rely on reliable transport. With an unreliable
transport, the notification message or the message segment containing the notifica-
tion bit could be dropped. Alternatively, the notification message could arrive, but
the message itself might not; this situation would cause significant problems because
the memory region would not contain correct data and most likely would cause ap-
plication failure or invalidation of application results. Consequently, the traditional
RDMA model does not adapt well to an unreliable network environment.

Therefore, in order to facilitate operation of RDMA over unreliable datagrams, a
new method called RDMA Write-Record [18] can be used. It uses the iWARP tagged-
model data structure while changing the behavior at the source and target nodes. At
the source, the RDMA operation is not followed by any additional send/recv based
notification in order to notify the target host. The data is sent to the target, but the data

Scalable Network Communication Using Unreliable RDMA 411

Fig. 3 Comparison of RDMA Write over RC and RDMA Write-Record over UD

source cannot assume that the data will be received. If such information is required at
the data source, it must be supplied by using a reliable LLP or by notification messages
at an upper layer. At the target node, upon receiving an RDMA message, the target
RDMA stack places it in the destination memory as it would for a connection-based
message; but for a UD message it also records that the memory write took place, the
location of the transaction, and the length of the valid data placed. This information
is then accessible as a completion notification through the completion queue. This
method does not separate the notification from the actual data arrival, and therefore
the notification is recorded if and only after the data is placed.

Since this method uses existing data structures and queues already present in tra-
ditional iWARP, its implementation is relatively lightweight. The design is illustrated
in Fig. 3 where it is compared with a traditional RDMA Write operation. This design
also has the benefit that it is easily compatible with socket semantics and makes
an interface for socket-based applications easier to implement. The reason is that a
completion notification exists for an RDMA operation, so it can be easily polled for
via the completion queue and the requisite information passed back to the polling
application.

412 R. E. Grant et al.

In order to have adaptable design that supports different computing paradigms,
two possible methods for creating CQ entries for RDMA Write-Record operations
are proposed. These methods allow applications to use either a message-based or a
memory-based networking semantic:

1. Message-based semantics: Each RDMA Write-Record operation, when com-
pleted at the data sink, inserts an individual entry in the completion queue. When
the application polls for a completion, each completion entry can be interpreted as
a separate message received, which is essential to making RDMA Write-Record
applicable to existing message-based applications such as those utilizing sockets.

2. Memory-based semantics: In this case, the application views the data transfers
as simply memory accesses rather than network messages. In this paradigm, the
application needs to know what areas of memory are valid. For such ability, in-
dividual notifications for every Write-record operation are unnecessary. The CQ
entry method that is used for the message-based semantics approach is still valid
for this approach (thereby reducing overall device complexity); however, we cre-
ate a validity map for any requesting application by simply traversing the CQ
and aggregating the CQ elements into a single validity map structure. This ap-
proach provides additional application interface flexibility while only marginally
increasing device complexity and not requiring a QP to be declared as using only
one of the two methods. The manner in which completions are to be reported
can be specified in the call to the CQ polling verb. We note that this method
does not remove the requirement for synchronization between communicators
before the target memory is reused. The state of the memory may be undefined
if multiple writes are performed to a single memory location without synchro-
nization. However, such synchronization is out of the scope of the iWARP, as
the underlying transport fabric, and needs to be addressed through application /
middleware layers. For example, in an HPC setting where sharing of such mem-
ory windows is common for one-sided operations, middleware such as MPI may
provide adequate reliability and synchronization, so that using unreliable iWARP
for scalability and performance is desirable.

As a final note on the introduction of the RDMA Write-Record operation, we em-
phasize that this operation differs from all types of the existing RDMA operations.
One might find similarities with send/recv operations such as send with solicited
event, however, in such case a recv must be posted before the specified event can
be triggered upon reception of the data; this process also triggers an event to occur
immediately upon reception (an interrupt). RDMA Write-Record, on the contrary,
reports that an operation has occurred only when the upper layer software requests in-
formation concerning completed operations. Similarly, RDMA Write-Record varies
from the InfiniBand RDMA Write with immediate operation, since in the InfiniBand
case a recv is required to be posted in order to receive the immediate data. Con-
versely, RDMA Write-Record acts as a truly one-sided operation where a posted
recv operation at the target is not required.

Scalable Network Communication Using Unreliable RDMA 413

4.5 Packet Loss Design Considerations

The memory-semantic-based RDMA Write-Record paradigm implies the require-
ment for supporting unlimited message sizes at the iWARP layer, messages larger
than 64 kB, as well as support for partial-message placement in the target memory.
For networks that are relatively error free, this may imply some performance benefits
due to avoiding segmentation costs for applications when passing large messages to
the iWARP stack. However, segmentation will still happen at lower layers, for exam-
ple, over traditional Ethernet networks, at the IP layer, where messages are segmented
into MTU-size segments (usually a 1500-byte MTU, although a 9000-byte jumbo
frame is also possible on some networks).

UDP relies on the IP layer for segmenting a 64 kB message into several MTU-
compatible messages and reassembling that message at the target node. Messages
larger than 64 kB cannot be handled by this mechanism in UDP and therefore must
be segmented at the iWARP level before being passed to UDP. This approach results
in several smaller message segments in iWARP that must be reassembled at the
target node into a single-larger iWARP message. Here is where the partial-message
placement support added to iWARP for RDMA Write-Record comes into play. It
allows for the received portions of a message to be placed into memory as they
arrive; the resulting memory validity map reflects the missing portions of the overall
larger message, in case some segments are lost during the transfer. This approach is
appropriate for applications that can handle some packet loss, such as online gaming,
VOIP, and streaming media applications that can make use of large messages. Other
applications such as streaming video applications can also handle packet loss as well
as invalid data and can make use of partial-message placement.

For some applications, a single packet loss for a large, multisegment application
message would normally result in a complete message loss. Partial-message delivery
is not a requirement of RDMA Write-Record. It is detailed here for the subset of
applications that can handle packet loss, as well as for future Ethernet networks, such
as the changes proposed for CEE [27], where error-free streams for datagrams can be
provided. Such network channels could make use of iWARP hardware segmentation
and reassembly of large messages.

5 Datagram-iWARP Software Implementation

To evaluate the proposed datagram extension to the iWARP standard, we have devel-
oped a software implementation of datagram-iWARP based on a TCP-based iWARP
implementation. This allows for a direct comparison between the UD and RC modes
of datagram iWARP, using a publicly available RC implementation. Figure 4 shows
an overview of this implementation including the additional upper-layer interfaces
we have added, the iWARP socket interface, and modification to the existing OF
verbs interface in order to make it compatible with more OF verbs middleware and

414 R. E. Grant et al.

Fig. 4 Software implementation of datagram-iWARP

applications. The changes required to the verbs, RDMAP, and DDP layers, as de-
scribed in Sect. 4.3, are reflected in the layers of the stack indicating both UD and
RC support. While this implementation is fully capable of operating over a reliable
UDP transport, all the testing and results of the implementation were performed over
unreliable UDP.

The software implementation of iWARP that was used as the code-base for
datagram-iWARP originated from a project by the Ohio Supercomputer Center
(OSC) [30]. The OSC iWARP project implements both user-space [31] and
kernel-space [32] implementations of iWARP, with the user version being used
for datagram-iWARP. Other software iWARP solutions have also been developed;
for example, SoftiWARP, a project from IBM Zurich [33], is integrated into the
OpenFabrics Enterprise Distribution stack [17]. All these projects have implemented
only the traditional iWARP stack, however, and no support for datagrams or design
alternatives compatible with datagrams is presented.

Modifications to the existing incomplete OF verbs interface on top of the native
software iWARP verbs were necessary because of the base RC iWARP implementa-
tion used for the design. OF verbs were originally designed for InfiniBand (OpenIB
verbs) but are now also used to support iWARP hardware in a unified driver. A socket
interface was also added in order to facilitate the use of socket-based applications
without needing to rewrite the existing networking code.

Scalable Network Communication Using Unreliable RDMA 415

The datagram-iWARP implementation has been extended to allow for IP-level
broadcast operations. Using the existing IP broadcast provisions available for Ether-
net networks, we adapted the datagram-iWARP implementation to demonstrate the
bandwidth achievable using IP-level broadcasting. Send/recv is supported for broad-
cast operations, since the receiver-managed data placement is useful for ensuring
correct delivery to multiple target nodes.

5.1 iWARP Socket Interface

The compatibility of iWARP to operate with existing software without the need for a
long and expensive networking code rewrite is desirable. Existing iWARP implemen-
tations can operate over the Socket Direct Protocol or the Rsockets interface, which
allows sockets-based applications (non-datagram) to run over iWARP verbs. How-
ever, SDP was designed specifically for TCP-based applications and does not support
datagram-based applications. Rsockets supports both TCP and (recently) UDP but
does not support the use of RDMA Write-Record. Therefore, an interface was needed
to allow datagram-based applications to take advantage of datagram-iWARP without
having to rewrite networking code in order to use verbs. A lightweight interface was
developed to facilitate both RC-based and UD-based socket networking code to work
with iWARP. This interface is not as complex or full featured as SDP or Rsockets
but provides a baseline with which the performance of RC and UD socket-based
applications can be compared.

The iWARP socket interface is loaded in the same manner as SDP/Rsockets. When
running an application, the interface is dynamically preloaded and uses networking
calls that override the existing operating system network calls, passing them to the
iWARP networking stack. The iWARP socket interface operates by allowing for
both TCP and UDP-based iWARP sockets to be opened, using the relevant iWARP
lower-layer protocol. It limits sockets to having only one QP associated with them,
so that socket-based applications do not have multiple streams over a single socket.

6 Experimental Results and Analysis

In this section, we briefly describe our evaluation of the proposed technology
through our prototype implementation of unreliable datagram-based iWARP. We
use microbenchmarks to evaluate individual features and the core functionality of
datagram-based RDMA compared with traditional connection-based RDMA. We
also utilize the technology in some datacenter applications in order to realize the
potential benefits in a real environment.

We conducted our tests on a cluster of four nodes, each with two quad-core 2 GHz
AMD Opteron processors, 8 GB RAM, and a NetEffect 10-Gigabit Ethernet (10GE)
card connected through a Fujitsu 10GE switch. The cards were operated in native

416 R. E. Grant et al.

Fig. 5 Unidirectional verbs bandwidth

Ethernet mode. The nodes run Fedora 12 (kernel 2.6.31). All tests were run by using
a software iWARP implementation over sockets on Ethernet hardware.

6.1 Verbs-Layer Microbenchmarks

Microbenchmark results are presented for both send/recv and RDMA Write-
Record as compared with the connection-based traditional iWARP operations. These
microbenchmark tests were performed on one pair of nodes.

Unidirectional bandwidths of the different iWARP methods are illustrated in
Fig. 5. Both UD-based methods outperform their RC equivalents by a wide mar-
gin. This result is especially observable at larger message sizes, which is particularly
significant for RDMA Write-Record compared with RC RDMA Write. UD RDMA
Write-Record also enjoys a visible advantage over UD send/recv at 1 kB message
sizes.

6.2 Send/Recv Broadcast

Since broadcast/multicast is a potentially useful feature in several classes of data
center applications (such as media streaming applications), we evaluated the addition
of such a feature to datagram iWARP.

In a verbs-level bandwidth evaluation benchmark over a network with IP-level
hardware broadcasting operations, the source node delivers data to multiple targets
via IP broadcast. With no overhead, the bandwidth is expected to scale linearly
with an increasing number of targets. As can be observed in Fig. 6, for two and

Scalable Network Communication Using Unreliable RDMA 417

Fig. 6 Send/recv broadcast aggregate bandwidth

three receivers the bandwidth scales well for small and medium messages. Greater
overhead is observed for large messages as a result of copying overhead by the
broadcasting switch, leading to nonideal scaling. This small overhead (in the order
of a few percent) is preferable to having the software iWARP stack replicate packets
and send them to multiple targets. The slight change in the bandwidth curve slope
at the 8 kB message size is due to exceeding the network MTU and consequently
IP-level message segmentation, which slightly affects the efficiency of the network
processing.

6.3 Packet Loss and Performance

In a LAN environment, where the probability of data loss is very low, the implications
of using unreliable transports are not fully understood. Therefore, after analyzing
results in LAN conditions we studied datagram-iWARP in a WAN-like environment,
where the presence of packet loss can affect the overall observable bandwidth. In this
test, we chose the packet loss percentage rates based on real-world network packet
loss records as discussed in [34]. A loss rate of 0.1 % is similar to that of intra-U.S.
web traffic, while a 0.5 % loss rate is in line with expectations of loss between a
western European-U.S. transmission. Larger packet loss rates of 1–5 % approximate
traffic in Africa and parts of Asia, with African nations typically having rates on the
higher ends of the scale.

The bandwidth of UD send/recv datagram-iWARP under various packet loss con-
ditions are illustrated in Figs. 7 and 8. Since the loss of a single segment of a message

418 R. E. Grant et al.

Fig. 7 UD send/recv bandwidth with packet loss

Fig. 8 UD RDMA Write-Record bandwidth with packet loss

causes the loss of the entire message, it will cause observable losses in throughput
for medium-sized messages and catastrophic loss in performance for large messages.

As mentioned in Sect. 4.5 the MTU for a UDP datagram is 64 kB. This means
that once the 64 kB packet size is exceeded, the chance of an iWARP message
being dropped increases by the number of packets that must be sent for the message.
Examining Fig. 8, one can see the effect that this has on the performance for RDMA
Write-Record. A key observation is that for larger message sizes, the bandwidth
does not drop as much as that for send/recv in Fig. 7. This is due not to any inherent
differences between send/recv and RDMA Write-Record but rather to the fact that

Scalable Network Communication Using Unreliable RDMA 419

RDMA Write-Record has been adapted to perform partial placement of messages,
where it places all the packets of a message that do arrive, and does not drop a large
message when one or more packets in that message are lost.

Although no technical limitation prevents partial placement of messages for
send/recv, the partial placement of large messages for RDMA Write-Record is easy
to accomplish. The reason is that the partial-placement feature of RDMA Write-
Record also allows for memory validity mapping-type behavior. All the segments of
a message that arrive can be delivered regardless of whether they are sequential. The
partial-placement method allows large message sizes to be of use in the most typical
packet loss scenarios for Internet traffic in the majority of the world. It is most useful
for applications that can tolerate partial loss of messages, where retransmission of
such losses can be skipped in most cases. Without a partial-placement feature, large
message sizes are generally impractical for use over lossy networks.

6.4 Datacenter Application Results

Datagram-iWARP has obvious applications in datacenters running commercial ap-
plications. To assess the advantages of using datagram-iWARP for video streaming,
we used VideoLan’s VLC, a popular streaming media application [35]. For the per-
formance of datagram-iWARP for systems where client scalability is of concern,
we used SIPp [36], a framework for load-testing Session Initiation Protocol (SIP)
servers.

1) Datacenter Performance Results Datagram-iWARP’s performance with stream-
ing media applications was tested by using VLC’s UDP streaming mode and was
compared with an RC-compatible mode (HTTP-based). The relative performance of
the two modes was compared by using a network-intensive portion of the application,
the buffering of a new media stream. Figure 9 illustrates the performance of the dif-
ferent iWARP modes during buffering. UD provides a 74.1 % reduction in buffering
time versus RC. This increase in throughput for the system is a direct result not only
of the UD iWARP stack but also of the advantages that UDP streaming has over the
HTTP-based method in VLC. The UDP method benefits from lower overhead than
the HTTP approach and therefore demonstrates that making UD transports available
for future datacenters could provide benefits at multiple layers.

RDMA Write-Record does not demonstrate any performance benefits compared
with send/recv in Fig. 9. This result is due to the software socket interface, which
is required to provide buffers for incoming messages for Write-Record. Each time
a buffer is consumed, the socket interface must advertise the remote buffer loca-
tion. The socket interface has not been performance tuned to minimize the overhead
involved in this process. For a hardware implementation, a rotating group of pre-
negotiated buffers could be used that would help reduce this overhead. For the
software implementation, this approach results in similar performance to that of
send/recv (essentially the prenegotiated buffers are like posted recvs).

420 R. E. Grant et al.

Fig. 9 VLC UD streaming vs. RC-based HTTP streaming

Fig. 10 SIP response times

SIPp was used to determine the benefits of datagram-iWARP for IP telephony.
Under a light server load, the request response averages seen in Fig. 10 were obtained.
The UD-iWARP response time is 43.19 % better than that of RC-iWARP for send/recv
and 43.24 % better for RDMA Write (Record).

2) SIPp Memory Usage Results Datagram-iWARP is expected to have memory
usage benefits over a connected iWARP solution because of the lack of client connec-
tions and their application-level memory usage implications. The memory footprint
of SIPp was examined in order to quantify these benefits. Figure 11 was compiled
by using the sum of the SIPp application memory usage and the Linux slab buffer

Scalable Network Communication Using Unreliable RDMA 421

Fig. 11 SIP improvement in memory usage using send/recv datagram-iWARP over traditional
iWARP

used for the sockets. The figure shows that a memory savings of 24.1 % is possible
for a server with 10,000 clients.

We can compare this result to the maximum possible theoretical benefit based
solely on the iWARP socket size. The maximum benefit is 28.1 % over RC. This
shows only a 4 % difference between the measured and maximum possible benefit.
The difference can be accounted for through the application’s memory usage asso-
ciated with the datagram sockets. For SIPp, even without a connection, some state
must be stored for each of the clients. The true memory usage benefits of using a
datagram-based RDMA approach will be realized with high-end datacenter hardware
serving millions of clients.

The datacenter applications tested demonstrate that applications that are data loss
tolerant and UDP-compatible can take great advantage of send/recv and RDMA
Write-Record in datagram-iWARP. The packet loss tolerance features of datagram-
iWARP make it an effective transport for datagram-based WAN communications.
It is also compatible with the sockets network programming paradigm. Datagram-
iWARP also demonstrates scalability benefits. Thus, three key concerns of future
datacenter and WAN networks are addressed: performance, ability to operate on
lossy networks, and scalability. In addition, datagram-iWARP provides backwards
compatibility with existing Ethernet networks and an easy transition from existing
hardware to future generation hardware with the ability to provide a staged upgrade
path.

422 R. E. Grant et al.

7 Summary

This chapter introduced the concepts of RDMA and discussed some of the most pop-
ular RDMA interconnects available. The differences between the needs of scientific
HPC and commercial datacenter applications were discussed, along with how the
UDP transport can be of benefit, especially in datacenters. The chapter illustrated the
critical design requirements and resulting real-world performance of a proposed next-
generation design for supporting RDMA over unreliable transports, in particular for
Ethernet technology. It explored the challenges facing the current iWARP standard
and addressed them by extending the standard to the datagram domain. The result
is a full-featured datagram-iWARP design. This design includes the first method
capable of providing one-sided RDMA communications over unreliable datagrams,
called RDMA Write-Record. Such functionality can be extended for use on other
RDMA-enabled networks.

As a proof of concept, a datagram-iWARP stack was implemented and supple-
mented with an OF verbs interface for standard verbs compatibility and a socket
interface for providing iWARP functionality to existing socket-based applications.
The results indicate that datagram-iWARP can provide superior performance and
scalability to traditional iWARP.

Packet loss design considerations were discussed, with a solution for partial data
placement to help throughput in typical Internet packet loss situations. The semantics
of RDMA Write-Record were discussed as a good match for packet loss design and
the partial data placement scheme was demonstrated to provide benefits in terms of
bandwidth.

Additionally, the benefits of datagram-iWARP in commercial datacenters were
assessed. Improved performance and scalability were shown, demonstrating that
datacenters could benefit from adopting datagram-iWARP hardware. Further, it was
noted that commercial datacenter applications are capable of leveraging all the ben-
efits of RDMA Write-Record and datagram-iWARP, since they can tolerate some
data loss. Providing application developers with tools such as RDMA Write-Record
will enable applications that can tolerate data loss to benefit from reduced reliability
constraints and greater scalability.

Acknowledgments This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada Grant #RGPIN/238964-2011; Canada Foundation for Innovation and
Ontario Innovation Trust Grant #7154; U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research, under Contract DE-AC02-06CH11357; and the National Science
Foundation Grant #0702182.

Scalable Network Communication Using Unreliable RDMA 423

References

1. L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM, vol. 33, no. 8,
pp. 103–111, Aug. 1990. [Online]. Available: http://doi.acm.org/10.1145/79173.79181

2. B.W. Barrett, R. Brightwell, R.E. Grant, S. Hemmert, K. Pedretti, K. Wheeler, K.D. Under-
wood, R. Riesen, A.B. MacCabe, T. Hudson, The Portals 4.0.2 Networking Programming
Interface, Sandia National Laboratories, October 2014, Tech. Rep. SAND2014-19568

3. RDMA Consortium, “July 2013.” [Online]. Available: http://www.rdmaconsortium.org
4. Internet Engineering Taskforce. July 2013. [Online]. Available: www.ietf.org
5. D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. M. Merritt,

E. Gronke, and C. Dodd, “The virtual interface architecture,” Micro, IEEE, vol. 18, no. 2,
pp. 66–76, 1998.

6. J. Hilland, P. Culley, J. Pinkerton, and R. Recio, “RDMA protocol verbs specification,” RDMAC
Consortium Draft Specification draft-hilland-iwarp-verbsv1. 0-RDMAC, 2003.

7. R. Recio, P. Culley, D. Garcia, J. Hilland, and B. Metzler, “An RDMA protocol specification,”
IETF Internet-draft draft-ietf-rddp-rdmap-03. txt (work in progress), Tech. Rep., 2005.

8. H. Shah, J. Pinkerton, R. Recio, and P. Culley, “Direct data placement over reliable transports
(version 1.0),” RDMA Consortium, October, 2002.

9. P. Culley, U. Elzur, R. Recio, S. Baily et al., “Marker PDU aligned framing for TCP specification
(version 1.0),” RDMA Consortium, October, 2002.

10. B. Hauser, “iWARP ethernet: eliminating overhead in data center designs,” NetEffect Inc. White
paper, 2006.

11. InfiniBand Trade Association. InfiniBand architecture specification, release 1.2.1, nov. 2007.
12. InfiniBand Trade Association. InfiniBand architecture specification, release 1.2.1, annex A14:

Extended Reliable Connected Transport Service, mar. 2009.
13. G. Huston, “TCP performance,” The Internet Protocol Journal, vol. 3, no. 2, pp. 2–24, 2000.
14. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,

L. Zhang, and V. Paxson, “RFC 4960: Stream control transmission protocol,” Network Working
Group, 2007.

15. Cisco, VNI, “Hyperconnectivity and the approaching zettabyte era,” White paper, 2013.
16. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RFC 3550,” RTP: a transport

protocol for real-time applications, vol. 7, 2003.
17. OpenFabrics Alliance, “July 2013.” [Online]. Available: http://www.openfabrics.org
18. Ryan E. Grant, Mohammad J. Rashti, Pavan Balaji, and Ahmad Afsahi, “Remote Direct

Memory Access over Datagrams”, U.S. Patent #8903935, December 12, 2014.
19. J. Pinkerton, E. Deleganes, and M. Krause, “Sockets direct protocol (SDP) for iWARP over

TCP (v1. 0),” RDMA Consortium, 2003.
20. S. Hefty. (2013) Rsockets. Intel Corporation. [Online]. Available:

https://www.openfabrics.org/ofa-documents/doc_download/495-rsockets.html
21. IEEE. IEEE standard for local and metropolitan area networks - virtual bridged local

area networks – amendment: priority-based flow control - 802.1qbb. [Online]. Available:
http://www.ieee802.org/1/pages/802.1bb.html

22. IEEE. IEEE standard for local and metropolitan area networks - virtual bridged local
area networks – amendment 10: congestion notification - 802.1qau. [Online]. Available:
http://www.ieee802.org/1/pages/802.1au.html

23. IEEE. IEEE standard for local and metropolitan area networks - virtual bridged local area
networks – amendment: enhanced transmission selection - 802.1qaz. [Online]. Available:
http://www.ieee802.org/1/pages/802.1az.html

24. IEEE. IEEE standard for station and media access control connectivity - 802.1ab. [Online].
Available: http://www.ieee802.org/1/pages/802.1ab.html

25. INCITS technical committee T11. ANSI standard FC-BB-5 - fibre channel over ethernet
(FCoE). [Online]. Available: http://www.t11.org/ftp/t11/pub/fc/bb-5/09-056v5.pdf

424 R. E. Grant et al.

26. R. Perlman, “Introduction to TRILL,” The Internet Protocol Journal, vol. 4, no. 3, pp. 2–20,
2011.

27. D. Cohen, T. Talpey, A. Kanevsky, U. Cummings, M. Krause, R. Recio, D. Crupnicoff, L. Dick-
man, and P. Grun, “Remote direct memory access over the converged enhanced ethernet fabric:
Evaluating the options,” in Proceedings of the 17th IEEE Symposium on High Performance
Interconnects (HOTI). IEEE, 2009, pp. 123–130.

28. B. Goglin, “Design and implementation of open-mx: High-performance message passing
over generic ethernet hardware,” in Proceedings of the 22nd IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2008, pp. 1–7.

29. M. J. Rashti, R. E. Grant, P. Balaji, and A. Afsahi, “iWARP redefined: Scalable connectionless
communication over high-speed ethernet,” in Proceedings of the 2010 International Conference
on High Performance Computing (HiPC). IEEE, 2010, pp. 1–10.

30. Ohio Supercomputing Center, “Software implementation and testing of iWARP proto-
col,” 2013. [Online]. Available: http://www.osc.edu/research/network_file/projects/iwarp/
iwarp_main.shtml

31. D. Dalessandro, A. Devulapalli, and P. Wyckoff, “Design and implementation of the iWARP
protocol in software,” in Proceedings of the 17th IASTED International Conference on Parallel
and Distributed Computing and Systems, Phoenix, AZ, 2005.

32. D. Dalessandro, A. Devulapalli, and P. Wyckoff, “iWARP protocol kernel space software
implementation,” in Proceedings of the 20th International Parallel and Distributed Processing
Symposium (IPDPS), 2006.

33. B. Metzler, P. Frey, andA. Trivedi, “A software iWARP driver for OpenFabrics,” in Proceedings
of the OpenFabrics Alliance 2010 Sonoma Workshop, 2010.

34. W. Matthews and L. Cottrell, “The PingER project: active internet performance monitoring for
the HENP community,” Communications Magazine, IEEE, vol. 38, no. 5, pp. 130–136, 2000.

35. VideoLan Project, “VLC media player, May 2013.” [Online]. Available:
http://www.videolan.org/vlc/

36. R. Gayraud, O. Jacques, and C. Wright, “SIPp: traffic generator for the SIP protocol,” 2013.

http://www.osc.edu/research/network_file/projects/iwarp/iwarp_main.shtml
http://www.osc.edu/research/network_file/projects/iwarp/iwarp_main.shtml

Packet Classification on Multi-core Platforms

Yun R. Qu, Shijie Zhou and Viktor K. Prasanna

Supported by U.S. National Science Foundation under grant
CCF-1320211.

1 Introduction

Internet routers perform packet classification on incoming packets for various net-
work services such as network security and Quality of Service (QoS) routing. All the
incoming packets need to be examined against predefined rules in the router; packets
are filtered out for security reasons or forwarded to specific ports during this process.
Another well-known name for packet classification is packet filtering. As shown in
Fig. 1, packet filters or firewall is also used to refer to the hardware or software-based
network security system performing packet classification.

Many hardware-based approaches have been proposed to enhance the perfor-
mance of packet classification. One of the most popular methods for packet
classification is to use Ternary Content Addressable Memories (TCAMs) [3].
TCAMs are not scalable and require a lot of power [4]. Recent work has explored
the use of Field-Programmable Gate Arrays (FPGAs) [5]. These designs can achieve
very high throughput for moderate-size rule set, but they also suffer long processing
latency when external memory has to be used for large rule sets.

Use of software accelerators and virtual machines for classification is a new trend
[6]. However, both the growing size of the rule set and the increasing bandwidth of
the Internet make memory access a critical bottleneck for high-performance packet
classification. State-of-the-art multi-core optimized microarchitectures [7, 8] deliver

Y. R. Qu (�) · S. Zhou · V. K. Prasanna
Ming Hsieh Department of Electrical Engineering,
University of Southern California, Los Angeles, CA 90089
e-mail: yunqu@usc.edu

S. Zhou
e-mail: shijiezh@usc.edu

V. K. Prasanna
e-mail: prasanna@usc.edu

© Springer Science+Business Media New York 2015 425
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_13

426 Y. R. Qu et al.

Fig. 1 Network firewall performing packet classification

a number of new and innovative features that can improve memory access perfor-
mance. The increasing gap between processor speed and memory speed was bridged
by caches and instruction level parallelism (ILP) techniques [9]. For cache hits, la-
tencies scale with reductions in cycle time. A cache hit typically introduces a latency
of two or three clock cycles. The cache misses are overlapped with other misses
as well as useful computation using ILP. These features make multi-core proces-
sors an attractive platform for low-latency network applications. Efficient parallel
algorithms are also needed on multi-core processors to improve the performance of
network applications.

In this chapter, we focus on various approaches and their performance for packet
classification on multi-core processors. Specifically, we conduct a thorough com-
parison for various implementations with respect to throughput and latency. The rest
of the chapter is organized as follows. Section 2 formally describes the background;
Sect. 3 covers the details of various algorithms. Section 4 summarizes performance
results, and Sect. 5 concludes this chapter.

2 Background

2.1 Multi-field Packet Classification

Multi-field packet classification problem [10] requires five fields to be examined
against the rules: 32-bit source IP address (SIP), 32-bit destination IP address (DIP),
16-bit source port number (SP), 16-bit destination port number (DP), and 8-bit trans-
port layer protocol (PROT). In SIP and DIP fields, Longest Prefix Match (LPM) is
performed on the packet header. In SP and DP fields, the matching criterion of a
rule is a range match. The PROT field only requires exact value to be matched. We

Packet Classification on Multi-core Platforms 427

Table 1 Example rule set

ID SA DA SP DP PROT PRI ACT

1 192.77.88.155/20 119.106.158.230/20 0–65535 6888–6888 0x06 1 Act 0

2 175.77.88.6/32 36.174.239.222/32 0–65535 1704–1704 0x06 2 Act 1

3 175.77.88.4/32 36.174.239.222/32 0–65535 177–177 0x06 3 Act 0

4 95.105.143.51/32 * 0–65535 1521–1521 0x06 4 Act 2

5 95.105.143.51/32 204.13.218.182/32 0–65535 0–65535 0x01 4 Act 3

6 152.175.65.32/28 248.116.141.0/28 80–80 123–123 0x11 5 Act 5

7 17.21.12.0/23 224.0.0.0/5 0–65535 0–65535 0x00 6 Act 4

8 233.117.49.48/28 233.117.49.32/28 750–750 * 0x11 7 Act 3

denote this problem as the classic five-field packet classification problem in this
chapter. We define the field requiring prefix match as prefix match field; similarly,
range match field and exact match field can also be defined.

Each packet classification engine maintains a rule set. In this rule set, each rule
has a rule ID, the matching criteria for each field, an associated action (ACT), and/or
priority (PRI). For an incoming packet, a match is reported if all the five fields match
a particular rule in the rule set. Once the matching rule is found for the incoming
packet, the action associated with that rule is performed on the packet. We show an
example rule set consisting of eight rules in Table 1; the typical rule set size (denoted
as N) ranges from 50 to 1K [10]. “Note a “*” (don’t care) in a field indicates the
corresponding rule matches any value of the packet header in this field.”

For example, a packet with the header (SA: 17.21.12.5, DA: 224.5.3.0, SP: 100,
DP: 5, PROT: 0x00) matches the rule with ID 7 (Rule 7). This is because its SA
matches the corresponding SA field of Rule 7 (17.21.12.0/23) following LPM crite-
rion, and its DA matches the DA field of Rule 7 (224.0.0.0/5); also, its SP and DP
fall into the corresponding ranges specified by Rule 7, while it also has the same
protocol type as Rule 7. Since there is a match between the header of the incoming
packet and a rule (Rule 7), the associated action (Act 4) is performed on this packet.

A packet can match multiple rules. If only the highest priority one needs to be
reported, it is called best-match packet classification [11]; if all the matching rules
need to be reported, it is a multi-match packet classification. In data center networks,
since a single packet can be duplicated and distributed into different nodes in the
network, a match can correspond to multiple actions; hence packet classification
engines usually perform multi-match packet classification.

2.2 Related Work

Packet classification has a history originated back in 1990s. It was first used in net-
work security systems. Nowadays, packet classification has become a kernel function

428 Y. R. Qu et al.

in high-speed routers, data center networking, and other novel network architec-
tures. For example, the emerging Software Defined Networking (SDN) performs
OpenFlow table lookup [1, 2], which is similar as the classic multi-field packet
classification mechanism. We refer it to a newer version of packet classification:
OpenFlow packet classification. Compared to the classic five-field packet classifica-
tion, OpenFlow packet classification requires a larger number of fields (12∼ 15) to
be examined.

In this chapter, we use the following two metrics to measure the performance of
a packet classification engine:

a. Throughput: total number of packets processed per second
b. Latency: average processing time used for a single packet

Due to the rapid growth of the Internet traffic, there is a demand to design high
speed routers capable of processing millions of packets per second. However, the
growing rule set size and complex matching criteria make packet classification one
of the fundamental challenges in future Internet. As can be seen, the challenges of
multi-field packet classification include:

• Scalability: supporting a large number of fields, a large number of rules.
• Performance: sustaining high throughput with low processing latency.

Most of packet classification algorithms on general purpose processors fall into two
categories: decision-tree based and decomposition based approaches.

2.3 Multi-core Processor

A multi-core processor consists of a small number of independent processor cores,
each having access to its designated cache as well as shared caches. Each core also
has access to large but much slower main memory. Modern multi-core processors
explore multi-socket implementation, where all the cores are separated into groups
(sockets); communication between different sockets is realized by technologies such
as Quick Path Interconnect (QPI) [8].

Figure 2 shows an example of the architecture of a state-of-the-art multi-core
processor. It has two sockets. Each socket has four cores, each having 32 KB L1
cache and 256 KB L2 cache. All the four cores in the same socket share a 20 MB L3
cache, and a DDR3 main memory.

Multi-core processors are widely used in many applications, including high-
performance computing, networking, and digital signal processing. The general
trend in processor development has moved from dual-core to octo-core chips [8].
The number of cores continues to increase to tens or even hundreds. Besides the
large number of cores on-chip, multi-core chips also employ multithreading tech-
niques. Each core of the state-of-the-art multi-core processors is usually capable
of concurrently handling several threads; this offers more potential to achieve high
performance for applications.

Packet Classification on Multi-core Platforms 429

Fig. 2 Multi-core architecture

The improvement of processing performance of a multi-core processor, compared
to the single-core processor, is highly dependent on the parallelism in the algorithms.
In the best case, the speed-up factor can be as much as the number of the cores;
however, designing an efficient parallel algorithm to achieve such high performance
is very challenging.

On the other hand, similar to the traditional single-core processor, the performance
per core for multi-core processors is bottlenecked by the number of memory accesses,
especially the main memory accesses. Although the memory hierarchy of the multi-
core process employs fast cache accesses, as the data size grows, it is not possible
to fit all the data in the first few levels of cache. Hence expensive main memory
accesses have to be used, where a single main memory access, typically to DDR3
DRAM, takes over hundreds of nanoseconds.

As a consequence, many applications are not easily accelerated on state-of-the-art
multi-core processors. To achieve high performance, researchers have been exploring
efficient algorithms that reduce the number of memory accesses.

3 Decision-Tree Based Approaches

3.1 Algorithms

The most well-known decision-tree based algorithms are HiCuts [12] and HyperCuts
[13] algorithms. The idea of decision-tree based algorithms is that each rule defines
a sub-region in the multi-dimensional space and a packet header is viewed as a point
in that space. The sub-region which the packet header belongs to is located by cutting
the space into smaller sub-regions recursively.

430 Y. R. Qu et al.

Fig. 3 Two-dimensional space formed by SIP and DP fields (in this example, Rule 0 has SIP: 01∗,
DP: 0–2; Rule 1 has SIP: 0∗, DP: 5–6)

To distinguish different rules from each other, multiple cuts in this space are
needed. Similar to the binary search in a 1-dimensinal space, cutting in multi-
dimensional space leads to efficient search time.

We show an example of HiCuts in Fig. 3. Suppose both the SIP and DP fields
of the packet header are 4-bit wide, Fig. 3 shows the 2-dimensional space formed
by these two fields. Rule 0 and Rule 1 cover only part of the 2-dimensional space;
“blank” regions denote the space where there is no match (NM) between the input
and any of the rules. Without loss of generality, we assume the first cut is performed
in SIP field.

• The first cut (vertical cut in x-axis between 0011 and 0100) in SIP field results in
two smaller sub-regions. The left sub-region only contains Rule 1, while the right
sub-region contains Rule 0 and Rule 1.

• The second cut (horizontal cut in y-axis between 0100 and 0101) in DP field
results in a total number of four sub-regions. This cut distinguishes Rule 0 from
Rule 1 in DP field.

• The cuts are performed alternatively in horizontal and vertical directions as shown
in Fig. 3.

Packet Classification on Multi-core Platforms 431

Fig. 4 Decision-tree for HiCuts (left) and HyperCuts (right) based on two cuts in Fig. 3

We show the resulting decision-tree of HiCuts after the first two cuts in Fig. 4 (left). As
can be seen, each cut is represented as an internal node, while the rule IDs are stored
in the leaf nodes. Overlapping rules can lead to a leaf node containing multiple rule
IDs; in that case, a linear search is performed in a leaf node to get the final matching
results.

It is possible to continuously cut the sub-regions so that each leaf node contains
fewer rules. For example, a cut between Rule 1 and no-match sub-regions in Fig. 4
(left) further leads to two leaf nodes: one storing only Rule 1, and the other indicating
there is no match between the input and any of the rules. However, more cuttings
result in a deeper tree, and also an increase of memory consumption. In this case,
tradeoffs have to be made between space and time [12].

HyperCuts is similar to HiCuts, except that HyperCuts allows cutting on multiple
fields per step. This results in a fatter and shorter decision tree, as shown in Fig. 4
(right). Each internal node cuts the original space into smaller sub-regions based
on the information from multiple fields. In the example as shown in Fig. 4, cuts
are performed both in SIP and DP fields in an internal tree node; the resulting
decision-tree is a four-way tree.

3.2 Challenges and Prior Work

Decision-tree based approaches face the following challenges:

• Cutting may lead to more sub-regions than the number of rules. For example, the
two cuts in Fig. 3 results in four disjoint pieces (Rule 1 is cut into two pieces in the
first cut). This means, depending on the rule set, decision-tree based approaches
may require more memory than the memory storing the rule set.

• Searching in a large tree is hard to parallelize and it requires too many memory
accesses. Therefore it is relatively challenging to achieve high performance using
efficient search tree structure on state-of-the-art multi-core processors.

• It is challenging to use multiple trees or parallel threads to improve latency per-
formance in decision-tree based approaches. For example, processing multiple
packets concurrently improves throughput, but not latency.

432 Y. R. Qu et al.

A software-based router is implemented in [21] using HyperCuts on an eight-core
Xeon processor. A throughput of up to 46 million Packets Per Second (MPPS) is
achieved for five-field classification with the help of a TCAM. The classification time
for each packet is measured by the total processing latency divided by all the packets
processed; this is not an accurate metric. Moreover, it makes simple assumptions
on accessibility of TCAM. In [18], a decision-tree-based solution using hashing is
proposed on a four-core 2.8 GHz AMD Opteron system. It supports a five-field rule
set consisting of 30 K rules. Although the throughput per core is 3.6 × the throughput
per core achieved by HyperCuts, no processing latency is explicitly given, and no
comparison is made with FPGA-based approaches.

In general, it is still a challenging research topic to achieve high performance
using decision-tree based approaches on multi-core processors.

4 Decomposition-Based Approaches

4.1 Overview

The basic idea of decomposition-based approaches is: search each packet header field
independently, get the partial results, and then merge them to produce the final packet
header match. We show an example for decomposition-based approach in Fig. 5. In
this example, a packet header having six fields is split; each field is compared against
the corresponding field of the rule set. Since the comparison result in each field only
suggests a match between the packet header and the rule set in this particular field,
we denote this compassion result in a field as the “partial result”. A final stage of
merging is required to combine all the partial results into the final result.

For instance, suppose a packet has the header (SA: 95.105.143.51, DA:
39.240.26.229, SP: 100, DP: 1521, PROT: 0x06) and it is to be matched against
rules in Table 1. In decomposition-based approaches, the SA field of the packet
header is searched in the SA field of the rule set (Table 1). Notice the search only in
this field indicates the packet header potentially matches both Rule 4 and 5. We may
have multiple matching candidates (in this case, Rule 4 and 5), because these search
operations are performed independently in each field.

Similarly, the DA field of the packet header is compared to the DA field of the
rules in the rule set. This process is called search phase in each field and the matching
candidates after a search is called partial results. Search phase is performed in all
the packet header fields, until all the partial results are generated. We will introduce
some search techniques later. To simplify the search phase, preprocessing of the rule
set is usually required.

After the search phase, we notice the packet header (SA: 95.105.143.51, DA:
39.240.26.229, SP: 100, DP: 1521, PROT: 0x06) matches Rule 4 and 5 in SA field,
Rule 4 in DA field, Rule 1∼ 5 in SP field, Rule 4 in DP field, and Rule 1∼ 4 in PROT
field. These are not the final results since a packet is reported only if its five header
fields all match a particular rule in the rule set. However, since we already have the

Packet Classification on Multi-core Platforms 433

Fig. 5 Decomposition-based approach

partial results in all the fields, it is relatively simple to generate the final result. This
process is called merge phase; we will introduce the merge algorithms later in this
section.

In the example mentioned above, since the packet header only satisfies all the
criteria specified by Rule 4 in all the fields, the packet header is considered to be
matching Rule 4 only.

As can be seen, decomposition based approaches contain three phases. The first
phase is to preprocess the rule set. The second phase is to search each field individ-
ually against the rule set. The third phase is to merge the partial results from all the
fields.

4.2 Challenges and Prior Work

The key challenge of these algorithms is to parallelize individual search processes
and handle merge process efficiently. For example, one of the decomposition based
approaches is the Bit Vector (BV) approach [17]. The BV approach is a specific
technique in which the lookup on each field returns an N-bit vector. Each bit in
the bit vector corresponds to a rule. A bit is set to “1” only if the input matches
the corresponding rule in this field. A bit-wise logical AND operation gathers the
matches from all fields in parallel.

The BV-based approaches can achieve 100 Gbps throughput on FPGA [19], but
the rule set size they support is typically small (less than 10 K rules). Also, for port

434 Y. R. Qu et al.

Table 2 Various search methods

Search method Typical usage Example Data structure after
preprocessing

Linear Any field Any Linked-lists

Range-tree Prefix/range match field SA/DA, SP/DP Range-tree

Hashing Exact match field PROT Hash table

number fields (SP and DP), since BV-based approaches usually require rules to be
represented in ternary strings, they suffers from range expansion when converting
ranges into prefixes [20].

Some recent work has proposed to use multi-core processors for packet classifica-
tion. For example, the implementation using HyperSplit [14], a decision-tree based
algorithm, achieves a throughput of more than 6 Gbps on the Octeon 3860 multi-
core platform. However, the decomposition based approaches on state-of-the-art
multi-core processors have not been well studied and evaluated.

4.3 Preprocessing

The preprocess phase of the rule set depends on the algorithms used in the search
phase. Typical search techniques in a packet header field include linear search, range-
tree search [16], and hashing. Linear search can be applied to all the fields, regardless
of the matching criteria. Range-tree search can be applied to fields requiring prefix
match (SA and DA fields) or range match (SP and DP fields); hashing is usually
applied to PROT field requiring exact match. We show various search methods and
their corresponding data structures after preprocessing in Table 2.

First of all, before using any of the preprocessing techniques, let us take a close
look at Table 1. We denote the rules before any preprocess the original rules. Notice
that if we focus only on the SA field, Rule 4 and Rule 5 have exactly the same value
in this field. As a result, out of eight original rules, we only have seven unique values
in this field; we define such unique values as unique rules (URs) in this field. For
example, in the PROT field of Table 1, we have four unique rules. This is one of the
advantages for decomposition-based approaches: the number of unique rules in each
field can be less than the total number of rules; this means lookup can be performed
in a much smaller rule set [15].

i. Linked-lists and range-tree

After rules are projected onto a set of URs, we show an example of getting a set
of linked-lists or a balanced binary range-tree in Fig. 6. As can be seen, if the URs
require prefix match, they are first converted into a set of ranges. Then all the ranges
are projected onto the same space to form a set of non-overlapping “subranges”. In
Fig. 6, for example, four URs (corresponding to six original rules) are translated into
five subranges: a, b, c, d, and e. Each subrange is then “linked” to a set of IDs of the

Packet Classification on Multi-core Platforms 435

Fig. 6 Preprocessing 4 unique rules to (1) linked-lists or (2) a balanced binary range-tree

original rules, indicating a match between the input and a set of original rules. The
linked-lists shown in Fig. 6 can be used directly in linear search.

If range-tree search is to be performed, a further conversion from subranges to
range-tree is needed. The balanced binary range-tree is constructed of subrange
boundaries, as shown Fig. 6. Notice that each leaf node corresponds to a non-
overlapping subrange and a set of candidate URs that potentially match the input
packet header.

ii. Hash table

Notice the search phase for an exact match field can be reinterpreted as: given a set of
exact values stored in an array and an input integer, locate the exact value matching
the integer. This problem can be efficiently solved by perfect hashing; without loss
of generality, we use Cuckoo hashing [22] to reduce the number of memory accesses
in the exact match fields.

We show an example of exact match field in Table 3. Notice that in most cases,
exact match field has a “default” rule: “*”, which means it matches any input. In
Table 3, we only have five URs in this exact match field; however, the total number
of classification rules can be much larger than five, as discussed before. Obviously,

436 Y. R. Qu et al.

Table 3 An example of exact
match field

PROT field UR 0 UR 1 UR 2 UR 3 UR 4

Linear 0x06 0x01 0x11 0x00 *

Fig. 7 Storing URs into a hash table

the corresponding IDs of the original rules should also be kept for each UR, usually
in the form of Bit Vector (see Sect. 4.5).

In Fig. 7, we show an example of constructing a hash table for the URs in Table 3.
Based on Cuckoo hashing, we use M hash functions to construct the hash table.
Each entry in the hash tableH (k) is a (hash key, hash value) pair. Let us use Uj (j =
0, 1, . . . , j −1) to denote the hash key, and the corresponding hash value is given by
fm(Uj) for some m ∈ {0, 1, . . . , M − 1}. The hash values are used directly as the
memory index. For each exact match rule, at most M attempts are made to store this
rule in the hash table. If all the memory locations indexed by fm(Uj) are occupied,
∀m = 0, 1, . . . , M − 1, the hash table size has to be enlarged, and the M hash
functions are chosen again.

For example, in Fig. 7, suppose we already stored key 0x06, 0x11 and 0x01 in the
hash table. When a UR 0x00 has to be inserted, we use f0(0x00) = 2 as a possible
index to store this UR; however, since the entry with index 2 is already taken by the
key 0x11, we need to make a second attempt. Using f0(0x00) = 0 as the index,
the UR 0x00 can be stored in the corresponding position in the hash table. In this
way, multiple URs can be stored in the hash table using M hash functions. If the
index computed by a hash function fm(Uj) is used by another entry in the hash table,
another attempt using fm+1(Uj) as the index is needed, unless m = M , where we
have to enlarge the hash table size or choose the M hash functions again.

Packet Classification on Multi-core Platforms 437

4.4 Searching

i. Linear search

For linear search, every subrange needs to be examined against the input packet
header bits. For example, in Fig. 6, all the five subranges (their six boundaries) have
to be one-by-one compared against the input bits for a possible match. The reasons
of doing linear search on the subrange boundaries rather than on the URs or in the
field of the original rules are:

• Usually the number of URs is significantly less than the number of original rules,
while the number of subrange boundaries is slightly greater than the number of
URs. Namely, if we denote the total number of original rules asN , the number of
URs in the field k as q (k), and the number of subrange boundaries as L, we have
q(k) << N and q(k) < L.

• Subranges are non-overlapping and their boundaries can be sorted in the pre-
process phase. Each search corresponds to at most 1 comparison. For instance,
finding a 3-bit number in sorted non-overlapping subranges [0, 2), [2, 3) and [3, 7)
requires at most two comparisons (to two and three). However, if the original rules
or URs are to be searched, the number of comparisons needed is usually larger.
A singe comparison between a UR represented by a range and the input requires
at least two comparisons (one for lowerbound and another for upperbound).

ii. Range-tree search

Binary search can be performed on a balanced binary range-tree. For binary trees,
each tree node stores a subrange boundary as a key and compares the input with this
key. The outcome of the comparison determines whether the left child or the right
child of this node has to be searched next. As can be seen in Fig. 6, the search phase
continues until a leaf node is reached; a set of rule IDs are returned as the partial
result after this binary search.

iii. Hashing

For exact match field, hashing techniques can be applied. Suppose we have already
constructed a hash table using the approach discussed before, as shown in Fig. 7.
Now given an input, we need to efficiently identify which rule the input matches.

As shown in Fig. 8, let us consider the input 0x00. We use the same hash functions
as discussed before to compute the first possible index f0(0x00) = 2.As can be seen,
the first attempt returns a hash key (0x11) which does not match the input. So a
second attempt has to be made; in the second attempt, f1(0x00) = 0 is used and its
corresponding hash key matches the input. Hence the hash value “0” is used as the
memory index to extract partial results (the corresponding IDs of the original rules).

438 Y. R. Qu et al.

Fig. 8 Storing URs into a hash table

4.5 Merging

No matter how the searching is performed in each field, the partial results are repre-
sented by a list of original rule IDs. The most efficient way of recording the partial
results is the Bit Vector (BV) [23]. BV-based approaches use one bit for each rule,
and totally N bits for N rules. If the input matches a rule, then the corresponding bit
is set to “1”; otherwise it is set to “0”.

For example, consider a rule set having four rules and two fields W0 and W1, as
shown in Fig. 9. We construct a 4-bit vector for W0 and another 4-bit vector for W1

Suppose in theW0 field, we only have rule R1 matches the input; the corresponding
BV is then “0100”, whose MSB corresponds to R0 and its LSB corresponds to R3.

Similarly, in theW1 field, the corresponding BV is “1110”, indicating R0,R1 and R2

all match the input in this field.
Recall that an input packet is considered as “matching” a rule only if the packet

header matches all the fields of a rule in the predefined rule set. After we get the
partial results from all the fields, a bitwise logical AND operation can be performed
on all the BVs to form the final classification result. As shown in Fig. 9, ANDing
BV “0100” and BV “1110” results in a BV “0100”, indicating the only rule R1

matches the input in both of the two fields. This is also the final result of the packet
classification.

5 Performance Evaluation and Summary of Results

5.1 Experimental Setup

Since the decomposition-based approaches are not platform-dependent, we con-
ducted the experiments on a 2 × AMD Opteron 6278 processor and a 2 × Intel
Xeon E5-2470 processor. The AMD processor has 16 cores, each running at 2.4

Packet Classification on Multi-core Platforms 439

Fig. 9 Storing URs into a hash table

GHz. Each core is integrated with a 16 KB L1 data cache and a 2 MB L2 cache.
A 6 MB L3 cache is shared among all 16 cores. The processor has access to 64
GB DDR3-1600 main memory through an integrated memory controller running at
2 GHz. The Intel processor has 16 cores, each running at 2.3 GHz. Each core has a
32 KB L1 data cache and a 256 KB L2 cache. All 16 cores share a 20 MB L3 cache.
This processor has access to 48 GB DDR3-1600 main memory.

We implemented all the approaches using Pthreads on openSUSE 12.2. We used
perf , a performance analysis tool in Linux, to monitor the hardware and software
events such as the number of executed instructions, the number of cache misses and
the number of context switches.

We generated synthetic rule sets using the same methodology as in [18]. We varied
the rule set size from 1 to 64K to study the scalability of our approaches. We used
processing latency and overall throughput as the main performance metrics. We also
examined the relation between the number of threads per core and context switch
frequency to study their impact on the overall performance.

440 Y. R. Qu et al.

Fig. 10 Latency on the AMD processor

Table 4 Various
implementations

Implementation Searching Merging

LBV Linear search only ANDing BVs

RBV Prefix/range match field:
range-tree

ANDing BVs

Exact match field: hashing

5.2 Latency

It is shown in [23] that in the search phase of decomposition-based approaches on
multi-core processors, it is better to allocate each core a single packet. An alternative
way is to assign a single packet header to multiple cores, where each core deals
with one or more packet header fields; in that case, the merge phase requires access
to partial results from different cores. Since a large amount of data move between
cores, this is less efficient than allocating each core an independent packet. Hence
we assign each core a packet to improve the overall performance. In this case, we
have five parallel search threads and one merge thread per core; this configuration is
used for all our implementations (except in Sect. 5.5).

Figure 10 shows the latency performance on the AMD processor, while Fig. 11
shows the latency performance on the Intel processor. We show the detail of various
implementations in Table 4.

We have following observations:

• Using range-tree and hashing techniques for individual field search significantly
reduces the latency. Let N denote the total number of the rules; in the worst case,

Packet Classification on Multi-core Platforms 441

Fig. 11 Latency on the Intel processor

the linear search requires 0(N) memory accesses, while the range-tree search and
hashing only require 0(logN) and 0(1) memory accesses, respectively.

• As the number of rules increases, the latency of LBV also increases. This is
because for larger rule sets, the linear search has to examine a large number of
URs, which incur a large amount of latency.

• The processing latency of RBV, however, shows a small variation even for large
rule sets. Note the time complexity for range-tree search is 0(logN), while the
time complexity for linear search is 0(N). For a balanced binary range-tree, when
the rule set size doubles, one more tree level has to be searched, while linear
search requires double the amount of search time.

We show the breakdown of the processing latency in terms of search and merge
latencies in Fig. 12. As can be seen, the search latency contributes more to the total
classification latency (around 70∼ 80 % of the total latency) than the merge latency,
since search operations are more complex compared to the merge operations. We
have similar observations on both the AMD and Intel processors.

5.3 Throughput

We show the throughput performance on the AMD and Intel processors in Figs. 13
and 14, respectively. We observe consistent performance with the latency per-
formance. The RBV implementation achieves 5.2∼ 11.5 Gbps throughput on the
AMD processor, and achieves 4.8∼ 10.6 Gbps throughput on the Intel processor.
The performance on the Intel processor is slightly worse than the performance on

442 Y. R. Qu et al.

Fig. 12 Breakdown of the latency per packet (1K rule set, five threads per core). a On the AMD
processor. b On the Intel processor

Fig. 13 Throughput on the AMD processor

the AMD processor. Note that the Intel processor has a lower clock rate and smaller
cache size.

5.4 Cache Performance

To explore further why the performance deteriorates as the rule size grows, we
measure the cache performance. We show the number of cache misses per 1K pack-
ets on the AMD processor in Fig. 15. As can be seen, the overall performance is
consistent with the cache performance on the multi-core processors. As the size of

Packet Classification on Multi-core Platforms 443

Fig. 14 Throughput on the Intel processor

Fig. 15 Number of L2 cache misses per 1K packets on the AMD processor (RBV)

the rule set increases, it is more difficult to fit all the rules in the cache; a cache miss
requires data to be read from a farther-level cache or the main memory, hence the
performance degrades with respect to both throughput and latency. Similar results
can also be seen for LBV and the implementations on the Intel processor.

444 Y. R. Qu et al.

5.5 Impact of the Number of Threads

A more thorough research [23] shows that the number of threads per core also has
an impact on the performance. Our results indicate:

• The performance of RBV goes up as the number of threads per core increases
from one to six. Once the number of threads per core exceeds six, the throughput
begins to degrade.

• For LBV, the performance keeps increasing until we have ten threads per core.

Reasons for performance degradation include saturated resource consumption of
each core and the extra amount of overhead brought by the context switch mechanism.
When the number of threads increases, context switches happen more frequently, and
switching from one thread to another requires a large amount of time to save and
restore states.

5.6 Comparison with Existing Approaches

According to the target platform, packet classification can be categorized into
hardware-based approaches and software-based approaches. In the hardware-based
approaches, efficient architectures are exploited on FPGA. In software-based ap-
proaches, parallel algorithms are explored on multi/many-core General Purpose
Processor (GPPs). Most of the algorithms used in hardware and software fall into two
categories: decision-tree based and decomposition based algorithms. In this section,
we compare existing solutions for packet classification. We consider the advantages
and weakness of the algorithms, performance with respect to overall throughput and
the scalability to support large rule set.

a. Approaches on Multi-core GPPs

We introduced Decision-tree-based approaches in Sect. 3. Most of the existing so-
lutions along with their enhanced versions fall into this category. For example, in
[21], HyperCuts is used to implement a software-based router on an eight-core Xeon
processor. With the help of TCAM, a 15 Gbps throughput can be achieved for a
rule set consisting of five-field 9K rules. However, it makes simple assumptions
on accessibility of TCAM. In [14], a decision-tree-based solution using Hyper-
Split achieves more than 6 Gbps on the Octeon 3860 multi-core processor against
10K rules. However, the performance of decision-tree-based approaches is highly
dependent on the statistical features of the rule set.

There are very few works using decomposition-based approaches on multi-core
processors [23]. Similar to decision-tree-based approaches, for implementations on
multi-core processors, it is challenging to achieve high throughput. The major ad-
vantage of implementations on multi-core processors is the scalability of the rule set
size; in [23], a five-field rule set consisting of up to 32K rules can be supported on
state-of-the-art multi-core processors.

Packet Classification on Multi-core Platforms 445

Table 5 Comparison summary

Platform Approach Pros Cons Throughput
(Gbps)

No. of
rules (K)

FPGA Decision-tree-
based [24]

Pipelined
architecture

Exponential rule
set expansion

80 10

Decomposition-
based [25, 26]

Parallel search,
exploiting
massive
bandwidth

Large amount of
pseudo rules,
limited
on-chip
memory

100∼ 400 1

Multi-core Decision-tree-
based [21]

Efficient tree
search

Challenging to
support high
throughput

15 9

Decomposition-
based [23]

Parallelism,
large number
of rules

5.2∼ 11.5 1∼ 64

b. Approaches on FPGA

In [24], a decision-tree-based approach is implemented on FPGA. The decision tree
is constructed by the nodes which cut the search space based on one or more fields
of the rule. Then the decision tree is mapped into a deeply pipelined architecture on
FPGA. The design can store either 10K 5-field rule or 1K 12-field rule in on-chip
memory of a single FPGA and sustain 80 and 40 Gbps, respectively. However, the
deep pipeline introduces long latency and the clock rate cannot be easily sustained
for large rule sets due to linear alignment of BRAM on FPGA.

In decomposition-based approaches on FPGA [25], each packet header field is
searched in the rule set individually, and the partial results are mapped to a rule ID
by a perfect hash function. The approach achieves a throughput of 100 Gbps for 100
rules. However, the crossproducting of the partial results can potentially expand the
original rule set to a much larger one. Hence external memory has to be used to store
both the real and pseudo rules. The slow access rate and long access latency remains
the bottlenecks of the approach.

In [26], a TCAM-like approach is implemented on FPGA, which can achieve over
400 Gbps throughput. This approach splits each field into strides of bit vectors. A
bitwise AND operation is operated on the bit vectors of all the fields to gather the
matches. Although this approach can achieve a very high throughput, it can only
support at most 1K five-field rules due to limited on-chip resources.

c. Summary of Comparison

We summarize the comparisons between various approaches in Table 5. The main
advantage of using multi-core processors is the capability of supporting very large
rule sets. Although the approaches on FPGA can employ external memory to support
large rule set, the access latency to external memory becomes a new performance
bottleneck.

446 Y. R. Qu et al.

6 Conclusion

In this chapter, we introduced two important packet classification techniques:
decision-tree-based and decomposition-based packet classification approaches on
state-of-the-art multi-core processors. There are other classification techniques that
do not belong to either one of the aforementioned two; a complete scope of all the
packet classification algorithms is beyond the scope of this chapter.

In this chapter, we focused on the decomposition-based approaches, since ex-
ploring parallelism on multi-core platforms is a natural trend for the future Internet
infrastructure [6]. For decomposition-based approaches, we explored the impact of
various parameters on the performance with respect to latency and throughput. We
also examined the cache performance and conducted experiments on various plat-
forms. Our experimental results show that range-tree search is much faster than linear
search and is influenced less by the size of the rule set.

A more interesting future work is to target OpenFlow packet classification where
more packet fields are required to be examined.

References

1. J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKeown, “Implementing an
OpenFlow Switch on the NetFPGA Platform”, in Proc. of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, ser. ANCS ’08, (2008) 1–9.

2. G. Brebner, “Softly Defined Networking”, in Proc. of the 8th ACM/IEEE Symp. on
Architectures for Networking and Communications Systems, ser. ANCS ’12, (2012) 1–2.

3. F.Yu, R. H. Katz, and T. V. Lakshman, “Efficient Multimatch Packet Classification and Lookup
with TCAM”, IEEE Micro, vol. 25, no. 1 (2005) 50–59.

4. W. Jiang, Q. Wang, and V. K. Prasanna, “Beyond TCAMs: an SRAM based parallel multi-
pipeline architecture for terabit IP lookup”, in Proc. IEEE INFOCOM (2008) 1786–1794.

5. G. S. Jedhe, A. Ramamoorthy, and K. Varghese, “A Scalable High Throughput Firewall in
FPGA”, in Proc. of IEEE Symposium on Field Programmable Custom Computing Machines
(FCCM), (2008) 802–807.

6. T. Koponen, “Software is the Future of Networking,” in Proc. of the 8th ACM/IEEE Symp. on
Architectures for Networking and Communications Systems (ANCS), 2012, pp. 135–136.

7. “AMD Multi-Core Processors,” http://www.computerpoweruser.com/articles/archive/c0604/
29c04/29c04.pdf. 8.

8. “Intel Multi-Core Processors: Making the Move to Quad-Core and Beyond,” http://www.cse.
ohio-state.edu/∼panda/775/slides/intel_quad_core_06.pdf.

9. “Multicore Computing- the state of the art,” http://eprints.sics.se/3546/1/SMI-MulticoreReport-
2008.pdf.

10. P. Gupta and N. McKeown, “Packet classification on multiple fields”, In Proceedings of
the conference on Applications, technologies, architectures, and protocols for computer
communication, SIGCOMM (1999) 147–160.

11. W. Jiang and V. K. Prasanna, “A FPGA-based Parallel Architecture for Scalable High-
Speed Packet Classification,” in 20th IEEE International Conference on Application-Specific
Systems, Architectures and Processors (ASAP), (2009) 24–31.

12. P. Gupta and N. McKeown, “Packet Classification using Hierarchical Intelligent Cuttings”,
IEEE Symposium on High Performance Interconnects (HotI) (1999).

http://www.computerpoweruser.com/articles/archive/c0604/29c04/29c04.pdf
http://www.computerpoweruser.com/articles/archive/c0604/29c04/29c04.pdf
http://www.cse.ohio-state.edu/~panda/775/slides/intel_quad_core_06.pdf
http://www.cse.ohio-state.edu/~panda/775/slides/intel_quad_core_06.pdf
http://eprints.sics.se/3546/1/SMI-MulticoreReport-2008.pdf
http://eprints.sics.se/3546/1/SMI-MulticoreReport-2008.pdf

Packet Classification on Multi-core Platforms 447

13. S. Singh, F. Baboescu, G.Varghese and J. Wang, “Packet Classification using Multidimensional
Cutting”, ACM SIGCOMM (2003) 213–224.

14. D. Liu, B. Hua, X. Hu and X. Tang. “High-performance Packet Classification Algorithm for
Any-core and Multithreaded Network Processor.” in Proc. CASES, (2006).

15. D. E. Taylor and J. S. Turner, “Scalable Packet Classification using Distributed Crossproducing
of Field Labels,” in Proc. IEEE INFOCOM, (2005) 269–280.

16. P. Zhong, “An IPv6 Address Lookup Algorithm based on Recursive Balanced Multi-way
Range Trees with Efficient Search and Update”, in Proc. of international conference on
Computer Science and Service System (CSSS), ser. CSSS ’11, (2011) 2059–2063.

17. T. V. Lakshman, “High-Speed Policy-based Packet Forwarding Using Efficient Multi-
dimensional Range Matching”, ACM SIGCOMM (1998) 203–214.

18. F. Pong, N.-F. Tzeng, and N.-F. Tzeng, “HaRP: Rapid Packet Classification via Hashing Round-
Down Prefixes”, IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 7, (2011)
1105–1119.

19. W. Jiang and V. K. Prasanna, “Field-split Parallel Architecture for High Performance Muti-
match Packet Classification using FPGAs,” in Proc. of the 21st Annual Symp. on Parallelism
in Algorithms and Arch. (SPAA), 2009, pp. 188–196.

20. V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and Scalable Layer Four
Switching,” in Proc. ACM SIGCOMM, 1998, pp. 191–202.

21. Y. Ma, S. Banerjee, S. Lu, and C. Estan, “Leveraging Parallelism for Multi-dimensional Packet
Classification on Software Routers,” SIGMETRICS Perform. Eval. Rev., vol. 38, no. 1, pp.
227–238, 2010.

22. R. Pagh and F. F. Rodler, Cuckoo Hashing. Springer, 2001.
23. S. Zhou, Y. R. Qu, and V. K. Prasanna, “Multi-core Implementation of Decomposition-based

Packet Classification Algorithms”, in Proc. of the 12th International Conference on Parallel
Computing Technologies (PaCT’13), pp. 105–119.

24. W. Jiang and V. K. Prasanna, “Scalable Packet Classification on FPGA,” IEEE Trans. VLSI
Syst., vol. 20, no. 9, pp. 1668–1680, 2012.

25. V. Pus, J. Korenek, and J. Korenek, “Fast and Scalable Packet Classification using Per-
fect Hash Functions,” in Proceedings of the ACM/SIGDA international symposium on Field
Programmable Gate Arrays (FPGA), 2009, pp. 229–236.

26. T. Ganegedara and V. K. Prasanna, “StrideBV: Single chip 400G+Packet Classification,” 13th
IEEE International Conference on High Performance Switching and Routing (HPSR ’12), June
2012, pp. 1–6.

Optical Interconnects for Data Center Networks

Khurram Aziz and Mohsin Fayyaz

1 Introduction

Traditional data center networks built with copper wires and electronic elements
suffer from various problems. These include high energy consumption due to the
wired architecture, high latency due to extra hops adding to the routing delay, fixed
throughput of links, and very limited configurability. Data center networks built
with optical fibers and optical components would solve all of these problems but
they suffer from issues of their own including higher cost, immaturity of optical
components, lack of optical buffers and complexity of design. It is clear however,
that optical interconnects will replace their electronic counterparts in all data center
network architectures due to their superior properties.

Over the past several years, data center network architectures have come a long
way with several optical and electro-optical architectures employing optical inter-
connects being proposed in the literature. This chapter presents a detailed survey of
these architectures with a brief discussion about their performance.

The rest of this chapter is organized as follows. Section 1 discusses the need
for optical interconnects in data center networks. Section 2 presents an overview of
the commonly used optical components in data center networks. Section 3 presents
the various optical data center network architectures proposed in literature, grouped
into several categories depending on what parameter they best optimize. The later
sections build on the information gained from Sect. 3. Section 4 briefly discusses the
data center traffic characteristics, Sect. 5 discusses the energy requirements for data
center networks while Sect. 6 discusses the routing characteristics and issues of data
center networks based on optical interconnects.

K. Aziz (�)
Department of Electrical Engineering, COMSATS Institute of Information Technology,
Abbottabad, Pakistan
e-mail: khurram@ieee.org

M. Fayyaz
e-mail: mohsinf@ciit.net.pk

© Springer Science+Business Media New York 2015 449
S. U. Khan, A.Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_14

450 K. Aziz and M. Fayyaz

2 Need for Optical Interconnects in Data Center Networks

Cloud based services demand high network performance. Scaling electronic switched
data center network will prove to be costly and complex. In addition, electronic data
center architectures have high energy consumption due to wired architecture, high
latency due to large port count, fixed throughput of links and very limited reconfig-
urability [1]. Traditional data center networks are based a hierarchical architecture.
Servers are arranged in the form of racks and are connected through top of rack (ToR)
switches. Many ToRs are connected through aggregate or core switches which re-
sult in large port count requirements for the switch and contributes to high energy
expenses.

Data center networks can be broadly classified into network centric design and
server centric design. In network centric design, servers are connected through high
end switches that have a huge port count. In server centric design, servers are comput-
ing units and they also participate in load balancing and packet forwarding. Optical
interconnects are a suitable candidates for both server centric and network centric
data center networking. Simple 2 × 2 switches can be used with traditional topolo-
gies like hypercube to create shortcuts for heavy flows. Network adaptively creates
paths to reduce the impact of intermediate nodes. In this way additional benefits
of high connectivity, small diameter, fault tolerance, simple control and routing
are achieved. Thus a combination of traditional data center topologies and optical
interconnects give the best of both worlds [10].

The deployment of optical switching in data center networks can bring some key
benefits to data center networks. In addition to the long reach and high bandwidth
provided by the optical fiber compared to its copper counter parts, optical fibers and
switches are transparent to signal bit rate, are energy efficient, provide very high
capacity, and are flexible to protocols and network upgrades [13].

The key benefits of employing optical interconnects in data center networks
include:

i) Emerging applications requirement fulfillment
ii) Dealing with traffic heterogeneity

iii) Energy conservation
iv) Fast switching transition
v) Wavelength multiplexing and parallelism

vi) Reconfigurability
vii) Hop count reduction

viii) Contention resolution
ix) Optically connected memory

i) Emerging applications requirement fulfillment
Emerging applications utilizing video streaming (Youtube, Google Video..), search
engines (Google, Bing), social networking (Facebook, Orkut), Email (Gmail, Hot-
mail), cloud computing services and Geo data (Google Earth) put a high demand for
computing, network scalability and bandwidth on current data centers. Most data

Optical Interconnects for Data Center Networks 451

centers networks are based on electronic switches. Shifting these data centers’ ar-
chitecture to the optical domain will address most of the above mentioned issues in
these applications.

ii) Dealing with traffic heterogeneity
The reconfigurable nature of optical interconnects in data center networks make them
suitable for dealing with traffic heterogeneity that may be introduced when data
centers handle a variety of the above-mentioned applications. Photonic resources
exist that are reconfigurable in nature in terms of path establishment and bandwidth
scalability [1]. Hence, longer traffic flows can be configured with optical circuit
switching while shorter flows can be configured with optical packet switching.

It is also possible to combine the benefits of both electronic switching and optical
switching with optical interconnects. Micro Electro-Mechanical Switches (MEMS)
are commonly employed for wavelength switching in circuit switched networks.
MEMS are power efficient but are not fast enough to handle bursty data. They are
also not bandwidth efficient due to fixed and coarse granularity of wavelength that
they are built to handle. They are most suitable for inter data center networking where
there are long flows. Electronic switching on the other hand handles bursty traffic
well. Hence for shorter traffic flows between pods, electronic switching gives best
results [8].

iii) Energy conservation
Wavelength division multiplexing (WDM) technologies reduce cabling and opti-
cal fibers have low power consumption [13]. Detailed discussion about energy
conservation follows in the later section of this chapter.

iv) Fast switching transition times
Combining the wavelength selective and broadband behavior of some optical devices
like micro rings and Semiconductor Optical Amplifier (SOA) switch it is possible
to achieve fast switching transition, low driving voltages and high extinction ratios.
Such devices are compact in size and are capable of routing messages in nanosecond-
scale switching speed. They also have flexibility of selecting different wavelengths
for switching ports [3].

v) Wavelength multiplexing and parallelism
It is now possible to have reconfigurable optical packet and circuit switched
architectures that have wavelength control at various levels of granularity. [12].

If a ToRs which wants to communicate with another ToR at w times the speed of
a single port then it will need to use w ports. Each of these w ports will have a unique
wavelength. WDM enables these w wavelengths to be multiplexed in to one optical
fiber. A wavelength selective switch (WSS) can split these w wavelengths to the
appropriate MEMS port. This makes it possible to set up a w× line speed connection
from device A to B at runtime. A fiber cannot carry two channels in same direction
over same wavelength. To use all the available wavelengths, each ToR is assigned a
unique wavelength across the ports. Same wavelength is used to receive the traffic

452 K. Aziz and M. Fayyaz

as well. Full port usage is made possible through the use of bi-directional traffic.
Optical circulators between ToR and MEMS make it possible to detect multiple
optical channels using a single photo detector. This offers high energy efficiency by
reducing the number of communication links [6].

Optical interconnects in data center networks are also able to benefit from multiple
input multiple output (MIMO) based on orthogonal frequency division multiplexing
(OFDM). OFDM allows high spectral efficiency as multiple channels are spectrally
overlapped i.e. they are orthogonal over one symbol period [7].

Most of today’s systems also suffer from I/O limitations and head of line blocking
problem. These problems are overcome by optical interconnects which exploit high
capacity wavelength division multiplexing and parallelism [4].

vi) Hop count reduction
Hop count in a network has an impact on the energy consumption and latency of
the network. Multi-hop network topologies like Fattree and Butterfly are based on
store and forward mechanism due to large port count, which causes huge energy
consumption and latencies. Network endpoint sockets are scaling exponentially,
putting more burden on the underlying communication fabric. Smaller diameter
networks are possible using high radix routers. High bandwidth and low power
photonic switching devices can be arranged to function like a high radix router with
lower complexity and power [2]. High radix switch design reduces the overall hop
count of the network.

vii) Reconfigurability
Optical switches are now possible that can be reconfigured in a few nanoseconds
time regardless of the port count. This minimizes the end to end latency. Contention
resolution in optical switches can be supported by electronic buffers for example [5].
Optical interconnects are able to achieve flexible topology by exploiting reconfig-
urable property of MEMS. N ToRs can be connected to a single N port MEMS. Every
ToR can be connected to any other ToR at any instant. If ToR graph is connected
through MEMS, then hop by hop switching of such circuits can achieve a network
wide connectivity [6].

viii) Contention resolution
Different optical devices can be used to reduce or remove contention in optical
networks like Reflective Semiconductor Optical Amplifiers (RSOA). RSOA is a
widely used active optical component. It acts as a mutual exclusion element. Mutual
exclusion is widely used in distributed computing. With this principle shared resource
is used without any incorrect operation. When two nodes use a shared resource and
if resource is requested by both nodes, the mutex element (for example RSOA in this
case) grants access to the shared resource to any one of the nodes. If two requests
arrive at the same time to RSOA both requestors get the Ptot/2 reflected power and
none of the grant detectors at either source node trigger. This is the case when no one
gets a grant. RSOA is also able to scale well for N requestors. RSOA based techniques
can be implied to achieve distributed contention resolution protocols [11].

Optical Interconnects for Data Center Networks 453

It is also possible to combine strictly non-blocking optical architectures like
Spanke with wavelength division multiplexing. Thus apart from the non-blocking
ability, it also supports N WDM channels for each port. Furthermore, if the architec-
ture is made modular, each module operates independently to switch WDM packets.
This combination leads to several advantages which include output contention reso-
lution, control and configuration time becomes independent of port count and scaling
just means a linear increase of components and energy consumption [14].

Lost or buffered packets limit the maximum load of the network. In optical inter-
connects such architectures are possible that are non-blocking and re-arrangeable and
have a very low reconfiguration time. Switching time is reduced to few nanoseconds
regardless of the number of input or output nodes. The hierarchical structure of data
center network topology creates bottleneck at rack and cluster level. The end to end
latency within racks should be less than 1 ms. The control and implementation of
an optical switch that has thousands of ports is challenging. Optical switches flatten
the network as they scale to thousands of ports, thus providing high connectivity,
large bandwidth and low latency meeting all the demands of data center networking.
Optical switches are able to achieve the latency of less than 1 microsecond regardless
of the port count and input load [9]. Lack of optical buffers in optical interconnects
make them reliant on deflection routing or optical delay lines. A hybrid of both optical
and electrical technology is also a viable solution [4].

ix) Optically connected memory
Large scale systems suffer from memory scalability issues. A high end system re-
quires high memory capacity and bandwidth while simultaneously demanding low
latency and energy efficiency of interconnects. Making the interface between pro-
cessors and memory devices optically connected significantly increases the amount
of data available to the data center server processors so that they operate at their
maximum speeds [15].

3 Optical Components in Data Centers

Major optical components used in optical data center networks include

• Semiconductor optical amplifier(SOA)
• Silicon ring resonators
• Arrayed waveguide grating (AWGS)
• Wavelength selective switch (WSS)
• MEMS switch(Optical Crossbar, Optical Switching Matrix(OSM))
• Circulators
• Optical multiplexers/de-multiplexers.

454 K. Aziz and M. Fayyaz

3.1 Semiconductor Optical Amplifier (SOA)

Optical amplifiers amplify optical signals. In the simplest form, they consist of a p-n
junction. They are electronically pumped and are small in size. Some the properties of
SOAs include nonlinearity, fast transition time, moderate polarization dependence,
low gain and high noise. Four main nonlinear operations that can be conducted on
SOAs include four wave mixing, wavelength conversion, cross phase modulation
and cross gain modulation. They can operate on low power lasers. Nonlinear nature
of SOAs makes them suitable candidates for optical signal processing techniques like
wavelength conversion and all optical switching. SOAs have the ability to amplify
signals ranging from several Mbps to beyond 40 Gbps. This nature of SOAs makes
them useful for a range of protocols with different data rates.

For amplification purposes, linear gain over 3dB power dynamic range is pre-
ferred. If they are operated outside this region it causes distortion at high output
powers. Their gain is also dependent on the operating wavelength. Operation of
SOA in gain compression region produces chirp in the amplified signal. Chirp is
the frequency variation of the signal whereas gain compression is the reduction in
differential gain due to the nature of device transfer function. Another important pa-
rameter of an SOA is the Noise Figure. Noise figure is the amount of degradation of
signal to noise ratio during the amplification process. At 3dB, typical SOAs exhibit
80 nm optical gain bandwidth. Centering the gain peak is required in order to operate
SOAs in low loss transmission window of fibers [30].

3.2 Silicon Micro Ring Resonator

The working of a silicon micro ring resonator is shown in Fig. 1 below. Terminal 1
takes in multiple wavelengths which are partially coupled to coupler 1. The signal
in the ring is also coupled to the straight waveguide through coupler 2.

Resonant condition for wavelength λi is

neff L = mλi
Coupling wavelength λi gets enhanced and all others get suppressed. This resonant
wavelength λi is output to terminal 2 while the rest are output to Terminal 4.

3.3 Arrayed Waveguide Grating

An arrayed waveguide grating (AWG) is based on an array of waveguides. It has
both imaging and dispersive properties. AWGs image the signal from single input
waveguide to multiple waveguides in such a way that different wavelength signals
are imaged on to several different waveguides as shown in Fig. 2.

Optical Interconnects for Data Center Networks 455

Fig. 1 Silicon micro-ring resonator

Fig. 2 Arrayed waveguide grating

Technologies used to realize AWGs include silicon on silicon and Indium Phos-
phide based semiconductor technology. AWGs are used to achieve a wide variety of
functionalities inWDM networks. AWGs are compact and high functionality devices.
When a light beam traveling in the transmitter waveguide enters the free propagation
region, it becomes divergent and does not remain confined. When it arrives at the
input aperture it is coupled to a large number of waveguides in the Free Propagation
Region (FPR) and travels to the output aperture. Arrayed waveguide length is such

456 K. Aziz and M. Fayyaz

Fig. 3 Wavelength selective switch

that the difference in the length of individual waveguides is integer multiple of cen-
tral wavelength. In this way a divergent beam is made convergent with equal phase
and amplitude distribution. Spatial separation of different wavelengths is obtained
by linear increase in length of waveguide array [31].

3.4 Wavelength Selective Switch

A wavelength selective switch can block, route or attenuate all densely multiplexed
(DWDM) wavelengths within a node in network.

Wavelength switching or routing can be changed dynamically by an electronic
communication control interface. As can be seen from Fig. 3, a WDM signal arrives
at the input port and different wavelengths are routed on different output ports. This
is done by attenuating some wavelengths while not changing the magnitude of other
wavelengths.

Internal architecture of a simple MEMS based wavelength switch is shown in
Fig. 4.

The light beam is collimated with lens and is de-multiplexed with the grating. The
direction of beam after grating depends upon the central wavelength of the beam.
The diffracted beams pass through lens again and are directed to a MEMS device.
The MEMS device either changes amplitude (attenuates) or changes the direction of
the beams. Reflective MEMS device is coupled to the fiber again [32].

Optical Interconnects for Data Center Networks 457

Fig. 4 MEMS based wavelength switch

Fig. 5 2-D MEMS

3.5 MEMS Switch(Optical Switching Matrix, Optical Crossbar)

These switches use moveable mirrors to redirect the light and achieve the switching
functionality. These switches are low loss, low crosstalk and are economical to build.
They rotate along axis and their two states are referred to as lying or standing. This
architecture is very simple and non blocking in nature. N × N switch requires N2

micro mirrors. As can be seen from Fig. 5, different wavelengths on input ports can
be routed to different output ports [33].

458 K. Aziz and M. Fayyaz

Fig. 6 Optical crossbar
switch

Fig. 7 Optical circulator

Fig. 8 Optical de-mulitplexer

A traditional optical crossbar is shown in Fig. 6. Optical crossbars can route wave-
length from any input port to any output port. There is a wide range of possibilities to
achieve this functionality. MEMS switch also presents the same functionality. There
are also different ways to arrange these switching elements.

Optical Interconnects for Data Center Networks 459

3.6 Circulators

Optical circulator is a multi port passive component. It transmits light waves from
one port to the next sequential port with maximum intensity as shown in Fig. 7. It also
blocks light from one port to previous port. Circulators are based on the Faraday’s
affect.

3.7 Optical Multiplexer and De-multiplexer

The functionality of optical de multiplexer is to separate the frequency components
of light beam. Passive de-multiplexers are made up of prism, grating and spectral
filters. The working of optical de-multiplexer using these passive components is
shown in Fig. 8. When collimated beam of light falls on the surface of prism, each
frequency component is refracted differently. The lens on the other side focuses each
frequency at a different location where it is picked up by the receiver fiber.

Same optical components can be used to achieve the functionality of multiplexer
by working in reverse direction. A multiplexer will combine several wavelengths of
light in to a single beam.

4 Optical Interconnects in Data Center Networks and their
Performance

Optical interconnects in DCNs can be categorized in to following main classes:

• Reconfigurable architectures
• Low latency architectures
• Low power consumption architectures
• Scaling link bandwidth architectures
• High radix switch architectures

These architectures are discussed in detail in the following sections.

4.1 Reconfigurable Architectures

Several reconfigurable architectures proposed in the literature and their performance
is discussed in this section. The focus of this section is on reconfigurability of the
data center network architectures.

460 K. Aziz and M. Fayyaz

Fig. 9 Re-configurable data center architecture proposed by Wang et al

4.1.1 An Enhanced Optically Connected Network Architecture

Wang et al. [1] propose a reconfigurable architecture that supports a wider class of
bandwidth intensive traffic patterns. This is shown in Fig. 9. The photonic resources
are allocated on demand to optimize the communication between various applications
of the data center. Data intensive applications become bottle necked when there is
inter rack communication. Each photonic subsystem is treated as a physical resource
that can be allocated on demand. The architectures that are dependent on MEMS
switch are reliant on the stability of traffic. Traffic heterogeneity is an unavoidable
property of data centers. The proposed architecture is adaptable to traffic. A central
controller manages the resources. The controller either accepts explicit requests
for resources and allocates based on demand estimation. Photonic capabilities are
efficiently utilized. This architecture is modular which suits the incremental nature
of data center expansion.

Performance Average output power of the optical signals is quite satisfactory for
detection with open eye diagrams for all the output signals. Optical multicasting and
optical local area network were successful.

4.1.2 OSA, a Novel Optical Switching Architecture for DCNs

Presented by Chen et. al. [6], this architecture dynamically changes its topology
and link capacities to adapt to dynamic traffic patterns. This architecture is shown
in Fig. 10. It introduces circulators to efficiently utilize the expensive optical ports,
which doubles the usage of MEMS ports. This scheme gives a non blocking network
which outperforms the hybrid structures. Its achieves 60 % non blocking all to all
communication. The flexibility is achieved by using optical technologies like wave-
length division multiplexing (WDM), wavelength selective switching (WSS), optical
switching matrix (OSM), optical circulators and optical transceiver. OSM usually
use MEMS switch. Flexibility of topology is achieved by using the re-configurability

Optical Interconnects for Data Center Networks 461

Fig. 10 OSA, a novel optical switching architecture for DCNs

of MEMS. WSS and MEMS configurations are decided by a central manager, which
estimates traffic demands and calculates appropriate configurations of MEMS and
WSS. The steps of this algorithm are:

a. Estimate traffic demand
b. Compute the topology (MEMS configuration)
c. Compute routes (ToR routing configuration)
d. Compute wavelength assignment (WSS configuration)

Performance Average bisection bandwidth for over 100 traffic instances was tested.
This architecture delivered high bisection bandwidth (60–100 %) for synthetic and
real traffic patterns as it adaptively adjusts topology and link capacity for various
traffic patterns.

4.1.3 Wavelength-reconfigurable optical packet and circuit switched
platform for DCNs

A wavelength reconfigurable platform for optical packet and circuit switched data
centers is proposed by Zhang et al. [12] as shown in Fig. 11. A 2× 2 switch is made
up of Wavelength Selective Switches (WSSs) for wavelength selection and an optical
circuit and packet switched platform. Packet and circuit switched ports are managed
by FPGA.

462 K. Aziz and M. Fayyaz

Fig. 11 Wavelength-reconfigurable optical packet and circuit switched platform for DCNs

Fig. 12 Next-generation optically-interconnected high-performance data center architecture

Performance First tested thing is the correct routing of payloads through the switch
fabric. The eye diagrams of channels from input and output are recorded which show
a satisfactory eye opening. An error free transmission is achieved with BER less
than 10−12.

4.1.4 Next-Generation Optically-Interconnected High-Performance Data
Centers

A next-generation reconfigurable optically interconnected high-performance archi-
tecture is presented by Zhang et al. [17] and shown in Fig. 12. The detailed
implementation of Optical Network Interface Card (O-NIC) is also presented. This
photonic platform consists of two sub-systems, first is a reconfigurable network that
supports a variety of switch functionalities, second is an optical network interface
that bridges the constraints of photonic network with the existing network protocols.

Performance The performance of switch is measured by recording BERs of for
wavelengths evenly spaced across the spectrum of twenty five payload channels.

Optical Interconnects for Data Center Networks 463

Fig. 13 The data vortex
optical packet switched
interconnection network

An error free propagation is observed and power penalties are ranging between 0.7
dB and 1.5 dB. Multi wavelength packets suffer from significant distortion due to
carrier density variation, saturation affects and inter-channel non linear affects in
SOA. Higher power penalties at 1530 nm and 1550 nm are due to high noise figure
of SOA and EDFA used for switching and amplification.

4.1.5 The Data Vortex Optical Packet Switched Interconnection Network

The proposed architecture uses both, the packet switched and circuit switched traffic
through its configurability. The configurability is based on SOAs. Input data is orga-
nized into multiple channels. The whole topology is made up of 2× 2 switch elements
that are organized as a fully directed and connected graph as shown in Fig. 13. The
routing nodes are fully distributed and require no arbitration. The proposed model is
scalable. Its main drawbacks include its complexity and its non deterministic latency
[28].

Performance This architecture allows non blocking operations. No centralized ar-
bitration is needed for routing the packets and packets are routed in the network in
a distributed manner. It has a modular structure and thus efficiently scales to large
number of nodes.

4.1.6 Proteus: A Topology Malleable Data Center Network

This architecture is based on Wavelength Selective Switches (WSS) and a MEMS
based optical switching matrix as shown in Fig. 14. The operation is dependent on the
traffic flows. For large flows MEMS switch is used while for short flows multi-hop
communication is used. ToR switch flows are multiplexed and sent to WSS. A point
to point connection is established between ToR switches. The MEMS configuration

464 K. Aziz and M. Fayyaz

Fig. 14 Proteus architecture and send/receive structure for ToR

decides which ToR switches to connect. This scheme ensures that all ToR switches
are connected when performing reconfiguration [21].

Performance This architecture works best when there are high volumes of ToR-ToR
connections. At each ToR the packet undergoes OEO conversion. It also achieves
more than 50 % power saving.

4.1.7 A Hybrid Optical Packet and Wavelength Selective Switch for
High-Performance DCNs

A hybrid optical packet and wavelength selective switching platform is proposed
by Xu et al. [3]. The proposed architecture is based on two components—silicon
micro rings and semiconductor optical amplifiers (SOA). Using the wavelength se-
lective nature of micro rings and broadband behavior of SOA switch, it is possible
to achieve fast switching transitions, low driving voltages and high extinction ratio.
Optical interconnects are characterized by high bandwidth-distance product, bit rate
transparency and low power consumption.

Reconfigurable optical packet and circuit switch is made up of micro ring res-
onators, SOAs, PIN detectors, electronic control logic and other passive elements as
shown in Fig. 15. System can utilize such packet switching for small random bursty
traffic. Wavelength channels can be dynamically added if additional throughput is
required. The number of wavelength channels for packet switching can be dynami-
cally adjusted. Wavelength Selective Switch (WSS) reduces the number of ports, thus
minimizing the SOA power consumption. Both switching elements optical packet
and wavelength selective are controlled by electronic control logic.

Performance Amplitude shift keyed ASK signal is tesed for both packet switching
mode and circuit switching mode. There is a 0.2 dB power penalty observed in both
packet switching and circuit switching for ASK signal. Error free propagation is

Optical Interconnects for Data Center Networks 465

Fig. 15 Optical packet/circuit and wavelength/space hybrid switching platform

observed with BER less than 10−12 for all cases verifying format transparency and
error free propagation.

4.2 Power Saving Architectures

In this section, we look at those data center network architectures whose main goal
is to reduce the power consumption.

4.2.1 VCSEL Based Energy Efficient and Bandwidth Reconfigurable
Architecture

The main advantage of proposed architecture is that its power consumption can
be adjusted according to the traffic load. Transmitters are based on the Vertical-
cavity surface-emitting laser (VCSEL) as shown in Fig. 16. The current of VCSEL
is adjusted according to the traffic load. The bit rate can be scaled down when
traffic is low giving a significant power saving. The proposed architecture is also
reconfigurable. A controller controls the crossbar switch and a specific VCSEL laser
is allocated to a specific node [25].

Performance The power consumption of this architecture is adjusted based on the
traffic load. The latency of packets ranges between 1 and 2 ms.

466 K. Aziz and M. Fayyaz

Fig. 16 VCSEL based energy efficient and bandwidth reconfigurable architecture

4.2.2 A Wavelength Striped, Packet Switched, Optical Interconnection
Network

This architecture proposed by Shacham et al. [27] reduces the power consumption
and the component cost. It is based on bi-directional SOAs. It uses 2× 2 SOA based
switch which can be used to build a big switch very easily using the tree topology
as shown in Fig. 17. A connection between any of N ports can be established in
nanoseconds.

Performance The achieved BERs are less than 10−12. This scheme scales well to
large number of nodes with reduced number of modules and thus reduced power.
The total number of nodes is constrained by the total latency required and congestion
management.

4.2.3 SPRINT: Scalable Photonic Switching Fabric for HIGH
PERFORMANCE COMPUTING

The proposed architecture [2] can scale a large number of cores with photonic switch-
ing implemented using silicon micro ring resonators (MRRs). MRRs are low energy
high bandwidth devices that can be arranged to function like high radix routers. As
the platform scale increases the interconnection network becomes the bottleneck
thus reducing the overall throughput. The drawback of using optics is that the cost of
optics is very large compared to electrical counterparts. Arrayed waveguide grating

Optical Interconnects for Data Center Networks 467

Fig. 17 A wavelength
striped, packet switched,
optical interconnection
network based on SOAs

(AWG) is designed using MRRs. A 4 × 4 non blocking switch is designed that al-
lows 4 links to interact as if they were 16 physical links as shown in Fig. 18. There is
no need for electrical packet switching within this optical switch. Using this 4 × 4
switch the design can be extended to 256 and 1024 cores. Two designs—single MRR
and dual MRR—are also evaluated which have area and power implications. The re-
sults indicate that AWG optical crossbar using low power MRRs can be used to scale
the network design for data centers and high performance computing (HPC). Four
cores are combined to form a group, core groups are combined to from clusters and
clusters are combined to form the system domain.

The single ring AWG consists of three to four sets of MRRs in vertical and hori-
zontal directions. Estimated area for each set is 60 μm × 90 μm. A 64 wavelength
AWG consists of 16 MRRs. At each set the horizontal and vertical lengths will
increase 16 fold. This makes 64 wavelength AWG area to be 1440 μm × 960 μm.

A double ring AWG is made up of eight sets. Each set has 32 MRRs thus a total
of 256 MRRs. Each double MRR has a dimension of 15 μm × 20 μm. This also

468 K. Aziz and M. Fayyaz

Fig. 18 SPRINT: Scalable Photonic Switching Fabric for High Performance Computing

includes 5 μm spacing between each double MRR. This makes the AWG height to
be 80 μm and length to be 720 μm.

Single ring AWG has less optical loss than double ring AWG. Major contributor to
single ring AWG is the bending loss as multiple bends are required to accommodate
the 16 wavelength switching. So single ring AWG should be used when optical loss
needs to be minimized and double ring AWG to be used when area occupied needs
to be minimized.

Performance Results of this architecture include power consumption and through-
put. Power consumption results show that this is a good alternative to the electrical
networks. Throughput results also show a dramatic improvement over comparable
networks [2].

4.3 Low Latency Architectures

In this section, we focus on architectures that focus on reducing latency.

4.3.1 DOS: A Scalable Optical Switch for Data Centers

In this architecture, the main advantage is that the latency is independent of the
number of ports. This architecture provides the contention resolution in wavelength
domain. It uses Arrayed Waveguide Grating Router (AWGR) for contention reso-
lution. The optical interconnect consists of AWGR, tunable wavelength converter
(TWC) and a shared buffer as shown in Fig. 19. The optical network is configured

Optical Interconnects for Data Center Networks 469

Fig. 19 DOS: A scalable optical switch for data centers

by a control plane which controls the TWC and label extractors. Optical label is
interpreted by the control plane to determine the destination address and accordingly
configure the TWC. By avoiding store and forward paradigm and optical parallelism,
optical switch greatly reduces the average switching latency. The requests which are
not possibly resolvable by AWGR are buffered and looped back through TWCs
[4, 20].

Performance Experimental results show an error free propagation. A low latency of
118.2 ns in this contention free architecture is observed. System power consumption
is below 200 pJ per bit by using discrete components. Average switching latency can
be kept below 150 ns in the case of full contention.

4.3.2 Scalable Optical Packet Switch Architecture for Low Latency and High
Load

A non-blocking switch architecture is proposed by Calabretta et al. [9] with a con-
tention resolution subsystem. It supports highly distributed control and reduces the
switching time to few nanoseconds regardless of the number of input/output nodes.
The switch operates completely in optical domain. The focus is on synchronous op-
eration i.e., system is time slotted and operates in discrete time. On each time step
on which the input state of switch changes a new connection map is constructed.
Controller can use several algorithms. Contention resolution block (CRB) is used
for Contention resolution. CRB uses wavelength conversion done by Wavelength
Selectors (WSs) and fixed wavelength converters (FWCs) as shown in Fig. 20.

470 K. Aziz and M. Fayyaz

Fig. 20 Scalable optical packet switch architecture for low latency and high load

Performance Latency, packet loss and throughput of the architecture is investigated.
For a 50 m link length, the round trip time is 546.67 ns. End to end latency increases
linearly with up to 70 % load, and then it quickly approaches 1 microsecond. Packet
loss also increases with the load increment. Throughput decreases with the load
increment. This behavior occurs as contention probability increases with the port
count.

4.3.3 AWGR Based Data Center Switches Using RSOA-based Optical
Mutual Exclusion

In this architecture reflective semiconductor optical amplifier (RSOA) and arrayed
waveguide grating router (AWGR) are used as mutual exclusion elements as shown
in Fig. 21. Mutual exclusion refers to independent and concurrent nodes sharing the
resources without incorrect operation [11].

Performance Throughput and latency results are discussed for this architecture. For
throughput this architecture performs better than other comparable architectures like
Distributed Loop Back buffer (DLB). Packet latency performance of this architecture
is in between DLB and Flattened Butterfly (FBF) architecture. The performance of
this switch is not directly impacted by number of nodes of the switch, but it does get
impacted by the number of contending nodes for a particular output.

4.3.4 A Petabit Photonic Packet Switch (P3S)

A low latency switch is proposed by Chao et al. [22] that reduces the latency. It uses
buffers for congestion management. This architecture adopts a three stage network.
Each stage consists of AWGRs for the routing of packets. TWCs are used to guide
the laser through each stage of the network as shown in Fig. 22.

Optical Interconnects for Data Center Networks 471

Fig. 21 AWGR based data center switches

Fig. 22 A petabit photonic packet switch (P3S)

Performance Average latency, queue length and throughput measurements about
the architecture are made. The results show excellent scalability of the design.

4.3.5 Optical Interconnection Networks: The OSMOSIS Project

The proposed architecture is a low latency system. It is based on broadcast and
select architecture using wavelength and space division multiplexing. It is made up
of two stages as shown in Fig. 23. The first stage multiplexes all wavelengths on
a common WDM line which is broadcast to all modules of the second stage. The
second stage used semiconductor optical amplifiers (SOAs) that act as fiber selector
gates to forward the wavelength to output [23].

Performance Improvements in throughput and latency are achieved by using two
receivers per switch output port. Delay is also measured with increasing throughput.
Delay increases with the increased throughput.

472 K. Aziz and M. Fayyaz

Fig. 23 Architecture of the Optical Interconnection Networks: The OSMOSIS project

4.3.6 A Scalable Optical Multi-Plane Interconnection Architecture

This scheme proposed by Liboiron-Ladouceur et al. [24]achieves low latency for
networks that have high utilization. However main drawback of scheme is that it is
expensive and increases the power consumption due to the use of SOAs. It utilizes
space wavelength switching. Space switch architecture needs one fixed laser per port
and a non-blocking optical switch. The non-blocking optical switch is made of SOAs
that establish the connection for each time slot. SOAs are used for the connection
establishment. Switching of the packets is done using a1 × M space switch that is
made up of an array of SOAs in the form of a tree structure as shown in Fig. 24.

Performance This scheme is able to achieve low latency even under high network
utilization. However, the main drawback of this architecture is that it uses SOA arrays
that are expensive and increase overall power consumption.

4.3.7 Low Latency and Large Port Count OPS for Data Center Network
Interconnects

A modular Optical packet switch architecture is proposed in [14] with a highly
distributed control for inter cluster communication. This is shown in Fig. 25. The
configuration time and latency of the switch are independent of port count. Scaling
the port count linearly increases the number of components and energy consumption.
The modular architecture allows the overall performance to be evaluated by testing
a single optical module [14].

Optical Interconnects for Data Center Networks 473

Fig. 24 A scalable optical multi-plane interconnection architecture

Fig. 25 Low latency and large port count OPS

Performance Experimental results are validated for 8 × 8 optical packet switched
module. Forwarding operation of 8 input WDM channels at 40 Gbps to 8 output ports
is performed. Error free propagation with 1.6 dB average power penalty is observed.
Energy consumption is 76.5 pJ per bit.

474 K. Aziz and M. Fayyaz

4.4 Link Bandwidth Scaling Architectures

The bandwidth of the links can be scaled by exploiting orthogonal frequency division
multiplexing and wavelength division multiplexing.

4.4.1 Data Center Network Based on Flexible Bandwidth MIMO OFDM
Optical Interconnects

This architecture is based on optical multiple input multiple output (MIMO) or-
thogonal frequency division multiplexing (OFDM). Passive optical switch called
cyclic arrayed waveguide grating is used. Parallel signal detection technology is
used to detect multiple optical channels simultaneously with a single photo detector.
This architecture reduces power consumption and operation cost. Intra data center
communication is within the racks of a data center as opposed to inter data cen-
ter communication which involves communication over long distances. In Optical
OFDM the OFDM signal is generated electrically and then modulated to an optical
carrier. It achieves high spectral efficiency by parallel transmission of spectrally over-
lapped low rate frequency domain components that are mathematically orthogonal
over one symbol period.

Parallel signal detection is a key technology where a common photo detector
simultaneously detects multiple OFDM signals from different sources. There should
be no contention among OFDM sub carriers and wavelengths.

The basic optical component of the proposed architecture [7] is cyclic arrayed
waveguide grating (CAWG) as shown in Fig. 26. It routes N different input ports to
N different output ports in a cyclic fashion thus avoiding wavelength contention. The
DCN interconnect that communicates with ToR switches is simply N × N passive
CAWG. This reduces the power consumption at the interconnect level. This scheme
also ensures that switched signals take exactly one hop, therefore the latency is also
very low. Furthermore MIMO OFDM DCN scheme also uses WDM-OFDM ToR
switches.

Components in this architecture can be divided into three categories. First are opto-
electronic components including optical transmitters, receivers and transceivers.
Second are electronic components which are used in ToR switches and aggregate
switches. Third are the passive optical components including CAWG and optical
couplers.

Performance A comparison is made between MIMO OFDM DCN and conventional
electrical DCN. Power consumption increases linearly with the network scale and
MIMO OFDM DCN scheme offers significant power saving. There is 50.2 % power
reduction than its electrical counterparts.

Optical Interconnects for Data Center Networks 475

Fig. 26 Flexible bandwidth MIMO OFDM optical interconnects

4.4.2 Photonic Terabit Routers Employing WDM

The proposed architecture in the IRIS project [26] uses wavelength division multi-
plexing. All optical conversion based AWGRs are used. It is a three stage architecture
which is non-blocking. First stage consists of wavelength space switches, second
stage consists of time switches that have optical time buffers and the third stage
consists of space switch. The internal architectures of first and third space switches
are different as shown in Fig. 27. Control plan complexity is reduced and the optical
random access memory is also eliminated.

476 K. Aziz and M. Fayyaz

Fig. 27 A three-stage photonic terabit router employing WDM

4.5 High Radix Switch Design

IT equipment in the data center network typically consumes about 33 % of the total
data center power. One solution to reduce the power consumption is to reduce the
number of switches. Increasing the radix reduces the number of switches and thus
the number of hops a packet must travel from source to destination. A combination of
fewer hops and number of switches reduces the communication latency, component
cost and power. For example, energy required by data center to send signal across the
link is only a few Pico Joules per bit, however if the same signal has to cross a switch,
the overhead shoots to 120 Pico Joules per bit. Binkert et al. [18] propose a scheme
that uses silicon ring resonators. The ring can be used as modulator, wavelength
specific switch or a drop filter.

Performance Over 100,000 port networks can be constructed using photonic I/O
while consuming only one-third of the power of equivalent all-electronic networks.
Employing photonic components within the switch can further reduce consumed
power by about 50 % [18].

5 Data center traffic characteristics

The traffic within the DCN is highly unpredictable. Most of the resources of DCN
remain underutilized. 1500 server Microsoft DCN shows that there are only few ToRs
that are hot and most traffic passes through only a few ToRs. Thus for a few thousand

Optical Interconnects for Data Center Networks 477

servers DCN, the uniform capacity of the network is an overkill. Reconfigurable
networks provide a solution to this that is cost affective [7].

Data Center Networks may also suffer from oversubscription. In oversubscribed
networks intelligent work placement algorithms are needed. There are various work-
load placement algorithms, some are based on flexible bandwidth allocation, some
work on periodic backup process and others work on dynamic deletion and creation
of virtual machine instances. Flexible bandwidth allocation is more effective for data
intensive DCNs where more bandwidth for data fetch is adjusted dynamically based
on demand. In back creation procedure multiple copies of data are placed on different
servers so that the traffic can be distributed uniformly across the network. Virtual
machine is an environment that includes application layer, platform and operating
system [6].

A data center consists of multiple racks and each rack accommodates multiple
servers. The servers within the rack are connected through ToR. When a user request
is generated it is forwarded to the front end of the data center. In front end switches
load balance devices are used to route the request to appropriate rack and server.

There has been an exponential increase in the internet traffic due to emerging
consumer applications like video streaming, social networking and cloud computing
etc. Each application type poses different traffic characteristics constraints on the
Data Center Network. User applications are data intensive and demand a high degree
of interaction between the servers within the data centers. This interaction challenge
demands for the high bandwidth and low latency interconnects within the data center.
Even if the demand to fetch data from servers increase, the interconnects within a
data center are required to show a reasonable latency. As the processing cores on
a single chip are increasing the demand for communication requirements between
racks is also increasing [19].

The traffic of data centers can be studied on the basis of the following constraints

• Applications
• Traffic flow locality
• Traffic flow size and duration.
• Concurrent traffic flows
• Link utilization

Applications The traffic could be related to applications like HTTP, HTTPS or
LDAP. The traffic of a university campus data center for example, could be HTTP;
however the traffic of cloud computing data center could be HTTPS, HTTP or LDAP.

Traffic Flow Locality It can be divided into two categories i.e. intra rack traffic and
inter rack traffic. If the traffic is between the servers within the rack it is intra rack
traffic, however if it is between servers of different racks it is inter rack traffic. Intra

478 K. Aziz and M. Fayyaz

rack traffic is between 10 and 40 % and the inter rack traffic fluctuates between 10
and 80 %.The traffic flow locality has an impact on the design of network.

Traffic Flow Size and Duration Active connection between two or more server is the
traffic flow. If the duration of traffic flow is large then reconfigurable interconnects
can be used, as the reconfiguration over head can be compared to the flow duration,
optical circuit switching is suitable if traffic flow is long and packet switching in
feasible if the traffic flow is small.

Concurrent Traffic Flows If the optical interconnect supports a separate connection
for each concurrent flow, then it presents a significant advantage

Link Utilization Link utilization inside rack is low and between racks it is high. So
network can be designed specific to the link utilization profile.

6 Energy Requirements for Data Center Networks

Energy efficiency is one of the challenging issues of data center design. The energy
consumption of data center is mostly due to network topology and the infrastructure.

Data centers based on electronic switches consumes a lot of electrical power. Com-
pared to electronic switches the optical interconnects consume much less energy. All
optical networks provide 75 % energy saving. In order to face the power consumption
requirements in data centers, new schemes must be developed to conserve energy.
Apart from using energy efficient architectures, such optical components can also be
used which consume less energy like semiconductor optical amplifiers [19]. Other
similar components are silicon micro ring resonators. These are low power com-
ponents that can be arranged similar to a high radix router. Micro ring resonators
require 26 μW/ring in heating to keep them working [2]. By combining the wave-
length selective behavior of micro ring and broadband behavior of semiconductor
optical amplifier it is possible to achieve very low driving voltages [3].

It is estimated by Gartner Group that energy consumed by data center accounts for
10 % of the operational expenses and it may increase to 50 % in a few years. Energy
consumed by computing is not the only source of energy consumption. The heat
generated also needs a cooling system that is also a source of energy consumption.
If the data center temperature in not in safe range this may reduce the reliability of
hardware.

The workload of data center changes on weekly and hourly basis. Average work-
load of data center consumes only 30 % of data center resources. Energy can be
conserved by putting the 70 % of data center resources in sleep mode. To achieve
this energy efficiency, central coordination and energy aware workload scheduling
techniques are needed.

Optical Interconnects for Data Center Networks 479

Two main sources of energy consumption in data center network are the server
processing units and the network infrastructure. Network infrastructure includes
communication links, switching and aggregation elements. Network infrastructure
accounts for more than 30 % of total data center energy. In optical domain the commu-
nication links, switching and aggregation elements are all very much green compared
to their electrical counterparts.

The energy consumption of communication infrastructure can be reduced by re-
ducing the operational frequency, communication speed and the input voltage for
switching elements and transceivers. Slowing down the communication infrastruc-
ture needs to be done very carefully by analyzing the demand of the user application.
If the demand of application is not analyzed carefully this may result in serious bottle-
necks in the network. Energy saving of up to 75 % can be achieved using this policy.
This result is further improved if optical interconnects are used with this policy [29].

Traditional model of store and forward mechanism of packets increases the power
consumption. This is due to fact that each node has to consume energy to store the
packet in buffer, retrieving it, and forwarding it using the transmit power. Optical
interconnects reduce or eliminate this store and forward mechanism thus providing
a significant energy saving.

As the number of servers in the Data Center Network increases the number of
line cards increases proportionally and so does the wiring length and complexity
increases. Increases wiring also consumes more energy due to the resistance of
wire which causes heat dissipation. On the other hand optical interconnects replace
traditional wires with the optical fiber which consumes much less energy to sustain
the signal across the medium [22].

Traditional electronic data center networks dissipate a large amount of heat. Apart
from signal propagation, the cooling system of a data center is a significant contrib-
utor to the energy consumption. Cooling requirements of optical interconnects are
much less than traditional networks. Underutilization of the network resources also
wastes energy. In data starved networks the utilization is as low as 30 %. Thus 70 %
unutilized resources of the data center network are a source of energy consumption
[1]. Proposing efficient work placement algorithms can save energy. If patterns of
data center network usage is known, the unutilized components can be put to sleep
mode.

Energy consumption can also be reduced by reducing the number of network
devices. As most of components of network devices are common, the only solution
to reducing the number of network devices is through a high radix switch design.
Using a high radix switch design such as a 100,000 port interconnection can save
energy consumption per bit by a factor of 6 [18].

Multiple input multiple output MIMO orthogonal frequency division multiplexing
OFDM is able to achieve energy consumption by reducing the number of fibers
used. Parallel signals are detected simultaneously [7]. Similarly, wavelength division
multiplexing WDM also reduces the energy consumption significantly [11]. Both
schemes—MIMO OFDM and WDM—tend to reduce the amount of cabling in the
data center network.

480 K. Aziz and M. Fayyaz

7 Routing in Data Centers

Routing of packets in optical interconnects reduces the latency significantly. Optical
interconnects are distance immune. The latency is reduced due to less or no hop
count between ToRs, the scalable bandwidth of optical links and eliminating the
store and forward mechanism of packets. In traditional wired Data Center Networks
there is a large hop count between ToRs due to various layers of access and aggregate
switches. The bandwidth of electrical links is capped by the upper limit, however in
optical case the bandwidth of the optical can be scaled through various techniques
like wavelength division multiplexing (WDM), space wavelength multiplexing, and
optical orthogonal frequency division multiplexing OFDM. Each of these techniques
enhances the link capacity [22].

Optical OFDM enhances the capacity of multimode fiber (MMF). This technique
provides larger data rates over large distances without addition of extra components.
In MMF there are different optical modes that travel at different group velocities
resulting in differential modal delay. This results in inter symbol interference if
traditional single carrier is used. In OFDM there are orthogonal channels which
suffer frequency selective attenuation. The use of coded OFDM can deal with the
intermodal dispersion [16].

Key technology that enables OFDM is parallel signal detection. A common photo
detector is able to detect signals from multiple sources. There should be no contention
among OFDM wavelengths and sub carriers. As the transmission distance is short
so there is no need for any guard band between sub carrier groups [7].

In WDM multiple wavelengths can be transmitted simultaneously on single
mode fiber which makes optical circuit switching possible. Network is reconfigured
dynamically without rerouting of cables manually [13].

WDM systems resolve the limitations if I/O and head of line blocking problem
[18]. In head of line blocking problem when a packet get struck, it will also block
the path for subsequent packets even though the destinations are free. This problem
limits the throughput to 60 % [4].

Store and forward mechanism introduces transmission and propagation delay in
traditional electrical platform. In all optical packet switching the optical packets are
not stored and are delivered to the destination by employing contention resolution
techniques in optical domain.

Most of the optical interconnects flatten the traditional hierarchical electronic
network by replacing the whole network by a single optical switch. The idea of
flattening the network is welcomed commercially by Juniper Networks.

Contention resolution is a big issue in Optical Data Center Networks. Tradition-
ally, a small loop back buffer is used to temporarily store the contending packet and
then retransmitting it. This loop back buffer is a bottleneck and a major hurdle to the
scalability of the network in relation to data rate and port count. It is also a contribu-
tor to latency, design complexity and power consumption. By employing contention
resolution techniques the inter stage loop back buffering can be eliminated in optical
interconnects. AWRG has non-blocking switching characteristics [11].

Optical Interconnects for Data Center Networks 481

Reconfigurable routing is possible in optical networks. Most prominent candidates
for reconfigurable routing are the MEMS switches. Reconfigurable routing gives its
best benefits for large traffic flows. Reconfigurable circuit switching is possible whose
benefits surpass the reconfiguration overhead time. However circuit switching is not
feasible for routing small traffic flows among ToRs and the reconfiguration time may
exceed the benefits of circuit switching for a small flow [12]. Another drawback of
MEMS based switches is their reconfiguration time [3].

The heterogeneity of traffic is unavoidable in data center networks. It is hence a
good approach to use a hybrid optical network which has the benefits of both the
optical packet switching and optical circuit switches. Longer flows adopt circuit
switching whereas small flows adopt packet switching [1].

An exascale system has nearly 100,000 10 teraflops nodes. Such a scaling puts
a large pressure on the interconnects. This problem is best addressed by high radix
switch design. Optical interconnects also facilitate high radix switch design. High
radix switch design reduces the hop count. A combination of reduced hop count and
number of switches contributes to lower latency, energy consumption and reduced
component cost.

The constraints of electrical signaling make the electronic switches an unsuitable
candidate for high radix switch design. In electrical switches there is a tradeoff
between port bandwidth and switch radix. A chip has limited number of pins, so it
is impossible to increase the port count indefinitely without reducing the bandwidth
[18].

References

1. Howard Wang et al, Optically Interconnected Data Center Architecture for Bandwidth Inten-
sive Energy Efficient Networking, IEEE 14th International Conference on Transparent Optical
Networks (ICTON), 2012.pp. 1–4. (doi10.1109/ICTON.2012.6253873)

2. Brian Neel et al, SPRINT : Scalable Photonic Switching Fabric for High Performance com-
puting, IEEE/OSA Journal of Optical Communications and Networking, vol:4, No: 9, pp.
A38–A47. (doi: 10.1364/JOCN.4.000A38).

3. Lin Xu et al, A hybrid optical packet and wavelength selective switching platform for high
performance data center networks, OPTICS EXPRESS 2011, vol. 19, No. 24, pp. 24258–
24267. (doi: 10.1364/OE.19.024258)

4. Roberto Proietti et al, 40 Gb/s 8 × 8 Low Latancy Optical Switch for Data Centers, Optical
Fiber Communication Conference. (doi: 10.1364/OFC.2011.OMV4)

5. S Di Lucente et al, Study of the performance of an optical packet switch architecture with
highly distributed control in data center environment, 16th International Conference on Optical
Network Design and Modeling, 2012, pp. 1–6. (doi: 10.1109/ONDM.2012.6210266)

6. Kai Chen et al, OSA: An optical switching architecture for Data Center Networks with Un-
precedented Flexibility, Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation 2012, pp. 18–18.

7. Philip N Ji et al, ”Energy Efficient Data Center Network based on Flexible Bandwidth
MIMO OFDM Optical Interconnect”, IEEE 4th International Conference on cloud Computing
Technology and Science, 2012, pp. 699–704. (doi: 10.1109/CloudCom.2012.6427601)

8. Li Mei Peng et al, Cube based Intra Data Center Networks with LOBS-HC, IEEE International
Conference on Communications (ICC), 2011, pp. 1–6. (doi:10.1109/icc.2011.5962754)

482 K. Aziz and M. Fayyaz

9. Nicola Calabretta et al, Scalable Optical Packet Switch architecture for low latency and
High Load Computer Communication Networks, 13th International Conference on Transparent
Optical Networks, 2011, pp. 1–4. (doi: 10.1109/ICTON.2011.5971139)

10. Henggang Cui et al, Optically Cross-Braced Hypercube: a reconfigurable physical layer for
interconnects and server centric Data Centers, Optical Fiber Communication Conference and
Exposition, 2012, pp. 1–2. (doi: 10.1364/OFC.2012.OW3J.1)

11. Roberto Proitti et al, Scalable and Distributed Contention Resolution in AWGR based Data
Center Switches Using RSOA-based Optical Mutual Exclusion, IEEE Journal of Selected Topics
in Quantum Electronics, 2011, vol. 19, No. 2, pp. 3600111,3600111, March-April 2013.
(doi: 10.1109/JSTQE.2012.2209113)

12. Wenjia Zhang et al, Experimental demonstration of wavelength reconfigurable optical
packet and circuit switched platform for Data Center Networks, IEEE Optical interconnects
conference, 2012, pp. 123–124. (doi: 10.1109/OIC.2012.6224415)

13. Lei Xu et al, Optically Interconnected Data Center Networks, OFC/NFOEC Technical Digest
2012. (doi: 10.1364/OFC.2012.OW3J.3)

14. Nicola Calabretta et al, Experimental assessment of Low Latency and Large Port Count OPS
for Data Center Network interconnects, 14th International Conference on Transparent Optical
Networks, 2012, pp. 1–4. (doi: 10.1109/ICTON.2012.6254381)

15. Daniel Brunina et al, Building Data Centers With Optically Connected Memory, Jour-
nal of Optical Communications and Networking, 2011, vol. 3, No: 8, pp. A40–A48.
(doi: 10.1364/JOCN.3.000A40)

16. Yannis Benlachtar et al, Optical OFDM for Data Center, 12th International Conference on
Transparent Optical Networks, 2010, pp:1–4. (doi: 10.1109/ICTON.2010.5549137)

17. Wenjia Zhang et al, Next-Generation Optically-Interconnected High-Performance Data Cen-
ters, IEEE Journal of Lightwave Technology, 2012, vol. 30, No. 24, pp. 3836–3844.
(doi:10.1109/JLT.2012.2212696)

18. Nathan Binkert et al, Optical high radix switch design, IEEE Computer Society 2012, vol. 32
No. 3, pp. 100–109. (doi: 10.1109/MM.2012.24)

19. Christoforos Kachris et al, A survey on Optical Interconnects for Data Centers,
IEEE Communications Surveys and Tutorials 2011, vol. 14, No. 4, pp. 1021–1036.
(doi:10.1109/SURV.2011.122111.00069)

20. X. Ye et al, DOS: A scalable optical switch for Data Centers, ACM/IEEE symposium on
Architectures for Networking and Communication Systems, 2010, pp. 1–12.

21. Ankit Singla et al, Proteus: A topology Malleable Data Center Network, Hotnets-IX Pro-
ceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, 2010, No: 08.
(doi:10.1145/1868447.1868455)

22. H.J Chao et al, A petabit photonic packet switch (P3S), INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, vol. 1,
pp. 775–785. (doi: 10.1109/INFCOM.2003.1208727)

23. R. Luijten et al, Optical Interconnection Networks: The OSMOSIS project, IEEE 17th

Annual Meeting of Lasers and Optoelectronics society, 2004, vol. 2, pp. 563–564.
(doi:10.1109/LEOS.2004.1363363)

24. O. Liboiron-Ladouceur et al, Energy efficient design of a scalable optical multiplane intercon-
nection architecture, IEEE journal of selected topics in Quantum computing, 2010, vol. 17,
No. 2, pp. 377–383. (doi:10.1109/JSTQE.2010.2049733)

25. A. K Kodi et al, Energy efficient and bandwidth reconfigurable photonic networks for high
performance computing systems, IEEE journal of selected topics in Quantum Electronics,
2010, vol. 17, No. 2, pp. 384–395.(doi:10.1109/JSTQE.2010.2051419)

26. J. Gripp. Et et al, Photonic Terabit Routers: The IRIS project, Optical fiber communication
conference, OSA 2010, pp. 1–3

27. A Shacham et al, An experimental validation of a wavelength striped, packet switched, optical
interconnection network, Journal of Lightwave Technology, 2009, vol. 27, No. 7, pp. 841–850.
(doi:10.1109/JLT.2008.928541)

Optical Interconnects for Data Center Networks 483

28. O. Liboiron et al, The data vortex optical packet switched network, Journal of Lightwave
Technology, 2008, vol. 26, No. 13, pp. 1777–1789. (doi:10.1109/JLT.2007.913739)

29. Dzmitry Kliazovich et al, Green Cloud: A packet level simulator for energy aware cloud
computing data centers, Springer Journal of Super Computing, 2010, vol. 62, pp. 1263–1283,
(doi: 10.1007/s11227-010-0504-1)

30. http://www.kamelian.com/techarticles/App_Note_No_0001.pdf, last accessed Oct 31, 2013
31. Xaveer J. M. Leijtens et al, Arrayed Waveguide Gratings, http://alexandria.tue.nl/openaccess/

Metis203741.pdf, last accessed Oct 31, 2013
32. http://www.fiberoptics4sale.com/wordpress/what-is-wavelength-selective-switchwss/, last ac-

cessed Oct 31, 2013
33. Gangxiang Shen et al, A novel rearrangeable non-blocking architecture for 2D MEMS optical

space switches, Optical Networks Magzine 2012, vol. 3, Issue, 7, pp. 70–79

http://www.kamelian.com/techarticles/App_Note_No_0001.pdf
http://alexandria.tue.nl/openaccess/Metis203741.pdf
http://alexandria.tue.nl/openaccess/Metis203741.pdf

TCP Congestion Control in Data Center
Networks

Rohit P. Tahiliani, Mohit P. Tahiliani and K. Chandra Sekaran

1 Introduction

Internet over the past few years has transformed from an experimental system into
a gigantic and decentralized source of information. Data centers form the backbone
of the Internet and host diverse applications ranging from social networking to web
search and web hosting to advertisements. Data Centers are mainly classified into
two types [1]: the ones that aim to provide on-line services to users, e.g., Google,
Facebook and Yahoo, and others that aim to provide resources to users e.g., Amazon
Elastic Compute Cloud (EC2) and Microsoft Azure.

Transmission Control Protocol (TCP) is one of the most dominant transport pro-
tocols, widely used by a large variety of Internet applications and also constitutes
majority of the traffic in both types of Data Centers [2]. It has been the workhorse
of the Internet ever since its inception. The success of the Internet, in fact, can be
partly attributed to the congestion control mechanisms implemented in TCP. Though
the scale of the Internet and its usage increased exponentially in recent past, TCP
has evolved to keep up with the changing network conditions and has proven to be
scalable and robust.

Data Center environment, however, is largely different than that of the Internet e.g.,
the Round Trip Time (RTT) in Data Center Networks can be as less as 250 μs in the
absence of queuing [3]. The reason is that Data Center Networks are well designed
and layered to achieve high-bandwidth and low-latency. Moreover, the nature of
traffic in Data Center Networks largely varies from that of the Internet traffic. Traffic
in Data Center Networks is classified mainly into three types [2]: (i) Mice traffic - the

R. P. Tahiliani (�)
Department of Computer Science and Engineering, NMAM Institute of Technology, Nitte,
Karnataka, 574110 India

M. P. Tahiliani · K. C. Sekaran
Department of Computer Science and Engineering, NITK, Surathkal Karnataka, 575025 India
e-mail: tahiliani@nitk.ac.in

K. C. Sekaran
e-mail: kchnitk@gmail.com

© Springer Science+Business Media New York 2015 485
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_15

486 R. P. Tahiliani et al.

Table 1 Data Center Traffic: applications and performance requirements

Traffic Type Examples Requirements

Mice traffic (< 100 KB) Google Search, Facebook Short response times

Cat traffic (100 KB-5 MB) Picasa, YouTube, Facebook photos Low latency

Elephant traffic (> 5 MB) Software updates, Video On-demand High throughput

queries form the mice traffic (e.g. Google search, Facebook updates, etc). Majority of
the traffic in a data center network is query traffic and its data transmission volume is
usually less. (ii) Cat traffic - the control state and co-ordination messages form the cat
traffic (e.g. small and medium sized file downloads, etc) and (iii) Elephant traffic - the
large updates form the elephant traffic (e.g. anti-virus updates, movie downloads,
etc). The different traffic types in Data Center Networks, their applications and
performance requirements are summarized in Table 1.

Thus, bursty query traffic, delay sensitive cat traffic and throughput sensitive
elephant traffic co-exist in Data Center Networks. Therefore, the three basic require-
ments of the data center transport are high burst tolerance, low latency and high
throughput [2]. The state-of-the-art TCP fails to satisfy these requirements together
within the time boundaries because of impairments such as TCP Incast [3], TCP
Outcast [4], Queue build-up [2], Buffer pressure [2] and Pseudo-Congestion Effect
[5] which are discussed further in this chapter.

Recently, a few TCP variants have been proposed for Data Center Networks. The
major goal of these TCP Variants is to overcome the above mentioned impairments
and improve the performance of TCP in Data Center Networks. This chapter presents
the background and the causes of each of the above mentioned impairments, followed
by a comparative study of TCP variants that aim to overcome these impairments.
Although a few other transport protocols have also been proposed for Data Center
Networks, we restrict the scope of this chapter to TCP variants because TCP is the
most widely deployed transport protocol in modern operating systems.

2 TCP Impairments in Data Center Networks

Although TCP constantly evolved over a period of three decades, the diversity in the
characteristics of present and next generation networks and a variety of application
requirements have posed several challenges to TCP congestion control mechanisms.
As a result, the shortcomings in the fundamental design of TCP have become in-
creasingly apparent. In this section, we mainly focus on the challenges faced by the
state-of-the-art TCP in DCNs.

TCP Congestion Control in Data Center Networks 487

Fig. 1 Partition/aggregate application structure [8]

2.1 TCP Incast

TCP Incast has been defined as the pathological behavior of TCP that results in gross
under-utilization of the link capacity in various many-to-one communication patterns
[6], e.g. partition/aggregate application pattern as shown in Fig. 3. Such patterns are
the foundation of numerous large scale applications like web search, MapReduce,
social network content composition, advertisement selection, etc [2, 7]. As a result,
TCP Incast problem widely exists in today’s data center scenarios such as distributed
storage systems, data-intensive scalable computing systems and partition/aggregate
workflows [1].

In many-to-one communication patterns, an aggregator issues data requests to
multiple worker nodes. The worker nodes upon receiving the request, concurrently
transmit a large amount of data to the aggregator (see Fig. 2). The data from all the
worker nodes traverse a bottleneck link in many-to-one fashion. The probability that
all the worker nodes send the reply at the same time is high because of the tight time
bounds. Therefore, the packets from these nodes happen to overflow the buffers of
Top of the Rack (ToR) switches and thus, lead to packet losses. This phenomenon is
known as synchronized mice collide [2]. Moreover, no worker node can transmit the
next data block until all the worker nodes finish transmitting the current data block.
Such a transmission is termed as barrier synchronized transmission [7].

Under such constraints, as the number of concurrent worker nodes increases, the
perceived application level throughput at the aggregator decreases due to a large
number of packet losses. The lost packets are retransmitted only after the Retransmit
TimeOut (RTO), which is generally in the order of few milliseconds. As mentioned

488 R. P. Tahiliani et al.

Fig. 2 Many-to-one communication pattern

earlier, mice traffic requires short response time and is highly delay sensitive. Fre-
quent timeouts resulting out of Incast significantly degrade the performance of mice
traffic as the lost packets are retransmitted after a few milliseconds.

It must be noted that Fast Retransmit mechanism may not be applicable to mice
traffic applications since the data transmission volume of such traffic is quite less and
hence, there are very few packets in the entire flow. As a result, the sender (or worker
node) may not get sufficient duplicate acknowledgements (dupacks) to trigger a Fast
Retransmit.

Mitigating TCP Incast: A lot of solutions, ranging from application layer solutions
to transport layer solutions and link layer solutions have been proposed recently to
overcome the TCP Incast problem. A few solutions suggest revision of TCP, others
recommend to replace TCP while some seek solutions from layers other than the
transport layer to solve this problem [1]. Ren et al. [9] provides a detailed analysis
and summary of all such solutions.

2.2 TCP Outcast

When a large set of flows and a small set of flows arrive at two different input ports
of a switch and compete for the same bottleneck output port, the small set of flows
lose out on their throughput share significantly. This phenomenon has been termed
as TCP Outcast [4] and mainly occurs in Data Center switches that employ drop-tail
queues. Drop-tail queues lead to consecutive packet drops from one port and hence,
cause frequent TCP timeouts. This property of drop-tail queues is termed as Port
Blackout [4] and it significantly affects the performance of small flows because fre-
quent timeouts lead to high latencies and thus, poor quality response times. Figure 3
shows an example scenario of port blackout where A and B are input ports whereas

TCP Congestion Control in Data Center Networks 489

Fig. 3 Example scenario of Port Blackout [4]

C is the common output port. The figure shows that packets arriving at Port B are
successfully queued whereas those arriving at Port A are dropped consecutively.

It is well known that the throughput of a TCP flow is inversely proportional to
the RTT of that flow. This behavior of TCP leads to RTT-bias i.e., flows with low
RTT achieve larger share of bandwidth than the flows with high RTT. However, it
has been observed that due to TCP Outcast problem in Data Center Networks, TCP
exhibits Inverse RTT-bias [4] i.e., flows with low RTT are outcasted by flows with
high RTT.

The two main factors that cause TCP Outcast are: (i) the usage of drop-tail queues
in switches and (ii) many-to-one communication pattern which leads to a large set of
flows and a small set of flows arriving at two different input ports and competing for
the same bottleneck output port. Both these factors are quite common in Data Center
Networks since majority of the switches employ drop-tail queues and many-to-one
communication pattern is the foundation of many cloud applications.

Mitigating TCP Outcast: One possible approach to mitigate TCP Outcast is to use
queuing mechanisms other than drop-tail e.g., Random Early Detection (RED) [10],
Stochastic Fair Queue (SFQ) [4], etc. Another possible approach is to minimize the
buffer occupancy at the switches by designing efficient TCP congestion control laws
at the end hosts.

2.3 Queue Buildup

Due to the diverse nature of cloud applications, mice traffic, cat traffic and elephant
traffic co-exist in a Data Center Network. The long lasting and greedy nature of
elephant traffic drives the network to the point of extreme congestion and overflows
the bottleneck buffers. Thus, when both mice traffic and elephant traffic traverse

490 R. P. Tahiliani et al.

through the same route, the performance of mice traffic is significantly affected due
to the presence of the elephant traffic [2].

Following are two ways in which the performance of mice traffic is degraded
due to the presence of elephant traffic [2]: (i) since most of the buffer is occupied
by elephant traffic, there is a high probability that the packets of mice traffic get
dropped. The impact of this situation is similar to that of TCP Incast because the
performance of mice traffic is largely affected by frequent packet losses and hence,
the timeouts. (ii) the packets of mice traffic, even when none are lost, suffer from
increased queuing delay as they are in queue behind the packets of elephant traffic.
This problem is termed as Queue build-up.

Mitigating Queue Buildup: Queue build-up problem can be solved only by min-
imizing the queue occupancy in the Data Center Network switches. Most of the
existing TCP variants employ reactive approach towards congestion control i.e.,
they do not reduce the sending rate unless a packet loss is encountered, and hence,
fail to minimize the queue occupancy. A proactive approach instead, is desired to
minimize the queue occupancy and overcome the problem of queue build-up.

2.4 Buffer Pressure

Buffer pressure is yet another impairment caused by the long lasting and greedy
nature of elephant traffic. When both mice traffic and elephant traffic co-exist on
the same route, most of the buffer space is occupied by packets from the elephant
traffic. This leaves a very little room to accommodate the burst of mice traffic packets
arising out of many-to-one communication pattern. The result is that large number of
packets from mice traffic are lost, leading to poor performance. Moreover, majority
of the traffic in Data Center Networks is bursty [2] and hence, packets of mice traffic
get dropped frequently because the elephant traffic lasts for a longer time and keeps
most of the buffer space occupied.

Mitigating Buffer Pressure: Like Queue build-up, Buffer pressure problem too
can be solved by minimizing the buffer occupancy in the switches.

2.5 Pseudo-Congestion Effect

Virtualization is one of the key technologies driving the success of Cloud Com-
puting applications. Modern Data Centers adopt Virtual Machines (VMs) to offer
on-demand cloud services and remote access. These data centers are known as virtu-
alized data centers [1, 5]. Though there are several advantages of virtualization like
efficient server utilization, service isolation and low system maintenance cost [1],
it significantly affects the environment where our traditional protocols (e.g., TCP,

TCP Congestion Control in Data Center Networks 491

Table 2 TCP Impairments in Data Center Networks and their causes

TCP impairment Causes

TCP Incast Shallow buffers in switches and Bursts of mice traffic resulting
from many-to-one communication pattern

TCP Outcast Usage of tail-drop mechanism in switches

Queue Buildup Persistently full queues in switches due to elephant traffic

Buffer Pressure Persistently full queues in switches due to elephant traffic and
Bursty nature of mice traffic

Pseudo-Congestion Effect Hypervisor scheduling latency

UDP) work. The recent study of Amazon EC2 Data Center reveals that virtualiza-
tion dramatically deteriorates the performance of TCP and UDP in terms of both,
throughput and end to end delay [1]. Throughput becomes unstable and the end to
end delay becomes quite large even if the network load is less [1].

When more number of VMs are running on the same physical machine, the hy-
pervisor scheduling latency increases the waiting time for each VM to obtain an
access to the processor. Hypervisor scheduling latency varies from microseconds
to several hundred milliseconds [5], leading to unpredictable network delays (i.e.,
RTT) and thus, affecting the throughput stability and largely increasing the end to
end delay. Moreover, hypervisor scheduling latency can be so high that it may lead
to RTO at the VM sender. Once RTO occurs, VM sender assumes that the network
is heavily congested and significantly brings down the sending rate. We term this
effect as pseudo-congestion effect because the congestion sensed by the VM sender
is actually pseudo-congestion [5].

Mitigating Pseudo-congestion Effect There are generally two possible approaches
to address the above mentioned problem. One is to design efficient schedulers for
hypervisor so that the scheduling latency can be minimized. Another approach is
to modify TCP such that it can intelligently detect the pseudo-congestion and react
accordingly.

2.6 Summary: TCP Impairments and Causes

We briefly summarize the TCP impairments discussed in the above subsections and
mention the causes for the same in Table 2.

492 R. P. Tahiliani et al.

3 TCP Variants for Data Center Networks

3.1 TCP with Fine Grained RTO (FG-RTO) [3]

The default value of minimum RTO in TCP is generally in the order of milliseconds
(around 200 ms). This value of RTO is suitable for Internet like scenarios where the
average RTT is in order of hundreds of milliseconds. However, it is significantly larger
than the average RTT in data centers which is in the order of a few microseconds.
Large number of packet losses due to TCP Incast, TCP Outcast, Queue build-up,
Buffer pressure and pseudo-congestion effect result in frequent timeouts and in turn,
lead to missed deadlines and significant degradation in the performance of TCP.
Phanishayee et al. [3] show that reducing the minimum RTO from 200 ms to 200 μs
significantly alleviates the problems of TCP in Data Center Networks and improves
the overall throughput by several orders of magnitude.

Advantages: The major advantage of this approach is that it requires minimum
modification to the traditional working of TCP and thus, can be easily deployed.

Shortcomings: The real time deployment of fine grained timers is a challenging
issue because the present operating systems lack the high-resolution timers required
for such low RTO values. Moreover, FG-RTOs may be not suitable for servers that
communicate to clients through the Internet. Apart from the implementations issues
of fine grained timers, it must be noted that this approach of eliminating drawbacks
of TCP in Data Center Networks is a reactive approach. It tries to reduce the impact
of a packet loss rather than avoiding the packet loss in the first place. Thus, although
this approach significantly improves the network performance by reducing post-
packet-loss delay, it does not alleviate the TCP Incast problem for loss-sensitive
applications.

3.2 TCP with FG-RTO + Delayed ACKs Disabled [3]

Delayed ACKs are mainly used for reducing the overhead of ACKs on the reverse
path. When delayed ACKs are enabled, the receiver sends only one ACK for every
two data packets received. If only one packet is received, the receiver waits for
delayed ACK timeout period before sending an ACK. This timeout period is usually
40 ms. This scenario may lead to spurious retransmissions if FG-RTO timers (as
explained in the previous section) are deployed. The reason is that receiver waits for
40 ms before sending an ACK for the received packet and by that time, FG-RTO
which is in order of few microseconds, expires and forces the sender to retransmit
the packet. Thus, either the delayed ACK timeout period must be reduced to a few
microseconds or must be completely disabled while using FG-RTOs to avoid such
spurious retransmissions. This approach further enhances the TCP throughput in
Data Center Networks.

TCP Congestion Control in Data Center Networks 493

Advantages: It has been shown in [3] that reducing the delayedACK timeout period
to 200μs while using FG-RTO achieves far better throughput than the throughput ob-
tained when delayed ACKs are enabled. Moreover, completely disabling the delayed
ACKs while using FG-RTO further improves the overall TCP throughput.

Shortcomings: The shortcomings of this approach are exactly similar to that of
TCP with FG-RTO because this approach is an undesired side-effect of the previous
approach.

3.3 DCTCP: Data Center TCP [2]

Additive Increase Multiplicative Decrease (AIMD) is the cornerstone of TCP con-
gestion control algorithms. When an acknowledgement (ACK) is received in AIMD
phase, the congestion window (cwnd) is increased as shown in (1). This is known as
Additive Increase phase of the AIMD algorithm.

cwnd = cwnd + 1

cwnd
(1)

When congestion is detected either through dupacks or Selective Acknowledgement
(SACK), cwnd is updated as shown in (2). This is known as Multiplicative Decrease
phase of the AIMD algorithm.

cwnd = cwnd

2
(2)

DCTCP employs an efficient multiplicative decrease mechanism which reduces the
cwnd based on the amount of congestion in the network rather than reducing it by
half. DCTCP leverages Explicit Congestion Notification (ECN) mechanism [11] to
extract multi-bit feedback on the amount of congestion in the network from the single
bit stream of ECN marks. The next subsection describes the working of ECN in brief:

3.3.1 Explicit Congestion Notification (ECN)

Explicit Congestion Notification (ECN) [11] is one of the most popular congestion
signaling mechanisms in communication networks. It is widely deployed in a large
variety of operating systems at end hosts, modern Internet routers and used by a
variety of transport protocols. Moreover, it has been noticed that the use of ECN in
the Internet has increased by three folds in the last few years.

As shown in Fig. 4 and 5, ECN uses two bits in the IP header, namely ECN Capable
Transport (ECT) and Congestion Experienced (CE), and two bits in the TCP header,
namely Congestion Window Reduced (CWR) and ECN Echo (ECE), for signaling
congestion to the end-hosts. ECN is an industry standard and its detailed mechanism
is described in RFC 3168. Table 3 and 4 show the ECN codepoints in the TCP header
and the IP header respectively and Fig. 6 shows in brief, the steps involved in the
working of ECN mechanism.

494 R. P. Tahiliani et al.

Fig. 4 ECN bits in IP header

Fig. 5 ECN bits in TCP header

Table 3 ECN codepoints in
the TCP header

Codepoint CWR bit value ECE bit value

Non ECN-set up 0 0

ECN-Echo 0 1

CWR 1 0

ECN-set up 1 1

Table 4 ECN codepoints in
the IP header

Codepoint ECT bit value CE bit value

Non-ECT 0 0

ECT(1) 0 1

ECT(0) 1 0

CE 1 1

TCP Congestion Control in Data Center Networks 495

Fig. 6 Explicit congestion notification

As described in RFC 3168—the sender and the receiver must negotiate the use
of ECN during the three-way handshake (See Fig. 7). If both are ECN capable, the
sender marks every outgoing data packet with either ECT(1) codepoint or ECT(0)
codepoint. This serves as an indication to the router that both sender and receiver
are ECN capable. Whenever congestion builds up, the router marks the data packet
by replacing ECT(1) or ECT(0) codepoint by the CE codepoint. When the receiver
receives a marked packet with CE codepoint, it infers congestion and hence, marks
a series of outgoing acknowledgments (ACKs) with ECE codepoint until the sender
acknowledges with CWR codepoint (See Fig. 6).

The major observation here is that, even if the router marks just one data packet,
the receiver continues to mark ACKs with ECE until it receives confirmation from
the sender (See Step 3 of Fig. 6). This is to ensure the reliability of congestion
notification; because even if the first marked ACK is lost, other marked ACKs would
notify the sender about congestion. Note that this basic working of ECN aims to
only notify the sender about congestion. It is not designed to provide the additional
information about the amount of congestion to the sender.

At the receiver, counting number of packets marked by the router provides fairly
accurate information about the amount of congestion in the network. However, con-
veying this information to the sender by using ECN is a complex task. One of the
possible ways is to enable the sender to count the number of marked ACKs it re-
ceives from the receiver. The limitation, however, is that even if router marks just one
data packet, receiver sends a series of marked ACKs. Hence, the number of marked
ACKs counted by the sender would be much higher than the number of packets ac-
tually marked by the router. This would lead to incorrect estimation of the amount
of congestion in the network.

496 R. P. Tahiliani et al.

Fig. 7 ECN negotiation

To overcome this limitation, DCTCP modifies the basic mechanism of ECN.
Unlike TCP receiver which sends a series of marked ACKs, DCTCP receiver sends
a marked ACK only when it receives a marked packet from the router i.e., it sets ECE
codepoint in the outgoing ACK only when it receives a packet with CE codepoint.
Thus, the DCTCP sender obtains an accurate number of packets marked by the
router by simply counting the number of marked ACKs it receives. Note that this
modification to the original ECN mechanism reduces the reliability because if a
marked ACK is lost, sender remains unaware of the congestion and does not reduce
the sending rate. However, since Data Center Networks are privately controlled
networks, the possibility that an ACK gets lost is negligible.

On receiving the congestion notification via ECN, the cwnd in DCTCP is reduced
as shown in (3).

cwnd = cwnd × (1 − α

2
) (3)

where α (0 � α � 1) is an estimate of the fraction of packets that are marked and
is calculated as shown in (4). F in (4) is the fraction of packets that are marked in
the previous cwnd and g (0 < g < 1) is the exponential weighted moving average
constant. Thus, when congestion is low (α is near 0), cwnd is reduced slightly and
when congestion is high (α is near 1), cwnd is reduced by half, just like traditional
TCP.

α = (1 − g) × α + g × F (4)

TCP Congestion Control in Data Center Networks 497

The major goal of DCTCP algorithm is to achieve low latency (desirable for mice
traffic), high throughput (desirable for elephant traffic) and high burst tolerance (to
avoid packet losses due to Incast). DCTCP achieves these goals by reacting to the
amount of congestion rather than halving the cwnd. DCTCP uses a marking scheme
at switches that sets the Congestion Experienced (CE) codepoint [11] in packets as
soon as the buffer occupancy exceeds a fixed pre-determined threshold, K (17 % as
mentioned in [12]). The DCTCP source reacts by reducing the window by a factor
that depends on the fraction of marked packets: the larger the fraction, the bigger the
decrease factor.

Advantages: DCTCP is a novel TCP variant which alleviates TCP Incast, Queue-up
and Buffer pressure problems in Data Center Networks. It requires minor modifica-
tions to the original design of TCP and ECN to achieve these performance benefits.
DCTCP employs a proactive behavior i.e., it tries to avoid packet loss. It has been
shown in [2] that when DCTCP uses FG-RTO, it further reduces the impact of TCP
Incast and also improves the scalability of DCTCP. The stability, convergence and
fairness properties of DCTCP [12] make it a suitable solution for implementation in
Data Center Networks. Moreover, DCTCP is already implemented in latest versions
of Microsoft Windows Server operating system.

Shortcomings: The performance of DCTCP falls back to that of TCP when the
degree of Incast increases beyond 35 i.e., if there are more than 35 worker nodes
sending data to the same aggregator, DCTCP fails to avoid Incast and its performance
falls back to that of the traditional TCP. However, authors show that dynamic buffer
allocation at the switch and usage of FG-RTO can scale DCTCP’s performance to
handle up to 40 worker nodes in parallel.

Although DCTCP uses a simple queue management mechanism at the switch, it
is ambiguous whether DCTCP can alleviate the problem of TCP Outcast. Similarly,
DCTCP does not address the problem of pseudo-congestion effect in Virtualized
Data Centers. DCTCP utilizes minimum buffer space in the switches, which in fact,
is a desirable property to avoid TCP Outcast. However, experimental studies are
required to conclude whether DCTCP can mitigate the problems of TCP Outcast and
pseudo-congestion effect.

3.4 ICTCP: Incast Congestion Control for TCP [7]

Like DCTCP, the main idea of ICTCP is to avoid packet losses due to congestion
rather than recovering from the packet losses. It is well known that a TCP sender can
send a minimum of advertised window (rwnd) and congestion window (cwnd) (i.e.
min(rwnd, cwnd)). ICTCP leverages this property and efficiently varies the rwnd to
avoid TCP Incast. The major contributions of ICTCP are: (a) The available bandwidth
is used as a quota to co-ordinate the rwnd increase of all connections. (b) Per flow
congestion control is performed independently and (c) rwnd is adjusted based on

498 R. P. Tahiliani et al.

the ratio of difference between expected throughput and measured throughput over
expected throughput. Moreover, live RTT is used for the throughput estimation.

Advantages: Unlike DCTCP, ICTCP does not require any modifications at the
sender side (i.e. worker nodes) or network elements such as routers, switches, etc.
Instead, ICTCP requires modification only at the receiver side (i.e. an aggregator).
This approach is adopted to retain the backward compatibility and make the al-
gorithm general enough to handle the Incast congestion in future high-bandwidth,
low-latency networks.

Shortcomings: Although it has been shown in [7] that ICTCP achieves almost zero
timeouts and high throughput, the scalability of ICTCP is a major concern i.e., the
capability to handle Incast congestion when there are extremely large number of
worker nodes since ICTCP employs per flow congestion control. Another limitation
of ICTCP is that it assumes that both the sender and the receiver are under the same
switch, which might not be the case always. Moreover, it is not known how much
buffer space is utilized by ICTCP. Thus, it is difficult to conclude whether ICTCP can
alleviate Queue build-up, Buffer pressure and TCP Outcast problems. Like DCTCP,
ICTCP too does not address the problem of pseudo-congestion effect in Virtualized
Data Centers.

3.5 IA-TCP: Incast Avoidance Algorithm for TCP [13]

Unlike DCTCP and ICTCP which use window based congestion control, IA-TCP
uses rate based congestion control algorithm to control the total number of packets
injected in the network. The motivation behind selecting rate based congestion con-
trol mechanism is that window based congestion control mechanisms in Data Center
Networks have limitations in terms of scalability i.e., number of senders in parallel.

The main idea of IA-TCP is to limit the total number of outstanding data packets in
the network so that it does not exceed the bandwidth-delay product (BDP). IA-TCP
employs ACK regulation at the receiver and like ICTCP, leverages the advertised
window (rwnd) field of the TCP header to regulate the cwnd of every worker node.
The minimum rwnd is set to 1 packet. However, if large number of worker nodes send
packets with respect to a minimum rwnd of 1 packet, the total number of outstanding
packets in the network may exceed the link capacity. In such scenarios, IA-TCP adds
delay, Δ, to the ACK packet to ensure that the aggregate data rate does not exceed
the link capacity. Moreover, IA-TCP also uses delay,Δ, to avoid the synchronization
among the worker nodes while sending the data.

Advantages: Like ICTCP, IA-TCP also requires modification only at the receiver
side (i.e. an aggregator) and does not require any modifications at the sender or
network elements. IA-TCP achieves high throughput and significantly improves the
query completion time. Moreover, the scalability of IA-TCP is clearly demonstrated
by configuring up to 96 worker nodes sending data in parallel.

TCP Congestion Control in Data Center Networks 499

Shortcomings: Similar to the problem of ICTCP, it is not clear how much buffer
space is utilized by IA-TCP. Thus, experimental studies are required to conclude
whether IA-TCP can mitigate Queue build-up, Buffer pressure and TCP Outcast
problems. Like DCTCP and ICTCP, studies are required in Virtualized Data Center
environments to analyze the performance of IA-TCP with respect to the problem of
pseudo-congestion effect.

3.6 D2TCP: Deadline-aware Datacenter TCP [14]

D2TCP is a novel TCP-based transport protocol which is specifically designed to
handle high burst situations. Unlike other TCP variants which are deadline-agnostic,
D2TCP is deadline-aware. D2TCP uses a distributed and reactive approach for
bandwidth allocation and employs a novel deadline-aware congestion avoidance
algorithm which uses ECN feedback and deadlines to vary the sender’s cwnd via a
gamma-correction function [14].

D2TCP does not maintain per flow information and instead, inherits the dis-
tributed and reactive nature of TCP while adding deadline-awareness to it. Similarly,
D2TCP employs its congestion avoidance algorithm by adding deadline-awareness
to DCTCP. The main idea, thus, is that far-deadline flows back-off aggressively and
the near-deadline flows back-off only a little or not at all.

Advantages: The novelty of D2TCP lies in the fact that it is deadline-aware and
reduces the fraction of missed deadlines up to 75 % as compared to DCTCP. In
addition, since it is designed upon DCTCP, it avoids TCP Incast, Queue build-up
and has high burst tolerance.

Shortcomings: The shortcomings of D2TCP are exactly similar to those of DCTCP:
scalability and whether it is robust against TCP Outcast as well as pseudo-congestion
effect. However, since it is deadline-aware, it would be interesting to analyze
the robustness of D2TCP against the pseudo-congestion effect in Virtualized Data
Centers.

3.7 TCP-FITDC [15]

TCP-FITDC is an adaptive delay-based mechanism to prevent the problem of TCP
Incast. Like D2TCP, TCP-FITDC is also a DCTCP-based TCP variant which benefits
from the novel ideas of DCTCP. Apart from utilizing ECN as an indicator of network
buffer occupancy and buffer overflow, TCP-FITDC also monitors changes in the
queueing delay to estimate variations in the available bandwidth.

If there is no marked ACK received during the RTT, TCP-FITDC infers that the
queue length in the switch is below the marking threshold and hence, increases the
cwnd to improve the throughput. If marked ACKs are received during the RTT,

500 R. P. Tahiliani et al.

cwnd is decreased to control the queue length. TCP-FITDC maintains two separate
variables called rtt1 and rtt2 for unmarked ACKs and marked ACKs respectively. By
analyzing the difference between these two types of ACKs, TCP-FITDC gets more
accurate estimate of the network conditions. The cwnd is then reasonably decreased
to maintain low queue length.

Advantages: TCP-FITDC gets a better estimate of the network conditions by cou-
pling the information received via ECN and the information obtained by monitoring
the RTT. Thus, it has better scalability than DCTCP and scales up to 45 worker
nodes in parallel. It avoids TCP Incast, Queue build-up and has high burst tolerance
because it is built upon DCTCP.

Shortcomings: The shortcomings of TCP-FITDC are similar to those of DCTCP,
except that it improves the scalability of DCTCP. Unlike D2TCP, TCP-FITDC is
deadline-agnostic and like all above mentioned TCP variants, it does not address
TCP Outcast and pseudo-congestion effect problems.

3.8 TDCTCP [16]

TDCTCP attempts to improvise the working of DCTCP (and so, is DCTCP-based)
by making three modifications. First, unlike DCTCP, TDCTCP not only decreases,
but also increases the cwnd based on the amount of congestion in the network i.e,
instead of increasing the cwnd as shown in (1), TDCTCP increases the cwnd as
shown in (5). Thus, when the network is lightly loaded, the increment in cwnd is
high; and vice-versa.

cwnd = cwnd ∗
(

1 + 1

1 + α
2

)
(5)

Second, TDCTCP resets the value ofα after every delayedACK timeout. This is done
to ensure that α does not carry the stale information about the network conditions,
because if the stale value of α is high, it restricts the cwnd increment and thereby
degrades the overall throughput. Lastly, TDCTCP employs an efficient approach to
dynamically calculate the delayedACK timeout with a goal to achieve better fairness.

Advantages: TDCTCP achieves 26–37 % better throughput and 15–20 % better
fairness than DCTCP in a wide variety of scenarios ranging from single bottleneck
topologies to multi-bottleneck topologies and varying buffer sizes. Moreover, it
achieves better throughput and fairness even at very low values of K i.e., the ECN
marking threshold at the switch. However, there is a slight increase in the delay and
queue length while using TDCTCP as compared to DCTCP.

Shortcomings: Although TDCTCP improves throughput and fairness, it does not
address the scalability challenges faced by DCTCP. Like most of other TCP variants
discussed, TDCTCP too is deadline agnostic and does not alleviate the problems of
TCP Outcast and pseudo-congestion effect.

TCP Congestion Control in Data Center Networks 501

3.9 TCP with Guarantee Important Packets (GIP) [17]

TCP with GIP mainly aims to improve the network performance in terms of goodput
by minimizing the total number of timeouts. Timeouts lead to dramatic degradation
in the network performance and affect the user perceived delay. The authors of TCP
with GIP focus on avoiding mainly two types of timeouts in the network: (i) the
timeouts caused due to the loss of full window of packets. These types of timeouts
are termed as Full window Loss TimeOuts (FLoss-TOs) and (ii) the timeouts caused
due to the lack of ACKs. These types of timeouts are termed as Lack of ACKs
TimeOuts (LAck-TOs).

FLoss-TOs generally occur when the total data sent by all the worker nodes
exceeds the available bandwidth in the network and thus, a few unlucky flows end up
loosing all the packets of the window. On the other hand, LAck-TOs mainly occur
when the transmission is barrier synchronized transmission. In such transmissions,
the aggregator will not request the worker nodes to transmit the next stripe units until
all the worker nodes finish sending their current ones. If a few packets get dropped
at the end of the stripe unit, they cannot be recovered until the RTO fires because
there may not be sufficient dupacks to trigger Fast Retransmit.

TCP with GIP introduces flags in the interface between the application layer and
the transport layer. These flags indicate whether the running application follows
many-to-one communication pattern or not. If the running application follows such
a communication pattern, TCP with GIP redundantly transmits the last packet of the
stripe unit at most three times and each worker node decreases its initial cwnd at the
head of the stripe unit. On the other hand, if the running application does not follow
many-to-one communication pattern, TCP with GIP works like a standard TCP.

Advantages: TCP with GIP achieves almost zero timeouts and higher goodput in
a wide variety of scenarios including with and without the background UDP traffic.
Moreover, the scalability of TCP with GIP is much more than any other TCP variant
discussed above i.e., it scales well up to 150 worker nodes in parallel.

Shortcomings: TCP with GIP does not address the queue occupancy problem re-
sulting out of the presence of elephant traffic. As a result, the Queue Buildup, Buffer
pressure and TCP Outcast problems remain unsolved because all these problems arise
due to the lack of the buffer space in the switches. Although timeouts are eliminated
by TCP with GIP, but flows may miss the specified deadlines because of queueing
delay. Moreover, the hypervisor scheduling latency is not taken into consideration
and thus, the problem of pseudo-congestion effect also remains open. Note that high
latencies introduced by hypervisor scheduling algorithm may also prevent flows from
meeting the specified deadlines.

502 R. P. Tahiliani et al.

3.10 PVTCP: Para Virtualized TCP [5]

PVTCP proposes an efficient solution to the problem of pseudo-congestion effect.
This approach does not require any changes to be done in the hypervisor. Instead,
the basic working of TCP is modified to accept the latencies introduced by the
hypervisor scheduler. An efficient approach is suggested to capture the actual picture
of every packet transmission involving the hypervisor-introduced-latencies and then
determine RTO more accurately to filter out pseudo-congestion effect.

Whenever the hypervisor introduces scheduling latency, sudden spikes can be ob-
served during the regular measurements of RTT. PVTCP detects these sudden spikes
and filters out the negative impact of these spikes by proper RTT measurement and
RTO management. While calculating average RTT, PVTCP ignores the measurement
of a particular RTT if a spike is observed in that RTT.

Advantages: PVTCP solves the problem of pseudo-congestion effect without re-
quiring any changes in the hypervisor. By detecting the unusual spikes, accurately
measuring RTT and proper management of RTO, PVTCP enhances the performance
of Virtualized Data Centers.

Shortcomings: The scalability of PVTCP is ambiguous and thus, whether it can
solve TCP Incast effectively or not is unclear. The queue occupancy while using
PVTCP is not taken into consideration which may further lead to problems such
Queue build-up, Buffer pressure, TCP Outcast and missed deadlines.

4 Summary: TCP Variants for DCNs

Table 5 summarizes the comparative study of TCP variants proposed for Data Cen-
ter Networks. Apart from the novelty of the proposed TCP variant, the table also
highlights the deployment complexity of each protocol. The protocols which require
modifications in sender, receiver and switch are considered as hard to deploy. The
ones which require modification only at the sender or receiver are considered as easy
to deploy. Data Center Networks, however, are privately controlled and managed
networks and thus, the former ones may also be treated as easy to deploy.

Apart from the above mentioned parameters, the summary also includes which
problems amongst TCP Incast, TCP Outcast, Queue build-up, Buffer pressure and
pseudo-congestion effect are alleviated by each TCP variant. The details regarding
the tools used/approach of implementation adopted by the authors are also listed.

TCP Congestion Control in Data Center Networks 503

Ta
bl

e
5

Su
m

m
ar

y
of

T
C

P
V

ar
ia

nt
s

pr
op

os
ed

fo
r

D
at

a
C

en
te

r
N

et
w

or
ks

T
C

P
V

ar
ia

nt
s

pr
op

os
ed

fo
r

D
at

a
C

en
te

r
N

et
w

or
ks

M
od

ifi
es

Se
nd

er
M

od
ifi

es
R

ec
ei

ve
r

M
od

ifi
es

Sw
itc

h
So

lv
es

T
C

P
In

ca
st

So
lv

es
T

C
P

O
ut

ca
st

So
lv

es
Q

ue
ue

bu
ild

-u
p

So
lv

es
B

uf
fe

r
pr

es
su

re

Is
D

ea
d-

lin
e

A
w

ar
e

D
et

ec
ts

ps
eu

do
-

co
ng

es
tio

n

Im
pl

em
en

ta
tio

n

T
C

P
w

ith
FG

-R
T

O
�

x
x

�
x

x
x

x
x

Te
st

be
d

an
d

ns
-2

T
C

P
w

ith
FG

-R
T

O
+

D
el

ay
ed

A
C

K
s

di
sa

bl
ed

�
x

x
�

x
x

x
x

x
Te

st
be

d
an

d
ns

-2

D
C

T
C

P
�

�
�

�
x

�
�

x
x

Te
st

be
d

an
d

ns
-2

IC
T

C
P

x
�

x
�

x
x

x
x

x
Te

st
be

d

IA
-T

C
P

x
�

x
�

x
x

x
x

x
ns

-2

D
2
T

C
P

�
�

�
�

x
�

�
�

x
Te

st
be

d
an

d
ns

-3

T
C

P-
FI

T
D

C
�

�
�

�
x

�
�

x
x

M
od

el
in

g
an

d
ns

-2

T
D

C
T

C
P

�
�

�
�

x
�

�
x

x
O

M
N

eT
+

+

T
C

P
w

ith
G

IP
x

�
x

�
x

x
x

x
x

Te
st

be
d

an
d

ns
-2

PV
T

C
P

�
�

x
�

x
x

x
x

�
Te

st
be

d

504 R. P. Tahiliani et al.

5 Open Issues

Although several modifications have been proposed to the original design of TCP,
there is an acute need to further optimize the performance of TCP in DCNs. A few
open issues are listed below:

• Except D2TCP, all other TCP variants are deadline-agnostic. Meeting deadlines is
the most important requirement in DCNs. Missed deadlines may lead to violations
of Service Level Agreements (SLAs) and thus, incur high cost to the organization.

• Most of the Data Centers today employ virtualization for efficient resource uti-
lization. Hypervisor scheduling latency ranges from microseconds to hundreds
of milliseconds and hence, may hinder in successful completion of flows within
the specified deadline. While making modifications to hypervisor is one viable
solution, designing an efficient TCP which is deadline-aware and automatically
tolerates hypervisor scheduling latency is a preferred solution.

• A convincing solution to TCP Outcast problem is unavailable. An optimal solution
to overcome TCP Outcast must ensure minimal buffer occupancy at the switch.
Since RED is implemented in most of the modern switches - it can be used to
control the buffer occupancy. The parameter sensitivity of RED, however, poses
further challenges and complicates the problem.

6 Concluding Remarks

Data Centers in the present scenario house a plethora of Internet applications. These
applications are diverse in nature and have various performance requirements. Major-
ity of these applications use many-to-one communication pattern to gain performance
efficiency. TCP, which has been a mature transport protocol of Internet since past
several decades, suffers from performance impairments such asTCP Incast, TCP Out-
cast, Queue build-up, Buffer pressure and Pseudo-congestion effect in Data Center
Networks.

This chapter described each of the above mentioned impairment in brief along
with the causes and possible approaches to mitigate them. Moreover, it presents a
comparative study of TCP variants which have been specifically designed for Data
Center Networks and the advantages and shortcomings of each TCP variant are
highlighted.

References

1. J. Zhang, F. Ren, and C. Lin “Survey on Transport Control in Data Center Networks,” IEEE
Network, vol. 27, no. 4, pp. 22–26, 2013.

2. M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta,
and M. Sridharan “Data Center TCP (DCTCP),” SIGCOMM Computer Communications

TCP Congestion Control in Data Center Networks 505

Review, vol. 40, no. 4, pp. 63–74, Aug. 2010. [Online]. Available: http://doi.acm.org/
10.1145/1851275.1851192

3. V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger, G. A.
Gibson, and B. Mueller “Safe and effective Fine-grained TCP Retransmissions for Datacenter
Communication,” SIGCOMM Computer Communications Review, vol. 39, no. 4, pp. 303–314,
Aug. 2009. [Online]. Available: http://doi.acm.org/10.1145/1594977.1592604

4. P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella “The TCP Outcast Problem: Exposing Unfair-
ness in Data Center Networks,” in Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’12. Berkeley, CA, USA: USENIXAssociation,
2012, pp. 30–30. [Online]. Available: http://dl.acm.org/citation.cfm?id=2228298.2228339

5. L. Cheng, C.-L. Wang, and F. C. M. Lau “PVTCP: Towards Practical and Effective Conges-
tion Control in Virtualized Datacenters,” in 21st IEEE International Conference on Network
Protocols, ser. ICNP 2013. IEEE, 2013.

6. Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph “Understanding TCP Incast Through-
put Collapse in Datacenter Networks,” in Proceedings of the 1st ACM workshop on Research
on Enterprise Networking, ser. WREN ’09. New York, NY, USA: ACM, 2009, pp. 73–82.
[Online]. Available: http://doi.acm.org/10.1145/1592681.1592693

7. H. Wu, Z. Feng, C. Guo, and Y. Zhang “ICTCP: Incast Congestion Control for TCP
in Data Center Networks,” in Proceedings of the 6th International Conference, ser. Co-
NEXT ’10. New York, NY, USA: ACM, 2010, pp. 13:1–13:12. [Online]. Available:
http://doi.acm.org/10.1145/1921168.1921186

8. J. F. Kurose and K. W. Ross, Computer Networking: A Top Down Approach.Addison-Wesley,
6th ed., 02/2012, ISBN-13: 978-0-13-285620-1, 2012.

9. Y. Ren, Y. Zhao, P. Liu, K. Dou, and J. Li “A survey on TCP Incast in Data Center Networks,”
International Journal of Communication Systems, pp. n/a–n/a, 2012. [Online]. Available:
http://dx.doi.org/10.1002/dac.2402

10. S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,”
IEEE/ACMTransactions on Networking, vol. 1, pp. 397–413,August 1993. [Online].Available:
http://dx.doi.org/10.1109/90.251892

11. K. K. Ramakrishnan and S. Floyd, “The Addition of Explicit Congestion Notification (ECN)
to IP,” 2001, rFC 3168.

12. M.Alizadeh, A. Javanmard, and B. Prabhakar “Analysis of DCTCP: Stability, Convergence and
Fairness,” in Proceedings of the ACM SIGMETRICS, Joint International Conference on Mea-
surement and Modeling of Computer Systems, ser. SIGMETRICS ’11. New York, NY, USA:
ACM, 2011, pp. 73–84. [Online]. Available: http://doi.acm.org/10.1145/1993744.1993753

13. J. Hwang, J. Yoo, and N. Choi “IA-TCP: A Rate Based Incast-Avoidance Algorithm for TCP
in Data Center Networks,” ICC 2012, 2012.

14. B. Vamanan, J. Hasan, and T. Vijaykumar “Deadline-aware Datacenter TCP (D2TCP),” SIG-
COMM Computer Communications Review, vol. 42, no. 4, pp. 115–126, Aug. 2012. [Online].
Available: http://doi.acm.org/10.1145/2377677.2377709

15. J. Wen, W. Zhao, J. Zhang, and J. Wang “TCP-FITDC: An Adaptive Approach to TCP
Incast Avoidance for Data Center Applications,” in Proceedings of the 2013 International
Conference on Computing, Networking and Communications (ICNC), ser. ICNC ’13. Wash-
ington, DC, USA: IEEE Computer Society, 2013, pp. 1048–1052. [Online]. Available:
http://dx.doi.org/10.1109/ICCNC.2013.6504236

16. T. Das and K. M. Sivalingam, “TCP Improvements for Data Center Networks,” in Communi-
cation Systems and Networks (COMSNETS), 2013 Fifth International Conference on. IEEE,
2013, pp. 1–10.

17. J. Zhang, F. Ren, L. Tang, and C. Lin “Taming TCP Incast Througput Collapse in Data Center
Networks,” in 21st IEEE International Conference on Network Protocols, ser. ICNP 2013.
IEEE, 2013.

http://doi.acm.org/10.1145/1851275.1851192
http://doi.acm.org/10.1145/1851275.1851192
http://dx.doi.org/10.1109/90.251892

Routing Techniques in Data Center Networks

Shaista Habib, Fawaz S. Bokhari and Samee U. Khan

1 Introduction

Data Centers are the core of cloud computing as they consist of thousands of com-
puters which are interconnected in a way to provide cloud services. A Data Center
Network (DCNs) can be defined as centralized infrastructure providing several large
scale computing and diversified network services like video streaming and cloud
computing to its subscribed users [1]. With the proliferation of internet applications,
the demand for DCNs are increasing as they provide efficient platform for data stor-
age to such applications. Figure 1 shows the block diagram of data center networks,
where end users get services from data centers via the internet. In order to make data
centers quick and cost effective, dynamic resources allocation is provided by assign-
ing services to any server or machine in the network. Similarly, the performance
isolation between services should also be managed in DCNs. This involves lot of
server to server communication and huge amount of traffic is routed among servers
in a data center network. Other than the economical (cost-effective) and technical
motivations behind the deployment of data center networks, they are designed to
facilitate its users.

Data centers have some unique characteristics that make them different from
other networks such as the internet or LAN. First of all, data centers are designed to
deliver large scale computing services and data intensive communications such as
web searching, email and network storage. These types of services and applications

S. Habib (�) · F. S. Bokhari
University of the Punjab (P.U.C.I.T), Lahore, Pakistan
e-mail: h_shaista@yahoo.com

F. S. Bokhari
e-mail: fawaz@pucit.edu.pk

S. U. Khan
North Dakota State University, Fargo, USA
e-mail: samee.khan@ndsu.edu

© Springer Science+Business Media New York 2015 507
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_16

508 S. Habib et al.

Fig. 1 Block Diagram of Data Center Network

demand high bandwidth to transfer data among distributed components in a data
center. For this purpose, data centers have usually high bisection bandwidth to avoid
hot spots between any pair of machines in the network. Moreover, data centers
have thousands of servers which are densely interconnected and normally have 1:1
oversubscription ratio among the links. Since, data centers are built using commodity
hardware and their failure is also a natural situation, there is a requirement of agility
so that any server can service any demand. All these failure should be transparent
to the client. Without agility a specific number of servers are fixed for a specific
application. If number of request increase or decrease, resources becomes overloaded
or underutilize respectively.

Routing protocols typically determine how communications between routers take
place. They determine the best routes and share network information with their
neighbors. Since, data traffic flows inside, outside, and within the servers, routing
protocols are therefore, needed to route and forward data among servers in the net-
work. Similarly, in order to explore services of data centers infrastructure, efficient
routing protocols are required which are different from the traditional internet routing
protocols such as OSPF and BGP. It is found that these traditional internet protocols
are not suitable for DCNs due to its unique characteristics. Recently, many routing
and forwarding schemes have been proposed for data centers [6–11,15,16,17–20].

Routing Techniques in Data Center Networks 509

One of the major objectives of data center networks from routing perspective
is to connect several data center servers. Due to multiple interconnections, data
center becomes efficient and fault tolerant. Three communication patterns are used
in data centers i.e., one-to-one, one-to-all and all-to-all communication. One-to-one
communication or traffic pattern is the most typical form of communication in data
centers. For example, a large file is transferred from one location to another machine.
Similarly, one-to-all type of communication involves replicating chunks of data
from one machine/server to several servers to ensure data reliability in data center
networks. Many applications such as Google File System (GFS) [2] and CloudStore
[3] works in this fashion. Lastly, all-to-all traffic in which, every server transmits
data to every other server. This type of traffic pattern is generated by MapReduce [4]
type jobs.

Most existing data centers implement a tree like network configuration, which
suffers from network scalability, high cost and single point of failure [9]. However,
there has been research on designing efficient data center structures and topologies
which take into account the characteristics of DCNs. These proposed structures fall
into two categories namely switch-centric and server-centric data centric structures.
As the names suggest, in switch-centric data center structure, the routing and for-
warding is performed by the switches in a data center, whereas in server-centric,
servers are also involved in forwarding and somewhat routing of the data in the
DCN.

Generally, routing scheme determine routes between any two servers with short
latency but in DCN, this requires further optimization in many parameters like mini-
mum latency, maximum reliability, maximum throughput and energy, etc. Also if any
link gets down or fail then a routing protocol should route traffic using alternate path
without interrupting running application. All these optimizations come under traffic
engineering (TE) problem. In data centers, multiple paths exist among servers, there-
fore, multipath routing can be used which helps in load balancing and fault tolerance
[10]. There has some work done in designing efficient multipath routing algorithms
for data center networks [10, 11]. To take advantage of multiple paths Equal Cost
Management Protocol (ECMP) and Valiant Load Balancing (VLB) techniques are
used. ECMP performs static load splitting among flows [11], where as VLB ran-
domly selects any intermediate switch that will forward incoming traffic towards the
destination. Since, data centers typically consist of huge amount of servers, and each
device consumes power, therefore, a lot of research has also been done on designing
efficient power saving routing protocols [9, 13]. In DCN, efficient multicasting rout-
ing schemes [5, 20] are also required in instances when query searchers are redirected
to multiple indexing servers [12] which reduces cost of repeated transmission task.
Similarly, in Content Distribution Networks (CDNs), where request routing is used
[15, 16], several challenges exists such as routing of the client requests to a suitable
surrogate server for serving and the chosen surrogate server should be nearest to the
client and have minimum load.

Within the scope of this chapter, we focus on the problem of routing and data
forwarding in the context of data center networks (DCNs). The rest of the chapter is

510 S. Habib et al.

Fig. 2 Classification of data center routing schemes

organized as follows. We provide a comprehensive review of some of the recent well-
known routing and data forwarding techniques in DCNs and classify these routing
protocols according to their most prominent attributes in Sect. 2 together with the
objectives and limitations of each of the approach. In Sect. 3, we discuss the open
issues and challenges in the design of such routing schemes, followed by the chapter
conclusion in Sect. 4.

2 Classification of Routing Schemes in Data Centers

In literature, several routing protocols have been proposed for data center networks
[5–11,21–23] and they can be classified based on different criteria and approached
that is used in those schemes. The criteria that we have used for classification is
based on four parameters. The first parameter is topology-aware routing schemes in
which we further classify the approaches based on a particular data center structure
design i.e. switch-centric or server-centric approaches. The second parameter for
classification is energy-aware which means that the main objective of the routing
algorithm is to conserve energy or to reduce power consumption in data centers. Our
third classification parameter represents the routing algorithms which are designed
for either unicast, or multicast routing in data centers. All of these routing schemes
in this classification have employed some type of traffic engineering approach and
hence we call it traffic-sensitive routing approaches. There are some routing schemes
defined for content distribution networks (CDNs) which are data centers in essence
but are given different name because of their peculiar functionality of distributing
content across multiple networks. We have classified such routing schemes on our
fourth parameter i.e. routing for CDNs. The classification tree of all these protocols
(which are discussed in this chapter) is shown in Fig. 2. Note that our classification
based on these parameters may not be disjoint from each other and therefore, a par-
ticular traffic-sensitive routing scheme may overlap with another scheme belonging
to a different category.

Routing Techniques in Data Center Networks 511

Fig. 3 a A Bcubek is constructed from n BCubek-1 and nk n-port switches. b A BCube1 with
n= 4 [6]

2.1 Topology-Aware Routing

The term topology means physical layout of a network. Routing algorithms which
take into account the physical layout of the network for calculating routing paths
and forwarding can be classified as topology-aware routing. We further classify
these topology-aware routing protocols into server-centric and switch-centric routing
approaches. Briefly, in server centric approach, the servers in a typical data center
network act as relaying nodes in multi-hop communication. BCube [6] and Dcell
[8] fall under this category. On the contrary, in switch centric approach, switches in
data center networks act as relay nodes. Portland [7], VL2 [5] and M. Al-Fares [11]
lie in this category. Next, we will study some of the existing topology-aware routing
schemes in data center networks.

2.1.1 Server-Centric Approach

BCube In [6], the authors have proposed a novel data center network architecture
called BCube which is designed specifically for shipping-container based modular
data centers (MDC). MDC are ad-hoc data centers consisting of thousands of servers
which are interconnected through switches that are readily deployable on a shipping-
container. The authors have argued that existing conventional routing protocols like
OSPF [26] does not scale well and lacks the load balancing feature which is neces-
sary in a multi-path BCube network architecture. They have designed a novel BCube
source routing (BSR) algorithm for MDC which takes into account the particular
network structure of a BCube architecture. The BCube source routing provides max-
imum utilization of the available capacity, automatically load balance the traffic and
scale up to thousands of routers. The rationale behind the selection of source routing
for MDC is that the intermediate routers do not have to route the traffic, they just
have to forward the data being sent to them and instead, the source will do all the
routing decisions. The proposed Bcube structure is shown in Fig. 3.

In BSR routing algorithm, when a source obtains k + 1 parallel paths towards a
destination, it sends probe packets on these paths and if any path is unavailable due

512 S. Habib et al.

to link failure, the source runs Breath First Search (BFS) algorithm [27] to determine
alternate path. The failed link and the existing parallel paths are removed from the
BCube graph and then BFS is applied. The intermediate servers upon receiving a
packet determine the next hop and if the incoming link bandwidth is smaller than the
bandwidth value mention in probe packet then it updates the probe bandwidth value
and send probe response containing updated value. If next hop is not available, then
a message about path failure is sent back to the source node. Similarly, if network
condition changes due to path failure, the source perform alternate path adoption.

The authors have also considered the possibility of external communication in their
proposed BSR routing algorithm. They have introduced the concept of aggregator
and gateway nodes which are used to communicate with external networks. An
aggregator is an ordinary layer-2 switch with 10G uplinks. Any Bcube server that
connects with the aggregator node acts as gateway node. When there is a packet for
some external network from internal server then it will be passed through gateway
node. Gateway node performs the address mapping either manually or dynamically.
When a packet arrives on a gateway node, it removes the Bcube packet header and
sends the packet to the external network. The paths from the external network to the
internal servers can be erected in the same manner.

The authors in [8] have proposed a novel network structure for data center net-
working called DCell. Their proposed structure is fault tolerant and can perform
very well in situations of very few link or node failures. They have also proposed
a distributed routing algorithm which is fault tolerant and provides high data center
throughput and is scalable also. The authors have implemented DCell on a real test
bed and performed comparative evaluations with shortest-path first (SPF) routing. It
is found that DCell is resilient to node and link failures and provides high aggregate
network throughput.

2.1.2 Switch-centric Approach

VL2 In [5], the authors propose a flexible data center network architecture called
VL2 consisting of low cost ASIC switches which are arranged into a Clos topology
[28] and is scalable in nature. The proposed network architecture provides uniform
high capacity among servers, and layer-2 forwarding and routing semantics. For
the provision of these services, VL2 uses flat addressing so that service instances
can be placed anywhere in the network. In addition to that, the proposed scheme
implements routing and forwarding with the help of aValiant Load Balancing [29, 30]
mechanism to distribute traffic evenly across network paths and an end-system based
address resolution feature which facilitates scalability, without introducing too much
complexity at the network control plane.

For routing and forwarding inVL2, two types of IP addresses are used i.e., location
specific IP addresses (LA) and application specific IP addresses (AA). AA remains
same even after migration of a virtual machine (VM) within a data center, but LA
addresses change. In order to provide load balancing and hot spot free forwarding,
VL2 implements two mechanisms. One is the Valiant Load Balancing (VLB) and the

Routing Techniques in Data Center Networks 513

Fig. 4 VL2 Directory System Architecture [5]

second is Equal Cost Management Protocol (ECMP). VLB distributes traffic among
intermediate nodes and ECMP distributes load among equal cost paths. VL2 agents
running on each server implement VLB using encapsulation by sending traffic to
intermediate nodes by selecting randomly chosen paths. Upon reception, an inter-
mediate node de-encapsulates and sends the packet to the Top of Rack (ToR) switch
for further forwarding.

For address resolution, the conventional address resolution protocol (ARP) is re-
placed by a Directory system to handle broadcast and multicast traffic. Directory
system consists of directory servers (DS), who keep AA-LA mappings. Each DS
performs three tasks, i.e., lookup, updates for AA-LA mapping and third one is re-
active cache update under live VM migration. DS helps to trace physical location
of application. When any two servers want to communication with each other, AA
addresses are used and the source queries to DS for AA-LA mapping of the desti-
nation server. After address resolution is done, the packet can be forwarded to the
destination server. Since, directory servers provide mapping functions, therefore,
they can enforce access control policies. Figure 4 shows the proposed VL2 directory
system architecture.

One of the limitations of VL2 is that it does not guarantee absolute bandwidth
between any servers, which is a requirement for many real time applications. More-
over, the proposed architecture is highly dependent on Clos topology [28] which
requires that switches implement OSPF, ECMP, and IP-in-IP encapsulation, which
limits its deployment [1].

Portland In [7], the authors have proposed a scalable fault-tolerant layer-2 data
center network fabric. Existing layer-2 and layer-3 network protocols face some lim-
itations e.g., lack of scalability, difficult management, inflexible communication, or
limited support for virtual machine migration. Some of these limitations are inherent
from Ethernet/IP style protocols when trying to support arbitrary topologies in data

514 S. Habib et al.

center networks. However, today’s DCNs are mostly managed by a single logical
network fabric with a known baseline topology and growth model. The authors have
therefore taken this particular characteristics of DCN into consideration and designed
Portland; a scalable, fault tolerant layer-2 routing and forwarding protocol for such
networks.

PortLand implements a centralized process called Fabric Manager which contains
the network configuration in terms of its topology and does the ARP resolution
function for forwarding. In order to achieve efficient routing and forwarding, the
authors have proposed a Pseudo MAC (PMAC) addressing scheme. Each host in the
Portland architecture is assigned a unique PMAC address which is used to encode
the physical location of the host in the network topology and an actual MAC address
(AMAC). When a source node wants to send some data to a destination node, the
ingress switch upon receiving a packet looks for the source MAC address in the
packet and checks its local table for AMAC to PMAC mapping. If no such entry
is found, it will be created and then will be sent to the fabric manager for further
processing of the ARP request. Similarly, when the packet reaches a particular egress
node, it performs the necessary PMAC to AMAC mapping and then it is eventually
sent to the destination node. In this way, the fabric manager in PortLand helps to
reduce broadcastARP traffic at the ethernet layer. Figure 5 shows how anARP request
is processed in PortLand architecture. The authors have called this ARP resolution
mechanism as proxy ARP. When a packet is received by an edge switch in step 1,
it creates an Address Resolution Protocol (ARP) request for IP to MAC mapping
and sends this request to fabric manager to lookup its PMAC in step 2. The fabric
manager then returns the PMAC address to the edge switch as shown in step 3 of
Fig. 5. Finally, in step 4, the edge switch creates an ARP reply and sends it to the
source node for further routing.

One of the limitations of PortLand is that it requires a multi-rooted fat-tree topol-
ogy thus making it not applicable to other commonly used DCN topologies. Also,
since, a single fabric manager is used to resolve address resolution protocol requests,
there is a greater chance of malicious attacks on the fabric manager. Similarly, in
PortLand, every edge switch should have at least half of its ports connected to
servers [1]. The authors have shown through implementation and simulation results
that PortLand holds promise for supporting a plug-and-play large-scale data center
networks.

A Scalable, Commodity Data Center Network Architecture The authors of [11]
have proposed a scalable data center network architecture consisting of commodity
machines (switches and routers). The proposed architecture enables any arbitrary
host to communicate with another host in a data center network by fully utilizing its
local network interface bandwidth. Moreover, it makes use of commodity switches
and machines to build large scale data centers which helps to reduce cost. The authors
have also claimed that their proposed architecture is backward compatible without
any modification to hosts running Ethernet and IP protocols. It is assumed that the
networking devices are arranged in a fat-tree topology in the proposed architecture. A
novel addressing scheme is proposed based on the fat-tree topology in which private

Routing Techniques in Data Center Networks 515

Fig. 5 Proxy ARP [7]

Fig. 6 Simple fat-tree topology. Using the two-level routing tables, packets from source 10.0.1.2
to destination 10.2.0.3 would take the dashed path [11]

addresses are assigned in the network and the format of the addressing scheme is
10.pod.switch.1 where pod determines the pod number and switch determines the
switch number within a specific pod of a fat-tree topology. Figure 6 shows the
addressing scheme in a fat-tree topology of a DCN.

In order to achieve maximum bisection bandwidth, which requires evenly dis-
tribution of traffic among the core switches of a DCN, the authors have extended
an existing OSPF-ECMP [31] routing algorithm. They have introduced a two level
prefix lookup, in which the primary table prefix points to the secondary table suf-
fix. For a lookup query, If there is no entry against any prefix in the primary table

516 S. Habib et al.

then searching will be terminated, otherwise, longest suffix matching is done in the
secondary table. It is possible that more than one prefix can point to a single suffix.

In order to understand the routing process in this architecture, let us consider an
example. A source host 10.0.1.2 wants to send a packet to let us say this destination
address 10.2.0.3 as shown in Fig. 6. First of all, the gateway switch near to the source
will do the packet lookup with the /0 first-level prefix. It will then forward the packet
based on the host ID byte according to the secondary table for that prefix. In that table,
the packet matches the 0.0.0.3/ 8 suffix, which points to port 2 and switch 10.0.2.1.
Switch 10.0.2.1 will also follow the same steps and forwards the packet on port 3
which is attached to core switch 10.4.1.1. The core switch upon lookup will forward
the packet to the destination pod 2. After the packet has successfully reached the
destination subnet, standard switching techniques are employed to deliver the packet
to the destination host 10.2.0.3. The authors have performed extensive simulations
and evaluations to validate their proposed scheme. They have implemented their
proposed routing scheme including the two level lookup in the NetFPGA [32] using
content-addressable memory (CAM) [17] which is quite efficient in searching.

Table 1 summarizes all the above mentioned topology-aware routing and forward-
ing schemes in data center networks. It states the objective of each algorithm, the
procedures that are used in obtaining an efficient routing algorithm and the limitations
of each scheme.

2.2 Energy-Aware Routing

Data centers consists of huge amount of devices. Each device consumes power. For
this purpose efficient power saving routing protocols are needed so that energy can
be saved by keeping those devices in sleep mode which are not participating in
communication but without effecting DCN performance. For this purpose, in this
section, we will explore some of the existing energy-aware routing protocols in data
center networks.

2.2.1 Green Routing

In [9, 24], the authors propose energy aware routing which helps to save energy
without compromising on routing performance. The energy consumed by power-
hungry devices becomes a great trouble for many data centers owners. In the proposed
concept such idle devices can be shut down. The authors have proposed a heuristic
algorithm which first manipulates the network throughput by routing on all switches;
this routing is called basic routing. Here throughput is taken as performance metric.
Now one by one it removes switches until network throughput decreases to a predefine
threshold value, and then it stops removing switches anymore. In one iteration, the
algorithm removes one device and calculate the network throughput and compare it
with the threshold value. If the network throughput is not less than the threshold, it

Routing Techniques in Data Center Networks 517

Table 1 Summary of the topology-aware routing approaches in DCNs

Techniques Objective Methodology Limitations

BCube [6] Design of network
architecture for
modular data centers
(MDC)

Routing and
forwarding to achieve
load balancing, fault
tolerance and graceful
degradation

Control overhead,
scalability issue,
wiring cost

Dcell [8] Design of a fault
tolerant physical
network infrastructure

DCell architecture,
fault-tolerant
distributed routing
protocol

Wiring cost, not scal-
able because construc-
tion of complete graph
at each level

VL2 [5] Design of a network
architecture for
forwarding and
routing that requires
minimal or no data
center hardware
change

Routing with VLB
and ECMP to provide
load balancing, flat
addressing for service
portability

Not scalable due to
flat addressing, does
not guarantee absolute
bandwidth, dependent
on Clos topology

PortLand [7] Scalable and fault
tolerant layer-2
routing and
forwarding protocol

Ethernet compatible
routing, forwarding
and address resolution
protocol, loop free
forwarding

Scalability due to
layer-2 forwarding,
only applicable for
fat-tree topology,
single point of failure
because of fabric
manager

M. Al-Fares [11] Design of a DCN
infrastructure to
interconnect
commodity switches
in fat-tree topology

Extension of existing
routing protocol,
novel IP address
assignment, two-level
route lookups for
multipath routing,
fault tolerance scheme

Wiring overhead
because of fat-tree
topology

updates the topology and goes to the next iteration otherwise the algorithm terminates.
In the end, the algorithm puts all those devices in sleep mode which are not part of
the updated topology.

The proposed heuristic routing algorithm contains three modules. The first module
is the Route Generation (RG) module and the second module is the Throughput
Computation (TC) module. The third module is the Switch Elimination (SE) module.
Now, we will explain each of the these modules proposed in [9].

Route Generation This module generates route for a selected traffic matrix at which
the network throughput is maximum. The input inserted in this module is (G, T),
where G is the data center topology and T is traffic matrix. RG() function returns all
possible paths for T then select only that path at which the network gives maximum
throughput. The data centre network is too large sometimes that it is not feasible to
determine all paths. This also increases the complexity of the algorithm because of

518 S. Habib et al.

such large scale data centers. Moreover, we can take advantage of the topological
structure of the data center. Similarly, for a specific flow, if several paths exists, the
algorithm will select only that path on which least overlapping flows exists. If two
or more flows have the same number of overlapping flows then select the one which
have least number of hop count.

Throughput Computation This module computes the throughput of a network in
a given topology. The authors have used a max-min fairness model to add up the
throughputs of all flows.

Switch Elimination In this module, the algorithm will remove the switch which
is carrying the least amount of traffic in a single iteration using a greedy approach.
The algorithm works by selecting any active switch carrying least traffic load and
removing it from the topology. The updated topology is then passed through the
second round. It is also important to note that the eliminating switch should not be
the critical one which means that by removing it would disconnect the topology. The
authors have tested their proposed algorithm on BCube [6] data center architecture
and found that at low network load significant amount of energy is saved. However,
when network load increases, energy saving is decreased due to the fact that now
almost all switches carry too much traffic load and it becomes difficult to remove all
of them.

2.2.2 Power-Aware Routing

The authors have proposed a throughput guaranteed power aware routing algorithm
in [13]. The objective of the proposed algorithm is to reduce power consumed by
networking devices in densely connected data centers. The idle links or devices
which are not involved in routing are put in sleep mode or shut down in order to save
power. The authors have proposed a model of throughput guaranteed power aware
routing and proved the time complexity of the algorithm to be NP-hard by reducing
it to the famous 0–1 knapsack problem [25], The proposed model is a combination
of general power consumption model and simplified model. They have called their
proposed model a multi-granularity power saving strategy. Through this strategy, the
power consumption of network devices can be reduced at both the device level and
the component level. The propose heuristic algorithm consists of four steps. In step
1: basic routing is performed. Step 2 gradually removes the switches in the network
and updates the topology without affecting the network throughput. In step 3, the
algorithm keeps on removing links until network throughput start decreasing. The
last step 4, puts all the devices in sleep mode which are not included in final topology.

In addition to the basic working of the proposed algorithm, it has five modules.
These are the route generation (RG), throughput computation (TC), switch elimi-
nation (SE), link elimination (LE) and the reliability adaptation (RA) module. The
relationship among these five modules is shown in Fig. 7.

The input to the algorithm is the quadruplet (G, T, PR, and RP). Where G denotes
data center network topology, T denotes the traffic matrix. PR is the performance

Routing Techniques in Data Center Networks 519

Fig. 7 Relationship among five modules of the proposed algorithm in [13]

threshold percentage and RP is the reliability parameter. As shown in Fig. 7, switch
elimination module is initialized first followed by the link elimination module until
the network performance in terms of the throughput starts to degrade. After this,
the RA module takes the updated topology and adds some more links and network
devices and gives updated topology.

Table 2 compares the energy-aware routing schemes surveyed above based on their
objectives, the procedures that are used in obtaining an efficient routing algorithm
and the limitations of each technique.

2.3 Traffic-sensitive Routing

Our third parameter for classification of existing routing schemes in data center
networks is based on the type of traffic, a particular routing scheme is intended for. For
example, whether a particular algorithm is designed for unicast, or multicast traffic
or does it support multipath communication. We classify such routing algorithms
as traffic-sensitive routing schemes. Note that all of the surveyed routing schemes
in this classification have applied some form of traffic engineering to achieve their
design objectives. [10,18–21] are the algorithms that fall in this category and we will
explore them in this section.

520 S. Habib et al.

Table 2 Comparison of Energy-aware routing schemes in data center networks

Techniques Objective Methodology Limitations

Green Routing [9] Reducing energy
consumption in high
density data center
networks, without
effecting network
performance

Model formulation for
energy-aware routing
problem. Heuristic
routing algorithm

Scalability issue,
centralized approach,
network disconnection

Power-aware
Routing [13]

Minimize network
power to provide
routing services

Throughput
guaranteed routing,
max-min fairness
model to calculate
throughput

Single point of failure
due to centralized
approach, network
disconnection

2.3.1 DARD

The authors of [18] have proposed a novel routing architecture called Distributed
Adaptive Routing for Datacenter (DARD), which tries to fully utilize the bisection
bandwidth typically common in DCNs in order to avoid any hot spots between any
pair of hosts in the network. The authors have argued that the classical TCP protocol
cannot dynamically select paths according to the current traffic load in the network
which means that it is not adaptive to the network traffic load. Therefore, dynamic
path selection mechanisms are adopted which have their own pros and cons and the
authors have discussed those issues in [18]. However, to overcome the limitations
of existing path selection mechanisms, the authors have proposed an end-to-end
distributed path selection algorithm (DARD) that runs on the end hosts rather than
on the switches and is load-sensitive to the dynamic traffic in the network. The
proposed DARD architecture helps to move traffic from overloaded paths to the
under loaded paths efficiently.

An overview of the proposed DARD architecture is shown in Fig. 8. As it can
be seen in the figure, the proposed system consists of three components. One is the
elephant flow detector which detects the if there is any elephant flows exists in the
network. The second component is the path state monitor which monitors the traffic
load on each link by periodically querying the switches and the third component is
the path selector whose job is to move flows from overloaded paths to the under
loaded paths.

Because of the distributed nature of the DARD algorithm, no end system or net-
work device has complete network information and each end system has limited/local
information based on which it selects paths. A hierarchical addressing scheme is used
to uniquely identify end-to-end path with a pair of source and destination nodes.
DARD adopts different paths to carry flows towards a destination. The purpose of
doing so is to maximize utilization of link capacities between any pair of servers, and
to avoid retransmissions caused by packet reordering. There are two paths in DARD
one is the Uphill Path that is a partial path encoded by source address to keep entries

Routing Techniques in Data Center Networks 521

Fig. 8 DARD’s system
overview [18]

allocated from upstream nodes and the second is the Downhill Path that is a partial
path encoded by destination address. The idea of splitting a path is taken from [33].

In DARD, when a packet is received by a switch, it notes the destination address
and runs the longest prefix matching algorithm. If a match is found, it will forward
the packet to the corresponding downstream switch, otherwise, the switch finds the
source address in table and forwards the packet back to the corresponding switch in
upward direction. The source adds source and destination address in the packet header
and the intermediate switches view the header and forward the packet accordingly.
When the destination node receives the packet, it de-encapsulates and passes the
packet to the upper layer protocols. DARD notifies every end host about the traffic
load in the network. Then each host will select appropriate paths for its outbound
elephant flows according to the network conditions. Existing routing protocols can
lead to oscillations and instability. The reason for this is that different resources move
flows to under-utilized paths in a synchronized manner. In DARD, path oscillation
is prevented by introducing a fixed span and a random span of time interval between
two adjacent flow movements of the same end host.

The authors have performed extensive simulations and have implemented their
prototype in a real test-bed. The authors have show that DARD is a scalable routing
algorithm with reduced control overhead and provides efficient utilization of the
bisection bandwidth in a data center network. The results have also shown that the
DARD achieves fairness among elephant flows in the network.

522 S. Habib et al.

Fig. 9 a Pseudocode for global first fit. b Pseudocode for simulated annealing algorithm [19]

2.3.2 Hedera

In [19], the authors have proposed a centralized scalable and dynamic scheduler for
flow routing to efficiently utilize aggregate network resources in data center net-
works. They called the flow scheduler as Hedera. The main objective of Hedera is
therefore, to maximize the utilization of bisection bandwidth with least scheduling
overhead in data center networks. Hedera achieves this objective by implementing
a global view of the routing and traffic information. The scheduler works by col-
lecting flow information from switches to determine the non-conflicting paths for
flows, and then instructs the switches to forward traffic respectively. The scheduler
measures the bandwidth utilization of each flow and when a flow demand is beyond
a particular predefine threshold value, it is moved to an alternate route which fulfills
the flow demand. The proposed scheduling system works by first detecting large
flows at the edge switches and then it computes alternate paths by running placement
algorithms (practical heuristic algorithms) to fulfill the bandwidth demand, followed
by installing these paths on the switches.

Since, scheduling flows running in a network with the constraint that it should not
exceed the capacity of any link in the network is called the multi-commodity-flow
problem which is an NP-complete problem [34], the authors have proposed two prac-
tical heuristic algorithms for flow scheduling that can be applied to many topologies
in DCNs. The first heuristic they have used for flow scheduling is the Global First
Fit algorithm which is shown in Fig. 9a. With the possibility of having multiple
paths between same source and destination pairs, when a new flow is detected, the
scheduler greedily assigns the first path that accommodates the demands. This way,
the algorithm does not guarantee that it will schedule all the flows but it performs
relatively well in real scenarios. The second heuristic flow scheduling algorithm is
based on Simulated Annealing shown in Fig. 9b. It is a probabilistic approach for

Routing Techniques in Data Center Networks 523

efficiently computing paths for flows. The input to the algorithm is the set of flows
to be scheduled and the flow demands. The algorithm searches through the solution
space to find a near optimal solution to the scheduling problem. There is an energy
function E that defines the energy in the current state. In each iteration, we move
to another state with an acceptance probability P, which is a function of the cur-
rent temperature and the energies of current and neighboring states. The algorithm
terminates when the temperature hits zero.

The authors have implemented Hedera on a real test-bed and have also performed
simulations to validate their findings. They have found that Simulate Annealing
always outperforms Global First Fit flow scheduling algorithm and provides near
optimal solution to the flow placement problem.

2.3.3 ESM: Multicast Routing for Data Centers

In [20], the authors have explored the design of an efficient and scalable multicast
routing protocol for DCNs. Because of multiple interconnections among switches
in a data center network, the traditional multicast routing protocols are inefficient
in the formation of multicast trees in such networks. Moreover, switches in data
centers have limited space to maintain multicast routing information which makes
the design of a multicast routing protocols more challenging. To resolve these issues,
the authors propose ESM which constructs efficient multicast trees using source-
to-receiver expansion approach rather than the traditional receiver-driven multicast
routing approach. To reduce the routing table size, ESM, combines In-packet Bloom
Filters and in-switch entries to make it a scalable multicast routing protocol.

For the construction of multicast tree for data forwarding, ESM implements a
multicast manager. The manager builds the multicast tree using source-to-receiver
expansion approach which basically removes many unnecessary switches in the
formed multicast tree. The problem of computing efficient multicast tree can be
translated into the problem of generating Steiner tree in general graphs and Steiner
tree problem in BCube has been proven to NP-Hard by the authors in [35]. They
have also shown that the heuristic algorithms to solve Steiner tree problem has a
high computational complexity and therefore, they have designed an approximate
algorithm to generate multicast tree for routing in data center networks.

ESM, aggregates multiple multicast routing entries into a single entry by using
in-packet bloom filters. Actually, the tree information is encoded into the in-packet
bloom filter instead of the usual multicast routing entries in the switch. However,
there is a drawback in using in-packet bloom filters that is the network bandwidth
is wasted. Therefore, the authors have combined both the in-packet bloom filter and
the traditional in-switch entries to achieve a scalable multicast routing in DCNs.

The authors have tested ESM’s source-to-receiver approach and compared it with
the traditional receiver-driven approach for multicast routing. They have found that
ESM saves network traffic for tree building by 50 % and also doubles the appli-
cation throughput when compared with receiver-driven approach. Similarly, they
have found that combining in-packet bloom filter with in-switch entries significantly
reduces the number of routing entries inside the switches.

524 S. Habib et al.

Fig. 10 a Knee switch example. b Forwarding model [10]

2.3.4 GARDEN

The authors of [10] have proposed a GenericAddressing and Routing for Data Center
Networks (GARDEN) protocol. There are many routing and forwarding schemes
which are designed for a particular network topology in a data center such as VL2
[5], BCube [6], Portland [7], and DCell [8]. The main idea in this paper is to design a
forwarding scheme for data center networks which is not dependent on any particular
underlying topology. In the proposed system, a multi-rooted tree is first constructed,
so that the addressing of the nodes in the tree can be defined. Then a downward path
from each node to the root is constructed, and a locator is assigned to each path.
These locators are actually assigned to each host or switch in the network based on
the newly created multi-rooted tree topology. As the name suggests, locators encode
the location of a particular node in the tree. This effectively means that the locators
are used for forwarding instead of the usual MAC addressing. This significantly
reduces the forwarding states in the routing tables on each switch in the network
as locators are addressed according to the hierarchical structure of the multi-rooted
tree.

The authors have proposed a forwarding model to populate the forwarding tables
in the switches. They have tried to explain their proposed forwarding model with the
help of an illustrative example as in Fig. 10a. A single path from the source node to
the destination may consists of many steps (segments). As it can be seen in Fig. 10a,
some segment has an upward direction (upward e.g. 21), some have downward
direction (downward e.g. 23) and some have straight direction i.e. horizontal (e.g.
32). The first switch towards the last downward path segment is called a knee and the
highest switch among all switches is called a peak switch. Based on this example,
the authors have applied two traffic constraints. The first constraint is that the traffic
should change the direction from upward to downward only once and the second
constraint is that the knee switch must be among the peak switches in a path. Now,

Routing Techniques in Data Center Networks 525

Table 3 Comparison of the four traffic-sensitive routing techniques in data centers

Techniques Objective Methodology Limitations

DARD [16] Design of load
sensitive adaptive
routing

Routing algorithm
based on simulated
annealing, provable
convergence to Nash
equilibrium

Requires modification
at the end hosts

Hedera [19] Maximize aggregate
network utilization
(bisection bandwidth)

Global flow scheduler,
two heuristic flow
scheduling algorithm:
simulated annealing and
global first fit

Not scalable as it is
centralized

D. Li [20] Design of efficient
multicast tree for
routing with minimum
switches

In-pocket bloom filter
and in-switch routing
for scalable multicast
routing, node based
bloom filter to encode
tree

Complexity,
centralized, ignore
control overhead

GARDEN [10] Design of generic
addressing, routing
and forwarding
protocol for DCNs

Central controller to
form multi-rooted tree,
addressing, forwarding
model to reduce states,
load balancing, and
fault-tolerance

Scalability, traffic load
not considered, offline
solution

the switch traffic can be divided into three forwarding classes based on the above
mentioned two constraints i.e., FwT1, FwT2 and FwT3. Figure 10b shows the block
diagram of the proposed forwarding model.

In order to implement and evaluate GARDEN, the authors have built different
sized testbeds of fat tree topologies. and compared the GARDEN forwarding states
for different topologies, They have shown that GARDEN provide good fault tolerance
and improved aggregate network throughput using different scheduling methods.

We compare the four algorithms surveyed above based on their objectives, the
methodology that are used to provide efficient routing and forwarding, and the
limitations of each approach in Table 3.

2.4 Routing for Content Distribution Networks (CDN)

In this section, we will study some of the existing routing schemes specifically de-
signed for content distribution/delivery networks (CDNs). We have classified the
routing schemes in data center networks based on this parameter. A CDN is an over-
lay network over multiple data center networks located in geographically dispersed
locations and are accessible via internet [14]. The primary purpose of CDNs is to
provide content to its subscribed users by maintaining many surrogate or replica

526 S. Habib et al.

Fig. 11 A typical content distribution network (CDN)

servers on locations which are geographically close to the end user. A typical content
distribution network is shown in Fig. 11. The protocols that have been proposed for
content distribution networks are mostly propriety in nature and are not standard-
ized as of yet. However, the IETF [36] has initiated a working group called Content
Delivery Networks Interconnections (CDNI [37]) to standardize the protocols in the
domain of CDNs.

In addition to routing schemes in CDNs, we will also survey some of the routing
schemes in data centers that do not completely lie in any of the above mentioned
classification parameters and therefore are also discussed in this section.

2.4.1 Request-Routing in CDNs

In [15], the authors have described CDN based request routing techniques that have
been implemented by researchers. A typical CDN contains many surrogate servers,
a distribution system, a request-routing system, and accounting systems. Surrogate
servers are not the origin servers which are the servers that actually own the contents,
instead, their responsibility are just to deliver the content closest to the end user.

When a client request for content, it reaches to the geographically nearest located
surrogate server which maps the request to deliver the content information. This
mapping is done by the Distribution system who interacts with the request-routing
and accounting system for determining the availability of the requested content in
different surrogate servers and the volume of content distribution respectively. The

Routing Techniques in Data Center Networks 527

request routing system [38, 39] consisting of request routers directs the client re-
quest to the appropriate surrogate server by taking into consideration the network
conditions and the load on surrogate server.

The authors have discussed many solutions to the request routing problem in
CDNs. The first is the use of DNS servers for request routing in CDNs. In such
routing, the client sends a name based query to the local Domain Name Server (DNS).
If the name exists, the DNS returns the address of the corresponding surrogate server
that is nearest to the client location. If look up fails, the local DNS forwards the
request to the DNS root. The DNS root server returns the address of the authoritative
DNS server. The authoritative DNS will return address of the surrogate server nearby
to the client. Then the client will get the content from the appointed surrogate server.
But, this type of request routing has limitations as mentioned in [15] such as, the
inherent scalability issue in DNS multi-level redirections. The second solution could
be implemented at the transport-layer in which the requesting client’s IP address and
port number will be checked and a session is established with corresponding surrogate
server. Similarly, application-level request routing solutions also exist which are
normally divided into two types i.e. header inspection and content modification. In
header inspection, Uniform Resource Locator (URL) of the requested content is
used for taking routing decisions. In the content modification method, the content
provider can modify the references of the embedded items belonging to a particular
content item, and the client can fetch the embedded item from the best designated
surrogate server.

In [16] M. Wahlisch et. al., have done a measurement study on the efficiency of
content centric routing under various offered load. It is found that service efficiency
decreases due to the exhaustion of memory and processing resources due to the
excessive state allocations in such CDN based routing protocols.

2.4.2 Symbiotic Routing

The authors of [22] have proposed symbiotic routing in data center networks. In tra-
ditional data center network architecture, one server is associated with other servers
using network devices like switches and routers, however, in CamCube which is a
DCN topology proposed in [40], one server is attached with other servers directly
and forms a 3D torus topology which uses Content Addressable Network (CAN).
In CamCube architecture, each service implements its own routing protocol which
results in better performance at the service level. Each application will have a unique
id and on every server, many application instances can be run. When a packet is
received from any link, the kernel will be responsible for its delivery and inform via
call-back to the service running in the user space about the source link on which
the packet was received. The authors have used a single queue mechanism per link.
When a packet is transmitted on a link, all the services will be polled to determine to
which service this packet belongs and the packet is queued to that service queue. The
routing service in the proposed architecture performs the key-based routing. Keys in
the key-based routing determine the location of the server in the form of coordinate

528 S. Habib et al.

space. Using key-based routing, all packets are directed towards the server, who is
responsible for the destination key.

The authors have evaluated individual services and concluded that by apply-
ing their proposed optimized protocols, better application-level performance can
be achieved and network load can be reduced.

2.4.3 fs-PGBR: A Scalable and Delay Sensitive Cloud Routing Protocol

In [23], the authors propose an efficient routing protocol for accessing resources
with minimum delay in the cloud. The proposed algorithm is called fast search-
Parameterized Gradient Based Routing (fs-PGBR), which is fully distributed,
scalable and provides minimum latency during resource discovery. The proposed
algorithm is an extension of PGBR [41], the idea of which is inspired from
chemotaxis (a bacteria motility process). In order to solve the typical scalability
issue in existing PGBR problem, the authors have modified the hop count formula
to make it scalable. With the modifications, each node compares the shortest path
of its neighbours and evaluates it against the maximum and minimum weight of its
neighbours. It is concluded that fs-PGBR is scalable its resource discovery delays
are minimum due to its shortest path adoption policy.

2.5 Summary of All Routing and Forwarding Techniques

We have provided the survey of existing routing and forwarding techniques in data
center networks in the previous section and summarized them based on their ob-
jectives, methodologies and limitations. We now present an overall summary of all
the routing approaches mentioned above in Table 4, which shows the comparison of
these schemes based on six characteristics which are briefly described as follows:

Implementation How the routing and forwarding is performed in the proposed
algorithm i.e. in a centralized or distributed fashion?

L2/L3 Is the proposed routing and forwarding performed at Layer-2 (ethernet) or
Layer-3 (network) or Layer 2.5 (shim layer) of the TCP/IP stack in a data center
network?

Server/Switch Centric Who is involved for forwarding in a proposed routing
technique in a data center i.e. switches or servers?

Traffic What type of traffic/communication does the proposed routing protocol
support i.e. unicast, or multicast?

H/W Change Does the algorithm requires any switch or server modifications?

Routing Techniques in Data Center Networks 529

Table 4 Summary of characteristics of all routing approaches in data center networks

Characteristics Implementation L2/L3 Server/Switch
centric

Traffic H/W
change

Topology

BCube [6] Distributed L3 Server-centric Unicast No Hypercube

Dcell [8] Distributed L3 Server-centric Unicast No Custom

VL2 [5] Distributed L2.5 Switch-centric Unicast No Clos

PortLand [7] Centralized L2 Switch-centric Multicast Yes Fat-tree

M. Al-Fares [11] Centralized L3 Switch-centric Unicast Yes Fat-tree

Green Routing
[9]

Centralized L3 Switch-centric Unicast No Generic

Power-aware
Routing [13]

Centralized L3 Switch-centric Unicast Yes Generic

DARD [16] Distributed L3 Server-centric Unicast No Generic

Hedera [19] Centralized L3 Switch-centric Unicast Yes Fat-tree

D. Li [20] Centralized L3 Switch-centric Multicast Yes Generic

GARDEN [10] Centralized L3 Switch-centric Unicast No Generic

Request-routing
[15]

Centralized L3/4/5 Switch-centric Unicast No Generic

Symbiotic
routing [22]

Distributed L3 Server-centric Multicast Yes Generic

Fs-PGBR [23] Distributed L3 Switch-centric Unicast No Generic

Topology Does the routing scheme takes into account the underlying physical net-
work topology for generating paths and for forwarding? Is it designed for a particular
data center structure or is independent of any DCN topology i.e. generic.

3 Open Issues and Challenges

In spite of a reasonable amount of research in the late literature, there are still some
challenges and open issues that need to be addressed in designing efficient data
forwarding and routing schemes particularly in DCNs. Below, we outline what we
believe some of these challenges and open issues are.

Topology Independent Routing As explained in Sect. 2.1, most of the existing routing
and forwarding schemes are designed for a particular data center network topology.
There is a need to design efficient routing protocols for generic DCN topologies.
Very few routing schemes have addressed this issue of topology independent routing
and therefore, we believe that more research needs to be done in this area.

530 S. Habib et al.

Load-balancing and Reliability More robust and efficient routing schemes are re-
quired to intelligently balance the load among multiple paths between a source and
destination server in a data center network. Although, the existing schemes do par-
tially solve the load balancing issue in DCNs, but a complete solution in terms of a
routing and forwarding algorithm which is able to perform load balancing and also
provides fault-tolerance is still one of the major challenges of routing in DCNs.

Energy-efficiency Data centers consume lots of energy, therefore, energy conserva-
tion or power saving in data centers is a hot research field nowadays. Although, some
work has been done in designing efficient power-aware or energy-aware routing al-
gorithms and we have gone through some of them in this chapter, but the concept of
energy conservation in data centers is new and it is still progressing and evolving to
its maturity.

Lack of Secure Routing Protocols There is a growing need to design secure routing
protocols to protect both the control plane and the data plane of a routing infrastructure
in a data center network. Securing control plane means that the topology discovery
mechanism should be protected and data plane security relates to protecting the flow
data from tampering or modification. The control plane security of a data center
routing infrastructure can be made possible by the fact that most of the existing data
center routing schemes are tightly coupled with the underlying physical network
interconnections and topologies. However, to the best of our knowledge, there is
no secure routing protocol particularly designed for data centers with the focus of
securing data plane of a DCN routing infrastructure. We believe the reason for the
lack of research in secure routing is because data centers as a whole is still not fully
matured yet and therefore, a lot of research potential still exists in the field of routing
data and control plane security in DCNs.

4 Conclusions

In this chapter, we have discussed the problem of data forwarding and routing in
data center networks. We have defined various types of communication patterns that
are commonly used in DCNs and have provided different data center structures and
topologies that most of the existing routing techniques in DCNs make use of. We then
presented a survey of some of the existing forwarding and routing techniques in DCNs
by classifying them using parameters such as energy, traffic and topology aware upon
which many routing schemes are based. We discussed the rationale behind using
each of these parameters for our classification. We have also tabulated a comparative
summary of all the discussed routing schemes based on six characteristics. Finally,
we discussed some of the challenges and open issues in designing efficient routing
schemes in DCNs.

Routing Techniques in Data Center Networks 531

References

1. Md. Faizul Bari, Raouf Boutaba, “Data Center Network Virtualization: A Survey”, Communi-
cations Surveys & Tutorials, IEEE (Volume:15, Issue: 2).

2. S. Ghemawat, H. Gobioff, and S. Leung. “The Google File System”, in SOSP, 2003.
3. CloudStore. Higher Performance Scalable Storage. http://kosmosfs.sourceforge.net/.
4. J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” in

Proc. USENIX OSDI, December 2004.
5. A. Greenberg, J. Hamilton, N. Jain and etc., “VL2: A Scalable and Flexible Data Center

Network”, In Proceedings of ACM SIGCOMM’09, Aug 2009.
6. C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu, “BCube: A High

Performance, Server-centric Network Architecture f or Modular Data Centers,” in Proc. ACM
SIGCOMM, August 2009.

7. R. Mysore, A. Pamboris, N. Farrington and etc., “PortLand: A Scalable Fault-Tolerant Layer
2 Data Center Network Fabric”, In Proceedings of ACM SIGCOMM’09, Aug 2009.

8. C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: A scalable and fault-tolerant
network structure for data centers,” SIGCOMM 2008.

9. Yunfei Shang, Dan Li, Mingwei Xu, “Green Routing in Data Center Network: Modeling and
Algorithm Design”. Proceedings of the first ACM SIGCOMM workshop on Green networking.

10. Yan Hu, Ming Zhu,Yong Xia, Kai Chen “GARDEN: Generic Addressing and Routing for Data
Center Networks”, Cloud Computing (CLOUD), 2012 IEEE 5th International Conference.

11. M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity Data Center Network
Architecture,” in Proc. ACM SIGCOMM, August 2008.

12. Kai Chen; Chengchen Hu; Xin Zhang; Kai Zheng; Yan Chen; Vasilakos, A.V.,” Survey on
routing in data centers: insights and future directions”, Network, IEEE (Volume:25, Issue: 4)

13. Mingwei Xu, Yunfei Shang, Dan Li, Xin Wang, “Greening Data Center Networks with
Throughput-guaranteed Power-aware Routing”, Computer Networks Volume 57, Issue 15,
29 October 2013, Pages 2880–2899.

14. http://en.wikipedia.org/wiki/Content_delivery_network.
15. Md. Humayun Kabir, Eric G. Manning, Gholamali C. Shoja, “Request-Routing Trends and

Techniques in Content Distribution Network”.
16. Matthias, Thomas, M.vahlenkamp, “Bulk of interest: performance measurement of content-

centric routing”, ACM SIGCOMM Computer Communication Review—Special october issue
SIGCOMM ’12.

17. L. Chisvin and R. J. Duckworth. “Content-Addressable and Associative Memory: Alternatives
to the Ubiquitous RAM”. Computer, 22(7):51–64, 1989.

18. Wu, Xin; Yang, Xiaowei, “DARD: Distributed Adaptive Routing for Datacenter Networks”,
Distributed Computing Systems (ICDCS), 2012 IEEE 32nd International Conference

19. M.Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, andA.Vahdat. “Hedera: Dynamic flow
scheduling for data center networks”. In Proceedings of the 7th ACM/USENIX Symposium
on Networked Systems Design and Implementation (NSDI), San Jose, CA, Apr. 2010.

20. Dan Li, Jiangwei Yu, Junbiao Yu, Jianping Wu, “Exploring efficient and scalable multicast
routing in future data center networks”, INFOCOM, 2011 Proceedings IEEE.

21. Schlansker, Turner, Tourrilhes, Karp, “Ensemble routing for datacenter networks”, Architec-
tures for Networking and Communications Systems (ANCS), 2010 ACM.

22. H. Abu-Libdeh et al., “Symbiotic Routing in Future Data Centers,” SIGCOMM, 2010.
23. Julien Mineraud, Sasitharan Balasubramaniam, Jussi Kangasharju and William Donnelly, “Fs-

PGBR: a scalable and delay sensitive cloud routing protocol”, ACM SIGCOMM Computer
Communication Special october issue SIGCOM, Volume 42 Issue 4, October 2012.

24. Yunfei Shang, Dan Li, Mingwei Xu, “Energy-aware Routing in Data Center Network”.
Proceedings of the first ACM SIGCOMM workshop on Green networking.

25. R.M.Karp. Reducibility Among Combinatorial Problems, in R.E.Miller and J.W. Thatcher
(Eds.), Complexity of Computer Computations. Plenum Press, New York, 1972.

532 S. Habib et al.

26. J. Moy. OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley, 2000.
27. http://en.wikipedia.org/wiki/Breadth-first_search
28. W. J. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan

Kaufmann Publishers, 2004.
29. M. Kodialam, T. V. Lakshman, and S. Sengupta. “Efficient and Robust Routing of Highly

Variable Traffic”. In HotNets, 2004.
30. R. Zhang-Shen and N. McKeown. “Designing a Predictable Internet Backbone Network”. In

HotNets, 2004.
31. D. Thaler and C. Hopps. Multipath Issues in Unicast and Multicast Next-Hop Selection. RFC

2991, Internet Engineering Task Force, 2000.
32. J. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous, R. Raghuraman, and

J. Luo. “NetFPGA–An Open Platform for Gigabit-rate Network Switching and Routing”. In
IEEE International Conference on Microelectronic Systems Education, 2007.

33. X. Yang. “Nira: a new internet routing architecture”. In FDNA ’03: Proceedings of the ACM
SIGCOMM workshop on Future directions in network architecture, pages 301–312, NewYork,
NY, USA, 2003. ACM.

34. EVEN, S., ITAI, A., AND SHAMIR, A. “On the Complexity of Timetable and Multicom-
modity Flow Problems”. SIAM Journal on Computing 5, 4 (1976), 691–703.

35. D. Li, J. Yu, J. Yu, and J. Wu, “Exploring efficient and scalable multicast routing in future data
center networks,” in Proc. IEEE INFOCOM, Apr. 2011, pp. 1368–1376.

36. http://www.ietf.org/
37. http://datatracker.ietf.org/wg/cdni/
38. M. Day, B. Cain, and G. Tomlinson, “A Model for CDN Peering”, http://www.contentalliance.

org/docs/draft-daycdnp-model-03.html (work in progress), November 2000.
39. B. Cain, F. Douglis, M. Green, M. Hofmann, R. Nair, D. Potter, and O. Spatscheck, “Known

CDN Request-Routing Mechanisms”, http://www.contentalliance.org/docs/draft-caincdnp-
known-req-route-00.html (work in progress), November 2000.

40. P. Costa, A. Donnelly, G. O’Shea, and A. Rowstron. “CamCube: A Key-based Data Center”.
Technical Report MSR TR-2010–74, Microsoft Research, 2010.

41. S. Balasubramaniam, J. Mineraud, P. Mcdonagh, P. Perry, L. Murphy, W. Donnelly, and D.
Botvich. “An Evaluation of Parameterized Gradient Based Routing With QoE Monitoring for
Multiple IPTV Providers”. IEEE Transactions on Broadcasting, 57(2):183–194, 2011.

http://www.contentalliance.org/docs/draft-daycdnp-model-03.html
http://www.contentalliance.org/docs/draft-daycdnp-model-03.html
http://www.contentalliance.org/docs/draft-caincdnp-known-req-route-00.html
http://www.contentalliance.org/docs/draft-caincdnp-known-req-route-00.html

Part III
Cloud Computing

Auditing for Data Integrity and Reliability
in Cloud Storage

Bingwei Liu and Yu Chen

1 Introduction

As a new computing paradigm, cloud computing has enhanced the data storage
centers with multiple attractive features including on-demand scalability of highly
available and reliable pooled computing resources, secure access to metered services
from nearly anywhere, and displacement of data and services from inside to outside
the organization. Due to the low cost of storage services provided in the cloud,
compared with purchasing and maintaining storage infrastructure, it is attractive to
companies and individuals to outsource applications and data storage to public cloud
computing services.

Outsourcing data to remote data centers that are based on cloud servers is a
rapidly growing trend. It alleviates the burden of local data storage and maintenance.
Security and privacy, however, have been the major concerns that make potential
users reluctant to migrate important and sensitive data to the cloud. The fact that
data owners no longer possess their data physically forces service providers and
researchers to reconsider data security policies in the storage cloud. On one hand,
evidences such as data transmission logs can prevent disputation among users and
service providers [8–11]; on the other hand, the service providers need to convince
users that their data stored in the cloud is tamper free and crash free, and that their data
can be retrieved anytime when needed. Traditional cryptographic methods cannot
meet these new challenges in the new paradigm of cloud storage environments.
Downloading the entire data set to verify its integrity is not practical due to constraints
of the communication network and the massive amount of data.

B. Liu (�)
Department of Electrical and Computer Engineering, Binghamton University,
State University of New York, Binghamton, NewYork, USA
e-mail: bliu@binghamton.edu

Y. Chen
Department of Electrical and Computer Engineering, Binghamton University,
State University of New York, Binghamton, NewYork, USA
e-mail: ychen@binghamton.edu

© Springer Science+Business Media New York 2015 535
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_17

536 B. Liu and Y. Chen

Integrity and reliability of data in the cloud are not inherently assured. On the
one hand, cloud service providers themselves face the same threats that traditional
distributed systems need to handle. On the other hand, cloud service providers have
incentive to hide data loss or to discard parts of user data without informing the
user, since they aim at making profit and need to maintain their reputation. Trusted
third party (TTP) based auditing is promising to solve this dilemma. Therefore, a
customized auditing scheme is desired, which is expected to keep track of accesses
and operations on stored data in the cloud. The recorded information is also essential
for digital forensics or disputation resolving. In this chapter, we will discuss the
rationale and technologies that are potentially capable of meeting this important
challenge in the storage cloud.

There are technologies to verify the retrievability of a large file F in its entirety on a
remote server [1, 3, 12]. Juels and Kaliski [12] have developed Proof of Retrievability
(POR), a new cryptographic building block. The POR protocol encrypts a large file
and randomly embeds randomly-valued check blocks, called sentinels. To protect
against corruption by the prover of a small portion of F, they also employed error-
correcting codes in the POR scheme. The tradeoff of these sentinel-based schemes
is that preprocessing is required before uploading the file to remote storage. Because
sentinels must be indistinguishable from regular file blocks, POR can only be applied
to encrypted files and has a limited number of queries that are decided prior to
outsourcing.

A Provable Data Possession (PDP) scheme [1] allows a user to efficiently, fre-
quently, and securely verify that the server possesses the original data without
retrieving the entire data file and provides probabilistic guarantees of possession.
The server can only access small portions of the file when generating the proof of
its possession of the file. The client stores a small amount of metadata to verify the
server’s proof.

However, PORs and PDPs mainly focus on static, archival storage. Considering
dynamic operations in which the stored data set will be updated, such as inserting,
modifying, or deleting, these schemes need to be extended accordingly. Dynamic
Provable Data Possession (DPDP) schemes [7] aim to verify file possession under
these situations.

Due to constraints at user side such as limited computing resources, researchers
also seek solutions that migrate the auditing task to a third party auditor (TPA).
This approach will significantly reduce users’ computing burden. However, new
challenges appear. Privacy protection of users’data against external auditors becomes
a major issue. Privacy-preserving public auditing has attracted a lot of attention from
the cloud security research community.

The rest of the chapter is organized as follows. The basics of information auditing
are introduced in Sect. 2. Section 3 discusses the principles of POR and PDP schemes
and illustrates several typical implementations. Section 4 presents recent reported
efforts considering privacy-preservation in cloud storage. Section 5 discusses several
open questions and indicates potential research directions in the future. Finally, we
conclude this chapter in Sect. 6.

Auditing for Data Integrity and Reliability in Cloud Storage 537

2 Information Auditing: Objective and Approaches

The past decades have witnessed the rapid development of information technologies
and systems. Such an evolution has made system architecture very complex. Infor-
mation auditing plays the central role in effective management since it is critical to
any organization to obtain a good understanding of information storage, transmis-
sion, and manipulation. As more and more components have been introduced, the
focus and definition of information auditing are expanded. In this section, a definition
of information auditing is given first. Then, three typical approaches are discussed
that actually reflect the particular view of an auditor focusing on an organization.

2.1 Definition of Information Auditing

In past 30 years, the application of information auditing has been extended from
identifying formal information sources, which emphasizes document management,
to monitoring the information manipulations on the organizational level. As an in-
dependent, objective assurance and consulting activity, information auditing helps
to add value and improve operations. It provides clients and service providers in-
formation for internal control, risk management, and so on. Defined by the ASLIB
Knowledge & Information Management Group [6], information auditing is:

A systematic examination of information use, resources and flows, with a
verification by reference to both people and existing documents, in order
to establish the extent to which they are contributing to an organization’s
objectives.

According to this definition, information auditing could include one or more of the
following objectives:

• Identifying control requirements
• Supporting vender selection
• Reviewing vendor management
• Assessing data migration
• Assessing project management
• Reviewing/assessing/testing control flow
• Logging digital footprints for forensics

Corresponding to the objectives, the following are questions an information auditing
system is expected to address:

• Data: What information does this system store, transfer, or manipulate?
• Function: How does the system work? What has done to the data?
• Infrastructure: Where are the system components and how are they connected?

538 B. Liu and Y. Chen

• User: Who launches the work? What is the work flow model?
• Time: When do events happen? How are they scheduled?
• Motivation: Why are functions executed? What are the goals and strategies?

2.2 Three Approaches of Information Auditing

Considering the complexity of today’s information systems, an IT manager may be
interested in certain components of an organization instead of all components. To
allow more dimensions to auditing, an auditor can adopt particular views against
an organization and variant approaches can be taken. Three approaches are sug-
gested by researchers: strategic-oriented, process-oriented, and resource-oriented.
The strategic-oriented approach focuses on the routines by which an organization
achieves its strategic objectives under the constraints of available information re-
sources. The expected output in this dimension would be an information strategy for
the organization. Typically a strategic-oriented information auditing system should
consider the following questions:

• Goal: What is this system for?
• Approaches: How can we achieve this goal?
• Resources: What information/infrastructure resources do we have/use?
• Constraints: Is there any resource/performance gap/constraints?
• Essential Concerns: What are the most essential concerns?

The process-oriented approach focuses on a process, which is a sequence of activities
the system takes to achieve the expected outcomes. Processes reflect system char-
acteristics and reveal how information flows and how functions cooperate. There
are four main types of processes: core processes, support processes, management
processes, and business network processes [14]. The key output would include
processed-based mapping and information flow/resources analysis. Typical questions
[6] a process oriented information auditing system will answer include:

• Activities: What do we do?
• Approaches: How do we do it?
• Attestation: How can we prove we do what we say we will do?
• Resources: What information resources do we use and require?
• Facilities/Tools: What systems do we use?
• Concerns: What problems do we experience?

The resource-oriented approach aims at identifying, classifying, and evaluating
information resources. Instead of associating resources with a strategic goal or
an operational process, the major purpose of the resource-oriented approach is
to allow auditors to manage or categorize resources according to strategic impor-
tance or according to their ability to support critical processes. Questions [6] that
resource-oriented information auditing systems should address include:

Auditing for Data Integrity and Reliability in Cloud Storage 539

• Identification: What are the information resources?
• Utilization: How are the information resources used?
• Management: How does the system manage and maintain them?
• Policy: What are the regulations of utility?
• Priority: Which are the most critical information resources? Which are useless?

Considering the properties and security expectations of cloud storage, process-
oriented auditing is the most suitable candidate among the three approaches.
Information collected in this dimension will provide sufficient evidence for both
digital forensics and the reputation estimation of the data storage service provider.
However, there is no reported effort that tries to develop such a process-oriented
auditing system for cloud computing services. We hope this book chapter can inspire
more activities in this important area.

3 Auditing for Data Integrity in Distributed Systems

One of the important applications of distributed storage service systems is to store
large research data files that are not frequently accessed but cannot be reproduced
because the devices that collected the data are unavailable or because of the expense.
A client might choose to store such data in remote a storage system provided by
trusted professional services. Usually the data files will be replicated in case one of
the storage servers is unavailable because of maintenance or disk damage. For each
server that possesses the client’s data files, both the client and the service provider
need to assure that each file is retrievable in its entirety whenever the client needs.
It is not practical to download the entire file to verify its integrity when dealing with
large archive file. Users (data owners) need to be assured that their outsourced data
is not deleted or modified at the server, without having to download the entire data
file.

In this section, we investigate the general categories of strategies for auditing data
integrity in distributed systems. Then three popular schemes are discussed in more
details.

3.1 Strategies of Auditing Data Integrity

A straightforward way to assure the integrity of our data is to utilize message authen-
tication code (MAC). The client, who wants to use the storage service of a server,
calculates a short MAC for each file block, save them in local storage and upload his
data to the server. To increase the security of data, the client can choose to encrypt the
data before MAC calculation. When the client needs to check the server’s possession
of the data, he simply asks the server to calculate MACs for all file blocks and send
them as a proof of possession. The obvious problem of this simple strategy is the huge
overheads of computation and communication. In order to make sure the entirety of

540 B. Liu and Y. Chen

data, the server needs to access all file blocks, executing expense computation when
the file is large. The communication cost to transmit all MACs is also unacceptable.

More practical strategies in auditing data integrity can be divide into two
categories:

1. Sentinel Embedding. The strategy is to utilize sentinels produced by the client to
secure data integrity. Sentinels are created by a one-way function. By appending
the predefined number of sentinels to the encoded file and permuting the resulting
file, the client is able to check fixed number of sentinels during each challenge
period to the server. Since the server has no knowledge about the position of these
sentinels, it cannot modify any block of the client’s data without being detected
in one or several challenges that could ask for the entirety of any block.

2. Random Sampling Authenticators. The other way to audit the integrity of data
is based on authenticators. An authenticator is produced for each file block be-
fore uploading data to the server. The client only stores some metadata, such as
cryptographic keys and functions, and uploads his data along with authenticators
to the server. The key of this strategy is the algorithm that we use to calculate
the authenticators. This algorithm should be able to verify the integrity in an
aggregating way so that the proof from the server will not be proportional to the
number of blocks that we want to check.

Juels and Kaliski [12] proposed the Proof of Retrievability (POR) based on sentinel
embedding. Although it is a strong protocol for data integrity, there is one inevitable
problem. The number of sentinels is predefined, causing a fix number of challenges.
This is unacceptable in some applications. In order to obtain higher confidence of
data integrity, the entire file needs to be retrieved to embed more sentinels.

Ateniese et al. [1] on the other hand suggested random sampling in their Prov-
able Data Possession scheme. The rest schemes that we shall discuss in this chapter
[17, 18, 20] are all constructed under similar idea, with various choices of authenti-
cator algorithms for specific purposes, such as privacy preservation or dynamic data
operations etc.

One problem of random sampling schemes is that they cannot assure in 100 %
confidence. Ateniese et al. [1] suggested that checking 460 blocks in each challenge is
able to achieve 99 % confidence to detect server misbehavior if 1 % of data is changed.
This seems good enough for most applications, but still needs to be improved for
more flexible storage services.

In the following subsections, we focus on POR [12], PDP [1] and Compact POR
[17] for distributed storage system. Next section further discusses the challenges in
Cloud storage services and efforts [18, 20] to solve them.

3.2 Proof of Retrievability

Juels and Kaliski [12] proposed a cryptographic building block known as a proof of
retrievability (POR) for archived files. POR enables a user (Verifier) to determine

Auditing for Data Integrity and Reliability in Cloud Storage 541

Fig. 1 Schematic of a POR System [12]

that an archive (Prover) “possesses” a file or data object F. A successfully executed
POR assures a Verifier that the Prover presents a protocol interface through which
the Verifier can retrieve F in its entirety.

Figure 1 shows the schematic of a POR. Two parties are involved in this model:
the archive server as the Prover and the owner of the archived file or the user as the
Verifier.

At theVerifier side, a key generation algorithm and an encoding algorithm are used
to preprocess the file F. The key generation algorithm produces a key to encode the
file F. This key should be independent of F and is stored by the Verifier. The encoding
algorithm transforms raw file F into encoded file F̃ by randomly embedding a set of
randomly-valued check blocks called sentinels.

After storing the encoded file into the Prover, the Verifier challenges the Prover by
specifying the positions of a collection of sentinels and asking the Prover to return the
associated sentinel values. If the Prover has modified or deleted a substantial portion
of F, then with high probability it will also have suppressed a number of sentinels. It
is therefore unlikely to respond correctly to the Verifier. To protect against corruption
by the Prover of a small portion of F, a POR scheme also employs error-correcting
codes.

A POR system (PORSYS) consists of six algorithms: keygen, encode, ex-
tract, challenge, verify and respond. Table 1 summarizes inputs, outputs of these
algorithms and provides a brief description of each algorithm.

Definition 1 Algorithm: An algorithm with n inputs and m outputs is denoted as

A(input1, · · ·, inputn) → (output1, · · ·, outputm)

where A is the name of the algorithm.

542 B. Liu and Y. Chen

Table 1 Six Algorithms of a POR System [12]

Role Algorithm Description

Verifier keygen[π] → κ Generate a secret key κ , could be a public/private
key pair. For security concern, this key can be
decomposed into multiple keys

encode(F ; κ ,α)[π] → F̃η) Encode the original file with κ into F̃η, where η
denotes the unique file id (handle) of F̃ in the file
system

extract(η; κ ,α)[π] → F Extract the original file F by a sequence of chal-
lenges to the Prover

challenge(η; κ ,α)[π] → c Take as input the file handle η, secret key κ , and
state α. Output a challenge value c

verify((r , η); κ ,α) → b ∈ {0, 1} Determine whether the receiver response r is valid
to challenge c. If success, output 1, otherwise
output 0

Prover respond(c, η) → r Generate a response to a challenge c

In these algorithms, α denotes a persistent state during a Verifier invocation, andπ
denotes the full collection of system parameters. π should at least include the security
parameter j. In particular, we can also include the length, formatting, encoding of
files and challenge/response sizes in π .

The encode algorithm is the core of this system since all operations and data
for verification are accomplished in this algorithm. The basic steps include error
correction, encryption, sentinel creation and permutation.

Figure 2 shows the file structure changes in POR system. Suppose F with a
message-authentication code (MAC) has b blocks, denoted as: F [1], · · ·,F [b]. It
is divided into s chunks, each has k l-bit blocks. Thus we can view it as an s × k
matrix, where each element is a block. For simplicity, the error-correcting code
(ECC) also operates over l-bit symbols and sentinels, and l-bit values computed by
a one-way function have l-bit length. This basic scheme adopts an efficient (n, k, d)-
error correcting code with even-valued d . This code has the ability to correct up to
d/2 errors. After applying ECC toF , each chunk is expanded to n blocks, resulting in
a new file F ′ = (F ′[1],F ′[2], · · ·,F ′[b′]), where the number of blocks is b′ = bn/k.
The encryption step applies a symmetric-key cipher E to F ′, yielding file F ′′.

A sentinel is created by a suitable one-way function f, taking as input the key
generated by keygen and the index of this sentinel. Suppose we have s sentinels.
These sentinels are appended to F ′′, yielding F ′′′ with b′ + s blocks. Finally, in the
encode algorithm, we apply a permutation function to F ′′′, obtaining the output file
F̃ , where F̃ [i] = F ′′′[g(κ , i)].

The auditing procedure involves challenge, response and verify algorithms.The
Verifier use a state α to track the state of each challenge. For simplicity, we let the

Auditing for Data Integrity and Reliability in Cloud Storage 543

Fig. 2 File blocks changes in the encode step of sentinel POR system

Verifier stateα initially be 1, incrementing it by q during each challenge1. The current
value of α indicates that in last challenge phase the client requested sentinel position
from α − q to α − 1. The positions of sentinels that the Verifier wants to check are
simply generated by the permeation function with two inputs: the secret key and the
position of sentinel before applying permutation, that is b′ +α. The Prover then send
the Verifier requested blocks (in the Prover’s point of view). The Verify uses the one-
way function f to calculate all sentinels that are being checked and compare with
the Prover’s response. In this way, the Verifier can detect the Prover’s misbehavior
in a relatively low cost of checking a small number of sentinels.

The overhead of POR mainly includes the storage for error-correcting code and
sentinels, as well as computation of error-correcting code and permutation opera-
tions. Several optimization can be done to improve POR’s performance. For example
the length of response can be further hashed to a compact fixed length proof and the
challenge can also be compressed by passing a seed to the Prover instead of all index
of sentinel blocks. However, the major problem of this scheme is the limited number
of challenge once the sentinel embedded file is upload to the prover.

3.3 Provable Data Possession

PDP was first proposed by Ateniese et al. [1]. Earlier solutions for verifying a server
retaining a file need either expensive redundancy or access to the entire file. The PDP
model provides probabilistic proof of the possession of a file with the server accessing
small portions of the file when generating the proof. The client only stores fixed size

1 In [12], the state α is not clearly defined. This interpretation of α is based on the σ in challenge
function in Sect. 3.1 of [12].

544 B. Liu and Y. Chen

of metadata and consumes a constant bandwidth. The challenge and the response
are also small (168 and 148 bytes respectively). This subsection will introduce the
PDP scheme in detail, including the definition and two enhanced versions of PDP
algorithms: S-PDP and E-PDP.

3.3.1 Preliminaries

The PDP schemes are based on RSA algorithm. Readers are referred to [16] for more
information about RSA algorithm.

First we choose two safe primes p and q that are large enough. Let N = pq, all
exponentiations are calculated modulo N . We denoted ZN = {0, 1, · · ·,N − 1} and
Z

∗
N is the set of all numbers in ZN that are relatively prime to N . That is

Z
∗
N = {a ∈ ZN : gcd(a,N) = 1}

Definition 2 Quadratic Residue: An integer a ∈ ZN is a quadratic residue
(mod N) if x2 ≡ a mod N has a solution. Let QRN be the set of all quadratic
residues of ZN and g be a generator ofQRN .

In the RSA algorithm [16], a large integer d is randomly chosen such that it is
relatively prime to (p − 1)(q − 1). The other integer e is computed so that

ed ≡ 1 mod (p − 1)(q − 1).

When using RSA-based algorithm for verification, there is a slight difference in
choosing e and d in that

ed ≡ 1 mod
p − 1

2
· q − 1

2
.

Definition 3 Sets of Binary Numbers: The set of all binary numbers with length
n is denoted by {0, 1}n. Specifically, {0, 1}∗ is the set of arbitrary length of binary
numbers.

When we want to randomly choose a number k from a set S, we use the notation

k
R← S. For example, k

R← {0, 1}κ means k is a number randomly chosen from the
set of all κ-bit binary numbers.

Definition 4 Homomorphic Verifiable Tags (HVTs): An HVT is a pair of values
(Tmi ,Wi). Wi is a random value obtained from the index i. Tmi will be store on the
server.

As building blocks of PDP, HVTs have the properties of unforgeable and blockless
verification. The PDP scheme use HVTs as the verification metadata of file blocks.

Finally, we introduce four cryptographic functions:

• h : {0, 1}∗ → QRN is a secure deterministic hash-and-encode function.
• H : {0, 1}∗ → ZN is a cryptographic hash function.

Auditing for Data Integrity and Reliability in Cloud Storage 545

Fig. 3 Protocol for provable data possession [1]

• f : {0, 1}κ × {0, 1}log2 n → {0, 1}� is a pseudo-random function (PRF). Specifi-
cally, we use fk(x) to denote f (k, x).

• π : {0, 1}κ × {0, 1}log2 n → {0, 1}log2 n is a pseudo-random permutation (PRP).

A hash function often takes as input an concatenation of two binary strings. We use
s1||s2 to denote the concatenation of s1 and s2.

3.3.2 Defining the PDP Protocol

The PDP protocol involves a client, denoted as C, who wants to store a large file in
a remote server and a server, denoted as S, who provides storage services. Fig. 3
depicts the PDP protocol in [1].

The PDP protocol consists of four polynomial-time algorithms: KeyGen, Tag-
Blcok, GenProof and CheckProof. Table 2 summarizes these algorithms. Among
them, KeyGen, TagBlcok and CheckProof are executed on the client side. The
server need only to run the GenProof algorithm to generate a proof that it is
possessing the client’s file upon receiving a challenge from the client.

A file F is divided into n blocks, that is F = (m1, · · ·,mn). If not explicitly stated,
the letter n always means the number of blocks in file F. At the beginning of the setup
phase, F is pre-processed by the client C into a new file F′. This process could include
encrypting the file and generating a tag for each file block. The client then uploads
F′ to the server S. To verify whether the server is storing the entire file, the client
then periodically generates a challenge and sends it to the server. Upon receiving a
challenge, the server computes a proof of possession as a response to this challenge
and sends back to the client. Finally, the client can check the server’s response and
verifies whether the server possesses the correct file.

A PDP protocol consist of two phases: the Setup Phase and the Challenge Phase.

• Setup Phase:
The Setup Phase at the client side includes generation of necessary keys (public
key and private key), calculation of a tag for each file block, transmission of

546 B. Liu and Y. Chen

Table 2 Four Algorithms of a PDP System [1]

Role Function Description

Client KeyGen(1κ) → (pk, sk) Generate a secret key pair (pk, sk), taking
as input a secret parameter κ

TagBlock(pk, sk,m) → Tm Generate the verification metadata Tm for
the input file block m

CheckProof(pk, sk, chal, P)) → {0, 1} Validate a proof of possession P . IF P is a
correct proof of possession, output 1, else
output 0

Server GenProof(pk, F, chal,Σ) → P Generate a proof of possession P for given
challenge chal

the processed file to the server and finally deletion local copy of the file. These
operations are all executed on the client side. In particular, this phase consists of
the following steps:
1. KeyGen(1κ) → (pk, sk) generate secret keys.
2. Apply TagBlock to each file block mi , i = 1, · · ·, n, resulting in n tags Tmi .
3. Send {pk, F,Σ = (Tm1 , · · ·, Tmn)} to S.
4. Delete F and Σ in local storage.

• Challenge Phase:
In the Challenge Phase we use a challenge-response style to verify the integrity of
the client’s file. The challenge message specifies a predefined number of blocks,
with their indices. The server needs to prove it is possessing all these blocks by
calculating a proof P using all block data. The necessary steps of this phase are:
1. C generates a challenge chal, specifying the set of blocks that it wants S to

prove that it possesses these blocks.
2. C sends chal to S.
3. S runs GenProof to get the proof of possession P
4. S sends P to C.

Considering the tradeoff between security and efficiency, Ateniese et al.[1] intro-
duced a secure PDP scheme (S-PDP), which has a strong data possession guarantee,
as well as an efficient PDP scheme (E-PDP), providing better efficiency by means
of a weaker data possession guarantee. The next two subsections will discuss these
two schemes in detail.

3.3.3 The Secure PDP Scheme (S-PDP)

This section provides the construction of the Secure PDP Scheme (S-PDP) [1], in-
cluding implementation of each algorithm and the two phases. The S-PDP is able to
assure that the server possesses all blocks that are specified in the challenge message.

The key generation algorithm produce the public key pk = (N , g) and the secret
key sk = (e, d, v). The RSA modulus N is the product of two distinct large primes
p and q. Let g be a generator of QRN . The public key pk is then formed by N

Auditing for Data Integrity and Reliability in Cloud Storage 547

and g. Among the three integers in the secret key v is randomly chosen from {0, 1}κ .
d is used to generate tags (authenticators) in TagBlock algorithm and e is used in
CheckProof algorithm. pk and sk should be stored on the client side.

For each block of data, mi , the TagBlock algorithm calculates a tag using the
data as a number and its index. An index related number Wi is first generated by
concatenating v with the index i, denoted as Wi = v||i. The tag of this block Tmi is
then computed as

Tmi = (h(Wi) · gm)d mod N.

After getting all tagsΣ = (Tm1 , · · ·, Tmn), the client sends them to the server together
with the original file F and the public key pk. That is {pk, F, Σ} are sent to the
server. The client then deletes F and Σ on its local storage. This finishes the Setup
Phase.

In the Challenge Phase, a challenge chal = (c, k1, k2, gs) is generated as follows.
First of all, we randomly choose three integers: k1,k2 and s. k1 and k2 are selected
from {0, 1}κ , serving as keys for the pseudo-random permutation π and the pseudo-
random function f respectively. The last number s belongs to Z

∗
N and is used to

mask the generator g. The challenge message is then formed as (c, k1, k2, gs), where
c is the number of blocks that each challenge will pick and gs = gs mod N .

At the server side, there is only one algorithm GenProof that is executed upon
receiving a challenge requested by the client. For each number j from 1 to c, an
index ij = πk1 (j) and a mask aj = fk2 (j) are calculated. The file blocks that the
client want to check are then indicated by {i1, i2, · · ·, ic}. Finally, two numbers T and
ρ are computed as the proof for this challenge:

T =
c∏
j=1

T
aj
mij

, ρ = H (g
a1mi1+···+acmic
s mod N).

The motivation for putting the coefficients aj in the challenge phase is to strengthen
the guarantee that S possesses each block queried by the client. In each challenge
phase, there is a randomly chosen key for calculation of these coefficients. S cannot
store combinations of the original blocks to save storage cost. Since the proof of
possession has a constant length regardless the number of blocks being requested,
this scheme can maintain constant communication cost in the challenge phase.

Once T and ρ are ready, the server response the client with its proof to chal,
P = (T, ρ). The client runs GenProof to check the correctness of the proof. First,
it computes ij , aj andWij as the server did. Then τ = T e is divided by h(Wij)

aj for
each j from 1 to c. This actually results in

τ = ga1mi1+···+acmic mod N.

If the proof is valid, the following equation should be true:

H (τ s mod N) = ρ.

548 B. Liu and Y. Chen

Table 3 Comparison between S-PDP and E-PDP [1]

Algorithm S-PDP E-PDP

GenProof aj = fk2 (j) delete

T = (∏c
j=1 T

aj
ij

)
mod N T =∏c

j=1 Tij mod N

ρ = H (g
a1mi1 +···+acmic
s mod N) ρ = H (g

mi1 +···+mic
s mod N)

CheckProof ij = πk1 (j),Wij = v||ij , aj = fk2 (j) ij = πk1 (j),Wij = v||ij
τ = (τ/h(Wij)aj) mod N τ = [T e/(h(wi1) · · ·h(wic))] mod N

3.3.4 The Efficient PDP Scheme (E-PDP)

The Efficient Provable Data Possession (E-PDP) [1] scheme achieved a higher per-
formance at the cost of a weaker guarantee by eliminating all coefficients aj in the
GenProof and CheckProof algorithms. Table 3 shows a comparison between S-PDP
and E-PDP. As all coefficients aj = 1, the E-PDP scheme reduces the expensive ex-
ponential computation. However, the server S can only possess the sum of the blocks
mi1 , · · ·,mic for a challenge. In order to completely pass the challenge phase every
time, the server S needs to compute every combination of c blocks out of n blocks,
that is

(
n

c

)
. The client can choose values of n and c such that make it impractical for

the server to simply store all sums.

3.4 Compact Proof of Retrievability

Because of the predefined number of sentinels, the sentinel-based POR scheme has
a limited number of possible challenges. Based on Juels and Kaliski’s work [12],
Shacham and Waters [17] introduced two new schemes that achieved public and
private verifiability, with compete proof of security.

Shacham and Waters [17] proposed two new proof of retrievability schemes, with
private and public verifiability respectively. The main advantage of SW PORs is
the unlimited number of queries. The private verification scheme, based on pseudo-
random functions (PRFs), has the shortest response of any POR scheme (20 bytes)
with the cost of a longer query. The second scheme used short signatures introduced
by Boneh, Lynn and Shacham (BLS) [5] to verify the authentication of data in remote
servers, hence assuring public verifiability is secure. At an 80-bit security level, this
scheme has the shortest query (20 bytes) and response (40 bytes)of any POR scheme.

An important contribution of [17] is that it provided a complete security proof for
both schemes. Interested readers can consult this paper for more details.

3.4.1 System Model

Shacham and Waters’s system model has similar functions with Juels and Kaliski’s
POR description in [12], but modules were redefined and more details were added. In

Auditing for Data Integrity and Reliability in Cloud Storage 549

this model, key generation and verification procedures no longer maintain any state.
In addition, Shacham and Waters’s protocols [17] allow challenge and response to
be arbitrary.

There are two parties in this system, the Verifier and the Prover. The Verifier could
be the data owner itself or a third party auditor. The prover is the storage server.
Similar to POR, a fileM with size b is divided into n blocks, each further split into
s sectors. Thus, we can refer to a sector asmij , 1 ≤ i ≤ n, 1 ≤ j ≤ s.M can also be
treated as an n× s matrix {mij }. Each sector is an element of Zp = {0, 1, · · ·,p− 1},
where p is a large enough prime number.

Our description of these algorithms in the following sections about public and
private verification will be slightly different with [12] in input and output parameters.
We redefine part of these algorithms to maintain internal consistency. We hereby
ignore all input and output parameters since they vary in the public scheme and the
private scheme and focus on the functionalities of these algorithms. There are four
algorithms in the system model:

• KeyGen. The key generation algorithm. The Verifier runs this algorithm to gen-
erate necessary private keys (for private verification) or key pairs (for public
verification) for other algorithms.

• Store. The file processing algorithm. The Verifier runs this algorithm to produce
the processed fileM∗ and a file tag t . The processed fileM∗ is stored in the server.
The file tag t is saved in the data owner’s local storage or at the server side depends
on the desire of service agreement.

• Prove. The proving algorithm. The Prover runs this algorithm to generate a proof
of retrievability according the index indicated in the challenge message sent by
the Verifier.

• Verify. The verifying algorithm. If it is a third party auditor who is running this
algorithm, the file tag need to be retrieved and verified first. Then the challenge
message is produced. When the prover sends the response message back, the
Verify algorithm continues to verify the response. After running this algorithm,
the Verifier will know whether the file is being stored on the server and can be
retrieved as needed. If the algorithm fails, it outputs 0. The Verifier can then use
an extractor algorithm to attempt to recover the file.

This scheme still works in two phases. In the setup phase the data owner runs Key-
Genand Store to process the file and upload the resulting file to the server (Prover).
The challenge phase involves the Verifier (data owner or TPA), running Verify, and
the Prover, running Prove.

3.4.2 Private Verification Construction

The construction of a private verification consists of the implementation of the four
functions that are discussed in Sect. 3.4.1.

550 B. Liu and Y. Chen

Since this scheme is for private verification purposes, we only need a secret key
sk = (kenc, kmac) in the KeyGen algorithm, where kenc is an encryption key and kmac
is an MAC key.

In the Store algorithm, the file M is preprocessed with an erasure code before
applying the following operations. This erasure code should be able to recover the
file even the Prover erases some portion of the file. The processed file is denoted as
M∗ as a part of output. This file is divided into n blocks, each has s sections. Hence
we can writeM∗ = {mij }, (i = 1, · · ·, n; j = 1, · · ·, s). To detect any modification to
the file by the Prover, the Verifier (data owner) calculate an authenticators

σi = fkprf (i) +
s∑
j=1

αjmij , i = 1, · · ·, n

for each block, where αj are randomly chosen from Zp. These authenticators provide
strong assurance that the Prover cannot forge any one of them since it has no knowl-
edge of the PRF as well as the PRF key. A file tag t is also computed to include PRF
key and αj . These numbers are concatenated and encrypted first. Then the encrpyted
bit string is appended to the number of blocks n, forming an initial tag t0. Finally, the
file tag is produced by appending the MAC of t0, keyed with kmac, with itself. The
Verifier only stores sk and outsources the processed file M∗, authenticators {σi}ni=1
and the file tag t to the Prover.

In the Verify algorithm, the Verifier sends an l-element query Q = {(i, vi)},
1 ≤ i ≤ n, specifying the index of blocks that are to be verified, to the Prover. In
each pair of (i, vi), i is a random index of file block and vi is randomly chosen from
B, a subset of Zp. For simplicity, we can let B = Zp. There are totally l pairs inQ,
suggesting that the set of all i, I = {i : (i, vi) ∈ Q}, has the size l.

In the Prove algorithm, the Prover uses vi as coefficients when calculating a proof
for a specific Q. This also prevents the Prover from using a previously calculated
proof. The response r = {μ1, · · ·,μs , σ } is produced as follows. For each 1 ≤ j ≤ s,
we let μj = ∑i∈I vimij . The last number σ is simply the sum of all products of vi
and σi , that is σ = ∑

i∈I viσi . Now the Prover have all it needs for the response r
and send it to the Verifier.

Back to the Verify algorithm, upon receiving r , the Verifier checks if

σ =
∑
i∈I

vifkprf (i) +
s∑
j=1

αjμj

is true. If it is, there is a high probability thatM is retrievable.
As shown in the protocol, this private verification scheme has less computation

overhead than PDP since multiplication is the only operation except addition.

3.4.3 Public Verification Construction

A public verifiable POR scheme allows anyone who has the public key of the data
owner to query the Prover and verify the return response. With this protocol, user

Auditing for Data Integrity and Reliability in Cloud Storage 551

offloads the verification task to a trusted third party auditor. The public verification
scheme in [17] used BLS signatures [5] for authentication values instead of utilizing
PRF.

In this public verification construction, Shacham and Waters employ bilinear map
in the verify algorithm V . We briefly introduce bilinear map here. Interested readers
are referred to [4, 5] for more details. Let G1, G2 and GT be multiplicative cyclic
groups of the same prime order p. g1 is a generator of G1 and g2 is a generator of
G2. A bilinear map is a map e : G1 ×G2 → GT with the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua , vb) = e(u, v)ab.
2. Non-degenerate: e(g1, g2) �= 1

In this scheme, we let G = G1 = G2.
The KeyGen algorithm now needs a public and private key pair. At first a signing

key pair (spk, ssk) is generated. The public key pk = (v, spk) and the secret key
sk = (α, ssk), where α is randomly chosen from Zp and v = gα .

The file tag t contains a name ∈ Zp and s randomly chosen uk ∈ G, k = 1, · · ·, s
as well as the number of blocks n. These data are concatenated, resulting t0 =
name||n||u1|| · · · ||us , and appended by its signature keyed with ssk. The final file
tag is t = t0||SSigssk(t0). uk is also used for authenticator calculation. For each i
from 1 to n, the authenticator of blockmi is σi = (H (name||i) ·∏s

j=1 u
mij
j)α , where

H : {0, 1}∗ → G be the BLS hash [5]. After calculating the above information, the
user then sends the erasure coded fileM∗ together with {σi} to the Prover.

The challenge phase is almost the same as the private verification scheme except
that σ in the response message is changed to the sum of σ vi

i instead of viσi before.
Of course, the verification equation need to be modified since bilinear group is used
here. The user now check whether the following condition is held:

e(σ , g) = e
(∏

(i,vi)∈Q
H (name||i)vi ·

s∏
j=1

u
μj
j , v

)
.

4 Auditing in Cloud Storage Platform

Cloud computing is migrating traditional computing services to remote cloud service
providers. Cloud storage has advantages such as high flexibility, ultimately low
price and relatively high data security for a wide spectrum of users. However, not all
problems with traditional distributed storage are solved by cloud computing. Security
is still the major concern, even though the cloud providers all claim they can protect
our data in more secure way than the users can do themselves.

This section analyzes changes brought by cloud computing in data storage and
introduces researchers’ attempt to solve these problems.

552 B. Liu and Y. Chen

4.1 Challenges

Although there are reported efforts in information auditing for distributed systems,
the special features in the cloud storage platforms necessitate customized design
due to new challenges. This subsection briefly lists the problems that need to be
considered.

1. Dynamic Data Operations. Clients in cloud services might not have files of large
size such as the original PDP and PoR schemes assume, but the number of files
is greater, and the flexibility requirements are stronger. Files in the cloud storage
will be changed more frequently. Modification, deletion and insertion need to be
considered in the design of storage system.

2. Public Verifiability. Computing devices that cloud clients have might not be
powerful enough to accomplish the computational task of integrity auditing of
their own data in cloud storage. Meanwhile, these clients’ end devices might have
multiple tasks to do, which cannot allow limited computing resources consumed
by this single task. It is desired to offload the verification procedure to a third
party auditor (TPA), which has sufficient computing resources and expertise in
data auditing. It is expected to make the verification protocol a public verifiable
one.

3. Privacy Preserving. This seems to conflict with the public verifiability require-
ment at first glance. How can the TPA execute auditing protocol and yet not
be trusted? Studies in preserving privacy in using TPAs for auditing purposes
showed that it is feasible and practical to design a verification protocol for un-
trusted TPAs. Using this protocol, file blocks should not be retrieved in order to
verify the integrity of files.

4. Computational Efficiency. A cloud client can be a portable device like PDA or
smartphone which usually has weaker computation ability and limited commu-
nication bandwidth. Data auditing protocols in cloud storage should try to reduce
both computation and bandwidth as much as possible.

5. Multiple Files. A cloud client’s storage request could consist of large number of
files instead of a single large file.

6. Batch auditing. A cloud server can be audited by a TPA for thousands of users’
files. In this case, if aggregating multiple proofs as a single message to the TPA
is applicable, the communication burden of the protocol could be significantly
reduced to an acceptable level.

In the following subsections, we shall discuss more schemes trying to tackle some
of these problems.

Auditing for Data Integrity and Reliability in Cloud Storage 553

4.2 Public Verifiability

There is a variant of PDP scheme [1] that can support public verifiability. A PDP
scheme with public verifiability property allows anyone to challenge the server for
the possession of the specific file as long as they have the client’s public key.

To support public verifiability, the following changes are made to the S-PDP
protocol:

1. Besides N and g, the Client should make e public.
2. A PRF ω : {0, 1}κ × {0, 1}log2 n → {0, 1}� is used to generate Wi by randomly

choose a v from {0, 1}κ as a key. That is,Wi = ωv(i).
3. The client makes v public after the Setup phase.
4. The challenge chal in GenProof and CheckProof no longer contains gs or s.
5. In GenProof, the server computes M = a1mi1 + · · · + acmic instead of ρ and

returns V = (T,M).
6. In CheckProof, the client checks gM = τ and |M| < λ/2.

In sect. 3.4, we also saw a public verifiable POR scheme.

4.3 Dynamic Data Operations Support

The PDP scheme [1] did not employ dynamic data operations like modification,
deletion and insertion due to the original motivation to verify integrity of archive
files, which will not involve many dynamic operations. Similarly, the POR scheme
[12] cannot support data dynamics due to the verification mechanism of embedding
pre-computed sentinels. However, these operations are vital features for cloud storage
services.

Ateniese et al. [2] propose a dynamic version of PDP scheme . The extended
scheme achieved higher efficiency because it only relied on symmetry-key cryptog-
raphy. But the number of queries was limited, hence, the scheme cannot support
fully dynamic data operations. Erway et al. [7] introduced a formal framework for
dynamic provable data possession (DPDP) . Their first scheme utilized authenticated
skip list data structure to authenticate tag information of blocks, thereby eliminating
the index information in tags. They also provided an alternative RSA tree based
construction, which improved the detection probability at the cost of an increased
Server computation burden.

Wang et al.[20] extended the Compact POR in Sect. 3.4 to support both public
verifiability and data dynamics in cloud storage. We’ll focus on this model to discuss
dynamic data operation support. Table 4 shows the six algorithms in [20].

In cloud data storage, Clients could be portable devices that have limited compu-
tation ability. A third party auditor is necessary for the verification procedure. The
system we shall consider in this section includes three entities: Client, Cloud Storage
Server and the prover, a Third Part Auditor (TPA). The TPA is trusted and unbiased
while the Server is untrusted. Privacy preserving is not considered in [20].

554 B. Liu and Y. Chen

Table 4 Algorithms of Extended POR System [20]

Role Algorithm Description

Client KeyGen(1κ) → (pk, sk) This algorithm is the same as in SW’s
model in sect. 3.4. It generates a se-
cret key pair (pk, sk), taking as input a
secret parameter κ

SigGen(sk,F) → (Φ, sigsk(H (R))) Generates the signature set Φ = {σi}
on file blocks {mi} and sign the root R
of a Merkel hash tree sigsk(H (R))

VerifyUpdate(pk, update, Pupdate) →
{(1, sigsk(H (R′))), 0}

Verifies the update operation

Client/TPA VerifyProof(pk, chal, P) → {0, 1} Validate a proof P . IF P is correct,
output 1, else output 0

Server GenProof(pk, F, chal,Σ) → P Generates a proof P for given challenge
chal

ExecUpdate(F ,Φ, update) →
(F ′, Φ ′, Pupdate)

According to the type of “update” re-
quest from the Client, this algorithm
executes the corresponding update op-
eration and outputs the updated file F ′,
signatures Φ ′ and proof P

The Client encodes the raw file F̃ into F using Reed-Solomon codes. The file F
consists of n blocksm1, · · ·,mn,mi ∈ Zp, wherep is a large prime. e : G×G→ GT
is a bilinear map, with a hash functionH : {0, 1}∗ → G serving as a random oracle.
g is the the generator of G. h is a cryptographic hash function.

In order to accomplish dynamic dada operation, the well studied Merkle hash tree
(MHT) [13] is a good choice to assure the value and positions of data blocks. A MHT
is a binary tree with all data blocks as leaf nodes. A parent node is the hash of the
concatenation of its two children. This procedure continues until reach a common
root node. All dynamic operations will result in a update of MHT by recalculating
every node that is in the path from affected blocks to the root. The sibling data that
is needed for a recalculation is called auxiliary information.

The verification of data relies on BLS hash [5] and bilinear map as in [17]. The
differences here reside in file tag, authenticators calculation, components of a proof
and the verification of a proof. The file tag is shorter in that it only include the
concatenated name, number of blocks and a random value for authentication purpose.
A proof includes four parts: a block data related value, a authenticator related value,
the auxiliary information set and the signature of the MHT root’s BLS hash. When
computing an authenticator, the SigGen algorithm no longer take into account the
index or name as in [1] or the public scheme of [17]. It is simply σi = (H (mi) ·umi)α ,
where u is a random value and α is a part of the secret key. The bilinear map e is
used twice in VerifyProof, one to authenticate MHT root and the other to verify the
rest of the proof.

Auditing for Data Integrity and Reliability in Cloud Storage 555

We now consider three types of dynamic data operations: Modification, Inser-
tion and Deletion. The advantage of MHT lies in the convenience in modifying the
structure of the tree, hence embedding dynamic data operations into the scheme.

• Modification. The Client wants to replace a block block. First, it computes the
signature for new block and a update message is sent to the Server. The Server runs
ExecUpdate to update the block. The update procedure includes replacement of
new block, new authenticator and the leaf node in MHT.The root is then updated.A
proof of update message must be sent to the Client so that he can know whether the
update is valid. This message includes all auxiliary information, the old signature
of the hash of the root and the new root. The Client generate old root using auxiliary
information and uses bilinear map to check whether the signature is valid. If it is
true, new MHT root is computed and compared with the one transmitted back by
the Server. The modification is valid if and only if it passes all these tests.

• Insertion. The Client wants to insert blockm∗ after blockmi . It generates signature
σ ∗ and sends the Server a update message. The Server runs ExecUpdate to execute
a insertion operation, storing new block, inserting new authenticator, generating
new root, and sends a update message to the Client like it did in the modification
operation. The Client also need to verify this operation according to the message
it receive.

• Deletion. Inverse operation to insertion. Similar to modification and insertion.

This scheme efficiently solves the dynamic operation problem but has the drawback
that the messages exchanged between the Client and the Server is proportional to the
number of file blocks.

4.4 Privacy Preserving

Although auditing storage data through a third party auditor, who has expertise in
auditing and powerful computing capabilities, has many advantages to the client,
the auditing procedure has the possibility to reveal user data to the TPA. Previous
schemes [1, 17, 20] for data verification do not consider the privacy protection issue
when offloading the verification job to the TPA. They all assumed that the TPA is
trusted and will not try to look into user’s data when verifying the integrity of data. A
privacy-preserving public auditing scheme was proposed for cloud storage in [19].
Based on a homomorphic linear authenticator, integrated with random masking, the
proposed scheme is able to preserve data privacy when TPA audits the stored data in
the server.

There are three entities in this system: The user, the Cloud Server and the TPA.
Since dynamic data operations were not considered in this scheme, only four algo-
rithms (KeyGen, SigGen, GenProof and VerifyProof) are needed in this protocol,
without the two algorithms for update purpose in Sect. 4.3. Still, we have two phases
in the system: Setup Phase and Audit Phase. The mathematical integrity assurance
technique is still a bilinear map e : G1 ×G2 → GT as in Sect. 3.4.3. These groups

556 B. Liu and Y. Chen

should be different groups but has the same order. The server has knowledge about
G1, GT and Zp (all file blocks are elements of this group).

Like all other public key cryptosystem, the KeyGen algorithm needs a public-
private key pair. A pair of signing keys (spk, ssk) is generated for the verification of
file tag, which includes the identifier of the file.

The secrete key sk includes the secret signing key ssk and a random integer chosen
from Zp. The public keypk = (spk, g, gx , u, e(u, v)) on the other hand includes more
values. g is a generator of G2, u is an element of G1 and e(u, v) ∈ GT is the image
of u and v under the bilinear map e.

The SigGen algorithm calculates the file tag and authenticators in a different
way. The file tag in [19] is shorter than previous schemes [17, 20], only the identifier
of the file is included. This identifier, denoted as name, is also an element of Zp.
The signing key pair is generated just for verification of name. An authenticator the
block mi is σi = (H (name||i) · umi)x . The hash function H : {0, 1}∗ → G1 maps
a bit string into G1, which means all authenticators will fall into G1. The set of the
authenticators and the file tag are sent to the server. This finishes the setup phase.

During the audit phase, the file tag is retrieved and verified by the TPA. If t is
valid, the file name is recovered. The challenge chal is generated in the same way as
in [17]. Upon receiving chal, the server runs GenProof to calculate the proof that
it possesses the requested file blocks. There are three components in the response to
chal:μ, σ , andR. σ is the aggregation of all authenticators that are indicated by chal.
Each authenticator σi is raised to the power vi and their product is the value of σ . The
other two values are related to a random number r from Zp. R is the result of raising
the image of u, v to the power r . A numberμ′ is directly calculated from all indicated
blocks. This value is highly related to the file. To hide it from the TPA, the server uses
r and the hash value ofR. The final componentμ = r+h(R)μ′ is obtained. The TPA
runs VerifyProof to validate the response. IfR ·e(σγ g) = e((∏i∈I H (Wi)vi)γ ·uμ, v)
is true, the response is a valid one. The audit procedure is then accomplished.

Data dynamic operations can also be supported by adapting this scheme using
MHT as in [20].

4.5 Multiple Verifications

Since the cloud server is accessed by multiple users, the possibility that many clients
request verification for different files or one client requests verifying multiple files.
These requests should be treated in different way and hence need different auditing
schemes. For example, multiple clients have different key pairs, whereas one single
client requesting multiple verifications has the same key pair. Most schemes that
claim to be able to support batch auditing belong to the first category.

Both [19] and [20] have the extension to support multiple verifications thanks
to the aggregation property of bilinear signature schemes [4]. [20] uses auxiliary
information in a proof, hence has relatively long proof message for multiple clients

Auditing for Data Integrity and Reliability in Cloud Storage 557

batch auditing. Only σ in each proof can be aggregated in one value. [19] aggregates
by multiply all R’s.

Batch auditing can reduce the computation cost on TPA since the K responses are
aggregated into one. But the practical efficiency still needs to be verified by further
experiments.

5 Open Questions

In this chapter, we provided an overview of general issues on information auditing
to clarify the major goal of information auditing. Then we discussed two popular
protocols that audits for data integrity in distributed data storage: PDP and POR.
They were proposed almost at the same time to address different security concerns.
PDP provides a high probability guarantee that a system possesses a file with high
efficiency in computation and communication. POR and Compact POR allow a
stronger guarantee of retrievability with the cost of more complex algorithms. Most
schemes discussed in this chapter came with security proof in the original research
papers, in which interested readers can find proof details and mathematical analysis.
However, there is not sufficient study on efficiency and performance.

Since it is still a new research area in Cloud storage, we anticipate more new
schemas will come out in the academic community, trying to resolve different chal-
lenges from various perspective. When evaluating a scheme, it usually includes the
following metrics:

• Server computation overhead for a proof in each storage node.
• Server communication overhead when transmit computing results to form the

final proof.
• Client computation overhead for authenticators, error-correcting code and verifi-

cation algorithm.
• Communication cost between any two parties of the client, the server and TPA.
• Client storage for necessary metadata.
• Server misbehavior detection probability.

Compared to traditional information auditing, there are still numerous open problems
in cloud data security auditing. The number one impending issue is the lack of stan-
dardization and consistency in auditing development efforts due to the heterogenity
in infrastructure, platforms, software, and policy. While a “silver bullet” is highly
desired, the diversity in auditing and assurance practices in cloud computing makes
it extremely challenging to find a one-for-all solution. Essentially, in terms of data
security oriented auditing, a thorough study is expected on balancing the tradeoffs
among confidentiality, integrity, availability and usability.

From the cloud service providers’point of view, allowing external auditing implies
more components such as transparency, responsibility, assurance, and remediation
[15]. To accommodate these central components, a cloud service provider is required
to:

558 B. Liu and Y. Chen

• Set up policies that are consistent with external auditing criteria.
• Provide transparency to clients/users.
• Allow external auditing.
• Support remediation, such as accident management and compliant handling.
• Enable legal mechanisms that support prospective and retrospective accountabil-

ity.

6 Conclusions

An efficient auditing system is critical to establish accountability for cloud users who
do not have physical possession of their data. Existance of a trustworthy third party
audits enable users to check the data integrity, track suspicious activities, obtain
evidence for forensics, and evaluate service providers’ behaviors when needed. This
chapter provides our readers fundamental understanding of cloud auditing technolo-
gies. We expect to witness development of standard framework for cloud auditing
and efforts at cloud service providers to make their policies and mechanisms more
auditable and accountable.

References

1. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.: Provable
data possession at untrusted stores. In: Proceedings of the 14th ACM conference on Computer
and communications security, CCS ’07, pp. 598–609. ACM, NewYork, NY, USA (2007). DOI
10.1145/1315245.1315318. URL http://doi.acm.org/10.1145/1315245.1315318

2. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient provable data
possession. In: Proceedings of the 4th international conference on Security and privacy in
communication networks, SecureComm ’08, pp. 9:1–9:10. ACM, NewYork, NY, USA (2008).
DOI 10.1145/1460877.1460889. URL http://doi.acm.org/10.1145/1460877.1460889

3. Ateniese, G., Kamara, S., Katz, J.: Proofs of Storage from Homomorphic Identifica-
tion Protocols. In: M. Matsui (ed.) Advances in Cryptology - ASIACRYPT 2009, Lec-
ture Notes in Computer Science, vol. 5912, chap. 19, pp. 319–333. Springer Berlin
/ Heidelberg, Berlin, Heidelberg (2009). DOI 10.1007/978-3-642-10366-7_19. URL
http://dx.doi.org/10.1007/978-3-642-10366-7_19

4. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures
from bilinear maps. Advances in Cryptology-EUROCRYPT 2003 pp. 641–641 (2003)

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. Jour-
nal of Cryptology 17, 297–319 (2004). URL http://dx.doi.org/10.1007/s00145-004-0314-9.
10.1007/s00145-004-0314–9

6. Buchanan, S., Gibb, F.: The information audit: Role and scope. International journal of
information management 27(3), 159–172 (2007)

7. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession.
In: Proceedings of the 16th ACM conference on Computer and communications security, CCS
’09, pp. 213–222. ACM, New York, NY, USA (2009). DOI 10.1145/1653662.1653688. URL
http://doi.acm.org/10.1145/1653662.1653688

8. Feng, J., Chen,Y.: A fair non–repudiation framework for data integrity in cloud storage services.
International Journal of Cloud Computing 2(1), 20–47 (2013)

http://dx.doi.org/10.1007/978-3-642-10366-7_19

Auditing for Data Integrity and Reliability in Cloud Storage 559

9. Feng, J., Chen, Y., Liu, P.: Bridging the missing link of cloud data storage security in aws. In:
Consumer Communications and Networking Conference (CCNC), 2010 7th IEEE, pp. 1–2.
IEEE (2010)

10. Feng, J., Chen, Y., Summerville, D., Ku, W.S., Su, Z.: Enhancing cloud storage security
against roll-back attacks with a new fair multi-party non-repudiation protocol. In: Consumer
Communications and Networking Conference (CCNC), 2011 IEEE, pp. 521–522. IEEE (2011)

11. Feng, J., Chen, Y., Summerville, D.H.: A fair multi-party non-repudiation scheme for storage
clouds. In: Collaboration Technologies and Systems (CTS), 2011 International Conference on,
pp. 457–465. IEEE (2011)

12. Juels, A., Kaliski Jr., B.S.: Pors: proofs of retrievability for large files. In: Proceed-
ings of the 14th ACM conference on Computer and communications security, CCS ’07,
pp. 584–597. ACM, New York, NY, USA (2007). DOI 10.1145/1315245.1315317. URL
http://doi.acm.org/10.1145/1315245.1315317

13. Merkle, R.: Protocols for public key cryptosystems. In: IEEE Symposium on Security and
privacy, vol. 1109, pp. 122–134 (1980)

14. Ould, M.A.: Business Processes: Modeling andAnalysis for Re-engineering and Improvement.
Wiley, Chichester (1995)

15. Pearson, S.: Toward accountability in the cloud. Internet Computing, IEEE 15(4), 64 –69
(2011). DOI 10.1109/MIC.2011.98

16. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 21(2), 120–126 (1978). DOI 10.1145/359340.359342. URL
http://doi.acm.org/10.1145/359340.359342

17. Shacham, H., Waters, B.: Compact Proofs of Retrievability Advances in Cryptology
- ASIACRYPT 2008. In: J. Pieprzyk (ed.) Advances in Cryptology - ASIACRYPT
2008, Lecture Notes in Computer Science, vol. 5350, chap. 7, pp. 90–107. Springer
Berlin / Heidelberg, Berlin, Heidelberg (2008). DOI 10.1007/978-3-540-89255-7_7. URL
http://dx.doi.org/10.1007/978-3-540-89255-7_7

18. Wang, C., Chow, S., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for secure
cloud storage. Computers, IEEE Transactions on PP(99), 1 (2011). DOI 10.1109/TC.2011.245

19. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for data storage
security in cloud computing. In: INFOCOM, 2010 Proceedings IEEE, pp. 1–9 (2010). DOI
10.1109/INFCOM.2010.5462173

20. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data dynamics
for storage security in cloud computing. Parallel and Distributed Systems, IEEE Transactions
on 22(5), 847 –859 (2011). DOI 10.1109/TPDS.2010.183

I/O and File Systems for Data-Intensive
Applications

Yanlong Yin, Hui Jin and Xian-He Sun

1 Parallel File Systems vs. Data-Intensive File Systems:
A Comparison

Large-scale parallel computing increasingly plays important roles on accelerating
scientific advances, providing versatile internet services, and many other knowledge
discoveries. During the evolution of parallel computing, it forms two major camps:
high-performance computing (or Supercomputing) and cloud computing. HPC is
computing-oriented and the typical applications are scientific simulation, numerical
computation, and etc. They rely on low-latency networks for message passing and
use parallel programming paradigms such as MPI to enable parallelism [1]. Cloud
computing is usually data-processing-oriented and the typical framework is designed
for large-scale batch data processing.

These two camps of parallel computing adopts two different types of file systems
to manage their data, namely parallel file systems (PFS) and distributed file systems
or data-intensive file systems (DFS).

A parallel I/O system used by HPC typically consists of several layers from top to
bottom: applications, high level I/O Library, I/O middleware, parallel file systems,
and the underlying storage devices. Parallel file systems currently serve as general-
purpose file systems to support I/O operations of HPC applications. A parallel file
system manages large numbers of storage nodes and disks to form a large storage
space. Any data request accessing this storage space will be fulfilled using multiple

Y. Yin (�) · X.-H. Sun
Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA
e-mail: yyin2@iit.edu

X.-H. Sun
e-mail: sun@iit.edu

H. Jin
Parallel Execution Group, Oracle Corporation, Redwood City, CA 94065, USA
e-mail: hui.x.jin@oracle.com

© Springer Science+Business Media New York 2015 561
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_18

562 Y. Yin et al.

underlying storage devices in parallel. To achieve this parallel access, files saved in
parallel file systems are partitioned into small data stripes that are distributed over
multiple storage nodes or devices. Representative examples of parallel file systems
include IBM GPFS [2], Oracle Lustre [3, 4], and OrangeFS/PVFS2 [5, 6]. HPC
applications access PFS via either POSIX interface or MPI-IO, a subset of the MPI-
2 specification [7] that enables performance optimizations such as Collective I/O
[8].

Data-intensive file systems are specialized file systems for data-intensive comput-
ing frameworks such as MapReduce [9]. Leading data-intensive file systems include
Google file system (GFS) [10], Hadoop file system (HDFS) [11], and Kosmos file
system (KFS) [12]. Data-intensive file systems usually come with interfaces to inter-
act with general HPC applications. For Java based HDFS, libHDFS can be used as
the programming interface to support MPI applications [13]. The Kosmos file system
offers a native interface to support HPC applications [12]. POSIX imposes many hard
consistency requirements that are not needed for MapReduce applications and are
not natively supported for data-intensive file systems. MPI-IO [8] was designed on
general-purpose file systems and its access to data-intensive file systems is currently
not supported as well.

Parallel file systems and data-intensive file systems share similar high-level de-
signs. They are both cluster file systems that are deployed on a bunch of nodes.
Both of them divide a file into multiple pieces (stripes or blocks/chunks), which are
distributed onto multiple I/O servers. However, there are many differences between
them. Governed by the CAP theorem [14], the design goals of distributed systems
can be only two out of the three of Consistency, Availability, and Partition-tolerance.
Parallel file systems choose “CA” since they assume general HPC applications as
ACID (Atomicity, Consistency, Isolation, and Durability). Data-intensive file sys-
tems are designed to support MapReduce jobs with batch processing pattern on top of
commodity hardware and choose “AP” as the design goals. The difference between
“CA” and “AP” leads to distinct design decisions on several key components.

Data Layout Data layout means the method how the data stripes and blocks are
placed and distributed over all the available storage nodes. In modern parallel file
systems [6], data are typically distributed over multiple storage nodes in a round-robin
fashion, to take advantage of parallel access. This round-robin data layout is most
widely used because it can provide acceptable I/O performance for many scenarios.
Parallel file systems provide more than one data layout methods to advanced users
for choosing optimal layout configurations. We name three most popularly adopted
data layout methods as 1-DH, 1-DV, and 2-D data layout [15]. 1-DH data layout is
the simple striping method and distributes data across all storage nodes. 1-DV data
layout refers to the policy that data to be accessed by each I/O client process is stored
on one storage node. 2-D data layout refers to the policy in which data to be accessed
by each process is stored on a subset (called storage group) of storage nodes. Given
a file or directory, the data layout is predefined by default or by user’s customization,
and all the new data append to that file will follow the predefined policy. However,
in distributed file system, there is no predefined data layout. While a task generating

I/O and File Systems for Data-Intensive Applications 563

data, it asks the Namenode (the metadata server) to create a new data block with a
fixed block size, and then the generated data will fill into that block. When the data
write reaches the end of the block (i.e. the block is full), a new block is created, and
so on. The selection of the new block’s location is not following any of the above
mentioned 1-DV, 1-DH, or 2-D layouts. Instead, the location is either the local node
or some random remote node. And this policy favors the co-locality between the task
and its data.

Data Locality Parallel file systems are designed for typical HPC architecture that
separates I/O nodes from compute nodes. File system server processes are deployed
on I/O nodes and client processes are deployed on compute nodes. Client processes
see server processes as symmetric and data locality is not considered by PFS. On the
other hand, the deployment of data-intensive file systems calls for the existence of
local disk on each compute node. The client processes of data-intensive file systems
should be co-located with server processes to gain high data locality and better I/O
performance.

Data Partition Granularity As we mentioned, both of parallel file systems and dis-
tributed file systems partition their data into data stripes and data blocks. However,
the sizes of their stripes/blocks are largely different. For parallel file system, the de-
fault stripe size is relatively small, for example, 64 KB for OrangeFS. For distributed
file system, the default block size is large, for example, 64 MB for HDFS. This
design differences are determined by their different data locality designs. Parallel
file systems choose small stripe size because they want to benefit each request with
parallel access; if the size is too large, then handling the request may just involve
very few nodes resulting low parallel degree. Distributed file systems have to adopt
large block size, because they intend to let each task have all its data on the same
local node. If the block size is too small, a task accessing a large chunk of data may
have to access remote nodes.

Concurrency and Locking One data chunk is exclusively used by one process/task
in MapReduce applications. As such, concurrency is not supported well by data-
intensive file systems. Concurrent write operation to one shared file is not supported
by HDFS. KFS supports shared file write by placing an exclusive lock on each
chunk. All the processes accessing the same chunk compete for the lock to perform
I/O operations. Parallel file systems are designed to support POSIX interface and
concurrency is inherently supported. GPFS and Lustre leverage more complex dis-
tributed locking mechanisms to mitigate the impact of caching. For example, GPFS
employs a distributed token-based locking mechanism to maintain coherent caches
across compute nodes [16].

Parallel file systems and distributed file systems are also different on some special
features and optimizations.

File Caching Client-side cache is an effective approach to improving the bandwidth,
especially for small I/O requests. However, the adoption of cache also threatens the
data consistency. Data-intensive file systems employ cache for better performance

564 Y. Yin et al.

since consistency is not the top design goal. The client accumulates the write requests
in memory until its size reaches the chunk size (usually 64 MB) or the file is closed,
which triggers the write operation to I/O servers. To guarantee consistency and
durability, PVFS drops client side cache. GPFS and Lustre support file caching but
depend on sophisticated distributed locking mechanism to assure the consistency
[17].

Fault Tolerance Parallel file systems do not have native fault tolerance support
inherently and usually rely on hardware level mechanism like RAID for fault tol-
erance. Failures could occur frequently for data-intensive file systems that assume
commodity hardware at scale. As such, chunk-level replication is adopted to support
the fault tolerance of data-intensive file systems.

Due to these design differences, parallel file systems and data-intensive file sys-
tems serve the applications in their own camp very well but not well enough for
the applications from the other camp. However, there are occasions that require the
cross-camp system integrations. One important occasion is the “HPC in Cloud.”
The following section will present our work on the I/O optimization that lets data-
intensive file systems support HPC applications efficiently. In particular, we consider
the scenario of running HPC applications on top of MapReduce file systems, and
propose solutions to bridge the semantic gap between the two. A chunk-aware I/O
strategy is introduced to enable efficient N-1 data access such as checkpointing for
data-intensive file systems. Some early-stage progress of this work is previously
published in [18].

2 Chunk-Aware I/O: Enabling HPC on Data-Intensive File
Systems

2.1 Motivation

The advent of Cloud computing has revolutionary impacts on every aspect of tech-
nical computing, as well as high-performance computing. Amazon EC2, the leading
Infrastructure-as-a-Service (IaaS) cloud computing platform, has hit the Top 500
supercomputer list since 2010 [19]. More and more HPC scientists see Cloud as a
promising alternative to classical supercomputers, due to the feature of elasticity, the
flexible pay-as-you-go pricing model of Cloud computing. There have been numer-
ous efforts that investigate the potential of “HPC in the Cloud” computing paradigm
[20–23].

Classical MPI based HPC applications usually rely on parallel file systems (PFS)
for data manipulation. However, PFS is designed based on the premise of dedicated,
highly reliable hardware with fast network connectivity, which makes it unrealistic to
be deployed in Cloud environment that assumes inexpensive commodity hardware.

Performance is another concern of utilizing PFS as checkpointing storage for
traditional HPC systems. As discussed in Chap. 3, PFS are usually deployed on ded-
icated I/O servers that are separated from computing nodes. The number of compute

I/O and File Systems for Data-Intensive Applications 565

nodes is often one or two magnitude greater than the number of I/O servers [24, 25].
Furthermore, the communication between the compute nodes and I/O servers rely on
a single or a handful of network links that are built during the installation [26]. The
inherent centralization design of PFS significantly limits its support of data-intensive
parallel checkpointing that comes with overwhelming I/O workloads.

Data-intensive distributed file systems are storage systems specially designed
for applications running under MapReduce frameworks [9–12]. Sharing the same
assumptions, MapReduce is designed to be well coupled with Clouds. As a conse-
quence, data-intensive file systems are a natural choice to manage the storage media
for HPC applications running in the Cloud.

Due to the merits of scalability, fault tolerance, and data locality, the data-
intensive file systems were recently recognized as a promising alternative to offload
the workload from the stretched traditional parallel file systems in traditional HPC
frameworks [26].

Unfortunately, data-intensive file systems are not designed with HPC semantics
in mind, and few HPC applications can benefit from them directly even if they are not
consistency constrained. Many HPC applications are either not supported or cannot
perform well on data-intensive distributed file systems.

N-1 (N to 1) is a widely used data access pattern for parallel applications such as
checkpointing and logging [27]. The N processes usually issue requests to different
regions of one shared file, which leads to non-sequential data access, unbalanced
data distribution, and violates the data locality. All these factors make N-1 based
HPC applications not usable on data-intensive file systems.

We have set up an experimental environment to compare the write performance
of N-1 and N-N (N to N) data access patterns on two data-intensive file systems,
Hadoop distributed file system (HDFS) [11] and Kosmos file system (KFS) [12].
We added components to the IOR benchmark to access data-intensive file systems.
We utilize the API provided by libHDFS to access HDFS. However, the N-1 write
is not supported by HDFS since libHDFS currently only allows ‘hdfsSeek’ in read
only mode [13]. On the other hand, KFS, a C++ based data-intensive file system,
supports the N-1 data access by allowing concurrent non-sequential writes to one
chunk [12].

Figure 1 compares the performance of N-1 and N-N performance on 16 I/O nodes
(chunk servers) selected from SCS cluster. The chunk (block) size is 64 MB for
both file systems. We have 16 processes in each run to issue strided I/O requests.
The N-1 curve presents unstable performance with different request sizes. Smaller
request sizes lead to more contention in the shared chunk and more performance
degradation. The problem is common for HPC applications as often the request size
is much smaller than the chunk size of data-intensive file systems (64 MB or higher)
[28].

In recognition of the semantic gap between HPC applications and data-intensive
file systems, the objective of this research is to bridge the gap and facilitate efficient
shared data access of HPC applications to data-intensive file systems.

566 Y. Yin et al.

0

100

200

300

400

500

600

700

800

8 16 32 64

)s/
B

M(
htdi

wdna
B

detagergg
A

Request Size (MB)

KFS (N-1)
KFS (N-N)
HDFS (N-N)

Fig. 1 Performance comparison of N-1 and N-N (write)

The contribution of this study is three-fold:

1. CHAIO, a chunk-aware I/O strategy to enable efficient N-1 data access patterns
on data-intensive distributed file systems, is introduced. CHAIO reorganizes data
from different processes to avoid contention and achieve sequential data access.

2. An aggregator selection algorithm is proposed to decide a process that issues the
I/O requests on behalf of the conflicting processes to balance the I/O workload
distribution and regain the data locality.

3. CHAIO is prototyped over the Kosmos file system. Extensive experiments have
been carried out to verify the benefit of CHAIO and its potential in fostering
scalability.

2.2 Chunk-Aware I/O Design

Data Access Patterns Data access patterns in HPC applications like checkpointing
can be classified as either N-N or N-1 [27]. In N-N data access pattern, each process
accesses an independent file with no interference with other processes. Figure 2a
demonstrates N-N data access pattern and how it is handled by data-intensive file
systems. We assume the chunk size and request size as 64 MB and 40 MB, respec-
tively, which means a chunk is composed of 1.6 requests. Each compute node has
one process, and we have four nodes host the data-intensive file system.

Each process issues three I/O requests, which are marked by logical block number
(LB#) to reflect its position in the file. The file view layer in the Fig. 2 shows the
mapping between the requests and their positions in the file. Based on the data access

I/O and File Systems for Data-Intensive Applications 567

0 1 2 0 1 2 0 1 2

0 1 2

P0 P1 P2 P3

Chunk 0

Node
0

Node
1

Node
2

Node
3

Logical blocks

Chunk View

Processes

Nodes

0
Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6 Chunk 7

Chunk 0

Chunk 1

1 2 0 1 2 0 1 2

0 1 2

File View

Chunk 6

Chunk 7

Chunk 4

Chunk 5

Chunk 2

Chunk 3

Mapping

Data-Intensive FS

0 1 2 3 4 5 6 7 8

P0 P1 P2 P3

Chunk 0

Node
0

Node
1

Node
2

Node
3

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6 Chunk 7

Chunk 0

Chunk 1
Chunk 3
Chunk 4

Chunk 3

Chunk 5

Chunk 6

Chunk 7Chunk 2

9 10 11Logical blocks

Chunk View

Processes

Nodes

File View

Mapping

Data-Intensive FS

9 10 110 1 2 3 4 5 6 7 8

0 4 8 1 5 9 2 6 10 3 7 11

P0 P1 P2 P3

Chunk 0

Node
0

Node
1

Node
2

Node
3

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6 Chunk 7

Chunk 0

Chunk 2

Chunk 1

Chunk 3

Chunk 4

Chunk 6 Chunk 7Chunk 5

Logical Blocks

Chunk View

Processes

Nodes

File View

Mapping

Data-Intensive FS

0 4 81 5 92 6 103 7 11

a

b

c

Fig. 2 Data access patterns a N-N, b N-1 segmented, c N-1 strided

568 Y. Yin et al.

information and chunk size, the requests are translated into chunks by the data-
intensive file system, which are distributed onto the nodes with the consideration of
data locality.

In the N-N data access case of Fig. 2a, each process accesses an individual file and
does not incur contention. The I/O workload is evenly distributed such that each node
holds two chunks. The downside of the N-N data access pattern, however, is that it in-
volves more files and requires extra cost in metadata management, which is unwanted
for data-intensive file systems because of the centralized metadata management.

N-N data access pattern is the ideal case to avoid contention. However, most HPC
applications have the processes cooperate with each other and adopt N-1 data access
pattern in practice. The processes access different regions of one shared file in N-1
data access. Depending on the layout of regions, N-1 data access can be further
classified into two categories: N-1 segmented and N-1 strided [27].

In N-1 segmented data access pattern, each process accesses a contiguous region
of the shared file. Figure 2b illustrates N-1 segmented data access pattern and how it
is handled by the data-intensive file system. The request size is determined by HPC
applications and does not match the chunk size well. The requests from multiple
processes could be allocated to one chunk and lead to contention. We term a chunk
as conflict chunk if it is accessed by multiple requests. In Fig. 2b we have three
conflict chunks with ID 1, 3, and 5.

Conflict chunks degrade the I/O performance because of the following reasons:

1. The file system alternates among different requests on the conflict chunk, which
violates the sequential data access assumption of data-intensive file systems.

2. The conflict chunk is composed of requests from multiple compute nodes and
only one node is selected to host the chunk. Data locality is not achieved for the
requests from other compute nodes. For example, for chunk 3 of Fig. 2b, the
request from P1 (LB# 5) is not a local data access.

3. The chunk placement is decided by the first request with the consideration of data
locality. This mechanism results in unbalanced data distribution. In Fig. 2b we
can observe that three chunks (3, 4, and 5) are allocated onto node 2 while node
1 only has one chunk. It is more critical for data-intensive file systems to balance
the chunk distribution since the chunk size is normally sized 64 MB or higher,
which is magnitudes higher than the strip size (usually 64KB) of PFS.

In the N-1 strided data access pattern, each process issues I/O requests to the file
system in an interleaved manner. As illustrated in Fig. 2c, strided data access has a
higher probability to incur conflict chunks and has greater impact in degrading the
performance. Actually, all the 8 chunks have contention in the case shown in Fig. 2c.
The data locality and balanced data distribution will be further deteriorated as well.
Figure 2c demonstrates the worst case that node 2 has 4 chunks, while no chunk is
allocated to node 1.

In practice, N-1 strided is a more common data access pattern than N-1 segmented
for HPC applications such as checkpointing [27].

I/O and File Systems for Data-Intensive Applications 569

Communication
phase

0 4 8 1 5 9 2 6 10 3 7 11

P0 P1 P2 P3

Chunk 0

Node
0

Node
1

Node
2

Node
3

0 41
Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6 Chunk 7

Chunk 0

Chunk 5

Chunk 3

Chunk 6

Chunk 1

Chunk 4

Chunk 2

Chunk 7

0 1 21

1 1

3 4

43

5 6

6

6 7

6 7

8 9

8 9

109

109

11
Aggregator 0 Aggregator 5 Aggregator 3 Aggregator 6 Aggregator 1 Aggregator 4 Aggregator 2 Aggregator 7

I/O
phase

Logical
blocks

Chunk View

Processes

Nodes

File View

Mapping

Data-Intensive
File System

52 11

Fig. 3 N-1 Strided write with CHAIO

This study is motivated by the performance issues with the N-1 data access on data-
intensive file systems. The proposed new CHAIO strategy rearranges the I/O requests
to eliminate conflict chunks, achieve data locality, and balance data distribution.

CHAIO Design The basic idea of CHAIO is to reorganize the I/O requests such
that each chunk is accessed by one process to eliminate contention. Figure 3 shows
how CHAIO handles the scenario shown in Fig. 2c.

We add a communication phase to exchange data among processes. One pro-
cess is selected as an aggregator process for each conflict chunk. The aggregator
collects data from the non-aggregator processes accessing the same conflict chunk
and issues the I/O requests to the file system. From the perspective of data-intensive
file systems, each chunk is accessed by the aggregator process only. Even though
CHAIO introduces slight message passing overhead, it improves the performance
significantly by removing the contention and marshaling the I/O requests.

With CHAIO, each chunk has only one aggregator process that acts as the file
system client to issue the I/O request, as shown in the I/O phase of Fig. 3. The data
locality is assured since the file system by default allocates the chunk to the node
where the aggregator process resides.

The N-1 read of CHAIO is performed in the reverse order. The aggregator first
gets data from the file system and distributes the data to the corresponding processes.

570 Y. Yin et al.

Table 1 CHAIO aggregator selection algorithm

Definition:
A chunk is allocated if its aggregator process has been decided.
Chunk c is serviced by node s if there is at least one I/O request from s to c.
Terminology:
C is the collection of the unallocated chunks.
a(s) is the number of chunks that have been allocated to node s.
n(s) is the number of unallocated chunks that are served by node s.
g(c) is the number of nodes that service chunk c.
p is the number of conflict chunks.
q is the number of nodes.
f(c) = s means we select a process on node s as the aggregator process for chunk c.
Algorithm:
Initialize C, n(s), g(c), p and q based on the data access info, chunk size and the process distribution.
a(s) = 0
threshold = ⌈ / ⌉
while (size(C)>0) do

find the node s with min(a(s)+n(s)) and satisfies a(s)≤threshold.
if s == null then

increase threshold by 1
continue

end if
for each chunk serviced by node s, find the chunk c with min(g(c)).
f(c) = s
a(s) = a(s)+1
for each node that services c do

remove c from its chunk list
set n(s) = n(s)-1

end for
remove c from C.

 end while

Next we introduce the aggregator selection algorithm that balances the chunk dis-
tribution among the nodes. The aggregator selection algorithm takes the data access
pattern, chunk size and process distribution as input. The output of the algorithm is
the decision of the aggregator process for each chunk.

The pseudo code of the aggregator selection algorithm is listed in Table 1. The
node with less conflict chunks has higher priority to be selected to host the aggregator
process. If multiple chunks are serviced by the selected node, the chunk with the
least service nodes is selected. The algorithm is a greedy algorithm that is biased
toward the node or chunk with least matching options.

The algorithm sets a threshold to limit the aggregator processes on each node and
guarantee balanced I/O workload distribution. A node will not be selected to run
more aggregator processes if it is already fully loaded with the threshold number of
aggregator processes. The threshold value will be increased if there is no eligible
node but not all the chunks have been allocated yet.

Multiple processes from the selected node may access the same conflict chunk in
a multicore architecture. The process with the largest I/O request size to minimize the
message passing overhead will be selected in this case. Figure 3 shows an example
where each node has two chunks with the assistance of the aggregator selection
algorithm.

I/O and File Systems for Data-Intensive Applications 571

2.3 Chunk-Aware I/O Implementation

CHAIO can be implemented either inside the application code or in the I/O middle-
ware layer such as MPI-IO. CHAIO takes the data access information, chunk size
and the process distribution information as input. The data access information can be
obtained from the application or from MPI primitives, i.e., MPI_File_get_view. The
data-intensive file system needs to expose the chunk size information to CHAIO,
which is trivial to implement. We also need to know the process distribution in-
formation that indicates the mapping between processes and nodes, usually in a
round-robin or interleaved manner. We can obtain this information easily from the
job scheduler.

Each process first captures the aforementioned input and carries out the aggregator
selection algorithm. The output of the algorithm is organized in a hash table data
structure which stores the chunk ID and the corresponding rank ID for the aggregator
process.

When a process carries out an I/O request, it first calculates the chunk ID of the I/O
request and checks the hash table derived from the aggregator selection algorithm. If
the chunk ID of the I/O request matches one entry in the hash table, it means the I/O
request is involved in a conflict chunk and we need to take action. If the rank ID of
the process matches the aggregator process ID from the hash table, the process will
receive data from other processes and then issue the I/O request of the entire chunk
to the file system. If the process is not selected as the aggregator, it simply sends the
data to the aggregator process.

We use non-blocking send for the non-aggregator processes so that the following
I/O requests are not blocked by the message passing. Blocked receive is adopted by
the aggregator to guarantee that the process is carrying out one I/O request at a time.

2.4 Chunk-Aware I/O Analysis

There are potential alternative solutions to the problem of N-1 data access besides the
CHAIO approach. The straightforward solution is to adopt methodologies such that
one I/O request generates one individual chunk in the data-intensive file systems. To
implement the idea, we can adapt the chunk size to the I/O request size in the file
system.

The primary concern with this approach is the metadata management overhead
it introduces to the file system. The number of chunks is equal to the number of
I/O requests, which could be significant considering small request sizes from HPC
applications [28]. On the other hand, the file system namespace and file BlockMap of
the data-intensive file system is kept in the memory of the centralized metadata server
(Namenode). A large number of chunks could overwhelm the centralized metadata
management of the data-intensive file system and degrade I/O performance.

CHAIO aggregates multiple I/O requests of one chunk to form sequential data
access and does not increase the metadata management overhead to the file system.

572 Y. Yin et al.

CHAIO is implemented at either the application level or I/O middle-ware level and
does not introduce complexity to the data-intensive file system.

Data-intensive applications usually adopt multiple replicas of one chunk to
achieve fault tolerance. The data locality and balanced data distribution are not con-
cerned by non-primary replicas since they select nodes randomly to store the data.
Multiple replicas do not obscure the advantages of CHAIO for read operations. The
I/O request returns after reading one replica from the file system and CHAIO does
help to alleviate contention in this scenario. Furthermore, the performance of the
primary (first) replica is improved by CHAIO for write operations. The performance
of the first replica is usually more critical than others since it concerns the application
elapsed time. It is a widely used optimization technique for replica based file systems
to return to the application after the first replica is completed and process the rest of
the replicas in parallel with the applications [29].

2.5 CHAIO Performance

2.5.1 Experiment Setup

We have carried out experiments on the SCS cluster. One computer node of the cluster
is dedicated as the job submission node and the metadata server of the Kosmos file
system. The experiments were tested with Open MPI v1.4.

KFS is utilized as the underlying data-intensive file system in the experiments. We
use IOR-2.10.2 from Lawrence Livermore National Laboratory as the benchmark to
evaluate the performance [30]. We have added a KFS interface to the IOR benchmark
to enable data access to the Kosmos file system. The KFS interface was implemented
with the methodology similar to other interfaces of IOR such as POSIX. We imple-
ment CHAIO in IOR benchmark and compare its performance with the original IOR
benchmark. We set the chunk size at 64 MB in the experiments and each chunk has
one replica by default.

2.5.2 Performance with Different Request Sizes

We keep the number of nodes fixed at 32 in Fig. 4 and study the performance with
different I/O request sizes. We fix the size of the shared file at 32 GB and each process
issues 16 interleaved I/O requests to implement N-1 strided data access. The number
of processes is varied accordingly with different request sizes. We run each setting
10 times in the experiments, get the mean and standard deviation of the aggregated
bandwidth and plot them in the figure. The standard deviation is reflected by the
error bars.

The write performance is illustrated in Fig. 4a. A smaller size of I/O requests
means more contention in conflict chunks and leaves more opportunity for perfor-
mance improvement in CHAIO. Actually, when the request size is 4 MB, it is not

I/O and File Systems for Data-Intensive Applications 573

0
200
400
600
800

1000
1200
1400
1600

4/512 8/256 16/128 32/64 64/32

)s/
B

M(
htdi

wdna
B

detagergg
A

Request Size (MB) / # of Procs

Without CHAIO With CHAIO

0
200
400
600
800

1000
1200
1400
1600

4/512 8/256 16/128 32/64 64/32

)s/
B

M(
htdi

wdna
B

detagergg
A

Request Size (MB) / # of Procs

Without CHAIO With CHAIO

a b

Fig. 4 CHAIO performance with different request sizes a write, b read

possible to have successful N-1 data access by the existing approach due to the
overwhelming contention on the conflict chunks. We were able to get successful
data access for request size of 8 MB but the performance was still very poor (22.92
MB/s). CHAIO achieved a write bandwidth of 983.52 MB/s for 16 MB request size,
which is three times higher than 270.6 MB/s, the bandwidth achieved by the existing
approach.

When the request size is 64 MB, CHAIO does not show advantage in bandwidth
performance. Since the request size is equal to the chunk size, there is no contention
on the chunks and the benefit of CHAIO cannot be observed.

When the request size is 4 MB, CHAIO shows less bandwidth than in the case
with larger request sizes. There are possibly two factors leading to the performance
degradation. First, a smaller request size needs more data exchange in the communi-
cation phase. Furthermore, each 8-core node is overloaded with 16 processes when
the request size is 4 MB and could considerably harm the overall I/O performance.
Our later analysis in sub-sect. 2.5.5 shows that the impact of the small request size
incurs little overhead and we can attribute the performance degradation to the second
factor.

Figure 4b compares the read bandwidth of CHAIO and the existing approach. It is
easy to observe the advantage of CHAIO over the existing approach. The bandwidth
of reads more than doubles the existing approach when the request size is 16 MB or
less.

2.5.3 Performance with Two Replicas

We set the number of replicas as two and demonstrate its performance with different
request sizes in this set of tests, and the results are shown in Fig. 5.

Though the advantage of CHAIO is less significant for more replicas, as discussed
in sub-sect. 2.5.2, it still presents satisfactory write performance improvement as
shown in Fig. 5a. CHAIO achieved a write bandwidth of 685.7 MB/s, which doubled
the existing approach, 328.9 MB/s.

We also observe that both CHAIO and the existing approach have bandwidth
degradation for two replicas than the one replica case of Fig. 4a. For example, in the

574 Y. Yin et al.

0
50

100
150
200
250
300
350
400

4/512 8/256 16/128 32/64 64/32

)s/B
M(

htdi
wdnaB

detagerggA Request Size (MB) / # of Procs

Without CHAIO With CHAIO

0
200
400
600
800

1000
1200
1400
1600

4/512 8/256 16/128 32/64 64/32

)s/B
M(

htdi
wdnaB

detagerggA Request Size (MB) / # of Procs

Without CHAIO With CHAIO

a b

Fig. 5 CHAIO performance with two replicas a write, b read

0

500

1000

1500

2000

4 8 16 32 64

)s/
B

M(htdi
wdna

B detagergg
A

Number of Nodes

Without CHAIO With CHAIO

0

500

1000

1500

2000

4 8 16 32 64

)s/
B

M(htdi
wdna

B detagergg
A

Number of Nodes

Without CHAIO With CHAIO

a

0

500

1000

1500

2000

4 8 16 32 64

)s/
B

M(htdi
wdna

B detagergg
A

Number of Nodes

Without CHAIO With CHAIO

b

Fig. 6 CHAIO performance with different number of nodes a write, b read

contention-free case with 64 MB request size, the write bandwidth of two replicas is
about 700 MB/s, which is considerably lower than the 1300 MB/s bandwidth in the
case of one replica. A detailed study reveals that the performance degradation is due
to node-level contention. When the number of replicas increases to two or more, each
node not only services the first chunk, but the non-primary copies will also compete
for the node and incur node-level contention. This study focuses on the chunk-level
contention problem caused by N-1 data access. The node-level contention problem
is on our roadmap for future studies.

As illustrated in Fig. 5b, read performance is not impacted by multiple replicas
and CHAIO outperforms the existing approach consistently.

2.5.4 Performance with Different Number of Nodes

In Fig. 6 we vary the number of data nodes from 4 to 64 and observe its impact on the
performance. For each node we spawn 4 MPI processes to carry out the I/O requests.
Each process issues 16 interleaved I/O requests to one shared file to implement N-1
strided writes. The I/O request size is kept at 16 MB.

The write bandwidth is presented in Fig. 6a. The bandwidth of CHAIO is two-fold
higher than that of the existing approach.

The existing approach also exhibits more variance in bandwidth than CHAIO,
which is caused by the unbalanced chunk distribution. In the existing approach, the

I/O and File Systems for Data-Intensive Applications 575

0
2
4
6
8

10
12
14
16
18

8 16 32 64

S
pe

ed
 U

p

Number of Nodes

Ideal Case

Read with CHAIO

Write with CHAIO

Read without CHAIO

Write without CHAIO

Fig. 7 Scalability analysis

conflict chunk selects the node based on the first I/O request coming into the file
system, which results in uncertainties in the chunk distribution and a large variance
in bandwidth.

Figure 6b compares the read bandwidth of the CHAIO approach with the exist-
ing approach and confirms the advantage of CHAIO as well. CHAIO achieved a
bandwidth two times higher than the existing approach for all cases.

We use the performance with 4 nodes as the baseline and plot the speedup for each
scenario in Fig. 7. CHAIO performs well in terms of scalability for both write and
read operations, which is close to the ideal speedup case. We can observe that the
existing approach achieved speedup as well; however, it is not stable. For example,
there is no much improvement between 16 nodes and 32 nodes for the existing
approach. A detailed study reveals that due to the uneven chunk distribution, a small
set of the nodes is constantly selected as the chunk servers and hurts the scalability.
The CHAIO approach reduces the access contention and regains the access locality
by rearranging requests, and achieves better and stable scalability.

2.5.5 Overhead Analysis in Large-Scale Computing Environments

We have shown the performance improvement of CHAIO in terms of both bandwidth
and scalability in previous sub-sections. We have performed tests to evaluate the
potential of CHAIO in large-scale computing environment as well. To achieve that,
we have measured the communication phase cost of CHAIO on the ANL SiCortex
test bed.

576 Y. Yin et al.

0
100
200
300
400
500
600
700
800

8M 4M 2M 1M 512K 256K 128K 64K 32K

8 16 32 64 128 256 512 1024 2048

daehrev
O

egnahcx
E

ata
D

)sdnocesili
m(

Request Size (Bytes)
Number of Processes

Fig. 8 Data exchange overhead (1 conflict chunk)

Data exchange cost is the primary, if not only, overhead introduced by CHAIO
and is used as the metric to study the CHAIO overhead1. Figure 8 reports the measure
data exchange cost of one conflict chunk with different request sizes and number of
processes. It can be observed that the data exchange cost is kept less than 1 s for all
cases which is a minor overhead. The data exchange overhead is increased by 0.15 s
when reducing the request size from 8 MB to 16KB, which is still trivial compared
with the I/O performance CHAIO helps to improve. The experimental tests confirm
that CHAIO improves the I/O bandwidth considerably with only introducing a minor
communication overhead.

We keep the number of processes at 2048, vary the request size from 1 to 32 MB,
and demonstrate the data exchange overhead in Fig. 9. In this set of experiments,
we have irregular request sizes that cannot divide the default block size of 64 MB
perfectly, e.g., 3, 5, 10 MB, etc. Such irregular sized requests result in irregular
conflict patterns and impose challenges to the aggregator selection algorithm. As
reported in Fig. 9, we do not observe much performance deviation of irregular request
sizes compared to the regular ones. This infers that CHAIO is applicable to various
request sizes with trivial data exchange cost.

1 We eliminated the I/O phase in the SiCortex experiments and only measured the communication
phase cost for overhead analysis. The lack of local disk and the job scheduler of SiCortex make it
impractical, if not impossible, to deploy Kosmos file system on SiCortex.

I/O and File Systems for Data-Intensive Applications 577

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

daehrev
O

egnahcx
E

ata
D

)sdnocesili
m(

Request Size (MB)

Fig. 9 Data exchange overhead (2048 processes)

2.5.6 Load Balance

The primary objective of the aggregator selection algorithm is load balance. CHAIO
should balance the number of chunks allocated to each data node to gain better par-
allelism and performance. As such, we evaluate the load balance of CHAIO and
compare it with the existing approach. We first calculate the ideal data layout that
conflict chunks are evenly distributed to all the involved data nodes. The data layout
of CHAIO and the existing approach are also calculated. We next compute the Man-
hattan distances between the ideal data layout and the two scenarios (with/without
CHAIO), which is used as the metrics of unbalance [31]. Figure 10 reports the de-
gree of unbalance by varying request size from 1 to 32 MB with 2048 processes on
SiCortex. CHAIO performs significantly better in balancing the workload among
each data node than the existing approach. In particular, we observe perfect load
balance (0 in y-axis) for 17 out of the 32 samples, including 11 irregular requests
that cannot divide 64 MB perfectly.

3 Related Works

Merging HPC architecture and MapReduce framework has great practical impor-
tance and many researchers have put efforts on this topic. In this section, we
introduce some other researcher’s efforts, which fall into two categories: (1) HPC
on data-intensive file systems and (2) N-1 data access and its handling.

578 Y. Yin et al.

0

4

8

12

16

20

24

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

ecnalabn
Ufo

eerge
D

Request Size (MB)

with CHAIO without CHAIO

Fig. 10 Load balance evaluation (2048 Processes)

3.1 HPC on Data-Intensive File Systems

There is an increasing interest in incorporating the emerging data-intensive file sys-
tems with the HPC framework. The pioneering works exploited the merge of the two
from different perspectives.

In [26], the authors introduced VisIO to utilize HDFS as the storage for large-
scale interactive visualization applications. VisIO provides a mechanism for using
non-POSIX distributed file system to provide linear scaling of I/O bandwidth. The
application targeted by VisIO is N-N read, which is naturally supported by data-
intensive distributed file systems.

In [28], the authors studied the requirements of migrating data from HPC storage
system to data-intensive frameworks such as MapReduce, and proposed MRAP to
bridge semantic gaps. MRAP extends MapReduce to eliminate multiple scans and
also reduces the number of pre-processing MapReduce programs.

In [32], the authors examined both HPC and Hadoop workloads on two rep-
resentative file systems, PVFS and KFS. Their study confirmed the performance
degradation of N-1 data access pattern on the Kosmos file system.

In [33], the authors compared PVFS and HDFS, and enhanced PVFS to match
the HDFS-specific optimizations. Unmodified Hadoop applications can store and
access data in PVFS using the proposed non-intrusive shim layer that implements
several optimizations, including prefetching data, emulating replication and relaxed
consistency, to make PVFS performance comparable to HDFS.

Nevertheless, all these existing works acknowledged the concurrency issue on
data-intensive file systems but did little to overcome it. The proposed CHAIO is
motivated by the observation that some HPC applications with concurrent I/O access
cannot perform well even they are not consistency constrained. CHAIO extends the

I/O and File Systems for Data-Intensive Applications 579

scope of HPC applications supported by data-intensive file systems, and improves
the overall I/O performance of HPC systems as a consequence.

Several efforts have also been made by industry to enable HPC applications with
MapReduce. Hamster is an initiative from Hadoop community that aims at supporting
MPI applications in a Hadoop cluster [34]. Apache Mesos is a cluster manager that
provides resource sharing across different applications, e.g., Hadoop, MPI, Hyper-
table, and Spark [35, 36]. These efforts offer feasibility of running MPI applications
with Hadoop, but do little to handle the data manipulation issue under this computing
scenario, which is complemented by CHAIO.

MapR is a data-intensive application platform from EMC to support Hadoop
framework. MapR has a functionality of Direct Access NFS to enable the capability
of accessing MapR file system with the POSIX interface [37]. This technique is
implemented at file system layer, which does not consider the data exchange among
parallel processes and, therefore, eliminates possible performance improvement op-
portunities. The idea of CHAIO can be extended to support MapR to deliver both
capability and efficiency to parallel applications.

3.2 N-1 Data Access and its Handling

Modern PFS either leverages distributed locking protocols to achieve consistency
for N-1 shared data access (GPFS and Lustre), or does not support POSIX semantics
for concurrent writes and relies applications to solve conflicting operations (PVFS).
The lock-based solution imposes considerable overhead and several works have been
conducted to address this concern.

Collective I/O merges the requests of different processes with interleaved data
access patterns and forms a contiguous file region, which is further divided evenly
into non-overlapping, contiguous sub-regions denoted as file domains [8]. Each file
domain is assigned an aggregator process that issues the I/O requests on behalf of
the rest of the processes in that file domain. Collective I/O does not take underlying
file system into consideration when deciding file domains and cannot eliminate the
conflict chunks. It is still possible that two aggregator processes concurrently access
one shared chunk in Collective I/O. Users can customize the collective buffer size on
each aggregator process by setting parameter cb_buffer_size but that does not solve
the problem.

In [17], the authors proposed to partition files based on the underlying locking
protocols such that the file domains are aligned to locking boundaries. Data shipping
was introduced by GPFS to bind each file block to a single I/O agent that acts as the
delegator [16].

PLFS is a virtual parallel log structured file system that sits between parallel
file systems and applications and transforms the N-1 data access into N-N pattern
[27]. PLFS currently supports parallel file systems such as GPFS and PanFS. Extra
efforts need to be taken to adapt PLFS to support data-intensive file systems because
the underlying N-N data access potentially imposes more overhead to the metadata

580 Y. Yin et al.

management, which is unwanted for data-intensive file systems due to the centralized
metadata server.

BlobSeer is a storage system that supports efficient, fine-grain access under heavy
concurrency. In [31], the authors demonstrated the potential of BlobSeer in substitut-
ing HDFS to enable efficient MapReduce applications. BlobSeer adopts versioning
instead of locking protocols to handle the concurrency issue.

While demonstrating their success on the N-1 data access of PFS, the ideas of
these works can also be applied to data-intensive file systems to alleviate the problem.
However, unique features of data-intensive file systems require additional efforts
for a complete solution. The selection of the aggregator process is actually a key
factor in determining the overall performance of N-1 access on data-intensive file
system, especially when the requests from different processes are irregular with
varied sizes. However, the selection of aggregator process is not covered by existing
PFS optimization techniques since the client processes are usually independent of
server processes.

4 Summary

In this chapter, we introduced and studied two types of most popular cluster file
systems: parallel file systems that serve HPC and data-intensive file systems that
serve distributed cloud computing. We introduce their differences in categorized
details. Due to these design differences, parallel file systems and data-intensive file
systems serve the applications in their own camp very well but not well enough for
the applications from the other camp.

We have identified three factors that degrade the performance of N-1 data access
on data-intensive file systems: non-sequential data access, uneven chunk distribution,
and the violation of data locality. A chunk-aware I/O (CHAIO) strategy was proposed
to address these issues and overcome the challenge. The CHAIO introduced an data
communication phase that collects data from multiple processes and issues the I/O
requests to the file system to achieve sequential data access and data locality. An
aggregator selection algorithm has been proposed to balance the chunk distribution
among nodes. CHAIO can be implemented at either the application level or the I/O
middle-ware level and does not introduce complexity to the underlying file systems.

We have prototyped the CHAIO idea and conducted experiments with the IOR
benchmark over the Kosmos file system. Experimental results show that CHAIO
improves both the write and read performance significantly. The overhead analysis
showed that CHAIO introduces little overhead for small request sizes and has a real
potential for large-scale computing environment. The performance gain of CHAIO is
robust to different requests size. The aggregator selection algorithm works efficiently
for load balance.

I/O and File Systems for Data-Intensive Applications 581

References

1. “The Message Passing Interface (MPI) standard” [Online]. Available: http://www.mcs.anl.gov/
research/projects/mpi/.

2. F. Schmuck and R. Haskin, “GPFS: A Shared-disk FileSystem for Large Computing Clusters,”
in Proceedings of the 1st USENIX Conference on File and, 2002.

3. “Lustre File Systems Website,” [Online]. Available: http://wiki.lustre.org/index.php/Main_
Page.

4. P. J. Braam., “The Lustre Storage Architecture,” [Online]. Available: http://www.lustre.org/
documentation.html.

5. “OrangeFS Website,” [Online]. Available: orangefs.org.
6. Carns, P.H., Ligon, W.B. III, and Ross, R.B., “PVFS:A Parallel File System for Linux Clusters,”

in Proceedings of the 4th Annual Linux Showcase and Conference, 2000.
7. “MPI-2: Extensions to the Message-Passing Interface,” [Online]. Available: http://www.mpi-

forum.org/docs/mpi-20-html/mpi2-report.html.
8. R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Collective I/O in ROMIO,” in

FRONTIERS ’99: Proceedings of the 7th Symposium on the Frontiers of Massively Parallel
Computation, 1999.

9. Dean, Jeffrey, and Ghemawat, Sanjay, “MapReduce: Simplified Data Processing on Large
Clusters,” in Sixth Symposium on Operating System Design and Implementation, 2004.

10. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System,” in 19th
ACM Symposium on Operating Systems Principles, 2003.

11. “Hadoop Distribute Filesystem Website,” [Online]. Available: http://hadoop.apache.org/hdfs/.
12. “Kosmos Distributed Filesystem ” [Online]. Available: http://code.google.com/p/kosmosfs/.
13. “libHDFS Source Code ” [Online]. Available: http://github.com/apache/hadoop-hdfs/blob/

trunk/src/c++/libhdfs/hdfs.h.
14. Brewer, E, “PODC Keynote Presentation,” 2000. [Online]. Available: http://www.cs.berkeley.

edu/∼brewer/cs262b-2004/PODC-keynote.pdf.
15. H. Song, Y.Yin, Y. Chen, and X.-H. Sun, “A Cost-Intelligent Application-Specific Data Layout

Scheme for Parallel File Systems,” in Proc. of the 20th International ACM Symposium on High
Performance Distributed Computing, 2011.

16. Prost, J.-P.; Treumann, R.; Hedges, R.; Jia, B.; Koniges, A., “MPI-IO/GPFS, an Optimized
Implemetation of MPI-IO on top of GPFS,” in Proc. of the International Conference for High
Performance Computing, Networks, Storage and Analysis (Supercomputing), 2001.

17. Liao, Wei-keng, and Choudhary, Alok, “Dynamically Adapting File Domain Partitioning
Methods for Collective I/O Based On Underlying Parallel File System Locking Protocols,” in
International Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2008, 2008.

18. H. Jin, J. Ji, X.-H. Sun, Y. Chen and R. Thakur, “CHAIO: Enabling HPC Applications on
Data-Intensive File Systems,” in 41st International Conference on Parallel Processing, 2012.

19. “TOP500 Supercomputer Sites” [Online]. Available: http://www.top500.org/.
20. “Magellan Project: A Cloud for Science,” [Online]. Available: http://magellan.alcf.anl.gov/.
21. Walker, E., “BenchmarkingAmazon EC2 for High-Performance Scientific Computing,” Usenix

Login, 2008.
22. He, Q.; Zhou, S.; Kobler, B.; Duffy, D.; McGlynn, T., “Case Study for Running HPC

Applications in Public Clouds,” in Proc. of 1st Workshop on Scientific Cloud Computing
(ScienceCloud), 2010.

23. “HPC in the Cloud,” [Online]. Available: http://www.hpcinthecloud.com/.
24. Moody, A.; Bronevetsky, G.; Mohror, K.; Supinski, B. R., “Design, Modeling and Evaluation

of a Scalable Multi-Level Checkpointing System,” in Proc. of the International Conference for
High Performance Computing, Networks, Storage and Analysis (Supercomputing), 2010.

25. Oldfield, R.; Ward, L.; Riesen, R.; Riesen, A.; Widener, P.; Widener, T., “Lightweight I/O for
Scientific Applications,” in Proc. of IEEE Cluster Computing (Cluster), 2006.

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://wiki.lustre.org/index.php/Main_Page
http://wiki.lustre.org/index.php/Main_Page
http://www.lustre.org/documentation.html
http://www.lustre.org/documentation.html
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
http://github.com/apache/hadoop-hdfs/blob/trunk/src/c++/libhdfs/hdfs.h
http://github.com/apache/hadoop-hdfs/blob/trunk/src/c++/libhdfs/hdfs.h
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

582 Y. Yin et al.

26. C. Mitchell, J. Ahrensy and J. Wang, “VisIO: Enabling Interactive Visualization of Ultra-
Scale, Time Series Data via High-Bandwidth Distirburted I/O Systems,” in IEEE International
Parallel & Distributed Processing Symposium, 2011.

27. Bent John and Gibson Garth and Grider Gary and McClelland Ben and Nowoczynski Paul
and Nunez James and Polte Milo and Wingate Meghan, “PLFS: A Checkpoint Filesystem for
Parallel Applications,” in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, 2009.

28. Sehrish Saba and Mackey Grant and Wang Jun and Bent John, “MRAP: a Novel Mapreduce-
based Framework to Support HPC Analytics Applications with Access Patterns,” in Proceed-
ings of the 19th ACM International Symposium on High Performance Distributed Computing,
2010.

29. Al-Kiswany, S.; Ripeanu, M.; Vazhkudai, S. S.; Gharaibeh, A., “stdchk: A Checkpoint Stor-
age System for Desktop Grid Computing,” in Proc. of The 28th International Conference on
Distributed Computing Systems (ICDCS), 2008.

30. “IOR HPC Benchmark,” [Online]. Available: http://sourceforge.net/projects/ior-sio/.
31. B. Nicolae, G. Antoniu, L. Bougé, D. Moise and A. Carpen-Amarie, “BlobSeer: Next-

Generation Data Management for Large Scale Infrastructures,” Journal of Parallel and
Distributed Computing, vol. 2, pp. 169–184, 2011.

32. M.-E. Esteban, G. Maya, M. Carlos, J. Bent and S. Brandt, “Mixing Hadoop and HPC
Workloads on Parallel,” in the 2009 ACM Petascale Data Storage Workshop (PDSW 09),
2009.

33. W.Tantisiriroj, S. Patil, G. Gibson, S.W. Son, S. J. Lang and R. B. Ross, “On the Duality of Data-
Intensive File System Design: Reconciling HDFS and PVFS,” in International Conference for
High Performance Computing, Networking, Storage and Analysis (SC), 2011.

34. “Hamster: Hadoop And Mpi on the same cluSTER,” [Online]. Available: http://issues.
apache.org/jira/browse/MAPREDUCE–2911.

35. “Apache Mesos” [Online]. Available: http://mesos.apache.org/.
36. B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker and I.

Stoica, “Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center,” in the 8th
USENIX conference on Networked systems design and implementation, 2011.

37. “MapR Direct Access NFS” [Online]. Available: http://www.mapr.com/products/only-with-
mapr/direct-access-nfs.

http://issues.apache.org/jira/browse/MAPREDUCE--2911
http://issues.apache.org/jira/browse/MAPREDUCE--2911
http://www.mapr.com/products/only-with-mapr/direct-access-nfs
http://www.mapr.com/products/only-with-mapr/direct-access-nfs

Cloud Resource Pricing Under Tenant
Rationality

Xin Jin and Yu-Kwong Kwok

1 Introduction

Infrastructure-as-a-Service (IaaS) clouds such as Amazon Web Services [1], Win-
dows Azure [15], and Google App Engine [6] operate at Internet-scale. In this novel
business model, cloud resources including network bandwidth, CPUs, and mem-
ory are packaged into virtual instances for rent. Consequently, tenant users can
conveniently build and host web applications in cloud with no requirements of ded-
icated infrastructure deployment, and achieve cost and risk reduction. At the same
time, cloud providers obtain profit gains thanks to economies of scale [2]. In such a
cloud market, cloud resource pricing fundamentally determines cloud revenue, cloud
resource allocation, and tenant demand dynamics.

To achieve revenue maximization, the cloud provider optimally adapts pricing
decisions to tenant demand responses. Notably, prices decrease at demand troughs
but increase at demand peaks. There is no doubt that data centers possess dominant
control over resource prices. Nonetheless, a tenant user can strategically adjust the
amount of resource procurements so as to maximize its own surplus (i.e., tenant utility
minus dollar cost). Indeed, the strong substitutability of resources offered by different
cloud providers and the existence of elastic and delay-tolerant demands render it
feasible for tenants to judiciously adjust the optimal demand levels. In general, the
pricing dynamics and demand patterns critically depend on elastic tenant demands
and strategic cloud pricing decisions. In this chapter, we consider a monopoly cloud
market by formulating a competitive market among tenants. In such a cloud market,
a natural but critical question arises: How to achieve cloud revenue maximization in
cloud resource pricing under optimal tenant demand responses?

X. Jin (�)
Yahoo Inc., Sunnyvale, CA, USA
e-mail: tojinxin@gmail.com

Y.-K. Kwok
The University of Hong Kong, Pokfulam, Hong Kong

© Springer Science+Business Media New York 2015 583
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_19

584 X. Jin and Y.-K. Kwok

To this end, we propose a Stackelberg game to tractably analyze the strategic
interactions between the cloud provider and tenant users for optimal cloud resource
pricing in Sect. 2. Specifically, we first build a general game model to realistically
capture strategic cloud resource pricing and optimal demand adjustments of tenant
consumers. Tenant surplus is used to model tenant rationality, while cloud providers
aim at revenue maximization in pricing. We then analytically perform equilibrium
analysis for both non-uniform pricing and uniform pricing in Sect. 3. In Nash equi-
librium, different price rates are offered based on the capacity provision of the cloud
provider. We also reveal hidden effects for both pricing schemes. Namely, tenants
with low demands may be crowded out of the system. Moreover, non-uniform pricing
with price differentiation is cheating proof.

To quantify the efficiency of different pricing schemes, Price ofAnarchy is used to
measure the effectiveness of our strackelberg strategies in Sect. 4. Interestingly, uni-
form pricing can achieve social welfare maximization, though non-uniform pricing
attains higher cloud revenue via price differentiation. The role of brokers in pricing
is discussed based on the notion of Nash bargaining solution (NBS) in Sect. 5. In
particular, tenants with low demands reserve resources from brokers for pricing dis-
counts, which mitigates the hidden effects and improves social welfare. Finally, to
empirically evaluate the analyses in Sect. 6, we conduct extensive simulations driven
by 40 GB of realistic workload traces from Google [7].

Our models provide an insightful abstraction of strategic interactions in the cloud
market. Moreover, hierarchical cloud resource pricing improves tenant surplus and
thus social welfare in a practical interrelated market with the consideration of brokers.
We believe, however, that our analyses will inspire numerous studies on the impact
of strategic interactions on pricing and systems as brought up here, as well as other
issues that we do not address, such as price competition among cloud providers.

2 The Game Model

We consider a cloud market with a large number of data centers and tenant users.
Data centers offer cloud resources in bundle of virtual instances as sellers. Tenant
users as buyers dynamically access virtual instances.

2.1 User Model and Virtual Instances Pricing

Throughout this chapter, we adopt the pay-as-you-go model, which offers guaranteed
services [14]. The pay-as-you-go pricing (a.k.a., usage-based pricing) is widely used
in realistic cloud resource markets, which has been adopted by Amazon EC2 [1], etc.
In particular, the cloud sells virtual instances at a fixed price p. This regular price
is updated infrequently, and tenants are charged only for what they use. That is, a
tenant that accesses x instances pays p · x dollars per unit time.

Cloud Resource Pricing Under Tenant Rationality 585

More generally, sellers may provide price differentiation to absorb more of ten-
ant surplus and transform this surplus into revenues. Intrinsic to our user model
is a tenant’s willingness to pay, which is captured by parameter θi , for tenant i,
i ∈ {1, · · · ,N}. Parameter θi is not a decision variable, but reflects tenants’ inherent
valuation of cloud resources. That is, higher θi implies higher valuation of the cloud
resources. Parameter θi realistically captures factors such as the availability of sub-
stitutes, and the inherent tenant demand. For instance, a tenant with higher inherent
demand may value cloud resources more to satisfy their own service requirements.
Thus, instead of fixed charges for all cloud users, we consider the most general sce-
nario in which the unit price pi(θi) is a function of the valuation coefficient θi . For
ease of exposition, we use pi to represent pi(θi) in the remainder of this chapter.

2.2 Modeling Cloud Revenue and Tenant Surplus

Geographically distributed data centers possibly reside in multiple cloud providers
with different pricing strategies. We consider the cloud market of a typical data
center with N tenant customers. Denote by N = {1, · · · ,N} the set of tenants,
where N = |N |. We assume the capacity of the data center is Q, i.e., the aggregate
demand of virtual instances from all tenant users should be no larger than Q. That
is,

N∑
i=1

di ≤ Q, (1)

where di represents the demand (i.e., usage level) of tenant i.
In this chapter, the interactions among tenant customers and a local data center

is modeled as a two-stage Stackelberg game. Stackelberg game is a strategic game
with a leader and several followers. The leader moves first and the followers move
subsequently to compete on certain resources. In our cloud market, as the leader, the
data center first announces the instance prices in Stage I. In Stage II, given current
pricing and resource allocation policies determined by the data center, tenants make
usage decisions by maximizing their own surplus.

2.2.1 Stage I: Cloud Revenue Maximization

Thus, in Stage I, the data center’s objective is to maximize its revenue obtained
from selling virtual instances to tenants. The revenue of the data center can be easily
obtained:

�(p, d) �
N∑
i=1

pi · di. (2)

586 X. Jin and Y.-K. Kwok

where p is the price vector with p = [p1, · · · ,pN]T , and d is a vector of usage
levels with d = [d1, · · · , dN]T . Note that ∀i, di is a function of pi and θi under our
game theoretic formulation. That is, the usage level of tenant i is dependent on the
associated cloud resource pi and its valuation coefficient θi . The data center needs
to find the optimal pricing policy by maximizing its aggregate revenue. This can be
achieved by solving the following optimization problem, constrained by the total
resource supply.

Problem 1 For a data center with aggregate resource supplyQ, its optimal pricing
policy is to maximize its aggregate revenue:

max
p#0

�(p, d)

subject to
N∑
i=1

di ≤ Q. (3)

2.2.2 Stage II: Tenant Surplus Maximization

At the tenants’ side, we adopt constant price elasticity of demand (or simply elastic-
ity) to develop utility of heterogeneous tenant customers. Denote by k the constant
elasticity, which represents the ratio between the percentage change of demand and
the percentage change of price. By assuming linear relationship between θi and tenant
i’s utility, we can define a concave utility function:

Ui(di) � θi · ln (1 + k · di), (4)

which also reflects the law of diminishing return. That is, user satisfaction saturates
with the increase of demand.

Tenant surplus is utility minus dollar cost of cloud resource usage.
Given pi which is under the control of the data center, tenant i’s surplus is thus:

πi(pi , di) � Ui(di) − pi · di. (5)

Given the data center’s pricing choices, tenant i’s optimal demand level is to max-
imize its surplus. This problem can be mathematically formulated as a convex
maximization problem.

Problem 2 Given the pricing strategy pi for type-i tenants, the optimal demand
level of tenant i is obtained by maximizing its surplus:

max
di≥0

πi(pi , di). (6)

2.3 Stackelberg Equilibrium

In our proposed Stackelberg game for cloud resource pricing and allocation, the
Stackelberg equilibrium (i.e., SE) is defined as follows.

Cloud Resource Pricing Under Tenant Rationality 587

Definition 1 Let p∗ represent a solution for Problem 2.2.1, and the optimal d∗i be
a solution for Problem 2.2.2 for tenant i. Then, (p∗, d∗) is a SE for the proposed
Stackelberg game if and only if

�(p∗, d∗) ≥ �(p, d∗), and

πi(d
∗
i) ≥ πi(di) (7)

for any (p, d) satisfying p ≥ 0 and d ≥ 0.
Stackelberg equilibrium is a subgame perfect equilibrium. At the equilibrium,

both the data center and tenant customers have no incentives to unilaterally change
their pricing and usage choices.

3 Usage-Based Cloud Resource Pricing

In this section, we apply backward induction to perform equilibrium analysis, by
considering the following two pricing schemes: non-uniform pricing and uniform
pricing, followed by a comparison of the two schemes.

3.1 Non-Uniform Pricing

We first consider non-uniform pricing, in which tenants are charged based on different
unit rates.

3.1.1 Stage II: Tenant Surplus Maximization

The tenant surplus maximization in Problem 2.2.2 can be easily formulated as:

max
di≥0

θi · ln (1 + k · di) − pi · di. (8)

This is a typical convex optimization problem, the solution of which can be eas-
ily solved by the Karush-Kuhn-Tucker (KKT) conditions. Therefore, the optimal
solution can be easily obtained in the following lemma. We omit the detailed proof.

Lemma 1 For a given price pi , the optimal demand level of tenant i (i.e., the
optimal solution to Problem 2.2.2) is:

d∗i =
(
θi

pi
− 1

k

)+
, (9)

where (x)+ = max(x, 0).
From the above Lemma, we can see that tenants will not use any cloud resource

if the price pi is too high. That is, tenant i will not be admitted to the cloud system
(i.e., di = 0), when pi is large enough.

588 X. Jin and Y.-K. Kwok

3.1.2 Stage I: Cloud Pricing Choices

Substitute Eq. 2 and 9 into Problem 2.2.1. The optimization problem is formulated
as:

max
p#0

N∑
i=1

pi ·
(
θi

pi
− 1

k

)+

subject to
N∑
i=1

(
θi

pi
− 1

k

)+
≤ Q. (10)

For ∀ i ∈ {1, · · · ,N}, we define the indicator function:

Ii =
⎧⎨
⎩

1 if pi < k · θi
0 otherwise.

(11)

Then, the above problem can be transformed into

max
p,I#0

N∑
i=1

pi ·
(
θi

pi
− 1

k

)
· Ii

subject to
N∑
i=1

(
θi

pi
− 1

k

)
· Ii ≤ Q, (12)

where I � [I1, · · · , IN]T . The above problem is not convex due to indicator functions.
However, an important property of the above problem is that it is convex for any

given I. Therefore, we first assume that Q is large enough so that all tenants are
admitted to the system. Under this assumption, we have the following equivalent
convex optimization problem:

Problem 3 Under the assumption of large enough Q, Problem 2.2.1 can be
transformed into:

min
p#0

N∑
i=1

pi

k

subject to
N∑
i=1

θi

pi
≤ Q+ N

k
. (13)

The optimal solution of the above convex optimization problem is given by the
following lemma.

Lemma 2 Under the assumption of large enough Q, the data center’s optimal
pricing strategy for tenant i (i.e., the optimal solution to Problem 3.1.2) is:

p∗
i =

∑N
j=1

√
θj

Q+ N
K

·√θi , ∀i ∈ {1, · · · ,N}. (14)

Cloud Resource Pricing Under Tenant Rationality 589

Proof The Lagrangian associated with Problem 3.1.2 is

L(p, λ,μ) =
N∑
i=1

pi

k
+ λ ·

(
N∑
i=1

θi

pi
−Q− N

k

)
−

N∑
i=1

μi · pi , (15)

where λ and μ respectively are non-negative Lagrangian multipliers associated with
the constraints

∑N
i=1

θi
pi

≤ Q+ N
k

and pi ≥ 0.

The KKT conditions are:

∂L(p, λ,μ)

∂pi
= 0, ∀i, (16)

λ ·
(
N∑
i=1

θi

pi
−Q− N

k

)
= 0, (17)

N∑
i=1

μi · pi = 0, ∀i, (18)

λ ≥ 0, μi ≥ 0, pi ≥ 0, (19)

N∑
i=1

θi

pi
−Q− N

k
≤ 0 (20)

From condition 16, we have

∂L(p, λ,μ)

∂pi
= i

k
− λ · θi

p2
i

− μi = 0, ∀i, (21)

which yields

pi =
√

λ · θi
1/k − μi , ∀i. (22)

Firstly, we have

μi = 0. (23)

Otherwise, from condition 18, we have pi = 0. This contradicts to condition 20.
Therefore,

pi =
√
kλ · θi , ∀i. (24)

Secondly, we have

N∑
i=1

θi

pi
−Q− N

k
= 0. (25)

590 X. Jin and Y.-K. Kwok

Otherwise, from condition 17, we have λ = 0. From condition 24, pi = 0 as a result.
This again contradicts condition 20.

Substitute Eq. 24 into 25. We can obtain

√
kλ =

∑N
j=1

√
θj

Q+N/k . (26)

Then, we have

pi =
∑N
j=1

√
θj

Q+ N
k

·√θi . (27)

�
Then, we get the following lemma.

Lemma 3 The sufficient and necessary condition that the solution given by Lemma
2 is also the optimal solution to Problem 2.2.1 is given by:

Q >

∑N
j=1

√
θj

minik · √θi −
N

k
. (28)

Proof First, we consider the sufficient condition. If all the indicators are equal to
1, that is, pi < k · θi , ∀i, the solution given by Lemma 2 is the optimal solution of
Problem 2.2.1. Substitute the solution in Lemma 2 into all these conditions, we have

Q >

∑N
j=1

√
θj

Q+ N
k

·√θi , ∀i, (29)

which can be expressed as

Q >

∑N
j=1 mini

√
θj

Q+ N
k

·√θi . (30)

Second, we consider the necessary condition. For ease of exposition, we assume that
θ1 > θ2 > · · · > θN . Then, the condition in Lemma 3 becomes

Q > TN , (31)

where TN =
∑N
j=1

√
θj

k·√θN − N
k

.

Now, suppose that Tr < Q ≤ Tr+1, r ≤ N − 1. Suppose that the optimal
solution in Lemma 2 is still the optimal solution. Then, Ii = 1, ∀i ≤ r , and Ii = 0,
∀r + 1 < i ≤ N − 1. Then, Problem 2 becomes

max
p#0

r∑
i=1

pi ·
(
θi

pi
− 1

k

)

Cloud Resource Pricing Under Tenant Rationality 591

subject to
r∑
i=1

(
θi

pi
− 1

k

)
≤ Q. (32)

This convex optimization problem has the same structure as Problem 3.1.2. Thus,
the optimal solution to the above problem is given by:

p∗
i =

∑r
j=1

√
θj

Q+ r
K

·√θi , ∀i ∈ {1, · · · , r}, (33)

which is different from the optimal solution given in Lemma 2. This gives a
contradiction. Thus, it is also a necessary condition. �

From the proof of the above lemma, we can obtain the following theorem about
the optimal solution of Problem 2.2.1.

Theorem 1 Under the assumption that θ1 > · · · > θN , the optimal solution to
Problem 2.2.1 is given by

p∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sN · [
√
θ1, · · · ,

√
θN]T ifQ > TN

sN−1 · [
√
θ1, · · · ,

√
θN−1,∞]T if TN > Q > TN−1

...
...

sr · [
√
θ1, · · · ,

√
θr ,∞, · · · ,∞]T if Tr+1 > Q > Tr

...
...

s1 · [
√
θ1,∞, · · · ,∞]T ifQ > T1

s0 · [∞, · · · ,∞]T otherwise

(34)

where sr =
∑r
j=1

√
θj

Q+ r
k

, s0 = 1, and Tr =
∑r
j=1

√
θj

k·√θr − r
k
, ∀r ∈ {1, · · · ,N}.

The above theorem implies an economic observation: the data center maximizes
its revenue via price differentiation. That is, tenants with higher willingness to pay
are charged with higher unit prices. Therefore, a very important question is whether
tenants possess incentives to cheat about their willingness to pay, and receive a lower
unit price. This is answered in Theorem 2.

Theorem 2 The price differentiation scheme is cheating proof. That is, tenants do
not have incentives to cheat about their valuation types.

Proof Assume that θ1 > · · · > θN . Suppose that the maximized surplus of a type-i
tenant is π∗

i , when the tenant truthfully reveals its valuation parameter θi . Then, from
Theorem 1, we have

π∗
i = πi(p∗

i , d
∗
i), (35)

where d∗i =
(
θi
p∗
i
− 1

k

)+
.

592 X. Jin and Y.-K. Kwok

Tenants have no incentives to reveal a higher valuation parameter, which will lead
to higher unit resource prices. Suppose that the maximized surplus of a type-i tenant
is π ′

i , when the tenant claims that its valuation parameter is θl , ∀l > i. Then, from
Lemma 1, we have

π ′
i = πi(p∗

j , d
′
i), (36)

where d ′i =
(
θi
p∗
l
− 1

k

)+
.

Therefore, the necessary and sufficient condition that type-i tenants truthfully
reveal their valuation parameters is

π∗
i ≥ π ′

i . (37)

From Theorem 1, we can derive π∗
i and π ′

i .
1) We first assume that the resource supply Q is large enough. That is, Q > TN .

All tenants are admitted. Then, condition 37 becomes

1

2
· θi · ln

θi

θl
+ 1

k
·
∑N
j=1

√
θj

Q+ N
k

·
(√
θi −

√
θl

)
≥ 0, (38)

which is obviously satisfied because θi > θl , ∀l > i.
2) Second, we assume that Tr+1 > Q > Tr . Tenants will not have incentives to

cheat for l > r , because

π ′
i |Tr+1>Q>Tr = 0, l > r , ∀i. (39)

Then, we have two cases: a) l ≥ i, and l ≤ r; b) i < r , and l > r . In case a), type i
tenants have no incentives to cheat. The proof is similar to the caseQ > TN . In case
b), condition 37 becomes

π∗
i |Tr+1>Q>Tr ≥ 0, ∀i < r. (40)

Thus, in case b), tenants also have no incentives to cheat. �

3.2 Uniform Pricing

Next, we consider uniform pricing, in which heterogeneous tenants are charged based
on the same unit rates pi = p, ∀i ∈ {1, · · · ,N}.

3.2.1 Stage II: Tenant Surplus Maximization

The tenant surplus maximization in Problem 2.2.2 can be easily transformed into:

max
di≥0

θi · ln (1 + k · di) − p · di. (41)

Cloud Resource Pricing Under Tenant Rationality 593

This is a typical convex optimization problem. Similar to Lemma 1, we can obtain
the following lemma on the optimal demand level of tenants. We omit the detailed
proof.

Lemma 4 For a given uniform price p, the optimal demand level of tenant i (i.e.,
the optimal solution to Problem 2.2.2) is:

d
∗
i =

(
θi

p
− 1

k

)+
, ∀i ∈ {1, · · · ,N}, (42)

where (x)+ = max(x, 0).

3.2.2 Stage I: Cloud Pricing Choices

Similar to non-uniform pricing, we first assume that Q is large enough so that all
tenants are admitted to the system. Under this assumption, similar to Problem 3.1.2,
we get the following equivalent convex optimization problem:

Problem 4 Under the assumption of large enough Q, Problem 2.2.1 can be
transformed into:

min
p≥0

N · p
k

subject to
N∑
i=1

θi

p
≤ Q+ N

k
. (43)

The optimal solution of the above optimization problem is thus given by the following
lemma.

Lemma 5 Under the assumption of large enoughQ and uniform pricing, the data
center’s optimal pricing strategy for tenant i (i.e., the optimal solution to Problem
3.2.2) is:

p∗ =
∑N
j=1 θj

Q+ N
K

, ∀i ∈ {1, · · · ,N}. (44)

Similar to Lemma 3, the condition on which the above optimal solution is also the
optimal solution to the original problem given by Problem 2.2.1 is given by the
following lemma, under uniform pricing.

Lemma 6 Under uniform pricing, the sufficient and necessary condition that the
solution given by Lemma 2 is also the optimal solution to Problem 2.2.1 is given by:

Q >

∑N
j=1 θj

minik · θi −
N

k
. (45)

Similar to Theorem 1, we can obtain the following theorem about the optimal solution
of Problem 2.2.1.

594 X. Jin and Y.-K. Kwok

Theorem 3 Under uniform pricing and the assumption that θ1 > · · · > θN , the
optimal solution to Problem 2.2.1 is given by

p∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s ′N · [1, · · · , 1]T ifQ > T ′
N

s ′N−1 · [1, · · · , 1,∞]T if T ′
N > Q > T

′
N−1

...
...

s ′r · [1, · · · , 1,∞, · · · ,∞]T if T ′
r+1 > Q > T

′
r

...
...

s ′1 · [1,∞, · · · ,∞]T ifQ > T ′
1

s ′0 · [∞, · · · ,∞]T otherwise

(46)

where s ′r =
∑r
j=1 θj

Q+ r
k

, s ′0 = 1, and T ′
r =

∑r
j=1 θj

k·θr − r
k
, ∀r ∈ {1, · · · ,N}.

4 The Effectiveness of Stackelberg Strategies

It is well known that agent selfishness may deteriorate the network performance. The
ratio of the maximized total network utility over the total network utility incurred
by selfish behaviors is usually used to measure such performance degradation. This
ratio is called Price of Anarchy (PoA). In this section, we obtain results on PoA to
scrutinize the impact of agent selfishness under the cloud computing environment.

4.1 Centralized Aggregate Network Utility Maximization

The aggregate utility of the entire networkUt (d) is the aggregate surplus of all tenants,
plus revenue of the data center:

Ut (d) = �(p, d) +
N∑
i=1

πi(pi , di)

=
N∑
i=1

Ui(di)

=
N∑
i=1

θi · ln (1 + k · di). (47)

Cloud Resource Pricing Under Tenant Rationality 595

Problem 5 For a data center with aggregate resource supplyQ, the centralized op-
timal solution to maximize the total network utility is given by solving the following
problem:

max
d#0

Ut (d) =
N∑
i=1

θi · ln (1 + k · di)

subject to
N∑
i=1

di ≤ Q. (48)

The optimal solution of the above convex optimization problem is given by the
following theorem.

Theorem 4 The optimal demand level of tenant i to maximize the total network
utility is (i.e., the centralized optimal solution to Problem 4.1) is:

dci = θi∑N
j=1 θj

·
(
Q+ N

k

)
− 1

k
, ∀i ∈ {1, · · · ,N}, (49)

which yields the maximized total network utility:

Uct =
N∑
i=1

θi · ln

(
k · θi
s ′N

)
, (50)

where s ′N =
∑N
j=1 θj

Q+N
k

.

Proof The Lagrangian associated with Problem 4.1 is

L(d,α,β) =
N∑
i=1

θi · ln (1 + k · di) + α ·
(
N∑
i=1

di −Q
)

−
N∑
i=1

βi · di , (51)

where α and βi respectively are non-negative Lagrangian multipliers associated with
the constraints

∑N
i=1 di ≤ Q and di ≥ 0.

The KKT conditions are:

∂L(d,α,β)

∂di
= 0, ∀i, (52)

α ·
(
N∑
i=1

di −Q
)

= 0, (53)

N∑
i=1

βi · di = 0, ∀i, (54)

α ≥ 0, βi ≥ 0, di ≥ 0, (55)

596 X. Jin and Y.-K. Kwok

N∑
i=1

di −Q ≤ 0. (56)

From condition 52, we have

∂L(d,α,β)

∂di
= k · θi

1 + k · di + α − βi = 0, ∀i, (57)

which yields

di = θi

βi − α − 1

k
, ∀i. (58)

Firstly, we have

βi = 0. (59)

Otherwise, from condition 54, we have di = 0. This contradicts to condition 56.
Therefore,

di = −θi
α

− 1

k
, ∀i. (60)

Secondly, we have

N∑
i=1

di −Q = 0. (61)

Otherwise, from condition 53, we have α = 0. From condition 60, di = −∞ as a
result. This contradicts condition di ≥ 0.

Substitute Eq. 60 into 61. We can obtain

α = −
∑N
j=1 θj

Q+ N
k

. (62)

Then, we have the optimal solution

dci = θi

s ′N
− 1

k
, (63)

where s ′N =
∑N
j=1 θj

Q+N
k

.

Therefore, the maximized total network utility is

Uct =
N∑
i=1

θi · ln (1 + k · dci). (64)

Cloud Resource Pricing Under Tenant Rationality 597

Substituting the optimal solution into the above equation, we have:

Uct =
N∑
i=1

θi · ln

(
k · θi
s ′N

)
. (65)

�
Moreover, from Lemma 4 and Lemma 5, we can obtain the following proposition.

Proposition 1 Centralized resource allocation is equivalent to the resource al-
location under uniform pricing when the capacity of the data center is large
enough.

4.2 Total Network Utility Under Selfish Interactions

Under selfish interactions between tenants and data centers, we also have two cases:
non-uniform pricing and uniform pricing. We first consider the scenario of non-
uniform pricing.

Lemma 7 Under the assumption that θ1 > · · · > θN and non-uniform pricing, the
total network utility, incurred by selfish behaviors of the data center and tenants, is
given by

Ust =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
i=1 θi · ln

(
k·√θi
sN

)
ifQ > TN∑N−1

i=1 θi · ln
(
k·√θi
sN−1

)
if TN > Q > TN−1

...
...∑r

i=1 θi · ln
(
k·√θi
sr

)
if Tr+1 > Q > Tr

...
...

θ1 · ln
(
k·√θ1
s1

)
ifQ > T1

0 otherwise

(66)

where sr =
∑r
j=1

√
θj

Q+ r
k

, s0 = 1, and Tr =
∑r
j=1

√
θj

k·√θr − r
k
, ∀r ∈ {1, · · · ,N}.

598 X. Jin and Y.-K. Kwok

Proof From Theorem 1 and Lemma 1, we have:

d∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
sN

· [
√
θ1, · · · ,

√
θN]T − 1

k
ifQ > TN

1
sN−1

· [
√
θ1, · · · ,

√
θN−1, 0]T − 1

k
if TN > Q > TN−1

...
...

1
sr

· [
√
θ1, · · · ,

√
θr , 0, · · · , 0]T − 1

k
if Tr+1 > Q > Tr

...
...

1
s1

· [
√
θ1, 0, · · · , 0]T − 1

k
ifQ > T1

1
s0

· [0, · · · , 0]T otherwise.

(67)

Substituting it into Ust = Ut (d∗) =∑N
i=1 θi · ln (1 + k · d∗i), we obtain the results in

the lemma. �
We then consider the scenario of uniform pricing.

Lemma 7 Under the assumption that θ1 > · · · > θN and uniform pricing, the total
network utility, incurred by selfish behaviors of the data center and tenants, is given
by

U
s

t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
i=1 θi · ln

(
k·θi
s′N

)
ifQ > T ′

N∑N−1
i=1 θi · ln

(
k·θi
s′N−1

)
if T ′

N > Q > T
′
N−1

...
...∑r

i=1 θi · ln
(
k·θi
s′r

)
if T ′

r+1 > Q > T
′
r

...
...

θ1 · ln
(
k·θ1
s′1

)
ifQ > T ′

1

0 otherwise

(68)

where s ′r =
∑r
j=1 θj

Q+ r
k

, s ′0 = 1, and T ′
r =

∑r
j=1 θj

k·θr − r
k
, ∀r ∈ {1, · · · ,N}.

Proof From Theorem 3 and Lemma 4, we have:

d
∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
s′N

· [θ1, · · · , θN]T − 1
k

ifQ > T ′
N

1
s′N−1

· [θ1, · · · , θN−1, 0]T − 1
k

if T ′
N > Q > T

′
N−1

...
...

1
s′r

· [θ1, · · · , θr , 0, · · · , 0]T − 1
k

if T ′
r+1 > Q > T

′
r

...
...

1
s′1

· [θ1, 0, · · · , 0]T − 1
k

ifQ > T ′
1

1
s′0

· [0, · · · , 0]T otherwise.

(69)

Cloud Resource Pricing Under Tenant Rationality 599

Substituting it into U
s

t = Ut (d∗) =∑N
i=1 θi · ln (1 + k · d∗i), we obtain the results in

the lemma. �

4.3 Asymptotic Analysis of Price of Anarchy

From the definition of PoA, we obtain the formulation of PoA in the following.

Definition 2 i) The PoA under non-uniform pricing is given by:

PoAnu = Uct

Ust
. (70)

ii) The PoA under uniform pricing is given by:

PoAu = U
c

t

Ust
. (71)

Theorem 5 Suppose that the capacity of the data center under consideration is
large enough. From Proposition 1, we can easily get the PoA under uniform pricing:

PoAu = 1. (72)

For non-uniform pricing, we resort to asymptotic analysis. That is, there exist a large
number of tenants. We also assume that the valuation parameter θj follows uniform
distribution with θj ∈ (0, 1), ∀j ∈ {1, · · · ,N}. Then, we have the following theorem.

Theorem 6 Suppose that the capacity of the data center under consideration is
large enough, and that there are a large number of tenant consumers. If the valuation
parameter θj follows uniform distribution, then we have

PoAnu = ln k − lnX − 1
2 − ln 2 + ln 3

ln k − lnX − 1
4 + ln 2

, (73)

where X = N

Q+N
k

.

Proof sketch. We first have

Ust = N · E
[
θi · ln

(
k · √θi
sN

)]

= N ·
(

1

2
ln k − 1

8
− 1

2
ln sN

)
, (74)

where sN = N ·E
[√

θj

]
Q+N

k

= 2
3 · N

Q+N
k

. Similarly, we can derive Uct and S ′
N . �

600 X. Jin and Y.-K. Kwok

5 Broker Resource Pricing

Cloud brokers are widely discussed to leverage demand correlation among different
tenants for resource multiplexing when procuring resources from the cloud. However,
pricing strategies taken by brokers are still largely unexplored. In this section, we
tackle this challenge by introducing brokers in our framework of differentiated cloud
resource pricing. Denote by pbi the unit price charged by the broker for tenant i with
valuation parameter θi . In this section, suppose that the data center capacity is large
enough to admit all tenants, and that θi follows uniform distribution with θi ∈ (0, 1).

Lemma 9 If and only if θi ≤
(
pbi
sN

)2
, the optimal strategy for tenant i is to procure

resources from the data center; otherwise (i.e., θi >
(
pbi
sN

)2
), the optimal strategy is

to obtain resources from the broker.

Proof When procuring resources from the broker, the tenant surplus of a typical
tenant i is given by:

πbi = θi · ln
(
1 + k · dbi

)− pbi · dbi , (75)

where the demand level of tenant i is

dbi =
(
θi

pbi
− 1

k

)+
. (76)

Therefore, the tenant surplus is

πbi =
⎧⎨
⎩

0 if θi <
pbi
k

θi · ln
(
kθi
pbi

)
− θi + pbi

k
otherwise.

(77)

if tenant i obtains resources from the broker.
For clarity, we assume that the capacity of the data center is large enough to admit

all tenants for resource procurement. Then, if tenant i obtains resources from the
cloud directly, then the surplus of tenant i is

π∗
i = θi · ln

(
k ·

√
θi

sN

)
− θi +

√
θi

k
· sN , (78)

and the optimal price charged by the data center is

p∗
i = sN ·√θi < k√θi · θN < k · θi . (79)

Then, tenant i procures resources from the broker if and only if

Δπi = πbi − π∗
i > 0. (80)

Cloud Resource Pricing Under Tenant Rationality 601

Case 1: θi <
pbi
k

. We have Δπi = −π∗
i < 0. Then, tenant i procures resources

from the data center.

Case 2:
pbi
k
< θi <

(
pbi
sN

)2
. That is, p∗

i < p
b
i < k · θi . Because πbi is a decreasing

function of pbi when pbi < k · θi , Δπi < 0. That is, tenant i procures resources from
the data center.

Case 3: θi >
(
pbi
sN

)2
. That is, pbi < p∗

i < k · θi . Because πbi is a decreasing

function of pbi when pbi < k · θi , Δπi > 0. That is, tenant i procures resources from
the broker. �

The broker obtains revenue by selling resources to tenants and at the same time
shares part of the revenue with the data center by negotiation. Denote by γ the
fraction of revenue shared with the data center. Assuming uniform distribution of θi ,
from the above lemma, we can obtain that the broker revenue obtained from selling
resources to tenants with high valuation parameters is

Δ�b(γ , pb) = (1 − γ) ·
∫ 1

(
pb
i
sN

)2 pbi · dbi dθi

= (1 − γ) ·
∫ 1

(
pb
i
sN

)2

(
θi − pbi

k

)
dθi (81)

The revenue increase of the data center is the revenue increase shared by the broker
minus the revenue loss from tenants with high valuation parameters, due to the
competition from the broker. Then, we have the revenue increase of the data center:

Δ�(γ , pb) = γ ·
∫ 1

(
pb
i
sN

)2 pbi · dbi dθi −
∫ 1

(
pb
i
sN

)2 p∗
i · d∗i dθi

= γ ·
∫ 1

(
pb
i
sN

)2

(
θi − pbi

k

)
dθi

−
∫ 1

(
pb
i
sN

)2

(
θi − sN · √θi

k

)
dθi. (82)

The broker bargains with the cloud provider on γ and pbi in broker resource pricing.
Therefore, we use the Nash bargaining solution (NBS) to solve the problem of broker
resource pricing. NBS is Pareto efficient and promotes fairness for revenue sharing
between the data center and the broker.

Problem 6 The broker pricing under the Nash bargaining framework is to solve the
following optimization problem:

max
pb#0,0<γ<1

Δ�b(γ , pb) ·Δ�(γ , pb). (83)

To obtain insights into broker resource pricing and the revenue sharing between the
data center and

602 X. Jin and Y.-K. Kwok

Theorem 7 The optimal broking pricing strategy is given by:

pb∗ = sN√
5

= 2
√

5

15
· N

Q+ N
k

. (84)

We omit the proof here. The broker pricing problem can be solved by first deriving
the optimal value for γ given a specific pb, and then obtaining the optimal value of
pb.

6 Performance Evaluation

We present our results on performance evaluation in this section.

6.1 Setup

We augment our evaluation with empirical data on workload traces from Google
production clusters [8].

The workload traces are used to derive the distribution of tenant valuation coeffi-
cient θ . Considering the fact that uniform pricing is commonly adopted by practical
cloud systems in the pay-as-you-go model, we use the market price of $0.06 for a
small virtual instance in July, 2013. The amount of resources (i.e., the number of
CPU cores) requested by tenants is obtained from the traces. Due to the normaliza-
tion of CPU numbers in the Google traces, we assume the smallest requested amount
is 1 core to scale the demand. From the optimal demand di = (θi

p
− 1

k
)+, we derive

the distribution of the valuation parameters.
We use k = 0.5 by default. In the following, we first use Google traces to get

resource prices and demands.

6.2 Economic Implications of Cloud Resource Pricing

Figure 1a and b show the impact of resource supply on cloud resource prices and
tenant demands. An inverse relationship exists between supply and prices, and uni-
form prices fall between the prices charged to tenants with high resource valuation
and low resource valuation.

Importantly, under non-uniform pricing, tenants with higher demands are charged
with higher unit resource prices. This contradicts the industry practice of volume
discounts, which partially explains the adoption of uniform pricing by the industry.
In particular, there are no available prices for tenants with θ = 0.05 in that tenants
with low resource valuation are crowded out of the system. This phenomenon will

Cloud Resource Pricing Under Tenant Rationality 603

0 1 2 3 4 5

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
R

es
ou

rc
e

P
ric

es

Data Center Capacity

Non−uniform pricing, θ = 0.05
Non−uniform pricing, θ = 0.3
Non−uniform pricing, θ = 3
Uniform pricing

0 1 2 3 4 5

x 10
4

0

200

400

600

800

1000

1200

1400

R
es

ou
rc

e
U

sa
ge

 L
ev

el
s

Data Center Capacity

Non−uniform pricing, θ = 0.3
Non−uniform pricing, θ = 3
Uniform pricing, θ = 0.3
Uniform pricing, θ = 3

a b

Fig. 1 Economic implications at equilibrium. a Resource prices for tenants. b Tenant demand levels

be elaborated in detail later. However, from the Google workload traces, we can
only obtain large enough observable demands in that tenants with low demands
are crowded out of the system with no demand records in the trace. Therefore, to
compare tenant surplus, revenue, social welfare and hidden effects, we use uniform
distribution with θi ∈ (0, 1).

6.3 Social Welfare Tradeoffs, and Hidden Effects

Figure 2a and b compare tenant surplus and cloud revenue under non-uniform and
uniform pricing. It is observed that non-uniform pricing can achieve higher cloud
revenue by exploiting more tenant surplus via price differentiation.

From Fig. 2c and the definition of PoA,
we learn that there exists a tradeoff between cloud revenue maximization and

social welfare optimization. The revenue differences are small compared with the
gap in PoA, which may also partially explain the industry adoption of uniform pric-
ing. Hidden effects as implied in the parable of broken windows refer to unintended
consequences, including unexpected benefits or more likely adverse effects, in so-
cial sciences and especially economics [5, 12]. We also observe such unintended
consequences in the cloud system. That is, tenants with low valuation coefficients
may be crowded out of the system due to low resource supply, as shown in Fig. 2d.
This is true for both non-uniform and uniform pricing. Moreover, such hidden effects
are more serious under uniform pricing for oblivious prices charged to tenants with
different resource valuation types.

604 X. Jin and Y.-K. Kwok

0 1 2 3 4 5

x 10
4

0

5

10

15

20
T

en
an

t S
ur

pl
us

Data Center Capacity

Non−uniform pricing, θ = 0.3
Non−uniform pricing, θ = 3
Uniform pricing, θ = 0.3
Uniform pricing, θ = 3

0 1 2 3 4 5

x 10
4

100

150

200

250

300

350

400

450

500

R
ev

en
ue

Data Center Capacity

Non−uniform pricing, k = 0.1
Non−uniform pricing, k = 0.5
Uniform pricing, k = 0.1
Uniform pricing, k = 0.5

a b

0 1 2 3 4 5

x 10
4

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

P
ric

e
of

 A
na

rc
hy

Data Center Capacity

Non−uniform pricing, k = 0.1
Non−uniform pricing, k = 0.5
Uniform pricing, k = 0.1
Uniform pricing, k = 0.5

c
0 1 2 3 4 5

x 10
4

500

600

700

800

900

1000

N
um

be
r

of
 A

dm
itt

ed
 T

en
an

ts

Data Center Capacity

Non−uniform pricing, k = 0.1
Non−uniform pricing, k = 0.5
Uniform pricing, k = 0.1
Uniform pricing, k = 0.5

d

Fig. 2 Revenue-efficiency tradeoffs and hidden effects. a Tenant surplus. b Data center revenue.
c Price of anarchy. d Hidden effects as exemplified by rejected admission of tenants in the cloud
system

7 Related Work

Due to the critical role of cloud resource pricing, there already exist some studies
on pricing of cloud resources. Wang et al. [10] pinpoint the importance of pricing
in cloud system design. Wang et al. [14] discuss optimal resource capacity segmen-
taion between the pay-as-you-go pricing model and spot pricing with the objective
of revenue maximization. Niu et al. [3, 4] propose a pricing scheme to multiplex
bandwidth demands of a cloud based VoD system. Mihailescu et al. [11] consider
dynamic pricing in federated clouds. Kantere et al. [13] explore optimal service
pricing in cloud cache services. Most recently, Xu et al. [9] argue cloud revenue
maximization by proposing centralized optimization solutions.

Cloud Resource Pricing Under Tenant Rationality 605

8 Concluding Remarks

In this chapter, we explore optimal cloud resource pricing by considering the strategic
interactions and optimal responses of both cloud providers and tenant users. We
propose a Stackelberg game to model such strategic cloud resource pricing. We
then conduct equilibrium analysis by considering both non-uniform and uniform
pricing, and explore the degradation of system performance via Price of Anarchy
analysis. The results revealed insightful observations for practical pricing scheme
design. In the future, we would like to extend our general model to the scenario of
price competition among different cloud providers.

References

1. Amazon EC2, 2013. http://aws.amazon.com/ec2/.
2. Byung Chul Tak, Bhuvan Urgaonkar, and Anand Sivasubramaniam. Cloudy with a Chance of

Cost Savings. IEEE Transactions on Parallel and Distributed Systems, 24(6):1223–1233, June
2013.

3. Di Niu, Chen Feng, and Baochun Li. A Theory of Cloud Bandwidth Pricing for Video-on-
Demand Providers. In Proc. of INFOCOM, March 2012.

4. Di Niu, Chen Feng, and Baochun Li. Pricing Cloud Bandwidth Reservations under Demand
Uncertainty. In Proc. of SIGMETRICS, June 2012.

5. Frederic Bastiat. What is seen and what is not seen. Selected Essays on Political Economy,
1995.

6. Google App Engine, 2013. https://appengine.google.com/start.
7. Google Cluster Data, 2013. https://code.google.com/p/googleclusterdata/.
8. Google Cluster Data, 2013. http://code.google.com/p/googleclusterdata/wiki/ClusterData2011

_1.
9. Hong Xu and Baochun Li. A Study of Pricing for Cloud Resources. ACM SIGMETRICS

Performance Evaluation Review, Special Issue on Cloud Computing, March 2013.
10. Hongyi Wang, Qingfeng Jing, Rishan Chen, Bingsheng He. Distributed Systems Meet Eco-

nomics, Zhengping Qian, and Lidong Zhou: Pricing in the Cloud. In Proc. of USENIX
HotCloud, June 2010.

11. Marian Mihailescu and Yong Meng Teo. Dynamic Resource Pricing on Federated Clouds. In
Proc. of 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,
2010.

12. Mark Skidmore and Hideki Toyaz. Does Natural Disasters Promote Long-run Growth?
Economic Inquiry, 40(4):664–687, October 2002.

13. Verena Kantere, Debabrata Dash, Gregory Francois, Sofia Kyriakopoulou, and Anastasia Aila-
maki. Optimal Service Pricing for a Cloud Cache. IEEE Transactions on Knowledge and Data
Engineering, 23(9):1345–1358, September 2011.

14. Wei Wang, Baochun Li, and Ben Liang. Towards Optimal Capacity Segmentation with Hybrid
Cloud Pricing. In Proc. of ICDCS, June 2012.

15. Windows Azure Pricing Calculator, 2013. http://www.windowsazure.com/en-us/pricing/
calculator/.

http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1
http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1
http://www.windowsazure.com/en-us/pricing/calculator/
http://www.windowsazure.com/en-us/pricing/calculator/

Online Resource Management for
Carbon-Neutral Cloud Computing

Kishwar Ahmed, Shaolei Ren, Yuxiong He and Athanasios V. Vasilakos

1 Introduction

The rapid growth of Internet and cloud services in recent years has contributed to the
dramatic increase in the number and scale of data centers, resulting in huge brown en-
ergy consumption (e.g., electricity) and carbon emissions. This growth in electricity
consumption raises serious concerns for data centers: increase in annual operational
expenditure by significant amount for large data centers [2], and detrimental effect
on environment due to data centers’ dependence on coal or other carbon-intensive
sources that produce huge carbon footprints [3]. In recent years, data center oper-
ators have been increasingly pressured to reduce the net carbon footprint to zero
i.e., carbon neutrality. While some initial efforts have been made to achieve carbon
neutrality for data centers [4–6], they require accurate prediction of long-term future
information (e.g., workloads, renewable energy availability) that is very difficult, if
not impossible to obtain in practice. In this chapter, we propose an efficient online
resource management solution to minimize data center’s operational cost (defined as

This chapter is mainly based on the authors’ prior research [1].

S. Ren (�) · K. Ahmed
Florida International University, Miami, USA
e-mail: sren@fiu.edu

K. Ahmed
e-mail: kahme006@fiu.edu

Y. He
Microsoft Research, Redmond, USA
e-mail: yuxhe@microsoft.com

A. V. Vasilakos
National Technical University of Athens, Athens, Greece
e-mail: vasilako@ath.forthnet.gr

© Springer Science+Business Media New York 2015 607
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_20

608 K. Ahmed et al.

a weighted sum of electricity cost and delay cost) while achieving carbon neutrality
without requiring long-term future information.

1.1 Background

Data centers, with recent enormous growth in size and scale containing tens of thou-
sands of servers, consume a huge amount of electricity. According to recent studies,
the combined electricity consumption of global data centers amounts to 623 billion
kWh annually and would rank 5th in the world if the data center were a country [7].
Data centers in the U.S. consume approximately 2% of the national electricity sup-
ply, which has been growing at rate of 12 % annually [7]. The statistics is alarming
for data centers of large companies with thousands of servers: consuming significant
amount of electricity to operate and costing millions of dollars. For example, annual
electricity consumption of Microsoft data center servers is over 600 GWh, costing
more than $36 M, while servers of Google consume more than 1120 GWh to op-
erate annually and costs over $67 M [8]. As a significant portion of this electricity
is produced by coal or other carbon-intensive sources, it is often labelled as “brown
energy” and the growing trend of data center electricity consumption has raised se-
rious concerns about its carbon footprint. With the release of large amount of carbon
dioxide and other greenhouse gases into the atmosphere, there have been severe en-
vironmental impacts of carbon emissions recently, such as altering global patterns
of temperature, rainfall, and consequently creation of drought, flood etc. In view of
this huge carbon footprint [2, 9], large data centers are now increasingly urged to
find effective solutions to reduce the carbon emission for sustainable computing and
achieve an overall net zero carbon footprint i.e., carbon neutrality [10, 11].

Besides creating a huge carbon footprint, increase in data center energy con-
sumption contributes to the rise in annual operational expenditure by millions of
dollars for large-scale data centers [2]. Many megawatts of electricity are required to
power large-scale geographically distributed data centers, and companies like Google
and Microsoft spend a large portion of their overall operational costs on electricity
bills. Extensive research has been done to increase energy efficiency in data centers
[12–15], thereby reducing the energy cost. While recent studies have attempted to
minimize the operational cost of data centers subject to capping the brown energy
consumption [4], they require a priori knowledge of long-term future information
and do not explicitly address carbon neutrality. Realizing that carbon neutrality has
become increasingly important and that accurate prediction of long-term future infor-
mation is practically infeasible, we seek to develop an online resource management
solution to minimize the operational cost of data centers while achieving carbon
neutrality. Following the paper [1], we outline the proposed solution along with key
findings in this chapter.

Online Resource Management for Carbon-Neutral Cloud Computing 609

1.2 Carbon Neutrality: Benefits and Challenges

In addition to achieving highly coveted sustainability, carbon neutrality provides
other significant benefits in various forms such as reduction of tax, lower-cost con-
tracts with the power utility companies, favourable accreditation, and even business
promotion. Consequently, several companies such as Facebook, Google and Mi-
crosoft have set capping their carbon usage and achieving net zero carbon emission
as their long-term strategic goals [16–18]. While achieving carbon neutrality is an
attractive option, there are challenging issues that need to be resolved. In particu-
lar, data centers need to budget electricity usage over a long timescale such that the
“unknown” future brown energy consumption can be completely offset by limited
renewables (e.g., generated by on-/off-site projects or obtained by purchasing re-
newable energy credits, or RECs). In other words, carefully “budgeting the energy
usage” over a long term (which we refer to as energy budgeting) is crucial for being
carbon neutral, and meanwhile neither operational costs nor quality of service can
be considerably compromised. While the existing power budgeting technique that
allocates the peak power to servers given the current workload (e.g., [19]) might
seem to be applicable for this purpose, energy budgeting fundamentally differs from
power budgeting and faces a significant challenge: data center operator needs to de-
cide its energy usage in an online manner that cannot possibly foresee the far future
time-varying workloads or intermittent renewable energy availability.

To sum up, there are several challenges that must be addressed to efficiently
manage data center resources for carbon neutrality:

• Given a limited and even possibly unknown budget of renewables, how to effi-
ciently distribute the budget throughout the budgeting period (e.g., one year) such
that the overall net carbon footprint is zero (i.e., achieve carbon neutrality)?

• How to decide the energy usage without knowing the long-term future information
and in the presence of time-varying workload or intermittent renewable energy
availability?

• Amid quest for carbon neutrality, how to ensure that the two primary concerns
of data center operations (i.e., operational energy cost and quality of service, or
QoS) are not significantly compromised?

1.3 Current Research and Limitations

Before presenting our online resource management solution for carbon-neutral data
centers, we first discuss the existing work from the following point of views.

• Cost minimization: With the objective of reducing the operating cost in data
center, much research has been done recently to identify methods of cost cutting
while ensuring the QoS at the same time. Finding a balance between energy cost of
data center and performance loss through dynamically provisioning the workload
has been the primary focus of many recent studies [15, 20–25]. Other approaches

610 K. Ahmed et al.

that are complementary to dynamic capacity provisioning include utilizing storage
devices to reduce the operational cost of data center, exploiting the spatio-temporal
variation of electricity price [26–29], and using batteries to reduce the peak power
usage from the power grid [30, 31]. The recent studies [32, 33] have focused
on operational cost minimization of data centers considering multi sources of
energy (e.g., grid energy, on-site power generation etc). Moreover, optimization
of data center operation through response time minimization [34] has also been
widely explored and surveyed. In [20], the peak power budget is allocated to
homogeneous servers to minimize the total response time based on a queueing-
theoretic model; [19] studies a problem similar to [20] but in the context of virtual
system.
Several prior studies have focused on the potential of reducing the energy cost
in data centers by exploring geographical and temporal variations in electricity
prices. For example, the problem of reducing the electricity cost by utilizing
time-varying electricity prices in geographically distributed data centers has been
extensively studied [2, 35, 36]. Electricity cost can be further reduced when the
advantage of geographical load balancing is combined with the dynamic capacity
provisioning approach [13, 37, 38]. Other approaches related to geographical load
balancing include utilizing renewable energy for brown energy reduction in data
centers. For example, the work [12] schedules workloads to data centers with
more renewable energy to lower the brown energy consumption. [39] explores a
three-way tradeoff between electricity cost, carbon emissions and response times
in geo-distributed data centers. Nevertheless, none of these studies have addressed
the long-term carbon neutrality.

• Capping and reducing brown energy: The increasing pressure on data center to
cap the surging brown energy has motivated the research community to identify
methods to reduce brown energy consumption and ultimately to achieve net zero
carbon footprint. Much research has been done to optimize the usage of renewable
energy (e.g., [40–43]) to green the data centers. Some works reduce the brown
energy usage via “following the renewables” by scheduling the workloads to
data centers with more green energies [39, 44], but none of these studies have
explicitly considered carbon neutrality, which is becoming increasingly important
for large scale data center operators [10, 17]. Although there have been studies
on achieving energy capping [4–6], these works require long-term prediction
of future information, which is infeasible in practice. Moreover, these studies
only use empirical evaluations without providing any performance guarantees.
By contrast, our solution provides provable analytical guarantees and also bounds
the potential deviation from long-term carbon neutrality even in the worst case.

1.4 Contributions

To minimize the operational cost while achieving carbon neutrality, we introduce
a provably-efficient online resource management algorithm, COCA (optimizing
for COst minimization and CArbon neutrality), to control the electricity usage for

Online Resource Management for Carbon-Neutral Cloud Computing 611

Table 1 List of notations Notation Description

λi (t) Workloads processed by server i

xi (t) Service rate of server i

r(t) on-site renewable energy

f (t) off-site renewable energy

u(t) Electricity price

p(t) Server power consumption

e(t) Electricity cost

d(t) Delay cost

V Cost-delay parameter

Z Total RECs

q(t) Carbon deficit queue

minimizing data center operational cost while satisfying carbon neutrality without
requiring long-term future information. By using COCA, each server autonomously
adjusts its speed as well as power states and optimally decides the amount of
workloads to process. Our main contributions are summarized as follows:

• We present an online resource management algorithm, COCA, to minimize the
operational cost of a data center in the presence of time-varying workloads and
intermittent renewable energy supplies. We simultaneously address two critical
costs for a data center, i.e., energy cost and delay cost, so that the operational
cost can be optimized without considerably compromising user experiences. It is
rigorously proved that COCA is efficient in terms of minimizing the parametrized
operational cost compared to the optimal offline algorithm with T -step lookahead
information, while approximately satisfying the carbon neutrality constraint.

• We conduct a trace-based simulation to empirically validate COCA. The results
show that COCA can reduce the operational cost and achieve close-to-minimum
value while satisfying the carbon neutrality. When compared with state-of-the-
art prediction-based methods, it is shown that COCA can reduce the cost by
approximately 25 %. Since a large data center contains thousands of servers,
millions of dollars can be saved using COCA. Moreover, COCA is robust against
various factors such as inaccurate knowledge of workload arrivals.

2 Model

The system model is described in this section. Our focus is on dynamically distribut-
ing the workload and determining processing speed of each server in a data center
to minimize the operational cost of the system, incorporating both the energy cost
and delay cost. Key notations are summarized in Table 1.

612 K. Ahmed et al.

2.1 Some Assumptions

Following are some of the assumptions that are used throughout the chapter.

• Time model: We consider a discrete-time model, and divide the entire budgeting
period into K time slots of equal length denoted by t = 0, 1, · · · ,K − 1. We
assume the length of prediction window is one hour, where the operator can
update its capacity provisioning and load distribution decisions at the beginning
of each hour. Moreover, we consider that the data center operator can accurately
predict the hour-ahead information (including workload arrival rate, renewable
energy supply, and electricity price), which can be easily obtained in practice.
Note that, whenever longer-term prediction is feasible, our model is extendible
to such prediction window size (e.g., day-ahead prediction).

• Workload type: In this chapter, our focus is on delay sensitive interactive work-
loads, while delay tolerant batch jobs can easily be maintained through separate
batch job queue [36]. Moreover, M/G/1/PS (Memoryless/General/1/Processor-
Sharing) queueing model is used as analytical tool for quantifying delay cost
incurred by workload arrival at the data center. Note that, often the workload inter-
arrival time may not be exponentially distributed and the scheduling policy may
not be processor-sharing. However, since it is difficult to analyze non-exponential
workload inter-arrival time and/or with general scheduling policies, the M/G/1/PS
model has been adopted as a reasonable estimation for actual service process and
utilized for modelling queueing delay [12, 20, 37, 45].

2.2 Energy Sources

To accomplish carbon neutrality, data centers normally depend on a combination of
approaches, such as generation of on-site and off-site energy (alternatively known as
renewable energy) and purchase of renewable energy credits (RECs), to offset brown
energy usage. The available on-site renewable energy during time t is denoted by
r(t) ∈ [0, rmax], which may follow an arbitrary trajectory throughout the budgeting
period. Moreover, the available off-site renewable energy generated via Power Pur-
chase Agreement (PPA) for time t is denoted by f (t) ∈ [0, fmax], while the fixed
amount of RECs available throughout the entire budgeting period is represented as
Z. In the following, these three types of renewable energy are described in detail:

• On-site renewable energy: An intuitive and natural way to offset the brown
energy can be to produce green energy directly from on-site projects or utility
companies. On-site renewable energy systems are usually installed on or adja-
cent to data center and supplies green energy directly to power the data center.
For example, solar photovoltaic (PV) panels and wind turbines have been widely
installed for providing on-site renewable energy sources [46], although they are
highly dependent on weather conditions and exhibit an intermittent nature. More-
over, the location of data center may not be suitable for generation of sufficient

Online Resource Management for Carbon-Neutral Cloud Computing 613

green energy to satisfy the data center requirement. In spite of these difficulties, a
substantial amount of energy required for the data center functioning can be sup-
plied by the on-site renewable energy [17]. Note that energy storage device can
be an effective option to store the unused renewable energy [27] and hence may
further reduce the electricity cost. However, since these storage devices are quite
expensive and charging/discharging of batteries is not the main focus of our study,
we exclude energy storage devices while concentrating on capacity provisioning
and load distribution instead.

• Off-site renewable energy: Data centers resort to off-site renewable energy to
offset a significant portion of brown energy [17, 18]. For example, PPA has
become an important and widely-used type of off-site renewable energy, where
companies make contract with several renewable energy developers so that the
generated renewable energy will be directly utilized to offset the brown energy
usage of data centers. An increasing number of companies (e.g., Google) have
signed contract with several renewable energy plants to buy renewable electricity
[3, 10]. However, since off-site renewable energy becomes undifferentiated due
to the mixture with other types of energy after entering the grid, it is necessary
for data centers to draw electricity and pay utility companies for accountability
reasons.

Another off-site renewable energy option available to data center is REC (a.k.a. green
tag), which is purchased by data centers to fund green power projects. The objective
here is to offset data center’s brown energy usage, mitigating the environmental
impact of their energy usage. We assume that the REC purchasing decision has been
made prior to a budgeting period, although various approaches to purchasing RECs
such as dynamic purchasing in real time can also be accommodated. Although some
companies may buy RECs at the end of a budgeting period, it is not pertinent here,
because the amount of available RECs in our work can be considered as desired REC
usage, while the remaining brown energy may still be offset by purchasing additional
RECs at the end of a budgeting period [10, 11].

2.3 Data Center

We consider one data center that hasN servers. We measure the processing speed in
terms of the service rate, i.e., how many jobs can be processed on average in a unit
time on average, and interchangeably use “processing speeds” and “service rates”
wherever applicable.

In general, we consider that server i can choose its speed xi out of a finite set
Si = {si,0, si,1, · · · , si,Ki }, where si,0 = 0 represents zero-speed (e.g., sleep or shut
down) and Ki is the total number of positive processing speeds available to server
i. Next, assuming that the servers consume a negligible power under the zero-speed

614 K. Ahmed et al.

mode, we express the average power consumption of server i as:

pi(λi , xi) =
⎧⎨
⎩
pi,s + pi,c(xi) · λixi , if xi > 0,

0, if xi = 0,
(1)

where λi is the workload arrival rate distributed to server i, pi,s is the static power
regardless of the workloads as long as server i is turned on, and pi,c(xi) is the
computing power incurred only when server i is processing workloads at a speed of
xi .

We focus on the server power consumption, while the power consumption of
non-IT parts of the data center such as cooling and power supply system is captured
using the factor of power usage effectiveness (PUE), which is the ratio of the total
data center power consumption to IT power consumption measuring data center’s
energy efficiency [12]. Currently, the PUE factor ranges from as high as 2.0 in most
enterprise data centers [47], to a PUE of 1.1 at a few state-of-the-art facilities [48].
Thus, the total server power consumption at time t is given by:

p($λ(t), $x(t)) =
N∑
i=1

pi(λi(t), xi(t)), (2)

where $λ(t) = (λ1(t), · · · , λN (t)) and $x(t) = (x1(t), · · · , xN (t)) are the load
distribution and capacity provisioning decisions for time t , respectively.

• Electricity cost. We denote the electricity price at time t by u(t) which is known
to the data center no later than the beginning of time t and may change over
time/locations. We also assume that the electricity price remain fixed during a
time period t but may change arbitrarily over time and at different locations. We
can express the incurred electricity cost (measured in dollars per hour) as:

e($λ(t), $x(t)) = u(t) ·
[
p($λ(t), $x(t)) − r(t)

]+
, (3)

where [·] = max{·, 0} indicates that no electricity will be drawn from the power
grid if on-site renewable energy is already sufficient. Although Eq. (3) represents
a linear electricity cost function for a data center at time t , the model can also
incorporate other electricity cost function such as nonlinear convex functions.
For example, data center may be charged at a higher rate when consuming more
power. Moreover, large data centers may have contract with utility companies for
a constant electricity price, when in such case, u(t) becomes constant throughout
the budgeting period.

2.4 Workload

We denote by λ(t) the total arrival rate of workloads in the data center during time
t . As assumed in prior work [4, 12, 49], the value of λ(t) is accurately available at

Online Resource Management for Carbon-Neutral Cloud Computing 615

the beginning of each time slot t , while our simulation results further demonstrate
the robustness of COCA against inaccurate knowledge of workload arrival rates.
Moreover, the time-varying arrival of workload follows a non-stationary distribution
and is bounded by the limit [0,λmax], where λmax is the maximum possible arrival
rate. The workloads first arrive at a load distributor before they are distributed to
servers for processing. We denote the workload arrival rate distributed to server i at
time t by λi(t) ≥ 0.

• Delay cost. To quantify the overall data center delay performance, we introduce
the notion of delay cost capturing the delay-induced revenue loss and/or user dis-
satisfaction [12]. Based on the M/G/1/PS queueing model, multiplying the arrival
rate of workload with the average response time for each server, the queueing
delay cost can be calculated as:

d($λ(t), $x(t)) =
N∑
i=1

di(λi(t), xi(t)) =
N∑
i=1

λi(t)

xi(t) − λi(t) , (4)

in which we ignore the network delay cost between the load distributor and servers.

3 Problem Formulation

In this section, the optimization objective and constraints are first specified. Then,
the offline problem formulation for capacity provisioning and load distribution is
presented.

3.1 Objective and Constraints

The objective of COCA is to minimize the long-term operational cost subject to
carbon neutrality and a set of other constraints introduced as follows.

• Objective. A data center incurs various types of costs such as cost for building
data centers, installing renewal generators and so on. However, in this chapter, the
objective is to minimize operational cost, ignoring capital costs. Note that since
electricity cost takes up a significant portion of operational cost and delay cost is
important due to its impact on user experiences [12, 15], we consider these two
costs in our study. A parameterized cost function representing a combination of
energy cost and delay cost is utilized to represent overall operational cost:

g($λ(t), $x(t)) = e($λ(t), $x(t)) + β · d($λ(t), $x(t)), (5)

where β ≥ 0 is a weighting parameter that converts the delay cost to energy cost
[12, 34]. In special cases, when β reduces to zero, the data center only minimizes

616 K. Ahmed et al.

the electricity, whereas when β goes to infinity the data center minimizes the
delay cost, ignoring electricity cost. Since data center operates for a long time
period, we focus on minimizing the long-term average cost ḡ under a particular
control policy over a sufficiently large but finite budgeting period (e.g., a year or
a month, depending on the actual budgeting) [4, 50]:

ḡ = 1

K

K−1∑
t=0

g
($λ(t), $x(t)

)
, (6)

where K is the total number of time slots over the entire budgeting period.
• Constraints. To achieve carbon neutrality, a data center has to offset its electricity

usage by the off-site renewable energy and RECs [17, 18]. In the following, the
long-term carbon neutrality constraint is specified:

1

K

K−1∑
t=0

[
p
($λ(t), $x(t)

)
− r(t)

]+ ≤ α

K
·
[
K−1∑
t=0

f (t) + Z
]

, (7)

where f (t) represents the off-site renewable energy generated from PPAs at time
t , while Z denotes the amount of available RECs throughout budgeting period.
Moreover, α ≥ 0 is the desired capping constraint of electricity usage over the
entire budgeting period relative to the total off-site renewable energy plus RECs.
With less α, the data center achieves carbon neutrality more aggressively. Note
that our study can also address the scenario in which part of the electricity is
produced by green energy sources: by multiplying the electricity usage with a
certain factor that indicates the percentage of “brown” electricity, (7) specifies the
constraint on the actual brown electricity usage. Other constraints that need to be
satisfied are introduced in the following:

0 ≤ λi(t) ≤ θ · xi(t), ∀i, t , (8)

N∑
i=1

λi(t) = λ(t), ∀t. (9)

Constraint (8) represents that the service demand can not exceed the service
capacity for server i at time t , where θ ∈ (0, 1) is the maximum utilization
constraint for each server. Constraint (9) avoids workload dropping. Naturally,
server i can only select one of its supported service rates, i.e.,

xi(t) ∈ Si = {si,0, si,1, · · · , si,Ki }, ∀i, t. (10)

Note that additional constraints, such as peak power and maximum delay, can also
be incorporated with little impact on our online algorithm.

Online Resource Management for Carbon-Neutral Cloud Computing 617

3.2 Offline Problem Formulation

Given the objective function and set of constraints, the optimal offline problem
formulation for capacity provisioning and load distribution is presented as follows:

P1 : min
D
ḡ = 1

K

K−1∑
t=0

g
($λ(t), $x(t)

)
(11)

s.t., constraints (7), (8), (9), (10), (12)

where D represents a sequence of decisions, i.e., $λ(t) and $x(t), for t = 0, 1, · · · ,
K − 1, which we need to optimize. However, there is one significant challenge
that needs to be addressed to derive the optimal solution to P1: solving P1 requires
complete offline information (i.e., workload arrivals, renewable energy supplies, and
electricity prices) over the entire budgeting period, which may be only possible in an
idealized scenario but practically infeasible. Moreover, the problem may be further
complicated due to the bursty and unpredictable nature of workloads arrivals in data
center [51], making online algorithms necessary to solve P1.

4 Algorithm for Cost Optimization and Carbon Neutrality

In this section, we first outline our online algorithm, COCA, and then prove that it is
efficient with respect to cost minimization compared to the optimal offline algorithm
with T -step lookahead information. COCA only uses online information and allows
the data center operator to adaptively adjust the tradeoff between cost saving and how
much the electricity consumption potentially exceeds the desired carbon neutrality
constraint.

4.1 Carbon Deficit Queue

The long-term carbon neutrality constraint couples the online decisions across dif-
ferent time slots, and the current decisions will impact the future decisions (e.g.,
higher electricity usage at one time slot may lead to a lower remaining carbon budget
for future use). Hence, it is challenging to make online decisions while satisfying
the long-term carbon neutrality constraint. To decouple the decisions for different
time slots and hence enable an online algorithm, we leverage the recently-developed
Lyapunov optimization technique [52] and introduce a virtual carbon deficit queue,
q(t). In particular, assuming q(0) = 0, we write the carbon deficit queue dynamics
in the following:

q(t + 1) =
{
q(t) +

[
p
($λ(t), $x(t)

)
− r(t)

]+ − α · f (t) − z

}+
, (13)

618 K. Ahmed et al.

Algorithm 1 COCA
1: Input λ(t), r(t), f(t), u(t), at the beginning of each time t = 0, 1, · · · ,K − 1
2: if t = rT , ∀r = 0, 1, · · · , R − 1 then
3: q(t) ← 0 and V ← Vr

4: end if
5: P2: Choose λ(t) and x(t) subject to (8)(9)(10) to minimize

V · g λ(t), x(t) + q(t) · p λ(t), x(t) − r(t)
+

(14)

6: Update q(t) according to (13).

where the arrival rate for the queue is the electricity usage at time t while the departure
rate is denoted by the average allocated budget. Moreover, z = α

K
· Z denotes the

average electricity budget per time slot. Note that introduction of the carbon deficit
queue helps us decouple the decisions across different time slots, therefore replacing
the long-term carbon neutrality constraint. Clearly, a larger queue length represents
a greater electricity consumption than the total off-site renewable energy plus RECs
provided, hence it needs to reduce electricity usage to achieve carbon neutrality.

4.2 Optimizing for Cost Minimization and Carbon Neutrality

In this subsection, we discuss COCA for a single data center that can dynamically
determine the workload distribution and perform server speed selection. COCA only
uses online information and allows the data center operator to adaptively adjust the
tradeoff between cost saving and how much the electricity consumption exceeds the
desired carbon neutrality constraint. Algorithm 1 outlines the online algorithm for a
single data center.

4.2.1 Working Principle of COCA

COCA only requires the currently available information (i.e., λ(t), r(t), f (t), u(t))
as the inputs and hence the algorithm is purely online. V0,V1, · · · ,VR−1 denote a
sequence of positive control parameters and are used to dynamically adjust the trade-
off between cost minimization and electricity usage over R frames, each having T
time slots. Lines 2–4 reset the carbon deficit queue at the beginning of each frame
r , such that the cost-carbon parameter V can be adjusted and the carbon deficit
in a new time frame will not be affected by its value resulting from the previous
time frame. Line 5 defines an optimization problem based on online information:
minimizing the original cost scaled by V plus q(t) · [p($λ(t), $x(t)) − r(t)]+. Its intu-
ition is as follows. By considering the perturbing term q(t) · [p($λ(t), $x(t)) − r(t)]+,
the data center operator places a higher weight on the electricity usage when making
resource management decision: the weighting factor for the electricity usage is scaled
by V plus the carbon queue length q(t), whereas the weighting factor for delay cost

Online Resource Management for Carbon-Neutral Cloud Computing 619

is only scaled by V . As a consequence, when q(t) increases (i.e., the current elec-
tricity usage further exceeds the supplied renewable energy and RECs), minimizing
the electricity usage is more critical for the data center operator due to the carbon
neutrality constraint. In essence, the carbon deficit queue maintained without fore-
seeing the future guides the data center decisions towards carbon neutrality, thereby
enabling online decisions.

4.2.2 Distributed Implementation

In practical systems, distributed solutions are desired such that each server can make
autonomous decisions. Here, we develop a distributed algorithm, called GSD (Gibbs
Sampling-based Distributed optimization), based on a variation of Gibbs sampling
presented in Algorithm 2.

GSD is a distributed algorithm working as follows: at each iteration, a randomly
selected server first autonomously updates its speed, and then the servers decide
their optimal load distribution decisions (also distributedly), after which the servers
communicate decisions to each other. Line 3 in GSD, i.e., minimizing (15), can
be solved efficiently using any distributed optimization techniques (see [53] for
a solution based on dual decomposition). Note that during the iterations, servers
do not need to actually adjust their speeds or load distribution decisions, which is
only needed after the completion of the algorithm. In line 7, to randomly select a
server, we can assign each server with a random timer to “compete” for the updating
opportunity, like in random channel access in wireless networks. Each server i, for
i = 1, 2, · · · ,N , maintains x∗i (t) as its current processing speed, while exploring
(possibly) new processing speed xei (t) to avoid being trapped in a locally optimal
solution. We use $λ∗(t) and $λe(t) to denote the optimal load distribution decisions
corresponding to x∗i (t) and xei (t), respectively. The parameter δ > 0, referred to as
temperature [54], is used to control exploration versus exploitation (i.e., the degree
of randomness).

Now, we briefly describe the performance analysis of GSD:

• Complexity: Despite being distributed, GSD still incurs a worst-case complexity
that is exponential in the number of servers (although in practice a reasonably good
solution is often quickly identified). In practice, the computational complexity of
GSD can be effectively reduced by making capacity provisioning decisions on
a group basis: changing speed selections for a whole group of (homogeneous)
servers in batch.

• Accuracy: Theorem 1, whose proof can be found in [1], formally shows that GSD
can solve the optimization problem P2 with an arbitrarily high probability as the
temperature δ → ∞.

Theorem 1 As δ > 0 increases, GSD converges with a higher probability to the
globally optimal solution that minimizes (14) subject to (8), (9), (10). When δ → ∞,
Algorithm 2 converges to the globally optimal solution with a probability of 1.

620 K. Ahmed et al.

Theorem 1 indicates that using Algorithm 2, the servers can select the optimal
processing speeds distributedly with an arbitrarily high probability.

Algorithm 2 GSD: Distributed Optimization for P2

1: Initialization: servers choose feasible values and set ∗(t) ← e(t), λ∗(t) ← λe(t), g̃∗ ← ∞
2: if λ(t) ≤ γ · N

i=1 xe
i (t) then

3: Obtain λe(t) by minimizing over λ(t)

V · g λ(t), e(t) + q(t) p λ(t), e(t) − r(t)
+

, (15)

subject to (8)(9), and set g̃e to the minimum value of (15)

4: u ←
exp δ

g̃e

exp δ
g̃∗ +exp δ

g̃e

5: With a probability of u: servers set ∗(t) ← e(t), λ∗(t) ← λe(t) and g̃∗ ← g̃e; with a probability
of 1 − u: servers set e(t) ← ∗(t)

6: end if
7: Randomly select a server i; server i randomly selects a processing speed xi(t) ∈ Si and sets xi (t)e ←

xi(t)
8: Return ∗(t) and λ∗(t) if the stopping criterion is satisfied; otherwise, go to Line 3

X

X

X

X

X

XX

X

X

4.3 Performance Analysis

This subsection presents the performance analysis of COCA in Theorem 2, whose
proof is provided in [1]. First, we describe an optimal algorithm with T -step look-
ahead information, which we use as the benchmark to compare COCA with.
T -step lookahead algorithm. We now present an offline algorithm with T -step

lookahead information, which has full knowledge of the data center states and work-
load arrivals up to next T time steps. The entire budgeting period is divided into
R frames, each containing T ≥ 1 times slots such that K = RT . Then, the cost
minimization problem over the r-th frame, for r = 0, 1, · · · ,R−1 can be formulated
as:

P3 : min
$λ(t),$x(t)

1

T

(r+1)T−1∑
t=rT

g
($λ(t), $x(t)

)
(16)

s.t., constraints (8), (9), (10), (17)

(r+1)T−1∑
t=rT

[p
($λ(t), $x(t)

)
− r(t)]+ ≤ α · fr . (18)

Essentially, P3 defines a family of offline problems parametrized by the
lookahead information window size T . In P3, we denote the minimum of
1
T

∑(r+1)T−1
t=rT g

($λ(t), $x(t)
)

by G∗
r , for r = 0, 1, · · · ,R, which is achievable con-

sidering all the actions including those that are chosen with the perfect information
of data center states and workload arrivals over the entire frame. Next, to ensure the

Online Resource Management for Carbon-Neutral Cloud Computing 621

existence of at least one feasible solution to P2, we make the two assumptions that
are very mild in practice.

Boundedness Assumption The workload arrival rate λ(t), electricity price u(t), as
well as renewable energy supplies r(t) and f (t) are finite, for t = 0, 1, · · · ,K − 1.

Feasibility Assumption For the r-th frame, where r = 0, 1, · · · ,R − 1, there exists
at least one sequence of capacity provisioning and load distribution decisions that
satisfy the constraints of P2.

The boundedness assumption, combined with (8), ensures that the cost function is
finite, while the feasibility assumption guarantees that there is at least one sequence
of feasible decisions to solve P2. We denote the long-term average minimum cost
by the optimal T -step lookahead algorithm by 1

R

∑R−1
r=0 G

∗
r . Later, we shall show

that our online algorithm can achieve a cost close to this value. Moreover, fr =∑(r+1)T−1
t=rT f (t) + Z

R
represents the total available off-site renewable energy on the

r-th frame plus the total RECs over theR frames. Note that (18) is a stronger version
of the original carbon neutrality constraint in (7), as it requires the satisfaction of
carbon neutrality for every T time slots. Nonetheless, if T is sufficiently large, (18)
will be almost equivalent to (7), and the oracle approximately solves the original
problem P1 [52].

Theorem 2 Suppose that boundedness and feasibility assumptions are satisfied.
Then, for any T ∈ Z

+ and R ∈ Z
+ such that K = RT , the following statements

hold.
a. The carbon neutrality constraint is approximately satisfied with a bounded

deviation:

1

K

K−1∑
t=0

[
p
($λ(t), $x(t)

)
− r(t)

]+ ≤ α

K
·
[
K−1∑
t=0

f (t) + Z
]

+
∑R−1
r=0

√
C(T) + Vr

(
G∗
r − gmin

)
R
√
T

, (19)

b. The average cost ḡ∗ achieved by COCA satisfies:

ḡ∗ ≤ 1

R

R−1∑
r=0

G∗
r +

C(T)

R
·
R−1∑
r=0

1

Vr
, (20)

where C(T) = B + D(T − 1) with B and D being finite constants (more details
on B and D can be found in [1]), and gmin is the minimum hourly cost that can be
achieved by any feasible decisions throughout the budgeting period.

It follows from Theorem 2 that, COCA is O(1/V)-optimal with respect to the
average cost against the optimal T -step lookahead policy, while the carbon neutrality
constraint is bounded by O(V). With a larger V , the cost is closer to the infimum,
while the deviation from the carbon neutrality constraint can be larger, and vice versa.
Thus, by appropriately tuning the cost-carbon parameter V , we can achieve a desired

622 K. Ahmed et al.

tradeoff between cost and carbon neutrality. Moreover, since both the boundedness
and feasibility assumptions are mild, the established bounds are applicable for almost
all practical scenarios.

5 Simulation

To validate our analysis, this section presents trace-based simulation studies of a
large data center and performance evaluation of COCA. First, we present the data
sets, and then we present the following sets of simulations.

• Efficiency of COCA: We show that under different settings, COCA provides a
satisfactory performance in terms of average cost while satisfying the carbon
neutrality constraint.

• Comparison with prediction-based method: We compare COCA with the state-
of-the-art prediction-based method and show that COCA reduces the average cost
by more than 25 % while satisfying the desired carbon neutrality better.

5.1 Data Sets

A single data center is considered with peak server power of 50 MW. The model
assumes delay sensitive workloads and considers the server power consumption,
ignoring the cooling power or server power for delay tolerant batch jobs. Due to
the practical difficulty in implementing COCA in a real system, only event-based
simulations with real-world trace data are considered to validate the analysis, which
is a common approach in the literature [12, 37].

The budgeting period in our study is one year, and the default total allowed
electricity usage is 1.43 × 105 MWh (i.e., 92 % of 1.55 × 105 MWh , where 1.55 ×
105 MWh is the electricity usage of carbon-unaware algorithm). Among the 1.43 ×
105 MWh renewable budget, off-site renewable energy and RECs contribute 40 and
60 %, respectively. The weighting parameter converting the delay to monetary cost is
β = 10. Since the data center capacity provisioning and load distribution are updated
hourly, all the energy consumption and electricity cost throughout this section are
hourly values unless otherwise stated.

• Workload information: We consider “mice-type” synthetic workloads (e.g., web
requests), and use real-world trace to drive our simulation. The service time of
an individual request follows an exponential distribution with a mean of 100 ms
(when the server is running at its full speed), which may not perfectly capture a real
system but suffices for our evaluation purpose. The workload arrival processes for
simulations are taken from two real-world traces. The first set of workload trace
is taken from the server I/O usage log of Florida International University (FIU, a
large public university in the U.S. with over 50,000 students). The traced period

Online Resource Management for Carbon-Neutral Cloud Computing 623

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Hour

N
or

m
. W

or
kl

oa
d

University
MSR

Fig. 1 Workload trace. Normalized with respect to the maximum data center capacity

was taken from January 1 to December 31, 2012 and was profiled. Fig. 1 shows
a snapshot of such trace (for first week of the month of July, 2012) , normalized
with respect to the maximum data center capacity. For sensitivity studies, we also
use workload trace for Microsoft Research (MSR) first shown in [15] and repeat
the trace for one year by adding random noises of up to ±40 %. The I/O trace for
MSR is taken from 6 RAID volumes at MSR Cambridge, and the traced period
is 1 week starting from 5PM (GMT) on February 22, 2007 [15]. Figure 1 shows
the one week MSR workload trace, normalized with respect to the maximum data
center capacity.

• Server: There are approximately 216 K servers in the data center and each server
has a maximum power of 231 W. Powerpack [55] is used to measure the power
consumption of a server with a quad-core AMD Opteron 2380 processor that
supports four different speeds via DVFS. Specifically, if turned on, each server
has an idle power of 140 W and supports the following four different processing
speeds/powers: 0.8 GHz (184 W), 1.3 GHz (194 W), 1.8 GHz (208 W), and
2.5 GHz (231 W). The normalized service rate for each server is 10 jobs per
second, i.e., when running at the maximum speed, it is assumed that each server
can process 10 requests per second on average.

• Electricity price and renewable energy: The hourly electricity price for Moun-
tain View, California, is obtained from [56]. Note that it is assumed that the data
center participates in a real-time electricity market [2, 12, 26, 37]. The hourly
renewable energies (generated through solar panels and wind turbines) for the
city of Mountain View as well as the state of California during the year of 2012
are obtained from [56], and was scaled proportionally such that on-site renewable
accounts for approximately 20 % of the total energy consumption.

Since the access to commercial data centers is unavailable, we obtain the trace data
from various sources, but it captures the variation of workloads, renewable energy
supplies and electricity prices over the budgeting period. Thus, it serves the purpose
of evaluating the performance and benefits of COCA.

624 K. Ahmed et al.

0.8 0.85 0.9 0.95 1
0.9

a b

c d

1

1.1

1.2

1.3

Normalized Budget

N
or

m
al

iz
ed

 C
os

t

COCA
OPT
Carbon−unaware

0.8 0.85 0.9 0.95 1
0.95

1

1.05

1.1

Normalized Budget

N
or

m
al

iz
ed

 C
os

t

COCA
OPT
Carbon−unaware

1 1.05 1.1 1.15 1.20

0.5

1

1.5

2

2.5

3

Workload Overestimation Factor

C
os

t I
nc

re
as

e
(%

)

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

Switching Cost

C
os

t I
nc

re
as

e
(%

)

Fig. 2 Efficiency of COCA. a Average cost given different carbon budgets. b Average cost given
different carbon budgets for MSR workloads. c Cost increase with workload overestimation. d Cost
increase with switching cost

5.2 Results

We drive the event-based simulation using the above synthetic trace data. The power
consumption and delay are recorded as outputs of the simulation. Next, we present
the simulation results as follows.

5.2.1 Efficiency of COCA

We perform the following simulation studies to demonstrate the efficiency of COCA.
For all the cases, we appropriately choose V such that carbon neutrality is satisfied.

• Impact of carbon budget: We now show in Fig. 2a the impact of carbon bud-
get (i.e., off-site renewables plus RECs) on the cost. According to our simulation
settings, the carbon-unaware algorithm consumes 1.55×105 MWh electricity en-
ergy over a year, which we normalize to 1. It can be seen that given a 85 % carbon
budget, which is equivalent to using only 85 % of electricity, COCA only exceeds

Online Resource Management for Carbon-Neutral Cloud Computing 625

the capping-unaware algorithm by approximately 5 % in terms of the average
cost, while still being able to satisfy carbon neutrality (which is clearly violated
by the capping-unaware algorithm). As a comparison, we also show the optimal
offline algorithm (OPT), which has the complete offline information and mini-
mizes the operational cost under carbon neutrality. COCA works remarkably well
even compared to OPT. This demonstrates that, with careful energy budgeting,
the long-term energy consumption can be significantly reduced while still keeping
the operational cost low (even compared to the optimal offline algorithm and the
carbon-unaware algorithm). Note that, if a higher carbon budget (e.g., 1.05) is
used, COCA will be almost the same as the capping-unaware algorithm without
using up the budget, because our optimization objective incorporates both elec-
tricity and delay costs and using excessive electricity will increase the total cost
(although decreasing the delay cost).

• Different workload trace: We now consider the MSR workload trace as illus-
trated in Fig. 1. Fig. 2b shows the normalized cost achieved by COCA, OPT and
the carbon-unaware algorithm under different normalized carbon budgets. It de-
livers the same message as Fig. 2a and demonstrates that COCA works well with
different workload traces.

• Workload overestimation: Since in general, it is difficult to always predict the
hour-ahead workload arrivals accurately, a conservative approach can be to over-
estimate the workload and therefore keep more server turned on to cope with
unexpected traffic spikes. Note that, workload overestimation can also be con-
sidered as imperfect modeling of server’s service rate. In Fig. 2c, we show the
percent increase in average cost caused by overestimated workload for COCA.
We see that total cost increases by less then 2.5 % even when we overestimate
the workloads by 20 %. This is because although workload overestimation may
turn on more servers and incur a higher electricity cost at some time slots, the
delay cost will be decreased. The result confirms that COCA is robust against
workload prediction error. The reason behind choosing 20 % is that, according to
prior research [57], the prediction error is typically within 20 % for hour-ahead
prediction.

• Switching cost: We study the performance of COCA when the server toggling
cost (such as energy/time waste, “wear and tear”, and other risks) is added to the
power cost. We incorporate all these factors related to server toggling cost and use
switching cost as the combined cost measured in terms of energy consumption. We
normalize the switching cost (obtained by turning on/off one server) with respect
to the maximum hourly energy consumption of a single sever (i.e., 0.231 KWh).
In Fig. 2d, we see that the average operational cost increases by less than 5 %
even when the switching cost of one server takes 10 % of its maximum hourly
energy consumption (i.e., 0.0231 KWh). This shows that performance of COCA
is not significantly degraded even when the server switching cost is considered.

We further note that with different combinations of off-site renewables and RECs
(but with the same total amount), COCA achieves almost the same cost (less than 1 %
change), indicating that COCA is not sensitive to renewable energy portfolios, but

626 K. Ahmed et al.

0 2000 4000 6000 8000
0

500

1000

1500

2000

2500

a b
Hour

A
ve

ra
ge

 C
os

t (
$)

COCA
PerfectHP

0 2000 4000 6000 8000
−6

−4

−2

0

2

4

6

Hour

A
ve

ra
ge

 C
ar

bo
n

D
ef

ic
it

(M
W

h)

COCA
PerfectHP

Fig. 3 Comparing COCA with PerfectHP. a Average cost. b Average carbon deficit

rather mainly depends on the total budget (as shown in Fig. 2a). Other studies such
as different server settings are also performed, demonstrating that COCA provides a
satisfactory performance in various scenarios and pointing to its applicability in real
systems. These results are omitted due to space limitations.

5.2.2 Comparison with Prediction-Based Method

This subsection compares COCA with the best known relevant solution — prediction-
based method studied in [4, 5]. However, since none of the existing prediction-
based methods have considered both the nonlinear delay cost and intermittent off-site
renewable energy supplies, we incorporate these factors by considering a heuristic
variation as follows.

Perfect hourly prediction heuristic (PerfectHP) The data center operator leverages
48-hour-ahead prediction of hourly workloads and allocates the carbon budget (RECs
plus off-site renewables, but not including the on-site renewables) in proportion to the
hourly workloads. The operator minimizes the cost subject to the allocated hourly
carbon budget; if no feasible solution exists for a particular hour (e.g., workload
spikes), the operator will minimize the cost without considering the allocated carbon
budget. We consider 48-hour-ahead prediction in the comparison, because prediction
beyond 48 hours will typically exhibit large errors [12], especially for solar and wind
energy supplies that are commonly used for data centers but highly subject to weather
condition.

Figure 3 shows the comparison between COCA and the prediction-based Perfec-
tHP in terms of the average hourly cost and carbon deficit.1 Figure 3 demonstrates
that COCA is more cost-effective compared to the prediction-based method with a

1 The average at time t in Fig. 3 is obtained by summing up all the values from time 0 to time t and
then dividing the sum by t + 1.

Online Resource Management for Carbon-Neutral Cloud Computing 627

cost saving of more than 25 % over one year. COCA achieves the benefits because it
can still focus on cost minimization even though the workload spikes and carbon neu-
trality is temporarily violated, since the carbon deficit queue only penalizes the data
center for overusing electricity in later time slots while guaranteeing a bounded devi-
ation from the carbon neutrality. On the other hand, without foreseeing the long-term
future, short-term prediction-based PerfectHP may over-allocate the carbon budget
at inappropriate time slots and thus have to set a stringent budget for certain time
slots when the workload is high, thereby significantly increasing the delay cost. In
addition to cost saving, COCA also satisfies the desired carbon neutrality constraint
better, as shown in Fig. 3b.

6 Extension to Geographic Load Balancing

Large cloud providers have become increasingly interested in geo-distributed data
centers, as geographical load balancing helps reduce the latency as well as guarantee
the service availability. Moreover, geo-distributed data centers can potentially pro-
vide additional benefits in minimizing energy cost [13, 37]. Now, we extend COCA
to incorporate advantages of geo-distributed data centers and show the effect of ge-
ographic load balancing on carbon neutrality. The new online resource management
algorithm is called COCA-GLB (COCA - Geographic Load Balancing). We first
compare COCA-GLB with a benchmark algorithm called COST (that minimizes the
cost without considering the carbon neutrality constraint) as well as with non-GLB
(which does not consider the data center location). Then, we investigate COCA-GLB
for three different budget levels of 97, 95 and 93 % of carbon-unaware brown energy
consumption indicated by COCA-GLB(H), COCA-GLB(M) and COCA-GLB(L)
respectively. By default, COCA-GLB refers to COCA-GLB(M).

Figure 4a shows the workload distribution among the four data centers (Mountain
View - CA, Prineville - OR, Dallas - TX, and Forest City - NC) for three different
algorithms. We see that COST sends relatively more workloads to the data center in
TX and less to the data center in CA than COCA-GLB. It is because the data center
in TX has lower electricity price and hence, cost-minimizing COST sends more
workload to the data center in TX to take advantage of the lower power cost. On the
other hand, to satisfy the carbon neutrality constraint, COCA-GLB sends relatively
more workloads to the data center in CA which has a lower power per unit service
capacity 2, thereby resulting in an overall lower energy consumption. Similar pattern
can also be observed in Fig. 4b where lower renewable budget causes COCA-GLB
to give more emphasis on energy saving, which in turn increases workloads for the
data center in CA.

2 Lower power per unit service capacity indicates less energy for the same amount of workload
served.

628 K. Ahmed et al.

CA OR TX NC
0

10

a b

20

30

40

Data Center Location

Lo
ad

 D
is

tr
ib

ut
io

n
(%

)

COST
COCA−GLB
non−GLB

CA OR TX NC
0

10

20

30

40

Data Center Location

Lo
ad

 D
is

tr
ib

ut
io

n
(%

)

COCA−GLB(H)
COCA−GLB(M)
COCA−GLB(L)

Fig. 4 Workload distribution among data centers. a Different algorithms result in different work-
load distributions due to difference in electricity price. b Lower budget for COCA-GLB shifts
the workload from data center with lower electricity price (TX) to data center with lower power
consumption for unit service capacity (CA)

7 Conclusions

In this chapter, we studied the long-term carbon neutrality and proposed a provably-
efficient distributed online algorithm, called COCA, to control the electricity usage
for minimizing the data center operational cost while satisfying carbon neutral-
ity. Compared to the existing research that addresses carbon neutrality based on
prediction of future information, COCA makes online decisions without requiring
long-term future information. Leveraging Lyapunov optimization technique, it was
rigorously proved that COCA achieves a close-to-minimum operational cost com-
pared to the optimal offline algorithm with future information, while bounding the
potential violation of carbon neutrality constraint. A trace-based simulation study
was also presented in the chapter, complementing the analysis and showing that
COCA can reduce the average cost compared to the state-of-the-art prediction-based
method while resulting in a smaller carbon footprint. Moreover, an online geographic
load balancing algorithm, COCA-GLB, was also introduced which dynamically dis-
patches workloads to distributed data centers for minimizing the operational cost
while satisfying carbon neutrality.

References

1. S. Ren and Y. He, “Coca: Online distributed resource management for cost minimization and
carbon neutrality in data centers,” in SuperComputing, 2013.

2. A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs “Cutting the electric bill for
internet-scale systems,” in SIGCOMM, 2009.

3. “How clean is your cloud?” Greenpeace, April 2012.

Online Resource Management for Carbon-Neutral Cloud Computing 629

4. K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir, and M. Martonosi “Capping the brown energy
consumption of internet services at low cost,” in IGCC, 2010.

5. C. Ren, D. Wang, B. Urgaonkar, and A. Sivasubramaniam “Carbon-aware energy capacity
planning for datacenters,” in MASCOTS, 2012.

6. N. Deng, C. Stewart, D. Gmach, and M. F. Arlitt “Policy and mechanism for carbon-aware
cloud applications,” in NOMS, 2012.

7. “How dirty is your data? a look at the energy choices that power cloud computing,” Greenpeace,
2011.

8. A. Qureshi “Power-demand routing in massive geo-distributed systems,” Ph.D. dissertation,
MIT, 2010.

9. “Electricity from coal, http://www.powerscorecard.org.”
10. “Google. google’s green ppas: What, how, and why.” April 2011.
11. “Microsoft. becoming carbon neutral: How microsoft is striving to become leaner, greener,

and more accountable.”
12. Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew “Greening geographical load

balancing,” in SIGMETRICS, 2011.
13. N. Buchbinder, N. Jain, and I. Menache “Online job migration for reducing the electricity bill

in the cloud,” in IFIP Networking, 2011.
14. Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew “Geographical load balancing with

renewables,” SIGMETRICS Perform. Eval. Rev., vol. 39, no. 3, pp. 62–66, Dec. 2011.
15. M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska “Dynamic right-sizing for power-

proportional data centers,” in IEEE Infocom, 2011.
16. “Facebook statement: Facebook and greenpeace collaboration on clean and renewable energy,

http://www.greenpeace.org.”
17. Google, “Google’s green ppas: What, how, and why.”
18. Microsoft, “Becoming carbon neutral: How microsoft is striving to become leaner, greener,

and more accountable.”
19. H. Lim, A. Kansal, and J. Liu “Power budgeting for virtualized data centers,” in USENIX ATC,

2011.
20. A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy “Optimal power allocation in server

farms,” in SIGMETRICS, 2009.
21. D. Meisner, B. T. Gold, and T. F. Wenisch “The powernap server architecture,” ACM Trans.

Comput. Syst., vol. 29, no. 1, pp. 3:1–3:24, Feb. 2011.
22. Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam “Managing server

energy and operational costs in hosting centers,” SIGMETRICS Perform. Eval. Rev., vol. 33,
no. 1, pp. 303–314, Jun. 2005.

23. R. Urgaonkar, U. Kozat, K. Igarashi, and M. Neely “Dynamic resource allocation and power
management in virtualized data centers,” in NOMS, 2010.

24. B. Guenter, N. Jain, and C. Williams “Managing cost, performance and reliability tradeoffs
for energy-aware server provisioning,” in IEEE Infocom, 2011.

25. T. Lu, M. chen, and L. Andrew “Simple and effective dynamic provisioning for power-
proportional data centers,” IEEE Transactions on Parallel and Distributed Systems, vol. 24,
no. 6, pp. 1161–1171, 2013.

26. R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubramaniam “Optimal power cost
management using stored energy in data centers,” in SIGMETRICS, 2011.

27. D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H. K. Fathy “Energy storage in
datacenters: What, where and how much?” in SIGMETRICS, 2012.

28. V. Kontorinis, L. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pettis, D. Tullsen, and T.
Simunic Rosing “Managing distributed ups energy for effective power capping in data centers,”
in ISCA, 2012.

29. Y. Guo and Y. Fang, “Electricity cost saving strategy in data centers by using energy storage,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 6, pp. 1149–1160, 2013.

30. S. Govindan, D. Wang, A. Sivasubramaniam, and B. Urgaonkar “Leveraging stored energy for
handling power emergencies in aggressively provisioned datacenters,” in ASPLOS, 2012.

630 K. Ahmed et al.

31. S. Govindan, A. Sivasubramaniam, and B. Urgaonkar “Benefits and limitations of tapping into
stored energy for datacenters,” SIGARCH Comput. Archit. News, vol. 39, no. 3, pp. 341–352,
Jun. 2011.

32. W. Deng, F. Liu, H. Jin, C. Wu, and X. Liu “Multigreen: cost-minimizing multi-source
datacenter power supply with online control,” in e-Energy, 2013.

33. J. Tu, L. Lu, M. Chen, and R. K. Sitaraman “Dynamic provisioning in next-generation data
centers with on-site power production,” in e-Energy, 2013.

34. M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew “Online algorithms for geographical load
balancing,” in IGCC, 2012.

35. N. U. Prabhu, Foundations of Queueing Theory. Kluwer Academic Publishers, 1997.
36. S. Ren, Y. He, and F. Xu “Provably-efficient job scheduling for energy and fairness in

geographically distributed data centers,” in ICDCS, 2012.
37. L. Rao, X. Liu, L. Xie, and W. Liu “Reducing electricity cost: Optimization of distributed

internet data centers in a multi-electricity-market environment,” in IEEE Infocom, 2010.
38. M. A. Adnan, R. Sugihara, and R. K. Gupta “Energy efficient geographical load balancing via

dynamic deferral of workload,” in Cloud, 2012.
39. P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav “It’s not easy being green,” SIGCOMM

Comput. Commun. Rev., vol. 42, no. 4, pp. 211–222, Aug. 2012.
40. I. Goiri, K. Le, M. Haque, R. Beauchea, T. Nguyen, J. Guitart, J. Torres, and R. Bianchini

“Greenslot: Scheduling energy consumption in green datacenters,” in Super Computing, 2011.
41. A. Krioukov, C. Goebel, S. Alspaugh, Y. Chen, D. E. Culler, and R. H. Katz “Integrating

renewable energy using data analytics systems: Challenges and opportunities.” IEEE Data
Eng. Bull., vol. 34, no. 1, pp. 3–11, 2011.

42. C. Li, A. Qouneh, and T. Li “iswitch: coordinating and optimizing renewable energy powered
server clusters,” SIGARCH Comput. Archit. News, vol. 40, no. 3, Jun. 2012.

43. Y. Zhang, Y. Wang, and X. Wang “Greenware: greening cloud-scale data centers to maximize
the use of renewable energy,” in Middleware, 2011.

44. C. Chen, B. He, X. Tang, C. Chen, andY. Liu “Green databases through integration of renewable
energy.” in CIDR, 2013.

45. M. Harchol-Balter “The effect of heavy-tailed job size distributions on computer system
design,” in Applications of Heavy Tailed Distributions in Economics, 1999.

46. P. Costello and R. Rathi, “Data center energy efficiency, renewable energy and carbon offset
investment best practices,” RealEnergyWriters.com, January 2012.

47. J. Mogul “Improving energy efficiency for networked applications,” ANCS, 2007.
48. Google, “http://www.google.com/green/bigpicture.”
49. N. Deng, C. Stewart, D. Gmach, M. Arlitt, and J. Kelley “Adaptive green hosting,” in ICAC,

2012.
50. Y. Zhang, Y. Wang, and X. Wang “Electricity bill capping for cloud-scale data centers that

impact the power markets,” in ICPP, 2012.
51. A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch “Autoscale: Dynamic,

robust capacity management for multi-tier data centers,” ACM Trans. Comput. Syst., vol. 30,
no. 4, pp. 14:1–14:26, Nov. 2012.

52. M. J. Neely, Stochastic Network Optimization with Application to Communication and
Queueing Systems. Morgan & Claypool, 2010.

53. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
54. C. Robert and G. Casella, Monte Carlo Statistical Methods. NewYork: Springer-Verlag, 2004.
55. R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron “Powerpack: Energy profiling

and analysis of high-performance systems and applications,” IEEE Trans. Parallel and Dist.
Systems, vol. 21, no. 5, pp. 658–671, May 2010.

56. “California ISO, http://www.caiso.com/.”
57. Z. Liu,Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, and C. Hyser “Renew-

able and cooling aware workload management for sustainable data centers,” in SIGMETRICS,
2012.

http://www.caiso.com/

A Big Picture of Integrity Verification of Big
Data in Cloud Computing

Chang Liu, Rajiv Ranjan, Xuyun Zhang, Chi Yang and Jinjun Chen

1 Introduction

Big data is attracting more and more interests from numerous industries. A few exam-
ples are oil and gas mining, scientific research (biology, chemistry, physics), online
social networks (Twitter, Facebook), multimedia data, and business transactions.
With mountains of data collected from increasingly efficient data collecting devices
as well as stored on fast-growing storage hardware, people are keen to find solutions
to store and process the data more efficiently, and to discover more values from the
mass at the same time. When referring to big data research problems, people often
brings the 4 v’s—volume, velocity, variety, and value. These pose various brand-new
challenges to computer scientists nowadays.

The recently emerged cloud computing, known to be the latest development in
data center technology, parallel distributed systems and service computing, is widely
considered as the most promising technological backbone for solving big data prob-
lems [1]. The pay-as-you-go payment model of cloud can cut into the investments
by enabling zero expense in setting up and maintaining of expensive computational
and storage hardware, as well as provide on-the-fly problem solving. The services

C. Liu (�) · X. Zhang · C. Yang · J. Chen
Faculty of Engineering and IT, University of Technology Sydney, Sydney, Australia
e-mail: changliu.it@gmail.com

X. Zhang
e-mail: xyzhanggz@gmail.com

C. Yang
e-mail: chiyangit@gmail.com

J. Chen
e-mail: jinjun.chen@gmail.com

R. Ranjan
Computational Informatics, CSIRO, Marsfield, Australia
e-mail: rranjans@gmail.com

© Springer Science+Business Media New York 2015 631
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_21

632 C. Liu et al.

cloud can provide, ranging from SaaS (Software-as-a-Service), PaaS (Platform-as-
a-Service), and IaaS (Infrastructure-as-a-Service), can offer solutions for big data
problems from any level. Cloud also offers elasticity and scalability which can result
in further saving of costs in many practical applications involving fast-updating dy-
namic data. To date, large amounts of business data of numerous big companies have
been moved into and managed by clouds such as Amazon AWS, IBM SmartCloud
and Microsoft Azure.

Despite those stand-out advantages of cloud, there are still strong concerns re-
garding service qualities, especially data security. In fact, data security has been
frequently raised as one of the top concerns in using cloud. In this new model, user
datasets are entirely outsourced to the cloud service provider (CSP), which means
they are no longer stored and managed locally. As CSPs cannot be deemed com-
pletely trusted, this fact brings several new issues. To name a few, first, when applied
in cloud environments, many traditional security approaches will stop being either
effective or efficient especially when handling big data tasks. Second, not only CSPs
need to deploy their own security mechanisms (mostly conventional), but the clients
also need their own verification mechanisms, no matter how secure the server-side
security mechanisms claimed to be; the verifications may not bring additional se-
curity risks and must be efficient in computation, communication and storage in
order to work in correlation with cloud and big data. Third, as the storage server is
only semi-trusted, the client may be deceived by deliberately manipulated responses.
All these new requirements have made the problem very challenging and therefore
started to attract computer science researchers’ interest in recent years.

Main dimensions in data security include confidentiality, integrity and availability.
In this chapter, we will focus on data integrity. Integrity verification and protection
is an active research area; numerous research problems belong to this area have
been studied intensively in the past. As a result, the integrity of data storage can
now be effectively verified in traditional systems through the deployments of Reed-
Solomon code, checksums, trapdoor hash functions, message authentication code
(MAC), digital signatures, and so on. However, as stated above, the data owner
(cloud user) still needs a method to verify their data stored remotely on a semi-
trusted cloud server, no matter how secure the cloud claim to be. A straightforward
approach is to retrieve and download from the server all the data the client wanted
to verify. Unfortunately, when data size is large, it is very inefficient in the sense
of both time consumption and communication overheads. To address this problem,
scientists are developing schemes mainly based on traditional digital signatures to
help users verify the integrity of their data without having to retrieve them, which
they term as provable data possession (PDP) or proofs of retrievability (POR). In this
book chapter, we will provide an analysis to some latest research on this problem,
as well as providing a look into the future, to eventually form a big picture for this
research topic.

The rest of this chapter is organized as follows. Section 2 gives some motivating
examples regarding security and privacy in big data application and cloud comput-
ing. Section 3 analyzes the research problem and propose a lifecycle of integrity
verification over big data in cloud computing. Section 4 shows some representative

A Big Picture of Integrity Verification of Big Data in Cloud Computing 633

Table 1 Acronyms/abbreviations
AAI Auxiliary authentication information

BLS Boneh-Lynn-Shacham signature scheme

CSS Cloud storage server

HLA Homomorphic linear authenticator

HVT Homomorphic verifiable tag

MAC Message authentication code

MHT Merkle hash tree

PDP Provable data possession

POR Proof of retreivability

TPA Third-party auditor

approaches and their analyses. Section 5 provides a brief overview of other schemes
in the field. Section 6 provides conclusions and points out future work.

For the convenience of readers, we list some frequently-used acronyms in Table 1.

2 Motivating Examples

Big data and cloud computing is receiving more and more interest from both industry
and academia nowadays. They have been recently listed as important strategies by
Australian Government [2, 3]. To address big data problems, cloud computing is
believed to be the most potent platform. In Australia, big companies such as Voda-
fone Mobile and News Corporation are already moving their business data and its
processing tasks to Amazon cloud—Amazon Web Services (AWS) [4]. Email sys-
tems of many Australian universities are using cloud as the backbone. To tackle the
large amount of data in scientific applications, CERN, for example, is already putting
the processing of petabytes of data into cloud computing [5]. There has also been a
lot of research regarding scientific cloud computing, such as in [6–8]. For big data
applications within cloud computing, data security is a problem that should always
be properly addressed. In fact, data security is one of the biggest reasons why people
are reluctant in using cloud [9–11]. Therefore, more effective and efficient security
mechanisms are direly in need to help people establish their confidence in all-around
cloud usage.

Data integrity is always an important part in data security, and there is no exception
for cloud data [12]. As stated in Sect. 1, client-side verification is as important as
server-side protection. As data in most big data applications are dynamic in nature,
we will focus on verification of dynamic data. A large proportion of the updates are
very small but very frequent. For example, in 2010 Twitter is producing every day up
to 12 terabytes of data, composed of tweets with a size of 140 characters maximum
[13]. Business transactions and loggings are also good examples. The dataset in
these big data applications are very large in size and requires heavy-scale processing

634 C. Liu et al.

Third Party Auditor
(TPA)

Cloud Users/The
Client

Cloud Storage Server (CSS)

De
leg
ati
on
of

Au
dit
ing

Ta
sks

Challenge for

Integrity Verification

Outsourcingand Retrieving
of cloud Data Storage

(Semi-Trusted)

(Se
mi
-Tr
us
ted
)

(Semi-Trusted)

Fig. 1 Relations between the participating parties

capabilities. Therefore, the requirements are not only in security, but also in good
efficiency.

3 Problem Analysis—Framework and Lifecycle

There are 3 participating parties in an integrity verification scheme: client, CSS and
TPA. The client stores her data on CSS, while TPA’s objective is to verify the integrity
of client’s data stored on CSS.Although the three forms a robust and efficient triangle,
each of the two parties are only semi-trusted by each other as shown in Fig. 1. New
security exploits may appear while verifying data integrity, which is why we need
a good framework to address this problem systematically. The main lifecycle of a
remote integrity verification scheme with support for dynamic data updates can be
analyzed in the following steps:

Setup and data upload →Authorization for TPA → Challenge for integrity proof
→ Proof verification → Updated data upload → Updated metadata upload →
Verification of updated data

The relationship and order of these steps are illustrated in Fig. 2. We now analyze
in detail how these steps work and why they are essential to integrity verification of
cloud data storage.

A Big Picture of Integrity Verification of Big Data in Cloud Computing 635

Server-side verifications (conventional methods: erasure code, MAC, signatures, etc)

Client-side verifications

Setup and data upload

Authorization for TPA

Challenge for integrity proof

Proof verification Updated data upload

Updated metadata upload

Verification of updated data

Simple data Data with multiple replicas Distributed data Unstructured data

......Cloud data storage

for verification

Verification
framework

Categorized data Shared data

Fig. 2 A brief overview of integrity verification over big data in cloud computing—lifecycle and
research topics

Setup and data upload: In cloud, user data is stored remotely on CSS. In order to
verify the data without retrieving them, the client will need to prepare verification
metadata, namely homomorphic linear authenticator (HLA) or homomorphic veri-
fiable tag (HVT), based on homomorphic signatures [14]. Then, these metadata will
be uploaded and stored alongside with the original datasets. These tags are computed
from the original data; they must be small in size in comparison to the original dataset
for practical use.

Authorization for TPA: This step is not required in a two-party scenario where
clients verify their data for themselves, but it is important when users require a semi-
trusted TPA to verify the data on their behalf. If a third party can infinitely ask for
integrity proofs over a certain piece of data, there will always be security risks in
existence such as plaintext extraction.

Challenge and verification of data storage: This step is where the main
requirement—integrity verification—to be fulfilled. The client will send a challenge
message to the server, and server will compute a response over the pre-stored data
(HLA) and the challenge message. The client can then verify the response to find
out whether the data is intact. The scheme has public verifiability if this verification
can be done without the client’s secret key. If the data storage is static, the whole
process would have been ended here. However, as discussed earlier, data are always
dynamic in many big data contexts (often denoted as velocity, one of the four v’s).
In these scenarios, we will need the rest of the steps to complete the lifecycle.

636 C. Liu et al.

Data update: Occurs in dynamic data contexts. The client needs to perform updates
to some of the cloud data storage. The updates could be roughly categorized in insert,
delete and modification; if the data is stored in blocks with varied size for efficiency
reasons, there will be more types of updates to address.

Metadata update: In order to keep the data storage stay verifiable without retrieving
all the data stored and/or re-running the entire setup phase, the client will need to
update the verification metadata (HLA or HVT’s), according with the existing keys.

Verification of updated data: This is also an essential step in dynamic data context.
As the CSS is not completely trusted, the client needs to verify the data update process
to see if the updating of both user data and verification metadata have been performed
successfully in order to ensure the updated data can still be verified correctly in the
future.

We will show in the next section how each steps in this lifecycle was developed
and evolved by analyzing some representative approaches in this research area.

4 Representative Approaches and Analysis

We first introduce the basic idea behind the designs as well as some common nota-
tions. The file m is stored in the form of a number of blocks, denoted as mi. Each of
the block is accompanied with a tag called HLA/HVT denoted as Ti , computed with
the client’s secret key. Therefore CSS cannot compute Ti (or more frequently denoted
as σi) frommi. The client will choose a random set ofmi , send over the coordinates,
and ask for proofs. CSS will compute a proof based on the tags Ti according to mi.
Due to homomorphism of the tags, the client will still be able to verify the proof with
the same private key used for tag computation.

4.1 Preliminaries

We now introduce some preliminaries laid as foundation stones for our research
area. HLA or HVT is evolved from digital signatures; current methods in verifiable
updates utilized authenticated data structures. Therefore, we will introduce here two
standard signature schemes (RSA and BLS) and one authenticated data structure
(MHT) involved in representative approaches.

4.1.1 RSA Signature

The RSA signature is classic and one of the earliest signature schemes under the scope
of public-key cryptography. While the textbook version is not semantically secure
and not resilient to existential forgery attacks, there is a large body of research work
on its improvements later on, and eventually makes it a robust signature scheme. For

A Big Picture of Integrity Verification of Big Data in Cloud Computing 637

example, a basic improvement is to use h(m) instead of m where h is a one-way hash
function.

The setup is based on an integer N = pq where p and q are two large primes, and
two integers d and e where ed = 1 mod N ; d is kept as the secret key and e is the
public key. The signature σ of a message m is computed as σ = md mod N.Along
with m, the signature can be verified through verifying whether m = σ e mod N
holds.

4.1.2 Bilinear Pairing and BLS Signature

BLS signature is proposed by Boneh, Lynn and Shacham [15] in 2004. In addition to
the basic soundness of digital signature, this scheme has a greatly reduced signature
length, but also increased overheads due to the computationally expensive paring
operations.

Assume a group G is a gap Diffie-Hellman (GDH) group with prime order p.
A bilinear map is a map constructed as e : G × G → GT , where GT is a mul-
tiplicative cyclic group with prime order1. A usable e should have the following
properties: bilinearity— ∀m, n ∈ G ⇒ e(ma , nb) = e(m, n)ab; non-degeneracy—
∀m ∈ G,m �= 0 ⇒ e(m, n) �= 1; and computability—e should be efficiently
computable. For simplicity, we will use this symmetric bilinear map in our scheme
description. Alternatively, the more efficient asymmetric bilinear map in the form of
e : G×G→ GT may also be applied, as was pointed out in [15].

Based on a bilinear map e : G×G→ GT , a basic BLS signature scheme works
as follows. Keys are computed as y = gx where g ∈ G, x is secret key and {g, y}
is public key. Signature σ for a message m is computed as σ = (h(m))x. People can
then verify this signature through verifying whether e(σ , g) = e(h(m), y).

4.1.3 Merkle Hash Tree

The Merkle Hash Tree (MHT) [16] is an authenticated data structure which has been
intensively studied in the past and later utilized to support verification of dynamic
data updates. Similar to a binary tree, each node N will have a maximum of 2 child
nodes. Information contained in one node N in a MHT T is H—a hash value. T
is constructed as follows. For a leaf node LN based on a message mi , we have
H = h(mi), rLN = si ; A parent node of N1 = {H1, rN1} and N2 = {H2, rN2} is
constructed as Np = {h(H1 ‖ H2)} where H1 and H2 are information contained
in N1 and N2 respectively. A leaf node mi’s AAI Ωi is defined as a set of hash
values chosen from every of its upper level so that the root value R can be computed
through {mi ,�i}. For example, for the MHT demonstrated in Fig. 3, m1’s AAI
�1 = {h(m2),h(e),h(b)}.

1 For simplicity, we only discuss symmetric pairing here, although specific asymmetric parings
could also be applied for better efficiency.

638 C. Liu et al.

Fig. 3 Merkle hash tree

4.2 Representative Schemes

Now we start to introduce and analyze some representative schemes. Note that all
computations are within the cyclic group Zp or ZN.

4.2.1 PDP

Proposed by Ateniese et al. in 2007, PDP (provable data possession) can provide
authors with efficient verification over their outsourced data storage [17, 18]. It is
the first scheme to provide blockless verification and public verifiability at the same
time.

The tag construction is based on RSA signature, therefore all computations are
modulo N by default. Let N, e, d be defined as the same as in RSA signature, g is
a generator of QRN , and v is a random secret value; {N, g} is the public key and
{d, v} is the secret key. The tag is computed as σi = (h(v ‖ i)gmi)d . To challenge
CSS, the client sends the indices (or, coordinates) of the blocks they want to verify,
and correspondingly chooses a set of coefficients ai , as well as a gs = gs mod N
where s is a random number, and send them to CSS along with the indices. To prove
data integrity, CSS will compute σ = �iσiai , along with a value p = H (�i , gsaimi),
and send back {σ ,p} as the proof. To verify this proof, the client (or TPA) will
compute τ = σe

�ih(v‖i)ai , then verify if p = H (τ s mod N).
The authors have also proposed a light version called E-PDP, in contrast to the

formal S-PDP scheme, for better efficiency. The basic idea is to throw away the
coefficients ai. However, the light version was later proved not secure under the
compact POR model. However, as a milestone in this research area, a lot of settings
continued to be used by the following work. Mixing in random coefficients is one
of the example. Another example is that the paper proposed a probability analysis
and found that only a constant small number of blocks are to be verified, if the client

A Big Picture of Integrity Verification of Big Data in Cloud Computing 639

needs to have 95 % or even 99 % confidence in that the integrity of the entire file is
good. This analysis also became a default setting in the following schemes.

4.2.2 Compact POR

Compact POR is proposed by Shacham et al. in 2008 [19]. Compared to original
POR, the authors provided an improved rigorous security proof.

They proposed first a construction for private verification. In this case, data can
only be verified with the secret key, therefore no other party can verify it except for
the client. The metadata HVT is computed as σi = fk(i) + ami , where fk() is a
pseudo-random function (PRF). α and the PRF key k is kept as secret key. When the
server is challenged with a set of block coordinates and a set of corresponding public
coefficients vi (same definition as αi in PDP above), it will compute σ =∑i viσi and
μ =∑i vimi to return {σ ,μ} as the proof. Upon receiving the proof, the client can
simply verify if α = αμ +∑i (vifk(i)). The scheme is efficient because it admits
short response length and fast computation.

The other construction with public verification is even more impressive com-
pared to schemes at that time. It is the first BLS-based scheme that supports public
verification. Due to the shortened length of BLS signature, the proof size is also
greatly reduced compared to RSA-based schemes. Similar to BLS signature, the tag
construction is based on a bilinear map e : G × G → GT where G is a group of
prime order p. Two generators g and u of Zp are chosen to be the public key, as
another value v = gα where α is the secret key for the client. The tag is computed
as σi = (H (i)umi)

α
, same as the one with private verification, a set of coefficients

vi is also chosen with the designated block coordinates. When challenged, the proof
{σ ,μ} is computed as σ = �iσivi and μ =∑i vimi. The client can then verify the
data integrity through verifying if e(σ , g) = e(�i(H (i)vi) · uμ, v).

Another great contribution of this work is the rigorous security framework it pro-
vided. In their model, a verification scheme is secure only when it is secure against
an arbitrary adversary with a polynomial extraction algorithm to reveal the message
from the integrity proof. To prove the security, they also defined a series of interactive
games under the random oracle model. Compared to the previous security frame-
works in first PDP and first POR schemes, the adversary defined in this framework
is stronger and stateless, and the definition of extraction algorithm (therefore the
overall soundness) is stronger. Also, their framework suits perfectly with the public
verification, and even multi-replica storage and multi-prover scenarios. To date, this
model is considered the strongest and is very frequently used to prove the security
of newly-proposed verification algorithms.

640 C. Liu et al.

4.2.3 DPDP

DPDP (Dynamic PDP), proposed in 2009, is the first integrity verification scheme to
support full data dynamics [20]. It is from here that the processes in integrity verifi-
cation schemes started to form a lifecycle. They utilized another authenticated data
structure—rank-based skip list—for verification of updates. A rank-based skip list is
similar to MHT in the sense that they will both incur a logarithm amount of operations
when an update occurs. All types of updates—insert, delete and modification—are
supported for the first time. This design is essentially carried on by all the following
schemes with dynamic data support. However, public verifiability was not supported
by the scheme, and there was no follow-up work to fill in the blank. Therefore, we
will only give a brief introduction here. The readers can refer to the next subsection
to see how data dynamics is supported with an authenticated data structure such as
MHT.

4.2.4 Public Auditing of Dynamic Data

As the DPDP scheme did not provide support for public verifiability, Wang et al.
proposed a new scheme that can support both dynamic data and public verifiability
at the same time [21]. They term the latter as ‘public auditability’, as the verification
is often done by a sole-duty third-party auditor (TPA).

A MHT is utilized to verify the updates where the root R is critical authentication
information. The tree structure is constructed on blocks, and the structure is stored
along with the verification metadata. Compared to compact POR, they compute the
tags usingH (mi) instead ofH (i) in order to support dynamic data, otherwise all tags
of the following blocks must be changed upon each one insert or delete update, which
will be very inefficient. Aside from this, the tag construction and verification are
similar: σi = (H (mi)umi)

α.The proof is also computed as σ = �iσivi μ =∑i vimi.
While the verification is to verify whether e(σ , g) = e(�i(H (mi)vi)uμ, v), TPA will
first verify H(R)’s signature to ensure the MHT is correct at server side.

To verify data updates, the client will first generate the tag for new block:

σ ′
i = (H (m′

i)um
′
i)
α
, then upload it to CSS along with the update request. CSS will

update the metadata as requested, and send back R′ along with the old blockH (mi),
the AAI�i (note�i will stay unchanged ifmi is the only block that has changed) and
the client-signed old MHT root H (R). The client can then verify the signed H (R)
to ensure CSS has not manipulated it, then it can verify R′ with m′

i and �i to see if
the update of data and metadata was correct.

There was also a follow-up work to improve this scheme for privacy preserving
public auditing [22]. When computing integrity proof, they added a random masking
technique to prevent the part of original file being extracted from several integrity
proofs over this specific part of data.

A Big Picture of Integrity Verification of Big Data in Cloud Computing 641

4.2.5 Authorized Auditing with Fine-Grained Data Updates

Although the above schemes have already supported dynamic data and public veri-
fication/ auditability, they only support insert/delete/modification with blocks with
a fixed size, which are later termed as ‘coarse-grained updates’. Lack of support
of fine-grained updates, i.e., arbitrary-length updates, especially small updates, will
cause functionality and efficiency problems. Liu et al. [23] proposed a public au-
diting scheme with support of fine-grained updates over variable-sized file blocks.
In addition, an authentication process between the client and TPA is also proposed
to prevent TPA from endless challenges, thereby cut the possibility of attacks over
multiple challenges (like the one in [24]) from source.

Similar to previous work, this scheme is also based on BLS signature. Unlike pre-
vious schemes which are based on evenly distributed file blocks, here the file blocks
are of variable size, with an upper bound of smax sectors per block. The tag con-
struction is σi = (H (mi)�

si
j=1u

mij
j)

α
where uj ∈ U ,U = {uk ∈ Zp}, k ∈ [1, smax]

is chosen according to smax. To challenge CSS, TPA must first obtain authoriza-
tion from client to be eligible for auditing. The client will compute sigAUTH =
Sigssk(AUTH ‖ t ‖ V ID), which is a signature with client’s secret key whereVID is
the verifier ID and AUTH is a message shared secretly earlier between client and CSS.
In this case, only the client can generate this signature and only the CSS (other than
the client herself) will be able to verify sigAUTH . After CSS has finished verifying
sigAUTH , it will compute the proof P = {σ , {μk}k∈[1,w], {H (mi),�i}i∈I , sig} where
σ = �iσi

vi and μk = ∑
i∈I vimik , then send P back to TPA. TPA will then verify

the proof through verifying whether e(sig, g) = e(H (R), v) and e(σ , g) = e(ω, υ),
where ω = �i∈IH (mi)vi�k∈[1,w]u

μk
k .

For support in fine-grained updates, 5 types of necessary updating operations
including PM ,M ,D, JandSP are analyzed; a theorem was provided to illustrate
that all updates can be divided into this 5 basic operations. For more efficient veri-
fication of fine-grained updates, a modified verification scheme for PM operations
(which was the majority of the operations in many occasions found through anal-
ysis) is also provided, where only the modified part of the new block, instead
of a whole block, is needed to retrieved and transferred back to the client for
tag re-computation. Experimental results have also demonstrated some significant
efficiency improvements.

5 Other Related Work

Other than the ones stated in the previous section, a great amount of work has also
been proposed in recent years to address the research problem of integrity verification
and public auditing of cloud data and other outsourced data storage. The concept of
POR is proposed in 2007 by Juels et al. [25], but the security framework was not
complete and it only suits for static data storage like library and archives. After PDP,
Ateniese et al. also proposed an improvement they call Scalable PDP [26] to support

642 C. Liu et al.

dynamic data verification. Alas, only partial data dynamics is supported, i.e., only
limited types of data updates is supported. Therefore, this scheme is not suitable for
practical use. Curtmola et al. proposed a verification for multi-replica cloud storage,
which is named MR-PDP [27]. This is also a practical solution, because cloud will
constantly keep a number of replicas of user data in the aim of availability. Ateniese
et al. also proposed a framework to transfer homomorphic identification protocols
into integrity verification schemes [28].

There is also some work proposed in the most recent years. Based on previous
work and the recent developments of big data and cloud, they can be the more
practical solution for specific cloud environments and applications. As mentioned
before, [23] is a good example. For big enterprises, data migration is a big problem in
the adoption process of cloud, because the different security/control levels in data and
the heavy cost in migration itself. Therefore, hybrid cloud has been a more practical
solution; enterprises will keep relatively static and security-sensitive data on private
cloud, and put all services into the cloud. Zhu et al. proposed a PDP scheme for
Hybrid Cloud [29] for verification of data stored in separated domains. As cloud
data sharing becomes a hot topic, Wang et al. worked on secure data verification
of shared data storage [30] and also with efficient user management [31]. Zhang
et al. proposed a scheme with a new data structure called update tree [32]. Without
conventional authenticated data structures such as MHT, the proposed scheme has a
constant proof size and support fully data dynamics. However, the scheme does not
support public verification/auditing at the moment.

6 Conclusions and Future Work

As we can see from the above, the topic of integrity verification of big data in cloud
computing is a flourishing area that is attracting more and more research interest and
there is still lots of research currently ongoing in this area. Cloud and big data is a
fast-developing topic. Therefore, even though existing research has already achieved
some amazing goals, we are confident that integrity verification mechanisms will also
continue evolving along with the development of cloud and big data applications to
meet emerging new requirements and address new security challenges. For future
developments, we are particularly interested in looking at the following aspects.

Efficiency Due to high efficiency demands in big data processing overall, efficiency
is one of the most important factors in designing of new techniques related to big
data and cloud. In integrity verification/ data auditing, the main costs can come from
every aspects, including storage, computation, and communication, and they can all
affect the total cost-efficiency due to the pay-as-you-go model in cloud computing.

Security Security is always a problem between spear and shield; that is, attack and
defend. Although the current formalizations and security model seemed very rigorous
and potent, new exploits can always exist, especially with dynamic data streams and

A Big Picture of Integrity Verification of Big Data in Cloud Computing 643

varying user groups. Finding the security holes and fixing them can be a long-lasting
game.

Scalability/elasticity As the cloud is a parallel distributed computing system in na-
ture, scalability is one of the key factors as well. Programming models for parallel
and distributed systems, such as MapReduce, are attracting attentions from a great
number of cloud computing researchers. Some of the latest work in integrity verifi-
cation is already considering how to work well with MapReduce for better parallel
processing [29]. On the other hand, elasticity is one of a biggest reason why big com-
panies are moving their business, especially service-related business, to the cloud
[4]. User demands vary all the time, and it would be a waste of money to purchase
hardware that can handle the demands at peak times. The advent of cloud solved
this problem—cloud allows their clients to deploy their applications on a highly
elastic platform whose capabilities can be scaled up and down on-the-fly, and the
cost is based solely on usage. Therefore, an integrity verification mechanism that
has the same level of scalability and elasticity will be highly resourceful for big data
applications in a cloud environment.

References

1. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Kon-
winski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica and Matei Zaharia, “A View of
Cloud Computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

2. Australian Government Department of Finance and Deregulation, “Big Data Strategy—Issues
Paper,” 2013; http://agimo.gov.au/files/2013/03/Big-Data-Strategy-Issues-Paper1.pdf.

3. Australian Government Department of Finance and Deregulation, “Cloud Computing Strategic
Direction Paper: Opportunities andApplicability for Use by theAustralian Government,” 2011;
http://agimo.gov.au/files/2012/04/final_cloud_computing_strategy_version_1.pdf.

4. Customer Presentations on Amazon Summit Australia, Sydney, 2012, available:
http://aws.amazon.com/apac/awssummit-au/, accessed on: 25 March, 2013,

5. Nick Heath, “Cern: Cloud Computing Joins Hunt for Origins of the Universe,” 2012, avail-
able: http://www.techrepublic.com/blog/european-technology/cern-cloud-computing-joins-
hunt-for-origins-of-the-universe/262, accessed on: 25 March, 2013,

6. Christian Vecchiola, Rodrigo N. Calheiros, Dileban Karunamoorthy and Rajkumar Buyya,
“Deadline-driven Provisioning of Resources for Scientific Applications in Hybrid Clouds with
Aneka,” Future Generation Computer Systems, vol. 28, no. 1, pp. 58–65, 2012.

7. Lizhe Wang, Marcel Kunze, Jie Tao and Gregor von Laszewski, “Towards Building A Cloud
for Scientific Applications,” Advances in Engineering Software, vol. 42, no. 9, pp. 714–722,
2011.

8. Lizhe Wang, Jie Tao, M. Kunze, A.C. Castellanos, D. Kramer and W. Karl, “Scientific Cloud
Computing: Early Definition and Experience,” in Proceedings of the 10th IEEE International
Conference on High Performance Computing and Communications (HPCC ’08) pp. 825–830,
2008.

9. Stephen E. Schmidt, “Security and Privacy in the AWS Cloud,” Presentation on Ama-
zon Summit Australia, 17 May 2012, Sydney, 2012, available: http://aws.amazon.com/
apac/awssummit-au/, accessed on: 25 March, 2013,

10. Jinhui Yao, Shiping Chen, Surya Nepal, David Levy and John Zic, “TrustStore: Making
Amazon S3 Trustworthy with Services Composition,” in Proceedings of the 10th IEEE/ACM

http://aws.amazon.com/apac/awssummit-au/
http://aws.amazon.com/apac/awssummit-au/

644 C. Liu et al.

International Conference on Cluster, Cloud and Grid Computing (CCGRID ’10), pp. 600–605,
2010.

11. Dimitrios Zissis and Dimitrios Lekkas, “Addressing Cloud Computing Security Issues,” Future
Generation Computer Systems, vol. 28, no. 3, pp. 583–592, 2011.

12. Surya Nepal, Shiping Chen, Jinhui Yao and Danan Thilakanathan, “DIaaS: Data Integrity as a
Service in the Cloud,” in Proceedings of the 4th International Conference on Cloud Computing
(IEEE CLOUD ’11), pp. 308–315, 2011.

13. Erica Naone, “What Twitter Learns from All Those Tweets,” Technology Review, 28
September, 2010, available: http://www.technologyreview.com/view/420968/what-twitter-
learns-from-all-those-tweets/, accessed on: 25 March, 2013,

14. Robert Johnson, David Molnar, Dawn Song and David Wagner, “Homomorphic Signature
Schemes,” Topics in Cryptology—CT-RSA 2002, Lecture Notes in Computer Science, vol.
2271, pp. 244–262, 2002.

15. Dan Boneh, Hovav Shacham and Ben Lynn, “Short Signatures from the Weil Pairing,” Journal
of Cryptology, vol. 17, no. 4, pp. 297–319, 2004.

16. Ralph C. Merkle, “A Digital Signature Based on a Conventional Encryption Function,” in
Proceedings of A Conference on the Theory and Applications of Cryptographic Techniques on
Advances in Cryptology (CRYPTO ’87), pp. 369-378, 1987.

17. GiuseppeAteniese, Randal Burns Johns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary
Peterson and Dawn Song, “Provable Data Possession at Untrusted Stores,” in Proceedings of
the 14th ACM Conference on Computer and Communications Security (CCS ’07), pp. 598–609
2007.

18. Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Osama Khan, Lea Kissner,
Zachary Peterson and Dawn Song, “Remote Data Checking Using Provable Data Possession,”
ACM Transactions on Information and System Security, vol. 14, no. 1, pp. Article 12, 2011.

19. Hovav Shacham and Brent Waters, “Compact Proofs of Retrievability,” in Proceedings of the
14th International Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT ’08), pp. 90–107 2008.

20. Chris Erway, Alptekin Küpçü, Charalampos Papamanthou and Roberto Tamassia, “Dynamic
Provable Data Possession,” in Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS’09), pp. 213–222, 2009.

21. Qian Wang, Cong Wang, Kui Ren, Wenjing Lou and Jin Li, “Enabling Public Auditability and
Data Dynamics for Storage Security in Cloud Computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 5, pp. 847–859, 2011.

22. Cong Wang, S.M. Chow, Qian, Kui Ren and Wenjing Lou, “Privacy-Preserving PublicAuditing
for Secure Cloud Storage,” IEEE Transactions on Computers, In Press, 2011.

23. Chang Liu, Jinjun Chen, Laurence T. Yang, Xuyun Zhang, Chi Yang, Rajiv Ranjan and Ko-
tagiri Ramamohanarao, “Authorized Public Auditing of Dynamic Big Data Storage on Cloud
with Efficient Verifiable Fine-grained Updates,” IEEE Transactions on Parallel and Distributed
Systems, in press, 2013.

24. Cong Wang, S.M. Chow, Qian, Kui Ren and Wenjing Lou, “Privacy-Preserving PublicAuditing
for Secure Cloud Storage,” IEEE Transactions on Computers, vol. 62, no. 2, pp. 362–375, 2013.

25. Ari Juels and Jr. B. S. Kaliski, “PORs: Proofs of Retrievability for Large Files,” in Proceedings
of the 14th ACM Conference on Computer and Communications Security (CCS ’07), pp. 584–
597, 2007.

26. Giuseppe Ateniese, Roberto Di Pietro, Luigi V. Mancini and Gene Tsudik, “Scalable and
Efficient Provable Data Possession,” in Proceedings of the 4th International Conference on
Security and Privacy in Communication Netowrks (SecureComm ’08), pp. 1–10, 2008.

27. Reza Curtmola, Osama Khan, Randal C. Burns and Giuseppe Ateniese:, “MR-PDP: Multiple-
Replica Provable Data Possession.,” in Proceedings of the 28th IEEE International Conference
on Distributed Computing Systems (ICDCS ’08), pp. 411–420, 2008.

28. Giuseppe Ateniese, Seny Kamara and Jonathan Katz, “Proofs of Storage from Homomorphic
Identification Protocols,” in Proceedings of the 15th International Conference on the Theory

http://www.technologyreview.com/view/420968/what-twitter-learns-from-all-those-tweets/
http://www.technologyreview.com/view/420968/what-twitter-learns-from-all-those-tweets/

A Big Picture of Integrity Verification of Big Data in Cloud Computing 645

and Application of Cryptology and Information Security (ASIACRYPT ’09), pp. 319–333,
2009.

29. Yan Zhu, Hongxin Hu, Gail-Joon Ahn and Mengyang Yu, “Cooperative Provable Data Pos-
session for Integrity Verification in Multi-Cloud Storage,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 12, pp. 2231–2244, 2012.

30. Boyang Wang, Sherman S.M. Chow, Ming Li and Hui Li, “Storing Shared Data on the Cloud
via Security-Mediator,” in 33rd IEEE International Conference on Distributed Computing
Systems (ICDCS ’13), 2013.

31. Boyang Wang, Baochun Li and Hui Li, “Public Auditing for Shared Data with Efficient User
Revocation in the Cloud,” in Proceedings of the 32nd Annual IEEE International Conference
on Computer Communications (INFOCOM’13), pp. 2904–2912, 2013.

32. Yihua Zhang and Marina Blanton, “Efficient Dynamic Provable Possession of Remote Data
via Update Trees,” IACR Cryptology ePrint Archive, Report 2012/291, 2012.

An Out-of-Core Task-based Middleware for
Data-Intensive Scientific Computing

Erik Saule, Hasan Metin Aktulga, Chao Yang, Esmond G. Ng
and Ümit V. Çatalyürek

1 Introduction

Petascale scientific computing, next-generation telescopes, high-throughput experi-
ments, data-oriented business technologies and the Internet have been driving a rapid
growth in data acquisition and generation. Analysis of large-scale datasets is likely
to bring new breakthroughs in the academic and industrial world. These analyses
typically require the use of large computer systems, such as those that can be found
in data centers or high performance computing (HPC) facilities.

While the computing power of large computer systems that can enable timely
and scalable data analysis has been increasing steadily for decades, their memory
capacities have not been able to keep pace [1], see Fig. 1. As we move towards
the future, this gap is anticipated to widen even further. The main reason for this
trend is that it is not possible to meet the storage capacity and power consumption
requirements of future machines using the DRAM technology. Non-volatile memory
(NVM) solutions, on the other hand, feature much higher storage densities and lower

E. Saule (�)
Department of Computer Science, University of North Carolina at Charlotte,
Charlotte, NC 28223, USA
e-mail: esaule@uncc.edu

H. M. Aktulga · C. Yang · E. G. Ng
Computational Research Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA
e-mail: hmaktulga@lbl.gov

C. Yang
e-mail: cyang@lbl.gov

E. G. Ng
e-mail: egng@lbl.gov

Ü. V. Çatalyürek
Department of Biomedical Informatics, The Ohio State University,
Columbus, OH 43210, USA
e-mail: umit@bmi.osu.edu

© Springer Science+Business Media New York 2015 647
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_22

648 E. Saule et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ju
n-

05

D
ec

-0
5

Ju
n-

06

D
ec

-0
6

Ju
n-

07

D
ec

-0
7

Ju
n-

08

N
ov

-0
8

Ju
n-

09

N
ov

-0
9

Ju
n-

10

N
ov

-1
0

Ju
n-

11

N
ov

-1
1

M
ay

-1
2

N
ov

-1
2

M
ay

-1
3

N
ov

-1
3

M
em

or
y

(G
B

) /
 R

pe
ak

 (G
F)

Fig. 1 Memory in gigabytes per gigaflop of computing power for the leading 10 supercomputers
on the TOP500 list over the years

power requirements compared to DRAM. Therefore NVM technology will be one
of the key enablers for future high end computing architectures.

In datacenters, NVM storages are experiencing a fast adoption rate due to the high
bandwidth and low latency advantages that they provide over the traditional disk-
based storage systems in the management and analysis of large datasets. Several
NVM storage solutions from companies such as Fusion-IO, OCZ Technologies, HP
and Seagate already exist in the marketplace. Initially, these NVM storages were used
as mere disk replacements and they were connected to the compute resources through
low performance interfaces such as SCSI or SATA. Nowadays, we increasingly see
high performance NVM storages being connected through the PCI Express bus. As
the technology improves, it is anticipated that NVM storages will take their place as
a new layer in the memory hierarchy for datacenter systems [2].

NVM storages are already incorporated in today’s HPC architectures that are
designed to tackle challenging data-intensive problems. For example, the Gordon
computer at the San Diego Supercomputing Center (SDSC) houses 300 TBs of flash
memory storage in addition to 64 TBs of DRAM space. Trinity (Los Alamos) and
NERSC-8 systems, which are planned for operation in 2015, will use flash memory
based storages at a much greater scale. Their total flash memory storage capacity is
expected to be on the order of 5–10 PBs, which corresponds to about 2–3 times the

An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing 649

total DRAM capacity on those systems. An important use case for the flash memory
storage on the Trinity and NERSC-8 systems will be to provide a fast workspace for
data-intensive applications. As we move towards the exascale era, NVM storages
which are currently seen as fast disk alternatives only will be introduced as a new
layer into the memory hierarchy in HPC systems as well. Non-Volatile Random
Access Memory (NVRAM) is a main component of exascale computer architecture
designs byAMD and IBM as part of their efforts in the DOE’s Fast Forward program,
[3, 4].

The drastic changes in system architecture will require rethinking systems soft-
ware as well. Specifically, with improvements in hardware performance, software
efficiency will become the next bottleneck. Scalable and efficient analytics on large
computer systems require advanced parallel programming skills. However, most
computational scientists and data scientist are not parallel programming experts. Be-
sides the need for carefully organizing communication and computations in large
scale applications, the need to manage data stored on NVM devices emerges in
current architectures designed for data-intensive computing. This adds considerable
complexity in code design and development.

Our vision is to increase the programmer productivity while still ensuring good
performance and scalability by enabling the separation of computation and data
movement. In our approach, the programmer can focus on the computational op-
erations that he/she wants to apply to the sets of data and delegates the chore of
data movement to the task-based data-flow middleware, DOoC (Distributed Out-
of-Core), that we describe in this chapter. DOoC is a runtime environment that
determines and executes optimal data movement policies for systems with deep mem-
ory/storage hierarchies. Conceptually, in DOoC the entire computation is represented
as a Directed Acyclic Graph (DAG), where an operation on a dataset corresponds
to a vertex, the input data for the computational task is represented as an incom-
ing edge to that vertex and the resulting data is represented as an outgoing edge of
the vertex. Our runtime environment carefully considers the characteristics of the
underlying memory/storage subsystem and the needs of the data-intensive applica-
tions that it supports to enable efficient execution of large-scale computations. The
overall goal of our work is to provide an easy-to-use high-level application interface
for data-intensive workloads, while providing efficient and scalable execution by
orchestrating pipelined execution of computation, communication and I/O.

We have designed and implemented DOoC to be a generic middleware that can be
used in a wide spectrum of applications in fields as diverse as graph mining, bioin-
formatics and scientific computing. A customizable frontend allows the application
developer to interact with the DOoC framework through a simple programming inter-
face. In this chapter, after giving an overview of the DOoC framework, we introduce
the Linear Algebra Frontend (LAF) which is developed to enable the implementation
of iterative numerical methods using DOoC. We present a case study on the imple-
mentation of a block eigensolver for the solution of large-scale eigenvalue problems
arising in nuclear structure computations. We give detailed performance and scalabil-
ity analysis for the resulting distributed out-of-core eigensolver on an experimental
testbed equipped with NVM storages. We conclude our chapter with a discussion on
the future work planned.

650 E. Saule et al.

2 Related Work

One can draw similarities between our approach and other approaches that use di-
rected acyclic graphs (DAG) to model computational dependencies. In the classical
DAG scheduling [5], the complete task graph is generated before scheduling. How-
ever, in our system the task graph is generated dynamically on-the-fly. Two other
middlewares are similar to our effort: StarPU [6] and PaRSEC [7]. They both have
been recently used for sparse linear algebra [8].

StarPU [6] is a task-based middleware like DOoC. It has been used for both dense
and sparse linear algebra. It is designed to take advantage of multicore systems with
accelerators and has been ported to support multiple architectures such as CUDA
devices, OpenCL devices, the IBM Cell processor and multicore CPUs. StarPU has
no support for out-of-core processing. It also allows multiple copies of a data item
to exist on multiple devices as long as they are identical copies. Once a modification
is made on one copy, the other existing copies must be deallocated. Two recent
developments in StarPU are the composability of StarPU applications [9] and the
support for distributed memory computing using MPI [10].

PaRSEC (previously known as DAGuE [7]) has originally been designed for in-
core, dense linear algebra computations. Recently, it has been used to perform sparse
linear algebra operations [8]. It supports both accelerators and distributed memory
computing. The highlight of PaRSEC is the use of Parametrized Task Graph [11]
to store the task graph in a compact form to reduce the scheduling overheads and
synchronizations [12].

Out-of-core algorithms for sparse numerical linear algebra applications involving
large matrices have been an attractive research topic, especially back in the 90’s.
Toledo gives an excellent survey of such algorithms [13]. More recently, out-of-core
direct solvers on a single node have been investigated for symmetric [14, 15] or
asymmetric matrices [16, 17]. A parallel (but still single node) out-of-core multi-
frontal method has recently been developed [18] and recently improved to reduce the
amount of I/O transfers [19]. Distributed out-of-core computations were considered
to compute the steady state of Markov chains using Jacobi or Conjugate Gradient
algorithms [20]. Also approximations to compute the Page Rank of a graph accessed
from the disk has recently been proposed [21].

Another related area of work is the field of memory aware scheduling algorithms.
Out-of-core computing relies on reusing available data as much as possible and
minimizing the amount of data to transfer from the disk to perform the computation.
Many works in scheduling are applicable to out-of-core algorithms. [22] studies the
problem of scheduling independent tasks and DAGs onto a cluster to minimize both
the makespan of the application and the memory consumption of the node with the
most used memory. In this model, the assumption is that once memory is used it is
never freed. This assumption can model either the cost of a reading from the disk or
the space used on the disk by the tasks. This model is extended in [23] in the context
of load balancing for file servers where the author investigates the use of replication
of data items and their reallocation to better take the change in the load into account.

An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing 651

The previously described model uses memory as an abstract concept. Some other
models attach actual piece of data to the computations and focus on assigning the
data to a compute node in order to minimize the cost of off-node data accesses [24].

Other related scheduling problems are concerned with the execution of a task
graph under memory pressure where data is deallocated once it is no longer used
and the goal of the scheduler is to execute the application using the least amount
of memory. This problem has historically been solved to schedule the execution of
binary arithmetic trees in compilers with unitary space cost to minimize the amount
of used registers [25]. Most of the work in the area is concerned with trees since
it has been shown that the problem is NP-Complete on DAGs [26]. The problem
of scheduling non-binary in-trees with arbitrary cost has been solved in polynomial
time [27]. There also have been interest in the case where multiple chains need to
be computed and a cache is available to store the result of some tasks removing the
need to compute it. Unfortunately, this problem has also been proved NP-Complete,
but some polynomial time approximation algorithms have been proposed for it [28].

Most of the work on memory pressured scheduling only consider the problem of
minimizing the memory requirement in a sequential setting. But if the problem can
not be solved in memory, then it becomes important to try to minimize the amount
of I/O performed to compute the final solution. This problem is shown to be NP-
Complete and heuristics have been proposed and tested on instances coming from
multifrontal methods [29]. Also, the trade-off of memory and execution time of the
execution of an in-tree on a parallel machine have recently been investigated in [30].

During the last decade there has been little interest in distributed memory out-of-
core numerical linear algebra algorithms. We argue that the main reason has been
the poor performance of these algorithms due to the high latency and low bandwidth
associated with traditional disk-based storage systems. At this point, the emergence
of clusters equipped with non-volatile NAND-flash memory based solid state drives
(SSD) presents unique opportunities and this is exactly what we explore in this
chapter.

3 An Out-of-Core Task-based Middleware

DOoC (Distributed Out-of-Core) is a recently developed generalized middleware
for distributed out-of-core computation and data analysis [31]. DOoC runs on top of
DataCutter [32], which itself is a distributed, coarse-grain data-flow middleware. We
have built our framework on top of DataCutter instead of directly implementing using
MPI (or any other low-level library that enables distributed-memory programming),
because the programing model of DataCutter naturally enables the separation of the
computations from the data movements and provides an efficient runtime system that
orchestrates pipelined executions with computation and communication overlapping.

Figure 2 depicts the architectural overview of our proposed framework, which
is composed of DOoC and LAF (Linear Algebra Frontend) [33]. DOoC provides
efficient execution of task graphs with given input and output data dependencies. In

652 E. Saule et al.

LAF

DOoC

Compute Node - 3

Storage Service

Data
Chunks

SpMM

Out
Data

In
Data

dot

In
Data

Out
DataLocal Scheduler

Exec

Compute Node - 2

Storage Service

Data
Chunks

SpMM

Out
Data

In
Data

dot

In
Data

Out
DataLocal Scheduler

Exec

LOBPCG
End-User Code

SymSpMM(H, psi)
dot(phiT, phi)

...

LOBPCG.cpp

Primitive
Conversion

Compute Node - 1

Storage Service

Data
Chunks

SpMM

Out
Data

In
Data

dot

In
Data

Out
DataLocal Scheduler

Exec

Req Data

Global Task Graph Global Scheduler

Req Data

Req Data

Fig. 2 Schematic overview of our framework Distributed Out-of-Core (DOoC) with LinearAlgebra
Frontend (LAF)

DOoC, task graphs and task codes need to be generated manually by the application
developer. Since our focus in this chapter is on iterative eigensolvers for large-scale
sparse matrices, we have designed and developed LAF, which we describe in more
detail in Sect. 4. LAF customizes our framework for linear algebra computations by
providing a high-level interface to application developers. It acts as a frontend that
translates basic linear algebra primitives into global task graphs that can be executed
by DOoC.

DOoC is composed of two parts: (i) a hierarchical scheduler responsible for
ordering and triggering the execution of tasks, and (ii) a storage service responsible
for managing the memory as a resource and handling transfers of data, which is
either the input for local computational tasks or the output of them. Data transfer in
the context of a distributed out-of-core computation involves reading from or writing
to the permanent storage system, or communicating with other compute nodes.

In DataCutter, which serves as the distributed data storage layer for DOoC, the
immutable object paradigm is adopted. In immutable object paradigm, a given mem-
ory location can only be written once and can not be read before being written. This
removes race conditions and the need for distributed memory coherency protocols
(which are major concerns in similar systems with mutable objects such as Global
Array [34]).

Below, we describe each component of the proposed framework in more detail.

An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing 653

3.1 Global and Local Schedulers

Within the scheduler, the application is represented as a set of tasks. Each task is
annotated with the set of data it needs (input data) and the set of data it generates
(output data). These annotations are used to generate a partial ordering between the
tasks (such as the one presented in Fig. 2). An efficient partial ordering is achieved
by the use of hash tables, where for each data the mapping of which tasks use it as
input and which tasks produce it as output is kept.

Each individual task is sequentially executed on a single computing node. The
tasks are created on the global scheduler. The global scheduler is responsible for
assigning these tasks to the local schedulers on compute nodes for processing, as
well as tracking the completions of those tasks. It assigns a task to a local scheduler
only when all the input data of the task have been generated or will be generated
as a result of executing the tasks already assigned to that particular local scheduler.
Among all the compute nodes, the global scheduler allocates a task onto the node
where most of the input data is already located at. This is a heuristic aimed at
minimizing the data movement required for starting to process tasks. Alternatively,
a task assignment can be forced to a different node by the application programmer,
too.

The local scheduler obtains regularly (default every 100 ms) from the storage
service (which we describe in the next subsection) the list of data that is available
on the local memory. Based on this information, the local scheduler decides which
tasks among those assigned to itself are ready for execution. The scheduler triggers
the execution of a ready task as soon as a computation thread becomes idle. There
are as many computation threads as the number of cores on a compute node. The
output data from executing a task, which will serve as the input data for a subsequent
task, resides in the compute node’s memory until it is consumed.

Another key responsibility of the local scheduler is to enable the pipelined execu-
tion of computation, communication and I/O. It achieves this by sending prefetching
requests to the storage service. The local scheduler first queries the storage service
to learn the amount of memory space available for prefetching. As long as there is
space available and there are tasks that are waiting for input data to be executed, the
local scheduler determines the data to be prefetched by using the greedy algorithm
presented in Algorithm 1 to order tasks.

This greedy algorithm orders the tasks in the local scheduler’s list based on the
amount of additional input data that needs to be brought into the local memory to
make each task ready for execution. The task which requires the least amount of
additional input data is ordered first, and the prefetching requests for its input data
are issued. Those input data are added to the list of available data, and the algorithm
continues to determine the next task for prefetching. Note that, data will be actually
available after it has been prefetched by the storage service. Prefetching is paused
when there is no more memory space available. The prefetched data is consumed
when ready tasks are executed. As soon as enough memory space becomes available,
prefetching is reinstantiated.

654 E. Saule et al.

3.2 Storage Service

The storage service is responsible for managing the local memory, managing the
data transfer to/from the permanent storage system and handling the communication
between compute nodes.

When the storage service starts, it queries the permanent storage system through its
file system and makes a list of the data stored there. This information is reported to the
global scheduler. In addition, the storage service provides functions to declare new
data objects and to destroy ones that are no longer necessary. In DOoC, declaring
a new data object does not actually induce memory allocation, it just induces the
creation of appropriate meta-data. The memory allocation is done when the newly
created data object is accessed for the first time.

The way DOoC handles an access to a data object differs based on whether it is
a read access or a write access. In a read access, if the data object is currently not in
that node’s local memory, it may be stored either on the permanent storage system or
on the memory of another node. If the data is stored on permanent storage system, it
is simply read from there. Otherwise, it needs to be communicated from the hosting
node. The storage service randomly queries other nodes until it locates the one where
the data object is stored. Once the data is located, a hint is created to speedup the
querying process in subsequent accesses to the same data object.

Write access to a data object is only possible if the data object resides in local
memory. Notice that because the data objects in DOoC are immutable, they are
only written once. Therefore there is no need for a complex coherency protocol. All
data access operations are performed asynchronously to be able to process multiple

An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing 655

requests simultaneously. However, after a certain number of simultaneous requests
(default: 50) within a node, subsequent ones are queued.

A deallocation procedure is triggered when there is no more memory available on
a compute node. The input data that are necessary for executing the tasks currently
scheduled on the cores of that compute node, as well as any data object that cannot
be reobtained are excluded from deallocation. A data object cannot be reobtained,
if it was created on the node itself. Such data objects must be kept until they are
written to the permanent storage system or they are explicitly deallocated by the
application programmer. On the other hand, a data object can be reobtained if it was
read from the permanent storage system, or communicated from another node. Such
data objects are eligible for deallocation along with remaining data objects that do
not fit into any of the categories above. The storage service frees data objects eligible
for deallocation according to the Least Recently Used policy.

4 Linear Algebra Frontend (LAF)

The Linear Algebra Frontend (LAF) is a C++ library which works with objects
of different data types including dense and sparse matrices, (dense) vectors, and
scalars. Objects are persistent, and can be partitioned into chunks and distributed in
the system. Each object is identified by a string that gives it a unique name. Each
object is considered immutable, similar to objects in functional programming. Hence
it is generated once and is never overwritten. New objects can be generated from the
stored data, and also as a result of computation using provided primitives.

When an object is no longer needed, the associated memory needs to be deallo-
cated within the system. This is triggered upon the destruction of the object in the
frontend which can be explicit or automatic when the program exits the scope an
object was declared in.

Currently supported primitives are listed in Table 1. Although not comprehen-
sive, these operations are sufficient to implement various numerical methods for
the solution of linear systems or eigenvalue problems that are widely used in sci-
entific computing. The Conjugate Gradients, LOBPCG, Lanczos, and Page-Rank
algorithms are among the examples that can be implemented using the primitives
that currently exist in LAF.

Some of these primitives (such as dot product, MM and MV) require a reduction
phase when the data are partitioned into multiple chunks. The reduction operation
can be implemented using a static reduction tree. Since the summation operation
required for these reductions are commutative, it does not matter in which order the
different chunks are added up. So the reduction is first performed locally on each
node and then globally on the destination node to reduce communication overheads.
In order to prevent the accumulation of intermediate results on a node (which may
be very costly in terms of memory space), local reduction tasks are implemented
to listen on scheduling events. When the number of intermediate results associated

656 E. Saule et al.

Table 1 Primitives that are
currently available in LAF. A,
B and C are matrices, y, x
and w are vectors, and a and b
are scalars

Primitives Operation

Primitives that creates Matrix

MM, (Sym)SpMM C = AB
addM C = A+ B
axpyM C = aA+ b
randomM C = random()

Primitives that creates Vector

MV, (Sym)SpMV y = Ax
addV y = x + w

axpyV y = ax + b
Primitives that creates scalar

dot a =< x, y >

with a reduction operation reaches a threshold (default: 5), a local reduction task is
dynamically created.

5 A Case Study: Block Iterative Eigensolver Using DOoC+LAF

In this section, we present a case study using our DOoC+LAF framework. We give
the implementation details of a block eigensolver for the solution of large-scale
eigenvalue problems arising in nuclear structure computations.

5.1 Eigenvalue Problem in the Configuration Interaction
Approach

The eigenvalue problem arises in nuclear structure calculations because the nuclear
wave functions Ψ are solutions of the many-body Schrödinger’s equation:

Hψ = Eψ (1)

H =
∑
i<j

(pi − pj)2

2mA
+
∑
i<j

Vij +
∑
i<j<k

Vijk + . . . (2)

In the Configuration Interaction (CI) approach, both the wave functions ψ and the
HamiltonianH are expanded in a finite basis of Slater determinant of single-particle
states (anti-symmetrized product of single-particle states). Each element of this basis
is referred to as a many-body basis state. The representation of H under this basis
expansion is a sparse symmetric matrix Ĥ . Thus, in CI calculations, Schrödinger’s

An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing 657

0 2 4 6 8 10 12 14
N

max

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

M
-s

ch
em

e
ba

si
s

sp
ac

e
di

m
en

si
on

4He
6Li
8Be
10B
12C
16O
19F
23Na
27Al

0 2 4 6 8 10
N

max

10
0

10
3

10
6

10
9

10
12

10
15

nu
m

be
r

of
 n

on
ze

ro
 m

at
ri

x
el

em
en

ts

16O, dimension
2-body interactions
3-body interactions
4-body interactions
A-body interactions

Fig. 3 The dimension and the number of non-zero matrix elements of the various nuclear
Hamiltonian matrices

equation becomes a finite-dimensional eigenvalue problem, where we seek the lowest
eigenvalues (energies) and their associated eigenvectors (wave functions). Many-
body basis state i corresponds to the ith row and column of the Hamiltonian matrix.
The total number of many-body states or the dimension of Ĥ in our adopted harmonic
oscillator (HO) basis, which we denote by n, is controlled by the number of particles
A, the truncation parameterNmax, and the maximum number of HO quanta above the
minimum for a given nucleus (see Fig. 3). Higher Nmax values yield more accurate
results for the same nucleus, but at the expense of an exponential growth in the
dimension of Ĥ . The sparsity of Ĥ is determined by the interaction potential used
which can be a 2-body, 3-body or even a higher order interaction. The approach
described above is implemented in the MFDn (Many Fermion Dynamics nuclei)
code, which is a state-of-the-art CI code to study the properties of light nuclei with
high precision [35–37]. In MFDn, a round-robin distribution of the many-body basis
states to the processors is used to ensure a uniform distribution of the nonzero matrix
elements in the Ĥ matrix. This way load imbalances among processors is reduced
significantly [38].

In order to find the lowest nev number of eigenvalues and eigenvectors of Ĥ ,
we use the locally optimal block preconditioned conjugate gradient (LOBPCG) al-
gorithm [39]. As mentioned above, in this paper we are focused on the efficient
execution of a single LOBPCG iteration in our out-of-core approach, rather than
how fast the LOBPCG algorithm converges for a given nuclear structure calculation.
Therefore, for simplicity of presentation, we take the preconditioning matrix M to
be the identity matrix. Algorithm 2 gives the pseudocode for a simplified version of
the LOBPCG algorithm, assumingM = I .

658 E. Saule et al.

5.2 Implementation Using 1D partitioning

Our first implementation of the out-of-core eigensolver is an implementation of the
LOBPCG algorithm given in Algorithm 2 using the linear algebra primitives of the
DOoC+LAF framework and using a one dimensional partitioning of the matrix.
In this scheme, the matrix is cut into p bands of equal size n

p
, and each band is

of length n
2 . The allocation of the parts of the matrix to each node is depicted in

Fig. 4a. The implementation is composed of two main parts: symmetric SpMM
computations, followed by two inner products. Each matrix block Ĥij stored on the
permanent storage system essentially corresponds to a task, which we denote by
SymSpMM(i, j). The input data of SymSpMM(i, j) are Ψi and Ψj subvectors. The 1D
decomposition of the matrix Ĥ is ensured by having the compute node p create the
subvector blocksΨrsp,Ψrsp+1, . . . ,Ψrep for the initial guessΨ using the DOoC+LAF
primitive randomM. As mentioned above, the global scheduler assigns each task to
the compute node which stores the most amount of input data required for that task.
Consequently, all tasks SymSpMM(i, j), where rsp ≤ i ≤ rep and 1 ≤ j ≤ nb,
would be scheduled to the compute node p, essentially resulting in a load balanced
1D decomposition of the SpMM operation.

As a result of executing the task SymSpMM(i, j) on node p, two intermediate
output vector blocks of ĤΨ ′

i and ĤΨ ′
j are produced. ĤΨ ′

i is consumed by a local

reduction task denoted byaddV(ĤΨi , ĤΨ ′
i) on nodep. Similarly, ĤΨ ′

j is consumed

by the task addV(ĤΨj , ĤΨ ′
j). However, note that ĤΨj is stored on node k such

that rsk ≤ j ≤ rek . Assuming that k �= p, the intermediate result vectors ĤΨ ′
j first

need to be communicated to node k for the execution of the task addV(ĤΨj , ĤΨ ′
j).

Lemma Assume that on node p, the difference between the sizes of the small-
est and largest matrix blocks, as measured by the space required to store a block
in Compressed Sparse Column (CSC) format, is less than the size of any vector
block Ψi , for 1 ≤ i ≤ nb. Then Algorithm 1 orders the set of tasks on node p

An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing 659

a b

Fig. 4 Different partitioning of the matrix Ĥ on the processors. Notice that since the matrix is
symetric, only half of it needs to be stored. a 1D decomposition on p nodes. b 2D decomposition
on p = k2 nodes

{SymSpMM(i, j) | rsp ≤ i ≤ rep ∧ 1 ≤ j ≤ nb} such that they are executed in a
column-major order.

Proof Without loss of generality, let SymSpMM(rsp, j) be the first task executed on
node p for some j . Then the subvectorΨj is the only input data on the local memory
of node p, besides the locally stored subvectors Ψi for rsp ≤ i ≤ rep. Additional
input data required to execute other tasks associated with the matrix blocks in the j th
column is the matrix block itself only. However, to execute a task corresponding to
a matrix block in a column c �= j , both the matrix block and the subvector Ψc would
be needed. Hence, the tasks of the j th column would be ordered by Algorithm 1
before the tasks in any other column. This leads to a column-major processing of
matrix-blocks. �

As a result, our out-of-core implementation using the DOoC+LAF framework is
able to execute the computations related to the solution of the eigenvalue problem
in a way that reduces the communication overheads. It is a natural result of the task
ordering algorithm, and the pipelined execution of computation, communication and
I/O operations in the DOoC+LAF framework. Since no explicit effort is required to
achieve this, a significant burden on the application programmer is removed.

After the symmetric SpMM computations are completed, two inner products of the
form Y T Y and Y T ĤY , where Y = span{Ψ ,R,P } and ĤY = span{ĤΨ , ĤR, ĤP },
need to be performed. Vector blocks R and P , and consequently Y , are also parti-
tioned according to the partitioning of Ψ and ĤΨ . Hence these inner products are
performed on node k, for k = 1, 2, . . . , np, as a set of tasks denoted by dot(Yi , Yi)
and dot(Yi , ĤYi), where rsk ≤ i ≤ rek . The local inner products are reduced on

660 E. Saule et al.

node 1. Then all computing nodes estimate the Rayleigh quotients. Once the esti-
mates for eigenvaluesE and eigenvectorsΨ are obtained, the computation continues
with the next iteration.

5.3 Implementation Using a 2D Partitioning

The 1D partitioning scheme, shown in Fig. 4a, requires that each node touches
n(1

2 + 1
p

) row/column. When the number of nodes p increases, the volume of com-
munication will be proportional to the problem dimension, i.e., with n

2 . This indicates
a potential scalability bottleneck, as the number of nodes and problem dimensions
increase together in order to solve larger problems.

One can partition the upper triangle of the matrix in two dimensions (2D) by
using horizontal and vertical bands. Because the matrix is symmetric, a classical
checkerboard partitioning would make the nodes responsible for the diagonal blocks
processing half the non zeros of the other nodes. Therefore, we propose to split
the non diagonal blocks in two so as to remove this problem. Such a partitioning is
depicted in Fig. 4b and requires a number of nodes which is a square number p = k2.
Diagonal nodes touch only n

k
row/columns since the rows one touches are the same

as the columns it touches. Meanwhile the non diagonal nodes touch 3n
2k row/columns.

Since p = k2, the communication volume will behave like 3n
2
√
p

and is much better
than the number of node increases than the 1D decomposition.

Notice also that improving the communication volumes is not the only interest
of this 2D decomposition. Indeed when a processor touches a row or a column, not
only it will perform communications, but also it needs to store the partial results.
So a 2D decomposition will be necessary to allow to scale the computation to larger
problems in terms of size of the matrix or number of vectors.

In term of implementation within the DOoC+LAF framework, there is no differ-
ence between a 1D decomposition of the work and a 2D decomposition of the work. It
is sufficient to place the blocks of the matrix on the computing nodes that will process
them. The framework will automatically add the appropriate communications.

6 Experiments

Experiments are run on an experimental SSD testbed on the Carver cluster at NERSC.
The testbed is composed of 48 nodes: 40 computational nodes and 8 I/O nodes.
Each node is equipped with two Intel Xeon X5550 processors clocked at 2.67 GHz
(4 cores each, hyper-threading is disabled) and 24 GB of DDR3 memory. Each node
runs on Red Hat 5.5 with Linux kernel 2.6.18-238.12.1.el5. Nodes are interconnected
by 4X QDR InfiniBand technology, providing 32 Gb/s of point-to-point bandwidth
for high-performance message passing and I/O. Our codes are compiled with GCC
4.5.2. The InfiniBand interconnect is leveraged through the use of the MVAPICH 1.2

An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing 661

Table 2 General information on the testcase
Nmax = 8

Matrix Dimension (n) 159.9 × 106

Nonzero matrix elements 123.6 × 109

Total matrix size 920 GB

Block row/columns (nb) 87

Total number of matrix blocks 3828

Average size of a matrix block 246 MB

Table 3 General information
on the vector block sizes Nmax = 8

Number of eigenpairs (nev) 8

Size of a subvector block Ψi 58.8 MB

Total size of the vector block Ψ 5.1 GB

Total size of all 6 vector blocks 30.6 GB

library. Each I/O node is equipped with two SSD cards, Virident tachIOn 400 GB,
connected through the PCI-express bus. Each card can deliver up to 1 GB/s sustained
read bandwidth, leading to a peak bandwidth of 2 GB/s per I/O node, and 16 GB/s
maximum I/O bandwidth from the permanent storage system to the compute nodes.
I/O nodes are accessed by the compute nodes through the Global Parallel File System
[40]. Data is streamed from the I/O nodes to the compute nodes using the 4X QDR
InfiniBand interconnect as well.

Performance evaluation of our out-of-core implementation is done with the
nuclear structure computations of the 10B (5 protons, 5 neutrons) nucleus. The
truncation parameter Nmax = 8 is used. Some key properties of this testcase are
summarized in Table 2. Since storage space is at premium for MFDn, matrix blocks
are stored in single precision CSC format.

6.1 Practical Considerations

The number of eigenpairs to be computed is fixed at nev = 8 for our test-case.
Table 3 gives detailed information regarding the sizes of vector blocks involved
when nev = 8. The size of the entire Ψ vector block, which is also stored in
single precision, is 5.1 GB for the Nmax = 8 case. In the LOBPCG algorithm, 6
such vectors (Ψ ,R,P from the previous iteration and ĤΨ , ĤR, ĤP of the current
iteration) need to be hosted on the volatile memory available to compute nodes.
The total space required for this purpose would be 30.6 GB for the Nmax = 8 case,
respectively. On Carver, about 5 GB of the 24 GB memory on a compute node is
reserved for the OS kernel, and the network file system (NFS). Since matrix blocks to
be read are on the order of hundreds of MBs, and the messages to be communicated

662 E. Saule et al.

0

200

400

a b

600

800

1000

1200

6 8 9 10 11 12 16 19 22 25 29 36

Ti
m

e
(in

 s
ec

on
ds

)

Number of Compu�ng Nodes

I/O

Computa�on

Run�me

0

100

200

300

400

500

600

700

800

9 16 25 36

Ti
m

e
(in

 s
ec

on
ds

)

Number of Compu�ng Nodes

I/O

Computa�on

Run�me

Fig. 5 Runtime of the application and time spent doing computations and I/O. The I/O and
Computation mostly overlap. a 1D partitioning. b 2D partitioning

are on the order of tens of MBs (see the size of Ψi in Table 3), significant space is
needed for the I/O and MPI buffers. As a result, only 15 GB out of the 24 GB memory
on a compute node can be used by our out-of-core eigensolver. We choose to use at
most 5 GB of the usable memory for hosting the vector blocks, and the remaining
memory for processing the tasks. Therefore the minimum number of nodes required
for Nmax = 8 computations is 6, respectively.

We create 8 computation threads (one for each core), which collectively work on
the tasks assigned to a node. Since there are lots of I/O and communication operations
involved in our out-of-core eigensolver, per iteration timings may fluctuate during
execution. Therefore, we report the timings from the first 5 iterations of the LOBPCG
algorithm for a reliable performance evaluation.

Since all the computing nodes share the same file system, each node will read its
data in different directory so as to provide data partitioning.

6.2 Performance Results for Nmax = 8

Figure 5 presents the runtime obtained when executing the application on different
number of nodes. The figure also presents the time taken by the computations and
by the I/O separately. These times varies on all computation and I/O threads. The
figure reports the maximum value of all threads but the average value is fairly close
to the maximum.

The first remark is that the difference between the Runtime and the maximum of
I/O and computation is fairly small. This indicates that the computations and I/O are
fairly well overlapped and that the design of our middleware is sound. The runtime
decreases with an increase of the number of computing nodes. Though, the runtime
is fairly stable after 20 nodes. This comes from a saturation of the GPFS after 20
computing nodes which draws 16 GB/s, the peak performance for the I/O nodes. This
shows that the traditional organization of the cluster with I/O nodes on one side and
compute node on the other one is not a scalable setup for the data-intensive clusters.

An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing 663

0

100

a b

200

300

400

500

600

700

800

900

1000

0 10 20 30 40

M
ax

 I/
O

 (i
n

G
B)

Number of Compu�ng Nodes

1D

2D

0

5

10

15

20

25

30

0 10 20 30 40

M
ax

 C
om

m
un

ic
a�

on
 V

ol
um

e
(

in
 G

B)

Number of Compu�ng Node

1D

2D

Fig. 6 Comparison of 1D and 2D partitioning. a Amount of GPFS I/O. b Amount of Inter node
communication

Indeed, within a single I/O node, we get a bandwidth from the disks to the memory
of about 2 GB/s. Yet to be able to reach such bandwidth from the application more
than twice the amount of compute nodes are required.

We can see on Fig. 5 that there is little difference in total runtime between using
1D and 2D decomposition. The only existing difference is entirely explained by the
difference of I/O performed by the 1D and 2D decomposition. The differences be-
tween 1D and 2D decompositions are presented in Fig. 6. One can see that the amount
of GPFS I/O (Fig. 6a) is slightly lower for the 2D decomposition. Indeed, when 2D
decomposition is used, less memory is used for storing the intermediate values of the
multiplications which leaves more memory available for caching the data from the
matrix (as explained in Sect. 5.3). Another interest of the 2D decomposition lies in
the amount of communication performed by each node involved in the computation
which is depicted in Fig. 6b. With a 1D decomposition, each processor transfers a
whole Ψ vector at each iteration. Leading to a communication volume (per node)
constant when the number of nodes increases. Meanwhile the communication volu-
tion when using a 2D decomposition decreases when the number of node increases.
This confirms the analysis of Sect. 5.3 that 2D decomposition is more scalable than
a 1D decomposition.

The DOoC+LAF runtime environment generates a detailed log file on each com-
pute node for all the steps it takes during the execution of a code. The analysis of
these log files can give important insights. One way to analyze how our out-of-core
eigensolver performs is to look at the number of jobs in the local scheduler’s queue
versus execution time plot, as shown in Fig. 7a. Here we plot the first 3 iterations of
theNmax = 8 case on 12 nodes with 1D decomposition. There are 87 rows of matrix
blocks in this calculation, therefore 3 nodes (nodes 1, 3 and 4) are responsible for
an extra row of matrix blocks compared to other compute nodes. This is reflected
as a higher peak at the start of an iteration for those 3 nodes. The rise of the peak
corresponds to the building and partitioning of the task graph part. The percentage
of this part is again negligible compared to the total time per iteration. The fall of the
peak means that the task graph is shrinking, because tasks are being executed. As

664 E. Saule et al.

a b

Fig. 7 Amount of free memory available and jobs in the local scheduler during an execution on 12
nodes with 1D decomposition

seen in the plot, the peak falls at a constant slope during the SpMM computations.
This means that computation and I/O operations are overlapped efficiently, and the
SpMM computations progress smoothly, without idling.

When using the DOoC+LAF framework, it is important to keep track of the
amount of memory available. Because this memory is used to prefetch the data of
the upcoming tasks. Here, the available memory is used to buffer the blocks of Ĥ
from the file system and Ψi vectors from other nodes. If the available memory is
low, the prefetching is no longer possible, the computation are sequentialized and
the overlapping of I/Os, computations and communications might not be effective.

Figure 7b shows the amount of available memory as the execution progresses.
At the start of an iteration, the local scheduler reserves memory space and issues
prefetching requests for the initial batch of matrix blocks. This results in a sharp
drop in the amount of memory available. As tasks associated with these matrix
blocks are completed, the memory space that becomes available is filled in further
with other matrix blocks. Once all the SpMM tasks are finished, we see a sudden
jump at the amount of memory space available. This is because the inner product
computations do not consume much memory. The slight load imbalance caused due
to the higher number of tasks on 3 nodes, is reflected as a phase difference in this
plot. Nodes 1, 3 and 4 finish their SpMM computations a little after other compute
nodes, and the amount of memory available makes a peak slightly later on these
nodes.

7 Conclusions

Adaption of NVM-based memory in future HPC architectures and data centers will
only increase with time. Efficient use of such, multilevel memory hierarchies will
require advanced parallel programming skils. Here, we presented an attempt to re-
lieve such burden from programmer, by providing a domain specific frontend that
uses already familiar Basic Linear Algebra Subprograms (BLAS)-like application
interface and leverages a capable task-based runtime system that will take care of

An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing 665

efficient orchestration of the execution of use applications. Specifically, we have
presented early results of our out-of-core task-based runtime system, (Distributed
Out-of-Core (DOoC), together with a specialized frontend, Linear Algebra Frontend
(LAF), which is developed to enable the implementation of iterative numerical meth-
ods using DOoC. Although our out-of-core runtime system generic and could work
with any storage system, existance of high-bandwith, low-latency storage system
that are based on non-volatile memory makes it feasible to execute larger problems
that will not fit into physical RAM memory of the compute nodes. Our results shows
that LAF+DOoC pushes the hardware limitations of the underlying testbed we have
carried our experiments, while providing an extremely easy application interface.

We argue that in the future systems by co-locating SSD storages with computation
[41], one can further optimize the out-of-core execution further. Our task-based
runtime system DOoC is well positioned to take advantage of such hardware changes
without requiring the rewrite of application program.

References

1. P. Kogge and J. Shalf, “Exascale computing trends: Adjusting to the new normal in computer
architecture,” Computing in Science Engineering, vol. PP, no. 99, pp. 1–1, 2013.

2. P. Ranganathan and J. Chang, “(Re)designing data-centric data centers,” Micro, IEEE, vol. 32,
no. 1, pp. 66–70, 2012.

3. E. Barragy, B. Brantley, S. Gurumurthi, M. Ignatowski, N. Jayasena, A. Lee, G. Loh, S.
Manne, M. O’Connor, P. Popescu, S. Reinhardt, and M. Schulte, “Amd’s fastforward extreme-
scale computing processor and memory research,” in US DOE Exascale Research Conference,
Arlington, VA, USA, Oct. 2012.

4. R. Nair, J. Moreno, and D. Joseph, “Advanced memory concepts for exascale systems,” in US
DOE Exascale Research Conference, Arlington, VA, USA, Oct. 2012.

5. Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task graphs to
multiprocessors,” ACM Comput. Surv., vol. 31, no. 4, pp. 406–471, Dec. 1999.

6. C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A Unified Platform for
Task Scheduling on Heterogeneous Multicore Architectures,” Concurrency and Computation:
Practice and Experience, Special Issue: Euro-Par 2009, vol. 23, pp. 187–198, Feb. 2011.

7. G. Bosilca, A. Bouteiller, A. Danalis, T. Hérault, P. Lemarinier, and J. Dongarra, “DAGuE: A
generic distributed DAG engine for high performance computing,” Parallel Computing, vol. 38,
no. 1-2, pp. 37–51, 2012.

8. G. Bosilca, M. Faverge, X. Lacoste, I. Yamazaki, and P. Ramet, “Toward a supernodal sparse
direct solver over DAG runtimes,” in Proceedings of PMAA’2012, London, UK, Jun. 2012.

9. A.-E. Hugo, A. Guermouche, R. Namyst, and P.-A. Wacrenier, “Composing multiple StarPU
applications over heterogeneous machines: a supervised approach,” in Third International
Workshop on Accelerators and Hybrid Exascale Systems, Boston, États-Unis, May 2013.

10. C. Augonnet, O. Aumage, N. Furmento, R. Namyst, and S. Thibault, “StarPU-MPI: Task
Programming over Clusters of Machines Enhanced with Accelerators,” in EuroMPI 2012, ser.
LNCS, S. B. Jesper Larsson Träff and J. Dongarra, Eds., vol. 7490. Springer, Sep. 2012, poster
Session.

11. M. Cosnard and M. Loi, “Automatic task graph genera tion techniques,” Parallel Processing
Letters, vol. 5, no. 4, p. 527–538, 1995.

12. M. Cosnard, E. Jeannot, and T. Yang, “Slc: Symbolic scheduling for executing parameterized
task graphs on multiprocessors,” in Proc. ICPP, 1999.

666 E. Saule et al.

13. S. Toledo, “A survey of out-of-core algorithms in numerical linear algebra,” in External memory
algorithms, J. M. Abello and J. S. Vitter, Eds. Boston, MA, USA: American Mathematical
Society, 1999, pp. 161–179.

14. J. K. Reid and J. A. Scott, “An out-of-core sparse cholesky solver,” ACM Trans. Math. Softw.,
vol. 36, no. 2, 2009.

15. V. Rotkin and S. Toledo, “The design and implementation of a new out-of-core sparse cholesky
factorization method,” ACM Trans. Math. Softw., vol. 30, no. 1, pp. 19–46, 2004.

16. P. R. Amestoy, I. S. Duff, Y. Robert, F.-H. Rouet, and B. Ucar, “On computing inverse entries
of a sparse matrix in an out-of-core environment,” CERFACS, Tech. Rep. TR/PA/10/59, 2010.

17. J. A. Scott, “Scaling and pivoting in an out-of-core sparse direct solver,” ACM Trans. Math.
Softw., vol. 37, no. 2, 2010.

18. E. Agullo, A. Guermouche, and J.-Y. L’Excellent, “A parallel out-of-core multifrontal method:
Storage of factors on disk and analysis of models for an out-of-core active memory,” Parallel
Computing, Special Issue on Parallel Matrix Algorithms, no. 6–8, 2008.

19. E. Agullo, A. Guermouche, and J.-Y. L’Excellent, “Reducing the I/O Volume in Sparse Out-
of-core Multifrontal Methods,” SIAM Journal on Scientific Computing, no. 6, 2010.

20. W. J. Knottenbelt and P. G. Harrison, “Distributed disk-based solution techniques for large
markov models,” in Proc. of Numerical Solution of Markov Chains, 1999.

21. Y.-Y. Chen, Q. Gan, and T. Suel, “Local methods for estimating pagerank values,” in Pro-
ceedings of the thirteenth ACM international conference on Information and knowledge
management, ser. CIKM ’04. New York, NY, USA: ACM, 2004, pp. 381–389.

22. E. Saule, P.-F. Dutot, and G. Mounié, “Scheduling With Storage Constraints,” in Proc of
IPDPS’08, Apr. 2008, conference, acceptance rate: 25.6%.

23. S. S. Tse, “Online bicriteria load balancing using object reallocation,” IEEE Transactions on
Parallel and Distributed Systems, vol. 20, no. 3, pp. 379–388, 2009.

24. Ü. V. Çatalyürek, K. Kaya, and B. Uçar, “Integrated data placement and task assignment
for scientific workflows in clouds,” in The Fourth International Workshop on Data Intensive
Distributed Computing (DIDC 2011), in conjunction with the 20th International Symposium
on High Performance Distributed Computing (HPDC 2011), Jun 2011.

25. R. Sethi, “Pebble games for studying storage sharing.” Theor. Comput. Sci., vol. 19, pp. 69–84,
1982.

26. S. Biswas and S. Kannan, “Minimizing space usage in evaluation of expression trees,” in
Foundations of Software Technology and Theoretical Computer Science, ser. Lecture Notes in
Computer Science, P. Thiagarajan, Ed. Springer Berlin Heidelberg, 1995, vol. 1026, pp. 377–
390.

27. C.-C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan, “Memory-optimal evaluation
of expression trees involving large objects,” in High Performance Computing – HiPC’99, ser.
Lecture Notes in Computer Science, P. Banerjee, V. Prasanna, and B. Sinha, Eds. Springer
Berlin Heidelberg, 1999, vol. 1745, pp. 103–110.

28. V. Rehn-Sonigo, D. Trystram, F. Wagner, H. Xu, and G. Zhang, “Offline scheduling of multi-
threaded request streams on a caching server,” in IPDPS, 2011, pp. 1167–1176.

29. M. Jacquelin, L. Marchal, Y. Robert, and B. Uçar, “On optimal tree traversals for sparse
matrix factorization,” in Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE
International, 2011, pp. 556–567.

30. L. Marchal, O. Sinnen, and F.Vivien, “Scheduling tree-shaped task graphs to minimize memory
and makespan,” INRIA, Rapport de recherche RR-8082, Oct. 2012.

31. Z. Zhou, E. Saule, H. M. Aktulga, C.Yang, E. G. Ng, P. Maris, J. P. Vary, and Ü. V. Çatalyürek,
“An out-of-core dataflow middleware to reduce the cost of large scale iterative solvers,” in
2012 International Conference on Parallel Processing (ICPP) Workshops, Fifth International
Workshop on Parallel Programming Models and Systems Software for High-End Computing
(P2S2), Sep 2012.

32. M. D. Beynon, T. Kurc, Ü. V. Çatalyürek, C. Chang, A. Sussman, and J. Saltz, “Distributed
processing of very large datasets with DataCutter,” Parallel Computing, vol. 27, no. 11,
pp. 1457–1478, Oct. 2001.

An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing 667

33. Z. Zhou, E. Saule, H. M. Aktulga, C.Yang, E. G. Ng, P. Maris, J. P. Vary, and Ü. V. Çatalyürek,
“An out-of-core eigensolver on SSD-equipped clusters,” in Proc. of IEEE Cluster, Sep. 2012.

34. J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E.Apra, “Advances, applica-
tions and performance of the global arrays shared memory programming toolkit,” International
Journal of High Performance Computing Applications, vol. 20, pp. 203–231, 2006.

35. P. Maris, H. M. Aktulga, M. A. Caprio, Ü. V. Çatalyürek, E. G. Ng, D. Oryspayev, H. Potter,
E. Saule, M. Sosonkina, J. P. Vary et al., “Large-scale ab initio configuration interaction
calculations for light nuclei,” Journal of Physics: Conference Series, vol. 403, no. 1, p. 012019,
2012.

36. P. Maris, H. M. Aktulga, S. Binder, A. Calci, Ü. V. Çatalyürek, J. Langhammer, E. Ng, E.
Saule, R. Roth, J. P. Vary, and C. Yang, “No-Core CI calculations for light nuclei with chiral 2-
and 3-body forces,” Journal of Physics: Conference Series, vol. 454, no. 1, p. 012063, 2013.

37. H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P. Vary, “Improving the scalability of
a symmetric iterative eigensolver for multi-core platforms,” Concurrency and Computation:
Practice and Experience, p. in press, 2013.

38. P. Sternberg, E. G. Ng, C.Yang, P. Maris, J. P. Vary, M. Sosonkina, and H. V. Le, “Accelerating
configuration interaction calculations for nuclear structure,” in Proc. of SC08, 2008.

39. A. V. Knyazev, “Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method,” SIAM Journal on Scientific Computing, vol. 23, no. 2,
pp. 517–541, 2001.

40. F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system for large computing
clusters,” in Proc. of FAST’02, 2002, pp. 231–244.

41. M. Jung, E. H. W. III, W. Choi, J. Shalf, H. M. Aktulga, C.Yang, E. Saule, Ü. V. Çatalyürek, and
M. Kandemir, “Exploring the future of out-of-core computing with compute-local non-volatile
memory,” in Proc. of Conference on High Performance Computing Networking, Storage and
Analysis (SC ’13), Nov 2013.

Building Scalable Software for Data Centers:
An Approach to Distributed Computing at
Enterprise Level

Fernando Turrado García, Ana Lucila Sandoval Orozco
and Luis Javier García Villalba

1 Introduction to Big Data Problems

Big data can be defined as a large collection of data that it is difficult to process
due to its size or complexity. In 2001 Doug Laney, a META Group (now Gartner)
analyst, published a research report defining 3 dimensions that characterize big-data
problems: Volume, Variety and Velocity (also known as 3V’s). The original report
can be found at the garter site [1].

Volume refers to the amount of data to be handled. In astronomy science, the
Large Synoptic Survey Telescope produces 30 TB of data per night of raw data. The
total volume (data stored after processing) is about 100 PB [2].

Velocity refers to the performance (relative to the amount of input data) required
in the solution. In many cases, the right answer delivered at the wrong time is a
wrong answer. Consider a system that uses comments in a social network to provide
traffic guidance [3].

Variety refers to the variety present in the sources, structures, formats and quality
of the data to be processed. This factor, added to the previous ones, greatly increases
the computational resources needed to solve the problem.

Nowadays social networks are a new data source to be analyzed and studied. In the
following examples, we will present the benefits obtained from mining and analyzing
those large datasets. In [4] the twitter mood (seen as the global mood of its users)
was correlated to the stock market fluctuations. In [5], more than 100.000 tweets
were analyzed in order to make predictions for the German federal elections in 2009.
Similar work is carried out in [6] where the twitter stream is analyzed looking for
linking text sentiment to public opinion time series in the U.S. In this case, more than

L. J. García Villalba (�) · A. L. Sandoval Orozco · F. Turrado García
Group of Analysis, Security and Systems (GASS), Department of Software Engineering
and Artificial Intelligence (DISIA), Faculty of Information Technology and Computer Science,
Office 431,
Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases 9,
Ciudad Universitaria, 28040 Madrid, Spain
e-mail: javiergv@fdi.ucm.es

© Springer Science+Business Media New York 2015 669
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_23

670 F. Turrado García et al.

one billion (1.000.000.000) tweets were used. Another example of the twitter stream
being used for social behavior is [7]. Golder and Macy used more than 500.000.000
tweets to identify diurnal and seasonal mood rhythms at individual level.

In these situations, where the data does not fit in a single machine, the hardware
& software solutions must process those data sets in a parallel & distributed way. To
achieve this particular goal, the new software stack has to be designed for working in
a computing cluster instead of a single super-computer server. A computing cluster
can be defined as a large collection of commodity hardware, examples of these clus-
ters can be found at Amazon EC2, Twitter, Google and others. Inside an enterprise,
this computing cluster can be managed as a private cloud provided from some inter-
nal or external providers. In [8], Armbrust and others argue that this approach, the
construction and operation of extremely large-scale, commodity-computer data cen-
ters at low-cost locations, is the key necessary enabler for cloud computing. Another
example of a commodity cluster can be found at [9].

In computer science, from a performance point of view, scalability is the ability
of a system to handle a growing amount of input data without compromising perfor-
mance or its ability to be enlarged to maintain it. In a real world environment, where
the computing resources (processors, memory, storage, network bandwidth,· · ·) are
finite, the growth of the input data will cause the system performance limit (the point
at which it decreases as the input data grows) to be reached at a given time. The
methods for increasing system capabilities by incorporating additional resources are
grouped into two broad categories: vertical or horizontal scaling.

Vertical scaling, or scale in, is done when one of the cluster nodes (or some of
them) is enhanced by increasing its hardware resources: adding extra processors,
memory· · · By using this method, the node workload capability can be increased
to its maximum. This maximum is established by the technical specifications of the
server. Horizontal scaling, or scale out, is done when new nodes are added to the
cluster. By applying this method, the system computational limits can be removed.

In 1994 B.C. Nueman published a paper [10] about how scaling affects distributed
systems. In this paper, four main problems must be confronted while designing or
building a distributed system: reliability, system load, administration and hetero-
geneity. It also presents how replication, caching and distribution of the services can
help to solve those problems. In the final section, some useful guidelines are found:

• For replication: replicate important services, distribute the replicas and use loose
consistency

• For distribution: Distribute across multiple servers, distribute evenly, exploit
locally and bypass upper levels of hierarchies (in hierarchically organized
systems).

• For caching: Cache frequently accessed data, consider access patterns when
caching, establish a cache timeout, cache at multiple levels, look first locally
and minimize the change frequency of extensively shared data.

At this point, a private cloud or similar infrastructure (based on a commodity cluster)
is a recommended solution for providing a scalable hardware solution. This approach

Building Scalable Software for Data Centers 671

guarantees the vertical and horizontal scaling needed for solving these kind of prob-
lems. This chapter aims to provide an introduction on how to design and build (using
existing frameworks) usable software in this environment.

2 Known Solutions at Design Phase: Overview of Design
Patterns for Parallel & Distributed Computing

A design pattern is defined as a general reusable solution to a commonly occurring
problem within a given context. Design patterns are built on top of expert knowledge
of design methods, constraints and best practices. They represent a standard on design
reuse and alleviate the accidental and inherent complexities of software design.

There are many papers and books published regarding this matter; we will now
mention the books that are considered as “classic works”, i.e. the ones that must be
read to get introduced in this field of study:

• Design Patterns: Elements of reusable Object Oriented Software [11]. It is also
known as the Gang of Four design patterns. It contains the definition for many of
the basic patterns applied today:
– Singleton: How to create a unique instance of an object in a system.
– Factory Method: How to define an interface for creating an object but letting

the subclasses decide which class to instantiate.
– Composite: How to compose objects into tree structures to represent leaf-node

hierarchies.
– Facade: How to provide a unified interface to a system or subsystem.
– Proxy: How to provide a surrogate or placeholder for another object.
– Observer: How to define a one-to-many dependency between objects so that

when one object changes state, all its dependents are notified and updated
automatically.

– And many others like Template Method, Strategy, Visitor, and Iterator...
• Pattern oriented software architecture: a system of patterns [12]. This book is the

first one of a collection dedicated to design patterns. For example, it contains the
following patterns:
– Layers: How to decompose a system into groups of subtasks in which each

group of subtasks is at the same level of abstraction.
– Pipes and filters: How to structure a system that processes a stream of data.
– Broker: How to structure distributed software systems with decoupled

components that interact by remote service invocations.
– Master-Slave: How to distribute work among several identical processes having

a main process that computes the aggregated final result.
• Analysis patterns: reusable object models [13]. This book provides a collection

of patterns applied to domains like trading, corporate financial analysis, planning
and others.

672 F. Turrado García et al.

Related to the topic of this chapter, building scalable software, the second volume
of the Pattern Oriented Software Architectures [14] is dedicated to design patterns
for concurrent and networked software. It contains the definition (amongst others)
of the following patterns:

• Reactor: In event-driven applications, how to demultiplex and dispatch service
requests that are delivered to an application from one or more clients.

• Proactor: In event-driven applications, how to efficiently demultiplex and
dispatch service requests triggered by the completion of asynchronous operations.

• Acceptor-Connector: How to decouple the connection and initialization of
cooperating peer services in a networked system from the processing they perform.

• Half-Sync/Half-Async: How to decouple asynchronous and synchronous service
processing in concurrent systems, to simplify programming without reducing
overall performance.

• Leader/Followers: This pattern provides an efficient concurrency model where
multiple threads take turns sharing a set of event sources in order to process
service requests that occur on the event sources.

However, in those books, the design patterns are basically described in an individual
manner. Their relations or the tradeoffs to be considered when combining two of
them are not analyzed in depth. So in a real world problem where several design
patterns can be applied to solve it and many of them need to be combined, the
software architects need to read and study them one by one, investing time and effort
into understanding the tradeoffs so they can make the right choices.

Prior to the application of design patterns to software construction, in 1977
Alexander and others [15] introduced the concept of pattern language and applied it
to the civil engineering sector. A pattern language can be viewed as a collection of
design patterns and their relations applied to solve a concrete problem in a domain.
The fifth book of the Pattern Oriented Software Architectures series [16] explains
how this concept can be applied and adapted to software development.

The fourth book on the pattern oriented software architectures, labeled a pattern
language for distributed computing [17], contains a pattern language for distributed
computing and aimed to provide an overview of the state-of-the-art in some crit-
ical areas of distributed software systems. Another pattern language for parallel
programming, called OPL, is shown at [18].

In this pattern language, the design patterns are grouped into five categories:

1. Structural patterns: In this category, the patterns describe the overall organization
of the application and the way the computational elements that make up the
application interact.

2. Computational patterns: These patterns describe the classes of computations that
make up the application.

3. Concurrent algorithm strategies: These patterns define high-level strategies to
exploit concurrency in a computation for execution on a parallel computer.

4. Implementation strategies: These are the structures that are realized in source
code to support how the program itself is organized and common data structures
specific to parallel programming.

Building Scalable Software for Data Centers 673

Fig. 1 OPL pattern language.
Taken from [18]

5. Parallel execution patterns: These are the approaches used to support the exe-
cution of a parallel algorithm. This includes strategies that advance a program
counter and basic building blocks to support the coordination of concurrent tasks.

Figure 1 shows how these categories are organized into design layers. The first two
categories, placed at the same design layer, are focused on the application internal
structure and the algorithms to be implemented. Categories 3, 4 & 5 are focused on
how the parallelism can be achieved.

Using the above pattern languages, the one described at [17] or the one defined
at [18], a software architect can design a scalable software solution reusing the
knowledge of experts in areas such as task scheduling, parallelization, computational
methods ... But one of the major disadvantages of using patters is that only the design
effort can be reused. All the details needed for an efficient implementation of those
patterns, all the knowledge obtained by implementing the same pattern in different
domains or the complexities found at the coding phase are not shared in the pattern
specification.

The use of application frameworks alleviates the risks associated with those com-
plexities and provides a way to reuse not only design concepts but also software
components. The benefits of using frameworks can be read at [19]. In the next sec-
tions, we will focus on the structural pattern called Map Reduce [20] as it represents
a design trend for developing applications in the big-data context and the Apache
Hadoop framework (its most used implementation).

674 F. Turrado García et al.

3 Introduction to MapReduce Programming Model

In 2004, two engineers from Google (Dean & Ghemawat) published a paper [20] en-
titled: “MapReduce: Simplified Data Processing on Large Clusters” that has changed
the way that big volumes of data are processed. In this paper MapReduce is defined
as a programming model in which the programs are written in a functional style and
are automatically parallelized and executed on a large cluster of commodity servers.

In this programming model, all the data is viewed as pairs of key-value objects
and the developers have to write two functions:

• Map: This function takes an input pair and produces a collection of output pairs.
The underlying system groups all the intermediate values associated with the same
key and passes them to the Reduce function.

• Reduce: This function takes an intermediate key and the set of valued for that key.
It merges together these values trying to form a smaller set of values.

In their paper, Dean and Ghemawat presented an example of counting the number of
occurrences of each word in a large collection of documents. Here is the pseudo-code
they wrote:

• map(String key, String value):
// key: document name, value: document contents
for each word w in value:

EmitIntermediate(w, “1”);
• reduce(String key, Iterator values):

// key: a word, values: a list of counts
int result = 0;
for each v in values:

result + = ParseInt(v);
Emit(AsString(result));

In [21] more examples, like matrix multiplication and relational algebra operations
can be found. The typical execution of a MapReduce program, shown at Fig. 2, is as
follows:

1. The input data (a file) is loaded into the system. This file is partitioned into a set
of M splits. Then the MapReduce library starts up several copies of the program.

2. Each split is processed (Map function) by different nodes.
3. The Reduce function invocations are distributed by partitioning the intermediate

key set into R parts.
4. The result of the MapReduce algorithm is stored in R output files.

The cluster nodes are organized using the Master/Slave pattern (described as Com-
mand in [11]), so the computing nodes are divided into two categories: Master node
and Worker nodes. The Master node is in charge of maintaining the status of each
Map and Reduce task, outlining the work to be done (at each worker) and keeping
track of the files generated by the Map functions (with the Reduce task to which it
is destined). The worker nodes are where the Map and Reduce functions are exe-
cuted. All those nodes (up to several thousand [22, 23]) share the data (input, output

Building Scalable Software for Data Centers 675

Fig. 2 MapReduce program execution overview

and temporary) using a distributed file system (DFS). Examples of distributed file
systems are GFS (proprietary, created by Google) or Apache’s HDFS.

These DFS are built on top of two premises: files can be enormous (up to a terabyte)
and the files are rarely modified. It is assumed that once the file is created, it will be
read several times but the update operations will not be frequent. In these conditions,
commodity hardware and a large set of machines, the hardware errors will occur
with relatively high frequency. So data replication is needed to prevent data losses
and provide fault tolerance. To achieve this goal, the files are divided into smaller
chunks (typically 64 megabytes in size) and those chunks are replicated several times
at different nodes of the system. Also, another smaller file is generated for the data
file, let us call it name file, and it contains the location of the different chunks that
compose the original data file. This file, the name file, is also replicated, and a
directory for the whole system is created (with all the name files). Fault tolerance is
also available at task level, when a worker fails during the execution of an assigned
task the Master node discover the error (using a heartbeat protocol) and reassigns
the task to another worker.

So, in the simplest case, the software stack needed to run a MapReduce program
in a node is composed of a Distributed File System and a MapReduce framework (or
runtime implementation). Figure 3 shows how this software stack is organized.

676 F. Turrado García et al.

Fig. 3 Software stack,
optional layers marked with*

On top of these two modules several add-ons can be applied to enhance the system:

a. A high level programming language that simplifies the writing ofMapReduce
programs. Examples of these modules are: Hive [24], Pig [25] and Dryad/Linq
[26].

b. Integration with distributed databases like MongoDB [27], Apache Hbase (based
on Google’s BigTable) [28] and Apache Cassandra [29].

The relationship between a MapReduce system and a distributed relational database
has been discussed and analyzed in many ways. In 2009, Pavlo and others published a
benchmark report [30] between a MapReduce framework (Hadoop) and two parallel
databases (DBMS-X and Vertica). This report claimed that the MapReduce frame-
work was several times slower than the parallel databases. Dean and Ghemawat ar-
gued that the conclusions of the comparison paper were based on flawed assumptions
about MapReduce and overstated the benefit of parallel database systems [31].

In a later paper, Stonebraker, Pavlo and others [32] reviewed the arguments shown
at [31] and stated that both systems where compatible if not complementary. MapRe-
duce based systems excel at data manipulation (complex analytics, ETL tasks, · · ·)
and the parallel database systems excel at efficient querying of massive datasets.

Building Scalable Software for Data Centers 677

4 Overview of Apache Hadoop: A Framework for Distributed
Computing

In the previous sections of this chapter we have introduced the so called big-data
problems, where massive amounts of raw data are processed and analyzed, reusable
design patterns for leveraging the design effort required for the software construction
and a new programming model for processing massive data.

However, those theoretical concepts need to be applied to real world in order to
build a concrete application or system. For application developers, one approach
is to make their own implementations of all those modules mentioned before. An-
other approach is to use an enterprise application framework (its definition and the
advantages of use can be read in [19]) and build the application on top of it.

In this case, we will show how the Apache Hadoop [33] framework provides the
key components needed to build a MapReduce based application. Nowadays Hadoop
is the open source reference implementation for the MapReduce programming model.
Yahoo! has been its major contributor and it is adopted in a very large scale (see [34]).

In [35] is a list of companies or institutions that use this framework for production
or educational uses. Some of them are:

• AOL: A cluster of 150 machines used for doing behavioral analysis and targeting.
• EBay: A cluster of 532 nodes, 5.3 PB. Used for search optimization and research.
• Facebook: 2 major clusters, one with 1100 machines and 12 PB of storage and

another with 300 machines and 3 PB of storage, used for reporting, analytics and
machine learning.

• Last.fm: A cluster of 100 nodes, used for charts calculation, royalty reporting and
log analysis.

In this section we will provide a brief introduction to the core features of Hadoop and
some of the more popular add-ons like Hive, Pig and HBase. The following sections
are based on Apaches’s official documentation, which is licensed under the Apache
2.0 license [46].

4.1 Distributed File System: HDFS

The Apache Hadoop framework provides its own implementation of a distributed
file system. It is called HDFS and the full documentation can be found at [33].

HDFS has been designed and built under the following assumptions:

• On commodity hardware, failures are frequent and can’t be managed as ex-
ceptions. On large installations, the non-trivial probability of failure makes the
probability of some components to be offline near to 100

• Big data problems involve handling large data sets. A typical file in HDFS can be
from gigabytes to terabytes in size.

• On large data sets, an application is more efficient if it is executed near the data
it needs.

678 F. Turrado García et al.

Fig. 4 Standard HDFS architecture

• Lesser data coherency requirements. Applications using HDFS are expected to
use a write-once-read-many access model for files.

• Streaming data access to the files. Applications using HDFS are expected to be
designed for batch processing rather than interactive use.

• HDFS must work on heterogeneous hardware and software.

In HDFS the Master node is called NameNode and is the node that manages the
metadata of the cluster (optionally a secondary NameNode can be configured). The
worker nodes are called DataNodes, and installing a task execution service in each
one is common practice. Due to this configuration, the task execution framework
is allowed to effectively schedule tasks on the nodes where data is already stored,
reducing the bandwidth requirements for the cluster.

Therefore, a file is divided into smaller chunks that are distributed among the
datanodes. In this implementation, the NameNode executes the operations such as
opening, closing and renaming of files or directories. It is also in charge of deter-
mining the mapping of chunks to the datanodes. The DataNodes perform all chunk
related operations: create, delete, read, write etc. Figure 4 shows an example of a
standard HDFS architecture.

More documentation about HDFS configuration and its features, like replication,
quotas or permissions is located at [36]. There are several (most of them) commercial
alternatives to HDFS, we will enumerate some of the most popular:

• NetApp provides an improved version of HDFS in their “NetApp Open Solution
for Hadoop” [37]

Building Scalable Software for Data Centers 679

• MapR sells a Hadoop distribution with a proprietary DFS (MapR File System)
[38].

• IBM has tuned its GPFS for Hadoop. [39]
• CFS, from DataStax(the Cassandra makers) is another open source alternative.

4.2 MapReduce Framework & API

In this section we will provide a brief introduction to the Apache Hadoop API and
how it can be used to build user applications. As an example, we will implement
the map reduce program that counts the words present in the files located at a given
folder.

Typically a Hadoop based application is a collection of MapReduce jobs; each job
can be viewed as a process that takes some input data (from files, tables, · · ·), trans-
forms it and produces some output data (stored in files, tables, · · ·). The execution
of these jobs is performed by two different services running on the cluster:

• JobTracker: The JobTracker process is responsible for distributing the soft-
ware/configuration to the slave nodes. It also schedules and monitors the tasks,
providing status and diagnostic information to the job client. Usually the Job-
Tracker process is initiated in a different node from the NameNode due to
performance reasons. Inside the cluster there is only one instance running, so
this is a point of failure of the global system.

• TaskTracker: The TaskTracker process is responsible for executing the MapRe-
duce tasks in each DataNode. There is one instance running in each DataNode.

Jobs are described using the class org.apache.hadoop.mapred.JobConf; in its in-
stances the programmers can define all the parameters needed for the job execution:
job name, map function, reduce function, input & output formats, · · ·

In our example, the Hadoop job implementation is follows defined inAlgorithm 1.

680 F. Turrado García et al.

Input data, and the mechanisms needed to access it, are defined using subclasses of
the interface org.apache.hadoop.mapred.InputFormat. The framework uses this in-
stances to validate the specification of the data, split the data into logical shards
(each of which is then assigned to an individual instance of the map function)
and provide a mechanism to access the input records (an instance of org.apache.
hadoop.mapred.RecordReader).

Output data, and the mechanisms needed to store it, are defined using sub-
classes of the interface org.apache.hadoop.mapred.OutputFormat. In an analo-
gous case, the framework uses this instance to perform validations on the out-
put data. The mechanism for storing the data is provided by an instance of
org.apache.hadoop.mapred.RecordWriter.

Map functions are defined by implementing the Mapper interface from the package
org.apache.hadoop.mapred. Most of the time, these implementations are passed (to
the framework) using the job configuration object (a JobConf instance). One Mapper

Building Scalable Software for Data Centers 681

instance is created for each InputSplit generated by the InputFormat. The Mapper
interface only defines one method called map that accepts the following parameters:

• Key of the input record to process.
• Value of the input record to process.
• An OutputCollector instance. This object provides a common way to collect the

data generated by the function.
• A Reporter instance. This object provides a tool for reporting progress, updating

counters or status information, ...

In our example the map function implementation is defined in the Algorithm 2.

682 F. Turrado García et al.

Reduce functions are defined by implementing the Reducer interface from the pack-
age org.apache.hadoop.mapred. However, the reduce task is done in three phases:
shuffle, sort and reduce. In the shuffle phase, the relevant data (for each reduce in-
stance) generated by the mappers is fetched by HTTP. Once this phase is done, the
resulting data is sorted because different mappers can produce the same keys. Finally,
in the reduce phase as its name suggests the reduce function is applied to the sorted
data. The Reducer interface only defines one method called reduce that accepts the
following parameters:

• Key of the input record to process.
• An Iterator to access the collection of values mapped into the same key.
• An OutputCollector instance. As in the Mapper interface, this object provides a

common way to collect the data generated by the function.
• A Reporter instance. As in the Mapper interface, this object provides a tool for

reporting progress, updating counters or status information, · · ·
In our example the reduce function implementation is defined in the Algorithm 3.

Once the job is configured, it is necessary to submit the job to the Hadoop cluster.
This submission can be completed using a command from the Hadoop distribution.

Building Scalable Software for Data Centers 683

4.3 Database Support: HBase

Apache Hbase is a distributed database for the Hadoop framework. It is based on
the Bigtable system [40] built at Google by Chang, Dean and others. Bigtable was
described [40] as “a distributed storage system for managing structured data that is de-
signed to scale to a very large size: petabytes of data across thousands of commodity
servers”.

In this system a Bigtable (a table in a RDBMS) is a sparse, distributed, persistent
multidimensional sorted map. The map is indexed by a row key, a column key and
a timestamp. Each value stored in the map is an uninterpreted array of bytes. The
following design considerations were made:

• The row keys could be arbitrary strings (up to 64 KB).
• Every operation (read/write) made to data under the same row key has to be atomic

(with independence of the number of column keys involved).
• The data has to be maintained in lexicographic order by row key.
• The row range for a table has to be dynamically partitioned. Each row range was

the unit of distribution and load balancing.
• Column keys were grouped into sets called column families. A column family

is the basic unit of access control; all the data stored in a column family was
intended to be of the same type. So, the column family must be created prior to
the writing of the data.

• Each cell (value in a row key for a column key) can contain several versions
of the same data. These versions are identified by the timestamps values (64-bit
integers). The different values were stored in decreasing (timestamp value) order
to optimize the access to the most recent one.

As a result of the above design choices, HBase can be viewed as a type of “NoSQL”
database. However, HBase is closer to a “Data Store” than a “Data Base” system
because it lacks many of the features usually found in an RDBMS. However, HBase
has many features for supporting horizontal and vertical scaling:

• Strongly consistent read/write operations. This makes it very suitable for tasks
such as high-speed counter aggregation.

• Automatic sharding of tables: HBase tables are distributed on the cluster via
regions (row ranges), and regions are automatically split and re-distributed as
your data grows.

• Automatic node (RegionServer) failover.
• Hadoop/HDFS Integration: HBase supports HDFS out of the box as its distributed

file system.
• MapReduce: HBase supports massively parallelized processing via MapReduce.

But there are notorious differences with a standard RDBMS:

• HBase is not an ACID compliant database. However, it does guarantee certain
specific properties. The description of these properties can be found at [41].

• HBase does not supports joins is a common way or as it expected from a RDBMS.

684 F. Turrado García et al.

Fig. 5 The standard topology for HBase based systems

When installed in a distributed environment, the different nodes are grouped into two
categories using the Master / Slave design pattern mentioned in previous sections. In
HBase, HMaster is the implementation of the Master Server and it typically runs on
the NameNode. This Master server is responsible for monitoring all RegionServer
(slaves) instances in the cluster, and is the interface for all metadata changes. All this
information is stored in two system tables called ROOT and META. A RegionServer
is responsible for serving and managing regions which are the basic element of
availability and distribution for tables. In a distributed cluster, a RegionServer usually
runs on a DataNode. A standard HBase installation is showed in Fig. 5.

HBase provide the following operations for data manipulation:

• Scan: Allows iteration over the rows selected for a set of attributes given.
• Get: Returns attributes for a specified row.
• Put: Adds or updates rows in a table.
• Delete: Removes a row from a table.

The integration between the Hadoop framework and HBase is seamless. HBase tables
are exposed as instances of the TableInputFormat class (which is a subclass of Input-
Format from the Hadoop API) for reading and as instances of TableOutputFormat
for writing the reduce data.

4.4 High Level Programming Language: Pig

Apache Pig is a tool for analyzing massive data sets built to execute on top of a
Hadoop cluster. It consists of a high level programming language called Pig Latin
and a compiler that translates the Pig Latin programs into MapReduce ones.

The main goal of this project is to provide a programming language that allows the
user to simply define complex data analysis tasks. The details of how the parallelism

Building Scalable Software for Data Centers 685

is achieved are hidden from the user. So, the system can optimize the execution of
those tasks automatically, allowing the user to focus on the data analysis rather than
optimizing his programs. It also provides an extensible API that allows users to write
their own Pig Latin functions.

The grammar of the Pig Latin language and the provided functions is located at
[42]. Some of these functions are:

• LOAD: Loads data from the hadoop file system (by default). However, the users
can define load functions to retrieve the data from other storage options. For
example, the Pig standard distribution also includes a load function for Apache
HBase.

• STORE: Saves the data selected to the hadoopfilesystem (by default). As in the
LOAD functions, the users can provide their own store implementation.A function
to write the data into Apache HBase is also provided.

• FILTER: Select records from a data set based on some condition given.
• ORDER BY : Sorts a data set based on one or more fields.
• GROUP: Groups the data in one or more sets.
• FOREACH: Generates data transformations based on fields.

Let us introduce an example of its use as the following problem: A system admin-
istrator needs to catalog the HTTP log of web servers. Assume all the log files are
concatenated into one (and only one) big file. The file contains two fields: IP of the
client and URL visited.

A Pig Latin program to count the different URL visited from each IP is shown in
the Algorithm 4.

4.5 Hive: Another Database Support & High Level Programming
Language

Apache Hive is another tool for data summarization, data analysis and querying built
on top of the Hadoop framework. Hive is compatible with HDFS, HBase and other
Hadoop compatible file systems. It also provides tools to extract, transform and load
data, methods to unify the structure of the stored data and a proprietary SQL-like
language (called Hive QL) for query execution. It also has support for several kinds
of indexes and allows joins in the queries.

686 F. Turrado García et al.

But Hive is not designed to be used as a relational database, for example online
transaction processing, real-time queries, row updates and so on· · · It is focused on
batch processing of large sets of permanent data.

From an architectural point of view, Hive is divided into three main components.
The first one is called MetaStore and it is a metadata server implementation; it is used
for holding all the information about the tables and the partitions in the system. The
second one, called SerDe, is a collection of libraries of serializers and deserializers
for several data formats; it also allows users to build their own implementations. The
third, and last one, is the Query processor which is a framework for converting the
Hive QL queries to a graph of MapReduce jobs and executing them.

Inside Hive the data is organized using the following structures ordered by size
in descendant order:

• Database: Databases represent namespaces for data unit separation and naming
conflicts prevention.

• Tables: Tables are homogeneous sets of data that share the same scheme.
• Partitions: Each table can be divided into several parts using a key; this key also

determines how the data is stored. This is a similar concept to regions in HBase
or table partitions in a RDBMS.

• Buckets (or Clusters): The data stored in each partition can also be grouped into
a smaller entity (a bucket). The data is grouped using a hash function on some
columns of the table.

As in a standard RDBMS, the Hive QL sentences differences two types of sentences:
the ones expressed in its Data Definition Language (DDL) or the ones expressed in
its Data Manipulation Language (DML). The full definition of those languages can
be found at [43] and [44] respectively.

A DDL sentence for creating a table may be like the following is shown in the
Algorithm 5.

Building Scalable Software for Data Centers 687

A simple Hive QL query will look like the written in the Algorithm 7.

5 Conclusions

The MapReduce programming model is based on solid design principles and is
compatible with other approaches for developing parallel and distributed software
as shown at [18]. There are many others patterns for designing and developing such
kind of applications [45] but those patters usually lack two of the major benefits of
this approach:

• From the developer point of view, MapReduce users are unaware of the under-
lying parallelism, distribution and fault tolerance mechanisms. This simplifies
the coding task and allows them to concentrate on building the application; the
existence of a high quality framework also reduces the testing phase as the base
layer (provided by the framework) does not need to be tested.

• From the systems administration point of view, this approach guarantees two
features required in batch processing: horizontal scaling and fault tolerance. This
features makes it possible to deploy such applications on a cluster built on top
of commoditized hardware (which is a key factor in leveraging the data center
costs).

The MapReduce programming model and its reference implementation (the Apache
Hadoop framework) is going to become a de facto standard for processing massive
data sets (if it isn’t it already). Although it is not intended for general use, for example
it probably will not replace distributed databases, this framework is being used in
large data centers [22, 34] for building scalable software. Having such corporations
supporting it, in addition to the fact that it is developed and maintained by a large
community of developers, is a guarantee of its continuity in the long run.

Acknowledgment Part of the computations of this work were performed in EOLO, the HPC of
Climate Change of the International Campus of Excellence of Moncloa, funded by MECD and
MICINN.

References

1. Laney, D.: 3D Data Management Controlling-Data Volume, Velocity and Variety (February
2001)

2. LSST Corporation: LSST and Technology Innovation (2013)
3. Google Corporation: Waze Champs Meetup at Waze HQ. http://blog.waze.com/ (2013)

688 F. Turrado García et al.

4. Bollen, J., Mao, H., Zeng, X.: Twitter Mood Predicts the Stock Market. Journal of
Computational Science 2(1) (2011) 1–8

5. Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting Elections with Twit-
ter: What 140 Characters Reveal About Political Sentiment. In: Proceedings of the Fourth
International AAAI Conference on Weblogs and Social Media. (May 23–26 2010) 178–185

6. O’Connor, B., Balasubramanyan, R., Routedge, B., Smith, N.: From Tweets to Polls: Linking
Text Sentiment to Public Opinion Time Series. In: Proceedings of the Fourth International
AAAI Conference on Weblogs and Social Media. (May 23–26 2010) 122–129

7. Golder, S.A., Macy, M.W.: Diurnal and Seasonal Mood Vary with Work, Sleep, and Daylength
Across Diverse Cultures. Science 333(6051) (may 2002) 1878–1881

8. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing. Communications of the
ACM 53(4) (April 2010) 50–58

9. Dorband, J.E., Raytheon, J.P., Ranawake, U.: “Commodity Computing Clusters at Goddard
Space Flight Center”. Online journal of space communication, School of Media Arts and
Studies Scripps College of Communication, Ohio University (2013)

10. Neuman, B.C.: Scale in Distributed Systems. Readings in Distributed Computing Systems
(1994) 463–489

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of reusable
Object-Oriented Software. Addison-Wesley (1994)

12. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern Oriented Software
Architecture: A System of Patterns. Volume 1. J. Willey (1999)

13. Fowler, M.: Analysis Patterns: Reusable Object Models. 1 edn. Addison-Wesley Professional
(1996)

14. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-oriented Software Architecture:
Patterns for Concurrent and Networked Objects. Volume 2. J. Willey (2000)

15. S. Ishikawa, M.S.: Pattern Language: Towns, Buildings, Construction. Oxford University Press
(1977)

16. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architecture: On
Patterns and Pattern Languages. Volume 5. J. Willey (April 2007)

17. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architecture: A Pattern
Language for Distributed Computing. Volume 4. J. Willey (2007)

18. OPL Working Group, B.U.: A Pattern Language for Parallel Programming ver2.0 (2013)
19. Fayad, M., Schmidt, D.C.: Object-Oriented Application Frameworks. Communications of the

ACM 40(10) (October 1997) 32–38
20. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: Pro-

ceedings of the 6th Symposium on Operating System Design and Implemention, San Francisco,
CA (December 2004) 1–13

21. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press (2011)
22. Thusoo, A.: Hive - A Petabyte Scale Data Warehouse using Hadoop. https://www.facebook.

com/note.php?note_id=89508453919 (2009)
23. O’Malley, O., Murthy, A.: Hadoop Sorts a Petabyte in 16.25 Hours and a Terabyte

in 62 Seconds. http://developer.yahoo.com/blogs/hadoop/hadoop-sorts-petabyte-16-25-hours-
terabyte-62-422.html (2013)

24. Apache Software Foundation: HiveTM. http://hive.apache.org/ (2013)
25. Apache Software Foundation: PigTM. http://pig.apache.org/ (2013)
26. Microsoft Corporation: DryadLINQTM. http://research.microsoft.com/en-us/projects/dryadlinq/

(2013)
27. MongoDB Inc: MongoDBTM. http://www.mongodb.org/ (2013)
28. Apache Software Foundation: HBaseTM. http://hbase.apache.org/ (2013)
29. Apache Software Foundation: CassandraTM. http://cassandra.apache.org/ (2013)
30. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stonebraker, M.: A

Comparison of Approaches to Large-Scale Data Analysis. In: Proceedings of the International
Conference on Management of Data, New York, NY, USA, ACM (August 2009) 165–178

https://www.facebook.com/note.php?note_id=89508453919
https://www.facebook.com/note.php?note_id=89508453919
http://research.microsoft.com/en-us/projects/dryadlinq/

Building Scalable Software for Data Centers 689

31. Dean, J., Ghemawat, S.: MapReduce: A Flexible Data Processing Tool. Communications of
the ACM 53(1) (January 2010) 72–77

32. Stonebraker, M., Abadi, D., DeWitt, D.J., Madden, S., Paulson, E., Pavlo, A., Rasin, A.:
MapReduce and Parallel DBMSs: Friends or Foes? Communications of the ACM 53(1)
(January 2010) 64–71

33. Apache Software Foundation: Hadoop. http://hadoop.apache.org/ (2013)
34. Singh, S.: Hadoop at Yahoo!: More Than Ever Before. http://developer.yahoo.com/blogs/

hadoop/hadoop-yahoo-more-ever-095826045.html/ (2013)
35. Apache Software Foundation: Hadoop Wiki. http://wiki.apache.org/hadoop/PoweredBy/

(2013)
36. Apache Software Foundation: HDFS Users Guide. http://hadoop.apache.org/docs/stable/hdfs_

user_guide.html/ (2013)
37. NetApp Corporation: Open Solution for Hadoop. http://www.netapp.com/us/solutions/big-

data/hadoop.aspx/ (2013)
38. MapR Technologies, Inc: MapRTM Distribution for Apache Hadoop Advantages. http://

www.mapr.com/products/why-mapr/ (2013)
39. Gupta, K., Jain, R., Koltsidas, I., Pucha, H., Sarkar, P., Seaman, M., Subhraveti, D.: GPFS-

SNC: An Enterprise Storage Framework for Virtual-Machine Clouds. IBM Journal of Research
and Development 55(6) (December 2011) 2:1–2:10

40. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for Structured Data. In: Pro-
ceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation,
Berkeley, CA, USA, USENIX Association (November 2006) 15–15

41. Apache Software Foundation: Apache HBaseTM. http://hbase.apache.org/acid-semantics.html/
(2013)

42. Apache Software Foundation: Pig Latin Basics. http://pig.apache.org/docs/r0.11.1/basic.html/
(2013)

43. Apache Software Foundation: LanguageManual DDL. LanguageManual+DDL/ (2013)
44. Apache Software Foundation: LanguageManual DML. https://cwiki.apache.org/confluence/

display/Hive/LanguageManual+DML/ (2013)
45. Snir, M.: A Compilation of Parallel Patterns http://www.cs.uiuc.edu/homes/snir/PPP/ (2013)
46. Apache Software Foundation: Apache 2.0 license: http://www.apache.org/licenses/

LICENSE-2.0.txt

http://developer.yahoo.com/blogs/hadoop/hadoop-yahoo-more-ever-095826045.html/
http://developer.yahoo.com/blogs/hadoop/hadoop-yahoo-more-ever-095826045.html/
http://hadoop.apache.org/docs/stable/hdfs_user_guide.html/
http://hadoop.apache.org/docs/stable/hdfs_user_guide.html/
http://www.mapr.com/products/why-mapr/
http://www.mapr.com/products/why-mapr/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML/
http://www.cs.uiuc.edu/homes/snir/PPP/
http://www.apache.org/licenses/LICENSE-2.0.txt
http://www.apache.org/licenses/LICENSE-2.0.txt

Cloud Storage over Multiple Data Centers

Shuai Mu, Maomeng Su, Pin Gao, Yongwei Wu, Keqin Li
and Albert Y. Zomaya

1 Introduction

Cloud storage has become a booming trend in the last few years. Individual devel-
opers, companies, organizations, and even governments have either taken steps or at
least shown great interests in data migration from self-maintained infrastructure into
cloud.

Cloud storage benefits consumers in many ways. A recent survey among over 600
cloud consumers [80] has shown that primary reasons for most clients in turning to
cloud are: (1) to have highly reliable as well as available data storage services; (2) to
reduce the capital cost of constructing their own datacenter and then maintaining it;

S. Mu (�)
Department of Computer Science and Technology, Tsinghua National Laboratory
for Information Science and Technology (TNLIST), Tsinghua University, Beijing, China
Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
e-mail: msmummy@gmail.com

M. Su · P. Gao ·Y. Wu
Tsinghua University, Beijing, China
e-mail: maomengsu19881010@gmail.com

P. Gao
e-mail: pin.gao2008@gmail.com

Y. Wu
e-mail: wuyw@tsinghua.edu.cn

K. Li
Department of Computer Science, State University of New York at New Paltz,
New Paltz, USA
e-mail: lik@newpaltz.edu

A. Y. Zomaya
Centre for Distributed and High Performance Computing School
of Information Technologies, The University of Sydney, Sydney, Australia
e-mail: albert.zomaya@sydney.edu.au

© Springer Science+Business Media New York 2015 691
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_24

692 S. Mu et al.

and (3) to provide high-quality and stable network connectivity to their customers.
The prosperity of the cloud market has also inspired many companies to provide
cloud storage services of different quality to vast variety of companies.

Reliability and availability are the most important issues in designing a cloud
storage system. In cloud storage, data reliability often refers to that data is not
lost, and availability refers to data accessibility. To major cloud storage providers,
accidents of data loss seldom happen. But there was an accident that Microsoft
once completely lost user data of T-Mobile cellphone users [81]. Because data loss
accidents seldom happen, data availability is often a more important concern to
most cloud storage consumers. Almost all cloud storage providers have suffered
from temporary failures, lasting from hours to days. For example, Amazon failed to
provide service in October, 2012, which caused many consumers such as Instgram
to halt their service.

Data replication is an effective way to improve reliability and availability. Limited
by cost, cloud providers usually use commodity hardware to store consumers’ data.
Replicating data into different machines can tolerate hardware failures, and repli-
cating data into multiple data centers can tolerate failures of a datacenter, caused by
earthquakes, storms and even wars.

To reduce cost of replication, data are usually divided into stripes instead of the
original copy. There are many coding methods for this, originating from traditional
storage research and practice. Erasure coding, which is widely used in the RAID
systems, provides suitable features for data striping requirements in cloud storage
environment.

Data consistency is also an important issue in cloud storage. As opposed to tra-
ditional storage systems which usually provide a strong consistency model, cloud
storage often offers weaker consistency model such as eventual consistency. Some
also propose other reduced consistency models such as session consistency, and
fork-join consistency.

Privacy and security are very essential to some consumers. Consumers are often
concerned about how their data are visible to cloud providers; whether administrators
can see their data transparently. For other consumers who are less sensitive to privacy,
they are more concerned about access control to data, because all the traffic finally
leads to charges.

In spite of all the efforts of cloud storage providers, there is an emerging trend
to build an integration layer on top of current cloud storages, also named “cloud-of-
clouds”. A cloud-of-cloud system makes use of current cloud storage infrastructure,
but still provides a uniformed user interface to top-level application developers. It also
targets the reliability, availability and security issues, but takes a different approach
of using each cloud as a building block. The advantage of this approach is that it
can tolerate performance fluctuation of single cloud storage, and can avoid potential
risks of a provider’s shutdown.

In the remainder of this chapter, we first review cloud storage architecture at a
high level in Sect. 2. Section 3 describes common strategies used in data replication.

Cloud Storage over Multiple Data Centers 693

Section 4 gives a brief introduction on data striping. Section 5 introduces the consis-
tency issue. Section 6 briefly highlights a new model of cloud-of-clouds. Section 7
discusses privacy and security issues in storage systems. Section 8 summarizes and
suggests future directions to cloud storage research and practice.

2 Cloud Storage in a Nutshell

In this section we give an overview of cloud storage architecture and its key compo-
nents. Cloud storage environments are usually complex systems mixed with many
mature and new techniques. On a high level, cloud storage design and implementation
consist of two parts: metadata and data, which will be investigated later.

2.1 Architecture

Early public clouds and most of today’s private ones are built into a single datacenter,
or several datacenters in nearby buildings. They are composed of hundreds or even
thousands of commodity machines and storage devices, connected by high-speed
networks. Besides large amounts of hardware, many other storage middleware such
as distributed file systems are also necessary to provide storage service to consumers.
The typical architecture of cloud storage usually includes storage devices, distributed
file system, metadata service, frontend, and other components.

In practice, we find that the data models and library interfaces of different clouds
are fairly similar; thus, we could support a minimal set to satisfy most users’ needs.
The data model shared by most services could be summarized as a “container-object”
model, in which file objects are put into containers. Most services containers do not
support nesting; i.e., users cannot create a sub-container in a container.

In the last decade, major cloud storage such as Amazon S3 [1] and Windows
Azure Storage [2] have upgrade their service from running in separate datacenters
to different data centers and different geographic regions. Compared to a single
datacenter structure, running services in multiple data centers require a multitude of
more resource management functions, such as, resource allocation, deployment, and
migration.

An important feature of cloud storage is the ability to store and provide access to
an immense amount of storage. Amazon S3 currently has a few hundred petabytes
of raw storage in production, and it also has a few hundred more petabytes of raw
storage based on customer demand [21]. Modern cloud storage architecture could
be divided into three layers: storage service, metadata service, and front-end layer
(Fig. 1).

• Metadata service—The metadata service is in charge of following functions: (a)
handling high level interfaces and data structures; (b) managing a scalable names-
pace for consumers’ objects; (c) storing object data into the storage service.

694 S. Mu et al.

Fig. 1 Cloud storage architecutre over mutiple data centers

Metadata service holds the responsibility to achieve scalability by partitioning
all of the data objects within a datacenter. This layer consists of many meta-
data servers, each of which serves for a range of different objects. Also, it should
provide load balance among all the metadata servers to meet the traffic of requests.

• Storage service—This storage service is in charge of storing the actual data into
disks and distributing and replicating the data across many servers to keep data
reliable within a datacenter. The storage service can be thought of as a distributed
file system. It holds files, which are stored as large storage chunks. It also un-
derstands how to store them, how to replicate them, and so on, but it does not
understand higher level semantics of objects. The data is stored in the storage
service, but it is accessed from the metadata service.

• Front-End (FE) layer—The front-end layer consists of a set of stateless servers that
take incoming requests. Upon receiving a request, an FE looks up the account,
authenticates and authorizes the request, then routes the request to a partition
server in the metadata service. The system maintains a map that keeps track of
the partition ranges and which metadata server is serving which partition. The FE
servers cache the map and use it to determine which metadata server to forward
each request to. The FE servers also file large objects directly from the storage
service and cache frequently accessed data for efficiency.

Cloud Storage over Multiple Data Centers 695

Fig. 2 Meta-layer architecture

2.2 Metadata Service

The metadata service contains three main architectural components: a layout man-
ager, many meta-servers, and a reliable lock service (Fig. 2). The architecture is
similar to Bigtable [5].

2.2.1 Layout Manager

A layout manager (LM) acts as a leader of the meta-service. It is responsible for
dividing the whole metadata into ranges and assigning each meta-server to serve
several ranges and then keeping track of the information. The LM stores this assign-
ment in a local map. The LM must ensure that each range is assigned only to one
active meta-server, and that two ranges do not overlap. It is also in charge of load
balancing ranges among meta-servers. Each datacenter may have multiple instances
of the LM running, but usually they function as reliable replications of each other.
For this they need a Lock Service to maintain a lease for leader election.

2.2.2 Meta-Server

A meta-server (MS) is responsible for organizing and storing a certain set of ranges of
metadata, which is assigned by LM. It also serves requests to those ranges. The MS
stores all metadata into files persistently on disks and maintains a memory cache for
efficiency. Meta-servers keep leases with the Lock Service, so that it is guaranteed
that no two meta-servers can serve the same range at the same time.

If a MS fails, LM will assign a new MS to serve all ranges served by the failed
MS. Based on the load, LM may choose a few MS rather than one to serve the ranges.
LM firstly assigns a range to a MS, and then updates its local map which specifies

696 S. Mu et al.

Fig. 3 Storage service architecture

which MS is serving each range. When a MS gets a new assignment from LM, it
firstly acquires for the lease from Lock Service, and then starts serving the new range.

2.2.3 Lock Service

Lock Service (LS) is used by both of layout manager and meta-server. LS uses Paxos
[16] protocol to do synchronous replication among several nodes to provide a reliable
lock service. LM use LS for leader election; MS also maintains a lease with the LS
to keep alive. Details of the LM leader election and the MS lease management are
discussed here. We also do not go into the details of Paxos protocol. The architecture
of lock service is similar to Chubby [18].

2.3 Storage Service

The two main architecture components of the storage service are the namenode and
chunk server (Fig. 3). The storage service architecture is similar to GFS [4].

2.3.1 Namenode

The namenode can be considered as the leader of the storage service. It maintains
file namespace, relationships between chunks and each file, and the chunk locations
across the chunk servers. The namenode is off the critical path of client read and write
requests. In addition, the namenode also monitors the health of the chunk servers
periodically. Other functions of namenode include: lazy re-replication of chunks,
garbage collection, and erasure code scheduling.

The namenode periodically checks the state of each chunk server. If the namenode
finds that the replication number of a chunk is smaller than configuration, it will start
a re-replication of the chunk. To achieve a balanced chunk replica placement, the
namenode randomly chooses chunk server to store new chunk.

Cloud Storage over Multiple Data Centers 697

The namenode is not tracking any information about blocks. It remembers just
files and chunks. The reason of this is that the total number of blocks is so huge that
the namenode cannot efficiently store and index all of them. The only client of data
service is the metadata service.

2.3.2 Chunk Servers

Each chunk server keeps the storage for many chunk replicas, which are assigned
by the namenode. A chunk server machine has many large volume disks attached,
to which it has complete access. A chunk server deals only with chunks and blocks,
and it does not care about file namespace in the namenode. Internally on a chunk
server, every chunk on disk is a file consisting of data blocks and their checksum. A
chuck server also holds a map which specifies relationships between chunk and file.
Each chunk server also keeps a view about the chunks it owns and the location of
the peer replicas for a given chunk. This view is copied from namenode and is kept
as a local cache by the chunk server. Under instructions from namenode, different
chunk servers may talk to each other to replicate chunks, or to create new copies of
an existing replica. When a chunk no longer stores any alive chunks, the namenode
starts garbage collection to remove the dead chunks and free the space.

3 Replication Strategies

3.1 Introduction

Currently, more data-intensive applications are moving their large-scale datasets
into cloud. To provide high availability and durability of storage services as well
as improving performance and scalability of the whole system, data replication is
adopted by many mature platforms [1, 2, 4, 6, 12] and research studies [7–10, 14, 30]
in cloud computing and storage. Data replication is to keep several identical copies of
a data object in different servers that may distribute across multiple racks, houses and
region-scale or global-scale datacenters, which can tolerate different levels of failures
such as facility outages or regional disasters [4, 10, 23, 30]. Replication strategy is
now an indispensable feature in multiple datacenters [1, 2, 6–9, 12], which may
be hundreds or thousands of miles away from each other, to completely replicate
data objects of services, not only because wide-area disasters such as power outages
or earthquakes may occur in one datacenter [10, 23], but also because replication
across geographically distributed datacenters can mostly reduce latency and improve
the whole throughput of the services in the cloud [6–9, 11].

Availability and durability is guaranteed as one data object is replicated on many
servers across datacenters, thus in the presence of failing of a few number of com-
ponents such as servers and network at any time [1, 4, 10, 23] or natural disasters
occurring in one datacenter, the durable service of cloud storage won’t be influenced

698 S. Mu et al.

because applications can normally access their data through servers containing repli-
cas in other datacenters. Moreover, as each data object is replicated over multiple
datacenters, it enables different applications to be served from the fastest datacenter
or the datacenter with the lowest working load in parallel [1, 6, 9, 11, 31], thus
providing high performance and throughput of the overall cloud storage system.

Common replication strategies can be divided into two categories: asynchronous
replication and synchronous replication. They own distinct features and have different
impacts on availability, performance, and throughput of the whole system. Besides,
the cloud storage service should provide the upper applications with a consistent view
of the data replicas especially during faults [6–9, 11], which requires that data copies
among diverse datacenters should be consistent with each other. However, these two
replication strategies bring in new challenges to replication synchronization, which
finally will influence the consistency of data replicas over multiple datacenters.

Additionally, the placement of data replicas is also an important aspect of repli-
cation strategy in multiple datacenters as it highly determines the load distribution,
storage capacity usage, energy consumption and access latency, and many current
systems and studies [1, 4, 6, 10, 24, 26] adopt different policies for the placement of
data replicas in the multiple-datacenter design on different demands.

In this section, we will present the main aspects and features of asynchronous
replication, synchronous replication, and placement of replicas.

3.2 Asynchronous Replication

Figure 4a illustrates the working mechanism of asynchronous replication over mul-
tiple datacenters. As shown in Fig. 4, the external applications issue write requests
to one datacenter, which could be a fixed one configured previously or a random one
chosen by applications, and get a successful response if the write requests completely
commit in this datacenter. The updated data will be eventually propagated to other
datacenters in background in an asynchronous manner [1, 2, 12]. Asynchronous
replication is especially useful when the network latency between datacenters is at a
high cost as applications only need to commit their write requests in one fast datacen-
ter and don’t have to wait for the data to be replicated in each datacenter. Therefore,
the overall performance and throughput for writes will be improved and systems with
asynchronous replication can provide high scalability as they are decentralized. Now
many prevailing systems such as Cassandra [12], Dynamo [1], and PNUTS [14] are
using asynchronous replication.

However, asynchronous replication presents a big challenge to consistency, since
replicas may have conflicting changes with each other, that is, the view of all the
replicas over multiple datacenters has the probability to be inconsistent at some time.
Figure 5 presents a simple scenario that will cause inconsistency among replicas.
Assume there are three datacenters A, B and C, and all of them hold data replica d.
When a write request for d from application P is issued to A and successfully commits
in A, A will response to P and then replicates the updated data d1 to B and C. However,

Cloud Storage over Multiple Data Centers 699

a b

Fig. 4 The working mechanism of asynchronous replication and synchronous replication over
multiple datacenters. a for asynchronous replication and b for synchronous replication

Fig. 5 A scenario that causes inconsistent view of data replicas among datacenters under
asynchronous replication

at the same time, another write request for d from application Q is issued to C. As C
hasn’t gotten to know the update of d in A, it normally accepts and processes this write
request and then d in C turns into d2 and will be replicated to A and B.As a result, there
are now two different versions of the same data replica, and the system steps into an
insistent state which means that a subsequent read may get two different data objects.

As there are also other factors such as server or network failure that will cause
inconsistency in asynchronous replication over multiple datacenters [1, 11], a few

700 S. Mu et al.

researches have been addressing this challenge of asynchronous replication. Eventual
consistency [21] model is one scheme that is widely adopted by many studies and
widespread distributed systems [1, 12–14]. Eventual consistency model allows the
whole system to be inconsistent temporarily but eventually, the conflicted data objects
will merge into one singe data object and the view of the data replicas across multiple
datacenters will become consistent at last. The process of merging conflicted data
objects is critical in eventual consistency model and the merging decision can be made
by the write timestamp [12, 21], a chosen master [13, 14] or even the applications [1].

Under asynchronous replication, a read request may get a stale data object from
some datacenters, which will decline the performance of current reads and com-
plicates application development. However, whether this circumstance is adverse
depends on the applications. If applications such as search engine and shopping
carts allow weaker consistency at reading or demand high quality of writing ex-
perience [1, 12], asynchronous replication won’t bring negative impacts to these
applications.

3.3 Synchronous Replication

In contrast to asynchronous replication, synchronous replication requires that the
updated data objects of write requests must be synchronously replicated to all or a
majority of datacenters before applications get a successful response from the data-
center accepting the requests in the cloud, as presented in Fig. 4b. This synchronous
replication mechanism can effectively guarantee a consistent view of cross-datacenter
replicated data and it enables developers to build distributed systems that can provide
strong consistency and a set of ACID semantics like transactions, which, com-
pared with that in loosely consistent asynchronous replication, simplifies application
building for the wide-area usage for the reason that applications can make use of se-
rializable semantic properties while are free from write conflicts and system crashes
[6, 9, 11, 20, 25].

The key point of synchronous replication is to keep states of replicas across
different datacenters the same. A simple and intuitive way to realize this is to use
synchronous master/slave mechanism [4, 6, 11]. The master waits for the writes to
be fully committed in slaves before acknowledging to applications and is responsible
for failure detection of the system. Another method to maintain consistent and up-
to-date replicas among datacenters is to use Paxos [16], which is a fault-tolerant and
optimal consensus algorithm for RSM [15] in a decentralized way. Paxos works well
when a majority of datacenters are alive and at current, many system services adopt
Paxos [2, 6, 11, 17, 18, 20] as their underlying synchronous replication algorithm.

However, no matter which method is used, the overall throughput and perfor-
mance of the services based on synchronous replication will be constrained when
the communication latencies between datacenters are at high expense [7, 9, 11] and
scalability is limited by strong consistency to certain extent. As a result, many re-
searches put forward mechanisms to help improve the throughput and scalability of

Cloud Storage over Multiple Data Centers 701

the whole system while not destroying the availability and consistency for applica-
tions. These mechanisms include reasonable partitioning of data [2, 6, 11], efficient
use of concurrent control [7, 11, 31] and adopting combined consistent models [7–9,
22, 25].

3.4 Placement of Replicas

As cloud storage now holds enormous amount (usually petabytes) of data sets from
large-scale applications, how to place data replicas across multiple datacenters also
becomes a very important aspect in replication strategy as it is closely related to
load balance, storage capacity usage, energy consumption and access latency of the
whole system [6, 10, 19, 24]. It is essential for both efficiently utilizing available
datacenter resources and maximizing performance of the system.

Unbalanced replica placement will cause over-provisioning capacity and skewed
utilization of some datacenters [26]. One way to address this issue is to choose
a master or use partition layers to decide in which datacenter each data replica is
placed [2, 4, 6]. This requires the master or partition layers to record the up-to-date
load information of every datacenter so that they won’t make unbalanced replica
placement policies and can immediately decide to migrate data between datacenters
to balance load. Another way is to use a decentralized method, as presented in Fig. 6.
We can form datacenters as a ring, each responsible for a range of keys. A data
object can get its key through hash functions such as consistent hash and locate a
datacenter according to its key. Then, replicas of this data object could be placed in
this datacenter and its successive ones, similar to [1, 12]. In this way, there is no need
to maintain a master to keep information of each datacenter and if the hash functions
could evenly distribute the keys, load balance can be achieved automatically.

Furthermore, as datacenters now consumes about 1.5 % of the world’s total energy
and a big fraction of it does come from the consumption of storage in them [28,
29], the number of datacenters to place the data replicas should also be considered
carefully. If the number of datacenters to hold replicas increases, the storage capacity
of the whole system will accordingly decease and the energy consumption improves
[24, 26, 27] as those datacenters will contain large amounts of replicated data objects
in storage. In addition, placing data replicas in a high number of datacenters enables
applications to survive wide-area disasters that will cause a few datacenter failures
and thus, this can provide high availability for applications at the expense of storage
capacity and energy consumption [2, 6, 7, 11, 25]. Moreover, when the number
of datacenters to place replicas is large, applications can have a low access latency
based on geographic locality, i.e., they can communicate with datacenters that are
faster or have less working load [6, 7, 9]. Hence, system developers have to consider
the trade-off between these features for the placement strategy of data replicas across
multiple datacenters when they are building geographically distributed services for
applications.

702 S. Mu et al.

Fig. 6 The decentralized method to place data replicas across multiple datacenters

4 Data Striping Methods

4.1 Introduction

The main purpose of a storage system is to make data persistent, so reliability and
availability should be top priority concern for storage systems. Actually, there are a
variety of factors that may cause storage system unavailable. For example, if a server
fails, the storage system is unable to provide storage services. Some physical damage
to a hard disk will result in the loss of data stored. Therefore, it is indispensable for
storage systems to introduce some techniques to make them reliable.

A lot of research work has been done in recent years to improve the availabil-
ity and reliability of storage systems. The main idea is to generate some redundant
information of every data block and distribute them on different machines. When
one server becomes outage, another server that holds the redundant data can replace
the role of the broken server. During this time, the storage system can still provide
storage service. When one data block is broken, then other redundant data blocks
will restore the broken one. Thus, the availability and reliability is improved. Gen-
erally, redundant data can be presented in two ways: one is using full data backup
mechanism, called full replication; the other is erasure code.

Cloud Storage over Multiple Data Centers 703

Full replication, also known as multi-copy method, is to store multiple replicates
of data on separate disks, in order to make the data redundant. This method does
not involve specialized encoding and decoding algorithms, and it has better fault-
tolerance performance. But full replication has lower storage efficiency. Storage
efficiency is the sum of effective capacity and free capacity divided by raw capacity.
When storing N copies of replica, the disk utilization is only 1/N. For relatively
large storage systems, full replication brings extra storage overhead, resulting in
high storage cost.

Along with the increase of the data that a storage system holds, a full replication
method has been difficult to adapt to mass storage system for redundant mechanism in
disk utilization and fault tolerance requirements. Therefore, erasure code is becoming
a better solution for mass storage.

4.2 Erasure Code Types

Erasure code is derived from communication field. At first, it is mainly used to solve
error detection and correction problems in data transmission. Afterwards, erasure
code gradually applied to improve the reliability of storage systems. Thus, erasure
code has been improved and promoted according to the characters of storage system.
The main idea of erasure code is that the original data can be divided into k data
fragments, and according to the k data fragments, m redundant fragments can be
computed according some coding theory. The original data can be reconstructed by
any of the m + k fragments. There are many advantages of erasure code, the foremost
of these is the high storage efficiency compared with the mirroring method.

There are many types of erasure code. Reed-Solomon code [52] is an MDS code
that can meet any number of data disks and redundant disk number. MDS code
(maximum distance separable code) is a kind of code that can achieve the theoretically
optimal storage utilization. The main idea of Reed Solomon code is to visualize
the data encoded as a polynomial. Symbols in data are viewed as coefficients of a
polynomial over a finite field. Reed Solomon code is a type of horizontal codes.
Horizontal code has the property that data fragments and redundant fragments are
stored separately. That is to say, each stripe is neither data stripe nor redundant stripe.
Reed Solomon codes are usually divided into two categories: one is Vandermonde
Reed Solomon code, and the other is Cauchy Reed Solomon code [53]. The difference
between these two categories of Reed Solomon codes is that they are using different
generation matrix. For Vandermonde Reed Solomon code, the generation matrix is
Vandermonde matrix, and multiplication on Galois filed is needed which is very
complex. For Cauchy Reed Solomon code, it is Cauchy matrix, and every operation
is XOR operation, which is coding efficient. Figure 7 shows the Encoding principle
for Reed-Solomon codes.

Compared with Reed Solomon Codes, Array Code [54] is totally based on XOR
operation. Due to the efficient of encoding, decoding, updating and reconstruction,

704 S. Mu et al.

Fig. 7 Reed-Solomon codes

Array code is widely used. Array code can be categorized as two types due to the
placement of data fragment and redundant fragment.

Horizontal parity array codes make data fragments and redundant fragments stored
on different disks. By doing this, Horizontal parity array codes have better scalability.
But most of it can just hold 2 disk failures. It has a drawback on updating data. Every
time updating one data block will result in at least one read and one write operation
on redundant disk. EVENODD code [55] is one kind of Horizontal parity array codes
that used widely.

Vertical parity array codes make data fragment and redundant fragment stored in
the same stripe. Because of this design, the efficiency of data update operation will
be improved. However, the balance of vertical parity array code leads to a strong
interdependency between the disks, which also led to its poor scalability. XCODE
[56] is a kind of vertical parity array code, which has theoretically optimum efficiency
on data update and reconstruction operation.

4.3 Erasure Codes in Data Centers

In traditional storage systems such as early GFS and Windows Azure Storage, to
ensure the reliability, triplication has been favored because of its ease of implemen-
tation. But triplication makes the stored data triple, and storage overhead is a major
concern. So many system designers are considering erasure coding as an alternative.
Most distributed file systems (GFS, HDFS, Windows Azure) create an append-only
write workload for large block size. So data update performance is not a concern.

Using erasure code in distributed file systems, data reconstruction is a major
concern. For one data of k data fragment and m redundant fragment, when any one

Cloud Storage over Multiple Data Centers 705

Fig. 8 LRC codes

of that fragment is broken or lost, to repair that broken fragment, k fragments size
of network bandwidth will be needed. So some researchers found that the traditional
erasure code does not fit distributed file system very well. In order to improve the
performance of data repair, there are two ways.

One is reading from fewer fragments. InWindowsAzure Storage System, a new set
of code called Local Reconstruction Codes (LRC) [57] is adopted. The main idea of
LRC is to reduce the number of fragments required to reconstruct the unavailable data
fragment. To reduce the number of fragments needed, LRC introduced local parity
and global parity. As Fig. 8 shows below, x0, x1, x2, y0, y1, y2 are data fragments, px
is the parity fragment of x0, x1, x2. py is the parity fragment of y0,y1,y2. p0 and p1 are
global parity fragments. px and py are called local parity. p0 and p1 are global parity.
When reconstructing x0, instead of reading p0 or p1 and other 5 data fragment, it is
more efficient to read x1, x2 and px to compute x0. As we can see LRC is not a MDS,
but it can greatly reduce the cost of data reconstruction.

Another way to improve reconstruction performance is to read more fragments
but less data size from each. Regenerating codes [58] provide optimal recovery
bandwidth among storage nodes. When reconstructing fragments, it does not just
transmit the existing fragments, but sends a liner combination of fragments. By
doing this, the recovery data size to send will be reduced. Rotated Reed-Solomon
codes [59] and RDOR [60] improve reconstruction performance in a similar way.

5 Consistency Models

5.1 Introduction

Constructing a globally distributed system requires many trade-offs between avail-
ability, consistency, and scalability. Cloud storages are designed to serve for a large
amount of internet-scale applications and platforms simultaneously, which is often

706 S. Mu et al.

named as infrastructure service. To meet operational requirements, cloud storage
must be designed and implemented as highly available and scalable, in order to
serve consumers requests from all over the world.

One of the key challenges in build cloud storage is to provide a consistency
guarantee to all client requests [63]. Cloud storage is a large distributed system
deployed world-widely. It has to process millions of requests every hour. All the
low-probability accidents in normal systems are often to happen in the datacenters of
cloud storage. So all these problems must be taken care of in the design of the system.
To guarantee consistent performance and high availability, replication techniques are
often used in cloud storage. Although replication solves many problems, it has its
costs. Different client requests may see inconsistent states of many replicas. To solve
this problem, cloud storage must define a consistency model that all requests to
replicas of the same data must follow.

Like many widespread distributed systems, cloud storage such asAmazon S3 often
provides a weak consistency model called eventual consistency. Different clients
may see different orders of updates to the same data object. Some cloud storage
like Windows Azure also provides strong consistency that guarantees linearizability
of every update from different clients. Details will be discussed in the following
sub-sections.

5.2 Strong Consistency

Strong consistency is the most programmer-friendly consistency model. When a
client commits an update, every other client would see the update in subsequent
operations. Strong consistency can help achieve transparency of a distributed system.
When developer uses a storage system with strong consistency, it appears like the
system is a single component instead of many collaborating sub-components mixed
together.

However, this approach has been proved as difficult to achieve since the middle
of last century, in the database area for the first time. Databases are also systems with
heavy use of data replications. Many of such database systems were design to shut
down completely when it cannot satisfy this consistency because of node failures.
But this is not acceptable for cloud systems, which is so large that small failures are
happening every minute.

Strong consistency has its weak points, one of which is that it lowers system
availability. In the end of last century, with large-scale Internet systems growing
up, designs of consistency model are rethought. Engineers and researchers began to
reconsider the tradeoff between system availability and data consistency. In the year
of 2000, CAP theorem was introduced [61]. The theorem states that for three prop-
erties of shared-data systems—data consistency, system availability, and tolerance
to network partition—only two can be achieved at any given time.

It is worth noting, that the concept of consistency in cloud storage is different to
that in transactional storage systems such as databases. The common ACID property

Cloud Storage over Multiple Data Centers 707

(atomicity, consistency, isolation, durability) defined in databases is a different kind
of consistency guarantee. In ACID, consistency means that the database is in a
consistent state when a transaction is finished. No go-between situation is allowed.

5.3 Weak Consistency

According the CAP theory, a system can achieve both consistency and availability, if
it does not tolerate network partitions. There many techniques which make this work,
one of which is to use transaction protocols like two phase commit. The condition
for this is that both client and server of the storage systems must be in the same
administrative environment. If partition happens and client cannot observe this, the
transaction protocol would fail. However, network partitions are very common in
large distributed systems, and as the system scale goes up, the chances of network
partition would increase. This is one reason why one cannot achieve consistency and
availability at the same time. The CAP theory provides two choices for developers: (1)
sticking to strong consistency and allowing system goes unavailable under partitions
(2) using relaxed consistency [65] so that system is still available under network
partitions.

No matter what kind of consistency model the system uses, it requires that ap-
plication developers are fully aware of the consistency model. Strong consistency is
usually the easiest option for client developer. The only problem the developers have
to deal with is to tolerate the unavailable situation that might happen to the system.
If the system takes relaxed consistency and offers high availability, it may always
accept client requests, but client developers have to remember that a write may get
its delays and a read may not return the newest write. Then developers have to write
the application in a way so that it can tolerant the delay update and stale read. There
are many applications that can be design compatible for such relaxed consistency
model and work fine.

There are two ways of looking at consistency. One is from the developer/client
point of view: how they observe data updates. The other is from the server side: how
updates flow through the system and what guarantees systems can give with respect
to updates.

Let’s show consistency models using examples. Suppose we have a storage system
which we treat as a black box. To judge its consistency model we have several clients
issuing requests to the system. Assume they are client A, client B, client C. All
three clients issue both read and write requests to the system. The three clients are
independent and irrelevant. They could run on different machines, processes, or
threads. The consistency model of the system can be defined by how and when
observers (in this case the clients A, B, or C) see updates made to a data object in the
storage systems. Assume client A has made an update to a data object:

• Strong consistency. After the update completes, any subsequent access (from any
of A, B, or C) will return the updated value.

708 S. Mu et al.

• Weak consistency. The system does not guarantee that subsequent accesses will
return the updated value. A number of conditions need to be met before the
value will be returned. The period between the update and the moment when it
is guaranteed that any observer will always see the updated value is dubbed the
inconsistency window.

There are many kinds of weak consistency; we list some of the most common ones
as below.

• Causal consistency [66]. If client A has communicated to client B that it has
updated a data item, a subsequent access by client B will return the updated
value, and a write is guaranteed to supersede the earlier write. Access by client
C that has no causal relationship to client A is subject to the normal eventual
consistency rules.

• Eventual consistency [62]. This is a specific form of weak consistency; the storage
system guarantees that if no new updates are made to the object, eventually all
accesses will return the last updated value. If no failures occur, the maximum size
of the inconsistency window can be determined based on factors such as commu-
nication delays, the load on the system, and the number of replicas involved in the
replication scheme. The most popular system that implements eventual consis-
tency is the domain name system. Updates to a name are distributed according to
a configured pattern and in combination with time-controlled caches; eventually,
all clients will see the update [64].

• Read-your-writes consistency. This is an important model where client A, after
having updated a data item, always accesses the updated value and never sees an
older value. This is a special case of the causal consistency model.

• Session consistency. This is a practical version of the previous model, where a
client accesses the storage system in the context of a session. As long as the
session exists, the system guarantees read-your-writes consistency. If the session
terminates because of a certain failure scenario, a new session must be created
and the guarantees do not overlap the sessions.

• Monotonic read consistency. If a client has seen a particular value for the object,
any subsequent accesses will never return any previous values.

• Monotonic write consistency. In this case, the system guarantees to serialize the
writes by the same client. Systems that do not guarantee this level of consistency
are notoriously difficult to program.

These consistency models are not exclusive and independent. Some of the above
can be combined together. For example, the monotonic read consistency can be
combined with session-level consistency. The combination of the both consistencies
is very practical for developers in a cloud storage system with eventual consistency.
These two properties make it much easier for application developers to build up their
apps. They also allow the storage system to keep a relax consistency and provide
high availability. As you can see from these consistency models, quite a few different
circumstances are possible. Applications need to choose whether or not one can deal
with the consequences of particular consistency.

Cloud Storage over Multiple Data Centers 709

6 Cloud of Multiple Clouds

6.1 Introduction

Although cloud storage providers claim that their products are cost saving, trouble-
free, worldwide 24/7 available and reliable, reality shows that (1) such services are
sometimes not available to all customers; and (2) customers may experience vastly
different accessibility patterns from different geographical locations. Furthermore,
there is also a small chance that clients may not even be able to retrieve their data
from a cloud provider at all, which usually occurs due to network partitioning and/or
temporary failure of cloud provider. For example, authors of [67] reported that this
may also cause major cloud service providers to fail providing services for hours or
days sometimes. Although cloud providers sign Service Level Agreements (SLA)
with their clients to ensure availability of their services, users have complained
that these SLAs are sometimes too tricky to break. Moreover, even when a SLA is
violated, the compensation is only a minor discount for the payment and not to cover
a customer’s loss resulted by the violated SLA.

Global access experience can be considered as one specifically important issue of
availability. In current major cloud storages, users are asked to create region-specific
accounts/containers before putting their data blobs/objects into them. The storage
provider then stores data blobs/objects into a datacenter in the selected locations;
some providers may also create cross-region replicas solely for backup and disaster
recovery. A typical result of such topology is an observation where users may experi-
ence vastly different services based on the network condition between clients and the
datacenter holding their required data. Data loss and/or corruption are other impor-
tant potential threats to users’data should it be stored on a single cloud provider only.
Although users of major cloud storage providers have rarely reported data loss and/or
corruption, prevention of such problems is not 100 % guaranteed either. Medium to
small sized cloud providers may provide a more volatile situation to their customers
as they are also in danger of bankruptcy as well.

In this section, we present a system named μLibCloud to address the two afore-
mentioned problems of cloud customers; i.e., (1) availability of data as a whole and
(2) different quality of services for different customers accessing data from different
locations on the globe. μLibCloud is designed and implemented to automatically
and transparently stripe data into multiple clouds—similar to RAID’s principle in
storing local data. μLibCloud is developed based on Apache libCloud project [3],
and evaluated through global-wide experiments.

Our main contributions include: (1) to conduct global-wide experiments to show
how several possible factors may affect availability and/or global accessibility of
cloud storage services; (2) to use erasure codes based on observations. We then
design and implement μLibCloud using erasure code to run benchmarks accessing
several commercial clouds from different places in the world. The system proved the
effectiveness of our method.

710 S. Mu et al.

Fig. 9 Layer abstraction of
cloud storage

6.2 Architecture

Using a “cloud-of-cloud” rationale [68], μLibCloud is to improve availability and
global access experience of data. Here the first challenge is how to efficiently and
simultaneously use multiple cloud services. They follow different concepts and offer
different ways to access their services. As shown in Fig. 9, cloud storage providers
usually provide REST/SOAP web service interface to developers along with their
libraries for different programming languages for developers to further facilitate
building cloud applications. To concurrently use multiple cloud storages, two op-
tions are available. The first option is to set up proxy among cloud storages and
applications. In this case, all data requests need to go through this proxy. To store
data in cloud storages, this proxy receives original data from client, divides the data
into several shares, and sends each share to different clouds using different libraries.
To retrieve data, it fetches data shares from each cloud, rebuilds the data, and sends
it back to clients. The second option—more complicated—is to integrate the sup-
port for multiple cloud storages directly into a new client library—replacing original
ones. In this case, client applications only use this newly provided library to connect
to all clouds. The main difference between these two options is the transparency in
the second option to spread/collect data to/from multiple clouds.

The first choice is more straightforward in design; it uses a single layer for extra
work, keeps the client neat and clean, includes many original libraries when imple-
mented, and is usually run on independent servers. It also brings more complexity to
system developers to maintain extra servers and their proper functioning. The second
choice, on the other hand, benefits developers by providing them a unique tool; this
approach also reduces security risk because developers do not need to put their secret
keys on the proxy. It however also leads to other challenges on how to design and
implement such systems; e.g., how multiple clients can coordinate with each other
without extra servers. Furthermore, the client library must be efficient and resource
saving because it needs to be run along with application codes.

In the design of μLibCloud, we chose to practice the second option so that it will
have lesser of a burden on application developers. We also assume that consumers
who choose to use cloud storage rather than to build their own infrastructure would
not want to set up another server to make everything work. Figure 10 shows the basic
architecture of μLibCloud with a single client; this figure also shows how μLibCloud
serves upper-level users, while hiding most of development complexities of such
systems.

Cloud Storage over Multiple Data Centers 711

Fig. 10 Architecture with
single client

Fig. 11 Principle of erasure
coding

6.3 Data Striping

As described before, data is first encoded into several original and redundant shares,
and then stored on different providers. Through this redundancy, data not only is
protected against possible failures of particular providers—high availability, but also
tolerates the instability of individual clouds and provides consistent performance.

Among many possible choices for data encoding [69], we choose the most widely
used erasure code [70] that is widely used in both storage hardware [71] and dis-
tributed systems [72]. Here, coding efficiency is a major concern because all the data
striping algorithm work is performed at clients’ side; i.e., large overheads that could
decrease performance of applications is strongly unacceptable.

Figure 11 shows principles of erasure coding. As can be seen, data is first divided
into k equal-sized fragments called original data shares. Then, r parity fragments
with the same size as original data shares are computed and called redundant data

712 S. Mu et al.

Fig. 12 Data stripes stored in
each cloud

shares. This will generate a total of m = k + r equal-sized shares. The erasure code
algorithm guarantees any arbitrary k shares—out of total m shares—is sufficient
enough to reconstruct the original data. Both k and r are positive values and are
predefined by each user.

Here, we also define redundancy rate as R =m/k to reflect the amount of storage
overhead for storing data. For example, if k = 1, m = 2; then, R =m/k = 200 %. It
means that each data takes twice of its original size when stored: one original and one
replica. In this case, each piece is enough to reconstruct the original data—like RAID
1 (mirroring). If k = 4, m = 5 (like RAID 5); then, R =m/k = 120 %. It means that
we need extra 20 % of storage to store any data. In this case, every four pieces—out
of all available five pieces—are enough to reconstruct the original data.

In practice, we do not simply just divide an object into several parts and encode
them, but the original data is first divided into several chunks, and then erasure coding
is performed on each chunk; default chunk’s size is usually 64 KB (Fig. 12). There
are two benefits in splitting data into several chunks: (1) computation of erasure
coding can be parallelized, and (2) reading and writing of file data—such as video
and audio—can also be easily supported.

Cloud Storage over Multiple Data Centers 713

6.4 Retrieving Strategy

If a developer divides data into (k, m) shares, among all m parts of data the client
library only needs k parts to reconstruct the original data. Although retrieving all parts
of data could avoid the potential risks of failures, it is unnecessary in most cases.
It also wastes more bandwidth and costs more money. Here, although retrieving k
data shares to recover the data is enough, selecting the best possible k shares can be
tricky. In μLibCloud we offer the following three data fetching strategies.

1. Efficient: Users want to use the k most available clouds to retrieve data pieces.
Here, to determine which ones are faster, μLibCloud dynamically measures their
download speed. When retrieving an object, all metadata files are downloaded
first and their link speed is recorded. Upon that, k fastest clouds to fetch data
are selected. During downloading the main data, μLibCloud keeps recording the
download speed to compute its average. The larger data is, the more accurate
network estimation would be.

2. Economical: If application is mainly run in the background—like a backup pro-
gram storing data into clouds [73]—, users can tolerate spending more time. In
such cases, economical cost is more important than speed. μLibCloud also offers
a cost-saving mode, in which it will select k providers with lowest prices.

3. Custom: We also offer an option, allowing developers to set priorities of their
own. This may be preferable in case that they are using computing and storage
resources provided by the same provider. For example, if a developer is deploying
applications into EC2 and use storage of S3, it would be reasonable that s/he wants
to use S3 as the first choice.

6.5 Mutual Exclusion

When there is more than one client in the system, they must be able to coordinate
with each in certain ways to avoid conflicts. Such conflicts can result in not only
client read failures, but also inconsistent states and/or even data loss. For example,
if two clients concurrently write to the same data file without any locking, they may
write to each other’s share and produce problems. In the worst case scenario, if the
provider takes an eventual consistency model (like Amazon S3), all unordered writes
would succeed although only the later ones become effective. As a result, it would be
very probable that a client succeeds modifying several data shares, while the other
client succeeds in the rest of data shares; both clients would return successful, while
data inconsistency has already occurred! The following options are among the most
suitable one for our needs.

1. Setting up a central lock server such as ZooKeeper [74] to coordinate all writes.
This approach is easy and correct for a system like μLibCloud, yet with certain
flaws. Firstly, with this approach clients need to maintain another system, which
violates goals and principles of using clouds for simplicity in the first place.

714 S. Mu et al.

Secondly, coordinators like ZooKeeper usually have throughput issues because
of their leader-follower architecture, especially in internet-scale situation. Al-
though this can be reduced by manually partitioning data onto multiple groups of
ZooKeeper systems, this would still make the system extremely complex.

2. Running a client-client agreement protocol. Here, instead of deploying an addi-
tional central lock service, agreement protocols such as Paxos [75] handles the
situation. This approach eliminates the trouble of bringing a lock service, but
requires clients to be able to communicate with each other. In this case, frequent
membership changes can seriously damage system performance. In fact, this ap-
proach is almost the same—in logic—as the first option if each client runs with
a ZooKeeper member deployed to the same machine.

3. Manipulating lock files on each cloud storage. Instead of setting up an additional
lock server or running an agreement protocol among clients, there is another ap-
proach more suitable to this situation. Each client creates empty files on each
cloud as lock-files; this is called mutual exclusion in the area of distributed algo-
rithms [76]. This option is more difficult to achieve because each cloud is purely
an object storage that offers neither computing ability, nor a common compare
and swap (cas) semantics usually used in fulfilling lock services.

In order to achieve mutual exclusion without introducing new bottlenecks, we intro-
duced Algorithm 1 based on the third option. This algorithm is an improved version
of another algorithm formerly designed by Bessani [77].

Cloud Storage over Multiple Data Centers 715

Following comments is worth noting about this algorithms.

1. The algorithm is fault tolerate to possible failures of less than m/2 providers. In
case a client fails and stops during any step, we add a timestamp tcreate to the name
of each lock file. Thus, when a client lists a file name with the tcreate+ tdelta < tnow,
s/he can confidently deletes the expiring lock. To maintain correctness, we must
choose a tdelta large enough to cover the entire operation time when created; it
must also be able to tolerate possible time differences among clients.

2. To be correct, the algorithm requires each cloud to have an appropriate consistency
model. To be specific, after each ‘create’ command all lists must see the creation.
However, several major cloud providers, such as Amazon S3, employ an eventual
consistency model [78]. It means the writes are not visible to reads immediately,
and if one client detects a change, it does not imply other clients can also detect
it. To tolerate eventual consistency, the client may need to wait for another time
period, after each write to make sure it can be seen by all clients too. The time
period is set by observation to model time delays among clients [64].

Amazon S3 recently releases an enhanced consistency model to most of its cloud
storages, namely “read-after-write” consistency to ensure that for newly created ob-
jects, the write (not overwrite) can be seen immediately. Our algorithm (Algorithm 1)
employs this feature in its locking system; this is why Algorithm 1 creates new lock
files instead of writing to the old ones.

3. The algorithm is obstruction-free [79]; i.e., it is still possible—although very
rare—that no client can progress. This flaw could be tolerated because most
applications tend to have many more reads than writes—where only very few
writes require mutual exclusion.

7 Privacy and Security of Storage System

7.1 Introduction

In the last few years, cloud computing has enabled more and more customers (such as
companies or developers) to run their applications on the remote servers with elastic
storage capacity and computing resources required on demand. The proliferation
of cloud computing encourages customers to store and keep their data in the cloud
instead of maintaining local data storage [32–34, 38, 39]. However, a key factor
that may hinder the process of data migration from local storage to the cloud is the
potential privacy and security concerns inside clouds [33, 34]. As customers don’t
own and manage remote servers directly by themselves, any malicious applications or
administrators in the cloud can get access to, abuse or even damage the data of normal
customers’applications. This phenomenon is especially adverse to the confidentiality
of sensitive data objects of customers such as banks or financial companies. Under
this circumstance, datacenters in the cloud must maintain strong protections on the

716 S. Mu et al.

privacy and security of data objects against untrustworthy applications, servers and
administrators during the process of data storing and accessing [34, 36, 39, 46].

To guarantee data privacy and security in storage system of datacenters in the
cloud, several basic solutions such as data access control [38–41], data isolation
[36, 37, 42, 46, 47] and cryptographic techniques [35, 40, 43–45] have been proposed
by researchers. All these solutions are intended to meet different requirements of
data privacy and security and to make even the most privacy and security demanding
applications to migrate their sensitive data into cloud with no concerns. In this section,
combined with our experience of building privacy and security policies in datacenters
in the cloud, we will present how these mechanisms can be used in a real world.

7.2 Fine-Grained Data Access Control

Data access control is highly related to the privacy and security provided to applica-
tions when they are accessing the data [33, 38, 39, 41]. Applications, if not allowed,
don’t have the authority to access the data of others. Besides, each application may
have its own access control policies to maintain the data privacy and security among
its users. For instance, one application may require that only its administrators can
have the authority to modify and delete its data and other common users can only read
these data. Therefore, storage systems in datacenters must ensure strict and flexible
data access control mechanisms for upper applications to secure the data object sets
of every application.

Figure 13 illustrates the overview of a fine-grained access control mechanism on
data object level in a datacenter. As presented in Fig. 13, there are two main data
structures for the correct process of fine-grained data-object-level access control: a
set of lists keeping the keys of data objects that belong to each application and a set
of tables recording each application’s access control policy. Every application owns
its list of keys and access control policy table. When one application stores a data
object into the datacenter, the storage system will allocate a globally unique key to
this data object and add this key into the list of this application, which means this
data object does belong to such application. Denote an application as Pn, the list of
Pn as Ln, a data object as dm and the key of data object dm as km, then the process of
storing data in this mechanism could be summarized as Algorithm 2.

Cloud Storage over Multiple Data Centers 717

Fig. 13 The overview of the fine-grained access control mechanism on the data object level

When an access request for a data object issued from an application arrives at the
datacenter, the storage system will first get the key of the data object and verifies
if this key is in this application’s list. Storage system will forbid the application
to access this data object if the verification fails. This procedure ensures that data
objects of one application are isolated from the other applications against illegal
intrusion. Moreover, if the verification passes, the system will further check if this
access request meets the requirements listed in the access control policies table of the
application. This will prevent unauthorized application users from abusing operations
on data of this application that may potentially damage these data. Applications can
set and modify their access control policies according to their own demands and the
policy information are recorded in their access control policy tables respectively. The
access request is accepted and processed only after the check in the access control
policy table successes. Denote an access request as Rp and access control policies
table of application Pn as Tn, then the procedure to process an access request can be
illustrate as Algorithm 3.

WithAlgorithm 2 andAlgorithm 3, the data privacy and security could be achieved
across applications through fine-grained data-object-level access control mechanism
without impacting the normal usage of data by authorized users of each application.
Furthermore, as these two data structures (lists and tables) that are used by the
access control mechanism could keep a consistent view across multiple datacenters
using replication strategy presented in Sect. 3, the privacy and security of data could
be easily guaranteed through this fine-grained data-object-level data access control
mechanism among multiple datacenters in the cloud.

718 S. Mu et al.

7.3 Security on Storage Server

Under fine-grained data-object-level access control mechanism, the privacy and se-
curity of applications’ data could be protected against external untrusted users and
applications. However, data stored in the storages servers of datacenters are still prone
to abuse or compromise by untrusted processes running in these servers or malicious
administrators of datacenters that can get the whole authority of the OS [36, 37, 51].
To address this issue, most studies [36, 37, 42, 46, 47, 51] use virtual-machine-based
protection mechanisms to isolate applications’ data kept in hardware (memories and
disks) of storage servers from operating systems and other processes, and to authen-
ticate the integrity of these data. This protection ensures that even operating systems
carry out the overall task of managing data they cannot read or modify them. With
this guarantee, even though malicious administrators or untrusted processes get the
authority of OS, they have no access to abusing or damaging the data stored in the
hardware. When trusted applications request to get their data, this mechanism would
make sure that these applications will be presented with a normal view of their orig-
inal data, hiding the complex underlying details of protection. Hence, the privacy
and security of applications’ data can be maintained in storage servers of datacenters
in the cloud.

Figure 14 characterizes the architecture of the privacy and security protection
mechanism in storage servers. The key component, as shown in Fig. 14, to protect
the privacy and security of applications’data in hardware is the virtual machine mon-
itor (VMM). The VMM could monitor the process/OS interactions such as system
calls [36, 42] and directly manage the hardware to isolate memories and disks from
operating systems [37, 42, 46], which makes it possible to prevent the data privacy
and security against malicious processes or administrators that can get the authority
to control operating systems.

Cloud Storage over Multiple Data Centers 719

Fig. 14 The architecture of the privacy and security protection mechanism in a storage server

Generally, each process owns its independent virtual memory address space and
is associated with a page table that maps the virtual memory address into the physical
memory address [48] to use memory. The page tables of processes and the operations
of address mappings are managed by the OS and thus, it has the authority to access
the memory address space of all processes running on it. As applications’ requests
are served by specific processes in storage servers of datacenters, once malicious
processes or administrators steal the operating system’s authority, they can easily
access the data of other normal processes through their page tables and threaten the
privacy and security of applications’ data. To address this challenge, VMM could
protect the page tables of each process and complete the operations of memory
address mappings instead of operating system [48, 51]. The OS can only access its
kernel memory space through its own page table, without interleaving with other
processes. However, even though the OS doesn’t know the distribution of processes’
virtual memory in the physical memory, malicious processes or administrators could
also access the physical memory through OS [48, 49] and analyze or tamper the data
in the memory [42, 50]. As a result, VMM is responsible for keeping the data in the
physical memory in an encrypted and integrated view [49]. When a process requests
to put data into memory, VMM will detect this request, encrypt the data and then put
the encrypted data into the memory. If one trusted process requests to get its data in
the memory, VMM will first authenticate the integrity of the encrypted data and then
decrypt them before returning the original clear data to this process, which doesn’t
have to cover this middle process and just utilizes memory as normal. To complete
the encrypting and decrypting procedures mentioned above, VMM holds a specific

720 S. Mu et al.

zone of memory that is secure enough against the attacks from operating systems
and processes. Consequently, when processes are serving applications’ requests in
memory of storage servers, the privacy and security of their data in memory can be
strongly protected.

As most of applications’data will be stored into disks of storage servers in datacen-
ters, it is also critical to guarantee the privacy and security of data in disks [36, 42, 51]
not only because untrusted processes and administrators that get the authority of OS
can directly access data in disks through I/O operations, but administrators could
fetch disks manually. As a result, data in disks must also be stored in an encrypted
view so that even some processes or administrators get control on the disks of storage
servers, they have no way to abuse or compromise the data stored in them. VMM also
has the responsibility for data encryption/decryption when processes interact with
disks through the OS. When a process wants to write its data into disks, it will use
a system call sys_write [48] and passes the data to the operating system, which will
execute the operations to really write data to disks. VMM will detect this system call
from the process and obtain the data before passing to the operating system. Then
VMM encrypts these data and calculate the checksum of the encrypted data for future
integrity verification. After this procedure, VMM will transfer the encrypted data to
the operating system that will normally write these data into disks. Similarly, when
one process requests to get its data from disks, it will issue a system call sys_read
to the operating system to fetch these data. VMM will also detect this system call
and wait for the operating system to complete the read operations of the encrypted
data. Then VMM authenticates the integrity of the encrypted data, decrypts them and
return plain data to the process. All the underlying details of encryption/decryption
are still hidden from the processes and to the operating system, although it manages
the data during the operations of read and write, it only views data after encryption
and can’t threaten the privacy and security of the original data objects.

With these virtual-machine-based mechanisms, the data of applications can be
kept in storage servers of datacenters without concerns of being abused or compro-
mised by malicious processes or administrators in the datacenters. As data privacy
and security can be achieved in hardware of each storage server, datacenters in the
cloud have the ability to provide high privacy and security for applications to move
their large sets of data into cloud and freely access their data on demands.

8 Conclusion and Future Directions

In this chapter we mainly discussed the architecture of modern cloud storage and
several key techniques used in building such systems. Cloud storage systems are
typically large distributed systems composed of thousands of machines and network
devices over many datacenters across multiple continents. Cloud storage and cloud
computing are the very mixture of modern storage and network technology. To
build and maintain such systems calls for large amount of efforts from numerous
developers and maintainers. Although we have discussed about replication, data

Cloud Storage over Multiple Data Centers 721

striping, data consistency, security and some other issues, there are still much more
of the iceberg we have not touched. Many conventional techniques in traditional
storage techniques applied in cloud storage have the potentiality to evolve, such as
the example we give about cloud-of-clouds, which arise from the traditional RAID
system. To summarize, cloud storage is a valued area in both practice and research,
and the goal of this chapter is to provide a glimpse into it when it grows into a global
scale.

References

1. Varia, Jinesh. “Cloud architectures.” White Paper of Amazon, jineshvaria. s3. amazonaws.
com/public/cloudarchitectures-varia. pdf (2008).

2. Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie,
Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy
Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-
basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj,
Sowmya Dayanand, Anitha Aduzsumilli, Marvin McNett, Sriram Sankaran, Kavitha Mani-
vannan, Leonidas Rigas. Windows Azure Storage: a highly available cloud storage service
with strong consistency. Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP’11), pages 143–157, 2011.

3. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-
subramanian, P. Vosshall, W. Vogels. Dynamo: amazon’s highly available key-value store.
Proceedings of twenty-first ACM SIGOPS Symposium on Operating Systems Principles
(SOSP’ 07), pages 205–220, 2007.

4. Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung. The Google file system. Proceedings of
the nineteenth ACM Symposium on Operating Systems Principles (SOSP’ 03), pages 29–43,
2003.

5. Chang, Fay, et al. “Bigtable: A distributed storage system for structured data.” ACM
Transactions on Computer Systems (TOCS) 26.2 (2008): 4.

6. James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson
Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szy-
maniak, Christopher Taylor, Ruth Wang, Dale Woodford, D. Woodford. Spanner: Google’s
globally-distributed database. Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation (OSDI’ 12), pages 251–264, 2012.

7. Yair Sovran, Russell Power, Marcos K. Aguilera, Jinyang Li. Transactional storage for geo-
replicated systems. Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles (SOSP’11), pages 385–400, 2011.

8. Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, David G. Andersen. Don’t settle for
eventual: scalable causal consistency for wide-area storage with COPS. Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles (SOSP’11), pages 401–416,
2011.

9. Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguica, Rodrigo Rodrigues.
Making geo-replicated systems fast as possible, consistent when necessary. Proceedings of
the 10th USENIX conference on Operating Systems Design and Implementation (OSDI’12),
pages 265–278, 2012.

10. Luiz André Barroso, Urs Hölzle. The Datacenter as a Computer: An Introduction
to the Design of Warehouse-Scale Machines. Morgan & Claypool Publishers, DOI:
10.2200/S00193ED1V01Y200905CAC006, 2009.

722 S. Mu et al.

11. Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James Larson,
Jean-Michel Leon, Yawei Li, Alexander Floyd, Vadim Yushprakh. Megastore: Providing Scal-
able, Highly Available Storage for Interactive Services. In 5th Conference on Innovative Data
Systems Research, pages 223–234, 2011.

12. Avinash Lakshman, Prashant Malik. Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review, 44(2), pages 35–40, 2010.

13. D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, C. H. Hauser. Man-
aging update conflicts in Bayou, a weakly connected replicated storage system. Proceedings of
the fifteenth ACM Symposium on Operating Systems Principles (SOSP’95), pages 172–182,
1995.

14. Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno, Nick Puz, Daniel Weaver, Ramana Yerneni. PNUTS: Yahoo!’s hosted
data serving platform. Proceedings of the VLDB Endowment, 1(2), pages 1277–1288, 2008.

15. Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: a
tutorial. ACM Computing Surveys (CSUR), 22(4), pages 299–319, 1990.

16. Leslie Lamport. Paxos made simple. ACM SIGACT News Distributed Computing Column,
32(4), pages 18–25, 2001.

17. Tushar D. Chandra, Robert Griesemer, Joshua Redstone. Paxos made live: an engineering per-
spective. Proceedings of the twenty-sixth annualACM Symposium on Principles of Distributed
Computing, pages 398–407, 2007.

18. Mike Burrows. The Chubby lock service for loosely-coupled distributed systems. Proceedings
of the 7th symposium on Operating Systems Design and Implementation (OSDI’06), pages
335–350, 2006.

19. Jeff Dean. Designs, Lessons, and Advice from Building Large Distributed Systems. Keynote
from LADIS, 2009.

20. Stacy Patterson, Aaron J. Elmore, Faisal Nawab, Divyakant Agrawal, Amr El Abbadi. Se-
rializability, not serial: concurrency control and availability in multi-datacenter datastores.
Proceedings of the VLDB Endowment, 5(11), PAGES 1459–1470, 2012.

21. Werner Vogels. Eventually consistent. Communications of the ACM—Rural engineering
development, 52(1), pages 40–44, 2009.

22. Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, Thomas Anderson. Scalable
consistency in Scatter. Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP’11), pages 15–28, 2011.

23. Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong, Luiz
Barroso, Carrie Grimes, Sean Quinlan. Availability in globally distributed storage systems.
Proceedings of the 9th USENIX conference on Operating Systems Design and Implementation
(OSDI’10), No. 1–7, 2010.

24. Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Carlos Maltzahn. CRUSH: controlled, scalable,
decentralized placement of replicated data. Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, 2006.

25. Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, David G. Andersen. Stronger Seman-
tics for Low-Latency Geo-Replicated Storage. Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’13), 2013.

26. Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, Harbinder
Bhogan. Volley: automated data placement for geo-distributed cloud services. Proceedings of
the 7th USENIX conference on Networked Systems Design and Implementation (NSDI’10),
2010.

27. Anton Beloglazov, Rajkumar Buyya. Energy Efficient Resource Management in Virtualized
Cloud Data Centers. Proceedings of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, pages 826–831, 2010.

28. Zhichao Li, Kevin M. Greenan, Andrew W. Leung, Erez Zadok. Power Consumption in
Enterprise-Scale Backup Storage Systems. Proceedings of the Tenth USENIX Conference
on File and Storage Technologies (FAST ’12), pages 65–71, 2012.

Cloud Storage over Multiple Data Centers 723

29. J. G. Koomey. Growth in data center electricity use 2005 to 2010. Technical report, Standord
University, 2011.

30. Yi Lin, Bettina Kemm, Marta Patiño-Martínez, Ricardo Jiménez-Peris. Middleware based data
replication providing snapshot isolation. Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 419–430, 2005.

31. Daniel Peng, Frank Dabek. Large-scale incremental processing using distributed transactions
and notifications. Proceedings of the 9th USENIX conference on Operating Systems Design
and Implementation, 2010.

32. Cong Wang, Qian Wang, and Kui Ren, Wenjing Lou. Privacy-Preserving Public Auditing for
Data Storage Security in Cloud Computing. Proceedings of IEEE INFOCOM, 2010.

33. S. Subashini, V. Kavitha. A survey on security issues in service delivery models of cloud
computing. Journal of Network and Computer Applications, 34(1), pages 1–11, 2011.

34. H. Takabi, J.B.D. Joshi, G. Ahn. Security and Privacy Challenges in Cloud Computing
Environments. IEEE Security and Privacy, 8(6), pages 24–31, 2010.

35. Kevin D. Bowers, Ari Juels, Alina Oprea. HAIL: a high-availability and integrity layer for
cloud storage. Proceedings of the 16th ACM conference on Computer and Communications
Security (CCS’09), pages 187–198, 2009.

36. Fengzhe Zhang, Jin Chen, Haibo Chen, Binyu Zang. CloudVisor: retrofitting protection of
virtual machines in multi-tenant cloud with nested virtualization. Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (SOSP’11), pages 203–216, 2011.

37. Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A. Wald-
spurger, Dan Boneh, Jeffrey Dwoskin, Dan R.K. Ports. Overshadow: a virtualization-based
approach to retrofitting protection in commodity operating systems. Proceedings of the 13th
international conference on Architectural Support for Programming Languages and Operating
Systems, pages 2–13, 2008.

38. Wassim Itani, Ayman Kayssi, Ali Chehab. Privacy as a Service: Privacy-Aware Data Storage
and Processing in Cloud Computing Architectures. Proceedings of Eighth IEEE International
Conference on Dependable, Autonomic and Secure Computing, pages 711–716, 2009.

39. Shucheng Yu, Cong Wang, Kui Ren, Wenjing Lou. Achieving Secure, Scalable, and Fine-
grained Data Access Control in Cloud Computing. Proceedings of IEEE INFOCOM, 2010.

40. Vipul Goyal, Omkant Pandey, Amit Sahai, Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. Proceedings of the 13th ACM conference on
Computer and Communications Security (CCS’06), pages 89–98, 2006.

41. Myong H. Kang, Joon S. Park, Judith N. Froscher. Access control mechanisms for inter-
organizational workflow. Proceedings of the sixth ACM symposium on Access Control Models
and Technologies, pages 66–74, 2001.

42. H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, P. Yew, and W. Mao. Tamper-resistant
execution in an untrusted operating system using a virtual machine monitor. Parallel Processing
Institute Technical Report, Number: FDUPPITR-2007-0801, Fudan University, 2007.

43. Lein Harn, Hung-Yu Lin. A cryptographic key generation scheme for multilevel data security.
Computer & Security, 9(6), pages 539–546, 1990.

44. Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, Reto Strobl. Asynchronous verifiable se-
cret sharing and proactive cryptosystems. Proceedings of the 9thACM conference on Computer
and Communications Security (CCS’02), pages 88–97, 2002.

45. Phillip Rogaway. Bucket hashing and its application to fast message authentication. CRYPTO,
volume 963 of LNCS, pages 29–42, 1995.

46. David Lie, Chandramohan A. Thekkath, Mark Horowitz. Implementing an untrusted operating
system on trusted hardware. Proceedings of the nineteenth ACM Symposium on Operating
Systems Principles (SOSP’03), pages 178–192, 2003.

47. Stephen T. Jones, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. Geiger: monitoring
the buffer cache in a virtual machine environment. Proceedings of the 12th international con-
ference on Architectural Support for Programming Languages and Operating Systems, pages
14–24, 2006.

724 S. Mu et al.

48. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne. Operating System Concepts. John
Wiley & Sons, 2009.

49. Guillaume Duc, Ronan Keryell. CryptoPage: an Efficient Secure Architecture with Memory
Encryption, Integrity and Information Leakage Protection. Proceedings of the 22nd Annual
Computer Security Applications Conference (ACSAC’06), pages 483–492, 2006.

50. David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John
Mitchell, Mark Horowitz. Architectural support for copy and tamper resistant software. ACM
SIGPLAN Notices, 35(11), pages 168–177, 2000.

51. Hou Qinghua, WuYongwei, Zheng Weimin, Yang Guangwen. A Method on Protection of User
Data Privacy in Cloud Storage Platform. Journal of Computer Research and Development,
48(7), pages 1146–1154, 2011.

52. Reed I S, Solomon G. Polynomial codes over certain finite fields [J]. Journal of the Society for
Industrial & Applied Mathematics, 1960, 8(2): 300–304.

53. Roth R M, Lempel A. On MDS codes via Cauchy matrices [J]. Information Theory, IEEE
Transactions on, 1989, 35(6): 1314–1319.

54. Blaum M, Farrell P, Tilborg H. Array Codes [M]. Amsterdam, Netherlands: Elsevier Science
B V, 1998.

55. Blaum M, Brady J, Bruck J, et al. EVENODD: An efficient scheme for tolerating double disk
failures in RAID architectures[J]. Computers, IEEE Transactions on, 1995, 44(2): 192–202.

56. Xu L, Bruck J. X-code: MDS array codes with optimal encoding[J]. Information Theory, IEEE
Transactions on, 1999, 45(1): 272–276.

57. Huang, Cheng, et al. “Erasure coding in windows azure storage.” USENIX ATC. 2012.
58. Dimakis A G, Godfrey P B, Wu Y, et al. Network coding for distributed storage systems[J].

Information Theory, IEEE Transactions on, 2010, 56(9): 4539–4551.
59. Khan, Osama, et al. “Rethinking erasure codes for cloud file systems: Minimizing I/O for

recovery and degraded reads.” Proc. of USENIX FAST. 2012.
60. Xiang, Liping, et al. “Optimal recovery of single disk failure in RDP code storage systems.”

ACM SIGMETRICS Performance Evaluation Review. Vol. 38. No. 1. ACM, 2010.
61. Brewer, Eric A. “Towards robust distributed systems.” PODC. 2000.
62. Vogels, Werner. “Eventually consistent.” Communications of the ACM 52.1 (2009): 40–44.
63. Birman, Kenneth P. “Consistency in Distributed Systems.” Guide to Reliable Distributed

Systems. Springer London, 2012. 457–470.
64. Bermbach, David, and Stefan Tai. “Eventual consistency: How soon is eventual? An evaluation

of Amazon S3’s consistency behavior.” Proceedings of the 6th Workshop on Middleware for
Service Oriented Computing. ACM, 2011.

65. Zhou, Yuanyuan, et al. “Relaxed consistency and coherence granularity in DSM systems: A
performance evaluation.” ACM SIGPLAN Notices. Vol. 32. No. 7. ACM, 1997.

66. Adve, Sarita V., and Kourosh Gharachorloo. “Shared memory consistency models: A tutorial.”
computer 29.12 (1996): 66–76.

67. Serious cloud failures and disasters of 2011. http://www.cloudways.com/blog/cloud-failures-
disastersof-2011/.

68. D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow, “Blueprint for the
intercloud—protocols and formats for cloud computing interoperability,” Internet and Web
Applications and Services, International Conference on, vol. 0, pp. 328–336, 2009.

69. R. G. Dimakis, P. B. Godfrey, Y. Wu, M. O. Wainwright, and K. Ramch, “Network coding for
distributed storage systems,” in In Proc. of IEEE INFOCOM, 2007.

70. L. Rizzo, “Effective erasure codes for reliable computer communication protocols,” SIG-
COMM Comput. Commun. Rev.,vol. 27, no. 2, pp. 24–36, Apr. 1997. [Online]. Available:
http://doi.acm.org/10.1145/263876.263881

71. H. P.Anvin. The mathematics of raid-6. http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf.
72. H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication: A quantitative

comparison,” Peer-to-Peer Systems, pp. 328–337, 2002.
73. M. Vrable, S. Savage, and G. M. Voelker, “Cumulus: Filesystem backup to the cloud,” Trans.

Storage, vol. 5, no. 4, pp. 14:1–14:28, Dec. 2009. [Online]. Available: http://doi.acm.org/
10.1145/1629080.1629084

http://www.cloudways.com/blog/cloud-failures-disastersof-2011/
http://www.cloudways.com/blog/cloud-failures-disastersof-2011/
http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf
http://doi.acm.org/10.1145/1629080.1629084
http://doi.acm.org/10.1145/1629080.1629084

Cloud Storage over Multiple Data Centers 725

74. P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: waitfree coordination for
internet-scale systems,” in Proceedings of the 2010 USENIX conference on USENIX annual
technical conference, ser. USENIXATC’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 11–11.

75. L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4, pp. 18–25, 2001.
76. N. A. Lynch, Distributed algorithms. Morgan Kaufmann, 1996.
77. A. Bessani, M. Correia, B. Quaresma, F.Andr´e, and P. Sousa, “Depsky: dependable and secure

storage in a cloud-of-clouds,” in Proceedings of the sixth conference on Computer systems,
ser. EuroSys’11. New York, NY, USA: ACM, 2011, pp. 31–46.

78. W. Vogels, “Eventually consistent,” Communications of the ACM, vol. 52, no. 1, pp. 40–44,
2009.

79. M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchronization: Double-ended
queues as an example,” in Distributed Computing Systems, 2003. Proceedings. 23rd
International Conference on. IEEE, 2003, pp. 522–529.

80. Csc cloud usage index. http://www.csc.com/.
81. D. Ionescu. (Oct. 2009) Microsoft red-faced after massive sidekick data loss. pcworld.

Part IV
Hardware

Realizing Accelerated Cost-Effective
Distributed RAID

Aleksandr Khasymski, M. Mustafa Rafique, Ali R. Butt,
Sudharshan S. Vazhkudai and Dimitrios S. Nikolopoulos

1 Introduction

The deluge of data from scientific instruments (SNS [1], LHC [2]), experiments
(DZero [3]) and observations (SDSS [4]) will soon surpass the ability of storage
systems to store and retrieve data in a reliable and cost-effective manner. While the
capacity, performance and the mean time to failure (MTTF) of a single disk has been
improving, large-scale storage systems and parallel file systems (PFS) can comprise
tens of thousands of drives, thus bringing down the overall mean time to data loss
(MTTDL) of the entire system to unacceptably low levels. For example, the Lustre-
based Spider PFS of the Jaguar supercomputer (No. 3 machine on the Top500 [5]
list) comprises 10,000+ disks [6]. An exaflop machine in 2018 is projected [7] to
host hundreds of thousands of drives to support the desired I/O throughput. The “law
of large numbers” in this case only reiterates that failure will be a norm and not an
exception. The reliability and robustness of the I/O system is crucial to large-scale
applications that generate and analyze terabytes of data. Trends from commercial

A. Khasymski (�) · A. R. Butt
Virginia Tech, Blacksburg, VA, 24061 USA
e-mail: khasymskia@cs.vt.edu

M. M. Rafique
IBM Research, Ballsbridge, Ireland
e-mail: mustafa.rafique@ie.ibm.com

A. R. Butt
e-mail: butta@cs.vt.edu

S. S. Vazhkudai
Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
e-mail: vazhkudaiss@ornl.gov

D. S. Nikolopoulos
Queen’s University of Belfast, Belfast, UK
e-mail: d.nikolopoulos@qub.ac.uk

© Springer Science+Business Media New York 2015 729
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_25

730 A. Khasymski et al.

and HPC centers suggest, that on average, 3–7 % of disks fail per year [8]. Thus,
storage systems are a significant contributor to system failure.

To increase the fault tolerance of storage systems, disks in each storage server
are usually combined in a RAID (Redundant Array of Independent Disks) array that
provides some level of redundancy. For example, RAID-6 contains k + m disks, with
k data disks and m = 2 parity disks. The array can recover from simultaneous failure
of up to m disks. Data reconstruction time (in the event of a failure) is proportional to
the drive size, load and the number of drives in the RAID group, and is in the order of
a few hours even for standard disk sizes. For example, the reconstruction time for a
2 GB disk is approximately 30 min [9]. During reconstruction, applications achieve
degraded I/O rates, at best. This is only bound to get worse with large-scale storage
systems.

Historically, RAID has been implemented in hardware because of its high through-
put compared to a software based solution. Hardware RAID controllers, unlike the
rest of the storage system, rely on proprietary hardware. These non-commodity
parts are usually expensive, receive infrequent software upgrades, and can become a
bottleneck, especially during degraded array reconstruction. The high cost of sophis-
ticated embedded RAID controllers—a typical 16 TB RAID setup could easily cost
in excess of $ 15000 [10]—also implies that such solutions are beyond the reach of
mid-sized institutions, small-scale clusters, and storage systems with limited provi-
sioning budgets. Even with supercomputing centers, where the cost of provisioning
and operating a scalable, reliable storage system can run on the order of millions of
dollars, there is a need to reconcile the storage cost against the FLOPS purchased, as
machines are often ranked in terms of peak FLOPS. Thus, providing a desired level
of reliability and redundancy for the storage system under a given budget constraint
is always a challenge, be it in supercomputing centers, mid-sized or small-scale
systems.

In recent years, GPUs from NVIDIA andAMD have shifted from closed peripher-
als used to render graphics images to inexpensive commodity parallel accelerators.
They provide general-purpose APIs that can be used to accelerate many types of
computations. While currently GPUs are mainly used in scientific workloads, recent
studies have explored applying them to I/O workloads [11–15]. These efforts have
shown that GPUs can be used effectively for parity computation using Reed-Solomon
coding [16] as well as other I/O workloads, such as hashing [17].

Further, large-scale machines are beginning to be provisioned with GPUs. For
example, the state-of-the-art Keeneland supercomputer [18], is a combination of Intel
Nehalem and NVIDIA Tesla GPUs. Similarly, a planned 20 petaflop machine for
2012, Titan [19], will use a hybrid architecture, with each node featuring two 16-core
AMD Opteron processors and two Tesla X2090 GPUs. Additionally, GPUs provide
a cost-efficient solution compared to general purpose CPUs (GPPs), especially when
GPUs are coupled with a few GPPs [20]. Thus, GPUs are quickly being adopted in
a myriad of fields, ranging from scientific workload processing [21] to education in
the developing world [22]. These architectures present opportunities to explore the
utility of GPUs towards improving storage system reliability.

Realizing Accelerated Cost-Effective Distributed RAID 731

In this paper we propose a novel way to utilize low-cost GPUs in conjunction
with a PFS to provide fault tolerance and end-to-end data integrity. We capitalize
the resources provided by the PFS, such as striping individual files over multiple
disks, with the computational power of a GPU to provide flexible and fast parity
computation for encoding and rebuilding of degraded RAID arrays. We attain end-
to-end data integrity by performing encoding and decoding at the compute node,
where data is produced and consumed. We implement our client-driven, per-file
RAID in the widely used Lustre PFS [23], which will facilitate wider adoption of
our system.

We evaluate our system using a medium-scale cluster based on nodes with off-
the-shelf, GPUs and show that our approach: provides a customizable interface for
an application to tailor the RAID array parameters and provides default values to
support legacy applications. The results demonstrate that leveraging GPUs for I/O
support functions, i.e., RAID parity computation, is a feasible approach and can
provide an efficient alternative to specialized-hardware-based solutions.

The rest of the paper is organized as follows. Section 2 provides of brief overview
of Lustre, erasure codes and the CUDA programming environment. Section 4 sum-
marizes related work. We present our implementation in Sect. 5 and experimental
results in Sect. 6. We explore future work in Sect. 7 and conclude in Sect. 8.

2 Background

2.1 Rationale

A PFS typically provides fault tolerance at the storage backend. For example, the data
drives on each storage server are arranged in a RAID-5 (or higher) configuration. An
alternative of computing parity at the backend is client-driven, per-file RAID [24].
In this section, we highlight the potential benefits and drawbacks of this approach,
and make the case that such a framework is a good candidate for GPU acceleration.

2.1.1 Backend vs. Client-driven Parity Generation

GPUs are becoming ubiquitous, with good performance and flexibility features.
Modern HPC clusters and supercomputers are being equipped with GPUs. In such
settings, a client-driven parity generation can utilize the GPU resources already
available on the client machines. Such a trend will also be supported by emerging
technologies such as the Intel Sandy Bridge chip, which supports an integrated GPU
and CPU [25]. Furthermore, client-driven parity generation allows for unprecedented
flexibility. For example, the parity computation power of the system is not constrained
by the hardware at the backend, and can be changed dynamically with the number
of clients.

732 A. Khasymski et al.

Hardware RAID controllers typically require all disks in an array to be co-located
on the same blade. This can result in data loss because all the drives in the array
can fail simultaneously, due to power failure, over-heating, etc. A client driven per-
file RAID system does not impose any spatial limitation on the locality of drives,
allowing data to be spread across the system and not just one location. Furthermore,
the ability of each client to generate parity opens the door for end-to-end data integrity
checking. Typically, data has to pass through several network interconnects, and
memory and storage hierarchies, all of which can introduce errors, albeit with very
small probability. If absolute data integrity is required, the client can choose to obtain
parity as part of a read operation and check consistency of the data on the fly.

2.1.2 Block-Based vs. Per-File RAID

When compared to block-based RAID, a per-file RAID scheme will allow each file
or directory tree to have a desired fault tolerance level. For example, small files can
use a simple RAID-1, while large ones can use the state-of-the-art RAID-6 code. In
a block-based RAID, it is difficult or impossible to directly map any lost sectors back
to higher-level file system data structures. In fact, it has been recently argued [26]
that such factors will continue to diminish the utility of simple block-based RAID.
In a conventional hardware RAID, a single RAID controller is responsible for parity
coding. For a large array, that can mean hours until the array is rebuilt—during which
time, an unrecoverable read error (URE) can occur, potentially causing the entire
array to fail. Using a software RAID, rebuilding of the array can be done in parallel.
A number of machines at the backend can be equipped with GPUs and rebuilding of
separate files can be farmed out to different machines.

2.1.3 Hardware vs. Accelerated Software RAID

Direct performance comparison between a hardware RAID controller and a GPU is
hard to quantify, given that the two carry very different hardware. In the context of
our approach, however, such a performance comparison is not necessary. For one,
unlike a hardware RAID, the GPU in our system resides on the client and as such its
available throughput to the storage drives is limited to the network throughput of the
client. We show that a GPU can sustain encoding throughput that exceeds available
network bandwidth even if the client is connected over 10 Gbps interconnect. A
CPU alone, however, is not enough to meet such performance requirements. Previous
research has shown that unlike GPUs, conventional x86-based processors are slow in
performing a large number of finite field multiplications—the majority of operations
required for parity generation [16].

One area that a GPU has a clear advantage over a hardware RAID solution, how-
ever, is programmability. The best fault tolerance that a hardware RAID controller
typically supports is a Reed-Solomon [27] implementation of RAID-6. In contrast,
any number of coding techniques can be used in a software solution, including triple

Realizing Accelerated Cost-Effective Distributed RAID 733

parity RAID or any implementation of RAID-6. The programmability of the GPUs,
thus, provides a unique opportunity to exploit the advances in parity encoding, such
as minimum density coding schemes like Blaum-Roth [28] and Liberation codes
[29].

2.1.4 Discussion

Unprecedented flexibility and increased fault tolerance do not come for free, of
course, because more data has to move over the client-server interconnects. More-
over, parity generation can be computationally expensive and thus a burden to the
clients. We address the later by offloading the computationally expensive codes to
a GPU and show that in doing so we introduce acceptable overheads to the client
systems. While some increase in data traffic is unavoidable in a client-driven ap-
proach, modern PFSs, like Lustre, maintain large caches on the client side, which
absorb a large portion of parity modification caused by frequent small writes. Thus,
a large portion of parity updates never hit the interconnect. Even in the context of
frequent large writes that exceed client caches, our system provides enough flexibil-
ity to address the increase in traffic. Applications can set their own operating point
with respect to data reliability and I/O performance. For example, by switching a
file to a RAID-5 from a RAID-6, an application achieves a 2× decrease in network
traffic due to parity. Another approach is increasing the per-file RAID array size. For
example, moving from a (8,2) to a (16,2) RAID-6 array, drops parity from 20 % to
11 % of overall data. Normally a hardware RAID array is not larger than 16 drives,
because increasing its size would result in unacceptably long time to rebuild it. As
per-file arrays can be rebuilt in parallel in a client-driven approach, an application
can set its desired array size based on network traffic and GPUs available to rebuild
the array.

2.2 Enabling Technologies

In the following, we describe the enabling technologies that are used in realizing our
GPU accelerated software-based RAID-6 distributed PFS.

2.2.1 Erasure Codes

In recent years, RAID-6 systems have become increasingly important as they can
tolerate a complete failure of one drive occurring in combination with a latent failure
of a block on a second drive. Such a failure scenario would result in a permanent data
loss on a RAID-5 system. Unlike RAID-1 through RAID-5, which provide exact data
encoding techniques, RAID-6 is only a specification and as a consequence there are
a number of available coding techniques. The recently introduced Liberation codes
promise to become a standard for RAID-6.

734 A. Khasymski et al.

Fig. 1 Logical overview of a
RAID-6 system

A RAID-6 system (Fig. 1) is composed of k + 2 data nodes and can tolerate the
failure of any two devices. DevicesD0 throughDk−1 can each store B bytes, whereas
the remaining 2B bytes are in the P and Q coding devices. The P device is calculated
to be the parity of all data devices, while the implementation of the Q device is left
to the designer, with the sole constraint that it cannot hold more than B bytes and the
resulting system must be able to recover from the failure of any two devices.

Liberation coding (Fig. 2) is similar to Cauchy Reed-Solomon coding [30]. The
system splits each data device into w words and uses a w(k + m) × wk matrix to
perform the encoding, where k and m represent the number of data and encoding
devices respectively. For all RAID-6 techniques, the value form is two. All operations
are performed in Galois Field (2), where addition and multiplication are bitwise XOR
and AND operations, respectively. The matrix is called a Binary Distribution Matrix
(BDM) and each element is either one or zero. BDM is multiplied by the vector
representing device bits, to produce a vector representing the data and encoding
devices. The BDM is quite restricted as the top k(w × w) portion of the matrix is
the identity,D0,1 throughD0,k−1 are also identity matrices that produce the P device,
and the bottom row can be customized as per rules laid out in [30].

The encoding matrices for the Liberation codes are shown to be optimal or close
to optimal. The decoding matrix is produced by inverting the portion of the encoding
matrix that corresponds to the data devices that are still active. However, the resulting
matrix typically has far more 1s than optimal and in some cases it is more efficient
to calculate a word in one of the failed devices from a previously computed product,
rather than from the original BDM matrix by data vector product. To take advantage
of this, a schedule is created from the BDM that does the least number of XORs.
The optimized schedule produces a significant speedup for decoding. A schedule can
also be used in the encoding process as it is a more compact representation of the
operations than the BDM itself [29].

Fig. 2 Bottom row of BDM used to compute parity for the Q device for a system with 7 devices
and word size of 7. Gray boxes represent a 1, white a 0

Realizing Accelerated Cost-Effective Distributed RAID 735

2.2.2 The Lustre Parallel File System

Lustre [23] is a storage architecture for Linux-based clusters and provides a POSIX-
compliant UNIX file system interface. It is best known for powering seven of the
ten largest HPC machines worldwide, with thousands of client systems, petabytes
of storage and hundreds of gigabytes per second I/O throughput. Many HPC sites
use Lustre as a site-wide global file system, serving dozens of clusters on an un-
precedented scale, e.g., the Spider file system [31]. A Lustre file system comprises
of the following key components: Client, MDS (MetaData Server) and OSS (Object
Storage Server). Each OSS can be configured to host several OSTs (Object Storage
Target) that manage the storage devices.

The Lustre client that runs on the compute nodes of the cluster communicates
with the MDS to obtain privileges and layout for a given file. Once file metadata has
been received, the client is able to directly communicate with the OSTs that house
the objects associated with the file. An important feature of the Lustre file system
that we exploit in our design is its ability to store files in multiple same-sized objects
striped over multiple OSTs. Moreover Lustre provides extensive management and
recovery features that are useful in identifying the files affected in the event of an
OST failure. Thus, Lustre provides some key building blocks to turn each file into
its own RAID array.

Lustre also supports hot-swappable hard-drives on each OSS. In the case of a
disk failure, a new disk can easily replace the failed disk. Upon a mount, the Lustre
manager node detects and recreates the objects that were present in the failed disk.
During the per-file RAID array rebuild process, our system restores the data in the
lost objects, while reusing the objects that have not failed.

2.2.3 KGPU

Recent research has explored the potential of GPUs to accelerate computationally
intense OS operations [32, 33]. The current state-of-the-art NVIDIA’s and AMD’s
proprietary drivers do not support accessing the GPU from kernel space, therefore
all these efforts rely on a userspace daemon to execute the GPU requests.

We use KGPU [32] in our implementation because of its service oriented approach
and associated low latency. In contrast to the standard approach, where both data
and kernel code are copied to the GPU before each execution, KGPU substantially
decreases the latency of a GPU kernel launch by keeping the kernel alive even after it
has completed its execution. KGPU incurs full latency only when a GPU kernel that
provides a different service needs to be loaded. In our implementation, all RAID-6
array sizes are processed by a single kernel, therefore KGPU never incurs the extra
latency of loading and unloading a kernel.

736 A. Khasymski et al.

Fig. 3 High-level
architecture of the
GPU-enabled RAID system

3 Design

In this section, we present the design of our GPU-enabled RAID system and its
realization within the Lustre PFS [23]. We also describe the use of KGPU [32], a
GPU management framework, in our system.

3.1 System Overview

A high-level overview of the hardware and software components used in our system
is shown in Fig. 3. The Data Nodes serve as the main storage components; the
Client provides the user-side interface to the system; and the Manager directs and
facilitates the interactions between all components.All system components are tightly
integrated with the Lustre PFS. The clients typically run on the GPU-enabled compute
nodes of the cluster. All or a subset of the Data nodes are equipped with a GPU to
perform parity computation during a RAID array rebuild. This hardware addition is
feasible on many deployments, since modern motherboards typically have a built-in
PCI-Express (PCIe) slot. For the setups where installing a GPU on Data nodes is not
an option, the array rebuild process can be offloaded to idle client machines. Each
Data node runs an Object Storage Server (OSS), which provides file I/O services
and network request handling for all the Object Storage Targets (OSTs). The OSTs
manage the disk drives that store chunks of files called objects. A file in the Lustre
PFS can be striped over any number of equally sized objects.

In our design, the Manager is equipped with a hardware or software RAID-1. The
Lustre guidelines suggest using RAID-1 or RAID-1+ 0 for the disks on the Manager,
which efficiently performs frequent updates on small metadata files. The Manager
runs a MDS that only stores metadata (such as file names and layout, directories, and
permissions), which generally accounts for only 1 % of the total storage capacity of
the system [34]. This ensures that only a small number of disks are required to store
the entire metadata in a typical deployment. Hence, equipping the Manager with

Realizing Accelerated Cost-Effective Distributed RAID 737

a low-end RAID-1 controller with a small number of ports (or utilizing a software
RAID) fits with our overall goal of achieving fault tolerance with minimal cost.

Each client node in our design is equipped with a programmable GPU that is
used to accelerate the file encoding and decoding process. Each client node runs a
Metadata Client, which communicates with the MDS at the Manager to serve all
directory and file operations, such as opening and closing, on behalf of the client.
Each client also runs an Object Storage Client, which interacts with the OSS at the
Data node to read and write to the file objects in parallel. This enables the client to
bypass the Manager for all subsequent read and write operations after opening a file
and receiving its layout on the Data nodes.

We use the fault tolerant Manager to “bootstrap” the per-file RAID-6 arrays created
by our system. If an OST device fails, the Manager identifies all the surviving objects
of a given file, which are then used to reconstruct the lost objects.

3.2 RAID-enabled PFS Design

One of our key design objectives is to make our system compatible with Lustre so
that it can be easily integrated with extant Lustre deployments. To this end, our first
design choice is to keep the Lustre backend software infrastructure (Manager, OSS,
etc.) intact and limit our software-level modifications to the client nodes.

One design obstacle for integrating parity acceleration on the client-side is that
the NVIDIA CUDA toolkit is designed to run in user-space, while the Lustre client
is implemented as a kernel module. One option is to augment liblustre [35],
a user-space implementation of the Lustre client, to handle parity generation and
storage. This approach decreases the number of context switches that are otherwise
required to send data between the client module and the GPU. However, liblustre
is not widely used in practice as it does not support many performance enhancing
features of the kernel implementation, including client-side caching and the support
for multi-threaded applications. Hence, we integrate all parity generation inside the
Lustre client module and use KGPU to access the GPU directly from kernel space.
We implement parity encoding and decoding as a service provided by the user-space
component of KGPU.

Another challenge is to find the appropriate location to transparently store the
extra parity information. One option is to create a separate “shadow” parity file for
each file. This is promising, especially in Lustre, where a file can be striped over any
collection of OSTs and by ensuring that the shadow file is stored on different OSTs
from the OSTs containing the actual file contents, we can provide a complete RAID-
6 array. Moreover, the data file and its attributes remains intact and can be accessed
without modification. However, this approach doubles the number of files in the
storage system and may introduce a bottleneck at the manager node. Additionally,
updating the parity would require write locks on two different files simultaneously
and would complicate the locking procedure. An alternative approach that incurs
minimal bookkeeping overhead is to interleave data and parity in the same file.

738 A. Khasymski et al.

However, utilizing this approach requires an effective mechanism to hide the parity
from the user. To this end, we modify all file and inode operations that can expose
the parity information, such as write, read, seek, get and set attribute. For
operations such as seek, and get/set attribute, we perform a translation between
the size of the actual file including the parity and size of the data. The bulk of the
parity generation modifications are contained in the write call.

An important feature of our system that significantly decreases overheads when
writing to small files is that as long as a file is smaller than a single object it is
configured as a RAID-1. We achieve this by mirroring each write into the first parity
object, while keeping the second one empty. If a write anywhere outside the first
data object is submitted to the system it automatically locks all stripes and converts
the file to a RAID-6 array. Note that while in the RAID-1 state no extra space is
wasted as the empty blocks inside the second parity object are never written to disk.
To maintain consistency we lock the parity object instead of the data, which ensures
that a concurrent write to any portion of the stripe, would conflict with the current
write and thus will be properly serialized. In this RAID-1 state the GPU is completely
bypassed eliminating the expensive read-modify-write step.

3.3 Control Flow

We now describe the interactions between the different components of our system
and how they come together to realize the flexible RAID-6 solution.

Figure 4 illustrates the control flow between different components of the system.
The system is initialized by reading a configuration file, which specifies different
architectural and RAID array specific parameters, such as available GPU memory,
maximum supported file object size, and maximum number of disks a file can be
striped over. These parameters are used to initialize global defaults, such as the
coding bit matrix used in the default parity algorithm. Some of these parameters
are passed on to the KGPU framework, which spawns a GPU management daemon,
Tmanage, that we later utilize to compute the parity. Tmanage initializes its request
containers and allocates their associated buffers. The daemon then waits for the jobs
to be submitted to the request queue.

The Manager initializes the appropriate storage pools before the Lustre file system
can be mounted. In Lustre, any OST can be assigned to a number of storage pools,
which we use to define default RAID arrays in our system. Storage pools can be
modified at runtime to support addition or removal of storage devices. Once Lustre
is mounted on the client, the root directory is assigned to the default storage pool.
Files and directories created under the root are recursively assigned the default pool.
On creation, each file receives a randomized order in which to write to the OSTs
in its pool, which ensures that parity is spreads around the OSTs. In addition to the
given defaults, applications have full control to assign files and directory trees to any
other pool using standard Lustre system calls.

Realizing Accelerated Cost-Effective Distributed RAID 739

Fig. 4 Control flow in our
GPU-enabled RAID system

The bulk of the operations are performed during a write. Lustre caches data on
the client side and as a consequence most data writes are processed asynchronously.
Synchronous I/O is triggered when the Lustre cache fills up. Lustre breaks down the
write in a loop based on the object size. In each iteration, the client asks for a lock on
the object and proceeds to update the object, releases the lock, and moves on to the
next object. In order to ensure consistency of the parity during simultaneous writes
to the same file stripe, we acquire a lock that spans all of objects in a stripe. Thus,
we increase the granularity of Lustre’s locking from an object to a stripe of objects.
Note that we still allow multiple clients to be simultaneously reading and writing to
the same file, as long as it is to a different stripe.

After acquiring the lock on a stripe, we copy the relevant portion of the write buffer
to CUDA page-locked buffer previously initialized by KGPU and send a request to
the KGPU module. The copy is required to maximize the PCIe bandwidth utilization
ensured by the CUDA page-locked buffer. The request is then forwarded to our parity
generation service implemented in the KGPU user-space daemon that interacts with
the GPU to compute the parity for the buffer and return it to the caller. KGPU’s
call is asynchronous with the data write to the Lustre cache and for a full stripe
write completes before it, thus hiding all the latencies associated with moving data
to and from the GPU and computing parity. The only overhead exposed is due to the
memcpy call and parity write. We quantify these latencies in our evaluation.

740 A. Khasymski et al.

A read operation also acquires the lock in a loop. In the common case when
only data is read, the read loop skips over the parity objects in each stripe of the
file. However, a user can also read parity along with the data to ensure end-to-end
integrity. In that case, locking is again done at the granularity of the stripe and data
and parity is sent to the GPU for validation. If data corruption is detected the read
call is restarted. However, if the call fails again an error is returned, as it indicates a
permanent error in one of the system components.

3.4 Degraded Array Reconstruction

Unlike a conventional hardware RAID controller, our system is capable of utilizing
multiple GPUs to reconstruct a degraded array. If a disk fails, it can be replaced
manually or via a hot spare. The disk is formatted if necessary and assigned the same
internal Lustre ID as the failed disk. When the new disk is mounted, the Manager
recreates all the missing objects and relinks them to the file objects on the surviving
disks. Next, the system requests a list of files that have been affected, and based on
the location of the failed disks and the availability of GPUs, mounts a Lustre client
on the machines to reconstruct the lost objects. The list of affected files is then split
accordingly and forwarded to the reconstructing clients to rebuild the affected files
in paralle

4 Implementation

We have implemented our system as described in Sect. 3 using 1272 lines of C/C++
and CUDA code. The implementation runs on Linux (kernel version 2.6.32) and is
portable to CUDA-enabled GPUs. We based our parity generation implementation
on the definition of Liberation Codes [29], which is provided in a freely available
library, called Jerasure [36]. Jerasure provides a single threaded implementation for
both Liberation and Blaum-Roth functionality.

Our analysis of Liberation and Blaum-Roth codes’single threaded implementation
revealed that more than 95 % of the time is spent in the function that performs the
XOR operations. We also noted that the same function is used for both encoding and
decoding, with the only difference being the schedule. Furthermore, the work done
in this function has the potential for both coarse and fine-grain parallelism, making
it a good candidate for offloading to the GPU. Therefore in our implementation, we
offload only XOR operations on the data to the GPU to maximize SIMD parallelism.
Note that most of the other operations in the coding process, such as creating the
BDM and converting it to a schedule are computed once and sent to the KGPU
service at initialization. As these operations are at most quadratic in the number of
drives, which are usually in the tens in a typical RAID array, the overhead for these
tasks is negligible.

Realizing Accelerated Cost-Effective Distributed RAID 741

4.1 Basic GPU Implementation

As described earlier, a schedule is derived from the original BDM matrix while per-
forming the XOR operations on the given data or while copying it between different
devices. The schedule is a two dimensional array of integers of size 5 ×N , whereN
is the number of operations that need to be performed for encoding. The operations
defined are XOR or memcpy. The five integers in each tuple identify which words
will be operated upon. The first two integers identify the id of the device and the word
that will serve as source, while the next two identify the destination. The last integer
is either 1 for XOR or 0 for memcpy. For example, the operation <00700> can be
interpreted as the first word of device 0 is to be copied over the first word of device
7. In the case of encoding, the schedule is used to compactly represent the BDM. In
the offloaded function, the schedule is also flattened to a single dimensional array
for easier copying of the data from the host to the GPU memory. Furthermore, since
this data is relatively small and does not change during GPU kernel execution, it is
copied directly to the GPU’s constant memory to enable faster access by the GPU
threads. The kernel iterates over all the operations in the given schedule and each
thread performs an XOR or memcpy operation on the corresponding words (in 4
byte chunks) in parallel. Hence, the amount of parallelism exposed depends directly
on the word size, which is determined by the size of each data object.

4.2 Optimizations

The main drawback of the basic GPU port is that it reveals only the fine-grain paral-
lelism that is present within a scheduled operation. We analyzed data dependencies
and found that entire operations can be done in parallel as well. Specifically, the
schedule produces the 2w words of the coding devices of a RAID-6 array, where w is
8 and 16 for the Liberation and Blaum-Roth coding, respectively. All the operations
associated with computing a single word in a coding device can be performed in
parallel with the ones that encode the rest of the words. To exploit this, we modify
the schedule and create our optimized port shown in Fig. 5.

We create a two dimensional grid of thread blocks and assign each of the 2w rows
of blocks to perform the operations associated with one of the encoding words. We
use an additional structure, num_reads, to store the number of operations needed
to compute each of the 2w coding words. This enables the kernel to execute fewer
iterations compared to the basic port, thus simultaneously reducing the work of each
thread and exposing more parallelism.

742 A. Khasymski et al.

Fig. 5 GPU parity computation kernel

5 Evaluation

In this section, we present the evaluation of our GPU-enabled RAID system. We first
describe our testbed, and then present the I/O measurements of our system. The goal is
to show the impact of different design parameters and features, such as RAID stripe
size and end-to-end integrity checking, on the overall system performance. Next,
we evaluate the performance of RAID array reconstruction. Finally, we quantify
performance under a real workload.

5.1 Experimental Setup

We have set up a Lustre cluster, consisting of one Manager node and three OSSs, each
with six OSTs. The Lustre server machines are identical with four Opteron quad-
cores each, and 64 GB of main memory. Additionally, each OSS has a GeForce 9500
GT GPU with 1 GB of graphics memory connected to an 8× PCIe slot. Our client
machine has two Intel Xeon quad-cores, 48 GB of RAM and a Tesla C2070 GPU
with 6 GB of GDDR memory. All the machines are connected using a dedicated

Realizing Accelerated Cost-Effective Distributed RAID 743

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

File Size (GB)

data write
data + dummy write

data + parity write

Fig. 6 Write throughput for a file striped over 16 OSTs + 2 parity OSTs

Gigabit switch. We use Lustre patched Linux 2.6.32 kernel, Lustre 1.8.5, and CUDA
SDK 4.0.

5.2 I/O Throughput Measurement

5.2.1 Raw Throughput

We first measure the raw write throughput that our client machine can achieve.
Figure 6 compares the throughput of writing a file striped over 16 OSTs with a
stripe/block size of 1 MB, denoted as data write. The file size ranges between 16 MB
and 2 GB. A Lustre client maintains a 32 MB local cache per OST, which is flushed
periodically. If a write submitted by a client fits in the cache, the Lustre module
returns from the write immediately after the write buffer is written to the cache. If
there is no space left in the cache, it is flushed to the corresponding OST and the
write returns after the write buffer has been written to the Lustre back-end. Since we
are writing to 16 OSTs, the combined available cache is 512 MB, and consequently
writes smaller than 512 MB exhibit throughput higher than the theoretical throughput
of Gigabit Ethernet. The throughput of files larger than the cache quickly levels out
to an effective available bandwidth of around 125 MB/s.

744 A. Khasymski et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.5 1 1.5 2 2.5 3 3.5 4

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Block Size (MB)

Tesla
Tesla underload
Quadro FX 580

Fig. 7 GPU encoding throughput

In the Figure, data + parity write curve shows the throughput when our RAID
encoding system is turned on. In this case, the same data as in the base case is striped
over 16 OSTs and concurrently the parity is generated and written to the remaining
2 OSTs. As a point of reference we also include a data + dummy write curve, which
generates the same traffic as the RAID encoding, without computing the parity.

Writes that fit into the Lustre cache exhibit a very high throughput and as a result
the overhead ofmemcpy-ing data into KGPU buffers results in around 10 % overhead
(difference between data + dummy write and parity data + parity write). The rest is
attributed to copying the extra parity (1/8th of data in this case) to the Lustre cache.
It is important to note that in this experiment all the overhead associated with parity
generation remains completely hidden from the application.

5.2.2 Encoding Throughput

Next, we evaluate the parity encoding throughput delivered by the GPU.We measured
throughput delivered by our high and low-end GPUs, which includes moving the data
to and from the GPU’s memory as well as actual parity computation on the GPU
(Fig. 7). A low-end GPU can deliver encoding throughput around 1 GB/s for 512 KB
files, which quickly increases to 1.7 GB/s for files large than 8 MB. The Tesla GPU
delivers encoding rates of 1.6 GB/s for 512 KB files and in excess of 3 GB/s for
files larger than 8 MB. Therefore, our system using a low-end GPU can generate
parity faster than the speed at which Lustre commits the data to its caches. As parity
is encoded asynchronously with the commit to cache, the overhead of generating it
remains hidden.

Realizing Accelerated Cost-Effective Distributed RAID 745

We also include the encoding rates of the Tesla GPU, while it is under heavy
load from an N-body simulation. We used the N-body simulation from the CUDA
SDK and ran multiple iterations in the benchmark mode using the default number
of objects based on the specifications of the Tesla GPU. Even under heavy load, the
Tesla GPU delivers sufficient throughput for all but the smallest files, for which the
encoding overheads are exposed to the system as increased latencies due to the heavy
load. However, the performance of the simulation is unaffected by the parity gen-
eration kernels and remains constant at 484.650 single-precision GFLOP/s. This is
because Tesla GPU can perform efficient context switches at the kernel boundary and
asynchronous data transfer for different contexts can run simultaneously. Therefore
the parity data can be transfered to the GPU, while the simulation kernel is running
and vice versa. Moreover, the parity generation kernels complete 2-3× faster than
the simulation kernels.

It is important to note that not all background loads on the GPU have the same
effect on the parity generation. An iterative workload with kernel execution times in
the order of milliseconds, such as the N-body simulation that can be rendered in real
time, would not block the parity kernels and cause an unacceptable slowdowns to
our system. However, for GPU kernels with execution times in seconds, alternative
techniques such as “context funneling”1 can be used to minimize the overhead. The
down side is that the GPU workloads need to be modified, e.g., as a KGPU service.
This enables even a long running kernel to run parity generation concurrently.

5.2.3 Impact of Number of Disks on Throughput

Next, we study the effect of number of OSTs that a file is striped over on the write
throughput of our system. Figure 8 shows the baseline write throughput and the
throughput of our system for writing a 256 MB file. When the file is striped over 6
OSTs or less, it cannot fit in the client caches and as a result, raw network bandwidth
is exposed to the application. If the 256 MB file is striped over more than 6 drives,
parity is cached and flushed after the write returns. As the write fits in the caches,
throughput levels out. As the file size remains constant splitting and committing it to
more caches becomes less efficient, which causes the slight dip in the throughput.

Striping does not have such an effect when writing a 1024 MB file as the file and
its parity cannot be cached (Fig. 9). In the data write case, writing to more drives
achieves better throughput because of efficient bandwidth utilization when the file
is striped over all available OSTs. For the data + parity write case, decreasing the
number of drives has the effect of decreasing the length of the RAID 6 array, e.g.,
striping data over four disks produces a (4,2) RAID 6 array where four objects in a
stripe are data and the rest are parity, having a parity overhead of 50 %. Increasing
the array length decreases the relative size of the parity, e.g., in a (16,2) RAID 6 array

1 Context funneling uses advanced features of the Fermi architecture to execute concurrent kernels,
which must be launched from the same context [37].

746 A. Khasymski et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Num of Disks

data write
data + parity write

Fig. 8 Effect of number of disks on throughput (file size = 256 MB)

 0

 50

 100

 150

 200

 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Num of Disks

data write
data + parity write

Fig. 9 Effect of number of disks on throughput (file size = 1024 MB)

parity is 12.5 %. Thus, for the data + parity write case, there is a linear increase in
throughput available for data with the increase in the array length.

Realizing Accelerated Cost-Effective Distributed RAID 747

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

File Size (GB)

data read
data read with integrity

Fig. 10 Read throughput with end-to-end data integrity

5.2.4 End-to-End Data Integrity

One of the important features of our system is that it can provide end-to-end data
integrity checks for the I/O operations. Figure 10 shows the achieved read throughput
when the end-to-end integrity check is enabled. To ensure that data is not corrupted
on the disk or on the network interconnects, one of the parity objects in each stripe
is read along with the data. Both data and parity needs to be sent to the GPU for
verification to successfully complete the read call. For files with single stripes, the
synchronous call causes an overhead of 9 %. However, when reading files with more
than one stripe, the parity check for each stripe is performed in parallel with the read
of the next stripe, resulting in a negligible overhead of 2 %.

5.3 RAID Reconstruction Cost

It is critical to minimize the degraded RAID reconstruction time for maintaining the
integrity of data, as the system is exposed to unrecoverable read errors during the
reconstruction process. Table 1 shows the reconstruction time for rebuilding 20, 100,
and 200 degraded files with a combined size of 5 GB, 25 GB, and 50 GB, respectively.
Files are striped on all 18 OSTs (16 for data and 2 for parity). As the RAID arrays are
defined per file, their rebuilding can be distributed between the available machines,
resulting in a speedup of close to 2× when reconstructing for the 200 files case.
During this test, we use all the machines in our setup, which results in the utilization

748 A. Khasymski et al.

Table 1 RAID reconstruction
time and normalized speedup
with respect to 1 Node

Data Size 1 Node 2 Nodes 3 Nodes

(GB) Time Time Speedup Time Speedup

(s) (s) (s)

5 46 30 1.53 25 1.84

25 237 151 1.57 125 1.90

50 493 345 1.43 258 1.91

of all the available network bandwidth. It is important to note that each of our low-
end GPU achieves an effective reconstruction rate of 1.5 GB/s, therefore even higher
speedup is possible, if network and disk throughput permit it.

These results show that our GPU-enabled RAID solution is feasible, and provides
a configurable and flexible solution.

5.4 Impact on Applications

Next, we examine the performance of our system under load by a real-world ap-
plication, the Data Cube (DC) NAS OpenMP [38] benchmark. DC performs a
data-intensive operation known in data mining as the Data Cube Operator (DCO),
which computes views of a dataset represented as a set ofn tuples and involves O(log
n) memory accesses per tuple.

Figure 11 shows the performance of DC executing on our client machine with
varying number of threads. It is configured to write out the views to disk as they are
computed, thus stressing both memory and the storage subsystem. At two threads
the benchmark is actually CPU-bound, thus generating and writing out the extra
parity for each view introduces a small additional slowdown of 2 %. Beyond four
threads the benchmark becomes I/O-bound and as a result, the overheads due to parity
produce a 5 and 10 % slowdown for four and eight threads, respectively. We also
measured performance of our parity generation system under a heavy background
GPU load produced by an N-body simulation application running on the GPU. When
the DC benchmark is running with eight threads, the background job does not affect
performance at all, because our system is able to schedule the workload for the eight
threads more effectively. With fewer threads requesting parity, the system cannot
obtain enough time on the GPU and as a result exposes parity generation overheads
to a portion of the write operations, resulting in a slowdown of around 5 %.

6 Related Work

There are a number of parallel file systems that were built from the ground up to
withstand failure, such as ZFS, Ceph, and Panasas [24, 39, 40]. ZFS maintains data
integrity by using checksums for on-disk blocks, while Ceph relies on replication at

Realizing Accelerated Cost-Effective Distributed RAID 749

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Number of Threads

baseline
baseline+parity

basline+parity+loaded GPU

Fig. 11 Performance of NAS DC benchmark

the granularity of an entire object storage device, and thus both file systems cannot
detect errors introduce during network transmission to the client. Panasas [24] offers
a commercial solution with features similar to the system presented in this paper.
However, it relies on the CPU to generate a per-file RAID-5 array. It does not support
RAID-6, since generating the required parity without a hardware accelerator would
result in high overheads.

Utilizing GPUs as commodity accelerators for general purpose applications has
been on the rise [41]. stdchk [42] uses hashing to detect content similarity between
two successive checkpoint images. Several efforts [43–45] have attempted to improve
the performance of such hash computations by offloading them to the GPU. Similarly,
GPUs have also been used to accelerate parity computation [46] and data encryption
[47, 48] for storage systems.

The work most similar to ours is Gibraltar GPU based RAID [49], which fo-
cuses on accelerating Reed-Solomon [27] based parity codes to create a block based
RAID in user-space. Gibraltar has several limitation, including the need to use the
O_DIRECT flag in order to bypass the Linux buffer cache, which hurts performance.
Additionally, Gibraltar cannot perform end-to-end integrity checks, parallel array re-
build of degraded arrays, or provide the same level of flexibility delivered by our
per-file arrays tightly integrated with a PFS.

750 A. Khasymski et al.

7 Conclusion

Fault tolerance on large-scale storage servers is largely based on proprietary, expen-
sive, hardware-based solutions with limited flexibility and scalability. In this paper,
we have presented a cost-effective alternative that uses commodity GPUs to imple-
ment RAID-6 in software, in conjunction with the Lustre PFS. Our solution leverages
low-cost GPUs on the client and server nodes to accelerate minimum-density RAID-
6 coding schemes. We have shown, through a prototype implementation, that our
software-controlled parity computation scheme imposes acceptable overhead on ap-
plication performance, and constitutes, overall, a feasible, low-cost, and efficient
alternative to specialized hardware-based solutions.

As future work, we will extend our RAID solution to other accelerators in a
heterogeneous setting, to expedite the encoding schemes. We will also explore the
use of CPUs from emerging many-core nodes, those that cannot be fully utilized by
a typical application, to compute the RAID encoding.

Acknowledgement This research was supported in part by the National Science Foundation under
Grants CCF-0746832, CNS-1016793, and CNS-1016408, and used the resources of, the Oak
Ridge Leadership Computing Facility, located in the National Center for Computational Sciences
at ORNL, which is managed by UT Battelle, LLC for the U.S. DOE (under the contract No.
DE-AC05-00OR22725).

References

1. “Spallation Neutron Source,” http://www.sns.gov/, 2008.
2. Conseil Européen pour la Recherche Nucléaire (CERN), “LHC– the large hadron collider,”

July 2007, http://lhc.web.cern.ch/lhc/.
3. B. Abbott, A. Baranovski, M. Diesburg, G. Garzoglio, T. Kurca, and P. Mhashilkar, “Dzero

data-intensive computing on the open science grid,” Journal of Physics: Conference Series,
vol. 119, 2008.

4. “Sloan digital sky survey,” http://www.sdss.org, 2005.
5. “Top500 supercomputer sites,” http://www.top500.org/.
6. S. Oral, F. Wang, D. Dillow, G. M. Shipman, R. Miller, and O. Drokin, “Efficient object storage

journaling in a distributed parallel file system,” in USENIX Conference on File and Storage
Technologies, 2010, pp. 143–154.

7. Brooke Crothers, “DARPA ‘exascale’ supercomputer in the works,” August 2010, http://news.
cnet.com/8301-13924‘_3-20013088-64.html.

8. Z. Zhang, C. Wang, S. S. Vazhkudai, X. Ma, G. Pike, J. Cobb, and F. Mueller, “Optimizing cen-
ter performance through coordinated data staging, scheduling and recovery,” in Proceedings of
Supercomputing 2007 (SC07): Int’l Conference on High Performance Computing, Networking,
Storage and Analysis, Jun. 2007.

9. M. D. R. Alex Osuna, Siebo Friesenborg, “Considerations for raid-6 availability and
format/rebuild performance on the ds5000,” 2009, document Number: REDP-4484-00.

10. B & H Foto & Electronics Corp., “Active Storage 16TB ActiveRAID Hard Drive Array,” 2011,
http://www.bhphotovideo.com/c/product/697437-REG/Active_Storage_AC16SFC02_16TB_
ActiveRAID_Hard_Drive.html.

11. J. Michalakes and M. Vachharajani, “Gpu acceleration of numerical weather prediction,” in
IEEE International Symposium on Parallel and Distributed Processing (IPDPS), april 2008,
pp. 1–7.

http://www.sns.gov/
http://news.cnet.com/8301-13924`_3-20013088-64.html
http://news.cnet.com/8301-13924`_3-20013088-64.html
http://www.bhphotovideo.com/c/product/697437-REG/Active_Storage_AC16SFC02_16TB_ActiveRAID_Hard_Drive.html
http://www.bhphotovideo.com/c/product/697437-REG/Active_Storage_AC16SFC02_16TB_ActiveRAID_Hard_Drive.html

Realizing Accelerated Cost-Effective Distributed RAID 751

12. C. Trapnell and M. C. Schatz, “Optimizing data intensive gpgpu computations for dna sequence
alignment,” Parallel Comput., vol. 35, pp. 429–440, August 2009.

13. M. Fatica, “Accelerating linpack with cuda on heterogenous clusters,” in Proceedings of 2nd
Workshop on General Purpose Processing on Graphics Processing Units, ser. GPGPU-2. New
York, NY, USA: ACM, 2009, pp. 46–51.

14. T. D. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, and M. Ujaldon, “Biomedical image
analysis on a cooperative cluster of gpus and multicores,” in Proceedings of the 22nd annual
international conference on Supercomputing, ser. ICS ’08. New York, NY, USA: ACM, 2008,
pp. 15–25.

15. M. M. Rafique, A. R. Butt, and D. S. Nikolopoulos, “A capabilities-aware framework for using
computational accelerators in data-intensive computing,” J. Parallel Distrib. Comput., vol. 71,
pp. 185–197, February 2011.

16. M. Curry, A. Skjellum, H. Ward, and R. Brightwell, “Arbitrary dimension reed-solomon coding
and decoding for extended raid on gpus,” in Petascale Data Storage Workshop, 2008. PDSW
’08. 3rd, nov. 2008.

17. D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher, J. D. Owens, and N.
Amenta, “Real-time parallel hashing on the gpu,” ACM Trans. Graph., vol. 28, pp. 154:1–154:9,
December 2009.

18. G. I. of Technology, “Keenland,” 2010, http://keeneland.gatech.edu/.
19. Damon Poeter, “Cray’s Titan Supercomputer for ORNL Could Be World’s Fastest,” 2011,

http://www.pcmag.com/article2/0,2817,2394515,00.asp.
20. M. M. Rafique, A. R. Butt, and D. S. Nikolopoulos, “Designing accelerator-based distributed

systems for high performance,” in Proc. IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID’2010), Melbourne, Australia, May. 2010.

21. M. A. Clark, “Qcd on gpus: cost effective supercomputing,” 2009. [Online]. Available:
http://lattice.github.com/quda/

22. NVIDIA Corporation, “Science & Education,” 2011, http://www.nvidia.com/object/nvidia_
userful_success.html.

23. Sun Microsystems, Inc., “Lustre file system - High-performance storage architecture and
scalable cluster file system,” 2007.

24. B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J. Zelenka, and B. Zhou,
“Scalable performance of the panasas parallel file system,” in Proceedings of the 6th USENIX
Conference on File and Storage Technologies, ser. FAST’08. Berkeley, CA, USA: USENIX
Association, 2008, pp. 2:1–2:17.

25. Intel Corporation, “Intel Microarchitecture Codename Sandy Bridge,” 2011, http://www.
intel.com/technology/architecture-silicon/2ndgen/index.htm.

26. R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum, “Block-level raid is dead,”
in Proceedings of the 2nd USENIX conference on Hot topics in storage and file systems, ser.
HotStorage’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 4–4.

27. I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of the Society
for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300–304, 1960.

28. M. Blaum and R. Roth, “New array codes for multiple phased burst correction,” Information
Theory, IEEE Transactions on, vol. 39, no. 1, pp. 66–77, jan 1993.

29. J. S. Plank, “The raid-6 liberation codes,” in Proceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST). Berkeley, CA, USA: USENIX Association, 2008,
pp. 7:1–7:14.

30. J. S. Plank and L. Xu, “Optimizing cauchy reed-solomon codes for fault-tolerant network
storage applications,” in Proceedings of the Fifth IEEE International Symposium on Network
Computing and Applications. Washington, DC, USA: IEEE Computer Society, 2006, pp. 173–
180.

31. G. M. Shipman, D. A. Dillow, S. Oral, and F. Wang, The Spider center wide file system: From
concept to reality, 2009. [Online]. Available: http://www.nccs.gov/wp-content/uploads/2010/
01/shipman_paper.pdf

http://www.nvidia.com/object/nvidia_userful_success.html
http://www.nvidia.com/object/nvidia_userful_success.html
http://www.intel.com/technology/architecture-silicon/2ndgen/index.htm
http://www.intel.com/technology/architecture-silicon/2ndgen/index.htm
http://www.nccs.gov/wp-content/uploads/2010/01/shipman_paper.pdf
http://www.nccs.gov/wp-content/uploads/2010/01/shipman_paper.pdf

752 A. Khasymski et al.

32. KGPU, “KGPU: enabling GPU computing in Linux kernel,” 2011, http://code.google.com/
p/kgpu.

33. C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel, “PTask: Operating System
Abstractions To Manage GPUs as Compute Devices,” in Proc. ACM SOSP, 2011.

34. Oracle Corporation, “Lustre Documentation,” 2011, http://wiki.lustre.org/index.php/Lustre_
Documentation.

35. Sun Microsystems, Inc., “LibLustre How-To Guide,” 2010, http://wiki.lustre.org/index.php/
LibLustre_How-To_Guide.

36. J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in C/C++ facilitating
erasure coding for storage applications - Version 1.2,” University of Tennessee, Tech. Rep.
CS-08-627, August 2008.

37. L. Wang, M. Huang, and T. El-Ghazawi, “Towards efficient gpu sharing on multicore
processors,” in Proceedings of the second international workshop on Performance mod-
eling, benchmarking and simulation of high performance computing systems, ser. PMBS
’11. New York, NY, USA: ACM, 2011, pp. 23–24. [Online]. Available: http://doi.acm.org/
10.1145/2088457.2088473

38. M. A. Frumkin and L. V. Shabanov, “Benchmarking memory performance with the data cube
operator.” in ISCA PDCS’04, 2004, pp. 165–171.

39. Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “End-to-end data
integrity for file systems: a zfs case study,” in Proceedings of the 8th USENIX conference on
File and storage technologies, ser. FAST’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 3–3. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855511.1855514

40. S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn, “Ceph: a scalable,
high-performance distributed file system,” in Proceedings of the 7th symposium on Operating
systems design and implementation, ser. OSDI ’06. Berkeley, CA, USA: USENIX Association,
2006, pp. 307–320. [Online]. Available: http://dl.acm.org/citation.cfm?id=1298455.1298485

41. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. Lefohn, and T. J. Purcell, “A
survey of general-purpose computation on graphics hardware,” in Eurographics 2005, State of
the Art Reports, Aug. 2005, pp. 21–51.

42. S. Al-Kiswany, M. Ripeanu, S. S. Vazhkudai, and A. Gharaibeh, “stdchk: A checkpoint
storage system for desktop grid computing,” in Proceedings of the 2008 The 28th Interna-
tional Conference on Distributed Computing Systems, ser. ICDCS ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 613–624. [Online]. Available: http://dx.doi.org/
10.1109/ICDCS.2008.19

43. S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G.Yuan, and M. Ripeanu, “Storegpu: exploiting
graphics processing units to accelerate distributed storage systems,” in Proceedings of the 17th
international symposium on High performance distributed computing, ser. HPDC ’08. New
York, NY, USA: ACM, 2008, pp. 165–174.

44. A. Gharaibeh, S. Al-Kiswany, S. Gopalakrishnan, and M. Ripeanu, “A gpu accelerated storage
system,” in Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing, ser. HPDC’10. New York, NY, USA: ACM, 2010, pp. 167–178.

45. S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, and M. Ripeanu, “On gpu’s viability as a
middleware accelerator,” Cluster Computing, vol. 12, pp. 123–140, June 2009.

46. G. Falcão, L. Sousa, and V. Silva, “Massive parallel ldpc decoding on gpu,” in Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, ser.
PPoPP ’08. New York, NY, USA: ACM, 2008, pp. 83–90.

47. O. Harrison and J. Waldron, “Practical symmetric key cryptography on modern graphics hard-
ware,” in Proceedings of the 17th conference on Security symposium. Berkeley, CA, USA:
USENIX Association, 2008, pp. 195–209.

48. A. Moss, D. Page, and N. P. Smart, “Toward acceleration of rsa using 3d graphics hardware,”
in Proceedings of the 11th IMA international conference on Cryptography and coding, ser.
Cryptography and Coding’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 364–383.

49. M. L. Curry, H. L. Ward, A. Skjellum, and R. Brightwell, “A lightweight, gpu-based software
raid system,” Parallel Processing, International Conference on, vol. 0, pp. 565–572, 2010.

http://code.google.com/p/kgpu
http://code.google.com/p/kgpu
http://wiki.lustre.org/index.php/Lustre_Documentation
http://wiki.lustre.org/index.php/Lustre_Documentation
http://wiki.lustre.org/index.php/LibLustre_How-To_Guide
http://wiki.lustre.org/index.php/LibLustre_How-To_Guide
http://doi.acm.org/10.1145/2088457.2088473
http://doi.acm.org/10.1145/2088457.2088473
http://dl.acm.org/citation.cfm?id=1855511.1855514
http://dl.acm.org/citation.cfm?id=1298455.1298485
http://dx.doi.org/10.1109/ICDCS.2008.19
http://dx.doi.org/10.1109/ICDCS.2008.19

Efficient Hardware-Supported Synchronization
Mechanisms for Manycores

José L. Abellán, Juan Fernández and Manuel E. Acacio

1 Introduction

Data centers are evolving by hosting emerging parallel and distributed applications
such as cloud computing, streaming video or social networking. These new applica-
tions demand not only more storage capacity or network bandwidth, but also higher
performance and throughput thus requiring multicore processors as building blocks
of every computational node or server [27].

As more and more cores are being integrated on chip, manycore architectures [17,
36, 38] have emerged as the next generation of multicores. Manycores are systems
specially tailored to the exploitation of massive throughput by incorporating many
simple and low-frequency computing units. This paradigm shift towards throughput-
oriented servers leads to parallel workloads with ever more number of threads that
need to communicate and synchronize among them, typically relying on a single
shared memory domain per server.

In that context, conventional implementations of synchronization operations, such
as barrier and locks, make use of shared variables which are atomically updated.
In particular, when considering global barriers and highly-contended locks (i.e., a
significant amount of threads requesting the lock at the same time), without the
proper hardware support, typical software-based implementations cannot provide
good scalability as the number of cores increases.

J. L. Abellán (�)
Boston University, Boston, USA
e-mail: jabellan@bu.edu

J. Fernández
Intel-Labs Barcelona, Barcelona, Spain
e-mail: juan.fernandez@intel.com

M. E. Acacio
University of Murcia, Murcia, Spain
e-mail: meacacio@ditec.um.es

© Springer Science+Business Media New York 2015 753
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_26

754 J. L. Abellán et al.

Regarding barrier implementations in software, as we will discuss in Sect. 3, the
use of shared variables creates a performance bottleneck, and demands not only
a significant amount of resources but also of energy consumption. In more depth,
the cache coherence protocol must come into play to maintain memory consistency
across all levels of the memory hierarchy. In turn, coherence activity translates into
traffic injection in the interconnection network that may interfere with application-
related traffic. On the other hand, the busy-waiting required to wait for the completion
of the barrier synchronization on locally-cached shared variables has also significant
implications on the energy consumed by the L1 caches.

As to the software implementations for highly-contended locks, as we will expose
in Sect. 8, they are critical to performance since lock contention causes serialization.
Therefore, an implementation based on the use of shared variables is not efficient
enough due to the performance bottlenecks, the significant amount of resources and
energy consumption that they entail, as explained above.

In this Chapter, we analyze and propose techniques to mitigate the problem of
synchronization at server (manycore processor) level in datacenters. Particularly, we
propose two different strategies that provide very efficient, scalable and lightweight
hardware implementations for barriers and highly-contended locks. We implement
our synchronization architectures using two different technologies. The first is a
state-of-the-art full-custom technology, namely G-Lines, whilst the second is a cost-
effective mainstream industrial toolflow with an advanced 45 nm technology, or
Standard technology.

The rest of the Chapter is organized as follows. Section 2 introduces the state-of-
the-art G-Lines technology that we also use to implement our proposals. From Sects. 3
to 7, we present and evaluate our GBarrier proposal for barrier synchronization in
many-core CMPs. Next, from Sects. 8 to 12, we introduce and quantify the efficiency
of our GLock proposal for highly-contended locks in many-core CMPs. Finally, we
summarize the main conclusions of this Chapter in Sect. 13.

2 The G-Lines Technology

G-Lines have already been successfully integrated in a silicon substrate in order to
enable speed-of-light point-to-point communications. Chang et al. [35] and Jose et
al. [3] showed early point-to-point circuits allowing transmission-line, wave-like ve-
locity for 10 mm of interconnect. Nonetheless, this initial implementation suffers
from significant overheads in terms of power dissipation and die area. A great effort
has been devoted to overcome such limitations. For instance, Ito et al. [15] extended
G-Lines to support broadcast, multi-drop and bidirectional transmissions. This con-
tribution enables both low-latency and multi-drop ability on a transmission line with
low-power dissipation. However, their results still exhibit several integration density
issues. Additionally, Ho et al. [33] and Mensink et al. [11] have shown that a ca-
pacitive feedforward method of global interconnect reduces both power dissipation
and die area overheads. In particular, they achieve nearly single-cycle delay for long

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 755

wires with voltage-mode signaling. As a result, every G-Line is basically a shared
wire that broadcasts 1-bit messages (signals from now on) across one dimension of
the chip in a single clock cycle. A practical use of G-Lines is presented by Krishna et
al. [40] in the context of networks-on-chip (NoC). Krishna et al. leveraged G-Lines
using multi-drop connectivity and the S-CSMA collision detection technique to en-
hance a flow control mechanism (EVC) in terms of latency and power dissipation.
In particular, these G-Lines are used to broadcast the control signals of EVC in order
to communicate the availability of free buffers and virtual channels much more ac-
curately. Furthermore, the authors employ the S-CSMA technique to calculate how
many virtual channels or free buffers are demanded at any time in order to grant
requests accordingly.

As we will see, in this Chapter we also leverage this technology to deploy
dedicated G-Line-based networks on chip, in order to implement barriers and highly-
contended locks to overcome the previously described performance limitations in
future manycore servers.

3 Hardware Barrier Synchronization

A barrier is a synchronization primitive that enables multiple processes or threads to
wait in a particular point of execution, until all of them have reached it before any
of them can continue. A typical example of its usage is utilizing barriers to separate
the different phases commonly found in parallel applications [32]. By doing so, the
programmer ensures that the second phase does not start until all processes or threads
from the application have completed the first one.

In the context of systems that implement a shared-memory programming model
[10], with the advent of manycore architectures, new challenges are arising to provide
an efficient barrier implementation. This is mainly due to the fact that differently to
classical multiprocessor applications which target coarse-grained parallelism, many-
core applications tend to exploit fine-grained parallelism, and therefore, they may be
highly sensitive to barrier performance [26].

Typical implementations of current software-based barriers (SW-barriers, from
now on) rely on busy-waiting on shared variables which are atomically updated [20].
Nevertheless, the use of shared variables implies that the cache coherence protocol
must come in on maintaining their consistency across all levels of the memory hierar-
chy. In turn, coherence activity translates into traffic injection in the interconnection
network. As a result, an ever-growing amount of resources and energy may need
to be devoted to support SW-barriers as the number of cores in manycore servers
increases. On the other hand, busy-waiting on locally-cached shared variables has
also significant implications on the energy consumed by the L1 caches.

As an example, Fig. 1 illustrates the potential performance losses suffered in the
EM3D parallel application when using SW-barriers in future manycore servers (for
details about the evaluation see Sect. 6). In particular, we present the results obtained
for a sophisticated binary combining-tree barrier (which is considered one of the

756 J. L. Abellán et al.

Fig. 1 Fraction of time due to
barriers in EM3D

most efficient SW-barriers) as the number of cores is increased from 1 to 32. Each
bar shows the fraction of the execution time due to barrier synchronization in orange
color. As can be derived from the Figure, as the number of cores increases so does
the fraction of the execution time due to barrier synchronization (up to 63 % for 32
cores), thereby considerably limiting scalability.

In this section, we describe and evaluate an efficient barrier synchronization mech-
anism specifically designed for manycore servers. Differently from SW-Barriers, our
proposal, namely GBarrier, has been implemented entirely in hardware. To imple-
ment GBarrier, we have explored two different technologies. On the one hand, we
make use of the state-of-the-art full-custom G-Lines technology and the S-CSMA
technique explained in Sect. 2. In short, every G-Line enables almost speed-of-light
1-bit communications across one dimension of the entire chip, and the S-CSMA tech-
nique is employed to detect the number of simultaneous transmissions over a G-Line.
On the other hand, we utilize the mainstream industrial toolflow with standard cells
in an advanced 45 nm process (Standard technology from now on) in order to obtain
a cost-effective implementation for our proposal at the expense of some negligible
performance losses.

4 The GBarrier Synchronization Mechanism

In this section we present our proposal to build an efficient hardware infrastructure
for barrier synchronization in the context of manycore servers. To do so, we start by
describing the architecture of the dedicated on-chip network that our proposal entails.
For simplicity, the explanation will be given assuming the G-Lines technology with
the S-CSMA technique. As a case study, we choose a server with a 2D-mesh data in-
terconnection network with R rows of C cores each (for a total ofN = R×C cores),

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 757

Fig. 2 GBarrier architecture for a 16-core server with a 2D-mesh network

although our proposal is not restricted to this topology. Next, we show how the
GBarrier mechanism would operate and finally, we describe the interface for
programmers.

4.1 Dedicated On-Chip Network Architecture

The GBarrier mechanism relies on a dedicated on-chip network as it can be observed
in the example in Fig. 2. For simplicity, we concentrate on a version of the proposed
network providing support for one barrier. As shown in Fig. 2, the GBarrier infras-
tructure is made up of two kind of components. G-Lines (horizontal and vertical
finer black lines), that are used to transmit the signals required by the synchroniza-
tion protocol; and controllers (M and S), that actually implement the synchronization
protocol.

As discussed in Sect. 2, every G-Line is a wire that enables the transmission of
one bit of information across one dimension of the chip in a single clock cycle. Our
G-Line-based network employs two G-Lines per barrier for every row and two more
for the first column. In this way, for any 2D-mesh layout with R rows and C columns,
the total number of G-Lines per barrier that would be needed is equal to 2 × (R+ 1)
(e.g., 10 G-Lines for the 16-core server assumed in the example).

758 J. L. Abellán et al.

In addition to the G-Lines, our proposal also incorporates a set of controllers
in charge of the synchronization protocol required for a barrier synchronization. In
particular, we distinguish two types of controllers: master and slave controllers (see
M and S in Fig. 2, respectively). Each controller is attached to two G-Lines: one
of them is used to transmit signals, whilst the other is employed to receive signals.
More specifically, the G-Line used by the master controller to receive signals is the
one used by the slave controllers to send signals, and vice versa. Moreover, the
master controller is responsible for carrying out the count of signals transmitted
from all slave controllers attached to the G-Line. To do so, the master controller
contains a device that implements the S-CSMA technique. Recall that, this technique
implements voltage amplitude sensing to determine the number of simultaneous
transmitters over a particular G-Line at any given instant in time.

Finally, for design constraints [40] every G-Line can support up to six transmit-
ters and one receiver as much, resulting in a server configuration with up to 7×7
cores. Note that, our GBarrier is not restricted to this number of cores and can be
easily extended to operate with even larger core counts by means, for example, of a
hierarchical tree-based placement of controllers.

4.2 Synchronization Protocol

The synchronization protocol implemented on top of the G-Line-based network pre-
viously described relies on the exchange of 1-bit messages (signals) between the
master and slave controllers, and the use of the S-CSMA technique in the master
controllers to count the number of signals transmitted across every G-Line. In our
proposal, every barrier synchronization is carried out by using a two-phase protocol:
the account phase and the release phase. The first phase starts when the first thread
arrives at the barrier and finishes when the last one reaches the barrier. Then, the sec-
ond phase, in which all threads participating in the barrier are commanded to resume
execution, is initiated. The exact interplay among threads, G-Lines and controllers
is detailed below with an example.

Without loss of generality, we assume that all cores execute the same barrier at
the same time and we explain how the barrier synchronization would take place
on a 2×2 mesh layout (see Fig. 3). We distinguish between horizontal and vertical
controllers depending on the couple of G-Lines they are attached to. In this setting,
there are four horizontal and two vertical G-Lines. Thus, there are two horizontal
master controllers (see Mh in cores 0 and 2), two horizontal slave controllers (see Sh
in cores 1 and 3), one vertical master controller (see Mv in core 0) and one vertical
slave controller (Sv in core 2).

As shown in Fig. 3, each master controller employs a couple of hardware elements
during a barrier synchronization. The first is the ScntH and ScntV counters required
by the horizontal and vertical master controllers respectively. These counters keep
track of the number of signals (obtained through the S-CSMA technique) received
from the horizontal slaves (cores 1 or 3) or vertical slaves (just one in this case),

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 759

Fig. 3 GBarrier for a 4-core server with a 2D-mesh network showing initial state of registers and
flags

and whether the server core the master controller is attached to has arrived at the
barrier. The second element is the Vflag flag, which is used to establish a local
synchronization between horizontal master controllers and the corresponding vertical
controllers (master and slaves) located in the same core (Mh-Mv in core 0 and Mh-
Sv in core 2). In particular, each ScntH counter is initialized with the number of
slaves controllers in each row plus one to also account for the local core. ScntH
is decremented every time a signal from a slave controller in its row is received
through the corresponding G-Line (Sh in cores 1 and 3, in the example) and also
when the local core arrives at the barrier. Once each ScntH counter reaches zero, the
corresponding Vflag flag is set. Similarly, the initial value of the ScntV counter is the
number of vertical slaves plus one, and is decremented on receiving a signal from a
slave controller in its column (Sv in core 2, in the example) and when its local Vflag
flag is set. It is worth noting that, an initial setup is required in order to initialize
both ScntH and ScntV counters to their maximum values. In the example of Fig. 3,
since all cores participate in the barrier, these counters will be initialized to two for
both horizontal and vertical master controllers. From now on, these values will be
referred to as MAXH and MAXV for the ScntH and ScntV counters, respectively.

Taking the initial setup shown in Fig. 3 as the starting point, Fig. 4 illustrates an
example of how the barrier synchronization process would be performed. It is worth
noting that we are assuming theoretical synchronization latencies that may not be
reflected in the exact number of clock cycles required for the two physical GBarrier
implementations (see Sect. 5.1).

At cycle 0, the account phase starts because all threads notify their arrival at the
barrier. To do so, the horizontal slaves (Sh) signal, through their corresponding trans-
mission lines, the arrival of cores 1 and 3 at the barrier. In turn, the horizontal masters

760 J. L. Abellán et al.

Fig. 4 Barrier synchronization under GBarrier

decrement their ScntH counters with the number of received signals (ScntH:=1). Be-
sides, each ScntH counter is also decremented to reflect the fact that cores 0 and 2
have also arrived at the barrier (see ScntH:=0 in the Figure). At cycle 1, once each
horizontal master has detected that its local counter ScntH has reached zero, it sets its
Vflag flag (Vflag:=1) in order to make the corresponding vertical slave (Sv) or master
(Mv) controller to proceed with the vertical stage of the account phase. Then, the
vertical slave (Sv) signals, through its corresponding transmission line, the arrival
of cores 2 and 3 at the barrier and the vertical master (Mv) decrements its ScntV
counter (ScntV:=1). Moreover, the ScntV counter is also decremented because the
cores 0 and 1 have also arrived at the barrier and the Vflag flag was set (ScntV:=0).
After the ScntV counter reaches zero, the release phase is initiated. To do so, at cycle
2, the vertical master unsets the Vflag flag (Vflag:=0), resets the local ScntV counter

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 761

Fig. 5 Encapsulating the GBarrier functionality into the GL_Barrier intrinsic

to its initial value (ScntV:=2) and signals the vertical slave, through the correspond-
ing vertical G-Line. Upon reception of the signal, the vertical slave also resets the
Vflag in order to make the horizontal masters to proceed with the horizontal stage
of the release phase. At cycle 3, the horizontal masters initialize the local ScntH
counters (ScntH:=2), and signal, through their corresponding horizontal G-Lines,
the completion of the barrier synchronization to all waiting horizontal slaves. It is
worth noting that all participating threads are spinning on a register until the whole
process is completed as will be explained in Sect. 4.3.

4.3 Programmability Issues

The GBarrier mechanism proposed in this section is intended to be used by program-
mers in a transparent way. For that reason, as shown in Fig. 5, we propose to provide a
special library-level barrier method (GL_Barrier in the Figure) that encapsulates the
functionality of GBarrier and that could be used in parallel applications to deal with
barrier operations. This barrier method uses a special 1-bit register, called bar_reg,
to notify the arrival at the barrier by setting its value to one (see the mov instruc-
tion in Fig. 5). The bar_reg register needs as many bits as the number of GBarriers
provided in hardware (one bit per barrier). In this way, several barrier operations
involving different sets of cores (the threads in each set running one application)
could take place simultaneously. In this way, the register file of each core must be
augmented with the bar_reg register and the interplay between controllers and these
registers must be enabled, switching on the controllers whenever the bar_reg reg-
isters are written, and resetting the registers and switching off the controllers once
all controllers have finished the synchronization (cycle 3 in Fig. 4). In this way, the

762 J. L. Abellán et al.

synchronization protocol explained in the previous section would be invoked as a
result of the activation of the bar_reg register by a server core. Then, each core
would enter in a loop waiting until the rest of cores have reached the barrier. Once all
cores have set their corresponding bar_reg register and the synchronization protocol
has been completed, all bar_reg registers are reset by the corresponding GBarrier’s
controllers and then, all cores would leave the loop in order to resume execution.

5 Performance Implications

In this section, we analyze GBarrier to gain insight into its potential impact on
performance. First, we start by discussing some considerations taken when using
both G-Lines and Standard technologies to implement our proposal. Next, for both
implementations, we show their potential contributions to performance in terms of
some important raw statistics such as on-chip area overhead, power dissipation,
maximum operating speed and minimum latencies to complete a barrier operation.

5.1 Implementation Technologies

5.1.1 G-Lines Technology

There were several reasons why we decided to use the G-Lines technology to develop
our synchronization mechanism for barriers in manycore servers. First, the connec-
tivity pattern utilized to deploy the dedicated GBarrier’s network (see Sect. 4.1) is
based on long 1-bit single-dimension links which perfectly fit into the concept of
G-Lines. Second, the promising results that could be achieved using this technol-
ogy in terms of marginal area overhead and minimal power dissipation. Note that,
according to the results reported in [40], that show negligible area overhead for a 392-
G-Line network, the 32-core server system evaluated in this section (further details
in Sect. 6.1) is made up of approximately one-20th of the latter number of G-Lines,
thereby even lower implications for on-chip area would be obtained. This marginal
area overhead will have also a negligible impact on power dissipation. Finally, the
GBarrier’s synchronization protocol explained in Sect. 4.2 could take advantage of
the extremely fast transmissions at 2.5 GHz that the use of the G-Lines technology
would entail. In this way, we can directly adopt the same theoretical synchronization
latencies for the gather and release phases explained in that section.

5.1.2 Standard Technology

The GBarrier architecture has also been implemented relying on the mainstream
industrial synthesis toolflow with an STMicroelectronics 45 nm standard cell tech-
nology library. The main reason why we decided to employ this technology was to

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 763

Table 1 Raw statistics using G-Lines and Standard technologies for a single GBarrier in a 32-core
server layout

Frequency (MHz) Latency (cycles) Area (μm2) Power (mW)

G-Lines 2500 4 Negligible 26.4

Standard 670 14 5441 Negligible

provide a cost-effective implementation and to precisely quantify the performance
losses due to the use of this interconnect-dominated nanoscale technology.

Since RC-based wires are very critical to performance degradation, we have im-
plemented each GBarrier’s controller by separating the delay that signals take along
the wires, from the effective computation that the controllers require to generate their
output signals. Notice that, for small manycore servers, the critical path that limits
the maximum operating speed in our GBarrier infrastructure is defined by the most
complex controller (i.e., the master controller that samples signals from the highest
number of slaves), but as the wire length increases for larger servers, the wires could
represent such critical path. Consequently, separating wire delays from controllers
delays become essential in order to achieve maximum clock speeds. In this way,
by using this technology, we cannot directly assume the synchronization latencies
achieved by using G-Lines, and a higher number of cycles will be required for the
gather and release phases. In addition, to minimize the length of wires, we have
situated the master controllers in the central column/row of the 2D-mesh topology,
rather than the first column and first row as depicted in Fig. 2. Note that, in case of
G-Lines technology this optimization would not be necessary since every G-Line is
specially designed to implement one-cycle latency, one-bit transmissions across one
dimension of the chip.

Finally, for a real characterization of our GBarrier proposal, our mechanism has
been synthesized by defining non-routable obstructions. Such obstructions are placed
to mimic the area of every core of the simulated system explained in Sect. 6.1. In this
section, we assume that this area is equal to 550×550 μm2. Additionally, fences are
defined to limit the area where the cells of each GBarrier’s controller can be placed.
Such obstructions and fences also ensure minimum-length routing for the wires in
order to reduce their impact on performance and area overhead as the wire length
increases.

5.2 Raw Performance Statistics

Table 1 shows the main raw performance statistics obtained from the use of both
technologies to implement GBarrier. In particular, we illustrate the maximum op-
erating speed, the latencies of a barrier synchronization and also the area overhead
and power that our proposal entails.

As we can see, the maximum operating speed achieved by the G-Lines technology
is 3.7 times higher than for the Standard technology. Moreover, the number of clock

764 J. L. Abellán et al.

cycles employed by the former technology to complete a barrier is 3.5 lower than that
achieved by the latter technology. The reason is that every GBarrier’s controller and
wire involved take a different clock cycle in the synchronization process. Besides,
the internal communication using the Vflag flag between controllers located in the
same core (e.g., Mh and Mv in Fig. 3) requires an extra clock cycle to achieve the
maximum operating speed. Therefore, the superior efficiency of G-Lines technology
reports roughly a thirteen times faster GBarrier implementation.

In addition, negligible overheads in terms of die area are reported for both tech-
nologies. First, regarding the G-Lines technology, as discussed above, our GBarrier
infrastructure uses one-20th of the minimal area overhead reported in [40] and then,
we can assume that its on-chip area is negligible. And second, for the Standard
technology, an area overhead for GBarrier equal to 5441 μm2 is required that cor-
responds to a negligible 0.06 % of the total area employed for the simulated 32-core
server layout (remember that we assume that each core is 550×550 μm2 in size).

The latter marginal on-chip overheads will introduce a negligible impact on power
dissipation. To exemplify that, we estimate the power dissipated by the G-Line-based
implementation. To do so, we employ the power dissipation parameters for a 65-nm
CMOS process simulated in [40]: 0.6 mW per transmitter; 0.4 mW per receiver; and
2.4 mW per receiver that implement the S-CSMA technique. Moreover, according to
[40] no static power is dissipated by the G-Lines.

To estimate the power dissipation, we must deal with the maximum number of
transmitters and receivers in the system operating at once. From the synchronization
protocol already explained and illustrated in Fig. 4, the worst case of power dissi-
pation per clock cycle is when all cores initiate the gather phase at the same time.
Therefore, for the simulated 32-core server in Sect. 6.1, and considering a 4×8-core
2D-mesh layout1, there will be seven horizontal slaves per row (i.e., 28 transmitters)
signaling the arrival at the barrier, and four horizontal master controllers that count
the latter signals through the S-CSMA technique (i.e., four receivers). Hence, the
total power estimated will be 26.4 mW (28×0.6 + 4×2.4). Utilizing CACTI [16],
the magnitude of this dissipation is less than one-11st of the power dissipated per
read port in the L1 caches simulated in this section (see Table 2).

As a conclusion, the above results suggest that the fastest technology is the most
appropriate implementation to materialize GBarrier. Although synchronization de-
lay would become the discriminating factor, we have also to consider the major
drawback of using G-Lines: The G-Lines technology is a full-custom technology that
is not cost-effective in the embedded computing domain, hence not being within reach
of a standard cell design methodology. In consequence, it would be of paramount
importance to determine the exact magnitude of such performance degradation when
using the Standard technology. In case of being negligible, the slower technology

1 For simplicity, we assume that 8 cores per row can be materialized in G-Lines. Recall that this
technology is limited to 7 cores per row and, for example, a 6×6-core server layout must be
considered instead to span the simulated 2D-mesh 32-core system.

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 765

Table 2 server baseline
configuration Number of cores 32

Core 3 GHz, in-order 2-way model

Cache line size 64 Bytes

L1 I/D-Cache 32 KB, 4-way, 2 cycle

L2 Cache (per core) 256 KB, 4-way, 12+4 cycles

Memory access time 400 cycles

Network configuration 2D-mesh

Network bandwidth 75 GB/s

Link width 75 bytes

would be the preferred GBarrier implementation. This experiment will be con-
ducted in Sect. 6.3.1, by comparing synchronization timings of the two GBarrier
implementations in comparison to the best SW-barrier implementation.

6 Evaluation

In this section we give details of our experimental methodology and performance
results. We describe the simulation environment and the set of microbenchmarks and
scientific applications that we have used in Sect. 6.1. The two SW-barrier implemen-
tations the GBarrier mechanism is compared with are presented in Sect. 6.2. Finally,
the performance results are analyzed in Sect. 6.3 in terms of execution time, network
traffic and energy consumption.

6.1 Experimental Setup

In order to support GBarrier, the Sim-PowerCMP [1] performance simulator has
been extended. Sim-PowerCMP is a detailed architecture-level power-performance
simulator for tiled-server architectures that also estimates energy consumption for
the full server. Table 2 summarizes the values of the main configurable parameters
assumed in this section. As can be seen, we have simulated a 32-core server with an
aggressive 2D-mesh network built in a 45 nm process technology.

To evaluate the performance benefits derived from GBarrier, we have used one
synthetic benchmark, three kernels and three scientific applications. First, the syn-
thetic benchmark is intended to measure the latency of barriers themselves. Hence, it
helps us provide some insight into the potential benefits that our GBarrier mechanism
could provide. To do that, we follow the methodology described in [10]: performance
is measured as average time per barrier over a 100,000-iterations loop of four consec-
utive barriers with no work or delays between them. Second, for the kernels we have
employed three kernels from Livermore loops [13]. Following the recommendations

766 J. L. Abellán et al.

Table 3 Configuration of the benchmarks used in this section

Benchmark Input size #Barriers Period

Synthetic 100,000 iterations 400,000 2568

Kernel 2 1024 elements, 1000 iterations 10,000 3103

Kernel 3 1024 elements, 1000 iterations 1000 4953

Kernel 6 1024 elements, 1000 iterations 1,022,000 4908

Unstructured Mesh.2K, one time step 80 67,361

Ocean 258×258 ocean 364 205,206

EM3D 38,400 nodes, degree 2, 15 % remote, 25 steps 198 3673

given in [25], we focus on Kernels 2, 3 and 6. And third, we have considered three
scientific applications: Unstructured, EM3D and Ocean. These applications were
chosen since they present a non-negligible fraction of the total execution time due to
barrier operations. We would like to point out that all experimental results reported
in this section are for the parallel phase of all of the benchmarks under study.

We summarize the characteristics of the set of benchmarks used in Table 3. For
each of them we account for the input size, the total number of barrier executions
(#Barriers), and the estimated barrier period (the number of cycles on average be-
tween two consecutive barrier executions). The latter is calculated by dividing the
total number of execution cycles into the total number of barrier executions in every
case. Notice that, the barrier period is a simple metric that somehow quantifies the
presence of barriers in every benchmark. For example, the Ocean application presents
364 barrier operations every 205,206 cycles on average (see Table 3). Consequently,
from this high barrier period, we should not expect to obtain a significant fraction
of the total execution time due to barriers. The latter result also limits the potential
benefits that our GBarrier mechanism could provide. A more detailed analysis will
be given below in Sect. 6.3.

6.2 Barrier Implementations

To quantify the benefits of our GBarrier mechanism, we consider that barriers found
in the benchmarks previously described are implemented by using two SW-barrier
implementations: a centralized sense-reversal barrier based on locks (or CSW), and
a binary combining-tree or distributed barrier (DSW). On the one hand, in a CSW
barrier, each core increments a centralized shared counter when it reaches the barrier,
and spins until that counter indicates that all cores are present. On the other hand, in
a DSW barrier, there are several shared counters distributed in a binary tree fashion.
Thus all cores are divided into groups assigned to each leaf (variable) of the tree.
Each core increments its leaf and spins. Once the last one arrives in the group, it
continues up the tree to update the parent and so on towards the root. Finally, the
release phase is similar but in the opposite direction (towards the leaves).

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 767

In general, the implementation of a barrier can be split into three typical stages:
the notification stage (S1), when each core indicates its arrival at the barrier; the busy-
wait stage (S2), to wait the arrival of the remaining cores; and the release stage (S3), in
order to resume execution. At first glance, our GBarrier proposal should accelerate all
the three stages because they are executed without involving any network transaction
or coherence activity. Remember that, our mechanism operates just by means of
a simple synchronization protocol implemented atop a dedicated lightweight on-
chip network, taking only four cycles (the best-case scenario for a 7×7-core server
and G-Lines technology) to perform a barrier operation among all threads or cores
(see Sect. 4.2). However, we could identify two typical situations in which our
proposal may entail negligible improvement. The first situation occurs when a parallel
application contains a reduced number of barriers or a very high barrier period. This
helped us to pick the most significant benchmarks for our evaluation (e.g., choosing
Ocean among all of the applications from the SPLASH-2 benchmark suite). The
second situation takes place when barrier latency is dominated by the stage S2. For
instance, this fact may suggest that the application is under workload imbalance.
We will take into consideration these conclusions when analyzing the performance
results in the next section.

6.3 Performance Results

The evaluation of the GBarrier mechanism has been carried out taking into account
the execution times achieved for the benchmarks shown in Table 3, as well as the
amount of traffic in the interconnect and the energy-delay2 product (ED2P) metric
for the full server.

6.3.1 Execution Time

First of all, we consider the implementation of the GBarrier that relies on the G-
Lines technology. Figure 6 illustrates the execution times obtained for the synthetic
benchmark under study depending on the number of cores in x-axis (from 4 to 32
cores). Notice that y-axis is in logarithmic scale. Remember that, the use of this
benchmark allows us to measure the latency of barrier operations themselves. As we
can observe, there are three lines depending on the three barrier implementations
explained in Sect. 6.2: CSW, DSW and our GBarrier mechanism (GB).

From the results presented in Fig. 6, we can derive two main appreciations. First,
the DSW implementation is much more efficient and scalable than the CSW bar-
rier. It is due to the fact that the CSW implementation employs a centralized shared
counter among all threads, which clearly becomes a bottleneck as the number of
cores increases. In contrast, DSW significantly alleviates contention by using sev-
eral shared counters distributed in a binary tree fashion. And second, it is clear that
GBarrier highly outperforms the others in terms of execution time and scalability.

768 J. L. Abellán et al.

Fig. 6 Average times for three different barrier mechanisms

On the one hand, the GBarrier mechanism drastically reduces execution times of S1,
S2 and S3 stages (up to four cycles for the best-case scenario). On the other hand,
we deploy a dedicated G-Line-based network to implement barrier synchronizations
thus removing any coherence activity or synchronization-related traffic in the inter-
connection network. We would like to point out that our GBarrier implementation
suffers from a slight overhead in the times obtained (see 13 cycles in Fig. 6). It is
due to the overhead introduced by the simulator when applications call our barrier
implementation, because it must be accomplished through its application library.

Figure 7 shows the average normalized execution times over a 32-core server lay-
out for the rest of applications under study. In particular, for Kernels 2, 3 and 6, and
the scientific applications: Unstructured, Ocean and EM3D. Furthermore, we depict
the breakdown of execution time depending on the best SW-barrier implementation
(DSW) and our hardware barrier mechanism (GB). Execution time is further bro-
ken down into several categories: Barrier is the time spent on barriers (sum of the
time taken in the S1, S2 and S3 stages explained above); Write and Read are the
times spent on memory accesses; Lock is the time for lock synchronizations; finally,
Busy is the time for computational work (e.g., arithmetic operations). In addition,
we also illustrate the average times of all kernels and applications for each barrier
implementation (see AvgK and AvgA).

Regarding the kernels results, we can see that our proposal involves a reduction
in execution time of 54 % on average (see AvgK). In more depth, Kernels 2, 3 and 6
present reductions of 70, 46 and 47 %, respectively. The exact extent of the reduction
in each case depends on the barrier period that each kernel has: 3103, 4953 and
4908 cycles, respectively (see Table 3). That is, the lower barrier period the higher
performance efficiency. For that, Kernel 2 presents the highest reduction in execution
time. Moreover, the reductions in execution time obtained also depend on the Write
and Read categories, since our GBarrier mechanism operates without involving any
memory-related instructions (e.g., see reduction of Write category for Kernel 6).

On other hand, the fraction of the execution time that barrier synchronization con-
sumes is lower when scientific applications are considered. In these cases, most of

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 769

Fig. 7 Normalized execution time over a 32-core server

the time is spent on computations and memory accesses (Busy, Write and Read cate-
gories), resulting in lower barrier periods. As a result, lower reductions in execution
time can be observed for Unstructured, Ocean and EM3D (21 % on average). In par-
ticular, worse results stem from the applications Unstructured and Ocean since they
present a very high barrier period (67,361 and 205,206 cycles, respectively), which
translates into reductions of only 3 and 6 % in the total execution time, respectively.
The exception is EM3D, because it presents significant reductions in execution time
(54 %) due to its very small barrier period (3673 cycles).

Table 4 shows the speedup results for the scientific applications (Ocean, Unstruc-
tured and EM3D) when scaling the number of cores parameter with the values 4,
8, 16 and 32. Moreover, we use two different barrier implementations: DSW in
comparison to our GBarrier mechanism (GB). From the results shown in Table 4,
we can extract two important observations. First, all of the benchmarks scale as the
number of cores is increased. Second, the exact extent of speedups depends on the
efficiency of the barrier implementation we are using. In this way, higher speedups
are obtained when employing our GBarrier mechanism.

According to the discussion given at the end of Sect. 5.1.2, it would be of
paramount importance determining whether the performance losses in terms of
synchronization latency derived from the use of the Standard technology can be

770 J. L. Abellán et al.

Table 4 Speedups for the
scientific applications Benchmark Barrier version 4 8 16 32

UNSTR DSW 3.32 5.91 10.48 17.43

GB 3.33 6.01 10.68 17.97

OCEAN DSW 3.69 7.02 13.46 23.56

GB 3.70 7.10 13.98 25.06

EM3D DSW 3.36 5.38 7.32 9.13

GB 3.42 6.12 10.55 16.82

considered negligible. To this end, Table 5 shows the normalized execution times
with respect to those obtained when the DSW barrier is used, depending on the two
kind of GBarrier implementations studied in this section: G-Lines2 and Standard
technologies. From the results shown in the table, it can be derived that average
performance degradations of 6.3 and 4.3 % are reported when using the Standard
technology for the kernels and scientific applications, respectively. These perfor-
mance gap is very small if we take into account the significant average reductions
in execution time of 48 and 16.6 % (kernels and scientific applications) achieved
by the Standard technology in comparison to the most efficient SW-barrier imple-
mentation (DSW). Consequently, we can affirm that our GBarrier mechanism is
not so dependent on a full-custom technology to provide extremely efficient barrier
synchronizations.

Obviously, the performance gap between both technologies will be higher for
greater server layouts due to the negative effects of the interconnect-dominated
nanoscale Standard technology. However, the use of a very lightweight intercon-
nection network, that features a hierarchical design, along with a very simple
synchronization protocol help relieve such negative effects on performance mak-
ing the GBarrier design really scalable. In particular, in [19], where we explore
different hardware-based barrier layouts using Standard technology, impressive re-
sults are shown for a 64-core server layout when comparing performance against the
best SW-barrier.

Finally, we also carried out a sensitivity analysis to evaluate the extent to which
our proposal is affected by longer link latencies when considering the G-Line-based
technology. To do so, we simulate several configurations of the G-Line-based net-
work with varying latencies for the links and evaluate the impact that this has on
performance. Several clock cycles may be necessary to transmit a signal across one
dimension of the chip if, for example, we consider longer links that cannot support
a propagation delay of a single clock cycle, or even if lower clock frequencies are
required to integrate our GBarrier infrastructure in the manycore server. Figure 8
illustrates the normalized execution times when G-Lines take from 1 (results pre-
sented in Fig. 7) to 12 clock cycles (see z-axis in the Figure). As we can observe,

2 Note that, the results for the implementation that uses G-Lines are the same as those presented in
Fig. 7.

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 771

Table 5 Normalized execution times for G-Lines and Standard technologies

KERN2 KERN3 KERN6 UNSTR OCEAN EM3D

G-Lines 0.30 0.54 0.53 0.97 0.94 0.46

Standard 0.39 0.61 0.56 0.99 0.96 0.55

Fig. 8 Normalized execution times for the benchmarks depending on the latency of the G-Lines (a
32-core server is assumed)

very small performance losses are derived even when dealing with 12-cycle G-Lines.
Particularly, performance degradations of just 5.3 and 3.6 % on average in the worst
case are shown for the kernels and scientific applications, respectively. Note that
the results observed for the 12-cycle case are slightly lower than those obtained for
the Standard technology previously reported in Table 5. According to Sect. 5.1, the
implementation based on Standard technology is roughly 13 times slower than the
G-Line-based infrastructure, so that the former would be roughly equivalent to a
13-cycle G-Line-based implementation what explains such similarities.

6.3.2 Network Traffic

Our proposal does not generate any coherence messages on the main data network
when performing barrier synchronizations. In the end, this translates into significant
reductions in terms of network traffic. Figure 9 shows the total network traffic across
the main data network. In particular, each bar plots the number of bytes transmitted
through the interconnection network (the total number of bytes transmitted by all the
switches of the interconnect) normalized with respect to the DSW case. Each bar is
broken down into three categories: Coherence corresponds to the messages generated

772 J. L. Abellán et al.

Fig. 9 Normalized network traffic over a 32-core server

by the cache coherence protocol (e.g., invalidations and Cache-to-Cache transfers);
Request comprehends messages generated when load and store instructions miss in
cache and must access a remote directory; and finally, Reply involves the messages
with data.

For the kernels, important reductions in network traffic are achieved (53 % on
average). In general, these reductions are directly related to the extents of the im-
provements in execution time previously reported. Moreover, since the simulated L2
cache is shared among the different processing cores, but it is physically distributed
between them (see Sect. 6.1), some accesses to the L2 cache will be sent to the local
slice while the rest will be serviced by remote slices. This will also affect the timings
for lock acquisition and release operations. In contrast, since our GBarrier imple-
mentation skips the memory hierarchy we have not obtained such negative impact
on network traffic. In particular, Kernel 2, 3 and 6 show important reductions of 68,
37 and 56%, respectively.

Finally, regarding the scientific applications, we can see a slight reduction in
network traffic (see 18 % in AvgA). More specifically, the applications Unstructured,
Ocean and EM3D present reductions of 1, 2 and 51 %, respectively. As before,
there is a correlation between the fraction of the execution time devoted to barrier
synchronization and the amount of network traffic that is saved. In this way, for

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 773

Fig. 10 Normalized ED2P metric for the full server

Unstructured and Ocean we could expect more than 1 or 2 % reductions in network
traffic, due to the 3 and 5 % reduction in execution time, respectively. However, we
noticed that the latency of barriers for these benchmarks is dominated by the S2 stage
and, as we mentioned, this implies workload imbalance. For the case of DSW, this
stage involves negligible network traffic because, once shared variables are loaded
in cache, busy-waiting is performed locally. As a result, our GBarrier mechanism
reports a very low traffic reduction for both benchmarks. Finally, as we expected,
EM3D presents a considerable reduction in network traffic (51 %) because of its very
small barrier period.

6.3.3 Energy Efficiency

The use of our GBarrier mechanism leads to important reductions in execution time
and network traffic, as explained above. In this section, we also quantify the benefits
in energy efficiency that our proposal could entail. More specifically, we present in
Fig. 10 the normalized energy-delay2 product (ED2P) metric for the full server. To
account for the energy consumed by the GBarrier architecture (the G-Lines-based
network described in Sect. 4.1), we extend the Sim-PowerCMP with the consumption
model of G-Lines and controllers described in previous Sect. 5.2. As we conclude
in that section, the power dissipation associated with our two technology-aware

774 J. L. Abellán et al.

GBarrier implementations is negligible, hence the power statistics presented in this
section will be mainly due to the improvements in execution time and network traffic
reported in previous sections.

As in the previous two sections, all results in Fig. 10 have been normalized with
respect to the DSW case. As can be observed, important improvements in the ED2P
metric of the whole server are

achieved when applying our proposal. In particular, the GBarrier mechanism
brings average improvements in ED2P of 76 and 31 % for the kernels and scientific
applications, respectively. Particularly, the Kernel 2, 3 and 6 show reductions of 90,
68 and 71 %, respectively. Additionally, reductions of 6, 10 and 79 % are achieved
for Unstructured, Ocean and EM3D.

In general, the magnitude of these savings is directly related to the extents of
the improvements in execution time and network traffic previously reported. We
have found that when GBarrier is employed, the number of instructions executed
per barrier operation is drastically reduced. Note that while DSW barrier must deal
with a distributed shared counter in a binary tree fashion, GBarrier only needs a
single assignment instruction on a register to notify the arrival at the barrier (see
Sect. 4.3). Obviously, less instructions executed means less energy consumed in the
server cores.

Moreover, since we reduce the latency to notify the arrival at the barrier (S1
stage), the busy-wait process (S2 stage) is also shortened with GBarrier. While
busy-waiting, a server core repeatedly accesses the L1 cache to check the value
of a shared variable. In this way, shorter busy-waiting implies less accesses to the
L1 cache, and therefore, less energy consumed in this structure. Finally, given the
fact that our proposal skips the memory hierarchy, we save all the energy derived
from coherence activity when barriers are executed. In particular, we remove all of
the L1 cache misses related to barrier operations and the corresponding messages
transferred across the interconnect. This brings reductions in the energy consumed
at the L2 cache banks and the interconnection network.

7 Related Work

To overcome the performance limitations imposed by SW-barriers, there have been
proposed several hardware-based optimizations in the context of both traditional
multiprocessors and, more recently, servers. In this section, we make an attempt at
categorizing most of them in terms of the part of the system they improve or augment:
memory-based approaches, network-based and global lines approaches.

Regarding memory-based approaches, Goodman et al. [24] proposed a set of
efficient primitives for process synchronization based on the use of synchronization
bits (syncbits). Syncbits are logically associated with every block in memory to
provide a simple mechanism for mutual exclusion.

Sampson et al. [25] presented barrier filters, a mechanism to implement fast barrier
synchronization on servers. The key idea is that they ensure that all threads arriving

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 775

at a barrier require an unavailable cache line to proceed. Then, the barrier filter
starves their requests until they all have arrived. Monchiero et al. [29] proposed a
hardware module to optimize busy-waiting synchronization in servers. This module
is integrated in the memory controller, namely the Synchronization-operation Buffer
(SB). The SB manages locally the polling on shared variables, avoiding traffic in the
network and memory accesses.

Differently from these previous approaches, our proposal decouples completely
barrier synchronization from any kind of memory-related activity.

Regarding network-based approaches, Hsu and Yew [41] proposed a multistage
shuffle-exchange network to efficiently handle synchronization traffic of SW-barriers
by combining packets in the switches in order to relieve hot-spot congestion from
the network.

For example, the network architecture of the Connection Machine CM-5 [8]
contains a dedicated network (control network) to perform synchronizations of an
entire set of servers through specific messages interchanged between outgoing and
incoming FIFO queues at the network interface level. In addition, the Blue Gene/L
[31] also contains a dedicated interconnection network for barrier synchronization.
Sartori and Kumar pointed in [26] that although a dedicated interconnection network
manages barrier operations efficiently, its integration in future manycore servers
may not be a feasible solution due to the large on-chip area and power dissipation
that it could entail. They propose three barrier implementations, that are hybrid of
software and hardware aimed at achieving closer approximation to the performance
of a dedicated interconnection network but at a fraction of the cost.

Differently from any of the above proposals, GBarrier operates independently of
the main data network, thus removing all synchronization-related traffic. Moreover,
we use a very reduced number of state-of-the-art global links that introduce negligible
area overhead and power dissipation.

Finally, as to global lines approaches, Cyclops [7] is a highly parallel server-
and-memory system on a chip (32-quad-core server architecture). This architecture
implements a fast barrier operation through a special purpose register (SPR). It is
actually implemented as a wired OR for all the threads on the chip. Each thread
writes its SPR independently, and it reads the ORed values of all the threads’ SPRs.
The register has eight bits which provides four distinct barriers (2 bits per barrier).
One of the bits holds the state of the current barrier cycle whilst the other holds
the state of the next barrier cycle. All threads participating in the barrier initially set
their current barrier bit to 1. The threads not participating in the barrier leave both
bits set to 0. Then, when a thread reaches the barrier it writes 0 to the current bit,
thereby removing its contribution to the current barrier cycle, and one to the next bit.
Hence, the barrier is completed when all current bits become 0. Furthermore, the
use of the current and next bits are interchanged after each execution of the barrier.
To communicate the SPRs’ values, Cyclops employs a dedicated 16-bit bus which
enables the completion of a barrier operation among all threads in only a few dozens
of cycles [42].

In contrast, rather than buses, our proposal communicates signals through a more
scalable on-chip network based on 1-bit width links deployed in a hierarchical layout.

776 J. L. Abellán et al.

Moreover, as aforementioned, our accounting process is distributed, hence more
scalable.

TLSync [22] is a sophisticated design for barrier synchronization that provides
very efficient barriers although being fully dependent on non-standard technology,
namely Transmission Lines [5]. In particular, the process of synchronization is per-
formed by allocating different radio-frequency bands from the high-frequency part
of the spectrum per barrier, thereby allowing multiple groups of threads to be con-
currently synchronized very quickly. While this is a very efficient hardware design,
a successful implementation is restricted to leading-edge technology thus not being
within reach of a standard cell design methodology. In contrast, in light of the im-
pressive performance results shown in this section, a cost-effective implementation
of GBarrier is also feasible.

8 Hardware Lock Synchronization

Lock synchronization in parallel applications has long been devised to ensure that a
block of code manipulating a shared data structure, namely critical section (CS), is
executed by only one process or thread at a time (i.e., the lock owner), thereby guar-
anteeing mutual exclusion among processes or threads and preserving the integrity
of the shared data [12].

In shared-memory parallel systems, this kind of synchronization mechanism com-
monly comprises a pair of operations. First, the lock operation that a thread utilizes
before executing the CS to request the lock ownership. And second, once the thread
becomes the lock owner and executes the CS, the unlock operation, that is executed
straight afterwards the CS in order to release the lock ownership, so that another
thread can become the next lock owner.

Typical software-based implementations for lock/unlock rely on a combination
of memory operations on shared variables that involve special instructions such
as LL/SC, or atomic read-modify-write instructions like test&set. Nonetheless, the
use of shared variables for lock synchronization has two important implications for
performance and scalability, especially in future manycore servers. First, the cache
coherence protocol must come into play in order to maintain the consistency of shared
variables across all levels of the memory hierarchy. Coherence activity translates
into traffic injection in the interconnection network. As a result, an ever-growing
amount of resources may need to be devoted to support lock synchronization as the
core count increases. Moreover, lock acquisition and release operations timing is
deeply affected by the performance and scalability of the cache coherence protocol
especially under the presence of highly-contended locks. Second, lock contention
has long been recognized as a key impediment to performance and scalability since
it causes serialization [30]. Consequently, the longer the idle time spent on lock
acquisition and release operations, the larger the parallel efficiency reduction.

As an evidence, we show in Fig. 11 the potential benefits to performance when
lock synchronizations do not involve the cache coherence protocol and have zero

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 777

Fig. 11 Potential benefits for Raytrace when using ideal locks

latency. To do so, the Raytrace application from the SPLASH-2 benchmark suite
[37] is run by using distinct lock implementations (for details of the evaluation see
Sect. 11). In each case, we highlight in orange color the fraction of the execution
time due to the locks. Shared-memory-based locks use test-and-test&set
(see TATAS bar in Fig. 11). In turn, ideal locks (see IDEAL bar in Fig. 11) do not
deal with the cache coherence protocol to eliminate any inherited performance or
scalability side-effects. Besides, lock acquisition and release operations take a single
clock cycle each to minimize serialization due to contention. As expected, ideal
locks clearly outperform shared-memory-based locks since the lock acquisition and
release operations account for a significant fraction of the execution time in Raytrace.
However, a post-mortem analysis of Raytrace lock usage reveals that only 2 out
of its 34 locks are highly-contended. In this sense, if all the locks other than the
highly-contended ones are implemented using regular shared-memory-based locks, a
reduction in the execution time similar to that of ideal locks is obtained (see TATAS-1
and TATAS-2 bars3 in Fig. 11). The latter result suggests that only highly-contended
locks can truly benefit from a more efficient lock implementation.

In this section, we present and evaluate a new lock synchronization mechanism
aimed at accelerating highly-contended locks. Our proposal, namely GLock, is a
lightweight on-chip network infrastructure devoted to implement a very simple token-
based message-passing protocol providing extremely efficient execution for highly-
contended locks. As with the GBarrier mechanism presented in Chap. 3, we have
explored two different technologies to implement GLock. On the one hand, we make
use of the state-of-the-art full-custom G-Lines technology introduced in Sect. 2, that
enables almost speed-of-light 1-bit communications across one dimension of the
entire chip. On the other hand, we employ the mainstream industrial toolflow with
standard cells in an advanced 45 nm technology in order to obtain a cost-effective
implementation for our proposal at the expense of some negligible performance loss.

3 TATAS-X means that one (X = 1) or two (X = 2) of the highly-contended locks have been
implemented as ideal locks.

778 J. L. Abellán et al.

Fig. 12 GLock architecture for a 9-core server with a 2D-mesh network

9 The GLock Synchronization Mechanism

In this section, we present our proposal to build an efficient synchronization mech-
anism for highly-contended locks in manycore servers. To do so, we will focus
on describing the hardware components required and the synchronization protocol
employed, rather than going into any technical aspects of the two implementation
technologies used (further details in Sect. 10.1). In more depth, we start by describing
the dedicated on-chip network that our proposal entails. As a case study, we choose
a server with a 2D-mesh data interconnection network with R rows of C cores each
(for a total of N = R × C cores), although our proposal is not restricted to this
topology. Next, we show how the GLock mechanism would operate and finally, the
interface for programmers.

9.1 Dedicated On-Chip Network Architecture

The GLock mechanism proposed in this section relies on a dedicated on-chip network
as can be observed in the example in Fig. 12. For simplicity, we concentrate on a
version of the proposed network providing support for one lock. As we can see, the
network is made up of two kind of components. Links (horizontal and vertical finer
black lines), that are used to transmit the signals required by the synchronization pro-
tocol; and controllers (R, Sx and Cx), that actually implement the synchronization
protocol.

Every link is simply a wire that enables the transmission of one bit of information
across one dimension of the chip, employing one link per transmitter and lock.

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 779

Every link will be used to request the associated lock and grant lock acquisitions. In
this way, for any 2D-mesh layout the total number of links per lock that would be
needed is equal to N − 1, where N is the number of cores of the server (e.g., eight
links for the 9-core server shown in Fig. 12). It is worth noting that our proposal
is aimed at providing this kind of hardware support just for a very limited number
of locks, enabling the opportunity to deal with very efficient highly-contended lock
synchronizations with marginal area overhead (see Sect. 10.1).

In addition to the links, our proposal also incorporates a set of controllers. In par-
ticular, we distinguish two types of controllers: the local controllers (Cx in Fig. 12)
and the lock managers (R and Sx in Fig. 12). The local controllers send and receive
signals to and from their corresponding lock managers through their dedicated links
(e.g., C1 sends and receives signals to/from S1). The exception is when the local
controller is located in the same core as its associated lock manager. In this case,
the functionality of the local controller is encapsulated in the lock manager, and
communication is performed locally by means of a flag. For example, S1 monitors
not only signals from local controllers one and two (C1, C2) through their corre-
sponding links, but also from the local core through an internal flag (for clarity, this
flag is not shown in Fig. 12).

The lock managers control lock ownership by monitoring signals from either
links (remote cores) or the flags (local core). Besides, lock managers are divided into
two groups: primary and secondary lock managers. Secondary lock managers (Sx)
are responsible for monitoring signals from their corresponding local controllers,
whereas the primary lock manager (R) is responsible for monitoring signals from
the secondary ones. Primary and secondary lock managers communicate with each
other by means of the vertical links shown in Fig. 12.

Finally, to have a clear understanding of our proposal, we represent the architec-
ture described above as the hierarchy shown in Fig. 13. In particular, the dedicated
network that our proposal is based on can be represented as a three-level hierarchy.
The root of the hierarchy is the primary lock manager. The secondary lock man-
agers would be located at the intermediate nodes. Finally, the leaves of the hierarchy
would be the server cores (with the local controllers). All elements are connected
using links (continuous lines) or locally by means of an internal flag (dashed lines).
The flags (fx and fSx) store the signals sent by the controllers to the corresponding
lock manager (primary and secondary). In this way, we need flags not only to store
the signals sent between Sx and the local controllers (one flag per Cx controller: f 1
for C1, f 2 for C2, etc.), but also to store the signals transmitted between R and Sx
(one flag per Sx controller: f S1 for S1, f S2 for S2, etc.).

9.2 Synchronization Protocol

The synchronization protocol implemented on top of the network previously de-
scribed is based on the exchange of 1-bit messages (signals) between the local
controllers and the lock managers. More specifically, the protocol uses three types

780 J. L. Abellán et al.

Fig. 13 Logical view of the link-based network for a 9-core server with a 2D-mesh network

of signals to perform a lock synchronization. The REQ and REL signals, which are
sent from the local controllers to their corresponding lock manager to ask for the
lock and to release the lock, respectively; and the TOKEN signal which is sent from
a lock manager to a particular local controller to grant access to a lock. In addition,
these signals are also transmitted between primary and secondary lock managers in
a lock synchronization. In particular, the secondary lock managers ask for the lock
by sending the REQ signal to the primary lock manager and receive authorization
from the latter through the TOKEN signal. Similarly, after the lock is released, a
secondary lock manager notifies the primary one by means of the REL signal.

Lock managers (both the primary and secondary ones) use a round-robin strategy
to grant the lock among those server cores which are competing for becoming the
next owner. Let’s assume that all of the cores in Fig. 13 send the REQ signal to their
corresponding secondary lock manager at the same time. In this case, the TOKEN
signal granting the lock would be received by Core0 first; then, once Core0 has
released the lock, Core1 would become the next holder; and so on, until Core8
is reached. Next, the process would start again from Core0 if there are additional
pending lock requests. Since the GLock mechanism is aimed at accelerating highly-
contended locks we do not expect that the election of the strategy to grant the lock in
these situations will have any impact on performance. However, this is a key design
point to ensure the fairness expected from a lock implementation [10]. The latter is
the reason why we use the round-robin strategy.

As an example of how the synchronization protocol works, Fig. 14 presents the
case where the nine cores of the server depicted in Fig. 12 try to get access to the
lock at the same time. To clarify the explanation, the arrows in the Figure mark
the sense of the transmissions. Moreover, each arrow is labeled with the cycle in
which communication occurs, starting with cycle 1. It is worth noting that we are
assuming theoretical synchronization latencies that may not be reflected in the exact
number of clock cycles required for the two physical GLock implementations (see

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 781

a

b

c

d

Fig. 14 Example of lock synchronization under the GLock mechanism

782 J. L. Abellán et al.

Sect. 10.1). Finally, we highlight with dark gray the flags that are written and the
core that acquires the lock in each case.

At cycle 0, all cores try to get the lock (see Fig. 14a). To do so, every local
controller (Cx in the Figure) sends the REQ signal at cycle 1 to the corresponding
secondary lock manager (Sx in the Figure). As a result, all f x flags would be written,
and each Cx would be busy-waiting until the TOKEN signal is received. At cycle
2, once each Sx detects that at least one of its f i flags has been written, REQ
signals towards the primary lock manager (R in the Figure) are sent in order to write
the corresponding f Sx flags. At this moment, R must make a decision about the
secondary lock manager that will be granted the lock ownership. This process is
shown in Fig. 14b. In this case, R would choose S1 by following the round-robin
scheduling policy already discussed and would send the TOKEN signal at cycle 3.
At cycle 4 and based on the round-robin policy, S1 chooses Core0 and sends the
TOKEN signal granting access to the lock.

Figure 14c shows the scenario in which anSx can grant the lock ownership without
involving any additional notifications to R. More specifically, once Core0 releases
the lock at cycle m, its controller sends the REL signal (by writing to the local f 0
flag, as we mentioned) to S1. Next, at cyclem+ 1, S1 grants the lock ownership (by
means of the TOKEN signal) to the next core by following the round-robin policy
from the active f x flags. In this case, Core1 becomes the new lock holder. In the
same way, Core2 would be granted the lock in cycle n + 1 (m < n). Finally, in
Fig. 14d we illustrate the scenario when an Si finishes its scheduling because either
it has reached the last active f x or there are no more pending local requests for the
lock. In this case, Si must send the REL signal towardsR, which will choose another
available Sj lock manager from those that activated the f Sx flags. In the Figure, S1
sends the REL signal to R at cycle p + 1 (n < p), which following the round-robin
policy grants the lock to S2. Finally, S2 sends the TOKEN signal giving access to
the lock to Core3 at cycle p + 3.

9.3 Programmability Issues

The GLock mechanism proposed in this section is intended to be used by program-
mers in a transparent way. For that, as shown in Fig. 15, we propose to provide
special library-level lock and unlock methods (GL_Lock and GL_Unlock in the
Figure) that encapsulate the functionality of GLock and that could be used in par-
allel applications to deal with contended locks. This synchronization method uses
a couple of special 1-bit registers added to each server core. First, the lock_req
register that is used to request the lock and wait for lock acquisition. Second, the
lock_rel register that is used to release the lock4.

4 Note that all pairs of flags (one per lock) could be grouped in each core using one special lock
register.

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 783

Fig. 15 Encapsulating the GLock functionality into the lock/unlock library-level intrinsics

As a result of the activation of the lock_req register by a server core, the
synchronization protocol explained in the previous section would be invoked. In
particular, the corresponding f x flag is activated by the local controller, and the sec-
ondary and primary lock managers start with delivering the lock ownership (granting
the token). Straight afterwards, the server core enters in a loop waiting for the lock
ownership (see Fig. 15). Next, once the lock is granted, the lock_req register is
reset by the local controller, and the core can resume to execute the corresponding
critical section protected by the lock. Once the critical section is executed, the server
core sets thelock_rel register that will be used to release the lock. In consequence,
the local controller would deactivate the f x flag and the lock_rel register would
be reset as well.

The lock_req and lock_rel registers need as many bits as the number of
GLocks provided in hardware (one bit per contended lock). In this way, several
lock operations involving different sets of cores (the threads in each set running one
application) could take place simultaneously. To this end, the register file of each
core must be augmented with both registers and the interplay between controllers
and them must be enabled, switching on the controllers whenever the lock_req
registers are written, and switching off the controllers once all lock_rel registers
are reset and all controllers have unset all the f x and f Sx flags.

784 J. L. Abellán et al.

As pointed out through this section, our GLock mechanism is aimed at accelerating
highly-contended locks. Obviously, the programmer is responsible for identifying
locks of this kind and using the GL_Lock and GL_Unlock methods previously
described for them. In the literature, there have been proposed several heuristics
to detect contended locks in those cases in which it could be a tedious or difficult
task. As an example, Tallent et al. [30] have recently proposed strategies for gaining
insight into performance losses due to lock contention. Their goal was to understand
where a parallel program needed improving.

As a final observation, the programmability of our GLock proposal is orthogonal
to the utilization of any optimizations to harness the commented process of busy-
waiting to conduct some other useful work while the lock ownership is not granted
yet. For example, similar to try locks [28], upon a thread requests the lock the thread
could execute some alternative code, or as in [14, 21], it could be involved some
special queuing and scheduling kernel functions in order to deschedule the waiting
thread allowing another one to make progress until the lock is eventually granted.
Nevertheless, the implementation of these other approaches does not fall within the
scope of this Chapter.

10 Performance Implications

In this section, we analyze GLock to determine its potential impact on performance.
For that, we start by describing the two types of technologies employed to implement
our GLock infrastructure. Next, for both implementations, we show their potential
contributions to performance in terms of some important raw statistics such as on-
chip area overhead, power dissipation, maximum operating speed and minimum
latencies for acquiring and releasing a lock.

10.1 Implementation Technologies

10.1.1 G-Lines Technology

As discussed in the previous section, there were several reasons why we decided to
use this technology to develop our synchronization mechanism for highly-contended
locks in manycore servers. First, the connectivity pattern utilized to deploy the ded-
icated GLock’s network (see Sect. 9.1) is based on long 1-bit single-dimension links
which perfectly fit into the concept of G-Lines. Second, according to the results
reported in [40], that show negligible area overhead for a 392-G-Line network, the
32-core server system evaluated in this section (further details in Sect. 11.1) is made
up of one-12th of the latter number of G-Lines, thereby even lower implications
for on-chip area will be obtained. This marginal area overhead will have also a
negligible impact on power dissipation. Finally, the GLock’s synchronization proto-
col explained in Sect. 9.2 could take advantage of the extremely fast transmissions

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 785

at 2.5 GHz that the use of the G-Lines technology would entail. In this way, we
can directly adopt the same theoretical synchronization latencies for acquiring and
releasing a lock explained in that section.

10.1.2 Standard Technology

The GLock architecture has also been implemented relying on the mainstream indus-
trial synthesis toolflow with an STMicroelectronics 45 nm standard cell technology
library.

While this standard design methodology leads to cost-effective implementations in
the embedded computing domain, low-latency communications for the GLock’s links
are non-trivial to materialize. First, links have to be synthesized as RC-based wires5

that are fully exposed to the effects of technology scaling. More specifically, the RC
propagation delay of every wire will degrade as feature sizes shrink, making links
increasingly slow. For this reason, this technology is also known as an interconnect-
dominated nanoscale technology. And second, the propagation delay also affects the
internal GLock’s logic thus reducing its maximum operating speed.

As for GBarrier in the previous section, it is worth noting that our mechanism
has been synthesized by ensuring minimum wire lengths by situating lock managers
in the central row/column of the 2D-mesh layout depicted in Fig. 12. In addition,
we define non-routable obstructions that are placed to mimic the area of every core
(550×550μm2) of the simulated system explained in Sect. 11.1. Additionally, fences
are defined to limit the area where the cells of each GLock’s controller can be placed.
Such obstructions and fences also ensure minimum-length routing for the links in
order to reduce their impact on performance and area overhead as the wire length
increases.

Due to the fact that RC-based links are very critical to performance degradation,
we have implemented each GLock’s controller by separating the delay that signals
take along the wires, from the effective computation that the controllers require to
generate their output signals. Notice that, for small manycore servers, the critical
path that limits the maximum operating speed in our GLock infrastructure is defined
by the most complex controller (i.e., the lock manager which communicates with a
higher number of controllers), but as the wire length increases for larger servers, the
wires could represent such a critical path. Consequently, separating wire delays from
controllers delays becomes essential in order to achieve maximum clock speeds.
In this way, by using this technology, we cannot directly assume the theoretical
synchronization latencies explained in Sect. 9.2, and a higher number of cycles will
be required to acquire and release the lock.

5 We use the terms links and wires interchangeably.

786 J. L. Abellán et al.

Table 6 Raw statistics using G-Lines and Standard technologies for a single GLock in a 32-core
server layout

Freq. (MHz) Latency (cycles) Area (μm2) Power (mW)

G-Lines 2500 Acquire: 4 (worst), 2 (best) Negligible 28

Release: 1

Standard 714 Acquire: 9 (worst), 5 (best) 6269 Negligible

Release: 3

10.2 Raw Performance Statistics

Table 6 shows the main raw performance statistics obtained from the use of both
technologies to implement GLock. In particular, we illustrate the maximum operating
speed, the latencies of the lock acquisition and release (assuming that the lock is free)
and also the area overhead with an estimation of power dissipation that our proposal
entails.

The maximum operating speed achieved by the G-Lines technology is 3.5 times
higher than for the Standard technology. Moreover, the number of clock cycles
employed by the former technology to acquire and release a lock is half of those
achieved by the latter technology. The reason is that every GLock’s controller and
link involved take a different clock cycle in the synchronization process. Therefore,
the superior efficiency of G-Lines technology reports roughly an eight times faster
GLock implementation.

Due to the very lightweight infrastructure deployed to implement GLock, negligi-
ble overheads in terms of die area are obtained for both technologies. Regarding the
G-Lines technology, as aforementioned, our GLock infrastructure requires one-12th
of the number of G-Lines reported in [40] thus leading to even lower implications for
on-chip area. Moreover, as to the Standard technology, an area overhead for GLock
equal to 6269 μm2 is reported that corresponds to a negligible 0.07 % of the total
area employed for the simulated 32-core server layout (remember that we assume
that each core is 550×550 μm2 in size).

The latter marginal on-chip overhead must also lead to a negligible impact on
power dissipation. We demonstrate this by estimating the power dissipation for a
worst-case scenario in which the maximum number of GLock’s transmitters and
receivers are operating at once. As an example, we detailed the power estimation
considering the G-Lines-based implementation for GLock. According to the GLock’s
synchronization protocol already described (see Fig. 14), this situation arises when
all cores request the lock ownership at the same time. In this way, for the simulated
environment described later in Sect. 11.1, where we considered a 4×8-core server6,

6 For simplicity, we assume that 8 cores per row can be materialized in G-Lines. Recall that this
technology is limited to 7 cores per row and, for example, a 6×6-core server layout must be
considered instead to span the simulated 2D-mesh 32-core system.

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 787

there will be a total of seven local controllers per row (i.e., 28 transmitters) transmit-
ting the 28 REQ signals towards the corresponding four secondary lock managers,
which in turn store those signals in the corresponding fX flags (i.e., 28 receivers
are required). For the power estimation, we assume the same power dissipation pa-
rameters for a 65-nm CMOS process simulated in [40]: 0.6 mW per transmitter; and
0.4 mW per receiver. Moreover, according to [40] no static power is dissipated by the
G-Lines. Hence, for the number of transmitters and receivers discussed before, the
total power estimated is 28 mW (28×0.6 + 28×0.4). It is worth noting that, utilizing
CACTI [16], the magnitude of this dissipation is less than one-10th of the power
dissipated per read port in the L1 caches simulated in this section (see Table 7).

As a conclusion of this section, the above results suggest that the fastest technology
is the most appropriate implementation to materialize GLock. Although synchroniza-
tion delay would become the discriminating factor, we have also to take into account
that the G-Lines technology is not within reach of a standard cell design methodol-
ogy. In consequence, it would be of paramount importance to determine the exact
magnitude of such performance degradation when using the Standard technology.
In case of being negligible, the slower technology would be the preferred GLock
implementation. This experiment will be conducted in Sect. 11.4.1, by comparing
synchronization timings of the two GLock implementations in comparison to the
best software-based implementation for highly-contended locks.

11 Evaluation

In this section we give details of our experimental methodology and performance re-
sults. For that, the raw performance statistics already discussed in Sect. 10 have been
integrated into the simulation environment described in Sect. 11.1. In the latter sec-
tion, we also describe the sort of benchmarks and their main characteristics utilized
to evaluate GLock, and a post-mortem analysis is carried out in Sect. 11.2 to pre-
cisely quantify the exact degree of contention of locks in every benchmark. Moreover,
Sect. 11.3 describes the most efficient software implementation for highly-contended
locks that GLock is compared against. Finally, Sect. 11.4 shows performance results
in terms of execution time, network traffic and energy consumption.

11.1 Experimental Setup

As GLock has been specifically tailored to work in the context of manycore servers,
we have integrated our proposal into the Sim-PowerCMP performance simulator as
for our GBarriers proposal already presented in this Chapter. In particular, Table 7
shows the values of the main configurable parameters assumed in this section. In
short, we have simulated a 32-core server architecture with an aggressive 2D-mesh
network built in a 45 nm process technology.

788 J. L. Abellán et al.

Table 7 server baseline
configuration Number of cores 32

Core 3 GHz, in-order 2-way model

Cache line size 64 Bytes

L1 I/D-Cache 32 KB, 4-way, 2 cycles

L2 Cache (per core) 256 KB, 4-way, 12+4 cycles

Memory access time 400 cycles

Network configuration 2D-mesh

Network bandwidth 75 GB/s

Link width 75 bytes

To evaluate the performance benefits derived from GLock, five microbenchmarks
and three real applications are used. On the one hand, the microbenchmarks that
we have employed are: SCTR, MCTR, DBLL, PRCO and ACTR [34]. They were
chosen because of exhibiting different highly-contended access patterns to shared
data that can be commonly found in parallel applications. On the other hand, re-
garding real applications, we have considered Qsort sorting algorithm as well as two
programs belonging to the SPLASH-2 benchmark suite [37]: Ocean and Raytrace.
These applications were chosen since they present a significant lock synchronization
overhead due to the existence of highly-contended locks7. In fact, these locks are
accessed following similar patterns to those of the microbenchmarks. We summarize
the characteristics of the microbenchmarks and applications used in this section in
Table 8. For each of them we account for the input size, the total number of different
locks, the number of these locks that are highly-contended (H-C Locks), and point
out the highly-contended lock access patterns in terms of the microbenchmarks they
are similar to.

It is important to note that only contended locks are implemented using the GLock
mechanism. For the rest of the locks, we rely on a straightforward implementation
called Simple Lock, that atomically toggles a boolean flag to acquire and release the
lock (further details in Sect. 12), that is enhanced with the test-and-test&set
optimization. This includes the locks used in the applications’library of our simulator
to implement barriers. Apart from not being application-level, these locks do not
exhibit high contention levels since our simulator provides applications with an
efficient tree barrier implementation (up to two threads requesting every lock). In
this way, barriers are not affected by our proposal. Finally, all experimental results
reported in this section are for the parallel phase of all of the benchmarks previously
described.

7 In this Chapter, highly-contended locks are those locks accessed by all threads simultaneously or
very close in time.

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 789

Table 8 Configuration of the benchmarks and lock-related characteristics

Benchmark Input size Locks H-C Locks Access pattern

SCTR 1000 iterations 1 1 –

MCTR 1000 iterations 1 1 –

DBLL 1000 iterations 1 1 –

PRCO 1000 iterations 1 1 –

ACTR 1000 iterations 2 2 –

RAYTR teapot 34 2 SCTR

OCEAN 258×258 ocean 3 1 SCTR

QSORT 16,384 elements 1 1 PRCO

11.2 Post-mortem Analysis of Benchmarks

To determine the contention of locks, we performed a post-mortem analysis of the
benchmarks under study where locks use the Simple Lock algorithm enhanced with
the test-and-test&set optimization. Every time a core tries to acquire a lock,
we register the number of concurrent requesters (group of acquiring cores or grAC
ranging from 1 to 32) on a cycle-by-cycle basis until the lock is granted to the core.
In this way, we can precisely compute each lock’s contention rate as the number of
cycles where the number of concurrent requesters is equal to each grAC divided by
the total amount of cycles where the number of concurrent requesters belongs to the
range [1,32]. That is, the lock’s contention rate (LCR) of a particular lock (Lock) for
each grAC (i ∈ [1,32]) would be defined by Eq. 1.

LCRgrACi =
Cycles(Lock, grACi)∑32
g=1 Cycles(Lock, grACg)

(1)

In Fig. 16, the lock’s contention rate for all of the benchmarks (x-axis) is shown. In
particular, we show the lock’s contention rate (y-axis) for all of the possible values
of grAC (z-axis). Moreover, we decompose the results for each benchmark on a
per-lock basis8. To do that, we assume that Eq. 2 is satisfied and redefine Eq. 1 as
Eq. 3. That is, every lock’s contention rate has also been estimated depending on the
amount of clock cycles it uses. From this, we can easily identify in Fig. 16 those locks
that present high contention, and those that although exhibiting high contention are
executed during a negligible amount of clock cycles. Due to their very low impact on
execution time, the latter kind of locks would be implemented by using the Simple
Lock algorithm enhanced with the test-and-test&set optimization.

LCRbenchmark =
Locks∑
i=1

32∑
j=1

LiCRgrACj = 1 (2)

8 Although Raytrace has 34 locks, we only include the results for the two most highly-contended
locks (RAYTR-L1 and RAYTR-L2) and aggregate the rest (RAYTR-LR).

790 J. L. Abellán et al.

Fig. 16 Lock contention rate

LiCRgrACj = Cycles(Locki , grACj)∑Locks
l=1

∑32
g=1 Cycles(Lockl , grACg)

(3)

As expected, the microbenchmarks exhibit a very high lock’s contention rate when
grAC is close to the total number of cores. The exception is the ACTR microbench-
mark which presents a moderate homogeneous level of contention across all the grAC
range. This is mainly due to the barrier synchronization interleaved between the two
lock acquisition operations. The real applications also report a behavior similar to
that of the ACTR microbenchmark. In this case the reason is their much coarser gran-
ularity which spreads the acquire operations throughout the parallel phase. Finally,
it is worth noting that Ocean and Raytrace just have one and two highly-contended
locks, respectively.

11.3 Lock Implementations

To fairly quantify the benefits of our GLock mechanism, we consider the case that
highly-contended locks found in the benchmarks previously described are imple-
mented by using MCS Locks. As we will explain in Sect. 12, MCS Locks are one of
the most efficient software algorithms for lock synchronization. In particular, MCS
Locks gracefully manage high-contention situations by having a distributed queue of
waiting lock requesters. On the other hand, for the rest of locks (non-contended ones),
we employ the Simple Lock algorithm enhanced with the test-and-test&set
optimization due to it has been shown to lead to lower latencies when threads try to
acquire a lock without competition. Finally, since the number of highly-contended
locks is commonly very small in real applications (up to two in the applications
evaluated in this section), we assume that two GLocks are provided at hardware
level.

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 791

Fig. 17 Normalized execution time

11.4 Performance Results

The evaluation of the two GLock implementations presented in Sect. 10.1 has been
carried out taking into account the execution times achieved for the benchmarks
shown in Table 8, as well as the amount of traffic in the interconnect and the energy-
delay2 product (ED2P) metric for the full server.

11.4.1 Execution Time

First of all, we consider the implementation of the GLock that relies on the G-Lines
technology. Figure 17 shows the execution times that are obtained for the set of
benchmarks under study when either GLock or MCS Locks are employed for the
highly-contended locks (GL bars and MCS bars respectively). In particular, execu-
tion times have been normalized with respect to those obtained when MCS Locks
are used. Additionally, each bar shows the fraction of the execution time due to

792 J. L. Abellán et al.

Table 9 Speedups for the real
applications Benchmark Lock Version 4 8 16 32

RAYTR MCS 3.91 7.53 13.61 20.69

GL 3.93 7.97 15.67 28.78

OCEAN MCS 3.70 7.12 13.48 23.62

GL 3.80 7.32 13.93 25.66

QSORT MCS 3.67 6.49 9.68 11.38

GL 3.69 6.55 9.92 12.40

lock and barrier synchronizations (Lock and Barrier categories respectively), mem-
ory accesses (Memory category) and computation (Busy category). Finally, average
execution times are shown in separate bars for the microbenchmarks (AvgM) and
applications (AvgA).

Regarding the microbenchmarks, we can observe that our proposal presents an
average reduction of 42 % in execution time (see AvgM). The exact extent of the
reduction in each case depends on both: the number of highly-contended locks that
each microbenchmark has (see Table 8), and also the contention rates exhibited by
each lock (see Fig. 16). In particular, our proposal is applied in SCTR, MCTR, DBLL
and PRCO to their single contented lock, resulting in reductions of 33, 39, 34, 25 %
in execution time, respectively. On the other hand, two contended locks are found in
the ACTR microbenchmark, which increases the benefits of our proposal (reductions
of 81 % are obtained). This high reduction is also explained since ACTR presents
a much lower contention rate. In particular, in Fig. 16 we can observe that SCTR,
MCTR, DBLL and PRCO present a contention rate close to 80 % when considering
grACs higher than 20 cores. In contrast, ACTR presents an aggregate contention of
only 20 % for the same grACs. As we mentioned, MCS Locks become inefficient for
the low contention case, which accentuates even more the differences between MCS
Locks and our proposal.

A more in depth analysis reveals that the former reductions come from two kind
of effects that the GLock mechanism has. First, the time taken to acquire and release
the lock is drastically reduced as derived from the improvements shown in the Lock
category. And second, the fact that our proposal removes from the main data network
all extra coherence traffic that a shared-memory-based lock implementation would
introduce, also has an effect on the Barrier category for the ACTR microbenchmark.

On other hand, the fraction of the execution time that lock synchronization con-
sumes is lower when real applications are considered. In these cases, most of the
time is spent on computations and memory accesses (Busy and Memory categories).
This explains the lower reductions in execution time observed for Raytrace, Ocean
and Qsort (14 % on average). Moreover, since Qsort presents higher contention rates
than Raytrace (aggregate contentions of 60 and 29 %, respectively, for grACs higher
than 20 cores), the MCS Locks become more efficient which translates into lower
performance differences between MCS Locks and the GLock mechanism.

Table 9 shows speedup results for the real applications (Raytrace, Ocean and
Qsort) when scaling the number of cores parameter with the values 4, 8, 16 and

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 793

Table 10 Normalized execution times for G-Lines and Standard technologies

SCTR MCTR DBLL PRCO ACTR RAYTR OCEAN QSORT

G-Lines 0.67 0.61 0.66 0.73 0.19 0.72 0.95 0.92

Standard 0.68 0.63 0.68 0.75 0.20 0.74 0.96 0.93

32. Moreover, we use two different lock implementations for the high contention
case: MCS Locks (MCS) and our GLock mechanism (GL). From the results shown
in Table 9, we can extract two important observations. First, all of the benchmarks
scale as the number of cores is increased. Second, the exact extent of the speedups
depends on the efficiency of the lock implementation we are using. In this way, higher
speedups are obtained when employing our GLock mechanism which are even very
close to ideal speedups in the case of Raytrace.

According to the discussion given at the end of Sect. 10.1.2, it would be of
paramount importance determining whether the performance losses in terms of
synchronization latency derived from the use of the Standard technology can be con-
sidered negligible. To this end, Table 10 shows the normalized execution times with
respect to those obtained when MCS Locks are used, depending on the two kind of
GLock implementations studied in this section: G-Lines9 and Standard technologies.
As we can see, very small performance degradations of 1.6 and 1.3 % on average are
shown for the microbenchmarks and real applications, respectively. In consequence,
we can affirm that our GLock mechanism is not so dependent on a full-custom
technology to provide extremely efficient synchronizations for highly-contended
locks.

Finally, we also carried out a sensitivity analysis to evaluate the extent to which
our proposal is affected by longer link latencies. To do so, we simulate several con-
figurations of the G-Line-based network with varying latencies for the links and
evaluate the impact that this has on performance. Several clock cycles may be nec-
essary to transmit a signal across one dimension of the chip if, for example, we
consider longer links that cannot support a propagation delay of a single clock cycle,
or even if lower clock frequencies are required to integrate our GLock infrastructure
in the manycore server. Figure 18 illustrates the normalized execution times when
G-Lines take from 1 (results presented in Fig. 17) to 10 clock cycles (see z-axis
in the figure). As we can observe, negligible performance losses are derived even
when dealing with 10-cycle G-Lines. Particularly, performance degradations of just
1.8 and 1.6 % on average in the worst case are shown for the microbenchmarks and
real applications, respectively. Note that the results observed for the 10-cycle case
are very similar to those obtained for the Standard technology previously reported.
According to Sect. 10.1, since Standard-based implementation is roughly eight times

9 Note that, the results for the implementation that uses G-Lines are the same as those presented in
Fig. 7.

794 J. L. Abellán et al.

Fig. 18 Normalized execution times of benchmarks depending on G-Lines latency running on a
32-core server

slower than a G-Lines-based infrastructure, the former would be equivalent to an 8-
cycle G-Line-based implementation of the GLock mechanism, which explains such
similarities.

11.4.2 Network Traffic

Our proposal does not generate any coherence messages on the main data network
when performing lock synchronizations for any of the two GLock implementations.
At the end, this translates into the same significant reductions in terms of network
traffic. Figure 19 shows the total network traffic across the main data network. In
particular, each bar plots the number of bytes transmitted through the interconnection
network (the total number of bytes transmitted by all the switches of the interconnect)
normalized with respect to the MCS case. Each bar is broken down into three cat-
egories: Coherence corresponds to the messages generated by the cache coherence
protocol (e.g., invalidations and Cache-to-Cache transfers); Request comprehends
messages generated when load and store instructions miss in cache and must access
a remote directory; and finally, Reply involves the messages with data.

For the microbenchmarks, important reductions in network traffic are achieved
(76 % on average). In general, these reductions are directly related to the extents
of the improvements in execution time previously reported. Moreover, since the
simulated L2 cache is shared among the different processing cores, but it is physically

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 795

Fig. 19 Normalized network traffic

distributed between them (see Sect. 11.1), some accesses to the L2 cache will be sent
to the local slice while the rest will be serviced by remote slices. This will also affect
to lock acquisition and release operations timings. In contrast, since our GLock
proposal skips the memory hierarchy we have not obtained such negative impact on
network traffic. In particular, SCTR, MCTR, DBLL and PRCO show reductions of
81, 99, 72 and 46 %, respectively. This is due to the fact that almost all network
traffic of these microbenchmarks is due to lock synchronizations. The exception is
ACTR, where the barrier used in between the two phases also generates network
traffic. However, since the barrier time is approximately 20 % of the lock time (see
Barrier and Lock categories in Fig. 17), a reduction of 80 % in network traffic is
obtained.

Finally, regarding the real applications, we can see an average reduction of 23 %
in network traffic (see AvgA in Fig. 19). More specifically, the applications Raytrace,
Ocean and Qsort present reductions of 23, 1 and 45 %, respectively. As before,
there is a correlation between the fraction of the execution time devoted to lock
synchronization and the amount of network traffic that is saved. For instance, Ocean

796 J. L. Abellán et al.

Fig. 20 Normalized energy-delay2 product (ED2P) metric for the full server

presents the lowest reduction in network traffic since less than 5 % of its execution
time (see Fig. 17) is spent on locks.

11.4.3 Energy Efficiency

Finally, we also consider the benefits in energy efficiency that our proposal en-
tails. More specifically, we present in Fig. 20 the normalized energy-delay2 product
(ED2P) metric for the full server. To account for the energy consumed by the
GLock architecture (the G-Lines-based network described in Sect. 9.1), we extend
the Sim-PowerCMP with the consumption model of G-Lines and controllers de-
scribed in previous Sect. 10.2. According to our discussion in Sect. 10.1.2, the power
dissipation associated with our two technology-aware GLock implementations is
negligible, hence the power statistics presented in this section will be mainly due to
the improvements in execution time and network traffic reported in previous sections.

As in the previous two sections, all results in Fig. 20 have been normalized with
respect to the MCS case. As can be observed, important improvements in the ED2P
metric of the whole server are achieved when applying our proposal. In particular,
the GLock mechanism brings average improvements in ED2P of 78 and 28 % for the

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 797

microbenchmarks and real applications, respectively. The SCTR, MCTR, DBLL,
PRCO and ACTR microbenchmarks show reductions of 72, 83, 75, 65 and 96 %,
respectively. Additionally, reductions of 50, 10 and 25 % are achieved for Raytrace,
Ocean and Qsort.

In general, as commented above, the magnitude of these savings is directly related
to the extents of the improvements in execution time and network traffic previously
reported. We have found that when the GLock mechanism is employed, the number
of instructions executed per lock acquisition and release operation is drastically
reduced. Note that while MCS Locks must deal with a distributed queue of waiting
threads requesting the lock, GLock only needs two assignment instructions on two
registers to notify the arrival to the lock and the subsequent release operation (see
Sect. 9.3). Obviously, less instructions executed means less energy consumed in the
server cores.

Moreover, since we reduce the latency of lock acquisitions, the busy-wait process
is also shortened with GLock. While busy-waiting, a server core repeatedly access
the L1 cache to check the value of a shared variable. In this way, shorter busy-waiting
implies less accesses to the L1 cache, and therefore, less energy consumed in this
structure. Finally, given the fact that our proposal skips the memory hierarchy, we
save all the energy derived from coherence activity when locks are executed. In
particular, we remove all of the L1 cache misses related to lock operations and the
corresponding messages transferred across the interconnect. This brings reductions
in the energy consumed at the L2 cache banks and the interconnection network.

12 Related Work

Performance degradation of software-based schemes for lock/unlock operations in
parallel machines has long been recognized as a key impediment to scalability and
high performance as the server/core count increases. For that reason, in the literature
there have long been devised some architectural extensions that go from simple
hardware support, such as improved network/memory controllers, to those proposals
that integrate sophisticated interconnection networks for conveying synchronization
traffic.

A comprehensive description of the major proposals for lock/unlock operations
at both software and hardware levels are described below. To this end, we firstly
give a review of some well-known software-based implementations exposing their
main performance bottlenecks in order to understand why hardware support be-
comes essential. Secondly, we expose the most relevant hardware-based schemes by
comparing them against our GLock proposal.

The simplest software-based synchronization algorithms rely on atomic read-
modify-write instructions, such as test&set, fetch&operation, swap or
compare&swap, to implement the lock and unlock synchronization primitives
[10]. For instance, Simple Lock repeatedly tries to acquire the lock by toggling a
boolean flag from false to true with a test&set instruction. Next, the lock is

798 J. L. Abellán et al.

released by simply toggling the flag back from true to false. The main drawback of
this algorithm is the continuous generation of cache-coherence network traffic while
busy waiting for lock acquisition. To ameliorate this problem two optimizations,
namely test-and-test&set and exponential back-off, have been proposed.
The former issues standard loads that hit on the local cache while busy waiting for
lock acquisition. Hence, the test&set is only issued when the lock appears to be
free thus reducing cache-coherence network traffic. The latter inserts a delay between
consecutive attempts to acquire the lock in order to reduce contention. Anderson [39]
found that exponential back-off is the most effective form of delay. Nevertheless, as
contention increases these improvements are not enough to guarantee scalability
especially for highly-contended locks.

More elaborated algorithms such as Ticket Lock, Array-based Lock and MCS Lock
provide more scalable and fair lock implementations at the expense of increased
storage cost and higher latency for the low contention case [10]. The Ticket Lock
algorithm consists of a pair of counters, a ticket counter and a now-serving counter.
To acquire a lock a thread gets its turn by issuing a fetch&increment on the
ticket counter and then busy waits until the now-serving counter equals its ticket. To
release the lock a thread simply increases the now-serving counter. Array-based Lock
just replaces the now-serving counter by an array of locations. The idea behind MCS
Locks [20] is similar to that of Array-based Locks. An MCS Lock builds a distributed
queue of waiting threads requesting the lock. In this way, each thread busy waits
on a unique, locally accessible flag rather than competing for a single counter. MCS
Locks are considered the most efficient software algorithm for lock synchronization
[18, 20]. In all three cases, cache-coherence network traffic is reduced because only
one thread actually attempts to obtain the lock when it is released by the previous
owner.

In general, simple algorithms tend to be fast under low contention and inefficient
when contention is high. In contrast, sophisticated algorithms specifically designed
to deal with contention usually incur a non-negligible overhead when there is little
contention. For this reason, a number of hybrid approaches have been proposed.
Reactive Lock [4] is a library-based adaptive approach that chooses the best syn-
chronization algorithm under different levels of contention. This technique switches
between Simple Lock and MCS Lock for the low and high contention cases, re-
spectively. Smart Lock [18] uses heuristics and machine learning to choose the most
appropriate algorithm following a specific user-defined goal in terms of performance,
energy consumption or problem-specific criteria.

A completely different software approach that is not based on atomic read-
modify-write instructions called MP-Locks is presented in [6]. With MP-Locks
synchronization operations are implemented using message passing, over the main
data network, and embedded kernel lock managers. This approach comes in three
different flavors, namely centralized, distributed and reactive that are differentiated
from each other in how the lock managers control lock ownership. A comparison
between MP-Locks and MCS Locks reports significant performance and scalability
gains at the expense of increased software complexity and limited portability. A sim-
ilar idea, proposed in the context of distributed systems, called Token-based Locks

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 799

appears in [9]. In this case, the right to acquire a lock is represented by a token which
is unique in the whole system. Threads willing to acquire a lock must wait for token
arrival and release the token upon critical section completion.

Remote Core Locking [23] (RCL) is an efficient software-based implementation
specially designed for highly-contended locks. RCL replaces lock acquisitions by
remote procedure calls (RPCs) to a dedicated server core in order to exploit cache
locality. The reason is that when a CS accesses shared data that has recently been
accessed by another core, there will result in cache misses. So, the idea is to avoid
these cache misses. RCL entails a tool that transforms CS code to be executed as
an RPC as well as a runtime for Linux OS that includes the RCL code. The imple-
mentation of RCL is based on an array of requesting cores (clients) cached in the
server core, and devoted to establish an interaction with the server that quits when
the server executes the CS. For a 48-core machine significant performance improve-
ments are shown. Nevertheless, the efficiency of this software implementation for
highly-contended locks may be hampered by higher core counts, since dedicating
an entire core to implement a CS is a centralized approach that may lead to potential
performance bottlenecks as the number of clients increases. Differently, our GLock
proposal does not dedicated cores to execute a CS and is based on a scalable and
distributed infrastructure to implement highly-contended locks. In addition, our pro-
posal neither injects synchronization-related traffic into the main interconnect nor
uses the memory system, thereby not interfering with QoS of parallel applications.

Hardware support for lock synchronization has also been the target of a number of
proposals. Queue-On-Lock-Bit (QOLB) [2] is based on a distributed queue of waiting
threads requesting the lock. Unlike MCS Locks, in QOLB the queue is implemented
entirely in hardware at the cache controller level.

The Synchronization-operation Buffer (SB) [29] is a hardware module which
augments the memory controller to queue and manage lock operations issued by the
threads. QOLB reports non-negligible performance gains when compared to MCS
Locks. In general, all of the hardware-supported solutions require modifications at
some level of the memory hierarchy. In contrast, our proposal, namely GLock, com-
pletely decouples lock synchronization from any kind of memory-related activity,
by deploying a dedicated lightweight on-chip network infrastructure to implement a
simple synchronization protocol aimed at accelerating highly-contended locks.

13 Conclusions

In this Chapter, we have identified two fundamental performance bottlenecks in
manycore processors in the context of servers belonging to datacenters: highly
contended synchronization in barriers and locks as the number of servers’ cores
increases.

We have proposed two distinct and complementary hardware-based solutions to
overcome such performance bottlenecks. Moreover, we have also considered the
use of non-digital technology to help us break such limitations obtaining superior

800 J. L. Abellán et al.

efficiency and scalability. To do so, we have leveraged the full-custom state-of-the-art
G-Lines technology, although we have also explored the efficiency of our proposals
using a current standard cell design methodology.

The first of our proposals (namely GBarrier) is aimed to overcome perfor-
mance limitations of barrier operations in manycore servers. GBarrier is a novel
hardware-based barrier mechanism specifically designed to enable efficient barriers
by removing all performance limitations of software-based barrier implementations,
and even in all hardware-barrier mechanisms to date. In particular, our GBarrier
mechanism consists of two main components: First, a very lightweight dedicated
on-chip network that could be deployed in a hierarchical layout for scalability. The
second is a simple and very fast synchronization protocol implemented atop the
previous infrastructure. The reason why our proposal is much more efficient is that
differently to software approaches based on the use of atomic read-modify-write
instructions operating on shared-memory positions, GBarrier does not have any in-
fluence on the memory system, hence saving traffic and energy. More specifically, we
have avoided all coherence activity, barrier-related network traffic and the involved
energy consumption, that software approaches introduce and that restrict scalability.

To evaluate GBarrier, we have considered two implementations of our infrastruc-
ture by leveraging G-Lines and Standard technologies. Our study in terms of raw
performance statistics reveals that differences in on-chip area overhead and power
dissipation can be considered negligible between both technologies, although, as ex-
pected, the former technology reports the minimum synchronization latency, whereas
the latter leads to a cost-effective implementation. We integrate both GBarrier imple-
mentations into a detailed execution-driven simulator (Sim-PowerCMP) of a 32-core
server running a set of benchmarks: kernels and scientific applications. From this
study, both GBarrier implementations report very similar reductions in execution
time, thus not making our proposal so dependent on a full-custom technology to
achieve extremely efficient synchronization in manycore servers. In particular, for
the kernels and the scientific applications under study our proposal brings average
reductions of 54 and 21 %, respectively, in total execution time, resulting in im-
proved scalability for the applications. We also have obtained reductions of 53 and
18 %, respectively, in network traffic. The reason is that our proposal does not rely
on shared memory positions and the cache coherence protocol saves a significant
amount of messages on the main interconnection network. Finally, all these gains
lead to improvements of 76 and 31 %, respectively, in the energy-delay2 product
(ED2P) metric for the full server.

Finally, regarding lock synchronization, we have identified that contention is a
key constraint to performance and scalability when there is a significant amount of
threads willing to access into the same CS at once. To achieve a fair, very efficient
and scalable solution for locks that are highly contended, we have proposed GLock.
GLock is based on a dedicated on-chip network and relies on a simple token-based
messaging-protocol. Due to the fact that lock mechanisms only exhibit problems in
high-contention scenarios, our proposal could be combined with a software-based
implementation for low contention (e.g. Simple Locks enhanced with the well-known
test-and-test&set optimization). Moreover, a deep analysis of some relevant

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 801

benchmarks discloses a reduced number of highly-contended locks in most cases,
so that replication of the GLock’s resources is not expected to be a constraint. As for
GBarrier, to evaluate GLock, we have made use of G-Lines and Standard technology
coming to the very same conclusions in terms of raw performance: negligible on-chip
area overhead and power dissipation in both technologies, cost-effective implementa-
tion for Standard, and reduced synchronization latency for the G-Lines technology.
We integrate both GLock implementations into Sim-PowerCMP, and discuss syn-
chronization efficiency results as compared to the most efficient software-based lock
implementation. To do so, we have simulated a 32-core server with a 2D-mesh data
network and employ a set of microbenchmarks and real applications. Both GLock
implementations report very similar reductions in execution time, hence not mak-
ing our proposal so dependent on a full-custom technology. From our evaluation,
significant average reductions for the microbenchmarks and the real applications
respectively are achieved: 42 and 14 % in execution time; 76 and 23 % in network
traffic; and 78 and 28 % in the ED2P metric for the full server.

Acknowledgements This work was supported by the Spanish MINECO, as well as European
Commission FEDER funds, under grant TIN2012-38341-C04-03. This work was done while Juan
Fernández was a member of the Computer Engineering Department of the University of Murcia.

References

1. A. Flores, J. L. Aragón and M. E. Acacio. Sim-PowerCMP: A Detailed Simulator for Energy
Consumption Analysis in Future Embedded CMP Architectures. In Proceedings of the 21st
International Conference on Advanced Information Networking and Applications Workshops,
2007.

2. A. Kägi, D. Burger and J. R. Goodman. Efficient Synchronization: Let Them Eat QOLB. In
Proceedings of the 24th International on Computer Architecture, 1997.

3. A. P. Jose and K. L. Shepard. Distributed Loss-Compensation Techniques for Energy-Efficient
Low-Latency On-Chip Communications. IEEE Journal of Solid State Circuits, 42(6):1415–
1424, 2007.

4. B-H. Lim and A. Agarwal. Reactive Synchronization Algorithms for Multiprocessors. ACM
SIGPLAN Notices, 29(11):25–35, 1994.

5. B. M. Beckmann and D. A. Wood. TLC: Transmission Line Caches. In Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture, 2011.

6. C-C. Kuo, J. B. Carter and R. Kuramkote. MP-LOCKs: Replacing H/W Synchronization
Primitives with Message Passing. In Proceedings of the 5th International Symposium on High-
Performance Computer Architecture, 1999.

7. C. Cascaval, J. G. CastaÃos, L. Ceze, M. Denneau, M. Gupta, D. Lieber, J. E. Moreira,
K. Strauss and H. S. Warren. Evaluation of a Multithreaded Architecture for Cellular Com-
puting. In Proceedings of the 8th International Symposium on High-Performance Computer
Architecture, 2002.

8. C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi, J. V. Hill,
W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong, S. W. Yang and R.
Zak. The Network Architecture of the Connection Machine CM-5. In Proceedings of the ACM
Symposium on Parallel Algorithms and Architectures, 1992.

9. C. Wagner and F. Mueller. Token-based Read/Write-Locks for Distributed Mutual Exclusion.
In Proceedings of the 6th International Euro-Par Conference on Parallel Processing, 2000.

802 J. L. Abellán et al.

10. D. E. Culler, J. P. Singh and A. Gupta. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann, 1998.

11. E. Mensink, D. Schinkel, E. Klumperink, E. Tuijl and B. Nauta. A 0.28pf/b 2gb/s/ch Transceiver
in 90nm CMOS for 10mm On-Chip Interconnects. In Proceedings of the IEEE Solid-State
Circuits Conference, 2007.

12. E. W. Dijkstra. Solution of a Problem in Concurrent Programming Control. Communications
of the ACM, 8(9):569, 1965.

13. F. H. McMahon. Livermore Fortran Kernels: A Computer Test of Numerical Performance
Range. Technical Report UCRL-53745, Lawrence Livermore National Laboratory, 1986.
http://www.netlib.org/benchmark/livermorec.

14. H. Franke, R. Russell and M. Kirkwood. Fuss, Futexes and Furwocks: Fast Userlevel Locking
in Linux. In Proceedings of the Ottawa Linux Symposium, 2002.

15. H. Ito, M. Kimura, K. Miyashita, T. Ishii, K. Okada and K. Masu. A Bidirectional-and
Multi-Drop-Transmission-Line Interconnect for Multipoint-to-Multipoint On-Chip Commu-
nications. IEEE Journal of Solid State Circuits, 43(4):1020–1029, 2008.

16. HP Labs. CACTI, 2012. http://www.hpl.hp.com/research/cacti/.
17. Intel Labs. Single-chip Cloud Computer, 2009. http://techresearch.intel.com/ articles/Tera-

Scale/1826.htm.
18. J. Eastep, D. Wingate, M. D. Santambrogio and A. Agarwal. Smartlocks: Self-Aware Syn-

chronization through Lock Acquisition Scheduling. In Proceedings of the 7th IEEE/ACM
International Conference on Autonomic Computing and Communications, 2009.

19. J. L. Abellán, J. Fernández, M. E. Acacio, D. Bertozzi, D. Bortolotti, A. Marongiu and L.
Benini. Design of a Collective Communication Infrastructure for Barrier Synchronization in
Cluster-Based Nanoscale MPSoCs. In Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition, 2012.

20. J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization on Shared-
Memory Multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65, 1991.

21. J. Mauro, R. McDougall. Solaris Internals: Core Kernel Components. Sun Microsystem Press,
2001.

22. J. Oh, M. Prvulovic and A. Zajic. TLSync: Support for Multiple Fast Barriers Using On-
Chip Transmission Lines. In Proceedings of the 38th International Symposium on Computer
Architecture, 2011.

23. J. P. Lozi, G. Thomas, J. Lawall and G. Muller. Efficient Locking for Multicore Architectures.
Technical Report RR-7779, INRIA, 2011.

24. J. R. Goodman, M. K. Vernon and P. J. Woest. Efficient Synchronization Primitives for Large-
Scale Cache-Coherent Multiprocessors. In Proceedings of the 3rd International Conference
on Architectural Support for Programming Languages and Operating Systems, 1989.

25. J. Sampson, R. González, J. F. Collard, N. P. Jouppi, M. Schlansker and B. Calder. Exploiting
Fine-Grained Data Parallelism with Chip Multiprocessors and Fast Barriers. In Proceedings of
the 39th Annual IEEE/ACM International Symposium on Microarchitecture, 2006.

26. J. Sartori and R. Kumar. Low-Overhead, High-Speed Multi-core Barrier Synchronization. In
Proceedings of the 5th International Conference on High Performance Embedded Architectures
and Compilers, 2010.

27. L. Barroso and Urs Hölzle. The Datacenter as a Computer. An Introduction to the Design of
Warehouse-Scale Machines. Morgan and Claypool Publishers, 2009.

28. M. L. Scott and W. N. Scherer. Scalable Queue-Based Spin Locks with Timeout. In Proceedings
of the 8th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
2001.

29. M. Monchiero, G. Palermo, C. Silvano and O.Villa. An Efficient Synchronization Technique for
Multiprocessor Systems on-Chip. ACM SIGARCH Computer Architecture News, 34(1):33–40,
2006.

30. N. R. Tallent, J. M. Mellor-Crummey and A. Porterfield. Analyzing Lock Contention in Mul-
tithreaded Applications. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2010.

http://techresearch.intel.com/ articles/Tera-Scale/1826.htm
http://techresearch.intel.com/ articles/Tera-Scale/1826.htm

Efficient Hardware-Supported Synchronization Mechanisms for Manycores 803

31. P. Coteus, H. R. Bickford, T. M. Cipolla, P. G. Crumley, A. Gara, S.A. Hall, G.V. Kopcsay, A. P.
Lanzetta, L. S. Mok, R. Rand, R. Swetz, T. Takken, P. La Rocca, C. Marroquin, P. R. Germann
and M.J. Jeanson. Packaging the Blue Gene/L Supercomputer. IBM Journal of Research and
Development, 49(2):213–248, 2005.

32. P. Tang and P. C. Yew. Processor Self-Scheduling for Multiple-Nested Parallel Loops. In
Proceedings of the the International Conference on Parallel Processing, 1986.

33. R. Ho, T. Ono, R. D. Hopkins, A. Chow, J. Schauer, F. Y. Liu and R. Drost. High-Speed
and Low-Energy Capacitively-Driven On-Chip Wires. IEEE Journal of Solid State Circuits,
43(1):52–60, 2008.

34. R. Rajwar and J. R. Goodman. Transactional Lock-free Execution of Lock-based Programs.
In Proceedings of the 10th Annual Conference on Architectural Support for Programming
Languages and Operating Systems, 2002.

35. R. T. Chang, N. Talwalkar, P.Yue and S. S. Wong. Near Speed-of-Light Signaling over On-Chip
Electrical Interconnects. IEEE Journal of Solid-State Circuits, 38(5):834–838, 2003.

36. S. Bell et al. TILE64 - Processor: A 64-Core SoC with Mesh Interconnect. In Proceedings of
the International Solid-State Circuits Conference Digest of Technical Papers, 2008.

37. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta. The SPLASH-2 programs: Char-
acterization and Methodological Considerations. In Proceedings of the 22nd International
Symposium on Computer Architecture, 1995.

38. S. D. Sherlekar. Intel Many Integrated Core (MIC) Architecture. In Proceedings of the IEEE
International Conference on Parallel and Distributed Systems, 2012.

39. T. E. Anderson. The Performance Implications of Spin-Waiting Alternatives for Shared
Memory Multiprocessors. In Proceedings of the Intel Conference on Parallel Processing,
1989.

40. T. Krishna, A. Kumar, L-S. Peh, J. Postman, P. Chiang and M. Erez. Express Virtual Channels
with Capacitively Driven Global Links. IEEE Micro, 29(4):48–61, 2009.

41. W. T.-Y. Hsu and P.-C. Yew. An Effective Synchronization Network for Hot-Spot Accesses.
ACM Transactions on Computer Systems, 10(3):167–189, 1992.

42. Z. Hu, J. del Cuvillo, W. Zhu and G. R. Gao. Optimization of Dense Matrix Multiplication
on IBM Cyclops-64: Challenges and Experiences. In Proceedings of the 12th International
European Conference on Parallel and Distributed Computing, 2006.

Hardware Approaches to Transactional Memory
in Chip Multiprocessors

J. Rubén Titos-Gil and Manuel E. Acacio

1 Introduction

Multicores are nowadays at the heart of almost every computational system, from the
smartphone in our pocket, to the server-class machines in datacenters that provide us
with a myriad of cloud services. With the advent of chip multiprocessors, the shift to
mainstream parallel architectures is inevitable, and both programmers and architects
are presented with immense opportunities and enormous challenges. Despite the fact
that multiprocessor systems have existed for a long time, multi-threaded program-
ming has not been much of a focus. Instead, multiprocessors were of interest only
to the small community of high-performance computing (HPC), and so was parallel
programming, which was mostly ignored by software vendors, and not widely inves-
tigated nor taught. As a matter of fact, most software development over time has been
predicated on single-core hardware, and the collective knowledge of software devel-
opers across organizations has been based primarily on single processor platforms.

Now that the free lunch is over [76], programmers must change the way they create
applications to fully leverage multicore hardware. At every layer of the computing
stack, whether the targeted platform is a handheld device or a warehouse-scale com-
puter, programmers are being pushed towards unfamiliar programming models in
order to deliver parallel software that takes advantage of the newly available compu-
tational resources and meets the demands of the end user. In the context of datacenters,
the task is even more daunting because of the massive scale and complex architec-
ture of these systems where efficient exploitation of parallelism is paramount at every
level. Ideally, parallel software developed for these large-scale clusters should be able

J. R. Titos-Gil (�)
Chalmers University of Technology, Gothenburg, Sweden
e-mail: ruben.titos@chalmers.se

M. E. Acacio
Universidad de Murcia, Murcia, Spain
e-mail: meacacio@ditec.um.es

© Springer Science+Business Media New York 2015 805
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_27

806 J. R. Titos-Gil and M. E. Acacio

to harness the potential of their multicore building blocks, while improving aspects
that impact the total cost of ownership such as energy efficiency, server utilization,
code maintainability or programmer productivity. Hybrid programming models that
use shared memory for intra-node parallelism and message passing for inter-node
communication are a good example of how programmers exploit these large-scale
systems with multi-core processors. New programming models keep appearing in
today’s datacenters as a result of the wide spectrum of applications and their diverse
characteristics. On the one hand, traditional HPC datacenters usually run scientific
workloads that have long, computationally-intensive jobs, often as a single binary
exclusively executed on a large number of nodes, where synchronization and com-
munication abounds. On the other hand, Internet services exhibit ample parallelism
given their large data sets of relatively independent records (e.g. web pages) and the
thousands of independent requests received per second. In either environment, the
programmer’s job is to find the most appropriate way to efficiently exploit the paral-
lelism that is inherent to the problem, maintaining high productivity while producing
correct code that is easily verifiable and composable.

Many applications that run in today’s datacenters have very strong requirements
in terms of response time. This is particularly true for those online services that
provide an almost instantaneous reply to the user, such as a web search engine.
While the work required to process a user’s request can be rather easily partitioned
across different nodes in independent units of data, each task that executes in a single
node generally performs a substantial amount of computation due to very large data
sets. This alleviates the overheads inherently imposed by the communication and
synchronization of hundreds or thousands of parallel tasks amongst different nodes
of the datacenter. Given the considerable extent of the job performed by each task,
the algorithms executed at the task level may also be subject to parallelization in
order to speedup the task and reduce overall latency. This could improve utilization
of the datacenter too, addressing the important trade-off between keeping machines
busy and response times low. Since each task is mapped to a single computing node
where all processing cores share the same address space, the intuitive abstraction of
shared memory may simplify programmer’s job of turning a monolithic task into a
parallel, multi-threaded program.

A fundamental problem that all programmers face when writing multi-threaded
code is the difficulty of simultaneously achieving both high efficiency and productiv-
ity/correctness. Designing a parallel algorithm involves orchestrating the concurrent
execution of the parts to improve performance while at the same time guaranteeing
correctness. Complex and hard-to-find, software defects unique to multi-threaded
applications such as race conditions and deadlocks can quickly derail a software
project [18]. Software engineering tools have yet to simplify the programming for
these shared-memory architectures in order to make the new hardware resources
accessible to the average programmer. In order to avert a software crisis, developers
must adapt and improve such tools to make them better suited for parallel multi-
core software development [83]. The reality is that software has not matured enough
to take advantage of the number of cores that are already available in today’s sys-
tems, and the vast majority of applications are still single-threaded [30]. The rise

Hardware Approaches to Transactional Memory in Chip Multiprocessors 807

of multicores has brought such problem of effective concurrent programming to the
forefront of computing research. To help alleviating this problem, Transactional
Memory (TM) has been proposed as a concurrency control mechanism that aims to
simplify concurrent programming with reasonable scalability.

This chapter examines the state-of-the-art of Transactional Memory, paying spe-
cial attention to its hardware implementations (Hardware Transactional Memory or
HTM). Recent inclusion of HTM support in commodity multicore processors (Intel’s
Transactional Synchronization Extensions [91]) and commercial mainframes (IBM’s
Transaction Execution Facility [40]) has converted TM into a reality for current and
future datacenters.

The remainder of this chapter is organized as follows. In Sect. 2 we delve into the
problems that traditional parallel programming with locks has and discuss how TM
can alleviate them. Subsequently, we present the fundamentals of TM in Sect. 3 and
the hardware mechanisms TM requires in Sect. 4. Next, we describe the programming
interfaces of the hardware TM support provided by the new Intel processors (Sect. 5),
and present a brief performance analysis of it (Sect. 6). Section 7 summarizes the
most relevant proposals found in the HTM research literature. The main conclusions
of this chapter are summarized in Sect. 8.

2 Why Transactional Memory Is Going Mainstream

Concurrent programming is a far more challenging task than sequential program-
ming: A parallel program is undoubtedly more difficult to design, write, and debug
than its sequential counterpart. Orchestrating the concurrent execution of the parts to
improve performance while at the same time guaranteeing correctness is by no means
an easy task. Designing parallel algorithms requires restructuring code and data in
often counter-intuitive ways, so that it can be split into parallel tasks. Balancing the
workload among the available processors, or communicating and managing shared
data between different processors are some of the many factors that make parallel
programming a complicated endeavour. Programmers need to reason carefully about
possible interactions of their threads when running concurrently, and not doing so
may result in programs that are incorrect, perform poorly, or both. To add insult to
injury, parallel programs are very hard to debug due to the combinatorial explosion
of possible execution orderings: Parallel programs often produce non-deterministic
results, making it harder to prove programs correct, and their bugs are often elusive
and notoriously difficult to find and fix, because of the difficulty to reproduce the
exact same execution (i.e. interleaving of threads, etc.) that leads to a race.

In the context of shared memory architectures where concurrent tasks process
shared data, guaranteeing correctness while maintaining efficiency and productivity
is a key challenge. Parallel thread execution requires synchronization for accessing
shared data. Programmers are responsible for ensuring that concurrent accesses to
shared data structures are correct, and often rely on mutual exclusion mechanisms
to protect these critical sections, so that no more than one thread can simultaneously
enter the same critical section and access the same shared data.

808 J. R. Titos-Gil and M. E. Acacio

2.1 The Drawbacks of Lock-Based Synchronization

Traditional multi-threaded programming models use low-level primitives such as
locks to guarantee mutual exclusion. Unfortunately, the complexity of lock-based
synchronization makes parallel programming an error prone task, particularly when
fine-grained locks are used to extract more parallelism. At one end, heroic program-
mers seeking performance try to minimize the amount of shared resources (data)
that are protected by the same lock, so that different threads accessing different data
do not have to serialize their execution unnecessarily, thus enabling maximum con-
currency. However, the use of fine-grain locks adds more programming complexity,
since programmers must be careful to acquire them in a fixed, predetermined order so
as to avoid deadlocks. At the other end, common programmers seeking productivity
(correctness) choose to reduce the complexity of reasoning, i.e. likelihood of dead-
lock, by using fewer locks with coarser granularity where each lock is responsible for
protecting larger critical section. This naturally comes at the cost of sacrificing per-
formance, when threads without true data races contend for the same lock. Though
programmers can also include deadlock detection mechanisms in their programs, to
try and recover from deadlocks, this alternative also adds substantial complexity.

As if deadlocks were not enough, locking brings about other undesired situations
like priority inversion (when a high priority thread is unable to acquire a lock because
a lower priority thread is holding it), convoying (when a lock holder is de-scheduled
from execution, impeding others to progress) and lack of fault tolerance (when a
lock holder modifies data and then crashes, causing the whole program to fail). Fur-
thermore, locking breaks the abstraction principle, as programmers using a module
need to be aware of the locks it uses, to ensure that the program still follows the
predetermined locking order that prevents deadlock. Therefore, locks jeopardize the
code composability property, as two individually correct modules can deadlock when
combined together.

2.2 The Transactional Abstraction

The trade-off between programming ease and performance imposed by locks remains
one of the key challenges to programmers and computer architects of the multicore
era. Transactional Memory (TM) [34, 36] has been proposed as a conceptually sim-
pler programming model that can help boost developer productivity by eliminating
the complex task of reasoning about the intricacies of safe fine-grained locking. TM
inherits the concept of transaction from the database community, and applies it to the
domain of shared-memory programming in an attempt to simplify the task of thread
synchronization. Transactions in the multi-threaded programming world are blocks
of code that are guaranteed to be executed atomically and in isolation with respect to
all other code. At a high level, the programmer or compiler annotates sections of the
code as atomic blocks or transactions. The underlying system then executes these
transactions speculatively in an attempt to exploit as much concurrency as possible.

Hardware Approaches to Transactional Memory in Chip Multiprocessors 809

TM systems generally employ an optimistic approach to concurrency control in order
to let multiple transactions execute in parallel, while still preserving the properties
of atomicity and isolation. Therefore, the TM system attempts to make best use of
available concurrency in the application while guaranteeing correctness. By using
transactions to safely access shared data, programmers need not reason about the
safety of interleavings or the possibility of deadlocks to write correct multi-threaded
code. Hence, TM addresses the performance-productivity trade-off by not discour-
aging programmers from using coarse-grain synchronization, since the underlying
system can potentially achieve performance comparable to fine-grained locks by ex-
ecuting transactions speculatively. In addition to addressing such critical trade-off,
TM tries to solve other limitations of lock-based synchronization. Transactional code
is robust in the face of both hardware and software failures, as the system can always
rollback the speculative updates to its pre-transactional state in case a thread crashes
inside a transaction. Unlike locks, transactions are composable, and they can be
safely nested without any risk of deadlocks [6].

2.3 High-Performance Transactional Memory

Transactions are a promising abstraction that could ease parallel programming and
make it more accessible to the common programmer. Transactional semantics can be
entirely supported in software, hardware, or using a combination of both. According
to this, we can classify TM systems into software transactional memory (STM),
hardware transactional memory (HTM), and hybrid transactional memory systems.

STM implementations [26, 35, 48, 72] allow running transactional workloads on
existing systems without requiring special hardware support, providing a great degree
of flexibility at little cost. Unfortunately, implementing the necessary mechanisms
entirely in software imposes too high an overhead and thus STM systems do not
fare well against traditional lock-based approaches when performance is important.
For this new paradigm to be a viable alternative to locks, the key mechanisms that
provide transactional semantics must be implemented at the architectural level.

Hybrid TM systems [4, 12, 23, 43, 74, 77] attempt to combine both the speed and
flexibility by using simple hardware to accelerate performance-critical operations
of an STM implementation. In this way, hybrid implementations of TM rely on
some kind of software intervention to execute transactions, though they minimize
the overheads of providing transactional semantics in comparison to a software-only
solution. Hybrid TM models use the STM as a backup to handle situations where the
hardware cannot execute the transaction successfully [34].

Transactional semantics can also be supported largely in hardware [1, 14, 16,
31, 50, 51, 89], allowing for good performance with varying degrees of complexity,
which change considerably from one HTM proposal to another depending on what
kind of transactions the TM system is capable of committing without resorting to fall-
back mechanisms. Simple HTM schemes [17, 22, 36] adopt a “best-effort” solution
that cannot not guarantee that all transactions will eventually commit successfully

810 J. R. Titos-Gil and M. E. Acacio

using hardware support alone, mostly because of the limitations imposed by the hard-
ware structures involved. More sophisticated HTM proposals [1, 31, 51] address this
limitation in transaction size, guaranteeing that certain “bounded” transactions can
be entirely executed in hardware. These proposals typically behave in the same way
as best-effort ones as long as hardware structures are sufficient, and then fall back
to additional hardware mechanisms to maintain transactional properties on resource
overflow. However, neither bounded nor best-effort solutions can commit transac-
tions that encounter events that are too complicated to handle in hardware, like context
switches, page faults, I/O, exceptions or interrupts [37], and in such circumstances
the transaction is invariably aborted. Even more elaborated HTM schemes have been
designed [1, 64] to handle all transactions in hardware, ensuring that the same trans-
action is not indefinitely aborted because of its size, duration or other events it may
encounter. Unfortunately, the complexity of these “unbounded” HTM designs makes
them too costly for processor manufacturers to consider them in practice.

2.4 Industrial Adoption of Hardware Transactional Memory

In the early 2000s, Transmeta was the first company to implement a form of transac-
tional memory in its x86-compatible Crusoe microprocessor, though this hardware
only meant to support aggressive speculative optimizations in its dynamic binary
translation system [24].

More recently, Azul Systems included HTM support in its Vega systems [22],
a specialized appliance designed to massively scale the usable compute resources
available to Java applications. However, the HTM support was only used to accelerate
Java locks and not exposed to programmers.

Sun Microsystems was the first general-purpose processor manufacturer that ven-
tured to introduce support for transactions in a chip multiprocessor. In 2007, the
company announced that its high-end Rock processor would have support for both
transactional memory and speculative multithreading [17]. Unfortunately, Sun can-
celled the project in 2009, and Rock chips never made it to the market, though some
prototypes were distributed for research purposes.

Around the time the Rock project was cancelled, AMD proposed the Advanced
Synchronization Facility (ASF) [21], a set of instruction extensions to the x86 ar-
chitecture that provide limited support for lock-free data structures and transactional
memory. To date, it is unknown whether any future AMD products will implement
ASF.

In mid 2011, IBM revealed that its BlueGene/Q compute chip would feature trans-
actional memory support. The custom design was a system-on-a-chip that integrated
18 PowerPC cores with memory and networking subsystems [33]. Cores shared a
multiversioned L2 cache which supports transactional memory and speculative mul-
tithreading. With the lessons learned from BlueGene/Q, IBM began to ship the IBM
zEnterprise EC12 system in the fall of 2012, less than a year after the first Blue-
Gene/Q system made its debut in the Top500 list. The zEC12 processor introduces

Hardware Approaches to Transactional Memory in Chip Multiprocessors 811

the Transactional Execution Facility [40], which extends the z/Architecture used on
IBM mainframes with transactional memory support. The zEC12 has given IBM
the distinction of becoming the first company to deliver commercial chips with this
technology [27].

In early 2012, Intel announced that its new Haswell microarchitecture would
implement hardware transactional memory through a set of new instructions called
Transactional Synchronization Extensions (TSX) [61, 91]. Shortly after, Intel’s TSX
specification was released, describing how TM is exposed to programmers, but with-
holding details on the actual implementation. In mid-2013, Intel began shipping
processors based on its 4th-generation Core microarchitecture, making the Core
i3/i5/i7 and Xeon v3 processor families the first chips with TM support that are
available in the consumer and server markets. The adoption of transactional mem-
ory by mainstream, commodity x86 processors culminates a two decade journey of
active academic research. Section 7 provides a good overview of the contributions
have brought the industry here.

3 Fundamentals of Transactional Memory

Transactional Memory (TM) [34, 36] has been proposed as an easier-to-use program-
ming model that can help developers build scalable shared-memory data structures,
relieving them from the burdens imposed by fine-grained locking. Under the TM
model, the programmer declares what regions of the code must appear to execute
atomically and in isolation (called transactions), leaving the burden of how to provide
such properties to the underlying levels. The TM system then executes optimistically
transactions, stalling or aborting them whenever real run-time data races (called
conflicts) occur amongst concurrent transactions. The TM programming model thus
replaces explicit synchronization mechanisms like locking with a more declarative
approach whose aim is to decouple performance pursuit from programming pro-
ductivity. The transactional abstraction is provided at the programming language
level through a new construct, e.g. atomic, employed by programmers to delimit
accesses to shared data—i.e. critical sections—thus structuring their parallel code
into atomic blocks or transactions. A transaction is said to commit when it completes
its execution successfully—confirming its speculative updates to shared memory—
while it is aborted or squashed when some condition occurs—e.g. a conflict with
a concurrent transaction—that impedes its completion with success. To guarantee
race-free execution of a transactional multi-threaded application, TM implementa-
tions must satisfy two basic properties, namely atomicity and isolation, which are
inherited from the database domain.

The atomicity property dictates that a transaction is either executed to completion
or not executed at all. If the transaction successfully commits, all of its speculative
changes are made globally visible at once. Otherwise, if the transaction aborts, all its
tentative updates are discarded in order to revert the system to its pre-transactional
state, as if the transaction had never executed. To the outside world, this means that

812 J. R. Titos-Gil and M. E. Acacio

a transaction appears as an indivisible operation that cannot be partially executed.
On its part, the isolation property requires that the intermediate (speculative) state
of a partially completed transaction must remain hidden from other code. By satis-
fying these properties, transactions appear to execute in some serial global order, i.e.
committed transactions are never observed by different processors as executed in dif-
ferent orders. To provide these properties, the TM system must implement two basic
mechanisms, namely data versioning and conflict management. The policy and im-
plementation of these two mechanisms constitutes the two fundamental dimensions
of the TM design space.

Version management handles the simultaneous storage of both speculative data
(new values that will become visible if the transaction commits) and pre-transactional
data (old values retained if the transaction aborts). Only one of the two values can be
stored in-situ, i.e. in the corresponding memory address, while the other needs to be
placed somewhere else. The data versioning policy dictates how the system handles
the storage of both versions, and it constitutes a major design point of the system.
Depending on which value, old or new, gets to stay “in place” during the course
of the transaction, the data version management policy can be classified as eager
or lazy. Lazy versioning keeps old values in-situ until the commit phase, buffering
speculative updates “on the side” in the meantime. In contrast, an eager approach
to versioning uses a per-thread transaction log to backup the old value of a memory
location prior to each write, and then updates the memory location with the new value.

When two concurrent transactions access the same memory location, and at least
one of the accesses is a write operation, we say that there is a conflict or race between
them. TM systems implement a conflict management mechanism to detect and re-
solve such conflicts. For this purpose, the data read and written by each transaction
must be tracked. The set of data addresses that a transaction modifies during its ex-
ecution is known as write set. Similarly, the read set refers to the group of memory
locations read by the transaction. In these terms, a conflict between two concurrent
transactions happens when a transaction’s write set overlaps with other concurrent
transactions’ read or write sets. Depending on the meta-data information used for
transactional book-keeping, conflict detection can take place at different levels of
granularity, from objects, to cache lines to word or even byte-level addresses.

4 Hardware Mechanisms for Transactional Memory

HTM systems must identify memory locations for transactional accesses, manage
the read-sets and write-sets of the transactions, detect and resolve data conflicts,
manage architectural register state, and commit or abort transactions [34].

4.1 ISA Extensions

Identifying transactional boundaries is accomplished by extending the instruction set
architecture (ISA). All HTM implementations introduce a pair of new instructions,

Hardware Approaches to Transactional Memory in Chip Multiprocessors 813

i.e. “begin transaction” and “commit transaction”, to delimit the scope of a transac-
tion. On the one hand, the execution of the “begin transaction” instruction causes the
processor to enter into “transactional mode” (usually setting some bit in the status
register) and perform some common actions related to the initialization of the basic
transactional mechanisms, like checkpointing the architectural registers to a shadow
register file. The architectural registers and memory combined form the precise state
of the processor, and therefore the register state also needs to be restored to a known
precise state in case of abort. The operation of creating a shadow copy of the archi-
tectural registers at the start of a transaction is rather straightforward and can often be
performed in a single cycle. On the other hand, the “commit transaction” instruction
attempts to confirm the speculative updates of the transaction by publishing them
to the rest of the system, and it returns the processor to non-transactional state if
successful, discarding the register checkpoint.

The most straightforward step to identify transactional accesses is to leverage these
two instructions that mark the beginning and end of a transaction, so that all the loads
and store instructions executed while in transactional mode are implicitly considered
transactional. This is the approach that most modern HTM proposals follow, includ-
ing the Haswell microarchitecture [91], and the failed Rock processor [17]. Another
option is to further augment the ISA with explicit “transactional load” and “trans-
actional store” instructions, separated from their conventional counterparts. Though
allowing a transaction to contain both transactional and non-transactional accesses
may complicate things, this provides increased flexibility and may aid programmers
to reduce the pressure on the underlying TM mechanisms, as non-transactional ac-
cesses do not participate in data versioning nor conflict detection. The original HTM
proposal by Herlihy and Moss [36] as well as the AMD Advanced Synchronization
Facility (ASF) [21] are explicitly transactional designs.

Some proposed HTMs also include an “abort transaction” instruction to explicitly
roll back the tentative work of transaction. This is an example of flexible design that
may enable TM hardware to be applied toward solving problems beyond guaran-
teeing mutual exclusion during the execution of critical regions. Programmers using
hardware transactions may find useful the ability to explicitly rollback execution upon
a certain condition, which need not necessarily be a conflict with other transaction.

4.2 Transactional Book-Keeping

HTM systems must track a transaction’s read and write set in order to detect data
races amongst concurrent transactions. Many HTMs extend the cache line metadata
kept at the private cache level, with two new bits that record, respectively, whether
the line has been speculatively read (SR) and/or speculatively modified (SM) during
the ongoing transaction [31, 51, 82]. Such designs also support the capability to clear
all the read bits in the data cache instantaneously, an action that is performed when
the transaction commits or aborts. The private caches serve as a natural place to track
a transaction’s read and write sets, enabling low overhead tracking, although they
also constrain the granularity of conflict detection to that of a cache line.

814 J. R. Titos-Gil and M. E. Acacio

All HTM systems that leverage the private level cache to perform transactional
book-keeping are susceptible of transactional overflows due to the cache’s limited
capacity or associativity. Best effort designs would automatically abort the transac-
tion if a cache line whose SR or SM bit is set is replaced, while bounded schemes
would resort to some safety net in order to keep tracking read and write sets and
detecting conflicts in the presence of spilled lines.

An alternative scheme of transactional book-keeping which does not leverage the
private level cache is to use Bloom filters to conservatively summarize a transaction’s
data accesses using “address signatures” [14, 89]. The main disadvantage of hash
encoding is that false positives may signal spurious conflicts, this is, the signature
may indicate that an address belongs to the transaction read and write sets when in
fact it does not.

4.3 Data Versioning

Besides keeping read and write set metadata, private caches are the natural place to
buffer speculative values, since they are on the access path for the local processor and
thus can automatically forward the latest transactional update to subsequent loads
without special search. Write-back caches can be modified to behave as write buffers
that support versioning of speculative data. Depending on the implementation, one
or multiple versions of a speculatively modified cache line may be allowed.

For HTM systems with eager version management [51, 89], caches need no
changes as they do not really have any notion of speculative writes. All writes go
to the memory hierarchy in the same way, whether they occur inside or outside a
transaction. It is then the responsibility of the coherence protocol to detect accesses
to speculatively written data, and ensure no other threads or transactions observe
it. Unlike lazy systems, evictions of speculatively written data from the private
caches are tolerated, and they need no special treatment from the point of view of
the versioning mechanism. However, specialized hardware is required to fill this
virtualized log with the old value of each memory location that is being updated
inside a transaction. The contents of the log are simply discarded on commit, by
resetting the log pointer to its initial position. On an abort, a software handler walks
the log restoring the original values into memory.

4.4 Conflict Detection and Resolution

HTM proposals leverage coherence mechanisms for conflict detection. Invalidation-
based, cache coherence protocols allow HTM implementations to detect conflicts
among concurrently running transactions at the granularity of cache lines. While
unnecessary transactional conflicts may arise as a result of false sharing, for most
transactional workloads this choice of granularity represents a good trade-off between
design cost and performance.

Hardware Approaches to Transactional Memory in Chip Multiprocessors 815

More important than the granularity of the detection is the design decision of
when conflicts with concurrent transactions must be detected. Strategies for conflict
detection and resolution vary depending on when a processor examines the book-
keeping information of its read and write sets. In systems with eager detection—
sometimes also referred to as pessimistic—conflicts are detected as soon as they
happen, i.e. on every individual memory access. In the opposite approach, called
lazy or optimistic conflict detection, this check is delayed until transaction commit,
and the resolution is generally a committer-wins scheme.

The coherence protocol already provides mechanisms to locate the copies of a
requested cache line, and thus the detection of transactional conflicts can be achieved
with straightforward extensions. In snooping-based protocols, all caches observe all
coherence traffic for all lines, allowing cache controllers to check for conflicts when-
ever a request is observed on the bus. In directory-based protocols, cache controllers
only observe the coherence traffic corresponding to the lines that are currently pri-
vately cached. In a typical MESI directory protocol, a local store to a shared (S) line
results in a write miss, since the protocol ensures that no cache can have permissions
to write the data at this point. An exclusive request is sent to the directory, which in
turn forwards invalidation messages to the current sharers of the line (except maybe
the requester). The sharers are then able to check whether the requested address be-
longs to their read set—by checking the SR bit in cache, the read signature, etc.—and
appropriately detect a write-read conflict. Similarly, a load (store) miss to a line that
is remotely cached in modified (M) or exclusive (E) state results in a read (write)
request forwarded from the directory to the cache that has the latest copy of the
data, which then checks its write-set (read- and write-set) metadata to determine if a
read-write (write-write) conflict exists.

Once an HTM system detects a conflict, it must determine how to resolve it. The
conflict resolution policy constitutes another design dimension in HTM by dictating
which transaction wins the conflict and is granted access to the data. The loser
transaction can stall its execution, or it can be aborted: The alternatives change
depending on when the conflict is detected.

In HTMs with eager conflict detection, there are several policies for resolution:
requester wins, requester aborts, or requester stalls using a scheme of conservative
deadlock avoidance. The implementation of the requester wins policy is straight-
forward: The cache or caches that detect a conflict simply trigger abort and yield
to the requester. If the conflicted data was not speculatively modified (write-read
conflict), the loser responds with the appropriate invalidation acknowledgement or
data message. Otherwise, the response may be delayed until the data is conveniently
restored. The main drawback of this policy is that it can produce livelock scenarios.
The opposite option is to abort the requester. This is accomplished by augmenting
the coherence protocol with negative acknowledgements (nack) messages, so that a
cache controller that detects a conflict responds to a forwarded request or invalidation
with a nack message. On reception of a nack response, the requester knows it has
lost the conflict and can take the appropriate actions. The simplest alternative is to
trigger its own abort, but this can also result in livelock. A less draconian, livelock-
free solution is to stall the transaction and periodically retry the conflicting memory

816 J. R. Titos-Gil and M. E. Acacio

access until a positive response (different from the nack) is received. In this case,
cyclic dependencies amongst transactions can bring the system to a deadlock, and
so the system must have a way out such possible cycles. LogTM [51] uses a sim-
ple timestamp-based scheme to conservatively detect cycles, aborting the youngest
transaction to break the possible cycle.

HTM systems with lazy conflict detection must resolve conflicts when a committer
seeks to commit a transaction that conflicts with one or more other transactions.
The resolution policy in this scenario can abort all others, or else stall or abort the
committer. In general, lazy HTMs follow a committer wins policy [10, 32] that
favours forward progress and is both deadlock- and livelock-free. Unfortunately, the
committer wins policy does not guarantee fairness and can result in starvation for
some transactions.

4.5 Transaction Commit

The execution of the “commit transaction” instruction attempts to make the transac-
tion’s tentative changes permanent and visible to other processors instantaneously.
Such publication is in itself a task that must occur atomically and without interfer-
ence from other processors. For most HTMs, publishing speculative updates means
obtaining exclusive ownership for all cache lines in the write set, and then releasing
isolation over both transactional sets at once.

The implementation of the commit instruction is a straightforward operation in
eager HTMs, since writes were performed in place and therefore all write set lines
held in cache have write (exclusive) permissions. As for lazy HTMs, the require-
ment of en-masse publication of speculative updates to shared memory at commit
time poses more challenges when multiple speculative versions of the same data can
coexist. Commits in this case are non-trivial because each SM line must be located
and its coherence permission upgraded while every other copy in remote caches gets
invalidated. On the other hand, lazily-versioned HTMs that allow at most one spec-
ulative version easily provide local commits since speculative writes are performed
only when the protocol has obtained exclusive ownership (write permissions) for
the line. To simultaneously support both local commits and aborts, the coherence
protocol must be able to tolerate silent replacements of exclusively owned lines, and
it must be adapted to ensure the consistent version of the data is always written back
to the shared levels of the memory hierarchy before the first speculative write.

4.6 Transaction Abort

A hardware transaction may be implicitly aborted by the conflict resolution mech-
anism, or the abort can be explicitly triggered from the program via an “abort
transaction” instruction. Aborting a transaction means discarding all its tentative

Hardware Approaches to Transactional Memory in Chip Multiprocessors 817

changes and return the state of the processor to the exact same state it was right be-
fore the transaction began. Book-keeping information (SM and SR bits, signatures,
etc.) must always be cleared on abort, and the last step of the abort process is the
restoration of the architectural registers using the checkpoint that was saved in the
shadow register file at the beginning of the transaction.

Implementing the abort functionality is quite simple in lazy HTMs, since spec-
ulative writes were performed “on the side” (in private structures local to the core)
and therefore the shared memory still contains consistent, pre-transactional val-
ues. Aborts are cheap since silent invalidations of shared-state lines are generally
supported by the protocol, and thus lazy HTM systems can quickly discard the spec-
ulative state, by extending the cache design with conditional gang-invalidation of
lines whose SM bit is set.

Eager HTMs, on the other hand, must restore each cache line in the write set
with the pre-transactional value that was backed up in the transaction log. The log
unroll is generally done in software, by trapping to an abort handler that accesses the
log base and pointer registers, and walks the log in reverse direction—those entries
that were added last must be processed first. No transactional conflicts should arise
during this process, as the coherence protocol ensures that the lines that belong to
the write set of the aborting transaction are isolated and cannot belong to any other
transaction. Because aborting is a slow process in eager HTMs, isolation over the
read set is usually released as soon as the abort is triggered, as it is safe for other
transactions to access it while the log is unrolled.

5 Intel TSX: TM Support in Mainstream Processors

Almost a decade after the research community regained interest in hardware imple-
mentations of TM, the world’s largest semiconductor company adopted these ideas
for a commercial product. The fourth generation of the Intel Core microarchitecture,
commonly known by its code name Haswell, implements the basic mechanisms
to provide programmers with a best-effort yet fast implementation of the transac-
tional abstraction. Intel began shipping Haswell-based processors in 2013, making
the Core i3/i5/i7 and Xeon v3 processor families the first chips with TM support
that are available in the consumer and server markets. Given Intel’s market share
on mobile, desktop and servers platforms, Haswell is an important milestone to-
wards the expansion of transactions as a synchronization primitive for multi-threaded
applications.

Following the tick of Ivy Bridge, which shrunk the Sandy Bridge microarchi-
tecture to the 22-nm process technology, Haswell’s tock extends the instruction set
architecture in a number of ways, from which the Transactional Synchronization
Extensions (TSX) are certainly one of the most prominent novel features. Through
the new TSX instructions, Haswell offers programmers two interfaces to exploit
its ability to use optimistic concurrency in thread synchronization: Hardware Lock

818 J. R. Titos-Gil and M. E. Acacio

Elision (HLE) is meant to accelerate conventional lock-based programs while main-
taining legacy compatibility, while Restricted Transactional Memory (RTM) allows
programmers to explicitly start, commit and abort transactions, thus providing a nat-
ural way of implementing transactions as a synchronization abstraction. Regardless
of the TSX interface used, the same underlying hardware mechanisms are involved
in the transactional execution.

5.1 Hardware Lock Elision

Hardware Lock Elision (HLE) is a legacy-compatible ISA extension aimed at ex-
tracting more thread-level parallelism from conventional lock-based programs, by
using speculation to allow concurrent execution of critical sections protected by the
same mutex. HLE comes in the form of two instruction prefixes, XACQUIRE and
XRELEASE, which act as hints to delimit the boundaries of a critical section. If
the processor supports TSX, each of these prefixes modifies the behaviour of the
instructions that are typically used, respectively, to acquire and release a lock vari-
able; otherwise, the prefixes are ignored and the processor executes the code without
entering transactional execution, making HLE-ready binaries backwards compatible.

When the XACQUIRE hint is used in conjunction with the atomic instruction
that attempts to acquire a free lock (e.g. cmpxchg), it alters its usual behaviour
and prevents (elides) the associated write of the “busy” value. Instead, the processor
enters transactional execution, adds the address of the lock to its read set and proceeds
to execute the critical section speculatively. Because the globally visible value of the
lock remains unchanged (i.e. “free”), other threads can read it without causing a data
conflict and also enter the critical section protected by the lock. While in transactional
execution, each processor leverages coherence traffic to monitor memory accesses,
detecting data conflicts and rolling back as necessary.

Similarly, the XRELEASE prefix is paired with the store instruction that releases
the lock, so that the associated write of the “free value” is again avoided. Instead,
the processor attempts to commit the transactional execution. In this way, as long
as threads do not perform any conflicting operations on each other’s data, they can
concurrently execute the critical section without unnecessary serialization due to a
coarse grain lock.

If speculation fails, the processor will rollback and re-execute the critical section
without using lock elision. Mutual exclusion in the re-execution of the critical section
is automatically ensured, because the address of an elided lock is always added to
the read set of the transaction, and thus non-transactional writes associated to lock
acquisition will always cause data conflicts with all other threads that may be eliding
the same lock at that time, which will be forced to rollback and also retry without
elision. Therefore, code that makes use of HLE maintains the same forward progress
guarantees as the underlying lock-based execution.

Hardware Approaches to Transactional Memory in Chip Multiprocessors 819

5.2 Restricted Transactional Memory

Unlike HLE, Restricted Transactional Memory (RTM) gives up backwards com-
patibility to provide programmers with a more flexible interface for transactional
execution. It introduces new instructions to define transaction boundaries, XBEGIN
and XEND, as well as to explicitly abort a transaction from software, XABORT.
Transactional nesting is supported in TSX by means of flattening: the nesting level is
incremented by XBEGIN and decremented by XEND, and commit is only attempted
when the nesting level goes to zero.

Programmers must provide an alternative code path to the XBEGIN instruction,
where control is transferred to in case the transaction aborts, after the processor
has discarded all speculative updates, restored architectural state to appear as if
the speculation never occurred, and resume execution non-transactionally. After an
abort, the EAX register is used to communicate its cause (explicit, data conflict,
internal buffer overflow, faults, etc.) to the fallback routine, as well as the 8-bit
immediate taken as argument by the XABORT instruction. In this way, programmers
may freely use the fallback path in different ways to decide the most profitable course
of action, manage contention, etc. It is important to remark that according to the TSX
specification, the HTM implementation is best-effort, as there are no guarantees as
to whether an RTM transaction will ever successfully commit. Thus, the fallback
code is entirely responsible for guaranteeing forward progress.

Figure 1 shows a simple implementation of the fallback path, which attempts to
retry a transaction a number of times before acquiring a global lock to execute the
transaction in serial irrevocability. This implementation shares similarities with that
found in GCC’s libitm library, since version 4.7.0. As we can see, serial_lock
is read after the transaction has successfully started so that, when a thread enters
serial irrevocable mode by acquiring the lock, it automatically causes the abort of all
other running transactions due to a conflict on the lock variable, achieving a similar
behaviour to what the HLE interface provides.

6 Analysing Intel TSX Performance on Haswell

In this section, we present a brief performance analysis of the Intel TSX exten-
sions, with the purpose of shedding light into the benefits of hardware support for
transactions. For this evaluation, we use a benchmark from the STAMP suite (Stan-
ford Transactional Applications for Multi-Processing [13]). STAMP benchmarks
are extensively used in the TM research literature. Unlike other benchmarks (e.g.
SPLASH-2 [88]), the STAMP applications have been developed from scratch using
coarse grain transactions, in an attempt to capture the features of future transactional
workloads.

For the sake of simplicity, we focus exclusively on the application intruder, whose
use of transactions we can see in the code snippet shown in Fig. 2. This benchmark
emulates a signature-based network intrusion detection system in which packets

820 J. R. Titos-Gil and M. E. Acacio

Fig. 1 A possible implementation of the fallback for Intel RTM

are processed in parallel and go through three phases: capture, reassembly, and
detection. Transactions are used to synchronize access to the shared data structures
used in the capture and reassembly phases, respectively, a simple FIFO queue and
a self-balancing tree. We can see how the resulting code is simple as that of coarse-
grain locks, effectively easing the task of the programmer, as opposed to the use of
fine-grain locking on the queue and tree data structures.

We pick intruder because it exhibits several interesting characteristics. First, it
comprises several transactions that access different data structures. On the one hand,
its first and third transactions are used to extract an element at the head of a queue,
and thus have small read and write set sizes, since it basically consist of a read-
modify-write operation of the head pointer. On the other hand, its main transaction
has medium-sized transactional sets—in the order of a few tens of cache lines—since
it carries out most of the processing of the packet (reassembly) by traversing the tree
structure. Despite its coarse granularity, its main transaction can be accommodated
by the Haswell hardware without constantly causing capacity aborts. Last but not

Hardware Approaches to Transactional Memory in Chip Multiprocessors 821

Fig. 2 Example of coarse grain transactions in intruder

least, intruder exhibits high levels of contention that are desirable to evaluate TM
performance in less favourable conditions.

Our experiments with TSX are performed on a 3.4 GHz quad-core Intel Core i7-
4770 processor with 16 GB of main memory, running Linux kernel 3.11. Each core
has support for two SMT threads, but we choose to disable hyperthreading from the
BIOS, in order to dedicate all available resources for speculative buffering (e.g. L1
data cache) to a single thread per core. Each core has an eight-way, 32 KB L1 data
cache. Given the four hardware contexts available, we run the program with one, two
and four threads. We pin one thread to each core using pthread affinity. The bench-
mark is compiled with GCC v.4.8.1, using the O3 optimization level. Since version
4.8, GCC supports the Intel RTM intrinsics, built-in functions and code genera-
tion by including the <immintrin.h> header and enabling the -mrtm flag. The
begin_transaction and end_transaction functions shown in Fig. 1 are
used to implement the fallback-path. The read-write spinlock implementation from
linux-3.11/arch/x86/include/asm/spinlock.h is used to enforce
serialization. Transactions are allowed to retry up to eight times before resorting to se-
rialization via the fallback lock. For each configuration, a minimum of 20 executions
are averaged to derive statistically meaningful results. Our experiments use the large
input size recommended for non-simulator runs [13]: 256K traffic flows are analyzed,
10 % of which have attacks injected, where each flow has a maximum of 128 packets.

To observe the relative performance gain achieved by TSX, we consider in this
experiment other two synchronization schemes that do not make use of the hardware
support for transactions. We run a lock-based version of the benchmark in which
transactions are implemented as critical sections protected through a single global
lock (SGL). Additionally, we compare TSX performance against a software TM

822 J. R. Titos-Gil and M. E. Acacio

Fig. 3 Performance comparison of TSX versus TL2 and single global lock

system called Transactional Locking II (TL2) [26], which is distributed with STAMP.
We also include a sequential flavour of the benchmark (SEQ), which is stripped of
all synchronization.

Figure 3 shows the execution time of the three synchronization schemes imple-
mented by the underlying library. The plot shows execution time (in seconds) for
each of the synchronization flavours considered, and runs with one to four threads.
As we can see in Fig. 3, intruder achieves good scalability through optimistic con-
currency in spite of the coarse grain transactions used. Both hardware (TSX) and
software (TL2) implementations of TM scale significantly better than a single global
lock. In particular, we see how TSX is able to bring the execution time from 15 s
with a single thread, down to around 4.5 when running 4 threads. As opposed to
HTM and STM solutions, adding more threads in the SGL scheme does not speedup
execution but rather causes a slight performance degradation: The global lock pre-
cludes all concurrency in the application, and adding more threads only makes things
worse by increasing the contention on the lock variable. Given that the use of coarse
grain transactions entails a similar complexity to that of single global lock, this per-
formance comparison between SGL and two TM implementations confirms that,
from the point of view of the programmer, transactions are indeed able to keep up
its promise of achieving better scalability than coarse grain locks, with the same
programming effort.

Hardware Approaches to Transactional Memory in Chip Multiprocessors 823

Fig. 4 PCM output for intruder (four threads), showing TSX performance event counts

Furthermore, the numbers obtained by TSX demonstrate that hardware implemen-
tations of transactional semantics are necessary to dramatically reduce the substantial
performance overheads seen in software-only solutions, as a result of the instru-
mentation on every memory access within a transaction which is required to track
transactional reads and writes and be able to detect conflicts. Hardware TM imple-
mentations can exhibit their full potential in those cases where most transactions
are appropriately sized to avoid overflowing the hardware buffering capacity, as it
is the case of intruder in our Haswell-based setup. Other STAMP benchmarks with
larger transaction footprints may not be as well suited and exhibit substantially higher
capacity-induced aborts [91].

In spite of the good speedup achieved by TSX with four threads (3.3 times faster
than sequential), the scalability of intruder starts to deviate more and more from the
ideal. This is a direct result of the increasing level of contention seen in the appli-
cation: several threads attempting to capture the same packet from the FIFO queue,
concurrent accesses to the dictionary while the tree is rebalanced, etc. Using the In-
tel Performance Counter Monitor (PCM), an open source tool, we can monitor TSX
performance events in order to obtain relevant information about the execution of the
program, such as the amount of contention (e.g. number of aborts due to data conflicts,
TX_MEM.ABORT_CONFLICT). Figure 4 shows the output of PCM when running
the benchmark intruder with four threads using TSX. The number of conflict-induced
aborts may increase quickly with contention, particularly in HTM implementations

824 J. R. Titos-Gil and M. E. Acacio

that resolve conflicts using a requester wins policy. Though details about its imple-
mentation have not been disclosed at the time of this writing, it is likely that Intel
has adopted such simple yet livelock-prone conflict resolution strategy in Haswell,
with the intent of keeping the changes in its coherence protocol to a minimum. In
any case, the TSX specification clearly places on the fallback path the responsibility
of providing forward progress when it detects that a transaction has failed too many
times. As commented earlier, in our implementation of the abort handler all running
transactions are automatically killed when the fallback lock is acquired due to a data
conflict, thus adding to the number of contention-induced aborts.

7 An Overview of Hardware TM Research

Research in HTM design has been very active since the introduction of multicores in
mainstream computing. In the early 1990s, Herlihy and Moss introduced Transac-
tional Memory [36] as a hardware alternative to lock-based synchronization. Their
main idea was to generalize the LL/SC primitives in order to perform atomic accesses
not to one but to several independent memory locations, thus eliminating the need
for protecting critical sections with lock variables. Almost a decade later, architects
began to recover their interest in transactions at a hardware level. Rajwar and Good-
man’s Transactional Lock Removal (TLR) [63] was the first to apply the concept
of transaction to the execution of lock-protected critical sections, merging the idea
of Speculative Lock Elision (SLE) [62] with a timestamp-based conflict resolution
scheme.

The early proposal by Herlihy and Moss was revived ten years later by Hammond
et al., who present Transactional Coherence and Consistency (TCC) [32] as a novel
coherence and consistency model that uses continuous transactional execution. The
novelty of TCC stems from its “all transactions, all the time” philosophy, where
transactions are the basic unit of parallel work, synchronization, memory coherence
and consistency. TCC’s lazy approach contains speculative updates within private
caches and lazily resolves races when a committing transaction broadcasts its write-
set, employing a bus to serialize transaction commits.

In contrast to Stanford’s TCC, Wisconsin’s LogTM [51] explores the opposite
corner of the HTM design space. Moore et al. take a more evolutionary ap-
proach to transactional memory in LogTM, combining transactional support with
a conventional shared memory model that enables a more gradual change towards
transactional systems. LogTM is a purely eager HTM system that leverages a stan-
dard coherence protocol to perform conflict detection on individual memory requests,
and makes commits fast by storing old values to a per-thread log in cacheable vir-
tual memory, which is unrolled by a software handler in case of abort. Unlike TCC,
LogTM can tolerate evictions of transactional data from caches thanks to the log,
and enables conflict detection on evicted blocks through an elegant extension to the
coherence protocol.

Hardware Approaches to Transactional Memory in Chip Multiprocessors 825

LogTM has been subsequently refined. Moravan et al. [52] introduce support for
nested transactions, enabling both closed nesting with partial aborts and open nesting
[55]. Open nesting is a programming language construct motivated by performance,
which can improve concurrency by relaxing the atomicity guarantee. When an open
nested transaction commits, the TM system releases its read and written data so
that other transactions can access them without generating conflicts. Thanks to open
nesting, otherwise-offending transactions can access the exposed data after the nested
transaction commits, while the outer transaction still runs. This can enhance the
degree of concurrency achieved by the flattening scheme found in LogTM, which
enforces isolation until the outermost transaction commits. In [3], Baek et al. propose
FanTM, a design that uses address signatures in hardware [14] to efficiently support
transaction nesting.

Later on, Yen et al. [89] decouple transactional support from caches, removing
read and write bits used for transactional book-keeping, and replacing them with hash
signatures. This latest improvement, called LogTM-SE (Signature Edition), borrows
the concept of Bloom filters [5] to conservatively encode a transaction’s read and write
set metadata. The idea of applying hash encoding towards conflict detection/thread
disambiguation was first introduced into the realm of TM by Ceze et al. in [14] and
[15]. The use of hash signatures for transactional book-keeping has been further
explored by several authors. In [69], Sanchez et al. examine different signature
organizations and hashing schemes to achieve hardware-efficient and accurate TM
signatures. Quislant et al. have also studied signature organizations, basing their
works in LogTM-SE. In [59], they show that locality can be exploited in order to
reduce the number of bits inserted in the filter for those addresses nearby located,
and reducing the number of false conflicts. More recently, the authors have studied
multiset signature designs [60] which record both the read and write sets in the
same Bloom filter. Yen et al. developed Notary [90], which introduces a privatization
interface that allows the programmer to explicitly declare shared and private heap
memory allocation, which can be used to reduce the signature size as well as the
number of false conflicts arising from private memory accesses. Sanyal et al. exploit
the same concept in [70], proposing a scheme that dynamically identifies thread-local
variables and excludes them from the commit set, both reducing the pressure on the
versioning mechanisms and improving the scalability of such phase in lazy HTMs.

In the context of signature-based eager HTM systems, Titos-Gil et al. have pro-
posed a scheme of conflict detection at the directory level [29] that is not only capable
of dealing with contention more efficiently than LogTM-SE, but can also minimize
the performance degradation caused by false positives. Their solution moves trans-
actional bookkeeping from caches to the directory, introducing separate hardware
module that acts as conflict controller and works independently of the coherence
controller, leaving the protocol largely unmodified.

In FASTM [46], Lupon et al. extend LogTM with a coherence protocol that enables
fast abort recovery in an otherwise eager HTM, by leveraging the private cache to
buffer speculative state, effectively avoiding traps to software handlers that perform
log unroll as long as speculatively modified data does not overflow the private cache
level. LogTM’s approximation of making commits fast has also inspired OneTM [8]

826 J. R. Titos-Gil and M. E. Acacio

[7], which uses a cache to reduce the frequency with which transactions overflow on
chip resources, and proposes a simple irrevocable execution switch to handle such
overflows as well as context switches, I/O or system calls inside transactions, at the
cost of limited concurrency.

Bobba et al. propose TokenTM [11], another unbounded HTM design that uses
the abstraction of tokens [49] to precisely track conflicts on an unbounded number of
memory blocks and it handles both paging, thread migration and context switching,
but incurs high state overhead. In [41], Jafri et al. improve on TokenTM and pro-
pose LiteTM, a design that maintains the same virtualization properties of TokenTM
while greatly reducing the state overhead, and without sacrifying much performance.
Support for transactions of unlimited duration, size and nesting depth has also been
considered by proposals such as UTM [1, 44] or VTM [64], which focus on hard-
ware schemes that provide virtualization of transactions. However, both achieve this
goal by introducing large amounts of complexity in the processor and the memory
subsystem. On its part, XTM [20] implements transaction virtualization support in
software, using virtual memory and operating at page granularity. A similar approach
is taken by Chuang et al. [19] in PTM, a page-based, hardware-supported TM design
that combines transaction bookkeeping with the virtual memory system to support
transactions of unbounded size, as well as to handle context switches and exceptions.

While it is not an issue for eager systems like LogTM, parallelism at commit is
important for lazy systems when running applications with low contention but a large
number of transactions. Transactions that do not conflict should ideally be able to
commit simultaneously. The very nature of lazy conflict resolution protocols makes
it difficult since only actions taken at commit time permit discovery of data races
among transactions. Simple lazy schemes like the ones employing a global commit
token [10] or a bus [31] do not permit such parallelism. The reason for limited
parallelism at commit time is that the committing transaction has no knowledge of
which other concurrently running transactions must abort to preserve atomicity. The
TCC design [31] was later extended to scalable DSM architectures using directory
based coherence. This proposal is called Scalable TCC (STCC) [16], and it employs
selective locking of directory banks to avoid arbitration delays and thereby improve
commit throughput. Pugsley et al. [58] improve over STCC by proposing even more
scalable commit algorithms that reduce the number of network messages, remove the
need for a centralized agent, and tackle deadlocks, livelocks and starvation scenarios.

Another approach to improve the scalability of the commit process in lazy systems
has been explored by EazyHTM [82]. Tomic et al. record the information pertaining
to potential conflicts, which is readily available from coherence messages during
the lifetime of any transaction, and use this information at commit time to allow
true commit parallelism. All potentially conflicting transactions that must be aborted
would be known, and committers that have not seen races can commit in a truly
parallel fashion.

Pi-TM [53] builds upon the ideas explored by EazyHTM, and leverages the con-
cept of pessimistic self-invalidation to enable parallel lazy commits without affecting
the execution in the common case. Negi et al. develop an early conflict detection—
lazy conflict resolution HTM design with modest extensions to existing protocols,

Hardware Approaches to Transactional Memory in Chip Multiprocessors 827

which uses information regarding conflicts and performs pessimistic invalidation
of potentially conflicting lines on commit and abort, enabling fast common-case
execution.

FlexTM [75] also provides lazy conflict resolution by recording conflicts as they
happen, using this information to enable distributed commits. Unlike EazyHTM,
Shriraman et al. choose to do so in software, sacrifying progress guarantees to
gain greater parallelism. Performance costs associated with software intervention
and software verification challenges without watertight forward progress guarantees
could limit the value of this approach. EazyHTM, on the other hand, provides parallel
lazy commits in hardware and ensures forward progress, but trades off common-case
performance to achieve it. FlexTM allows flexibility in policy but it does so by imple-
menting critical policy managers in software. It provides a significant improvement
in speed over software TM implementations by proposing the use of alert-on-update
hardware, but the considerable cost of software intervention renders a comparison
with pure HTMs moot. In the context of HTM, Shriraman and Dwarkadas [73] have
also analyzed the interplay between conflict resolution time and contention manage-
ment policy. They show that both policy decisions have a considerable impact on the
ability to exploit available parallelism and demonstrate that conflict resolution time
has the dominant effect on performance, corroborating that lazy HTMs are able to
uncover more parallelism than eager approaches.

With DynTM [47], Lupon et al. introduce a cache coherence protocol that allows
transactions in a multi-threaded application run either eagerly or lazily based on some
heuristics like prior behavior of transactions, at the cost of adding extra complexity
at level of the coherence controller. Recognizing the fact that contention is more a
property of data rather than that of an atomic code block, ZEBRA [79] chooses a
different dimension when combining eager and lazy policies into a HTM design, al-
lowing per-cache-line selection of versioning and conflict resolution policies. While
DynTM selects policies at the level of transactions, ZEBRA is a data-centric design
which works at the same granularity of the underlying coherence infrastructure—
i.e. cache lines—and therefore introduces less complexity into existing protocols.
This hybrid design is able to track closely or exceed the performance of the best
performing policy for a given workload, bringing together the benefits of parallel
commits (inherent in traditional eager HTMs) and good optimistic concurrency with-
out deadlock avoidance mechanisms (inherent in lazy HTMs), with little increase in
complexity.

LV* [54], a proposal that utilizes snoopy coherence, allows programmer control
over policy in hardware but with the constraint that all transactions in an application
must use the same policy at any given time. The requirement of programmer-assisted
policy change is a drawback too since the same phase of an application can exhibit
different behavior with varying datasets.

The mitigation of the performance penalty associated with transaction aborts has
been of interest to the HTM community. Waliullah and Stenstrom study the utility
of intermediate checkpoints in lazy HTM systems [85, 86], as a means to reduce the
amount of work that is discarded on abort. In their scheme transactions record con-
flicting addresses upon abort, and use this historical information to insert a checkpoint

828 J. R. Titos-Gil and M. E. Acacio

before a memory reference predicted as conflicting is executed. If the transaction is
squashed, it is rolled back to the checkpoint associated with the first conflicting ac-
cess, rather than all the way back to the beginning. Reducing the penalty of abort
was also considered by Armejach et al. [2], who propose a reconfigurable private
level data cache to improve the efficiency of the version management mechanism in
both eager and lazy HTMs.

Titos et al. have also analysed how the lack of effective techniques for store
management results in a quick degradation in the performance of eager HTM systems
with increasing contention and, thus, lends credence to the belief that eager designs
do not perform as well as their lazy counterparts when conflicts abound [80]. The
authors present two simple ways to improve handling of speculative stores which
yield substantial improvements in execution time when running applications with
high contention, allowing eager designs to exceed the performance of lazy ones.

The applications of data forwarding and value prediction for conflict resolution
have also been explored in the context of eager HTM systems. Pant et al. [56, 57]
observe that shared-conflicting data is often updated in a predictable manner by dif-
ferent transactions, and propose the use of value prediction in order to capture this
predictability and increase overall concurrency by satisfying loads from conflicting
transactions with predicted values, instead of stalling. In DATM [66], Ramadan et
al. investigate the advantages of value forwarding for speculative resolution of true
data conflicts amongst concurrent transactions. DATM is an eager system that dis-
covers and tracks the data dependencies amongst concurrent transactions, allowing
writer transactions to proceed in the presence of other conflicting transactional acces-
sors, and reader transactions to obtain uncommitted data produced by a concurrent
transaction, while still enforcing a legal serialized order that preserves consistency.

Hardware TM systems can suffer a series of pathological behaviours that nega-
tively affect performance. Bobba et al. explore HTM design space, identifying how
some of these undesirable scenarios [10] affect each kind of system depending on
the choice of policies for version and conflict management. Some pathologies such
as starvation have been further analysed and resolved in other subsequent works
[87]. Other pathologies that affect HTM performance have been the topic of several
studies. Volos et al. [84] investigate the interaction of transactional memory imple-
mentations and lock-based code, and discover other problematic scenarios that may
arise in these circumstances. False sharing, another undesired situation that may
arise in multi-threaded codes, becomes even a bigger problem when it occurs in con-
junction with hardware transactional memory [51] due to the detection of conflicts
at a cache line granularity. Tabba et al. [78] propose a mechanism that takes the
concepts of coherence decoupling [39] and value prediction, and combines them to
mitigate the effects of coherence conflicts in transactions. The granularity of conflict
detection in HTM has also been the subject of the works by Khan et al. [42], whose
HTM proposal is able to detect conflicts at the level of objects—instead of cache
lines—which leads to a novel commit scheme as well as an elegant solution to the
problem of version management virtualization.

Hardware Approaches to Transactional Memory in Chip Multiprocessors 829

Another kind of pathological behaviour affecting HTM performance happens
when concurrent operations on data structures that are not semantically conflicting—
such as two insertions in two different buckets of a hash table—result in conflicting
transactions because of updates on auxiliary program data—e.g. the size field. In-
spired by instruction replay-based mechanisms [25], Blundell at al. propose RetCon
[9], a hardware mechanism that eliminates the performance impact of such spureous
transactional conflicts. RetCon tracks the relationship between input and output val-
ues symbolically and uses this information to transparently repair the output state of
a transaction at commit.

Ramadan et al. have examined the architectural features necessary to support
HTM in the Linux kernel for the x86 architecture [65, 68]. They propose MetaTM,
an HTM model that contains features that enable efficient and correct interrupt han-
dling for an x86-like architecture. Using TxLinux—a Linux kernel modified to use
transactions in place of locking primitives in several key subsystems—they quantify
the effect of architectural design decisions on the performance of such a large trans-
actional workload. TxLinux, based on the Linux 2.4 kernel and thus characterized
by its simple, coarse-grained synchronization structure, is used by Hoffman et al. in
[38] to show that a minimal subset of TM features supported in hardware can sim-
plify synchronization, provide comparable performance to fine-grained locking and
handle overflows. The challenge of operating system (OS) support in HTM is also ad-
dressed Wang et al. [71] and Tomic et al. [81]. DTM [71] proposes a hardware-based
solution that fully decouples transaction processing from caches, while HTM-OS
[81] leverages the existing OS virtual memory mechanisms to support unbounded
transaction sizes and provide transaction execution speed that does not decrease
when transaction grows. A related challenge that has been addressed in the HTM
literature is the support of input/output operations within transactions: Lui et al. [45]
analyse this problem and propose an HTM system that supports I/O within transac-
tions by means of partial commits, using commit-locks and blocking/waking-up of
transactional threads.

The applicability of hardware transactional memory (HTM) has also been con-
sidered in the context of dynamic memory management. Dragojevic et al. [28]
demonstrate that HTM can be used to simplify and streamline memory reclama-
tion for practical concurrent data structures. The use of HTM to aid lightweight
dynamic language runtimes in evolving more capable and robust execution models
while maintaining native code compatibility has been studied too. Using a modified
Linux kernel and a Python interpreter, Riley at al. [67] explore the lack of thread
safety in native extension modules and use features found in an HTM implementa-
tion to address several issues that impede to the effective deployment of dynamic
languages on current and future multicore and multiprocessor system.

830 J. R. Titos-Gil and M. E. Acacio

8 Conclusions

Following the recent inclusion of hardware support for Transactional Memory in
commodity multicore processors [91] and commercial mainframes [40], the time
has come for architects and programmers of datacenters to ponder the new opportu-
nities that may unfold in the coming years. This chapter examines the state-of-the-art
of Transactional Memory, paying special attention to its hardware implementations
(Hardware Transactional Memory or HTM). Transactions not only address one the
key challenges of the multicore era, i.e. the trade-off between programming ease
and performance, but also bring about other important benefits such as better code
composability and fault tolerance. For these reasons, parallel software developed for
large-scale clusters may also find in Transactional Memory an attractive program-
ming model to unlock the full potential of the multicore processors that power a
datacenter, while improving aspects that impact the total cost of ownership such as
server utilization or code maintainability.

Acknowledgements This work was supported by the Spanish MINECO, as well as European
Commission FEDER funds, under grant TIN2012-38341-C04-03.

References

1. C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and Sean Lie.
Unbounded transactional memory. In Proceedings of the 11th Symposium on High-Performance
Computer Architecture, pages 316–327, 2005.

2. Adria Armejach, Azam Seydi, Rubén Titos-Gil, Ibrahim Hur, Adrián Cristal, Osman Unsal,
and Mateo Valero. Using a reconfigurable l1 data cache for efficient version management
in hardware transactional memory. In Proceedings of the 20th International Conference on
Parallel Architectures and Compilation Techniques, 2011.

3. Woongki Baek, Nathan Bronson, Christos Kozyrakis, and Kunle Olukotun. Making nested
parallel transactions practical using lightweight hardware support. In Proceedings of the 24th
International Conference of Supercomputing, pages 61–71, 2010.

4. Lee Baugh, Naveen Neelakantam, and Craig Zilles. Using hardware memory protection to
build a high-performance, strongly atomic hybrid transactional memory. In Proceedings of the
35th International Symposium on Computer Architecture, pages 115–126. 2008.

5. Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13:422–426, 1970.

6. Colin Blundell, E Christopher Lewis, and Milo Martin. Subtleties of transactional memory
atomicity semantics. Computer Architecture Letters, 5(2), 2006.

7. Colin Blundell, E Christopher Lewis, and Milo M. K. Martin. Unrestricted transactional
memory: Supporting i/o and system calls within transactions. Technical Report CIS-06-09,
Department of Computer and Information Science, University of Pennsylvania, 2006.

8. Colin Blundell, Joe Devietti, E Christopher Lewis, and Milo Martin. Making the fast case
common and the uncommon case simple in unbounded transactional memory. In Proceedings
of the 34th International Symposium on Computer Architecture, pages 24–34, 2007.

9. Colin Blundell, Arun Raghavan, and Milo M.K. Martin. RETCON: transactional repair without
replay. In Proceedings of the 37th International Symposium on Computer Architecture, pages
258–269, 2010.

Hardware Approaches to Transactional Memory in Chip Multiprocessors 831

10. Jayaram Bobba, Kevin E. Moore, Luke Yen, Haris Volos, Mark D. Hill, Michael M. Swift, and
David A. Wood. Performance pathologies in hardware transactional memory. In Proceedings
of the 34th International Symposium on Computer Architecture, pages 81–91, 2007.

11. Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift, and David A. Wood. To-
kenTM: Efficient execution of large transactions with hardware transactional memory. In
Proceedings of the 35th International Symposium on Computer Architecture, pages 81–91,
2008.

12. Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald, Nathan Bronson,
Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An effective hybrid transactional
memory system with strong isolation guarantees. In Proceedings of the 34th International
Symposium on Computer Architecture, pages 69–80, 2007.

13. Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP: Stanford
transactional applications for multi-processing. In Proceedings of the IEEE Intl. Symposium
on Workload Characterization, pages 35–46, 2008.

14. Luis Ceze, James Tuck, Calin Cascaval, and Josep Torrellas. Bulk disambiguation of spec-
ulative threads in multiprocessors. In Proceedings of the 33rd International Symposium on
Computer Architecture, pages 227–238, 2006.

15. Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC: bulk enforcement
of sequential consistency. In Proceedings of the 34th International Symposium on Computer
Architecture, pages 278–289, 2007.

16. Hassan Chafi, Jared Casper, Brian D. Carlstrom, Austen McDonald, Chi Cao Minh, Woongki
Baek, Christos Kozyrakis, and Kunle Olukotun. A scalable, non-blocking approach to trans-
actional memory. In Proceedings of the 13th Symposium on High-Performance Computer
Architecture, pages 97–108, 2007.

17. Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson, Anders Landin, Sher-
manYip, Håkan Zeffer, and Marc Tremblay. Rock: A high-performance Sparc CMT processor.
IEEE Micro, 29(2):6–16, 2009.

18. Ben Chelf. Ensuring code quality in multi-threaded applications. http://www.coverity.com/
library/pdf/coverity_multi-threaded_whitepaper.pdf.

19. Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh, Jack Sampson, Michael Van Bies-
brouck, Gilles Pokam, Brad Calder, and Osvaldo Colavin. Unbounded page-based transactional
memory. In Proceedings of the 12th International Symposium on Architectural Support for
Programming Language and Operating Systems, pages 347–358, 2006.

20. JaeWoong Chung, Chi Cao Minh, Austen McDonald, Travis Skare, Hassan Chafi, Brian D.
Carlstrom, Christos Kozyrakis, and Kunle Olukotun. Tradeoffs in transactional memory vir-
tualization. In Proceedings of the 12th International Symposium on Architectural Support for
Programming Language and Operating Systems, pages 371–381, 2006.

21. Jaewoong Chung, Luke Yen, Stephan Diestelhorst, Martin Pohlack, Michael Hohmuth, David
Christie, and Dan Grossman. Asf: Amd64 extension for lock-free data structures and trans-
actional memory. In Proceedings of the 43rd International Symposium on Microarchitecture,
pages 39–50, 2010.

22. Cliff Click. Azul’s experiences with hardware transactional memory, 2009. http://sss.cs.purdue.
edu/projects/tm/tmw2010/talks/Click-2010_TMW.pdf.

23. Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and Daniel
Nussbaum. Hybrid transactional memory. In Proceedings of the 12th International Symposium
on Architectural Support for Programming Language and Operating Systems, pages 336–346,
2006.

24. James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson, Thomas Kistler, Alexan-
der Klaiber, and Jim Mattson. The transmeta code morphing software: using speculation,
recovery, and adaptive retranslation to address real-life challenges. In Proceedings of the
1stInternational Symposium on Code Generation and Optimization (CGO).

25. Rajagopalan Desikan, Simha Sethumadhavan, Doug Burger, and Stephen W. Keckler. Scalable
selective re-execution for edge architectures. In Proceedings of the 11th International Sym-
posium on Architectural Support for Programming Language and Operating Systems, pages
120–132, 2004.

http://www.coverity.com/library/pdf/coverity_multi-threaded_whitepaper.pdf
http://www.coverity.com/library/pdf/coverity_multi-threaded_whitepaper.pdf
http://sss.cs.purdue.edu/projects/tm/tmw2010/talks/Click-2010_TMW.pdf
http://sss.cs.purdue.edu/projects/tm/tmw2010/talks/Click-2010_TMW.pdf

832 J. R. Titos-Gil and M. E. Acacio

26. David Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Proceedings of the 19th
Intl. Symposium on Distributed Computing, 2006.

27. Ivan Dobos et al. IBM zEnterprise EC12 Technical Guide, February 2013. http://www.
redbooks.ibm.com/redbooks/pdfs/sg248049.pdf.

28. Aleksandar Dragojević, Maurice Herlihy, Yossi Lev, and Mark Moir. On the power of hard-
ware transactional memory to simplify memory management. In Proceedings of the 30th
International Symposium on Principles of Distributed Computing, pages 99–108, 2011.

29. J. Rubén Titos Gil, Manuel E. Acacio, and José M. García. Efficient eager management of
conflicts for scalable hardware transactional memory. IEEE Transactions on Parallel and
Distributed Systems, 24(1):59–71, 2013.

30. Tom Groenfeldt. Software programmers lag behind hardware developments, 2011. http://
blogs.forbes.com/tomgroenfeldt/2011/04/21/software-programmers-lag-be hind-hardware-
developments/.

31. Lance Hammond, Brian D. Carlstrom, Vicky Wong, Mike Chen, Christos Kozyrakis, and
Kunle Olukotun. Transactional coherence and consistency: Simplifying parallel hardware and
software. IEEE Micro, 24(6), 2004.

32. Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben Hertzberg,
Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun. Transactional
memory coherence and consistency. In Proceedings of the 31st International Symposium on
Computer Architecture, pages 102–113, 2004.

33. Ruud Haring, Martin Ohmacht, Thomas Fox, Michael Gschwind, David Satterfield, Krishnan
Sugavanam, Paul Coteus, Philip Heidelberger, Matthias Blumrich, Robert Wisniewski, alan
gara, George Chiu, Peter Boyle, Norman Chist, and Changhoan Kim. The ibm blue gene/q
compute chip. IEEE Micro, 32(2):48–60, March 2012.

34. Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Memory, 2nd Edition. Morgan &
Claypool, 2010.

35. Maurice Herlihy, Victor Luchangco, Mark Moir, and III William N. Scherer. Software trans-
actional memory for dynamic-sized data structures. In Proceedings of the 22nd Symposium on
Principles of Distributed Computing, pages 92–101, 2003.

36. Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proceedings of the 20th International Symposium on Computer
Architecture, pages 289–300, 1993.

37. Owen S. Hofmann, Donald E. Porter, Christopher J. Rossbach, Hany E. Ramadan, and Emmett
Witchel. Solving difficult HTM problems without difficult hardware. In TRANSACT ’07: 2nd
Workshop on Transactional Computing, 2007.

38. Owen S. Hofmann, Christopher J. Rossbach, and Emmett Witchel. Maximum benefit from a
minimal HTM. In Proceedings of the 14th International Symposium on Architectural Support
for Programming Language and Operating Systems, pages 145–156, 2009.

39. Jaehyuk Huh, Jichuan Chang, Doug Burger, and Gurindar S. Sohi. Coherence decoupling: mak-
ing use of incoherence. In Proceedings of the 11th International Symposium on Architectural
Support for Programming Language and Operating Systems, pages 97–106, 2004.

40. Christian Jacobi, Timothy Slegel, and Dan Greiner. Transactional memory architecture and
implementation for IBM System z. In Proceedings of the 45th International Symposium on
Microarchitecture, pages 25–36, 2012.

41. Syed Ali Raza Jafri, Mithuna Thottethodi, and T. N. Vijaykumar. LiteTM: Reducing transac-
tional state overhead. In Proceedings of the 16th Symposium on High-Performance Computer
Architecture, pages 1–12, 2010.

42. Behram Khan, Matthew Horsnell, Ian Rogers, Mikel Luján, Andrew Dinn, and Ian Watson.
An object-aware hardware transactional memory. In Proceedings of the 10th International
Conference on High Performance Computing and Communications, pages 93–102, 2008.

43. Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and Anthony Nguyen.
Hybrid transactional memory. In Proceedings of the 11th Symposium on Principles and Practice
of Parallel Programming, pages 209–220, 2006.

http://www.redbooks.ibm.com/redbooks/pdfs/sg248049.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg248049.pdf
http://blogs.forbes.com/tomgroenfeldt/2011/04/21/software-programmers-lag-be hind-hardware-developments/
http://blogs.forbes.com/tomgroenfeldt/2011/04/21/software-programmers-lag-be hind-hardware-developments/
http://blogs.forbes.com/tomgroenfeldt/2011/04/21/software-programmers-lag-be hind-hardware-developments/

Hardware Approaches to Transactional Memory in Chip Multiprocessors 833

44. Sean Lie. Hardware support for unbounded transactional memory. Master’s thesis, 2004.
Massachusetts Institute of Technology.

45. Yi Liu, Xin Zhang, He Li, Mingxiu Li, and Depei Qian. Hardware transactional memory sup-
porting I/O operations within transactions. In Proceedings of the 10th International Conference
on High Performance Computing and Communications, pages 85–92, 2008.

46. Marc Lupon, Grigorios Magklis, and Antonio González. FASTM: A log-based hardware trans-
actional memory with fast abort recovery. In Proceedings of the 18th International Conference
on Parallel Architectures and Compilation Techniques, pages 293–302, 2009.

47. Marc Lupon, Grigorios Magklis, and Antonio González. A dynamically adaptable hardware
transactional memory. In Proceedings of the 43rd International Symposium on Microarchitec-
ture, pages 27–38, 2010.

48. Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. Adaptive software trans-
actional memory. In Proceedings of the 19th Intl. Symposium on Distributed Computing,
2005.

49. Milo M.K. Martin. Token Coherence. PhD thesis, CS Dept., Univ. of Wisconsin-Madison,
2003.

50. Austen McDonald, JaeWoong Chung, D. Carlstrom Brian, Chi Cao Minh, Hassan Chafi,
Christos Kozyrakis, and Kunle Olukotun. Architectural semantics for practical transactional
memory. In Proceedings of the 33rd International Symposium on Computer Architecture, pages
53–65, 2006.

51. Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A. Wood.
LogTM: Log-based transactional memory. In Proceedings of the 12th Symposium on High-
Performance Computer Architecture, pages 254–265, 2006.

52. Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D. Hill, Ben Liblit,
Michael M. Swift, and David A. Wood. Supporting nested transactional memory in LogTM. In
Proceedings of the 12th International Symposium on Architectural Support for Programming
Language and Operating Systems, pages 359–370, 2006.

53. Anurag Negi, J. Rubén Titos Gil, Manuel E. Acacio, José M. García, and Per Stenström. Pi-tm:
Pessimistic invalidation for scalable lazy hardware transactional memory. In Proceedings of
the 18th Symposium on High-Performance Computer Architecture, pages 141–152, 2012.

54. Anurag Negi, M.M. Waliullah, and Per Stenstrom. LV*: A low complexity lazy versioning
HTM infrastructure. In Proceedings of the Intl. Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (IC-SAMOS 2010), pages 231–240, 2010.

55. Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking, Richard L. Hudson,
J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman. Open nesting in software transac-
tional memory. In Proceedings 12th ACM SIGPLAN symposium on Principles and Practice
of Parallel Programming, pages 68–78, 2007.

56. Salil Pant and Gregory Byrd. Extending concurrency of transactional memory programs by
using value prediction. In Proceedings of the 6th ACM conference on Computing Frontiers,
pages 11–20, 2009.

57. Salil Pant and Gregory Byrd. Limited early value communication to improve performance of
transactional memory. In Proceedings of the 23rd International Conference of Supercomputing,
pages 421–429, 2009.

58. Seth H. Pugsley, Manu Awasthi, Niti Madan, Naveen Muralimanohar, and Rajeev Bala-
subramonian. Scalable and reliable communication for hardware transactional memory. In
Proceedings of the 17th International Conference on Parallel Architectures and Compilation
Techniques, pages 144–154, 2008.

59. Ricardo Quislant, Eladio Gutierrez, and Oscar Plata. Improving signatures by locality exploita-
tion for transactional memory. In Proceedings of the 18th International Conference on Parallel
Architectures and Compilation Techniques, pages 303–312, 2009.

60. Ricardo Quislant, Eladio Gutierrez, and Oscar. Plata. Multiset signatures for transactional
memory. In Proceedings of the 25th International Conference of Supercomputing, pages 43–52,
2011.

834 J. R. Titos-Gil and M. E. Acacio

61. Ravi Rajwar and Martin Dixon. Intel transactional synchronization extensions, 2012. Intel
Developer Forum (IDF2012).

62. Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling highly con-
current multithreaded execution. In Proceedings of the 34th International Symposium on
Microarchitecture, pages 294–305, 2001.

63. Ravi Rajwar and James R. Goodman. Transactional lock-free execution of lock-based pro-
grams. In Proceedings of the 10th International Symposium on Architectural Support for
Programming Language and Operating Systems, pages 5–17, 2002.

64. Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing transactional memory. In Pro-
ceedings of the 32nd International Symposium on Computer Architecture, pages 494–505,
2005.

65. Hany E. Ramadan, Christopher J. Rossbach, Donald E. Porter, Owen S. Hofmann, Aditya
Bhandari, and Emmett Witchel. MetaTM/TxLinux: transactional memory for an operating
system. In Proceedings of the 34th International Symposium on Computer Architecture, pages
92–103, 2007.

66. Hany E. Ramadan, Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel.
Dependence-aware transactional memory. In Proceedings of the 41st International Symposium
on Microarchitecture, pages 246–257, 2008.

67. Nicholas Riley and Craig Zilles. Hardware transactional memory support for lightweight
dynamic language evolution. In Dynamic Language Symposium, 2006.

68. Christopher J. Rossbach, Hany E. Ramadan, Owen S. Hofmann, Donald E. Porter, Aditya
Bhandari, and Emmett Witchel. TxLinux and MetaTM: transactional memory and the operating
system. Communications of the ACM, 51:83–91, 2008.

69. Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikeyan Sankaralingam. Implementing
signatures for transactional memory. In Proceedings of the 40th International Symposium on
Microarchitecture, pages 123–133, 2007.

70. Sutirtha Sanyal, Adrián Cristal, Osman S. Unsal, Mateo Valero, and Sourav Roy. Dynamically
filtering thread-local variables in lazy-lazy hardware transactional memory. In Proceedings
of the 11th International Conference on High Performance Computing and Communications,
pages 171–179, 2009.

71. Wang Shaogang, Dan Wu, Zhengbin Pang, and Xiaodong Yang. DTM: Decoupled hardware
transactional memory to support unbounded transaction and operating system. In Proceedings
of the 38th International Conference on Parallel Processing, pages 228–236, 2009.

72. Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the 14th ACM
Symposium on Principles of Distributed Computing, pages 204–213, 1995.

73. Arrvindh Shriraman and Sandhya Dwarkadas. Refereeing conflicts in hardware transactional
memory. In Proceedings of the 23rd International Conference of Supercomputing, pages 136–
146, 2009.

74. Arrvindh Shriraman, Virendra J. Marathe, Sandhya Dwarkadas, Michael L. Scott, David Eisen-
stat, Christopher Heriot, William N. Scherer III, and Michael F. Spear. Hardware acceleration
of software transactional memory. In Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing (TRANSACT), 2006.

75. Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott. Flexible decoupled trans-
actional memory support. In Proceedings of the 35th International Symposium on Computer
Architecture, pages 139–150, 2008.

76. Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in software. 30(3),
2005.

77. Fuad Tabba, Cong Wang, James R. Goodman, and Mark Moir. NZTM: Nonblocking, zero-
indirection transactional memory. In Workshop on Transactional Computing (TRANSACT),
2007.

78. Fuad Tabba, Andrew W. Hay, and James R. Goodman. Transactional conflict decoupling and
value prediction. In Proceedings of the 25th International Conference of Supercomputing,
pages 33–42, 2011.

Hardware Approaches to Transactional Memory in Chip Multiprocessors 835

79. Rubén Titos-Gil, Anurag Negi, Manuel E. Acacio, Jose M. Garcia, and Per Stenstrom. Zebra:
A data-centric, hybrid-policy hardware transactional memory design. In Proceedings of the
25th International Conference of Supercomputing, pages 53–62, 2011.

80. Ruben Titos-Gil, Anurag Negi, Manuel E. Acacio, Jose M. Garcia, and Per Stenstrom. Ea-
ger beats lazy: Improving store management in eager hardware transactional memory. IEEE
Transactions on Parallel and Distributed Systems, 99(PrePrints):1, 2012.

81. Sasa Tomic, Adrian Cristal, Osman Unsal, and Mateo Valero. Hardware transactional memory
with operating system support, HTMOS. In Proceedings of the 13th European Conference on
Parallel Processing (Euro-Par), pages 8–17, 2007.

82. Sasa Tomic, Cristian Perfumo, Chinmay Kulkarni, Adria Armejach, Adrián Cristal, Osman
Unsal, Tim Harris, and Mateo Valero. EazyHTM: Eager-lazy hardware transactional memory.
In Proceedings of the 42nd International Symposium on Microarchitecture, pages 145–155,
2009.

83. Hans Vandierendonck and Tom Mens. Averting the next software crisis. IEEE Computer,
44:88–90, 2011.

84. Haris Volos, Neelam Goyal, and Michael M. Swift. Pathological interaction of locks with
transactional memory. In TRANSACT ’08: 3rd Workshop on Transactional Computing, 2008.

85. M. M. Waliullah. Efficient partial roll-backing mechanism for transactional memory systems.
Transactions on high-performance embedded architectures and compilers, 3:256–274, 2011.

86. M.M. Waliullah and Per Stenstrom. Reducing roll-back overhead in transactional memory sys-
tems by checkpointing conflicting accesses. In Proceedings of the 22nd International Parallel
and Distributed Processing Symposium. 2008.

87. M. M. Waliullah and Per Stenstrom. Schemes for avoiding starvation in transactional memory
systems. Concurrency and Computation: Practice and Experience, 21:859–873, 2009.

88. Steven C. Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. The
SPLASH-2 programs: Characterization and methodological considerations. In Proceedings of
the 22nd International Symposium on Computer Architecture, pages 24–36, 1995.

89. Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris Volos, Mark D. Hill,
Michael M. Swift, and David A. Wood. LogTM-SE: Decoupling hardware transactional mem-
ory from caches. In Proceedings of the 13th Symposium on High-Performance Computer
Architecture, pages 261–272, 2007.

90. Luke Yen, Stark C. Draper, and Mark D. Hill. Notary: Hardware techniques to enhance sig-
natures. In Proceedings of the 41st International Symposium on Microarchitecture, pages
234–245, 2008.

91. Richard Yoo, Christopher Hughes, Konrad Lai, and Ravi Rajwar. Performance evaluation of
intel transactional synchronization extensions for high performance computing. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage, and
Analysis (SC), 2013.

Part V
Modeling and Simulation

Data Center Modeling and Simulation
Using OMNeT++
Asad W. Malik and Samee U. Khan

Advances in cloud computing have rendered Service Oriented Architecture (SOA)
eminent. In addition, SOA offers support for cloud computing solutions. Due to
master worker paradigms, SOA is extensively adopted for cluster, grid and Cloud
environment. The term Cloud computing is relatively new, compared to others. Cloud
computing is define as; it is a pool of easily available, shared computing resources,
including servers, services, storage and networks. Cloud comprises of computing
servers arranged in racks and are connected with multiple tiers of switches to pro-
vide redundancy; this arrangement of equipment is termed as data centers. A single
Cloud may comprise of multiple data centers connected through high speed commu-
nication links. Data centers have gained great publicity in recent years; however, the
concepts of data center simulation models, communication protocols and analysis
of data center traffic flow, remain relatively been less explored. It is important to
understand how these systems work. Given the complexity of these systems, mod-
els and simulations are the best way to gain an insight into the workings of such
systems. In this chapter, we provide a step by step tutorial for building traditional
three tier data center simulation model using OMNeT++. The chapter is organized
as follows: Section I presents core modeling and simulation concepts. In section II
different architectures of data centers are discussed in detail. A step by step guide to
modeling data center architectures in OMNeT++ is presented in Section III. Finally,
Section IV concludes this chapter.

A. W. Malik (�)
Department of Computing, NUST—School of Electrical Engineering and
Computer Science, Islamabad, Pakistan
e-mail: Asad.malik@seecs.edu.pk

S. U. Khan
Department of Electrical and Computer Engineering,
North Dekota State University—NDSU, Fargo, USA
e-mail: Same.khan@ndsu.edu

© Springer Science+Business Media New York 2015 839
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_28

840 A. W. Malik and S. U. Khan

Time Stepped

Event Stepped

Simulation Time

Fig. 1 Simulation model

1 Introduction to Modeling and Simulation (M&S)
Methodology

Modeling and simulation of systems has aided in the understanding of system be-
havior since early 1990’s. These concepts of modeling and simulations are being
adopted in many fields, ranging from computing to architectural designs. Models are
considered as abstractions of real entities; whereas simulation is used to analyze the
behavior of these entities under a set of conditions, which may be otherwise difficult
[1]. Many crucial decisions are based on models or simulations, especially in time
critical applications. In addition, models prove to be cost effective and involve little
or no risk when analyzed. Over the last few decades, modeling and simulation has
become one of the most significant areas of research. Different techniques have been
developed not only to study real time systems but also to improve system.

Modeling and Simulation can be further categorized as continuous or discrete
event simulation. Within the simulation domain, continuous simulation is analyzing
system response over a given time interval. These models are often used to compute
numerical solutions of differential equations. Digital circuits are a common example
of a continuous simulation models.

In discrete event simulation model, the system being simulated only changes
state at discrete points in simulated time and are presented in chronological ordering
of events [2]. Discrete Event Simulation (DES) manages time dependent events
and is further categorized into Time and Event step simulation models; Time Step
Simulation (TSS) is employed for events that require monitoring under fixed time
intervals. The allocation of time interval depends on various factors, such as pending
events in a process queue; whereas Event Step Simulation (EST) manages such
events that are removed from the queue after having been processed according to the
time stamp on each of these. Event step simulation eliminates the need for time step
simulation. Figure 1 shows the differences between time and event step simulations.
The event step simulation models are used in communication networks and flow
networks [2, 3].

Data Center Modeling and Simulation Using OMNeT++ 841

1.1 Parallel Discrete Event Simulation—PDES

A Parallel simulation or a Parallel Distributed Simulation (PDS) is an execution of a
task over multiple processors or distributed machines. This reduces execution time
substantially compared to sequential execution. However, the results obtained from
parallel simulation must match against the results of sequential simulation. With
their inherent ability to distribute simulation tasks, PDS overcome the limitations of
traditional simulation techniques that employed a sequential process to execute an
entire simulation with a single thread [4, 5]. Such technological advancements are
leading towards more rapid adoption of parallel and distributed simulations and the
emanated increased use of parallel simulation in engineering applications.

As discussed earlier, the simulators may be categorized as event based simulators
as their time progression is based on pending events PDES events are generated at
discrete time intervals depending on the nature of simulation. PDES is normally
defined as a three step process: (i) receive events, (ii) process and perform operations
on events (iii) update its local time and generate events for (other/own) processes or
nodes. Each process must execute events in the order of the timestamps on them [5].

Rapid advancement in technology is increasing the necessity for simulators, since
simulators are fast and cost effective tools to analyze systems, such as complex
large scale distributed systems and cloud computing solutions. Cloud computing
has become more renowned given its architecture and benefits for the end user [6].
A Cloud comprises of data centers, consisting of tens of thousands of computing
servers and switches or routers connected via high speed networks with specialized
cooling equipments. Multinational companies, such as Google, Facebook, Amazon
and Microsoft, host their own distributed data centers [7]. These companies provide
computational services and promote web based services. Clouds exclusively provide
services such as infrastructures, platforms, and software [8]. User demand has lead
the evolution of data center architecture. However, since efficient use of data centers
in terms of computing power and heat energy dissipation, remains less explored; the
maintenance costs of data centers remain high [9].

There has been a massive increase in the number of users switching to Cloud com-
puting to host their data and applications [10, 11]. Due to this tremendous growth in
the number of Cloud computing users, critical issues such as scalability, efficiency
and security arise; researchers are developing different types of simulators to analyze
and overcome these issues [7]. In this chapter, we demonstrate how to build a data
center model using a discrete event simulator i.e. OMNeT++. OMNeT++ is an
open source, discrete event simulator, developed by Andre Vergas [12]. The dex-
terity of OMNeT++ lies in its powerful graphical interface that makes the internal
models completely visible to the end user. It uses packet transmission for communi-
cation between modules and nodes that is visible on the GUI. OMNeT++ simulation
models are based on modules which can further be nested within other modules to
form a complex network or system models.

OMNeT++ was developed in 2003, written in C++ and supported windows,
Linux, UNIX and Mac OS X. OMNeT++ allows the use of existing modules and

842 A. W. Malik and S. U. Khan

frameworks that can easily be imported into other simulations, this further facilitates
Cloud data center simulation. OMNeT++ provides features, such as plotting (plove),
debugging through Valgrind utility [13]. Other network simulators commonly used
for academic research are: NS-2 and NS-3. NS-2 was developed in 1996, written in
C++ and mainly used for UNIX operating systems; whereas NS-3 was developed in
2008, written in C++, supported simulation models in C++ or Python languages.
NS-3 was also targeted for UNIX based operating system.

In the next section, we briefly describe the traditional data center models.
It is important to develop an understanding about these models before actual
implementation.

2 Data Center Architectures

Over the last few decades, Cloud computing has become the most popular comput-
ing paradigm used all over the world. Clouds provide on demand computing access
through networks. The basic objective of Cloud is to provide computing resources
through its server pools. This approach is similar to master and worker example,
where the master assigns scientific tasks to his workers. Furthermore, Cloud intro-
duces a concept of virtualization that enables the sharing of resources among the
users [14].

Cloud services are generally categorized as, Software as a Service (SaaS); Infras-
tructure as a Service (IaaS); and Platform as a Service (PaaS). For SaaS, application
services are delivered over the network on demand basis. Microsoft, Google and
Salesforce are some of the SaaS providers [15, 16]; whereas for IaaS, computation
services and storage are provided over a network. For PaaS, software development
is provided in the form of Application Programming Interfaces (API) [14].

The architecture of Cloud computing has evolved remarkably with the increase
in its usage. Initially a two tier architecture were used to connect computing servers
with other external networks. Figure 2 shows the two tier architecture connected
with switches to provide mesh network connectivity. In data centers, computing
servers are arranged in racks and connected with switches; these switches are further
connected with layer L3 switches to provide complete redundant connectivity among
computing servers and external networks. Two tier architecture designs only support
a limited number of computing servers. Typically a two tier data center can hold up
to 5500 nodes, depending on the types of switches being used [17].

The three tier architecture is employed to address scalability issues by supporting
an additional layer of switches and routers. The three layers of switches are referred
to as access, aggregate and core, shown in Fig. 3. BCube [18] and DCell [19] are
two other advanced Cloud computing architectures. Dcell is designed for efficient
interconnection and handling of exponential increase in the number of servers. In
Dcell, computing servers are also used for routing purposes, thus providing fault
tolerance mechanism and eliminates rack level failure. A four degree Dcell can
support millions of servers without using any expensive core switches or routers.

Data Center Modeling and Simulation Using OMNeT++ 843

Fig. 2 Two tier architecture

Fig. 3 Three tier architecture

844 A. W. Malik and S. U. Khan

Similarly, Bcube is based on a server centric architecture, where servers perform
computational tasks and act as a relay to other servers. In this chapter, we focus on
building traditional three tier data center simulation model.

In the next section, we discuss a step by step formulation of data center architecture
model using OMNeT++.

3 Data Center Modeling Using OMNeT++

OMNeT++1 is a discrete event simulator based on event step technique. OMNeT++
is chosen for this tutorial given its popularity among researchers, since it is open
source, provides a rich graphical user interface and its cross-platform support. In
OMNeT++ every simulation consists of modules and networks. These modules
are interconnected using various communication links. Developers can model com-
munication channels by varying its data rate, delay and bit error rate. OMNeT++
provides an extensive framework developed in C++ to build simulation models.

In OMNeT++, each simulation model consists of either simple or compound
modules. Each simple module is supported by its own C++ class; whereas com-
pound modules are collections of simple modules grouped together to achieve the
required goals. We must first develop a simple two node simulation and then extend
this simulation model to a more complex design based on compound modules that
simulate three tier data center architectures.

3.1 Simple Two Node Simulation

We start with building a simple two node simulation, where each node sends a
message to the other.

Open OMNeT++ editor, and select File → New → OMNeT++ Project: type
the project name: “demo”. Click next and choose an empty project then press the
finish button.

Step-1: Add a simple module definition. Right click on “demo” (OMNeT++
project) and add a file with an extension “.ned” and name it “node.ned”. Write the
following lines of code (given in Table 1) in node.ned file.

Step-2: Create another “.ned” file that contains the definition of a network. The
network consists of one or more communication nodes. The communication links
between nodes must be defined within this file. Different properties for each com-
munication link can also be specified. We name this file “NetSim.ned” and add the
following lines of code (see Table 2).

In the code above, we have created a network named SIMULATION, consisting
of two nodes (i.e. NodeA and NodeB) inherited from the simple module i.e. node.

1 www.omnetpp.org.

Data Center Modeling and Simulation Using OMNeT++ 845

Table 1 Simple module
definition

Line No. Code

1 simple node

2 {

3 gates:

4 input in;

5 output out;

6 }

Table 2 Network definition Line No. Code

1 Network SIMULATION

2 {

3 submodules:

4 NodeA: node;

5 NodeB: node;

6 connections:

7 NodeA.out → NodeB.in;

8 NodeA.in ← NodeB.out;

9 }

The communication link is established inside connection label, the output port of
nodeA is connected with input port of node B, similarly the output port of node B
is connected with input port of node A (arrow heads show the communication path
between the nodes).

Step-3: Add a programming logic for each module. As discussed earlier, a network
consists of simple modules which are connected via communication channels. A
programming logic, or a behavior description of a node, must be implemented for
each of the modules. This logic is implemented in C++ classes.

Now add a C++ class to model the desired functionality of the node. Right click
on the OMNeT++ framework, select New → OMNeT++ class and add name as
“node”. This generates a header and a source file under the “src” directory. This
class must be inherited from cSimpleModule and must provide definitions for the
two virtual functions, initialize() and handleMessage(). These functions are invoked
by OMNeT++ simulation kernel. Function initialize() is invoked only once and
is used to set the initial values while handleMessage() is invoked every time the
message is received at a node’s gate or port. Prototypes of these functions are given
in Table 3.

The node.cpp file contains the definition of the functions defined in a header file
i.e. node.h. Write the following code (given in Table 4) in node.cpp file.

The Define_Module() macro function registers the “node” class by taking the
class name as an argument (Table 4: line 2). OMNeT++ provides a built-in message

846 A. W. Malik and S. U. Khan

Table 3 Basic functions
prototypes in node header file Line No. Code

1 Class node: public cSimpleModule

2 {

3 Protected:

4 virtual void initialize();

5 virtual void handleMessage(cMessage *msg);

6 }

Table 4 Basic function
definition in node source file

Line No. Code

1 #include “node.h”

2 Define_Module(node);

3 void node::initialize()

4 {

5 cMessage *msg= new cMessage("Message");

6 send(msg, "out");

7 }

8 void node::handleMessage(cMessage *msg)

9 {

10 send(msg, "out");

11 }

Table 5 Network
configuration Line No. Code

1 [General]

2 network=NetSim

class for communication. The messages can be exchanged between the nodes by
creating a pointer to this class (Table 4: line 5). The send() function is called in
order to exchange packets or messages between the nodes. This function takes two
arguments; first, the message to be sent, and second, the output gate name (Table 4:
line 10.). When a message is received at a node, function handleMessage() is called.

Step-4: The next step is to add the “.ini” file. This file is used to tell the simulation
kernel which networks it should simulate. Go to → New → Initialization File (ini)
and name the file “omnetpp.ini”. Write the code given in Table 5 in this file:

“omnetpp.ini” file is used for configuration and to instruct the kernel to load
the network simulation model i.e. “NetSim” (Table 5: line 2).

Step-5: To build a simulation, right click on project → Build Project. On suc-
cessful compilation, run the simulation by right clicking on project → RunAs →
OMNeT++ Simulation. Figure 4 shows the simulation GUI containing the two

Data Center Modeling and Simulation Using OMNeT++ 847

Fig. 4 Simulation GUI

nodes, nodeA and nodeB, connected through a bidirectional link. You can run this
simulation model by pressing the RUN button on the toolbar.

We have now successfully created a two node simulation, where each node
generates and exchanges messages with the other.

3.2 Advance Level Simulation

In realistic network simulation, each node is assigned an IP address and connected
with routers or a switch. To model this scenario, we need to alter our demo project.
OMNeT++ provides built-in modules that simulate networks with dynamic IP
assignment. INET2 is an open source module that can be used for this purpose.
Download the INET project and import it into the OMNeT++ framework.

Step-1: A reference to INET project must be added to our “demo” simulation
project to reuse its built-in functionality. Right click on the “demo” project and
select Project References. This displays the list of open projects in OMNeT++
framework. Click on the INET project and press the OK button.

Step-2: The required changes in the “NetSim.ned” file are shown in Table 6.
INET contains protocol implementations that can be used in other simulation

models. In Sect. 3.1, we connected NodeA and NodeB directly through defined
gates or ports. Since we have now assigned IP addresses to the nodes, a router
must be added to handle routing mechanism In addition, there may be inevitable
communication delays between nodes that can be addressed through link properties
available in INET project.

Step 1: Add an import statement at the top of “.ned” file to use built-in modules
of INET (Table 6: lines 1–4).

Step 2: There are existing modules that implement the required network layers
on the host and the router. Therefore nodes, nodeA and nodeB, are inherited from

2 INET Module: http://inet.omnetpp.org.

848 A. W. Malik and S. U. Khan

Table 6 Network definition

Line No. Code

1 import inet.nodes.inet.StandardHost;

2 import inet.nodes.inet.Router;

3 import inet.networklayer.autorouting.ipv4.FlatNetworkonfigurator;

4 import inet.nodes.ethernet.Eth10M

5 network NetSim

6 {

7 submodules:

8 NodeA: StandardHost

9 NodeB: StandardHost;

10 RouterC: Router;

11 Configurator: FlatNetworkConfigurator;

12 connections:

13 NodeA.ethg++ <−−> Eth10M <−−> RouterC.ethg++;

14 NodeB.ethg++ <−−> Eth10M <−−> RouterC.ethg++;

15 }

StandardHost (Table 6: lines 8–9). The StandardHost module is responsible for
acquiring an IP address, resolving ARP (address resolution protocol) requests, and
handles multiple applications at the top layer.

Step 3: Add a router to connect multiple nodes. To do this, add a new sub-module,
RouterC, which is inherited from Router, an existing module in INET framework
(Table 6: line 10). A separate module, FlatNetworkConfigurator, is available in the
INET framework, which is responsible for assigning IP addresses to hosts and routers
through its own sub-module Configurator (Table 6: line 11). This is the simplest IP
assignment module implemented in INET.

Step 4: The links are defined under the connections tag with the “ethg” suffix,
NodeA.ethg and NodeB.ethg; since the nodes are now inherited from StandardHost
(Table 6: lines 13–14). In StandardHost and Router classes, the ports or gates are
defined as bidirectional vectors. The import of inet.nodes.ethernet.Eth10M allows
the following physical channel properties to be included:

• datarate= 1e07

• delay= 5e−08

• ber= 0

In addition to other modules similar to Eth10M, user defined modules may also be
used (channel or link properties are assigned to each link, Table 6, lines 13–14)

Step 5: To build this simulation, the “omnetpp.ini” file must be altered. The
changes are shown in Table 7.

Data Center Modeling and Simulation Using OMNeT++ 849

Table 7 Advance network
configuration Line No. Code

1 [General]

2 network=NetSim

3 **.nodeA.numUdpApps= 1

4 **.nodeA.udpApp[*].typename=UDPBasicApp

5 **.nodeB.numUdpApps= 1

6 **.nodeA.udpApp[*].typename=UDPSink

The UDP application, running on the nodes generates UDP packets for the
destination node. An explanation for the code given in Table 7:

**.nodeA.numUdpApps= 1

Only one UDP application is executed at the top of the application layer. This line of code declares
the number of UDP applications that run at nodeA. Similarly we can use TCP applications

**.nodeA.udpApp[*].typename=UDPBasicApp

The UDPBasicApp is the class that runs the UDP application and contains the definitions of virtual
functions declared in cSimpleModule. This class generates messages at regular time intervals
to randomly selected destinations. The INET project contains the implementation of UDP (i.e.
UDPBasicApp) and TCP (i.e. TCPBasicApp) classes

**.nodeB.numUdpApps= 1

This line of code declares the number of UDP applications that run at nodeB

**.nodeB.udpApp[*].typename=UDPSink

The UDPSink class contains the definitions of virtual functions declared in cSimpleModule. This
class only receives messages from other nodes

Step 6: Compile the simulation, right click on demo project and select → Build
Project. On successful compilation, run the simulation. Right click on demo project
and select → RunAs → OMNeT++ Simulation. Certain parameters are required by
UDPBasicApp and UDPSink class at this stage, such as local port, destination port,
send interval time and message length. When prompted by OMNeT++, provide the
values given in Table 8.

Figure 5 shows the complete network design using existing modules. IP addresses
for each module are clearly shown on the GUI. These IP’s are generated using the
existing module “FlatNetworkConfigurator”, as discussed earlier. Figure 6 shows

Table 8 Required parameters
of UDP application

Parameters Values

Local port 100

Destination port 100

Send interval (seconds) 10s

Message length (bytes) 10B

850 A. W. Malik and S. U. Khan

Fig. 5 Two node real network
simulation model

the TCP/IP stack implementation within “StandardHost”. These modules can be
overwritten by the user.

3.3 Data Center Simulation Model

In the previous sections, we have discussed all the necessary steps to be followed to
build simple and advance level simulations. In this section, we focus on building data
center simulations using built-in modules available inside INET project. We require
the INET framework for IP assignment, a TCP/IP stack at each node, and a router.

Fig. 6 Internal view of nodes and router

Data Center Modeling and Simulation Using OMNeT++ 851

Table 9 Three tier network
module definition Line No. Code

1 Module Rack

2 {

3 Parameter:

4 int N @prompt(“Nodes per rack”);

5 gates:

6 inout iogate[];

7 Submodules:

8 ComputingServer[N]: StandardHost;

9 AccessRouter: Router;

10 Connections:

11 for i= 0.. N-1{

12 AccessRouter.ethg++ < – –>Eth10M
< – –>ComputingServer[i].ethg++; }

13 AccessRouter.ethg++ < – –> iogate++;

14 }

Step 1: The first step is to model the three tier simulation network in the “.ned” file,
which is more complicated than the previously discussed examples. Simple modules
are supported by a single class while compound modules are collections of several
simple modules, as discussed earlier. Compound modules allow communication with
other simple or compound modules through communication gates.

Create a new project and name it “ThreeTierDC”. Add a new “.ned” file and
name it “NetworkDefination.ned”. As discussed in Sect. 2, three tier data centers
consist of racks that hold servers and routers i.e. access, aggregate and core routers.
In this simulation model, we build a compound module of racks that connects with
aggregate and core routers through access router. Add the following lines of code
(given in Table 9) in NetworkDefination.ned file:

Module on line 1 indicates that Rack is a compound module. The number of
servers can vary on the racks and this number can either be fixed or provided by the
user at run time.

Line 4, prompts the user to enter an integer value for variable ‘N’. The code on
(Table 9) line 8, uses this ‘N’ to declare the number of servers on each of the racks.
The compound module defines bidirectional, vector in-out gates, shown on Table 9,
line 6 of the code. The racks accommodate the servers and access routers (Table 9:
lines 8–9).

The computation servers must be connected with access routers which in turn must
be connected with compound module gates. The connection between the servers and
access routers is established under the connection tab, with a loop (Table 9: lines 11).

852 A. W. Malik and S. U. Khan

Table 10 Three tier network
definition Line No. Code

1 network ThreeTierDatacenter

2 {

3 Parameter:

4 int N= default(4);

5 int AGR= default(4);

6 int CR= default(2);

7 Submodules:

8 AGRouters[AGR]: Router;

9 CRouter[CR]: Router;

10 Racks[N]: Rack;

11 Configurator: FlatNetworkConfigurator;

12 Connections allowunconnected:

13 for i= 0..CR-1, for j= 0.. AGR-1{

14 CRouter[i].ethg++ < – –>Eth100M
< – –>AGRouter[j].ethg++ ; }

15 for i= 0..1, for j= 0..1{

16 AGRouter[i].ethg++ < – –>Eth100M
< – –>AGRouter[j].ethg++; }

17 for i= 2..3, for j= 2..3{

18 AGRouter[i].ethg++ < – –>Eth100M
< – –>Racks[j].iogate++; }

19 }

The code on (Table 9) line 13, connects the access router to the compound module
gates for external communication.

Step 2: Create a three tier data center model, with racks, and routers both
aggregate and core. Add the following lines of code (see Table 10) to the
“NetworkDefination.ned” file:

At this stage a network that connects all the modules together has been defined.
For the sake of simplicity, the default number of racks and aggregate routers is
hard-coded at four and two for the core switches (Table 10: lines 4–6).

The required modules, i.e. routers, racks and network configurator, are defined
under the Submodules section (Table 10: lines 7–11).

In Table 10, line 12 of code, Connections allowunconnected, instructs the sim-
ulation kernel to allow this simulation model with unconnected gates to avoid the
OMNeT++ kernel throwing an exception in case a gate was not connected.

Connections are established between the racks and routers, with nested loops
(Table 10: lines 15–18). Code on line 18, connects the aggregate routers to the
compound module rack through communication gates.

Data Center Modeling and Simulation Using OMNeT++ 853

Table 11 Three tier network
configuration settings Line No. Code

1 [General]

2 network=ThreeTierDatacenter

3 **.Racks[*].ComputingServer[*].numUdpApps= 1

4 **.Racks[*].ComputingServer[*].typename=
UDPBasicApp

5 **.udpApp[*].localPort= 100

6 **.udpApp[*].destPort= 100

7 **.udpApp[*].messageLength= 1024B

8 **.udpApp[*].sendInterval= 1s

Step 3: The final step is to amend the “omnetpp.ini” file and specify the number
of UDP applications and C++ source files (see Table 11).

In the previous example, “omnetpp.ini” file held the simulation network model.
Modifying this file, lines 3–4, declare the number of UDP applications to run on
each of the servers. In previous examples the user entered the values for local and
destination ports, message length and send intervals. However, the default values for
these variables are hard-coded in this example (Table 11: lines 5–8).

This model allows for the servers to generate tasks for a randomly selected destina-
tion node. This random node selection process is implemented in the UDPBasicApp
class available in INET framework. Figure 7 and 8 shows the three tier simula-
tion model and rack view within the OMNeT++ framework, the green colored

Fig. 7 Three tier data center simulation model

854 A. W. Malik and S. U. Khan

Fig. 8 Internal view of rack and computing server

overlapping texts depicts dynamically assigned IP’s. The user can change the func-
tionality of UDPBasicApp by defining its own class. Keeping parameters within the
“omnetpp.ini” file allows the code to be used without recompilation.

4 Wrap Up

Cloud computing is a fascinating area of research. The importance of cloud com-
puting has been highlighted with a sharp increase in its use. Technological advances
and current user requirements are rendering cloud computing more desirable and in-
evitable to adopt. Along with these benefits, Cloud computing introduces intriguing
research areas, including scalability, energy optimization and task scheduling.

It is important to understand how complex systems work. Given the complexity
of these systems, models and simulations are the best way to gain an insight into the
workings of such systems. Agile technology expansion is increasing the necessity for
simulators, since simulators are fast and cost effective tools to analyze systems. In this
chapter, we focused on modeling of data center architecture to facilitate researchers
to perform in depth analysis on core issues instead of building basic modules. The
aim of this chapter has been to provide an insight of building data center simulation
models using OMNeT++ and served as a platform for researchers to build advance
level data center architectures models using available components.

Acknowledgement The authors would like to thank Miss Maham Fatima Nasir (SCME-NUST)
for her valuable support during write-up process.

References

1. A. Buss, and L. Jackson, Distributed simulation modeling: a comparison of HLA, CORBA, and
RMI. Winter Simulation Conference (WSC’98), Washington, DC, USA, 1998, pp. 819–825.

2. R. M. Fujimoto, Parallel discrete event simulation. Communications of the ACM archive vol.
33 (1990) pp. 30–52.

Data Center Modeling and Simulation Using OMNeT++ 855

3. A. Park, and R. M. Fujimoto, Efficient Master/Worker Parallel Discrete Event Simulation.
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation, 2009.
PADS ’09, pp. 145–152.

4. R.M. Fujimoto, Parallel and Distributed Simulation Systems, Wiley interscience Publication,
New York, 2000.

5. R.M. Fujimoto, A.W. Malik, and A.J. Park, Parallel and Distributed Simulation in the Cloud
Magazine of the society for Modeling and Simulation (M&S), July 2010, pp. 1–10.

6. M.B. Mollah, K.R. Islam, and S.S. Islam, Next generation of computing through cloud com-
puting technology. 25th IEEE Canadian Conference on Electrical & Computer Engineering
(CCECE), 2012, pp. 1–6.

7. A. Vahdat, M. Al-Fares, N. Farrington, R.N. Mysore, G. Porter, and S. Radhakrishnan, Scale-
Out Networking in the Data Center. Micro, IEEE vol. 30 (2010) pp. 29–41.

8. S. Akioka, and Y. Muraoka, HPC Benchmarks on Amazon EC2. 24th IEEE International
Conference on Advanced Information Networking and Applications Workshops (WAINA),
2010, pp. 1029–1034.

9. B. Aksanli, J. Venkatesh, and T.S. Rosing, Using Datacenter Simulation to Evaluate Green
Energy Integration. The Computer Journal vol. 45, pp. 56–64.

10. T. Ercan, Effective use of cloud computing in educational institutions. The Journal of
Procedia—Social and Behavioral Sciences vol. 2 (2010) pp. 938–942.

11. P. Gupta, A. Seetharaman, and J.R. Raj, The usage and adoption of cloud computing by small
and medium businesses. International Journal of Information Management vol. 33 (2013) pp.
861–874.

12. A. Varga, Using the OMNeT++Discrete Event Simulation System in Education. IEEE
Transactions on Education vol. 42 Issue 4. (1999) p. 372.

13. P. Vilhan, and J. Gajdos, ADEUS: Tool for Rapid Acceleration of Network Simulation in
OMNeT++. 14th International Conference on Computer Modelling and Simulation (UKSim),
2012, pp. 591–595.

14. K. Bakshi, Considerations for cloud data centers: Framework, architecture and adoption.
Aerospace Conference, 2011 IEEE, pp. 1–7.

15. S. Ming-Chien, Let’s Walk Out of the Cloud. Fifth IEEE International Symposium on Service
Oriented System Engineering (SOSE), 2010, pp. 5–5.

16. Y. Bo-Wen, T. Wen-Chih, C. An-Pin, and S. Ramandeep, Cloud Computing Architecture for
Social Computing—A Comparison Study of Facebook and Google. International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), 2011, pp. 741–745.

17. Dzmitry Kliazovich, Pascal Bouvry, and S.U. Khan, GreenCloud: a packet-level simulator of
energy-aware cloud computing data centers. The Journal of Supercomputing vol. 62 (2012)
pp. 1263–1283.

18. C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu, BCube: a
high performance, server-centric network architecture for modular data centers. SIGCOMM
Comput. Commun. Rev. vol. 39 (2009) pp. 63–74.

19. C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, Dcell: a scalable and fault-tolerant
network structure for data centers. Proceedings of ACM SIGCOMM conference on Data
communication, ACM, Seattle, WA, USA, 2008.

Power-Thermal Modeling and Control of
Energy-Efficient Servers and Datacenters

Jungsoo Kim, Mohamed M. Sabry, Martino Ruggiero and David Atienza

1 Introduction

This continuous growth in demand for computing has resulted in larger collections
of servers machines, referred to as clusters or server farms, being hosted in denser
datacenters thus having a higher computational and storage capability per occupied
unit volume. While projections indicate a continued scaling of server density and
manufacturing cost for another decade, the semiconductor manufacturing industry
has already renounced following Dennard scaling1 and almost reached the physical
limits of voltage scaling in Complementary Metal-Oxide-Semiconductor (CMOS)
technologies, which results in an energy-scalability wall that makes transistor power

J. Kim was also affiliated with ESL-EPFL during the period this research was developed.

1 The scaling theory he and his colleagues formulated in 1974 postulated that MOSFETs continue
to function as voltage-controlled switches while all key figures of merit (such as layout density,
operating speed, and energy efficiency improve provided geometric dimensions, voltages, and
doping concentrations) are consistently scaled to maintain the same electric field. This property
underlies the achievement of Moore’s Law and the evolution of microelectronics over the last few
decades.

J. Kim (�)
DMC Research Center, Samsung Electronics, Suwon, Republic of Korea
e-mail: jungsoo9.kim@samsung.com

M. M. Sabry · M. Ruggiero · D. Atienza
Embedded Systems Laboratory, EPFL, Lausanne, Switzerland
e-mail: mohamed.sabry@epfl.ch

M. Ruggiero
e-mail: martino.ruggiero@epfl.ch

D. Atienza
e-mail: david.atienza@epfl.ch

© Springer Science+Business Media New York 2015 857
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_29

858 J. Kim et al.

0

200

400

600

800

1000

1200

1400

Energy Star's
projec�ons

Projec�ons without
voltage reduc�on

2001 2003 2005 2007 2009 2011 2013 2015 2017

Energy Star
projec�ons
up to 2011

Billion Kilowa� hour/year

Bi
lli

on
Ki

lo
-W

a�
ho

ur
pe

r
ye

ar

Year

Fig. 1 Datacenters current energy use and projection [2]

consumption increase with further increases in density. At a large-scale, this “eco-
nomic meltdown trend of Moore’s law” for servers and datacenters [1], translates in
a dramatic increase in computation and cooling electricity costs.

Energy-efficiency constraints have therefore become the dominant limiting factor
for datacenters because their growing size and electrical power demands cannot be
met with state-of-the-art design practices and their electricity bill is skyrocketing, as
Fig. 1 shows. This figure depicts the Energy Stars [2] electricity usage measured and
projected up to 2011. If we extrapolate these values linearly up to 2017, as voltages
stop scaling down according to the current International Technology Roadmap for
Semiconductors (ITRS) projections, the electricity use would exponentially increase.
Moreover, the expected increase in energy prices would only exacerbate the cost of
using datacenters. Thus, datacenter operation will require more money per year on
energy costs than on IT equipment replacement. In 2007, datacenters in Western
Europe consumed an estimated total of 56 terawatt-hours (TWh) of power per year.
The European Union (EU) estimates that this figure is likely to reach 124 TWh by
2020 [2].

Power and thermal monitoring and control play a key role to reduce the power
consumption of datacenters while maintaining the performance requirements and
the maximum temperature constraints by manipulating multiple control knobs in the
systems. As monitoring and control solutions are developed by being tightly cou-
pled with hardware architecture and workload characteristics running on datacenters,
we first revisit the datacenter structures (Sect.1.1) and the workload characteristics
running on current datacenters (Sect. 1.2). Then, we present an energy efficiency
figure of state-of-the-art datacenters (Sect. 1.3), which motivates us to develop effec-
tive power and thermal monitoring and control solutions by manipulating multiple
control knobs to achieve further global/holistic energy savings in datacenters.

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 859

Fig. 2 Organization of datacenters: computing and cooling systems (a) and server organiza-
tion (b) [3]

1.1 Overall Datacenter Architecture

A datacenter can largely be decomposed into three parts: (1) IT, i.e., aggregation of
servers, (2) cooling, and (3) power distribution units. Servers are the key constituent
of datacenters and produce a significant amount of heat as they provide the capability
of data manipulation and processing. In a server room, there is a large number of
servers to sustain performance requirements. Figure 2a shows an example of typical
server organization in a server room with a typical 1 U2. Server are typically placed
in 42 U racks such that the servers are interconnected with local rack Ethernet switch,
and then, connected to cluster-level Ethernet switches, which can potentially span
more than ten thousand individual servers [3].

Datacenter cooling systems are deployed to remove heat generated by the servers
along with additional amount of heat inside a server room, which needs to be removed
as well. Power is delivered to servers through power distribution units (PDUs) and
stored in un-interruptible power supply (UPS) systems to cope with power black-
out. In this chapter, we focus on IT and cooling parts of datacenters. As shown
in Fig. 2b, in a typical datacenter, a cooling system consists of computer room air
conditioning/handler (CRAC/CRAH) in a server room and heat exchanger (namely,
chiller) and cooling tower outside the server room. CRAC/CRAH provides cold air,
such that the air condition of server rooms maintains safe operating temperature and
humidity through the exchange of hot air exhausted by servers in the room with
cold air (or water) provided from a chiller. According to the American Society of
Heating, Refrigerating and Air-Conditioning (ASHRAE) 2009 recommendation, it
is recommended to maintain the server room air condition as follows:

• Temperature: 64.4–80.6 ◦F
• Humidity: 41.9 ◦F at dew point (DP) to 60 % RH and 59 ◦F DP.

However, these values are quite conservative as they are determined by assuming that
servers in a server room are fully utilized, which rarely happens as will be explained

2 A rack unit, U or RU, is a unit of measure to describe the height of rack-mount servers placed in
19-in. or a 23-in. rack, where 1U corresponds to 1.75 in. (44.45 mm) high.

860 J. Kim et al.

in Sect. 1.2. Due to the over-provisioning of cooling capability to server rooms,
huge amount of power are now wasted in datacenters, which motivates us to develop
an efficient system control solution that adaptively adjusts cooling configurations
along with existing power and thermal management solutions developed for servers
to achieve further energy savings. The effective control solution is only obtained
through accurate-yet-efficient monitoring of power consumption and temperature of
multiple points of datacenters, which urges to develop an efficient monitoring system
for datacenters.

1.2 Datacenter Workload Characteristics

Many types of applications are running on datacenters, ranging from high-
performance computing (HPC) to large-scale services, e.g., web search, streaming
service, etc. Recently, due to the big advancements on cloud service providers (e.g.,
Amazon, Microsoft, Google, etc.), it becomes easier to deploy large-scale services,
which leads to the drastic increase on servers hosting large-scale applications. The
common characteristics of the large-scale services are that they are unprecedentedly
parallel as it uses big chunk of data by splitting into small chunk. Figure 3 illustrates
the overall operation which manipulates big chunk of dataset. In [4], Ferdman et
al., examined applications running on today’s clouds and presented top six most
commonly found applications as follows:

• Data serving: serving as the backing store for large-scale web applications, e.g.,
Facebook inbox, Google Earth, etc.

• MapReduce: large-scale data analysis by first performing filtering and transforma-
tion of the data (namely, map procedure) and then aggregate the results (namely,
reduce procedure)

• Media streaming: streaming services by packetizing and transmitting media files
ranging from megabytes to gigabytes

• SAT solver: large-scale computations for solving complex algorithms, e.g.,
symbolic execution

• Web frontend: web services which schedule independent client requests across a
large number of stateless web servers

• Web search: web search engines such as those powering Google and Microsoft
Bing, which indexes terabytes of data obtained from online sources.

Up to now, most of the control solutions have been developed by targeting HPC
workload characteristics. However, the workload characteristics of such large-scale
applications are quite different from traditional HPC applications in both macro-
scopic and microscopic scales [4], which mandates us to develop the control solutions
for the large-scale applications.

In a macroscopic scale, the application, first, is user-interactive, thereby, the
amount of required computing capacity is highly variable and fast-changing [6] due
to the dependence with external factors, i.e., number of clients/queries, etc. The

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 861

Fig. 3 An example of scale-out applications [5]

characteristics of the workload traffic are well analyzed in [7]. In the coarse-grained
time interval (few tens of minutes to hours), the characteristics of users’ requests are
distinctly different over time while the global pattern has a strong correlation with
adjacent time periods as well as the same period in different days. On the other hand,
in the fine-grained time interval (less than few seconds), the characteristics of user
requests depend on burstiness of traffic and arrival patterns and we can model the
characteristics of users’ request at the microscopic scale with (1) ON/OFF periods
and (2) inter-arrival time between two consecutive requests during ON period. ON
period is defined as the longest continual period during which all the request inter-
arrival times are smaller than predefined value. Accordingly, OFF period is defined
as a period between two on periods. As presented in [7], ON/OFF period and inter-
arrival time are time-varying and uncertain while each of them forms lognormal
distribution.

Second, the responsiveness (or latency) should come at the first criteria to be
satisfied as the level of user satisfaction leads to the success of the business [10].
Third, the amount of required resources is usually far beyond the level that single
server can sustain; thereby, massively parallel nodes are cooperatively working by
forming a cluster architecture [8]. For instance, in a web search application, a big
chunk of search index is divided into multiple smaller datasets, and then, allocated
into multiple VMs (or servers) each of which is called a index searching node (ISN).
Once a query is arrived, each ISN independently searches matched data with the
allocated dataset and a master node gathers the search results from multiple ISNs,
then sends the results to clients. Due to the deployment of multiple nodes for a single
application, such workload is called scale-out applications [4].

Microscopic-scale characteristics of the application are well studied in [4]. The
following summarizes the four distinctive micro-architectural workload characteris-
tics in the applications:

862 J. Kim et al.

• High instruction cache miss rates
• Low instruction- and memory-level parallelism
• Large memory footprint far exceeding the capacity of on-chip caches
• Low on-chip and off-chip bandwidth requirements.

Due to the lack of the control solutions accounting for the distinctive workload
characteristics of large-scale cloud application, in this chapter, we will present a
power management solution optimized for the workload characteristics of the large-
scale cloud applications.

1.3 Energy Efficiency of Datacenters

Due to the conservative cooling provision and lack of the consideration on workload
characteristics, vast amount of energy is wasted in todays’ datacenter. Power usage
efficiency (PUE) is the most widely used metric to quantify the power efficiency of
datacenters, which is defined as follows:

PUE = Total power consumed by a datacenter

Power consumed by servers
(1)

Thus, the lower, the better and it can ideally be reached to 1.0 According to US
Environmental Protection Agency (EPA) report [2], the PUE of average datacenters
around world amounts to 1.9, which means that for every watt of power consumed
in the computing equipment, an additional 0.9 W of power is needed for cooling
and power delivery. Figure 4a shows the breakdown of energy usage of typical dat-
acenters (The PUE value amounts to 1/0.45 = 2.22) when assuming 10 ∼ 30 % IT
load scenario [3]. Cooling system, comprised with chiller and CRAC/CRAH, con-
sumes around 30 % of energy consumption while the power system spends additional
23 % of energy caused by uninterruptible power supply (UPS), power distribution
unit (PDU) and AC-DC conversion losses. Other facility elements, e.g., humidifier,
lighting, transformers, contribute around 2 % of total energy consumption. Such in-
efficiency corresponds to waste of money in the business sense. Figure 4b shows the
monthly costs breakdown in a state-of-the-art datacenter assuming a 3-year server
amortization and a 15-year infrastructure amortization [9]. This figure illustrates
that, in less than three years, the accumulated cooling costs are higher than the ac-
tual server deployment costs, thus datacenters energy and thermal management is
directly related to effective cooling and power delivery.

Among the various reasons contributing to the poor energy efficiency (e.g., voltage
conversion loss in UPS, excessive cooling provision, etc.), the loss in the datacenter
cooling facility caused by the over-provisioned cooling capability takes the most
significant portion in the entire loss as it is adjusted to guarantee safe operating
conditions of servers targeting the worst-case workload scenario which happens
rarely. In order to improve the energy ineffectiveness, datacenter designers and a
large set of recent search works in the literature have identified three key guidelines
as follows:

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 863

Fig. 4 a Breakdown of datacenter energy overheads [3]. b Datacenter costs breakdown assuming
a 3-year servers and 15-year infrastructure amortization model [9]

• Fine-grained monitoring of PUE
• Server rack layout minimizing hot and cold air mixing by cold-aisle/hot-aisle

layout, containment, duct, and analysis of computational fluid dynamics (CFD)
• Adjustment of thermostat of server room to the highest level where servers can

be safely operated

However, there still exist huge gap until it reaches to its ideal value, i.e., 1.0, which
necessitates the energy- and thermal-aware design in unprecedented ways. The main
reason is that all these practices are still focused only on worst-case cooling scenarios
designs without any holistic view that considers the dynamic cooling needs of the
computing infrastructure at run-time. These results pose very drastic consequences
in the design and modes of operation for next-generation datacenters.

1.4 Chapter Organization

In this chapter, we focus on presenting solutions to reduce the energy consumptions of
servers and cooling systems through effective power and thermal control solutions
based on accurate yet efficient power and temperature modeling and monitoring
solutions. The rest of the chapter is organized as follows. Section 2 reviews state-of-
the-art datacenters, especially focused on computing and cooling parts of datacenters
to understand state-of-the-art technologies and figure out control knobs which are
manipulated in control solutions. Section 3 shows approaches of modeling and mon-
itoring power and temperature in servers as well as datacenters. Section 4 explains
dynamic power and thermal management solutions for single servers, ranging from

864 J. Kim et al.

Table 1 Server power
breakdown [3] Component Proportion (%)

CPU 33

DRAM 30

Disk 10

Networking 5

Etc. 22

conventional air-convection cooled servers to liquid cooled ones. Section 5 explains
power and thermal management solutions for large-scale computing server clusters
in a datacenter. Section 6 explains the joint power and thermal management solutions
for large-scale datacenters including both of computing and cooling power consump-
tions, especially targeting a hybrid cooling architecture which selectively uses free
cooling according to required cooling capability. Section 7 summarizes the chapters.

2 State-of-the-Art in Datacenter Design

In this section, we explain state-of-the-art techniques to improve the energy efficiency
of datacenters while meeting the temperature constraint, especially focusing on the
two biggest energy consumers in datacenters, i.e., computing servers and datacenter
cooling facility.

2.1 Computing Servers

1) Energy-Proportional Server Designs Server architectures have traditionally tar-
get performance optimization to support the ever-increasingly IT services demands
and energy-efficiency has only become an important concern in the last five years.
Due to the continuous technology scaling-driven performance improvement and the
fact that single microprocessor architectures recently reached its performance limits
[11], server designs have evolved since 2005 towards multi-cores architectures. A
good example of this trend in state-of-the-art server designs is the HP DL980 blade
server, which includes eight CPU sockets and each of them can support up to 10
cores [12]. Currently, the power consumed by servers takes more than 50 % of total
power consumed by datacenters [3]. Table 1 shows the power breakdown of existing
servers, which outlines that the largest portion of total power consumption in servers
is taken by the CPU, but also DRAM memories must be considered as important
blocks to develop power and thermal management strategies at server level.

In addition, future server designs trends by major server vendors, e.g., Sun Labs-
Oracle, IBM, etc., show an evolution towards 3D-stacked technology integration

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 865

programs [11], which enables the integration of a larger number of processing cores
in very limited chip volumes and can significantly reduce the memory access latency
by stacking memory layers on top of processing cores. Furthermore, 3D integration
enables easier development of heterogeneous computing architectures because it is
possible to integrate multiple memory types (e.g., 3D-stacked DRAM, phase change
memory), and storage (e.g., solid-state disk) devices from different manufacturing
processes, as in the EuroCloud server project [13]. However, as a side effect, power
density is expected to significantly increase in 3D multi-core computing systems (i.e.,
up to 300 W/cm3 [14]), which will make extremely difficult to properly dissipate
the generated heat with current air-based cooling systems [15]. In particular, if free
cooling is used, it will be a must to consider jointly the conception of the cooling
and computing architecture.

One of the recent topics in server research is achieving energy-proportional com-
ponents, which implies that computing systems should consume different amounts
of active power according to their actual utilization. Nowadays, although servers are
currently optimized to handle high-performance computation demands, most of the
servers in a datacenter run at or below 40 % utilization during a significant part of the
time, yet still draw almost full power during the process [16]. Therefore, latest server
designs include many sensors (e.g., power, temperature, etc.) to accurately detect the
current server utilization state [17]. Also, server components (i.e., processor, mem-
ory, and disk) now provide various operating states (e.g., active/idle/sleep/dormant)
as well as various voltage and frequency (v/f) levels in processor and memory [18].
Therefore, recent works [19, 20] have shown the potential of developing energy
proportionality in servers by exploiting the different power states and v/f levels ac-
cording to the performance demand of local server utilization. Nonetheless, all these
approaches focus on power consumption optimization of computing systems, thus
they do not formally guarantee an optimal v/f point under thermal-induced power
variations or can provide thermal damage prediction.

In order to reduce idle-time (leakage) power consumption, server processors pro-
vide nowadays hardware support for virtualization (e.g., AMD-V, Intel VT-x), which
is a technique to enable increased physical server utilization by running applications
from multiple OS instances in the so-called virtual machines (VMs) [21]. Moreover,
on top of the hardware support, several virtualization software frameworks (e.g.,
Citrixs XenServer, Microsofts Hyper-V, VMWare ESXi, etc) have been recently de-
veloped to host multiple VMs with negligible performance degradation. Figure 5a
illustrates the server virtualization. Recent improvements in the server virtualization
techniques enable to run applications in a virtualized server within acceptable per-
formance loss, i.e., ∼ 20 % for running CPU intensive workload [22] compared to
running on a native system, while it is known to be degraded further when running
memory- and disk-intensive workloads [23].

These various control options described above, i.e., power state, v/f level, VM
placement, etc., give us great opportunities to achieve further power savings by
fully utilizing the various control options while posing the challenges to develop an
efficient control solution at the same time due to the large solution space, which
necessitates us to develop an effective yet low-complexity control scheme.

866 J. Kim et al.

Fig. 5 Concept of server
virtualization: hosting
multiple VMs with the aid of
hypervisor

Hypervisor or Virtual Machine Monitor (VMM)

Virtual machine

Opera�ng System

App App…
VM

Opera�ng System

App App……

Fig. 6 Hot- and cold-aisle
isolation [9]

2.2 Cooling Infrastructure

In order to achieve energy-efficient datacenter cooling, various solutions have been
presented. In this section, we address the three most widely used and effective
solutions: (1) hot- and cold-aisle isolation, (2) closed-coupled cooling, and (3) free
cooling. Then, we present how to utilize the cooling solutions more effectively to
achieve further energy savings.

1) Hot- and Cold-Aisle Isolation Figure 6 shows a typical way of server room
cooling. The cold air is provided by computer room air conditioning (CRAC) units
through a raised floor, a steel grid resting on stanchions installed 2–4 ft. above the
concrete floor. The cold air flows into racks through perforated tiles, and then, hot air
is exhausted through a rear side of rack after absorbing heat generated by servers in
the rack. One way of improving cooling efficiency is to prevent mixing the cold air
provided from CRAC and hot air exhausted by servers. It is realized by a solution, so
called hot- and cold-aisle isolation, which arranges server racks such that the intakes
of cold air in server racks are faced each other, i.e., cold aisle, while preventing the
mixture of hot air in different aisle side, i.e., hot aisle. The hot air is eventually drawn
by the CRAC, and then, cold air is again provided to cold aisles by exchanging the
heat with cold air (or water) provided from chillers.

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 867

Fig. 7 In-rack cooling [24]

2) Closed-Coupled Cooling Closed-couple cooling solutions place cooling units
more closely to computing units so as to remove any losses incurred throughout the
delivery of cooling medium and quickly react to spatial temperature distribution. In
this cooling solution, there are largely two classifications according to the granu-
larity of computing cluster covered by single cooling unit, i.e., in-row and in-rack
coolings. An in-row cooling adjusts cooling condition at every row according to the
corresponding conditions while an in-row cooling adapts its cooling configuration
according to operating condition at each rack. Figure 7 shows an example of an
in-rack cooling solution where the cold air is directly fed into the front door of racks,
namely, CoolDoor while the hot air is drawn by the CRAC with the same way in
Sect. 2.2. The effectiveness of the solution is quite obvious in terms of the energy
efficiency in that it can adjust only necessary parts instead of adjusting whole cooling
configuration based on the worst-case scenario. It is reported that PUE of this cooling
solution can reach down to 1.1 ∼ 1.2 [3]. However, the capital expenditure for the
installation is quite high.

3) Free Cooling A recent approach to improve energy efficiency in datacenters is
the concept of free cooling, which relies on the use of outside cold air and/or water
for cooling instead of electricity. This is a promising architectural innovation for
datacenter cooling infrastructure that can enable PUE to approach values near 1.0.
Google has recently constructed two datacenters in Ireland and Belgium based on
this concept and reports drastically improved PUE figures up to 1.09 [3].

868 J. Kim et al.

Cooling
Tower

CompressorCondenser Evaporator

Chiller

CRAH

Injected Cold
Air

Return Hot Air

Three-way
control valeWater pump

Server clusters

Common
Electrical cooling only
Free cooling only

Fig. 8 Datacenter cooling architecture [43]

Despite the promising advantages on cooling-energy efficiency, the fundamental
issue of free cooling is its limited applicability, as it can only be used in a very
limited set of geographical locations because the cooling capability is tightly coupled
with climate condition (e.g., temperature and humidity). Thus, it suffers from wide
variations of cooling efficiency during the year, which translates in significantly
high computing systems failure rates [25]. Hybrid cooling, which provisions back-
up cooling infrastructure along with free cooling, is an intuitive solution to extend
the usability of free cooling. Two main types of hybrid cooling architectures exist
[26, 27]. The first architecture switches between free- and electricity-based cooling
according to the outside temperature: if the outside temperature is lower than a
certain threshold, free cooling is used; otherwise, chiller-based electricity cooling
is employed as shown in Fig. 8. However, in real-life conditions, datacenters can
use free cooling in very limited periods of the year and the average reported PUE
is approximately 1.5. The second proposed architecture uses a cooperative hybrid
cooling solution to increase the time free cooling is used. In this case, free cooling
complements the chiller by pre-cooling hot return water with cold outside water
before entering the chiller. This second architecture enables using free cooling, at
least partially, for the entire year, and provides up to 50 % energy savings in cooling
infrastructure (PUE
1.25). However, it still suffers from significant higher failure
rate than chiller-based solution due to lack of efficiency in the combined cooling
scheme, which makes the current computing systems to operate at higher and variable
temperatures. Moreover, due to the continuous increase in server power density,
driven by the ever-increasing IT demand, the applicability of current free cooling
will be even more limited in the future.

Figure 9 shows the variation of the power consumed by computing and cooling
facilities as well as PUE measured for a datacenter equipped with hybrid cooling
architecture deployed in Finland. As indicated the PUE line, PUE value varies 1.09 ∼
1.60 and can be largely classified into three periods according to the PUE value. In
this datacenter, free cooling is used only when the outside temperature is lower
than 8 ◦C, which is set to very conservative value so as to cope with the worst-case

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 869

Po
w

er
PU

E
Cooling powerCompu�ng power

PUE

Fig. 9 Variations of power and PUE throughout a year [28] measured by a datacenter equipped
with hybrid cooling architecture deployed in Finland

scenario. First, during the winter, PUE value is low as the free cooling is used for
the most of the time period while it becomes increased during the summer as the
electrical cooling is more frequently used as the temperature goes up.

Thus, free cooling as such cannot provide the ultimate solution to improve dat-
acenter energy efficiency due to the limitation of the cooling capability and the
dependency on outside temperature. In order to be generally applicable it must be
combined in synergistic ways with innovative energy-proportional server design and
cooling solutions, as well as holistic datacenter thermal control.

3 Power and Temperature Modeling and Monitoring

Accurate-yet-efficient modeling and monitoring on power and temperature of data-
centers are necessary to develop control solutions for target systems. In this section,
we first explain how we can model the power consumption and the temperature of
existing servers and cooling facility in datacenters. Then, we address scalable and
cost-effective power and temperature monitoring systems for large-scale datacenters.

870 J. Kim et al.

3.1 Server Modeling

1) Power Modeling A server consists of various components, i.e., CPU, DRAM,
disk, network interface (NIC), etc. As presented in Table 1, vast amount of the power
is consumed by CPUs, memory, and disk, i.e., more than 70 %. Extensive works
have been presented to accurately model power consumption of each component.
McPAT is micro-architectural power model for chip multiprocessor (CMP), includ-
ing in-order and out-of-order processor cores, networks-on-chips, shared caches,
integrated memory controllers, and multiple-domain clocking, while tacking into
account various process characteristics, e.g., bulk CMOS, SOI, and double-gate
transistors, based on the forecast in the ITRS roadmap. The accuracy is validated
using various processor implementations, i.e., Niagara, Niagara2, Alpha 21364, and
Xeon Tulsa, whose errors range 10.84 ∼ 22.61 %, compared to the measured values.
DRAMSim [29] and Micron’s System Power Calculator [30] provide accurate and
detailed timing and power models of various types of DRAM, e.g., DDR, DDR2.
DDR3, Mobile LPDRAM, etc., accounting for the operations.

Although such accurate power models exist to model individual component of
servers, it is difficult to use all such accurate models together due to the speed of
the simulation. It becomes more exacerbated when we target to simulate the large
number of servers in datacenters. Thus, high-level power models are widely used
to track and estimate the power consumption of servers based on the observation
that the power consumption for a given server is highly correlated with distinctive
workload characteristics, e.g., CPU-, memory-, or disk-intensive, stressed on servers.
To capture the relationship, various works have presented high-level power model
which estimates the power consumption based on the utilizations [31–33]. Among
them, Economous et al. [31] present a linear regression power model which estimates
the server power consumption with respect to utilizations of CPU (ucpu), memory
(umem), and disk (udisk), and network interface (unet) as follows.

Pserver = C0 + C1ucpu + C2umem + C3udisk + C4unet (2)

where {C0,C1,C2,C3} is a set of fitting parameters, which varies according to the
target server system. This model is validated through two types of servers: (1) blade
servers containing 2.2 GHz AMD Turion processor, 512 MB SDRAM, 40 GB HDD,
10/100 MBit Ethernet and (2) Itanium servers containing four Itanium2 chips, 1 GB
DDR, 36 GB HDD, 10/100 MBit Ethernet. According to their evaluations, the er-
rors are within 10 % in most of test cases using various benchmark suites, i.e.,
SPECcpu200, SPECjbb2000, SPECweb2005. Further evaluations for developing
the high-level server power modeling have been conducted in [32] by comparing
five different forms of power models as follows:

Type1 : Pserver = C0 (3)

Type2 : Pserver = C0 + C1ucpu (4)

Type3 : Pserver = C0 + C1urcpu (5)

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 871

Type4 : Pserver = C0 + C1ucpu + C2udisk (6)

Type5 : Pserver = C0 + C1ucpu + C2umem + C3udisk + C4unet (7)

Type 1 modes the power consumption in a static value. Type 2 and 3 model the
power consumption with respect to CPU utilization, i.e., ucpu, in linear and nonlinear
manners, respectively. Type 3 and 4 add additional term to take into account the vari-
ations caused by disk (udisk), memory (umem), and network (unet). It concludes that
Type 2 power model is enough for modeling CPU-intensive workload while Type
5 power model, using both of OS-reported component utilizations and CPU perfor-
mance counters, is needed to cover broad workload characteristics, i.e., memory-
and disk-intensive workloads, and aggressively power-managed servers.

In [33], Pedram et al. further enhance the accuracy of the power model by adjusting
the fitting parameters according to various operating voltage and frequency and the
number of active cores. It used Intel Xeon E5410 processor for the validation with
various test cases, i.e., combination of the number of active cores and operating
voltage and frequency level. Recently, Joulemeter is provided to automatically tune
the parameters in power models by measuring battery usage in laptop or measuring
power consumption in servers.

Fans also consume significant amount of power in servers. Indeed, it is well
known that the fan power consumption has a cubic relationship with fan speed [34],
as follows:

Pfan = C0 + C1s
3
f an (8)

where {C0,C1} is a set of fitting parameters and sf an represents fan speed. Thus,
lowering the fan speed enables us to reduce drastic amount of power consumption.

2) Temperature Modeling Accurate temperature models for servers are required to
capture the temporal and spatial temperature variations. Especially, due to the high
area and cost of placing thermal sensors in a silicon die as well as frequent failures
of thermal sensors, the needs for the accurate temperature modeling becomes more
important. Computational fluid dynamics (CFD) simulation is known to be a solution
to develop accurate and complete 3D thermal map of servers by using numerical
methods and algorithms to solve and analyze problems that involve fluid flows. In
[35], Choi et al. present a CFD-based thermal modeling solution of servers by solving
the governing transport equations shown in the following conservation law form:

∂ρφ

∂t
+ ∂ρUjφ

φ∂xj
= ∂

∂xj

(
�phi,eff

∂φ

∂xj

)
+ Sφ (9)

where φ is a general variable used for different context, e.g., mass, velocity, tem-
perature, or turbulence properties; ρ is a fluid (air) density; t is a time for transient
simulations; xj is a coordinate x, y, or z direction when j is 1, 2, or 3, Uj is the ve-
locity in each direction; � is the diffusion coefficient; S is the source for a particular
variable such as the heat flux from a target system when the air temperature is φ.
The four terms in Eq. (9) corresponds to transient, convection, diffusion, and source

872 J. Kim et al.

Fig. 10 Layout of IBM X335 server (a) and temperature map (b) [35]

parts of transport phenomenon at the spatial domain/extent. Figure 10a and b show
pictures of IBM X335 server comprising of multiple components and its tempera-
ture map, respectively. As shown in Fig. 10, the spatial temperature variation can
be accurately modeled. Despite the high accuracy of the CFD simulation, the sim-
ulation complexity is quite high because it does not have any closed-form solution
for solving the differential equation in Eq. (9), which leads to adopt computer-based
numerical procedures.

In [36], T. Heath et al. present a solution of constructing temperature map of
servers while relieving the complexity of CFD simulation with negligible accuracy
degradation, i.e., within 0.32 ◦C compared to CFD simulation. The simplification is
achieved by abstracting heat- and air-flow with simplified graphs. Recently, a fur-
ther simplified temperature model for servers has been presented in [38], especially
targeting the CPU and memory sub-system of servers considering varied heat re-
moval capability as a fan speed changes. It is developed by constructing thermal RC
network of the system based on well-known duality between thermal and electrical
phenomena [37], as shown in Fig. 11. In the RC network of CPU socket, P cj rep-
resents the power consumption of each core in a socket; Rcl and Rcv represent the
lateral and vertical thermal resistance, respectively, where Rcl is normally ignored as
Rcv << R

c
l ; R

c
s and Rcca are thermal resistance of heat spreader and case-to-ambient

(i.e., heat sink), respectively. Ccj , C
c
s , and Ccca are thermal capacitances of die, heat

spreader, and heat sink, respectively; T cja represents the junction temperature which
is used as an input to dynamic thermal management (DTM) units such that T cja is
lower than Tmax .Rcca is the sum of the thermal resistances of heat sink and convective
resistance, i.e.,Rcca = Rchs+Rcconv, whereRconv is changed according to the fan speed
as follows:

Rcconv ∝ 1

A · sαf an
(10)

where A is the effective area and α is a factor with a range of 0.8∼1.0.
In the RC network of memory part, PDchip is the power consumed in each DRAM

chip; RDchip and CDchip are thermal resistance and capacitance of each chip; T Dj is

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 873

Fig. 11 RC network based temperature model [38]

the junction temperature of a DRAM chip; N is the number of ranks in a single
DRAM chip. In addition, they observe that the temperature of DRAM is correlated
with the temperature of CPU as the air inside a server flows from CPU to DRAM,
thereby, air absorbing heat in CPU socket affects to the temperature of DRAM as it
is equivalent to raising ambient temperature at DRAM. This phenomenon is called
thermal coupling and modeled as follows:

qD ∝ T Cha

RDca
(11)

where qD is the dependent coupling heat source of the memory; T Cha is the heat sink
sink temperature of the CPU; RDca is the thermal resistance of the case to ambient of
the memory DIMMs. This model is validated using Intel dual socket Xeon server,
which shows a strong match between the actual measurement and the model within
a 0.27 ◦C average error.

3.2 Datacenter Modeling

1) Computing Facility Basically, the temperature of servers in datacenter can be
calculated using models in Sect. 3.1. However, for accurate temperature estimation
for servers in a datacenter, we need to take into account interactions of generated
heats among multiple servers in a server rack because servers are placed in a server
rack in vertical direction and cold air flows from bottom to top of the server rack
such that the heat generated at bottom is recirculated and affects to servers placed
at upper side of the server rack. We call it heat recirculation in a datacenter. The
amount of heat recirculation in a datacenter can be described by a cross-interference
matrix, which is represented by N×N = {φi,j } where N is the number of servers in
a server rack. φi,j indicates the contribution of the outlet heat rate of the i-th server
in the inlet heat rate of the j -th one. Assuming Qouti and Qinj are, respectively, the

874 J. Kim et al.

outlet and inlet heat rates for the i-th and j -th server, the inlet heat rate for j -th server
can be calculated as follows [39]:

Qinj =
N∑
i=1

φi,jQ
i
out +Qamb + Pj (12)

where Qamb represents the heat rate delivered from cold aisle of a server room and
Pj denotes the power consumed by j -th server.

In the vector form, we can write this relationship as follows:

Qin = �TQout + Qs + P (13)

Based on the heat rate, we can calculate the temperature at each server within a server
rack using temperature models in Sect. 3.1.

2) Cooling Facility The typical cooling facility consists of a cooling tower, a chiller,
and CRAH (or CRAC) as explained in Sect. 1.1. The heat generated by servers in
a server room is absorbed by cold air provided from CRAH, and then, drawn by
CRAH. CRAH exchanges the heat drawn from the server room with cold water
(or air) provided from a chiller based on refrigeration cycle. In [42], A. Qouneh
et al. provide a comparative and quantitative analysis of cooling power as varying
processor utilization and adjusting the server room temperature accordingly. For
further analysis of the power consumption of the cooling facility, some models have
been presented in [40, 41] which model the power consumption based on thermo-fluid
principles.

However, based on our analysis of real datacenter setups of our industrial partners
in this work, we have observed that an alternative procedure can be used, where
PUE mainly depends on the temperature set-point of server room (Troom), outside
temperature (Tout), and total power consumed by servers (Pcl). Moreover, Troom is
the dominant factor compared to the others. Thus, we can simply characterize PUE
with respect to Troom. Figure 12 shows PUE with respect to Troom. As shown in this
figure, the PUE of electrical and free cooling ranges 1.53 ∼ 1.83 and 1.08 ∼ 1.14,
respectively. Assuming that Troom is set to the highest temperature of which servers
in active mode can satisfy the maximum temperature limit, i.e., T maxpm , we can model
PUE as a function of the power consumption of servers, i.e., Ppm. By matching the
results shown in Fig. 12, we can approximate the PUE with a relatively simple form,
namely:

PUE = a1P
2
pm + a2Ppm + a3 (14)

wherea1, a2, anda3 are curve fitting parameters. In the case of electrical and free cool-
ing, the sets we have obtained for {a1, a2, a3} are {3.32×10−5,−9.45e×10−4, 1.30}
and {0, 0, 1.08}, respectively. Then, the maximum (average) root mean square (RMS)
error amounts to 4.38 % (0.76 %) and 0.56 % (0.56 %), respectively.

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 875

Fig. 12 Power usage effectiveness (PUE) in electrical and free cooling as power consumption of
server varies [43]

Finally, the temperature of the server room, Troom, depends on CRAH efficiency,
εCRAH , which is defined as follows [43]:

εCRAH = T airCRAH − Troom
T airCRAH − T water

CRAH

(15)

where T airCRAH represents temperatures of air exhausted from server room; T water
CRAH is

the temperature of chilled water flowing into the CRAH, which corresponds to the
set-point of chiller and outside temperature when electrical and free cooling is used,
respectively. Note that these values can be calculated using the procedure in [40],
which depends on server power consumption, outside temperature, etc. Since εCRAH
is always less than 1, Troom is always higher than T water

CARH .

3.3 Monitoring System for Datacenters

Power management in datacenters is an area of increasing interest from several
viewpoints as it is backed up by real concerns on energy usage and cost by modern
computing systems. Data center computing applications and platforms have been
typically designed without regard to power consumption. With increased awareness
of energy cost, power consumption tracking and management is now an issue even
for compute-intensive server clusters.

Datacenters ecosystem is facing an increasing need for decision support systems
for datacenter management. Building and administration of datacenters are indeed
evolving towards increasingly complex scenarios. IT infrastructure managers have

876 J. Kim et al.

to optimize the datacenter utilization and costs, under several constraints gener-
ated by heterogeneous and diverging technical challenges: customer requirements,
infrastructure costs, energy costs, physical space available, etc.

Datacenters that have some energy measuring capabilities carry out those moni-
toring tasks through Data-Center Infrastructure Management (DCIM). This concept
includes the integration of IT and Facility Management, with the aim of centralising
monitoring, management and intelligent capacity planning of data centre systems.
Capacity planning focuses primarily on energy but also on power, space, network,
IT equipment, cabling, cooling and environmental factors (temperature and relative
humidity).

Understanding total capacity of all factors ultimately gives the optimal position
where equipment should be moved, added or changed for optimised use of the avail-
able capacity. It also directly indicates where potential capacity is still present but
unused (stranded capacity). Currently, in many datacenters this task is carried out
manually or through site audits. This is a tedious, time-consuming and labour-
intensive process, with a high risk of human error. An advanced DCIM system
automates and simplifies this process, benefiting to IT and facility staff, but also to
the energy efficiency of the datacenter.

A DCIM system can in particular map and manage the complete power chain
and hence the energy capacity of the datacenter. Starting at the power sources (grid
power or alternative power sources) up to the outlets on a rack Power Distribution
Unit (PDU) or even the components within the servers, including all devices in
between, DCIM systems are essential to plan energy flows and perform trending
and analysis. They bring full access to all available devices, from facility to IT, as
well as life cycle management, support contracts, and logical and physical cable
connections.

Whereas DCIM systems are usually a good fit for large datacenters, the needs
of small to medium-size urban datacenters are not adequately met today. Existing
systems are generally too complex, pricy, difficult to use and not modular enough
for urban facilities. In addition, solutions offered on the market today are generally
proprietary and tend to lock their users in to single vendors. Innovative DCIM support
systems for datacenter management are thus needed. PMSM (i.e., Power Monitor
System and Management) [44–56], developed at EPFL in cooperation with Credit
Suisse [45], is an example of such an innovation.

4 Power and Thermal Managements of Servers

As the servers operating workloads are time-varying, the accompanying power con-
sumption and thermal profile vary as well. In order to maintain controlled power
consumption and thermal dissipations, run-time dynamic power and thermal man-
agement (DPM and DTM) mechanisms are required. These management schemes
exploit the utilization of power and temperature-affecting control knobs that exist in
different layers of abstraction of the system, to aid in power and thermal reduction. In

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 877

addition, a fundamental challenge of any developed power or thermal management
scheme is to have minimal, or preferably zero percent, performance degradation. If
any management mechanism has a significant impact on the processing performance,
it interferes with the architectural characteristics, hence considered a degrading rather
than a managing element.

In this section, we explore the various power and thermal management mecha-
nisms for server architectures. We first start by showing the state-of-the-art in power
and thermal management solutions in Sect. 4.1. In Sect. 4.2, we explore our re-
cent development in hierarchical power and thermal management schemes. Finally,
we show our advances in power and thermal management in liquid-cooled server
architectures.

4.1 Overview of CPU Power and Thermal Management
Techniques

Power and thermal management solutions have been extensively existing in litera-
ture, which has been reflected in the various power and thermal management schemes
[71, 72]. Nevertheless, we explore the recent works on power and thermal manage-
ment in the state-of-the-art.

1) Temperature-Affecting Control Knobs As mentioned earlier, run-time manage-
ment schemes utilize various control knobs that either reduce the causes of high heat
generation, or increase the ability of the utilized cooling methodology. In the case of
3D MPSoCs, these control knobs are classified as follows.

a) Workload Activity Knobs At the software-level (application, system software,
and OS), workloads can be altered and customized such that they can be
thermally-aware. For example, task scheduling and task migration [73] have been
extensively used to balance the workload on planar 2D MPSoCs [74]. Another
example involves the intra-task instruction scheduling to prevent the processing
element temperature from elevating to alarming values.

b) Circuit Switching Activity Knobs This class of control knobs affects the operat-
ing conditions of the processing element. These knobs may stall the processing
element temporarily to reduce the heat generation, such as clock gating [75].
Alternatively, these knobs may reduce the operating speed of the processing ele-
ment, which implies lower power consumption, hence lower heat generation, such
as dynamic frequency scaling (DFS) or dynamic voltage and frequency scaling
(DVFS) [75, 76].

c) Thermal Package Control Knobs The knobs at the thermal package level are
responsible of changing the cooling capabilities, which is related to the injected
fluid in the case of 3D MPSoCs with liquid cooling. For instance, the volumetric
flow rate of the injected fluid can be varied by changing either the liquid pumping
power [77], or varying the value of a flow-control valve [78].

878 J. Kim et al.

2) Power and Thermal Management of Air-Cooled 2D and 3D MPSoCs Ogras
et al. [79] proposes the control of power usage in processing elements (PEs) and
routers by using model predictive control at design time, and Bogdan et al. [80] elab-
orate further this approach by considering both PEs and routers in the control scheme
for voltage and frequency. However, they only consider power management and do
not explore thermal control aspects. In fact, consolidating the power consumption in
processing elements could undermine temperature issues while the power consump-
tion is reduced. Thus, explicit thermal management schemes that include temperature
as a key role in optimization or imposing temperature as a constraint are required for
thermal balancing.

Initial research efforts have been focusing on combined power and thermal man-
agement by presenting a set of scheduling mechanisms for MPSoCs that perform
temperature management at the system-level [81], using thread migration techniques
to achieve temperature reduction in localized hot spots [75], or using a temperature-
aware dynamic scheduling algorithm with negligible performance overhead [74].
These methods do not exploit history information and take reactive control actions
based on the current thermal profile and frequency setting of the MPSoC.

However, recent works exploit history information to improve thermal manage-
ment policies. Previous work [82] exploits a temperature forecast technique based on
an auto-regressive moving average model. Another work proposes a novel technique
that adapts the thermal management policy to the current workload characteristics
[76], where the adaptation is done online exploiting information related to the work-
load history. Two recent approaches [83, 84] describe two methodologies to achieve
thermal prediction by combining the information of thermal model, thermal sensors
and power consumption statistical properties. These approaches rely on open-loop
search or optimization where it is assumed that power can be estimated accurately.

More advanced solutions apply the concepts of model-predictive control (MPC)
to turn the control from open-loop to closed-loop [87]. A chip-level power con-
trol algorithm based on optimal control theory is proposed [85], where the power
consumption of the MPSoC is controlled to maintain the temperature of each core
below a specified threshold. A recent work [86] proposes MPC utilization to solve
the thermally-aware frequency assignment problem of a planar MPSoC.

However, most previous policies do not completely avoid hot-spots, but they
simply reduce their frequency, because the interaction among the prediction method,
the thermal behavior of the MPSoC and the frequency assignment of the MPSoC
have not been addressed as a joint optimization problem.

In a similar vein, recent work considers dynamic thermal management for 3D
MPSoCs. Previous work evaluates several policies for task migration and DVFS
[88]. This previous work explores thermal profiles of adjacent processing elements
being on the same vertical column (interlayer adjacent) or within the same layer
(intralayer). Based on this analysis, a combined DVFS and a task migration policy,
named THERMOS, is implemented. However, this work do not consider controlling
the thermal packaging knobs, whether it is air or liquid cooling. Another work [89]
integrates a thermally-aware task scheduler with DVFS on a two-tier 3D MPSoC

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 879

with eight cores. A recent paper proposes a temperature-aware scheduling method
specifically designed for air-cooled 3D MPSoCs [91]. This method takes into account
the thermal heterogeneity among the different layers of the system, but there is
no study on the effect of the thermal packaging control knobs as active thermal
management parameters. The resulting temperatures obtained in these papers are
significantly high (85–120 ◦C). These results imply that 3D MPSoCs are prone to high
temperatures, and with increasing power densities conventional thermal management
techniques and air-based cooling are incapable of controlling the temperature while
preserving system performance.

3) Thermal Management of Liquid-Cooled 3D MPSoCs Prior liquid cooling work
[90] evaluates existing thermal management policies on a 3D MPSoC with a fixed-
flow rate setting, and also investigates the benefits of variable flow using a policy
to increment or decrement the flow rate based on temperature measurements, but
without considering pump energy consumption.

Thermal management methods for 3D MPSoCs using a variable-flow liquid cool-
ing have been recently proposed [77]. These policies use experimentally-driven sets
of rules to control the temperature profile of the 3D MPSoC while ensuring per-
formance requirements to be satisfied. These approaches use a centralized control
concept, which is inappropriate if the controlled parameters increase [92], as in the
case of targeted 3D MPSoC designs with liquid cooling in this work.

Recently, Qian et al. explore the use of a cyber-physical approach 3D MPSoCs
thermal management with inter-tier liquid cooling [93]. They construct their con-
trol mechanism with software-based thermal estimation and prediction. They use
a non-uniform liquid flow in different microchannels to meet the cooling demands
of different modules. They take their control decisions on software-based thermal
estimation and prediction. They use a non-uniform liquid flow in different microchan-
nels, to meet the cooling demands of different modules. However, they have not
shown the overhead of their software-based thermal estimation. Moreover, they do
not show the feasibility of having a non-uniform flow in different channels, as a
physical implementation.

4.2 Run-Time Hierarchical Power and Thermal Management for
Server Architectures

We have proposed another proactive management scheme that relies on model predic-
tive controller (MPC) [94]. In this work, we have developed a thermal management
scheme that controls task scheduling, DVFS, and the cooling infrastructure. In partic-
ular, we target the cooling infrastructure case of interlayer liquid cooled 3D MPSoC,
where we can alter dynamically the injected liquid flow rate. At each time interval,
a new set of workloads arrive, and the management scheme allocates these tasks to
various cores and sets the corresponding flow rate such that the predicted peak tem-
perature is reduced while minimizing the 3D MPSoC power consumption (cooling

880 J. Kim et al.

and computation power). Then for each processing element it applies MPC to the
assigned workload such that the local predicted temperature is reduced while using
the minimum computing energy possible via DVFS. The formulation of this problem
is stated as follows:

J =
h∑
τ=1

(
‖Rpτ‖ + ‖Tuτ‖

)
(16)

min J (17)

subject to : fmin ' fτ ' fmax ∀ τ (18)

xτ+1 = Axτ + Bpτ ∀ τ (19)

C̃xτ+1 ' tmax ∀ τ (20)

uτ # 0 ∀ τ (21)

uτ = wτ − fτ ∀ τ (22)

lτ # μf2
τ ∀ τ (23)

− w ' mτ+1 − mτ ' w ∀ τ (24)

0 ' mτ ' 1 ∀ τ (25)

pτ = [lτ ; mτ] ∀ τ (26)

where matrices A, B are related to the overall 3D MPSoC system description. These
matrices represent the 3D MPSoC system using a coarse granularity of the thermal
cells and where the sampling time of the resulting discrete-time system is TGC . The
horizon of this predictive policy is defined as h [87]. Then, the objective function J
is expressed by a sum over the horizon.

In the cost function (Eq. (16)), the first term ‖Rpτ‖ is the norm of the power input
vector p weighted by matrix R. Power consumption is generated here by two main
sources. Vector p is a vector containing normalized power consumption data the p
tiers and the pumping power. Matrix R contains the maximum value of the power
consumption of the tiers and the cooling system. The second term ‖Tuτ‖ is the norm
of the required workload, but not yet executed. To this end, the weight matrix T
quantifies the importance that executing the required workload from the scheduler
has in the optimization process. Then, Inequality (18) defines a range of working
frequencies to be used, but this does not prevent from adding in the optimization
problem a limitation on the number of allowed frequency values.

Equation (19) defines the evolution of the 3D MPSoC according to the present state
and inputs. Equation (20) states that temperature constraints should be respected at
all times and in all specified locations. Since the system cannot execute jobs that have
not arrived, every entry of uτ has to be greater than or equal to 0 as stated by Eq. 21.
The undone work at time τ , uτ is defined by Eq. 22. Equation 23 defines the relation
between the power vector l and the working frequencies.μ is a technology-dependent
constant.

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 881

A B

SPARC core
L2 cache

Crossbar

Other
Microchannel
TSV

C

C
A

B

C
A

B

Fig. 13 Schematic diagram of the four-tier liquid-cooled 3D MPSoC used in the thermal evaluation
of the proposed thermal management scheme

Then, Eqs. 24–25 define constraints on the liquid cooling management. The nor-
malized pumping power value (m) scales, and any time instance τ , from 0 (no liquid
injection) to 1 (power at the maximum pressure difference allowable), as shown in
Eq. 25. Moreover, the maximum increment/decrement change in the pumping power
value from time (τ) to (τ + 1) is limited by a another normalized value w, as shown
in Eq. 24, which models the mechanical dynamics of the pump.

Equation 26 defines formally the structure of vector p. Vector l ε (p is the power
input vector, where p is the number of tiers of 3D MPSoC.

Finally, the control problem is formulated over an interval of h time steps, which
starts at current time τ . Indeed the result of the optimization is an optimal sequence
of future control moves (i.e., amount of workload to be executed in average for each
tier of the 3D MPSoC which is stored in vector f). Then, only the first samples of
such a sequence are applied to the target 3D MPSoC, while the remaining moves are
discarded. Thus, at each next time step, a new optimal control problem based on new
temperature measurements and required frequencies is solved over a shifted predic-
tion horizon (e.g., the “receding-horizon” [87] mechanism), which represents a way
of transforming an open-loop design methodology into a feedback one, as at every
time step the input applied to the process depends on the most recent measurements.

To evaluate the effectiveness of this thermal control, we apply this management
scheme on a four-tier 3D MPSoC based on the UltrsSPARC T1 MPSoC [112], which
is shown in Fig. 13. In addition, we compare it against different state-of-the-art
thermal management techniques, which are as follows:

• Liquid cooling with LB (LC_LB) [95]: It applies the maximum cooling flow
rate, while the jobs are scheduled with load balancing policy (LB). LB balances
the workload by moving threads from a core’s queue to another if the difference
in queue lengths is over a threshold.

882 J. Kim et al.

0
10
20
30
40
50
60
70
80
90

LC_LB LC_VAR LC_FUZZY LC_PROACTIVE

Te
m

pe
ra

tu
re

 (
C)

Mean temperature (average) Mean temperature (Max workload)

Peak temperature (average) Peak temperature (Max workload)

Fig. 14 Peak and average temperatures observed using all the policies, both for the average case
across all workloads and maximum workload on four-tier 3D MPSoC [94]

• LUT-based flow rate control with LB (LC_VAR) [77]: It dynamically changes
the flow rate based on the predicted maximum temperature, while the jobs are
scheduled with LB.

• Fuzzy-logic control (LC_FUZZY) [96]: This mechanism utilized fuzzy logic in
deriving thermal management mechanism that controls the variable liquid flow
rate and DVFS.

In addition we refer to this management scheme as LC_PROACTIVE in the fol-
lowing paragraphs. In this evaluation of different thermal management policies,
LC_PROACTIVE is compared with respect to the other management techniques
mentioned above based on the:

• Maximum and average temperatures.
• Computational and cooling power consumption.

Thermal impact of all the policies on a four-tier 3D MPSoC (cf. Fig. 13) is shown
in Fig. 14. This figure shows that LC_LB reduces the peak temperature to 47 ◦C,
whereas LC_FUZZY and LC_VAR push the system into a higher peak of 52
and 67 ◦C, respectively, but still avoids any hot-spots. This is the similar case in
LC_PROACTIVE, where the peak temperature reaches 84 ◦C. The alteration be-
tween the peak temperature comes from the fact that main target is to reduce the
peak temperature to any value below 85 ◦C. However, since each technique has a
different management policy, with different control elements, the peak and average
temperatures are affected.

Figure 15 shows the total consumed power when running the various policies on
the four-tier MPSoC with the average workload [94]. Energy consumption values
are normalized with respect to the load balancing policy on the 3D-MPSoC with
LC_LB. In this figure, LC_PROACTIVE manages to reduce the cooling power and
the overall system power by 60 and 23 %, respectively, with respect to LC_LB.
Moreover, LC_PROACTIVE even reduces the cooling energy more than LC_VAR
and LC_FUZZY by 40 and 22 %, respectively.

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 883

0

0.2

0.4

0.6

0.8

1

1.2

1.4

LC_LB LC_VAR LC_FUZZY LC_PROACTIVE

N
or

m
al

iz
ed

 E
ne

rg
y

Co
ns

um
p�

on

Cooling Energy Computa�on Energy

Fig. 15 The normalized energy consumption in the whole system (chip and cooling network) [94]

4.3 Design-Time Power and Thermal Optimizations

In addition to run-time management schemes, several works conduct power and ther-
mal optimizations at design-time. In the case of MPSoCs, several approaches have
been taken to optimize the power utilization and heat generation or dissipation. At the
platform level, different modules can be designed to reduce the overall power density,
hence heat generation, while preserving the system functionality. This approach has
been taken recently in low-power (hence low temperature) processor designs such
as ARM big.LITTLE processing architecture [97]. Another approach at the platform
level is to reduce the operating power supply of the platform to near-threshold values
[98]. Near-threshold computing allows the processing units to operate close to the
voltage threshold value of the used transistor, hence reducing the overall power and
thermal density.

In the case of 3D MPSoCs, recent work proposes multiple supply voltages utiliza-
tion to optimize the voltage islands distribution in 3D MPSoCs [99]. In this work, a
temperature-aware voltage island generation methodology is proposed that formu-
lates this problem as a mixed-integer linear programming (MILP) problem. The main
aim in this work is to minimize the thermal hotspots in 3D MPSoCs while keeping the
performance and timing requirements satisfied. The interdependency between power
and heat densities made it feasible to formulate this problem and achieve significant
results.

Another work utilizes various microarchitectural techniques to control the
thermal hotspots in 3D MPSoCs via thermal herding [100]. This technique explores
different architectural disciplines by spitting several microarchitectural blocks
between the different layers of 3D MPSoC to enhance the throughput while
controlling the thermal hotspots such as, register file splitting. This splitting is based
on general application trends and the significance of particular instructions or data
locations to the execution flow.

Previous works have investigated the rearrangement of various hardware modules
within the MPSoC to minimize the global thermal impact, which is also known in

884 J. Kim et al.

literature as temperature-aware floorplanning. Initial work on temperature-aware
floorplanning [101] has shown its significant impact on reducing the peak tempera-
ture. This work has defined a metric called thermal diffusion that resembles the lateral
heat dissipation. This metric has been used in an optimization problem to maximize
the gains of thermal diffusion. Other similar works have proposed simulated an-
nealing utilization [102] or genetic algorithms [103] to achieve temperature-aware
floorplanning.

In the context of 3D MPSoCs, temperature-aware floorplanning has also been ex-
tended by including the interlayer thermal dissipation and interconnect characteristics
[102, 104–106]. For example, initial work has been proposed [107] for temperature-
aware microarchitectural floorplanning. The main objective in this work is to place
the processing submodules of a single processor in several layers such that the wire
lengths and the temperatures are minimized. To achieve this, a mixed integer linear
programming (MILP) problem is formulated to minimize the weighted sum of per-
formance, area and thermal-related aspects. Another work uses simulated annealing
to minimize the temperature of 3D MPSoC via floorplanning [105] by considering
the additional power consumption of the interconnects.

As for liquid-cooled 3D MPSoCs, Mizunuma et al. use their thermal model to
explore floorplanning solutions to homogenize temperature distributions in this ar-
chitecture [108]. The results in this work, which is further assisted by the observations
in other work [96], show that in the case of liquid cooled 3D MPSoC, temperature-
aware floorplanning follows the trend of placing more heat dissipating modules at the
fluid inlet port, while lower heat dissipating modules at the outlet port. In other words,
the optimal heat dissipation pattern for temperature-aware floorplanning would be
monotonically decreasing from the distance of the fluid inlet port.

Our recent proposed framework, namely GREENCOOL, optimizes the active
cooling path of microchannel-based iterlayer liquid cooled 3D MPSoCs to balance
the thermal profile of the target 3D MPSoC while significantly reducing the active
cooling energy demands [109]. This design-optimization methodology uses the con-
cept of channel modulation, where we change the microchannel aspect ratio (channel
width/channel height) to enhance the heat transfer capability from the target 3D MP-
SoC via changing the convective thermal resistance [110]. Using the conventional
CMOS fabrication process for etching the channels, such as deep reactive iron etch-
ing [111], it is possible to modulate the width of the channel from inlet to outlet (and
hence its aspect ratio) and create any kind of channel width profile, while keeping
the height of the channels constant. Thus, channel width modulation requires only
a change in the patterns on the masks used for etching channels amounting to min-
imal additional fabrication costs. To summarize, using careful design it is possible
to modify the local channel aspect ratios so as to contain the pumping power while
constraining the thermal gradients.

To understand how the channel width affects the change in temperature due to con-
vection (ΔTconv) in detail, an analysis is performed on a single microchannel shown
in Fig. 16. We start by the following set of equations governing the Nusselt number
(a dimensionless form of heat transfer coefficient), and the product of friction factor

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 885

iq

wc(z)

y

x

z
Rcond

Rconv

Tjunction(z)

Tfluid(z)

iq
Theat Tconv

Tcond

W

Coo
len

t F
low

Fig. 16 Test structure: a single microchannel cooling a strip of an IC with uniform heat flux
distribution. The figure shows both the 3D and the cross-sectional views [109]

z

T

a b

fluid-inlet

Tjunc�on(z)

ΔTcond

ΔTconv

ΔTheat

Final temperature

z

Tfluid-inlet

Tjunc�on(z)

ΔTcond

ΔTconv

ΔTheat

Final temperature

Fig. 17 Rconv as a function of the channel width for the structure in Fig. 16

and Reynold’s number for microchannels, under fully developed conditions [110]:

Nu = 8.235 · (1 − 2.0421AR + 3.0853AR2 − 2.4765AR3 + 1.0578AR4

− 0.1861AR5)

f r · Re = 24 · (1 − 1.3553AR + 1.9467AR2 − 1.7012AR3 + 0.9564AR4

− 0.2537AR5), (27)

where AR is the aspect ratio reciprocal (height/width) of the channel. Using the
Nusselt number, the heat transfer coefficient (a measure of the amount of heat
transferred per unit area for one Kelvin difference in temperature between the fluid
and the microchannel wall surface, expressed inW/m2K) can be written as:

h = kcoolant ·Nu

dh
(28)

886 J. Kim et al.

Fig. 18 Junction temperature distribution for the structure in Fig. 16. a With uniform non modulated
channel width. b With modulated channel width to compensate for sensible heat absorption [109]

where kcoolant is the thermal conductivity of the coolant and dh is the hydraulic
diameter of channel. The effective heat transfer coefficient as seen by the junction
looking down the channel from the top can be written by projecting the heat transfer
coefficient above from the side wall surfaces onto the top as follows:

heff = h2 ∗HC + wC
W

(29)

where HC is the height and wC is the width of the channel, and W is the total
width of the structure as shown in Fig. 16. The convective resistance Rconv for
this structure can be obtained as a reciprocal of this quantity. The Rconv for this
structure is plotted as a function of wC in Fig. 17, assuming water as the coolant,
HC = 100 μm,W = 100 μm and varying wC from 10 to 50 μm.

Figure 17 shows that the convective resistance (and alsoΔTconv) drops quickly as
the channel width is reduced. Since the goal is to modify the convective resistance to
compensate forΔTheat , it can be postulated that the channel width must no longer be
a constant but instead should be a function of the distance along the channel wC(z).
The width must be larger near the inlet where the fluid temperature is low and smaller
near the outlet where the fluid temperature is high. Hence, theoretically, for the case
of uniform heat flux, it is possible to lower the final thermal gradient by steadily
modulating the channel width from inlet to outlet, as shown in Fig. 18b.

GREENCOOL uses this principle in formulating an optimal control problem to
find the optimal channel width profile for each microchannel, from the fluid inlet
to outlet ports. The target of this optimization is to minimize the peak temperature
and thermal gradients of the 3D MPSoC, as well as reducing the energy needed by
cooling. When applied various 3D MPSoC architectures, significant thermal gradient
reductions as well as cooling power savings, with respect to worst-case designs.

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 887

A B

SPARC core
L2 cache

Crossbar
Other

A

B

E E

E

C D
C

D

Arch. 1

Arch. 2

Arch. 3

Fig. 19 Layout of the 3D-MPSoCs used in our experiments [113]

For instance, when GREENCOOL is applied to different architectural layouts of
the UltraSPARC T1 Niagara MPSoC [112], a 31 % thermal gradient reduction is
observed. Figure 19 shows the layout of the different two-dies 3D-MPSoCs used in
this experiment. The dies are of size 1 cm × 1.1 cm and the heat flux densities range
from 8 to 64 W/cm2 in the two dies. Further details about the floorplan and power
dissipations can be found in pervious works [77, 96, 112].

In this experiment, the worst-case (peak) power dissipation of the 3D-MPSoC
functional elements [77, 96, 112] (obtained using measurements) are used in the
optimization process. GREENCOOL achieves a thermal gradient reduction of 31 %
(23 ◦C to 16 ◦C). When the peak heat flux levels were replaced by average values,
this same optimal channel modulation configuration manages to reduce the thermal
gradient by 21 % compared to the uniform channel width case. The thermal gradients
obtained for the different cases and for various channel types are plotted in Fig. 20.

In another set of experiments to demonstrate the energy-efficiency of GREEN-
COOL, significant cooling energy savings that reach up to 80 % has been achieved
[109]. Furthermore, GREENCOOL aids in developing efficient cooling layout in the
cases where uniform cavity utilization is infeasible.

888 J. Kim et al.

5

10

15

20

25

Peak Average Peak Average Peak Average

Arch. 1 Arch. 2 Arch. 3

Th
er

m
al

 g
ra

di
en

t (
 °C

)

Minimum channel width Maximum channel width Op�mal channel modula�on

Fig. 20 Thermal gradients observed in the different 3D-MPSoC architectures dissipating peak and
average level heat fluxes, using maximum, minimum and optimally modulated channel widths [113]

Fig. 21 Concept of server
consolidation

5 Power and Thermal Managements for Server Clusters

5.1 Conventional Solution to Minimize Power Consumption for
Server Clusters

In datacenters, servers are normally severely under-utilized, less than 30 % in more
than 90 % of the total time [3]. In addition, as explained in Sect. 3, the power
consumption of servers is not proportional to the utilization, i.e., the idle power
consumes around 50 % of the peak power consumption. Due to the poor energy-
proportionality, the power consumed by servers in datacenters can be reduced as
we minimizes the number of active servers by packing workloads into the minimal
number of active servers [46]. The technique is called Server consolidation. The
key enabler to realize the solution is server virtualization, explained in Sect. 2.1,
as it enables to migrate workloads easily by encapsulating workloads with a form
of virtual machines (VMs) and run multiple VMs in a single physical server with
the aid of hypervisor. Figure 21 shows the concept of the server consolidation in a
virtualized server environment.

In the server consolidation, we need to take care such that the performance after
the consolidation should not be degraded, or within an acceptable range. To achieve
this goal, many works have developed the consolidation solutions such that the sum
of the peak required utilization among co-located VMs does not exceed the server’s
capability [46]. However, as analyzed in many works [6], the peak utilization happens
rarely and much higher than off-peak (e.g., 90th/95th/99th percentile) values. Thus,

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 889

the server consolidation based on the peak value makes us to lose the opportunity for
further power savings. To overcome the conservative solution, some works [6, 47]
presents server consolidation solution which packs VMs into servers based on off-
peak (e.g., 90th/95th/99th percentile) of server utilization.

The advantage obtained from the server consolidation is obvious in terms of
power savings. However, it may cause unexpected performance degradation due
to the conflict of using shared resources among co-located VMs, especially last-
level cache (LLC) [48, 49]. Tickoo et al. [49] analyzed how the performance is
degraded asVMs are allocated to share LLC with others using SpecJBB and Sysbench
benchmark suites in order to evaluate the amount of the performance degradation
caused by different cache usage characteristics of co-located VMs. The results show
that sharing LLC between two copies of VMs both hosting SpecJBB leads to ∼30 %
performance degradation while a case of sharing LLC betweenVMs hosting SpecJBB
and Sysbench leads to ∼20 % degradation. In [50], Govindan et al. characterize the
amount of interference with a set of parameters, i.e., effective number of used sets
and ways. Then, it presents a solution to allocate VMs by accounting for the amount
of the interference such that the performance interference becomes minimized while
meeting the required performance requirement.

5.2 Correlation-Aware Power and Temperature Management

We can achieve further compact server consolidation by considering correlation
among workload variation. In [51], Verma et al. found out that workloads running
on datacenters are strongly correlated one another. In order to achieve further power
savings while maintaining quality of service (QoS) level, correlations among VMs’
workload have been exploited in recent works [51–54]. In [51], Verma et al. presented
a clustering-based correlation-aware VM placement solution. To efficiently charac-
terize the workload correlation, it first transforms utilization traces with a form of an
envelope which is defined as a binary sequence which is ‘1’ when CPU utilization is
higher than a threshold value, e.g., 90th percentile, otherwise ‘0’. Second, it clusters
VMs such that the envelops of VMs’CPU utilization included in different clusters do
not overlap. Finally, it allocates VMs to physical servers such that VMs in different
clusters are co-located in a single server so as to minimize the possibility when peaks
are coincided. To meet the performance requirement after the consolidation, it allo-
cates VMs based on their off-peak utilization demands (e.g., 90th percentile) while
reserving a shared peak buffer to handle resource demand higher than the off-peak
value for all co-located VMs. However, this approach is applicable only when the
envelops of VMs are stationary and distinctively different one from another, thereby,
producing multiple clusters. Hence, it does not work well with applications with
non-stationary and fast-changing VM behaviors.

In [52], Meng et al. presented a joint-VM sizing technique that pairs two un-
correlated VMs into a super-VM and provision super-VMs by predicting the the
aggregated workloads. However, once super-VMs are formed, this solution does not

890 J. Kim et al.

a b

Fig. 22 a 90th-percentile response time (in seconds) with respect to the number of clients and
allocated cores. b Variations of CPU utilization of two index searching nodes (ISNs) with respect
the number of clients

consider the correlations of VMs within a same super-VM anymore. Thus, it may
lose the chance of further power savings by leveraging time-varying correlations in
scale-out applications. In [54], Halder et al. extends the scheme such that aggregated
workload of multiple VMs can be utilized for VM placement. However, this solution
can be applicable only when future servers’ utilization is perfectly known.

However, all the correlation-aware VM placement solutions target conventional
HPC application, thereby they cannot work well with scale-out applications whose
workload characteristics are quite different, as we explained in Sect. 1.2. To over-
come the drawbacks of existing solutions, we [56] developed a power management
solution for datacenters hosting scale-out application, especially targeting following
distinctive workload characteristics of scale-out applications. We used a websearch
application in CloudSuite [4] as a proxy to characterize the workload characteristics
of scale-out applications.

• User-interactive and fast changing: Owing to the user-interactive nature of
scale-out applications, responsiveness, quantified in terms of latency, is the first
criterion we need to satisfy when running the applications. Therefore, we should
provision VMs in a conservative manner, based on the peak (or Nth percentile
according to QoS requirement) resource demand of each VM. As the scale-out
applications are commonly highly parallel, we can meet the required performance
level for running VMs by assigning the right number of cores. Figure 22a demon-
strates the 90th percentile response time of a websearch cluster with respect to
the number of queries as we vary the number of allocated cores to host the web-
search cluster from 4 to 16. Furthermore, the resource demand is time-varying and
mostly lower than the provisioned amount of resources. However, as described in
[6], due to the significant performance degradation caused by the long transition
latency between power modes and fast changes of resource demands, dynamic
power gating (turning on/off cores) cannot be applicable to such applications.
Motivated by these observation, it is required the solution allocating the right
number of cores for each VM according to its peak (or off-peak depending on
QoS level) resource demand to guarantee QoS levels to all VMs while scaling v/f
level to achieve power savings.

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 891

Table 2 Performance metrics of a web search application co-located with a VM running PARSEC
benchmark: numbers in parenthesis show the case when a web search application is running alone

IPC L2 MPKI L2 miss rate (%)

w/ Backshcoles 0.76 (0.75) 2.38 (2.40) 11.28 (11.57)

w/ Swaptions 0.75 (0.77) 2.32 (2.43) 11.02 (9.63)

w/ Facesim 0.70 (0.70) 2.41 (2.36) 11.41 (11.31)

w/ Canneal 0.76 (0.78) 2.46 (2.43) 11.76 (11.67)

The amount of required CPU utilization of websearch clusters is dynamically
varied as the amount of user requests changes over time. Figure 22b shows the
CPU utilization traces for twoVMs with respects to the number of queries, each of
whichVM is an index serving node (ISN), in a single web search cluster to process
queries requested from the varying number of clients. As shown in the figure, the
CPU utilizations of both VMs are highly synchronized with the variation of the
number of clients. Moreover, the loads between VMs in a cluster are not perfectly
balanced because the CPU utilization depends on the amount of matched results
corresponding to a user request. Thus, we can improve the resource utilization by
sharing cores among multiple VMs, such that they can more flexibly use cores
depending on their time-varying resource demands.

• Negligible performance degradation caused by LLC conflict: As analyzed in
[4], the performance degradation caused by sharing caches is negligible because
the required memory footprint is too large to be sustained by on-chip caches.
Table 2 shows the measured performance metrics of a websearch application
when it is allocated to share core and cache with various applications in PARSEC
benchmark suite. We compared instruction per clock cycles (IPC), L2 miss-per-
kilo-instruction (MPKI), and L2 miss ratio (percentage), which are obtained using
Xenoprof patched for the AMD15h Bulldozer architecture [55]. The numbers in
parenthesis show the cases before co-location. As presented, there are only neg-
ligible variations over all the metrics before and after the co-location, which
correspond to a negligible performance degradation due to cores sharing. Moti-
vated by these observations, we can efficiently utilize multiple cores in a server
by allocating co-located VMs to share the cores assuming that the performance
degradation is negligible.

• High correlation among VMs: As jobs are distributed to multiple VMs in a
cluster, workloads of VMs within a same cluster are highly correlated compared
to different clusters (or services). In Fig. 22b, we can observe the intra-cluster
correlation between twoVMs in a cluster, both of which are strongly synchronized
with the variation of the number of clients. Thus, the proposed solution takes into
account the pervasive correlation in scale-out applications, i.e., within a cluster
as well as among clusters, such that correlated VMs are not co-located.
Figure 23 illustrates an example of demonstrating the effectiveness of the
correlation-aware VM provisioning solution. Let’s assume that we have two
servers, Server1, and Server2, each of which consists of eight cores, and four

892 J. Kim et al.

Time

U�l (%)
VM1 & VM2 VM3 & VM4

400

100

a

VM1

VM2

VM3

VM4

PE1 (8 cores) PE2 (8 cores)

Time

U�l (%)
800

200

b

VM1

VM3

VM2

VM4

PE1 (8 cores) PE2 (8 cores)

Time

U�l (%)

500

200

Turn-off 3 cores

c

Fig. 23 A motivational example to show the effectiveness of considering correlation information:
utilization traces (a); VM allocations (b) without considering correlation, and with considering
correlation (c)

VMs, i.e., VM1, VM2, VM3, and VM4, where {VM1,VM2} and {VM3,VM4}
are in Service1 and Service2, respectively. We assume that all the VMs have
the same amount of the tail distribution on CPU utilization, and VMs in a same
service are highly correlated (as load is quite well balanced among VMs) while
VMs in different services are less correlated. Figure 23a shows an example of
CPU utilization traces. If we do not take into account the correlation, we allocate
sets of {VM1,VM2} and {VM3,VM4} into Server1 and Server2, respectively, as
shown in Fig. 23b. In this case, the maximum CPU utilization amounts to 800 %
per each server, thereby, all cores should be in active state. However, if we pair
{VM1,VM3 and {VM2,VM4}, as shown in Fig. 23c, the actual maximum uti-
lization can be lowered down to 500 for both servers, thereby, we can turn-off (or
idle low-power state) three cores per each server and/or lower v/f level without
any quality degradation.

Based on the observations and motivations above, we presented a server consolidation
solution in [56]. First, to efficiently capture correlation information, they present a
low-complexity measure for evaluating workload correlation among co-locatedVMs,
and then, developed VM allocation algorithm.

1) Efficient Correlation Measure for VM Allocation: Pearson product-moment cor-
relation coefficient, or Pearson’s correlation, is most widely used correlation measure
to quantify the correlation of used CPU utilization among VMs [53]. It is calculated
as the ratio of covariance of the two random variables to the product of their stan-
dard deviations. However, the overhead to calculate the metric for a certain time
interval is high for a short time period due to the concentrated computation at the
end of the time period, because it utilizes the average values of CPU utilization
samples collected during each time period. In addition, Pearson’s correlation is also
partly inefficient because the value reflects correlation throughout the correspond-
ing time interval because we only require the correlation at (off-)peak utilizations
in VM placement. Equation (30) is presented in [56] as a new measure to quantify
the correlation between two VMs to overcome the inefficiency of the conventional

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 893

correlation metric.

Costvmi,j = ûcpu(VMi) + ûcpu(VMj)

ûcpu(VMi + VMj)
(30)

where Costvmi,j represents the newly defined correlation measure between VMi and
VMj . ûcpu(VMi) is a reference utilization of VMi , which is either the peak or the
Nth percentile value depending on QoS requirement. The numerator represents the
worst-case peak CPU utilization when the peaks of two VMs coincide, while the
denominator is an aggregated actual peak utilization when VMi and VMj are co-
located into a same server. Thus, the higher Costvmi,j , the lower correlation between
VMi and VMj . Moreover, we can update the values at each sampling period of
utilization. Thus, we can save memory space to store all samples as well as evenly
distributing computational effort to measure the correlation across a certain time
horizon. Using our new Costvmi,j function, we can model correlations among all VMs
by constructing a 2-D matrix, namely, Mvm

cost where the (i,j)-th element corresponds
to Costvmi,j .

2) Correlation-Aware VM Allocation for Scale-Out Applications Based on the cor-
relation metric in Eq. (30), we can minimize the correlation among co-located VMs
in Serveri , i.e., V

alloc
i = {VMi,1, · · · ,VMi,nvm

i
} where nvm

i is the number of VMs
allocated to Serveri , by allocating VMs such that a weight sum of Costvmi,j is min-
imized while the sum of ûcpu(VMi,j) in the server does not exceed the total CPU
capability of the server, i.e., Capi . The correlation of Serveri is defined as follows:

Cost
server
i =

nvm
i∑
j=1

wvm
i,j ·

⎛
⎝ Nvm∑
k=1&k �=j

Costvmj ,k

nvm
i − 1

⎞
⎠ (31)

where wvm
i,j represents a weight of VMi,j , defined as the ratio of û(VMi,j) to the sum

of û(VMi,j)’s of all co-located VMs in Serveri .
The problem is a well-known bin-packing problem [43]. In order to reduce the

solution complexity within negligible solution quality degradation, Kim et al. present
a heuristic based on a First-Fit-Decreasing where it first manipulates VMs having
the highest utilization among unallocated VMs. Figure 24 shows a pseudo code to
achieve this goal. In this algorithm, we periodically adjust VM allocation at every
tperiod based on the workload predictions. The algorithm largely consists of two
phases: (1) UPDATE (lines 1 ∼ 8) and (2) ALLOCATE (lines 9 ∼ 18). In the
UPDATE phase, we initialize parameters and update CPU utilization statistics. Then,
we allocate VMs to servers in the ALLOCATE phase.

The UPDATE phase consists of five steps, namely:

• Initialization: a set of unallocated VMs (Vunalloc), sets of allocated VMs (Valloci),
remaining capacity (Remi) for all servers, and a correlation threshold (THcost)
(lines 1 ∼ 4).

• Prediction: predict the workload based on history, as we previously prepared in
[43] (line 5).

894 J. Kim et al.

Fig. 24 The correlation-aware VM placement presented in [56]

• Sorting: we sort VMs in V
unalloc in descending order of predicted ûcpu(VMi) to

reduce the fragmentation of the bin-packing problem (line 6)
• Update cost function: update Mvm

corr by updating the Costvmi,j for all VM pairs
(line 7)

• Estimate the number of active server sets: determine the number of estimated
active servers, i.e., Ñserver , as presented in Eq. (32) (in line 8):

Ñserver =
∑Nvm
i=1

˜̂ucpu(VMi)

Ncore
(32)

where ˜̂ucpu represents an estimate of ûcpu. Then, Ñserver is equal to the minimum
number of servers to accommodate all VMs in V

unalloc. We provision VMs to
reduce the number of active servers while satisfying performance requirements.

Based on the update information and the predictions, we allocateVMs in ALLOCATE
phase by iterating the procedure (in line 10 ∼ 18) until allVMs are allocated to Ñserver
servers (line 9).

• Select a server having the largest remaining CPU capability, i.e., Remi (line 10).
• Find a VM to be allocated into Serveri which has the highest Cost

server
i with

VMs in V
alloc
i , while satisfying two conditions: (1) Cost

server
i should be larger

than THcost ; and (2) ûcpu(VMi) should be less than or equal to Remi (line 11)

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 895

Server1

Server2

Server1 (8cores) Server2 (8cores)

VM1,1 (8 cores) VM2,1 (8 cores)
VM2,2 (8 cores)VM1,2 (8 cores)

Server1Server2

Server1 (8cores) Server2 (8cores)

VM1,1 (8 cores)
VM2,1 (8 cores) VM2,2 (8 cores)

VM1,2 (8 cores)

a b

Fig. 25 CPU utilization traces: correlation-unaware (a) and correlation-aware (b) VM placements
[56]

• Update V
alloc
i , Remi , and V

unalloc accordingly in caase we find a VM (lines
12 ∼ 15)

• Iterate the procedure to find VMs to be allocated in Serveri until until there is no
VM left (lines 12 ∼ 16).

• If we have unallocated VMs at the end of the iteration, we need to repeat the
procedure in lines 10 ∼ 16 with a degenerated THcost by a factor of α (line 17)
along with a list of servers sorted in descending order of Remi (line 18)

3) Setting Voltage and Frequency Level Due to the correlation-awareVM allocation,
the actual peak server utilization becomes much lower than the server’s computing
capability. Figure 25 shows the comparisons of CPU utilization traces when we
allocate VMs in correlation-unaware and correlation-aware manner, respectively.
Websearch benchmark is used in CloudSuite benchmark suite [4] and configured
two websearch clusters each of which has two VMs, i.e., ISNs, in a single websearch
cluster, and applied cosine and sin wave user request patterns to each cluster. In the
figure, VMi,j represents j -th VM in i-th websearch cluster. As shown in Fig. 22b,
workloads of VMs in a same cluster are highly correlated. Thus, a correlation-
unaware VM placement solution allocates VMs in a same cluster into a same server
as shown in Fig. 25a while the correlation-aware solution allocates VMs in different
websearch clusters into a same server as shown in Fig. 25b. As illustrated in the figure,
the correlation-aware VM placement solution leads to lowered peak CPU utilization,
which enables to lower voltage and frequency (v/f) levels for further power savings.

However, we do not know exactly how much we can lower v/f level when mul-
tiple VMs are co-located into a server because Costvmi,j only captures the correlation
between two VMs. An empirical solution to provide rough guideline to lower v/f
is provided in [56] which utilizes Cost

server
i in Eq. (31). Figure 26 shows an em-

pirical relationship representing possible v/f slowdown for servers with respect to

896 J. Kim et al.

Fig. 26 Relationship between Cost
server
i in Eq. (31) and possible v/f scaling factor

Cost
server
i . The dots are scattered while the red line, which is a form of y = x,

shows the lower bound where we can safely lower v/f level without any performance
degradation. Based on this relationship, we can determine the frequency level of
Serveri , i.e., fi as follows:

fi =
(

1

Cost
server
i

)
·
⎛
⎝
∑nvm

i

j=1 ûcpu(VMi,j)

Nservercore

⎞
⎠ · f max (33)

where f max is the maximum frequency level. fi is set by lowering the worst-case
peak required frequency level (i.e., the second parenthesis assuming the situation
when peaks of VMs coincide) with a factor of 1/Cost

server
i .

Figure 27 shows 90th percentile response time of websearch benchmark in four
different VM placement solutions and v/f levels.

• Segregated: allocate VMs into a server such that no VMs share cores
• Shared-UnCorr: allocate VMs to share cores without any consideration on their

correlation
• Shared-Corr (2.1G): correlation-aware VM allocation while running a server with

2.1 GHz
• Shared-Corr (1.9G): correlation-aware VM allocation while running a server with

1.9 GHz

As shown in Fig. 27, allocating VMs to share cores provides better performance
compared to the segregated allocation case. In addition, the correlation-aware VM
allocation provides better response time compared to the correlation-unaware allo-
cation scheme as it enables to reduce the actual CPU utilization, thereby the lowered
utilization can be used to lower the v/f/ level without any performance degradation
compared to the correlation-unaware solution.

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 897

Segreated Shared-UnCorr Shared-Corr (2.1G) Shared-Corr (1.9G)
0

0.1

0.2

0.3
90

th
 p

er
ce

n�
le

 R
ep

on
se

 �
m

e
(s

ec
)

Cluster1 Cluster2
0.275

0.208

0.153 0.155 0.143 0.128 0.160 0.150

Fig. 27 90th percentile response time of Cluster1 and Cluster2 for three different VM allocations
in [56]

4) Simulation Results: Effectiveness of the 3Correlation-Aware VM Placement For
further validation of the correlation-aware VM placement, Kim et al. in [56] per-
formed the evaluation using server utilization traces from an actual datacenter setup.
It used CPU utilization traces of 40 VMs where each sample is collected at every 5
min for a day while synthesizing fine-grained utilization per 5 s with a lognormal
random number generator [7], whose mean is the same as the sampled value for the
corresponding 5-min sample. It targeted an Intel Xeon E5410 server configuration
which consists of eight cores and two frequency levels (2.0 GHz and 2.3 GHz) and
used the power model in [33] to compare the power consumption results among
various solutions. It compares three different VM placement approaches as follows.

• Best-Fit-Decreasing placement (BFD): a conventional best-fit-decreasing heuris-
tic approach without taking into account correlation information

• Peak clustering-based placement (PCP) [51]: a correlation-aware VM allocation
clustering VMs based on the envelopes of VMs’ CPU utilization such that VMs
coinciding their peaks of the envelopes are not allocated in a same server

• Correlation-aware placement (CAP) [56]: a correlation-awareVM allocation con-
sidering workload characteristics of scale-out applications manipulating a new
correlation metric in Eq. (30).

Table 3a compares the power consumption and performance violations of the three
approaches when we statically set the v/f level at the time of VM placement, i.e.,
tperiod = 1 h. The power consumption results are normalized with respect to the
power consumed by BFD, and the maximum violation shows the maximum per-
period ratio of the number of over-utilized time instances (i.e., when the aggregated
utilization among co-located VMs is beyond the CPU capacity of a corresponding
server) to tperiod , during the entire periods, i.e., 24 h. CAP provides up to 13.7 %
power savings compared to BFD and PCP, while drastically reducing the number of
the violations. It is noteworthy that PCP provides almost similar results with BFD

898 J. Kim et al.

Table 3 Comparisons for
static (a) and dynamic
(b) v/f scaling

(a)

Normalized power Maximum violations (%)

BFD 1 18.2

PCP [51] 0.999 18.2

CAP 0.863 2.6

(b)

BFD 1 20.3

PCP 0.997 20.3

CAP 0.958 3.1

because, due to high and fast-changing correlations among VMs in our utilization
traces, PCP classifies VMs into only ‘1’ cluster during the most of the time periods
(22 out of 24 time periods). When the number of clusters is ‘1’, PCP behaves exactly
same with BFD. The power savings obtained by our proposed solution are due to the
aggressive-yet-safe v/f settings utilizing the lowered actual peak resource demand,
i.e., Eq. (33). Moreover, the proposed solution provides a drastic reduction of the vi-
olations (i.e., 15.6 %) compared to the other approaches. Note that we allocated VMs
based on their peak utilizations, which were predicted from the their history. Despite
the provision based on the peak utilization, we observed quality degradation over the
three approaches due to the mis-predictions of the peak utilization, especially during
abrupt workload changes. However, the proposed solution can statistically reduce the
probability of the violation by co-locating uncorrelated VMs. Thus, the probability
of joint under-predictions among the co-located VMs is drastically decreased.

Table 3b shows the comparisons for the simulated case of servers using dynamic
v/f scaling for further investigation of the effectiveness of CAP. To prevent frequent
oscillations of v/f level (which affects server reliability [70]), we performed the v/f
scaling at every 12 samples (i.e., 1 min). As shown in Table 3b, the power savings
become smaller compared to the static v/f scaling because the other approaches also
adaptively scale v/f level according to the time-varying utilization demand. However,
the amount of the violations is unacceptably high in the other approaches. Thus, more
servers need to be activated to achieve the same QoS level obtained by the proposed
solution, which leads to higher power consumption.

6 Power Minimization of Datacenters with Hybrid Cooling
Architectures

The power consumption of datacenter can be further optimized as we jointly reduce
the computing and cooling power consumption because the conventional computing
power minimization solutions discussed in Sect. 5 usually require higher cooling
capability due to the increased heat density of active servers by increasing actual

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 899

Workload characteris csClimate condi on

Thermal profile in server room
Server architecture

Ex
te

rn
al

In
te

rn
al

Fig. 28 Proposed solution overview [43]

CPU utilization. Especially, when it comes along with hybrid cooling solutions in
a datacenter [26–28, 59–58], explained in Sect. 2.2, we need to revisit existing VM
placement solutions [60–65] as it further reduces the chance of using free cooling as
the solutions requires higher cooling capability due to the higher operating tempera-
ture of active servers. Motivated by this observation, Kim et al. present a joint power
and thermal optimization solution for datacenters equipped with hybrid cooling ar-
chitecutre to achieve further power savings while satisfying service-level agreement
(SLA) requirements by extending the usability of free cooling for datacenters having
a hybrid cooling architecture [43]. Figure 28 illustrates the solution overview ex-
plained in this section. The solution largely takes into account four input parameters
as follows:

• Climate condition
• Workload characteristics
• Temperature profile in a server room
• Server cooling architecture

As the climate condition and workload characteristics are non-deterministic, the
solution is implemented using a predictive control scheme utilizing predictions of
the values. The temperature profile of a server room and the dependency between
the server temperature and cooling solutions can be modeled using the solutions
explained in Sect. 3.

900 J. Kim et al.

6.1 Formal Problem Definition

To jointly minimize the computing and cooling power consumption of a datacenter
equipped with hybrid cooling architecture, we need to determine the optimal pair of
cooling mode,mco (electrical vs. free cooling) and maximum power consumption of
active servers (namely, power capping) based on four input parameters. In addition,
switching cooling mode, i.e., turning on and off chillers, leads to overhead in terms
of power and time. Thus, we jointly minimize the number of cooling mode switches
along with the power consumption by judiciously considering the switching overhead
into the objective function. Based on the requirements, the problem can be formulated
as follows:

Find χ = {mco, [bi,j]Npm×Nvm} (34)

Minimize Jdc = Pcl + Pco +Otr (35)

Subject to Tpmi ≤ T maxpm , where 1 ≤ i ≤ Npm (36)

Pr(tact > treq) ≤ (1 − β) (37)

The problem we are trying to tackle is two-fold, namely, determining both the (1)
cooling mode and (2) VM placement such that the power consumption of datacenter,
i.e., Pdc = Pcl + Pco where Pcl and Pco represent the computing and cooling power
consumption in a datacenter, and the overhead caused by cooling mode transition,
i.e., Otr , are jointly minimized while satisfying temperature and SLA requirements.
mco represents datacenter cooling mode: ‘1’ when free cooling is selected, otherwise
‘0’; bi,j is a binary variable representing VM placement: ‘1’ when vmj is mapped
into pmi ; Npm and Nvm represent the number of servers and VMs, respectively;
Jdc is an objective function consisting of power consumption of datacenter, i.e.,
Pdc = Pcl+Pco, and overhead caused by switching cooling mode, i.e.,Otr ; Tpmi and
T maxpm represent temperature of i-th server (or physical machine) and the maximum
temperature constraint of servers, respectively. Then, tact and treq are actual and
required execution time, respectively, and Pr(tact > treq) represents the probability
when tact is larger than treq ; β is SLA requirement.

As a matter of fact, this optimization problem can be translated into a bin-packing
problem with variable bin size by exploiting the analogy between a bin and a server
because, for a given bin size (analogy with threshold of server utilization), the power
consumption is minimized when the number of bins (analogy with the number of
active servers in which VMs are assigned) is minimized, i.e., server consolidation.
Hence, the bin size, i.e., the threshold of server utilization, depends on mco as well
as Tout . However, due to the interdependency between mco and bi,j ’s, the solution
complexity is even higher than conventional bin-packing problem.

To reduce the solution complexity, we can solve this problem with a two-phase
solution. First, we determine a power-optimal pair of {mco, uthpm} such that Jdc is
minimized while satisfying temperature and performance requirements assuming

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 901

that ideal VM consolidation3 is applied, i.e., utilization of every active server equals
to uthpm while others are ‘0’. Second, we assign VMs to servers such that the number
of servers where VMs are allocated is minimized while total utilization of every
server does not exceed uthpm. Moreover, in order to achieve further improvement by
considering time-varying characteristics of Tout and the user requests, we iterate the
optimization procedure at every predefined time interval, topt . Note that we can reuse
server consolidation techniques explained in Sect. 5. Therefore, in this section, we
simply focus on explaining the first step of this problem.

6.2 Multi-objective Trade-offs Exploration Between Cooling
Mode and Utilization Threshold

We explore the best approach to determine the optimal pair of {mco, uthpm} which
minimizes the multi-objective function, Jdc. Since external conditions, i.e., outside
temperature and user requests, are time-varying, the optimal pair of {mco, uthpm} varies
as well. Thus, we periodically adjust {mco, uthpm} based on the predictions of the
external conditions and the predictive sequence of cooling mode transition. Assuming
the ideal VM consolidation at a certain instant, we can approximate the problem as
follows:

Find χ (k) = {mco(k), uthpm(k)} (38)

Min Jdc(k) =
k+Nh−1∑
l=k

αl−k
(
P̃cl(l) + P̃co(l) + Õtr (l)

)
(39)

s.t uthpm(l) ≥ Ûtot (l)

Npm
, ∀l ∈ [k, k +Nh − 1] (40)

uthpm(l) ≤ min (umaxpm , utemp,max
pm (l)

)
, ∀l (41)

where Nh is the number of time periods; α is a weighting factor, 0 ≤ α ≤ 1; P̃cl(l),
P̃co(l), and Õtr (l) are predictions of Pcl , Pco, and Otr at the l-th period, which are
expressed as follows:

P̃cl(l) =
∑

mode∈{act ,idle,sleep}
Ñmodepm (l)P̃ modepm (l) (42)

P̃co(l) = (PUE(uthpm(l)) − 1) · P̃cl(l) (43)

Õtr (l) = wcotr · (mco(l) −mco(l − 1))2 (44)

3 In order to reduce the solution complexity, we find the solution assuming that the ideal VM
consolidation. The approach is optimistic in that the estimated power consumption is lower than
actual scenario due to the fragmentation of the server utilization caused by different utilizations
amongVMs and fractional ratio of the obtained server utilization toVM utilization in actual scenario.

902 J. Kim et al.

where P̃ modepm (l) is the estimated average power consumption of server at the l-th
period when the operating mode of the server is active (i.e., upm = uthpm(k) based

on the assumption of ideal VM consolidation), idle, and sleep modes. Ñmodepm (l) is
the corresponding number of servers. PUE is obtained using Eq. (14). (mco(l) −
mco(l− 1))2 represents whether cooling mode is switched at the l-th period, and wcotr
is a weighting factor which models the overhead caused by cooling mode transition.
Ñactpm (l), Ñ idlepm (l), and Ñ sleeppm (l) are defined as follows:

Ñactpm (l) = Ũtot (l)

uthpm(l)
(45)

Ñ idlepm (l) = Ûtot (l)

uthpm(l)
− Ñactpm (l) (46)

Ñ sleeppm (l) = Npm − (Ñactpm (l) + Ñ idlepm (l)) (47)

whereNpm is the number of servers; Ũtot (l) is the prediction of average user requests
normalized with respect to the maximum number of user requests processed by single
server, i.e., 0 ≤ Ũtot (l) ≤ Npm; Ûtot (l) is the normalized maximum4 user requests
which is characterized a priori based on extensive characterization.

The first constraint (Eq. (40)) represents the lower bound of uthpm(l) which is

determined such that Ûtot (l) user requests can be processed while satisfying SLA
requirement. The second constraint (Eq. (41)) represents the upper bound of uthpm(l),
which is determined by the minimum value between the utilization level where
multiple VMs can run in a single server without acceptable performance loss (i.e.,
umaxpm) and the highest utilization satisfying maximum temperature constraint, i.e.,

utemp,max
pm (l) which is obtained from temperature models in Sect. 3.1.

At the start of k-th period, we solve the optimization problem with two steps: (1)
prediction of the external condition, i.e., Ũtot and Tout for [k, k+Nh− 1]-th periods
and (2) optimization to find {mco(k), uthpm(k)}.
1) Temperature and Workload Prediction At the start of k-th period, we predict
Tout (l) and Ũtot (l) where k ≤ l ≤ (k + Nh − 1). Prediction of Tout ’s can accurately
be predicted by daily and weekly weather forecast. However, accurate prediction
of Ũtot ’s is not trivial due to uncertain and non-stationary characteristics of user
requests. For accurate prediction, we adopt non-stationary Kalman filter [66], which
outperforms other predictors especially when a prediction value is uncertain and
non-stationary.
Ũtot (k) is predicted based on the history of measured Utot in past few periods as

well as the history of the same period in past few days (or weeks). The predictions

4 In this work, we target the SLA violation to be less than 5 %. Thus, we used 95th-percentile
value instead of the maximum value to characterize the worst-case behavior of the corresponding
period. Considering the correlation among VMs, we can use lower percentile values, e.g., 90-, 80-th
percentile, etc., to reduce more power consumption while satisfying SLA requirement, as presented
in [51]. Our optimization approach is directly applicable to these cases as well.

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 903

Fig. 29 An example of the
predictive control scheme
when Nh = 3

χ dc(k+)

χ dc(k)

χ dc(k+2)

Predic�on horizon

obtained from the former history is denoted as Ũ (1)
tot (k) while the other is denoted as

Ũ
(2)
tot (k). Then, we can obtain Ũtot (k) by a weighted sum of Ũ (1)

tot (k) and Ũ (2)
tot (k) as

follows:

Ũtot (k) = w(1)
p Ũ

(1)
tot (k) + (1 − w(1)

p)Ũ (2)
tot (k) (48)

where weight, w(i)
p (k) is weight factor.

2) Predictive Control Scheme To solve the multi-objective problem considering the
uncertainty of Tout and Ũtot , we adopt receding horizon control scheme as shown
in Fig. 29. At the start of the k-th period, we first predict Ũtot ’s and Tout ’s for
[k, k + Nh − 1]-th periods as explained in Sect. 6.2. Second, we find the optimal
utilization threshold corresponding to each cooling mode, i.e., mco = {0, 1}, for
[k, k + Nh − 1]-th periods, as follows. For a given cooling mode, we can express
P̃dc(k) = P̃dc(k)+P̃cl(k) as a continuous form with respect to uthpm(k) using Eqs. (42)–

(47). In addition, P̃dc(k) is convex with respect to uthpm(k) because, as uthpm(k) increases,

P̃cl(k) is monotonically decreased (due to the decreased number of active servers)
while P̃co(k) increases because PUE is monotonically increased. Figure 30 shows the
relationship of the power consumption with respect to the uthpm. When an electrical
cooling is used, we can find an inflection point as the computing and the cooling
power consumptions varies in opposite directions. When a free cooling is used, the
total power consumption is usually decreased as the decrease of the computing power
as upmth increases is much larger than the increase of the cooling power. However, the
cooling capability of the free cooling is limited, thereby, upmth cannot be set too high.

Owing to the continuity and convexity of P̃dc(k) with respect to uthpm(k) for given
mco(k), the unconstrained optimal solution of uthpm(k) can be obtained by finding

904 J. Kim et al.

Maximum per-server u�liza�on (0 ~ 1)

Po
w

er
Co

ns
um

p�
on

Lower bound
due to perf. Req. Upper bound

due to conflict

Upper bound
due to

temperature

Computa�on only

Op�mal for Electrical
cooling

Op�mal for Free
cooling

Electrical cooling

Free cooling

Compu�ng power

Fig. 30 Solution overview

value which satisfies following equation.

Find uthpm(k))⇒ ∂
(
Pcl(k) + Pco(k)

)
∂uthpm(k)

= 0 (49)

The root can be efficiently obtained by root-finding algorithms, e.g., Newton-
Raphson method, binary search, etc. [67]. When uthpm(k) satisfies the constraint,
we directly set utilization threshold with uthpm(k); otherwise, we set uthpm(k) with
lower-bound (Eq. (40)) and upper-bound (Eq. (41)) values so as to satisfy the
constraint.

Third, with the pairs of {mco, uthpm}’s and including the overhead caused by cooling
mode transition, i.e., Otr , we find the optimal sequence of cooling mode transition
from k-th to (k + Nh − 1)-th periods, i.e., χdc(k) → χdc(k + 1|k) → · · · →
χdc(k + Nh − 1|k) where χdc(k + l|k) is the optimal solution at (k + l)-th period
when χdc(k) is determined as the optimal solution at k-th period. Then, we select
only χdc(k) and discard the other steps of the sequence. Finally, the entire process is
repeated at the start of (k + 1)-th period with the updated predictions.

The complexity is O(NNh−1
pm). Despite the exponential complexity, the solution

can normally be found in low overhead by confining the search range to the proximity
of previous Npm’s.

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 905

Table 4 Comparisons of power consumption and number of cooling mode transitions in May, June,
and July

Period FIXED-TEMP P-ADAPTIVE PT-ADAPTIVE

May 1 ∼ May 4 1.00 / 7 0.781 / 8 0.784 / 6

June 1 ∼ June 4 1.00 / 0 0.738 / 8 0.743 / 4

July 1 ∼ July 4 1.00 / 0 0.879 / 29 0.898 / 13

6.3 Simulation Results

To evaluate the effectiveness of the joint optimization, we used CloudSim [68], an
event-driven simulator providing toolkits to model behavior of cloud system com-
ponents such as datacenters, virtual machines (VMs), and scheduling policies. We
configured the target system with 100 servers and 100 VMs and used temperature
data measured at EPFL in Lausanne, Switzerland from May 2008 to July 2008. To
account for the overhead caused by VM migration, we assumed 100 s and 10 % as
the migration time and performance degrdation, respectively. Then, we compared
the following cooling mode decision solutions for datacenters:

• FIXED-TEMP: a conventional cooling mode decision scheme which uses free
cooling only when Tout is lower than fixed pre-defined temperature, i.e., Tth =
10 ◦C [28], and sets uthpm to umaxpm .

• P-ADAPTIVE: this is our first proposed scheme which adaptively adjusts the
cooling mode and the utilization threshold such that only power consumption of
datacenter is minimized.

• PT-ADAPTIVE: this is our second proposed scheme which jointly optimizes the
power consumption and transition overhead caused by cooling mode transition
with receding horizon control scheme.

To simply evaluate the effectiveness of the joint cooling mode decision scheme, we
applied the same VM allocation solution based on the peak [46] for all the three
comparisons above. Remind that these solutions are complementary with existing
VM allocation and power management solutions.

Table 4 shows the comparisons in terms of power consumption and number of
cooling mode transitions during the first four days in May, Jun, and July. The first
column represents the simulated time period. The second to fourth columns show
the normalized power consumption with respect to FIXED-TEMP and the number
of cooling mode transitions in each month.

First, in May, PT-ADAPTIVE yields 21.6 % power savings compared to FIXED-
TEMP. The reason for the improvement can be analyzed by observing the traces of
cooling mode and utilization schedules presented in Fig. 31 where a and b depict
the traces for FIXED-TEMP and PT-ADAPTIVE, respectively. X-axis represent
data (month/date) and the left and right Y-axis are cooling mode/utilization and
outside temperature, respectively. The temperature ranges 7 ∼ 22 ◦C in May, thereby
FIXED-TEMP uses the free cooling for short time period only when the outside

906 J. Kim et al.

a b

Fig. 31 Schedule of free mode and utilization threshold in May: MAX-UTIL (a) and PT-
ADAPTIVE(b)

Table 5 Comparisons of power consumption and the number of cooling mode transitions as
Pstatic/Ptot changes in June

Pstatic/Ptot FIXED-TEMP P-ADAPTIVE PT-ADAPTIVE

0.3 1.00 / 0 0.722 / 2 0.722 / 2

0.5 1.00 / 0 0.738 / 8 0.743 / 4

0.7 1.00 / 0 0.852 / 24 0.878 /12

temperature is lower than the threshold value, i.e., 10 ◦C in this evaluation. On the
contrary, PT-ADAPTIVE enables to use the free cooling for the longer time period
as it dynamically adjusts the maximum power consumption of servers by capping
the maximum server utilization according to the amount of demanding workload and
the outside temperature.

The most highest power savings are observed in June, i.e., 25.7 %. The reason is
that the outside temperature is always higher than 10 ◦C, which makes impossible to
use the free cooling in FIXED-TEMP while PT-ADAPTIVE still decides to use the
free cooling by lowering the maximum server power consumption. However, in July,
the temperature is too high to use the free cooling while meeting the performance
requirements despite capping the maximum server power consumption, which leads
to rather smaller power savings, i.e., 10.2 %, compared to other months.

Compared to P-ADAPTIVE, PT-ADAPTIVE provides almost similar (or slightly
less) power savings. However, PT-ADAPTIVE schedules the cooling mode such
that the number of cooling mode transitions is drastically reduced by accounting
for the overhead caused by the cooling mode transitions. Especially, in July, P-
ADAPTIVE switches the cooling mode too often, i.e., around 7 times per day while
PT-ADAPTIVE can reduce the number of transitions down to 3.25 times per day.
Figure 32a and b show the traces of P-ADAPTIVE and PT-ADAPTIVE in July,
respectively.

One important observation is that the effectiveness of PT-ADAPTIVE gets en-
hanced as the energy proportionality of server becomes improvement, which is the
direction where server designers are now focusing on. Table 5 shows the normalized
power consumption in June as the power-proportionality of servers, defined as the

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 907

a b

Fig. 32 Schedule of free mode and utilization threshold in July: P-ADAPTIVE (a) and
PT-ADAPTIVE(b)

ratio of the static power to the total power consumption, i.e., Pstatic/Ptot , is at 0.3,
0.5, and 0.7. As shown in Table 5, PT-ADAPTIVE provides more power savings
as Pstatic/Ptot is lowered. As a matter of fact, when Pstatic/Ptot is low, we can use
free cooling for longer periods of time by lowering the server utilization threshold,
thereby we have a smaller number of active servers. Furthermore, as state-of-the-art
servers are designed to achieve higher energy-proportionality [69], these experi-
ments demonstrate that PT-ADAPTIVE is able to provide even more power savings
in possible future datacenter setups.

7 Conclusions

Recently, the energy-efficiency constraints have become the dominant limiting factor
for datacenters due to their unprecedented increase of growing size and electrical
power demands. In this chapter, we have explained the power and thermal modeling
and control solutions which can play a key role to reduce the power consumption of
datacenters considering time-varying workload characteristics while maintaining the
performance requirements and the maximum temperature constraints. We have first
explained simple-yet-accurate power and temperature models for computing servers,
and then, extended the model to cover computing servers and cooling infrastructure of
datacenters. Second, we have presented the power and thermal management solutions
for servers manipulating various control knobs such as voltage and frequency of
servers, workload allocation, and even cooling capability, especially, flow rate of
liquid cooled servers). Finally, we have presented the solution to minimize the server
clusters of datacenters by proposing a solution which judiciously allocates virtual
machines to servers considering their correlation, and then, the joint optimization
solution which enables to minimize the total energy consumption of datacenters
with hybrid cooling architecture (including the computing servers and the cooling
infrastructure of datacenters).

908 J. Kim et al.

Acknowledgment This work has been partially supported by the Nano-Tera.ch TRANSCEND
Strategic Action, the PMSM: CT Monitoring research grant for ESL-EPFL funded by Credit Suisse
AG, an ERO Research Grant Donation from Oracle for ESL-EPFL, and the EC FP7 GreenDataNet
STREP project (agreement No. 609000).

References

1. K. G. Brill, “The invisible crisis in the data center: The economic meltdown of Moore’s law,”
white paper, Uptime Institute, 2007.

2. Energy Star Program, “EDA Report to Congress on Server and Data Center Energy Efficiency,”
2007.

3. L. A. Barroso and U. Holzle. “The datacenter as a computer: An introduction to the design
of warehouse-scale machines,” Synthesis Lectures on Computer Architecture 4, no. 1 (2009):
1–108.

4. M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A. D.
Popescu, A. Ailamaki, and B. Falsafi. “Clearing the clouds: a study of emerging scale-out
workloads on modern hardware,” in ACM SIGARCH Computer Architecture News, vol. 40,
no. 1, pp. 37–48. ACM, 2012.

5. A.Adileh, P. Lotfi-Kamran, S.Volos, S.Volos, and C. Kaynak, “CloudSuite on Flexus tutorial,”
in international symposium on computer architecture (ISCA) 2012.

6. D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch, “Power manage-
ment of online data-intensive services,” in Computer Architecture (ISCA), 2011 38th Annual
International Symposium on, pp. 319–330. IEEE, 2011.

7. T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data center traffic
characteristics,” ACM SIGCOMM Computer Communication Review 40, no. 1 (2010): 92–99.

8. H. Goudarzi and M. Pedram, “Energy-efficient virtual machine replication and placement in
a cloud computing system,” in Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on, pp. 750–757. IEEE, 2012.

9. 42U Datacenter Efficiency Consulting Corporation, “Data Center Energy Efficiency Calcu-
lator,” http://www.42u.com/efficiency/energy-efficiency-calculator.htm, 2011.

10. E. Schurman and J. Brutlag, “The user and business impact of server delays, additional bytes,
and HTTP chunking in web search,” in Presentation at the OReilly Velocity Web Performance
and Operations Conference, 2009.

11. G. H. Loh andY. Xie, “3D stacked microprocessor: Are we there yet?,” Micro, IEEE 30, no. 3
(2010): 60–64.

12. HP DL980, [online available] http://h18000.www1.hp.com/products/servers/platforms/ .
13. Eurocloud, [online avalable] http://www.eurocloudserver.com/ .
14. D. Meisner and T. F. Wenisch, “Does low-power design imply energy efficiency for data

centers?,” in Proceedings of the 17th IEEE/ACM international symposium on Low-power
electronics and design, pp. 109–114. IEEE Press, 2011.

15. A. Coskun, J. Meng, D. Atienza, and M. M. Sabry, “Attaining single-chip, high-performance
computing through 3D systems with active cooling,” Micro, IEEE 31, no. 4 (2011): 63–75.

16. U. S. Deparment of Energy, “FEMP Best Practices Guide for Energy-Efficient Data Center
Design,” in 2011.

17. A. N. Nowroz, R. Cochran, and S. Reda, “Thermal monitoring of real processors: Techniques
for sensor allocation and full characterization,” in Proceedings of the 47th Design Automation
Conference, pp. 56–61. ACM, 2010.

18. H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory power manage-
ment via dynamic voltage/frequency scaling,” in Proceedings of the 8th ACM international
conference on Autonomic computing, pp. 31–40. ACM, 2011.

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 909

19. R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No power struggles:
Coordinated multi-level power management for the data center,” in ACM SIGARCH Computer
Architecture News, vol. 36, no. 1, pp. 48–59. ACM, 2008.

20. X. Wang and Y. Wang, “Coordinating power control and performance management for vir-
tualized server clusters,” Parallel and Distributed Systems, IEEE Transactions on 22, no. 2
(2011): 245–259.

21. R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V. Anderson, S. M. Bennett,
A. Kagi, F. H. Leung, and L. Smith, “Intel virtualization technology,” Computer 38, no. 5
(2005): 48–56.

22. P. Muditha Perera and C. Keppitiyagama, “A performance comparison of hypervisors,” in
Advances in ICT for Emerging Regions (ICTer), 2011 International Conference on, pp. 120–
120. IEEE, 2011.

23. N. Huber, M. Quast, M. Hauck, and S. Kounev, “Evaluating and Modeling Virtualization
Performance Overhead for Cloud Environments,” in CLOSER, pp. 563–573. 2011.

24. CoolDoor, [online available] http://www.cooldoor.com.au/html/specifications.html .
25. M. Pawlish and A. S. Varde, “Free cooling: A paradigm shift in data centers,” in Information

and Automation for Sustainability (ICIAFs), 2010 5th International Conference on, pp. 347–
352. IEEE, 2010.

26. D. Garday, “Reducing data center energy consumption with wet side economizers,” White
paper, Intel (2007).

27. D. Atwood and J. G. Miner, “Reducing data center cost with an air economizer,” White Paper:
Intel Corporation (2008).

28. T. Lu, X. Lu, M. Remes, and M. Viljanen, “Investigation of air management and energy
performance in a data center in Finland: Case study,” Energy and Buildings 43, no. 12 (2011):
3360–3372.

29. D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Jacob,“DRAMsim: a
memory system simulator,” ACM SIGARCH Computer Architecture News 33, no. 4 (2005):
100–107.

30. Micron’s system power calculators, [online available] http://www.micron.com/products/
support/power-calc.

31. D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, “Full-system power analysis and
modeling for server environments,” in Proceedings of Workshop on Modeling, Benchmarking,
and Simulation, pp. 70–77. 2006.

32. S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A Comparison of High-Level Full-System
Power Models,” HotPower 8 (2008): 3–3.

33. M. Pedram and I, Hwang,“Power and performance modeling in a virtualized server system,”
in Parallel Processing Workshops (ICPPW), 2010 39th International Conference on, pp.
520–526. IEEE, 2010.

34. M. K. Patterson, “The effect of data center temperature on energy efficiency,” in Thermal and
Thermomechanical Phenomena in Electronic Systems, 2008. ITHERM 2008. 11th Intersociety
Conference on, pp. 1167–1174. IEEE, 2008.

35. J. Choi, Y. Kim, A. Sivasubramanjam, J. Srebric, Q. Wang, and J. Lee, “A CFD-based tool for
studying temperature in rack-mounted servers,” Computers, IEEE Transactions on 57, no. 8
(2008): 1129–1142.

36. T. Heath, A. P. Centeno, P. George, L. Ramos,Y. Jaluria, and R. Bianchini, “Mercury and freon:
temperature emulation and management for server systems,” in ACM SIGARCH Computer
Architecture News, vol. 34, no. 5, pp. 106–116. ACM, 2006.

37. W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. R. Stan,
“HotSpot: A compact thermal modeling methodology for early-stage VLSI design,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on 14, no. 5 (2006): 501–513.

38. R. Ayoub, R. Nath, and T. Rosing, “JETC: Joint energy thermal and cooling management
for memory and CPU subsystems in servers,” in High Performance Computer Architecture
(HPCA), 2012 IEEE 18th International Symposium on, pp. 1–12. IEEE, 2012.

http://www.micron.com/products/support/power-calc
http://www.micron.com/products/support/power-calc

910 J. Kim et al.

39. E. Pakbaznia and M. Pedram, “Minimizing data center cooling and server power costs,” in
Proceedings of the 14th ACM/IEEE international symposium on Low power electronics and
design, pp. 145–150. ACM, 2009.

40. D. C. Hwang., V. P. Manno, M. Hodes, and G. J. Chan, “Energy savings achievable through
liquid cooling: A rack level case study,” in Thermal and Thermomechanical Phenomena in
Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on, pp. 1–9. IEEE,
2010.

41. T. J. Breen, E. J. Walsh, J. Punch, A. J. Shah, and C. E. Bash, “From chip to cooling tower
data center modeling: Part I influence of server inlet temperature and temperature rise across
cabinet,” in Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm),
2010 12th IEEE Intersociety Conference on, pp. 1–10. IEEE, 2010.

42. A. Qouneh, C Li, and T. Li. “A quantitative analysis of cooling power in container-based data
centers,” in Workload Characterization (IISWC), 2011 IEEE International Symposium on,
pp. 61–71. IEEE, 2011.

43. J. Kim, M. Ruggiero, and D. Atienza, “Free cooling-aware dynamic power management
for green datacenters,” in High Performance Computing and Simulation (HPCS), 2012
International Conference on, pp. 140–146. IEEE, 2012.

44. Smart data center energy monitoring: a thermal-aware design approach to ‘Green IT’,
http://esl.epfl.ch/cms/op/edit/lang/en/pid/57400

45. Credit Suisse, https://www.credit-suisse.com/
46. E. Pakbaznia, et al., “Minimizing data center cooling and server power costs,” in Proc.

ISLPED, 2009.
47. N. Bobroff, et al., “Dynamic placement of virtual machines for managing sla violations,” in

Proc. IM 2007.
48. P. Padala, X. Zhu, Z.i Wang, S. Singhal, and K. G. Shin. “Performance evaluation of

virtualization technologies for server consolidation,” in HP Labs Tec. Report, 2007.
49. O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling virtual machine performance:

challenges and approaches,” in ACM SIGMETRICS Performance Evaluation Review 37, 2010.
50. S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam. “Cuanta: quantifying effects of

shared on-chip resource interference for consolidated virtual machines,” in Proceedings of
the 2nd ACM Symposium on Cloud Computing, p. 22. ACM, 2011.

51. A. Verma, et al., “Server workload analysis for powr minimization using consolidation,” in
Proc. USENIX, 2009.

52. X. Meng, et al., “Efficient resource provisioning in compute clouds via VM multiplexign,” in
Proc. ICAC, 2010.

53. M. Chen, et al., “Effective VM sizing in virtualized data centers,” in Proc. IM, 2011.
54. K. Halder, et al., “Risk aware provisioning and resource aggregation based consolidation of

virtual machines,” in Proc. Cloud, 2012.
55. A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W. Zwaenepoel, “Diagnosing

performance overheads in the xen virtual machine environment,” in Proceedings of the 1st
ACM/USENIX international conference on Virtual execution environments, pp. 13–23. ACM,
2005.

56. J. Kim, M. Ruggiero, D. Atienza, and M. Lederberger, “Correlation-aware virtual machine
allocation for energy-efficient datacenters,” in Proc. Conference on Design, Automation and
Test in Europe (DATE), pp. 1345–1350, 2013.

57. M. K. Patterson, D. Atwood, and J. G. Miner, “Evaluation of air-side economizer use in a
compute-intensive data center,” ASME, 2009.

58. M. Pervila and J. Kangasharju,“Running servers around zero degrees,” ACM SIGCOMM
Computer Communication Review 41, no. 1 (2011): 96–101.

59. “Google data center,” http://www.google.cim/about/datacenters/#.
60. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield, “Xen and the art of virtualization,” ACM SIGOPS Operating Systems Review 37,
no. 5 (2003): 164–177.

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 911

61. C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield, “Live
migration of virtual machines,” in Proceedings of the 2nd conference on Symposium on Net-
worked Systems Design and Implementation-Volume 2, pp. 273–286. USENIX Association,
2005.

62. D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang, “Power and perfor-
mance management of virtualized computing environments via lookahead control,” Cluster
computing 12, no. 1 (2009): 1–15.

63. G. Dhiman, G. Marchetti, and T. Rosing, “vGreen: a system for energy efficient computing
in virtualized environments,” in Proceedings of the 14th ACM/IEEE international symposium
on Low power electronics and design, pp. 243–248. ACM, 2009.

64. J. Xu and J.A. Fortes, “Multi-objective virtual machine placement in virtualized data center en-
vironments,” in Green Computing and Communications (GreenCom), 2010 IEEE/ACM Int’l
Conference on and Int’l Conference on Cyber, Physical and Social Computing (CPSCom),
pp. 179–188. IEEE, 2010.

65. J.-W. Jang, M. Jeon, H.-S. Kim, H. Jo, J.-S. Kim, and S.l Maeng, “Energy reduction in
consolidated servers through memory-aware virtual machine scheduling,” Computers, IEEE
Transactions on 60, no. 4 (2011): 552–564.

66. S.-Y. Bang, K. Bang, S. Yoon, and E.-Y. Chung, “Run-time adaptive workload estimation for
dynamic voltage scaling,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 28, no. 9 (2009): 1334–1347.

67. K. Madsen, “A root-finding algorithm based on Newton’s method,” BIT Numerical
Mathematics 13, no. 1 (1973): 71–75.

68. R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of scalable Cloud
computing environments and the CloudSim toolkit: Challenges and opportunities,” in High
Performance Computing and Simulation, 2009. HPCS’09. International Conference on,
pp. 1–11. IEEE, 2009.

69. D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: eliminating server idle power,” in
ACM Sigplan Notices, vol. 44, no. 3, pp. 205–216. ACM, 2009.

70. Y. Guo, D. Zhu, and H. Aydin, “Reliability-aware power management for parallel real-time
applications with precedence constraints,” in Green Computing Conference and Workshops
(IGCC), 2011 International, pp. 1–8. IEEE, 2011.

71. J. Kong et al. Recent thermal management techniques for microprocessors. InACM Computing
Surveys, 44(3):13:1–13:42, 2012.

72. I. Koren and C. M. Krishna. Temperature-aware computing. In Sustainable Computing:
Informatics and Systems, 1(1):46–56, 2011.

73. J. Choi et al. Thermal-aware task scheduling at the system software level. In ISLPED, 2007.
74. A. K. Coskun, T. Simunic Rosing, and K. Whisnant. Temperature aware task scheduling in

MPSoCs. In DATE, pages 1659–1664, 2007.
75. J. Donald and M. Martonosi. Techniques for multicore thermal management: Classification

and new exploration. In ISCA, pages 78–88, 2006.
76. A. K. Coskun et al. Temperature management in multiprocessor socs using online learning.

In DAC, pages 890–893, 2008.
77. A. K. Coskun et al. Energy-efficient variable-flow liquid cooling in 3D stacked architectures.

In DATE, pages 111–116, 2010.
78. Festo electric automation technology. http://www.festo-didactic.com/ov3/media/customers/

1100/00966360001075223683.pdf.
79. Y. U. Ogras, R. Marculescu, D. Marculescu, and E. G. Jung. Design and management

of voltage-frequency island partitioned networks-on-chip. IEEE Transactions on VLSI,
17(3):330–341, 2009.

80. P. Bogdan, S. Jian, R. Tornero, and R. Marculescu. An optimal control approach to power
management for multi-voltage and frequency islands multiprocessor platforms under highly
variable workloads. In ISNoC, pages 35–42, 2012.

81. W-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. Thermal-aware task
allocation and scheduling for embedded systems. In DATE, pages 898–899, 2005.

http://www.festo-didactic.com/ov3/media/customers/1100/00966360001075223683.pdf
http://www.festo-didactic.com/ov3/media/customers/1100/00966360001075223683.pdf

912 J. Kim et al.

82. A. K. Coskun, T. Simunic Rosing, and K. Gross. Proactive Temperature Balancing for Low-
Cost Thermal Management in MPSoCs. In ICCAD, pages 250–257, 2008.

83. R. J. Cochran et al. Consistent Runtime Thermal Prediction and Control Through Workload
Phase Detection. In DAC, pages 62–67, 2010.

84. Y. Zhang et al. Adaptive andAutonomous Thermal Tracking for High Performance Computing
Systems. In DAC, pages 68–73, 2010.

85. Y. Wang et al. Temperature-constrained power control for chip multiprocessors with online
model estimation. In ISCA, pages 314–324, 2009.

86. F. Zanini et al. Online Convex Optimization-Based Algorithm For Thermal Management of
MPSoCs. In GLSVLSI, pages 203–208, 2010.

87. A. Bemporad et al. The explicit linear quadratic regulator for constrained systems. Automatica,
38(1):3 –20, 2002.

88. C. Zhu et al. Three-dimensional chip-multiprocessor run-time thermal management. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(8):1479–
1492, August 2008.

89. X. Zhou et al. Thermal management for 3D processors via task scheduling. In ICPP, pages
115–122, 2008.

90. A. K. Coskun, J. Ayala, D. Atienza, T. Simunic Rosing. Modeling and Dynamic Management
of 3D Multicore Systems with Liquid Cooling. In VLSI-SoC, pages 60–65, 2009.

91. A. K. Coskun et al. Dynamic thermal management in 3D multicore architectures. In DATE,
pages 1410–1415, 2009.

92. T. Emi et al. Tape: Thermal-aware agent-based power economy for multi/many-core
architectures. In ICCAD, pages 302 –309, 2009.

93. H. Qian et al. Cyber-physical thermal management of 3D multi-core cache-processor system
with microfluidic cooling. ASP Journal of Low Power Electronics, 7(1):1–12, 2011.

94. F. Zanini, M. M. Sabry, D. Atienza, and G. De Micheli. Hierarchical thermal management
policy for high-performance 3d systems with liquid cooling. IEEE JETCAS, 1(2):88–101,
2011.

95. F. Mulas et al. Thermal balancing policy for multiprocessor stream computing platforms. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(12):1870–
1882, 2009.

96. M. M. Sabry et al. Energy-Efficient Multi-Objective Thermal Control for Liquid-Cooled 3D
Stacked Architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 30(12):1883–1896, 2011.

97. P. Greenalgh. Big.LITTLE Processing with ARM Cortex-A15 and Cortex-A7.
www.arm.com/files/downloads/big.LITTLE_Final.pdf.

98. R. G. Dreslinski et al. Near-Threshold Computing: Reclaiming Moore’s Law Through Energy
Efficient Integrated Circuits. In Proc. of the IEEE, 98(2), 2010.

99. N. Xu et al. Thermal-Aware Post Layout Voltage-Island Generation for 3D ICs. In Journal of
Computer Science and Technology, 28(4):671–681, 2013.

100. K. Puttaswamy and G. H. Loh. Thermal Herding: Microarchitecture Techniques for Con-
trolling Hotspots in High-Performance 3D-Integrated Processors. In HPCA, pages 193–204,
2007.

101. Y. Han et al. Temperature Aware Floorplanning. InWorkshop on Temperature Aware
Computing Systems, 2005.

102. K. Sankaranarayanan, S. Velusamy, M. Stan, and K. Skadron. A Case for Thermal-Aware
Floorplanning at the Microarchitectural Level. InJournal of Instruction-Level Parallelism,
8:1–16, 2005.

103. W-L. Hung et al. Thermal-Aware Floorplanning Using Genetic Algorithms. InISQED, 2005.
104. J. Cong, J. Wei, and Y. Zhang. A Thermal-Driven Floorplanning Algorithm for 3D-ICs.

InICCAD, pages 306–313, 2004.
105. W.-L. Hung et al. Interconnect and Thermal-Aware Floorplanning for 3D Microprocessors.

InISQED, pages 98–104, 2006.

Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 913

106. M. Healy et al. Multiobjective Microarchitectural Floorplanning for 2-D and 3-D ICs. InIEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(1), 2007.

107. M. Ekpanyapong et al. Thermal-aware 3D Microarchitectural Floorplanning. Georgia Institute
of Technology, 2004.

108. H. Mizunuma et al. Thermal Modeling and Analysis for 3D-ICs with Integrated Microchannel
Cooling. InIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
30(9):1293–1306, 2011.

109. M. M. Sabry et al. Greencool: An energy-efficient liquid cooling design technique for 3d
mpsocs via channel width modulation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 32(4):524–537, 2013.

110. R. Shah and A. London. Laminar flow forced convection in ducts. NewYork: Academic Press,
1978.

111. Y. Tan et al. Modeling and simulation of the lag effect in a deep reactive ion etching process.
Journal of Micromechanics and Microengineering, 16, 2006.

112. A. Leon et al. A power-efficient high-throughput 32-thread SPARC processor. ISSCC, 42(1):7
– 16, 2007.

113. M. M. Sabry, A. Sridhar, and D. Atienza. Thermal balancing of liquid-cooled 3d-mpsocs
using channel modulation. In DATE, 2012.

Thermal Modeling and Management of Storage
Systems in Data Centers

Xunfei Jiang, Ji Zhang, Xiao Qin, Meikang Qiu, Minghua Jiang
and Jifu Zhang

1 Introduction

Thermal modeling and management techniques have been widely investigated in re-
cent years. Prior studies show thermal management could increase energy efficiency
of data centers. The thermal impacts of CPUs on data storage have been extensively
studied; however, disk thermal models are still in their infancy. In our study, we aim
at building thermal models that take into account both CPUs and disks. We propose
an approach to developing thermal models to estimate a data node’s outlet temper-
ature based on its CPU and disk activities. Integrating our thermal model into an
energy consumption model, we can evaluate the total energy cost of a data center.

X. Jiang (�)
Department of Computer Science,
Earlham College, Richmond, IN, USA
e-mail: jiangxu@earlham.edu

J. Zhang · X. Qin
Department of Computer Science and Software Engineering,
Auburn University, Auburn, AL, USA
e-mail: jzz0014@auburn.edu

X. Qin
e-mail: xqin@auburn.edu

M. Qiu
Computer Engineering, San Jose State University, San Jose, CA, USA
e-mail: meikang.qiu@sjsu.edu

M. Jiang
College of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
e-mail: jmh@wtu.edu.cn

J. Zhang
Taiyuan University of Science and Technology, Taiyuan, China
e-mail: jifuzh@sina.com

© Springer Science+Business Media New York 2015 915
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_30

916 X. Jiang et al.

We apply our models to study the impact of various thermal management strategies
on energy efficiency.

Energy consumption of data centers has dramatically increased in the past few
years [1, 2]. Statistics show that computing cost coupled with cooling cost can take up
to 25 % of the total energy cost of data centers [3]. In improving energy efficiency of
data centers, much effort has been made to reduce the computing cost and cooling cost
of storage systems [4]. For example, a wide range of workload distribution strategies
have been proposed to reduce computing cost of data centers. Furthermore, recent
studies demonstrate that cooling cost can be lowered by reducing outlet temperatures
of storage nodes, balancing temperature distribution in data centers, or minimizing
heat recirculation.

In many use cases, massive amount of data must be transferred through networks.
These use cases include, but are not limited to, data backup (e.g., iDrive), file shar-
ing (e.g., dropbox), video on demand (e.g., YouTube), and photo management (e.g.,
Flickr). The energy cost of data transmission activities becomes a key issue in achiev-
ing high energy efficiency of data centers. For example, the worldwide monthly active
users of the social network Facebook increased from 100 million in the third quarter
of 2008 to 1155 million in the second quarter of 2013 [5]. There are over 72 million
links shared, 300 million photos uploaded, 2.5 billion status updated, and 2.7 billion
likes and comments are made every day [6]. Transferring such a huge amount of data
through the network inevitably results in high energy consumption. It is appealing
and challenging to improve energy efficiency of data centers by reducing the energy
consumption induced by data transmissions.

Contributions We propose a modeling approach to building thermal models used
to estimate outlet temperatures of a data node. Our thermal models are the driving
force behind the thermal-aware management strategies developed in this study. We
make the following three contributions.

• First, we investigate the thermal profile of a storage server. The profiling data
is collected by imposing CPU-intensive workload (i.e., Whetstone [7]) and I/O
intensive workload (i.e., Postmark [8]). When the CPU and disk are running under
various workload scenarios, we monitor CPU and disk temperatures in addition
to the server’s inlet and outlet temperatures.

• Second, we develop a thermal model to derive outlet temperatures from inlet
temperatures, CPU and disk workload.

• Third, we propose two thermal management strategies aiming to reduce energy
consumption of data storage systems.

Organization The rest of this chapter is organized as follows. The next section
presents prior studies and related studies. In Sect. 3, we conduct experiments to
investigate thermal behaviours of data nodes. Then, we introduce a thermal model for
data nodes and validate the thermal models against real-world measurement acquired
by temperature sensors. In Sect. 4, we propose new thermal-aware management
strategies to save energy consumption of data storage systems. Section 5 shows
the experimental results of our proposed strategies. Finally, Sect. 6 concludes the
chapter.

Thermal Modeling and Management of Storage Systems in Data Centers 917

2 Related Work

2.1 Efficient Data Centers

A study by DatacenterDynamics demonstrates that worldwide investment in data
centers in 2012 had increased by 22.1 % up to US$ 105 billion compared with 2011;
such an investment is going to grow by another 14.5 % to US$ 120 billion in 2013 [9].
Evidence shows that the energy consumption of data centers has increased rapidly
for the past few years [1, 2].

Growing attention has been paid to building energy-efficient data centers
[10, 11, 12]. One reason behind the striking energy consumption in data centers
is the rapid growth of computing and storage capacity in recent years. Two main
contributors to high energy cost of data centers are computing cost and cooling cost.
Computing cost refers to the energy consumption caused by computing infrastruc-
tures; cooling cost is the energy consumption of cooling systems that lower data
center temperatures.

Various energy conservation techniques have been developed to reduce comput-
ing energy consumption by redistributing workload or turning off the power of disks
or data nodes. For instance, MAID specifies a subset of disks as cache disks that are
in charge of processing I/O requests; MAID aggressively spins down other disks to
conserve energy [13]. The PDC (Popular Data Concentration) technique migrates fre-
quently accessed data to a subset of disks [14]; the other disks storing non-frequently
accessed data could be transitioned to the low-power mode. Both MAID and PDC
substantially reduce total energy consumption of data nodes. Another handful of
studies concentrate on energy-efficient resource management of data centers to min-
imize computing energy consumption. For example, Beloglazov and Buyya proposed
an energy-efficient resource management system for virtualized Cloud data centers
[15]. In this system, VMs are consolidated according to the utilization of resources,
and virtual network topologies are built between VMs and node thermal statuses to
save energy. Their technique reduces the operational costs of data centers and offers
required Quality of Service (QoS). Furthermore, Beloglazov et al. investigated re-
source provisioning and allocation algorithms for energy-efficient Cloud computing
[16]. The experimental results show that their framework has immense potential in
lowering energy cost and improving energy efficiency under dynamic workload sce-
narios. Aksanli et al. designed an adaptive data center job scheduler, which utilizes
prediction of solar and wind energy production [17]. Their scheduler improves the
energy efficiency by a factor of three.

An increasing number of techniques have been developed to reduce cooling cost
of data centers [18]. These effective strategies include managing airflow in data
centers, locating cooling systems close to IT equipments, dynamically controlling
thermal load of data centers, and maintaining high operating temperatures. Dynamic
thermal control is the most important scheme among these strategies. In prior studies,
thermal-aware workload management strategies have been proposed to reduce outlet
temperatures of data nodes [19], to minimize heat recirculation [20], and to decrease
node inlet temperatures [21]. For instance, XInt—a thermal-aware task scheduling

918 X. Jiang et al.

algorithm—was proposed to minimize heat recirculation by balancing workload
within a homogeneous data center [21]. The results show that cooling costs highly
depend on peak inlet temperatures, which can be effectively reduced by the MPIT-TA
task assignment policy. Simulation results reveals that MPIT-TA saves at least 20 %
of cooling energy.

2.2 Thermal Modeling

Studying thermal impacts of computing resources is the first step toward charac-
terizing thermal behaviors of data centers. The main components of a data node
include CPU, disk, memory and network card, among which CPU and disk are key
contributors to a data node’s outlet temperatures.

For modeling CPU temperature, HotSpot was proposed to accurately and quickly
predict CPU temperatures at the micro-architecture level [22]. HotSpot is based on an
equivalent circuit of thermal resistances and capacitances that correspond to micro-
architecture blocks and essential aspects of the thermal package. With HotSpot, in
order to model the thermal behavior of different CPU types, one has to develop the
micro-architecture and sophisticated models. Little work has been done to model
CPU temperatures at the coarse-grained level.

A few studies have been conducted to characterize the thermal patterns of disks.
Eibeck and Cohen proposed a thermal model to predict transient temperatures of
IBM’s fixed disk drive [23]. Tan et al. introduced a three-dimensional transient tem-
perature model, which estimates disk temperatures under frequent seeking operations
[24]. Gurumurthi et al. built a comprehensive thermal model that takes into account
a disk’s five components, including internal drive air, spindle motor, the base and
cover of the disk, the voice-coil motor, and disk arms. Results showed that their
model could predict disk temperatures very close to the real operating temperature
of the disk [25]. A few studies also investigated the impact of seek time and inter-seek
time on disks temperatures [26]; empirical findings indicated that either increasing
inter-seek time or decreasing seek time can lower disk temperatures. In our recent
study, we investigated disk temperatures as a function of CPU and I/O load; we
proposed thermal models for hard drive disks as well as solid state disks [27, 28].

In addition, approaches were proposed for coordinating processors and memory
to improve system performance and/or power efficiency during memory thermal
emergency [29]. An adaptive core gating (DTM-ACG) and coordinated DVFS
(DTM-CDVFS) schemes, as well as a thermal model, were designed to predict
DRAM temperatures. Experimental results show that these two schemes exhibit 6.7
and 15.3 % of improvements in terms of performance.

2.3 Thermal Management

Improving energy efficiency increasingly becomes important and challenging for
data centers. Strategies that reduce cooling cost of data centers make a great con-
tribution to advance energy-efficient data centers. Growing attention has been paid

Thermal Modeling and Management of Storage Systems in Data Centers 919

to thermal management of computing and storage resources in data centers [30].
Thermal-aware resource management relies on data placement or load distribution
policies to achieve balanced temperature distribution among data nodes.

Sharma et al. proposed a thermal-aware load-balancing framework to dynam-
ically distribute loads across data nodes in a data center [31]. Their simulation
results showed that equipment reliability can be substantially improved by placing
an asymmetric workload and uniformly distributing temperatures in the data center.

A handful of studies proposed temperature-aware load balancing strategies
[32, 33, 34]. For example, a simple yet effective way to ensure thermal control
is setting a customized threshold to limit CPU temperatures. If CPU temperatures
exceed the threshold, then CPU voltage [32] and frequency [33] are dynamically ad-
justed to conserve CPU energy consumption at the cost of increasing execution times.
Another research proposed an on-line thermal prediction model for 3D chips [34].
Then the peak temperature on the chip was reduced through novel task scheduling
algorithms. In this research, inter-iteration dependencies were considered, and simu-
lations showed that these algorithms could reduce the peak temperature up to 8.1 ◦C.
However, most existing thermal-aware load balancing strategies have not taken full
consideration of disks as a critical factor affecting data nodes’ outlet temperatures.

Predictive thermal management strategies have captured the attention of the re-
search community. A performance-effective dynamic thermal management system
called DTM for multimedia applications was designed to reduce energy consumption
[35]. DTM proposed by Srinivasan and Adve performs significantly better than the
existing reactive DTM algorithms. Ramos and Bianchini built a software structure -
C-Oracle - for Internet services [36]. C-Oracle chooses the best reaction by pre-
dicting the temperature and performance impacts of multiple thermal management
reactions. C-Oracle effectively deals with thermal emergencies without unnecessary
performance degradation. Very recently, we proposed a framework called PEAM
to reduce energy consumption induced by data transmissions [37]. At the heart of
PEAM is a model that predicts energy cost of various data transfer policies. Experi-
mental results show that given runtime information, PEAM is able to select the best
data transmission policy to minimize energy consumption.

3 Thermal Modeling

Thermal models for data centers can be generally divided into two camps: models
estimating thermal behaviors of CPU and disks; models characterizing outlet tem-
peratures of data nodes. Models capturing thermal impacts of disks on data nodes
are in their infancy. In this chapter, we conduct extensive experiments to illustrate
the thermal behaviors of disks and CPU as well as their impacts on data nodes.

The experimental testbed is equipped with a server containing a Celeron(R) 2.2
GHz CPU, 1.0 GBytes RAM, and a 160 GBytes SATA disk. Temperature sensors
and watchdog are applied to monitor the disk and inlet/outlet temperatures of the

920 X. Jiang et al.

Table 1 Testbed configurations
Hardware Software

1× Intel(R) Celeron(R) 450@2.2 GHz Ubuntu 10.04

1 × 1.0 GBytes of RAM Linux kernel 2.6.32

1× WD 160 GBytes Sata disk

(WD1600AAJS-75M0A0 [38])

server. The configuration parameters of the testbed are summarized in Table 1. The
ambient temperature is set to 23.2 ◦C.

3.1 CPU Thermal Model

We use the CPU’s interior temperature sensor to monitor CPU temperatures. To study
the thermal behavior of CPU, we first let the CPU remain in the idle state, in which
the CPU temperature is around 39∼40 ◦C. Then, we run the whetstone benchmark—
a float computation benchmark—to generate various experiment scenarios. In these
scenarios, we slightly modify the whetstone source code in a way to deliver multiple
CPU-utilization levels. More specifically, we set the number of iterations to 4000,
8000, 10000, 11900, 11950, and 12000, respectively. The CPU utilization in these
cases can be found in Fig. 1; the CPU temperatures are shown in Fig. 2.

Figure 1 reveals that when we change the number of iterations in whetstone, the
CPU utilization is relatively steady staying around specific values during the entire
testing phase. Figure 2 shows that the CPU temperature trend can be modeled into
three stages, namely, the heat up stage, the steady stage, and the cool down stage. In

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80

90

100

Time(\sec)

U
til

iz
at

io
n(

%
)

4000
8000
10000
11900
11950
12000

Fig. 1 CPU utilization under different scenarios

Thermal Modeling and Management of Storage Systems in Data Centers 921

0 500 1000 1500 2000 2500 3000 3500 4000 4500
39

40

41

42

43

44

45

46

47

48

49

50

51

Time(\sec)

Te
m

pe
ra

tu
re

(°C
)

4000
8000
10000
11900
11950
12000

Fig. 2 CPU temperature under different scenarios

Table 2 CPU utilizations and temperatures in the steady stage under various number of loops

Scenarios 1 2 3 4 5 6

Loop number 4000 8000 10000 11900 11950 12000

Average utilization (%) 13.8 26.7 33.1 65.2 77.9 90.5

Average temperature (◦C) 41.3 42.9 43.7 46.7 48 49.1

Max temperature (◦C) 48 50 49 49 51 50

Min temperature (◦C) 40 40 42 44 46 47

the heat up stage, the CPU temperature goes up very quickly until it reaches a peak
value. In the steady stage, CPU temperature is held constant since the CPU remains
busy.And in the cool down stage, CPU utilization is dropping; CPU temperature cools
down to its initial temperature, which is equal to the idle state’s CPU temperature.

Observing the above two figures, we conclude that increasing the number of
iterations leads to high CPU utilization, which in turn increases CPU temperature.
In all the experiments when CPU is active, CPU temperatures go up very quickly
in the first 600 s (or 10 min), and then CPU remains in the steady state. And CPU
temperature cooling speed is faster than its heat-up speed. We observe that the CPU
heat up time is about 10 min; the CPU cool down time is less than 10 min.

We summarize the detailed CPU utilizations and temperatures in Table 2. The
average CPU temperatures in the steady stage are 41.3, 42.9, 43.7, 46.7, 48.0, and
49.1 ◦C, respectively. The maximum CPU temperatures in the steady stage are any-
where between 48 and 51 ◦C, and the minimum CPU temperatures in the steady stage
are increasing when the number of iterations increases.

922 X. Jiang et al.

0 100 200 300 400 500 600
40

42

44

46

48

50

52

Time(\sec)

Te
m

pe
ra

tu
re

(°C
)

real measurement poly fit logarithmic fit

Fig. 3 CPU temperature model validation (12000LOOPS)

We use both the polynomial model and logarithmic model to capture the character-
istics of CPU temperatures during the heat up stage under various CPU utilizations.
Figure 3 shows a comparison of CPU temperature estimated by two types of mod-
els, where the number of iterations in the benchmark is set to 12000. The precision
error of the polynomial model is 1.87 %, which is higher than that of the logarith-
mic model (1.31 %). The logarithmic model fit the CPU temperature curve better
than the polynomial model when CPU is in the heat up stage. When it comes to
the other experiments, we also collect evidence showing that the logarithmic model
performs better than the polynomial model in most cases. Thus, we decide to choose
the logarithmic model to estimate CPU temperatures in our study.

3.2 Disk Thermal Model

To study disk thermal behaviors, we conduct a second group of experiments using
Postmark, which launches five I/O-intensive tasks. Before each task starts running,
the disk is sitting idle in the steady state, where the initial disk temperature is 27.62 ◦C.
The number of files accessed by Postmark is set to 100; file sizes are in a range
between 1.E+6 and 1.E+8 Byte. We alter disk utilization by varying the write block
size and buffer settings of Postmark. If the buffer of Postmark is enabled, then the
buffered stdio function calls should be used instead of the lower level raw system
calls [8]. All the other parameters of Postmark are set to their default values.

Thermal Modeling and Management of Storage Systems in Data Centers 923

Table 3 Postmark
configuration of experiments
on disk

Scenarios 1 2 3 4 5

Buffer enabled N N N N Y

Write block size(KB) 16 32 64 128 256

The disk utilization is periodically assessed by the iostat utility program. The
disk temperature is monitored by a temperature sensor embedded on the disk. The
experiment settings are summarized in Table 3.

The disk utilization and temperature in the five different experimental settings are
shown in Figs. 4 and 5.

Figure 4 suggests that a large write block size leads to high disk utilization. As
shown in Fig. 5, the disk temperature trend is also comprised of three stages (i.e.,
the heat up, steady, and cool down stages) when Postmark is running on the testbed
under various settings.

Table 4 summarizes the average disk utilization in these five experiments. The
results indicate that we are able to control disk utilization by choosing an appropriate
write block size with Postmark.

We use the polynomial model and logarithmic model to fit the disk temperatures
during the heat up stage under different disk utilizations. Figure 6 shows disk tem-
perature in the heat up stage under the utilization of 80.57 % estimated by the two
models. A comparison between the modeled and measured temperatures also can be
found in Fig. 6. The precision errors of the polynomial model and the logarithmic
model are 0.61 and 0.21 %, respectively. Here, we observe that the logarithmic model
outperforms the polynomial model. The other four experiments also confirm that the

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

70

80

90

100

110

Time(\sec)

U
til

iz
at

io
n(

%
)

w16
w32
w64
w128
withbuf

Fig. 4 Disk utilization with various write block size

924 X. Jiang et al.

0 20 40 60 80 100 120
27.2

27.4

27.6

27.8

28

28.2

28.4

28.6

28.8

29

29.2

Time(\min)

Te
m

pe
ra

tu
re

(°C
)

w16
w32
w64
w128
withbuf

Fig. 5 Disk temperature with various write block size

0 5 10 15 20 25 30
27.2

27.4

27.6

27.8

28

28.2

28.4

28.6

Time(\min)

Te
m

pe
ra

tu
re

(°C
)

Real Measurement Logarithmic Fit Polynomial Fit

Fig. 6 Disk temperature model validation (Write block size: 128 Byte)

logarithmic model is superior to the polynomial model in terms of estimating disk
temperatures.

3.3 Thermal Model of Data Nodes

In previous subsection, we have studied the thermal behaviors of CPUs and disks.
Now, we are in a position to investigate the impacts of CPUs and disks on temperatures

Thermal Modeling and Management of Storage Systems in Data Centers 925

Table 4 Impact of write
block size on disk utilization

Scenarios 1 2 3 4 5

Average Util(%) 14.24 28.91 53.49 80.57 100

0 20 40 60 80 100 120
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Time(\min)

In
le

t/o
ut

le
t T

em
pe

ra
tu

re
 D

iff
er

en
ce

(°C
) Real measurement

Estimate value

Fig. 7 Outlet temperature model validation [28]

of data nodes in a data center. A recent study [28] investigated the thermal behavior
of two types of disks, the model of which was proposed as a linear one (i.e., Tout let =
Tinlet + α ∗ TCPU + β ∗ Tdisk + γ) to predict outlet temperatures. A comparison of
the modeled outlet temperatures and the real measured ones can be found in Fig. 7.
In our study, we apply the outlet temperature model in our thermal management
process.

3.4 Evaluation of Temperature Models

To verify the CPU, disk and outlet temperature models, we run the WordCount
benchmark counting words of files randomly generated by Postmark. The total size
of these files is around 10 GB. Figure 8 shows CPU and disk utilization of the testbed
running WordCount. We observe that the CPU and disk utilization are relatively
steady during the course of the benchmark’s execution. The average CPU and disk
utilizations are 92.48 and 18.6 %, respectively.

We built two models to predict CPU and disk temperatures. Figures 9 and 10
show the accuracies of the two models by comparing the modeled CPU and disk
temperatures with the measured ones. The precision errors of the two models are as
low as 1.52 and 0.48 %, respectively.

926 X. Jiang et al.

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

100

Time (\sec)

U
til

iz
at

io
n

(%
)

cpu util
disk util

Fig. 8 CPU and disk utilizations for running WordCount

0 100 200 300 400 500 600
40

42

44

46

48

50

52

54

56

Time(\sec)

Te
m

pe
ra

tu
re

(°C
)

real measurement
estimate value

Fig. 9 CPU temperature model validation for WordCount

We also calculate the precision error of the outlet temperature model by ob-
taining measured temperatures and comparing them with the modeled ones. The
experimental results show that the precision error of our outlet temperature is 3.77 %.

4 Thermal Management Strategies

Traditional thermal management strategies are focused on scheduling tasks in a
way that temperatures of data nodes or components of data nodes are kept under a
threshold. Most of these strategies distribute the load according to CPU temperatures,
because processors are a top contributor to outlet temperatures of data nodes.

Thermal Modeling and Management of Storage Systems in Data Centers 927

0 5 10 15 20 25 30
27

27.5

28

28.5

29

Time(\min)

Te
m

pe
ra

tu
re

(°C
)

real measurement
estimate value

Fig. 10 Disk temperature model validation for WordCount

Our recent study shows that different combinations of CPU and disk workload
lead to various thermal behaviors of data nodes [27]. In the previous section we ob-
serve that CPU and disk temperatures are related to their utilizations. With the CPU
and disk temperature models in place [28], one can derive CPU and disk temperatures
from resource utilization. Applying the outlet temperature model, a thermal man-
agement module is enabled to estimate data nodes’ outlet temperatures. The thermal
behaviors of disks have been investigated in prior studies; however, incorporating
disk thermal models into task scheduler and data transmission mechanisms has not
been addressed. In this section, we propose a task scheduling scheme and a predic-
tive thermal manager. Both approaches incorporate CPU and disk activities into the
thermal management.

4.1 Task Scheduling

We propose a thermal-aware task scheduling scheme to dispatch CPU-intensive or
I/O-intensive tasks in a way to minimize negative thermal impact. Our preliminary
results (see details in [27]) show that scheduling workloads could save energy con-
sumption caused by both processors and disks. To demonstrate the strength of our
scheme, we create workload scenarios that exhibit intensive CPU and disk load.
Our design goal is to ensure that outlet temperatures do not exceed a predetermined
threshold while minimizing the total energy consumption of the data storage systems.

Our thermal-aware scheduling policy follows three rules to dispatch tasks:

• to place as many data nodes as possible into the active mode,
• to make active data nodes run as busy as possible, and
• to ensure that each data node’s outlet temperature does not exceed a threshold.

928 X. Jiang et al.

Fig. 11 The system framework of the thermal-aware task scheduler

Figure 11 plots the system framework of our thermal-aware task scheduler. In this
framework, a storage system is comprised of n data nodes, a thermal-aware task
scheduler that assigns tasks to the data nodes. At the heart of each data node, there
is a sub-system, in which a monitor is responsible for detecting utilization and tem-
peratures of multiple components (e.g., CPU and disks) in the data node. The task
scheduler distributes CPU and I/O load so that data nodes make an effort to complete
tasks in a short time period while keeping the outlet temperatures below a threshold.
Under heavy workload conditions, our policy strives to keep as many nodes active as
possible to finish tasks. As a result, the scheduling policy creates ample opportunities
to transit nodes into the low-power mode to conserve energy after all the tasks are
aggressively completed by the active nodes.

The task scheduler maintains the following two lists:

• a global waiting task list and
• a candidate node list

The global waiting task list holds pending tasks assigned to the storage system. The
candidate node list maintains a group of data nodes that are either sitting idle or
underutilized.

In the global task list, the tasks are arranged in the first-in-first-out order. To reduce
the average response time of tasks, the scheduler may give higher priority to small
tasks. Please note that other scheduling policies (e.g., small task first and earliest
deadline first) can be seamlessly incorporated into our scheduling framework. The
scheduling system monitors the behaviors of all data nodes, and assigns incoming
tasks in the global task list to candidate data nodes. Before assigning a task to a

Thermal Modeling and Management of Storage Systems in Data Centers 929

specific data node, the monitor on each data node fetches runtime information, and
temperature models are applied to estimate the thermal impacts of tasks on a list of
candidate data nodes. Tasks are assigned to a data node if the tasks will not make the
node a hot spot.

Three lists that are managed by the sub-scheduling system on each data node
include:

• a waiting list,
• a ready list, and
• a running list.

The waiting list holds tasks that must be executed on this particular data node, the
ready list contains tasks that are ready to run on the data node. The running list
maintains tasks that are running on the node. The sub-scheduling system not only
manages runtime information of all the running tasks, but also launches tasks stored
in the ready list on each node. When the ready list becomes empty, tasks are moved
from the waiting list into the ready list under the condition that new ready tasks
placed in the ready list do not push the node’s outlet temperature to a high level
exceeding the specified threshold.

Upon the arrival of a new task, the scheduler first checks if the task has any
preferred nodes (i.e., the task must be executed on a particular data nodes due to data
availability or hardware constraints). If the task has no preferred node, the task will
be pushed into the global waiting task list. Then, the system dispatches tasks in the
global waiting task list to the list of candidate data nodes. After a task in the global
waiting list has been dispatched to a data node, the task is moved from the global
waiting list to the node’s ready list.

If a task has preferred node, the system will check the monitoring information
provided by the target data node. In addition, the system estimates the CPU and
disk utilization induced by the new task. With the thermal models (see the previous
section) in place, the scheduler predicts outlet temperature impact to be made by
this new task. If the outlet temperature does not top the threshold, the task will be
placed into the ready list of the data node; the task is ready to be executed. In case of
multiple ready tasks, the round robin algorithm is used to offer all the ready tasks with
shared CPU utilization. If the expected outlet temperature exceeds the threshold, the
new task will be moved to the waiting list of the data node. Tasks in the waiting list
will not be moved to the ready list until the sub-scheduling system confirms that the
waiting tasks are not going to drive the outlet temperature to exceed the threshold.

When the waiting list of a data node is so long that tasks could not be finished
within an expected time period, the scheduler will migrate some of these waiting
tasks from the current node to other candidate data nodes with lighter load. Such
a migration policy follows the following rules to determine candidate tasks to be
migrated to other nodes:

• choose CPU-intensive tasks first, and then consider I/O-intensive tasks,
• choose tasks, input data of which could be accessed in the candidate data nodes,

and
• choose tasks, input data of which is small.

930 X. Jiang et al.

The first rule aims to migrate CPU-intensive and I/O-intensive tasks to quickly allevi-
ate the burden of the local node. The second and third rules help in reducing migration
overhead by minimizing the amount of data to be migrated. After choosing candidate
tasks and their migration destinations, the scheduling system checks the destination
nodes’ data availability. If the destination nodes have input data of migrated tasks,
then the tasks will be moved directly to the waiting list of the destination nodes. If
the data is not available on the destination nodes, the system will have to migrate the
input data to the destination data nodes. While the data is being migrated, tasks will
be moved to the destination nodes’ waiting lists.

4.2 Predictive Thermal-Aware Data Transmission

Data transmission plays an important role in reducing operational cost in data centers.
A data transmission procedure is composed of the following three phases:

• the pre-transmission phase,
• the transmission phase, and
• the after-transmission phase.

In the first phase, data are read from disks and cached on source data nodes. Then in
the second phase, data are transferred from the source data nodes to destination data
nodes through networks. In the last phase, data are written down to disks residing in
the destination nodes.

Frequent data transmissions can have significant impacts on energy consumption
of data centers. Data placement strategies and data replica management are pro-
posed to reduce energy cost caused by data transmissions. Compressing data before
transmission is effective in lowering energy consumption of data transmission. In
one of our preliminary studies, we have investigated thermal behaviors of a data
compression mechanism [37]. Our predictive thermal-aware data transmission sys-
tem proposed in this section aims to reduce data centers’ energy cost by minimizing
adverse thermal impacts of data transmissions.

We implement the following three data transmission strategies in our predictive
thermal-aware management system. We also study the impacts of various types of
data on these data transmission policies.

• direct transmission,
• archived transmission, and
• compressed transmission.

In the direct transmission (or DT for short) policy, data are directly transferred over
the network without being archived or compressed. During the transmission phase,
the size of transferred files remain unchanged.

In the archived transmission (orAT for short) policy, data are archived into a single
file in the pre-transmission phase before being transferred through the network. After

Thermal Modeling and Management of Storage Systems in Data Centers 931

Fig. 12 The framework of the predictive thermal-aware management system (PTMS)

the archived file is received by a destination data node, the single file must be un-
archived on a destination data node before being written to the node’s disk in the
after-transmission phase.

In the compressed transmission (or CT for short) policy, data are compressed into
a single file in the pre-transmission phase. Then, the compressed file is transferred
through the network. Finally, the file is decompressed by the receiving node before
being stored to the node’s disk during the after-transmission phase.

Compared with the direct data transmission policy, the compressed data trans-
mission policy substantially reduces the amount of data being transferred. However,
compressing data takes processing time and power, which in turn drives CPU
utilization of the source node very high.

In data centers of large enterprises (e.g., Google, Amazon, and Facebook), the
amount of data downloaded from the data centers is much larger than that of data
uploaded to the data centers. Downloading processes are involved with transferring
data from nodes in a data center to its clients. As such, in this study we are focusing
on reducing energy cost of data transmission from the perspective of data centers.

Figure 12 illustrates the framework of predictive thermal-aware management sys-
tem or PTMS for short. This system is centered around a storage system equipped
with n data nodes. The monitor module gathers the runtime information pertinent to
data transmissions, file metadata, and storage nodes (e.g., temperatures and utiliza-
tions). When a data transmission request is made, the module forwards the request
to the data transmission method selector, which chooses the most thermal friendly
and energy-efficient policy to transfer the requested data.

The method selector not only maintains the candidate data-transfer strategies, but
also judiciously chooses the best strategy to reduce energy cost by minimizing neg-
ative thermal impacts. Figure 12 shows that upon the arrival of a data-transmission
request, the method selector forwards the request along with all the candidate strate-
gies to the energy predictor. According to energy cost estimated by the predictor, the
method selector informs the data transmission module of the best strategy that will
achieve the best energy efficiency during the data transfers.

932 X. Jiang et al.

Fig. 13 The framework of the energy predictor module. (COP: Coefficient of Performance)

The energy predictor, as shown in Fig. 13, estimates the energy cost of data
transmissions handled by a candidate strategy. In our predictive thermal-aware data
transmission system, the predictor is focused on the energy consumption that includes
both computing energy cost and cooling cost of data nodes in the storage system.
Hence, before estimating energy cost, the data transmission type should be specified.
Three types of data transmission from the perspective of data centers are upload,
download, and data transmissions. In the energy predictor, we adopt the performance
models and energy models employed in PEAM [37].

5 Results

5.1 Task Scheduling

To evaluate the performance of our task scheduling system, we conduct two groups of
experiments, which resemble various real-world workload scenarios. Table 1 shows
the parameters of a small-scale storage cluster of four data nodes. And throughout
these experiments, we set the outlet temperature threshold for each data node to
27 ◦C.

For tasks without any preferred data nodes, it is flexible for our task scheduler to
dispatch the tasks to any candidate nodes. While selecting the best candidate data node
to assign tasks, the scheduler should address the following issue. The scheduler may
assign tasks to the least loaded data nodes or data nodes with the highest utilization.
For comparison purposes, we consider the following three scheduling policies:

• Distribute Evenly (DE): to evenly schedule tasks to all the data nodes in the
first-in-first-out order, thereby well balancing the load among the nodes.

• Distribute based on Utilization (DU): to schedule tasks to as many as data nodes
while keeping active nodes’ utilization at a high level.

• Distribute to Minimum active Nodes (DMN): to schedule tasks in a way to
minimize the number of active data nodes.

Thermal Modeling and Management of Storage Systems in Data Centers 933

Table 5 Task configurations of CPU-intensive workloads

Tasks Task 1 Task 2 Task 3 Task 4 Task 5

LOOPS(#) 4000 8000 10000 11820 11850

Avg Util(%) 13 25 32 44 52

Tasks Task 6 Task 7 Task 8 Task 9 Task 10

LOOPS(#) 11900 11930 11980 12020 12050

Avg Util(%) 64 72 85 96 100

Table 6 Task scheduling schemes for CPU-intensive workload

Strategies Node 1 Node 2 Node 3 Node 4

DE Task 1, 5, 9 Task 2, 6, 10 Task 3, 7 Task 4, 8

DU Task 1, 8, 9 Task 2, 7, 10 Task 3, 6 Task 4, 5

DMN Task 1, 2, 3, 8 Task 4, 5, 9 Task 6, 10 Task 7

5.1.1 CPU-Intensive Workload

In the first group of experiments, we consider CPU-intensive workload. A total of
ten CPU-intensive tasks are simultaneously running Whetstone on the cluster. These
CPU-intensive tasks lead to various CPU utilizations. The configuration and average
utilization for each task are summarized in Table 5.

Let us consider a baseline task scheduler that assigns all tasks to a single data
node, thereby making use of the least number of active data nodes. We conduct
experiments to assign all the ten tasks to one of the four available data nodes, and
the tasks are sequentially executed on the node. The average time to complete the
ten tasks scheduled by this baseline approach is 6131 s.

Table 6 lists the three task scheduling strategies under the CPU-intensive workload
conditions. The DE strategy evenly assigns tasks to the four data nodes. For instance,
on data node 1, tasks 1 and 5 are concurrently executed; task 9 is running after the
completion of task 1 and 5. When the DU strategy is in charge of the scheduling,
tasks 1 and task 8 are executed simultaneously on node 1, where the CPU utilization
is as high as 98 %. After completing tasks 1 and 8, node 1 starts running task 9. With
the DU strategy in place, each node keeps a high CPU utilization, while ensuing
that its CPU is not overloaded. When it comes to the DMN strategy, new tasks are
scheduled to minimize the number of active data nodes. Thus, tasks 1, 2, and 3 are
all assigned to data node 1.

Figure 14 reveals the performance of the three scheduling strategies. Execution
times are referred to as time spent in completing all submitted tasks; active times
are defined as the accumulation of time intervals in which the four data nodes are
staying in the active state. Experimental results show that the outlet temperatures of
the data nodes do not exceed the specified threshold.

934 X. Jiang et al.

DE DU DMN Baseline
0

1000

2000

3000

4000

5000

6000

7000

8000

Task Scheduling Strategies

Ti
m

e
(s

)
Execution Time
Active Time

Fig. 14 Execution time and active time of data nodes

DE DU DMN Baseline
0

2000

4000

6000

8000

10000

12000

14000

Task Scheduling Strategies

E
ne

rg
y

C
on

su
m

pt
io

n
(W

)

Fig. 15 Energy consumption of the four scheduling strategies

Figure 15 compared the baseline scheme with the three evaluated strategies in
terms of energy consumption.

Among all the four scheduling strategies, the baseline one exhibits the longest
execution time and consumes the most energy. By comparing the three evaluated
strategies, the DMN strategy achieves the best performance, whereas DE delivers
the highest energy efficiency. For example, DE saves the energy consumption of
the other strategies by 3.8 %, and DE also conserves the energy consumption of the

Thermal Modeling and Management of Storage Systems in Data Centers 935

Table 7 Configurations of I/O-intensive tasks

Tasks Task 1,2 Task 3,4 Task 5,6 Task 7,8 Task 9,10

Write block size (Byte) 16 32 64 128 256

Avg Util(%) 14 29 54 81 100

Table 8 Task schedulers for I/O-intensive workload

Strategies Node 1 Node 2 Node 3 Node 4

DE Task 1, 5, 9 Task 2, 6, 10 Task 3, 7 Task 4, 8

DU Task 1, 8, 9 Task 2, 7, 10 Task 3, 6 Task 4, 5

DMN Task 1, 2, 3, 4 Task 5, 6 Task 7, 9 Task 8, 10

baseline scheme by 28.9 %. Thus, we could conclude that the DE strategy is the best
scheduler for CPU-intensive load on storage clusters.

5.1.2 I/O-Intensive Workloads

In the second group of experiments, we assigned ten I/O-intensive tasks to the cluster.
Each task generates 50 files and issues 200 transactions. We change the write block
size to vary the disk utilization of each data node. The characteristics of these I/O-
intensive tasks are shown in Table 7.

A baseline scheme assigns all the tasks to a single data node. We compare the
aforementioned scheduling strategies with the baseline one. Table 8 shows the three
task scheduling schemes.

Figure 16 shows the performance of the evaluated scheduling strategies. The
results reveal that regardless of the tested schedulers, the outlet temperatures are kept
below the pre-defined threshold. The energy consumption of the cluster managed by
the three strategies compared with the baseline one can be found in Fig. 17.

Not surprisingly, the baseline strategy is outperformed by the three other sched-
ulers in terms of execution time and energy consumption. The utilization-based
scheduler is superior to the other three schemes in performance. The most energy
efficient scheduler is the one (i.e., DE) that evenly distributes the load across all the
four data nodes; this energy-efficient scheduler save the energy consumption of the
baseline and the other schemes by 10.8 and 3.4%, respectively. Again, DE is the best
scheduler for I/O-intensive workload.

In summary, under both CPU-intensive and I/O-intensive workload conditions,
evenly distributing load across active data nodes is very energy efficient.

5.2 Predictive Thermal-Aware Management System

Massive amount of data are uploaded to and downloaded from data centers. For
instance, 72 h of video are uploaded to Youtube every minute; 350 GB data are

936 X. Jiang et al.

DE DU DMN Baseline
0

1000

2000

3000

4000

5000

6000

7000

Task Scheduling Strategies

Ti
m

e
(s

)
Execution Time
Active Time

Fig. 16 Execution time and active time of data nodes under I/O-intensive workload

DE DU DMN Baseline
0

2000

4000

6000

8000

10000

12000

Task Scheduling Strategies

E
ne

rg
y

C
on

su
m

pt
io

n
(W

)

Fig. 17 Energy consumption of four different scheduling strategies under I/O-intensive workload

uploaded to Facebook every minute; 15,000 tracks are downloaded from iTunes
every minute [39]. Uploading and downloading a large amount of data consume
considerable energy and time; even worse, energy cost of data centers is rising
dramatically with the increasing amount of data.

Thermal Modeling and Management of Storage Systems in Data Centers 937

Table 9 Testbed
configurations Node 1 Node 2

CPU Intel(R) Celeron(R) 450@2.2GHz

Network 1 GigaBit Ethernet network card

Disk WD-160GB Sata disk([38])

Operating Ubuntu 10.04(lucid) Ubuntu 10.04(lucid)

System Linux kernel 2.6.32-43 Linux kernel 2.6.32-38

To evaluate the energy efficiency of our predictive thermal-aware management
system designed for data centers, we conduct two sets of experiments. Table 1
summarizes the testbed used in the experiments:

In the first group of experiments, a pair of data nodes are transferring a dataset that
contains hundreds of ASCII files generated by Postmark. The dataset’s size is 1 GB;
the file size of each is anywhere between 1 to 100 M. Among all the transferred files,
small files are accessed more frequently than large files. It is important to study the
energy consumption caused by transferring small files. For example, a report shows
that there are 500 million files saved every 48 h on Dropbox as of May, 2012 [40].
A majority of Dropbox users use their free space to store small files. In most cases,
uploaded files to the Dropbox servers are small in size.

We compare the performance of the four data transmission strategies (i.e., DT,
AT, CT, and PTMS) transferring the two datasets. Figure 18 shows the energy cost
of Node 1 that transfers the first dataset to Node 2. We observe that, compared to the
other strategies, AT consumes less energy for both nodes 1 and 2 when the ASCII

DT AT CT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Transmission Strategies

E
ne

rg
y

C
os

t (
J)

Node 1
Node 2

Fig. 18 Energy cost of moving the ASCII files

938 X. Jiang et al.

DT AT CT PTMS
0

0.5

1

1.5

2

2.5

3

3.5
x 104

Transmission Strategies

E
ne

rg
y

C
os

t (
J)

upload
download
movement

Fig. 19 Energy cost of the data transmission strategies transferring the ASCII files

files are transmitted. CT is the least energy-efficient scheme among all the evaluated
strategies.

Now we are in a position to evaluate the energy efficiency of our PTMS. Figure 19
shows the energy cost of the four strategies under different transmission types. Not
surprisingly, CT consumes more energy transferring this dataset than the other strate-
gies. This is mainly because data compression or/and decompression requires extra
CPU time and energy. Regardless of the transmission types, PTMS is the best one
among all the tested strategies.

To resemble real-world cases where large files are transferred, in the second
experiment group we choose to use a dataset of 60 GB Human Genome sequences.
This dataset is available at NIH’s (National Institutes of Health) NCBI website1.
Each sequence file contains the DNA sequence of an entire chromosome. Most of
the files in this dataset are larger than 3 GB.

Figure 20 shows the energy incurred by transferring the Human Genome dataset
between nodes 1 and 2.

Figure 21 depicts the energy cost of transferring the Human Genome dataset with
the four strategies under different transmission type.

We observe that regardless of data nodes, AT and PTMS outperform the other two
strategies. The experimental results suggest that PTMS noticeably conserves energy
for all the three data transmission types.

1 ftp://ftp.ncbi.nih.gov/genomes/H_sapiens.

Thermal Modeling and Management of Storage Systems in Data Centers 939

DT AT CT
0

5

10

15
x 105

Transmission Strategies

E
ne

rg
y

C
os

t (
J)

Node 1
Node 2

Fig. 20 Energy cost of transferring the Human Genome dataset between two nodes

DT AT CT PTMS
0

0.5

1

1.5

2

2.5
x 106

Transmission Strategies

E
ne

rg
y

C
os

t (
J)

upload
download
movement

Fig. 21 Energy cost of transferring the Genome dataset under various data transmission type

6 Conclusion

Much attention has been paid to building energy-efficient data centers. Energy con-
servation techniques applied to data centers are classified into two categories: the
first group is focused on reducing computing infrastructure energy consumption; the

940 X. Jiang et al.

second group aims to reduce the cooling cost of data centers. For example, energy-
aware task scheduling policies were proposed to redistribute workload in order to
minimize the energy consumption of computing infrastructures. Thermal manage-
ment strategies were proposed to reduce data centers’ cooling cost. Recent studies
show that cooling cost can be decreased by either reducing outlet temperatures of data
storage nodes or minimizing heat recirculation in a data center. Thermal models play
a significant role in thermal management. Unfortunately, most traditional thermal
models do not holistically consider both CPUs and disks - an important contributor
to outlet temperatures. In this study, we developed a thermal modeling approach
that leads to new models applied to investigate thermal impacts of both CPUs and
disks in data nodes. We demonstrated how to use our models to estimate the outlet
temperatures of data nodes based on CPU and disk utilization.

We incorporated our thermal models into two thermal management strategies,
which make data nodes thermal and energy friendly. The first strategy is integrated
into a scheduler to dispatch and redistribute I/O tasks in a way to ensure that all
the data nodes’ outlet temperatures are below a threshold. The second one is a
thermal-aware data transmission strategy, where data transfers are divided into three
camps: uploads, downloads, and migrations within a data center. We implemented the
thermal-aware data transmission strategy in a predictive thermal-aware management
system or PTMS, which is conducive to estimating data nodes’ energy consumption
that guides the management of data transmissions. Among all the candidate data
transmission policies, PTMS dynamically chooses the most appropriate one that
meets the needs of a wide range of data-intensive applications coupled with various
data transmission patterns.

Acknowledgments This research was supported by the U.S. National Science Foundation
under Grants CCF-0845257 (CAREER), CNS-0917137 (CSR), CNS-0757778 (CSR), CCF-
0742187 (CPA), CNS-0831502 (CyberTrust), CNS-0855251 (CRI), OCI-0753305 (CI-TEAM),
DUE-0837341 (CCLI), and DUE-0830831 (SFS). Meikang Qiu’s research was support by NSF
CNS-1359557 and NSFC 61071061.

References

1. P. Thibodeau, “Data centers use 2 % of U.S. energy, below forecast,” 2011. [Online]. Available:
http://blogs.computerworld.com/18738/data_centers_use_2_of_u_s_energy_below_forecast.

2. IDC, “Annual it spending by Western European utilities to reach 12.7 billion by 2017,
says IDC energy insights,” 2013. [Online]. Available: http://www.idc-ei.com/getdoc.jsp?
containerId=prUS24251013.

3. M. Baile, “The economics of virtualization: Moving toward an application-based
cost mode,” 2009. [Online]. Available: http://www.vmware.com/files/pdf/Virtualization
-application-based-cost-model-WP-EN.pdf.

4. J. He, “Datacenter power management: Power consumption trend,” 2008. [Online]. Avail-
able: http://communities.intel.com/community/datastack/blog/2008/02/20/datacenter-power-
management-power-consumption-trend.

http://blogs.computerworld.com/18738/data_centers_use_2_of_u_s_energy_below_forecast
http://www.idc-ei.com/getdoc.jsp?containerId=prUS24251013
http://www.idc-ei.com/getdoc.jsp?containerId=prUS24251013
http://www.vmware.com/files/pdf/Virtualization-application-based-cost-model-WP-EN.pdf
http://www.vmware.com/files/pdf/Virtualization-application-based-cost-model-WP-EN.pdf
http://communities.intel.com/community/datastack/blog/2008/02/20/datacenter-power-management-power-consumption-trend
http://communities.intel.com/community/datastack/blog/2008/02/20/datacenter-power-management-power-consumption-trend

Thermal Modeling and Management of Storage Systems in Data Centers 941

5. Statista, “Number of monthly active Facebook users worldwide from 3rd quarter 2008 to
2nd quarter 2013 (in millions),” 2013. [Online]. Available: http://www.statista.com/statistics/
264810/number-of-monthly-active-facebook-users-worldwide/.

6. “What happens on Facebook in each day?” 2012. [Online]. Available: http://visual.ly/what-
happens-facebook-each-day.

7. “Whetstone,” http://www.netlib.org/benchmark/whetstones.
8. J. Katcher, “Postmark: A new file system benchmark,” System, no. 3022, pp. 1–8, 1997.

[Online]. Available: http://www.netapp.com/tech_library/3022.html.
9. P. Jones, “Industry census 2012: Emerging data center markets,” 2012. [Online]. Avail-

able: http://www.datacenterdynamics.com/blogs/industry-census-2012-emerging-data-center-
markets.

10. Y. Lee and A. Zomaya, “EnglishEnergy efficient utilization of resources in cloud computing
systems,” EnglishThe Journal of Supercomputing, vol. 60, no. 2, pp. 268–280, 2012. [Online].
Available: http://dx.doi.org/10.1007/s11227-010-0421-3.

11. Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, and C. Hyser,
“Renewable and cooling aware workload management for sustainable data centers,” SIG-
METRICS Perform. Eval. Rev., vol. 40, no. 1, pp. 175–186, Jun. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2318857.2254779.

12. M.AlAssaf, X. Jiang, M.Abid, and X. Qin, “EnglishEco-storage: A hybrid storage system with
energy-efficient informed prefetching,” EnglishJournal of Signal Processing Systems, vol. 72,
no. 3, pp. 165–180, 2013. [Online]. Available: http://dx.doi.org/10.1007/s11265-013-0784-9.

13. D. Colarelli and D. Grunwald, “Massive arrays of idle disks for storage archives,” in Pro-
ceedings of the 2002 ACM/IEEE conference on Supercomputing, ser. Supercomputing ’02.
Los Alamitos, CA, USA: IEEE Computer Society Press, 2002, pp. 1–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=762761.762819.

14. E. Pinheiro and R. Bianchini, “Energy conservation techniques for disk array-based
servers,” in Proceedings of the 18th annual international conference on Supercomput-
ing, ser. ICS ’04. New York, NY, USA: ACM, 2004, pp. 68–78. [Online]. Available:
http://doi.acm.org/10.1145/1006209.1006220.

15. A. Beloglazov and R. Buyya, “Energy efficient resource management in virtualized cloud data
centers,” in Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, ser. CCGRID ’10. Washington, DC, USA: IEEE Computer Society,
2010, pp. 826–831. [Online]. Available: http://dx.doi.org/10.1109/CCGRID.2010.46

16. A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing,” Future Genera-
tion Computer Systems, vol. 28, no. 5, pp. 755–768, 2012, <ce:title>Special Sec-
tion: Energy efficiency in large-scale distributed systems</ce:title>. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X11000689.

17. B. Aksanli, J. Venkatesh, L. Zhang, and T. Rosing, “Utilizing green energy prediction to
schedule mixed batch and service jobs in data centers,” SIGOPS Oper. Syst. Rev., vol. 45, no.
3, pp. 53–57, Jan. 2012. [Online]. Available: http://doi.acm.org/10.1145/2094091.2094105.

18. “7 strategies to optimize data centre cooling,” http://www.biztechmagazine.com/article/2011/
01/keep-your-cool/.

19. J. Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making scheduling “cool”: temperature-
aware workload placement in data centers,” in Proceedings of the annual conference on USENIX
Annual Technical Conference, ser. ATEC ’05. Berkeley, CA, USA: USENIXAssociation, 2005,
pp. 5–5. [Online]. Available: http://dl.acm.org/citation.cfm?id=1247360.1247365.

20. Q. Tang, S. Gupta, and G. Varsamopoulos, “Thermal-aware task scheduling for data cen-
ters through minimizing heat recirculation,” in Cluster Computing, 2007 IEEE International
Conference on, sept. 2007, pp. 129–138.

http://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
http://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
http://visual.ly/what-happens-facebook-each-day
http://visual.ly/what-happens-facebook-each-day
http://www.datacenterdynamics.com/blogs/industry-census-2012-emerging-data-center-markets
http://www.datacenterdynamics.com/blogs/industry-census-2012-emerging-data-center-markets
http://www.biztechmagazine.com/article/2011/01/keep-your-cool/
http://www.biztechmagazine.com/article/2011/01/keep-your-cool/

942 X. Jiang et al.

21. Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, “Energy-efficient thermal-aware task schedul-
ing for homogeneous high-performance computing data centers: A cyber-physical approach,”
IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 11, pp. 1458–1472, Nov. 2008. [Online].
Available: http://dx.doi.org/10.1109/TPDS.2008.111.

22. K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan,
“Temperature-aware microarchitecture: Modeling and implementation,” ACM Trans. Archit.
Code Optim., vol. 1, no. 1, pp. 94–125, Mar. 2004. [Online]. Available: http://doi.acm.org/
10.1145/980152.980157.

23. P. Eibeck and D. Cohen, “Modeling thermal characteristics of a fixed disk drive,” Components,
Hybrids, and Manufacturing Technology, IEEE Transactions on, vol. 11, no. 4, pp. 566–570,
dec 1988.

24. C. Tan, J. Yang, J. Mou, and E. Ong, “Three dimensional finite element model for transient
temperature prediction in hard disk drive,” in Magnetic Recording Conference, 2009. APMRC
’09. Asia-Pacific, jan. 2009, pp. 1–2.

25. S. Gurumurthi, A. Sivasubramaniam, and V. K. Natarajan, “Disk drive roadmap from the
thermal perspective: A case for dynamic thermal management,” SIGARCH Comput. Ar-
chit. News, vol. 33, no. 2, pp. 38–49, May 2005. [Online]. Available: http://doi.acm.org/
10.1145/1080695.1069975.

26. Y. Kim, S. Gurumurthi, and A. Sivasubramaniam, “Understanding the performance-
temperature interactions in disk i/o of server workloads,” in High-Performance Computer
Architecture, 2006. The Twelfth International Symposium on, feb. 2006, pp. 176–186.

27. X. Jiang, M. Alghamdi, J. Zhang, M. Assaf, X. Ruan, T. Muzaffar, and X. Qin, “Thermal
modeling and analysis of storage systems,” in Performance Computing and Communications
Conference (IPCCC), 2012 IEEE 31st International, 2012, pp. 31–40.

28. X. Jiang, M.AlAssaf, J. Zhang, M.Alghamdi, X. Ruan, T. Muzaffar, and X. Qin, “EnglishTher-
mal modeling of hybrid storage clusters,” EnglishJournal of Signal Processing Systems, vol. 72,
no. 3, pp. 181–196, 2013. [Online]. Available: http://dx.doi.org/10.1007/s11265-013-0787-6.

29. J. Lin, H. Zheng, Z. Zhu, and Z. Zhang, “Thermal modeling and management of dram systems,”
IEEE Transactions on Computers, vol. 99, no. PrePrints, 2012.

30. A. Shah, V. Carey, C. Bash, C. Patel, and R. Sharma, “EnglishExergy analysis of data cen-
ter thermal management systems,” in EnglishEnergy Efficient Thermal Management of Data
Centers, Y. Joshi and P. Kumar, Eds. Springer US, 2012, pp. 383–446. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4419-7124-1_9.

31. R. Sharma, C. Bash, C. Patel, R. Friedrich, and J. Chase, “Balance of power: dynamic thermal
management for internet data centers,” Internet Computing, IEEE, vol. 9, no. 1, pp. 42–49,
jan.-feb. 2005.

32. O. Sarood, A. Gupta, and L. Kale, “Temperature aware load balancing for parallel applica-
tions: Preliminary work,” in Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on, may 2011, pp. 796–803.

33. O. Sarood and L. V. Kale, “A ‘cool’ load balancer for parallel applications,” in Proceedings
of 2011 International Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’11. New York, NY, USA: ACM, 2011, pp. 21:1–21:11. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063412.

34. J. Li, M. Qiu, J.-W. Niu, L. T. Yang, Y. Zhu, and Z. Ming, “Thermal-aware task
scheduling in 3d chip multiprocessor with real-time constrained workloads,” ACM Trans.
Embed. Comput. Syst., vol. 12, no. 2, pp. 24:1–24:22, Feb. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2423636.2423642.

35. J. Srinivasan and S. V. Adve, “Predictive dynamic thermal management for multimedia
applications,” in Proceedings of the 17th annual international conference on Supercomput-
ing, ser. ICS ’03. New York, NY, USA: ACM, 2003, pp. 109–120. [Online]. Available:
http://doi.acm.org/10.1145/782814.782831.

36. L. Ramos and R. Bianchini, “C-oracle: Predictive thermal management for data centers,”
in High Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th International
Symposium on, feb. 2008, pp. 111–122.

http://doi.acm.org/10.1145/980152.980157
http://doi.acm.org/10.1145/980152.980157
http://doi.acm.org/10.1145/1080695.1069975
http://doi.acm.org/10.1145/1080695.1069975

Thermal Modeling and Management of Storage Systems in Data Centers 943

37. X.-F. Jiang, J. Zhang, M. I. Alghamdi, X. Qin, M.-H. Jiang, and J.-F. Zhang, “Peam: Predictive
energy-aware management for storage systems,” in Proceedings of 8th IEEE International
Conference on Networking, Architecture, and Storage.

38. “Wd1600aajs specification,” http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-
701277.pdf.

39. “What happens on line in 60 seconds?” http://www.mediabistro.com/alltwitter/online-60-
seconds_b46813.

40. “Dropbox statistics,” http://techcrunch.com/2012/11/13/dropbox-100-million/.

http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701277.pdf
http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701277.pdf
http://www.mediabistro.com/alltwitter/online-60-seconds_b46813
http://www.mediabistro.com/alltwitter/online-60-seconds_b46813

Modeling and Simulation of Data Center
Networks

Kashif Bilal, Samee U. Khan, Marc Manzano, Eusebi Calle, Sajjad A. Madani,
Khizar Hayat, Dan Chen, Lizhe Wang and Rajiv Ranjan

1 Data Centers and Cloud Computing

Cloud computing is projected as the major paradigm shift in the Information and
Communication Technology (ICT) sector [1]. In recent years, cloud market has ex-
perience enormous growth and adoption. The cloud adoption is expected to increase
in coming years. As reported by Gartner [2], Software as a Service (SaaS) market is
expected to rise to $ 32.3 billion in 2016 ($ 13.4 billion in 2011). Similarly, Platform
as a Service (PaaS) and Infrastructure as a Service (IaaS) are projected to rise from
$ 7.6 billion in 2011 to $ 35.5 billion in 2016. Cloud computing has been adopted
in almost all of the major sectors, such as business, research, health, agriculture,
e-commerce, and social life.

A data center is a repository to hold computation and storage resources inter-
connected to each other using network and communication infrastructure [3]. Data
centers constitute the foundations and building blocks of cloud computing. Con-
tinuous evolution of cloud services, as well as their increased demand mandate
growth in data center resources to deliver the expected services and required Quality
of Service (QoS). Various cloud service providers already host hundreds of thou-
sands of servers in their respective data centers. Google is estimated to host around

K. Bilal (�) · S. U. Khan
North Dakota State University, Fargo, ND, USA
e-mail: kashifbilal@ciit.net.pk

M. Manzano · E. Calle
University of Girona, Girona, Spain

S. A. Madani · K. Hayat
COMSATS Institute of Information Technology, Islamabad, Pakistan

D. Chen · L. Wang
Chinese Academy of Sciences, Beijing, China

R. Ranjan
Australian National University, Canberra, Australia

© Springer Science+Business Media New York 2015 945
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_31

946 K. Bilal et al.

0.9 million servers in their data centers. Similarly, Amazon is reported to have around
0.45 million servers to support Amazon Web Services (AWS). The number of servers
in Microsoft data centers double every 14 months [4].

The projected number of resources required to accommodate future service de-
mands within data centers are mounting. The “scale-out” or “scale-up” approaches
alone cannot deliver a viable solution for escalating resource demands. Scale-out
is the common approach adopted by data centers designers by adding inexpensive
commodity hardware to the data center resources pool. Scale-up approach focuses on
improving and adding more power and complexity to the enterprise-level equipment,
which is expensive and power-hungry [6]. Increasing the computational and storage
resources is currently not a major challenge in the data center scalability. However,
how to interconnect these commodity resources together to deliver the required QoS
is the major challenge. Besides scaling-out the data centers, energy consumption
and resultant Operational expenses (OpEx) of data centers also pose serious chal-
lenges. Environmental aspects, enormous amount of Green House Gases (GHG)
emissions by data centers, and increasing energy costs are worsening the problem.
These aforementioned problems mandate the revisions in design and operation of
data centers.

Data Center Networks (DCNs) play a pivotal role in asserting the performance
bounds and Capital Expenditure (CaPex) of a data center. Legacy ThreeTier DCN
architecture is unable to accommodate the growing demands and scalability within
data centers [3]. Various novel DCN architectures have been proposed in the recent
past to handle the growth trend and scalability demands within data centers [4]. Be-
sides, electrical network technology, optical, wireless, and hybrid DCN architectures
are also proposed [16, 17]. Moreover, intra-network traffic within the data center is
growing. It has been estimated that around 70 % of the network traffic will flow
within the data centers [7]. Various cloud and data center applications follow several
communication patterns, such as one to one, one to many, many to many, and all-to-
all traffic flows [8]. The traffic patterns within data centers are fairly different from
the traffic patterns observed in other type of telecommunication networks. There-
fore, the traffic optimization techniques proposed for such networks are inapplicable
within data centers. Finally, it has been observed that the main DCN architectures
have a low capacity to maintain an acceptable level of connectivity under different
type of failures [5].

All of the aforementioned challenges require detailed analysis and quantifica-
tion of various issues within a data center. In this particular case, simulation is an
appropriate solution for detailed analysis and quantification of the aforementioned
problems, since experiments comprising realistic DCNs scenarios are economically
unviable. Simulation can help to quantify and compare the behavior of a network
under a presented workload and traffic pattern. Unfortunately, network models and
simulators to quantify the data center network and varying traffic patterns at a de-
tailed level are scarce, currently. Moreover, current network simulators, such as ns-2,
ns-3, or Omnet++ lack the data center architectural model and simulation capability.
Therefore, we implemented the state-of-the-art DCN architectures in ns-3 simulator
to carry out the DCN simulations and comparative analysis of major DCNs [3]. We

Modeling and Simulation of Data Center Networks 947

implemented the three major DCN architectures namely, (a) legacy ThreeTier [10],
(b) DCell [8], and (c) FatTree [19]. We implemented six traffic patterns to observe
the behavior of the three DCN architectures under a specified workload. We carried
out extensive simulations to perform a comparative analysis of the three considered
DCN architectures.

2 DCN Architectures

Based on the packet routing model, the DCN architectures can be classified in two
major categories, namely: (a) switch-centric and (b) server-centric networks. The
switch-centric networks rely on network switches and routers to perform network
packet forwarding and routing. The ThreeTier, FatTree, VL2, and JellyFish DCN
architectures are the examples of the switch-centric networks [4]. The server-centric
networks utilize computational servers to relay and route the network packets. The
server-centric network may be pure server-based or hybrid (using an amalgam of
network switches and computational server for traffic routing). The CamCube is a
pure server based DCN architecture that relies solely on computational server for
packet forwarding [9]. The DCell, BCube, and FiConn are examples of the hybrid
server-centric DCN architectures [8].

The legacy ThreeTier architecture is the most commonly deployed network topol-
ogy within data centers, currently. The ThreeTier architecture is comprised of a single
layer of computational servers and a three layered hierarchy of network switches and
routers (see Fig. 1) [10]. The computational servers are grouped in racks. Typically,
around 40 servers within a rack are connected to a Top of the Rack (ToR) switch [11].
The ToRs connecting the servers within individual racks make the first layer of the
network hierarchy called access layer. Multiple access layer switches are connected
to the aggregate layer switches. The aggregate layer switches make the second layer
of switches within the ThreeTier network hierarchy. A single access layer switch is
connected to multiple aggregate layer switches. The high-end enterprise-level core
switches make the topmost layer of the ThreeTier network hierarchy called core
layer. A single core layer switch is connected to all of the aggregate layer switches
within the data center. The intra-rack traffic flow is controlled by the access layer
switches. The traffic flow among the racks with the ToRs connected to the same
aggregate layer switch passes through the aggregate layer switches. The inter-rack
traffic flow where the ToRs of the source and destination rack are connected to dif-
ferent aggregate layer switch passes through the core layer switches. Higher layers
of the ThreeTier network architecture experiences higher oversubscription ratios.
Oversubscription ratio is the worst-case available bandwidth among the end hosts
and the total bisection bandwidth of the network topology [19].

The FatTree DCN architecture is a clos based arrangement of commodity network
switches to deliver 1:1 oversubscription ratio [19]. The computational servers and
commodity network switches are arranged in a hierarchical manner similar to the

948 K. Bilal et al.

Access
Network

Aggregation
Network

Core
Network

Fig. 1 ThreeTier DCN architecture

Pod 0 Pod 1 Pod 2 Pod 3

Edge Layer

Aggrega�on
Layer

Core Layer

Fig. 2 FatTree DCN architecture

ThreeTier architecture. However, the number of the network devices and the inter-
connection topology is different from the ThreeTier architecture (please see Fig. 2).
The number of pods (or modules) represented by ‘k’decides the number of devices in
each layer of the topology. There are total (k/2)2 number of switches in the core layer
of the FatTree architecture. The aggregate and access layers each contain k/2 number
of switches in each pod. Each access switch is used to connect k/2 computational
servers. Each pod in the FatTree contains k number of switches (arranged in two
layers) and (k/2)2 number of computational servers. The FatTree DCN architecture
exhibit better scalability, throughput, and energy efficiency compared to the Three-
Tier DCN. The FatTree architecture uses a custom addressing and routing scheme
[AiL08].

The DCell is a hybrid server-centric DCN architecture [8]. DCell follows a re-
cursively built topology where a server is directly connected to multiple servers in
units called dcells (see Fig. 3). The dcell0 constitutes the building block of the DCell
architecture; where n servers are interconnected to each other using a commodity
network switch (n is a small number usually less than eight). n+ 1 dcell0 cells build

Modeling and Simulation of Data Center Networks 949

DCell1

DCell0

DCell2

Dcell1[0] Dcell1[1]

Dcell1[2]

Dcell1[3]

Dcell1[4]
Dcell1[5]

Dcell1[6]

Dcell0[0] Dcell0[1]

Dcell0[2]

Fig. 3 DCell DCN Architecture

a level-1 cell called dcell1. A dcell0 is connected to all other dcell0’s within a dcell1.

Similarly, multiple lower layer dcell(L−1) cells constitute a higher level dcell(L) cell.
DCell is an extremely scalable DCN architecture that may scale to millions of servers
by having a level-3 DCell with only six servers in each dcell0.

3 DCN Graph Modeling

DCN architectures can be represented as multilayered hierarchical graphs [13]. The
computational servers, storage devices, and network devices represent the vertices
of the graph. The network links connecting the devices represent the edges of the
graph. Table 1 presents the variables used in DCN models.

950 K. Bilal et al.

Table 1 Variables used in the DCN modeling

Variable Represents

ν Set of vertices (servers, switches, and routers) in the graph

ε Network links connecting various devices

Pi A pod/module in topology representing set of servers and middle layers switches

C Core layer switches

δ Servers

α Access layer switch

γ Aggregate layer switch

k Total number of pods/modules in the topology

n Total number of servers connected to a single access layer switch

s Total number of servers connected to a switch in a dcell0

m Total number of the access layer switches in each pod

q Total number of the aggregate layer switches in each pod

r Total Number of the core layer switches in topology

3.1 ThreeTier DCN Model

The ThreeTier DCN can be represented as

DCNTT = (ν, ε), (1)

where ν represents the nodes in the ThreeTier graph (computational servers, network
switches, and routers), and ε represent network links interconnecting the devices.
The servers, access, and aggregate layer switches are arranged in k modules/pods
(P ki) and a single layer of the core Cri switches (see Fig. 1 with four modules and a
core layer)

v = P ki ∪ Cri , (2)

Each module or pod Pi is organized in three distinct layers of nodes, namely: (a)
aggregate layer (lg), (b) access layer (lc), and (c) server layer (ls). The nodes in
each layer within a pod can be represented as

Pi = {lsmα ×nδ ∪ lcmα ∪ ls qγ }, (3)

where δ represents the servers, α represents the access layer switches, and the aggre-
gate layer switches are represented by γ . |Pi | represents the total number of nodes
within a pod

|Pi | =
(

m∑
1

n +m+ q
)

, (4)

Modeling and Simulation of Data Center Networks 951

Total number of nodes in a Threetier architecture having n pods can be calculated as

|ν| =
{

k∑
i=1

|Pi | + |C|
}

, (5)

There are three layers of edges (network links) interconnecting four layers of the
ThreeTier architecture nodes

ε = {§, ά, C| }, (6)

where § represent the edges that connect servers to access switches, ά are the edges
used to connect aggregate and access layers switches, and C| represent the edges used
to connect aggregate and core switches. Aggregate switches are also connected to
each other within a pod, represented by ′γ . The set of edges within the ThreeTier
architecture can be represented by

ε = {§(∀δ,α) , ά(∀α, ∀γ),
′γ (∀γ , ∀γ), C| (∀γ ∀C)}. (7)

Total number of edges within a ThreeTier DCN can be calculated as

|ε| =
k∑
1

(
m∑
1

n+
m∑
1

q + q (q − 1)

2
+

q∑
1

r

)
. (8)

3.2 FatTree DCN Model

As discussed in Sect. 2, the FatTree is also a multi-layered DCN architecture similar to
the ThreeTier architecture. However, the number of devices and the interconnection
pattern among the devices in various layers varies largely in both of the architectures.
The FatTree architecture follows a Clos topology for network interconnection. The
number of nodes in each layer within the FatTree topology is fixed and is based on
the number of the pods ‘k’

n = m = q = (k/2), (9)

r = (k/2)2 (10)

Similar to the ThreeTier architecture, the FatTree DCN can be modeled as

DCNFT = (ν, ε), (11)

where ν, Pi , |Pi |, and |ν| can be modeled by using Equation 2–5, respectively.
However, the aggregate layers switches within a FatTree are not connected to each
other. Moreover, the contrary to the ThreeTier architecture, each of the core layer
switch is connected to a single aggregate layer switch from each pod

ε = {§(∀δ,α) ∪ ά(∀α,∀γ) ∪C| (∀,γi)
}

, (12)

952 K. Bilal et al.

and the total number of edges can be calculated as

|ε| =
k∑
1

(
m∑
1

n+
m∑
1

q

)
+

R∑
1

k. (13)

3.3 DCell DCN Model

DCell uses a recursively built topology, where a single server in a dcell is connected
to servers in other dcells for server-based routing (see Fig 3). The graph model of
the DCell DCN architecture can be represented as:

DCNDC = (ν, ε), (14)

ν = {∂i , ∂i+1 , . . . , ∂L} , (15)

where 0 ≤ i ≤ L. ∂0 represents dcell0 and L denotes highest level.

∂0 =
{
δ ∪ α

}
, (16)

where δ represents the set of ‘s’ servers with dcell0 and α presents a single switch
connecting the servers.

∂l = {xl.∂l−1}, (17)

where 1 ≥ l ≤ L, and xl is the total number of ∂l−1 in ∂l .
A dcell1 can be represented by

∂1 = {x1.∂0} , (18)

x = s + 1 (19)

similarly, for l ≥ 2:

xl =
(
l−1∏
i=1

xi × s + 1

)
. (20)

A 3-level DCell can accommodate around 3.6 million servers with s= 6. Total number
of node in a 3-level DCell can be calculated as:

∣∣ν3
0

∣∣ =
(
x3∑
1

x2∑
1

x1∑
1

(s + 1)

)
, (21)

and the total number of edges in a 3-level DCell can be calculated as:

∣∣ε3
0

∣∣ =
x3∑
1

(
x2∑
1

((
x1∑
1

s

)
+ (x1(x1 − 1)/2)

)
+ (x2(x2 − 1)/2)

)
+ (x3(x3 − 1)/2)

(22)

Modeling and Simulation of Data Center Networks 953

The total number of vertices in the l-level DCell are:

|ν| =
(

n∏
i=1

(
xi∑
1

(s + 1)

)/
(s + 1)(l−1)

)
, (23)

and the total number of edges can be calculated as:

|ε| =
(

l∏
i=1

(
xi∑
1

(s)

)/
s(l−1)

)
+ 1/2

⎡
⎣ l∑
j=1

⎛
⎝
⎛
⎝ l∏
y=j
xy

⎞
⎠ (xj − 1)

⎞
⎠
⎤
⎦ (24)

4 DCNs Implementation in ns-3

We implemented three major DCN architectures namely: (a) ThreeTier, (b) FatTree,
and (c) DCell (see Sect. 2 for details). We used ns-3 discrete-event simulator to im-
plement the three DCN architectures. We implemented (a) interconnection topology,
(b) customized addressing scheme, and (c) customized routing logic for the three
considered DCN architectures. Moreover, we implemented six traffic patterns to ob-
serve the behavior of the considered DCNs under various network conditions and
traffic loads.

In the year 2003–2004, ns-2 was the most used network simulator for network
research [14]. However, to address the outdated code design and scalability of ns-
2, a new simulator called ns-3 was introduced. The ns-3 is a new simulator (not an
evolution of ns-2) written from scratch. Some of the salient features of ns-3 simulator
are as follows [3, 14], and [18]. The ns-3 simulator offers the modeling of realistic
network scenarios. The ns-3 uses the implementation of real Internet Protocol (IP).
Moreover, the ns-3 offers implementation of Berkeley Socket Distribution (BSD)
sockets interface and installation of multiple network interfaces on a single node.
Simulated packets in the ns-3 contain real network bytes. Furthermore, the ns-3 offers
to capture the network traces, which can be analyzed by using various network tools,
such as WireShark. We implemented our DCN models using the ns-3.13 release.
Currently, ns-3.18 is the stable release of the ns-3 simulator [18].

One of the major drawbacks of the ns-3 simulator is that it does not provide Eth-
ernet switch implementation. The BridgeNetDevice is the closely related bridge
implementation that can be used to simulate an Ethernet switch. However, the
BridgeNetDevice is used for simulating CSMA devices and does not work for the
Point-To-Point devices. Therefore, we implemented a Point-To-Point based switch
for simulations in ns-3 [18].

4.1 ThreeTier DCN Implementation Details

We offer a customizable implementation of the ThreeTier architecture. The simula-
tion parameters can be configured to simulate the ThreeTier architecture with devices

954 K. Bilal et al.

arranged in four layers having different oversubscription ratio. Users can define the
number of pods/modules in the topology. Each pod contains (a) servers arranged
in racks, (b) number of access layers switches, and (c) number of aggregate layer
switches. Users can specify the required number of servers in each rack. All of the
servers within a rack are connected by an access layer (ToR) switch. The bandwidth
of the network link interconnecting the servers with the ToR switch can be config-
ured. The default bandwidth for the links connecting servers to a ToR is 1Gbps. All
of the ToRs, within a single pod/module are connected to all of the aggregate layer
switches. The default bandwidth of the network links interconnecting the ToRs to
the aggregate layer switch is 10Gbps, which is configurable. The number of devices
and bandwidth of the links in each of the layers (server, access, and aggregate layer)
of the ThreeTier architecture remains same in all of the pods.

The core layer of the ThreeTier architecture is the topmost layer that is used to
connect various pods to each other. Users can specify the number of core switches
in the topology. Each core layer switch is connected to all of the aggregate layer
switches. The network switch used in the aggregate and core layer of the ThreeTier
architecture are often high-end enterprise layer switches. One of the major features
of the high-end switches is the support of Equal Cost Multi Path (ECMP) routing
[15]. We have added the support for ECMP for the aggregate and core layer switches
for realistic results.

We used ns-3 Ipv4GlobalRoutingHelper class for routing with the ECMP support
in the ThreeTier architecture. It is worth mentioning that the performance and results
of the ThreeTier architecture are heavily dependent on the oversubscription ratio
at each layer and use of the ECMP. The throughput and network delay fluctuates
substantially by varying the oversubscription ratio and use of ECMP routing. We
configured each device with real IP address for simulation. The IP addressing scheme
is also customizable and users can assign the network addresses of choice to devices.
Figure 4a depicts the topology setup for the ThreeTier architecture with k = 4.

4.2 FatTree DCN Implementation Details

FatTree DCN is based on the Clos interconnection topology. The number of devices
in each layer of the FatTree architecture is fixed based on the number of pods ‘k’.
Contrary to the ThreeTier architecture, the user only needs to configure the total
number of pods for the FatTree simulation. The implementation of the FatTree ar-
chitecture creates k pods and the required devices and interconnection within each
pod. The value of k must be (a) greater than or equal to four and (b) an even number.
The network bandwidth of the interconnecting links is configurable and the default
value is 1Gbps. The entire network links uses same bandwidth value contrary to the
ThreeTier architecture, where the bandwidth value of the network links connecting
servers to ToR and the links connecting ToRs to aggregate layer switch is usually
different.

Modeling and Simulation of Data Center Networks 955

Fig. 4 DCN Topologies in ns-3 a ThreeTier Topology b DCell Topology

Fig. 5 Simulation of a k= 4 FatTree in ns-3

FatTree architecture uses a custom network addressing scheme. The network
address of a server or a node is dependent on the location of the node. The network
address of a server is based on the pod-number that contains the server, and the
access switch number that connects the server. We have implemented the custom
network addressing scheme of the FatTree architecture and each of the nods within
the FatTree is assigned the addressing scheme as specified. Figure 5 and 6 depicts
the assignment of the network addresses within each pod of a FatTree with k= 4.

The FatTree architecture uses a two-level routing scheme for packet forwarding.
The packet forwarding decision is based on two-level prefix lookup scheme. The
FatTree uses a primary prefix routing table and a secondary suffix table. Firstly, the
longest prefix match is checked in the primary prefix table. If a match is found for the

956 K. Bilal et al.

10.0.0.2 10.0.0.3 10.0.1.2 10.0.1.3

10.0.0.1 10.0.1.1

10.0.2.1 10.0.3.1

10.1.0.2 10.1.0.3 10.1.1.2 10.1.1.3

10.1.0.1 10.1.1.1

10.1.2.1 10.1.3.1

10.2.0.2 10.2.0.3 10.2.1.2 10.2.1.3

10.2.0.1 10.2.1.1

10.2.2.1 10.2.3.1

10.3.0.2 10.3.0.3 10.3.1.2 10.3.1.3

10.3.0.1 10.3.1.1

10.3.2.1 10.3.3.1

10.4.1.1 10.4.1.2 10.4.2.1 10.4.2.2

Pod 0 Pod 1 Pod 2 Pod 3

Access Layer

Aggregation
Layer

Core Layer

Fig. 6 Assignment of IP addresses in a k= 4 FatTree

destination address of the packet, then the packet is forwarded to the port specified in
routing table. If the longest prefix does not match, then the longest matching suffix
in the secondary table is found, and the packet is forwarded to the port specified
in the secondary routing table. The switches in the access and aggregate layers use
same algorithm for routing table generation (please see Algorithm 1 in [12]). The
core layer switches uses a different algorithm (please see Algorithm 2 in [12]) for
core switch routing table generation. We implemented both of the algorithms for our
FatTree DCN implementation.

4.3 DCell DCN Implementation Details

The DCell is a recursively built, highly scalable, and server-based hybrid DCN
architecture. As detailed in Sect. 2 and 3, the building block of the DCell architecture
are presented. We offer a customizable implementation of the DCell architecture. We
have implemented 3-level DCell topology that can accommodate millions of servers
by having less than eight nodes in dcell0. The user can configure the number of
server in dcell0. The number of servers in the DCell increases exponentially with the
increase in number of servers in dcell0. Table 2 presents the total number of servers
in the DCell topology. As can be observed, by having only eight servers can lead to
a DCell comprised of 27 million servers. Because of the exponential increase in the
number of server and upper level dcells, we enabled the configuration of the number
of the dcells at each level. The user can configure the number of servers, the number
of dcell0 in dcell1, number of dcell1 in each dcell2, and number of dcell2 in dcell3 to
control the number of servers in resulting DCell.

Each dcell0 contains a Ethernet switch that is used for packet forwarding among
the servers within the dcell0. The traffic forwarding among the servers in different

Modeling and Simulation of Data Center Networks 957

Table 2 Number of Servers in DCell

Number of servers in dcell0 Total number of servers
in 3-level DCell

Total number of nodes (including
switch) in 3-level DCell

2 1806 2709

3 24492 32656

4 176,820 221,025

5 865,830 1,038,996

6 3,263,442 3,80349

7 10,192,056 11,648,064

8 27,630,792 31,084,641

dcells is performed by servers, that are interconnected to each other. Each server
node is equipped with multiple interface cards to directly connect switch and other
servers. The default bandwidth of the network links is 1Gbps that is also configurable.
We used a realistic IP address assignment to each server in the DCell architecture
implementation.

The DCell does not specify any custom addressing scheme. However, the DCell
routing scheme takes into account the placement of the server within the dcells. For
instance, the NodeId (3, 1, 2) specifies the server number 2, in dcell0 number 1,
and dcell1 number 3. We implemented programming routines that can find the IP
address of a specified server number and vice versa. The DCell uses a custom routing
protocol called DCell Fault-tolerant Routing (DFR) protocol for packet forwarding.
The DFR is a recursive and source based routing protocol. When a node wants to
initiate communication with some other node, the DFR is invoked to calculate the
end-to-end path for the flow. The DFR first calculates the link connecting the dcells of
the source and destination node. Then the DFR calculates the path from source to the
link and from link to the destination. The combination of all paths is the end-to-end
path. We implemented the DFR protocol. The output path from the DFR provides the
NodeIds instead of the IP address. We use a custom programmed routine to convert
the NodeIds based path to IP based path. We place the complete source to destination
path in an extra header in each packet, as the DFR is a source based routing protocol.
Each intermediate node parses the header and decides the forwarding port/link for
the next hop.

Unfortunately, the algorithm listing for the DCell in the original paper was in-
complete and erroneous (please see Fig. 3 in [8]). In Sect. 4.1.1 of the original paper
[8], it is mentioned that if (Sk−m< dk−m), then the link interconnecting the sub-dcells
can be calculated as ‘([Sk−m, dk−m − 1], [dk−m, Sk−m])’. The ‘else clause’ for the
aforementioned ‘if statement’ is not given in the original paper. Therefore, the im-
plementation of the DFR was erroneous and incomplete. We figured the else clause
for the aforementioned scenario and implemented the complete DFR algorithm for
traffic routing. Moreover, the example for the path calculated using DFR also had a
typographical mistake in the original paper.

958 K. Bilal et al.

References

1. IBM, IBM Data Center Networking Planning for Virtualization and Cloud Computing, 2011.
Online: http://www.redbooks.ibm.com/redbooks/pdfs/sg247928.pdf

2. Gartner, Market Trends: Platform as a Service, Worldwide, 2012–2016, 2H12 Update, 2012.
3. K. Bilal, S.U. Khan, L. Zhang, H. Li, K. Hayat, S.A. Madani, N. Min-Allah, L. Wang,

and D. Chen, “Quantitative Comparisons of the State of the Art Data Center Architectures,”
Concurrency and Computation: Practice and Experience, (DOI:10.1002/cpe.2963).

4. K. Bilal, S. U. R. Malik, O. Khalid, A. Hameed, E. Alvarez, V. Wijaysekara, R. Irfan, S.
Shrestha, D. Dwivedy, M. Ali, U. S. Khan, A. Abbas, N. Jalil, and S. U. Khan, “A Taxon-
omy and Survey on Green Data Center Networks,” Future Generation Computer Systems.
(Forthcoming.)

5. M. Manzano, K. Bilal, E. Calle, S. U. Khan, “On the connectivity of Data Center Networks”,
IEEE Communication Letters. (Forthcoming)

6. K. Yoshiaki, and M. Nishihara. “Survey on Data Center Networking Technologies.” IEICE
transactions on communications, Vol. 96, No. 3, 2013.

7. P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “Energy aware network
operations,” IEEE INFOCOM Workshops 2009, pp. 1–6.

8. C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: A Scalable and Fault-tolerant
Network Structure for Data Centers.” ACM SIGCOMM Computer Communication Review,
Vol. 38, No. 4, 2008, pp. 75–86.

9. H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and A. Donnelly, “Symbiotic Routing in
Future Data Centers,” ACM SIGCOMM 2010 conference, New Delhi, India, 2010, pp. 51–62.

10. Cisco, Cisco Data Center Infrastructure 2.5 Design Guide, Cisco press, 2010.
11. A. Greenberg, J. Hamilton, N. Kandula, C. Kim, and S. Sengupta, “VL2: a scalable and flexible

data center network,” ACM SIGCOMM Communication Review, Vol. 39, No. 4, 2009, pp.
51–62.

12. M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network archi-
tecture,” ACM SIGCOMM 2008 conference on Data communication, Seattle, WA, 2008, pp.
63–74.

13. K. Bilal, M. Manzano, S. U. Khan, E. Calle, K. Li, and A. Y. Zomaya, “On the Characteri-
zation of the Structural Robustness of Data Center Networks,” IEEE Transactions on Cloud
Computing. (Forthcoming.)

14. G. Carneiro, ns-3, Network Simulator 3, 2010. Online: http://www.nsnam.org/tutorials/NS-3-
LABMEETING-1.pdf

15. C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992, Internet Engineering
Task Force, 2000.

16. C. Kachris and L. Tomkos, “A Survey on Optical Interconnects for Data Centers,” Communi-
cations Surveys & Tutorials, IEEE, Vol. 14, No. 4, 2012, pp. 1021–1036

17. X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, and A. Vahdat, “Mirror Mirror On The Ceil-
ing: Flexible Wireless Links For Data Centers,” ACM SIGCOMM Computer Communication
Review, Vol. 42, No. 4, pp. 443–454, 2012.

18. ns-3 Simulator, online: http://www.nsnam.org/.
19. Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat, “A Scalable, Commodity Data

Center Network Architecture,” ACM SIGCOMM, Seattle, Washington, USA, August 17–22,
2008, pp: 63–74.

http://www.nsnam.org/tutorials/NS-3-LABMEETING-1.pdf
http://www.nsnam.org/tutorials/NS-3-LABMEETING-1.pdf

Part VI
Security

C2Hunter: Detection and Mitigation of Covert
Channels in Data Centers

Jingzheng Wu, Yanjun Wu, Bei Guan, Yuqi Lin, Samee U. Khan,
Nasro Min-Allah and Yongji Wang

1 Introduction

Data centers provides both the applications, systems software and the hardware as
services over the Internet, which is named cloud computing [1–3]. It is core infras-
tructure of cloud computing, supporting dynamic deployment and elastic resource
management. With the powerful computing and storing capabilities, cloud comput-
ing has become increasingly popular [4, 5]. The fundamental mechanism of cloud

J. Wu (�) ·Y. Wu
Institute of Software, Chinese Academy of Sciences, Beijing, China
e-mail: jingzheng@nfs.iscas.ac.cn

Y. Wu
e-mail: yanjun@nfs.iscas.ac.cn

B. Guan ·Y. Lin ·Y. Wang
National EngineeringResearch Center for Fundamental Software, Beijing, China
e-mail: guanbei@nfs.iscas.ac.cn

Y. Lin
e-mail: yuqi@nfs.iscas.ac.cn

Y. Wang
e-mail: ywang@itechs.iscas.ac.cn

S. U. Khan
North Dakota State University, Fargo, ND, 58108-6050, USA
e-mail: samee.khan@ndsu.edu

N. Min-Allah
COMSATS Institute of Information Technology, Islamabad, Pakistan
e-mail: nasar@comsats.edu.pk

Y. Wang
State Key Laboratory of Computer Sciences, Beijing, China
e-mail: ywang@itechs.iscas.ac.cn

© Springer Science+Business Media New York 2015 961
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_32

962 J. Wu et al.

is virtualization which allows virtual machines (VM) instantiate stand-alone oper-
ating systems on demand based on a software layer called virtual machine monitor
(VMM) or hypervisor [6]. Although the virtualization technology provides strong
isolation for the cloud, security and privacy are always the open problems [7]. Some
of the problems are essentially traditional web application and data-hosting ones,
e.g., phishing, downtime, data loss, and password weakness. One of the new prob-
lems introduced by the shared environment to cloud computing is the covert channel
attack [8]. By this way, information is leaked from the data centers and meanwhile
the security provided by isolation is breaken down [9, 10].

To enhance the security of data centers, some protection mechanisms have been
presented [11, 12]. sHype [13] is a Mandatory Access Control based (MAC) security
extension to Xen hypervisor [6]. For example, sHype enables the Chinese Wall
and the Type Enforcement policies to specify whether or not the resources can be
accessed by the VMs. Lares presents a hybrid approach, giving security tools the
ability to monitor actively while still benefiting from the increased security of an
isolated virtual machine [14]. HyperSentry presents a novel framework to enable
integrity measurement of a running hypervisor by introducing a software component
[15]. Some other frameworks such as HyperSafe [11], Antfarm [16], HIMA [17],
Vulcloud [18, 19] etc. all focus on providing integrity measurement of a hypervisor
by introducing a software component.

However, these protection mechanisms may fail, because the data centers create
numerous implicit high resolution clocks used to construct the covert channels [20].
Covert channel is a leakage mechanism used to transfer confidential information
violating security policies specified by the information systems [21, 22]. It is the main
threat to the multi-level secure systems, e.g., operating systems [23, 24], database
systems [25], network [26, 27] and cloud computing [9]. TCSEC [21] and CC [28]
secure criterions require covert channel analysis when building secure systems. The
objectives of covert channel analysis are identification, estimation capacity, detection
and handling [23, 29, 30, 31]. This paper concerns the detection and mitigation
technology in data centers and presents a new framework termed as C2Hunter (Covert
Channel Hunter).

C2Hunter in this paper detects the covert channels from operational track records
and mitigates the threat. Cabuk et al. [32, 33] present an algorithm to detect TCP/IP
network covert timing channel (IPCTC). They believe that the regularity of the packet
intervals indicates the difference between the covert and normal channels. Therefore,
they present two methods to measure the regularity. The first method examines
whether the variance of the intervals remains constant using standard deviation. The
second method computes the relative difference between each pair of the sorted
intervals. Similar to Cabuk, Berk et al. [34] present a statistical algorithm to detect
the covert channel whose packet intervals center around two different values. The
algorithm compares the ratio of the mean packet count to the maximum packet count
for normal traffic. The lower the ratio is, the higher the probability of having a covert
channel hidden in packet intervals. Nagatou et al. [35] define a security automata
and show the enforced properties. To detect several covert channels at run time, they
use an extra structure to emulate the behavior of a system by running a subsequence

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 963

from an interleaved state sequence of processes. However, these detection methods
and some other ones (e.g., [26, 36]) are limited to the particular network or operating
systems, unsuitable for detecting the covert channels in data centers.

The covert channels in data centers are induced by the massive shared computing
resources, and they cannot be simply detected and mitigated by the above methods.
In this paper, the threat model of covert channels is first analyzed, and the channels
are classified into three categories. Only the channels between virtual machines
new to data centers are considered, and three typical scenarios (e.g. CPU load based,
Cache based, shared memory based channels) are demonstrated and their features are
studied in-depth. C2Hunter is presented to detect and mitigate the covert channels in
data centers following some basic requirements: small modification to the protected
cloud systems, flexible extension to detect and mitigate new channels and acceptable
performance impact. An error-corrected four states automata is proposed to model
the channel scenario, a two-phase synthesis algorithm is designed to detect the covert
channels using Markov and Bayesian models, and a network pump like method is
implemented to mitigate the threat of the timing channel. The prototype of C2Hunter
is implemented on Xen hypervisor and the performance to detect the three typical
covert channels is investigated. The experiment results show that C2Hunter is able to
detect and mitigate these channels, and it is believed that C2Hunter will detect and
mitigate incoming covert channels in the future after small extension.

The distinguished contributions made in this paper are as follows:

• For the first time, the covert channels in data centers are classified into three
categories, and only the channels new to data centers are concerned.

• The covert channel scenario in data centers is modeled into an error-corrected
four states automata, which is the basis of the detection scheme.

• A flexible framework named C2Hunter is designed, consisting of a controller in
hypervisor and a synthesis analyzer in the virtual domain. The controller places
hooks into the hypervisor, captures the hypercalls and adds some latencies to the
potentially malicious operations. The performance to detect and mitigate the three
typical covert channels is evaluated.

• A two-phase synthesis detection algorithm using Markov and Bayesian model is
presented, and the Pessimistic Threshold is adopted to lower the false negative.

The rest of the paper is organized as follows. Section 2 introduces the research back-
ground, hot topics and key problems about covert channels. Section 3 discusses the
threat model, typical scenarios and some assumptions. Section 4 describes the design
of C2Hunter by introducing the challenges and the formal requirements. Sections 5
and 6 cover the details of the two-phase synthesis detection algorithm and mitigate
algorithm. Section 7 shows the prototype implementation and evaluates the detec-
tion performance of C2Hunter. Section 8 discusses the extendibility of C2Hunter and
Sect. 9 concludes this work finally.

964 J. Wu et al.

2 Background

Lampson first introduced covert channel in 1973 [22]. The explicit definition is: Given
a non-discretionary (e.g. mandatory) security policy modelM and its interpretation
I (M) in an operating system, any potential communication between two subjects
I (Sh) and I (Si) of I (M) is covert if and only if any communication between the
corresponding subjects Sh and Si is illegal under M[24]. Covert channel is the only
mechanism to leak confidential messages in the secure operating systems [37].

Since Girling presented three types of covert channel in local network [38], the
network covert channel becomes the hot issue in this field [26]. Two types of network
covert channel exist [39]: embedding covert messages into the header fields [40, 41]
and encoding information into the transmission time of packets [33]. They are called
network covert storage channel and network covert timing channel respectively.
Storage channel usually encodes messages into the unused or reserved bits of frames,
such as IP Type of Service(TOS) field, Don’t Fragment (DF), URGent (URG) or TCP
Flags bits in the packet header [38, 40–42]. Timing channel encodes messages into
the sending/receiving time or the packets interval time etc, which is much more
difficult to detect or handle [33, 34, 43].

Timing channel in cloud computing is firstly studied by Ristenpart et al. [9].
They state that any physical machine resources multiplexed between the attacker
and target may form a potentially leakage channel between the virtual machines.
These resources include network access, CPU branch predictors, CPU instruction
cache, DRAM memory bus, CPU pipelines, scheduling of CPU cores, disk access,
etc. They implement some experimental timing channels in Amazon’s EC2 based on
cache access time and CPU load, pointing out that once the malicious VM and the
target one are co-located the information leakage by the timing channel is possible.
Yinqian et al. investigate the cache based timing channel from the viewpoint of co-
residency detection, which can be seen as a quality measurement of cloud service
[44].

Ristenpart etc. have referred to the load based covert channel, and Okamura
and Oyama [45] analyze it in more detail. They quantitatively evaluate the channel
performance and develop CCCV (Covert Channels using CPU loads between Virtual
machines) which creates covert channel to communicate secretly. CCCV describes a
scenario that the sender and receiver processes locate in different domains hosted by
Xen hypervisor, and the vCPUs are mapped to the same physical CPU (core). Each
process executes task t in its domains without interference. The receiver repeatedly
executes task t and investigate the elapsed time. If the sender does not execute a task,
the elapsed time keeps the same. If the sender issues a task and the physical CPU
alternately schedule in every time slice, the elapsed time obtained by the receiver gets
longer. The different time can be modeled as a timing channel, and the malicious users
can transmit covert message according to the changes of CPU load. The capacity
and accuracy are evaluated in detail under various conditions. The CPU load based
channel achieves a better capacity than the cache based one, and only small errors
when interfered by other processes.

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 965

Timing channel is more threatening than storage channel in data centers. During
the past 40 years, researchers have paid much attention to the timing channel iden-
tification, scenario construction, elimination, mitigation and detection technologies.
More and more timing channels have been found and handled, for example, the
Event-Flag channel in operating system [23], the Data Conflict channel in secure
database system [46, 47] and the IPCTC channel in network [32, 27]. When cloud
computing and data center became mainstream, the timing channels have also been
found in this new computing paradigm [48].

This paper focuses on the timing channels found in data center, whose in-
frastructure is based on Xen platform. Xen supports both full virtualization and
paravirtualization and manages the resource of virtual machines using a reference
hypervisors [6]. Xen hypervisor provides both isolation and inter-domain communi-
cation between the virtual machines, for example, the shared memory mechanism is
a way for guests to communicate analogous to interprocess communication between
user space processes. The interface of the shared memory mechanisms is imple-
mented via the grant table operations including mapping or transferring pages. They
both involve inserting the physical page(s) to or from the caller’s address space. Map-
ping is used to create shared memory, whereas transferring is used to move data from
one domain to another. The difference is whether the original reference is removed
or not.

3 Threat Model, Scenarios and Assumptions

In this section, the covert channel threat model and scenarios to the data centers
are investigated, especially to the lifetime of virtual machines. The section ends
with some assumptions used to design the covert channel detection and mitigation
framework.

3.1 Threat of Data Center

Date centers instantiate stand-alone operating systems on demand, and deploy soft-
ware or offer service to the application layer. When the tasks have finished, the
virtual machines are destroyed. Some threats are presented in the lifetime of virtual
machines as shown in Fig. 1.

Run-Time attacks (A1,A2) Virtualization is the fundamental mechanism of the
cloud, providing the abstract services of hardware resources to the operating sys-
tems in VMs. A1 denotes the information leakage attack to inter-VMs, e.g. the
CPU load based and Cache based covert channel. Although the hypervisor allocates
vCPU(virtual CPU) to each VM, the tasks will run in the physical CPU eventually
inducing A1 attacks. A2 denotes the covert channels in VMs, e.g. the event-flag

966 J. Wu et al.

Fig. 1 Lifetime threats to
cloud computing in data
centers, including tamper,
leakage and application
attacks

channels in Linux [23, 30]. A1 and A2 leak confidential information in or between
VMs, and cannot be eliminated by the deployed access control policies.

Start/Stop Attacks (A3,A4) Cloud platform allows users to start and deploy mali-
cious hosts easily, which are used as DDoS and Botnet attacks. In A3 attack, hackers
tamper the image of virtual machines and trojan the system before startup. In A4
attacks, hackers tamper the stored data to leak or steal the confidential data. A3 and
A4 are induced by virtual machines, which lead to inside attacks becoming outside
attacks.

Application Attacks (A5,A6) A5 attacks target and modifies the context informa-
tion of operating system calls. A6 attacks alter the function responses by intercepting
and modifying the return values. In network, A5 andA6 may lead Man-in-the-Middle
attacks. However, A5 andA6 are traditional attacks, which have been studied in-depth
[29].

3.2 Threat Categories of Covert Channels

The above attacks cover the lifetime threats of cloud, and the bottom-up attack targets
are hypervisor, VMs, and applications. In this paper, only the covert channel attacks
(A1 and A2) are concerned. They can be classified into three categories as shown in
Fig. 2.

Intra-VM covert channels (CC1), i.e. processes level covert channels. Malicious
processesPi andPj with different secure levels locate in the same operating system in
DomU(Domain Unit). Pi with the higher secure level leaks confidential information
to the lower secure level Pj using the covert channel. However, the threat of the
covert channel is limited to the stand-alone operating system. Channels of CC1 have
been studied for years, and some mature analysis methods can be referred to [23, 29].

Cross-platform covert channels (CC2), i.e. network level covert channels. Ma-
licious processes Pk and Px locate in different domains and different hardware
platforms. Pk and Px communicate with each other through the network, therefore
the confidential information can be transmitted by the network storage and timing
channels. Channels of CC2 are based on the network, which have been studied since
1987 [26, 38].

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 967

Fig. 2 Three categories of covert channels in Xen virtual machines

Inter-VM covert channels (CC3), i.e. operating system level covert channels.
Malicious processes locate in different domains but the same hardware platform.
CC3 is introduced by the shared resource managed by the hypervisor [9, 48, 49].
Confidential information may be leaked by CC3 among competitive companies that
locate in the same hardware, will bring huge economic losses.

3.3 Threat Scenarios of Covert Channels

While there are a number of avenues to extract confidential information from cloud
computing, the covert channel attack is more advanced. Only CC3 channels are new
covert channels to cloud, and the other two types are operating systems and network
covert channels. In this paper, three typical covert channel scenarios belonging to
CC3 are described.

CPU load based channels [9, 45]. It has been considered that any physical
resources which are multiplexed between the attacker and target host may form a
potential covert channel in virtual machines. One of the most common resources
is CPU load, which can be approximated by the amount of time taken for certain
computations. The confidential information is pre-encoded into a binary sequence.
The sender and receiver transfer information by changing and observing the CPU
load according to a certain communication protocol, e.g. long wait time to complete
a task means bit 1 is transmitted, otherwise bit 0 is transmitted.

968 J. Wu et al.

Cache based channels [9, 44]. The Cached based covert channel takes the dif-
ferent cache access latencies as the different bits. The sender uses the idles as
transmitting bit 0 and the frantic accesses to memory block as transmitting bit 1.
The receiver accesses a memory block of her own and observes the access latencies.
High latency denotes the sender is evicting the receiver’s data from the caches and
means bit 1 is transmitted, otherwise bit 0 is transmitted.

Shared memory based channels [48]. The shared memory based channel takes
different memory access intervals as the different bits. The sender sends covert
messages by controlling the data sending time, and the receiver obtains the message
by observing the data arrival time. The confidential information is encoded into the
different intervals. For example, longer and shorter intervals denote bit 1 and bit 0
respectively. This type of covert channel is named shared memory Covert Timing
Channel, short for SMCTC.

3.4 Assumptions

It is usually considered that the data centers are based on cloud computing and the
fundamental technology is virtualization. C2Hunter framework runs on Xen plat-
form, which manages the hardware, hypervisor, management domain and some
guest domains [6]. It assumes that only three types of covert channels are concerned,
which are CPU load based, Cache based and shared memory based channel. It is also
assumed that the covert channels exist in the malicious domains along with some
other innocent domains in the same cloud platform.

4 Overview of C2Hunter

In this section, the design of C2Hunter is discussed, starting off by describing the chal-
lenges. To guarantee the detection and mitigation of the three types of channels, the
requirements are formally stated. Then, C2Hunter is investigated in detail, requiring
the covert channel to be modeled into an error-corrected four states automata.

4.1 Challenges

The first issue faced is that the traditional detection and mitigation technologies
cannot be used in data centers. Although covert channel has been studied for almost
40 years, the researches mainly focus on operating systems, database systems, and
networks [29]. Covert channel in cloud platform is a new topic, whose features have
not been fully understood. In this paper, this new type of covert channel is modeled
into an error-corrected four states automata, and the features are investigated.

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 969

The next issue is whether the framework can be flexibly extended to detect and
mitigate the incoming covert channels. C2Hunter addressed this problem by adopting
a plug-in mechanism. To detect a new covert channel, the first step is to extract the
features of the channel, e.g. finding the shared resource and the values or states which
can be used by the channels. Then these features of the channel are normalized into
detection parameters. Thirdly, some latencies are added into the hypercalls to reduce
the threat. Finally, a XML(Extensible Markup Language) config file containing these
parameters is automatically generated and loaded by C2Hunter as a plug-in.

The last issue is how to solve the by-pass operations. Some operations that have
super privileges cannot be captured and interrupted in the traditional operating sys-
tems, which may induces covert channels and hence leads to the failure of detection.
However, hypervisor or VMM in virtualization platform has a higher privilege than
the operating systems, where C2Hunter resides in and captures all the operation
tracks.

4.2 Formal Requirements

C2Hunter is a virtualization based framework designed to detect and mitigate the
CC3 type of covert channels by monitoring the operations in VMs. To counter the
above challenges, the design of C2Hunter is based on the following four high level
formal requirements:

• Complete Detection. Detection is to determine the real covert channel in operation
records. All of the operations may be potential covert channels, so they should be
totally recorded and detected.

• Flexibility of Extension. A well-functioning detector and mitigator should have
the flexibility to support detecting and mitigating the new covert channels and
adding new detection algorithms.

• Acceptable Performance Impact. An additional performance impact introduced
by C2Hunter should be within acceptable limits. This requirement ensures that
the overall performance of the virtualization platform should not be hurt. It also
requires that C2Hunter should detect and mitigate the covert channels in real time.
Once any covert channel is detected, the alarm will be issued.

• Anonymous Detection and Mitigation. Operations of the virtual machines should
be protected in privacy. C2Hunter only investigates the features of shared re-
sources, e.g. vCPUs, cache and shared memory. The precise operations will not
be inferred.

4.3 C2Hunter Framework Summary

Figure 3 shows the architecture of C2Hunter. C2Hunter consists of two-part compo-
nents. One is a core active controller, locating in hypervisor and capturing all the

970 J. Wu et al.

Fig. 3 High-level view of C2Hunter Framework, which consists of two part components, including
a core interrupter module located in hypervisor and an analyzer located in Dom0

operations triggered by the guest operating systems. The other one is a back-end an-
alyzer locating in Dom0, used to analyze the captured operation records and detect
the covert channels from them.

The controller places a hook inside hypervisor, monitors all the hypercalls trigged
by VMs and adds latencies. A hypercall is conceptually similar to a system call.
The hypercall interface allows domains to trigger a synchronous software trap into
hypervisor to execute a privileged operation, and the communication from hypervisor
to a domain is provided through an asynchronous event mechanism [50]. Hypervisor
can intercept any instructions which change the states of the machine in a way that
impacts other processes. Therefore, it is an ideal monitor place where any hypercalls
cannot bypass. In CC3 channels, the malicious processes locating in different VMs
cooperate with the shared resources to communicate indirectly. All the operations
and each state of the shared resource will be recorded by the capture application.
The records will be sent to the detector locating in Dom0.

The controller includes a detector and a interrupter. The detector is the module
to detect in C2Hunter, which is designed in a plug-in form. The detector locates in
Dom0, which has elevated privileges and manages the other domains. The detector
is made up of two main blocks presently: Markov detection module and Bayesian
detection module. A two-phase synthesis algorithm is implemented in both modules
sequentially according to the covert channel model, which can be extended through
plug-in in the future. The records first flow into the Markov detector, all the covert

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 971

Fig. 4 Error-corrected four
states automata model

channels will be detected with some false positive because of the Pessimistic Thresh-
old. Then, the results flow into the Bayesian detector to refine. When the records
have been detected by the detector, the outputs are the covert channels.

The interrupter is the module to mitigate the threat of covert channels in C2Hunter.
It sends the logs of hypercalls to analyzer and adds latencies from the analyzer. The
interrupter can intercept any instructions that change the state of the machine in a way
that impacts other processes. The record stream is processed and saved concurrently
by the controller. Then the records are normalized, for example, the controller only
records the operation times in shared memory based channels. However, the real
shared resource is the time intervals, so the intervals are calculated from the records.
Finally, the intervals are inserted into the hypercalls.

4.4 Covert Channel Modeling

A covert channel consists of a shared resource, a sender process and a receiver
process. The sender transmits confidential information by changing the properties of
the shared resource, and the receiver receives the message by viewing the changes.
In CPU load based, Cache based, and shared memory based channels, the properties
are the CPU load, cache access time, and the memory write intervals. The changes
of these resource properties are in certain regular patterns. An error-corrected four
states automata is designed to model the patterns [51, 52].

Definition 1 (Error-corrected four states automata) Error-corrected four states
automata is a five-tuple

(Q,
, δ, q,F),

which is shown in Fig. 4, and the details of the tuple are described as follows.

972 J. Wu et al.

• Q is a states set including the shared resources properties.
•
 is a actions set abstracted from events involved in a system.
• δ : Q×
 → Q is a transition functions set denoting that an action is triggered

from one state to another.
• q ∈ Q is the initial state.
• F ⊆ Q is the final states set.

Taking shared memory based channel for example, the property of the channel is
the memory write intervals [48]. The longer interval denotes bit 1 and shorter one
denotes bit 0. SMCTC has only four states in the transmission process as shown in
Fig. 4, and all the different states belong to set Q. Set δ includes all the transition
functions.

At the beginning of the transmission cycle, the initial state is q2. If bit 0 is sent, the
state changes from q2 to q0, expressed as q2 → q0. If bit 1 is sent, the state changes
from q2 to q1, expressed as q2 → q1. When an error occurs, the state changes from
q2 to q3, expressed as q2 → q3. When an error occurs, the state changes to q0 or q1

according to the error-corrected algorithm.
In SMCTC, the memory write intervals are not exactly consistent. For example,

a sequence of intervals captured is expressed as T = {t0, t1, . . . tn}. We take �Tl ,
with ta < �Tl < tb as long interval and �Ts , with tc < �Ts < td as short interval,
�Tl > �Ts . Here ta , tb, tc, td mean the ranges of the intervals. If an interval ti is out
of the �Tl and �Ts , an error occurs. The reason for this is that some interferences
are running, and the transition are q2 → q3, q0 → q3 and q1 → q3.

To deal with the errors, two simple error-corrected algorithms are presented in
this paper.

• Value closer based error-corrected algorithm. This algorithm is based on the ap-
proximation. Take ti as an example, if |ti − �Tl| < |ti − �Ts |, it is considered
that a bit 1 is transmitted, and vice versa.

• Probability based error-corrected algorithm. This algorithm is based on the pre-
determined probability. If an error occurs, it is believed that a bit 1 is transmitted
with the probability t, and a bit 0 with probability (1 − t).

The first algorithm is easy to implement, and the second one needs to predetermine
the probability. The Markov detector and the Bayesian detector adopt the second
algorithm in this paper. The repeated errors may mean the channel environment has
changed and the values of�Tl and�Ts should change correspondingly. The dynamic
adjustment is complex, which is not considered in this paper.

Therefore, the automata model of SMCTC is instantiated as follows, shown in
Fig. 4.

• Q = {q0, q1, q2, q3} contains the four states of the shared resource property.
•
 = {0, 1, e} contains all the terminators normalized from the intervals captured.
• δ : Q ×
 → Q is a set of transition functions expressed as a state transition

matrix as follows.

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 973

0 1 e

q0 q0 q1 q3

q1 q0 q1 q3

q2 q0 q1 q3

q3 x y φ

Triggers 0, 1, and e are in the first line of the matrix, and the current states are
in the first row. The elements in the matrix are the next states transiting from the
current states. For example, q0 in the second line and the second row denotes the
state changed from q0 when bit 0 is transmitted, expressed as q0 → q0.
In the last line of the transition matrix, the states transiting from q3 depend on
the error-corrected algorithms expressed by x and y. When an error occurs, the
algorithm determines whether a bit 0 or 1 is transmitted and the corresponding
state is q0 or q1. The state will not stay at p3, denoted by ϕ in the matrix.

• q2 is the initial state.
• F = {q0, q1} contains all the final states.

Scenarios of CPU load based and Cache based channels can also be modeled into this
error-corrected four states automata. The channel is assumed to take the binary en-
coding mechanism. If a multiple encoding mechanism is adopted, the corresponding
automata just has more states. It will be discussed in Sect. 8.

5 Two-Phase Synthesis Detection Algorithm

In this section, a two-phase synthesis algorithm to detect the covert channels using
Markov and Bayesian models is presented [53].

The error-corrected four states automata describes the channels. The real shared
resources are operation intervals, which cannot be stored by the channel meaning
memoryless. The next state in the automata just relates to the current state, which is
triggered by the stochastic bit. According to these properties, a two-phase synthesis
detection algorithm is presented to detect the covert channels.

The algorithm is synthesized by Markov detection algorithm and Bayesian de-
tection algorithm. If the change pattern of the shared resource properties is closer
to the Markov model, it is believed that the sequence of the operations is transfer-
ring confidential information through some covert channel. The normal operation
sequences are modeled into Bayesian model. If an operation sequence deviates from
the Bayesian model, it is believed that a covert channel occurs. Markov and Bayesian
model in the two-phase synthesis algorithm are complementary. Markov detector de-
tects the covert channels, and Bayesian detector distinguishes the covert channels
from the normal operation sequences.

974 J. Wu et al.

Fig. 5 Two-states Markov
model of covert channel

5.1 Markov Detection Algorithm

Markov property refers to the memoryless property of a stochastic process [54, 55].
Covert channel model is such a stochastic process that the next state depends only
upon the current state and has nothing to do with the previous status.

The error-corrected four states automata has only two final states q0 and q1. State
q2 in Fig. 4 is the start state, and no other states can transform to it. The automata
will not stay at q3, because of the error-corrected algorithms. To simplify the model,
q2 and q3 are pruned, and a two-states Markov model is presented in Fig. 5. The
trigger actions in the automata are stochastic, and the next state depends only upon
the current state.

The distribution probabilities of the triggers 0, 1, and e are set as p, q, and r, and
p+ q + r = 1. Therefore, the probability of transition q2 → q0 is p, the probability
of q2 → q1 is q, and the probability of q2 → q3 is r. According to the second
error-corrected algorithm, the state q3 transits to q0 and q1 with probability t and 1-t.
The Markov model is instantiated as follows.

• State Space. The Markov chain is H (t), t = 1,2, . . . , and the state space is =
{q0, q1} denoting the confidential bits transmitting. The number of the states in
this model is N, and N = 2.

• State transition probability distribution is shown as

A = [aij]N×N =
⎡
⎣p + rt q + r(1 − t)
p + rt q + r(1 − t)

⎤
⎦.

In the matrix, a00 denotes the probability of transition from state q0 to q0, where
the error state is hidden. The reason for a00 = p + rt is that the distribution
probability of bit 1 is p, the error is r and transmits to bit 1 with probability of t.
All the other elements are calculated in the same way.

• Observable symbols and distribution probability. The observation symbols
correspond to the records modeled. The individual symbols are denoted as

V = {v0, v1, . . . , vM}.
The observation symbol probability distribution in state i is

B = {bi(k)},

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 975

where

bi(k) = p[(vk at t)|qt = Si],
1 ≤ i ≤ N , 1 ≤ k ≤ M.

bi(k) means the appearance probability of action vk at time t under the state Si .
M is the number of distinct observation symbols per state. Therefore, values of B
in the covert channel is

b0(0) = p + rt , b0(1) = 0,

b1(0) = 0, b1(1) = q + r(1 − t).
• Initial state distribution. This distribution is π ={π0,π1}, where π ={p+ rt , q +
r(1− t)} in this model. Values of π is calculated with the distribution probability
of the bits of 0,1 and e when initializing.

• Observation sequence is

O(t), t = 1,2, . . . , T ,O(t) ∈ V ,

Where T is the total number of the observed signals.

The covert channel is described by the Markov model as follows,

λ = (A,B,π),

and the probability of the observation sequence O = {O1,O2, . . . } is calculated.
Given the model λ, this probability is defined as P (O|λ). P (O|λ) denotes the ob-
servation sequence built from the model of λ, if the value is bigger enough, it is
believed that a covert channel occurs.

To calculate P (O|λ), the forward variable

at (i) = P {O1O2 · · ·Ot ,H (t) = Si |λ}
must be considered first, and it is the probability of the partial observation sequence
(O1O2 . . . Ot) until time t and the state is Si . at (i) is calculated inductively as follows
[54]:

• Initialization:

a1(i) = πibi(O1), 1 ≤ i ≤ N.
• Induction:

at+1(i) =
⎡
⎣ N∑
j=1

at (i)aij

⎤
⎦ bj (Ot+1),

1 ≤ t ≤ T − 1, 1 ≤ j ≤ N.

976 J. Wu et al.

• Termination:

P (O|λ) =
N∑
i=1

aT (i).

Based on the Markov model λ = (A,B,π), P (O|λ) is calculated as follows.

P (O|λ) =
N∑
i=1

aT (i) = aT (0) + aT (1)

=
[
N∑
i=1

at (0)ai0

]
b0(Ot+1) +

[
N∑
i=1

at (1)ai1

]
b1(Ot+1)

= [at (0)a00 + at (1)a10]b0(Ot+1)

+ [at (0)a01 + at (1)a11]b1(Ot+1)

= (p + rt)[at (0) + at (1)]b0(Ot+1)

+ (q + r(1 − rt))[at (0) + at (1)]b1(Ot+1).

Therefore, the following equation is obtained directly,

at+1(0) + at+1(1) = [at (0) + at (1)]

· [(p + rt)b0(Ot+1) + (q + r(1 − t))b1(Ot+1)]

Finally, P (O|λ) is obtained

P (O|λ) =
T∏
i=1

[(p + rt)b0(Oi) + (q + r(1 − t))b1(Oi)],

where p, q, r are the signal probabilities and p + q + r = 1.
The inputs of the Markov detector are the captured records, and the outputs are

whether the records are covert channels or not. P (O|λ) is the decision factor and
calculated from the records. A Pessimistic Threshold is introduced to set the resulting
boundary.

Definition 2 (PessimisticThreshold) PessimisticThreshold is calculated in the worst
case. With this value, there are no false negative results, but some false positive ones.
Pthr is used to denote the Pessimistic Threshold.

The Markov detector takes the situation that there is no covert channel as the worst
case, so the Pessimistic Threshold is calculated as follows.

• The first step of calculating the Pessimistic Threshold is building a test bed, where
all the operations are normal without covert channels.

• Then, the value is calculated by Markov detector under this situation, which is
relative bigger.

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 977

• Thirdly, the operations in virtual machines is executed repeatedly and all the
values are calculated and recorded.

• Finally, the smallest values is adopted and set as the Pessimistic Threshold.

When the Pessimistic Threshold is calculated, the decision policy of Markov detector
is

P (O|λ) < Pthr .

IfP (O|λ) of a record is smaller thanPthr, it is considered as a covert channel. Because
the Pthr is calculated in the worst case, some normal records may be mistaken as
potential covert channels. Therefore, a Bayesian detector is needed to refine the
results and lower the false positive.

5.2 Bayesian Detection Algorithm

Bayesian reasoning provides a probabilistic approach to inference. It is based on the
assumption that the quantities of interest are governed by probability distributions and
that the optimal decisions are made by reasoning about these probabilities together
with observed data [56–58]. Naive Bayesian classifier is a highly practical Bayesian
learning method whose performance is comparable to a neural network and decision
tree learning in some domains.

In this paper, a naive Bayesian detector is designed and classifies the captured
records into two classes, the covert channels and the normal operations. Each task
processed by the Bayesian detector is described by a conjunction of attribute values,
e.g. x =< a1, a2, . . . , an > (n is the number of the properties). The input of the
detector is the records detected by Markov detector, including some false negative
records. The output of the detector is a target function f (x) whose value domain
is V = {yes, no}. Values of yes and no indicate whether x is a covert channel or
not. To the detector, the training samples are X = {x1, x2, . . . , xn}. Both the covert
channels and normal samples are used to train the detector respectively. Then, the
most probable target value vMAP calculated as

vMAP = argmax
vj∈V

P (vj |a1, a2, . . . , an), (1)

where P (vj |a1, a2, . . . , an) denotes the probability to classify a certain sequence
x =< a1, a2, . . . , an > into class vj .

Then, vMAP is rewritten into the following expression as

vMAP = argmax
vj∈V

P (a1, a2, . . . , an|vj)P (vj)

P (a1, a2, . . . , an)

= argmax
vj∈V

P (a1, a2, . . . , an|vj)P (vj),

where P (a1, a2, . . . , an) is removed because it is a constant independent of vj .

978 J. Wu et al.

Bayesian detector is based on the simple assumption that the target attribute val-
ues are conditionally independent. Therefore, the probability of the conjunction
a1, a2, . . . , an is calculated as follows.

P (a1, a2, . . . , an|vj)P (vj) =
n∏
i=1

P (ai |vj).

Finally, the Bayesian detector is expressed as

vBD = argmax
vj∈V

P (vj)
n∏
i=1

P (ai |vj),

where vBD is the target value of the Bayesian detector.
All the captured records are detected by the two-phase synthesis algorithm. Both

of the algorithms are easy to be implemented and applied online. The records are
detected by Markov and Bayesian detector sequentially, and the final outputs are the
detection results.

6 Mitigation Algorithm

The mitigator consists of two part components, including a core interrupter module
located in hypervisor and an analyzer located in Dom0. The detailed design is shown
in Fig. 3.

The analyzer estimates the capacity and the accuracy of the timing channel.
Channel capacity is required by both TCSEC (Trusted Computer System Evaluation
Criteria (Orange Book)) [21] and CC (Common Criteria for Information Technology
Security Evaluation) [28, 46] criterions, which denotes the amount of information
transferred by the timing channel per unit time (bits per second). Formal and non-
formal methods are presented to calculate the capacity by Millen and Tsai [29].
The accurate capacity can be obtained by calculation, experiment and mathematical
analysis. Generally, the capacity is calculated as follows,

C = N (t)

t
bits/s,

where N(t) is the amount of the information transmitted in total time t.
Mitigation is to lower the capacity by adding latencies which is calculated by

the analyzer. For example, a tuple of latencies tadd = {tadd_1, tadd_2, . . . , tadd_N } is
added into the channel. Therefore, the final capacity Cf is calculated as follows,

Cf = N (t)

t +∑N
i=1 taddi

bits/s.

The capacity is obviously lowered, because Cf is smaller than C expressed as Cf <
C. TCSEC requires that the capacity of a timing channel should be under a certain
threshold, from which the latencies tuple tadd can be calculated.

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 979

Fig. 6 An illustration of the interrupter module. The interrupter module receives the control latencies
from the analyzer and adds them into the hypercalls. After execution, the records of hypercalls are
sent to the analyzer and the latencies are calculated again. This cycle is repeated until the information
has been sent out

Another metric to estimate the threat of the timing channel is transmission ac-
curacy. If the confidential information can not be decoded correctly, the obtained
information is valueless. The accuracy is measured by the percentage of correctly
received bits. Cabuk et al. [32] use the edit distance [59] to measure the accuracy,
which is the minimum distance between two strings. When the latencies have been
added, the accuracy would decrease.

The analyzer calculates the latencies to be added into the timing channel, and
sends a control message back to the pump module as shown in Fig. 6.

The interrupter is designed according to the Pump, which acts as a router that
connects low secure level applications to high applications [60]. In particular, the
Pump was designed to minimize the timing channel threat from the necessary mes-
sage acknowledgements, without penalizing system performance and reliability. The
basic Pump places a non-volatile buffer between Low and High secure level hosts,
and adds latencies by sending acknowledgements (ACKs) to Low host at probabilis-
tic times. The Network Pump services many senders and receivers from different
applications simultaneously to lower the threat of the timing channels [61].

The interrupter module receives the tuple of latencies and places them into the
latency buffer. The hypercalls are intercepted and delayed with the latencies, which
are logged at the same time. The records of hypercalls are sent to the pump module
and placed into the operation buffer. The analyzer receives the records and estimates
the threat to determine whether the threat has been at an acceptable level. After
estimation, the analyzer calculates the latencies and sends them to pump module.
This cycle is repeated until all the information has been sent out.

7 Implementation and Evaluation

This section describes the implementation and evaluation of C2Hunter framework
on Xen hypervisor. Firstly, the three types of covert channels concerned in this paper
is introduced. Secondly, the controller in hypervisor and the analyzer with the two-
phase synthesis detection algorithm in Dom0 are described. Then, the configurations

980 J. Wu et al.

Fig. 7 Transmission cycle of a covert channel scenario

of the covert channels are demonstrated, and the operational records are captured.
At last, the performance of the controller, the Markov detector and the Bayesian
detector in C2Hunter is evaluated.

7.1 Covert Channels Scenarios

A transmission cycle of a covert channel is shown in Fig. 7 [62]. The confidential
information is transmitted from the sender to the receiver. The sender encodes the
information into binary bits at first. Then, the properties of the shared resources
are changed by the sender according to the bits. Finally, the receiver observes the
changes and decodes the confidential information from these changes. The sender
and receiver predetermine the parameters (e.g. decoding mechanism) and repeat the
process until all the confidential information has been transmitted.

CPU load based, Cache based, and shared memory based channels are imple-
mented according to the transmission cycle. The shared resources of the channels
are CPU load, cache access time, and the memory writing intervals.

CPU load based covert channels use CPU load rate to denote the confidential
information [9, 45]. A web server is running in the receiver VM. The sender encodes
the confidential information into binary bits and issues numerous HTTP requests
via JMeter 2.4 (a utility for load testing HTTP servers). The receiver monitors the
CPU utilization of the web server, and decodes the confidential information from the
changes.

The shared resource in cache based covert channel is the cache access time [9,
44]. The sender shares a common cache with the receiver, and occupies the cache
according to the encoded binary bits. The receiver observes the cache access time
and decodes the confidential information from the time. A Prime-Probe protocol is
used in the transmission cycle [63, 64]. A basic construction of the Prime-Probe
protocol is described as follows.

• PRIME: The receiver fills an entire cache set S by reading memory region M from
memory space.

• IDLE: The receiver waits for a pre-specified Prime-Probe interval while the cache
is being utilized by the sender.

• PROBE: The receiver times the reading of the same memory region M to learn
the sender’s cache activity on cache set S.

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 981

The shared resource in shared memory based channel is the memory writing interval
[48]. A memory sharing module is loaded into the guest OS. The sender encodes
the confidential information and writes memory according to the different bits. The
receiver observes the writing intervals and decodes the confidential information from
them. The intervals may be affected by the VM loads, which will be investigated in
the experiments. Shared memory based timing channel has much higher threat than
the other types of timing channel, e.g. CPU load based and cache access time based
timing channels. The threat metrics of the timing channel include channel capacity
and transmission accuracy, both of which should be estimated in the real channel
scenario [27]. In a cloud computing testbed, the capacity of the shared memory based
timing channel is 174.98 bits/s and the error rate is 2 % [48]. XenPump presented in
this paper is a new mitigation method to lower the capacity and/or increase the error
rate of the timing channel, which is described in detail in the following section.

To setup a shared memory based timing channel, a shared ring structure is firstly
initialized by the receiver, and then the grant table is sent to the sender. The sender
maps the ring structure into his own space and sends the bits according to the com-
puted intervals. When the sender has sent out all the bits, the receiver observes the
write intervals and reverses the confidential information.

7.2 Captor and Detector

C2Hunter framework is implemented in a desktop computer with an Intel® CoreTM

2 Quad Q9400 2.66 Hz CPU, 320 GB disk and 4 GB main memory. Xen hypervisor
is 4.0.0, and each VM is allocated 512 MB virtual memory running Fedora 8 Linux
with kernel 2.6.34.1. The three types of covert channel programs used to leak the
confidential information are implemented in C-Language.

The captor places the hook function do_capture_init in the hypervisor.
do_capture_init first initializes a buffer capture_buf , and then calls the function
do_capture_op to record all the operational events. When a hypercall is trig-
gered, do_capture_op records the event information, including vcpu_id , dom_id ,
grant_ref _t , memory writing time, etc. The information recorded is filled into
capture_buf , and send to the detector in Dom0 at last. This framework is similar to
Lares [14], which mainly focuses on memory integrity protections. Comparing with
Lares, the captor monitors the operations related to the shared resources.

The detector is implemented as a Linux kernel module (LKM), including the
Markov and Bayesian detectors. Dom0 is the privileged domain. Therefore, the
LKM is automatically loaded into Dom0 when C2Hunter starts. LKM is module and
running in the kernel space, which has a small impact on the hypervisor performance.
The Markov and Bayesian detectors are implemented in C-Language. C2Hunter is
easy to be extended to support other detection algorithms, for example, the decision
tree and neural network algorithms. The inputs of the detector are the records from
the captor, and the outputs are the detection results. If the captured record set is

982 J. Wu et al.

too large to be processed in a single VM online, the detector can extend to multi-
VMs and process the records in parallel. In this paper, the parallel process is out of
consideration.

7.3 Interrupter in Hypervisor

Interrupter places the hook function do_xenpump_init in the hypervisor.
do_latency_init first initializes a buffer latency_buf , and then the function
do_latency_op is called to fill latency_buf with the computed latencies. After
filling, do_add_latency_init is called to add the latencies to the hypercalls invoked
by the timing channel.

On the other hand, do_record_init initializes a buffer record_buf , which is
created to save the operation events. When a hypercall is invoked by timing chan-
nel, do_record_op records the event information, including vcpu_id , dom_id ,
grant_ref _t , memory writing time, etc. This information is filled into record_buf ,
and send to the analyzer in Dom0 at last. The analyzer estimates the threat of the
timing channel by computing the capacity and accuracy, and calls do_latency_op
to start a new cycle.

The analyzer is implemented as a Linux kernel module (LKM), recording and
estimating the records. Dom0 is the privileged domain. Therefore, the LKM is au-
tomatically loaded into Dom0 when Interrupter starts. LKM is running in the kernel
space, which has a small impact on the hypervisor performance.

7.4 Experimental Settings

The confidential information transmitted from the sender to the receiver is 50 letters
text. The sender and receiver are located in the different VMs running Fedora 8
Linux, and use the same encode scheme. The text is encoded into 400 bits length
binary string. The transmission cycle is shown in Fig. 7, where the bits denote the
different operations.

1) CPU Load Based Covert Channel
In CPU load based covert channel, two VMs start up as the sender and the receiver.
A web server Apache 2.2.6 is running in the receiving VM, where a single 48K-
byte text-only HTML page is made publicly accessible. On the other side, JMeter
is installed in the sending VM, which is a pure Java desktop application designed to
load test functional behavior and measure performance. Then, the sender controls the
CPU loads of the receiving VM, and the transmission cycle is described as follows.

• First, when a bit 1 is transmitting, the sender in sending VM starts 100 threads
simulating 100 single users and each thread takes 10 load samples. This burst
HTTP requests take about t = 10 seconds, and the CPU load is obviously higher
than 50%.

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 983

Fig. 8 CPU load of covert channel without noises

• Then, when a bit 0 is transmitting, the sender in sending VM pause for t = 10
seconds. The CPU load is obviously lower than 50% during this period.

• The sender starts HTTP requests and pauses for t seconds according to the trans-
ferred binary string, and each request is made as fast as possible. This transmission
cycle is repeated until all the bits have been sent out.

An example of the CPU load based covert channel without noise is shown in Fig. 8.
The load samples are obviously different when HTTP requests are performed or not.
The burst HTTP requests consume almost 70% of the CPU load and almost 0% on
the contrary. The transmission continues for 3200 s, where each t = 10 s denoting a
bit. The receiver can easily decode the confidential information from the changes of
CPU loads.

2) Cache Based Covert Channel
In cache based covert channel, sender and receiver are located in different VMs but
the same hypervisor. Two L2 caches are in the test bed, each serving two CPU cores.
Each L2 cache is 12-way set-associative withm = 3072 cache sets and a line size of
l = 64 B, yielding a cache size of c = 3 MB. Each of the sending and receiving VM
is allocated a single vCPU, and the Prime-Probe protocol is implemented as follows.

• Firstly, the receiver reads a 3072 bytes file to fill the entire cache and investigates
the access time.

• At the same time, the sender starts tasks to occupy and release the cache in each
t = 1 s period according to the transferred binary bits.

• If the cache is occupied, the receiver will take about 1 s to read the file. Otherwise,
if the cache is free to use, the receiver will take about 0.5 s to read the file.

• This transmission cycle is repeated until all the bits have been sent out.

984 J. Wu et al.

Fig. 9 Cache access time of covert channel without noises

An example of the Cache based covert channel without noise is shown in Fig. 9.
The cache access time is obviously different from which the receiver decodes the
confidential information.

3) Shared Memory Based Covert Channel
In shared memory based covert channel, the receiver and the sender locate in the
different VMs but sharing the same memory. The sender and the receiver have pre-
determined the size of the buffer_list and cooperate in the producer and consumer
model. The sender writes data into the memory buffer ring in certain intervals ac-
cording to the binary bits. The explicit communication protocol is described as
follows.

• The receiver setups a shared ring structure with a grant table and passes the grant
reference to the sender.

• The sender computes the intervals and then sends data according to the intervals
in each transmission cycle.

• The receiver obtains the data and computes the intervals on each interrupt.
• This transmission cycle is repeated until all the bits have been sent out.

An example of SMCTC without noise is shown in Fig. 10. The memory writing
intervals are from almost 2000–10,000 μs. When a bit 0 (or 1) is transmitted, the
interval is short (or long). When all the intervals have been obtained by the receiver,
the confidential information can be decoded.

7.5 Detection Analysis

C2Hunter is tested by the three types of covert channels. Taking shared memory based
covert channel for example, a test sample includes 100 SMCTC and 100 normal
operation sequences. Each sample is repeated 100 times to get the average detection

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 985

Fig. 10 Time intervals of SMCTC without noises

performance. When the experiment is executing, some operations are running in the
third VM to bring some noise, which causes the receiver to decode the message with
some errors.

In SMCTC, the sender process Pi runs in the user space, and then calls the shared
ring using hypercall in Xen. Pi writes data into the shared ring and the receiver
process Pj reads data from it. The call branches are expressed as follows, where
* means the action of operating, → means writing action, and ← means reading
action.

Pi * {Share Ring} = {user_write→ send_request →
RING_PUSH_REQUEST S_AND_CHECK

_NOT IFY → Shared Ring},
Pj * {Share Ring} = {user_read ← get_request ←
RING_GET _REQUEST ← Shared Ring}.

The above call branches are captured as the operational records and flow into the
Markov detector. The results of the Markov detector are shown in Fig. 11. The value
domain of P (O|λ) is

0.078955 ≤ P (O|λ) ≤ 0.228742.

As described in Sect. 5, the covert channels have small value of P (O|λ). To lower
false negative rate, a Pessimistic Threshold is set as

Pthr = 0.228742.

Therefore, all the covert channels satisfying the following condition

P (O|λ) < Pthr

986 J. Wu et al.

Fig. 11 Markov detector results in detecting SMCTC

Fig. 12 False positives of the Markov detector in detecting SMCTC

are potential covert channels. Because of Pthr being pessimistic, some normal
operations sequences are included in this result by mistaken.

The sample has been repeatedly 100 times as shown in Fig. 12. The false positive
of the detectors in detecting SMCTC are shown in this figure. The false positive of
the Markov detector is 16% meaning 16 normal sequences have been detected by
mistaken. Comparing to the Markov detector, the false positive of Bayesian detector
is 10% in detecting the same sample. It is believed that the performance of Bayesian
detector is better than the Markov detector when used independently.

The detector detects the sample use of Markov detector and Bayesian detector
sequentially. Therefore, the false positive falls to 1%. The reason for the reducing is
that the Bayesian detector refines the resulting output by the Markov detector. Only
the channels that have been taken as covert by both the detectors are output as covert
channels.

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 987

Table 1 Detection results of the three channels

Channels Capacity
(bps)

Error rate (%) Markov (%) Bayesian (%) False positive
(%)

CPU load 0.098 4.76 29.92 % 8.14 4.46

Cache Based 0.297 6.67 24.51 15.61 1.89

shared memory 189.15 2.43 26.28 16.42 2.53

The experiments of CPU load based and cache based covert channels are detected
in the same way. Table 1 shows the average detection results of all the three types of
covert channels.

In Table 1, capacity means the threat performance of a covert channel. The bigger
capacity means the covert channel is more threat to the cloud computing. It can be
seen that the shared memory based covert channel is the most threatening to cloud
computing. Error means the decoding error. In the experiments, it is calculated by
edit distance [59], which is the minimum distance between two strings. The values of
Markov and Bayesian are the false positive of each detector. In these experiments, the
Bayesian detector is always better than the Markov detector. When the two detectors
detect the channels sequentially, the final false positive is acceptable.

These experiments show that the two-phase synthesis algorithm is efficient to
detect covert channels. C2Hunter framework detects all the three types of channels
in cloud computing with no false negative and low false positive.

7.6 Mitigation Analysis

An example of shared memory based timing channel is shown in Fig. 13. A confi-
dential information is encoded into a 200 bits string, which is repeatedly sent 100
times in each experiment.

In Fig. 13, the No-Latency denotes the original timing channel without mitigation.
The memory write intervals are from almost 2 to 30 ms, most of which are around
10 ms. In this experiment, bit 0 is sent directly, but bit 1 is sent after sleeping 5
ms. The intervals are relatively small and the capacity is relatively high, which is
about 140 bits/s as shown in Fig. 14. When all the intervals have been obtained by
the receiver, the confidential information can be decoded from the intervals. In the
experiment, the receiver decodes the confidential information with small error rate,
where the error rate is about 5 % as shown in Fig. 15. The small transmission error
rate means most of the confidential information can be transmitted correctly in the
timing channel.

The mitigation performance of interrupter is tested by two experiments, which are
named as Latency-I and Latency-II in this paper. In Latency-I experiment, a tuple of
latencies tadd_I = {tadd_I_1, tadd_I_2, . . . , tadd_I_N } is added into the timing channel
by interrupter, where the values of taddI is produced from a uniform distribution

988 J. Wu et al.

Fig. 13 Memory write intervals of the shared memory

Fig. 14 Channel capacity of the shared memory based timing channel

U (0, 0.01). Each of the interval is added a latency t , 0 < t < 0.01, which is shown
in Fig. 13 denoted by Latency-I. The intervals of Latency-I is almost 10–20 ms.
Therefore, the capacity is lowered to about 80 bits/s and shown in Fig. 14. Interrupter
adds the latencies to the timing channel, which lowered the capacity and increased the
error rate. The error rate is about 20%, meaning some of the confidential information
cannot be decoded correctly.

Latency-II experiment produces the latencies tadd_II ={tadd_II_1,
tadd_II_2, . . . , tadd_I_N } by the uniform distribution U (0, 0.025). When the la-
tencies have been added to the timing channel, the memory write intervals is almost

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 989

Fig. 15 Transmission error rate of the shared memory based timing channel

10–30 ms as shown in Fig. 13, lowering the capacity to about 50 bits/s as shown
in Fig. 14. The error rate is increased to about 35%, meaning the confidential
information decoded by the receiver is valueless.

In the experiments, interrupter adds latencies to the timing channel inducing the
capacity decrease and the error rate increase. If the longer latencies are added into
the timing channel, the values of the capacity will be smaller and the error rate will
be bigger. With a bigger error rate, the decoded confidential information is valueless.
Because of the latencies, transmitting the same confidential information needs longer
time, causing the performance decrease. For example, the time used by Latency-I
and Latency-II is longer than No-Latency by 63.87 % and 190.37 % respectively.

The experiments show that interrupter can mitigate the timing channel by adding
the latencies which are produced by taking consideration of both the capacity and
transmission accuracy.

8 Discussion

The covert channel is modeled into an error-corrected four states automata, adopting
the probability based error-corrected algorithms referred in Sect. 4.4 to process the
errors in the experiments. When an error occurs, it takes the error as bit 1 (or 0)
depending on the probability of the property states in Markov detector and Bayesian
detector. Although this error-corrected algorithm simplifies the detection process,
the detection accuracy may be affected. A more sophisticated algorithm will be
developed in the future.

It has been shown that all the three types of covert channels can be detected by
C2Hunter framework. XML file is used as a plug-in to config the detector to detect

990 J. Wu et al.

Fig. 16 XML configuration file in C2Hunter

covert channels. A typical XML file includes the channel name, the property domain
values, and the Pessimistic Threshold. An example is shown as follows in Fig. 16.

This information is collected and appended to the XML file, so it is convinced
that C2Hunter can detect the incoming channels as long as they can be modeled into
this model. More channels will be built to test whether C2Hunter can detect or not
in the future work.

To protect the privacy of the cloud customers in data centers, cloud providers
should not collect the users’ data. In C2Hunter, only the change regularities of
the shared resources are concentrated, e.g. CPU load, cache access time, and the
memory writing intervals. There is no need to know which operation triggers these
changes. The ignorance of the channel details protects the users’ privacy and lower
the performance influence to hypervisor.

Only the channels using the binary encoding scheme are investigated and
C2Hunter is easily extended to support multi-encoding channel [27]. A multi-
encoding channel will be modeled into an error-corrected multi-states automata in
the same way. Each codeword is modeled into a state in the automata and can be
transited from all the other states. The corresponding Markov detector can be modi-
fied easily. There is no difference between multi-encoding and binary channels, and
C2Hunter detect this type of channels in the same way as the binary ones.

The interrupter mitigates the threat of the timing channel anonymously by adding
latencies to the Hypercalls without collecting users’ privacy data. In mitigation, only
the Hypercalls are monitored and operated meaning it is no need to know which user
operation triggers these changes. The ignorance of the channel details protects the
users’ privacy and lower the performance influence to hypervisor.

C2Hunter is a plug-in framework, whenever a new efficient detection algorithm is
discovered, it can replace the existing detector or be added as another detector. How-
ever, C2Hunter is built to detect covert channels only and other intrusion methods
cannot be detected. The mitigation is easy to control by the interrupter. The capacity
and the error rate vary according to the variation of the latencies which are calculated
by the analyzer. Take the Latency-I and Latency-II experiment as examples, if the
threat of the timing channel is required to small, the latencies should be relatively

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 991

bigger. The interrupter is built to mitigate the timing channels, which may be inte-
grated into the monitoring tools in the future. C2Hunter may be integrated into other
intrusion detection tools in the future.

9 Related Work

Most of the prior works on cloud computing security have focused on the integrity
protection. Several frameworks have been proposed to protect the integrity of the
guest kernels using hypervisor. For example, HIMA [17], Lares [14], HyperSentry
[15], HyperSafe [11], and Antfarm [16] are all designed to provide the integrity
protection to VMs. These approaches are related to the virtualization security and
integrity, but only C2Hunter focuses on the covert channels.

Millen presents a covert channel detection approach, but it is limited to the covert
storage channels [51]. This paper aims to detect timing channels in cloud computing,
which is more difficult. Cabuk and Berk present the detection algorithms to detect
network covert timing channels [32–34]. The covert channels they detected are clas-
sified into CC2 type of channels which has been studied in-depth for many years [26,
27, 39, 47, 65]. In this paper, only CC3 type of channels that are recently brought
by cloud computing are considered.

Nagatou et al. [35] present a run-time detection approach and focus on enforced
properties. C2Hunter can also perform online detection. HomeAlone [44] is proposed
to determine whether a VM is physically co-resident to another VM and the same
functions are proposed in [9, 45]. Although these approaches are related to covert
channels, they are not intended for detecting them.

Some introspections used as intrusion detection systems have been proposed upon
virtual machines. For example, HyperSpector [66] is designed to monitor the actions
without any additional hardware by using virtualization to isolate each IDS from
the servers. Some other IDSes are presented in [67–69]. Covert channel can be seen
as a type of intrusion and C2Hunter is a special detector only detecting the covert
channels. C2Hunter is easy to extend and has better detection performance, which is
a complement to these introspections.

The practical method for the handling of known timing channel is the mitigation,
which requires the reduction of the capacity or increase of the error rate of the
timing channel to a predefined acceptable level. It is obvious that adding latency and
introducing noise into the channel can achieve this goal. In this paper, XenPump is
proposed to mitigate the timing channel in cloud computing by adding latency.

Kang et al. proposed Pump for the first time in [60], which pushes messages to
the high system and provides a controlled stream of acknowledgements to the low
system. The Pump provides quantifiable security, acceptable reliability and minimal
performance penalties to the communication from a low level to a high level sys-
tem, which may cause a timing channel by the acknowledgements. They extended
the Pump to a certain multi-level security network architecture in order to miti-
gate the threat of network timing channels [61, 70]. They even designed a custom

992 J. Wu et al.

hardware architecture of Network PumpTM with separate microprocessors, memory,
input/output (I/O) circuitry, etc [71]. Network PumpTM connects the Low net and the
High net with only a shared stable memory buffer in common to mitigate the threat
of the timing channel.

Pump is proposed to limit the threat of the timing channel in network. In this
paper, XenPump is designed to mitigate the threat of the timing channels in cloud
computing. XenPump is located in the virtual machine management layer and has
high privilege to monitor and operate the Hypercalls used by the timing channels.
The main difference between Network PumpTM and XenPump is that XenPump is
designed for cloud computing.

Another mitigation method is proposed by Hu [72] using fuzzy time. Fuzzy time
has proven to be highly effective against the timing channels in the VAX Security
Kernel. Not only does fuzzy time close the high speed channels, it does so at a
much lower than anticipated performance cost. Fuzzy time isolates a process from
all precise timing information. This method is suitable for the timing channels using
the same time clock, e.g. Bus-Contention timing channel. Compared with XenPump,
fuzzy time mitigates the threat by reducing the accuracy and precision of the system
clocks, which are not the main concerns in cloud computing.

Recent work introduced predictive mitigation, a new way to mitigate leakage
through timing channels in interactive systems [73, 74]. This method bounds the
amount of information leaked through the timing channel as a function of elapsed
time, predicts timing from past behavior, and then enforces the predictions. Compar-
ing with this method, XenPump is relatively easy to implement. Once the Hypercalls
have been identified, the latencies can be added into the Hypercalls and the threat
will decrease.

10 Conclusion

With the growing popularity of cloud computing, more confidential applications
have been deployed in the data centers. Covert channel is a serious threat to the
data of cloud customers. In this paper, the fundamentals to the covert channels in
the cloud are argued and the channels are classified into three categories. Only the
new channels brought by cloud computing are concerned and modeled into an Error-
Corrected Four States Automata. Some formal requirements are presented to build
a covert channel detector and a plug-in detection framework named C2Hunter is
designed.

C2Hunter satisfies the four formal requirements proposed in Sect. 4.2 by using
two key techniques. The first technique installs hooks inside hypervisor to monitor all
the hypercalls, capture the operation tracks and add latencies into the hypercalls. The
second key technique is the two-phase synthesis detection algorithm implemented
as Markov detector and Bayesian detector. To evaluate C2Hunter, a prototype is
implemented on Xen hypervisor. The CPU load based, Cache based, and shared
memory based covert channels have been implemented and detected by C2Hunter.

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 993

The threat of shared memory based timing channel is mitigated by interrupting both
the capacity and transmission accuracy. The results show that C2Hunter can detect
all the three types of the channels using the Pessimistic Threshold, mitigate the
threat and has a small false positive rate. In addition, this research demonstrates
that C2Hunter is highly efficient and feasible to extend to detect and mitigate the
incoming new channels.

Acknowledgements This work is supported by the National Science and Technology Major
Project No.2012ZX01039-004, No.2010ZX01036-001-002, the National Natural Science Founda-
tion of China No.61303057, No.61170072 and the Major Program of the National Natural Science
Foundation of China No.91124014. Samee U. Khan’s work was partly supported by the Young
International Scientist Fellowship of the Chinese Academy of Sciences, (Grant No. 2011Y2GA01).

References

1. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A.
Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, 2010.

2. A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: research problems
in data center networks,” SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, Dec.
2008.

3. G. L. Valentini, W. Lassonde, S. U. Khan, N. Min-Allah, S. A. Madani, J. Li, L. Zhang, L.
Wang, N. Ghani, J. Kolodziej, H. Li, A. Y. Zomaya, C.-Z. Xu, P. Balaji, A. Vishnu, F. Pinel,
J. E. Pecero, D. Kliazovich, and P. Bouvry, “An overview of energy efficiency techniques in
cluster computing systems,” Cluster Computing, vol. 16, no. 1, pp. 3–15, 2013.

4. L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the clouds: towards
a cloud definition,” SIGCOMM Comput. Commun. Rev., vol. 39, pp. 50–55, December 2008.

5. R. Buyya, C. S.Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and emerging
it platforms: Vision, hype, and reality for delivering computing as the 5th utility,” Future Gener.
Comput. Syst., vol. 25, pp. 599–616, June 2009.

6. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield, “Xen and the art of virtualization,” in SOSP, 2003, pp. 164–177.

7. H. Takabi, J. B. D. Joshi, and G.-J. Ahn, “Security and privacy challenges in cloud computing
environments,” IEEE Security & Privacy, vol. 8, no. 6, pp. 24–31, 2010.

8. Y. Chen, V. Paxson, and R. H. Katz, “What’ s new about cloud computing security?” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2010-5, Jan 2010.

9. T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds,” in ACM Conference on Computer and
Communications Security, 2009, pp. 199–212.

10. J. Wu, L. Ding, andY. Wang, “Research on key problems of covert channel in cloud computing,”
Journal of Communications, vol. 32, no. 9A, pp. 184–203, 2011.

11. Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide lifetime hypervisor
control-flow integrity,” in IEEE Symposium on Security and Privacy, 2010, pp. 380–395.

12. B. D. Payne, R. Sailer, R. Cáceres, R. Perez, and W. Lee, “A layered approach to simplified
access control in virtualized systems,” Operating Systems Review, vol. 41, no. 4, pp. 12–19,
2007.

13. R. Sailer, T. Jaeger, E. Valdez, R. Cáceres, R. Perez, S. Berger, J. L. Griffin, and L. van
Doorn, “Building a mac-based security architecture for the XenXen open-source hypervisor,”
in ACSAC, 2005, pp. 276–285.

994 J. Wu et al.

14. B. D. Payne, M. Carbone, M. I. Sharif, and W. Lee, “Lares: An architecture for secure active
monitoring using virtualization,” in IEEE Symposium on Security and Privacy, 2008, pp.
233–247.

15. A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky, “Hypersentry: enabling
stealthy in-context measurement of hypervisor integrity,” in ACM Conference on Computer
and Communications Security, 2010, pp. 38–49.

16. S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Antfarm: Tracking processes
in a virtual machine environment,” in USENIX Annual Technical Conference, General Track,
2006, pp. 1–14.

17. A. M. Azab, P. Ning, E. C. Sezer, and X. Zhang, “Hima: A hypervisor-based integrity
measurement agent,” in ACSAC, 2009, pp. 461–470.

18. J. Wu, Y. Wu, Z. Wu, M. Yang, and Y. Wang, “Vulcloud: Scalable and hybrid vulnerability
detection in cloud computing,” in Software Security and Reliability-Companion (SERE-C),
2013 IEEE 7th International Conference on, 2013, pp. 225–226.

19. J. Wu, Y. Wu, M. Yang, Z. Wu, and Y. Wang, “Vulnerability detection of android system in
fuzzing cloud,” in Proceedings of the 2013 IEEE Sixth International Conference on Cloud
Computing, ser. CLOUD ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
954–955.

20. A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determinating timing channels in compute
clouds,” in CCSW ’10: Proceedings of the 2010 ACM workshop on Cloud computing security
workshop. New York, NY, USA: ACM, 2010, pp. 103–108.

21. NCSC, “Trusted computer system evaluation criteria (orange book),” 1985.
22. B. W. Lampson, “A note on the confinement problem,” Commun. ACM, vol. 16, no. 10, pp.

613–615, 1973.
23. J. Wu, L. Ding, Y. Wang, and W. Han, “A practical covert channel identification approach in

source code based on directed information flow graph,” in IEEE SSIRI, Jeju Island, Korea,
2011, pp. 98–107.

24. C.-R. Tsai, V. D. Gligor, and C. S. Chandersekaran, “A formal method for the identification of
covert storage channels in source code,” in IEEE Symposium on Security and Privacy, 1987,
pp. 74–87.

25. T. F. Keefe, W.-T. Tsai, and J. Srivastava, “Database concurrency control in multilevel secure
database management systems,” IEEE Trans. Knowl. Data Eng., vol. 5, no. 6, pp. 1039–1055,
1993.

26. S. Zander, G. J. Armitage, and P. Branch, “A survey of covert channels and countermeasures in
computer network protocols,” IEEE Communications Surveys and Tutorials, vol. 9, no. 1–4,
pp. 44–57, 2007.

27. J. Wu, Y. Wang, L. Ding, and X. Liao, “Improving performance of network covert timing
channel through huffman coding,” Mathematical and Computer Modelling, vol. 55, no. 1–2,
pp. 69–79, 2012.

28. ISO/IEC, “Common criteria for information technology security evaluation,” 2005.
29. Y. Wang, J. Wu, H. Zeng, L. Ding, and X. Liao, “Covert channel research,” Journal of Software,

vol. 21, no. 9, pp. 2262–2288, 2010.
30. J. Wu, Y. Wang, L. Ding, and Y. Zhang, “Constructing scenario of event-flag covert channel in

secure operating system,” in ICIMT, Hongkong, 2010, pp. 371–375.
31. C.-R. Tsai and V. D. Gligor, “A bandwidth computation model for covert storage channels and

its applications,” in IEEE conference on Security and privacy, Oakland, California, 1988, pp.
108–121.

32. S. Cabuk, C. E. Brodley, and C. Shields, “IP covert timing channels: design and detection,” in
ACM Conference on Computer and Communications Security, 2004, pp. 178–187.

33. ——, “IP covert channel detection,” ACM Trans. Inf. Syst. Secur., vol. 12, no. 4, pp. 1–29,
2009.

34. V. Berk, A. Giani, G. Cybenko, and N. Hanover, “Detection of covert channel encoding in
network packet delays,” Rapport technique TR536, de lUniversité de Dartmouth. Novembre,
2005.

C2Hunter: Detection and Mitigation of Covert Channels in Data Centers 995

35. N. Nagatou and T. Watanabe, “Run-time detection of covert channels,” in ARES, 2006, pp.
577–584.

36. L. Hélouët and A. Roumy, “Covert channel detection using information theory,” in SecCo,
2010, pp. 34–51.

37. J. K. Millen, “20 years of covert channel modeling and analysis,” in IEEE Symposium on
Security and Privacy, 1999, pp. 113–114.

38. C. G. Girling, “Covert channels in LAN’s,” IEEE Trans. Software Eng., vol. 13, no. 2, pp.
292–296, 1987.

39. L. Yao, X. Zi, L. Pan, and J. Li, “A study of on/off timing channel based on packet delay
distribution,” Computers & Security, vol. 28, no. 8, pp. 785–794, 2009.

40. T. G. Handel and M. T. S. II, “Hiding data in the osi network model,” in Information Hiding,
1996, pp. 23–38.

41. K. Ahsan and D. Kundur, “Practical data hiding in TCP/IP,” in Proc. Workshop on Multimedia
Security at ACM Multimedia. Citeseer, 2002.

42. C. Rowland, “Covert channels in the TCP/IP protocol suite,” First Monday, vol. 2, no. 5–5,
1997.

43. S. Gianvecchio and H. Wang, “Detecting covert timing channels: an entropy-based approach,”
in CCS ’07: Proceedings of the 14th ACM conference on Computer and communications
security. New York, NY, USA: ACM, 2007, pp. 307–316.

44. A. O. Yinqian Zhang, Ari Juels and M. K. Reiter, “Homealone: Co-residency detection in
the cloud via side-channel analysis,” in IEEE Symposium on Security and Privacy, Oakland,
California, 2011, pp. 313–328.

45. K. Okamura and Y. Oyama, “Load-based covert channels between Xen virtual machines,” in
SAC, 2010, pp. 173–180.

46. H. Zeng, Y. Wang, L. Ruan, W. Zu, and J. Cai, “Covert channel mitigation method. for secure
real-time database using capacity metric,” Journal on Communications, vol. 29, no. 8, pp.
46–56, 2008.

47. Y.Wang, J.Wu, L. Ding, and H. Zeng, “Detecion approach for covert channel based concurrency
conflict interval time,” Journal of Computer Research and Development, vol. 48, no. 8, pp.
1542–1553, 2011.

48. J. Wu, L. Ding, Y. Wang, and W. Han, “Identification and evaluation of sharing memory covert
timing channel in Xen virtual machines,” in IEEE CLOUD, Washington DC, USA, 2011, pp.
283–291.

49. J. Wu, L. Ding, Y. Lin, N. Min-Allah, and Y. Wang, “Xenpump: A new method to mitigate
timing channel in cloud computing,” in IEEE CLOUD, Hawaii, USA, 2012, pp. 678–685.

50. D. Chisnall, The definitive guide to the xen hypervisor. Prentice Hall Press, 2007.
51. J. K. Millen, “Finite-state noiseless covert channels,” in CSFW, 1989, pp. 81–86.
52. R. Lanotte, A. Maggiolo-Schettini, and A. Troina, “Time and probability-based information

flow analysis,” Software Engineering, IEEE Transactions on, vol. 36, no. 5, pp. 719–734,
2010.

53. J. Wu, L. Ding, Y. Wu, N. Min-Allah, S. U. Khan, and Y. Wang, “C2detector: A covert channel
detection framework in cloud computing,” Security and Communication Networks, 2013.

54. L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, feb 1989.

55. J. Hu, X. Yu, D. Qiu, and H.-H. Chen, “A simple and efficient hidden Markov model scheme
for host-based anomaly intrusion detection,” IEEE Network, vol. 23, no. 1, pp. 42–47, 2009.

56. T. M. Mitchell, Machine learning. McGraw-Hill, 1997.
57. A. W. Moore and D. Zuev, “Internet traffic classification using Bayesian analysis techniques,”

in SIGMETRICS, 2005, pp. 50–60.
58. T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural networks for internet traffic

classification,” IEEE Transactions on Neural Networks, vol. 18, no. 1, pp. 223–239, 2007.
59. E. S. Ristad and P. N. Yianilos, “Learning string-edit distance,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 20, no. 5, pp. 522–532, 1998.

996 J. Wu et al.

60. M. H. Kang and I. S. Moskowitz, “A pump for rapid, reliable, secure communication,” in ACM
Conference on Computer and Communications Security, 1993, pp. 119–129.

61. M. H. Kang, I. S. Moskowitz, and D. C. Lee, “A network pump,” IEEE Trans. Software Eng.,
vol. 22, no. 5, pp. 329–338, 1996.

62. J. Son and J. Alves-Foss, “A formal framework for real-time information flow analysis,”
Comput. Secur., vol. 28, no. 6, pp. 421–432, 2009.

63. D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: The case of aes,”
in CT-RSA, 2006, pp. 1–20.

64. E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on aes, and countermeasures,”
J. Cryptology, vol. 23, no. 1, pp. 37–71, 2010.

65. S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web applications: A reality
today, a challenge tomorrow,” in IEEE Symposium on Security and Privacy, 2010, pp. 191–206.

66. K. Kourai and S. Chiba, “Hyperspector: virtual distributed monitoring environments for secure
intrusion detection,” in VEE, 2005, pp. 197–207.

67. T. Garfinkel and M. Rosenblum, “A virtual machine introspection based architecture for
intrusion detection,” in NDSS, 2003.

68. X. Jiang and X. Wang, “”out-of-the-box“ monitoring of vm-based high-interaction honeypots,”
in RAID, 2007, pp. 198–218.

69. J. Li, B. Li, T. Wo, C. Hu, J. Huai, L. Liu, and K. Lam, “Cyberguarder: A virtualization security
assurance architecture for green cloud computing,” Future Generation Computer Systems, vol.
28, no. 2, pp. 379–390, 2012.

70. M. Kang, I. Moskowitz, and D. Lee, “A network version of the pump,” in Security and Privacy,
1995. Proceedings., 1995 IEEE Symposium on, 1995, pp. 144–154.

71. M. Kang, I. Moskowitz, and S. Chincheck, “The pump: a decade of covert fun,” in Computer
Security Applications Conference, 21st Annual, 2005, pp. 352–360.

72. W.-M. Hu, “Reducing timing channels with fuzzy time,” in IEEE Symposium on Security and
Privacy, 1991, pp. 8–20.

73. D. Zhang, A.Askarov, andA. C. Myers, “Predictive mitigation of timing channels in interactive
systems,” in Proceedings of the 18th ACM conference on Computer and communications
security, ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 563–574.

74. A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-box mitigation of timing channels,”
in ACM Conference on Computer and Communications Security, 2010, pp. 297–307.

Selective and Private Access to Outsourced
Data Centers

Sabrina De Capitani di Vimercati, Sara Foresti, Giovanni Livraga
and Pierangela Samarati

1 Introduction

The increasing amount of information being generated, collected, shared, and dis-
seminated nowadays is making the in-house management of data centers by private
and public companies more and more difficult and economically expensive. The
wide availability of cloud providers offering high-quality services for data storage
and management is then a driving motivation for companies that more often move
their data centers to the cloud. Although this trend has clear economic advantages,
it also introduces novel security issues. In fact, when moving a data center to the
cloud, the data are no more under the direct control of their owner who needs to
rely on an external system for providing the same guarantees as in their in-house
management (e.g., data availability, protection against external attacks, selective ac-
cess to the data, fault tolerance management [32–34, 39]). However, being external
third parties, cloud providers are often assumed to be honest-but-curious, and hence
trusted to correctly manage the data they store but not trusted to access their content.
This situation raises several concerns, especially with respect to the proper protec-
tion of the confidentiality of the data. An effective solution consists in encrypting
the data before outsourcing them so that non-authorized parties (including the cloud
provider), not knowing the encryption key, cannot access the data content in plaintext
[9, 31]. Data encryption before outsourcing presents however some disadvantages.

S. De Capitani di Vimercati (�) · S. Foresti · G. Livraga · P. Samarati
Dipartimento di Informatica, Università degli Studi di Milano,
Via Bramante 65, 26013 Crema, Italy
e-mail: sabrina.decapitani@unimi.it

S. Foresti
e-mail: sara.foresti@unimi.it

G. Livraga
e-mail: giovanni.livraga@unimi.it

P. Samarati
e-mail: pierangela.samarati@unimi.it

© Springer Science+Business Media New York 2015 997
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_33

998 S. De Capitani di Vimercati et al.

Fig. 1 Reference scenario

First, while effectively hiding plaintext data to the eyes of the provider, encrypting all
data with a single key would require either all users to have complete visibility of the
resources in the data collection, or the data owner to mediate access requests to the
data to enforce selective access. Second, encryption complicates query evaluation
since the cloud provider cannot directly evaluate users queries over encrypted data.
Third, in cases where also the queries posed by users need to be protected, encryption
might not provide sufficient protection guarantees.

To overcome such issues, different techniques have been proposed that aim at
supporting selective and private access to outsourced data. These techniques are
based on the use of selective encryption, meaning that different pieces of data are
encrypted with different keys according to who can access them. Indexes are instead
used by cloud providers to select the data to be returned in response to a query,
possibly even without revealing the target of the query itself. While, singularly taken,
these techniques represent effective solutions, the combined adoption of selective
encryption and indexes may cause violations of confidentiality that still need to
be carefully addressed. In this chapter, we present an overview of the techniques
proposed for enabling data to self-enforce the access control policy defined by their
owner, and for supporting query evaluation on encrypted data. Fig. 1 illustrates the
reference scenario where a data owner outsources her data to a cloud provider and
users access such data.

The remainder of this chapter is organized as follows. Sect. 2 shows how encrypted
data can enforce access control restrictions, without requiring the intervention of the
data owner or the collaboration of the storing server. Sect. 3 presents an overview of
the techniques proposed for supporting query evaluation over encrypted data. Sect. 4
describes novel solutions for accessing outsourced data collections without revealing
the target of the query to the storing server. Sect. 5 illustrates the privacy issues arising
when combining solutions for access control enforcement with indexing techniques
and introduces preliminary solutions to this problem. Finally, Sect. 6 presents our
closing remarks.

Selective and Private Access to Outsourced Data Centers 999

2 Access Control Enforcement

The information stored in data centers can be of any type: relational databases,
XML documents, multimedia files, and so on. For simplicity, but without loss of
generality, in this chapter we assume the data stored in the cloud to be organized in a
relational database, with the note that all approaches illustrated in the following can
be easily adapted to operate on any logical data modeling. We then consider a relation
r defined over schema R(a1, . . ., an), where attribute ai is defined over domain Di ,
i = 1, . . ., n. At the storing server, relation r is represented through an encrypted
relation rk , defined over schema Rk(tid, enc), with tid a numerical primary key
added to the encrypted relation and enc the encrypted tuple. Each tuple t in r is
represented as an encrypted tuple tk inRk , where t k[tid] is randomly chosen by the
data owner and t k[enc]=E k(t), with E a symmetric encryption function with key k.

Different techniques have been proposed to enforce access control with the inter-
vention of neither the storing server, for confidentiality reasons, nor the data owner,
for efficiency reasons (e.g., [10, 12, 29]). These solutions are based on the idea that
data self-enforce selective access restrictions through encryption, as illustrated in the
following of this section.

2.1 Selective Encryption

A promising solution for enforcing access control to outsourced data is based on
selective encryption, which adopts different encryption keys for different tuples, and
selectively distributes keys to authorized users. Each user can decrypt and therefore
access a subset of tuples, depending on the keys she knows. The authorization policy
regulating which user can read which tuple is defined by the data owner before
outsourcing relation r (e.g., [10, 12]). The authorization policy can be represented
as a binary access matrix M with a row for each user u, and a column for each
tuple t, where: M[u,t]= 1 iff u can access t; M[u,t]= 0 otherwise. To illustrate,
consider relation Patients in Fig. 2. Figure 3 illustrates an example of access matrix
regulating access to the tuples in relation Patients by users A, B, C, D, and E. The
jth column of the matrix represents the access control list acl(tj) of tuple tj , for each
j = 1, . . . , |r|. As an example, with reference to the matrix in Fig. 3, acl(t1) = ABC.
The encryption policy, which defines and regulates the set of keys used to encrypt
tuples and the distribution of keys to the users, must be equivalent to the authorization
policy, meaning that each user should be able to decrypt all and only the tuples she
is authorized to access.

Solutions translating an authorization policy into an equivalent encryption policy
(e.g., [12]) have two main design desiderata: (i) guarantee that each user has to
manage only one key; and (ii) encrypt each tuple with only one key (i.e., no tuple is
replicated). To fulfill these two requirements, selective encryption approaches rely
on key derivation techniques that permit to compute an encryption key kj starting
from the knowledge of another key ki and (possibly) a piece of publicly available

1000 S. De Capitani di Vimercati et al.

Fig. 2 An example of relation

Fig. 3 An example of access matrix

information. To determine which key can be derived from which other key, key
derivation techniques require the preliminary definition of a key derivation hierarchy.
A key derivation hierarchy can be graphically represented as a directed graph with
a vertex vi for each key ki in the system and an edge (vi ,vj) from key ki to key kj
iff kj can be directly derived from ki . Note that key derivation can be applied in
chain, meaning that key kj can be computed starting from key ki if there is a path
(of arbitrary length) from vi to vj in the key derivation hierarchy.

A key derivation hierarchy can have different shapes, as described in the following.

• Chain of vertices (e.g., [40]): the key kj associated with vertex vj is computed
by applying a one-way function to the key ki of its predecessor in the chain. No
public information is needed.

• Tree hierarchy (e.g., [41]): the key kj associated with vertex vj is computed by
applying a one-way function to the key ki of its direct ancestor, and a public
label lj associated with kj . Public labels are necessary to guarantee that different
children of the same node in the tree have different keys.

• DAG hierarchy (e.g., [2, 3, 7, 19]): keys in the hierarchy can have more than
one direct ancestor, and each edge in the hierarchy is associated with a publicly
available token [3]. Given two keys ki and kj , and the public label lj of kj ,
token ti,j permits to compute kj from ki and lj . Token ti,j is computed as ti,j =
kj ⊕ f (ki , lj), where ⊕ is the bitwise xor operator, and f is a deterministic
cryptographic function. By means of ti,j , all users knowing (or able to derive) key
ki can also derive key kj .

Selective and Private Access to Outsourced Data Centers 1001

Each of the proposed key derivation hierarchies has advantages and disadvantages.
However, the token-based key derivation best fits the outsourcing scenario by mini-
mizing the need of re-encryption and/or key re-distribution in case of updates to the
authorization policy [12] (for more details, see Sect. 2.2).

The set containment relationship ⊆ over the set U of users can nicely be used
to define a DAG key derivation hierarchy suited for access control enforcement and
able to satisfy the desiderata of limiting the key management overhead [12]. Such
a hierarchy has a vertex for each of the elements of the power-set of the set U of
users, and a path from vi to vj iff the set of users represented by vi is a subset of that
represented by vj . The correct enforcement of the authorization policy defined by
the data owner is guaranteed iff: (i) each user ui is communicated the key associated
with the vertex representing her; and (ii) each tuple tj is encrypted with the key
of the vertex representing acl(tj). With this strategy, each tuple can be decrypted
and accessed by all and only the users in its access control list, meaning that the
encryption policy is equivalent to the authorization policy defined by the data owner.
Furthermore, each user has to manage one key only, and each tuple is encrypted with
one key only. For instance, Fig. 4a illustrates the key derivation hierarchy induced
by the set U= {A, B, C, D} of users and the subset containment relationship over it
(in the figure, vertices are labeled with the set of users they represent). Fig. 4b and
Fig. 4c illustrate the keys assigned to users in the system and the keys used to encrypt
the tuples in relation Patients in Fig. 2, respectively. The encryption policy in the
figure enforces the access control policy in Fig. 3 restricted to the set U= {A, B, C, D}
of users as each user can derive, from her own key, the keys of the vertices to which
she belongs and hence decrypt the tuples she is authorized to read. For instance, user
C can derive the keys used to encrypt tuples t1, t2, t3, t5, and t6, and then access their
content.

Even though this approach correctly enforces an authorization policy and enjoys
ease of implementation, it defines more keys and more tokens than necessary. Since
tokens are stored in a publicly available catalog at the server side, when a user u
wants to access a tuple t she needs to interact with the server to visit the path in the
key derivation hierarchy from the vertex representing u to the vertex representing
acl(t). Therefore, keeping the number of tokens low increases the efficiency of
the derivation process, and then also of the response time to users. The problem
of minimizing the number of tokens, while guaranteeing equivalence between the
authorization and the encryption policies, is NP-hard (it can be reduced to the set
cover problem) [12]. It is however interesting to note that: (i) the vertices needed
for correctly enforcing an authorization policy are only those representing singleton
sets of users (corresponding to users’ keys) and the access control lists of the tuples
(corresponding to keys used to encrypt tuples) in r; (ii) when two or more vertices
have more than two common direct ancestors, the insertion of a vertex representing
the set of users corresponding to these ancestors reduces the total number of tokens.
Elaborating on these two intuitions to reduce the number of tokens, the following
heuristic approach efficiently provides good results [12].

1002 S. De Capitani di Vimercati et al.

a b c

Fig. 4 An example of encryption policy equivalent to the access control policy in Fig. 3, considering
the subset {A,B,C,D} of users

1. Initialization. The algorithm first identifies the vertices necessary to implement
the authorization policy, that is, the vertices representing: (i) singleton sets of
users, whose keys are communicated to users and that allow them to derive the
keys of the tuples they are entitled to access; and (ii) the access control lists of
the tuples, whose keys are used for encryption. These vertices represent the set
of material vertices of the system.

2. Covering. For each material vertex v corresponding to a non-singleton set of
users, the algorithm finds a set of material vertices that form a non-redundant set
covering for v, which become direct ancestors of v. A set V of vertices is a set
covering for v if for each u in v, there is at least a vertex vi in V such that u appears
in vi . It is non-redundant if the removal of any vertex from V produces a set that
does not cover v.

3. Factorization. For each set {v1, . . . vm} of vertices that have n > 2 common
ancestors v′

1, . . ., v′
n, the algorithm inserts an intermediate vertex v representing

all the users in v′
1, . . ., v′

n and connects each v′
i , i = 1, . . ., n, with v, and v with

each vj , j = 1, . . .,m. In this way, the encryption policy includes n+m, instead
of n ·m tokens in the catalog.

Figure 5 illustrates, step by step, the definition of the key derivation hierarchy through
the algorithm in [12], for the authorization policy in Fig. 3. The initialization phase
generates the set of (material) vertices in Fig. 5a. The covering phase generates the
preliminary key derivation hierarchy in Fig. 5b, where each vertex is connected to a
set of parents including all and only the users in the vertex itself. The factorization
phase generates the key derivation hierarchy in Fig. 5c, which has an additional
non-material vertex (i.e., ADE, denoted with a dotted line in the figure) representing
the users that belong to both ABDE and ACDE. This factorization saves one token.

Selective and Private Access to Outsourced Data Centers 1003

a b

c d

Fig. 5 Definition of an encryption policy equivalent to the access control policy in Fig. 3

Figure 5d illustrates the keys assigned to users in the system and the keys used to
encrypt the tuples in relation Patients in Fig. 2.

2.2 Updates to the Access Control Policy

In case of changes to the authorization policy, the encryption policy must be updated
accordingly, to guarantee their equivalence. Since the key used to encrypt each tuple
t in r depends on the set of users who can access it, it might be necessary to re-encrypt
the tuples involved in the policy update with a different key that only the users in
their new access control lists know or can derive. A trivial approach to enforce a
grant/revoke operation on tuple t requires the data owner to: (i) download tk from the
server; (ii) decrypt it; (iii) update the key derivation hierarchy if it does not include
a vertex representing the new set of users in acl(t); (iv) encrypt t with the key k′
associated with the vertex representing acl(t); v) upload the new encrypted version
of t on the server; and (vi) possibly update the public catalog containing the tokens.
For instance, consider the encryption policy in Figs. 5c–d and assume that user D is
granted access to tuple t1. The data owner should download tk1 ; decrypt it using key
kABC; insert a vertex representing acl(t1) = ABCD in the key derivation hierarchy;
encrypt t1 with kABCD; and upload the encrypted tuple on the server, together with
the tokens necessary to users A, B, C, and D to derive kABCD. This approach, while
effective and correctly enforcing authorization updates, leaves to the data owner the

1004 S. De Capitani di Vimercati et al.

burden of managing the update. Also, re-encryption operations are computationally
expensive. To limit the data owner overhead, in [12] the authors propose to use two
layers of encryption (each characterized by its own encryption policy) to partially
delegate to the server the management of grant and revoke operations.

• The Base Encryption Layer (BEL) is applied by the data owner before outsourcing
the dataset. A BEL key derivation hierarchy is built according to the authorization
policy existing at initialization time. In case of policy updates, BEL is only updated
by possibly inserting tokens in the public catalog (i.e., edges in the BEL key
derivation hierarchy). Note that each vertex v in the BEL key derivation hierarchy
has two keys: a derivation key k (used for key derivation only), and an access
key ka (used to encrypt tuples, but that cannot be exploited for key derivation
purposes).

• The Surface Encryption Layer (SEL) is applied by the server over the tuples that
have already been encrypted by the data owner at BEL. It dynamically enforces
the authorization policy updates by possibly re-encrypting tuples and changing
the SEL key derivation hierarchy to correctly reflect the updates. Differently from
BEL, vertices in the SEL key derivation hierarchy are associated with a single
key ks .

Intuitively, with the over-encryption approach, a user can access a tuple t only if
she knows the keys used to encrypt t at BEL and SEL. At initialization time, the
encryption policies at BEL and SEL coincide, but they immediately change and
become different at each policy update. Grant and revoke operations are enforced as
follows.

• Grant. When user u is granted access to tuple t, she needs to know the key used
to encrypt t at both BEL and SEL. Hence, the data owner adds a token in the
BEL key derivation hierarchy from the vertex representing u to the vertex whose
key is used to encrypt t (i.e., the vertex representing acl(t) at initialization time).
The owner then asks the server to update the key derivation hierarchy at SEL and
to possibly re-encrypt tuples. Tuple t in fact needs to be encrypted at SEL with
the key of the vertex representing acl(t) ∪ {u} (which is possibly inserted into
the hierarchy). Besides t, also other tuples may need to be re-encrypted at SEL
to guarantee the correct enforcement of the policy update. In fact, tuples that are
encrypted with the same key as t at BEL and that user u is not allowed to read
must be encrypted at SEL with a key that u does not know (and cannot derive).
The data owner must then make sure that each tuple ti sharing the BEL encryption
key with t are encrypted at SEL with the key of the vertex representing acl(ti).
For instance, consider the access matrix in Fig. 3 and the encryption policies at
BEL and SEL enforcing it in Fig. 6, and assume that user D is granted access
to tuple t1. Figure 7 illustrates the encryption policies at BEL and SEL after the
enforcement of the grant operation. To enforce this change in the access control
policy, the data owner must first add a token that permits user D to derive the
access key of vertex ABC (kaABC) used to encrypt t1 at BEL (dotted edge in the
figure). Also, she will ask the server to update the SEL key derivation hierarchy

Selective and Private Access to Outsourced Data Centers 1005

a

b

Fig. 6 Encryption policies at BEL and SEL, equivalent to the access control policy in Fig. 3

to add a vertex representing ABCD. Tuple t1 is then over-encrypted at SEL with
the key of this new vertex.

• Revoke. When user u loses the privilege of accessing tuple t, the data owner
simply asks the server to re-encrypt (at SEL) the tuple with the key associated
with the set acl(t) \ {u} of users. If the vertex representing this set of users is
not represented in the SEL key derivation hierarchy, the server first updates the
hierarchy inserting the new vertex, and then re-encrypts the tuple. For instance,
consider the encryption policies at BEL and SEL in Fig. 7 and assume that the
data owner revokes B the privilege to access t4. The data owner requires the server
to change SEL (BEL is not affected by revoke operations) to guarantee that tuple
t4 is encrypted with a key that user B cannot derive. To this aim, t4 is re-encrypted
with key ksADE . Figure 8 illustrates the encryption policies at BEL and SEL after
the enforcement of the revoke operation. Note that vertex ABDE is removed from
the hierarchy since it is neither necessary for policy enforcement nor useful for
reducing the number of tokens.

1006 S. De Capitani di Vimercati et al.

a

b

Fig. 7 Encryption policies at BEL and SEL in Fig. 6 after granting D access to t1

Since the management of (re-)encryption operations at SEL is delegated to the server,
there is the risk of collusions with users. In fact, by combining their knowledge, a
user and the server can possibly decrypt tuples that neither the server nor the user
can access. For instance, with reference to the encryption policy in Fig. 8, the server
and user D can access to tuple t2 by combining their knowledge. In fact, this tuple
is encrypted with access key kaABC at BEL, known to user D as it is used to encrypt
t1, and with key ksABC at SEL, known to the server. Collusion represents a risk to
the correct enforcement of the authorization policy, but this risk is limited. In fact,
collusion between a user u and the server permits them to decrypt a tuple t that
they are not authorized to access only if u is granted the privilege to read a tuple t′
(different from t) that is encrypted with the same key as t at BEL. Indeed, u knows the
key with which t is encrypted at BEL (as it is necessary to access t′) while the server
knows the key with which it is encrypted at SEL (as it manages all the encryption
keys at SEL). Collusion risk can then be mitigated at the price of using a higher
number of keys at BEL, that is, by using the same encryption key at BEL only for
tuples whose acls are likely to evolve in the same way [12].

Selective and Private Access to Outsourced Data Centers 1007

a

b

Fig. 8 Encryption policies at BEL and SEL in Fig. 7 after revoking B access to t4

2.3 Write Privileges

The solution described in the previous section, while effectively enforcing read priv-
ileges and updates to them, assumes the outsourced relation to be read-only (i.e.,
only the owner can modify tuples). To allow the data owner to selectively authorize
other users to update the outsourced data, this approach has been complemented
with a specific technique to manage write privileges. The approach in [11] associates
each tuple with a write tag (i.e., a random value independent from the tuple con-
tent) defined by the data owner. Access to write tags is regulated through selective
encryption: the write tag of tuple t is encrypted with a key known only to the users
authorized to write t (i.e., the users specified within its write access list, denoted
aclwt) and by the server. In this way, only the server and authorized writers have
access to the plaintext write tag of each tuple. The server will then accept a write
request on a tuple when the requesting user proves knowledge of the corresponding
write tag.

1008 S. De Capitani di Vimercati et al.

a b c

Fig. 9 Encryption policy in Figs. 5c–d extended to the enforcement of write privileges

Since the key used for encrypting the write tag of a tuple has to be shared between
the server and the tuple writers, it is necessary to extend the key derivation hierarchy
with the storing server. However, the server cannot access the outsourced tuples in
plaintext, and hence it cannot be treated as an additional authorized user (i.e., with the
ability of deriving keys in the hierarchy). The keys used to encrypt write tags are then
defined in such a way that: (i) authorized users can compute them applying a secure
hash function to a key they already know (or can derive via a sequence of tokens); and
(ii) the server can directly derive them from a key kS assigned to it, through a token
specifically added to the key derivation hierarchy. Note that keys used for encrypting
write tags cannot be used to derive other keys in the hierarchy. For instance, consider
the encryption policy in Figs. 5(c–d) and assume that aclw(t1) = aclw(t7) = A,
aclw(t2) = aclw(t3) = BC, aclw(t4) = ADE, aclw(t5) = aclw(t8) = D, and
aclw(t6) = E. Figure 9a illustrates the key derivation hierarchy, extended with the
key kS assigned to the server S and the keys necessary to encrypt write tags (the
additional vertices and edges are dotted in the figure). Figures 9b–c summarize the
keys assigned to users and to the server, and the keys used to encrypt the tuples in
relation Patients and their write tags, respectively.

The over-encryption approach (Sect. 2.2), while effective for enforcing updates
to a read authorization policy, cannot unfortunately be adopted to enforce grant and
revoke of write authorizations. A possible way to enforce dynamic write privileges
[11] operates as follows.

• Grant. When user u is granted the privilege to modify tuple t, the write tag of t is
encrypted with a key known to the server and the users in aclw(t)∪ {u}. If the key
derivation hierarchy does not include it, such a key is created and properly added
to the hierarchy. For instance, with reference to the encryption policy in Figure 9,
assume that user B is granted the write privilege over t4. The write tag of the tuple
needs to be encrypted with key, kABDES, which is inserted into the key derivation
hierarchy, while key kADES can be removed.

Selective and Private Access to Outsourced Data Centers 1009

• Revoke. When user u is revoked the write privilege over tuple t, a fresh write tag
must be defined for t, having a value independent from the former tag (e.g., it can
be chosen adopting a secure random function). This is necessary to ensure that
u, who is not oblivious, cannot exploit her knowledge of the former write tag of
tuple t to perform unauthorized write operations. After the tag has been generated,
it is encrypted with a key known to the server and to the users in aclw(t) \ {u}. For
instance, with reference to the encryption policy in Fig. 9, assume that user C is
revoked the write privilege over t3. The write tag of the tuple needs to be changed
and encrypted with key kBS, which should be inserted into the key derivation
hierarchy.

Note that, since the server is authorized to know the write tag of each and every
tuple to correctly enforce write privileges, the data owner can delegate to the storing
server both the generation and encryption (with the correct key) of the write tag of
the tuples [11].

2.4 Attribute-Based Encryption

An alternative solution to selective encryption for the enforcement of access restric-
tions is represented by Attribute-Based Encryption (ABE [29]). ABE is a particular
type of public-key encryption that regulates access to tuples on the basis of policies
defined on descriptive attributes, associated with tuples and/or users. ABE can be
implemented as either Ciphertext-Policy ABE (CP-ABE [47]), or Key-Policy ABE
(KP-ABE [29]), depending on how attributes and authorization policies are associ-
ated with tuples and users. Both the strategies have been recently widely investigated,
and several solutions have been proposed, as briefly illustrated in the following.

CP-ABE CP-ABE associates with each user u a set of descriptive attributes, and
a private key that is generated on the basis of these attributes. Each tuple t in a
relation r is associated with an access structure modeling the access control policy
regulating accesses to t. Graphically, an access structure is a tree whose leaves
represent attributes and whose internal nodes represent logic gates (e.g., conjunctions
and disjunctions). Figure 10 illustrates an example of access structure associated
with tuple t2 in relation Patients in Fig. 2. This access structure corresponds to the
Boolean formula (job = ‘doctor’∨ job = ‘nurse’) ∧ ward = ‘neurology’, meaning that
only doctors or nurses working in the neurology ward can access the medical data of
Barbara (i.e., tuple t2). CP-ABE key generation technique guarantees that the key k of
user u can decrypt tuple t only if the set of attributes used when generating k satisfies
the access policy represented by the access structure considered when encrypting
t. Although CP-ABE effectively and efficiently enforces access control policies,
one of its main drawbacks is related to the management of attribute revocation.
Intuitively, when a user loses one of her attributes, she should not be able to access
tuples that require the revoked attribute for the access —which however is hard to
enforce while guaranteeing efficiency. A solution to this problem is presented in

1010 S. De Capitani di Vimercati et al.

Fig. 10 An example of access structure associated with tuple t2 of relation Patients in Fig. 2

[51], where the authors illustrate an encryption scheme able to manage attribute
revocation, ensuring the satisfaction of both backward security (i.e., a user cannot
decrypt the tuples requiring the attribute revoked to the user) and forward security
(i.e., a new user can access all the tuples outsourced before her join, provided her
attributes satisfy the access control policy). In [44], the authors instead define a
hierarchical attribute-based solution that relies on an extended version of CP-ABE
in which attributes associated with users are organized in a recursive set structure,
and propose a flexible and scalable approach to support revocations.

KP-ABE KP-ABE associates an access structure with each user and a set of descrip-
tive attributes with each tuple. The key associated with each user is then generated on
the basis of her access structure, while the key used to encrypt each tuple depends on
its attributes. Thanks to the properties of KP-ABE key generation techniques, each
user u can decrypt only tuples t such that the attributes of tuple t satisfy the access
structure associated with user u. Since ABE is based on public-key encryption, to
reduce the overhead caused by asymmetric encryption, the tuple content can be en-
crypted with a symmetric key, which is in turn protected through KP-ABE [53]. Only
authorized users can remove the KP-ABE encryption layer to retrieve the symmetric
key use to protect the content of the tuples. This solution also efficiently supports
policy updates and couples ABE with proxy re-encryption to delegate to the storing
server most of the re-encryption operations necessary to enforce policy updates.

The support of write privileges is provided by the adoption of Attribute-Based
Signature (ABS) techniques. The proposal in [21] combines CP-ABE and ABS
techniques to enforce read and write access privileges, respectively. This approach,
although effective, has the disadvantage of requiring the presence of a trusted party
for correct policy enforcement. A similar approach, based on the combined use of
ABE and ABS for supporting both read and write privileges, is illustrated in [38].
This solution has the advantage over the approach in [21] of being suited also to
distributed scenarios.

3 Efficient Access to Encrypted Data

Since data stored in the cloud are encrypted for confidentiality reasons, the storing
server cannot directly evaluate users’ queries since it is not trusted to access the data
content. This makes access to outsourced data time consuming and computationally

Selective and Private Access to Outsourced Data Centers 1011

a b

Fig. 11 An example of plaintext relation (a) and the corresponding encrypted and indexed
relation (b)

expensive (the client would need to download the data and locally evaluate her
query). To limit such an overhead, either keyword search or index-based approaches
can be adopted, which enable query evaluation at the server side without the need
to decrypt data [39]. Keyword search techniques (e.g., [6, 8, 25, 42, 45]) permit to
search for documents including a keyword of interest in an encrypted data collection.
Indexes are metadata that depend on the plaintext values of the attributes in the
original relation, and are stored in the encrypted relation as additional attributes.
Given a relation r, defined over schema R(a1, . . ., an), the corresponding encrypted
and indexed relation rk has schemaRk(tid,enc, Ii1 , . . ., Iij), where Iil , l = 1, . . ., j ,
is the index defined over attribute ail in R. Note that not all the attributes in R need
to have a corresponding index in Rk , but only those that are expected to be involved
in queries. For instance, Fig. 11b represents an example of an encrypted version of
relation Patients in Fig. 2 (also reported in Fig. 11a for the reader’ s convenience),
where attributes ZIP, MarStatus, and Illness are associated with indexes Iz,
Im, and Ii , respectively. In this and in the following examples, for readability, we
will denote index values with Greek letters.

To provide efficient access to the outsourced data collection, different indexing
techniques have been proposed, aimed at supporting the server-side evaluation of
a variety of conditions and clauses in SQL queries. The most important indexing
approaches can be classified in three main categories, depending on how the index
function ι maps the original attribute values to the corresponding index values, as
illustrated in the following.

• Direct Index. Each plaintext value is represented by a different index value and
vice versa. An example of direct index (e.g., [9]) is adopted by encryption-based
indexes, which map plaintext value val to index value Ek(val), where E is a
symmetric encryption function with key k. Index Iz in Fig. 11b is an example of
a direct index defined over attribute ZIP in Fig. 11a.

• Bucket-based Index. Each plaintext value is represented by one index value, but
different plaintext values are mapped to the same index value, generating col-
lisions. There are different approaches for defining which plaintext values are

1012 S. De Capitani di Vimercati et al.

represented by the same index value. The two most common techniques are
partition-based and hash-based indexes. Partition-based indexes (e.g., [31]) parti-
tion the domain D of attribute a into subsets of contiguous values and associate a
label with each of them. The index value representing a value in a partition is the
label of the partition. Hash-based indexes (e.g., [5]) instead rely on a secure hash
function h generating collisions. Given plaintext value val, its corresponding in-
dex value is computed as h(val). Index Im in Fig. 11b is an example of hash-based
index over attribute MarStatus in Fig. 11a, where values divorced and widow
generate a collision and are both represented by index value κ .

• Flattened Index. Each plaintext value is represented by different index values,
each characterized by the same number of occurrences (flattening). Each index
value, however, represents one plaintext value only. A flattened index can be
obtained by properly combining encryption with a flattening post-processing that
guarantees that the frequency of index values be the same (e.g., [46]). Index Ii in
Fig. 11b is an example of a flattened index over attribute Illness in Fig. 11a,
where plaintext value gastritis is represented by index values η and μ.

Intuitively, the fact that the outsourced relation is encrypted and enriched with indexes
must be transparent to the final users. The basic indexing techniques illustrated above
nicely support the server-side evaluation of simple SQL queries including equality
conditions in the where clause. Consider a query q submitted by a user of the form
“select Att from R where Cond”, where Att⊆R and Cond is a set of equality
conditions of the form a = val, with a∈R and val a constant value in the domain D
of a. To determine the query that should be submitted to the storing server, each
condition a = val in Cond is first translated into an equivalent condition of the form:
I = ι(val), if I is a direct or a bucket-based index; and I in ι(val), if I is a flattened
index and hence ι(val) may return a set of values. The query qs submitted to the
server is then “select enc from Rk where Condk”, where Condk is obtained as
illustrated above. The result returned by the server must then be decrypted by the
client, to retrieve the plaintext content of the tuples. The client may also need to
perform a projection over the attributes in Att, if they represent a proper subset of
R, and to filter spurious tuples, that is, tuples that satisfy Condk but that do not
belong to the query result (i.e., they do not satisfy Cond). Note that the presence of
spurious tuples may depend on collisions possibly caused by bucket-based indexes,
where multiple plaintext values are mapped to the same index value. The client then
evaluates a query qc of the form “select Att from D(Resk) where Cond”, where
Resk is the relation returned by the server as the result of the evaluation of query qs .
The result of query qc is returned to the requesting user. Consider, as an example, a
query q = select SSN, Name from Patients where MarStatus = “widow” and
Illness = “gastritis” operating on relation Patients in Fig. 11a. The query qs to
be sent to the server is select enc from Patientsk where Im = κ and Ii in {η,μ},
which returns tuple t7. The client will then decrypt the result returned by the server and
evaluate query select SSN, Name from D(Resk) where MarStatus = “widow”
and Illness = “gastritis” to check whether tuple t7 satisfies both the conditions
and to project the attributes of interest for the requesting user.

Selective and Private Access to Outsourced Data Centers 1013

Besides the techniques illustrated and classified above, many other approaches
have been proposed for efficiently delegating to the server the evaluation of com-
plex conditions and/or SQL clauses. As an example, order preserving encryption
has been proposed as an effective solution for supporting range conditions, as well
as grouping and ordering clauses (e.g., [1, 46]). Aggregate functions can instead be
computed if the index over the attribute of interest has been defined through homo-
morphic encryption techniques, which support the evaluation of arithmetic operators
on encrypted data (e.g., [24, 30]). Different techniques, which do not fit into the clas-
sification above, have also been proposed to the aim of enjoying the advantages of
traditional database indexing techniques also in the outsourcing scenario (e.g., in [9]
the authors propose to use encrypted B+-trees for the efficient evaluation of range
queries).

4 Protecting Access Privacy

Besides protecting the confidentiality of the outsourced data collection, it is also
paramount to protect the privacy of the accesses to the data themselves. In fact, queries
can be exploited for inference, making both users’ and data privacy at risk. As an
example, consider a scenario where the outsourced data contain medical information.
Revealing that a user submitted a query looking for the symptoms of lung cancer
implicitly reveals that (with high probability) either her or a person close to her
suffers from such a disease. Also, users accesses may be exploited to infer the
private content of the outsourced data collection. Indeed, by monitoring patterns of
frequently accessed tuples, an observer can draw inferences on their specific values
thanks to additional knowledge she may have on how frequently each piece of data
in a given domain is accessed. In this case, it is necessary to protect both access
confidentiality (i.e., each query singularly taken) and pattern confidentiality (i.e., the
fact that two queries aim at the same target value). A first attempt to protect access
confidentiality is represented by keyword search approaches (e.g., [6, 8, 25, 42, 45]),
which do not reveal to the server any information about the outsourced data and
the target keyword. A similar approach consists in defining a set of tokens that can
be adopted by users to evaluate queries on outsourced data without disclosing the
conditions in their queries to the storage server [18, 36]. Protection of accesses to a
B+-tree index structure can instead be obtained by grouping the nodes in the tree
into buckets [37]. The use of homomorphic encryption techniques then permits to
access the node of interest in each bucket, while preventing the server from precisely
identifying the node target of each access. These approaches represent a first step
towards the definition of privacy-preserving indexing approaches, but they fall short
in protecting the confidentiality of repeated accesses and, more in general, of patterns
thereof. In the remainder of this section, we will illustrate some of the most important
approaches recently proposed to address both access and pattern confidentiality in a
scenario where data need to remain confidential (i.e., outsourced data are encrypted).

1014 S. De Capitani di Vimercati et al.

4.1 Oblivious RAM

One of the first approaches [49] proposed to protect access and pattern confidentiality
in a scenario where also the confidentiality of the data must be protected is based
on the Oblivious RAM (ORAM) data structure [26]. The outsourced database is
organized as a set of n encrypted blocks, which are stored in a pyramid-shaped data
structure. Each level l of the ORAM structure stores 4l blocks and is characterized
by a Bloom filter and a hash table that permit to quickly determine whether an index
value is stored in the level and, if this is the case, to identify the block where it is
stored. Access and pattern confidentiality are provided by guaranteeing that: (i) the
search process does not reveal the level in the structure where the target block is
stored, and (ii) a block in the hash table is never accessed more than once with the
same search key.

The search algorithm visits the ORAM structure level by level, starting from the
top of the pyramid. For each level l, the search algorithm uses the Bloom filter to
determine whether the target of the search is stored in the level. If this is the case,
the item of interest is extracted from the level (by accessing the block identified by
the hash table), decrypted, re-encrypted with a different nonce, and inserted into a
cache. Otherwise, the algorithm extracts a random element from the level and inserts
it into the cache. We note that, even when the target element is retrieved, the search
process visits all the lower levels in the ORAM structure extracting at each level a
random (fake) element. This guarantees that, by observing accesses to the structure,
the server is not able to identify the level where the target of the search was stored.
The search process terminates when the last level in the ORAM structure is visited.

When the cache is full, it is merged with the first level of the ORAM structure and
the items in the resulting new level are re-shuffled, to destroy any correspondence
between old and new items in the level. As a consequence, the Bloom filter associated
with the level is re-defined, to correctly refer to the new level content. The same
process applies to each level in the structure: when level l is full, it is merged
with level l + 1, the blocks are re-shuffled, and the Bloom filter is redefined. The
cost of accessing the ORAM clearly depends on the possible need to reorganize a
level in the indexing structure while visiting it, and on the specific level that needs
to be redefined. The amortized cost per query, which takes into consideration the
impact of periodic reorganizations of the structure, is O(log n log log n), under the
assumptions ofO(

√
n) temporary client storage and of O(n) server storage overhead.

However, the cost of reorganizing the bottom level of the pyramid is O(n), where n
is the number of index values in the dataset. Response time of any access request
submitted during the reordering of lower levels of the database is therefore high and
not acceptable in many real-world scenarios.

To mitigate the cost of query evaluation when low levels in the ORAM structure
need to be reorganized, the proposal in [20] puts forward the idea of limiting the
shuffling operation to the blocks that store accessed tuples. This approach is based
on the presence of a secure coprocessor on the server that locally manages a cache
of size k, which is empty at initialization time. Each tuple in the dataset is associated

Selective and Private Access to Outsourced Data Centers 1015

with a label, initially set to value ‘white’. Once a tuple is accessed, its label becomes
‘black’. For each access to the dataset, the search algorithm fetches a black tuple
and a white tuple. If the target tuple is already in cache, the algorithm retrieves two
randomly chosen fake tuples (a black one and a white one), otherwise it accesses
the target tuple and a randomly chosen fake tuple. When the cache is full, the secure
coprocessor shuffles black tuples (performing a partial shuffling) only and re-encrypts
them before re-writing the blocks on the server. Partial shuffling provides access and
pattern confidentiality, since white tuples have not been accessed and hence it is not
necessary to move their content to hide the traces that an access could have left. The
amortized cost per query of this solution is O(

√
n log n/k), which is lower than the

proposal in [49]. It however relies on a secure coprocessor for guaranteeing access
and pattern confidentiality.

Alternative techniques that can be adopted to limit the response time of the ORAM
structure are based on the idea of minimizing the number of interactions between the
client and the server [27, 48]. Indeed, the communication costs have a high impact
on response times and reducing the number of interactions provides benefits to users.
Other approaches instead rely on enhancing the support of concurrent accesses [28,
50]. These solutions basically define copies of the levels of the ORAM structure.
Searches operate on a read-only copy of the level of interest, while the master copy
of the same level is dynamically updated and used for reordering purposes only.
In this way, exclusive locks blocking access to a level of the structure during its
reorganization process do not delay users’ accesses.

Path-ORAM has recently been proposed as an alternative approach to provide
access and pattern confidentiality without paying the high price of re-shuffling, which
characterizes traditional ORAM structures [43]. Path-ORAM is a tree-shaped data
structure whose nodes are buckets storing a fixed number of blocks (which can either
be dummy or contain actual data). Each block is mapped to a randomly chosen leaf
in the tree and it is stored either at the client side (in a local cache, which is called
stash) or in one of the buckets along the path to the leaf to which it is associated.
Read operations download from the server and store in the stash all the buckets in the
path from the root to the leaf to which the block of interest is mapped. The mapping
of the target block is randomly updated (i.e., the block is mapped to a new, randomly
chosen, leaf). The path read from the server is then written back, inserting into the
buckets the blocks in the local stash (provided the bucket is along the path to the leaf
to which the block is mapped).

4.2 Dynamically Allocated Data Structures

Dynamic data allocation solutions aim at destroying the otherwise static relationship
between disk blocks and the information they store. These approaches are based on
the definition of a dynamically allocated index structure (e.g., a B+-tree, a hash
table, a flat index) that guarantees private and efficient access to the data.

1016 S. De Capitani di Vimercati et al.

If the data are organized in a tree-shaped index structure, access confidentiality is
provided by guaranteeing that the storing server does not know (nor can infer) which
is the node in the tree target of the access, as it would otherwise reveal the value target
of the search. The first step to protect the confidentiality of the dataset content consists
in encrypting the nodes in the tree before outsourcing, and in storing each encrypted
node in a different disk block. However, repeated accesses to the same physical block
inevitably represent repeated accesses to the same node content and hence queries
aiming to the same value (or to values within a small interval). If the storing server
knows the relative frequency of accesses to the plaintext values, it can reconstruct the
correspondence between node contents and encrypted blocks, by simply matching
access frequencies.A preliminary approach aimed at protecting access confidentiality
through a privacy-preserving tree relies on the combined adoption of the following
three protection techniques [35]:

• access redundancy: each access request visits, besides the node target of the
access, m additional blocks (at least one of which should be empty) for each
level in the tree to hide the target of the access in a set of m + 1 equally-probable
candidate nodes;

• node swapping: the node target of the access is swapped with one of the empty
blocks downloaded from the server for the same level, meaning that the target
node is stored in an empty block and viceversa;

• node re-encryption: all the nodes downloaded from the server are re-encrypted,
to hide the swap.

Although effective for protecting content and access confidentiality, this proposal
falls short in providing pattern confidentiality, since frequently accessed blocks can
easily be identified by the server and then exploited for inference purposes.

An alternative approach, which does not operate on a tree-shaped index structure,
is based on the adoption of a lightweight scheme that provides access and pattern
confidentiality by combining the following three protection techniques [52]:

• dummy data items: each access request visits, besides the block target of the
access, two additional blocks;

• swapping: the target of the access is swapped with one of the dummy data items
downloaded from the server;

• repeated patterns: dummy data items are selected in such a way that, out of the
three blocks downloaded from the server, two (and only two) are among the ones
accessed during the previous search.

The goal of the combined adoption of these three protection techniques is to make
each access to the outsourced data collection indistinguishable from the server’s point
of view. In fact, each access has two blocks in common with the previous one, while
the third one is fresh. Swapping protects repeated accesses and is combined with
re-encryption of the content of all the accessed blocks, to prevent the server from
reconstructing which swap has been performed (thus possibly recognizing repeated
accesses).

Selective and Private Access to Outsourced Data Centers 1017

4.3 Shuffle Index

A recent technique addressing the need of providing efficient query execution, while
protecting access and pattern confidentiality, is based on the definition of a shuffle
index [14].

Data Structure A shuffle index is a privacy-preserving indexing technique, used for
organizing data in storage and for efficiently executing users’ queries. It can be seen
at three different abstraction levels (i.e., abstract, logical, and physical), as illustrated
in the following. At the abstract level, the shuffle index is an unchained B+-tree with
fan-out F, built over a candidate key K of relation r. Each internal node of the tree
represents the root of a sub-tree with q ≥ F/2! children (except for the root node,
where 1 ≤ q ≤ F), and stores q − 1 ordered values val1 ≤ . . . ≤ valq−1 of attribute
K. The leaves store the tuples of the outsourced relation, together with their key
value, but (in contrast to traditional B+-tree structures) are not connected in a chain,
so not to allow the server storing the data to discover the relative order among the
values in the leaves. Figure 12a illustrates an example of unchained B+-tree.

At the logical level, each node n of the unchainedB+-tree is represented by a pair
〈id, n〉 where id is the logical identifier associated with the node and n is its content.
Pointers to children of internal nodes of the abstract data structure are represented,
at the logical level, through the identifier of child nodes. Figure 12b illustrates an
example of logical representation of the unchainedB+-tree in Fig. 12a. Note that the
order of logical identifiers does not necessarily reflect the value-order relationship
between the node contents. For readability, in the figure nodes are ordered accord-
ing to their logical identifier (reported on the top of each node), whose first digit
corresponds to the level of the node in the tree.

At the physical level, each node 〈id, n〉 is concatenated with a random salt, to
destroy plaintext distinguishability, and then encrypted in CBC mode, using a sym-
metric encryption algorithm. The logical identifier of the node easily translates into
the physical address where the block representing the encrypted node is stored at
the server side (for simplicity, we assume that the physical address of a block co-
incides with the logical identifier of the corresponding node). Figure 12c illustrates
the physical representation of the logical index in Fig. 12b. Note that the physical
representation of the shuffle index coincides with the view of the storage server over
the outsourced data collection. In fact, although the server does not have knowledge
of the encryption key, it can establish the level in the tree associated with each block
by observing a long enough history of accesses to the B+-tree structure, because
accesses visit the tree level by level.

Protection Techniques To protect content, access, and pattern confidentiality, en-
cryption is complemented with three protection techniques: cover searches, cached
searches, and shuffling. These protection techniques apply to every access to the
shuffle index, which proceeds by visiting the B+-tree level by level from the root to
the leaves.

1018 S. De Capitani di Vimercati et al.

a

b

c

Fig. 12 An example of abstract (a), logical (b), and physical (c) representation of a shuffle index

• Cover searches. Cover searches aim at hiding the target of an access within a set of
other potential targets, in such a way that the server cannot recognize the value of
interest for the user. Cover searches are fake searches, which are not recognizable
as such by the storage server, that are executed in conjunction with the search
for the target value (i.e., the value of interest for the requester). For each level of
the shuffle index (but the root level) the client downloads num_cover + 1 blocks:
one for the node along the path to the target, and num_cover for the nodes along
the paths to the covers. Hence, at the server’s eyes, each of the num_cover + 1
leaf blocks accessed during a visit of the shuffle index has the same probability of
storing the target. To provide sufficient protection to the target of the access, cover
searches must guarantee: (i) indistinguishability with respect to target searches,
meaning that the server should not be able to determine whether an accessed block

Selective and Private Access to Outsourced Data Centers 1019

is a cover or the target; and (ii) block diversity, meaning that paths to covers and
to the target must be disjoint (except for the root node).

• Cached searches. Cached searches aim at protecting repeated accesses to a node
content, by making them indistinguishable from non-repeated accesses to the eyes
of the server. The cache is a layered structure with a layer for each level in the
shuffle index. It is maintained at the client side and stores the nodes along the
paths to the targets of the num_cache most recent accesses to the shuffle index.
Being stored at a trusted party, the cache is maintained in plaintext. Each layer
of the cache is managed according to the Least Recently Used (LRU) policy,
which guarantees the property that the parent of each cached node (and hence
also the path connecting it to the root of the tree) is also in cache. Whenever
the target of an access is in cache, it is replaced by an additional cover for the
access, to guarantee that num_cover + 1 blocks are downloaded for each level
of the tree (but the root level). This makes repeated accesses look like accesses
to nodes that have not been previously accessed. The adoption of a local cache
prevents short-time intersection attacks, which could be exploited by the server to
identify repeated accesses when subsequent searches download non-disjoint sets
of blocks. In fact, accesses within a time frame of num_cache accesses do not
have nodes in common.

• Shuffling. Shuffling aims at breaking the relationship between node content and
block where it is stored, to avoid that accesses to the same physical block cor-
respond to accesses to the same node content. By changing the node-block
allocation, the server cannot draw conclusions on the content of the accessed
nodes by observing accessed blocks. In fact, repeated accesses to the same block
do not necessarily correspond to repeated accesses to the same node content. Shuf-
fling consists in moving the content of accessed (either as target or as covers) and
cached nodes to different blocks (i.e., shuffling assigns a different block address
to each accessed node, choosing among the downloaded blocks). To prevent the
server from reconstructing node shuffling, every time a node content is moved to
a different block, it is re-encrypted using a different random salt. Its parent is also
updated to guarantee that the parent-child relationship between them is preserved.

Search Process Each search operation for a value then combines these three
protection techniques, as described in the following.

Given the value target_value, target of the access to the outsourced relation,
the search algorithm (operating at the client side) first randomly chooses a set of
num_cover+1 cover values in the actual domain of the key attribute K on which the
shuffle index has been defined. Since these values should act as cover searches for
target_value, this choice must guarantee both indistinguishability and block diver-
sity, as described above. Note that the algorithm chooses one additional cover (i.e.,
num_cover+1 instead of num_cover) as it is needed if the target of the access is in the
local cache. The search algorithm then visits the shuffle index level by level, starting
from the root. For each level l of the shuffle index, the search algorithm first checks
whether the node in the path to target_value is in the local cache and, if a cache miss
occurs, it discards one of the cover searches initially chosen proceeding the search

1020 S. De Capitani di Vimercati et al.

with num_cover covers. It then determines the address of the blocks storing the nodes
along the paths to target_value and to the num_cover cover searches (num_cover+1
covers if a cache hit occurred). These blocks are then downloaded from the server,
decrypted to retrieve the content of the nodes they store, and randomly shuffled to-
gether with the nodes at level l in the local cache. To preserve the correctness of the
shuffle index data structure, the parents of shuffled nodes are updated, guaranteeing
that pointers refer to the blocks where the children of each node are stored. The
search algorithm also updates the local cache structure, according to the LRU policy.
If the node along the path to target_value is in cache, the algorithm simply refreshes
its timestamp; otherwise, the node along the path to the target is inserted as the
most recently accessed node and the least recently accessed node is removed from
the cache. Before moving to the next level, the nodes shuffled during the previous
iteration (i.e., accessed and cached nodes at level l − 1) are encrypted with a fresh
random salt and sent to the server for storage. Upon receiving the encrypted blocks,
the server replaces the old block stored at each physical address with the new one
received from the client. The process terminates when the visit of the shuffle index
reaches the leaf level. The leaf along the path to target_value is then returned to the
requesting user, since it contains the tuple with value target_value for attribute K,
if such a tuple exists in r. For instance, consider a search for value ‘W’ on shuffle
index in Fig. 12 that adopts one cover. Also, assume that the cache has size 2 and
that it stores: the root node at level 0; nodes 103[J,L,–] and 102[W,Y,–] at level 1;
and leaves 211[J,K,–] and 210[Y,Z,–] at level 2. The client first chooses two covers
for the target ‘W’, say ‘E’ and ‘Q’, and visits the root node (block 001), which is
stored in the local cache. It then identifies the block at level 1 along the paths to the
target (i.e., 102) and to the two covers (i.e., 104 and 101, respectively). Since block
102 is in cache, the client downloads from the server blocks 104 and 101, decrypts
their content, and shuffles the accessed and cached blocks (i.e., 101, 102, 103, and
104) as illustrated in Fig. 13b. It then updates the pointers to children in the root
node, encrypts its content and sends it back to the server for storage. Moving to the
next level, the client first identifies the leaf blocks along the path to the target (i.e.,
201) and to the two covers (i.e., 212 and 202, respectively). Since block 201 is not
in cache, one of the two covers is discarded, say 202, and the client downloads from
the server and decrypts blocks 201 and 212. The client then shuffles blocks 201,
210, 211, and 212, updates the pointer to them in their parents, encrypts nodes 101,
102, 103, and 104, and sends the resulting blocks to the server for storage. Then, it
updates the cache at level 2 inserting leaf node 212[W,X,–] and removing leaf node
211[Y,Z,–]. Finally, the client encrypts the shuffled leaves and sends the resulting
blocks to the server. Figure 13c illustrates the logical shuffle index resulting after the
access.

The search algorithm operates in logarithmic time in the size of the outsourced
database (i.e., its computational complexity is O((1+ num_cover + num_cache)
logF (n)), with n the number of tuples in r), since for each search the algorithm visits
num_cover + 1 different paths of the shuffle index.

Selective and Private Access to Outsourced Data Centers 1021

a

b

c

Fig. 13 An example of evolution of the logical shuffle index in Fig. 12b as a consequence of a
search for value ‘W’ with ‘E’ and ‘Q’ as covers

Extensions of the Shuffle Index The original shuffle index proposal has been ex-
tended in several directions to support: (i) concurrent accesses to the data; (ii) searches
over attributes different from K ; and (iii) data storage at different servers. Concur-
rency is provided by the adoption of delta versions [17], which are copies of portions
of the shuffle index that are dynamically created/updated by subsequent accesses.
Each access to the shuffle index is assigned to a different delta version with ex-
clusive write lock. Accessed blocks are downloaded from the delta version (if the
delta version includes the node of interest) or from the shuffle index (otherwise),
while shuffled blocks are written on the delta version. Periodically, delta versions
are reconciled and applied to the shuffle index, to preserve the effects of the different
shuffling operations performed by different users.

1022 S. De Capitani di Vimercati et al.

To efficiently support private accesses to r based on attributes different from K,
in [17] the authors propose to complement the primary shuffle index with different
secondary shuffle indexes, built on candidate keys that are expected to be often
involved in query evaluation. A secondary index defined on attribute a is a shuffle
index that stores, in association with value val for a, the values that attribute K has
in tuple t (i.e., t[K]), such that t[a]= val. A search for the tuples in r with value val
for attribute a proceeds then in two steps: (1) search for value val in the secondary
index, retrieving the value valK of attribute K in the tuples of interest; and then (2)
search for value valK in the primary index, retrieving the tuple of interest.

The distribution of the shuffle index over different servers, which are not aware
one of each other, increases the protection offered to the confidentiality of users’
accesses. According to the proposal in [16], in a distributed scenario cover searches,
cached searches, and shuffling protection techniques can be complemented with
shadowing. Shadowing guarantees that the observations by each server of accessed
blocks make it believe to be the only server storing the whole data collection. In fact,
each server observes the same number of blocks read (written, respectively) at each
level of the tree.

5 Combining Access Control and Indexing Techniques

Access control enforcement and query evaluation over encrypted outsourced data
has been widely studied, as testified by the different approaches illustrated in the
previous sections of this chapter. However, the problem of combining them is still
an open issue. The joint adoption of selective encryption (Sect. 2) and indexing
techniques (Sect. 3) may permit authorized users to infer information they are not
entitled to access. In fact, authorized users can infer the values that attributes have
in tuples they should not be able to read, by exploiting their visibility over the index
values for the tuples they are entitled to access. For instance, with reference to the
encrypted relation in Fig. 11b and the access control policy regulating it in Fig. 3,
user B can infer that t7[ZIP]= 22010 even if B �∈ acl(t7), because tk7 [Iz] = tk1 [Iz]
and B knows that t1[ZIP]= 22010 since B belongs to acl(t1).

The problem of jointly adopting selective encryption and indexing techniques
has recently been investigated, leading to the identification of different privacy risks
that vary depending on the technique adopted for index definition (see Sect. 3) [13].
Before illustrating these risks, we summarize the knowledge of an authorized user u
(i.e., a user who can access a subset of the tuples in r). Each authorized user knows:
(i) index function ι used to define index I over attribute a (necessary for query
evaluation); (ii) the plaintext tuples that the user can access; (iii) all the encrypted
tuples inRk (they are publicly available). For instance, consider the encrypted relation
in Fig. 11b and the access control policy regulating it in Fig. 3. User A knows the
index functions used by the data owner to define Iz, Im, and Ii ; all the plaintext
tuples but t3 and t8; and the encrypted relation in Fig. 11b. The knowledge of user A

Selective and Private Access to Outsourced Data Centers 1023

a b c

Fig. 14 Access control lists (a), knowledge of user A over relation Patients (b), and over relation
Patientsk(c)

is summarized in Fig. 14, where gray cells denote plaintext values that user A is not
authorized to read.

The inferences that an authorized user can draw on index I representing attribute
a can be summarized as follows.

• Direct index. Since each plaintext value is associated with one index value and
viceversa, if tki [I] = tkj [I] then also ti[a] = tj [a] and viceversa. Hence, each
user u can infer the plaintext value of attribute a for all those tuples in r that
have the same value as a tuple that u is authorized to access. Consider, as an
example, direct index Iz in relation Patientsk in Fig. 14c. User A knows that
t1[ZIP]= t3[ZIP]= t7[ZIP]= 22010 even if she cannot read t3, since all these
tuples have the same value for index Iz.

• Bucket-based index. Since different plaintext values are mapped to the same index
value, the information leakage illustrated for direct indexes is mitigated by the
presence of collisions. Hence, if tki [I]= tkj [I] there is a certain (greater than
zero) probability that also ti[a]= tj [a], but there is no guarantee that this equality
condition holds. Consider, as an example, index Im in relation Patientsk in
Fig. 14c. Since the value for Im is the same for t2, t7, and t8, user A can infer
that probably t2[MarStatus]= t7[MarStatus]= t8[MarStatus]=widow.
We note however that plaintext values ‘widow’ and ‘divorced’ are represented by
the same index value κ .

• Flattened index. Although less straightforward, the inference risk caused by flat-
tened indexes is the same as illustrated for direct indexes. In fact, each index value
represents one plaintext value only and then if tki [I] = tkj [I], also ti[a]= tj [a]. The
viceversa is instead not true, that is, not all the occurrences of a value val are
represented by the same index value. However, each authorized user knows the
index function ι adopted by the data owner and can then compute ι(val), retrieving
all the index values representing val. For instance, consider flattened index Ii in
relation Patientsk in Fig. 14c. Although user A is not authorized to read tuple
t3, she can infer that t3[Illness]= gastritis as t3 and t7 have the same value for

1024 S. De Capitani di Vimercati et al.

Fig. 15 An example of encrypted and indexed version of relation Patients with index Iz over ZIP
defined according to a salted user-dependent function

index Ii . Also, since she can compute ι(gastritis)= {η,μ}, she can infer that also
t1 and t4 have this value for attribute Illness.

From the observations above, it is easy to see that attribute values are exposed when
the same index value appears in association with tuples characterized by different
access control lists. Consider two tuples ti and tj in r such that acl(ti) �= acl(tj),
and tki [I]= tkj [I]. All the users in acl(ti) (acltj , respectively) can draw inferences
on the value of tj [a] (ti[a], respectively). For instance, tuples t1, t3, and t7 have
the same value for attribute ZIP, but different acls. This permits A to infer that
t3[ZIP]= 22010 even if she should not be able to read such a tuple. A first solution
to limit such a leakage of information is based on the idea that the index value
representing value t[a]= l should not only depend on l but also on acl(t). In [13]
the authors present a solution that operates on direct indexes, which represent the
worst-case scenario. This approach associates a different index function ιu with
each user u (depending on a piece of secret information shared between u and the
data owner). Function ιu is salted (i.e., a randomly chosen salt is applied) to avoid
that tuples with the same plaintext value v but different acl are associated with the
same index value ιu(v) for user u, which could easily be exploited for inferences.
For instance, consider direct index Iz in relation Patientsk in Fig. 14c. Figure 15
illustrates relation Patientsk , where index Iz has been defined using a different
(salted) index function for each user in the system. For readability, in the figure we
use a subscript to indicate the user to which the index value refers (e.g., αA is a value
computed by ιA) and symbol ′ denotes the salted version of index values (e.g., α′

A is
the salted version of αA).

While interesting, the proposal illustrated in [13] and mentioned above considers
one specific indexing technique only. Even if it can be easily extended to operate
with bucket-based and flattened indexing functions, it cannot be combined with the
privacy-preserving indexing approaches described in Sect. 4. Furthermore, user-
based indexing techniques are suitable for static scenarios, as dynamic observations
of repeated accesses to the data can reveal to an observer which index values represent
the same plaintext value. In fact, index values representing the same plaintext value

Selective and Private Access to Outsourced Data Centers 1025

are often accessed together by authorized users. For instance, with reference to
relation Patientsk in Fig. 15b, every time user A needs to access all the tuples with
ZIP = 22010, she will query the encrypted relation with the condition Iz = αA or
Iz = α′

A. The server can then easily conclude that αA and α′
A represent the same

plaintext value.

6 Conclusions

Public and private organizations are more and more resorting to cloud systems for
outsourcing their own data centers. While bringing intuitive benefits in terms of
economies of scale, moving to the cloud raises new privacy risks, since data are
no more under the direct control of their owner. The research and development
communities have dedicated many efforts in the design and development of novel
techniques for protecting outsourced data and accesses to them. In this chapter, we
surveyed recent approaches that, while protecting confidentiality of the data to the
eyes of the storing server through encryption, enforce access control restrictions and
efficiently evaluate queries over encrypted data, possibly without even revealing to
the server the target of accesses. We also described the main issues arising when
these techniques are adopted in combination, illustrating a preliminary approach for
their solution.

Acknowledgements This chapter is based on joint work with Sushil Jajodia, Gerado Pelosi, and
Stefano Paraboschi. This work was supported in part by the Italian Ministry of Research within
PRIN project “GenData 2020” (2010RTFWBH), and by Google, under the Google Research Award
program.

References

1. Agrawal, R., Kierman, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data.
In: Proc. of SIGMOD 2004. Paris, France(June 2004)

2. Akl, S., Taylor, P.: Cryptographic solution to a problem of access control in a hierarchy. ACM
TOCS 1(3), 239–248 (August 1983)

3. Atallah, M., Blanton, M., Fazio, N., Frikken, K.: Dynamic and efficient key management for
access hierarchies. ACM TISSEC 12(3), 18:1–18:43 (January 2009)

4. Bertino, E., Jajodia, S., Samarati, P.: Database security: Research and practice. Information
Systems 20(7), 537–556 (November 1995)

5. Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Modeling and assessing inference exposure in encrypted databases. ACM TISSEC 8(1),
119–152 (February 2005)

6. Chang, Y., Mitzenmacher, M.:Privacy preserving keyword searches on remote encrypted data.
In: Proc. of ACNS 2005. New York, NY, USA(June 2005)

7. Crampton, J., Martin, K., Wild, P.: On key assignment for hierarchical access control. In: Proc.
of CSFW 2006. Venice, Italy (July 2006)

1026 S. De Capitani di Vimercati et al.

8. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: Im-
proved definitions and efficient constructions. In: Proc. of ACM CCS 2006. Alexandria, VA,
USA (October - November 2006)

9. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.: Balancing
confidentiality and efficiency in untrusted relational DBMSs. In: Proc. of ACM CCS 2003.
Washington, DC, USA (October 2003)

10. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G.: Enforcing subscription-based
authorization policies in cloud scenarios. In: Proc. of DBSec 2012. Paris, France (July 2012)

11. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S., Samarati,
P.: Enforcing dynamic write privileges in data outsourcing. Computers & Security 39, 47–63
(November 2013)

12. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Encryption
policies for regulating access to outsourced data. ACM TODS 35(2), 12:1–12:46 (April 2010)

13. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Private data
indexes for selective access to outsourced data. In: Proc. of WPES 2011. Chicago, IL, USA
(October 2011)

14. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Efficient and
private access to outsourced data. In: Proc. of ICDCS 2011. Minneapolis, MN, USA (June
2011)

15. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Support-
ing concurrency in private data outsourcing. In: Proc. of ESORICS 2011. Leuven, Belgium
(September 2011)

16. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Distributed
shuffling for preserving access confidentiality. In: Proc. of ESORICS 2013. Egham, UK.
(September 2013)

17. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Supporting
concurrency and multiple indexes in private access to outsourced data. JCS 21(3), 425–461
(2013)

18. De Cristofaro, E., Lu, Y., Tsudik, G.: Efficient techniques for privacy-preserving sharing of
sensitive information. In: Proc. of TRUST 2011. Pittsburgh, PA, USA (June 2011)

19. De Santis, A., Ferrara, A., Masucci, B.: Cryptographic key assignment schemes for any access
control policy. IPL 92(4), 199–205 (November 2004)

20. Ding, X., Yang, Y., Deng, R.: Database access pattern protection without full-shuffles. IEEE
TIFS 6(1), 189–201 (March 2011)

21. Fangming, Z., Takashi, N., Kouichi, S.: Realizing fine-grained and flexible access control to
outsourced data with attribute-based cryptosystems. In: Proc. of ISPEC 2011. Guangzhou,
China (May-June 2011)

22. Gamassi, M., Lazzaroni, M., Misino, M., Piuri, V., Sana, D., Scotti, F.: Quality assess-
ment of biometric systems: a comprehensive perspective based on accuracy and performance
measurement. IEEE TIM 54(4), 1489–1496 (August 2005)

23. Gamassi, M., Piuri, V., Sana, D., Scotti, F.: Robust fingerprint detection for access control. In:
Proc. of RoboCare Workshop. Rome, Italy (May 2005)

24. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of STOC 2009.
Bethesda, MA, USA (May 2009)

25. Goh, E.J.: Secure indexes. Tech. Rep. 2003/216, Cryptology ePrint Archive (2003),
http://eprint.iacr.org/

26. Goldreich, O., Ostrovsky, R.: Software protection and simulation on Oblivious RAMs. JACM
43(3), 431–473 (May 1996)

27. Goodrich, M., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Practical oblivious storage.
In: Proc. of CODASPY 2012. San Antonio, TX, USA (February 2012)

28. Goodrich, M., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-preserving group
data access via stateless Oblivious RAM simulation. In: Proc. of SODA 2012. Kyoto, Japan
(January 2012)

Selective and Private Access to Outsourced Data Centers 1027

29. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access
control of encrypted data. In: Proc. of ACM CCS 2006. Alexandria, VA, USA (October-
November 2006)

30. Hacigümüs, H., Iyer, B., Mehrotra, S.: Efficient execution of aggregation queries over
encrypted relational databases. In: Proc. of DASFAA 2004. Jeju Island, Korea (March 2004)

31. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data in the
database-service-provider model. In: Proc. of SIGMOD 2002. Madison, WI, USA (June 2002)

32. Jhawar, R., Piuri, V.: Fault tolerance management in IaaS clouds. In: Proc. of ESTEL 2012.
Rome, Italy (October 2012)

33. Jhawar, R., Piuri, V.: Fault tolerance and resilience in cloud computing environments. Computer
and Information Security Handbook 2nd Edition Vacca J. (ed.), Morgan Kaufmann (2013)

34. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource management
in cloud computing. In: Proc. of CSE 2012. Paphos, Cyprus (December 2012)

35. Lin, P., Candan, K.: Hiding traversal of tree structured data from untrusted data stores. In:
Proc. of WOSIS 2004. Porto, Portugal (April 2004)

36. Lu, Y., Tsudik, G.: Privacy-preserving cloud database querying. JISIS 1(4), 5–25 (November
2011)

37. Pang, H., Zhang, J., Mouratidis, K.: Enhancing access privacy of range retrievals overB+-trees.
IEEE TKDE 25(7), 1533–1547 (July 2013)

38. Ruj, S., Stojmenovic, M., Nayak, A.: Privacy preserving access control with authentication for
securing data in clouds. In: Proc. of CCGrid 2012. Ottawa, Canada (May 2012)

39. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing scenarios: Issues and
directions. In: Proc. of ASIACCS 2010. Beijing, China (April 2010)

40. Sandhu, R.: On some cryptographic solutions for access control in a tree hierarchy. In: Proc.
of the 1987 Fall Joint Computer Conference on Exploring Technology: Today and Tomorrow.
Dallas, TX, USA (October 1987)

41. Sandhu, R.: Cryptographic implementation of a tree hierarchy for access control. IPL 27(2),
95–98 (February 1988)

42. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proc.
of IEEE S&P 2000. Berkeley, CA, USA (May 2000)

43. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: ObliviStore:
High performance oblivious cloud storage. In: Proc. of ACM CCS 2013. Berlin, Germany
(November 2013)

44. Wan, Z., Liu, J., Deng, R.H.: HASBE: A hierarchical attribute-based solution for flexible and
scalable access control in cloud computing. IEEE TIFS 7(2), 743–754 (April 2012)

45. Wang, C., Cao, N., Ren, K., Lou, W.: Enabling secure and efficient ranked keyword search
over outsourced cloud data. IEEE TPDS 23(8), 1467–1479 (August 2012)

46. Wang, H., Lakshmanan, L.: Efficient secure query evaluation over encrypted XML databases.
In: Proc. of VLDB 2006. Seoul, Korea (September 2006)

47. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably
secure realization. In: Proc. of PKC 2011. Taormina, Italy (March 2011)

48. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: Proc. of ACM
CCS 2012. Raleigh, NC, USA (October 2012)

49. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: Practical access pattern
privacy and correctness on untrusted storage. In: Proc. of ACM CCS 2008. Alexandria, VA,
USA (October 2008)

50. Williams, P., Sion, R., Tomescu, A.: PrivateFS: A parallel oblivious file system. In: Proc. of
ACM CCS 2012. Raleigh, NC, USA (October 2012)

51. Yang, K., Jia, X., Ren, K.: Attribute-based fine-grained access control with efficient revocation
in cloud storage systems. In: Proc. of ASIACCS 2013. Hangzhou, China (May 2013)

52. Yang, K., Zhang, J., Zhang, W., Qiao, D.: A light-weight solution to preservation of access
pattern privacy in un-trusted clouds. In: Proc. of ESORICS 2011. Leuven, Belgium (September
2011)

53. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: Proc. of INFOCOM 2010. San Diego, CA, USA (March 2010)

Privacy in Data Centers: A Survey of Attacks
and Countermeasures

Luis Javier García Villalba, Alejandra Guadalupe Silva Trujillo
and Javier Portela

1 Introduction

A Data Center collects, stores, and transmits huge dimensions of sensitive informa-
tion of many types. Data Center security has become one of the highest network
priorities as data thieves and crime cells look to infiltrate perimeter defenses through
increasingly complex attack vectors with alarming success and devastating effects.

Today, organizations are placing a tremendous amount of collected data into
massive repositories from various sources, such as: transactional data from enterprise
applications and databases, social media data, mobile device data, documents, and
machine-generated data. Much of the data contained in these data stores is of a highly
sensitive nature and would trigger regulatory consequences as well as significant
reputation and financial damage. This may include social security numbers, banking
information, passport numbers, credit reports, health details, political opinions and
anything that can be used to facilitate identity theft.

Our daily activities are developed in a digital society where the interactions be-
tween individuals and other entities are through technology. Now, we can organize
an event and send the invitation using a social network like Facebook, sharing pho-
tos with friends using Instagram, listening to music through Spotify, asking for an
address using Google Maps; all of these activities are just some of the ways in which
many people are already working on the Internet every day. Personal information in
real world is protected from strangers but it is different in the online world, where
people disclose it [1]. All available information about a person gets cross-referenced,

L. J. García Villalba (�) · A. G. Silva Trujillo · J. Portela
Group of Analysis, Security and Systems (GASS), Department of Software Engineering and
Artificial Intelligence (DISIA), Faculty of Information Technology and Computer Science,
Office 431, Universidad Complutense de Madrid (UCM), Madrid, Spain
Calle Profesor José García Santesmases 9, Ciudad Universitaria, 28040 Madrid, Spain
e-mail: javiergv@fdi.ucm.es

© Springer Science+Business Media New York 2015 1029
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_34

1030 L. J. García Villalba et al.

and the resulting dossier ends up being used for many purposes, lawful and other-
wise. This practice has expanded over the years; the companies that compile and sell
these dossiers are known as data brokers.

The communication systems behaviour has changed and it has been forced to
improve its management in order to protect users privacy and satisfy the new re-
quirements. Data centers provide a unique choice, rather than collecting data on
network devices with limited capabilities for measurement, it offers measurements
at the servers, even commodity versions of which have multiple cores besides other
facilities. The essence of a data center is not based on concentration of data but rather
the capacity to provide particular data or combinations of data upon request.

Governments and industry take advantage of sophisticated data storage tools and
are using it to profile their users for financial, marketing, or just statistical purposes;
organizations are able to acquire and maintain massive infrastructure at bargain prices
and this derives to multiple benefits.

Individuals have the right to control their private information and only provide it
to certain third parties. In the last decade users privacy concerns have grown [2–4]
and since then several technologies have been developed to enhance privacy. Privacy
enhancing technologies (PETs) are designed to offer mechanisms to protect personal
information, and can be used with high level policy definition, human processes and
training in the use of computer and communication systems [5–7]. PETs have been
proposed to defend users privacy in user, network and server areas. Private and
public organizations, as well as individuals should include the protection of privacy
besides the typical aspects like integrity, confidentiality and availability of data.
Privacy protection must avoid the disclosure of identities in a communication system.
Motivations of these issues include censorship resistance, spies or law enforcement,
whistleblowers, dissidents and journalists living under repressive regimes.

There are some technologies used to accelerate the transition to encryption as a
service including hardware-based encryption key storage, centralized data protection
schemes for applications, databases, storage and virtualized environments, as well
as role-based access controls. Despite significant investment in security technology,
organizations have a great hole in security effectiveness. This is due to the fact that
conventional defenses rely on IP addresses and digital signatures. Signatures used in
antivirus and intrusion prevention systems are effective at detecting known attacks
at the time attacks are launched. They are not effective, however at detecting new
attacks and are incapable of detecting hackers who are still in the reconnaissance
phase, probing for weakness to attack. IP reputation databases, meanwhile, rely
on the notion that attackers can be identified by their IP addresses, and so share
this information across systems. Unfortunately, this is as ineffective method as it
uses a postal address to identify someone. Network attacks are a serious threat to an
organization. Next generation technologies are encouraged to improve the encryption
solutions available at data center level. However, it has been proved that traffic and
network topology analysis do not provide enough users privacy protection, even when
anonymization mechanisms are applied. Using auxiliary information, adversaries can
diminish anonymity properties.

Privacy in Data Centers: A Survey of Attacks and Countermeasures 1031

In this chapter we focus on how the analysis of traffic data can compromise
anonymity, showing the methods and techniques of how large amounts of traffic
that has been routed through an anonymous communication system can establish
communication relationships. In terms of information retrieved and considering these
as leakages, designers in data centers will take them to build better capabilities to
prevent attacks. Cloud computing and data centers have revolutionized the industrial
world but have data protection implications which should be seriously looked into
by all stakeholders to avoid putting people’s privacy at risk. The solution to the
previously mentioned privacy problems could be the adoption of appropriate privacy
enhancing technologies.

2 Privacy

The definition of privacy according to [8] is “the right of the individual to decide
what information about himself should be communicated to others and under what
circumstances”.

Economists, sociologists, historians, lawyers, computer scientists, and others
have adopted their own privacy definitions, just as the value, scope, priority and
proper course of study of privacy. Details about the background, law and history of
privacy are showed in [9]. According to experts, privacy and intimacy are difficult
concepts to define. However, we may consider personal health conditions, identity,
sexual orientation, personal communications, financial or religious choices, along
with many other characteristics. References from literature on how privacy solutions
are applied from economic, social and technical areas are in [4, 10, 11].

Respect for privacy as a right includes undesirable interference, the abusive in-
discretions and invasion of privacy, by any means, documents, images or recording.
The legal foundations date back to 1948. In that year, the Universal Declaration of
Human Rights was released, in which it was established that no person “shall be
subjected to arbitrary interference with his privacy, family, home or correspondence,
nor to attacks upon his honor and reputation”. However, despite the legal and politi-
cal developments that have taken place since then, it has not been possible to solve
a fundamental problem to curb abuses every day. The lack of clarity and precision
in the right to freedom of expression and information limits is an open issue; cases
that threaten these rights are increasing.

The development of digital media, the increasing use of social networks, the
easier access to modern technological devices, is perturbing thousands of people
in their public and private lives. Examples abound, the most recent was the deputy
mayor of a Flemish town, who was caught and recorded on a video while having sex
with a man in the Town Hall offices. The recording was made and released for an
unknown group of young boys. Another scandal was the president of the Guatemalan
Institute of Social Security, who was shot in his office committing “lewd acts”. Unlike
the previous one, in this case there was a crime and the action given was justified
publicly. All of this stuff is available on the Internet and traditional media, the videos

1032 L. J. García Villalba et al.

that were leaked to the Vice Minister of Culture and Youth of Costa Rica, and the
PSOE councilor in theYébenes, Spain. Nobody seems to care about the effects which
it continues to have on their lives. Indifference seems to be the constant. Participation
of national and international human rights, government, media, and even the civil
society organizations, seems to be far from this problem. However, the situation
should be of concern. The scandal at the expense of the intrusion and dissemination
of the private and intimate lives of people is unacceptable. It is a vicious circle that
has its origin in the violation of a right, but when it is the social networks and hence
most of the national and international media, on the pretext of being “news”.

3 Privacy Enhancing Technologies

The European Commission define Privacy enhancing technologies [12] as “The use
of PETS can help to design information and communication systems and services in a
way that minimizes the collection and use of personal data and facilitates compliance
with data protection rules. The use of PETs should result in making breaches of certain
data protection rules more difficult and / or helping to detect them”.

There is no widely accepted definition of the term PETs nor does there a dis-
tinguished classification exist. Literature about categorized PETs according to their
main functions, privacy management and privacy protection tools [13–15].

In general PETs are observed as technologies that focus on:

• Reducing the risk of breaking privacy principles and legal compliance.
• Minimizing the amount of data held about individuals.
• Allowing individuals to maintain control of their information at all times.

Several researchers are centered on protection of privacy and personal data through
sophisticated cryptology techniques. PET’s applications such as individual digi-
tal safes or virtual identity managers have been proposed for trusted computing
platforms.

PETs have traditionally been restricted to provide “pseudonymisation” [16]. In
contrast to fully anonymized data, pseudonymisation allows future or additional
data to be linked to the current data. These kind of tools are software that allow
individuals to deny their true identity from those operating electronic systems or
providing services through them, and only disclose it when absolutely necessary.
Examples include: anonymous web browsers, email services and digital cash.

In order to give a better explanation about PETs applied in a data center, consider
the Solove’s Taxonomy [17] used to categorize the variety of activities to infringe
privacy. We refer to [16] for further definitions of privacy properties in anonymous
communication scenarios.

• Information Collection: Surveillance, Interrogation.
• Information Processing: Aggregation, Identification, Insecurity, Secondary Use,

Exclusion.

Privacy in Data Centers: A Survey of Attacks and Countermeasures 1033

• Information Dissemination: Breach of Confidentiality, Disclosure, Exposure,
Increased Accessibility, Blackmail, Appropriation, Distortion.

• Invasion: Intrusion, Decisional Interference.

Collecting information can be a damaging activity, not all the information is sensitive
but certain kinds definitely are. All this information is manipulated, used, combined
and stored. These activities are labeled as Information Processing. When the informa-
tion is released, this group of activities is called Information dissemination. Finally,
the last group of activities is Invasion that includes direct violations of individuals.
Data brokers are companies that collect information, including personal information
about consumers, from an extensive range of sources for the purpose of reselling
such information to their customers, which include private and public sector entities.
Data brokers activities can fit in all of the categories above.

In other sub-disciplines of computer science, privacy has also been the focus of
research, concerned mainly with how the privacy solutions are to be applied in specific
contexts. In simple terms, they are concerned with defining the process of when and
how to apply privacy solutions. Before choosing a technology for privacy protection,
several questions have to be answered because there is no certainty that one type
of technology solves one specific problem. One of the questions to consider is who
defines what privacy is? (The technology designer, the organization’s guidelines, or
the users) [18].

4 Anonymous Communications

Anonymous communications aim to hide communications links. Since anonymity
is the state of absent identity, anonymous communication can only be achieved by
removing all the identifying characteristics from the anonymized network. Let’s
consider a system as a collection of actors, such as clients, servers, or peers, in a
communication network. These actors exchange messages via public communication
channels. Pitfzmann and Hansen [16] defined anonymity as “the state of being not
identifiable within a set of subjects, the anonymity set”.

One of the main characteristics of the anonymity set is its variation over time.
The probability that an attacker can effectively disclose the message’s sender is
exactly 1/n, with n as the number of members in the anonymity set. The research
on this area has been focused on developing, analyzing and attacking anonymous
communication networks. The Internet infrastructure was initially supposed to be
an anonymous channel, but now we know that anyone can be spying in the network
to reveal our data. Attackers have different profiles such as their action area, users
volume capacity, heterogeneity, distribution and location. An outside attacker may
identify traffic patterns to deduce who has communication with whom, when, and
its frequency.

There are three different perspectives on anonymous communication: (i) Sender
anonymity: Sender can contact receiver without revealing its identity; (ii) Receiver
anonymity: Sender can contact receiver without knowing who the receiver is; (iii)

1034 L. J. García Villalba et al.

Fig. 1 Anonymous communications network

Unlinkability: Hide your relationships from third parties. According to [16] unlink-
ability between two items of interest occurs when an attacker of the system cannot
distinguish if the two items of interest (in a system) are related or not.

Over the past years, anonymous communications has been classified by two cat-
egories: high latency systems and low latency systems. The first ones aim to provide
a strong level of anonymity but are just applicable for limited activity systems that
do not demand quick responses, such as email systems. On the other hand, low
latency systems offer a better performance and are used in real-time systems. Exam-
ples include web applications, secure shell and instant messenger. Both systems are
built on a reflection of Chaum’s proposal [19]. Unlinkability is provided in a similar
way in both cases using a sequence of nodes between a sender and its receiver, and
using encryption to hide the message content. An intermediate node knows only its
predecessor and its successor.

The mix networks systems are the basic building blocks of all modern high la-
tency anonymous communication systems [19]; On the other hand, several designs
have been developed to provide anonymity in recent years with for low latency
systems, such as Crowds [20], Hordes [21], Babel [22], AN.ON [23], Onion rout-
ing [24], Freedom [25], I2P [26] and Tor [27]. Nowadays, the most widely used
anonymous communication network is Tor; allowing anonymous navigation on the
web. A comparison of the performance of high latency and low latency anonymous
communication systems is showed in [28].

Privacy in Data Centers: A Survey of Attacks and Countermeasures 1035

5 Mix Networks

In 1981, Chaum [19] introduced the concept of Mix networks whose purpose is
to hide the correspondences between the items in its input and those in its output.
A mix network collects a number of packets from distinct users called anonymity
set, and then it changes the incoming packets appearance through cryptographic
operations. This makes it impossible to link inputs and outputs taking into account
timing information. Anonymity properties are strongest as well as the anonymity set
is bigger, and these are based on uniform distribution of the actions execution of the
set subjects. A mix is a go-between relay agent that hides a message’s appearance,
including its bit pattern and length. For example, say Alice generates a message
to Bob with a constant length, a sender protocol executes several cryptographic
operations through Bob and Mix public keys. After that, a mix hides the message’s
appearance by decoding it with the Mix private key.

The initial process for Alice to be able to send a message to Bob using a Mix
system is to prepare the message. The first phase is to choose the path of the message
transmission; this path must have a specific order for iteratively sending before the
message gets its final destination. It is recommended to use more than one mix in
every path to improve the security of the system. The next phase is to use the public
keys of the chosen mixes for encrypting the message, in the inverse order that they
were chosen. In other words, the public key of the last mix initially encrypts the
message, then the next one before the last one and finally the public key of the first
mix will be used. Every time that the message is encrypted, a layer is built and the
next node address is included. This way when the first mix gets a message prepared,
this will be decrypted with his correspondent private key and will get the next node
address.

External attacks are executed outside the network, while internal attacks are from
compromised nodes, which are actually part of the network. Mix networks are a
powerful tool to mitigate outside attacks by making the sender and receiver path
untraceable. The participant nodes in a mix network relay and delay messages in
order to hide the route of the individual messages through the mix. However, they
can be corrupted nodes that perform inside attacks. This kind of problem is addressed
[20] by hiding the sender or the receiver from the relay nodes.

6 Traffic Analysis

Traffic analysis belongs to a family of techniques used to deduce information from
patterns in a communication system. It has been demonstrated that encryption by
itself does not provide proper anonymity; different works utilize traffic analysis tech-
niques to uniquely identified encrypted entities. Even if communication content is
encrypted, routing information has to be clearly sent because routers must determine

1036 L. J. García Villalba et al.

the next network point to which a packet should be forwarded. For example, vari-
ous traffic analysis techniques have been used to disclose identities in an anonymity
communication network [29].

However, there is very little information about network-level traffic characteristics
of recent data centers. A data center refers to any large, dedicated cluster of computers
that is owned and operated by a single organization. Data center of various sizes are
being built and employed for a diverse set of purposes today. On the one hand, large
universities and private enterprises are increasingly consolidating their IT services
within on-site data centers containing a few hundred to a few thousand servers.
Furthermore, large online service providers, such as Microsoft, Google and Amazon,
are rapidly building data centers to accomplish their requirements.

Very few studies of data center traffic have been published since the challenge
of instrumentation and the confidentiality of the data create significant obstacles for
researchers. According to literature, there are a few that contain traffic data from
corporate data centers [30]. An overview of enterprise and Internet traffic based on
traces captured at Lawrence Berkeley National Laboratory appears in [31]. How us-
ing the data collected from end hosts to assess the number of unsuccessful connection
attempts in an enterprise network has been applied is found in [32]. A survey show-
ing data center components and management challenges, including: power, servers,
networking and software is presented in [33]. Finally, [34] examines congestion in a
data center network, but only [35] focused on the design and implementation of pro-
tocols to provide reliable communication on data centers, but recognizes that more
work need to be done in order to protect privacy.

7 Mix Systems Attacks

The attacks against mix systems are intersection attacks [36]. They take into account
a message sequence through the same path in a network, it means performing traffic
analysis. The set of most likely receivers is calculated for each message in the se-
quence and the intersection of the sets will make it possible to know who the receiver
of the stream is. Intersection attacks are designed based on correlating the times when
senders and receivers are active. By observing the recipients that received packets
during the rounds when Alice is sending, the attacker can create a set of Alice’s most
frequent recipients, this way diminishing her anonymity.

Next, we present the family of statistical disclosure attack, which is based in
executing traffic analysis techniques.

8 The Disclosure Attack

The beginning of this family is the disclosure attack [37, 38]. The attack was modeled
by considering a bipartite graph G = (A

⋃
B,E). The set of edges E represents the

relationship between senders and recipientsA andB. Mixes assume that all networks

Privacy in Data Centers: A Survey of Attacks and Countermeasures 1037

links are observable. So, the attacker can determine anonymity sets by observing
messages to and from an anonymity network; the problem arises for how long the
observation is necessary. The attack is global, in the sense that it retrieves information
about the number of messages sent by Alice and received by other users, and passive,
in the sense that the attacker cannot alter the network (sending false messages or
delaying existent ones). Authors assume a particular user, Alice, sends messages to
limitedm recipients. A disclosure attack has a learning phase and an excluding phase.
The attacker should findm disjoint recipients set by observing Alice’s incoming and
outgoing messages. In this attack, authors make several strategies in order to estimate
the average number of observations for achieve the disclosure attack. They assume
that: i) Alice participates in all batches; ii) only one of Alice’s peer partners is in
the recipient sets of all batches. In conclusion, this kind of attack is very expensive
because it takes an exponential time taking into account the number of messages to
be analyzed trying to identify mutually disjoint sets of recipients. This is the main
bottleneck for the attacker, and it derives from an NP-complete problem. Test and
simulations showed it only works well in very small networks.

9 The Statistical Disclosure Attack (SDA)

The SDA proposed by Danezis [39] is based on the previous attack. It requires less
computational effort by the attacker and gets the same results. The method tries to
reveal the most likely set of Alice’s friends using statistical operations and approx-
imations. It means that the attacks applies statistical properties on the observations
and recognize potential recipients, but it does not solve the NP-complete problem
presented in previous attack. Consider −→v as the vector withN elements correspond-
ing to each potential recipient of the messages in the system. Assume Alice has m
recipients as the attack above, so 1

m
might receive messages by her and it’s always

|−→v | = 1. The author also defines −→u as the uniform distribution over all potential
recipients N . In each round the probability distribution is calculated, so recipients
are ordered according to its probability. The information provided to the attacker is
a series of vectors representing the anonymity sets The highest probability elements
will be the most likely recipients of Alice. Variance on the signal and the noise in-
troduced by other senders is used in order to calculate how many observations are
necessary. Alice must demonstrate consistent behaviour patterns in the long term
to obtain good results, but this attack can be generalized and applied against other
anonymous communication network systems. A simulation over pool mixes are in
[40]. Distinct to the predecessor attack, SDA only show likely recipients and does
not identify Alice’s recipients with certainty.

1038 L. J. García Villalba et al.

10 Extending and Resisting Statistical Disclosure

One of the main characteristics in Intersection Attacks relies on a fairly consistent
sending pattern or a specific behaviour for users in an anonymity network. Mathewson
and Dingledine in [41] make an extension of the original SDA. One of the more
significant differences is that they consider that a real social network has a scale-free
network behaviour, and also such behaviour changes slowly over time. They do not
simulate these kinds of attacks.

In order to model the sender behaviour, authors assume Alice sends n messages
with a a probability Pm(n); and the probability of Alice sending to each recipient is
represented in a vector −→v . First the attacker gets a vector −→u whose elements are: 1

b

the the recipients that have received a message in the batch, and 0 for recipients that
have not. For each round i in which Alice sent a message, the attacker observes the
number of messages mi sent by Alice and calculates the arithmetic mean.

Simulations on pool mixes are presented, taking into account that each mix retains
the messages in its pool with the same probability every round. The results show
that increasing variability in the message makes the attack slower by increasing the
number of output messages. Finally they examine the degree to which a non-global
adversary can execute a SDA.Assuming all senders choose with the same probability
all mixes as entry and exit points and attacker is a partial observer of the mixes. The
results suggest that the attacker can succeed on a long-term intersection attack even
when it partially observes the network. When most of the network is observed the
attack can be made, and if more of the network is hidden then the attacker will have
fewer possibilities to succeed.

11 Two Sided Statistical Disclosure Attack (TS-SDA)

[42] Danezis et al. provide an abstract model of an anonymity system considering that
users send messages to his contacts, and takes into account some messages sent by a
particular user are replies. This attack assumes a more realistic scenario regarding the
user behaviour on an email system; its aim is to estimate the distribution of contacts
of Alice, and to deduce the receivers of all the messages sent by her.

The model considersN as the number of users in the system that send and receive
messages. Each user n has a probability distributionDn of sending a message to other
users. For example, the target user Alice has a distribution DA of sending messages
to a subset of her k contacts. At first the target of the attack, Alice, is the only user
that will be model as replying to messages with a probability r . The reply delay is
the time between a message being received and sent again. The probability of a reply
r and the reply delay rate are assumed to be known for the attacker, just as N and
the probability that Alice initiates messages. Based on this information the attacker
estimates: (i) the expected number of replies for a unit of time; (ii) The expected
volume of discussion initiations for each unit of time; (iii) The expected volume of
replies of a particular message.

Privacy in Data Centers: A Survey of Attacks and Countermeasures 1039

Finally authors show a comparative performance of the Statistical Disclosure
Attack (SDA) and the Two Sided DisclosureAttack (TS-SDA). It shows that TS-SDA
obtains better results than SDA. The main advantage of the TS-SDA is its ability to
uncover the recipient of replies. on reveal discussion initiations. Inconvenient details
for application on real data is the assumption that all users have the same number of
friends to which they send messages with uniform probability.

12 Perfect Matching Disclosure Attack (PMDA)

The PMDA [8] is based on graph theory, it considers all users in a round at once,
instead of one particular user iteratively. No assumption on the users behaviour is
required to reveal relationships between them. Comparing with previous attacks
where Alice sends exactly one message per round, this model permits users to send
or receive more than one message in each round. Bipartite graphs are employed to
model a threshold mix, and through this, they show how weighted bipartite graphs
can be used to disclosure users communication. A bipartite graph G = (S

⋃
R,E)

considers nodes divided in two distinct sets S (senders) and R (receivers) so that
every edge E links one member in S and one member in R. It is required that every
node is incident to exactly one edge. In order to build a threshold mix, it is thought
that t messages sent during one round of the mix form the set S, and each node
s ∈ S is labeled with the sender’s identity sin (s). Equally, the t messages received
during one round form the set R where each node r is labeled with the receiver’s
identity rec(r). A perfect matching M on G links all t sent and received messages.
Additionally P ′ is t × t matrix containing weights ws , r , representing probabilities
for all possible edges in G.

The procedure for one round is: (i) sent messages are nodded inS, and marked with
their senders identities; (ii) received messages are nodes in R, and marked with their
receivers identities; (iii) derive the t × t matrix: first estimating user profiles when
SDA and then de-anonymize mixing round with P ′(s, r) = P̃sin (S),SDA(rec(r)), s ∈
Si , r; iv) replace each element of the matrix P ′(s, r) with log10(P ′(s, r)); v) having
each edge associated with a log-probability, a maximum weighted bipartite matching
on the graph G = (S

⋃
R,E) outputs the most likely sender-receiver combination.

This work shows that it is not enough to take the perspective of just one user of the
system.

Results of experimentation show that this attack does not consider the possibility
that users send messages with different frequencies. An extension proposal considers
a Normalized SDA. Another related work concerning perfect matchings is perfect
matching preclusion [43, 44] where Hamiltonian cycles on the hypercube are used.

1040 L. J. García Villalba et al.

13 Vida: How to Use Bayesian Inference to De-anonymize
Persistent Communications

A generalization of the disclosure attack model of an anonymity system applying
Bayesian techniques is introduced by Danezis et al. [45]. Authors build a model to
represent long term attacks against anonymity systems, which are represented as
Nuser users that send Nmsg messages to each other. Assume each user has a sending
profile, sampled when a message is to be sent to determine the most likely receiver.
The main contributions are two models: (1) Vida Black-box model represents long
term attacks against any anonymity systems; (2) Vida Red-Blue allows an adversary
to performance inference on selected target through traffic analysis.

Vida Black Box model describes how messages are generated and sent in the
anonymity system. In order to perform inference on the unknown entities they use
Bayesian methods. The anonymity system is represented by a bipartite graph linking
input messages ix with its correspondent output messages oy without taking into
account their identities. The edges are labelled with its weight that is the probabil-
ity of the input message being sent out. Senders are associated with multinomial
profiles, which are used to choose their correspondent receivers. Through Dirichlet
distribution these profiles are sampled. Applying the proposed algorithm will derive
a set of samples that will be used for attackers to estimate the marginal distributions
linking senders with their respective receivers.

Vida Red-Blue model tries to respond to the needs of a real-world adversary, con-
sidering that he is interested in particular target senders and receivers. The adversary
chooses Bob as a target receiver, it will be called “Red” and all other receivers will be
tagged as “Blue”. The bipartite graph is divided into two sub-graphs: one containing
all edges ending on the Red target and one containing all edges ending on a Blue
receiver. Techniques Bayesian are used to select the candidate sender of each Red
message: the sender with the highest a-posterior probability is chosen as the best
candidate.

The evaluation includes a very specific scenario which considers: (i) messages
sent by up to 1000 senders to up to 1000 receivers; (ii) each sender is assigned 5
contacts randomly; (iii) everyone sends messages with the same probability; (iv)
messages are anonymized using a threshold mix with a batch of 100 messages.

14 SDA with Two Heads (SDA-2H)

One of the most used strategies to attempt against SDA is sending cover traffic which
consists of fake or dummy messages mixed with real ones that can hide Alice’s
true sending behaviour. SDA-2H [46] is an extension of SDA [39] and takes its
predecessor as a baseline to improve it as it considers background traffic volumes in
order to estimate the amount of dummy traffic that Alice sends. Dummy traffic serves
as a useful tool to increase anonymity and they are classified based on their origin: (i)
user cover, generated by the user Alice; (ii) background cover, generated by senders

Privacy in Data Centers: A Survey of Attacks and Countermeasures 1041

other than Alice in the system; (iii) receiver-bound cover, generated by the mix. This
work is centered on background cover which is created when users generated false
messages along with their real ones. The objective for the attacker is to estimate
how much of Alice’s traffic is false based on the observations between the volume of
incoming and outgoing traffic. Authors make several simulations and find that for a
specific number of total recipients, the increase in the background messages makes
it harder for the attacker to succeed having total recipients and Alice’s recipients
unchanged. They also find that when Alice’s recipients stay and the number of total
recipients increases, the attacker would need few rounds of observations to find
Alice’s recipients. A comparative between SDA and SDA-2H shows that SDA-2H
may not be better than SDA in all cases, but SDA-2H takes into account the effect
of background cover to achieve a successful attack.

15 Conclusions

In spite of widespread interest in datacenter networks, little has been published that
reveals the nature of their traffic, or the problems that arise in practice. This chapter
first shows how traffic analysis can be used to disclosure information, even consid-
ering patterns such as which servers talk to each other, when and for what purpose;
or characteristics as duration streams or statistics. Although modern technologies
have enhanced the way we conduct everyday business—these same technologies
create new risks as they are deployed into the modern IT environment. The digital
environment is changing and the focus must be on attackers, more work should be
done to provide a useful guide for datacenter network designers. The real problem:
Not only have attacks against the entire data center infrastructure increased, they’ve
also become much more sophisticated. The influx of advanced attacks has become
a serious issue for any data center provider looking to host modern technologies. As
privacy research advances, we observe that some of our assumptions about the capa-
bilities of privacy solutions also change. Risk reduction to acceptable levels should
be taken into account to develop measures against internal and external threats.

Acknowledgment Part of the computations of this work were performed in EOLO, the HPC of
Climate Change of the International Campus of Excellence of Moncloa, funded by MECD and
MICINN.

References

1. Krishnamurthy, B.: Privacy and Online Social Networks: Can Colorless Green Ideas Sleep
Furiously? IEEE Security Privacy 11(3) (May 2013) 14–20

2. Dey, R., Jelveh, Z., Ross, K.: Facebook Users Have Become Much More Private: A Large-
Scale Study. In: IEEE International Conference on Pervasive Computing and Communications
Workshops. (19–23 March 2012) 346–352

1042 L. J. García Villalba et al.

3. Christofides, E., Desmarais, A.M.S.: Information Disclosure and Control on Facebook: Are
They Two Sides of the Same Coin or Two Different Processes? CyberPsychology & Behavior
12(3) (June 2013) 341–345

4. Gross, R., Acquisti, A.: Information Revelation and Privacy in Online Social Networks. In:
2005 ACM Workshop on Privacy in the Electronic Society, ACM (2005) 71–80

5. Goldberg, I., Wagner, D., Brewer, E.: Privacy-enhancing technologies for the Internet. In:
IEEE Compcon’97. (February 23–26 1997) 103–109

6. Goldberg, I.: Privacy-Enhancing Technologies for the Internet, II: FiveYears Later. In: Second
International Workshop on Privacy Enhancing Technologies. (April 14–15 2003) 1–12

7. Goldberg, I.: Privacy Enhancing Technologies for the Internet III: Ten Years Later. In: Digital
Privacy: Theory, Technologies and Practices, Auerbach Publications (December 2007) 3–18

8. Westin, A.F.: Privacy and Freedom. The Bodley Head Ltd (1997)
9. R. Gellman, P.D.: Online Privacy: A Reference Handbook. ABC-CLIO (2011)

10. Berendt, B., Günther, O., Spiekermann, S.: Privacy in e-Commerce: Stated Preferences vs.
Actual Behavior. Communications of the ACM 48(4) (April 2005) 101–106

11. Narayanan, A., Shmatikov, V.: De-Anonymizing Social Networks. In: IEEE Symposium on
Security and Privacy, Washington, DC, USA, IEEE Computer Society (2009) 173–187

12. Commission, E.: Privacy Enhancing Technologies (PETs): The Existing Legal Framework
(May 2007)

13. Fritsch, L.: State of the Art of Privacy-Enhancing Technology (PET). Technical report, Norsk
Regnesentral, Norwegian Computing Center (2007)

14. Group, M.: Privacy Enhancing Technologies". Technical report, Ministry of Science,
Technology and Innovation (March 2005)

15. Adams, C.: A Classification for Privacy Techniques. University of Ottawa Law & Technology
Journal 3(1) (July 2006) 35–52

16. Pfitzmann, A., Hansen, M.: Anonymity, Unlinkability, Undetectability, Unobservabil-
ity, Pseudonymity, and Identity Management: A Consolidated Proposal for Terminology.
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml (February 2008) v0.31.

17. Solove, D.J.: A Classification for Privacy Techniques. University of Pennsylvania Law Review
154(3) (January 2006) 477–560

18. Diaz, C., Gürses, S.: Understanding the Landscape of Privacy Technologies. In: The 13th
International Conference on Information Security (Information Security Summit). (2012) 1–6

19. Chaum, D.L.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Communications of ACM 24(2) (February 1981) 84–90

20. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for Web Transactions. ACM Transactions on
Information and System Security 1(1) (November 1998) 66–92

21. Levine, B.N., Shields, C.: Hordes: A Multicast Based Protocol for Anonymity. Journal of
Computer Security 10(3) (September 2002) 213–240

22. Gulcu, C., Tsudik, G.: Mixing Email with Babel. In: Symposium on Network and Distributed
System Security, Washington, DC, USA, IEEE Computer Society (1996) 1–15

23. Berthold, O., Federrath, H., Kopsell, S.: Web MIXes: A System for Anonymous and Un-
observable Internet Access. In: International Workshop On Designing Privacy Enhancing
Technologies: Design Issues In Anonymity And Unobservability, Springer-Verlag New York,
Inc. (2001) 115–129

24. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding Routing Information. In: First Interna-
tional Workshop on Information Hiding, London, UK, UK, Springer-Verlag (May 30 - June 1
1996) 137–150

25. Back, A., Goldberg, I., Shostack, A.: Freedom Systems 2.1 Security Issues and Analysis (May
2001)

26. Back, A., Goldberg, I., Shostack, A.: I2P (2003)
27. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-generation Onion Router. In:

13th Conference on USENIX Security Symposium - Volume 13, Berkeley, CA, USA, USENIX
Association (2004) 21–21

Privacy in Data Centers: A Survey of Attacks and Countermeasures 1043

28. Loesing, K.: Privacy-Enhancing Technologies for Private Services. PhD thesis, University of
Bamberg (2009)

29. Edman, M., Yener, B.: On Anonymity in an Electronic Society: A Survey of Anonymous
Communication Systems. ACM Computing Surveys 42(1) (December 2009) 1–35

30. Benson, T., Anand, A., Akella, A., Zhang, M.: Understanding Data Center Traffic Char-
acteristics. ACM SIGCOMM Computer Communication Review 40(1) (January 2010)
92–99

31. Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V., Tierney, B.: A First Look at Modern
Enterprise Traffic. In: 5th ACM SIGCOMM Conference on Internet Measurement, Berkeley,
CA, USA, USENIX Association (October 19-21 2005) 2–2

32. Guha, S., Chandrashekar, J., Taft, N., Papagiannaki, K.: How Healthy Are Today’s Enterprise
Networks? In: 8th ACM SIGCOMM Conference on Internet Measurement, New York, NY,
USA, ACM (October 20-22 2008) 145–150

33. Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R.: The Nature of Data Cen-
ter Traffic: Measurements & Analysis. In: 9th ACM SIGCOMM Conference on Internet
Measurement Conference, New York, NY, USA, ACM (November 4-6 2009) 202–208

34. Greenberg, A., Maltz, D.A.: What Goes Into a Data Center? (2009)
35. Balakrishnan, M.: Reliable Communication for Datacenters. PhD thesis, Cornell University

(September 2008)
36. Raymond, J.F.: Traffic Analysis: Protocols, Attacks, Design Issues and Open Problems. In:

International Workshop On Design Issues In Anonymity And Unobservability, Springer-Verlag
New York, Inc. (July 25-26 2000) 10–29

37. Kedogan, D., Agrawal, D., Penz, S.: Limits of Anonymity in Open Environments. In: 5th
International Workshop on Information Hiding, London, UK, UK, Springer-Verlag (October
7–9 2002) 53–69

38. Agrawal, D., Kesdogan, D.: Measuring Anonymity: The Disclosure Attack. IEEE Security
Privacy 1(6) (2003) 27–34

39. Danezis, G.: Statistical Disclosure Attacks: Traffic Confirmation in Open Environments. In:
IFIP Advances in Information and Communication Technology, Kluwer (2003) 421–426

40. Danezis, G., Serjantov, A.: Statistical Disclosure or Intersection Attacks on Anonymity
Systems. In: 6th Information Hiding Workshop. (May 23–25 2004) 293–308

41. Mathewson, N., Dingledine, R.: Practical Traffic Analysis: Extending and Resisting Statistical
Disclosure. In: 4th International Conference on Privacy Enhancing Technologies. (May 23-25
2004) 17–34

42. Danezis, G., Diaz, C., Troncoso, C.: Two-sided Statistical Disclosure Attack. In: 7th Inter-
national Conference on Privacy Enhancing Technologies, Berlin, Heidelberg, Springer-Verlag
(June 20–22 2007) 30–44

43. Brigham, R., Harary, F., Violin, E., Yellen, J.: Perfect-Matching Preclusion. Congressus
Numerantium 174 (2005) 185–192

44. Park, J.H., Son, S.H.: Conditional Matching Preclusion for Hypercube-like Interconnection
Networks. Theoretical Computer Science 410(27–29) (June 2009) 2632–2640

45. Danezis, G., Troncoso, C.: Vida: How to use Bayesian Inference to De-anonymize Persis-
tent Communications. In: 9th International Symposium of Privacy Enhancing Technologies,
Springer Berlin Heidelberg (August 5-7 2009) 56–72

46. Al-Ameen, M., Gatz, C., Wright, M.: SDA-2H: Understanding the Value of Background Cover
Against Statistical Disclosure. In: 14th International Conference on Computer and Information
Technology. (December 22-24 2011) 196–201

Part VII
Data Services

Quality-of-Service in Data Center Stream
Processing for Smart City Applications

Paolo Bellavista, Antonio Corradi and Andrea Reale

1 Introduction

The wide diffusion of cheap, small, and portable sensors integrated in an unprece-
dented large variety of devices—from smartphones to household appliances, from
cars to fixed monitoring stations—, and the availability of almost ubiquitous Internet
connectivity through Wi-Fi hotspots or cellular networks, makes it possible to collect
and use valuable real-time information about many fundamental aspects of the envi-
ronment we live in. If properly understood and used, this information has the potential
to bring important improvements to cross-concerning areas that have strong and di-
rect impact on the quality of people’s life, such as healthcare, urban mobility, public
decision making, and energy management. This continuous collection and exploita-
tion of real-time data from people and objects of the real world is at the foundations of
the Smart City vision [26], where people, places, environment, and administrations
become closer and get connected through novel ICT services and networks. In the
last years, several projects from academia, industries and governments have started
to work toward the actual implementation of this vision in big urban areas. Examples
of these initiatives are the many European funded projects such as European Digital
Cities [21], Smart Cities Stakeholder Platform [42], SafeCity [41], or EUROCITIES
[23], or industry-led activities, such as the IBM Smarter Cities project [29], or the
Intel Collaborative Research Institute for Sustainable Connected Cities [30].

In order to implement novel and useful smart services for the city, it is not only
sufficient to collect the raw content of these Big Data Streams, but is also crucial
to distill interesting and usable knowledge from them. However, the unprecedented

P. Bellavista (�) · A. Corradi · A. Reale
Department of Computer Science and Engineering (DISI), Università di Bologna, Italy
e-mail: paolo.bellavista@unibo.it

A. Corradi
e-mail: antonio.corradi@unibo.it

A. Reale
e-mail: andrea.reale@unibo.it

© Springer Science+Business Media New York 2015 1047
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_35

1048 P. Bellavista et al.

heterogeneity in data representation and semantics, and in the goals and quality
requirements of analysis tasks is a hard technical challenge to face while developing
applications that deal with huge and continuous streams of information. Distributed
Stream Processing Systems (DSPSs) represent very relevant technological support
frameworks for the industrial and cost-effective implementation of Smart City
applications: for instance, by efficiently leveraging the distributed resources
available in data centers with limited impact on the complexity of the application
logic, they answer the requirements of performance and scalability that continuous
data streams analysis impose.

In this chapter we analyze the state-of-the-art of DSPSs, with a strong focus on
the characteristics that make them more or less suitable to serve the novel processing
needs of Smart City scenarios. In particular, we concentrate on the ability to offer
differentiated Quality of Service (QoS). A growing number of Smart City applica-
tions, in fact, including those in the security, healthcare, or financial areas, require
configurable and predictable behavior. For this reason, a key factor for the success of
new and original stream processing supports will be their ability to efficiently meet
those needs, while still being able to scale to fast growing workloads.

The chapter is organized as follows: Section 2 introduces the class of big data
analysis platforms known as DSPSs. It does so by providing a simple framework for
their description and comparison. Section 3 presents three state-of-the-art and widely
used DSPSs and compares their specific characteristics by using the framework
presented in Sect. 2. Section 4 focuses on the problem of integrating QoS-aware
behavior in DSPSs by emphasizing the reasons why they would be especially useful
in Smart City scenarios. Our QoS-aware DSPS, called Quasit, is presented in Sect. 5;
Quasit has been specifically designed to allow a rich customization of quality-related
stream processing parameters, and is able to enforce them at runtime in a scalable
and cost-effective way. Finally, in Sect. 6, we look at a special kind of weak QoS
specifications, which can be flexibly and adaptively enforced by DSPSs: to this
purpose, we present LAAR, a technique for adaptive DSPS operator replication,
which allows to trade “perfect” fault-tolerance guarantees off for reduced execution
cost, while being able to handle variable load conditions and to offer guaranteed
lower bounds on the achievable system reliability.

2 Distributed Stream Processing Systems

A stream processing application is a collection of software components whose goal
is to process, analyze, or transform streams of information to produce continuous
results in the form of output streams. A Stream Processing System (SPS) is a
middleware that provides support for both the development and the execution of
stream processing applications, and is labeled as distributed (DSPS) if it deploys
them on a set of distributed computing resources, such as, very relevant nowadays,
the ones in a data center.

We propose an original representation model for DSPSs that helps analyzing
them according to a simple three layer scheme. The layers are complementary, each

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1049

Fig. 1 A three-layer model of
Distributed Stream
Processing Systems

describing a different aspect of the stream processing system, and are called abstract
model, development model, and execution model, respectively (Fig 1).

• The abstract model defines the high-level stream processing concepts adopted by
the system. For instance, it gives precise definitions of data streams and relevant
system events; it determines the characteristics of data processing flows, and the
type, role, and granularity of processing components.

• The development model defines the set of interfaces that are exposed to developers
to build the stream processing components defined in the abstract model. A devel-
opment model, for example, could map abstract concepts on syntactic constructs
of special-purpose stream processing languages, or on ad-hoc Application Pro-
gramming Interfaces (APIs) and libraries developed for existing general-purpose
languages.

• The execution model determines how abstract model components are mapped
on runtime entities executed by the distributed servers on which the DSPS is
deployed. For example, an entire application could be mapped, at execution time,
on a single process of the host operating system, or it could be split into several
interacting processes.

While the three models may, in theory, largely vary from system to system, in practice,
it is easy to identify many recurring aspects among the most common solutions. In
the remainder of this section, we discuss the three models and overview how they
are commonly realized in existing state-of-the-art solutions.

2.1 Abstract Model

The abstract model of a DSPS defines the high level concepts on which the system is
based, including the system-dependent concepts of stream, stream processing appli-
cation, and the processing workflow that the system adopts. While development and

1050 P. Bellavista et al.

Fig. 2 A generic processing graph in Distributed Stream Processing Systems

execution models usually can be significantly different from one system to another,
abstract models tend to be very similar and based on the common abstraction of
processing graph [2, 4, 6, 10, 16, 24, 35, 44].

A processing graph (Fig. 2) is a Directed and Acyclic Graph (DAG) whose
nodes represent data processing and transformation steps, and whose edges rep-
resent streams flowing between components. A stream is an unbounded sequence of
discrete elements, often called samples or tuples. The type of a sample defines its
structure, and every stream contains samples all of the same type. Depending on the
system, a sample type could be a primitive type—such as an integer or floating point
number—or it could be a composite type, similar to a structure in the C language, or,
in some cases, to objects of an object oriented type system. Every processing graph
is always fed by one or more input streams, and produces one or more output streams
as a result. The origin and destination of input and output streams can be highly het-
erogeneous, such as for example, a file, a network socket, a PUB/SUB endpoint, or
a relational database. Since input streams are unbounded, a characterizing feature of
stream processing applications is that, once started, they continue to execute forever,
unless explicitly stopped.

A graph node can be of three different kinds, i.e., data source, data sink, and
operator. A data source node identifies a data stream that is conceptually out of the
application: its role is to abstract from the actual nature of the stream producer. It
can represent either an external stream source or the output of another application
running on the same system. A data sink node, conversely, represents the destination
of an application output; data sinks can be used either to redirect output streams to
other systems for additional processing steps or storage, or to connect the output of
an application with the input of another one. An operator node is associated with
one or more input data streams and generates one or more output streams. Operators
are the core of stream processing applications: they define the set of operations that
can be performed on streams. Operators can implement, for example, relational
manipulations of single or moving windows of samples, such as projections or joins;

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1051

they can perform aggregation or filtering actions, or realize more complex, arbitrary,
algorithms. Operators, data sources, and data sinks are collectively called graph
components or, more simply, components.

Samples are received and produced by stream components on their input and
output ports, each having its own type, which corresponds to the type of the stream
it receives or produces. Every graph component performs its processing operations
on data samples according to an asynchronous processing model; conceptually all
the components operate in parallel and perform their processing actions as soon as
data samples are available at their input ports.

2.2 Development Model

A development model maps the concepts defined in the abstract model on the
programming-level constructs offered to developers to write their stream processing
applications. These constructs should allow to:

1. Define new applications, by describing which source, operator, and sink compo-
nents should be instantiated and how they should be connected into a processing
graph.

2. Customize component instances, in order to adapt their behavior to specific
application needs (e.g., to bind graph source nodes to actual external sources).

3. Develop new components with custom functionalities.

Any DSPS development model should at least define the tools to achieve the first two
goals of the list; in fact, in many cases, it is not necessary to create new or custom
components, especially in the common scenario where the DSPS comes bundled
with collections of ready-to-use components (also referred to as toolkits) that can
satisfy most common application requirements.

In the available literature, two families of application development models are
common. The first includes models whose mappings are based on special-purpose
languages; the second relates to the exploitation of general purpose languages for
that.

Special-purpose stream processing languages are usually tightly bound to the
system they have been designed for. They normally allow a very concise definition
of applications and components, by having stream processing concepts mapped one-
to-one to language-level concepts. For example, the Stanford Stream system [6]
defines the so called Continuous Query Language (CQL), which permits to develop
stream processing applications by writing continuous queries in a syntax that strongly
resembles SQL queries. These queries are processed by the underlying system and
decomposed in a processing graph of pre-defined operators. If ad-hoc languages
permit faster and easier application development, they generally lack the flexibility
of general-purpose languages and, more importantly, they force developers to learn
new languages and new development processes.

1052 P. Bellavista et al.

Development models based on general-purpose languages, instead, usually have
a less steep learning curve, as system-specific stream processing concepts are ex-
pressed using familiar constructs offered by common general-purpose programming
languages, such as C++, Java, or Python. For example, in Apache S4 [35], opera-
tors are defined by writing corresponding Java classes, all subclasses of a common
abstract superclass. The developer has to “fill-in” the methods that implement the
operator logic, which the system automatically invokes when corresponding events
of interest occur. Using general-purpose languages has several benefits, including
the possibility to seamlessly reuse existing libraries and software modules in new
stream processing applications. However, this usually comes at the expense of con-
ciseness and prototyping speed because those APIs can be verbose and sometimes
cumbersome.

2.3 Execution Model

An execution model maps the elements defined in the abstract model and described
through the development model onto runtime objects that the hosting platform is
able to run directly. An execution model defines:

1. The characteristics of platform specific execution units, and the high-level policies
adopted for scheduling local resources, such as CPU and memory.

2. The distribution of the execution units on the cluster of available servers.
3. The mapping of graph edges on communication channels, such as shared memory,

pipes, or network sockets.

The first important aspect of an execution model is the mapping of operators, sources,
and sinks on host platform concepts, such as processes or threads. With a process-per-
operator allocation, each operator is individually instantiated as a separate process,
with one or possibly more concurrent threads of execution (e.g., one per input port).
This grants the maximum isolation, since problems with one component cannot affect
other concurrently running ones. With this choice, the local scheduling of resources
is demanded to the standard facilities of the host operating system CPU and memory
schedulers. The first implementations of the Stream Processing Core (SPC) [4] (at
the basis of the more recent IBM InfoSphere Streams system— see the following)
used a similar approach, by isolating single components into their own containers,
corresponding to standard UNIX processes.

A process-per-server allocation creates just one process per server. Within this
process, components are hosted as separate software modules, for example as in-
stances of a given class in case of a class-based object oriented implementation.
While, on the one side, this arrangement does not grant the same execution isolation
that a process-per-operator allocation does, on the other side, it permits a tighter
control on resource scheduling policies. For example, every in-process component
could be given a dedicated execution thread or, more interestingly, a pool of threads
could be used to execute groups of components according to internal policies or QoS

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1053

requirements (e.g., for a priority-proportional scheduling of resources). Moreover,
the communication of components running within the same process is usually faster
and cheaper, as shared memory based channels can be used. The process-per-server
allocation is used, for example, by Apache S4 [35] and Quasit [10], which start a
Java virtual machine on each cluster server, and deploy sources, operators, and sinks
as objects running within the local VM.

Somewhere in the middle between the two previous solutions, the cluster-of-
operators approach fuses subsets of tightly coupled components (e.g., operators
with strong reciprocal communication dependencies) into one process. Again, within
every single process, very flexible resource scheduling approaches and faster commu-
nication channels can be used. Different operator clusters, however, are still mapped
onto different processes, granting a better isolation to each group. IBM InfoSphere
Streams [24] uses a similar hybrid approach thanks to a technique, called operator
fusion [33], that groups multiple operators into single execution units automatically.

Knowing what the execution units are, the application processing graph can
be rewritten in the corresponding runtime graph where nodes represent individual
runtime objects (e.g., processes) and edges represent inter-process communication
channels. A further role of the execution model is the definition of an assignment
strategy for runtime objects. An assignment strategy decides the distribution of run-
time objects on the available cluster servers: a good solution should take into account
the resource requirements of every object (e.g., CPU and memory), the resources
availability of each server, and the expected/declared application communication
patterns, and it should find an assignment that satisfies the application resource and
quality requirements while minimizing its execution cost. The assignment can be
static-only, or can have dynamic phases as well. During the static phase an initial as-
signment is decided based on a-priori knowledge of the application and input streams
characteristics. Due to changing load conditions, for example caused by load spikes
in some input streams, the initial assignment could be no longer adequate to satisfy
the application QoS requirements; in these cases, a dynamic phase can be performed
at runtime to adaptively deal with load variations. For example, [39] and [38] propose
two-phase algorithms to perform both static and dynamic assignment phases, while
[40] tries to find an initial static assignment that maximizes the system robustness to
possible variations.

Finally, an execution model should decide how communication channels are
implemented at runtime. For in-process communication, function calls or shared
memory-based message passing are the most commonly chosen alternatives. While
the first binds the execution thread of the caller to that of the callee, the second allows
an independent execution of the two components. For what concerns inter-process
communication, the choice depends on whether the channel endpoints reside on the
same host or on remote hosts. In the first case, solutions such as system-level shared
memory or pipes can be adopted to implement faster and cheaper communication
solutions; in case of remote communication, the choice of the protocol depends very
much on the desired communication cost and QoS level. For example, if cheap and
unreliable communication is enough, UDP-based channels are a possible solution.

1054 P. Bellavista et al.

3 Platforms for Distributed Stream Processing

In the last decade, the problem of effectively processing continuous information flows
has been faced in several projects. In the early 2000s, systems like TelagraphCQ
[8, 17], Aurora [1, 16], Borealis [2], and Stream [6, 7] have started recognizing
the ineffectiveness of using traditional database management systems (DBMSs) for
the real-time analysis of continuous data, and have proposed their own alternative
solutions. More recently, as a result of the industrial success of scalable and parallel
batch data processing systems like MapReduce [20], solutions such as Map-Reduce-
Merge [46] or MapReduce Online [18] have tried to reuse its successful scalable
processing model in stream processing scenarios, by enhancing it with continuous
and dynamic data analysis capabilities. In this section, we have selected three promi-
nent state-of-the-art DSPSs, and we discuss their design and architectural features
under the light of the three-layers modeling framework introduced in the previous
section. The three systems described in the following are IBM InfoSphere Streams,
Apache S4, and Storm. The particular choice of these systems over the different
alternatives available in the literature is motivated by the fact that, to our knowledge,
the selected DSPSs are the most widely adopted in real-world large scale production
systems, including large data center deployments from important industry players
such as IBM, Yahoo! and Twitter: for this reason, we believe that their analysis can
provide important insights about the common requirements of real stream process-
ing workloads, including those of Smart City scenarios. It is not the goal of this
work to provide an extensive survey of existing stream processing solutions: for a
comprehensive work, the interested reader is referred to [19].

In the following three subsections, we briefly overview each selected DSPS by
analyzing its abstract, development, and execution model; for each of them, we also
emphasize peculiar QoS-related features, when supported.

3.1 IBM InfoSphere Streams

IBM InfoSphere Streams [24] is a DSPS evolved from the SPC research project [4].
In Streams, application processing graphs are defined in an ad-hoc special-purpose
Stream Processing Language (SPL) that is used to describe operators and their stream
connections. The language is very flexible, as it permits to define new data types, or to
customize the behavior of existing operators by changing, for example, their number
of input/output ports or their output logic. Besides defining simple operators, SPL
also enables to combine them in composite ones, which encapsulate more complex
behavior.

In addition, the system exposes two sets of general-purpose APIs that can be used
to build user-defined custom operators. The first is a mixed C++ and Perl API that,
by using a two-steps code generation process, gives them maximum customization
flexibility and execution efficiency [25]. The second is a simpler Java API, based
on runtime reflection techniques rather than code generation. Due to the cost of

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1055

reflection, however, this API is in general less efficient than its C++/Perl counterpart.
Operators built through either API can be exported to reusable toolkits and used
directly within SPL source files.

At compile time, an optional operator fusion process can be manually or automat-
ically started in order to cluster groups of correlated operators. Each group is then
transformed into its corresponding runtime object, called Processing Element (PE),
whose execution is mapped onto an operating system process. Hence, InfoSphere
Streams follows an operator-per-process or cluster-of-operators approach, depending
on whether the fusion step is performed or not. Depending on configuration param-
eters, operators inside the same process are executed by dedicated threads—in this
case they communicate to other in-process operators through message passing—or
by shared threads—in this case they communicate via function calls. At the time
of writing, the only explicit QoS parameter supported by Streams is a loose form
of fault-tolerance, based on checkpointing [32]: periodically or driven by events,
runtime objects can save their current state on secondary memory; whenever a crash
occurs, that state is restored, but all the processing operations performed between
the last checkpoint and the failure are lost.

3.2 Apache S4

Apache S4 [5] is a DSPS initially developed and maintained by Yahoo! [35] and
currently part of the Apache Incubator project umbrella.

In S4 processing graphs, there is no distinction between sources, sinks, and oper-
ators, but all the components are uniformly modeled and called PEs1. PEs can import
streams coming from other applications running on the same platform, process them,
and possibly export output streams either to external destinations or to other appli-
cations concurrently running on the platform. External streams of data (i.e., coming
from sources external to the platform itself) can be transformed into internal streams
by developing and running special S4 applications, called adaptors.

To develop PEs or adaptors, S4 offers its own Java API. Developer create new PE
types by writing classes that inherit from the ProcessingElement superclass,
whose methods are automatically invoked by the framework whenever new samples
to process are available or in a time-driven fashion with customizable rate.

The S4 execution model follows a process-per-server approach: S4 instantiates
a JVM container on each cluster server and PE instances are executed within these
containers. The VM execution threads are not directly associated with PE instances,
but with streams: within a VM container, the platform instantiates one thread for
each stream feeding a hosted PE, and this thread executes all the methods of the PE
instances served by that stream. Very peculiarly, every S4 stream can be optionally

1 Note that, while in IBM InfoSphere Streams (Sect. 3.1) the concept of PE belongs to the execution
model, in S4, it represents an abstract model concept.

1056 P. Bellavista et al.

keyed. In a keyed stream, every data sample has a unique key: the S4 runtime support
dynamically creates a new PE instance for each different key in a stream, so that
every instance processes all the stream samples for one key in a sort of functional map
operation. This allows an easy parallelization of PEs and, consequently, an easy scale-
up mechanism. S4 permits to choose inter-VM (and hence remote) communication
transports among UDP- or TCP-based ones (by default UDP is employed). Similarly
to IBM InfoSphere Streams, the only QoS policy supported by S4 is a weak form of
fault-tolerance based on periodic or event-driven checkpointing of PE state.

3.3 Storm

Storm [44] is a DSPS developed by BackType and recently released under the Eclipse
Public License by Twitter after its acquisition of BackType. As IBM InfoSphere
Streams and Apache S4, Storm is based on the processing graph abstract model
presented in Sect. 2.1. In the Storm model, data sources are called spouts and op-
erators bolts; there is no explicit concept of sink, but destinations can be realized
through bolts themselves since they can perform arbitrary actions on received samples
(including saving them on files or forwarding them to external systems).

According to the Storm development model, the main method to define new
spouts and bolts is through a Java API. As in Apache S4, in Storm, custom bolts and
spouts are defined by writing classes that extend specific base classes, which, in turn,
provide basic functionalities to newly built components. Graph instances are defined
by creating instances of component classes and by defining their connection edges
via specific API calls.

The Storm execution model is rather articulated. There are three parameters that
influence how a particular graph is instantiated on the hosting platform, i.e, (i) the
number of worker processes, (ii) the number of per-component tasks, and (iii) the
number of per-component threads. The first parameter determines the total number
of processes instantiated in the Storm cluster; the second, associated with every
spout or bolt, determines the number of instances per component (also called tasks
in Storm terminology) instantiated across all the cluster; the third determines the
total number of threads dedicated to serve a component’s set of tasks. At runtime,
every worker is instantiated in a different Java VM, which can host one or more
tasks (and execute one or more threads) from the same application. When multiple
tasks for a single component are running, the routing of stream samples to different
component instances is based on a further parameter, configurable at development
time, which determines a grouping policy: for example, samples can be randomly
shuffled among tasks for load balancing purposes, or can be routed using a modulo
hashing of some sample fields.

Very peculiarly, Storm puts a strong focus on fault-tolerance by optionally pro-
viding at-least-once processing semantics: this means that it guarantees that every
sample produced by any of the graph spouts is processed at least once. To do so, for
each root sample (i.e., a sample generated by a spout), Storm keeps track of all the

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1057

samples whose creation has been caused by its processing, and buffers it until all
the tracked samples are acknowledged by their final destinations. Given the highly
customizable nature of stream processing functionalities, Storm is not able to au-
tomatically keep track of caused by relationships between samples, but it requires
explicit developer intervention for that: at code-level, in fact, Storm developers have
to explicitly mark every new sample as caused by another sample if willing to avail
of Storm fault-tolerance facilities.

4 QoS-Aware Stream Processing

In every kind of IT infrastructure serving mission-critical application scenarios, such
as healthcare, finance, or transportation, it is very important that services behave in
conformance to a well-defined Service Level Agreement (SLA) that determines the
required QoS level. An SLA normally puts constraints on the functional behavior
of the service (e.g., it should produce all and correct results in normal conditions)
but also, and more importantly, constraints on how the service is expected to behave
according to a set of performance indicators (non-functional requirements). The
range of possible performance indicators is, in general, very large and application-
dependent: two common and simple examples are latency—measuring the maximum
time interval between a service request and the corresponding response—or avail-
ability—measuring the fraction of time the service generates correct results, even in
spite of possible failures. Other indicators can refer to lower-abstraction details of the
service, by measuring, for example, platform-specific parameters such as memory or
CPU usage. Every constraint in an SLA that binds a specific performance indicator
to some value is said to represent a QoS policy for the service.

In general, the implementation of QoS-aware services, i.e., services that are guar-
anteed to deterministically operate according to a set of associated QoS policies, is
a very difficult task, and maps to the ability of the runtime platform to allocate (both
statically and dynamically) the proper amount of computational resources where
they are needed to satisfy the specified quality requirements. The technical chal-
lenge is even harder in the case of stream processing applications. In fact, differently
from simple request-response or batch-oriented processing scenarios, where charac-
teristics of computational tasks are known a-priori and thus easier to reason about,
in stream processing, the properties of input streams (e.g., their data rate) change
continuously and their behavior is not completely known in advance and difficult to
predict. The consequent high variability in the load that applications have to sustain
during long provisioning times, makes it very challenging to implement effective
and adaptive resource scheduling techniques.

Nonetheless there is a growing number of real-world applications that has to deal
with the analysis of large data streams and that requires, at the same time, predictable
performance guarantees. This is often the case in Smart City scenarios, where a
common goal is to use the results of stream analysis to trigger real-time feedback
actions on real-world aspects of the city itself and of the urban life. These actions

1058 P. Bellavista et al.

can be responses to emergency conditions, such as the activation of alarms in smart
telecare systems [45], or the computation of emergency rescue plans in a smart traffic
management system [22], which must be performed in a timely and reliable fashion.
To better emphasize the importance of properly handling application-specific QoS
requirements, let us briefly expand on this second scenario.

Consider a Traffic Management System (TMS) deployed in a Smart City. In this
system every car periodically reports its position and speed to ad-hoc collection
points using vehicle-to-vehicle and vehicle-to-infrastructure communications [34].
In their turn, each collection point relays these data to the data center-hosted stream
processing application that processes these data in order to realize the TMS services.
The TMS generally has the following three high-level functions:

• Traffic flow control. By analyzing short term and long term variations in car speeds
along different roads, the system adapts the traffic lights timings to current road
network conditions.

• Management of road emergencies. In case of car accidents, the vehicles involved
and other cars passing immediately route messages about the event to on-road
collection points, which, in their turn, relay them to the data center application.
By analyzing these messages, the TMS detects the emergency condition, notifies
the appropriate emergency service (e.g., ambulances), and tries to adapt the traffic
flow to the new conditions, for example, by suggesting alternative navigation paths
to other drivers (see next point).

• Real-time navigation. Cars traveling in the city can query the TMS for advanced
navigation services. The system will answer with an always up-to-date route that
takes into account road load conditions and possible emergency situations.

The three tasks of the TMS service, although based on the same input data streams,
have very different quality requirements. For example, the traffic light timers must be
promptly and quickly adapted to new road load conditions, meaning that the related
processing actions should be performed with bounded latency. Similarly, processing
of emergency notifications should be performed within deterministic time limits,
in order to allow immediate rescue actions to take place. For the same reason, the
management of all the emergency situations must take priority over other computa-
tions; this is especially useful during periods of high computational load (e.g., during
traffic peaks) when the available DSPS resources might not be enough to satisfy all
the processing flows. Accident notification messages should be transferred and pro-
cessed reliably becuase the consequences of information loss can be very severe.
On the other hand, the analysis of vehicles’ position and speed to determine road
load conditions can be performed best-effort: the related processing tasks can be
executed with lower priority; in addition, data loss can be largely tolerated in this
case given the implicit spatial and temporal information redundancy present in the
corresponding data streams.

This simple but, we believe, very representative example shows how important can
be for DSPSs to provide a rich and native support for QoS-aware stream processing.
By using this type of support, developers of Smart City applications could focus
their attention on application-level modeling and implementation problems, while

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1059

delegating the realization of complex QoS enforcing mechanisms to the underlying
DSPS. However, to the best of our knowledge, the most widely used and state-of-the-
art DSPSs have only limited QoS-based configuration capabilities, which in most
cases include only the selection of various reliability mechanisms (see Sect. 3).

On the contrary, we claim that QoS should be introduced as a first class concept in
DSPSs at all the three abstract, development, and execution layers of our model. QoS
in the abstract model should permit to specify, with different levels of granularity,
the QoS policies required for graphs, single components, or groups of components
directly in the application models. At this layer, different DSPSs should define their
own quality-related vocabulary and determine which are the performance aspects
controllable through their QoS policies, to which specific components they can ap-
ply, and how they interact with each other. QoS in the development model should
define the programming constructs (either as extensions of ad-hoc stream processing
languages or as specific APIs for general-purpose languages) that can be used to an-
notate application code with the quality requirements expressed at the model level.
Finally, QoS in the execution model should support the execution of applications
specified according to the other two layers. In this layer, each different DSPS should
map different QoS policies to different mechanisms for runtime admission, monitor-
ing, enforcement, and management, and should develop proper resource scheduling
algorithms to satisfy the required QoS specifications.

In the following section, as a practical example of this kind of approach, we
introduce Quasit, an original DSPS designed and implemented by following the
above QoS-related guidelines.

5 Quasit

Quasit [10, 11] is a distributed stream processing system whose main design goal is
to support QoS-aware stream analysis. To do so, it incorporates the concept of QoS
at all the abstract, development, and execution model layers. Quasit is designed to
run on large data centers made of commodity hardware, exploiting all the available
processing power, and automatically handling various types of failures.

The Quasit abstract model is based on the processing graph concepts presented
in Sect. 2.1. Originally, every element in Quasit processing graphs, called streaming
information graphs (SIGs) in Quasit terminology, can be augmented with a QoS
specification (a collections of QoS policies applied to that element); collectively,
QoS specifications are used to dynamically adapt to variable load conditions and to
the quality requirements of different parts of the stream processing flow. The Quasit
development model is based on a simple Scala API, which lets developer (i) write,
compose, and reuse custom operators, sources, and sinks, (ii) arrange components in
SIGs to deploy on the infrastructure, and (iii) define the required QoS configurations
for components, channels, or graphs as a whole. The API is designed to support
a functional-like programming style that clearly separates operator behavior and
state, thus making it easier for the runtime to support advanced QoS provisioning

1060 P. Bellavista et al.

strategies. The Quasit runtime model maps the SIG components to runtime objects
that run on all the available data center resources, and implements the set of QoS
mechanisms that make it possible to execute application SIGs while enforcing their
QoS requirements.

In the following subsections, we will concentrate on the three model-levels and
overview the main ideas behind Quasit QoS-aware stream processing.

5.1 Quasit Abstract Model

The basic modeling unit in Quasit is the Streaming Information Graph (SIG), a
weakly connected acyclic and directed graph representing the transformations that,
applied to one or more input streams, produce an output data stream. Similarly to
the model described in Sect. 2.1, three kinds of nodes can be used in a SIG graph
i.e., operators, data sources and data sinks.

SIG nodes and edges can be labeled with QoS specifications, which define non-
functional configuration parameters or constraints. Depending on the type of node or
edge, a QoS specification can consist of several QoS policies, each policy influencing
a different quality aspect. For example, through QoS specifications on SIG edges, it
is possible to control the characteristics of the protocol used to exchange data among
nodes they connect, or, through QoS Specifications on operator nodes, it is possible
to configure their reliability guarantees.

The processing core of the Quasit abstract model is the simple operator
component, whose structure is shown in Fig. 3.

A simple operator can be stateless or stateful. When stateful, the operator process-
ing behavior is defined by the combination of the value of its state and its processing
function; when stateless, by the processing function alone. The processing function
is executed asynchronously whenever a sample from any of the operator input ports
is available and its result may depend on the current value of the operator state. The
role of the processing function is to describe how input streams are combined to pro-
duce an operator’s output stream, and, if necessary, to update the operator internal
processing state.

Quasit also allows to combine operators into more complex ones, by defining com-
posite operators: existing operators (either simple or composite) can be arranged in
a special SIG type, called operator definition SIG (OD-SIG), whose source and
sink nodes are virtual, i.e., they do not correspond to real streaming data produc-
ers/consumers. Quasit defines a mapping between this kind of SIG and the associated
composite operators: each data source in the OD-SIG defines a typed input port of
the composite operator, and the data sink in the graph determines the type of the
operator output port. Without digging into formal details, the behavior of a com-
posite operator is defined by the internal structure of its defining OD-SIG: when a
sample arrives to an input port of the composite operator it is processed as if it was
processed by the OD-SIG operators graph. This composition mechanism provides

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1061

Fig. 3 Structure of a Quasit simple operator

an easy way to create new complex processing functionalities in terms of simpler
ones, and promotes sharing and reusing existing and well-tested components.

5.2 Quasit Development Model

Quasit offers a very simple Scala API to let developers write their stream processing
applications, create new data sources, data sinks and operators (either simple or
composite), arrange components in SIGs, and associate QoS specifications to SIG
elements.

In order to define new components, developers write descriptor classes that con-
tain all the information that the framework needs to instantiate component instances
at runtime. Depending on the type of component (i.e., source, sink, simple or com-
posite operator), the descriptor class must extend an appropriate superclass which
acts as a sort of “template” for the new descriptor. For example, operator descrip-
tor classes must inherit either from StatefulOperatorDescriptor[O,S]
or StatelessOperatorDescriptor[O], depending on whether the operator
needs to maintain some state between subsequent processing operations or not. Any
component descriptor class must implement the appropriate life-cycle methods that
are asynchronously invoked when relevant events occur. For example, an operator

1062 P. Bellavista et al.

Fig. 4 A Quasit SIG implementing a simple, comm-like application

descriptor class must implement the processingFunction method, which realizes the
main operator processing logic. This method, in fact, is called whenever samples are
available at any operator input port. If the operator is stateless, the optional return
value of the processing function is a list of samples to produce in the operator output
stream; otherwise, it is a pair of objects, the first being a list of output samples, the sec-
ond (optional) the new state the operator should transition to. A SIGDescriptor
describes how components are arranged in the processing graph. It lists instances of
component descriptors and the edges that connect them. While instantiating compo-
nent descriptors, edges, or SIG descriptors, it is possible to associate to each of these
elements specific QosSpecification objects, which will be used by the Quasit
runtime to enforce the required quality levels.

Let us see, with a brief concrete example, how it is possible to create component
descriptors and arrange them in SIGs. To keep the discussion self-contained we will
consider a very simple scenario, where two sources continuously read lines each from
a different file, tokenize them into words and send them to an operator (henceforth
referred to as the comm operator) that determines and outputs words found in both
the input files; this application can be thought as a sort of distributed and scalable
implementation of the UNIX comm utility. A representation of the corresponding
SIG is shown in Fig. 4.

Listing 1 shows how the descriptor class for the comm operator is de-
fined. CommOpDescritpor inherits from StatefulOperatorDescriptor
[WordMsg,Map[String,Short]]. The two type parameters passed to the base
class (i.e., WordMsg and Map[String,Short] respectively represent the output
type of comm operators and the type of their processing state. In fact, WordMsg is a
simple container for words, while the state of a comm operator is a map that associates
every word ever met with three possible values: one, if the word has been found on the
first source only, two, if the word has been found on the second source only, and three

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1063

if it has been found on both. Every instance of CommOpDescriptor has to spec-
ify two parameters, i.e., a symbolic name and an instance of OperatorQosSpec
that will determine the set of QoS policies associated to the operator instance. Lines
3–7 determine the parameters passed to the StatefulOperatorDescriptor
constructor; in particular, it is interesting to pay attention to the definition of the two
operator input ports and their types (line 5) and to the definition of the operator initial
state, i.e., an empty map (line 7). The comm operator processing function is defined
from line 10 to line 15: by leveraging the expressiveness of Scala partial functions,
it is possible to express the actions to perform in case a sample is received from the
first data source (‘‘data1’’ port) or the second one (‘‘data2’’ port) very concisely.
The private function processWord (line 17, determines the actual behavior of the
operator, and the return values of its processing function. Note that, for example,
once a word is found in both sources, a sample is produced on the output and the
operator state updated accordingly (line 33).

1 class CommOpDescriptor(name: String, qos: OperatorQosSpec)

2 extends StatefulOperatorDescriptor[WordMsg,Map[String,Short]](

3 name, qos,

4 // Define the operator ports

5 Map("data1" -> classOf[WordMsg], "data2" -> classOf[WordMsg]),

6 // The initial state of the operator is an empty map

7 Map[String,Short]()) {

8

9

10 override def processingFunction = {

11 case (msg: WordMsg, "data1", state: Map[_,_]) =>

12 processWord(msg.word, 1, state)

13 case (msg: WordMsg, "data2", state: Map[_,_]) =>

14 processWord(msg.word, 2, state)

15 }

16

17 private def processWord(word: String, srcMask: Short,

18 state: Map[String, Short]):

19 (Option[WordMsg], Option[Map[String,Short]]) = {

20

21 val wordState = state.get(word)

22 wordState match {

23 case None =>

24 // There is no entry in the map

25 val newState = state + (word -> srcMask)

26 // Produce no output but a new state

27 (None, Some(newState))

28 case Some(mask) =>

29 if ((mask & srcMask) != 0) { // already seen from this source

1064 P. Bellavista et al.

30 (None, None)

31 } else {

32 val newState = state + (word -> 3.toShort) // seen from both

33 (Some(new WordMsg(word)), Some(newState))

34 }

35 }

36 }

37 }

Listing 1: Definition of a simple Quasit operator.

Listing 2, instead, shows how to instantiate operator descriptors and how to represent
a SIG through a SIG descriptor. First, in lines 3 and 4, the two source descriptors
are instantiated, pointing to the input files. After that, in lines 7–11, the comm
operator descriptor instance is instantiated as well; notice that it is explicitly given
the name‘‘commOp’’ and that it is assigned a queuing QoS policy, which determines
the type of queues used to buffer the operator input samples. After instantiating a
file sink (line 14), the actual SigDescriptor instance is created in lines 18–29.
The SIG descriptor instance is given a unique name, and the graph components are
listed one by one through references to their descriptors. Graph edges connecting
components are described through a sequence of triples (line 23), each defining an
edge through its source node, its target node, and the QoS specification associated to
the corresponding stream channel (default in this case). Finally, the SIG descriptor is
associated with a SIG-wise QoS specification (lines 28–29): in this particular case,
a fault-tolerance related policy, called internal completeness, is requested. As we
will see in more detail in Sect. 6, this policy trades off perfect resiliency to failures
and the ability to handle load spikes, while steel guaranteeing that a given fraction
of samples are correctly processed (in the example, 70 % of the samples).

1 def main(args: Array[String]): Unit = {
2 // Instantiate the data source descriptors
3 val src1 = new FileSourceDescriptor("src1", "/pathto/f1")
4 val src2 = new FileSourceDescritpr("src2", "/pathto/f2")
5
6 // Instantiate a CommOp descriptors
7 val comOpA = new CommOpDescriptor("commOp",
8 OperatorQosSpec().withPolicy(
9 QueingPolicy(QueueingPolicy.Unbounded,
10 QueueingPolicyKind.Fifo)),
11)
12
13 // Instantiate the sink
14 val sink = new FileNativeSink[WordMsg]("sink",

DataSinkQosSpec(),
15 "/pathto/comm.txt")
16
17 // Define the graph
18 val sig = SigDescriptor(

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1065

Fig. 5 Distributed architecture of a Quasit domain

19 name = "CommSig",
20 dataSources = Seq(src1, src2),
21 dataSink = sink,
22 operators = Seq(comOpA),
23 edges = Seq(
24 ("src1" -> "commOp", "data1", ChannelQosSpec()),
25 ("src2" -> "commOp", "data2", ChannelQosSpec()),
26 ("commOp" -> "sink", ChannelQosSpec()))
27)
28).withSigQosSpec(SigQosSpec()
29 .withPolicy(FTPolicy(FTPolicy.IC, 0.7)))

30
31 ...
32 }

Listing 2: Creation of a SIG descriptor instance.

1066 P. Bellavista et al.

5.3 Quasit Execution Model

The Quasit abstract model, combined with the corresponding development model,
offers a flexible and intuitive way to express stream analysis needs through the
composition of small processing stages, and allows to customize these stages by
means of several QoS policies. The Quasit execution model supports the execution
of Quasit components at runtime by leveraging the computing power of a cluster of
commodity computers within large-scale data centers.

A running Quasit deployment is called domain. A domain handles the distributed
and QoS-aware execution of one or more user-defined SIGs. Similarly to other scal-
able data processing architectures (e.g., [20, 24, 31, 44]), the distributed architecture
of a Quasit domain follows the master-workers pattern, with a central component with
management and monitoring responsibilities and several distributed nodes perform-
ing the actual data processing operations. Figure 5 shows the three core distributed
components running in one Quasit domain:

• Several Quasit Runtime Nodes (QRN), the workers;
• One Quasit Domain Manager (QDM), the master node;
• One optional Quasit Operator Repository (QOR).

The main QoS-aware execution services of our Quasit framework are provided by
the co-operation of the QRN and QDM components. A typical Quasit deployment
includes one QDM node and a cluster of QRN nodes, usually interconnected by a
high-speed local area network (LAN). A QRN is in charge of providing the execution
environment for Quasit simple operators and implement threading, networking, and
local QoS management services. The QDM has management and control responsi-
bilities over a Quasit domain. It does not take any direct role in stream processing
tasks: for this reason, its centralized architecture does not represent a relevant bot-
tleneck to the overall system scalability. Finally, the QOR is a repository of simple
and composite operator types, and users can use its services to publish their operator
definitions and to search for previously published ones.

In the current Quasit prototype implementation, every cluster server hosts one
QRN, which is executed within a Java Virtual machine process (i.e. process-per-
server model). Within this JVM, operator instances are modeled as distributed actors
[3] managed by the Akka Actors framework [27]. All the actors running within the
same JVM are managed by a pool of threads of configurable size, which executes
operators processing functions at need, i.e., when there are samples to process at their
input ports. This threading schema gives tremendous flexibility because it permits
easily implementation of custom scheduling strategies, such as, for example, priority-
based ones.

Operators deployed on different QRNs are connected via channels realized by
leveraging the OMG DDS standard for high-performance PUB/SUB data exchange
[36, 37]. Concretely, the PUB/SUB communication module maps the output port
of every stream source (either operator or data source) to a unique destination topic
and, symmetrically, every input port (of either an operator or a data sink) to a topic

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1067

subscription. This solutions provides, at the same time, (i) strong decoupling be-
tween data producers and consumers, (ii) reduced space and time overhead thanks
to the very efficient serialization mechanisms of the DDS middleware, and— most
importantly— (iii) possibility to exploit the very fine-grained control of low-level
QoS-related parameters that the DDS standard permits to associate with its topics,
readers, and writers.

QoS policies defined at model-level on Quasit SIGs are enforced at runtime thanks
to a two level QoS-management architecture, realized through the interaction of one
domain QoS manager, running within the QDM, and several node QoS managers,
one for each QRN. The domain QoS manager performs global admission control and
QoS-based system configuration, while node QoS managers leverage the computa-
tional resources of the QRNs on which they execute to implement and enforce the
requested QoS policies on locally running operators and I/O ports.

6 Load-Adaptive Active Replication (LAAR)

We have seen that the nature of stream applications poses several different and hard
challenges to platform providers, including the ability to offer, at the same time, per-
formance elasticity in spite of load variations, and resiliency to failures, while keeping
costs limited. Handling load fluctuations due to sudden and possibly temporary vari-
ations in the data rates of input streams is a very complex task: in general, it maps
to the ability to plan and allocate, statically and—more importantly—dynamically,
the available computing resources to different parts of the hosted applications.

As stream processing applications usually run for (indefinitely) long time intervals,
failures become very likely to occur. Many proposals in the literature have inves-
tigated possible fault-tolerance techniques—including active replication [14, 43],
checkpointing [15, 32], replay logs [9, 28], or hybrid solutions [47] — each provid-
ing different trade-offs between best-case runtime cost and recovery cost. Whichever
the adopted technique, maintaining some form of replication at some level (soft-
ware/hardware components, state, or messages) imposes non-negligible overhead in
terms of computing and communication resources.

In this section we present a possible solution to deal with temporary load variations
in stream processing applications. This original approach trades off reliability guar-
antees and execution cost in actively replicated stream processing applications by
temporarily claiming computational resources back from the fault-tolerance layer
and by using them to handle possible load spikes. Our technique, called LAAR
(Load-Adaptive Active Replication) [12, 13], dynamically deactivates and activates
redundant replicas of processing components in order to claim/release resources and
accommodate temporary load variations. At the same time, LAAR provides a-priori
guarantees about the achievable levels of fault-tolerance, expressed in term of an
internal completeness metric that captures the maximum amount of information that
can be lost in case of failures.

1068 P. Bellavista et al.

Fig. 6 A simple processing scenario. On the left, the application graph. On the right, concise
characteristics of the application and of its data source

LAAR builds on top and significantly extends existing static replication techniques
that have been previously proposed for DSPSs [28]: for every component in the
application processing graph, k replicas are deployed at runtime. At any moment in
time, one of the k replicas of each component has the role of primary, the others
are called secondary. Primary and secondary replicas all receive samples from the
primaries of their predecessors, and all process them advancing through the same
sequence of internal states. However, only the primary outputs samples to the replicas
of its successors. LAAR continuously monitors the input rate of application sources.
It automatically activates and deactivates replicas in order to satisfy two goals:

1. The application deployment is never overloaded;
2. The internal completeness constraint expressed in the SLA is satisfied.

For the sake of simplicity, an application deployment is said to be overloaded when,
for any host, the total CPU cycles per second that would be needed to execute the
components assigned to it is greater than the available CPU cycles per second. Note
that, in an overloaded system, samples accumulate at operator or sink input queues
(increasing latency) and are eventually dropped when the corresponding buffers fill.

Let us illustrate the basic intuition upon which our approach is based in a minimal
application scenario. Consider the application in Fig. 6: it consists of two operators
connected in a very simple pipeline; the first operator (O1) processes data from a
single data source (not reported in the figure for the sake of simplicity) and forwards
its output to O2, which, in turn, sends the results of its computations to an external data
sink (also not depicted in the figure). The selectivity of both operators is 1, meaning
that for every received input sample they produce one output sample; moreover, it
takes 100 ms for both operators to process an incoming sample, considering the
CPU architecture of the hosts where the application is going to be deployed. The
single data source can produce samples at two different rates, “Low” and “High”:
the “Low” rate is 4 samples per second and is active on average for 80 % of the time
(0.8 probability), while the “High” rate is 8 samples per second and is active in the
remaining time intervals (0.2 probability).

The application is replicated and deployed on two servers, each hosting a copy
of each operator, as shown in Fig. 7a. It is straightforward to see that, when the
input configuration is “Low”, 80 % of the CPU time available at both hosts will be

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1069

a b

Fig. 7 a Replicated deployment of the application of Fig. 6 on two hosts. b Dynamic deactivation
of replicas by LAAR during a “High” input configuration

occupied for processing samples. More importantly, when the input configuration is
“High”, the application would need 160 % of the total CPU time available, which—of
course—is available only by adding extra resources to the deployment environment
(with an increased cost).

The basic idea behind LAAR is to monitor the data sources and, according to the
current data rates, dynamically deactivate replicas in order to release the resources
necessary to face load variations. Figure 7b, for example, shows how LAAR could
deactivate replicas of O1 and O2 during a load peak, so that the total CPU available
will become enough to handle the new load.

Figure 8a and b show this behavior in a real stream processing deployment. We im-
plemented and executed the replicated pipeline stream processing application shown
in Fig. 7a on a deployment environment consisting of two servers equipped with a
single core CPU. Figure 8a shows the execution of the application using static active
replication: when the input passes to the “High” configuration (around 50 s from the
beginning of the experiment), the CPU of the two hosts saturates, and the output is
not able to keep up with the input rate; on the contrary, Figure 8b shows how, by
temporarily deactivating replicas during the “High” input configuration, it is possible
to save enough resources to allow the output stream to follow the input.

Obviously, if a failure of one of the active operators occurred during a “High”
period, part of the input would not be processed as expected. However, the unique
and strong aspect of LAAR is its ability to quantify a-priori these effects on the
overall application reliability. As anticipated, LAAR defines the concept of internal
completeness, a metric that tries to capture the amount of samples that are guaranteed
to be processed in a pessimistic failure scenario, i.e., a scenario where all the active
operator replicas fail. Without digging into formal details, the Internal Completeness
metric (IC) is defined as follows:

IC(s) = no. of samples processed in a pessimistic failure scenario P

no. of samples processed with no failures
(1)

1070 P. Bellavista et al.

a b

Fig. 8 a CPU time used by the two couples of replicated operators—top—and corresponding input
and output rate—bottom. b CPU time and input/output data rate when O1 replica 1 and O2 replica
0 are deactivated by LAAR

where s represents a particular replica activation strategy, which associates the
activation/deactivation status of application operators to each possible input rates
configuration. For instance, in the example scenario presented above, during a pe-
riod of T seconds and in absence of any failure, the application would process a
total of T (0.8 · 8 + 0.2 · 16) samples (considering both operators). On the contrary,
considering a very pessimistic failure scenario P, where the active replica of each
operator (respectively O1, 1 and O2, 2) is crashed all the time, the total number of
samples processed would be T (0.8 · 8 + 0), for a total IC value of 6.4

9.6 = 0.6. This
means that, even in case of failures, at least 60 % of the total processing operations
would be correctly performed.

However, finding a replica activation strategy that, at the same time, is able to
keep the system in a non-overloaded condition despite load variations and to satisfy
a user-defined IC requirement while keeping costs limited, is a very hard problem,
especially when the processing graphs are much more complex than the one presented
before. In order to solve this problem, LAAR performs a static optimization phase
where the problem is modeled as a Mixed Integer Programming (MIP) instance.
Although a precise formal description of the problem model is out of the scope of
this chapter, in the following we sketch its formulation, in order to help the readers
understand the main ideas behind the approach.

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1071

minimize
s

cost (s) (2)

subject to:

IC(s) ≥ SLA Constr. (3)

load(h, s, c) < Thres. ∀ server h and input conf. c (4)

nreplicas(o, s, c) ≤ 1 ∀ operator o and input conf. c (5)

In the equations above, the cost function in the minimization term represents the cost,
in terms of resources (e.g., CPU, memory, and bandwidth), for a service provider
to run the application during a billing period of length T using replica activation
strategy s. Equation 3 constraints IC to satisfy the value required in the application
SLA, while Eq. 4 states that each host in the deployment should never be overloaded.
Thres. is a constant expressing the number of CPU cycles per second available at the
deployment servers. The last constraint, expressed in Eq. 5, requires that there is at
least one active replica of every operator in every input configuration, to ensure that
the measured IC value is always one in absence of failures.

To have a rough idea of the complexity of the above problem, consider that the
solution space has a size that is exponential in the number of operators, number of
replicas per operator, and number of possible input configurations. In addition, the
computation of IC values, resource usage, and server load levels require exponential
time with respect to the number of operators, since they depend on the number of
samples processed by different operators in different configurations, which in turn
recursively depend on the number of samples processed by their predecessors. To
deal with this complexity, LAAR solves the problem using an original constraint
programming based algorithm, called FT-Search, that is able to find optimal or sub-
optimal solutions to problem instances of reasonable size (i.e., graphs with tens of
operators) in limited time, largely compatible with practical industrial data center
constraints and application-specific requirements.

After having found solutions to the above optimization problem before appli-
cation deployment time, LAAR performs its dynamic replica activation operations
at runtime by inserting a special operator in the application graph, which continu-
ously monitors the input rates and, according to the measured values, sends ad-hoc
activation/deactivation commands to operator replicas.

If compared to active replication techniques, LAAR is able to handle load spikes
by completely avoiding increased latency or sample drops due to full operator buffers.
Moreover, by using weaker fault tolerance specifications through the IC metric, it can
also reduce the cost of running stream processing applications proportionally to the
required fault-tolerance guarantees. A large corpus of experiments, performed on a
LAAR implementation built on top of IBM InfoSphere Streams and executed on a 60
cores IBM BladeCenter Cluster deployment, confirms the above claims. In particular,
we have executed 100 different artificially generated stream processing applications
using four different fault tolerance techniques. A No Replication (NR) approach
runs the streaming applications without instantiating any operator replica. A Static
Replication (SR) approach creates two replicas for each operator and keeps them

1072 P. Bellavista et al.

Fig. 9 Comparison of the
different replication
strategies; average values
normalized w.r.t. SR

active all the time, independently on the input configuration. The LAAR replication
approach uses the previously described techniques to run the streaming applications
with three different IC requirements, 0.5, 0.6, and 0.7 (labelled L.5, L.6 and L.7,
respectively). Finally, a greedy (GRD) approach uses techniques similar to those
adopted by LAAR, but instead of deactivating replicas according to the results of a
static optimization phase, it uses a simple runtime heuristic (i.e., it deactivates the
most resource greedy component first).

Figure 9 shows a concise summary of the results collected in these experiments,
by showing the average numbers of samples dropped, the average IC value achieved,
and the average cost of different replication strategies as a fraction of the same values
measured using the SR approach. It is immediate to see that, by using LAAR, it is
possible to control the desired IC guarantees to directly influence the associated
deployment cost, which is considered highly valuable and relevant in many business
application scenarios.

7 Conclusions

The interest around the Smart City paradigm has been growing at an increasing
pace in the last years and it is very likely that, thanks to the technical advances in
computing devices and wireless, mobile, and wearable sensing, it will continue to
grow in the next years. The efficient and effective exploitation of the unprecedented
amounts of real-world data generated and injected every day inside IT infrastructures
is a crucial step toward a real improvement in people’s quality of life through smart
computing technologies. In this context, DSPSs are a key technology for their ability
to analyze information “on-the-fly” and produce continuous feedback that can be
exploited to adapt real-world processes to their dynamically varying conditions.
The tremendous heterogeneity of data and applications, together with their often
unpredictable dynamic requirements, pose additional challenges for these systems.
Developers of stream processing applications should be allowed to express, in a
flexible way, the QoS requirements of their application scenarios, and DSPSs should

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1073

understand these requirements and automatically adapt their internal mechanisms
to meet them in a way that is as much transparent as possible to the streaming
applications and their logic. However, only a few modern DSPSs expose QoS-based
customization features, and, in most cases, their are not first-class elements in all
the three abstract, development, and runtime models, oppositely from the role we
believe they should have. At the best of our knowledge, Quasit represents the most
prominent exception, by allowing to express and enforce a large variety of QoS
policies at each of the three levels.

We claim that future research on DSPSs should focus on QoS-related open issues
with much stronger attention. In particular, it should: (i) improve the existing stream
processing models to give application developers the opportunity to integrate rich
QoS requirements in their applications; (ii) study efficient mechanisms to implement
QoS policies on large scale deployments of DSPSs inside data centers. About this last
point, a particularly promising research direction is the development of a novel class
of weak or probabilistic QoS requirements that, in contrast with more traditional
strong requirements, give runtime platforms additional degrees of freedom in their
enforcement and more possibilities to adapt to highly variable system workloads. We
believe (and the first preliminary results already collected are confirming our claim)
that the internal completeness reliability metric adopted in the LAAR replication
technique well represents this new class of QoS requirements for stream processing
applications.

Acknowledgements We would like to thank the IBM Research Dublin Lab, and in particular
Spyros Kotoulas, for his valuable work and feedback on LAAR (overviewed in Sect. 6), designed
and implemented within a joint research collaboration.

References

1. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M.,
Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data stream management. The
VLDB Journal, 12, 2, pp. 120–139 (2003).

2. Abadi, D.J., Ahmad,Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.-H., Lindner,
W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The Design of the
Borealis Stream Processing Engine.Proceedings of the 2nd Biennial Conference on Innovative
Data Systems Research (CIDR). IEEE, Asilomar, CA (2005).

3. Agha, G. A.: Actors: a model of concurrent computation in distributed systems, Ph.D.
dissertation, Artificial Intelligence Laboratory, Cambridge MA, USA (1985).

4. Amini, L., Andrade, H., Bhagwan, R., Frank Eskesen and Richard King and Yoonho Park and
Chitra Venkatramani: SPC: A distributed, scalable platform for data mining. Proceedings of
the Workshop on Data Mining Standards, Services and Platforms (DM-SS 2006). pp. 27–37.
ACM, Philadelphia, PA (2006).

5. Apache S4 Project Web Site. Available, http://incubator.apache.org/s4. Last visited in
September 2013.

6. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Ito, K., Motwani, R., Srivastava, U., and
Widom, J.: STREAM : The Stanford Data Stream Management System, Technical report,
Stanford InfoLab (2004).

1074 P. Bellavista et al.

7. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations
and query execution. The VLDB Journal. 15, 2, pp. 121–142 (2005).

8. Avnur, R., Hellerstein, and J.M.: Eddies: continuosly adaptive query processing. Proceedings
of the ACM SIGMOD international conference on Management of data (SIDMOD 2000).
pp. 261–272. ACM, Dallas, TX, USA (2000).

9. Balazinska, M., Balakrishnan, H., Madden, S.R., Stonebraker, M.: Fault-tolerance in the
borealis distributed stream processing system. ACM Trans. Database Syst. 33, 1, Article 3, 44
pages (2008).

10. Bellavista, P., Corradi, A., Reale, A.: The QUASIT Model and Framework for Scalable Data
Stream Processing with Quality of Service. Proceedings of the 5th International Conference
on Mobile Wireless Middleware, Operating Systems, and Applications (MOBILWARE 2012).
Springer Berlin-Heidelberg, Berlin, Germany (2012).

11. Bellavista. P., Corradi, A., Reale, A.: Design and Implementation of a Scalable and QoS-aware
Stream Processing Framework: the Quasit Prototype. Proceedings of the IEEE International
Conference on Cyber, Physical and Social Computing (CPSCOM 2012). IEEE, Besançon,
France (2012).

12. Bellavista. P., Corradi, A., Kotoulas, S., Reale, A.: Dynamic datacenter resource provisioning
for high-performacne distributed stream processing with adaptive fault-tolerance. Proceedings
of the 14thACM/IFIP/USENIX International Middleware Conference—Demo & Poster Track,
ACM, Beijing, China (2013).

13. Bellavista. P., Corradi,A., Kotoulas, S., Reale,A.:Adaptive fault-tolerance for dynamic resouce
provisioning in distributed stream processing systems. Proceedings of the 17th International
Conference on Extending Database Technology (EDBT 2014), ACM, Athens, Greece (2014).
To appear.

14. Brito, A., Fetzerm C., Felber, P.: Multithreading-enabled active replication for event stream
processing operators. In: 28th Symposium on Reliable Distributed Systems, pp. 22–31, IEEE,
Niagara Falls, NY, USA (2009).

15. Cai, Z., Kumar, V., Cooper, B.F., Eisenhauer, G., Schwan, K., Strom, R.E.: Utility-
driven proactive management of availability in enterprise-scale information flows. In:
ACM/IFIP/USENIX 7h International Middleware Conference, Springer, Melbourne, Australia
(2006).

16. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker,
M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data management applications.
Proceedings of the 28th international conference on Very Large Data Bases (VLDB 2002). The
VLDB Endowment, Hong Kong, PRC (2002).

17. Chandrasekaran, S., Shah, M.A., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein,
J.M., Hong, W., Krishnamurthy, S., Madden, S.R., Reiss, F.: TelegraphCQ. Proceedings of the
ACM SIGMOD international conference on on Management of data (SIGMOD 2003). pp. 668.
ACM, San Diego, CA, USA (2003).

18. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.: MapRe-
duce Online. Proceedings of the 7th USENIX conference on Networked systems design and
implementation (NSDI 2010). USENIX Association, San Jose, CA, USA (2010).

19. Cugola, G., Margara, A.: Processing flows of information: From Data Stream to Complex
Event Processing. ACM Comput. Surv.. 44, 3, pp. 1–62 (2012).

20. Dean, J., Ghemawat, S.: MapReduce : Simplified Data Processing on Large Clusters. Commun.
ACM, vol. 51, no. 1, pp. 107–113 (2008).

21. Digital Cities Project Web Site. Available, http://www.digital-cities.eu. Last visited in
September 2013.

22. Djahel, S., Salehie, M., Tal, I., Jamshidi, P.: Adaptive Traffic Management for Secure and Effi-
cient Emergency Services in Smart Cities. Proceedings of the IEEE International Conference
on Pervasive Computing and Communicatino (PerCom 2013)—WiP Session. pp. 340–343,
IEEE, San Diego, CA, USA (2013).

23. EUROCITIES Web Site. Available, http://www.eurocities.eu/. Last visited in September 2013.

Quality-of-Service in Data Center Stream Processing for Smart City Applications 1075

24. Gedik, B., Andrade, H.: A model-based framework for building extensible, high performance
stream processing middleware and programming language for IBM InfoSphere Streams. Softw.
Pract. Exper. 42, 11, 1363–1391 (2012).

25. Gedik, B., Andrade, H., Wu, K.-L.: A code generation approach to optimizing high-
performance distributed data stream processing. Proceeding of the 18th ACM conference on
Information and knowledge management (CIKM 2009). p. 847, ACM, Hong Kong, PRC
(2009).

26. Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanovic, P., Meijers, M.:
Smart cities – Ranking of European medium-sized cities. Vienna UT, Centre of Regional
Science (2007) Available, http://www.smart-cities.eu/download/smart_cities_final_report.pdf.
Last visited in September 2013.

27. Haller, P. and Odersky, M.: Scala Actors: Unifying thread-based and event-based program-
ming. Theoretical Computer Science, vol. 410, no. 2–3, pp. 202–220 (2009).

28. Hwang, J.-H., Balazinska, M., Rasin, A., Çetintemel, U., Stonebraker, M., Zdonik, S.: High-
availability algorithms for distributed stream processing. In: 21st International Conference on
Data Engineering, pp. 779–790, IEEE, Tokyo, Japan (2005).

29. IBM Smarter Cities Project Web Site. Available, http://www.ibm.com/smarterplanet/us/en/
smarter_cities/. Last visited in September 2013.

30. Intel Collaborative Research Institute for Sustainable Connected Cities. Available,
http://www.intel-university-collaboration.net/?page_id=1420. Last visited in September 2013.

31. Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D.: Dryad: distributed data-parallel pro-
grams from sequential building blocks. In: 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems, vol. 41, no. 3, p. 59–72, ACM New York, NY, USA (2007).

32. Jacques-Silva, G., Gedik, B., Andreade, H., Wu, K.-L.: Language level checkpointing support
for stream processing applications. In: 2009 International Conference on Dependable Systems
& Networks, pp. 145–154, IEEE, Estoril, Portugal (2009)

33. Khandekar, R., Hildrum, K., Parekh, S., Rajan, D., Wolf, J.: COLA : Optimizing Stream
Processing Applications Via Graph Partitioning. Proceedings of the ACM/IFIP/USENIX
10th International Middeware Conference. pp. 308–327, Springer Berlin Heidelberg, Urbana
Champagin, IL, USA (2009).

34. Martinez, F., Toh, C.-K., Cano, J., Calafate, C., Manzoni, P.: Emergency Services in Fu-
ture Intelligent Transportation Systems Based on Vehicular Communication Networks. IEEE
Intelligent Transportation Systems Magazine 2,2, pp. 6–20 (2010).

35. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed Stream Computing Platform.
In: 2010 IEEE International Conference on Data Mining Workshops (ICDMW ’10), pp. 170–
177, IEEE Los Alamitos, USA (2010).

36. OMG: Data Distribution Service for Real-time Systems – Version 1.2, Specification. Object
Management Group (2007).

37. Pardo-Castellote, G.: OMG data-distribution service: Architectural overview. Proceedings of
the 23rd International Conference on Distributed Computing SystemsWorkshops, pp. 200–206.
IEEE, Providence, RI, USA (2003).

38. Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D.: SODA : An Optimizing
Scheduler for Large-Scale Stream-Based Distributed Computer Systems. Proceedings of the
ACM/IFIP/USENIX 9th International Middleware Conference. pp. 306–325. Springer Berlin
Heidelberg, Leuven, Belgium (2008).

39. Xing, Y., Zdonik, S., Hwang, J.-H.: Dynamic Load Distribution in the Borealis Stream Pro-
cessor. Proceedings of the 21st International Conference on Data Engineering (ICDE 2005).
pp. 791–802. IEEE, Tokyo, Japan (2005).

40. Xing, Y., Hwang, J.-H., Zdonik, S.: Providing Resiliency to Load Variations in Distributed
Stream Processing. Proceedings of the 32nd international conference on Very large data bases
(VLDB 2006). pp. 775–786. The VLDB Endowment, Seoul, Korea (2006).

41. Safe City Project Web Site. Available, http://www.safecity-project.eu/. Last visited in
September 2013.

http://www.ibm.com/smarterplanet/us/en/smarter_cities/
http://www.ibm.com/smarterplanet/us/en/smarter_cities/

1076 P. Bellavista et al.

42. Smart Cities Stakeholder Platform. Available, http://www.eu-smartcities.eu/. Last visited in
September 2013.

43. Shah, M., Hellerstein, J., Brewer, E.: Highly available, fault-tolerant parallel dataflows. In:
ACM International Conference on Management of Data, pp. 827–838, ACM, Paris, France
(2004).

44. The Storm Project Web Site. Available, http://storm-project.net/. Last visited in September
2013.

45. Tang, P., Venables, T.: “Smart” homes and telecare for independent living. J. Telemed. Telecare.
6, 1, pp. 8–14 (2000).

46. Yang, H.-c., Dasdan, A., Hsiao, R., Parker, D.: Map-reduce-merge: simplified relational data
processing on large clusters. In: Proceedings of the ACM SIGMOD international conference
on Management of data (SIGMOD 2007). pp. 1029–1040, Beijing, PRC (2007).

47. Zhang, Z., Gu, Y., Ye, F., Yang, H., Kim, M., Lei, H., Liu, Z.: A hybrid approach to high avail-
ability in stream processing systems. In: 30th IEEE International Conference on Distributed
Computing Systems, pp. 138–148, Genoa, Italy (2010).

Opportunistic Databank: A context Aware
on-the-fly Data Center for Mobile Networks

Osman Khalid, Samee U. Khan, Sajjad A. Madani, Khizar Hayat,
Lizhe Wang, Dan Chen and Rajiv Ranjan

1 Introduction

In recent years, significant advancement in the wireless communication technolo-
gies, such as Bluetooth, 802.11/WiFi, and ZigBee, has been seen in mobile ad hoc
networks (MANETs). Such technologies enable mobile devices to form on-the-fly
data centers where nodes opportunistically participate in data storage and sharing
applications [3, 8, 11]. In such a setup, the basic assumption is that there must exist an

O. Khalid (�) · Samee U. Khan
Department of Computer Sciences,
COMSATS Institute of Information Technology, Abbottabad, Pakistan, University Road,
COMSATS, Abbottabad
e-mail: osman@ciit.net.pk

Samee U. Khan
e-mail: samee.khan@ndsu.edu

Sajjad A. Madani
COMSATS Institute of Information Technology, Islamabad, Pakistan
e-mail: madani@ciit.net.pk

K. Hayat
Computer Sciences Section, University of Nizwa, Birkat Al Mawz, Oman
e-mail: khizar.hayat@unizwa.edu.om

L. Wang
Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing, China
e-mail: lzwang@ceode.ac.cn

D. Chen
School of Computer Science, China University of Geosciences, Wuhan, China
e-mail: dan.chen@ieee.org

R. Ranjan
Computer and Information Technology Building, Australian National University, Canberra,
Australia
e-mail: raj.ranjan@csiro.au

© Springer Science+Business Media New York 2015 1077
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_36

1078 O. Khalid et al.

end-to-end communication path between a source and a destination node [8, 11, 19].
Every mobile host acts as a router and communicates with other mobile hosts. Even
if source and destination mobile hosts are not in each other’s communication range,
data is still forwarded to the destination mobile host by relaying transmission through
other mobile hosts that exist between the source and the destination nodes. The
scenarios when there are frequent disruptions and delays in message transfer due
to network partitioning, higher degree of variation in network topology, and spar-
sity of nodes, such network environments are known as Delay Tolerant Networks
(DTNs) [2, 12]. The DTNs lack end-to-end communication paths between source
and destination nodes. Numerous DTN scenarios that correspond to opportunistic
data storage/sharing applications include [3, 34]: (a) disaster/emergency response
systems, (b) battlefield networks, (c) sensor networks, (d) road traffic information
dissemination systems, (e) content dissemination systems, and (f) cellular traffic data
offloading [27]. In the aforementioned scenarios, the cellular 3G infrastructure may
usually be unavailable, or if available, provide too limited bandwidth to transmit data
traffic. Instead, mobile users rely on their opportunistic contacts for storing, sharing,
and accessing data. For instance, nodes may participate in forming an on-the-fly
network to store information extracted from sensors, which may be the information
regarding live weather data, road traffic condition, or about any upcoming disaster.

Wireless radio range variations, limited energy resources, sparsity of mobile
nodes, continuous mobility, and noise, to name a few, are the reasons due to which
DTNs suffer from frequent disconnections. This phenomenon is undesirable when
mobile hosts are accessing data from each other. As it is not possible to control ran-
domly occurring network disconnections, an alternative solution to this problem is
to replicate multiple copies of data onto various mobile hosts so that when discon-
nections/disruptions occur, mobile hosts can still access data [13, 15]. Replication
process distributes additional copies of primary data items into the network in order
to increase accessibility and decrease communication costs. In the past few years,
data replication has been studied extensively for both the MANETs and DTNs envi-
ronments [2, 8, 11, 12, 13, 23, 28, 30, 33]. Figures 1a and 1b illustrate the replication
scenario in MANETs. If the central link between nodes C and E fails, then the set of
mobile hosts E, F, and D will not be able to access the data item M1. Similarly, the
data itemM2 will be inaccessible by the nodes A, B, and C. To cope with the problem
of data inaccessibility due to network division, one possible solution is to create
replicas of original messages M1 and M2, and place these replicas at the opposite
sides of the ad hoc network. In this way, every mobile host can access both data items
even after the network division, as indicated in Fig. 1b. Due to the existence of end-
to-end communication paths, the aforementioned mechanism of proactively placing
replicas on nodes before the link failures is possible only in the case of MANETs.
However, replica placement exhibits more complexity when the network is sparse
with no end-to-end communication paths among nodes, as in the case of DTNs.

Figure 2 illustrates an example scenario of replica allocation in DTNs. For the
sake of simplicity, we consider allocation of a single message M1 from node A to
node D. At a reference time T1, node A is not in the communication range of node
D. On making contact with nodes B and C, suppose the node A is not sure which of
the two nodes B and C will make contact with node D in future. Therefore, node A

Opportunistic Databank 1079

M1 M2
M1

M2

Link failure
M2’ M1’

a b

Fig. 1 Replication example in MANETs: a network division and data access, and b effective data
replication for continued data access

A D A D A

D
M1

M1’

M1’ M1’ M1’

M1’

M1’

M1

M1

T1 T2 T3

M1’
M1’ M1’

Fig. 2 Replication example in DTNs. Data is replicated from node to node during opportunistic
contacts at time slots T1, T2, and T3, without any global knowledge of network topology

places a replica of M1 on both the mobile nodes B and C. During time T2, only the
node C makes contact with another node, and replicatesM1 on node F. Finally, node
F transfers replica on node D on making contact at time slot T3.

It is evident from the given example that replica placement in DTNs is dependent
on the occurrence of opportunistic contacts among mobile nodes. Therefore, the
main difference in data replication between MANETs and DTNs is the absence of
any centralized mechanism and/or global knowledge of network for DTNs. More-
over, in any of MANET/DTN network, the decision of where to place replica must
trade off the cost of accessing data that is reduced by additional copies with the cost
of storing and updating the replicas [8, 13]. These costs have severe implications
in ad hoc network environments because mobile hosts have limited resources (en-
ergy, storage, and processing power). Therefore, efficient and effective replication
schemes strongly depend on how many replicas to be placed in the system, and more
importantly where [13].

In this chapter, our primary focus is to address the data replication in DTNs.
Despite different natures of DTNs and MANETs, the data replication strategies in
both types of networks share some commonalities. Therefore, we also perform a
selective study of the data replication schemes in MANETs. The rest of the chapter
is organized as follows. We give a brief overview of some of the well known strategies

1080 O. Khalid et al.

for replica placement in MANETs in Sect. 2. In Sect. 3, we address the data replication
problem in DTNs, and present a cost efficient solution for DTN replica placement.
Sect. 4 concludes the chapter.

2 Data Replication in Manets—A Brief Overview

In MANETs, it is very important issue to prevent deterioration of data accessibility
at the point of network division. In general, mobile hosts would experience reduced
access latencies provided that data is replicated within their close proximity. How-
ever, such replication is practically useful in cases when data updates are not the main
focus. If updates of the contents are also considered, then the locations of the replicas
have to be: (a) in close proximity to the mobile hosts, and (b) in close proximity to
the primary copy (assuming a “master” replication environment [13, 25]).

Some initial work on ad hoc network data replication was performed by Hara [5].
The author discussed various mechanisms of replica placement during a relocation
period. The relocation period was a time interval during which each mobile node
broadcasts its host identifier as well as information about access frequencies to its
data items [5]. Based on the broadcasted information, the author [5] proposed three
schemes for replica placement: (a) Static Access Frequency (SAF), (b) Dynamic
Access Frequency and Neighborhood (DAFN), and (c) Dynamic Connectivity based
Grouping (DCG). In the SAF method, only the access frequency to each data item is
taken into account. During relocation period, access frequencies to all data items in
the network are computed, and each mobile host allocates data items in descending
order of access frequencies. The drawback of such approach is that same data item
might be allocated on two neighbor nodes, which may also reduce data diversity
and accessibility in the network. Alternatively, the DAFN method not only takes
into account the data item access frequency, but also considers the replica status on
neighbor nodes. The first phase of DAFN is similar to SAF. In the second phase,
the system sequentially starts with the node with smallest identifier, and replaces
data item of a neighbor node, which is not the primary owner of the data. The data
item is replaced with the one having next higher global access frequency in the
network. If both the nodes are not primary owner of the data item, then the host
whose access frequency to the data item is lower than the other host, changes the
replica with another next highly accessed replica. Compared to the SAF method,
the DAFN approach enhances data diversity in the network. However, the DAFN
method does not completely eliminate replica duplication among neighboring hosts.
This is because, the DAFN method only executes the replica elimination process
by scanning the network once based on the breadth first search. In contrast to SAF
and DAFN, the DCG method creates groups of nodes in the network in the form of
bi-connected graph components. The grouping is performed based on nodes’ degree
of network connectivity. The access frequencies to data items are calculated at group
level by summing up access frequencies of individual nodes in the group. Beginning
with the smallest host identifier within a group, replicas are allocated to nodes in the

Opportunistic Databank 1081

descending order of access frequencies. During replica allocation, it is ensured that
not two neighbors are allocated same replica, similar to what implemented in SAF and
DAFN. Because DCG method involves heavy computations and control signaling,
this method takes the largest time among the three methods to relocate replicas.
Large processing time leads to even more problems if network topology changes
during replica relocation period. Moreover, the above methods do not incorporate
mechanisms for replica updates. The author [5] broadened his work in [6] and [7]
by incorporating various network connectivity related issues. Although the above-
mentioned works are plausible in the sense that they advance the study of replica
allocation in MANETs, none involves reasoning via a concrete mathematical model.

Khan et al. in their celebrated work have rigorously addressed replica allocation
problem in distributed systems [13–26, 31, 32]. Specifically, in [13, 25], Khan et al
pioneered in applying game theory to ad hoc network replica allocation problem
(ADRP). In [13], the authors proposed a novel scheme that seeks to strategically
balance energy, bandwidth, and storage space through a cooperative game-theory
approach for replication in a mobile environment. In the presented work [13], the
authors: (a) derived a mathematical problem formulation for ADRP, (b) proposed
an optimization technique that allocates replicas so as to minimize the network traf-
fic under storage constraints with “read from the nearest” and “push based update
through the primary mobile server” policies, and (c) used a strict consistency model
as opposed to an opportunistic consistency model. The authors addressed selfish be-
havior of mobile servers in the proposed solution. In ad hoc networks, resources may
belong to different self-interested servers. These servers may manipulate the resource
(replica) allocation mechanism for their own benefit by misrepresenting their prefer-
ences, which may result in severe performance degradation. The proposed technique
involved players (mobile hosts) that compete through bids in a non-cooperative en-
vironment to replicate data objects that are beneficial to themselves and the system
as a whole. It is always possible that the players in order to satisfy local queries,
replicate data objects that are not beneficial to the system as a whole in terms of
saving communication cost (although it may be productive from the players’ point
of view). To counter such negative notions, a referring body was introduced (termed
as the mechanism). The aim of the mechanism was to direct the competition in such
a fashion that a global optimal was achieved even though the agents are competing
against one another. Moreover, the basic objective of the proposed work was to make
the system robust against incorrect dissemination of information by the players. To
cater for the possibility of collusive behavior of the players, the scheme used the
Vickrey payment protocol [4] that leaves the players with no option other than to bid
in such a fashion that is beneficial to the system as a whole. The goal of a player
is to maximize its profit, which is payment minus cost. The goal of the mechanism
is to minimize the total data item transfer cost in the network due to the read and
update accesses. In Mosaic-Net [13], the authors used side payments to encourage
players to tell the truth. The authors [13] proved that the ADRP problem in general
is NP-complete and also identified some useful properties of the proposed scheme
and the necessary conditions of optimality.

1082 O. Khalid et al.

Hirsch et al. [8] proposed a game-theory based model for ADRP, where all nodes
were assumed to be cooperative. The authors applied ideas from Volunteer’s dilemma
[1, 29] in area of game theory. Under the Volunteer’s dilemma approach, a node
volunteers to store replicas that will incur some cost to the node in terms of its
resources, but in return will benefit the resource conservation and lifespan of the
whole network. The proposed approach performed volunteer nodes’ selection for
replica assignment in such a manner that a global utility function defining the network
cost is optimized. In the proposed algorithm, named as Cooperative Altruistic Data
Replication (CADR), the net global benefit (NGB) is calculated for each node on the
return path of requested replica, where NGB depends on two parameters: (a) global
savings (GS) and (b) global cost (GC). The GS is the global network savings when
the node makes a local replica of data item to minimize traffic through read requests.
The GC is the cost incurred when data item is updated, or displaced from primary
node to other node when primary node is low on resources. The CADR algorithm
proceeds as illustrated in the following. On return path of a requested replica k,
each node i calculates NGB as NGBki = GSki − GCki , and stores NGBki into a
matrix appended in the header of response replica. When replica is received by the
requesting node r the node computesNGBkr . Then, ifNGBkr > NGB

k
i , ∀i, then the

node r stores a copy of data item in its buffer. Otherwise, replica is placed on a node
i on the request/response path, such that NGBkr > NGB

k
i , ∀j.

It is noteworthy from the above described techniques addressing ADRP that most
of the approaches utilize a common assumption of availability of global network
knowledge. Such global network knowledge constitutes the following information:
(a) number of replicas of original data items, (b) the identifiers of nodes having
original and copies of data items, (c) frequency of access of each replica, and (d)
frequency of contacts among various nodes. However, it is formally proved by Khan
et al. [13] that despite the availability of global information, the varying dynamics of
network topology in MANETs make replica allocation problem NP hard. The things
get further complicated in DTNs, due to lack of global network state information,
as well as scarcity of end-to-end communication paths. In the following section we
address the replica allocation challenges in DTNs and propose our solution to the
problem.

3 Data Replication in DTNs

DTNs are resource-constrained networks in terms of transfer bandwidth, energy, and
storage. Formally, the data replication problem in DTNs can be stated as: “How to
perform data replication during an opportunistic contact, such that, it contributes to
overall improvement of network performance parameters, such as communication
cost, delivery ratio, and delay?” It is quite challenging to find a precise answer to this
question as data replication in DTNs is affected by numerous overlapping factors,
such as: (a) data item size, (b) data item life-time, (c) buffer size, (d) bandwidth,
(e) transmission range, (f) interference, (g) node speed, (h) node energy, (i) mobility

Opportunistic Databank 1083

pattern, (j) node’s sleep intervals, (k) contacts frequency, (l) contact duration, (m)
inter contact times, and (n) network size. Due to inherent uncertainty about network
conditions, the multiple copies of data item needs to be replicated at different lo-
cations to ensure data accessibility. The difficulty in coordinating multiple replica
nodes makes it hard to optimize the tradeoff between data accessibility, transmission
delay, and network overhead. Generally, the following are the challenges faced by
data replication approaches in DTNs, as discussed in various literatures [3, 11, 34]:

1. In a highly disruptive network, it is challenging to propagate link state informa-
tion due to the link delays/interruptions during transit. Moreover, the link state
information may be inconsistent and stale, as after the disruption is over, the next
hop reached may not be the same as the one before the disruption occurred.

2. Unlike MANETs, it is difficult to propagate topology information in DTNs due
to frequent disconnections, and latencies in message propagations. The topology
information may become outdated, as the information varies with a higher degree
topology variation in DTNs.

3. In DTN scenarios, where nodes have low duty cycling to conserve battery powers,
the topology information may not be able to reach the nodes that are in sleep state.
As long as nodes stay in sleep state or power off mode, they are unaware of the
recent changes in the network, such as creation and removal of spatiotemporal
routes among sources and destinations.

4. One of the major challenges faced by DTN data replication is the update of
replicas. A replication scheme may allocate greater life times to replicas so as to
increase the availability and propagation time of replicas. However, the primary
data item might be updated in the meantime. Because the communication is based
on opportunistic contacts, many nodes might be left with outdated information.

5. Due to sparsity of nodes, it is also difficult to derive global utility of placing a
replica over a node. Therefore, in some cases there might be too many replicas
in the network, and in other cases replicas are not in sufficient numbers to satisfy
nodes. To achieve optimality in replica placement, every node might need to store
a lot of network state information. This will cause overload on buffer, as well as
on processor for performing heavy computations during nodes’ contacts.

To address the aforementioned challenges, in the next subsection we present our
replica placement scheme for DTNs. The proposed scheme intends to perform replica
placement in a way that not only restricts the number of replicas in the network, but
also improves the average delivery probability of replicas to the requesting nodes.
We compare our scheme with the selected replica placement approaches in DTNs,
and test the proposed model on real-world and as well as synthetic trace datasets.

3.1 System Model

We consider a DTN of a set of N mobile nodes. As indicated in Fig. 3, we divide
the network nodes (represented by filled circles) into three types: (a) producers, (b)

1084 O. Khalid et al.

Producers Consumers Relays

Sensor Network Bus Pedestrian

Access Point

Fig. 3 An example of heterogeneous DTN network

Table 1 Notations and their meanings

Notation Meaning

mk Message k

T kL Life time of kth

T kw Time the kth message spent waiting in buffers

T kt Message transmission time

Xk Random variable indicating the additional time that kth message
might wait before delivery

τ Time when a node makes contact with another node

Z
j

i (τ) Mean inter-contact time between node i and j computed at time τ

consumers, and (c) relays. Producers hold the original data item, which may be a
measurement from a sensor network, or any piece of information generated by a
node, such as emergency information or weather information, etc. Consumers are
the information requesters, which are the nodes that act as sink for the information
item. A relay node holds replicas of data items on behalf of other nodes. The nodes
are able to change their roles in our particular network scenario. Moreover, when two
nodes make contact, both nodes make use of in-band control signaling to exchange
their locally maintained network state information. In the following, we elaborate
few assumptions we make for the proposed model. The most frequent notations used
in the chapter are shown in Table 1.

Each mobile node has a unique network identifier. The producer nodes gener-
ate the data items, with each data item having a unique identity. A data item can
have many replicas in the network. For simplicity, we assume the same meaning of

Opportunistic Databank 1085

‘message’ and ‘replica’. A producer can directly serve the consumer node on making
an opportunistic contact, or the replica can be relayed through relay nodes towards
consumers. When two nodes make contact, the sender node may retain the replica,
or delete it from its local buffer, after transferring it to the neighbor. Such decision
is based on probability measures that we illustrated in our model. Few relay nodes,
such as buses, may follow scheduled mobility patterns, while others, such as pedes-
trians may follow scheduled, as well as random mobility models. The nodes share
only a portion of their buffer capacity for the opportunistic data storage. Moreover,
during the opportunistic contacts, the mobility of nodes restricts the amount of data
transferred due to limited contact duration. Therefore, we formally state the replica-
tion problem in DTNs as “Given a limited duration opportunistic contact between
two nodes, what replicas must be selected for exchange between the nodes, so that
they contribute in the global optimization of network overhead and message delivery
percentage?”

As discussed earlier, in DTNs, nodes cannot maintain global network state. There-
fore, we assume that nodes exchange network information during the opportunistic
contacts. We denote the contact durations and inter-contact times between any
two nodes i and j as Cji and I

j

i , respectively. Each node is maintaining a 2-tuple
time-series information given as < C

j

i [t], I ji [t] >, where t = 1,2, 3, . . . ω. The
parameter ω is the index of last entry in the time-series data.

3.2 Hybrid Scheme for Message Replication (HSM) for DTNs

In this section, we present our scheme for message replication in DTNs. Suppose
a node i has a message mk that is requested by node d. At a time instant τ , the
node i makes contact with a relay node j. At this occasion, the node i has to decide
whether or not to replicate mk on node j (in a hope that node j , might carry forward
replica to node d). The node i will replicatemkon node j if and only if for the replica
mk , node j′s utility is greater than node i’s utility value. The aforementioned utility
value depends on: (a) the probability that a node will deliver message to destination
before the life time expiry of message, and (b) the probability that the node will stay
in contact with a message’s destination for a duration greater than time required to
transfer the message. If node j exhibits greater values of (a) and (b) as compared to
the node i, the replica will be transferred to node j , and subsequently node i will
delete the replica from its buffer. Otherwise, after transferring replica to node j , the
node i will retain its local copy of replica. The motivation behind this strategy is
to remove the excessive replicas from the network to conserve storage by placing
replicas on nodes that appear to be more central in the network.

Let T kw be the time the messagemk has spent waiting in buffers since its creation,
and T kL be the life time of message mk. We denote Xk to be a random variable
representing the additional time thatmk might wait before reaching destination. Then,
we define message’s utility as the probability that the message will be delivered to
the destination d before the life time expiry [2], given as Uk = P [T kW +Xk < T kL].

1086 O. Khalid et al.

This can also be represented as:

Uk = P [Xk < T kL − T kW]. (1)

In the above equation, we need to find the probability that additional wait time of
replica is less than its remaining life time. As the message is transferred only during
an opportunistic contact, the probability in Eq. (1) is same as the probability that the
node i will make a contact with node d , before the expiry of message. We call such
probability as utility value of node i for the current message:

Uki,d = P [Zdi (τ) < T kL − T kW]. (2)

In the above equation, Zdi (τ) is mean inter-contact time between nodes i and d
at time τ. The network nodes are cumulating their inter-contact time information
in the form of bounded time series data. Moreover, a few nodes (such as buses) are
following partially scheduled mobility patterns. Therefore, we can apply exponential
smoothing to forecast the value of inter-contact time between the node i and node d,
as given below:

Zdi (τ) = (1 − α)τ−1.s[τ] +
τ−1∑
k=0

α.(1 − α)τ−k−1.I di [k] (3)

In the above equation, the parameter 0 ≤ α ≤ 1 is time-series smoothing constant,
I di [k] is inter-contact time of node i with d at time instant k, s[τ] is the base value of
recursion, andZdi (τ) is the forecasted inter-contact time node i with d.As the mobile
devices are limited in memory and processing, we cannot store unlimited time-series
data of the past meetings. Therefore, we set a limit on the maximum number of
entries stored per node in the form of a sliding time window 1 ≤ t ≤ ω, where
the entry at τ = ω represents the latest meeting. The more recent entries within the
range [1,ω] must be given higher weightage than the others to ensure information
freshness. Therefore, we assign progressively decreasing weights to the older entries,
such that, as the entry becomes older it contributes less to the overall forecasting.
The base case value of recursion s[τ] computed at time instant τ is given as:

s[τ] = 1

n
.

n−1∑
j=0

I di [τ − j] (4)

The above equation is the simple moving average of latest n entries of the inter-contact
times I dt between i and d.

Let T kt be the time required to transfer a message mk when two nodes make
contact. Assuming that neighbour node has sufficient buffer space, the message
will be successfully transferred to neighbour if and only if the contact duration of
sender and receiving neighbour is greater than the required message transfer time T kt .
Therefore, we compute the utility V ki,d = P [T kt < C

d
i (τ)], indicating the probability

that the message will be transferred between node i and d in contact duration Cdi .

Opportunistic Databank 1087

, () < , (), () < , ()

, () < , ()

Forward to
and delete from i

Replicate on

Skip

Message buffer of
node Yes

No

Yes

No

Fig. 4 Flow chart of proposed replication scheme

To compute the aforementioned probability, we need to find the estimated value of
contact durations between nodes i and d. By replacing Cdi with I di in Eq. (3 and 4),
we get the forecasted value of contact duration Cdi (τ).

Figure 4 illustrates the flow of our replica placement scheme HSM. We call the
scheme as hybrid, as we are also considering the occasional presence of MANET
like environments in our network, when for example, the pedestrians stay closer to
each other for longer durations, or the nodes are communicating with road side base
stations. As reflected from Fig. 4, the procedure attempts to remove the redundant
copies of messages from nodes’ buffers, and attempts to allocate replicas on more
appropriate nodes in terms of contact durations and inter-contact times with the
destinations.

3.3 Empirical Setups and Results

In this section we present the performance analysis of the presented replication
scheme HRM. Simulations are performed with the Opportunistic Network Envi-
ronment (ONE) simulator [10] by using synthetic mobility model as well as real
connection traces of participants of the INFOCOM 2006 conference [9]. The syn-
thetic mobility model consists of several independent groups of mobile nodes
including pedestrians, buses, cars, and access points. Some mobile nodes, such
as pedestrians, follow random mobility patterns, whereas buses follow scheduled

1088 O. Khalid et al.

mobility patterns. The car nodes follow paths representing roads on map. The pa-
rameters considered for simulations are: (a) nodes’ range 50–100, (b) world size
4250 × 3900 m, (c) time per simulation run 12 h, (d) transmission range 20 m, (e)
message size 500KB–1 MB, (f) message time to live (TTL) 500 min, and (g) buffer
size 10–100 MB. The world size is taken large enough to ensure that nodes are far
enough to represent a DTN environment. The HRM scheme gives best performance
for values of a = 0.6,ω = 50, and n = 10 determined empirically under numerous
simulation runs. In the following subsection we discuss the performance metrics
considered for evaluation.

3.3.1 Performance Metrics

To evaluate the performance of the presented scheme, we consider the following
three performance metrics: (a) message delivery ratio, (b) latency, and (c) overhead.

• Message delivery ratio is the percentage of messages delivered successfully. The
maximization of message delivery ratio is the major goal of any DTN replication
scheme. Message delivery ratio is calculated as

Message Delivery Ratio = 1

M

M∑
k=1

Rk. (5)

In above equation, Rk = 1 if and only if message is delivered, otherwise Rk = 0.

• Message latency is the total time spent between message creation and delivery
to the destination. The average latencies of messages contribute to the overall
latency measure of replication scheme. A scheme must minimize latency but
without compromising message delivery ratio. The latency (in seconds) is given
by

Latency average = 1

N

N∑
k=1

Receive Timek − Creation Timek . (6)

• Overhead is the approximate measure of the consumption of bandwidth, energy,
and storage by a replication scheme due to message transmissions. We calculate
overhead as relative estimate of number of message transmissions:

Overhead = Total msgs relayed − Total msgs delivered

Total msgs delivered
. (7)

The overhead ratio indicates extra transmissions for each delivered message.

Opportunistic Databank 1089

3.3.2 Related DTN Replication Schemes

To perform comparisons, we selected the following related replication schemes for
DTNs: (a) PRoPHET [28], (b) Epidemic [33], (c) Random [2], and (d) Wave [30].
These schemes utilize various strategies and heuristics to replicate messages in the
network. As the data routing in DTNs is based on data replication during opportunistic
contacts, the aforementioned schemes can also be called as the routing schemes for
DTNs. We briefly describe the selected schemes in the following.

• PRoPHET
The PRoPHET scheme [28] calculates the delivery predictability for every node
in the system. The delivery predictability value depends on the number of re-
cent interactions of a node with other nodes in the network. Nodes perform the
transitive updates of delivery predictabilities by sharing network-state tables on
making contacts with each other. A node replicates a message to the neighbor, if
and only if the delivery predictability of the neighbor is greater than the sender
node. This way the PRoPHET scheme attempts to reduce the overhead. How-
ever, when the network size is large, such as a city-wide DTN network, it may
take significant time in building up of delivery predictabilities. Therefore, in such
cases PRoPHET may experience increase in overhead due to higher number of
replications. The overhead also results in the increased buffer overflows, which
may lead to the reduced message delivery ratio for PRoPHET.

• Epidemic
The Epidemic scheme [33] is an uncontrolled replication-based scheme that func-
tions like epidemic. A node having a message copy is said to be infected. When
this node makes contact with another node, the infection is transferred to the
other node such that at the end of communication both nodes are having same
infection (similar copies of a message). The Epidemic scheme spreads greater
number of message copies in the network to improve message delivery proba-
bility. However, increasing message copies may cause greater overhead, higher
utilization of buffers, and increased network congestion. Therefore, the Epidemic
scheme is ideal for scenarios that have higher bandwidth and greater buffer storage
available. The scenarios where nodes have limited buffer capacity, the Epidemic
scheme may result in packet drops due to buffer shortages.

• Random
The Random scheme [2] allows a node to forward a message towards a randomly
selected neighbor. After the message is successfully forwarded, the sender node
deletes local copy of message. This makes the Random a single-copy multi-hop
forwarding scheme. A message maintains a list of hops it has passed through to
avoid visiting the same hops again. The Random scheme does not exhibit optimal
performance in terms of message delivery ratio. This is because the randomly
selected neighbor may not appear to be a best candidate to forward message
towards destination.

1090 O. Khalid et al.

• Wave
The Wave strategy [30] utilizes tracking lists to track messages that were recently
relayed by a node. The idea is to prevent a node from receiving the same message
replica again in short time duration. When a node receives a message, the mes-
sage entry (e.g., message ID and receiving time) is maintained in the tracking list.
During message exchange, the sender node transfers the message to the neighbor,
but does not remove the message entry from the tracking list. This prevents the
node from receiving the same message replica within a short time span. Such
reductions in message replications minimize the overall overhead. However, de-
crease in the message replicas also decreases the message delivery probability of
the Wave scheme.

3.3.3 Simulation Results

Simulation results with synthetic mobility model are indicated in Figs. 5a, b, c,
whereas Figs. 5d, e, f present the simulation results with real-world connectivity
traces. As reflected in Figs. 5a, b, c, the HSM scheme outperforms the rest of
the replication schemes in terms of delivery ratio and overhead. This is because
HSM accurately forecasts future contacts by performing online analysis of limited
sized time-series data of previous contacts with varying qualities. On the contrary,
PRoPHET performs future contact estimation on the basis of number of contacts
without considering the time varying pattern of contact duration and inter-contact
times.

The Epidemic scheme maximizes the flooding to improve message delivery. How-
ever, higher flooding causes increased overhead and higher message drop rate in
resource constrained network scenarios. Alternatively, HSM performs selective mes-
sage replication resulting in decreased overhead (Fig. 5c) and higher delivery ratio
(Fig. 5a). The Random scheme forwards single message copy to any randomly se-
lected neighbor, whereas the Wave scheme performs replica flooding in a controlled
manner. Despite that both the aforementioned schemes are resource conservative,
they exhibit low performance than HSM as reflected in Fig. 5. This is because
these schemes do not utilize the past meeting patterns to perform a node’s utility
estimations.

The simulation results with real-world connectivity traces indicated that HSM
performed better for delivery ratio and overhead. As reflected in Figs. 5d, e, f HSM
precisely utilized the meeting patterns of conference participants to perform future
contact forecasts. The latency metric of Epidemic, Random, and Wave is better than
HSM (Fig. 5e). However, this is at the expense of their low delivery ratio. Moreover,
HSM exhibits minimum overhead as compared to PRoPHET and Epidemic, despite
being multiple copy replication scheme.

Opportunistic Databank 1091

a d

b e

c f

Fig. 5 Performance comparison results with synthetic mobility (Figures 1a, b, c) and real mobility
trace (Figure 1d, e, f). The schemes compared are: 1 HSM, 2 PRoPHET, 3 Epidemic, 4 Random,
and 5 Wave

1092 O. Khalid et al.

4 Conclusions

In this chapter, we examined various challenges faced by the network when nodes
are willing to participate in opportunistic data sharing and storage applications, to
construct on-the-fly data centers. We addressed replica placement as one of the major
challenges in ad hoc based data storage. In these networks, the decision of where to
replicate data must trade off the cost of accessing data. The data access cost can be
reduced by replications of data items, but with additional cost of storing and updating
the replicas. These costs have severe implications in ad hoc networks because mobile
hosts have limited resources (energy, storage, and processing power). Therefore, ef-
ficient and effective replication schemes strongly depend on how many replicas to be
placed in the system, and more importantly where. We performed a comparative study
of some of the well-known data replication schemes for MANETs, and discussed
various pros and cons of the studied schemes. We observed that data replication
is quite challenging in DTN like environments due to the non-existence of end-to-
end communication paths. Unlike MANETs, the lack of end-to-end connectivity in
DTNs prevents the global network information propagation. We formulated the data
replication problem in DTNs and proposed a utility based replication scheme. The
aforementioned utility value was based on two things: (a) probability that the node
will be able to deliver message before life time expiry, and (b) probability that node
will stay in contact with message’s destination long enough to compensate mes-
sage transfer time. Our results from synthetic mobility as well as real-world traces
indicated that the proposed scheme produced the minimum network cost, and max-
imum delivery ratio. As a future work, we intend to explore numerous opportunistic
message storage and sharing applications for bus based DTNs and vehicular ad hoc
networks (VANETs).

References

1. M. Archetti, “Cooperation as a volunteer’s dilemma and the strategy of conflict in public.”
Journal of Evolutionary Biology, vol. 22, no. 11, page. 2192, 2009.

2. A. Balasubramanian, B. Levine, and A. Venkataramani, “Replication Routing in DTNs: A
Resource Allocation Approach,” IEEE/ACM Transactions on Networking, vol. 18, no. 2, pp.
596–609, 2010.

3. M. Conti and M. Kumar, “Opportunities in Opportunistic Computing,” IEEE Computer, vol.
43, no. 1, pp. 42–50, Jan. 2010.

4. D. Grosu and A. T. Chronopoulos, “Algorithmic mechanism design for load balancing in
distributed systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34,
no. 1, pp. 77–84, January 2004.

5. T. Hara, “Effective replica allocation in ad hoc networks for improving data accessibility,” In
Proceedings of IEEE INFOCOM, 2001, pp. 1568–1576.

6. T. Hara, “Replica allocation in ad hoc networks with data update,” Mobile Network
Applications, vol. 8, pp. 343–354.

7. T. Hara and S. K. Madria, “Dynamic data replication using aperiodic updates in mobile ad hoc
networks,” In Proceedings of 9th international conference on database systems for advance
applications, 2004, pp. 869–881.

Opportunistic Databank 1093

8. D. Hirsch and S. Madria, “Data Replication in Cooperative Mobile Ad-Hoc Networks,” Mobile
Networks and Applications, vol. 18, no. 2, pp. 237–252, 2013.

9. Infocom06 connectivity traces on CRAWDAD website. [Online] http://crawdad.cs.dartmouth.
edu/meta.php?name=cambridge/haggle#N100C4, 2013.

10. A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE simulator for DTN protocol evaluation,” in
Proc. of 2nd International Conference on Simulation Tools and Techniques, 2009, doi.10.4108.

11. M. J. Khabbaz, C. M. Assi, and W. F. Fawaz, “Disruption-tolerant networking: A comprehen-
sive survey on recent development and persisting challenges,” IEEE Communications Surveys
Tutorials, vol. 14, no. 2, pp. 607–640, Second Quarter, 2012.

12. O. Khalid, S. U. Khan, J. Kolodziej, L. Zhang, J. Li, K. Hayat, S. A. Madani, L. Wang, and D.
Chen, “A checkpoint based message forwarding approach for opportunistic communication,”
European Conference of Modeling and Simulation, 2012.

13. S. U. Khan, “Mosaic-Net: A Game Theoretical Method for Selection andAllocation of Replicas
in Ad Hoc Networks,” Journal of Supercomputing, vol. 55, no. 3, pp. 321–366, 2011.

14. S. U. Khan and I. Ahmad, “Replicating Data Objects in Large Distributed Database Sys-
tems: AnAxiomatic Game Theoretical Mechanism DesignApproach,” Distributed and Parallel
Databases, vol. 28, nos. 2–3, pp. 187–218, 2010.

15. S. U. Khan and I. Ahmad, “A Pure Nash Equilibrium based Game Theoretical Method for Data
Replication across Multiple Servers,” IEEE Transactions on Knowledge and Data Engineering,
vol. 21, no. 4, pp. 537–553, 2009.

16. S. U. Khan and C. Ardil, “A Frugal Bidding Procedure for Replicating WWW Content,”
International Journal of Information Technology, vol. 5, no. 1, pp. 67–80, 2009.

17. S. U. Khan, A.A. Maciejewski, and H. J. Siegel, “Robust CDN Replica Placement Techniques,”
in 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rome,
Italy, May 2009.

18. S. U. Khan, “A Multi-Objective Programming Approach for Resource Allocation in Data
Centers,” in International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), Las Vegas, NV, USA, July 2009, pp. 152–158.

19. S. U. Khan, “On a Game Theoretical Methodology for Data Replication in Ad Hoc Net-
works,” in International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), Las Vegas, NV, USA, July 2009, pp. 232–238.

20. S. U. Khan, “A Frugal Auction Technique for Data Replication in Large Distributed Computing
Systems,” in International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), Las Vegas, NV, USA, July 2009, pp. 17–23.

21. S. U. Khan, “A Game Theoretical Resource Allocation Technique for Large Distributed
Computing Systems,” in International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), Las Vegas, NV, USA, July 2009, pp. 48–54.

22. S. U. Khan and C. Ardil, “A Fast Replica Placement Methodology for Large-scale Distributed
Computing Systems,” in International Conference on Parallel and Distributed Computing
Systems (ICPDCS), Oslo, Norway, July 2009, pp. 121–127.

23. S. U. Khan and C. Ardil, “A Competitive Replica Placement Methodology for Ad Hoc
Networks,” in International Conference on Parallel and Distributed Computing Systems
(ICPDCS), Oslo, Norway, July 2009, pp. 128–133.

24. S. U. Khan and I. Ahmad, “Comparison and Analysis of Ten Static Heuristics-based Internet
Data Replication Techniques,” Journal of Parallel and Distributed Computing, vol. 68, no. 2,
pp. 113–136, 2008.

25. S. U. Khan, A. A. Maciejewski, H. J. Siegel, and I. Ahmad, “A Game Theoretical Data Repli-
cation Technique for Mobile Ad Hoc Networks,” in 22nd IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Miami, FL, USA, April 2008.

26. H. S. Kia and S. U. Khan, “Server Replication in Multicast Networks,” in 10th IEEE In-
ternational Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan,
December 2012, pp. 337–341.

27. Y. Li, M. Qian, D. Jin, P. Hui, Z. Wang, and S. Chen, “Multiple Mobile Data Offoading
Through Disruption Tolerant Networks,” IEEE Transactions on Mobile Computing, vol. PP,
no. 99, page. 1.

http://crawdad.cs.dartmouth.edu/meta.php?name=cambridge/haggle#N100C4
http://crawdad.cs.dartmouth.edu/meta.php?name=cambridge/haggle#N100C4

1094 O. Khalid et al.

28. A. Lindgren, A. Doria, A. Davies, and S. Grasic, “Probabilistic Routing Protocol for Inter-
mittently Connected Networks,” http://tools.ietf.org/html/rfc6693, 2012, accessed on March
2014.

29. S. Lee, D. Levin, V. Gopalakrishnan, B. Bhattacharjee, “Backbone construction in selfish
wireless networks.” In ACM SIGMETRICS, New York, 2007, pp. 121–132.

30. J. Ott, A. Keränen, and E. Hyytiä, “BeachNet: Propagation-based Information Sharing in
Mostly Static Networks,” in Proc. of ACM ExtremeCom, 2011.

31. J. Taheri, A.Y. Zomaya, P. Bouvry, and S. U. Khan, “Hopfield Neural Network for Simultaneous
Job Scheduling and Data Replication in Grids,” Future Generation Computer Systems, vol. 29,
no. 8, pp. 1885–1900, 2013.

32. J. Taheri, A. Y. Zomaya, and S. U. Khan, “Grid Simulation Tools for Job Scheduling and
Datafile Replication,” in Scalable Computing and Communications: Theory and Practice, S.
U. Khan, L. Wang, and A. Y. Zomaya, Eds., John Wiley & Sons, Hoboken, NJ, USA, 2013,
ISBN: 978–1–1181–6265–1, Chapter 35.

33. A.Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc networks,” Technical
Report CS-200006, Duke University, 2000.

34. A. G. Voyiatzis, “A Survey of Delay- and Disruption-Tolerant Networking Applications,”
Journal of Internet Engineering, vol. 5, no. 1, pp. 331–344, 2012.

Data Management: State-of-the-Practice at
Open-Science Data Centers

Ritu Arora

1 Introduction

The amount of data involved in computational research is continuously growing.
There are activities like scientific simulations, analyses of high-resolution data from
latest instrumentation, and creation of digital archives that result in the generation
of data and data products worth terabytes on a daily basis. In addition to storing,
sharing, and accessing data for achieving their own scientific goals, scientists are
being required by various funding agencies to capture data provenance. Hence, the
long-term preservation of scientific data is becoming more critical than before. In
order to support data-intensive computing and storage needs of their users, the data
centers supporting open-science research are continuously expanding their storage
and networking infrastructure.

At open-science data centers, because resources are shared amongst multiple
projects and users, the disk-space owned by any user-account is limited. Therefore,
maintaining large datasets (in the range of TBs and above) for in-place processing
and analyses is usually not an option. Instead, the data for input to and output from a
computational job needs to be staged to a filesystem associated with a computational
resource. Let us consider the example of the Stampede system at the Texas Advanced
Computing Center (TACC) [1]. The user-owned storage on Stampede is available in
three directories, identified by the $HOME, $WORK and $SCRATCH environment
variables. These directories are separate filesystems. The $HOME, which is backed
up, has a quota limit of 5 GB and 150 K files. Such a quota is often not adequate when
dealing with large volumes of input and output data with respect to a computational
job. Therefore, the $WORK filesystem provides limit of 400 GB and 3 million files.
However, it is not backed up. The $SCRATCH filesystem has no such quota limits
but like $WORK, it is not backed up either.

R. Arora (�)
Texas Advanced Computing Center, University of Texas at Austin, Ste 1.408, Bldg. 196, J.J.
Pickle Research Campus, 10100 Burnet Road, 78758 Austin, TX, USA
e-mail: rauta@tacc.utexas.edu

© Springer Science+Business Media New York 2015 1095
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_37

1096 R. Arora

For the storage of large volumes of data that could be of short-term, mid-term
or long-term retention value, large capacity online disks and/or tape-based archival
systems are used. In case of applications writing large amounts of data to a filesystem
on a computational resource, staging data out of a computational resource to a storage
resource and vice versa can be challenging. Data has to be moved out at a fast rate from
the filesystem to secondary storage to accommodate new incoming data. However,
the data movement is constricted due to network bandwidth and latency issues [2].
Retrieving very large datasets from secondary or tertiary storage systems can be
time-consuming as well especially if these storage systems are tape-based archival
systems. This is because before the data can be staged to a computational-resource
for processing, it has to be de-migrated from tapes to the disk subsystem.

An HPC platform’s I/O subsystems are typically slow as compared to its other
parts (viz., processors) and one can easily saturate the bandwidth during large data
transfers. As an example, the latency associated with the different levels of memory
hierarchy on Stampede’s dual-socket compute nodes equipped with Intel Xeon E5-
2680 processors, is specified below:

• L1 data cache latency is typically 4–6 cycles, depending on data type and
addressing mode.

• L2 latency is about 12 cycles.
• L3 latency is 26–31 cycles (depending on how far away the L3 slice containing

the data is from the core requesting it).
• Local memory latency is about 77 cycles.
• Remote (other socket) memory latency is about 137 cycles.

The clock frequency of Intel Xeon E5-2680 processors is 2.7 GHz (or 2.7 × 109

Hz). Given that 1 Hz is equivalent to 1 cycle per second, 1 cycle roughly translates to
approximately 0.3 ns on Stampede. The hard-disk access time is roughly around 1–2
μs, and hence we can see that the I/O gap between the memory speed and average disk
access stands at roughly 10−3. This example shows that it is important to develop an
understanding of the characteristics of the I/O infrastructure in order to adapt HPC
applications for doing efficient I/O. Efficient I/O will result in performance gains
without overloading the filesystem.

There are four major storage levels in an I/O infrastructure: (1) internal—the
processor registers and cache, (2) main—the system RAM and controller cards, (3)
online mass storage—the secondary storage on disks, and (4) off-line bulk storage—
the tertiary and off-line storage on tapes. The coordination of data movement from
application layer to the I/O layer is needed for the optimal usage of the I/O bandwidth
without burdening the shared HPC resources. By optimal usage, we mean how to
achieve minimal completion time when we need to transfer across the hierarchies.
The online mass storage and off-line bulk storage infrastructures are discussed in
Sect. 2 of this chapter. A discussion on data movement in the context of the two
storage levels is described in Sect. 3 of this chapter. Efficient I/O is also presented in
Sect. 3.

Because HPC resources at open-science data centers are limited and certain
datasets have mid-term or long-term retention value, it is important to formulate

Data Management: State-of-the-Practice at Open-Science Data Centers 1097

data archiving and preservation strategies. As a function of data archiving, the data
is moved between different disk systems and tape libraries to ensure that valuable
data is retained and accessed at a low-cost. As a function of data preservation, it is
also important that the storage media for archived data is inspected periodically such
that the data can be migrated to a new storage media before the older media is past
its prime. Further discussion on data archiving and data preservation are presented
in Sect. 4 and 5 respectively.

2 Data Storage Infrastructure

In this section we discuss the data storage media and the general high performance
storage hierarchies that are created by using these media in open-science data centers.
We also briefly discuss the usage of databases for handling structured and semi-
structured datasets.

2.1 Data Storage Media

Hard Disk Drives (HDDs) provide random access storage using rapidly spinning
disks that are coated with magnetic material. Once written, data is retained on an
HDD even when it is powered off. HDDs are popular secondary storage devices
mainly due to its price per unit of storage. From this point forward, when we mention
“disk” in this chapter, it would mean HDD.

Flash or Solid-State Drives (SSDs) are silicon-based storage media that store data
electronically instead of magnetically. Because flash or solid-state storage does not
contain any mechanical parts, the data transfer to and from this storage media takes
place at a high-speed. The seek-time is nearly uniform in the case of SSDs and hence
the data can be read from any location on the drive at the same speed. The latency
involved in access and retrieval of data stored on SSDs is very low as compared to
the latency involved in the case of data access and retrieval from a spinning disk.
Due to the low-latency associated with them, SSDs are ideal for applications that
need fast random I/O to large files. A 64 GB SSD can support 712 I/O operations per
watt (of power) whereas a 2 TB spinning HDD can support only 35 I/O operations
per watt. Hence, SSDs are power-efficient in comparison to HDDs [3]. It should be
noted here though that the read and write speeds may vary for an SSD.

A tape drive reads and writes data sequentially to magnetic tapes that are packaged
in cartridges. Unlike a disk drive that provides random access storage, a tape drive
provides sequential access storage. A tape drive physically winds tape in a reel to read
any data and hence has a long latency for random access. However, for sequential
access, once the tape is positioned, the tape drives can access data as fast as disk for
contiguous blocks of data. Tape-based data storage is mostly used for offline storage
of data archives and does not have issues like firmware corruption that are seen in the

1098 R. Arora

case of SSDs. It is a reliable, power-efficient, and a cost-effective option for mass
storage systems.

2.2 General Architecture of a Data Storage System

In general, a data storage system for managing large volumes of data comprises
of several levels of hardware and software components that are connected with a
high-speed interconnect like Infiniband or Ethernet.

The secondary-level in a data storage hierarchy is often an array of disks (a few
hundred or up to tens of thousands for parallel filesystems) to load and store the most
recently used files. SSDs are also becoming a popular choice of storage at this level.
A filesystem makes the multiple disks or SSDs appear as one to the end-user. More
detail on this is presented in Sect. 3.

If a computational job is accessing or generating a large amount of data, the
disk-space at the secondary-level can get filled quickly during single or multiple
runs of the job. Therefore, the files need to be transferred to the tertiary-level which
is usually meant for long-term data storage or is a storage silo. The tertiary-level
often comprises of a few disks and a large number of tapes. The storage silos have
thousands of slots containing magnetic tapes. They also have four to eight robotic
hands, known as “handbots”, for searching the appropriate tapes and inserting them
in the readers (or tape drives) that are assigned to them by the data management
software.

The data or storage management software like High Performance Storage System
(HPSS) [4] or Sun’s Storage Archive Manager Filesystem (SAM-FS) [5] is used to
control the hardware components—storage disks, tapes and the handbots. Depending
upon the file-access pattern, the files on disks in the tertiary-level are automatically
transferred onto a high-capacity and low-cost media like magnetic tapes with the
help of the data management software.

2.3 Supporting Databases for Structured and Semi-Structured
Datasets

Some of the data-intensive and compute-intensive jobs running at data centers require
or produce structured or semi-structured datasets and hence need a database for
storing and accessing results. The databases can be as simple as a collection of flat
files or could be an advanced relational database management system like DB2 [6].

If the number of users increases beyond a couple of thousand, replicas of the
database are created on multiple nodes for load-balancing purposes. For small
datasets (below few hundred terabytes), the performance of all the following re-
lational database management systems is equivalent: DB2, Postgres and MySQL.

Data Management: State-of-the-Practice at Open-Science Data Centers 1099

However, for hundreds of TBs of data, practitioners recommend DB2 over Postgres
or MySQL because it scales well.

Besides having distributed databases, there are other techniques that are used to
write scalable applications involving databases. As an example, consider mpiBLAST
[7] which is a parallel implementation of an algorithm used by computational biolo-
gists to find similarity between biological sequences. This scalable software uses
distributed computational resources and techniques like database fragmentation,
query segmentation, intelligent scheduling, and parallel I/O through MPI [8], to
speed up the process of finding similar biological sequences. The database fragmen-
tation technique is used to partition a large database of FASTA files (a bioinformatics
format for specifying sequences) into multiple small fragments. The fragments are
then distributed across many compute nodes and each fragment can be searched in
parallel. The query segmentation technique is used to segment a query into multiple
independent searches such that, multiple searches for sequences can be performed
simultaneously. From this example, it should be noted that data partitioning and
data layout are crucial factors on which the performance of application software like
mpiBLAST depends.

2.4 Examples of Notable Storage Systems at Open-Science Data
Centers

The Gordon Supercomputer at the San Diego Supercomputing Center (SDSC) has
over 300 Terabytes (TB) of SSDs and achieves over 36 million IOPS (I/O operations
per second) [9]. With latency lower than spinning disks, Gordon’s I/O nodes are well-
suited for applications having random data access patterns or I/O involving frequent
small reads.

The Ranch system at TACC is a tape-based archival system with 60 PB Sun
StorageTek mass storage solution [10]. Ranch’s user-access disk cache is built on
DELL MD3600i disk array containing approximately 1150 TB of spinning disks.
This disk array is controlled by a SAM-FS Metadata server, which has 16 CPUs and
72 GB of RAM. Two Sun StorageTek SL8500 automated tape libraries are combined
to serve as the offline archival storage. Each SL8500 library contains 10,000 tape slots
and 64 tape drive slots. Each SL8500 library also contains four handbots to manage
tapes and move them to or from the tape drives. In the current Ranch configuration,
one library contains 10,000 tapes, each having 1 TB uncompressed data capacity and
the other has 10,000 tapes of 5 TB each, equaling 60 PB of total combined capacity.
When archiving or retrieving multiple terabytes of datasets on Ranch, up to four tape
drives are used automatically in parallel, thereby, leading to almost four times the
speed of using only a single tape drive. With a balanced distribution of data sets, one
could achieve close to 1 GB/s transfer rate.

Yet another example of a tape-based archival system is the HPSS-based system
that is part of the Blue Waters project at the National Center for Supercomputing
Applications (NCSA). HPSS is built using multiple automated tape libraries, data

1100 R. Arora

movers, 40 Gigabit Ethernet connection, multiple high-performance tape drives, and
about a 100,000 tape cartridges. NCSA developed and deployed an HPSS capability
for Redundant Arrays of Independent Tapes (RAIT) [11], that is, the RAID idea
carried over to tapes instead of disk drives. In principle it achieves the data protection
as well as the speed-boost. The HPSS hierarchical filesystem software can be used
for the management of data life-cycle and accessing large volumes of data at a high
speed.

Open-science data centers also support research data repositories for the storage
and sharing of research data. An example of one such system is Corral [12] at TACC.
Corral encompasses a collection of storage systems and services for data management
and provides about 5 PB of online storage to researchers. There are over 4000 hard
drives in Corral and its filesystems are accessible from computational resources at
TACC. Corral is appropriate for data with long-term retention value. Corral also
supports the iRODS [13] data management system, database management systems
like Postgres and MySQL, and web-hosting services. It offers both replicated and
non-replicated storage. With replicated storage, the data is synchronously stored
over two storage installations, resulting in two copies of all data and metadata, while
non-replicated means that only one storage site is used, and only one copy of the data
and metadata are stored within the system. Users with general data management and
storage needs can opt for replicated storage. The users who wish to replicate their
data across multiple systems, including the Ranch tape archive, are encouraged to
utilize the iRODS data management tool.

3 Data Movement

HPC applications often involve I/O (data movement) for activities like reading initial
conditions or datasets for processing, writing numerical data from simulations, and
saving application-level checkpoints. Though often an afterthought for most HPC
programmers, the time spent in doing I/O should also be optimized in addition to
optimizing the time spent in doing computations and communication for getting
the best performance. As a starting point, the programmers might want to consider
balancing I/O (both serial and parallel). They can also consider using parallel I/O
such that multiple processes can participate in reading data from or writing data to a
common file in parallel (see Fig. 1). Such strategies can improve performance when
dealing with large datasets by optimizing the usage of the I/O bandwidth.

3.1 Parallel File-System Associated with Computational
Resources—Secondary Storage

In order to manage the storage hardware and allow concurrent data access for par-
allel I/O, a parallel filesystem is needed. The parallel filesystem makes hundreds of

Data Management: State-of-the-Practice at Open-Science Data Centers 1101

Fig. 1 N number of processes participating in reading or writing a portion of a common file

Fig. 2 Lustre file system

spinning disks act like a single disk that can then be accessed by thousands of pro-
cessors that could be present in an HPC platform. One example of such a filesystem
is Lustre [14, 15]. Lustre maintains logical file space and provides efficient access to
data. The different components that are part of the Lustre-based secondary storage
are explained below and are pictorially shown in Fig. 2. The path of data movement
from the memory of application process to disk is shown with the help of arrows in
Fig. 2.

The set of I/O servers called Object Storage Servers (OSSs) and disks called
Object Storage Targets (OSTs) together make the Lustre File System (LFS). The
OSTs are block storage devices (HDDs and/or SSDs) that store the data associated
with the files of the users. An OST may be thought of as a single virtual disk even
though it often consists of several physical disks, possibly in a RAID configuration.

1102 R. Arora

Fig. 3 Lustre supporting
striping of files across several
I/O servers

The data associated with user files is stored in one or more objects, with each object
stored on a separate OST. The number of objects per file is user configurable and can
be tuned to optimize performance for a given workload. The OSSs manage a small
set of OSTs by controlling I/O access and handling network requests to them. The
OSSs contain metadata about the files stored on their OSTs. They typically serve
between 2 and 8 OSTs, where each OST is generally up to 24 or 32 TB in size.

Each user file has metadata associated with it like filename, permissions on the file
and directories. The metadata associated with user files is stored on a MetaData Target
(MDT) and is controlled by a MetaData Server (MDS). The MDS used to be a single
service node that would assign and track all of the storage locations associated with
each file in order to direct file I/O requests to the correct OSSs and then eventually to
the correct set of OSTs. However, with the recently included feature of Distributed
Namespace (DNE), the Lustre namespace can be divided across multiple metadata
servers. This enables the size of the namespace and metadata throughput to be scaled
with the number of servers. Once a file is opened, no further involvement of the
MDS is needed for I/O to or from the file. This enables the scalability of bandwidth
in Lustre. Lustre permits Remote Direct Memory Access (RDMA) for Infiniband
(OFED) and hence enables multiple, bridging RDMA networks to use Lustre routing,
which in turn leads to increased performance.

The application processes running on compute nodes communicate with the Lustre
servers and hence the Lustre targets via the available network. On Stampede, there
are three instances of LFS, each with different usage policies: $HOME, $WORK,
and $SCRATCH [1]. Lustre supports the “striping” of files across several I/O servers
(similar to RAID 0) where each stripe is a fixed size block (see Fig. 3). This means
that chunks of a file will exist on multiple OSTs. Application programmers could
consider balancing serial or parallel I/O load by setting the appropriate stripe-count
and stripe-size that is commensurate to their data load. In order to match the I/O
bandwidth with the switch bandwidth, the stripe-count can be set such that the switch
bandwidth is saturated. It should be noted that the system administrators set a default
stripe-count and stripe-size that applies to all newly created files on a system. For
example on Stampede, the default is 2 stripes/1 MB in $SCRATCH and 1 stripe/1
MB in $WORK. However, the users can reset the default stripe-count or stripe-size

Data Management: State-of-the-Practice at Open-Science Data Centers 1103

Fig. 4 Example of getstripe and setstripe on Lustre

using the “lfs setstripe” command. See Fig. 4 for an example of using this
command.

3.2 Optimizing Data Movement in Context of Secondary Storage
System

Parallel I/O can provide a single file for storage and transfer purposes. However,
it can be hard to coordinate and optimize I/O if working directly at the level of
Lustre API. Therefore, a number of intermediate layers (sitting between low-level
hardware layer and the top-level application layer) have been implemented, over
which, parallel applications involving parallel I/O can be developed. Examples of
such intermediate layers are MPI-I/O and parallel HDF5 [16].

When using MPI-I/O, the MPI should be built with Lustre support so that the
Lustre stripe-count, stripe-size, and # of writers can be set using MPI-I/O Hints. The
MPI-I/O Hints are extra information supplied to the MPI implementation through
the following function calls for improving the I/O performance: MPI_File_open,
MPI_File_set_info, and MPI_File_set_view. The MVAPICH2 and the
OpenMPI implementations of MPI support Lustre. Parallel HDF5 is a layer of
abstraction over MPI-I/O and hence all MPI-I/O techniques apply to parallel HDF5.

1104 R. Arora

While doing parallel I/O, it is best to have a small subset of the total number of
application processes (tasks) participate in the I/O. For example, if there are 1024
nodes that are participating in a computation and 16 processes are launched on each
node, then having all the processes participate in I/O (1024 × 16 processes= 16384
I/O clients) can result in an oversubscribed system. In such a situation having a subset
of processes, let us say, one task per node can result in a better I/O balance (1024
I/O clients).

Contiguous access of data in memory and on disk provides best performance. A
performance improvement is seen if instead of frequently writing small amounts of
data to a file, the output from an application can be buffered till a reasonable size of
data is collected for writing to an output file. As mentioned previously, the number of
processes that are involved in accessing a file at a given point should be restricted by
gathering the data to be written to a subset of processes. In order to avoid burdening
the MDS, the frequent opening and closing of files from an application should be
avoided. This is because, each file open or close operation has an overhead cost that
adds up, especially if multiple tasks are opening and closing files at the same time.

If the size of the file to be read is small (i.e. < 1 GB), it is advisable to have the
parallel application involve only one process to read the file and then broadcast the
data that it read to all the other processes. While writing small files and directories
(i.e. < 1 GB), it is advisable to write to a single OST.

In our experience, directories that contain large number of files (in the order of
hundreds or thousands) will be slow to respond to I/O operations due to overhead
involved in the indexing of the files. Therefore, a directory should be broken into
subdirectories with fewer files. The number of files in a directory should be limited
and one should avoid creating deeply nested directories. The impact of deeply nested
directories and multiple small files in a directory can lead to slow system response
time even with basic commands like “ls -ltr”. The users are advised to avoid
“ls -l” too frequently in order to avoid unnecessary overheads in communicating
with multiple OSTs on which a single file might be stored. Instead of using “ls -l”,
the users might want to consider using “ls -U” or “lfs find” where possible.

3.3 Optimizing Data Movement in Context of Tertiary Storage
System

On a tape-based archival system like Ranch, if the average size of the files to be
archived is less than 1 GB, it is better to combine them into a tar file before storing
them on an archival system. Staging tens of thousands of files could take multiple
days, though it could be done in hours if optimized to reduce the mounting of tape
cartridges. Attempts to transfer unstaged data from tape drives to a computational
resource could be slow for most users, leading to atomic calls per file (retrieval of
one file per mount) even when the tape has all of them in a single media. To make
things worse, if users add threads (like in scp, rsync, and gridftp) in an attempt to
parallelize the atomic process, they could make the transfer even slower by creating

Data Management: State-of-the-Practice at Open-Science Data Centers 1105

more threads in wait state. It is not uncommon to witness one user with a single
GridFTP session [17] achieving 10 TB transfer overnight while another user having
10 GridFTP processes moving order of magnitudes less. This deplorable practice
stems partly from the asymmetric nature of data movement to and from Ranch.
When the users put data on Ranch, multiple threads help because Ranch is more like
a disk based filesystem during the data ingestion stage. On retrieval, however, Ranch
is far from a filesystem, and it is nothing but an array of tape drives. Unless staged
first, none of the typical transfer methods can achieve the expected performance, and
having multiple threads aggravates the situation by blocking other users.

If the average size of the data to be retrieved is more than 10 GB, the tape mount
overhead is minimal no matter what transfer method is used. Users in this group
can ignore the necessity of staging without significant penalty. The most interesting
case is when the average data size is 1–10 GB. Some users may be able to avoid
the necessity of pre-stage like in the 10 GB case, but can also achieve significant
improvement with aligned staging.

Also of vital importance for users planning to transfer more than million files
totaling tens of Terabytes is the physical limit of disk cache. If one tries to stage the
whole set, some staged files will be released back to the tape while the staging is still
going, creating a never-ending movement of blocks. Depending on the other users’
activities, release period can be as short as within a day while staging a million files
can take up to 3 days. For such massive migration it is better to coordinate with the
system administrators, rather than trying it on their own.

4 Data Archiving

Data explosion is being considered as the biggest hardware infrastructure challenge
for data centers and calls for investments in data archiving. Often, data archiving
is confused with data backup. While the process of backing up the data results in
creating an additional copy of the data that can be stored at a different location, data
archiving implies that the data, which is currently in the primary storage, is moved
to a secondary or tertiary storage system. Thus, data archiving helps in freeing the
costly space on primary storage media. It should be noted that data archiving is used
for the long-term storage of the primary and the only copy of the data. In contrast
to the backed up data which is mainly created for disaster recovery and which may
never be accessed, the archived data is accessed as the need arises.

An important requirement for data archives is that they should be searchable. The
users should themselves be able to find the needed files and access them in the original
format. There are off-the-shelf archiving solutions that come with file management
software and can help in automating the process of data archival in a cost-effective
manner. For example, Ranch utilizes Oracle’s Storage Archive Manager Filesystem
(SAM-FS) for migrating files to and from a tape archival system.

In this era of Big Data, tape-based archival is a reliable, cost-effective and energy-
efficient way for managing large datasets for archival purposes. A tape drive has a

1106 R. Arora

shelf-life of roughly 30 years if stored under optimal environmental conditions.
Unlike disks, tape drives do not need persistent power and cooling. Once the data is
written on tapes, the tapes do not need any power.

5 Data Preservation

Data preservation entails the management of digital archives so that the archived
information and the associated metadata can be accessed and used at any point
of time in future. The preservation of digital legacy requires careful planning that
begins at the time of designing the data archival system. Because the resources and
technologies keep changing at a fast pace, planning is required to address issues like
maintenance of the current storage media, transitioning to the new storage media,
and the backward compatibility of new systems to support data archives created on
old systems [18].

It should be noted that different datasets need different software environments
in which they can be rendered. One challenge for open-science data centers is to
secure sustained funding for the management of repositories and collections such
that even after the life-cycle of a computational or storage resource is over, software
support can still be provided for accessing and using the data in the repositories. The
software used for rendering the archived data might become obsolete for the hardware
infrastructures in future. Therefore, advance planning is needed for developing new
software to emulate the old infrastructure on latest hardware. Because of the need
to handle a wide variety of datasets and their associated formats, data preservation
becomes a complex endeavor for open-science data centers.

In order to standardize the functions related to digital preservation practice and
provide a set of recommendations to data preservationists, an OpenArchival Informa-
tion System (OAIS) reference model was developed [19]. All the technical aspects of
data life-cycle—ingestion, archival, data management, administration, access, and
preservation planning—are addressed by OAIS. The model recommends that five
types of metadata is stored for all data that is meant to be preserved—reference infor-
mation, provenance, context, authenticity indicators, and representation (formatting,
file structure, and semantics).

The data centers avoid the loss of digital information by various strategies like
replication, refreshing the storage media, planned conversions of data from old file-
formats to new ones while the old format is still recognized by the latest infrastructure,
and metadata extraction. The concept of persistent archives as developed at SDSC
states that both the data and the information required to assemble the units of data
into a data collection must be archived [20].

Data Management: State-of-the-Practice at Open-Science Data Centers 1107

6 Conclusion

Data Centers are continuously expanding their storage capacity to meet the needs of
data-intensive computing. In this chapter, we have provided an overview of the data
storage infrastructure at open-science data centers with the focus on handling large
datasets in an efficient and cost-effective manner.

The general data characteristics or patterns of data-usage vary immensely across
a given set of users at an open-science data center. At times, the size of data files is
too large to manage while at other times there are large numbers of files to manage.
Some datasets might be stored for long-term usage while other datasets or subsets
might be required for short-term and rapid processing. While some datasets are
natively suitable for database processing, others (semi-structured and raw datasets)
are not. It is also observed that while some users might want to draw different
inferences from large datasets using different subsets, there are other users who
want to quickly find the correlation across terabytes of datasets collected at regular
intervals to find the underlying cause of unusual problems. Given such a diverse
range of data analyses and processing needs of the users at an open-science data
center, the recommendations for improving I/O performance are usually provided
on a case-to-case basis. However, some of the generally recommended best practices
and strategies for efficient I/O were discussed in this chapter.

Acknowledgement We would like to thank Chris Hempel, Jim Foster, Junseong Heo, John Cazes,
John McCalpin, Robert McClay, and Sukrit Sondhi for their help in development of this chapter.
The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of
Texas at Austin for providing HPC resources that have also contributed to the development of this
book chapter.

References

1. Stampede User-Guide, accessed on 2nd October 2013: http://www.tacc.utexas.edu/user-
services/user-guides/stampede-user-guide.

2. Henry M. Monti, Ali Raza Butt, Sudharshan S. Vazhkudai. 2010. CATCH: A Cloud-Based
Adaptive Data Transfer Service for HPC. In the proceedings of 25th IEEE International
Symposium on Parallel and Distributed Processing, 2010, Anchorage, Alaska, U S A.

3. Jiahua He, Arun Jagatheesan, Sandeep Gupta, Jeffrey Bennett, and Allan Snavely. 2010.
DASH: a Recipe for a Flash-based Data Intensive Supercomputer. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC ’10). IEEE Computer Society, Washington, DC, USA, 1–11. DOI =
10.1109/SC.2010.16 http://dx.doi.org/10.1109/SC.2010.16

4. High Performance Storage System, accessed on 2nd October 2013: http://www.hpss-
collaboration.org/

5. SunTM SAM-FS and SunTM SAM-QFS, Storage and Archive Management Guide, accessed on
2nd October 2013: http://docs.oracle.com/cd/E19598-01/816-2544-10/816-2544-10.pdf

6. IBM DB2 Software, accessed on 2nd October 2013: http://www-01.ibm.com/software/in/
data/db2/.

7. Aaron E Darling, Lucas Carey, and Wu-Chun Feng. 2003. The Design, Implementation, and
Evaluation of mpiBLAST. In Proceedings of 4th International Conference on Linux Clusters:

http://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide
http://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide
http://www.hpss-collaboration.org/
http://www.hpss-collaboration.org/
http://www-01.ibm.com/software/in/data/db2/
http://www-01.ibm.com/software/in/data/db2/

1108 R. Arora

The HPC Revolution 2003 in conjunction with the ClusterWorld Conference & Expo, San Jose,
CA, U S A.

8. William Gropp Ewing Lusk Anthony Skjellum, “Using MPI: Portable Parallel Programming
with the Message-Passing Interface”, MIT Press, 1999, pp. 1–371.

9. Gordon User-Guide, accessed on 2nd October 2013: http://www.sdsc.edu/us/resources/gordon/
10. Ranch User-Guide, accessed on 2nd October 2013: http://www.tacc.utexas.edu/user-services/

user-guides/ranch-user-guide
11. HPSS RAIT Architecture, accessed on 15th January 2014: http://www.hpss-collaboration.org/

documents/HPSS_RAIT_Architecture.pdf
12. Corral User-Guide, accessed on 2nd October 2013: http://www.tacc.utexas.edu/user-services/

user-guides/corral-user-guide
13. iRODS—Integrated Rule-Oriented Data System, accessed on 2nd October 2013:

https://www.irods.org/
14. Lustre File System, accessed on 2nd October 2013: http://wiki.lustre.org/index.php/Main_Page

(We may want to replace this obsolete page with the currently maintained one in http://build.
whamcloud.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.xhtml.)

15. Lustre Filesystem (Scratch Directory), accessed on 2nd October 2013: http://www.nics.
tennessee.edu/computing-resources/file-systems/io-lustre-tips.

16. Parallel HDF5, accessed on 2nd October 2013: http://www.hdfgroup.org/HDF5/PHDF5/
17. GridFTP, accessed on 15th January 2014: http://toolkit.globus.org/toolkit/docs/latest-stable/

gridftp/.
18. Greg Janee Justin Mathena James Frew. 2008. A data model and architecture for long-term

preservation. JCDL 2008, pp. 134–144.
19. ISOArchiving Standards, accessed on 2nd October 2013: http://nssdc.gsfc.nasa.gov/nost/isoas/
20. Report on Collection Based Persistent Archives, accessed on 2nd October 2013,

http://www.sdsc.edu/NARA/Publications/col-rep.html

http://www.tacc.utexas.edu/user-services/user-guides/ranch-user-guide
http://www.tacc.utexas.edu/user-services/user-guides/ranch-user-guide
http://www.hpss-collaboration.org/documents/HPSS_RAIT_Architecture.pdf
http://www.hpss-collaboration.org/documents/HPSS_RAIT_Architecture.pdf
http://www.tacc.utexas.edu/user-services/user-guides/corral-user-guide
http://www.tacc.utexas.edu/user-services/user-guides/corral-user-guide
http://wiki.lustre.org/index.php/Main_Page
http://build.whamcloud.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.xhtml
http://build.whamcloud.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.xhtml
http://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-tips
http://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-tips
http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/
http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/

Data Summarization Techniques for Big
Data—A Survey

Z. R. Hesabi, Z. Tari, A. Goscinski, A. Fahad, I. Khalil and C. Queiroz

1 Introduction

In current digital era according to (as far) massive progress and development of
internet and online world technologies such as big and powerful data servers we
face huge volume of information and data day by day from many different resources
and services which was not available to human kind just a few decades ago. This
data comes from available different online resources and services that are established
to serve customers. Services and resources like Sensor Networks, Cloud Storages,
Social Networks and etc., produce big volume of data and also need to manage and
reuse that data or some analytical aspects of the data. Although this massive volume
of data can be really useful for people and corporates it could be problematic as
well. Therefore big volume of data or big data has its own deficiencies as well. They
need big storage/s and this volume makes operations such as analytical operations,
process operations, retrieval operations real difficult and hugely time consuming. One
resolution to overcome these difficult problems is to have big data summarized so they
would need less storage and extremely shorter time to get processed and retrieved.
The summarized data will be then in “compact format” and still informative version

Z. R. Hesabi (�) · Z. Tari · A. Fahad · I. Khalil
School of Computer Science and IT, RMIT University, Melbourne, Australia
e-mail: zhinoos.razavi@rmit.edu.au

Z. Tari
e-mail: zahir.tari@rmit.edu.au

I. Khalil
e-mail: ibrahim.khalil@rmit.edu.au

A. Goscinski
School of Information Technology, Deakin University, Melbourne, Australia
e-mail: andrzej.goscinski@deakin.edu.au

C. Queiroz
IBM Research Laboratory, Melbourne, Australia
e-mail: caxqueiroz@gmail.com

© Springer Science+Business Media New York 2015 1109
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_38

1110 Z. R. Hesabi et al.

of the entire data. Data summarization techniques aim then to produce a “good”
quality of summaries. Therefore, they would hugely benefit everyone from ordinary
users to researches and corporate world, as it can provide an efficient tool to deal
with large data such as news (for new summarization).

The aim of this chapter is to provide an overall view of different data summariza-
tion techniques found in the literature including clustering, sampling, compression,
histograms, wavelets and micro-cluster with respect to their applications in the va-
riety of fields such as data mining. However the focus here will be the selection of
those techniques that are suitable for big data. Some aspects then need a careful
attention when dealing with big data, as therefore help selecting those techniques
that are suitable for big data. Volume of the data is the first and obvious important
characteristic to deal with when summarizing big data comparing to conventional
data summarization, as this requires substantial changes in the architecture of storage
systems. The other important characteristic of big data is Velocity. This requirement
leads to highly demand for on line processing of data where processing speed is
required to deal with data flows. Variety is the third characteristic, where different
data types such as text, image, and video are produced from various sources such as
sensors, mobile phones, etc. These three “V” (Volume, Velocity, and Variety) are the
core character tics of big data [1] which must be taken into account when selecting
data summarization techniques.

Summarization can be performed in various ways. We selected here the following
summarization techniques that are applicable for big data:

• Clustering is an unsupervised summarization technique that aims to gather similar
objects into a group called clusters. The similarity among objects can be deter-
mined through different metrics, such as distance. Clustering algorithms can be
categorized into different models such as hierarchal, partitioning, density-based,
and grid-based and so on.

• Sampling is another summarization technique that provides a concise and still
informative representation of the entire data set. A sample is a representative
of a larger group (population) which preserves the same characteristics of the
population and study is conducted on the sample instead of the population. There
are two main categories of sampling techniques, namely probability-based and
nonprobability-based, provide an efficient way to summarize big data.

• Compression is a well-known technique that represents data in a compact way to
save time and space. Lossless and lossy are two different compression methods
which are broadly used in different areas such as video and image coding. We will
explain a compression method based on a minimum description length principle
and its applications for data summarization in this chapter.

• Wavelets can be considered as a summarization technique that is mostly used in
image and query processing applications. Different wavelet transformations such
as Haar, and dimensional wavelets are used to transform data from one domain
to another one. We will show in this chapter how wavelet transformations can be
applied to summarize data.

Data Summarization Techniques for Big Data—A Survey 1111

• Histogram is a method used to represent a large volume of data in a compact
manner so that can be considered as a data reduction or summarization technique.
In fact, data distribution can be shown in a synopsis structure through histograms.
Since, we will discuss some various type of histograms, however we will not
elaborate on it further.

• Micro-clustering is a method to construct a synopsis model of data stream that
considers evolving behavior of data streams. In this chapter, we will explain
more details about micro-clustering as another summarization technique for data
streams.

The roadmap of this chapter is as follows. Next section discusses some applications
of big data summarization. Details about some of the well-known data summariza-
tion techniques available in the literature will be discussed. In this order, first each
technique will be explained and then a number of research directions that are con-
ducted on each technique will be briefly reviewed. However, readers referee to each
subject for more consideration because of the lack of space in this paper. Section 5
concludes our study.

2 Applications of Data Summarization

Summarization is considered as a descriptive task in data mining to provide a synopsis
representation of data. It makes many tasks such as preprocessing, analysis, and
management of data easier and faster and therefore overcoming the space and time
limitations. It reduces the size of data that may leads to obtain approximate results in
comparison with the exact results achieved from the original data that most of them
satisfy the user requirements considering saving time, cost and space. A major feature
of summarization is that reduced data is still informative and the approximate (or
sometimes the same interference) can be obtained from reduced data over the original
data. Therefore, with growing data in a phenomenal rate, big data summarization
has attracted many attentions to obtain compact data considering its accuracy and
performance.

In recent years, we are witness of producing the ever increasing amount of data
from different sources such as wireless sensors networks, Internet, mobiles devices,
RFID readers and so on. Many social networks and companies like Facebook, Twitter,
Yahoo, and Google are the main sources of generating big data. Mining, processing,
analyzing, and presenting these huge amount of data require of exponential time and
space. In this context, data summarization plays has played a key role in recent years
to reduce time, space, cost, accuracy and data content based on user’s applications.

Data summarization has been applied in a wide variety of fields with the number
of different applications, and below are just some of them.

• Medical informatics: Biology, genetics, clinic are examples of medical science
that apply some summarization techniques to meet different objectives. As an
application of summarization in medical science, we can mention to the clinical

1112 Z. R. Hesabi et al.

pathway analysis. Analyzing aggregated data from clinical path leads to focus
on process mining techniques towards discovering clinical pathway models from
data. Since collected medical data may be very large, the number of minded
patterns can be huge. Therefore, it is of interest to present a synopsis data de-
scribing the whole structure of clinical path, meanwhile exposing crucial medical
information in less time over the total time of complete pathway.

• Astronomy and earth science: Since very large data is produced through geol-
ogy, geography and astronomy sciences, summarization is brought up remarkably
in these areas to analyze, categorize and process extracted information from
aforementioned scientific fields.

• Social networks: In recent years, social networks such as Facebook and twitter
find a popular place among users through which vast amount of data are generated
daily. Analyzing and processing such large volume of data concludes spending
lots of time and space. Therefore summarization is concerned to tackle this issue
which leads to save time and space. Text summarization, exploratory search and
topic summarization for Twitter, sampling from diffusion networks, summariza-
tion of communication patterns in large-scale social networks can be regarded as
examples of summarization application for big data.

• Business and marketing: Ecommerce is getting more and more widespread
leading to generate the large number of customer reviews. Mining vast amounts
of reviews will be ended to use summarization techniques. Purchasing pattern
recognition and stock trend analysis also take benefit of summarization.

• World Wide Web: The importance of data summarization will be revealed in to-
day’s World Wide Web. For example, Web page summarization plays an important
role in web analysis. These summaries may satisfy the required information of
users by means of fast and accurate browsing and search. Network traffic analysis
and report generation are of applicability of summarization concept.

• Sensor Networks: Sensor networks produce large amount of data which require
to be analyzed to extract interesting information. Query processing is a common
task in sensor networks which need to process a large volume of data to transmit
the answer to the user. However, sometime approximate answers with reasonable
accuracy satisfy the requirement of user so that summarization is of interest in
data stream mining.

As shown above, data summarization has a broad applicability in different fields.
Therefore, it is of interest of many researchers to design and develop various sum-
marization techniques to present a compact and yet informative representation of
large data. In the remaining parts of this paper, we will provide an overview of
the most ever used summarization techniques and their applications in the litera-
ture stressing on large, very large or big data. The presented methods are including
clustering, sampling, compression, wavelets, histograms, and micro-clustering.

Data Summarization Techniques for Big Data—A Survey 1113

3 Clustering Algorithms

3.1 Background

One of the mostly ever used techniques with the purpose of data summarization is
clustering. This is an unsupervised process of collecting similar data objects in a
group, where data objects within a same cluster are more similar to each other than
to the objects in other clusters. The goal of clustering is to group similar objects
together to simplify further processing such as data mining, summarization, and
analysis.

To cluster data points, the following questions need to be addressed: What are the
similarity metrics that can be used to cluster data points in the same group? How
the similarities are measured? What type of data can be used in different clusters?
How the discovered clusters are evaluated? Is it possible to cluster all data points of
the entire data sets? Are the clusters having the same shape? How many clusters are
required to present data objects? And the last but not least question is how large a
data set could be to cluster its data points?

Answering these questions is a requirement of classifying clustering algorithms
into different categories. Amongst those that could be related to big data, one can
find Hierarchal, Partitional, Density-based and Grid-based algorithms. We also
like to note that in clustering data points, some issues as requirements of clustering
algorithms should be considered. Some examples are including scalability, dealing
with different type of attributes, finding arbitrary shape clusters, ability to cope
with outliers and noise, considering high dimensional data sets, interpretability and
usability.

To better understand of clustering algorithms, first we will identify different types
of data and then explain a preliminary principle of clustering algorithm, which is a
proximity measure, a common phrase to represent similarity s(i, j) and dissimilarity
d(i, j) measure between two data points, two clusters or a data point and a cluster.

Data Type In order to universal interpretation of data, data has been categorized
into two scale of measurement: qualitative and quantitative. The former includes
nominal scales and ordinal scales. The latter includes interval and ratio scales. In
addition to the mentioned measurement scales, there are other words to describe
types of data including categorical, numerical, binary, continuous, and discrete.

Similarity/Dissimilarity Measures Based on type of data, various similar-
ity/dissimilarity measures can be defined. Therefore, some similarity measures are
reviewed quickly in the following. One of the most used similarities metric is distance.
There are many distance measures which are mostly used in clustering algorithms
such as Minkowski, Manhattan or City block, Euclidean, Mahalanobis, etc. which
are described below.

1114 Z. R. Hesabi et al.

Minkowski Distance For two numerical points of xi = (xi1, xi2, . . ., xi1) and
xj = (xj1, xj2, . . ., xj1), Minkowski distance or Lp norm is calculated as following:

Dij =
[∑

d
l=1 |xil − xjl

∣∣1�n]n

An example of application of Minkowski distance can be found in [1].

Euclidean Distance Euclidean distance orL2 norm is a mostly common used mea-
sure distance in clustering algorithms such as [2] to find similar numerical objects
and tend to find hyper spherical clusters. It is a particular instance of Minkowski
at n= 2. It measures distance between two points of xi = (xi1, xi2, . . ., xi1) and
xj = (xj1, xj2, . . ., xj1) as follows:

Dij =
[∑

d
l=1 |xil − xjl

∣∣1�2
]2

K-means, CURE and BIRCH algorithms are some examples of clustering algo-
rithms that measure similarities between data points based on closeness via Euclidean
distance measure.

Manhattan/City Block Distance Considering Minkowski at n= 1 for two numer-
ical points of xi = (xi1, xi2, . . ., xi1) and xj = (xj1, xj2, . . ., xj1) gives Manhattan
or City block distance or L1 norm like in [3] as follows:

Dij =
[∑

d
l=1 |xil − xjl

∣∣].
Manhattan or City block distance normally causes finding hyper rectangular clusters.

Mahalanobis Distance Mahalanobis distance considers the correlation between
variables or the variance-covariance matrix. Hyper ellipsoidal clusters can be
discovered through applying Mahalanobis distance which is formulated as following:

Dij = (xi − xj)T S−1(xi − xj)
where S is the within cluster covariance matrix. Examples of Mahalanobis distance
can be found in [4, 5].

There are also different similarity and dissimilarity measures for categorical data.
The simple matching distance proposed in [6] is one of the well-known one to measure
dissimilarity between categorical data. Let be x and y as two categorical data points.
The simple matching distance between x and y is computed as follows:

δ (x, y) =
⎧⎨
⎩

0

1

if x = y
if x �= y

For two categorical data points of x and y with l attributes, dissimilarity metric based
on the simple matching distance is calculated:

dsim(x, y) =
l∑
j=1

δ(xj , yj)

Data Summarization Techniques for Big Data—A Survey 1115

Note that there are far more similarity/dissimilarity measures in the literature. How-
ever, due to the lack of space, we have only explained the most common ones and
listed some of them in the following.

Some other dissimilarity measures for numerical data are Mean character differ-
ence [7], index of association [8], Canberra metric and Coefficient of divergence [9],
and Czekanowski coefficient [10]. Some matching coefficients measures for nominal
data are Russell and Rao [11], simple matching [12], Jaccord [13], Rogers-Tanimoto
[14], Kulczynski [15]. There are also some similarity measures for binary data such
as Jaccord, Dice, Pearson, Sokal-Sneatha/b/c/d, Yule, Ochiai which some of them
are summarized in [16]. The other metric that consider the similarity between groups
of objects is linkage criterion or connectivity between them.

After presenting some of the concepts related to data clustering, we will consider
some of the most prominent clustering algorithms found the literature, relevant to
the topic of the handbook, namely big data stored and managed in data centers. T
rest of this section focuses on clustering of very large data sets; therefore we will
only describe those clustering algorithms that can be applied on very large data sets
with the aim of summarization.

3.2 Hierarchical Clustering

Hierarchical clustering, also called Connectivity-based clustering, is one of the clas-
sical approaches for data summarisation. It creates clusters in the form of a tree in
which each cluster is represented as a node. The main idea is the structured-based on
proximity measure, where the nearby objects are clustered into a group. Therefore,
distance between objects plays a pivotal role in the clustering of the data objects.

Tree-based hierarchal clustering algorithms can be formed into two types: Bot-
tom up (Divisive) and Top down (Agglomerative). In former approach, the clustering
process starts from root in such as way the entire data set is considered as a large
cluster in root; later it iteratively splits data into partitions, where it terminates at
leaves level. There are two good examples of divisive clustering algorithms, namely
MONA and DIANA. These are detailed in [17] and some applications of such algo-
rithms are given in [18]. In the agglomerative clustering algorithm, each data point
is considered as a single cluster at the leaf level, and then every two closest clusters
based on proximity measures will be merged up together to achieve a single cluster
at the root tree.

Although a broad range of agglomerative hierarchal clustering algorithms exist
in the literature such as single linkage clustering [19], complete linkage clustering
[20], group average clustering [21], and centroid method [21], just some of them can
be applied for very large data sets which is the focus of this chapter. The prominent
reason that the above clustering algorithms are not selected to cluster large data sets
is their quadratic computational complexity which is a function of number of data
points.

1116 Z. R. Hesabi et al.

As there are several deficiencies with hierarchical clustering algorithms, new
algorithms were proposed to cover their shortcomings, such as the high degree of
sensitivity to noise and outliers, incapability of correcting previous misclassification
and unclear termination criterion. It should be noted that highlighting defects of
hierarchal clustering algorithms does not contravene their important benefits, such
as handling any forms of similarity or distance, covering different type of attribute
and not requiring knowing the number of clusters in advance. Considering all pros
and cons of hierarchal clustering algorithms, this has led to describe some other
hierarchal clustering algorithms that could be applied on large data sets, such as
BIRCH, CURE and ROCK.

• BIRCH [22] employs a tree structure, called CF Tree (Clustering Feature Tree).
This tree is a height-balanced one and consists of leaf and intermediate nodes
where each of them has certain entries. The number of entries is constrained by
two branching factors, noted as B and L. The B factor is a maximum number
of entries for each intermediate node, and the factor L represents the maximum
number of entries for each leaf node. Each entry of intermediate node is in the
form of [CFi , Childi], in which CFi is a summary information consisting a 3-tuple
<N, LS, SS>, where N is the number of data points in a cluster, LS is the linear
sum and SS is the square sum of the N data points in a cluster and Childi is a
pointer to its ith child node. Entries of the leaf nodes are also in the form of [CFi].
The number of leaf entries is controlled by a threshold T which is set to 0 by
default. The height of tree is also defined by T. The larger T leads to the smaller
tree.
This algorithm is a local one since it does not scan all the data points once and it
starts with sub-clustering of leaf entries via closeness metric. Five alternative met-
rics were used to measure closeness of clusters, and these include the followings:
centroid Euclidian distance, centroid Manhattan distance, average inter-cluster
distance, average intra-cluster distance and variance increase distance. The algo-
rithm clusters dense area as a single cluster and remove sparse area as an outlier.
It starts by building a CF tree dynamically and incrementally based on available
memory and adjustable threshold of T. Each entry is inserted to CF tree based on
the closest child node metric in leaves. If the number of entries of a leaf node does
not exceed L, then a new entry is inserted to this leaf node otherwise the leaf node
is divided and this division will be continued in ascend trend in the CF tree till a
node, whether leaf or intermediate node, is found that has capacity to add more
entries. If this trend presumes up to the root, the root of CF tree will be split and
therefore the height of tree will be increased by one.
Since CF tree is built based on agglomerative algorithm which is a bottom up
approach as previously explained therefore, a new cluster in an upper level of
CF-tree is constructed through merging two sub-clusters in lower level of CF
Tree. In order to do that, Additivity theorem is used to merge two clusters. Based
on Additivity theorem, CF vectors of two clusters are computed as below if two
clusters are merged

CFm = CF1 + CF2 = (N1 + N2, LS1 + LS2, SS1 + SS2)

Data Summarization Techniques for Big Data—A Survey 1117

where CFm is a clustering feature of newly merged cluster. The insertion operation
in CF Tree is similar to B+ -tree and also an Additivity Theorem is used to build
a CF Tree.
BIRCH’s main goal is to minimizing running time, memory and data scans. It
also makes clustering decisions without scanning the whole data, group dense
area as a single cluster and handle sparse area as outliers by removing them.
Hence, it can handle outliers. Despite BIRCH’s advantageousness, it has some
deficiencies. One of the major problems of BIRCH is that it cannot perform well
in face of non-spherical shape clusters since boundary of a cluster is controlled by
the notion of radius or diameter. As it has been mentioned earlier, BIRCH clusters
data points by using clustering features of the original data instead of using the
whole data and consequently it causes to reduce storage space and frequent I/O
operations, and also its computational complexity of O(N) makes it to be used to
cluster very large data sets by making the time and memory constraint explicit.
Several extensions of BIRCH were proposed, which we briefly described here. A
clustering algorithm is proposed [23] where its pre-clustering phase is similar to
BIRCH. In this way that, the whole data set is scanned to find the dense areas and
then clustering of dense regions are performed by applying a hierarchal clustering
algorithm and making CF tree. In contrast with traditional clustering algorithms
(that can deal with one of those attribute type), this algorithm can handle both
continuous and categorical attributes. Therefore, clustering feature CF has been
changed to CFj = (Nj , SAj , S2

Aj , NBj), where Nj shows the number of data
spots in cluster Cj , SAj is the sum of consecutive features, S2

Aj is the square
sum of consecutive features of Nj data spots, and NBj is a d-dimensional vector
representing the value of categorical attributes and distance of pair of clusters is
measured by log-likelihood function.
BIRCH is generalized in [24] into a wider framework, called BIRCH*, in distance
spaces. This framework is based on two algorithms named as BUBBLE and
BUBBLE-FM. Parameters of CF vector in BIRCH* are a sum of the squared
distance of a data point to other data points, centroid of the cluster which is
determined based on minimum squared distance and the radius r of the cluster
which are components to build the CF-Tree. BIRCH has been extended in many
more studies such as [25–27] and [28].

• CURE (Clustering Using REpresentatives) [25] is another hierarchal clustering
algorithm. Unlike BIRCH, CURE is robust against outliers and can deal with
arbitrary-shape clusters. The handling of arbitrary shape clusters is due to the
fact that each cluster is represented by a set of representative points instead of
a single centroid or all-points. Therefore, it can find non-convex shape clusters.
Furthermore, this set of representatives is shrunk towards centroid through an
adjustable parameter ∝= [0,1] to deal with outliers. Shrinkage causes outliers
come closer to the centroid of the cluster to avoid wrong clustering.
CURE is designed to apply for large data sets by using random sampling and
partitioning. First, a sample of data set is chosen randomly, and then this sample
is partitioned to K equal partitions. To reduce time complexity, these partitions

1118 Z. R. Hesabi et al.

are pre-clustered like pre-clustering phase of BIRCH and then an agglomerative
hierarchal clustering is applied on each pre-cluster partition. At the end of the
process, a label is assigned to each data points based on its distance from repre-
sentatives. CURE applies two data structures in its algorithm, namely kd-tree and
heap-tree. CURE stores its representatives in kd-tree and clusters are stored in
the heap-tree date structure. The time complexity of CURE is O (N2

sample) which
depends on the number of sampling data and the number of partitions.

• ROCK (RObust Clustering using linKs) [26] is an agglomerative hierarchical
clustering algorithm that groups categorical data points through the non-metric
measures. The two metrics that measure either Euclidian distance in hierarchal
clustering algorithms or a criterion function (such as square error) in partition clus-
tering algorithm cannot properly measure similarity for categorical data points.
Therefore, two similarities metrics were introduced in ROCK to enable accurate
merging as well as clustering of data points. These metrics are: sim (pi ,pj) to
consider neighbors of a point and link (pi ,pj) to define the number of common
neighbors between two points pi and pj . The similarity measure is defined as
follow:

Sim (T1, T2)=
|T1 ∩ T2|
|T1 ∪ T2|

where | Ti | is the number of items in the transaction Ti and Sim(T1, T2) ≥ θ ;
0 ≤ θ ≤ 1. Data points are considered as transactions in market basket. If no
similarity is found between transactions, then θ = 0; meaning means that any pair
of transactions can be neighbors of each other. If θ= 1, therefore only identical
transactions can be considered as neighbors of each other. Thus, it is important to
properly define θ , which is a user-specified parameter based on desired closeness.
The number of links between a pair of points also indicates the probability whether
data points are presented in a same cluster or not. The larger link is, the more
probable two points belonging to the same cluster. Using links allows ROCKS to
be robust. It is important to note that ROCK clusters data points in a similar way
to CURE does, however the difference is that ROCKS used links and different
similarity measures instead of distance measure. It can also handle outliers as well.
Finally, ROCK uses random sampling and labeling techniques, which makes it a
good approach to deal with very large data sets.

Table 1 provides a summary of characteristics of these three well-known algorithms
described earlier, namely BIRCH, CURE and ROCK. Our investigation regarding
such clustering approaches for big data can be simply summarized as follows: BIRCH
is suitable for large data sets where finding spherical shape clusters in a linear time
is required. CURE can be used to search arbitrary-shape clusters of numeric data
in large data set. CURE is robust against outliers. Furthermore, CURE can be fit
in available memory since a random sample of large data set is chosen to perform
clustering. ROCK will tackle with the presence of categorical data in large data sets.

Data Summarization Techniques for Big Data—A Survey 1119

Table 1 Characteristics of BIRCH, CURE and ROCK clustering algorithms

Algorithms for
large data sets

Type of data Cluster shape Time complexity Space complexity

BIRCH Numerical Spherical O (N) –

CURE Numerical Arbitrary O (N2
sample log Nsample) O (Nsample)

ROCK Categorical – O (N2
sample log Nsample+

N2
sample + kNsample)

O (min
{
n2, nmmma)

3.3 Partitioning Clustering

In Partitioning clustering algorithms, a data set is partitioned into k partitions with
n objects within each partition using a predefined objective function. Minimizing
square error function is as an objective function which is computed as follows:

E =
∑∑

||p –mi||2
where p is a data point in a cluster and mi is the mean of the cluster. As the
centroid/medoid-based algorithm considers all possible partitions, this is not practi-
cal for large data sets due to its high computational complexity. Hierarchal clustering
algorithms cannot undo in their clustering phases, meaning that if two clusters are
merged, it is not possible to obtain the two original clusters before merge operation
by splitting the merged cluster. Therefore, a few heuristic methods are used to deal
with this issue, such as k-means and k-medoids. In partitioning algorithms, it is pos-
sible to move an object from one cluster to another cluster to improve the clustering
quality conversely hierarchal clustering algorithms. Howbeit, if a point is nearby to
the center of another cluster, it maybe causes overlapping problem. Here we sum-
marize some of the well-known partitioning algorithms and we briefly explain how
they deal with very large data sets.

• K-Means [27, 28] is probably one of the most known partitioning algorithm. It
divides data objects into k partitions in such a way that each object is assigned to
the nearest cluster center. This operation is continued till visiting all data objects,
and then the centroid is recalculated to achieve better clustering. The number of
clusters (namely k), cluster initialization and distance metric are user-specified
parameters, in which selection of k is the most challengeable task. Therefore,
K-means is a heuristic algorithm and run several times to find better partitions
with the smallest squared error since it aims to minimize the within-cluster sum
of square.
K-means is a greedy algorithm with time complexity of O(TKN), where N is the
number of objects, K is the number of clusters and T is the number of iterations. T
and K can be ignored since they are negligible in comparison with N. Therefore,
K-means algorithm is scalable and suits for large data sets because of its linear
complexity. However, the numbers of clusters are needed to be defined in advance;
K-means has limitations when dealing with outliers and discovering non-convex

1120 Z. R. Hesabi et al.

cluster’s shape. K-means is also not suitable for categorical data and usually
terminates at local optimum.
K-means utilizes the Euclidean distance so spherical shaped clusters are founded
in this way. However, it is based on Mahalanobis distance to discover hyperellip-
soidal clusters [29] with a higher computational cost.
Several extensions of K-means were later proposed to deal various aspects, such
as cluster size, merge and split operations. ISODATA (Iterative Self-Organizing
Data Analysis Technique) and FORGY are proposed in [30] and [31] respectively
are some examples which were proposed in the field of pattern recognition. In [32]
and then [33] some changes in K-means are made in terms of type of clustering
(hard, in which each object belongs to just one cluster and in contrast in soft, each
object can belongs to multiple clusters). This is called Fuzzy c-means. Another
approach is proposed in [34] to make Fuzzy c-means and K-means faster through
data reduction by replacing group examples with their centroids before clustering.
Bisecting K-means [35] is another example, where it divides data recursively
into two clusters at each phase. Another interesting extension of K-means is
presented in [36], and it applies kd-tree to discover the closest cluster centers. In
[37], x-means is proposed to defines k using Akaike Informatio Criterion (AIC)
or Bayesian Information Criterion (BIC). Finally, Kernel K-means [38] and K-
medoid [39] are the other extensions of K-means.

• CLARA (Clustering LARge Applications) [39] deals with the deficiencies of the
clustering algorithms previously above using PAM (Partitioning Around Medoid)
algorithm [39], which has a time complexity of O (k (n − k)2), where k is the
number of medoid objects and n is the number of non-medoid objects. Despite the
attempt to fix the limitations of clustering algorithms, PAM is not an appropriate
algorithm to be used for large data sets because of its time complexity.
PAM is a medoid-based clustering algorithm. Medoid is a data point located
roughly in the center of a cluster. PAM starts by finding k medoids randomly as
representatives of each cluster and form k clusters. Then through the use of a brute
force approach, it finds the best k medoids between all pairs of the entire data set to
perfectly cluster k partitions. Obviously this is the reason for its high complexity.
CLARA takes benefit of PAM algorithm by applying it on a random sample of
the data set instead of the whole set. CLARA takes multiple samples from the
data set and then applies PAM on each sample to find the best k medoids among
the sampled data. After that, CLARA attempts to discover the most similar data
points to each k medoids from the entire data set to form k clusters. However, there
is not guarantee that CLARA can find the best k medoids during the sampling
process and also does not achieve the best clustering.
As it is mentioned, the problem with PAM is that it stores all pair-wise distances
between objects which is space consuming and it is also not an option to apply
for large data sets. However CLARA does not consider the whole dissimilarity
matrix through sampling, which leads to achieve linear complexity in terms of
time and space. So CLARA can be applied in large data sets.

• CLARANS (Clustering LargeApplications based upon Randomized Search) [40]
is an improved version of CLARA in terms of quality and scalability. This can

Data Summarization Techniques for Big Data—A Survey 1121

Table 2 Summaries of some of the characteristics of K-means, CLARA and CALARANS

Algorithms for
large data sets

Type of data Cluster shape Time complexity Space complexity

K-means Numerical Spherical O (NKd) O (N+ k)

CLARA Numerical Arbitrary O (k(40+ k)2 + k(N−k))+ –

CLARANS Numerical Arbitrary Quadratic –

be applied for large and high dimensional data sets since it uses a randomize
search to cluster data points. CLARANS is also suitable to find polygon objects.
The clustering process in CLARANS is similar to a search process in a graph.
Each node in the graph is a representative of a set of k medoids. Two nodes are
neighbors if their set of medoids differs by one. The algorithm starts with a random
node and max-neighbors are checked in a random way to find better partition. If
the neighbors provide a better partition, this process resumes with a new node;
otherwise, the search stops by finding a local minimum. This iteration continues
to find several local optimums, and the “best” local optimum is considered as
clustering output.
CLARANS and CLARA are similar in terms of sampling. However, there is
a difference between them when choosing samples from a data set. Although
CLARANS does sampling for a set of neighbors of a node and does not consider
all neighbors of a node, it does not restrict a search to a localized area. This
means that CLARA draws a sample from the whole data set and then works
on the selected sample, while CALARANS draws a sample of neighbors and
dynamically changes this sample and so works on all data set not just on a particular
sample of the entire data set. Since CLARANS considers local area at each step,
it can detect outliers more precise than CLARA and it is more resistant to deal
with increasing dimensionality.

Table 2 summarises some features of K-medoids, CLARA, and CLARANS in terms
of complexity, data type, and cluster shape. These tree aforementioned partitional
clustering algorithms can be applied for large numerical data sets. However, K-means
is appropriate to find clusters of spherical shape, while CALAR and CLARANS can
find any arbitrary shape clusters. For clustering large data sets, CLARANS demon-
strates better quality and efficiency than CLARA in discovering clusters, however it
fails to enables clustering very large data set because of its quadratic time complexity.

3.4 Density-Based Clustering Algorithms

In Density-based algorithms, clusters are created based on highly dens areas over
the remainder areas and the sparse area are classified as noise or border area. In
this way, they can deal with outliers and non-convex shape clusters. Some of the
mostly used density-based algorithms for large and high dimensional data sets are

1122 Z. R. Hesabi et al.

DBSCAN, DBCLASD, GDBSCAN, DENCLUE, and OPTICS which are briefly
explained below.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [41]
defines clusters using the concept of density reachability. Simply, a point q is directly
density-reachable from a point p if this is not farther away than a given distance.
Neps and the minimum number of points (MinPts) are critical factors for DBSCAN
to generate a cluster. This algorithm starts with a random or arbitrary point, and
if sufficient neighbors are surrounded within the range of eps-neighborhood of a
selected node, a cluster is then formed. Otherwise, the point is considered as noise.
However, it is possible that a rejected point (noise) to be reconsidered as a part of
a cluster if this meets specific conditions. If a point is found to be a dense part of
a cluster, its eps-neighborhood is also part of that cluster. Hence, all points that are
found within the eps-neighborhood are added, as is their own-neighborhood when
they are also dense. This process continues until the density-connected cluster is
completely found. Then, a new non-visited point is retrieved and processed, leading
to the discovery of a further cluster or noise.

DBCLASD (Distribution Based Clustering of Large Spatial Databases) [42] is
an incremental density based clustering algorithm that uses a uniform distribution of
data points in a cluster. Nearest neighbor distance is a key parameter through which
clusters are formed. This algorithm builds clusters incrementally, meaning that it
does not require loading the whole dataset into the memory and it processes each
data point on time. It is also named online clustering. Arbitrary shape clusters are
discovered in this algorithm and it does not need any input parameter because of this
is called independent user-specified parameters algorithm. However, the problem is
that it is an order dependent algorithm.

GDBSCAN (Generalized Density Based Spatial Clustering of Applications with
Noise) [43] is a generalized version of DBSCAN. Two definitions were changed in
this algorithm. First, it changes the definition of neighborhood by a symmetric and
reflexive binary predicate. This means that any binary predicate which is symmetric
and reflexive can define a neighborhood like intersect predicate to identify neighbor-
hood in polygon. The second change, to obtain cardinality of a neighborhood, other
measures such as non-spatial attribute are used instead of direct enumerating data
objects of a neighborhood’s object.

DENCLUE (DENsity-based CLUstEring) [44] is build based on the idea that
every data point has an impact within its neighborhood, which is mathematically
modeled through influence function. In addition, sum of influence functions are
computed to obtain density attractors that are local maxima of the overall density
function to define clusters. DENCLUE is robust against noise and outliers. It can
handle arbitrary shape clusters in high dimensional data set. It is faster than DBSCAN
since it uses grid cells and just keeps information of grid cells in a tree-structure
access. In spite of all these advantageous, DENCLUE needs to choose the density
parameter and noise threshold carefully since they have a remarkable impact on the
clustering quality.

OPTICS (Ordering Points To Identify the Clustering Structure) [45] is an algo-
rithm for finding density-based clusters in spatial data. The rationale behind OPTICS

Data Summarization Techniques for Big Data—A Survey 1123

Table 3 A comparative study of the various clustering algorithms

Algorithms for
large data sets

Type of data Cluster shape Time complexity

DBSCAN Numerical Arbitrary O(NlogN)

DBCLASD – Arbitrary Roughly 3 times of DBSCAN

GDBSCAN – – O(n* runtime of a neighborhood query)

DENCLUE Numerical Arbitrary O(NlogN)

OPTICS Numerical Arbitrary O(NlogN)

* stands for multiply

is similar to DBSCAN, however it addresses one of DBSCAN’s major weaknesses:
the detection of meaningful clusters in variable density data set. To do so, the points
of the database are (linearly) ordered such that points are spatially closest become
neighbors in the ordering. Additionally, a special distance is stored for each point
that represents the density that needs to be accepted for a cluster in order to have
both points belong to the same cluster. This is represented as a dendogram.

Table 3 summarizes some the features of the described density based clustering
algorithms. As seen, they can be applied for large data sets including numerical data.
All of them are capable of finding arbitrary shaped clusters.

3.5 Grid-Based Clustering Algorithms

Grid-based clustering algorithms generate a finite number of cells by quantizing
data space and make a grid structure to perform clustering process on it. Since
these methods are dependent on the number of cells in each dimension and not
on the number of data objects, their processing time is very fast. STING, CLIQUE,
GRIDCLUS, Wave Cluster, FC and OptiGrid are examples of well-known grid-based
clustering methods applicable in large and high dimensional data sets.

The main idea behind Grid-based clustering methods is taken from [46, 47] and
can be summarized as follows:

1. “Creating a grid structure, i.e., partitioning the data space into a finite number
of non-overlapping cells;

2. Calculating the cell density for each cell;
3. Sorting of the cells according to their densities;
4. Identifying cluster centers;
5. Traversal of neighbor cells”.

Also mentioned in [48], some of the main characteristics of the grid-based methods
are as follows: (1) no distance computations; (2) clustering is performed on summa-
rized data points; (3) shapes are limited to union of grid-cells; and (4) the complexity
of the algorithm is usually O (# populated-grid-cells).

1124 Z. R. Hesabi et al.

STING (Statistical Information Grid-based clustering) [49] decomposes the spa-
tial data into rectangular cells and represented by a hierarchical tree. Likewise
BIRCH, STING makes data summaries in this way that statistical information such
as mean, maximum and minimum values, standard variation and distribution type
are stored in each cell. STING is a query independent method since grid-cells store
statistical information as summary information which is independent of the query.
Incremental updating and parallelization are suitable for this grid structure. In addi-
tion, Time complexity of STING is O (K), where K is the number of grid cells at
the lowest level. Despite all of advantageous of STING, its performance depends on
the granularity of the bottom layer of grid structure. Moreover, created clusters are
enclosed horizontally or vertically not diagonally which impacts on the quality of
clustering.

WAVECLUSTER [50] is originated from signal processing and it transforms
spatial data into a frequency domain to find a dense area in the frequency domain.
In this way, different clusters with different resolutions and scales are obtained. The
computational complexity of wavelet transformation is O (N), where N is number of
objects in the data space. WaveCluster can handle outliers and works very well with
high dimensional spatial data. It is able to find arbitrary shape clusters. Moreover, it
is not required to know the number of clusters in advance.

GRIDCLUS [51] is used on the space surrounding the data values instead of the
data by taking benefits of multidimensional data grid. A neighbor search algorithm
is applied to cluster blocks organizing patterns. This algorithm consists of five main
steps: (1) insertion of points into the grid structure, (2) calculation of density indices,
(3) sorting the blocks with respect to their density indices, (4) identification of cluster
centers, and (5) traversal of neighbor blocks.

FC [52] is a self-similar clustering algorithm in which self-similarity is measured
by applying concept of fractal dimension through Hausdorff dimension. FC incre-
mentally adds points into the cluster and after clustering, there is not any radical
change in the cluster’s fractal dimension. Since the space is partitioned into the cells
of a grid, it is counted as a grid based clustering algorithm. FC scans the data once
and it is a suitable clustering algorithm for large data sets and high dimensional one.
It can handle noise and also discover clusters of arbitrary shape.

OptiGrid [53] uses a grid clustering algorithm that is applied for high dimensional
data sets. It runs in the way that the whole data set is recursively partitioned into
different subsets to find optimal grid partitioning. “Optimal” grid partitioning is
achieved by finding good cutting plane for each cluster recursively through a set of
contracting projections.

CLIQUE (Clustering in QUEst) is proposed in [54] in which subspaces of
k-dimensional data set are defined to find their dense areas to present a cluster in
k-dimensional data space. It identifies subspaces of a high dimensional data space
to achieve better clustering than original space. To find dense regions in a subspace,
each dimension is divided into equal intervals. A dense area is found when the number
of data points in this area exceeds a defined threshold. Also a cluster in a subspace
is a maximal set of connected dense units. Therefore, after identifying subspaces
containing clusters, it finds dense areas and connected dense areas in all subspaces

Data Summarization Techniques for Big Data—A Survey 1125

Table 4 Comparisons of time complexity and applicability of clustering algorithms for high
dimensional data

Clustering Algorithms
for large data sets

Capability to apply in
high dimensional data

Time complexity

Wave Cluster No O(N)

STING O(number of cells at the bottom layer)

FC Yes O(N)

CLIQUE Yes Linear with the number of objects and
quadratic with the number of dimensions

OptiGrid Yes Between O(Nd) and O(NlogN)

of interest, and then through MDL principle clustering is terminated. CLIQUE auto-
matically identifies subspaces, it is not sensitive to the size of input and the number
of dimensions and it can scale linearly. However, it is a simple method that causes
to lose the accuracy of the clustering (Table 4).

To conclude on clustering algorithms, the reader may refer to some other interest-
ing [55–57]. This section however had a focus on analyzing some specific algorithms
that can be used for very large data sets.

4 Sampling

The definition of sampling from Merriam Webster dictionary is “the act, process,
or technique of selecting a representative part of a population for the purpose of
determining parameters or characteristics of the whole population.” Based on this
definition, sampling can be considered as a summarization technique that could
reduce time and space by just observing a part of the whole data set that is still
informative instead of the entire data set.

With the advent of digital technology, many data storages bear a huge volume
of data that need to be process and analyze to meet user’s requirements. However,
considering this huge amount of data demands a lot of time and cost. So for tackling
these issues, sampling techniques have been applied widely in many research areas
such as data mining, data management, query optimization, approximate query an-
swering, statistics estimation and data stream processing which meet the purpose of
summarization.

Therefore, before going through explaining different sampling techniques, it
might be better to describe some preliminaries useful for the reader to understand
sampling techniques.

• What is a sample? A sample is a representative of a larger group (population)
which preserves the same characteristics of the population and study is conducted
on the sample instead of the population.

• What is population? Population is the large group of data from which sample is
taken to do study on it.

1126 Z. R. Hesabi et al.

• What is a frame? Sampling is performed on a special set of population which is
called frame.

• What is the aim of sampling? Generalization of an induction derived from a data
collection (sample) to the population is the main goal of sampling.

• What is sampling error? Since statistical characteristics of a population are il-
lustrated by a sample, it is expected to encounter sampling error which is the
difference between sample and population or in the other words, from statistics
and optimization study, statistical error is the difference between observed value
(sample) and unobserved value (population).

• What is sampling bias? Sampling with unequal probability of being selected
individual data points (sample) from a data set (population) is indicated as bias
sampling which is a non-random sampling.

After explanation of these preliminaries, let us consider the different sampling meth-
ods. There are various sampling techniques to meet different aims of wide range of
applications; however most of them use the following steps to take sample from a
data set.

• Define population (N) to be sampled.
• Determine sample size (n).
• Control for bias and error.
• Select sample.

As a matter of fact, some factors should be concerned in selection of a sampling
technique such as degree of accuracy, research objectives, resources, time frame,
knowledge of population, research scope and statistical analysis requirements.

This section aims at reviewing some of the primary sampling techniques and
their extensions looking back their summarization aspect. To avoid confusion, it
should be mentioned that we will use the terms data set and population interchange-
ably throughout this section. In general, sampling techniques are categorized into
two main groups of probability-based and non-probability-based sampling. Sam-
pling algorithms that give an equal chance of being selected to all data points are
considered as probability or unbiased sampling. While, biased sampling algorithms
consider data points with different probability and sampling rate. Based on study
of the literature on probability and non-probability sampling techniques, the most
common methods of probability-based sampling are simple random sampling, sys-
tematic sampling, stratified sampling, and clustering sampling. Meanwhile the most
common non-probability sampling is accidental sampling, quota sampling, snowball
and purposive sampling. All these techniques are described below.

4.1 Probability Sampling

A) Simple random sampling Simple random sampling [58] is one of the basic
sampling techniques in which probability of being chosen of each individual data
point as a sample is as equal as other data points in the data set. Simply speaking,

Data Summarization Techniques for Big Data—A Survey 1127

every data point has an equal chance to be selected as a sample. The data points
are numbered from 1 to n and then a sample including some random number is
chosen from them. Simple random sampling can be performed into two ways: with
replacement and without replacement. In the former, every time a data is drawn from
the data set, this is replaced to the data set and gets a chance to be re-selected with
the same probability in the next round. In the latter means, every data point can be
selected once and after a selection, it is removed from data set and it is not considered
any more.

The advantage of random sampling is that it is really easy to perform with min-
imum insight from data set in advance. However, it needs to have a list of all
population. There is a broad study of random sampling for various applications
in the literature. We briefly review some of them in this section. In the context of
large, very large or big data set, analyzing and processing such large data takes
time and sometime it is not possible to store the whole data set such as data stream.
Therefore, to accelerate performing these tasks, random sampling (which does not
require pre-knowledge of data) can be helpful in this way to efficiently process and
analysis data and be performed on a small part of the entire data (sample) which
is still informative and accurate. Approximate answer can be obtained in a faster
way instead of considering the massive volume of data. Therefore sampling can be
considered as a good summarization technique for big data.
Random Sampling with Reservoir [59] solves the issue of selecting a sample size
of m without replacement, randomly from a data set of size N (N elements), where
N is not known in advance. It is an extension of random sampling that is one of the
classical uniform schemes, and also is an infrastructure for many uniform sampling
methods such as concise sampling, dynamic inverse sampling, chain sampling, and
distinct sampling.

In the sampling algorithm, a reservoir maintains a fixed size uniform random
sample of k that is drawn during a sequential pass through the data set. This means
that the first n data points are added to a reservoir. Then, by arriving n + 1th data
point, one of the existing data point in the reservoir is randomly chosen to be deleted
and therefore makes space for new data points in the reservoir since the size of the
reservoir is fixed and it is required to keep it constant.

The unbiased reservoir random sampling is performed with average CPU time of
O (n (1+ logN /n)).

In [60], the authors also proposed an online algorithm to choose a sequential
random sample of n from a data set of size N with minimum memory requirement.

A sampling method is described [61] to summarize data traffic in vehicle to vehicle
(V2V) space. Previous sampling methods (such as sliding Window, Reservior Sam-
pling and Exponentially biased reservoir sampling) consider incoming traffic flows
that are increasingly ordered based on data arrivals; therefore there was a limitation
in this context. In fact, they investigated the case the data traffic is disorder because of
transmission delays and multiple sources. They extended the early sampling method
and made some changes to make them compatible with disorder data streams. They
also proposed another sampling method, called Polynomially Biased Reservoir Sam-
pling (PBRS), which is applicable for multi-dimensional sampling tasks. In this way,

1128 Z. R. Hesabi et al.

a huge volume of traffic data can be summarized to be considered as data stream and
used this summary to predict upcoming traffic data and its conditions.

The reservoir sampling method is improved within DSS (distance-based sampling)
algorithm [62] for transactional data stream to cover deficiency of low performance
of reservoir in dealing with small sampling. They enhanced accuracy of reservoir
sampling by using and comparing Euclidean distance function and re-ranking step
in arriving new transaction to decide whether include to sample or not.
Acceptance/Rejective sampling is based on Bernoulli design, where every data
point can be included in the sample. It is subjected to an independent Bernoulli trial
that has an outcome that could be Success (1) or Failure (0). Every data point can be
randomly included in the sample. Therefore, if the probability of success is shown
by p, the probability of failure is q = 1−p. Given n independent Bernoulli trials, then
the probability of m success is mathematically shown as follows, which is called
Binomial distribution.

P(m) = (nm)pmq(n-m).

In Acceptance/Rejective sampling [63], a candidate is obtained where acceptance
or rejection of candidate depends on meeting some user-specified conditions. If it
meets condition, then it is accepted to be included in sample; otherwise, it is rejected
and next candidate will be selected repeatedly.
Chain sampling and priority sampling are two extensions of reservoir sampling
[64]. The problem is how to select a sample from a moving window of recent data.
The chain sampling deals with expired data in this way that a constant size sample
of k is taken from window size of W. Whenever a new data i arrives, its chance to be
taken as sample is 1/min (n, W) and if so, then an index from domain of (i + 1,. . . ,
i + n) is candidate to be swap with i, when ith data point is expired and this process
of finding a substitute for newly arrived item is continued like a chain. This approach
is applied on sequence based windows with space complexity of O(kLogn).

They also considered the case that window size is not constant and it is time stamp
based. A priority between 0 and 1 is allocated to newly arrived data points and the
highest priority will be chosen to be included in the sample. The space complexity
of priority algorithm is also not more than O(kLogn) without any prior knowledge
of size n.

Biased Reservoir Sampling Reservoir sampling is an unbiased sampling algorithm,
where data points have equal chance of being selected as a sample. This unbiased
sampling approach may have some deficiency in coping with evolving data streams.
Indeed, after a period of time, some parts of a sample may be less related and
therefore get “useless” because of evolution of the data stream. Then, since recent
history of evolving data streams are more considered than the rest of data stream,
the probability of their appearance in the sample should be changed and they don’t
have the same probability over the other part of data streams for sampling. A biased
reservoir sampling is proposed in [65] and employs a memory-less bias functions to
use replacement algorithm in the occurrence of stream evolution.

Data Summarization Techniques for Big Data—A Survey 1129

Random Pairing As mentioned earlier, Reservoir sampling method cannot deal
with expired data. This means that reservoir sampling can handle only updates and
insertions, and not the deletions. To deal with this issue, a new sampling method is
proposed in [66], called Random Pairing (RP), to cope with deletions in a data set
with stable size. In this way that, they add new data points to the sample to keep the
size of sample constant when a deletion occurs in the sample. They also considered
growing data sets whose size increase over time and proposed a resizing algorithm
to control growing the sample over time.

Concise and Counting Sampling These are uniform random sampling algorithms
[67]. Concise sampling is similar to the reservoir sampling having this difference
that the values which are appeared frequently in the sample are displayed as a couple
of < value, count> to save more space. This approach inserts new data point to the
sample with a probability of 1/T. If a newly arrived item has been visited beforehand
in the sample, then the count increased. By overpassing predefined sample size
bound, the new bound T ′ is defined such that T ′>T, and the deletion of each data
point with p (T/ T ′) and insertion of subsequent data points to the sample with
p (1/ T ′) is performed to achieve uniform sampling with lower overhead.

Counting sampling [67] is an alteration of concise sampling with different treat-
ment to deal with exceeding the predefined threshold of sample size. It is more
accurate than concise sampling. Later, Counting sampling was extended in [68]
through applying a tracking counter as an estimator to count and discover the high
frequency item set, sum and average and employing Bernoulli samples over evolving
multisets.

Weighted Random Sampling (WRS) [69]. Unlike uniform random sampling,
where each data point has equal chance of being selected, data points do not have
the same probability. Therefore, data points are weighted and they are selected based
on their assigned weights. For example, WRS can be applied over data stream that
is considered as big data, to take a sample from the recent data streams since based
on weighting different part of data streams, it is possible to choose a part of data
streams which has high weight according to recent data streams. There are various
extensions of WRS in the literature such as [70] and [71].

Congressional sampling method [72] is composed of biased and unbiased sam-
pling techniques which are called senate and house respectively. Data are divided
into groups and then a uniform sampling is performed on each group (house) and a
biased sampling (senate) is applied on the entire data set and then two taken samples
are combined. They applied their proposed approach on group-by approximate query
to enhance accuracy of group by query. Generating fast approximate answers to com-
plex queries in very large data warehouses can be achieved through pre-computed
summaries, samples, instead of considering the whole data warehouses that are very
large and takes too much time to find answers from them.

B) Systematic Sampling Let assume one wants to choose n samples from a data
set with N data points. First, systematic sampling [58] computes an interval through
this way that K =N /n, where K is the size of interval. Then, a random starting point
is selected. Thereafter, the starting point and Kth data point from starting point are

1130 Z. R. Hesabi et al.

picked as the first and second sample. This process continues to pick every Kthdata
point based on the predefined interval till n data points are selected as samples. For
example, for a data set with 20 data points, and 4 samples, the interval will be
20/4= 5. Therefore, a starting point will be selected randomly from the first interval
[1, 5]. Suppose that third data point is chosen as starting point. Afterward, every 5th

data point is picked as sample. So, 3, 8, 13, 18 are chosen as the sample set. It should
be noticed that inappropriate selection of intervals may be caused that some patterns
in data are stayed hidden.

An advantage of systematic sampling method is in the simplicity of sample se-
lection as well as its accuracy in comparison with random sampling. However, the
chance of being chosen for all data points is not equal and depends on the starting
point and interval. Systematic sampling can prepare enough samples if there is not
any pattern in data. It is a good option for web query analysis where fixed interval
sampling is performed.

Some studies concentrated their efforts to improve systematic sampling. Linear
systematic sampling in [73], circular systematic sampling in [74] are also considered
in the literature. In [75], a modified balanced circular systematic sampling when
N �= nk is suggested. Another modification of systematic sampling, called FCFS-
SS (First Come First Serve following Systematic Sampling) [76], is proposed. This
works based on conventional systematic sampling with having difference of taking
more than a sample at each time.

C) Stratified Sampling Stratified random sampling [58] divides population into
L non-overlapping subpopulations called strata. Then, a sample is taken from each
stratum individually and if random sampling is employed in drawing sample from
each stratum, the method will be called stratified random sampling. It is noted that
the size of a sample is usually computed in different ways for each stratum. One way
is the proportional to the size of the stratum, called optimal allocation, aiming to
maximize precision with minimum cost.

ns = n∗[(Ns ∗ σs)/sqrt(cs)] / [
 (Ni ∗ σi)/sqrt(ci)]
where ns is the sample size for stratum s, n is total sample size, Ns is the population
size for stratum s, σs is the standard deviation of stratum s, and cs is the direct cost
to sample an individual element from stratum s.

Another way is Neyman allocation, where size of sample for each stratum is de-
fined based on the stratum size and its standard deviation with the aim of maximizing
precision with a given fixed sample size, which is defined as

ns = n∗(Ns ∗ σs)/ [
 (Ni ∗ σi)]
where ns is the sample size for stratum s, n is total sample size, Ns is the population
size for stratum s, σs is the standard deviation of stratum s.

Although categorizing and identifying proper strata is not easy and analysing
results is complicated in stratified sampling, it covers the population better than the
simple random sampling. Stratifying a sample is easy and helpful to better analysis
data for each group with different characteristics. Accuracy of stratified sampling can

Data Summarization Techniques for Big Data—A Survey 1131

be regarded. Stratified sampling drawn many attentions to be observed and extended
in many studies. Some of these studies are cited accordingly.

• In a heterogeneous data stream, stratified sampling could be a good option to
take a sample from every sub-stream with different statistical properties. In this
way, a data stream is clustered as strata and then a random sample is taken from
each obtained homogeneous cluster or strata. In [77], an adaptive size reservoir
sampling method is proposed to regulate the size of reservoir since it is mentioned
earlier that the size of reservoir in conventional reservoir sampling is constant.
Therefore, they proposed the method to maintain constant size of reservoir in some
situations that the size of reservoir varies. Then, they extended their proposed
solution to adaptive multi-reservoir sampling.

• In [78], an adaptive stratified reservoir sampling (ASRS) is offered in which two
issues of optimal size determination of sub-samples of each sub-stream and uni-
formity maintenance of each sub-sample is addressed. They considered the first
issue by applying power allocation from [79] and for the second issue, they em-
ployed an alteration of their previously proposed adaptive-size reservoir sampling
technique [77].

• In [80], sampling algorithm is illustrated and called strata which is based on the
stratified sampling with the aim of drawing a sample to minimize the workload
error and applicable to approximately answering aggregate queries.

• A recursive stratified sampling method is presented in [81] to apply association rule
and differential rule mining on the deep web. So for, they draw a testable sample
from deep web to discover rules. After that, a learning phase is established to
find out data distribution and their relationship. At the end, the recursive stratified
sampling is executed on the deep web. Their approach outperforms simple random
sampling in terms of accuracy and cost.

D) Clustering Sampling In cluster sampling method, the population is grouped into
the mutually exclusive and collectively exhaustive clusters, and later some clusters
not individual points are picked through random sampling. There are two kind of
clustering sampling: single-stage and multi-stage. So if clustering sampling is a
single-stage, all data points of all selected clusters are seen as a sample; otherwise,
in case of multi-stage, a random sampling method is employed to select the data
points from each chosen clusters in each stage. If clusters are similar, then sampling
error will be reduced. In case of very different clusters, sampling error gets larger
and cluster sampling is not a suitable method in this situation.

It is worth to note that in stratified sampling, an individual data point is drawn
from each stratum as a sample but in cluster sampling, a cluster is selected and
then treated as a sample. Stratified sampling aims to increase accuracy while cluster
sampling aims to reduce cost with respect to boosting efficiency of sampling. The
prominent advantage of cluster sampling method rather than the other methods is
that it is cheap but with the expense of higher sampling error.

Other Improvements and Applications of Probability Sampling Techniques
Many studies are conducted within scope of random sampling techniques with
different applications that are quickly reviewed some of them in the following.

1132 Z. R. Hesabi et al.

In [82], random sampling method improved by taking advantage of generating a
decision tree from a data set. In fact, decision tree presents a knowledgeable structure
of data set which may be very large. On the other hand, random sampling is a way to
summarize the data set but it may be, cannot present the general picture of the whole
data set very well via taken samples. Therefore, they took benefits of both methods
of random sampling and decision tree to present a better picture of the entire data set
in a concise way.

A method for online maintenance of arbitrary sample size is investigated in [83], in
which sample is drawn through random sampling without replacement, by applying
a suggested geometric file with the expense of O (ω × log |B| / |B|) random disk
head movements for newly sampled record.

In [84], a sampling method is proposed to take a representative sample from a
relational database considering data correlation. They named their new sampling
method as CoDs (Chains of Dependencies-based sampling) through which a link of
dependencies between data is extracted by considering foreign key constraints. They
employed histograms in order to simply depict these relationships in distributed data,
then they were analyzed these discovered dependencies to do sampling.

In [85], a sampling framework for parallel data mining was suggested. They
aimed to mine useful information from a large data base by finding frequent item sets
and sequential patterns. To achieve their purpose, they employed a pattern-growth
algorithm which is categorized as divide and conquer algorithm since it projects
and segments data base based on discovered patterns. Then, they tried to balance
distribution of work load of mining tasks across processors. In order for parallel
data mining, they required to estimate time mining of different tasks to achieve load
balance, therefore they addressed this issue by proposing a selective sampling. They
tested their parallel mining algorithm on a selective sample to estimate required time
for each task and also identifying large items.

Their proposed selective sampling takes a sample from frequent item set by casting
off a fraction of the most and the less frequent items and not considering the last m
ending items of each sequence and also infrequent ones.

There are some studies on sampling for approximate query answering applica-
tions such as [86]. There is more research considering maintenance of dynamic data
streams such as [87]. Discovery of association rules through sampling has been in-
vestigated in many studies by [88–90] sampling approaches for database files are
reviewed.

4.2 Non-Probabilistic Sampling

A few approaches relate to non-probabilistic sampling:

• Accidental sampling [91], also called convenience or opportunity sampling, takes
those data points from data set as a sample that are more available or close to hand.
Therefore, taken sample through this approach could not be a good representative
of the entire data set.

Data Summarization Techniques for Big Data—A Survey 1133

• Quota sampling [92] is a non-random sampling in which data set or population
is divided into mutually exclusive groups. Then through a judgment, samples are
drawn from each group satisfying determined proportion. In fact, quota sampling
is the no-probability case of stratified sampling. Quota sampling can be evoked
in some cases including when factor of time is more momentous than accuracy,
when budget is limited or when sampling frame is not accessible.

• In purposive sampling [58], samples are taken from a specified population. It
means that the research focuses on sampling from a particular population because
of that it is named purposive. [93] is an example of applying purposive sampling
in social networks with the purpose of recruitment.

• In snowball sampling, a data point or group of data points which are sampled
provide more data points to be sampled. Snowball sampling is useful in data
mining of social network such as [94].

5 Compression

Data compression aims to represents data using fewer bits than the raw data through
which resource’s usage like storage space or transmission capacity is reduced. This is
categorized into lossless and lossy techniques. In former, compression is achieved by
removing statistical redundancy and original data is retrieved after decompression,
while in lossy compression, compression is obtained by throwing away inessential
data and recovering original data is impossible. Since many redundant data and
similar patterns in data can be extracted in compression, this can be considered as
one of the summarization techniques that can reduce the size of data and present a
compact version that is still informative and accurate. In other words, compression
reduces the data size to save more space, communication cost and fast data transfer.
Meanwhile, summarization tries to give a compact version of the entire data to be
analyzed. Therefore, this compact version can be obtained through compression
techniques. Since compression is considered as a data reduction techniques in the
context of data mining, many researches are focused on applying compression as a
summarization technique on big data sets.

Although there is a broad range of studies around data compression such as video
coding, image coding, audio coding, and text coding, we consider briefly compres-
sion of event sequences based on Minimum Description Length (MDL) considering
summarization aspects.

First, we consider definition of MDL, and then we review some studies focusing
on compression of event sequences based on MDL (Table 5).

Minimum Description Length (MDL) traces backs to Occam’s Razor principle.
Occam’s razor declares that among competing hypotheses, hypothesis with the least
number of assumptions should be picked from which it results that simplicity gener-
ally causes correctness. MDL [95] formalized Occam’s Razor principle in the way
that the best hypothesis for a given set of data is the one that can achieve the best

1134 Z. R. Hesabi et al.

Table 5 Advantages and disadvantageous of each probability and non-probability sampling.
(Source: Black, T. R. (1999). Doing quantitative research in the social sciences: An integrated ap-
proach to research design, measurement, and statistics. Thousand Oaks, CA: SAGE Publications,
Inc. (p. 118))

Technique Descriptions Advantages Disadvantages

Simple
random

Random sample from
whole population

Highly representative if all
subjects participate; the
ideal

Not possible without
complete list of
population members;
potentially
uneconomical to
achieve; can be
disruptive to isolate
members from a group;
time-scale may be too
long, data/sample could
change

Stratified
random

Random sample from
identifiable groups
(strata), subgroups,
etc

Can ensure that specific
groups are represented,
even proportionally, in the
sample(s) (e.g., by
gender), by selecting
individuals from strata list

More complex, requires
greater effort than
simple random; strata
must be carefully
defined

Cluster Random samples of
successive clusters
of subjects (e.g., by
institution) until
small groups are
chosen as units

Possible to select randomly
when no single list of
population members
exists, but local lists do;
data collected on groups
may avoid introduction of
confounding by isolating
members

Clusters in a level must be
equivalent and some
natural ones are not for
essential characteristics
(e.g., geographic:
numbers equal, but
unemployment rates
differ)

Stage Combination of
cluster (randomly
selecting clusters)
and random or
stratified random
sampling of
individuals

Can make up probability
sample by random at
stages and within groups;
possible to select random
sample when population
lists are very localized

Complex, combines
limitations of cluster
and stratified random
sampling

Purposive Hand-pick subjects on
the basis of specific
characteristics

Ensures balance of group
sizes when multiple
groups are to be selected

Samples are not easily
defensible as being
representative of
populations due to
potential subjectivity of
researcher

Quota Select individuals as
they come to fill a
quota by
characteristics
proportional to
populations

Ensures selection of
adequate numbers of
subjects with appropriate
characteristics

Not possible to prove that
the sample is
representative of
designated population

Data Summarization Techniques for Big Data—A Survey 1135

Table 5 (Continued)

Technique Descriptions Advantages Disadvantages

Snowball Subjects with desired
traits or
characteristics give
names of further
appropriate subjects

Possible to include members
of groups where no lists or
identifiable clusters even
exist (e.g., drug abusers,
criminals)

No way of knowing
whether the sample is
representative of the
population

Volunteer,
accidental,
conve-
nience

Either asking for
volunteers, or the
consequence of not
all those selected
finally
participating, or a
set of subjects who
just happen to be
available

Inexpensive way of ensuring
sufficient numbers of a
study

Can be highly
unrepresentative

compressed data. Rissanen [96] stated that rationale behind MDL is finding regu-
larities in the visited data that prosperity of detecting these regularities is evaluated
through the length with which the data can be explained.

MDL principle is defined as “a relatively recent method for inductive inference.
The fundamental idea behind the MDL Principle is that any regularity in a given set
of data can be used to compress the data, i.e. to describe it using fewer symbols than
needed to describe the data literally.” [97]

After definition of MDL, we intend to describe event sequence and then we will
explore some studies that are designed a compression method based on MDL for the
event sequences. The reason for discussing compression of event sequences based
on MDL in this chapter is because event sequences are generated massively through
monitoring of systems and users’activities such as network traffic or logging systems.
In order to easily analyse of these massive event sequences, a summarized version
of this large volume of data can be concerned.

Event sequences are produced by monitoring user/system activities such as log-
ging systems, network traffic data and so on. In order to handle and have a general
picture of the entire system behavior, some research attempts focus on finding some
comprehensive and short summaries of the entire event sequence. However, studies
on presenting a local picture of a system’s behavior have been done. In general, there
are two points of view: local structure and global structure of a system. It is also noted
that in data analysis, event summaries have meet some properties such as brevity and
accuracy, global statement of data, local pattern recognition, and parameter free.

A nice solution to find short and accurate summaries based on MDL principle
is described in [98]. This meets aforementioned properties. The authors proposed a
summarization method, which findings an optimal segmentation and local models
that are derived from MDL principles, as an optimization problem. Each sequence
is segmented into n intervals where events with similar frequencies are grouped to-
gether. Also, the probability of occurrence of different event types at each timestamp

1136 Z. R. Hesabi et al.

is independent of the probability of occurrence of other event types and their seg-
ment. This means that different event types can appear in a same time. The authors
tried to segment an interval of event sequence into contiguous and non-overlay inter-
vals. After segmentation, a local model is computed as the one that can best describe
data with a fewer bits in each segment. Two dynamic programming solutions were
applied to find the minimum total cost through greedy algorithm, and the proposed
segmentation method reduces the compression ratio as well as achieves the minimum
overall description length in polynomial time.

An extension of [98] is proposed in [99] by considering overlapping segments,
segments separated by gaps and presenting an event summarizer tool. However this
extended approach has some limitations. First of all, the segmentation approach does
not consider the relation between different models, and this is not a good option for
predicting future patterns. Moreover, it stores same copies of models in an occurrence
of long event sequences having many duplicated models leading to low compression
ratio.

An event summarization method using MDL and Hidden Markov Model (HMM)
is given in [100], and this captures both the global and local view of a system. An
HMM is learnt to portray the global relationships among the segments. An event
sequence is divided into disjoint segments based on the frequency changes of the
events and then modeled each segment in a way that overall description has being
the minimum length. Two types of models were considered: independent (Mind)and
dependent (Mdep). In the former, each segment is isolated from other segments con-
versely in the latter, segments are correlated. Two different costs were considered
to compute the final cost of encoding an event sequence: (1) the cost of encoding
segmentation and (2) the cost of encoding event occurrences. The quality of sum-
marization is evaluated through an objective function. The problem of this method
is that only the intra-correlation among event types of adjacent segments was con-
sidered and the temporal information between event types in a segment is not taken
into account. For this reason, they took benefits of the concept of machine state with
the knowledge that system behavior within each state is stable.

To address limitations of the methods suggested in [100, 101], Natural Event Sum-
marization (NES) was designed where inter-arrival histograms are used to exploit
pairwise temporal correlations among events. By applying disjoint histograms and
using MDL to encode histograms, event sequences are summarized. The temporal
patterns of the events, which can be periodic or correlation, are discovered through
histograms and then by employing multi-resolution characteristics of wavelet trans-
formation, the size of discovered histograms has been shortened and the summary is
visualized by event relationship network (ERN). However, there are different pos-
sibilities of drawing histograms to present correlation or periodic patterns between
events, and employing MDL pave the way to choose the most suitable histograms
to explain event sequence. Inter-arrival histograms are applied to find correlations
amongst event types. Inter-arrival histograms facilitate the way to discover periodic
and correlation patterns to describe temporal dynamics of event sequences. There-
fore, in this way they depict a histogram graph presenting relationship among event
types. Then the histogram graph is encoded through finding shortest path from it.

Data Summarization Techniques for Big Data—A Survey 1137

Dijkstra algorithm is used to find shortest path in a polynomial time O (|D |2). To
speed up the summarization process, the histogram graph is pruned by employing a
wavelet transformation relying on multi-resolution analysis (MRA).

Conversely to previous work, inter-arrival histograms are used as they can define
various boundaries of the segmentations of different event types. Thus pattern dis-
covery become more efficient and produces better summarization. After discovering
patterns in a sequence, the summarization results are summarized through ERN.

Pattern mining has attracted many attentions in the field of data mining. Specially,
finding a small set of patterns is a concern, as the characteristics of a large data base
could be presented in a small set of patterns instead of the whole discovered patterns.
This becomes an aspect of summarization-compression. Two kinds of long pattern
mining approaches are considered in the literature: maximal item sets [102, 103] and
closed item sets [104]. The former is considered as lossy compression, while the
latter is considered as lossless compression.

In [105], an algorithm called Clo_episode is offered to pick closed episode effec-
tively through pruning methods and minimal occurrence. Furthermore, some studies
take benefits of the MDL principle to find short, beneficial and high quality set of
patterns to summarize and compress data that are shortly reviewed as follows. A
two-phase MDL-based code table mining approach is investigated in [106], named
as KRIMP, in which a set of frequent items is discovered. Then a pattern is se-
lected from this set to improve compression ratio. In [107], a new version of KRIMP
considered classification, where the issue of having large frequent items set is veri-
fied at low threshold by using specific heuristic methods. A set of item sets, which
compresses the database in a lossless and good manner, is mined. The goodness of
compression is determined by employing the MDL principle. They achieved a set of
frequent item sets with four orders of magnitude shorter than the entire frequent item
sets. Experimental results are extended in [108] for evaluating other methods, and
proposed STREAMKRIMP in [109] as an extension of KRIMP to discover changes
in data streams.

An alternative pattern mining of [106] is proposed in [110] as one-pass approach,
called SLIM. In contrast to KRIMP that finds the pattern set from a chosen set of can-
didates, SLIM finds the best pattern set from data. In [111], an event summarization
algorithm is proposed in which serial episodes are discovered, and a set of patterns is
mined instead of individual patterns. They took benefits of MDL to choose the best
set of patterns that can describe a short and accurate summary of a database of events.
Sequential data are encoded through set of patterns and employed two algorithms:
SQS-Candidates search (to choose an appropriate set of patterns from a set of candi-
dates) and SQS-Search (to find the appropriate set of patterns from database). They
showed that event sequences can be summarized through finding a set of patterns
which are short and non-redundant. Finally GoKRIMP [112] improves KRIMP by
using two heuristic methods to compress sequential patterns. There are more work
on mining compressing sequential patterns such as [113].

1138 Z. R. Hesabi et al.

6 Wavelets

Generally speaking, these transformations are mathematical functions (that project
a set X to another set Y) with the aim to make the “work” easier with the transformed
set instead of the original one. There are different well-known transformations, such
as Fourier transform and wavelet transform that can be applied on a set of large
data. In the context of summarization, a wavelet transformation is mostly used to
transform data and then make it possible to construct a compact representation of the
data in a transformed domain. As a wavelet transformation can truncate the wavelet
transformed data through saving strongest wavelet coefficient and setting the rest of
coefficients to zero, then a compact version of data could be achieved. This section
provides required background on transformation techniques and then it describes the
wavelet transformations as a tool to build a summarized version of massive data sets
to achieve fast approximate answers.

From signal processing, the purpose of transformation is access to information
in signal that is not easily attainable from the original signal [114]. Therefore, many
studies focused on the application of various transformations in different fields. One
of the most famous transformations is Fourier Transform (FT) [115]. FT can plot
frequency-amplitude curve, meaning that spectrum frequency of a signal can be
observed in signal by FT. However, FT is not able to present time when the spectrum
frequency becomes visible in the signal. Thereby, FT is a good choice in applications
where “time” is not an important factor such as stationary signal. Stationary signal
is the one that its frequency does not change over time conversely non-stationary
signal in which frequency is varied over time. Hence, other transformations through
which time resolution of frequency is observable were required.

Wavelet transformation is the one that time-frequency of signal can be represented
simultaneously through it. We first explain briefly what wavelet transformation is and
then review some studies that have applied wavelet transformations in their works
considering the aspect of summarization for big data.

The definition of wavelet is a small wave and the wavelet transform is the process
of converting a signal into a series of wavelets through which signals can be stored
more efficiently than FT. As it is mentioned, FT only considers the frequency of
signals, namely frequency content and its amount are shown through FT, whereas
time-frequency of signals can be represented simultaneously by wavelet transforms.
Therefore, a wavelet decomposition is considered as another compression technique
that can be used to create a summary of large data sets. In fact, wavelet decomposition
is a mathematical tool that is widely used in compression field especially for image
compression.

The rationale behind wavelet is that a data vector V is transformed to a numerically
different vector of wavelet coefficients. Then, the higher coefficients which have most
compact energy will be retained and the other ones will be set to zero and cut up
that leads to achieve compressed data. In other words, wavelet transform provide a
time-frequency representation of signal by decomposing a signal into a set of basis
functions (wavelets) which are orthonormal. Wavelets are produced from mother

Data Summarization Techniques for Big Data—A Survey 1139

Fig. 1 Example of Haar and Daubechies Wavelet

wavelet by dilation and shifting [114]

ψa,b(t) = 1√
a
&(
t − b
a

)

where “a” denotes scaling parameter and “b” denotes shifting parameter.
DWT is a wavelet transform which is mostly used in data mining applications. The

properties of wavelet help data mining to present data in an efficient manner. These
properties could be considered such as hierarchal decomposition, multiresolution
decomposition, vanishing moment, linear complexity, and decorrelated coefficients.
Haar wavelet [116] (1D and 2D), Daubechies [117] and multi-resolution transform
are most popular transforms derived from DWT as seen in Fig. 1. DWT works in a
way that it decomposes a signal with length of L into high and low frequency parts
by applying low and high pass filters and down and up sampling. Simply speaking,
Haar wavelet also works in this manner that first signal is halved and average of each
pair of samples is computed. Then the difference between the average and sample is
calculated and first half is replaced with average and the second half is replaced with
the difference as detail coefficients. This process continues till full decomposition is
achieved.

For example suppose that we have a 1D signal as [9 7 3 5]. The Haar wavelet
transform is calculated as following.

First half is (9+ 7)/2= 8 and second half is (3+ 5)/2= 4 so that we have [8 4].
Then, (8+ 4)/2= 6 and (8− 4)/2= 2 so we get [6 2]. On the other hand, we have
(9− 7)/2= 1 and (3− 5)/2= −1. Therefore, the Haar wavelet decomposition of
signal [9 7 3 5] is [6 2 1 −1], where 1 and −1 are detail coefficients in order to
reconstruct original signal.

After briefly explanation of wavelet transform, we will provide an overview of
the major studies that take advantage of wavelets in data mining applications with
the aim of summarization and make data synopsis in the following. Because of space
limitation lack, we will not explain each method however a general view is given
to readers about the various techniques and their applications with purpose of data
reduction and data summarization.

1140 Z. R. Hesabi et al.

In large scale decision support systems (DSS), query processing plays an im-
portant role. Sometimes, answering to the queries does not need to be exact and
approximate answer but fast answer satisfies the user requirements. Therefore many
studies focused on proposing some data reduction mechanism to achieve compact
sets of data to give approximate answers to the queries from these synopsis sets
which results in achieving fast approximate answers. Some of the proposed methods
rely on wavelet based methods to attain these compact sets.

In [118], probabilistic wavelet decomposition is proposed to find precise ap-
proximate answers to queries. Since, approximate answers provided by wavelet
decomposition are widely different and there is not any guarantee that obtained
answer is accurate. Therefore, in contrast to conventional wavelet transform, each
coefficient is allocated a probability that shows its importance to preserve it for re-
construction. In [119], a Haar-wavelet based histogram creates a synopsis of data to
obtain accurate selectivity estimations for query optimization. In [120], optimality
of the heuristic method in [119] is also demonstrated.

A synopsis OLAP data cube is proposed in [121] and it applies multi-resolution
wavelet decomposition. They retained a compact set of wavelet coefficients over a
data cube for the approximate range sum queries considering space limitation. An
extension of aforementioned work regarding approximate query answering through
wavelet can be found in [122]. In [123], a general wavelet technique is presented to
calculate a small space representation for data streams.

In [124], a new method to create wavelet synopses is proposed, called hierarchi-
cally compressed wavelet synopses (HCWS). To build optimal HCWS, a dynamic
programming algorithm is presented to minimize the sum squared error considering
space limitation and consequently increasing accuracy of the created synopses.

Haar wavelet decomposition can be used to minimize mean squared error and
other metrics such as relative errors in data value reconstruction. However, the main
purpose of Haar wavelet is minimizing mean square error. In [125, 126], the authors
showed that these wavelet based synopsis approaches of different measures may
cause reducing accuracy of approximate answering. Thus, they presented an idea
of extended wavelet coefficient and proposed new algorithms for creating extended
wavelet considering storage limitations and multi measure data (sum square and
relative error norms). An extension of this work can also be found in [127].

The study in [128] presented some algorithms to create unrestricted wavelet syn-
opses to achieve an “optimal” solution. A dynamic maintenance of wavelet-based
histograms for data streams were considered in [129] because if underlying data dis-
tribution is changed then maintaining accuracy of histogram is not easy. Sampling
and probabilistic counting are used this this approach.

In [130], the authors presented the first known streaming algorithms based on
Group-Count Sketch (GCS) wavelet synopsis for both one and multi-dimensional
data, satisfying polylogarithmic space usage, logarithmic update times and poly-
logarithmic query times for computing the top wavelet coefficients from the GCS.
In [131], wavelet synopses are built for static and streaming massive data by using
a greedy algorithm for maximum error metrics. U-HWT algorithm is suggested in

Data Summarization Techniques for Big Data—A Survey 1141

[132] to deal with uncertain data streams through applying Haar wavelet decompo-
sition. The accuracy of the proposed algorithm was demonstrated via experiments
and it was shown that a compact uncertain data stream can approximate the raw data
stream. There is another study about compact representation of uncertain time series
through hierarchical wavelet decomposition in [133].

Also in [136], the authors considered the issue of constructing data sum-
maries through wavelet histogram in Map-Reduce. Haar wavelet-based synopses on
probabilistic data is investigated in [135] through applying dynamic programming.

There are far more studies about constructing synopses through wavelet de-
composition, and the reader can find some of the important ones in [134,
135].

7 Histograms

Histogram is a method used to represent a large volume of data in a compact manner
so that can be considered as a data reduction or summarization technique. In fact, data
distribution can be shown in a synopsis structure through histograms. Mathematically
speaking, a histogram is a function xi that represents how much data are within the
disjoint ranges (bins/buckets) and represents the frequencies of data fall in these
ranges. This function can be shown graphically. The functionxi satisfies the following
condition

Y =
∑

n
i=1xi

where Y is the total data and n is the total number of buckets or bins. Depending on
the type of data attribute, histograms can be depicted. If an attribute is nominal, then
a pole or vertical bar is displayed for each value of data. If the attribute is numerical,
then data is divided into buckets in which buckets are disjoint subsets of data. In
other words, data is divided into successive disjoint sub-ranges. For instance, a data
attribute value within a range of 5–45 can be partitioned into 8 equal sub-ranges, as
shown in Fig. 2.

Each sub-range is plotted with a bucket or bin in which width of bucket is the size
of sub-range and the height of the bucket indicates the frequency of observed item
within the sub-range.

There are different types of histograms that some of the popular ones are
categorized as follows.

• Equi-sum [138], also known as Equal-width histogram, categorizes continuous
ranges of attribute values into N equal intervals (buckets). The width of intervals
is calculated based on the maximum (Max) and minimum (Min) values of the
attribute as follows: W = (Max-Min)/N. Equal-width histograms have been em-
ployed in many commercial systems. However, they are not suitable for Skewed
data.

1142 Z. R. Hesabi et al.

Fig. 2 An example of Histogram based on frequency and data value

• Equal-depth (frequency) histogram, also known as Equi-height histogram, is
similar to Equal-width but with equal frequency in each bucket. In other words, the
range is divided into N intervals with approximately constant frequency for each
bucket which is a good option for range queries with low skew data distribution but
not a proper option for commercial systems since bucket boundaries computation
is an expensive task [138, 139].

• V-optimal histogram categorizes the continuous set of frequencies into a set
of buckets to achieve minimum variance of the entire frequency approximation.
Simply speaking, V-optimal considers all types of histogram for a given number
of buckets to pick the one with the least variance [140].

• V-Optimal-End-Biased [140] groups the highest and lowest frequencies into
individual buckets and the rest of frequencies are located in a single bucket. The
advantageous of V-optimal over Equi-depth and Equi-width is that it can give a
better approximation of original data with fewer errors. However, updating V-
optimal histogram is not as easy as the two other histograms and sometimes it is
required to change the whole histogram and build it again.

• In MaxDiff histogram [141], first data are sorted and then the margin of each
bucket is computed considering adjacent values. The margins of buckets are
determined where the difference between neighbor values is Maximum.

• Spline histogram [142] groups attribute values into contiguous buckets in which
width of bucket can be varied and it is not fixed. Data distribution in buckets is
not uniformed and data distribution in buckets is presented as a spline function
instead of flat value.

Note that the aforementioned histogram methods are considered as one-dimensional
summarization techniques. There are some multi-dimensional histograms, and a
few of them keep a one-dimensional histograms for each dimension based on the
attribute value independence assumption (AVI) [143] and in the other ones, the data
is divided into d-dimensional buckets such as GENHIST[144]. Many studies are

Data Summarization Techniques for Big Data—A Survey 1143

conducted to apply histograms with the aim of fast approximate query answering
which an example can be found in [145].

8 Micro-Clustering

Mining data streams have attracted many attentions in recent years. Specific char-
acteristics of data streams such as being infinite and real time leads to be processed
as they arrived from different sources such as sensor networks or mobile devices.
The clustering of data streams is studied here in a separate section of summarization
methods because micro-clustering techniques deal with real time summarization of
data. One of the early work done in this area is described in [146]. Many studies
considered one-pass clustering over entire data stream not therefore on user-defined
time slices. Also, since a data stream is infinite, it was impossible to store the whole
data streams because of memory limitation so that it would be beneficial to store
a compact representation of data streams. Therefore, a two-phase micro-clustering
algorithm was investigated in [146] for infinite and evolving data streams. The algo-
rithm has two phases relating to online and offline situations. The summary statistics
of data are collected in online phase and then a clustering algorithm is performed on
these summary data. The proposed algorithm, called CluStream, enables micro clus-
ters to store summary statistics in a pyramidal time frame. The summary statistics
are obtained as a temporal extension of cluster feature vector of BIRCH [22]. They

added timestamps to the feature vector as (
−−−→
CF2X,

−−−→
CF1X, CF2t , CF1t , n),where−−−→

CF2X and
−−−→
CF1X are the same as SS and LS in CF in BIRCH and CF2t and CF1t

are the sum of squares of timestamps Ti1 . . . Tin and the sum of timestamps Ti1 . . . Tin,
respectively.

The pyramidal time frame is used to store micro clusters that are captured at
specific instant time and named as snapshot in order to answer the queries of user
over different time horizon. K-means is used to perform clustering in offline mode.

After CluStream, other micro-clustering algorithms over data streams were pro-
posed. Some of these studies considered micro-clustering frameworks based on a
density feature. A density-based micro clustering algorithm for data stream, called
DenStream, is proposed [147]. Like CluStream, this has two online and offline com-
ponents. It made some changes in concept of density that was used in DBSCAN by
weighting areas of points in the neighborhood. The proposed algorithm can find ar-
bitrary shaped clusters and outliers by using p-micro-cluster and core-micro-cluster
and outlier micro cluster. They also applied a pruning strategy with the purpose of
emerging new clusters.

Another instance of two phase components is investigated in [148] and proposed
D-Stream. A grid is built for each input data point in online component. Then arbitrary
shaped clusters are formed based on the grid density in offline component. In [149],
SDStream as another online-offline framework based on CluStream is proposed.
Since the framework focuses on the most recent data, so sliding windows model
[150] is used. SDStream finds arbitrary shape clusters like DenStream. Therefore,

1144 Z. R. Hesabi et al.

they modified and used the core micro cluster and outlier micro cluster which are
recorded as Exponential Histogram of Cluster Feature (EHCF) in main memory.
Micro clusters are discovered and removed through the value of t in Temporal Cluster
Feature (TCF). Clustering of discovered potential micro clusters through DBSCAN
in online mode is performed in offline mode.

rDenStream is suggested in [151] considering the concept of outlier retrospect.
It is a developed version of Denstream with three phases. rDenStream is a good
option for applications with large amounts of outliers since it stores rejected outliers
in outside temporary memory in order to give them an opportunity to include in
clustering process with the aim of increasing accuracy of clustering. This phase is
called retrospect as a third phase of this algorithm. The others two phases are the same
as DenStream. It is obvious that by adding the third phase to process the historical
buffer, the time complexity and memory usage will be increased in comparison with
DenStream which are also demonstrated through experimental results. However, its
performance is better than DenStream.

In [152], C-DenStream is studied as a density based clustering algorithm for data
stream based on DenStream. They suggested their algorithm based on the concept
of static semi-supervised through and domain information in order to achieve highly
satisfactory results. More studies related to clustering data streams are conducted in
the literature such as AclueStream [153], OPClueStream [154], and ClusTree[155].
Also two extensive surveys on clustering data stream can be found in [156] and [157].
More detailed micro clustering of data stream is available in [136].

9 Conclusion

In this paper, we described the concept of summarization. We also presented some
the important applications of summarization techniques to illustrate the urgent need
of big data summarization in future. We provided an overview of some of the well-
known summarization techniques that could be useful for big data. Specifically,
clustering, sampling, compression, wavelets, histograms, and micro-cluster are dis-
cussed in details. We hope that the reader has been provided with enough technical
depth in this area that could give him/her a tool to make a decision to which technique
to be used for his/her specific area/application.

References

1. A. Hathaway, J. Bezdek, and Y. Hu, “Generalized fuzzyc-means clustering strategies using
Lnorm distances,” IEEE Transaction on Fuzzy Systems, 8(5):576–582, October 2000.

2. J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in
Proc. 5th Berkeley Sympium, 1:281–297, 1967.

3. G. Carpenter, S. Grossberg, and D. Rosen, “FuzzyART: Fast stable learning and categorization
of analog patterns by an adaptive resonance system,” Neural Network, 4:759–771, 1991.

Data Summarization Techniques for Big Data—A Survey 1145

4. G. Anagnostopoulos and M. Georgiopoulos, “Ellipsoid ART and ARTMAP for incremental
unsupervised and supervised learning,” Proceedings of IEEE International Joint Conference
Neural Networks (IJCNN’01), Washington DC, pp. 1221–1226, 2001.

5. J. Mao and A. Jain, “A self-organizing network for hyperellipsoidal clustering (HEC),” IEEE
Transactions Neural Networks, 7(1):16–29, January 1996.

6. C. Van Rijsbergen, “Information Retrieval,” Butterworth-Heinemann, 1979.
7. J. Cezkanowski, “Zur differentialdiagnose der neandertalgruppe. KorrespondenzBlatt

deutsch. Ges. Anthropol,” Ethnol. Urgesch, 40:44–47, 1909.
8. R. Whittaker, “A study of summer foliage insect communities in the Great Smoky Mountains,”

Ecological Monographs, 22:1–44, 1952.
9. L. Legendre and P. Legendre, “Numerical ecology,” New York: Elsevier Scientific, 1983.

10. R. Johnson and D. Wichern, “Applied multivariate statistical analysis,” Englewood Cliffs, NJ:
Prentice–Hall, 1998.

11. P.F. Russel and T. R. Rao, “On habitat and association of species of anopheline larvae in
south-eastern Madras,” Journal of Malaria India Institute (3):153–178, 1940.

12. R.R. Sokal and C. D. Michener, “A statistical method for evaluating systematic relationships,”
Bulletin of the Society of University of Kansas, 38:1409–1438, 1958.

13. P. Jaccard, “Étude comparative de la distribuition florale dans une portion des Alpes et de
Jura,” Bulletin de la Societé Voudoise des Sciences Naturelles, 37:547–579, 1901.

14. J.S. Rogers and T. T. Tanimoto, “A computer program for classifying plants,” Science,
132:1115–1118, 1960.

15. S. Kulczynski, “Classe des Sciences Mathématiques et Naturelles,” Bulletin International de
l’Acadamie Polonaise des Sciences et des Lettres Série B (Sciences Naturelles) (Supplement
II), pp. 57–203, 1927.

16. J. Tubbs, “A note on binary template matching,” Pattern Recognition, 22(4):359–365, 1989.
17. L. Kaufman and P. Rousseeuw, “Finding Groups in Data: An Introduction to ClusterAnalysis,”

Wiley, 1990.
18. B. Everitt, S. Landau, and M. Leese, “Cluster Analysis,” London:Arnold, 2001.
19. P. Sneath, “The application of computers to taxonomy,” J. Gen. Microbiology, 17:201–226,

1957.
20. T. Sorensen, “A method of establishing groups of equal amplitude in plant sociology based

on similarity of species content and its application to analyzes of the vegetation on Danish
commons,” Biologiske Skrifter, 5:1–34, 1948.

21. A. Jain and R. Dubes, “Algorithms for clustering data,” Englewood Cliffs, NJ: Prentice–Hall,
1988.

22. T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient data clustering method for
very large databases,” Proceedings of ACM International Conference Management of Data
(SIGMOD), pp. 103–114, 1996.

23. T. Chiu, D. Fang, J. Chen, Y. Wang and C. Jeris, “A robust and scalable clustering algorithm
for mixed type attributes in large database environment,” Proceedings of 7th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 263–268, 2001.

24. V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and J. French, “Clustering large datasets
in arbitrary metric spaces,” Proceedings of the 15th International Conference on Data
Engineering (ICDE), pp. 502–511, 1999.

25. S. Guha, R. Rastogi, and K. Shim, “CURE: An efficient clustering algorithm for large
databases,” Proc. ACM SIGMOD International Conference Management of Data, pp. 73–84,
1998.

26. S. Guha, R. Rastogi, and K. Shim, “ROCK: A robust clustering algorithm for categorical
attributes,” Information Systems, 25(5):345–366, 2000.

27. E. Forgy, “Cluster analysis of multivariate data: efficiency vs. interpretability of classifica-
tions,” Biometrics, 21:768–780, 1965.

28. J. MacQueen, “Some methods for classification and analysis of multivariate observations,”
Proceedings of 5th Berkeley Symposium, 1:281–297, 1976.

1146 Z. R. Hesabi et al.

29. J. Mao and A.K. Jain, “A Self-organizing network for hyperellipsoidal clustering (HEC),”
IEEE Transactions on Neural Networks, 7(1):16–29, 1996.

30. J. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact well
separated clusters,” Journal of Cybernetic, 3(3):32–57, 1974.

31. E. Forgy, “Cluster analysis of multivariate data: Efficiency versus interpretability of
classification,” Biometrics, 21:768–780, 1965.

32. J. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact well
separated clusters,” Journal of Cybernetics, 3(3):32–57, 1974.

33. J. Bezdek, “Pattern Recognition with fuzzy objective function algorithms,” New York:
Plenum, 1981.

34. S. Eschrich, J. Ke, J. Hall and D. Goldgof, “Fast accurate fuzzy clustering through data
reduction,” IEEE Transactions on Fuzzy Systems, 11 (2):262–270, 2003.

35. M. Steinbach, G. Karypis, and V. Kumar, “A comparison of document clustering techniques,”
KDD Workshop on Text Mining, 2000.

36. D. Pelleg and A. Moore, “Accelerating exact K-means algorithms with geometric reasoning,”
Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp.277–281, 1999.

37. D. Pelleg and A. Moore, “X-means: extending K-means with efficient estimation of the
number of clusters,” Proceedings 17th International Conference on Machine Learning (ICML),
Stanford University, 2000.

38. B. Schölkopf, C. Burges, and A. Smola, “Advances in kernel methods: support vector
learning,” The MIT Press, 1999.

39. L. Kaufman and P. Rousseeuw, “Finding groups in data: an introduction to cluster analysis,”
John Wiley and Sons, New York, NY, 1990.

40. R. Ng and J. Han, “Efficient and effective clustering methods for spatial data mining,” Pro-
ceedings of the 20th International Conference on Very Large Databases (VLDB), pp.144–155,
Santiago, Chile, 1994.

41. M. Ester, H-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering
clusters in large spatial databases with noise,” Proceedings of the 2nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pp. 226–231, Portland,
Oregon, 1996.

42. X. Xu, M. Ester, H-P. Kriegel, and J. Sander, “A distribution-based clustering algorithm for
mining in large spatial databases,” Proceedings of the 14th International Conference on Data
Engineering (ICDE), 324–331, Orlando, FL, 1998.

43. J. Sander, M. Ester, H-P. Kriegel, and X. Xu, “Density-based clustering in spatial databases:
the algorithm GDBSCAN and its applications,” Data Mining and Knowledge Discovery,
2(2):169–194, 1998.

44. A. Hinneburg and D. Keim, “An efficient approach to clustering large multimedia databases
with noise,” Proceedings of the 4th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 58–65, 1998.

45. M. Ankerst, M. Breunig, and H-P. Kriegel, K. Sander, “OPTICS: Ordering points to iden-
tify clustering structure,” Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 49–60, 1999.

46. P. Grabusts and Borisov, “A Using grid-clustering methods in data classification,” Proceed-
ings of the IEEE International Conference on Parallel Computing in Electrical Engineering
(PARELEC), 2002.

47. F. Murtagh and P. Contreras, “Methods of Hierarchical Clustering,” CSIR, 2011.
48. S.A. Elavarasi, J. Akilandeswari, B. Sathiyabhama, “A survey on partition clustering

algorithms,” International Journal of Enterprise Computing and Business Systems, 2011.
49. W. Wang, J. Yang, and R. Muntz, “STING: a statistical information grid approach to spatial

data mining,”, Proceedings of the 23rd International Conference on Very Large Databases
(VLDB), pp. 18–195, 1997.

50. G. Sheikholeslami, S. Chatterjee, and A. Zhang, “Wavecluster: a wavelet based clustering
approach for spatial data in very large databases,” The VLDB Journal, 8(3–4):289–304, 2000.

Data Summarization Techniques for Big Data—A Survey 1147

51. E. Schikuta, “Grid-clustering: An efficient hierarchical clustering method for very large data
sets,” Proceedings of the 13th IEEE International Conference on Pattern Recognition, pp.
101–105, 1996

52. D. Barbar and P. Chen, “Using the fractal dimension to cluster datasets,” Proceedings of the
6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
260–264, 2000.

53. A. Hinneburg and D. Keim, “Optimal grid-clustering: towards breaking the curse of dimen-
sionality in high-dimensional clustering,” Proceedings of the 25th International Conference
on Very Large Data Bases (VLDB), pp. 506–517, 1999.

54. R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic subspace clustering
of high dimensional data for data mining applications,” Proc. ACM SIGMOD Int. Conf.
Management of Data, pp. 94–105, 1998.

55. P. Berkhin, “Survey of clustering data mining techniques,” Technical report, Accrue Software,
San Jose, California, 2002.

56. P. Kaur and S. Aggrawal, “Comparative study of clustering techniques,” International Journal
on Advanced Research in Engineering and Technology, 1:69–75, 2013.

57. R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on Neural
Networks, 16(3):645–678, 2005.

58. W.G. Cochran, “Sampling techniques,” 3rd Ed. John Wiley, 1977.
59. J.S. Vitter. “Random sampling with a reservoir,” ACM Transactions on Mathematical

Software, pp.37–57, 1985.
60. J.S. Vitter, “Faster methods for random sampling,” Communication of the ACM (CACM),

27(7), July 1984.
61. J. Zhang, J. Xu, and S. Liao, “Sampling methods for summarizing unordered vehicle-to-

vehicle data streams”, Transportation Research Part C—Emerging Technologies, 23:56–67,
2012.

62. M. Dash. And W. Ng, “Efficient reservoir sampling for transactional data streams,”
Proceedings of IEEE International Conference on Data Mining (ICDM), pp. 662–666, 2006.

63. D. Ghosh, and A. Vogt, “A modification of Poisson sampling,” Proceedings of the American
Statistical Association, Survey Research Methods Section, pp.198–199, 1999.

64. B. Babcock, M. Datar, and R. Motwani, “Sampling from a moving window over stream-
ing data,” Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). Society for Industrial and Applied Mathematics, Philadelphia, pp. 633–634, 2002.

65. C.C. Aggarwal. “On biased reservoir sampling in the presence of stream evolution,” Proceed-
ings of the 32nd International Conference on Very large Data Bases (VLDB), pp.607–618,
2006.

66. R. Gemulla, W. Lehner, and P.J. Haas, “A Dip in the reservoir maintaining sample synopses
of evolving datasets,” Proceedings of the 32nd International Conference on Very large Data
Bases (VLDB), pp. 595–606, 2006.

67. P.B. Gibbons and Y. Matias, “New sampling-based summary statistics for improving approx-
imate query answers,” Proceedings of the ACM International Conference on Management of
Data (SIGMOD), New York, NY USA, pp. 331–342, 1998.

68. R. Gemulla, W. Lehner, and P.J. Haas, “Maintaining Bernoulli samples over evolving multi-
sets,” In: Proc. ACM International Conference on Principles of Database Systems (PODS),
pp. 93–102, 2007.

69. S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V. Narasayya, ” Overcoming limitations
of sampling for aggregation queries,” Proceedings of the IEEE International Conference on
Data Engineering (ICDE), 2001.

70. C. Hua-Hui and L. Kang-Li, “Weighted random sampling based hierarchical amnesic synopses
for data streams,”Proceedings of the 5th International Conference on Computer Science and
Education (ICCSE), pp.1816–1820, 2010.

71. P.S. Efraimidis and P.G. Spirakis, “Weighted random sampling with a reservoir,” Information
Processing Letters, 97(5):181–185, 2006.

1148 Z. R. Hesabi et al.

72. S.Acharya, P.B. Gibbons, andV. Poosala, “Congressional samples for approximate answering
of group-by queries,” ACMSIGMOD Record, 29(2):487–498, 2000.

73. H.J. Chang and K.C. Huang, “Remainder linear systematic sampling,” Sankhya B 62, pp.
249–256, 2000.

74. N. Uthayakumaran, “Additional circular systematic sampling methods”. Biometrical Journal,
40 (4):467–474, 1998.

75. C.-H. Leu and F.F. Kao, “Modified balanced circular systematic sampling,” Statistics &
Probability Letters, 76(4):373–383, 2006.

76. M.A. Bujang et al., “Modification of systematic sampling: a comparison with a conventional
approach in systematic sampling,” Proceedings of the International Conference on Statistics
in Science, Business, and Engineering (ICSSBE), pp.1–4, 2012.

77. M. Al-Kateb, B.S. Lee, and X.S. Wang, “Adaptive-size reservoir sampling over data streams,”
Proceedings of the 19th IEEE International Conference on Scientific and Statistical Database
Management, Banff, Canada, pp. 22–33, 2007.

78. M. Al-Kateb and B.S. Lee, “Adaptive stratified reservoir sampling over heterogeneous data
streams,” Information Systems, Available online, 2012.

79. M.D. Bankier, “Power allocations: determining sample sizes for subnational areas,” The
American Statistician, 42:174–177, 1988.

80. S. Chaudhuri, G. Das, and V. Narasayya, “Optimized stratified sampling for approximate
query processing,” ACM Transactions on Database Systems (TODS), 32(2), p.9-es, June
2007.

81. T. Liu and G. Agrawal, “Stratified k-means clustering over a deep web data source,” Proceed-
ings of the 18th ACM International Conference on Knowledge Discovery and Data Mining
(KDD), pp.1113–1121, 2012.

82. H. Sug, “A structural sampling technique for better decision trees,” Proceedings of the 1st

Asian Conference on Intelligent Information and Database Systems (ACIIDS), pp.24–27,
2009.

83. A. Pol, C. Jermaine, and S. Arumugam, “Maintaining very large random samples using the
geometric file,” The VLDB Journal, 17:997–1018, 2008.

84. T.S. Buda, J. Murphy, and M. Kristiansen, “Towards realistic sampling: generating dependen-
cies in a relational database”. Proceedings of the 7th International Conference on Ubiquitous
Information Management and Communication (ICUIMC), 2013.

85. S. Cong, J. Han, J. Hoeflinger, and D. Padua, “A sampling-based framework for parallel data
mining,” Proceedings of the 10th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pp. 255–265, 2005.

86. B. Babcock, S. Chaudhuri, and G. Das, “Dynamic sample selection for approximate query
processing,” Proceedings of the ACM International Conference on Management of Data
(SIGMOD), pp. 539–550, 2003.

87. R. Gemulla, W. Lehner, and P. J. Haas, “Maintaining bounded-size sample synopses of
evolving datasets,” The VLDB Journal, 17:173–201, 2008.

88. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, “Fast discovery of
association rules,” In Advances in Knowledge Discovery and Data Mining, 1996.

89. B. Chen, P. Haas, and P. Scheuermann, “A new two-phase sampling based algorithm
for discovering association rules,” Proceedings of the eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 2002.

90. F. Olken, “Random sampling from databases,” Ph. D. Dissertation, 1993.
91. I. Boxill, C. Chambers, and W. Eleanor, “Introduction to social research with applications to

the Caribbean,” University of the West Indies Press, Chapter 4, page 36, 1997.
92. C.A. Moser, “Quota sampling,” Journal of the Royal Statistical Society, 115(3):411–423,

1952.
93. C. Sibona and S. Walczak, “Purposive sampling on Twitter: a case study,“ Proceedings of the

45th Hawaii International Conference System Science (HICSS), pp. 3510, 3519, 2012.
94. D.F. Nettleton, “Data mining of social networks represented as graphs,” Computer Science

Review, 7:1–34, 2013.

Data Summarization Techniques for Big Data—A Survey 1149

95. P.D. Grünwald, “Minimum description length tutorial,” In: Advances in Minimum Description
Length, P. Grünwald and I. Myung I (eds), MIT Press, Cambridge, 2005.

96. J. Rissanen, “Modeling by shortest data description,” Automatica, 14(1):465–471, 1978.
97. P.D. Grunwald, “The Minimum description length principle and reasoning under uncertainty,”

cwi.nl, 1998.
98. J. Kiernan and E. Terzi,“Constructing comprehensive summaries of large event sequences,”

Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pp. 417–425, 2008.

99. J. Kiernan and E. Terzi, “Constructing comprehensive summaries of large event sequences,”
ACM Transactions on Knowledge and Data Discovery Data, 3(4), 2009.

100. P. Wang, H. Wang, M. Liu, and W. Wang, “An algorithmic approach to event summariza-
tion,” Proceedings of the ACM International Conference on Management of data (SIGMOD),
pp.183–194, 2010.

101. Y. Jiang, C.-S. Perng, and T. Li, “Natural event summarization,” Proceedings of the 20th ACM
International Conference on Information and Knowledge Management (CIKM), pp.765–774,
2011.

102. R. Agrawal, C. Aggarwal, and V.V.V. Prasad, “Depth first generation of long patterns,”
Proceedings of 7th International Conference on Knowledge Discovery and Data Mining,
2000.

103. D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: a maximal frequent itemset algorithm for
transactional databases,” Proceedings of the International Conference on Data Engineering
(ICDE), April 2001.

104. J. Pei, J. Han, and R. Mao, “Closet:An efficient algorithm for mining frequent closed itemsets,”
Proceedings of the ACM SIGMOD Workshop on Data Mining and Knowledge Discovery,
May 2000.

105. W. Zhou, H. Liu, and H. Cheng, “Mining closed episodes from event sequences efficiently,”
Proceedings of the 14th Pacific-Asia Conference on Advances in Knowledge Discovery and
Data Mining (PAKDD), pp. 310–318, 2010.

106. S. A. Vreeken and M. van Leeuwen, “Item sets that compress,” Proceedings of SIAM
International Conference on Data Mining (SDM), pp.393–404, 2006.

107. M. van Leeuwen, J. Vreeken, A. Siebes, “Compression picks the item sets that matter,”
Proceedings of the European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML-PKDD), pp 585–592, 2006.

108. J. Vreeken, M. van Leeuwen, and A. Siebes, “Krimp: mining itemsets that compress,” Data
Mining and Knowledge Discovery, 23(1):169–214, 2011.

109. M. Leeuwen and A. Siebes, “StreamKrimp: detecting change in data streams,” Proceedings
of the European Conference on Machine Learning and Knowledge Discovery in Databases
(ECML-PKDD), pp: 672–687, 2008.

110. K. Smets and J. Vreeken, “Slim: directly mining descriptive patterns,” Proceedings of SIAM
International Conference on Data Mining (SDM), pp. 236–247, 2012.

111. N. Tatti and J. Vreeken, “The long and the short of it: summarising event sequences with serial
episodes,” Proceedings of the 18th ACM SIGKDD international conference on Knowledge
Discovery and Data Mining (KDD), pp: 462–470, 2012.

112. L.H. Thanh, M. Fabian, F. Dmitriy, and C. Toon, “Mining compressing sequential patterns,”
Statistical Analysis and Data Mining, 2013.

113. F. Moerchen, M. Thies, and A. Ultsch, “Efficient mining of all margin-closed itemsets with
applications in temporal knowledge discovery and classification by compression,” Knowledge
Information Systems, 29:55–80, 2011.

114. R. Polikar, “The wavelet tutorial,” http://engineering.rowan.edu/polikar/WAVELETS/
WTtutorial.html.

115. G. Strang, “Wavelet transforms versus fourier transforms,” Bulletin of American Mathematic
Society, (new series 28):288–305, 1990.

116. A. Haar, “Zur Theorie der orthogonalen Funktionensysteme,”Mathematische Annalen,
69(3):331–371, 1910.

http://engineering.rowan.edu/polikar/WAVELETS/WTtutorial.html
http://engineering.rowan.edu/polikar/WAVELETS/WTtutorial.html

1150 Z. R. Hesabi et al.

117. I. Daubechies, “Ten lectures on wavelets,” SIAM publications, 1992.
118. M. Garofalakis and P. B. Gibbons, “Probabilistic wavelet synopses,” ACM Transactions on

Database Systems (TODS), 29:43–90, 2004.
119. Y. Matias, J.S. Vitter, and M. Wang, “Wavelet-based histograms for selectivity estimation,”

Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp.
448–459, 1998.

120. Y. Matias and D. Urieli, “Inner-product based wavelet synopses for range-sum queries,”
Proceedings of the 14th Annual European Symposium on Algorithms (ESA), pp. 504–515,
2006.

121. J. S.Vitter and M. Wang, “Approximate computation of multidimensional aggregates of sparse
data using wavelets”, Proceedings of the ACM International Conference on Management of
Data (SIGMOD), pp. 193–204, 1999.

122. K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim, “Approximate query processing
using wavelets,” The VLDB Journal, 10(2–3):199–223, 2001.

123. A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss, “Surfing wavelets on streams:
One-pass summaries for approximate aggregate queries”. The VLDB Journal, pp. 79–88,
2001.

124. D. Sacharidis, A. Deligiannakis, and T. Sellis, “Hierarchically compressed wavelet synopses,”
The VLDB Journal, 18:203–231, 2009.

125. A. Deligiannakis and N. Roussopoulos, “Extended wavelets for multiple measures,” Proceed-
ings of ACM International Conference on Management of Data (SIGMOD), pp. 229–240,
2003.

126. A. Deligiannakis, M. Garofalakis, and N. Roussopoulos, “Extended wavelets for multiple
measures,” ACM Transactions on Database Systems (TODS), 32(2), 2007.

127. S. Guha, C. Kim, and K. Shim, “Xwave: Approximate extended wavelets for streaming data,”
Proceedings of the International Conference on Very Large Data Bases (VLDB), pp. 288–299,
2004.

128. S. Guha and B. Harb, “Approximation algorithms for wavelet transform coding of data
streams,” Proceedings of theACM-SIAM Symposium on DiscreteAlgorithms (SODA), 2006.

129. Y. Matias, J.S. Vitter, and M. Wang, “Dynamic maintenance of wavelet-based histograms,”
Proceedings of International Conference on Very Large Data Bases (VLDB), pp. 101–110,
2000.

130. G. Cormode, M. Garofalakis, and D. Sacharidis, “Fast approximate wavelet tracking on
streams,” Proceedings of the International Conference on Extending Database Technology
(EDBT), 2006.

131. P. Karras and N. Mamoulis, “One-pass wavelet synopses for maximum-error metrics,” Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB), pp. 421–432,
2005.

132. K.-L. Liao, H.-H. Chen, J.-B. Qian, and Y.-H. Dong, “Wavelet decomposition algorithm for
uncertain data streams,”Proceedings of the 6th International Conference on Computer Science
& Education (ICCSE), pp.965–970, 2011.

133. Y. Zhao, C. Aggarwal, and P. Yu, “On wavelet decomposition of uncertain time series data
sets,” Proceedings of the 19th ACM International Conference on Information and Knowledge
Management (CIKM), pp.129–138, 2010.

134. C.C. Aggarwal (ed.), “Data streams: models and algorithms”, Springer, 2007.
135. M. Stern, E. Buchmann, and K. Böhm, “A wavelet transform for efficient consolidation of

sensor relations with quality guarantees,” Proceedings of the International Conference on
Very Large Databases (VLDB), pp.157–168, 2009.

136. J. Jestes, K. Yi, and F. Li, “Building wavelet histograms on large data in MapReduce,”
Proceedings of the International Conference on Very Large Databases (VLDB), pp.109–120,
2011.

137. G. Cormode and M. Garofalakis, “Histograms and wavelets on probabilistic data, “Proceed-
ings of the IEEE 25th International Conference on Data Engineering (ICDE), pp.293–304,
2009.

Data Summarization Techniques for Big Data—A Survey 1151

138. R. P. Kooi, “The optimization of queries in relational databases,” PhD thesis, Case Western
Reserver University, Sept. 1980.

139. M. Muralikrisbna and D.J. Dewitt, “Equi-depth histograms for estimating selectivity factors
for multidimensional queries,” Proceedings ofACM International Conference on Management
of Data (SIGMOD), pp. 28–36, 1988.

140. Y. Ioannidis and V. Poosala. “Balancing histogram optimality and practicality for query result
size estimation”. Proceedings of ACM International Conference on Management of Data
(SIGMOD), pp. 233–244, 1995.

141. V. Poosala, Y.E. Ioannidis, P.J. Haas, E.J. Shekita, “Improved histograms for selectivity esti-
mation of range predicates,” Proceedings of ACM International Conference on Management
of Data (SIGMOD), pp. 294–305, 1996.

142. A.C. Konig and G.Weikum, “Combining histograms and parametric curve fitting for feedback-
driven query result-size estimation,” Proceedings of the International Conference on Very
Large Data Bases (VLDB), Edinburgh, pp. 423–434, 1999.

143. V. Poosala and Y. Ioannidis, “Selectivity estimation without the attribute value independence
assumption,” Proceedings of the International Conference on Very Large Data Bases (VLDB),
Athens, pp: 486–495, 1997.

144. D. Gunopulos, G. Kollios, V.J. Tsotras, and C. Domeniconi, “Approximating multi-
dimensional aggregate range queries over real attributes,” Proceedings of the ACM
International Conference on Management of Data (SIGMOD), pp.463–474, 2000.

145. N. Bruno and S. Chaudhuri, “Exploiting statistics on query expressions for optimization,”
Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp.
263–274, 2002.

146. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for clustering evolving data
streams,” Proceedings of the 29th International conference onVery Large Data Bases (VLDB),
pp. 81–92, 2003.

147. F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over an evolving data
stream with noise,” Proceedings of SIAM Conference on Data Mining (SDM), pp. 328–339,
2006.

148. Y. Chen, “Density-based clustering for real-time stream data,” Proceedings of the Knowledge
Discovery and Data Mining (KDD), San Jose, California, USA, pp. 133–142, 2007.

149. J. Ren, R. Ma, and J. Ren, “Density-based data streams clustering over sliding windows,”
Proceedings of the 6th International Conference on Fuzzy systems and Knowledge Discovery
(FSKD), Piscataway, NJ, USA, pp. 248–252, 2009.

150. W. Ng and M. Dash, “Discovery of frequent patterns in transactional data streams,” Transac-
tions on Large-Scale Data- and Knowledge-Centered Systems II,. Springer Berlin/Heidelberg,
6380:1–30, 2010.

151. L.-X. Liu, H. Huang, Y.-F. Gu, and F.-C. Chen, “rDenStream—a clustering algorithm over
an evolving data stream,”Proceedings of CIECS International Conference on Information
Engineering and Computer Science, pp.1–4, 2009.

152. C. Ruiz, E. Menasalvas, and M. Spiliopoulou, “C-DenStream: using domain knowledge on
a data stream,” Proceedings of the 12th International Conference on Discovery Science, pp.
287–301, 2009.

153. W.-H. Zhu, Y. Yin, Y.-H. Xie, “Arbitrary shape cluster algorithm for clustering data stream,”
Journal of Software, 17(3):379–387, 2006.

154. H. Wang, Y. Yu, Q. Wang, and Y. Wan, “A density-based clustering structure mining algo-
rithm for data streams,” Proceedings of the 1st ACM International Workshop on Big Data,
Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and
Applications (BigMine), pp. 69–76, 2012.

155. P. Kranen, I. Assent, C. Baldauf, and T. Sei, “The ClusTree: indexing micro-clusters for
anytime stream mining,” Knowledge Information Systems, 29(2):249–272, 2011.

1152 Z. R. Hesabi et al.

156. A. Amini, T.Y. Wah, M.R. Saybani, and S.R.A.S. Yazdi, “A study of density-grid based
clustering algorithms on data streams,” Proceedings of 18th International Conference Fuzzy
Systems and Knowledge Discovery (FSKD), 3:1652–1656, 2011.

157. A. Amini and T.Y. Wah,“ Density micro-clustering algorithms on data streams: a review,” Pro-
ceeding of the International Multiconference of Engineers and Computer scientists (IMECS),
2011.

Part VIII
Monitoring

Central Management of Datacenters

Babar Zahoor, Bibrak Qamar and Raihan ur Rasool

1 Introduction

A centrally managed data center allows administration & management from a single
location. In this chapter we discuss various functions related to administration and
management of centrally managed data centers. Some of the major functions that we
intend to discuss are summarized below. Monitoring of data traffic, thwarting attacks,
monitoring activities of hardware and software that include resource utilization and
alarming systems which helps in diagnosing and fixing any faults that arise during
the operation of the data center.

Provisioning the servers and configuration of network devices not only include
installation of operating systems, configuration of various services, patches man-
agement, software lifecycle management, but also includes the management of the
inventory of hardware and software as well. Centrally logging various kinds of logs
(activity logs, events logs, errors logs, and traffic logs, debug logs and alert logs)
generated by applications and devices to help make system administration efficient.

Preventing from external threats over network traffic whether inbound or outbound
is inspected by intrusion detection system.

B. Zahoor (�)
ICT Department, Oxfam Novib, The Hague, The Netherlands
e-mail: babar.zahoor@oxfamnovib.nl

B. Qamar
Center for High Performance Scientific Computing, School of Electrical Engineering and
Computer Science—NUST, Islamabad, Pakistan
e-mail: bibrak.qamar@seecs.edu.pk

R. ur Rasool
School of Electrical Engineering and Computer Science—NUST, Islamabad, Pakistan
e-mail: raihan.rasool@seecs.edu.pk

© Springer Science+Business Media New York 2015 1155
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_39

1156 B. Zahoor et al.

2 Organization of the Chapter

This chapter is organized into following sections:

1. Management Layer Network
2. Provisioning of Servers
3. Platform Configuration Management System
4. Resource Utilization Monitoring
5. Alerting & Alarming System
6. Central Logging System
7. Intrusion Detection & Prevention System
8. Data Center Backup and Restore
9. Security Management System

2.1 Management Layer Network

The Management layer network in datacenter is a dedicated & isolated network layer;
from where datacenter administrator can easily manage & monitor the system. Man-
agement layer network is the network where management interfaces of all devices
are connected. This layer is not accessible by users or outer world except the system
admins the datacenter.

Since a typical datacenter can contain hundreds of servers that makes it impossible
to manage every machine physically; we recommend creating separate dedicated
network layer where every machine will be connected to be monitored & managed
afterwards.

Connecting a keyboard/mouse with dedicated monitor to each machine is almost
impossible, which is also wastage of resources and money. As technology has grown
tremendously, few years back intelligent platform management interface (IPMI)
protocol was introduced to manage server machines remotely. It allows system ad-
ministrator to remotely install operating systems on machines to manage and monitor
servers’ hardware remotely.

IPMI allows datacenter admins to perform these tasks remotely by using IPMI
based dedicated network port on servers. Almost every server has special dedicated
network port which is designed to manage & monitor servers remotely known as
IPMI i.e. Integrated lights out (iLO) is trademark of HP, Dell uses DRAC for their
servers machines and few vendors use KVM over IP terminology based on IPMI
protocol.

Storage devices are integral part of any datacenter. For smooth operations of
datacenter proper monitoring and management of storage systems is required. In
enterprise level storage devices; dedicated network interfaces (management mod-
ule) are available to manage those devices. We recommend connecting management
modules of SAN/NAS system into MLN where datacenter admins can easily mon-
itor the performance and manage the devices on daily basis. Similarly to manage

Central Management of Datacenters 1157

Fig. 1 The MLN- connected with the management interfaces of devices

routers; there is console ports or Mgmt interfaces available in the routers; those ports
or interface shall be connected to MLN for maintenance & administration tasks when
needed.

To secure LAN from WAN based threats in datacenter we recommend using
firewalls and to manage firewalls; there are dedicated console ports or management
interfaces which shall be connected with MLN for daily maintenance/administration
and monitoring tasks.

In datacenters for connectivity of servers or server racks with each other we
use multiple switches and to manage enterprise switches; dedicated management
interfaces can be connected to MLN for maintenance/administration & monitoring
of traffic flows. The following Fig. 1 shows MLN connected with the management
interface of devices.

In this epoch of cloud computing organizations are deploying or already adopted a
virtualization technologies layer in their datacenters for consolidation & optimization

1158 B. Zahoor et al.

of hardware resources; save power, space with better performance and low costs.
Management of virtualization layer is also critical task. Most of the virtualization
layer engines provide dedicated management network interface; which allows system
admins to perform administration, maintenance monitoring tasks by using the same
interface. Management interfaces of virtualization engines shall be connected to
management layer network for daily administration, maintenance and monitoring
tasks [1].

2.2 Provisioning of Servers

Provisioning of servers is a set of actions to prepare a server with appropriate systems,
data and software and to make it ready for network operations.

Typical tasks when provisioning a server are: selecting a server from a pool of
available servers, load the appropriate software (operating systems, device drivers,
middleware, and applications), appropriately customize and configure the system
and the software to create or change a boot image for this server, and then change its
parameters, such as IP addresses, IP Gateway to find associated network and storage
resources.

The installation of provisioning servers reduces the workload of data center ad-
ministrators and technicians as it automates the installation of operating systems,
patch management, software up-gradations and many more functions in the data
center environment [6].

There are many provisioning-servers software available in the market [2–4]. Selec-
tion of software can be done according to below mentioned suggested functionalities
in the intended software:

• Inventory management system for hardware and software information.
• Provisioning and maintaining computer systems and virtual machines
• Installation and maintenance of software.
• Distributing custom software packages into manageable groups.
• Deploying and managing configuration files to computer systems.
• Distributing content across multiple physical or geographical sites in an efficient

manner.

2.2.1 Reason to Use Provisioning Servers

A small IT environment having few servers can be easily managed by system admin
in case of any disaster; the time for reconfiguration is minimal in such a scenario.
But in a datacenter with multiple servers without an automated provisioning service
the job of the system administrator becomes tedious and less flexible [5].

Normally in datacenters operating systems need security patches, important soft-
ware updates, automated configuration of applications on servers and management
of inventory. It is difficult to update the systems and manage these tasks in timely

Central Management of Datacenters 1159

manner at large-scale environments. This is where automated provisioning servers
come into play, where by the datacenter administrator can easily manage the en-
tire infrastructure setup using automated processes configured according to needs.
Hence automation of daily routine tasks using provisioning servers is vital for proper
datacenter management.

2.3 Platform Configuration Management System

The Platform Configuration management is the process of standardizing resource
configurations and enforcing their state across IT infrastructure in an automated
manner. Configuration management is critical to the success of IT processes that
include; provisioning of servers, change management, release management, patch
management, compliance and security. Many IT organizations rely on manual tasks,
custom scripts driven configurations, and customized OS images to accomplish the
replication of activities. In large environments with multiple IT professional’s team
these methods are difficult to balance, track and continue which can create several
issues. Including configuration flow, non-compliance, decrease productivity and
responsiveness. This is where platform configuration management system becomes
required for automated systems.

Configuration management is a best practice in any security plan. Configura-
tion management can help us to Enforce Standard Operating Environment (SOE)
standards by eliminating the configuration drifts.

It also supports the vulnerability management requirements by quickly identi-
fying resources that need to be patched and then distributing patches. It satisfies
auditing requirements by providing a complete audit trail. Configuration manage-
ment system is being used in IT Automation process, physical or virtual machines
and Cloud computing platforms and networked resources. It can be configured on
storage devices as well as on network hardware & software, firewalls, smart phones
and tablets, Phablet, out of band/IPMI management products, monitoring & alarm
systems and routers and switches.

The required features of configuration management systems & provisioning server
can also be available in a single software [2, 4]. Figure 2 shows the working of a
typical provisioning & configuration management system.

2.4 Resource Utilization Monitoring

The Resource utilization & Monitoring is a software solution to monitor hardware
health status and performance of devices in a datacenter. It aims to monitor resource
utilizations of servers, storage devices (SAN/NAS) performance & hardware health
status, firewalls inbound/outbound network traffic & hardware resource utilization
status. It is used to monitor routing devices monitoring/WAN traffic status, network

1160 B. Zahoor et al.

Fig. 2 Provisioning and configuration management system

switches activities & traffic flows, UPS systems for health, servers hard disk drives
usage & their health status, fan speeds & temperature status of devices and high
loads of CPUs of servers.

Normally we can connect Network Monitoring System with Management layer
network where all Servers’ IPMI interfaces are connected for management purposes
and NMS (Network Monitoring Systems) can get servers’ hardware information us-
ing SNMP string. On the same network layer storage devices’ management modules
can also be connected for efficient management. Using management modules we
can monitor storage devices hardware resources & health status.

Other network devices like routers, firewalls, gateways are also connected to the
management layer network for management purposes using management ports or
interfaces, which can easily be utilized for resource utilization monitoring purposes;
because these devices provide support for SNMP strings using same interfaces.

We can easily generate reports or view graphs to monitor resource utilization at
hardware layer like CPU, RAM, and storage health.

Central Management of Datacenters 1161

The resource utilization monitoring systems can generate live graphs of operat-
ing systems stats; it can be configured to monitor different Operating systems i.e.
various distributions of Linux, Windows, Mac OS, Solaris, AIX and HP-UX using
Simple Network Management Protocol (SNMP), Secure Shell (SSH),Windows Man-
agement Instrumentation (WMI), Java Management Extensions (JMX) and Syslog
protocol.

There are plenty of resource utilization monitoring systems available in the market,
Resource utilization monitoring software can be configured to monitor different
applications performance graphs and can also generate alerts to system admins during
issues with running applications. Virtualization engines can easily be configured to
send resource utilization monitoring updates to NMS &Alerting/alarming system via
SNMP protocol using management network interfaces of virtualization engines (MI
VE). There are plenty of Open Source network monitoring systems (NMS) available
in the market. We can use Open Source network monitoring system NMS i.e. Nagios,
Zenoss Core, Groundworks, Ansible, Gangila and many more for datacenter resource
utilization and monitoring purposes.

2.5 Alerting and Alarming System

The alerting & alarming system is a software program which sends alerts/alarms
using SMS, E-mail & voice messages to datacenter administrators and managers
about the critical issues with network devices, servers, applications (web or desktop)
database services, network services and many more.

The alerting & alarming system are able to send true alarms or alerts, restart the
services in case of failures of those services, escalate the alerts, and report the system
activities.

There is plenty of software available that can easily perform the resource utiliza-
tion monitoring and alerting/alarming system tasks together [9, 10]. It will reduce
hardware & software overhead by buying, using & configuring one system for re-
source utilization monitoring and alerting & alarms tasks. Following Fig. 3 shows
how the resource utilization monitoring and alarming systems work.

2.6 Central Logging System

The Central Logging server is a system that allows machines, physical or virtual
on the network to write logs information on its logging system. It also allows other
devices such as; storage devices (SAN/NAS), network devices (routers, firewalls,
and switches), printers, MFP devices to send logs to its logging center.

These logs are used for computer system management and security auditing [7]
as well as generalized informational, analysis, and debugging purposes of systems &
applications. Centralized logs show the information about the activities of different

1162 B. Zahoor et al.

Fig. 3 Resource utilization, network monitoring and alarming system–the network monitoring,
resource utilization and alerting/alarming servers get information from network devices

processes on servers, start/stop timing of services, errors in services/applications,
and causes of errors.

System admins can easily perform audit on logs from outside the production
environment or live systems.

It is always better to do the search in a centralized logging system. Without
centralized logging, it becomes a logistical nightmare to research a single transaction
that may have been processed on any one of an array of application servers–since
datacenter administrators then have to log into each server and start searching through
each. There are many available central log server software some of them include
Syslog, Syslog-ng, RSyslog, Kibana, Logstash, Graylog2 and many more.

Central Management of Datacenters 1163

2.6.1 Security Information Event Management

A security event manager (SEM) or Security Information Event Management (SIEM)
or Security Information Management (SIM) is a computerized tool for collecting logs
& events information generated by servers (physical/virtual), applications, firewalls,
routers, and switches in data center networks to generate events reports and inform
datacenter administrators or infrastructure managers for further actions.

The key feature of a Security Information Event Management tool is the ability to
analyze the collected logs to highlight events or behaviors of attention, for example
system admin or admin/Super User logon, outside of normal working hours. Central
Logging management system & SIEM are closely related; Central Logging systems
focus on gathering logs, whereas SEM focuses on data analysis of logs.

Many applications working on a computer networks generate activities logs or
events log. Protocols, such as Syslog and SNMP, can be used to transport these events,
when they occur, to logging software on a centralized logging system explained in
Central logging system. There are many proprietary and Open Source SIEMs or
SEMs are available in the market that provides a support to many communication
protocols to collection information from system. Figure 4 shows the working of a
Centralized Logging System & SIEM.

2.7 Intrusion Detection and Prevention System

The Intrusion Detection & Prevention Systems are basically two different systems
or functions, which work in digital communication.

i. Intrusion Detection System
ii. Intrusion Prevention System

An intrusion detection system (IDS) is a function performed by hardware device
or software application that monitors network or system activities for malicious
activities or organizational policy violations and produces alert to a datacenter
administrator on management station.

Next level is automated set of actions to stop those malicious activities on a system;
called Intrusion Prevention System.

Intrusion detection and prevention systems (IDPS) are primarily focused on iden-
tifying possible incidents, logging information about them, preventing malicious
activities to harm the systems and reporting attempts. In addition, organizations use
IDPS for identifying problems with security policies, documenting existing threats
and deterring individuals from violating security policies. IDPS has become a crucial
addition to the security of infrastructure in every organization.

IDPS typically record malicious activities information related to observed events
notify data center administrators or Information security officers. Many IDPS can
also respond to a detected threat by attempting to prevent it from succeed. They
use several response techniques, which involve the IDPS stopping the attack itself,

1164 B. Zahoor et al.

Fig. 4 Central logging system & SIEM- cluster of machines are configured to host logs from dif-
ferent devices with in a datacenter; routers, switches, firewalls, printers, physical & virtual servers,
storage devices such as storage area networks (SAN) & Network attached storage (SAN/NAS), and
applications and operating systems can also send logs to these servers. Admin can easily use these
logs to audit the systems & applications & other purposes

changing the security setting (e.g. reconfiguring a firewall) or changing the attack’s
content.

2.7.1 Types of Intrusion Detection System (IDS)

There are two types of Intrusion Detection Systems that can be used to inspect the
network traffic:

Central Management of Datacenters 1165

Network-Based Intrusion Detection System (NIDS)

A Network-Based Intrusion Detection System or NIDS is typically a standalone
hardware appliance that is placed at the network perimeter along with the firewall. It
monitors all the network traffic that enters or leaves the network. An NIDS contains
hardware sensors located at various points within the network, which inspect the
data packets from all devices reside inside the local area network [8].

Host-Based Intrusion Detection System (HIDS)

Host-Based Intrusion Detection System or HIDS is a software application that is
installed on every host and device that resides in the internal network. HIDS analyzes
the inbound and outbound network traffic only from the specific device on which
it is installed, and alerts the datacenter administrator once the security violation
or intrusion even occur. Host-Based Intrusion Detection System enables datacenter
administrator to specify the well-known attacks which then make it easier for them to
monitor the intrusion events if they occur. Moreover, HIDS also prevents the Trojans,
backdoors, etc. from getting installed into the specific host, and monitors the key
system files as well. If it is configured correctly on the host, it can also provide
real-time detection of suspicious activities on that host.

2.7.2 How Intrusion Detection System Works?

To determine an attack, Intrusion Detection System follows one of the two detection
methods discussed as below:

Anomaly-Based Intrusion Detection System

An Anomaly-Based Intrusion Detection System monitors the network traffic, and
compares it against the security baseline establish by datacenter administrator. The
security baseline defines the criteria such as used bandwidth, protocols, ports, and
the types of devices that can be connected to each-other. If the network traffic is
detected abnormal or different from the defined criteria in the baseline of system,
Anomaly-Based Intrusion Detection System immediately sends alerts or alarms the
administrators about the incident. Datacenter administrator can then take appropriate
actions according to the type and sternness of the breach or intrusion. An Anomaly-
based ID is also known as Behavior-based IDS.

Signature-Based Intrusion Detection System

A Signature-Based Intrusion Detection System checks the signatures or patterns of
data packets, and compares them against the well-known network attack patterns that

1166 B. Zahoor et al.

are store in its database system. As the pattern matches to any one of the patterns,
the Signature-Based Intrusion Detection System generates a report and sends to
data center administrator via email, short message on mobile devices or any other
communication medium. A Signature-based ID is also referred to as Knowledge-
based IDS.

2.8 Datacenter Backup and Restore

The Data Center Backup and Recovery is mandatory for business continuity pro-
cess. In critical environments large enterprises spend thousands or even hundreds of
thousands dollars to build a dense data warehouse to store data backups for future
data recovery needs. Pieces of digital information which make financial records, on-
line transactions, client’s information, data mining, internal project reports, project
process & data, and huge sensitive business information, all of these are decisive
to running a booming business. If anything went wrong with data or it is stolen, it
could severely put in danger the entire enterprise and damage its reputation. That
is why many enterprises spend in a secure data warehouses to store their sensitive
data and sign up for remote backup and security services to increase redundancies.
If that data files become corrupted or get deleted, recovery or restore services will
jump into action to restore the files to their original state.

The Remote data back-up services for organizational datacenter can add sub-
stantial value to its datacenter’s efficient functionality. For planning datacenter
backup/restore procedures, business continuity planning plays an important role be-
cause in Business continuity planning we can decide recovery point time objectives
(RTO) & Recovery point objectives (RPO) which define for how long we can work
without datacenters operations. Two technical indicators are used to measure disaster
recovery:

• Recovery point objective (RPO): maximum acceptable amount of data loss
• Recovery time objective (RTO): acceptable longest duration of time within

which services are interrupted or the shortest duration between the time when
a disaster occurs and the time when services are restored

RPO measures data loss, while RTO measures service loss. RPO and RTO are not
necessarily related. RTO and RPO vary according to services and enterprises, and
are calculated based on service requirements after risk analysis and service influence
analysis are performed.

If the RTO is shorter and the RPO is newer, the service loss will be less. The costs
in developing and building the system, however, will become higher. Both factors
are an important consideration.

Central Management of Datacenters 1167

2.8.1 The Components of Data Backup and Recovery

Simply put, data backup is designed to mitigate the loss and risk of sensitive business
data while being able to recover or reconstruct the files in case of failure. Datacenters
follow numerous protocols when backing up sensitive business data to ensure the
maximum level of security.

Cold and Hot Backup

The “Cold” data backup means running a nonstop backup of files process with
constant backup of the entire facility. This can be basis of quite a bit of trouble
because it is always updating and take up a huge amount of storage. It is also a fatal
process and, since it cannot differentiate old information from new, new information
does not have priority update over old files that remain unchanged. However, “Hot”
backup will backup files that are being updated or changed. When a data files gets
updated or added into the system, another copy of the file is created and stored in case
the file become degraded. This requires sophisticated software but takes up fewer
resources than running a regular organism wide backup.

Enterprise Backup and Restore Software

Enterprise backup & restore software for backup services ranges from quick storage
backup to secure data storage backup. There are many different types of software
available in the market which can be selected according to organizational needs can
facilitate the backup procedures. This software can back up your data and safeguard
it against outside threat that seeks to corrupt or mine important data files. Some
software requires scanning of the entire system before it begins to back up the files
for security while others are optimized for speed.

Online and Offline Storage

Online Storage backup facilities store files online and there are more chances of being
tampered with as compared to files stored offline. Online files are usually those that
are accessed more frequently and edited by authorized users. Files that are offline
contain old files that are not being used recently. With online and offline storage,
users can benefit from having fast access to important files while still being able to
store old files in a secure & proper location.

To get a proper concept of chapter; few protocols need consideration to be studied
first. In the following section basic information about those protocols are available.
Section 9 also explains some standards & protocols which are being used to connect
NMS & Alerting/Alarming & central logging server with network devices, servers,
applications to get information and generated reports and alarm notifications.

1168 B. Zahoor et al.

2.9 Security Management Systems

The main goal of security management systems is to manage access controls on
datacenter network resources aligned with organizational policy & SOP guidelines,
so that, the network cannot be damaged (purposely or accidentally). A security man-
agement system can also monitor users logging on to a network resource, refusing
access for those who entered wrong access codes or pass-keys. A good security man-
agement implementation starts with sound security policies and procedures in place.
It is important to create platform specific configuration standards for all network
devices (e.g. routers and switches, firewalls) aligned with the industry best practices
for security and performance. There are various methods of controlling access on
network resources, some of them include, Access Control Lists (ACL) and UserIDs
and passwords local to the device.

3 Conclusion

This chapter explained how central management of datacenters’ resources can in-
crease productivity and efficiency by allowing the administrators to manage and
monitor all devices from a single location. Some open source and proprietary tools
have also been listed for the central management of whole datacenter.

It is recommend to create network layer (MLN) in a datacenter, to manage devices
using network connections, getting performance details of devices, load average stats
of CPU usage, uptime/downtime details of hardware, alerts of server or services
downtimes, alerts of critical issues in datacenter operations. There are so many tasks
that be performed by the suggested management for example; provisioning of servers,
patch management, release management and inventory management.

Appendix

i. Simple network management protocol

Simple Network Management Protocol (SNMP) is an Internet-standard protocol
for managing devices on IP networks. Devices that typically support SNMP in-
cluding routers, switches, servers, workstations, printers, modem racks and more.
It is used mostly in network management systems to monitor network-attached
devices for conditions that warrant administrative attention.

ii. Secure shell

The Secure Shell (SSH) is network communication protocols for secure data
communication; it is used for remote command-line login. Computer runs SSH
server program called server and allow connection from clients running SSH client

Central Management of Datacenters 1169

from remote location via IP networks to execute commands on server command
shell. It is used Unix/Linux based Operating systems & network devices.

iii. Windows management instrumentation

Windows Management Instrumentation (WMI) is a set of extensions to the
Microsoft Windows Driver Model that provides an operating system interface
through which instrumented components provide information and notification.
WMI prescribes enterprise management standards and related technologies
for Windows that work with existing management standards such as Desktop
Management Interface (DMI) and SNMP.

iv. Java management extensions

The Java Management Extension (JMX) technology provides the tools for build-
ing distributed, Web-based, modular and dynamic solutions for managing and
monitoring devices, applications, and service-driven networks. By design, this
standard is suitable for adapting legacy systems, implementing new management
and monitoring solutions, and plugging into those of the future.

v. Syslog

Syslog is a standard for computer message logging. It allows separation between
applications or services or software those generates messages from the system
and stores them for the software which can generate reports after analyzing them.
Syslog can be used for computer system management and security auditing as, it
is supported by a wide variety of devices for example servers (physical or virtual)
other devices run on the network such as; storage devices (SAN/NAS), network
devices (routers, firewalls, and switches), printers, MFP devices and receivers
across multiple platforms.
There is multiple a levels of messages in syslog; which classify the criticality
level of devices logs. Messages are also labeled with a facility codes from 0 to 7
& more.
0 Emergency: system is not usable
1 Alert: Immediately action required
2 Critical: critical conditions
3 Error: error conditions
4 Warning: warning conditions
5 Notice: normal but significant condition
6 Informational: informational messages
7 Debug: debug-level messages

vi. Intelligent platform management interface

The Intelligent Platform Management Interface (IPMI) is a standardized computer
system interface available in almost all type of server machines and enterprise
network switches used by system administrators for out of band management of
computer systems and monitoring of servers. It is a way to manage a computer that
may be powered off or otherwise unresponsive by using a network connection to

1170 B. Zahoor et al.

the hardware rather than to an operating system or login shell weather the computer
is power off or on. By using this protocol a machine can be easily managed,
it can also be powered-up using IP. Intelligent platform management interface
IPMI protocol allows administrator to configure HDD RAID levels on servers,
monitor components performance of servers i.e. fan, rpm, CPU temperature 0 ◦C.
It can be used to provide SNMP strings to resource utilization monitoring &
alerting/alarming servers (NMS) to plot server’s hardware in graphs or to generate
alerts for informing system admins about hardware problems.
NMS will be discussed in detail during Resource Utilization Monitoring Sys-
tems section. Using IPMI protocol can also do remote installation of Operating
Systems.
As a message-based, hardware-level interface specification, IPMI operates inde-
pendently of the Operating system (OS) to allow administrators to manage &
administrate a machine remotely.

References

1. Managing VMware ESXi, Information guide VMware http://www.vmware.com/files/
pdf/ESXi_management.pdf, Accessed on Nov 2013

2. Cobbler Deployment System http://www.cobblerd.org/, Accessed during Apr 2013
3. OpenQRM http://www.openqrm-enterprise.com/, Accessed during Feb 2013
4. Spacewalk http://spacewalk.redhat.com/, Accessed during Aug 2013
5. Cory Lueninghoener “Getting Started with Configuration Management”. APRIL 2011 Getting

Started with Configuration Management
6. Thomas Delaet Wouter Joosen and Bart Vanbrabant “A survey of system configuration tools”,

2012
7. Christopher S. Duffy “Creating a Bastioned Centralized Audit Server with GroundWork Open

Source Log Monitoring for Event Signatures”, Jan 2013
8. Snort http://www.aboutdebian.com/snort.htm, Accessed during Jan 2014
9. Zenoss http://www.zenoss.com/, Accessed during March 2013

10. “Zenoss EnterpriseArchitecture Overview” http://docs.huihoo.com/zenoss/Zenoss-Enterprise-
Architecture-Overview.pdf, Accessed during Oct 2013

http://www.vmware.com/files/pdf/ESXi_management.pdf
http://www.vmware.com/files/pdf/ESXi_management.pdf
http://docs.huihoo.com/zenoss/Zenoss-Enterprise-Architecture-Overview.pdf
http://docs.huihoo.com/zenoss/Zenoss-Enterprise-Architecture-Overview.pdf

Monitoring of Data Centers using Wireless
Sensor Networks

Cláudia Jacy Barenco Abbas, Ana Lucila Sandoval Orozco
and Luis Javier García Villalba

1 Introduction

As data center energy densities, measured in power per square foot, increase, energy
savings for cooling can be carried out by applying WSN technology and using the
gathered information to efficiently manage the data center.

Data centers’energy consumption has attracted global attention because of the fast
growth of the information technology industry. Up to 60 % of the energy consumed in
a data center is used for cooling in wasteful ways as a result of lack of environmental
information and overcompensated cooling systems [1].

Data centers consume 1 < 2 % of today’s world electricity production, increasing
at a rate of 12 % per year due to high demand for these resources. As a consequence,
the amount of heat generated by data centre equipment is growing rapidly. Currently,
about half of data centers’ energy is used for cooling.

Continuous monitoring of the spatial temperature distribution in a data center
DC (Data Center) is important for reliably operating the computing equipment and
minimizing the required cooling energy [2].

Typical data centers use equipment that cannot operate in high temperatures,
resulting in extensive use of energy-consuming air cooling infrastructure. This
infrastructure consists of cooling and computing components that typically use low-
efficiency, single-speed fans and do not allow for dynamic shifting of cool air to
where it is needed most.

L. J. García Villalba (�) · A. L. Sandoval Orozco · C. J. Barenco Abbas
Group of Analysis, Security and Systems (GASS), Department of Software Engineering
and Artificial Intelligence (DISIA), Faculty of Information Technology and Computer Science,
Office 431, Universidad Complutense de Madrid (UCM),
Calle Profesor José García Santesmases 9 Ciudad Universitaria, 28040 Madrid, Spain
e-mail: javiergv@fdi.ucm.es

C. J. Barenco Abbas
Universidade de Brasília, Campus Universitário Darcy Ribeiro, Faculdade
de Tecnologia, Departamento de Engenharia Elétrica, Barsília - D.F. - Brazil

© Springer Science+Business Media New York 2015 1171
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_40

1172 L. J. G. Villalba et al.

A 25 % savings in energy use can easily save a data center $ 8–16 per square feet
in total annual energy costs, while delivering a power usage effectiveness (PUE or
total facility power/information technology [IT] equipment power) rating of 1.25, a
dramatic improvement over the 1.7 or higher rating for most data centers (a rating
closer to 1 is preferred) [3].

To enable data center operators to run their cooling system closer to the eco-
nomically attractive upper limit, continuous temperature monitoring at thermally
critical locations in the data center is required. In addition, thermal models based
on measurement data can be used to analyze and optimize layout, air flow and
workload distribution in the data center. Changing operating parameters with sophis-
ticated control concepts based on real-time temperature information can optimize the
cooling-efficiency even further.

It is argued that the combined computational and networking capability of a sensor
network enables it to interact with the clusters in a much more sophisticated way and
enhance essential functions in a data center [4].

The first step to limit the waste of energy in the operation of data centers is to
standardize energy efficiency metrics and distinguish the most inefficient parts of the
system. The green grid association [5] has reported metrics for measuring energy
efficiency in data centers. Similar steps are also presented in [6].

Sensor network technology has recently been adopted for data center thermal
monitoring because of its nonintrusive nature for the already complex data center
facilities and robustness to instantaneous CPU or disk activities [7].

Data center operators tend to further decrease the CRAC’s temperature settings
when servers issue thermal alarms because they lack the information to accurately
diagnose the problem [8]. Historical and real time data about the environmental
conditions inside a data center are invaluable not only for diagnosing problems but
for improving the data center’s efficiency [9, 10].

Thermal and air dynamics in data centers can be complex. Fig. 1 allows us to
gain an understanding of the underlying spatial variability through a thermal image
captured by an infrared camera. This picture exposes the temperature variations that
exist over the air intakes of multiple server racks. One can observe temperature
differences larger than 10 ◦F across various heights of the same rack, as well as
significant differences in the temperature distribution patterns across different racks
[8].

There are seemingly several options for measuring the temperature and humidity
distributions inside a data center. For one, thermal images such as the one shown
in Fig. 1 visualize temperature variations over the camera’s view frame. However,
continuously capturing thermal images throughout the data center is prohibitively
expensive. Alternatively, modern servers have several onboard sensors that monitor
the thermal conditions near key server components, such as the CPUs, disks, and
I/O controllers. These sensors are used to detect and prevent hardware failures due
to overheating rather than sense the data center’s ambient environment. Some recent
servers also have temperature sensors at the air intake, and administrators can estimate
room conditions from these sensors. However, for servers that do not have sensors at
the air intake, it is difficult to accurately estimate the room temperature and humidity
from another onboard sensors [8].

Monitoring of Data Centers using Wireless Sensor Networks 1173

Fig. 1 A row of computer racks inside a data center (left) and the corresponding infrared image
representing the spatial temperature distribution (right) [8]

The communication mechanism used to retrieve the collected measurements is
the other crucial aspect in the system design. Options in this case are divided in
two categories: in-band vs. out-of-band. In-band data collection routes measure-
ments through the server’s operating system (OS) to the data center’s (wired) IP
network. The advantage of this approach is that the network infrastructure is, in
theory, available and the only additional hardware necessary are relatively inexpen-
sive USB-based sensors. However, data center networks are in reality complex and
fragile. They can be divided into several independent domains not connected by
gateways. Traversing across network boundaries can lead to serious security viola-
tions. Finally, the in-band approach requires the host OS to be always on to perform
continuous monitoring. Doing so however would prevent turning off unused servers
to save energy [8].

Out-of-band solutions use separate devices to perform the measurements and a
separate network to collect them. Self contained devices provide higher flexibility
in terms of sensor placement, while a separate network does not interfere with data
center operations. However, deploying a wired network connecting each sensing
point is undesirable as it would add thousands of network endpoints and miles of
cables to an already cramped data center [8].

For this reason, wireless networks are the only feasible option. Moreover, net-
works based on IEEE 802.15.4 radios are more attractive compared to Bluetooth or
WiFi radios. The key advantage is that a 15.4 network has a simpler network stack
compared to alternative solutions. This simplicity has multiple implications. First,
sensing devices need only a low end MCU such as the MSP430 [11] thus reducing
the total cost of ownership and implementation complexity. Second, the combina-
tion of low power 15.4 radios and low power MCUs leads to lower overall power
consumption. The need for low power consumption will become apparent when we
present the mechanism used to power multiple sensing devices from the same power
source.

1174 L. J. G. Villalba et al.

2 Survey Study

FEMP (U.S. Federal Energy Management Program) [12] presents a wireless sensor
technology that provides real time data center conditions needed to optimize energy
use and achieve substantial savings all with minimal impact on day to day opera-
tions. This technology includes branch circuit power monitors, temperature sensors,
humidity sensors, and pressure sensors, along with an integrated software product
to help analyze the collected data.

This wireless sensor technology provides a cost effective and facilitates a friendly
way of helping data center operators visualize and implement system changes that
reduce overall energy consumption.

In order to evaluate the real world effectiveness of wireless sensor technology,
GSA’s Green Proving Ground (GPG) program worked with the Energy Department’s
Lawrence Berkeley National Laboratory (LBNL) as a demonstration project location.
Sensors using a wireless mesh network and data management software to capture
and graphically display real time conditions for energy optimization were installed.

The study showed that providing real time, floor to ceiling information on humid-
ity, air pressure, and temperature conditions is feasible. This data, when combined
with power use, leak detection, and equipment status, could enable data center op-
erators to significantly improve the energy efficiency of even well managed data
centers.

The main benefits of this technology are:

• The Bottom Line: Efficiency measures implemented as a result of information
provided by the wireless sensor network reduced the demonstration facility’s
cooling load by 48 %, and reduced the total data center power usage by 17 %.

• Simplified Assessment Tools Limit Power Interruption: The data center operator at
the demonstration facility found that full deployment of the permanently installed
wireless sensor network provides valuable real time information needed for the on-
going optimization of data center performance. However, permanent installation
of the sensor network required multiple interruptions of facility power.

The LBNL evaluation team concluded that broad deployment represents a best
practice that could help agencies meet mandated targets cost effectively.

The major advantages found for wireless sensor networks were: reduce operating
expenses; reduce capital expenses; increase capacity and reduce failures.

Microsoft’s Data Center Genome project [13] presents a data center monitoring
system using WSN. ENVM is used to monitor and control air conditioners in a data
center using WSNs. With this SENVM, a solution to make a small data center to be
“Green” is feasible. SENVM is designed to directly measure temperature at servers
and send a control signal to air-conditioners whether a server is too hot or too cold;
therefore, SENVM can make sure that temperature at servers will be in an appropriate
condition all time [14].

This technical bulletin [15] presents an overview of wireless sensor technology
and a wireless network implementation of the installation project at LBNL.

Monitoring of Data Centers using Wireless Sensor Networks 1175

First, is recommended three basic issues to be addressed when specifying and
installing a WSN:

• Overall reliability: It is recommended to perform a field test of sensor locations
to ensure reliable operations.

• Sensor battery life: Battery life must be considered during the configuration of
the sensor device because it is primarily affected by the network latency.

• Interoperability of gateway: The interoperability of the protocol over a common,
non-proprietary interface would allow future upgrades and installations that would
include legacy installations.

Many practical benefits can be realized by using a WSN for:

• Cooling performance visualization through software.
• Humidification requirements.
• Floor tile tuning.
• Hotspot identification.
• Historical data trending.
• Preventative Maintenance prediction.
• Multiple computer room air conditioner/computer room air handler

(CRAC/CRAH) unit operational control and coordination.
• Real-time Power Usage Effectiveness (PUE) calculation.

At LBNL, the project included installing a WSN with approximately 800 monitored
points including air temperature, relative humidity, under-floor air pressure, and
electrical current and power. The selected wireless sensor manufacturer installed the
wireless sensors into a meshed network for increased reliability.

With the WSN installation, operators of this LBNL data center achieved energy
efficiency by:

• Increasing data center set point temperature.
• Optimizing control coordination of CRAC units.
• Eliminating humidification systems, which can have unintended, simultaneous

operations.
• Improving floor tile arrangements and server blanking.
• Installing hot-aisle or cold-aisle isolation systems.

The demonstrable results and benefits achieved at LBNL included:

• Visualizing thermal performance: observing thermal profiles above and below
floor in real time; heat mapping.

• Learning from sensors: instant feedback when installing blanking panels.
• Tuning floor-tile locations: balancing under-floor airflow to eliminate hot spots.
• Focusing on a single sensor: watching impact of floor tile opening.
• Verifying the impact of maintenance: trending data during maintenance.
• Determining the need for humidification: monitoring relative humidity and power

consumption.
• Providing instant feedback: real-time information on data center anomalies.

1176 L. J. G. Villalba et al.

• Real-time PUE calculation: calculates Total power consumption including
thermal BTU monitoring and compares IT power consumption at 15 min intervals.

Results obtained with this project originate the following recommendations that may
be relevant to other WSN installations:

• Maintain Airflow Devices: Regular preventative maintenance, inspection, and
tune-ups are highly effective in reducing energy waste in data centers.

• Manage Energy with Metering: The LBNL energy efficiency project clearly val-
idated the old energy axiom that generally states that you cannot manage energy
without monitoring energy. Essential metering and monitoring is provided by the
wireless sensor system.

• Supervise Performance with EMCS: An energy monitoring and control system
(EMCS), or other building monitoring system, should be used in conjunction
with a wireless sensor system.

• Optimize Rack Cooling Effectiveness: Data center operators should consider the
following items to maximize rack cooling effectiveness:

• Match under-floor airflow to IT equipment needs.
• Locate higher density racks near CRAC units and verify airflow effectiveness.
• Locate severs to minimize vertical and horizontal empty space in racks.
• Consolidate cable penetrations to reduce leaks.
• Load racks bottom first in under-floor distribution systems.
• Use blanking plates and panels.
• Eliminate floor openings in hot aisles.
• Establish hot and cold airstream isolation.

The paper presents [16] a suite of assessment tools (DC Pro Software Tool Suite)
that is useful for assessing data center energy use and identifying potential energy
efficiency measures. These tools were developed by DOE Industrial Technologies
Program’s (DOE ITP). The technology that was evaluated consists of a network of
wireless sensors.

The wireless sensor technology installed and evaluated as part of this project con-
sists of sensor nodes, gateways, routers, server platforms, and software applications.
To measure and validate performance claims for this technology, the study team
selected the USDA’s National Information Technology Center (NITC) Data Center
in St. Louis, Missouri. The NITC facility is a Tier 3 data center located at the GSA
Goodfellow Federal Complex.

The demonstration consisted of deploying a self configuring, multipath network
of wireless sensors that provide real time measurement of server inlet temperature
and sub floor pressure differential. Analytics based on mapping of the sensor data
helped identify improvements for more energy efficient cooling of the IT equipment.

A total of 588 environmental sensors were installed throughout the demo room:
16 temperature and 16 humidity sensors were installed in the CRAC units, and 420
temperature sensors were located at the top, middle, and bottom of computer racks
measuring air intake and exhaust conditions at the IT equipment. Additional sub floor

Monitoring of Data Centers using Wireless Sensor Networks 1177

reference temperatures were monitored at selected racks. The balance of the system
included routers and a gateway that was connected to a server.

After the network was fully commissioned, data was gathered and analyzed by a
qualified assessor. Results were used to create an accurate understanding of the data
center operation, and the measured data was input into the DC Pro Software Tool
Suite. The output from the assessment tools provided recommendations on specific
potential energy savings opportunities.

The evaluation team recommends that this type of technology be used in facilities
that wish to achieve energy savings using non intrusive/non interruptive equipment.
This technology supports a rapid assessment to identify energy efficiency measures,
one of which would likely be to install a full wireless monitoring system. In summary,
the study validates the effectiveness of a dense network of wireless sensors to provide
a reliable, facility friendly, cost effective source of real time information that enables
data center operators to achieve 10 % or greater improvements in overall data center
efficiency. Dissemination of these findings should encourage the adoption of this
technology throughout GSA and the data center industry.

This study confirmed that data center operators and analysts can accurately base-
line their facility’s energy performance using a mesh network of sensors to measure
environmental parameters and electrical power. It also demonstrated that analysts can
input this data into energy assessment software to quickly identify energy efficiency
opportunities, even at a data center that is relatively efficient, well operated, and well
designed. In addition, data obtained by this technology can be input into assessment
tools that can identify additional best practice measures applied to: Air Management,
Optimize Cooling, Humidity Control and Optimizing Sub Floor Pressure. Energy
savings result from the implementation of this best practices.

Applying the findings from the evaluation of the demonstration facility to all tenant
operated data centers in the GSA portfolio yields the following potential reductions:
applying a 17 % overall reduction in overall data center energy use at a typical federal
data center with a 69 watts-per-square-foot (W/sf) IT load and a PUE of 1.94 (average
for all of GSA’s data centers) will result in annual savings of $ 21.50/sf (assuming
$ 11/kWh).14 The PUE for this example was reduced to 1.51.

The installation of the environmental sensors was non intrusive and non interrupt-
ing to data center operations; however, this was not the case for power meters. The
shutdowns required to install power meters in electrical panels interrupted the data
center operations and delayed the assessment. While installing temperature sensors
in front and back of the servers, the evaluation team was careful not to disturb access
to the servers by the IT staff.

The high cost and logistical constraints of deploying a wired sensor network
provided a significant barrier to capturing such data. The most significant barrier
posed by this technology was the multiple interruptions of facility power required to
safely connect power monitoring equipment at the demonstration facility.

In [12] the development and impacts of a new wireless sensor technology is
described for data centers called SynapSense Wireless Green Data Center Solution
leased and installed in the Sacramento Municipal Utility District’s (SMUD) data cen-
ter with the intent to investigate the technology. SynapSense employs a wireless mesh

1178 L. J. G. Villalba et al.

network to monitor everything from specific equipment to environmental conditions.
The SynapSense solution is used to baseline energy efficiency, identify and alert staff
to environmental issues and manage operational improvement opportunities.

A major barrier to improved energy efficiency is the difficulty of collecting data
on the energy consumption of individual components of data centers, as well as the
lack of data collection for data centers overall. Better energy data collection would
not only help to quantify the energy load of data center operations, thus highlighting
the importance of energy-efficiency improvements and facilitating right-sizing of
equipment to match the energy load, but it would also allow data center managers
and facility managers to monitor and evaluate the energy savings and corresponding
GHG reductions SynapSense humidity sensors on each rack could allow SMUD to
widen the minimum and maximum acceptable RH % resulting in additional energy
savings.

There are clear operational and financial benefits for SMUD to get on the path to
a Green Data Center. Specifically, there are a number of opportunities to improve the
energy efficiency and overall operation of the SMUD data center without significant
capital outlay. SMUD can improve airflow loss from 50 to 21 % by better managing
the data center airflow.

The site assessment findings suggest that while there is air conditioning (cooling
capacity) to spare, the airflow in the SMUD data center must be improved in order
to meet the data processing needs of the next few years if more high density servers
are part of the growth plan.

The study in [17] describes the implementation of the workload monitoring, analy-
sis, and emulation toolkit to enable the automated collection and analysis of workload
traces from data centers, and use those traces as the basis for repeatable and verifiable
experiments and workload emulation. This toolkit has three tools:

• Splice: Is a data collection tool, enables us to correlate observations across the
IT/facilities boundaries and understand the location-dependent aspects of data
center management, such as the temperature throughout the data center. In addi-
tion, it aggregates sensor and performance data in a relational database using a
database schema that has been designed to treat information that rarely changes
in much the same way as those that frequently change.

• SeASR (Sensor Analysis and Synthetic Reproduction): Helps us understand how
objects respond and change during experiments, and provides feedback to Splice,
enabling more efficient data collection and retention. Examines how readings
change, how often sensors update readings, and into what range of values at-
tribute readings fall. SeASR uses one-dimensional Expectation Maximization
(EM) clustering.

• Sstress: Enables finegrained and repeatable control over server resource utiliza-
tion, allowing it to explore the IT/facilities relationships in one machine, or
emulate workload playback across the data center. Sstress is an application for
selectively utilizing parts of a single machine or networked servers. The desired

Monitoring of Data Centers using Wireless Sensor Networks 1179

functionality is the ability to take a sequence of CPU, memory, disk, and net-
work utilization figures for one or more servers and force another set of servers
to recreate those conditions.

The proposed architecture includes a data communication and filtering engine and
a database schema implemented on top of a relational database and is designed
to support easy extensibility, scalability, and support for the notion of higher-level
object views and events in the data center.

In order to evaluate the effectiveness of the instrumentation and analysis com-
ponents, and the flexibility of the emulation toolkit. They examined the results of
running Splice on two clusters: HP’s Utility Data Center (UDC) and the Duke Com-
puter Science “Devil Cluster”. Results show that cooling costs in a moderately-sized
data center are significantly lower when using temperature-aware workload place-
ment. These savings can represent tens to hundreds of thousands of dollars per
year.

Data Center Infrastructure Management (DCIM) [18] is a tool that monitors,
measures, manages and/or controls data center use and energy consumption of all IT
related equipment. The primary components of a DCIM solution are Input, Process
and Output. Various sensors and other system feeds comprise the input. This raw
data then sent through an analysis process to create actionable data. The processed
data is then presented as output to the user, perhaps in the form of a dashboard or
trend graph, and is also used as control data back into the input component.

DCIM proves the following benefits:

• Access to accurate, actionable data about the current state and future needs of the
data center

• Standard procedures for equipments changes
• Single source of truth for asset management
• Better predictability for space, power and cooling capacity means increased time

to plan
• Enhanced understanding of the present state of the power and cooling in-

frastructure and environment increases the overall availability of the data
center

• Reduced operating cost from energy usage effectiveness and efficiency

The data collected from sensors, as well as knowledge of how environmental variables
affect the conditions in the room, can be used to design control systems that can
adjust the cooling resources, such as the fans and outlet temperatures, to maintain
the room in its operating range [1]. The prototype wireless sensor network is used
to monitor environmental data relevant to the cooling processes at a data center. For
this purpose, Sensirion SHT15 temperature and humidity sensors are selected. The
wireless sensor network is developed based on XBee 2.5 RF modules, which were
engineered to operate within the IEEE 802.15.4/ZigBee protocol and support the
needs of low cost, low power wireless sensor networks. This study demonstrates that
wireless sensor networks can be an effective tool for environment monitoring in a
data center. Such a network offers the advantage of easy deployment throughout the

1180 L. J. G. Villalba et al.

computer racks because there is no need for wiring for power and data transmission.
This network also offers freedom in deployment, as the sensor modules can be placed
in locations where wired sensors would be unfeasible for technical or safety reasons.

To enable data center operators to run their cooling system closer to the econom-
ically attractive upper limit, continuous temperature monitoring at thermally critical
locations in the data center is required. In addition, thermal models based on mea-
surement data can be used to analyze and optimize layout, air flow and workload
distribution in the data center. Changing operating parameters with sophisticated con-
trol concepts based on real-time temperature information can optimize the cooling
efficiency even further [19].

For reliably operating all data processing equipment in the data center, the tem-
peratures at the air inlets of these devices have to be monitored continuously to
ensure that the maximum admissible inlet air temperature specified by the device
manufacturers are not exceeded.

There are several possible approaches to monitor temperatures in data centers.
For example, most data processing devices are equipped with internal temperature
sensors. To detect thermal problems in the data center, however, data from these
internal sensors is generally not the first choice because it reflects the activity of
the device rather than the environmental conditions of the data center. Furthermore,
high installation and configuration effort is required to collect and aggregate this data,
especially in environments with heterogeneous devices from different manufacturers.
Several solutions do exist with external wired sensors, but in practice they are not
widely adopted, mainly because of the difficulty of dealing with changes in the
data center layout. A wireless sensor network, on the other hand, offers a low cost
non intrusive way to gather temperature data at key locations in the data center. The
sensors can be quickly deployed and easily repositioned if data processing equipment
is relocated or replaced [19].

CFD (Computational Fluid Dynamics) simulations and experiments show that the
cold air supply temperature can be significantly increased if the air flow is adapted
dynamically based on measured inlet air temperatures of the data processing equip-
ment. In data centers with significantly varying workload, this approach can yield
cooling energy savings of up to 20 % [20].

Air flow control and thermal aware workload scheduling concepts rely on real-
time temperature information collected in the data center. High reliability, frequent
sampling, and low latency are key requirements for wireless sensor networks used in
real time control applications [8]. A prototype was successfully deployed in the ZRL
Data Center Wireless Sensor Network in production data centers. The data center
houses 400 racks with heterogeneous data processing equipment and is cooled by 40
computer room air conditioners. The temperature changes in the cold aisles of the
data center were tracked with 108 sensors during an upgrade of the cooling system.

Results showed that the reference temperature of the computer room air condi-
tioning units in the data center was increased by 3◦C, thus achieving a significant
cooling energy reduction without risking device overheating [8].

Deployments in production data centers have shown that the DCWSN (Data
Center Wireless Sensor Network) performs well in terms of configuration effort,

Monitoring of Data Centers using Wireless Sensor Networks 1181

Fig. 2 Temperature measured at different locations in and around an HP DL360 server. Also shown
is the server’s CPU load. Internal sensors reflect the server’s workload instead of ambient conditions
[8]

reliability, and power efficiency. Moreover, it was demonstrated in a data center with
400 racks that the cooling efficiency of a data center can be significantly increased
by improving the air flow and temperature distribution based on measurement data
from the DCWSN [8].

Figure 2 plots the temperature measured at various points along with the CPU uti-
lization for an HP DL360 server with two CPUs. Air intake and output temperatures
are measured with external sensors near the server’s front grill and its back cover.
It is evident from this figure that internal sensors are quickly affected by changes in
the server’s workload, rather than reflecting ambient conditions [8].

The RACNet system [8] is among the first attempts to provide visibility into
a data center’s cooling behavior, a problem of increasing importance as cooling
comprises a large percentage of a data center’s energy consumption. At the same time
this compelling application challenges wireless sensor network technology in terms
of reliability and scalability. The WRAP (Wireless Reliable Acquisition Protocol)
protocol tackles these challenges by combining three mechanisms: channel diversity,
decoupling of tree maintenance from data gathering and congestion avoidance via a
token passing mechanism.

Evaluation results from a medium size testbed and pilot deployments at a data
center suggest that WRAP favorably compares to existing data collection protocols.
Specifically, as the aggregate amount of traffic grows, WRAP achieves higher data
yields than open loop protocols such as CTP and higher total throughput than rate
control protocols such as RCRT [21]. Furthermore, results from a large scale pro-
duction deployment show that WRAP offers stable performance with data yields
consistently higher than 99 %.

1182 L. J. G. Villalba et al.

3 Conclusion

Wireless sensor networks offer a low cost non intrusive solution to gather environ-
mental information in data centers. The sensors can be quickly deployed and easily
repositioned. Examples of applications include continuous temperature monitoring,
data collection for thermal modeling and temperature sensing for real time control.

Continuous temperature monitoring is essential to prevent device overheating
while operating the cooling system close to the upper temperature limit for in-
creased energy efficiency. Collecting data to understand temperature and humidity
distribution is a first step toward improving a data centers energy efficiency.

Deployments in production data centers have shown that the Wireless Sensor
Network performs well in terms of configuration, reliability and power efficiency.

Acknowledgment Part of the computations of this work were performed in EOLO, the HPC of
Climate Change of the International Campus of Excellence of Moncloa, funded by MECD and
MICINN.

References

1. Rodriguez, M.G., Uriarte, L.E.O., Jia,Y.,Yoshii, K., Ross, R., Beckman, P.H.: Wireless Sensor
Network for Data-Center Environmental Monitoring. In: Fifth International Conference on
Sensing Technology. (2011) 533–537

2. Weiss, B., Truong, H.L., Schott, W., Scherer, T., Lombriser, C., Chevillat, P.: Wireless Sensor
Network for Continuously Monitoring Temperatures in Data Centers. IBM Research Report
RZ3807, IBM Research (April 2011)

3. Department, U.E.: Federspiel Controls’ Data Center Energy Efficient Cooling Control System.
Technical report (2011)

4. Hong, K., Yang, S., Ma, Z., Gu, L.: A Synergy of the Wireless Sensor Network and the
Data Center System. In: IEEE 10th International Conference on Mobile Ad-Hoc and Sensor
Systems. (14-16 October 2013) 263–271

5. Green Grid: The Green Grid,http://www.thegreengrid.org/ (2013)
6. Green IT. Promotion Council: GIPC: Concept of New Metric for Data Center Energy Effi-

ciency: Introduction to Datacenter Performance per Energy DPPE. Technical report, Green IT.
Promotion Council (February 2010)

7. Wang, X., Wang, X., Xing, G., Chen, J., Lin, C.X., Chen, Y.: Intelligent Sensor Placement for
Hot Server Detection in Data Centers. IEEE Transactions on Parallel and Distributed Systems
24(8) (August 2013) 1577–1588

8. Liang, C.J.M., Liu, J., Luo, L., Terzis, A., Zhao, F.: RACNet: A High-fidelity Data Center
Sensing Network. In: 7th ACM Conference on Embedded Networked Sensor Systems, New
York, NY, USA (2009) 15–28

9. Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., Zhao, F.: Energy-Aware Server Pro-
visioning and Load Dispatching for Connection-intensive Internet Services. In: 5th USENIX
Symposium on Networked Systems Design and Implementation, Berkeley, CA, USA, USENIX
Association (2008) 337–350

10. Patel, C.D., Bash, C.E., Sharma, R., Beitelmal, M.: Smart Cooling of Data Centers. In: Pacific
RIM/ASME International Electronics Packaging Technical Conference and Exhibition, Maui,
Hawaii, USENIX Association (July 2003)

Monitoring of Data Centers using Wireless Sensor Networks 1183

11. Texas Instruments: MSP430x1xx Family User’s Guide (Rev. F), http://www.ti.com/litv/
pdf/slau049f/ (2006)

12. Oberg, R., Sanchez, E., Nealon, P.: Wireless Sensor Technology for Data Centers. Conference
paper, American Council for an Energy-Efficient Economy (2008)

13. Liu, J., Zhao, F., O’Reilly, J., Souarez, A., Manos, M., Liang, C.J.M., Terzis, A.: Expand
Project Genome: Wireless Sensor Network for Data Center Cooling. The Architecture Journal
(2008)

14. Choochaisri, S., Niennattrakul, V., Jenjaturong, S., Intanagonwiwat, C., Ratanamahatana,
C.A.: SENVM: Server Environment Monitoring and Controlling System for a Small Data
Center Using Wireless Sensor Network. CoRR If (2011)

15. U. S. Department of Energy: Wireless Sensors Improve Data Center Energy Efficiency Tech-
nology Case Study Bulletin. Technology case study bulletin, U. S. Department of Energy
(September 2010)

16. Mahdavi, R., Tschudi, W.: Wireless Sensor Network for Improving the Energy Efficiency of
Data Centers. Technical report, Lawrence Berkeley National Laboratory (March 2012)

17. Moore, J., Chase, J.: Data center workload monitoring, analysis, and emulation. In: Eighth
Workshop on Computer Architecture Evaluation using Commercial Workloads. (2005)

18. Cole, D.: Data Center Knowledge Guide to Data Center Infrastructure Management (DCIM).
Technical report, Data Center Knowledge (May 2012)

19. Scherer, T., Lombriser, C., Schott, W., Truong, H.L., Weiss, B.: Wireless Sensor Network for
Continuous Temperature Monitoring in Air-cooled Data Centers: Applications and Measure-
ment Results. In: 11th International Conference on Ad-hoc, Mobile, and Wireless Networks,
Berlin, Heidelberg, Springer-Verlag (2012) 235–248

20. Biller, P., Chevillat, P., de Lorenzi, F., Scherer, T., Schott, W., Ullmann, R., Vömel, C.: Efficient
cooling of Data Centers. In: 4th World Engineer’s Convention. (September 2011)

21. Paek, J., Govindan, R.: RCRT: Rate-Controlled Reliable Transport for Wireless Sensor Net-
works. In: 5th International Conference on Embedded Networked Sensor Systems, New York,
NY, USA (2007) 305–319

http://www.ti.com/litv/pdf/slau049f/
http://www.ti.com/litv/pdf/slau049f/

Network Intrusion Detection Systems in Data
Centers

Jorge Maestre Vidal, Ana Lucila Sandoval Orozco
and Luis Javier García Villalba

1 Introduction

Access to Data Centers must be protected by perimeter defense systems such as fire-
walls, access lists or intrusion detection systems. Despite the importance of each of
them, the NIDS (Network-based Intrusion Detection Systems) are the most sophis-
ticated and accurate measure to deal with external attacks. Therefore, it is essential
to know the characteristics of this kind of system, and each of its variants. In this
chapter the most relevant aspects of the NIDS are described in detail, in order to
improve their integration into networks operating on Data Centers.

• Denial of service attacks: The denial of service attacks usually present centralized
or distributed features, and aims to deny the service of the protected system and the
defensive systems. To do this they focus on depleting their computing resources.

• Enumeration attacks: The enumeration attacks gather information about the
Data Center in order to identify vulnerabilities in their security perimeters and
exploit those that allow better access.

• Unauthorized access: Unauthorized accesses are usually produced from theft of
user credentials, theft of sessions or by exploiting vulnerabilities that facilitate
gain privileges.

• Malware: Malware are malicious applications that when executed, are able to
compromise the system security.

• Attacks on network structure: The attacks against the network structure un-
dertake the critical elements of its topology. Usually focus on the DNS (Domain
Name Systems), by exploiting the spread of malware servers (such as botnets)
and its denial of service.

L. J. García Villalba (�) · A. L. Sandoval Orozco · J. Maestre Vidal
Group of Analysis, Security and Systems (GASS), Department of Software Engineering
and Artificial Intelligence (DISIA), Faculty of Information Technology and Computer Science,
Office 431,
Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases 9
Ciudad Universitaria, 28040 Madrid, Spain
e-mail: javiergv@fdi.ucm.es

© Springer Science+Business Media New York 2015 1185
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_41

1186 J. Maestre Vidal et al.

In order to combat these threats, Data Centers deploy a perimeter defense that incor-
porates different preventive systems. These include firewalls, ACLs (Access Lists)
and IDS (Intrusion Detection Systems). Firewalls are mainly used to filter traffic
directed to certain addresses or ports, and to define the security perimeters. They
act based on a set of guidelines or rules, and do not have the ability to identify
their nature. Moreover, the access lists are also deployed to filter traffic. They are
usually based on using blacklists and whitelists of IP addresses which consider the
source and destination of every packet. Finally, unlike the two previous, IDS pro-
vide prevention capacity and the ability to communicate in advance about malicious
activities. This kind of system usually delegated the task of preventing the operator
itself, although there is a certain type of IDS, well known as IPS (Intrusion Preven-
tion System), which also has the capacity to decide on countermeasures to be taken.
When evaluating the contribution of an ID, the following features are considered:

• Accuracy: The IDS accuracy is the ability to detect attacks and distinguish them
from the legitimate usage of the system. The IDS classifies events produced in
the monitored system, labeling them as positives or negatives. The evaluation
of labels is divided into four sub-categories: true positives, true negatives, false
positives and false negatives.
Figure 1 shows the different labeling evaluations issued by the IDS. The alerts in
green boxes (true positives and true negatives) are correct labels and the others
correspond to error detections.
The following describes each of them:
– True positives: The true positives are properly labeled intrusion attempts.
– True negatives: The true negatives are events corresponding to common and

legitimate usage of the system, properly labeled.
– False positives: False positives are legitimate events incorrectly classified as

attacks. Besides posing a problem for the system quality of service, such errors
can be exploited by attackers by inducing the IDS to issuing large amounts of
alerts, causing the depletion of its resources.

– False negatives: False negatives are malicious activities that the IDS have
confused with legitimate activities.

At present there are different functional standards for evaluating the accuracy of
the IDS. For IDS deployed on networks, the MIT Lincoln Labs DARPA [1] and
KDD Cup [2] datasets are the most commonly used. Locally it is usual generating
own datasets [3, 4]

• Performance: The performance of an ID determines its ability to process infor-
mation in real time. This parameter usually depends on the detection strategy, and
on the processing capability of implementation environment (software or hard-
ware). In [5] is explained in detail each of the computational costs involved in
the detection process, as well as the mechanisms to achieve the balance between
accuracy and performance.

• Robustness: The robustness of an ID is its fault tolerance and ability to confront
attempts of nonuse. There are methodologies [6] to measure the impact of the
most common mistakes issued by network-based IDS. Moreover, the appearance

Network Intrusion Detection Systems in Data Centers 1187

Fig. 1 Labeling evaluation

of specific evasion techniques [7] involves the need to design IDS with higher
fault tolerant, and capable to withstand this type of threats.

• Scalability: The scalability of an ID is its ability for been adapted to different
monitoring environments without losing quality nor be compromised. Certain
characteristics of the monitor environment, such as the use of security protocols
for data encryption [8], can degrade its capacity analysis. Therefore it is desirable
that the IDS deployed on Data Centers are compatible with the characteristics of
the monitored environment.

The intrusion detection systems have evolved to adapt to the need arising from
changes in the monitor environment. This has led to a large variety of systems,
specializing in strengthening different characteristics. Figure 2 summarizes some of
the most common classification criteria.

• Detection strategy: Initially the IDS behavior was based on identifying patterns
corresponding to known threats, which are commonly referred to as signature-
based detection systems, such as Snort [9] and Bro [10]. Later, as a result of
the rapid proliferation of intrusion techniques, as well as the daily emergence
of thousands of signatures with unknown threats (zero-day attacks) [11, 12],
defensive systems in addition to acknowledge signatures, must be able to detect
new threats to be fully effective. Because of this, intrusion detection systems were

1188 J. Maestre Vidal et al.

Fig. 2 IDS Classification

proposed based on detection of anomalies in the usual and legitimate usage of
the systems. The anomaly-based detection is effective against unknown threats,
but vulnerable to evasion techniques, given its tendency to generate high rates of
false positives. Therefore alert correlation techniques have been proposed [13]
[14] and hybrid detection strategies [15].

• Deployment environment: When the IDS operates on a networked environment
it is known as NIDS (Network-based Intrusion Detection System) and if it operates
on a local environment (host) it is known as HIDS (Host-based Intrusion Detection
System). Additionally, there are hybrid schemes that exploit the advantages of
each of them. This situation is common in IDS with distributed architecture, such
as [16].
In Fig. 3 an example of hybrid IDS is shown. The system considers both the
information provided by local sensors, and the information provided by network
sensors.

• Behavior: The IDS behavior is determined by the characteristics of the moni-
tored information, and the allowed reaction time once a threat has been detected.
The IDS with active behavior have the ability to decide and implement counter-
measures once an intrusion is detected. However, the IDS with passive behavior
merely inform the supervisor of the identified threats. This implies a slower reac-
tion against intruders, but it guarantees the stability of the system in case of large
amounts of false positives. Normally the IDS with active behavior are known as
IPS (Intrusion Prevention System), and the IDS with passive behavior are simply
called IDS.

• Architecture: The IDS architecture is determined according to the characteristics
of the deployment environment. Currently there are two types of architectures:

Network Intrusion Detection Systems in Data Centers 1189

Fig. 3 Hybrid IDS example

centralized and distributed. The IDS with centralized architecture are character-
ized by being composed from a single node. Moreover, the IDS with distributed
architecture are composed of various nodes, which are spread along the protected
environment. This implies the need for a more complex design process and the
establishment of communication between the different components of the IDS.
In [17] a more extensive comparison of these types of architectures is proposed.

• Analysis Time: The frequency with which the IDS analyze the information de-
termines the analysis time. The information processing can be performed in real
time (online) and forensically (offline). The main advantage of data processing
in real time is that it can detect attacks in progress and respond before they cause
major damage. Occasionally, the need to achieve greater accuracy, or the need to
protect the system from a wider variety of threats has led to IDS proposals based
on the analysis of information in time intervals. The problem of these systems
is that if the intervals are too long, preventive measures can be applied too late.
Finally, when the only purpose of the IDS is detecting and extracting the features
of a succeeded intrusion, a forensics approach (offline) is required. Such systems
are slow, but very accurate. In [18] the benefits of applying a forensic study in the
analysis of network flows are detailed.

1190 J. Maestre Vidal et al.

Moreover, the IDS tend to generate large amounts of alerts, situation that hinders
the prevention efforts. Therefore, current systems must incorporate alert correlation
mechanisms capable of sorting, classifying, verifying, and normalize them in order
to facilitate management. In addition to these tasks, it is common for these systems
to extend the information provided by sensors, by detailing the nature of the de-
tected threat. For these reasons the alert correlation systems are an indispensable
complement to an IDS.

Below there will be an explanation of the main aspects to take into consideration
when deploying NIDS on the security perimeter of Data Centers. Thus, this chapter
contains seven sections. The first section is this introduction, which simply addresses
the concept of intrusion detection system and its features. The second section is
devoted entirely to the description of the NIDS, their origin and the description of a
classical architecture that shows the organization of their various components. The
third section describes the most frequent architectures when they are deployed on
Data Centers. The fourth section discusses the subjects of study of the NIDS, and
the benefits and disadvantages they lead. In the fifth section the different detection
strategies are explained and the consequences arising from the choice of each of
them. The sixth section describes the main features of the alert correlation systems
and the alerts management. Finally, in the seventh section, the conclusions will be
presented.

2 Origin and Standardization

In the same way that the IDS have adapted to current needs, the NIDS have evolved
from the very latest trends in the field of information networks. In the late 90s, the
U.S. research agency DARPA (Defense Advanced Research Projects Agency) cre-
ated the group known as CIDF (Common Intrusion Detection Framework) which
focused on the development of a framework for the intrusion detection [19]. In 2000
the group joins the IETF (Internet Engineering Task Force) under the acronym IDWG
(Intrusion Detection Working Group). The architecture of the proposed framework
considers a division of the NIDS functionality in different blocks, whether they are
in the same machine or distributed on different computers. In 2006 the CIDF archi-
tecture has resulted in that the International Organization for Standardization known
as ISO, standardize the IDS concept [20]. Figure 4 shows the basic scheme of the
CIDF architecture contained in the ISO standard. It is noteworthy that the division
between each component is functional and not physical. This means that the modules
can be located on different machines with very different internal representations of
events, so that the use of an independent format for communication is necessary
between them. This need has led to creating the CISL (Common Intrusion Speci-
fication Language) which has the following features: expressiveness to define any
type of intrusion, univocal characterization of the intrusions, flexibility to accommo-
dating new kinds of intrusions, simplicity in constructing their representations and
portability when are implemented on a wide variety of platforms [21]. Subsequently,

Network Intrusion Detection Systems in Data Centers 1191

Fig. 4 Schematic of the architecture proposed by the CIDF

the need to standardize the flowing information between components, resulted in the
standard IDMEF (Intrusion Detection Message Exchange Format) [22] for the IDS
information exchanges.

Below the different CIDF architecture components are briefly described.

• Monitored environment: The election of the monitoring environment affects the
design phase of the remaining IDS components. There is a great difference be-
tween monitored network events which involves parameters such as IP addresses,
ports, protocols or traffic payloads, with monitored local events such as processes,
memory addresses or registers.

• Event blocks: (E-blocks) Event blocks provide information about environmental
events to the remaining IDS components. They are sensors that extract information
from the environment, and express the results in form of the communication
objects known as GIDO (General Intrusion Detection Object) specified in the
CISL language.

• Analysis blocks: (A-blocks) Analysis blocks are responsible for analyzing the
data collected by event blocks looking for potentially malicious activity. Just
like the event blocks, they consider GIDO communication objects to exchange
information. These modules are capable of synthesizing input events in order to
lighten the speed of information processing. They will issue alerts if malicious
events are detected.

1192 J. Maestre Vidal et al.

Fig. 5 NIDS architectures

• Database blocks: (D-blocks) Data blocks assist the event blocks and response
blocks by storing the GIDO objects corresponding to pending events to be
processed.

• Response blocks: (R-blocks) Response blocks processed GIDO objects corre-
sponding to the events labeled as malicious, and decide the preventive measures.
The response generated may be passive or active. If it is passive, prevention tasks
are delegated to an operator. When the answer is active, prevention actions will
be automatically decided.

Although the CIDF was unsuccessful as a framework for developing new intrusion
detection systems, it laid the foundation for the ISO standardization. Most cur-
rent NIDS consider its basis, and the block division which its authors proposed. In
addition, over the years it has been considered as a classic example of the IDS com-
ponent division and the relationships between them. The CIDF is a good introductory
example, before explaining the most relevant NIDS features.

3 Architecture

At the present time the design of NIDS tends to consider centralized, distributed
and hierarchical architectures (see Fig. 5). Centralized architectures grouped all the
NIDS components on the same level, which provides a simple design process and
an efficient performance. But because of the diversity and the specialization of the
intrusion strategies, it is inaccurate and has low scalability, so that gradually has been
replaced by distributed and hierarchical architectures, designed to protect different
types of networks. The following explains in detail each one of them.

• Centralized architecture: Centralized architecture was the first to be used. It is
the simplest implementation of a general purpose NIDS, and combines its different
components in a same node. Its design simplicity is commonly penalized with a

Network Intrusion Detection Systems in Data Centers 1193

lower accuracy, but its efficiency is better, because it doesn’t require the interaction
processes between its various components. However, currently most of the NIDS
are deployed in a distributed or hierarchical way, due to the existence of two major
problems: scalability and the presence of a single point of failure.

• Distributed architecture: Distributed architecture spreads the NIDS components
throughout the protected system. The NIDS deployed under this architecture
are usually referred with the acronym DIDS (Distributed Intrusion Detection
Systems), although it is noteworthy that the ISO [20] standard does not collect this
terminology. On the basis of the relationship between their nodes, two operating
modes are considered: stand-alone mode and cooperative mode.
– Stand-alone mode: When distributed architecture operates in stand-alone

mode, the NIDS components are spread over different nodes, acting inde-
pendently and without sharing information. Each node usually has a specific
purpose, and is responsible for detecting a particular threat. Although its accu-
racy is quite high, the lack of coordination between sensors can overwhelm the
system, being prone to suffer high rates of false positives. Further whenever
the NIDS operates in active response mode, it may apply preventive mea-
sures to mitigate the intrusions attempts, which can drain system resources or
create behavior inconsistencies. Therefore, it is architecture for systems that
only enable low resource consumption. In [23] an application example of this
architecture is presented for intrusion detection in MANET (Mobile Ad Hoc
Network) by monitoring the battery consumption of different mobile devices.
The choice of the stand-alone mode for this purpose is the reliability of the
measurement by the hardware parameters which trigger the events, and the
need that the energy consumption impact on the protected devices is minimal.

– Cooperative mode: When distributed architecture operates in cooperative
mode, the set of nodes acts as a giant spider web. As in the stand-alone mode
case, it purposes is specific, but this time its nodes share information. The
various warnings issued are pooled and the response module takes into consid-
eration the information provided by each of them. It is a precise strategy that
sacrifices some system performance in the detection stage (due to the latency
of communications between nodes), in order to optimize the prevention stages.
In [24] (Fig. 6) a distributed IDS example is shown working on cooperative
mode for detecting botnet’s infection sequences. Such a system analyzes bidi-
rectional communications between the target system and the infected system,
and identifies sequences which involve intrusion attempts. For this purpose the
reports issued are considered by three types of sensors, designed for detecting
each one of the infection stages.

• Hierarchical architecture: Hierarchical architecture is an extension of the dis-
tributed architectures which operates on cooperative mode. It is inspired by
infrastructure networks with multiple layers, where the subnets are grouped into
clusters. In them, the Clusterheand nodes are those that have the greatest impact
on the proper functioning of the network, because they typically act as control
points or gateway for the other cluster members. In the hierarchical architecture,

1194 J. Maestre Vidal et al.

Fig. 6 Example of distributed NIDS on cooperative mode

the sensors are distributed so that some of them act as Clusterheand for the re-
maining nodes. In this way different levels of information processing are formed.
Each level performs the pre-processing of the issued alerts, and the labeling that
will facilitate its processing on the higher levels. Hierarchical architecture is the
most accurate architecture, since different processing layers allow a deeper anal-
ysis of the events. A larger number of processing levels, the greater the accuracy
and scalability, but also a greater impact on the protected system.

The IDS with GNU license known as Snort [9] (Fig. 7) is a good example of
a hierarchical architecture system. Snort is composed of a collection of prepro-
cessing modules which analyze the network traffic, for different purposes. A first
layer of modules is responsible for preparing the information. Once processed,
a set of modules is responsible for the detection. Such modules are specialized
in protecting certain protocols, such as HTTP Inspect for HTTP, POP3 for POP
or SMTP Preprocessor for the SMTP protocol. The information is delivered to a
higher layer in which the Snort rule-base engine processes the results and emits
the final alerts.

Network Intrusion Detection Systems in Data Centers 1195

Fig. 7 Snort architecture

Fig. 8 Subjects of study

4 Subjects of Study

To carry out the study of traffic flowing through the network, the NIDS may focus
on analyzing the content of each of the packages, or the complete information that
occurs in an exchange of information between two systems. Figure 8 shows the most
frequent subjects of analysis in such systems. Each of them has some advantages and
some disadvantages that are important to know before its deployment on a defensive
perimeter. The choice of an NIDS that takes as source of information, packets or
connections, directly influences the accuracy and performance of the system. Below
the features of each of them are explained.

1196 J. Maestre Vidal et al.

• Packet-oriented: The packet-oriented NIDS extract information by processing
the packets flowing through the network. The study aims to identify signs of
malicious activity in their payload, their header, or both of them. Below their
features are explained.
- Payload analysis: The payload analysis is especially effective for detecting

threats which pretend the exploitation of application level vulnerabilities, as
long as the communication was established in a customary manner [25]. Its
design generally focuses on the detection of malware [26] and on the detection
of attempts to exploit vulnerabilities at the HTTP protocol [27]. Today it is also
particularly effective against SQL injection attacks [28] cross-domain [29] and
emerging threats, such as those concerning mobile devices [30].

- Header analysis: The header analysis is especially effective for detecting
threats which attempt to exploit vulnerabilities in the implementation of net-
work protocols, and enumeration attacks. Its application provides a quickly
and inexpensive identification of repetition-based threats such as the denial of
service attacks [31], and is very useful when establishing mechanisms for alert
correlation, allowing you to determine the source of the threat and the time of
the issue.

- Hybrid analysis: The hybrid analysis combines the advantages of the pay-
load analysis with the header analysis. By this way it is possible to detect
application-level threats, attacks against network protocols, and replay-based
attacks. In contrast, the information processing is computationally more expen-
sive, and requires a larger base of knowledge in the design phases. A classic
example of hybrid NIDS is PAYL [25]. The PAYL system is based on the
anomalies detection at the network traffic. For them, it builds a model of the
normal and legitimate traffic from the protected network. Such model draws
on the content of the payload header and features three parameters: port, length
and direction of the traffic flow (input and output). Despite the fact that showed
excellent results in terms of accuracy, its deployment was too computationally
expensive, which subsequently led to different optimizations, highlighting PO-
SEIDON [32], which proposed the use of the artificial neural networks SOM
(Self-organizing Maps).

• Connection-oriented: The connection-oriented analysis extracts the connections
status information. It considers parameters such as the number of bytes sent and
received, the connection lifetime, protocol and intermediate nodes. The necessity
of applying this type of analysis has come from the performance problems caused
by the packet analysis, and the current needs of the IDS deployment at high speed
networks of several Gigabits per second [33]. In addition, it must be considered
as an arising problem when analyzing packets from encryption protocols [34].
Today, the connection-oriented analysis is carried out from the traces defined
as IP Flows, published by the group IPFIX (IP Flow Information Export) and
specified by the IETF [35, 36]. The Netflows traces [37] are also used, when
previously used by the manufacturer Cisco. Each information flow is identified
by the quintet (IP source, IP destination, port source, port destination, protocol),
whose parameters are known as Flow Keys and contains a collection of packets.

Network Intrusion Detection Systems in Data Centers 1197

It is noteworthy that the connection concept at traffic traces is different from that
used at the TCP protocol. By this way, flows belonging to protocols that do not
require connection may be issued, such as UDP. In [38] the use of flow traces is
explained in more details, as well as the trends derived from it.

There is controversy between connection-oriented based NIDS and packet-oriented
based NIDS. Some authors advocate the idea of developing hybrid proposals that
combine both of them [38]. In particular, two-level systems were posed, where a
first layer is responsible for processing the information Flows of information flow-
ing through the network, and a second layer is responsible for analyzing the packets
flowing to the critical regions of the protected system. Other studies, such as [25]
conclude in the light of their experiments, that the performance results obtained from
packet-oriented systems are slightly significant compared to the precision obtained
by analyzing traffic traces. Subsequent studies support this idea, as [38] which clearly
show the lack of precision at the connection-oriented systems, as well as the high
computational cost of analyzing packets. The current trend towards the NIDS op-
timization techniques by exploiting parallelism, applying concurrency, using GPU
processing [39] or implementing on reprogrammable hardware, coupled with the
growth of the high speed networks, could end up tipping the balance toward any of
the two trends.

5 Detection Strategies

Another important aspect of the NIDS is its strategy of detection. It is a key is-
sue, when designing the NIDS, as it is when deploying at a Data Center security
perimeters. Initially, intrusion detection focused on recognizing the most representa-
tive features of the attacks, known as signature based detection. However, the rapid
proliferation of malware and the intrusion strategies makes it unfeasible to maintain
a database containing information about all the existing threats. This prompted the
design of new proposals which can detect unknown threats based on the recognition
of anomalies in the usual and legitimate system usage. Because of the complexity
of the techniques for modeling the legitimate usage, such systems tend to generate
a high false positive rate, which have led to raise hybrid proposals that leverage the
best of each of them. The following explains in detail each detection strategy (see
Fig. 9), and the advantages and disadvantages involved in its implementation.

• Signature based detection: Signature based detection is to contrast the analyzed
traffic characteristics with the signatures stored in a database of known threats.
The IDS which implements this strategy are known as SBS (Signature-Based
Systems), where the contrast signature is a pattern matching process which finish
when ending successfully, by issuing alerts. The greatest advantages of this type
of system are its excellent results in the false positive rate. However, SBS are
usually not capable of detecting new threats or mutations of known attacks, which
involves its constant updating by skilled operators. At the time of its deployment,

1198 J. Maestre Vidal et al.

Fig. 9 Detection strategies

a SBS does not require too much effort and allows the operator to make a selection
of signatures for identifying specific threats. Another advantage is the accurate
classification of detected attacks, which will allow its treatment prioritization
based on the impact factor. Actually, the SBS are particularly accurate in the
detection of threats based on the exploitation of vulnerabilities in programming
languages, as in [40–42].

• Anomaly based detection: The anomaly based detection arose from the need to
deal with the unknown threats that are appearing continuously. This strategy con-
sists on building a model of the usual and legitimate usage of the protected network
(anomaly detection), building a model of the usual attacks against the protected
network (misuse detection) or combining both of them (hybrid approaches). From
these models it is possible to identify the network anomalous use, and match it
with potential threats, dispensing the need to use complex databases that require
constant updates. The IDS which implement this strategy are known as ABS
(Anomaly-Based Systems). In [43] it is explained in detail the various anomalies
on networks. The ABS deployment is not as intuitive as the SBS: development of
modeling has to be supervised by experienced operators and precisely adapted to
the characteristics of the network. The three most criticized aspects of using such
systems are the tendency to generate high rates of false positives, the tendency
to behave as a black box and its imprecise classification. Based on the modeling
strategy, the ABS can be categorized as follows [44] (illustrated in Fig. 10).
– Statistical modeling: The ABS modeled statistically capture legitimate net-

work or misuse traffic, and develops a stochastic model of their behavior. The
detection process is to compare the characteristics of the monitored traffic with
the models, and determine whether it is potentially dangerous depending on
the degree of similarity. The first approaches using statistical modeling, posed
univariate models by applying independent Gaussian random variables. But
were replaced by multivariate models that took into account various metrics,

Network Intrusion Detection Systems in Data Centers 1199

Fig. 10 Most used techniques for modeling ABS

achieving more accurate results [45]. Currently it is usual apply linear re-
gression and PCA (Principal Component Analysis) for reducing the treatment
complexity by ordering the traffic characteristics by relevance [44].

– Modeling by using knowledge bases: A knowledge base is a type of database
adapted for the knowledge management and representation. The ABS which
incorporates these mechanisms will require a training phase able to identify the
most representative parameters of the collections of legitimate and malicious
traffic. Once identified, a rule base is generated, and it is possible to determine
the nature of the monitored traffic. The ABS modeling by expert systems is
one of the most used today [25, 46]. However, there are also approaches based
on the use of FSM (Finite State Machines) and the use of Bayesian networks
[47]. Figure 11 shows an example of ABS based on expert systems. It is shown
a clear distinction between the training and modeling phases, and also how by
modeling are inferred rules that will be considerate by the analysis engine.

– Modeling by machine learning techniques: In contrast to statistical strategies,
the machine learning techniques aim to establish models focusing on the fea-
sibility of their application and in reducing the impact of computer use. The
training and detection strategies of each of them are different, so its choice will
depend on the characteristics of the monitored traffic and their deployment re-
strictions. Below the most used techniques for designing this class of ABS are
summarized.
• Hidden Markov Model (HMM) and Markov Chains (MC): Markov chains

are usually used on HIDS by analyzing sequences of system calls [48]. On
the other hand, the hidden Markov model is most often applied on modeling
the monitored network traffic.

1200 J. Maestre Vidal et al.

Fig. 11 Example of ABS based on expert systems

• Artificial neural networks: Artificial neural networks are another common
modeling strategy based on the classification [49, 50]. Their choice is due
to its flexibility and adaptability to the network changes, and its excellent
performance. It allows the NIDS run in high-speed networks and a good
fault tolerance.

• Fuzzy logic: The fuzzy logic application on the NIDS field is particularly
intuitive, since as [51] pointed out the main features to analyze the network
traffic can be interpreted as fuzzy variables.

• Clustering: Although several clustering techniques have been applied, the
most used strategy on the NIDS field is the isolation of samples (outlier).
When applying this technique, the monitored traffic that does not fit any of
the established clusters is considered abnormal [52]. In [53] is shown an
example of clustering by SVM (Support Vector Machines)

• Genetic algorithms: Genetic algorithms allow the identification of anoma-
lies based on searches that estimate the optimal solution of problems. They
are especially effective for deriving classification rules and for defining the
characteristics applied in the model [54].

• Detection based on hybrid proposals: The hybrid-detection based NIDS com-
bine techniques based on signatures recognition and anomalies recognition. This
allows avail the benefits of implementing each of them, as well as an accurate
detection of threats, achieving a low false positive rate. A classic example of hy-
brid detection is performed by the EMERALD [55] system, which also was one
of the pioneering proposals at the IDS field. EMERALD is a distributed and hier-
archical system based on combining host-level and network-level sensors. They
are deployed over the network and operate through various blocks by applying
different analysis techniques aimed at exploring the use of different services. To

Network Intrusion Detection Systems in Data Centers 1201

Fig. 12 Example of hybrid architecture

this is added the incorporation of an alert correlation system, and protocols for
the blocks communications. In [56] the anomaly detection is performed based
on a self-organizing map SOM, while detection of signatures is supported by the
use of decision trees. In that proposal the intermediate alerts are combined into a
rule-based decision module known as DSS (Decision Support System), responsi-
ble for issuing the final warnings that reach the operator. On the other hand, some
studies integrate the anomaly detection module on freely distributed NIDS.
Figure 12 shows a NIDS example that combines the information provided by an
ABS with the information provided by signature-based IDS. In a similar way, in
[15] the abnormality detection module is combined using the set of rules used by
Snort and Bro. This takes advantage of having large communities support, and of
have been specifically designed for new pre-processing modules installation. De-
spite the good results obtained in the different hybrid proposals, some researchers
warn that results obtained by hybrid systems are not always better than those
obtained by applying the strategies separately.

6 Alert Correlation

Another important aspect to consider when deploying NIDS is how they will manage
the alerts issued. Under normal conditions the NIDS tends to report thousands of
events in short periods of time. From the viewpoint of a human operator, the alerts
analysis is unfeasible if there are not mechanisms that allow their classification. On
the other hand, when the response process is automated, the huge amount of alerts
can dramatically affect the quality of service. For these reasons, the use of alert

1202 J. Maestre Vidal et al.

correlation systems is necessary to complement the NIDS, and by this way bring an
effective protection of Data Centers.

The alert correlation systems are designed for facilitating the management of the
alerts issued from the various IDS sensors, allowing grouping and providing ad-
ditional information about the events that generate them. Moreover, the tendency
to deploy distributed systems and their hierarchization on different pre-processing
modules specialized in detecting particular threats, emphasizes their importance
when complementing NIDS. For these reasons, sometimes this type of system is
incorporated into their design phases. The alert correlation systems are composed of
different modules. In [57] the operation is explained, highlighting the presence dif-
ferent stages: normalization, verification, correlation and aggregation. The following
briefly explains each.

• Normalization: The normalization phase aims at converting the format of the
warnings issued by various NIDS sensors to a single format. Today the most com-
mon used format is the standard known as IDMEF (Intrusion Detection Message
Exchange Format) [22]. This format unifies their representation and solves the
problem of clock synchronization thanks to its compatibility with NTP (Network
Time Protocol).

• Verification: The alert verification is the analysis of each of the alerts generated
by the sensors and the establishment of the probability that the attack fulfill its
purpose. Thus, the alerts associated with attacks with less probability to succeed
are marked as low risk threats, and therefore its influence on the correlation process
will be lesser. This leads that if, for example, the protected system runs under a
GNU-Linux operating system, and has been detected sending a malware that
affects only the Windows operating system; obviously the priority of treatment
and the level of risk are marked as very low. However, if the protected system
works under a Windows operating system, the alert must be marked as a higher
priority, which involves special importance when deciding preventive measures.

• Correlation: The alert correlation phase aims to discover the similarities be-
tween the alerts content that have been issued by the different NIDS sensors. This
will more precisely determine their nature and the risk. It will also be possible
to indicate the priority of treatment to be considered when deciding preventive
measures.

• Aggregation: The alert aggregation phase performs the fusion of the alerts issued
with temporal proximity and similar characteristics. This avoids the multiple
processing of the same event, and saturation of the operator.

Figure 13 shows an example of alert correlation system. In it, the warnings issued
by various NIDS are normalized in a single format. Then they are verified, classified
and grouped. The order of these phases could be different, and it depends on the
needs of system design and on what extent should complement the NIDS.

Network Intrusion Detection Systems in Data Centers 1203

Fig. 13 Example of alert correlation system

7 Summary

In the same way that the IDS have adapted to current needs, the NIDS have evolved
from the very latest trends in the information networks field. This has involved the
adoption of specific strategies for operating in different environments, and the adap-
tation of the complementary measures to obtain better results. The aim of this chapter
was to highlight the most important aspects to take into consideration about the NIDS
when facing their deployment on the Data Center defense perimeters. After describ-
ing the general aspects of the IDS, the first described feature was their architecture. To
do this, one of the classic examples of modular NIDS was briefly explained, known
as CIDF (Common Intrusion Detection Framework). Its structure clearly shows the
different steps to be carried out for processing information, which have served as a
reference in most of the current architectures. Then, the most frequently applied ar-
chitectures were explained: centralized, distributed, and hierarchical, the latter being
an extension of the increasingly used distributed architecture. It is noteworthy that the
choice of architecture will especially affect the accuracy, robustness and performance
of defensive mechanisms. Another of the most important aspects of a NIDS are the
characteristics of the processed information. As a result, their different subjects of
analysis were explained. The choice of packet-oriented analysis or connectionless
(connection-oriented) analysis will also be relevant for obtaining a better behavior,
directly influencing the accuracy and the system performance. Likewise, the choice
of a strategy based on signatures recognition, anomalies detection or both of them, it
is also important in order to achieve good accuracy. Following this, another section
has been devoted to the explanation of the detection strategies, and its benefit against
certain kinds of threats. Finally, were briefly explained the characteristics of the most
common alert correlation systems.

1204 J. Maestre Vidal et al.

Acknowledgment Part of the computations of this work were performed in EOLO, the HPC of
Climate Change of the International Campus of Excellence of Moncloa, funded by MECD and
MICINN.

References

1. Lippmann, R.P., Cunningham, R.K.: Improving Intrusion Detection Performance Using
Keyword Selection and Neural Networks. Computer Network 34(4) (October 2000) 597–603

2. University of California, Irvine: KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html (Accessed August 2013)

3. Yeung, D.Y., Ding, Y.: Host-Based Intrusion Detection using Dynamic and Static Behavioral
Models. Pattern Recognition 36(1) (January 2003) 229–243

4. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward Developing a Systematic
Approach to Generate Benchmark Datasets for Intrusion Detection. Computers & Security
31(3) (May 2012) 357–374

5. Lee, W., Miller, M., Stolfo, S.J., Fan, W., Zadok, E.: Toward Cost-Sensitive Modeling for
Intrusion Detection and Response. Journal of Computer Security 10 (August 2002) 5–22

6. K. Killourhy, R.M.: Why Did My Detector Do That?! In: Proceedings of the 13th International
Symposium on Recent Advances in Intrusion Detection. (September 15–17 2010) 256–276

7. Cheng, T.H., Lin, Y.D., Lai, Y.C., Lin, P.C.: Evasion Techniques: Sneaking throughYour Intru-
sion Detection/Prevention Systems. IEEE Communications Surveys Tutorials 14(4) (October
2012) 1011–1020

8. Kumar, M., Hanumanthappa, M., Suresh Kumar, T.V.: Encrypted Traffic and IPsec Challenges
for Intrusion Detection System. In: Proceedings of the International Conference on Advances
in Computing. (August 9–11 2012) 721–727

9. Sourcefire and CTO Martin Roesch: Snort: Open Source Network Intrusion Detection System.
http://www.snort.org (Accessed August 2013)

10. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Computer Networks
31 (December 1999) 2435–2463

11. Thonnard, O., Bilge, L., O’Gorman, G., Kiernan, S., Lee, M.: Industrial Espionage and
Targeted Attacks: Understanding the Characteristics of an Escalating Threat. In: Proceedings
of the 15th International Conference on Research in Attacks, Intrusions, and Defenses, Berlin,
Heidelberg, Springer-Verlag (September 12–14 2012) 64–85

12. Wang, L., Jajodia, S., Singhal, A., Noel, S.: K-zero Day Safety: Measuring the Security Risk
of Networks Against Unknown Attacks. In: Proceedings of the 15th European Conference
on Research in Computer Security, Berlin, Heidelberg, Springer-Verlag (September 2010)
573–587

13. Salah, S., Maciá-Fernández, G., Díaz-Verdejo, J.E.: A Model-Based Survey of Alert
Correlation Techniques. Computer Networks 57(5) (April 2013) 1289–1317

14. Elshoush, H.T., Osman, I.M.: Alert Correlation in Collaborative Intelligent Intrusion Detection
Systems–A Survey. Applied Soft Computing 11(7) (October 2011) 4349–4365

15. Hwang, K., Cai, M., Chen, Y., Qin, M.: Hybrid Intrusion Detection with Weighted Signature
Generation over Anomalous Internet Episodes. IEEE Transactions on Dependable and Secure
Computing 4(1) (February 2007) 41–55

16. Dreger, H., Kreibich, C., Paxson, V., Sommer, R.: Enhancing the Accuracy of Network-based
Intrusion Detection with Host-based Context. In: Proceedings of the Second International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Berlin,
Heidelberg, Springer-Verlag (July 7–8 2005) 206–221

17. Nehinbe, J.: Log Analyzer for Network Forensics and Incident Reporting. In: Proceedings
of the International Conference on Intelligent Systems, Modelling and Simulation. (January
27–29 2010) 356–361

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Network Intrusion Detection Systems in Data Centers 1205

18. Spafford, E.H., Zamboni, D.: Intrusion Detection Using Autonomous Agents. Computer
Networks 34(4) (October 2000) 547–570

19. Porras, P., Schnackenberg, D., Staniford-Chen, S., Stillman, M., Wu, F.: The common
Intrusion Detection Framework Architecture. CIDF Working Group. http://gost.isi.edu/cidf/
drafts/architecture.txt (Accessed August 2013)

20. Standard, I.: Information technology - Security Techniques - Selection, Deployment and Oper-
ations of Intrusion Detection Systems. Technical Report ISO/IEC 18043:2006, ISO/IEC (June
2006)

21. Feiertag, R., Kahn, C., Porras, P., Schnackenberg, D., Staniford-Chen, S.: A Common In-
trusion Specication Language (CISL). http://gost.isi.edu/cidf/drafts/language.txt (Accessed
August 2013)

22. H. Debar, D. Curry, B.F.: The Intrusion Detection Message Exchange Format (IDMEF).
Requests for Comments RFC 4765, Internet Engineering Task Force (March 2007)

23. Jacoby, G.A., Davis, N.J.: Mobile Host-Based intrusion Detection and Attack Identification.
IEEE Wireless Communications 14(4) (August 2007) 53–60

24. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting Malware Infec-
tion Through IDS-driven Dialog Correlation. In: Proceedings of the 16th USENIX Security
Symposium, Berkeley, CA, USA, USENIX Association (August 6–10 2007) 167–182

25. Wang, K., Stolfo, S.J.: Anomalous Payload-based Network Intrusion Detection. In: Pro-
ceedings of the 7th International Symposium on Recent Advances in Intrusion Detection.
(September 15–17 2004) 203–222

26. Wang, K., Cretu, G., Stolfo, S.J.: Anomalous Payload-based Worm Detection and Signa-
ture Generation. In: Proceedings of the 8th International Conference on Recent Advances in
Intrusion Detection, Berlin, Heidelberg (September 20–22 2006) 227–246

27. Ingham, K.L., Inoue, H.: Comparing Anomaly Detection Techniques for HTTP. In: Proceed-
ings of the 10th International Conference on Recent Advances in Intrusion Detection, Berlin,
Heidelberg, Springer-Verlag (September 5–7 2007) 42–62

28. Chandrashekhar, R., Mardithaya, M., Thilagam, S., Saha, D.: SQL Injection Attack Mecha-
nisms and Prevention Techniques. In: Proceedings of the International Conference onAdvanced
Computing, Networking and Security, Berlin, Heidelberg, Springer-Verlag (2012) 524–533

29. Lekies, S., Nikiforakis, N., Tighzert, W., Piessens, F., Johns, M.: DEMACRO: Defense against
Malicious Cross-Domain Requests. In: Proceedings of the 15th International Symposium on
Recent Advances in Intrusion Detection, Berlin, Heidelberg, Springer-Verlag (September 12–
14 2012) 254–273

30. Zhou, Y., Jiang, X.: Dissecting Android Malware: Characterization and Evolution. In:
Proceedings of the IEEE Symposium on Security and Privacy. (May 20–23 2012) 95–109

31. Park, K., Lee, H.: On the Effectiveness of Probabilistic Packet Marking for IP Traceback under
Denial of Service Attack. In: Proceedings of the Twentieth Annual Joint Conference of the
IEEE Computer and Communications Societies. Volume 1. (April 22–26 2001) 338–347

32. Bolzoni, D., Etalle, S., Hartel, P.: POSEIDON: A 2-Tier Anomaly-Based Network Intrusion
Detection System. In: Proceedings of the Fourth IEEE International Workshop on Information
Assurance. (April 13–14 2006) 144–156

33. Lin, P.C., Lee, J.H.: Re-Examining the Performance Bottleneck in a NIDS with Detailed
Profiling. Journal of Network and Computer Applications 36(2) (March 2013) 768–780

34. Puzis, R., Klippel, M.D., Elovici,Y., Dolev, S.: Optimization of NIDS Placement for Protection
of Intercommunicating Critical Infrastructures. In: Proceedings of the 1st European Conference
on Intelligence and Security Informatics, Berlin, Heidelberg, Springer-Verlag (2008) 191–203

35. Quittek, J., Zseby, T., Claise, B., Zander, S.: Requirements for IP Flow Information Export
(IPFIX). Requests for Comments RFC 3917, Internet Engineering Task Force (October 2004)

36. Claise, B.: Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange
of IP Traffic Flow Information. Requests for Comments RFC 5101, Internet Engineering Task
Force (July 2008)

37. Claise, B.: Cisco Systems NetFlow Services Export Version 9. Requests for Comments RFC
3954, Internet Engineering Task Force (October 2004)

http://gost.isi.edu/cidf/drafts/architecture.txt
http://gost.isi.edu/cidf/drafts/architecture.txt

1206 J. Maestre Vidal et al.

38. Brauckhoff, D., Tellenbach, B., Wagner, A., May, M., Lakhina, A.: Impact of Packet Sampling
on Anomaly Detection Metrics. In: Proceedings of the 6th ACM SIGCOMM Conference on
Internet Measurement, New York, NY, USA (October 25–7 2006) 159–164

39. Vasiliadis, G., Antonatos, S., Polychronakis, M., P, E., Ioannidis, S.: Gnort: High Performance
Network Intrusion Detection using Graphics Processors. In: Proceedings of the 11th Inter-
national Symposium on Recent Advances in Intrusion Detection. (September 15–17 2008)
116–134

40. Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending Browsers Against Drive-by
Downloads: Mitigating Heap-Spraying Code Injection Attacks. In: Proceedings of the 6th In-
ternational Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
Berlin, Heidelberg, Springer-Verlag (July 9–10 2009) 88–106

41. Heiderich, M., Frosch, T., Holz, T.: IceShield: Detection and Mitigation of Malicious Websites
with a Frozen DOM. In: Proceedings of the 14th International Conference on Recent Advances
in Intrusion Detection, Berlin, Heidelberg, Springer-Verlag (September 20–21 2011) 281–300

42. Pietraszek, T., Berghe, C.V.: Defending Against Injection Attacks Through Context-sensitive
String Evaluation. In: Proceedings of the 8th International Conference on Recent Advances in
Intrusion Detection, Berlin, Heidelberg, Springer-Verlag (September 7–9 2005) 124–145

43. Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. ACM Computing
Surveys 41(3) (July 2009) 1–58

44. Shyu, M.L., Chen, S.C., Sarinnapakorn, K., Chang, L. In: Principal Component-based
Anomaly Detection Scheme. Volume 9. Springer Berlin Heidelberg (2006) 311–329

45. Guo, Z., Chung, S.L., Gu, M., Sun, J.G.: Efficient Presentation of Multivariate Audit Data for
Intrusion Detection of Web-Based Internet Services. In: Proceedings of the 1st International
Conference on Applied Cryptography and Network Security. (October 16–19 2003) 63–75

46. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A Content Anomaly Detector Resistant to
Mimicry Attack. In: Proceedings of the 9th International Conference on Recent Advances in
Intrusion Detection, Berlin, Heidelberg, Springer-Verlag (September 20–22 2006) 226–248

47. Howard, G.M., Bagchi, S., Lebanon, G.: Determining Placement of Intrusion Detectors for
a Distributed Application through Bayesian Network Modeling. In: Proceedings of the 11th
International Symposium on Recent Advances in Intrusion Detection, Berlin, Heidelberg,
Springer-Verlag (September 15–17 2008) 271–290

48. Xu, X., Sun, Y., Huang, Z.: Defending DDoS Attacks Using Hidden Markov Models and
Cooperative Reinforcement Learning. In: Proceedings of the 2007 Pacific Asia Conference on
Intelligence and Security Informatics, Berlin, Heidelberg, Springer-Verlag (April 11–12 2007)
196–207

49. Ramadas, M., Ostermann, S., Tjaden, B.: Detecting Anomalous Network Traffic with Self-
organizing Maps. In: Proceedings of the 6th International Symposium on Recent Advances in
Intrusion Detection, Berlin, Heidelberg, Springer-Verlag (September 8–10 2003) 36–54

50. Golovko, V., Bezobrazov, S., Kachurka, P., Vaitsekhovich, L.: Neural Network and Artificial
Immune Systems for Malware and Network Intrusion Detection. In Koronacki, J., Raś, Z.,
Wierzchoń, S., Kacprzyk, J., eds.: Advances in Machine Learning II. Volume 263 of Studies
in Computational Intelligence. Springer Berlin Heidelberg (2010) 485–513

51. Bridges, S.M., Vaughn, R.B.: Fuzzy Data Mining And Genetic Algorithms Applied To Intru-
sion Detection. In: Proceedings of the 23rd National Information Systems Security Conference.
(October 16–19 2000) 13–31

52. Bridges, S.M., Vaughn, R.B., Professor, A., Professor, A.: Data Mining for Intrusion Detection:
From Outliers to True Intrusions. In: Proceedings of the 13th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining. (April 27–30 2009) 891–898

53. Nassar, M., State, R., Festor, O.: Monitoring SIP Traffic Using Support Vector Machines. In:
Proceedings of the 11th International Symposium on Recent Advances in Intrusion Detection,
Berlin, Heidelberg, Springer-Verlag (September 15–17 2008) 311–330

54. Kim, J., Bentley, P.J., Aickelin, U., Greensmith, J., Tedesco, G., Twycross, J.: Immune System
Approaches to Intrusion Detection – a Review. Natural Computing 6(4) (December 2007)
413–466

Network Intrusion Detection Systems in Data Centers 1207

55. Porras, P.A., Neumann, P.G.: EMERALD: Event Monitoring Enabling Responses to Anoma-
lous Live Disturbances. In: Proceedings of the 20th National Information Systems Security
Conference. (October 1997) 353–365

56. Zhang, J., Zulkernine, M.: A Hybrid Network Intrusion Detection Technique using Random
Forests. In: Proceedings of the First International Conference on Availability, Reliability and
Security. (April 2006) 262–269

57. Zang, T., Yun, X., Zhang, Y.: A Survey of Alert Fusion Techniques for Security Incident.
In: Proceedings of the Ninth International Conference on Web-Age Information Management.
(July 20–22 2008) 475–481

Software Monitoring in Data Centers

Chengdong Wu and Jun Guo

In recent years, thousands of commodity servers have been deployed in Internet data
centers to run large scale Internet applications or cloud computing services. How
to continuously monitor the availability, performance and security of data centers
in real-time operational environments becomes a daunting task. In this chapter, a
comprehensive solution for software monitoring is discussed in Internet data centers.

1 Introduction

Internet users require more today, not only the wealth of information, but also the
high efficiency and stability of the information service. The reliability of the network
application service has become one of the most attention performances. The server
and service performance monitoring system emerges from the traditional network
monitor system, and gradually becomes one of the main means of providing reliable
network services. Monitor and control the web service integrated has become an
important issue.

Production clusters often include thousands of nodes. Large distributed systems,
such as Hadoop, can fail in complicated and subtle ways. As a result, Hadoop
is extensively instrumented. A two-thousand nodes cluster configured for normal
operation generates nearly half a terabyte of monitoring data in one day, which
are mostly the application-level log files. This data is invaluable for debugging,
performance measurement, and operational monitoring. However, processing this
data in real time at scale is a formidable challenge. A good monitoring system ought
to scale out to very large deployments and handle crashes gracefully [1].

C. Wu (�) · J. Guo
Northeastern University, Shenyang, People’s Republic China
e-mail: wuchengdong@ise.neu.edu.cn

J. Guo
e-mail: guojun@ise.neu.edu.cn

© Springer Science+Business Media New York 2015 1209
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_42

1210 C. Wu and J. Guo

1.1 Performance Degradation

The primary reason monitoring data center is performance degradation. There are
many reasons for the performance degradation, such as long-term continuous use of
the system, file fragmentation, space debris, large concurrent or software aging.

1. Long-term continuous use of the system
A lot of the software are used long-term for the system. These software are not
completely cleared from memory and often have data stranded in cache when
closed. The longer the system is running, the more the software are used. The
more data is stranded, the greater resource will be consumed. As the result, the
system’s operation speed and the performance are greatly reduced. It will also
cause accessories accelerated aging and damaging because of work overload.

2. File fragmentation and space debris
A lot of movies, music, pictures, documents, software, etc are saved in the
computer. User often manages them by categories, removes some unwanted ap-
plication, and downloads some new movies and so on. These works will clutter
computer disk and large files tend to run out of memory. Therefore, the operating
system on the disk generally produces temporary swap file and the disk space oc-
cupied by the file is used into the virtual memory. Virtual memory management
program would be hard to read and write frequently, which will produce a large
amount of debris and affect the performances of computer.

3. Big system
Today the computer is powerful and users tend to install a lot of software. But
the software installed too much will make the system mast. Like a big fat it is
difficult to move quickly. Therefore it is necessary to clean and delete the useless
software frequently [2].

4. Large concurrent
The number of concurrent users is defining as the online user interactive with the
servers. The main feature of these users is that they produced interaction with
server. This interaction can be one-way or two-way transmission. Instantaneous
high concurrency may result in system performance degradation, even paralysis.
The number of concurrent users to monitor and forecast software can alleviate
this situation to a certain extent.

5. Software aging
Software aging refers to progressive performance degradation or a sudden
hang/crash of a software system due to exhaustion of operating system resources,
fragmentation and accumulation of errors [3].

The performance degradation will make a great impact on the services provided by
data center, which may not guarantee SLA (Service-Level Agreement) and meet the
requirements of the users. Therefore, monitoring the performance degradation is an
indispensable task for the manager.

Software Monitoring in Data Centers 1211

1.2 Function Failure

As the key point to evaluate cloud service quality, dependability has become a hot
research topic of cloud computing, which refers to the probability of successful
implementation of user submission service, reflects the ability of cloud service to
complete the user submission service from the user point of view.

Unfortunately, the definition of what constitutes a failure of a node is ambiguous.
For example, is it a failed disk-request or retried by the operating system? What
is the operating system (OS) memory leak that makes socket connections painfully
slow? This ambiguity is circumvented by defining failure as the shutdown or crash
of a node, regardless of the cause [4]. Function failure is typically caused by the
following three aspects.

1. Software failure
The subtask sets in cloud service running in different cloud computing nodes.
These nodes may include failure error software [4].
At the macro granularity, there are dense blade-systems which are packed in a rack
as a cluster. With a high load imposed on these dense systems both on CPUs and
on disks, heat dissipation becomes a very important concern. Potentially leading
to thermal instability can cause system/node breakdowns. System software and
applications become more complex. Such complexity makes them more prone
to bugs and other software failures (e.g., memory leaks, state corruption, etc.).
These bugs/failures can cause the system breakdown [5].
The computer virus should also be included. There is no doubt about the damage
caused by virus. For example, when a computer is infected some kinds of worms,
the worms copy themselves and occupy system resources. The running speed of
the computer slows down. Finally system resource exhausted and collapse. Some
of the system files have been damaged even if the computer virus was found and
removed, which also make computer operation performance greatly decrease.

2. Hardware failure
There are a lot of hardware resources in the data center. Therefore, cloud
computing system will have the hardware failures [4].
Denser integration of semiconductor circuits, though preferable for performance,
makes them more susceptible to strikes by alpha particles and cosmic rays. At the
same time, there is an increasing tendency to lower operating voltages in order
to reduce power consumption. Such reduction in voltage levels can increase the
likelihood of bit-flips, when circuits are bombarded by cosmic rays and other
particles so that lead to transient errors. Memory structures are typically the
target for protection against errors, but more recent studies have pointed out that
the error rates in combinational circuits are likely to surpass those of memory
cells in the next decade [5].
Computer is composed by a variety of boards and integrated circuit chip. When the
computer runs, it will generate a lot of heat. The high temperature not only affects
computer performance but also accelerates the aging of the machine. Hence, the
computer is equipped with a heat sink which is connected with a small fan to
reject the heat generated in the chassis.

1212 C. Wu and J. Guo

• Fan question
Usually, the fan is the inexpensive non-precision devices. It is the one of
the most easily damaged parts in computer accessories. After a period of
time running, the power of the fan begins to drop and heat weakness. The
chassis cannot effectively dissipate the heat generated, so that all parts are in an
abnormal high temperature work environment. This will cause the performance
declined significantly, and often produce operation errors. More seriously, the
fan will be completely “strike”. After this occurring, the computer freezes
frequently, shut down and start automatically, even the chip is burned.

• Dust problem
It is well known that static electricity will attract dust when electrical appliances
are used. Small computer chassis, sophisticated computer accessories work
together will consume more power, generate more static magnetic field. It is
particularly easy to gather much dust. The accumulation of dust will not only
be difficult to distribute the heat, but also affect the cooling fan rotation.

3. Communication link failure
When the sub-tasks access to remote data, logical or physical link may be de-
stroyed, especially in long-distance and large-scale data access. Therefore, the
communication link may be failed [6].

Networking (whether it is the Internet, or a local/system/storage area network) has
made it convenient to deploy systems that are inherently parallel in nature (whether
it is functional different systems performing different operations, or data parallelism
different systems performing same operations but on different pieces of data). This
can not only be performance-efficient, but also make it easier to write and deploy
distributed programs/systems.

However, the growing reliance on each other makes nodes within a paral-
lel/distributed system more susceptible to another failure/error [5].

Taking the PSN (Sony Play station Network) as an example, down time has
appeared several times which will cause millions of users unable to successfully
log in the game during this period. Service problems do not occur frequently and
often last for a short time. But users are incapable of action, except no play PSN
[7]. Function failure will make the serious result. Therefore, real-time monitoring
system is very necessary in order to take immediate measures.

1.3 Energy Conservation

The goal of data center network is to interconnect the massive number of data center
servers, and provide efficient and fault-tolerant routing service to upper-layer appli-
cations [8]. Now the energy consumed by power-hungry devices becomes a headache
problem for many data center owners. According to figures, the total energy con-
sumption of network devices in data centers of the US in 2006 was 3 billion KW/h.
It has been shown that network devices consume 20 %∼ 30 % energy in the whole
data center, and the ratio will grow with the rapid development of power-efficient

Software Monitoring in Data Centers 1213

hardware and energy-aware scheduling algorithm on the server side. Ideally, any
idle switch would consume no power, and energy consumption would grow with
increasing network load. Unfortunately, today’s network devices are not energy pro-
portional. The fixed overheads such as fans, switching fabric, and line-cards, have
the waste energy at low network load. The energy consumption of network devices
at low network load still accounts for more than 90 % of that at busy-hour load. As
the result, the large number of idle network devices in high-density networks waste
significant amount of energy [9].

One of the major causes of energy inefficiency in data centers is the idle power
wasted when servers run at low utilization. Even at a very low load, such as 10 % CPU
utilization, the power consumed is over 50 % of the peak power. Similarly, if the disk,
network, or any such resource is the performance bottleneck, the idle power wastage
in other resources goes up. In the cloud computing approach, multiple data center
applications are hosted on a common set of servers. This allows for consolidation
of application workloads on a smaller number of servers that may be kept better
utilized, as different workloads may have different resource utilization footprints
and may further differ in their temporal variations. Consolidation allows amortizing
the idle power costs more efficiently [9].

Energy-saving method for data center:

1. turning off idle equipment;
2. storage consolidation, tiering and virtualization;
3. using efficient IT equipment to supply power;
4. using UPS (uninterruptible power supply device);
5. choosing the best method of refrigeration;
6. estimation the utilization and the efficiency of the data center.

The construction of green energy-efficient data center is the social development
needs, as well as the needs of enterprise development. It is not only for the envi-
ronment, but also for the cost reducing of IT operation and maintenance. From a
technical point, our goal is to improve the PUE (power consumption of the whole
data center/power consumption of IT equipment) value of data center. Google uses
customized evaporative cooling to significantly reduce the energy consumption of
data center [10].

2 Monitoring Content

In cloud computing environment, monitoring is an essential link. Monitoring could
help the user to know the information of the hardware and software. Some hardware
and software, such as basic software, middleware, database, application software,
PM(physical machine), VM(virtual machine) and user behavior, is introduced in this
section. After knowing this information, the following work should be done, such
as user behavior analysis, hot-spot evaluation, performance prediction, advanced
warning and performance bottlenecks analysis.

1214 C. Wu and J. Guo

Table 1 Basic software major monitoring indicators

Monitoring object Monitoring describe Monitoring indicators

CPU The usage rate of CPU CPU usage rate (%)

Disk The usage rate of Disk Disk usage rate (%)

The free space (MB)

Memory NT Service Memory usage rate (%)

The free space (MB)

Error pages/second

The total space (MB)

Ping The status of the server Package success rate (%)

The round-trip time of data (ms)

Status value

Windows service The status of the service Monitoring results

Disk space usage

Windows event log NT event log The total number of rows

The number after Filter

The total number of rows

Windows process The information of the host CPU usage rate (%)

Total number of threads

Using memory space(KB)

Port The connect with the TCP port The round-trip time of data (ms)

2.1 Basic Software

In general, basic software includes operating system, database, office software, and
middleware. But operating system is the basic software here.

The state and behavior of software system always keep up with its requirements
specification when running. It is an important way to continue to provide the high
quality service [11]. Monitoring technology of software system has been paid more
and more attention from the researchers, because it is an important method to make
sure the software quality [12] (Table 1).

2.2 Middleware

Middleware is the computer software that connects software components and applica-
tions. The software consists of a set of enabling services that allow multiple processes
running on one or more machines to interact across a network. This technology
evolves to provide for interoperability in support of the move to coherent distributed

Software Monitoring in Data Centers 1215

architectures, which are used often to support and simplify complex, distributed ap-
plications. It includes web servers, transaction monitors, and messaging-and-queuing
software [13].

According to different middleware, different information should be monitored.
The following seven kinds of middleware will be introduced. They are Data Access
Middleware (DAM), Remote Process Call Middleware (RPCM), Message Oriented
Middleware (MOM), Object Oriented Middleware (OOM), Task Process Middleware
(TPM), Grid Middleware (GM) and Terminal Emulation Middleware (TEM) [14]
(Table 2).

2.3 Database

With the recent development of cloud computing, the importance of cloud databases
has been widely acknowledged. Here, the features, influence and related products
of cloud databases are discussed firstly. Then, research issues of cloud databases
are presented in detail, which includes data model, architecture, consistency, pro-
gramming model, data security, performance optimization, benchmark, and so on.
Finally, the future development trends in this area is discussed [15].

With the rising of cloud computing technology, well-known large companies
that did not engage in product development database before have released their
products, such as the Simple DB of Amazon and the BigTable of Google. But tradi-
tional database still has their useful values [16]. And the indicators of the traditional
database and the cloud database should be monitored are the same. The monitoring
indicators of Microsoft SQL Server database is introduced here (Table 3).

2.4 Application Software

Service-Oriented Architecture (SOA) shifts the focus of software development from
product-oriented program to dynamic service-based composition. It has emerged as
a major computing approach of distributed software architecture [17].

Runtime monitoring is an effective technique for quality assurance. It tracks soft-
ware execution, observes the system behavior, verifies the service dependability
properties, and responds to policy violations [18].

Monitoring collects the information for behavior diagnosis, defect detection, and
status recovery [19]. Various approaches are available to monitor the service in-
vocation, process and interactions, using different frameworks, requirements and
constraints, and specifications [20, 21] (Table 4).

1216 C. Wu and J. Guo

Table 2 Middleware major
monitoring indicators Monitoring object Monitoring indicators

Memory The use space(KB)

The use space of progress(KB)

The shared space(KB)

Physical memory(KB)

The status of memory(KB)

Disk The free space(KB)

The size of disk(KB)

The type of disk

The disk of local(KB)

The disk of remote(KB)

The status of task The number of task

The number of event/second

The peak number of user

File database space The use space(KB)

The free space(KB)

Surplus rate (%)

Execute queue The total number of execution threads

Execute queue name

The free number of execution threads

Pending request oldest time

The number of requests untreated in queue

The number of requests handled in queue

The status of JVM The total space of memory(KB)

The free space(KB)

The used space(KB)

Usage rate (%)(KB)

The pool of status The number of connect created
of the connection

The number of connect destroyed

The number of connect assigned

The number of connect returned

The size of the pool

The waiting time

The average waiting time

The number of error

Used rate

Maximum used rate

Software Monitoring in Data Centers 1217

Table 3 Microsoft SQL
server database major
monitoring indicators

Monitoring object Monitoring indicators

Database performance Content of database

Status of database

Volume of business

Unallocated space

Reserved space

Data space

Index space

Unused space

Transaction log size

SQL buffer manager Buffer cache hit rate

Lazy writes/second

The number of database page/second

SQL memory manager Amount of memory used

Dynamicmemory used to connect

The total memory used to select
and Optimize

The total of dynamicmemory

SQL user manager The number of user connections

The number of login/second

The number of logout action/second

SQL server cache manager Hit the target rate

The number of page used

The number of user in cache

The number of the object used

SQL server static manager The number of transact-SQL
task/second

The number of trying
parameterization/second

The number of SQL compile/second

The number of SQL compile
again/second

1218 C. Wu and J. Guo

Table 4 Application software
major monitoring indicators Monitoring object Monitoring indicators

Downtime The downtime of software

Software response time Software response time

Software throughput Software throughput

Error rate Error rate

CPU used CPU used rate of the software

Memory used Memory used rate of the software

Disk used Disk used rate of the software

I/O the I/O of device

Network port The speed of network port in/out

Threads The threads of host

User registered The information of user registered

User login The information of user login

The status of connection The status of connection

Table 5 PM major
monitoring indicators Monitoring object Monitoring indicators

CPU Total, used and used rate

Memory Total, used and free space

Disk Total, used, free space and I/O speed

Network Total, used, free space and I/O speed

Swap Total, used and used rate

VM The number of total and active

Time Local time

2.5 PM (Physical Machine) and VM (Virtual Machine)

PM may be a real machine or one node in a large server and has a set of complete
hardware and software devices. But its primary task is to provide the resources
for some tool virtualization. There lists some commonly used tools, for example,
VMware [22], Connectix [23], Xen [24] and KVM [25]. On the PM, one of them
should be set up to manage resource for VM (Table 5).

VM is set up on the virtualization resources and has its own software devices shar-
ing the same hardware devices. All VMs share resources with others. But VM cannot
compete with others for resources, because their resources are independent and iso-
lated. The others’ resources cannot be seen in their system. Therefore, each VM
could be monitored to record the information that directly relates to the relationship
between VM and resources (Table 6).

The total resource of all VM is the part of the resources of the PM, because the
resource cannot be enlarged. For example, the memory space is four GB, it could

Software Monitoring in Data Centers 1219

Table 6 VM major
monitoring indicators Monitoring object Monitoring indicators

CPU Total number, used rate

Memory Max, total, used and used rate

Disk Total, used, free space and I/O speed

Network Total, used, free space and I/O speed

Swap Total, used and free space

Time Local time

Service The number and type of service

not be five GB after virtualization. The information for CPU of PM and VM are not
same. For the PM, the number of real and virtual CPU can be known, but for the
VM, only the virtual CPU. Sometimes the number of real CPU and virtual CPU are
different. In general, the number of virtual CPU is more than that of real CPU. The
fact is that some VM will use the same real CPU.

2.6 User Behavior Analysis

Millions of users interact with search engines daily. They query problems, follow
some of the links in the results, click on ads, spend time on pages, reformulate
their queries and perform other actions. These interactions can serve as a valuable
source of information for tuning and improving web search result ranking, and can
complement more costly explicit judgment [26].

User behavior analysis, in the case of site visits to the basic data obtained, refers
to statistics and analysis of the related data. The laws of users visit the web site may
be discovered, These laws will combine with network marketing strategy to find the
possible problems in network marketing activities, and to make further correction,
or to provide evidence for the network marketing strategy [27].

Through analysis of the data obtained by monitoring user behavior, it can let
enterprise understand in more detail and more clearly to the user behavior to find the
site promotion channels problems existing in the enterprise marketing situation, and
to make enterprise marketing more accurate, effective and to improve the business
transformation [28] (Table 7).

User behavior analysis includes data record and finishing, keywords analysis, data
analysis, website usability analysis, communication and performance. For example,
in the keywords analysis, because of the great amount of data, keywords should be
extracted for analysis.

2.7 Hot-Spot Evaluation

There are hot-spot problems in various fields. For example, in computer network,
because of a switch having a big load, it leads to communication congestion. This

1220 C. Wu and J. Guo

Table 7 User behavior
analysis monitoring indicators Monitoring object Monitoring indicators

User The space user come from

IP address

Page

Register or not

Page Dwell time

Jump rate

Return visitor

New visitor

The number of return

Interval of return

Relation Page and page

User and user

Page and user

Way Way of user login

switch will be the hot spot of the system bottleneck. Different definition will appear
according to different needs. For example, a VM which has little ability to deal with
current work becomes a hot spot. And a module which occupies mostly resources
and influences the performance of others in VM becomes a hot spot.

The method of Hot spot problem finding can be change for different solutions
[29, 30]. The first method is virtualized resources allocation, another is migration.
The effectivity of two methods are proved in a lot of papers.

Virtualized data centers enable sharing of resources among hosted applications.
However, it is difficult to satisfy service-level objectives (SLOs) of applications on
shared infrastructure, as application workloads and resource consumption patterns
change over time. Two modules to achieve the function are designed [31]. App-
Controler and NodeControler are the major contribution. AppControler analyzes the
information of VM and computes the resources needed next time. NodeControler
receives the information from AppControler and decides a project to solve the hot
spot problem.

Another method is the migration. Migration technology could makeVMs migrates
from one PM to another online quickly and keep running during the period of mi-
gration [32–34]. The resources that can be migrated are so many, but not everyone is
feasible, for example, a disk. In general, a disk is bigger than 20 GB. Thus, it cannot
migrate disk from one PM to another. Nowadays, most methods will use memory
for migration. How to transmit memory is a key problem. Someone proposes an
iteration method. The first step is to transmit the total memory and not to shut down
the VM. The second step is to transmit the memory which is altered during the first
step. When the memory is altered in the recently transmittal, it is smaller than the

Software Monitoring in Data Centers 1221

Table 8 Hot spot evaluation
monitoring indicators Monitoring object Monitoring indicators

CPU Total

Used

Used rate

Memory Total

Used

PM free

Swap Total

Used

Network Bandwidth

Speed

Disk I/O rate

Speed

set value. But this method needs the FTP(File Transfer Protocol) technology which
helps VM’s disk storage on a public PM. On the other hand, this technology keeps
VMs use large network resource (Table 8).

2.8 Performance Prediction and Advanced Warning

The performance analysis can be carried out analytically or through experiments.
In general, an effective parallel program development cycle may iterate many times
before achieving the desired performance. In parallel programming, the goal of
the design process is not to optimize a single metrics, for example the speed. A
good design has to take into considering the execution time of a specific function,
memory requirements, implementation cost, and the others [35]. During performance
evaluation of parallel programs, different metrics are used [36].

The information about application and system behavior is used to predict the
application runtime in the environment conditions where the application was not
previously run. The changes of the hardware environment can include only the differ-
ence in the number of processors, changes in the number and speed of the processors,
and variations in the general architecture.

In the application domain the prediction is needed when the application is run with
new input data, execution parameters or on different hardware. The hardware and
applications prediction can be based either on the precise analytical calculations or
approximations. The precise calculations can be performed only if the full analysis of
the application or full hardware specification is present. If either of the conditions is
not met, the approximation techniques are needed. The most popular approximation
techniques are based on the utilization of the historical data available. If the historical

1222 C. Wu and J. Guo

Table 9 Performance
bottlenecks analysis
monitoring indicators

Monitoring object Monitoring indicators

The number of user Average

The max

The min

Response time Average

Longest

Shortest

Server resource Memory

CPU

Disk I/O

Network I/O

Database The number of concurrent users

Speed

data is present, the prediction is based on the information extrapolation to the situation
in the new environment. In the more general case, the prediction is based on the
utilization of either statistical or heuristic techniques (e.g. genetic algorithms or
simulated annealing) to find the similarities between analyzed situation and the data
previously collected [35].

Advanced warning is the final target of performance prediction. If a good result
of performance prediction could be obtained, the purpose of advanced warning will
be achieved. There are many of performance prediction tools, such as Dimemas,
Network Weather Service and Grid performance PREdiction System.

2.9 The Performance Bottlenecks Analysis

In the previous section, the performance prediction has been mentioned. When
performance bottlenecks occurred, the causes to this situation should be analyzed.

Bottleneck generally refers to the key limiting factor in the overall. Bottlenecks
have different meanings in different areas. Bottleneck in production refers to the
overall level limit workflow, including workflow completion time, the workflow
quality of a single or a few factors. Usually, the slowest part of the process is the
bottleneck (Table 9).

The performance bottlenecks analysis contributes to do better in solving the prob-
lem. For example, when our system faces a performance declining, there will be
some solutions for us to choose instead of helpless. But not every method will be
better to solve the problem. Every method has its own performance values. After
performance bottlenecks analysis, the key factors of performance declining would

Software Monitoring in Data Centers 1223

be known. An appropriate method to solve the problem should be adapted and make
the least available resource to achieve the most performance.

3 Monitoring Timing

Some monitor technologies are used to monitor timing, such as the resource-oriented
monitoring and the business-oriented monitoring. For the resources-oriented moni-
toring, the resources are monitored in 7*24 h, and the business-oriented monitoring,
the whole life cycle of business is monitored to identify and obtain the system’s
performance. In this way, the impact of system crashed will be reduced

3.1 Resource-Oriented Monitoring

Why do we need to monitor the resources? As you know, in recent years, the cloud
computing has been developed quickly and become the topics at the forefront of
today’s computer research. The monitoring system of the cloud data center has also
gradually got attentions. Due to real-time, security, scalability, and the volume of
traffic overload, traditional monitoring systems are not suitable to the present cloud
monitoring. If some resources cannot meet the requirements, the system may be
crashed. Hence, runtime monitoring is necessary for runtime system status tracking
and anomaly detecting [37, 38].

What resources should be monitored? Generally, when you identify server per-
formance degradation, the usual suspects are CPU, memory, and the disk. Therefore,
these system resources should be early monitored on Windows and Unix-based
servers [39].

A tool was required to monitoring resources-source monitor. The resource mon-
itoring tools are immature compared to traditional distributed computing and grid
computing [40]. What is the resource monitor? Resource monitor is a system appli-
cation in Microsoft Windows operating systems. It is used to view information about
the use of hardware (CPU, memory, disk, and network) and software (file handles
and modules) resources in real time [41]. Resource monitor is available in Windows
Vista and onwards only (In Windows Vista, it is known as reliability and performance
monitor).Resource monitor can be launched by executingresmon.exe (perfmon.exe
in Windows Vista). It was also on Windows 95, 95 OSR, 95 OSR2, 98, 98SE, ME,
and NT [38].

Let us take CPU as an example.
The following is CPU monitor configuration screen, as shown in Fig. 1. A thresh-

old can be set to test the monitor to gauge the current performance statistics in a
click.

The CPU utilization is monitored in 7*24 h, and the result of the CPU utilization
graph is gotten. The monitoring results are shown in Fig. 2 and 3 respectively. When

1224 C. Wu and J. Guo

Fig. 1 CPU monitor configuration screen

Fig. 2 CPU utilization graph for a quad-core CPU

the utilization is higher than a certain threshold, the system will raise an alarm to the
Alert File, and the Alert File will find some solutions to solve the alerts.

The following is the result of monitor, including the response times, the packet
loss, the CPU utilization, the memory utilization, the disk utilization, and the process
count, as shown in Fig. 4.

Software Monitoring in Data Centers 1225

Fig. 3 A real time CPU utilization monitoring graph for a quad core server processor

Fig. 4 The result of monitoring

The system uses monitor technology to monitor the process to identify and obtain
the system’s performance. It reduced the impact of system crashed. The actual results
of monitoring have shown that the monitoring system not only can complete the
work of traditional monitoring system, but also can provide the information of many
resource performances [42].

1226 C. Wu and J. Guo

Fig. 5 DL model of business activity performance criteria monitored by Node agents

3.2 Business-Oriented Monitoring

Resource-oriented monitoring is a crucial issue for guaranty service delivery. How-
ever, most resource-oriented monitoring approaches are specific and focus on IT
level. The challenge of how to monitor the whole life cycle of business simply and
flexibly needs to be overcome. It attracts most researchers to focus on the business-
oriented monitoring. A model-driven approach for service monitoring from business
perspective was proposed [43]. A business-oriented service monitoring meta-model
is put forward to define various monitoring models on demand. The model can flex-
ibly specify the monitored information in both business level and IT level and the
monitoring process.

In this section, we introduce a semantic architecture which is proposed by Thomas
M, Redmond R and Yoon V to do the resource-oriented monitoring [44].

Performance criteria are described using the OWL (Web Ontology Language).
Agents monitor the whole life cycle of business and activities. Tools like Racer and
Protégé verify the conformance to model requirements.

Figure 5 shows the DL model of business activity performance criteria monitored
by Node agents to monitor the whole life cycle of business.

The architecture and roles of each tier are described as following:

1. Supervisory agent (SA)
SA is the main interactive agency management decision-making. Inputs to SA
are process performance goals.

2. Monitoring agent (MA)
MAs are instantiated and dispatched by SA for each specific goal.

Software Monitoring in Data Centers 1227

Fig. 6 A hierarchical multi-agent architecture to monitor business process performance

3. Node agent (NA)
NA is data gatherers and transformers. A NA is instantiated by MAs to monitor
and assess the performance for each business activity.

A SA operates management level and invokes MAs to support process performance.A
SA invokes a MA and provides the MA information about the business process. MAs
support decision models utilizing process performance inputs from NAs. The NAs
transform process performance observations into information to support the decision
models of its parent MA. The NA transformation function includes the capability
to transform continuous and discrete activity observations, including the state of
the process with respect to established performance criteria, based on established
tolerance limits.

The process manager architecture for interacting and monitoring the whole life
of business is shown in Fig. 6.

The SA invokes the specific-goal monitor agents that use process knowledge
to invoke NAs for each business activity. If new goals are defined for which no
MA exits, the measurement standards are defined as inputs through the SA API
interface. Therefore, the SA modifies the SA’s OWL to create definitions for new
MAs to address the new process performance measurement criteria and creates a
new goal-based service reference to deploy a MA to accommodate this need.

1228 C. Wu and J. Guo

NAs are invoked to monitor every business activity, with knowledge of the ac-
tivity and its performance criteria contained. Business logic described by the BPEL
(Business Process Execution Language) is used by the MA to determine global
process performance measures using the monitored performance criteria of individ-
ual business activities reported by NAs. Each goal-specific monitor agent collects
information from individual NAs using performance criteria specified in activity-
performance ontology, and reports the process performance to the SA. The SA can
provide aggregated and goal-specific process performance information to the process
manager to support decision making using business process performance measures
[43].

The semantic architecture to monitor the whole life cycle of business is used. It
is shown its simply and flexibly.

4 Participators

Software products also have life cycles. They go through inoculation, birth, growing
up, mature, and decline stage. In software engineering, the whole software life cycle
is commonly divided into several phases. Each phase has its specific tasks, and makes
the large scale, complex structure and complex software development management
easy to control. In general, feasibility analysis and software life cycle including
development plan, analyzing, design, coding, test and maintenance activities. These
activities can be allocated to different phases to finish in proper way [45]. The points
is an idea in software engineering principles according to time schedule way of
thinking. In order to improve the quality of software, each stage should be defined,
worked, reviewed and formed document for communication or for future reference.

Therefore, the software also needs to be monitored to avoid affecting the perfor-
mance of the services after its aging. In the process of software monitoring, four
main objects are involved.

4.1 Resource Managers

Leonard Kleinrock [46], one of the chief scientists of the original Advanced Re-
search Projects Agency Network (ARPANET) which seeded the Internet, said, “As
of now, computer networks are still in their infancy, but as they grow up and be-
come sophisticated, we will probably see the spread of ‘computer utilities’ which,
like present electric and telephone utilities, will service individual homes and offices
across the country”. This vision of computing utilities based on a service provision-
ing model anticipated the massive transformation of the entire computing industry
in the twenty-first century, whereby computing services will be readily available
on demand, like other utility services available in today’s society. Similarly, users
(consumers) need to pay providers only when they access the computing services.

Software Monitoring in Data Centers 1229

In addition, consumers no longer need to invest heavily or encounter difficulties in
building and maintaining complex IT infrastructure [47].

In such a model, users access services based on their requirements without regard
to where the services are hosted. This model has been referred to as utility computing,
or recently as cloud computing [48]. The latter term denotes the infrastructure as a
cloud from which businesses and users can access applications as services from
anywhere in the world on demand. Hence, cloud computing can be classified as
a new paradigm for the dynamic provisioning of computing services supported by
state-of-the-art data centers that usually employ Virtual Machine (VM) technologies
for consolidation and environment isolation purposes [49].

Due to the expansion of scale and the diversity of the function in the data centers,
we should consider the huge cost of maintenance management as well as reliability in
the data center. Traditional data center is focus on the stability of the application, data
security and reliability in operation, while the problems such as resource utilization,
energy efficiency are not too concerned about. Based on monitoring software in the
data center, it not only can improve the reliability of the data center, but also can
improve resource utilization of the data centers and achieve the energy conservation
goal, through the resource manager to dynamic adjustment of resources.

Today’s enterprise data centers are designed with a silo oriented architecture in
mind: each application has its own dedicated servers, storage and network infras-
tructure, and a software stack tailored for the application controls these resources as
a whole. Due to the stringent requirements placed on the enterprise applications and
the time-varying demands that they experienced, each application silo is vastly over-
provisioned to meet the application service goals. As a result, data centers are often
under-utilized, while some nodes may become heavily-loaded sometimes, resulting
in SLA violations due to that poor application performance [50].

Cloud computing is offering utility-oriented IT services to users worldwide.
Based on a pay-as-you-go model, it enables hosting of pervasive applications from
consumer, scientific, and business domains. However, data centers hosting cloud ap-
plications consume huge amounts of energy, contributing to high operational costs
and carbon footprints to the environment. Therefore, we need Green Cloud com-
puting solutions that can not only save energy for the environment but also reduce
operational costs [48].

Therefore, if the development of dynamic resource provisioning and allocation
algorithms is focused, based on the performance of the software, the data center
will represent not only higher resource availability, either be grossly under-utilized
or experience poor application-level QoS due to insufficient resources under peak
loads, but also more energy efficient.

4.2 Service Operators

In a cloud computing environment, the service operators are effectively subscribers,
who now only pay for the software needed from the providers on an operational

1230 C. Wu and J. Guo

expense basis. Corporate users of cloud computing have an active role to play in
ensuring that cloud computing ends up delivering on its promise of revolutionizing
corporate computing, by liaising with industry groups as well as national and inter-
national regulators. Effective use of cloud computing will reduce the stress on the IT
departments as they spend less time maintaining software and more in developing
innovative applications for the organization [51].

Cloud computing is a style of computing paradigm in which typically real-time
scalable resources such as files, data, programs, hardware, and third party services
can be accessible from a Web browser via the Internet to users (or called customers
alternatively). These customers pay only for the used computer resources and services
by means of customized service level agreement (SLA), as well as not to be aware
that how a service provider uses a underlying computer technological infrastructure
to support them. The SLA is a contract negotiated and agreed between a customer
and a service provider. That is, the service provider is required to execute service
requests from a customer within negotiated quality of service (QoS) requirements
for a given price. Thus, accurately predicting customer service performance based
on system statistics and a customer’s perceived quality allows a service provider to
not only assure quality of services, but also avoid over provisioning to meet a service
level agreement [52].

4.3 Data Owner

All data in your organization should have an owner. The owner is responsible to
determining how much risk to accept, and makes decisions that who will be permitted
to access the information and how they will use it.

In small businesses, the business owner might possess all types of information. As
organizations growing, ownership is typically distributed. For example, financial data
ownership might fall to the vice president of the accounting department. Intellectual
property might belong to the head of engineering. In any case, the data owner should
understand the sensitivity of the information and undertake his or her responsibilities
for protecting it.

Data owners don not perform these tasks alone. They work closely with informa-
tion services and security to determine risk levels, current controls, and next steps.
Security and information services delivery teams then takes steps to ensure han-
dling, distribution, regular usage of electronic information and appropriate controls
that have been implemented and managed in the storage [53].

4.4 Software Developers

Software development is the process by which a company, team, or individual devises
and implements an overall plan to create a new software program. This process can
also be applied to an established program to create a new version of this software,

Software Monitoring in Data Centers 1231

though this is usually an abridged version of the process unless the new version is
largely different from the previous one. Numerous steps are involved in this process,
beginning with understanding what is needed from software, developing a plan for
creating it, writing the code, and bug testing prior to launch. Software development
can be a process that involves anything from a single programmer to dozens or
hundreds of individuals. The process of the software development usually begins
with research or a general understanding of what type of software is needed in the
market place. This may be an entirely new program that addresses an unfulfilled need
or a new piece of software in an existing market. As software development begins,
this research establishes the purpose of the software being developed and the overall
goals of the development [54].

Software maintenance is the longest stage in software life cycle, after developing
the software and putting it into use. Due to various of reasons, the software cannot
continue to meet the needs of users. Software maintenance in software engineering
is the modification of a software product after delivery to correct faults, to improve
performance or other attributes [55]. A common perception of maintenance is that it
merely involves the fixing defects. However, one study indicated that the majority,
over 80 %, of the maintenance effort is used for non-corrective actions. This percep-
tion is perpetuated by users submitting problem reports that in reality are functionality
enhancements to the system. More recent studies put into the bug-fixing proportion
closer to 21 % [56].

The key software maintenance issues are both managerial and technical. Key
management issues are as following: alignment with customer priorities, staffing,
which organization does maintenance, estimating costs. And the key technical issues
are as follows: limited understanding, impact analysis, testing, and maintainabil-
ity measurement. Software maintenance is a very broad activity that includes error
corrections, enhancements of capabilities, deletion of obsolete capabilities, and opti-
mization. Because change is inevitable, mechanism must be developed for evaluation,
controlling and making modifications.

Some works done to change the software is considered to be maintenance work.
The purpose is to preserve the value of software over the time. The value can be
enhanced by expanding the customer base, meeting additional requirements, be-
coming easier to use, more efficient and employing newer technology. Maintenance
may span for 20 years, whereas development may be 1–2 years.

It’s need to repeatedly test software for the software developers to find per-
formance bottlenecks and function of software flaws, in order to improve the
performance of the software.

5 Monitoring Site

It is divided into on-site monitoring and off-site monitoring in the system monitoring.
On-site monitoring can guarantee the safety of monitoring. However, off-site moni-
toring can reduce the user cost. Currently used monitoring system is the combination
of on-site monitoring and off-site monitoring.

1232 C. Wu and J. Guo

5.1 On-Site Monitor

Formal on-site study monitoring involves overseeing the progress of systems via
regular, ongoing site-level quality checks that are conducted by an appropriately
qualified individual. Investigators should specify who, with what frequency, how
and to whom monitoring staff [57].

On-site monitoring is in a relatively independent and closed environment monitor-
ing, so that it can provide more security monitoring. On-site monitoring can provide
centralized monitoring programmer, which is beneficial to the large-scale monitoring
system. Firstly, the obvious advantage of online monitoring is the monitoring scope.
Secondly, on-site monitoring makes monitoring more reliable. Finally, it can be easy
to manage and save administrative costs due to its centralization.

However, there are also disadvantages for on-site monitoring. First, on-site mon-
itoring is a large testing environment that will lead to expensive costs, which will
increase the extra burden of users. For example, the user costs for using the on-site
monitoring are more than the off-site monitoring. In the selection, most users will
choose off-line monitoring. Second, on-site monitoring results in non-professional
self- management. In the process, users in the use of on-line monitoring cannot in-
teract well with monitoring system. It is not conducive to personal management and
maintenance.

On-site study monitors should physically check the conduct and documentation
of study activities to ensure followings [57]:

1. All necessary approvals are in place prior to commencement of recruitment,
screening or enrollment activities.

2. All necessary approvals remain in place throughout the duration of research
activities.

3. Recruitment, screening, enrollment and the informed consent process are being
conducted per conditions of CHR [58] (Contact Hole Roughness) approval.

4. Documentation is on file demonstrating that all participants meet all inclusion
and no exclusion criteria.

5. Documentation is on the file demonstrating protocol adherence (and documenta-
tion when protocol adherence is not met).

6. No changes are made to the CHR approved study protocol or consent form unless
immediate changes are required to protect the safety of study participants.

7. Adverse events and pertinent safety information is being captured, assessed,
reported and followed as required by CHR, sponsor and/or regulatory agencies.

8. Any other unanticipated problems (including violations, incidents and/or
research-related concerns or complaints) are reported as required by CHR.

5.2 Off-Site Monitor

Instead of using production lines and instrumentation, Off-site monitor, which differs
from on-site monitor, takes artificial random testing on status of the production and
equipment, by using multiple test instruments.

Software Monitoring in Data Centers 1233

Off-site monitoring’s advantages are obvious. First, off-site monitoring enables
users to reduce the cost, and is within the range that users can afford. Second, off-
site monitoring is suitable for small and medium-sized monitoring system and for
ordinary users, while on-site monitoring is suitable for the large-scale monitoring
system and for large companies.

It should be pointed out that, off-line monitoring cannot guarantee security. User’s
unpredictable behavior often results in the decreases of the system security. There-
fore, as soon as off-site monitoring is chosen, the security should be also taken into
account.

Off-site monitoring methods have been developing because of an ambiguity about
whether their purpose is long-run or short-run forecasting. The monitoring can be
also useful to support measuring and evaluation of Quality of Services (QoS) metrics
that are required by Service Level Agreements (SLA) [59]. A SLA defines the agreed
level of performance for a particular service between a service provider and a service
customer [60, 61].

It is necessary to clarify the primary purpose of off-site monitoring. The answer
probably lies in the examination system. If one believes that on-site exams provide
the most useful and accurate forecasts of long-term bank health, then the purpose
of off-site monitoring would be seen as complementary to the exam system and
very short-run in nature. If exams are thought to be useful primarily in assessing the
current condition of a bank, then it might be appropriate to use off-site methods for
long-term forecasts. The issue of the willingness to act on this information needs to
be broached [62].

The monitoring of real-time distributed computing systems involves the collec-
tion and interpretation of information, such as event time stamps, synchronization
sequences, race conditions, register status, transaction identifications, and inter-
rupt activities. These characteristics make the monitoring of the global states and
the execution flows of a real-time distributed computing system almost impossi-
ble. Snodgrass views monitoring as an information-processing activity and asserted
that the relational model is an appropriate formalism for structuring the information
generated by a distributed computing system [63].

6 Monitoring Methods

There are many monitoring methods, such as visualization monitoring, hot-spot eval-
uation, performance prediction, analyzing user’s habits and tools. These methods,
as well as some performance test tools, are introduced in this section.

6.1 Visualization Monitoring

De Chaves S. A. et al designed an abstract general-purpose monitoring architecture
[64], as shown in Fig. 7. The three-layer architecture addresses the monitoring’s

1234 C. Wu and J. Guo

Fig. 7 Private cloud monitoring system architecture

needs in a private cloud, which is extensible, modular, and simple. The middle
integration layer provides a clear separation by abstracting the infrastructure details
and the monitoring information required by cloud users.

The infrastructure layer contains basic facilities, services, installations and avail-
able sofware, which are mainly heterogenerous resources. For example, a request
cloud is managed by Xen or KVM, which depends on the deployment of the infras-
tructure layer. Therefore, the integration layer is applied to abstract infrastructure
details. The view layer is regarded as the monitoring interface, which can analyze
the fulfillment of organizational policies and service level agreements (SLAs). Based
on the needs of the different enterprises, this layer may accomplish different views.

An extensible modular monitoring framework called PCMONS was developed,
which acts principally on the integration layer by retrieving, gathering, and preparing
relevant information for the visualization layer [64]. The framework tries to incorpo-
rate many tools and management practices applied in cloud management, in order to

Software Monitoring in Data Centers 1235

integrate into organizations’existing management infrastructure and operations. PC-
MONS exploits the installed software and hardware base, besides the experience and
skills of IT administrators. Developing the PCMONS considered the four high-level
components of IaaS tools, such as cloud manager, node controller, storage controller
and cluster controller. The control centralization adapts a client/server model to be
monitored. Considered specific phase of a VM life cycle, the system is divided into
the following modules [64].

1. Node Information Gatherer
This module gathers different local information on a cloud node according to
specific demands. The module gathers local VMs information for the Cluster
Data Integrator in the current version.

2. Cluster Data Integrator
Because most of the cloud tools group nodes to the cluster, a specific agent gathers
and prepares the data for the next layer, avoiding transferring unnecessary data
to the Monitoring Data Integrator.

3. Monitoring Data Integrator
The module collects cloud data in the database, stores and provides them to the
Configuration Generator.

4. VM Monitor
This module makes the VMs transfer useful data to the monitoring system by
injecting scripts into the VMs. The useful data may be memory and CPU usage.

5. Others
Configuration Generator, Monitoring Tool Server, User Interface and Database,
are also important modules. The Configuration Generator retrieves information
from database, such as the necessary configuration files. Monitoring Tool Server
receives monitoring data and takes actions, for example, storing the information
in the database, although it has imperfections. Nagios has a sufficient inter-
face, no need of developing specific ones. Database stores information for the
Configuration Generator and the Monitoring Data Integrator.

6.2 Hot-Spot Evaluation

Based on the hierarchy structure of hot-spot evaluation indexes in Fig. 8, the sub-
jective weight and objective weight of each index should be calculated to get the
comprehensive evaluating index of hots-pot degree. Due to the ambiguity of index
evaluation, triangular fuzzy number in fuzzy AHP (Analytic Hierarchy Process) [65]
is deployed to determine the subjective weight of each index influencing hot degree,
then the multi-objective decision-making method is used to determine the target type
of each index. Dimensionless processing is to get the optimal size of index and its
matrix, and maximizing deviation method is to determine the objective weight of
index. Finally combining subjective weights with objective weights, the order and hi-
erarchy of monitored spots (virtual machines) “hot degree” can be obtained by linear

1236 C. Wu and J. Guo

Level 1

Level 2

Level 3

Hot-spot degree evaluation index

Resource utilization Quality of service (QoS)

Response

time (RT)

Through

put

Services

stability

(SS)

CPU

utilization

Memory

utilization

Network

bandwidth

utilization

Disk Space

utilization

Service availability

Service

availability

(SA)

Fig. 8 The hierarchy structure of hot-spot evaluation indexes

weighted sum method of multi-objective decision. As shown in Fig. 9, the specific
steps are elaborated. Here, the hot-spot evaluation question is handled through four
sections. They are the optimal relative and classification of index target type, the
comprehensive weight determining, the hot-spot degree comprehensive evaluation
value and hot-spot sorting and hot-spot or cold spot judging.

1. Optimal relative and classification of index target type

Optimal relative is the degree of relative to “optimal”, which is similar to the concept
of membership degree in fuzzy mathematics, and is determined according to the
target type and characteristics. There are some common types of attributes, such as
efficiency type, cost type, fixed type, range type, deviation type and deviation interval
type [66], and the target types of single hot indexes can be divided into fixed type,
range type, cost type and efficiency type. μij is the optimal relative.

Fixed type—regards stabilizing at a fixed value as the best type of indexes.

μij =
⎧⎨
⎩

1, fij = f ∗
i

1 − ∣∣fij− f ∗
i

∣∣ /σi , fij �= f ∗
i

(1)

fij is the measured value of i index in virtual machine j. f ∗
i is the optimal value

of fi , which is the i index given in advance. σi = max
{
fij − f ∗

i

}
is the absolute

differences maximum of fij and f ∗
i among n observed spots.

Range type—regards property values falling in a fixed interval as the best type of
indexes.

μij =

⎧⎪⎪⎨
⎪⎪⎩

1 − (f Li − fij)/ηi , fij < f
L
i

1, fij ∈ [f Li , f Ri]

1 − (fij − f Ri)/ηi , fij > f
R
i

(2)

Software Monitoring in Data Centers 1237

T
he com

prehensive
w

eight determ
ining

O
ptim

al relative and classification of index target type

Start

Compare indexes by triangle fuzzy

number to get fuzzy comparison

judgment matrix

Original data of monitored hot

degree related indexes and hierarchy

of evaluation indexes

Form target decision matrix

Calculate corresponding optimal

relative of indexes based on their

target types

Form optimal matrix

Calculate objective weight v of

index based on deviation maximum

method

Calculate subjective weight w of

index based on fuzzy hierarchy

analytic process

The comprehensive weight

Hot degree of each monitored spot

Fig. 9 Comprehensive evaluation strategy for hot-spot

f Li and f Ri are the best lower bound and upper bound of i given index, respectively.
ηi = max{f Li − fimin, fimax − f Ri } is the absolute maximum of fij deviating the
optimal range. fimin and fimax are the maximum and minimum of measured values
in index fi monitored spots, respectively.

Cost type—regards the smallest attribute value as the best index.

μij = 1 − fij /(fimax + fimin) (3)

Efficiency type—regards the biggest attribute value as the best index, just contrary
to cost type.

μij = fij /(fimax + fimin) (4)

1238 C. Wu and J. Guo

Table 10 Objective types of hot-spot degree indices

Level 1 type Level 2 type Level 3 type Target type

Hot degree Resource utilization CPU utilization Range type

Memory utilization Range type

Service performance Response time Cost type

Throughput Efficiency type

Service stability Efficiency type

Availability Service availability Efficiency type

Therefore, some representative index types of hot degree evaluation can be
summarized as shown in Table 10.

To evaluate m hot degree of n monitored spots, firstly the target decision matrix
F is formed according to the measured value of monitoring spots.

F =

⎡
⎢⎢⎢⎢⎢⎣

f11 f12 · · ·
f21 f22 · · ·
...

...
...

fm1 fm2 · · ·

f1n

f2n

...

fmn

⎤
⎥⎥⎥⎥⎥⎦

(5)

Using formula (Eq. 1) ∼ (Eq. 5) and combined with the target type of hot index, the
target decision matrix converts to optimal relative matrix μ:

μ =

⎡
⎢⎢⎢⎢⎢⎣

μ11 μ12 · · ·
μ21 μ22 · · ·
...

...
...

μm1 μm2 · · ·

μ1n

μ2n

...

μmn

⎤
⎥⎥⎥⎥⎥⎦

(6)

2. The comprehensive weight determining

The judgment matrix represents the relative importance of an upper layer element
and this layer element (or the upper factors). Importance scale is a fairly good digital
measurement in compassion to index importance. There are commonly used impor-
tance scale at present: 1–9, 9/9–9/1, 10/10–18/2, 90/9–98/9, 20/2–28/2, e0/4–e8/4
and e0/5–e8/5.

Saaty had compared these 27 kinds of indices in experiment and concluded that
1–9 scale is not possessed of optimal performance but also not worth than more
complex scale [65]. Currently, 1–9 type is widely used in AHP due to its capacity of
consistency and uniformity of distribution. The 1–9 scale type importance scale is
adopted and its specific meaning is shown in Fig. 10.

Based on the index hierarchy shown in Fig. 8, triangular fuzzy numbers are intro-
duced to form the fuzzy judgment matrix according to the uncertainty of subjective

Software Monitoring in Data Centers 1239

Fig. 10 Meaning of the importance of scale aij for 1–9 scale type (A relative to B)

judgment experts built comparative judgment matrix [66]. These scales order and
obtain weighted value could be determined by using the theory of fuzzy number
comparison size.

Assume that there are n hot-spots comprehensive evaluation index of this layer
related to upper layer, indices sets A = {a1, a2, · · ·, an}. Triangular fuzzy number,
bij = [lij ,mij , uij], is an importance fuzzy judgment of index i relative to index j
experts making. lij and uij represent the fuzzy extent of judgment, the grater uij − lij
means the higher comparative fuzzy degree. Finally, the fuzzy comparison judgment
matrix B via comparison is achieved as following.

B = (bij)n×n =

⎡
⎢⎢⎢⎢⎢⎣

[l11,m11, u11] · · · [l1n,m1n, u1n]

[l21,m21, u21] · · · [l2n,m2n, u2n]
...

...
...

[ln1,mn1, un1] · · · [lnn,mnn, unn]

⎤
⎥⎥⎥⎥⎥⎦

(7)

Similarly, the application of above methods can construct the fuzzy comparison
judgment matrix of each layer relative to it’s upper among index systems.

1240 C. Wu and J. Guo

In the fuzzy comparison judgment matrix, the fuzzy relative weight of index i
compared with other index in this layer is:

Qi =
[∑n

j=1 lij∑n
i=1

∑n
j=1 uij

,

∑n
j=1mij∑n

i=1

∑n
j=1mij

,

∑n
j=1 uij∑n

i=1

∑n
j=1 lij

]
(8)

Each triangle fuzzy number in the fuzzy relative weight vector is required to clar-
ity before sorting the current layer index. The corresponding subjective weight of
Qi = (li ,mi , ui) can be determined as follows [67–70]:

wi = li + 2mi + ui
4

(9)

The index i will slight impact on the hot-spot degree evaluation and should be given
less weight corresponding if there are small differences in the hot-spot degree i of
the monitoring, otherwise given a greater weight.

Based on optimal relative matrix μ, multi-objective decision-making method is
employed to get objective weight vi of index i:

vi =
∑n
j=1

∑n
k=1

∣∣μij − μik|∑m
i=1

∑n
j=1

∑n
k=1

∣∣μij − μik| , i = 1, 2, · · ·,m (10)

Here, j and k represent different monitoring sites, respectively.
∣∣μij − μik| refers to

the absolute value of the membership degree. The weight reflects the differentiation
and decisive of index i in hot-spot degree evaluation sorting process.

The comprehensive weight of index i is obtained by the subjective weight and
objective weight.

Si = wivi∑n
i=1 wivi

, i = 1, 2, · · ·, n (11)

3. The hot-spot degree comprehensive evaluation value

The linear combination of the individual index evaluation value reflects the quality
of comprehensive index, but there are one more indexes not qualified in the index
evaluation process. An agreement is made that the comprehensive evaluation value
is not qualified when any of the indicators of evaluation value obviously unqualified.
Standard of qualified or not should be based on the actual situation. Service perfor-
mance indexes, such as response time, can get the relevant limit threshold in the SLA
agreement. Resource utilization threshold has uncertain setting in some extent.

Different virtual machines and performance service reflect the different resource
utilization and performance. Hence it can judge degree of unqualified according to
the way of beyond percentage. For example, setting the CPU resource utilization
threshold is 75 %, if the resource utilization rate reached 90 %, which is beyond
the threshold of 20 %, comprehensive evaluation value is judged to be unqualified
because the CPU resource utilization index is not qualified.

Software Monitoring in Data Centers 1241

The linear weighted method among multi-objective decision method is applied
to hot degree comprehensive evaluation value of monitoring point j, as shown in the
following.

yi =
⎧⎨
⎩
∑n
i=1 Siμij , all indexes are qualified

0, one or more indexes are not qualified
(12)

4. Hot-spot sorting and hot-spot or cold spot judging

Based on the hot-spot comprehensive evaluation value, hot-spot degrees of all moni-
toring point can be linear ordering. Hierarchy is also obtained in the sorting process.
In particular, firstly, original index grade line standard of hot-spot degree evaluation
index system is gotten by experts judgment method. Secondly, each of level value
is regarded as a “monitoring” of the original data, then hot-spot degree is evaluated
according to the previous steps as the same other ordinary monitoring points. Fi-
nally, a corresponding comprehensive evaluation value is achieved based on every
level value. Hot-spot degree range of each monitoring point can be obtained after
uniformly ranking these hot-spot comprehensive evaluation values and all levels of
comprehensive evaluation values. Then hot-spot level of each monitoring point will
be correspondingly obtained based on removing principle. The cold/ hot judgment
of the monitoring will come out in line with the level of ownership rules in advance.

6.3 Performance Prediction

1. Prediction process
The DaaS (Data as a Software) service performance prediction process is shown
in Fig. 11. The concrete steps can be summarized as follows.
– Data Gathering

Some indicators are gathered and recorded, such as DaaS service transactions,
service occupied physical resources and response time of each key business
monitoring spot. These indicators can be gathered by deploying monitoring
plugins in each virtual machine. Then, three crucial performance indexes are
defined.
I. DaaS Service Transactions Index (STI)

The number of transactions that require the DaaS service to process at each
moment. STI reflects service loads at each moment directly. According to a
monitoring plugin, it can be recorded as a time series: x1, x2,. . ., xn− 1, xn.
In many cases, most of the STI time series are nonlinear sequence and their
trends can be predicted using nonlinear time series forecasting methods.

1242 C. Wu and J. Guo

Monitoring

D
ata

DaaS Service

Transaction

DaaS Service
Resource

Occupancy
Database

DaaS Service

Performance

SPI, SROI and STI Com utin

Data

STI
Time Time Series

SROI
Time
SROI

x1
x2
···
xn

y1
y2
···
yn

z1z2···
zn

STI
Predicti Initial Judgment

Matrix Com utin
SROI

Predicti

Predicting Using Fuzzy
Matchin Al orithm

Results
Comparing

Results
Feedbac

Results

Parameters
Adjustment

Comparis
on Results

SPI
Predicted

STI
Predicted

SROI
Predicted Value

Fuzzy
Jud ment Matrix

D
ata Processing

Perform
ance

1
t2
·

··
tn

Fig. 11 Prediction process of DaaS performance

Software Monitoring in Data Centers 1243

II. DaaS Service Resource Occupancy Index (SROI)
The comprehensive calculation value of DaaS service occupied resources
at each moment. In cloud environment, DaaS resource occupancy means
these physical resources that allocated to the DaaS service. The phys-
ical resources include CPU, memory, storage, flash storage, network
bandwidth, etc.

III. DaaS Service Performance Index (SPI)
DaaS services response time at each moment. Response time values can
directly reflect DaaS service performance. The value of SPI is the com-
prehensive calculation result of the response time of some key businesses
monitoring points.

– Index Calculation and Prediction
After defining three key indexes and gathered the information, different meth-
ods or algorithms can be used to calculate three indexes. In particular, chaos
time series prediction algorithm is adopted to predict STI’s trend, radar char
comprehensive method is used to calculate SROI, and weighted average
method is applied to calculate SPI.

– Performance Prediction
A fuzzy judgment matrix cloud be formed by STI and SROI. A fuzzy matching
matrix may be gained according to the definition of fuzzy closeness degree, and
calculate the best matching value of STI and SROI of the predicted moment
using lattice similarity matching algorithm. SPI corresponding to the best
matching value is regarded as the prediction result DaaS service performance.

2. Computing methods of each index
– STI Time Series Prediction Algorithm

DaaS service system is a nonlinear system, which contains a wealth of kinetic
information, and STI time series are mostly nonlinear time series on cloud
platform. Therefore, it proposes to verify the STI time series’ chaotic charac-
teristics using chaos theory, and presents a prediction model of STI time series
based on the largest Lyapunov exponent.

– Reconstruct STI time series’ phase space
According to Takens embedding theorem [70], let x1, x2,. . ., xn - 1, xn, to be
the STI time series, construct m dimensional phase space with N phase points,
then find a proper embedding dimension. If the delay coordinate dimension m
≥ 2d + 1, d is power system dimension, then every point in space phase can
be defined as:

Y (ti) = [x(ti), x(ti + τ), · · · x(ti + (m− 1)τ)] (13)

Where, i = 1, 2,. . ., N, N = n− (m − 1) τ .
– Calculate STI chaos characteristics

STI time series’ chaotic property can be verified in a qualitative analysis way
or a quantitative calculation way. Quantitative calculation method is to judge
by calculating some chaotic characteristic quantities, such as embedded delay,

1244 C. Wu and J. Guo

embedding dimension, Lyapunov index, and so on. Embedded delay refers to
these phase space parameters that determine the differences among variables
in STI time series, and have significant influence on the information of original
DaaS system contained in the reconstructed phase space. Embedding dimen-
sion refers to the minimal space dimensions which could completely contain
all characteristics of attractors in DaaS service system. Embedding dimension
and embedded delay are dependent on each other in most cases. The correla-
tion function for choosing time delays algorithm was used to simultaneously
solve embedding dimension and embedded delay [71].
The Lyapunov index is an important parameter to judge whether a system is
a chaotic systems. The basic characteristic of a chaotic system is sensitive to
the initial conditions, i.e. two resource variable curves, with very close initial
values, separate very fast with time in exponential way. Lyapunov index is
the chaotic invariant to describe the phenomenon, expressing the convergence
average rate and divergence rate in phase space between adjacent tracks.
A small amount of data algorithm is used to compute the largest Lyapunov
exponent [72, 73]. If the largest Lyapunov exponent is greater than 0, the
system is a chaotic system.

– Prediction algorithm based on largest Lyapunov index
For STI time series x1, x2,. . ., xn− 1, xn if it needs to predict xn+ k , then
selects a point Xp in a phase space, and Xp is the prediction center:
Xp = (xn− (m−1)τ, xn+1 − (m− 1)τ,. . ., x). LetXp be the nearest neighbor
pointsXl , Xl ∈ {X1,X2,. . .,Xp− 1}, the distance betweenXp andXl is d, then
d= minj |Xp−Xl| = |Xp−Xl |. After determining the nearest neighbor points
Xl , further evolution Xp+ 1 and Xl+ 1 can be done according to Xp and Xl ,
then:

∣∣Xp −Xp+1

∣∣ = |Xl −Xl+1| eλ (14)

In formula (Eq. 14), λ1 is the largest Lyapunov index of the time series x1,
x2,. . ., xn− 1, xn, where the last component of Xp+ 1, and xn+ 1 is unknown,
so xn+ 1 is predictable. If it needs to predict xn+ k , k step prediction can be
analogized based on one step prediction. Formula (Eq. 14) is the prediction
model of largest Lyapunov index λ1, and the prediction time is determined
by1/λ1.

– SROI computing method
DaaS service occupied resources occupancy refers to resources allocated to
DaaS service by the cloud platform, including CPU, memory, storage, flash
storage, network bandwidth, etc. However, measuring DaaS service resources
occupancy is a difficult problem because DaaS services occupied resources are
distributed on different virtual machines or physical machines, and the mea-
surement unit of various resources is different. An irregular polygon (radar
chart) is presented to describe DaaS resources occupancy. A radar chart is a
graphical method of displaying multivariate data in form of a two-dimensional
chart of three or more quantitative variables represented on exes starting from

Software Monitoring in Data Centers 1245

Fig. 12 DaaS service resources occupancy

the same point [74, 75]. According to the drawn radar chart, the radar char-
acteristic value can be calculated, and work out SROI. Three key physical
resources (CPU, storage, memory) are selected to form radar char, an example
(at time t) is shown in Fig. 12.
In Fig. 12, the radar chart characteristics can be worked out: the radar chart
area SRA (t) can be gotten as follows:

SRA(t) = 1

2
sin

(
2π

3

)
[a1 × a2 + a2 × a3 + a1 × a3] (15)

– SPI computing method
For a DaaS service, there are many kinds of performance evaluation indexes,
as well as a lot of methods to evaluate these indexes. The n service performance
monitoring points are selected to record DaaS service performance. The re-
sponse time t1, t2, · · ·, tn are corresponding to monitoring points a1, a2, · · ·, an.
Therefore, at any moment i, the value of SPI equals to Pi :

Pi = 1

n

n∑
i=1

ti (16)

3. DaaS service performance prediction method based on the fuzzy nearness
The DaaS service performance is influenced by STI and SROI. Meanwhile, DaaS
service resources occupancy and DaaS transactions are dynamic change real-
time. So these two factors should be taken into consideration during DaaS service
performance. A fuzzy matching algorithm based on fuzzy nearness by using STI
and SROI historical data is proposed. The nearness degree of STI (Xn) and SROI

1246 C. Wu and J. Guo

(Yn) of the prediction time n in the historical data matrix are calculated to work out
the results Xiand Yi , which are the closest to Xn and Yn in historical data. Then
the Zi of SPI is used, corresponding to Xi and Yi , as the predicted performance
value Zn in predicted time n.
– Calculating membership degree

Membership function is a function that describes some elements belonging to
some characteristics. The value of membership function is called a membership
degree, and its values ranges is from 0 to 1. When the value is closer to 1, it
means its membership degree is higher. An eigenvalue matrix using SRI (Xi)
and SROI (Yi) is formed:⎛

⎝X1 X2 · · · Xi · · · Xn
Y1 Y2 · · · Yi · · · Yn

⎞
⎠

Membership degree calculating formulas are as follows:

F (Xi) = Xi − min(Xn)

max(Xn) − min(Xn)
(17)

F (Yi) = Yi − min(Yn)

max(Yn) − min(Yn)
(18)

– Calculating close degree
According to formula (Eq. 17) and formula (Eq. 18), the following fuzzy
matrix can be obtained:

⎛
⎝F (X1)F (X2) · · ·F (Xi) · · ·F (Xn)

F (Y1)F (Y2) · · ·F (Yi) · · ·F (Yn)

⎞
⎠

For the predicting time n, the nearness degree of STI (Xn) and SROI (Yn) in the
historical data matrix could be calculated one by one with lattice close degree
formula:

N (A,B) = [(F (Xi) ∧ F (Xn)) ∨ (F (Yi) ∧ F (Yn))] ∧
× {[(1 − F (Xi)) ∧ (1 − F (Xn))] ∨ [(1 − F (Yi)) ∧ (1 − F (Xn))]}

(19)

In formula (Eq. 19), A represents the matrix in any moment i, B represents the matrix
in predicting moment n.

A =
⎛
⎝F (Xi)

F (Yi)

⎞
⎠ (20)

B =
⎛
⎝F (Xn)

F (Yn)

⎞
⎠ (21)

Software Monitoring in Data Centers 1247

6.4 Analyzing User’s Habits

User’s habits in the user access sequence prediction can be analyzed. PrefixSpan
algorithm is applied to handle the question of user access sequential mining [75].
KMP pattern matching algorithm is used to predict the user access sequence.

1. User access sequential pattern mining based on PrefixSpan algorithm
– Definition 1

In the user access pattern library, the sequence collection U = {u1, u2,. . .,
ui ,. . ., un}, which ui = {pi ,ti}, where pi refers to user access patterns, ti
refers to the mean residence time sequences of a page.

– Definition 2
User access patterns Pi = {x1, x2, . . ., xk , . . ., xn}, 1≤ k ≤ n, where xk refers
to the page label.
It is not random for users to visit the web site’s pages, because there is a
certain correlation among pages. The user’s access also has some models.
These models can be mined by PrefixSpan algorithm. Based on this algorithm,
steps of the user access pattern Pi are as follows:
Finding the access patterns sequence with the length of one in user access
sequence collection, dividing the search space Sub, recursive mining the subset
of sequential patterns.

– Definition 3
The mean residence time sequences of a page Ti = {t1, t2,. . ., tn − 1},
1≤ k ≤ n− 1, which tk refers to the mean residence time from page xk to
xk + 1.

When users access a page, the residence time is different because the degree of
interest. The user’s operating proficiency and reading speed are different. Some data
may have significant differences with other data. Therefore, the noise data need to be
removed. After the noise removal, the mean residence time of a page is as following:

tk = Sum(xk , xk+1)

Count(xk , xk+1)
(22)

Sum (Xk ,Xk+1) refers to the total time from pageXk to pageXk+1 in all users access
record after the noise removal, Count (Xk ,Xk+1) refers to the number of times of
containing a sequence (Xk ,Xk+1) in users’ record.

2. The prediction of user access sequence based on KMP pattern matching algorithm

KMP algorithm is a classical pattern matching algorithm. Its core idea is the process
which uses part of known match information to match the later information. The KMP
pattern matching algorithm is used to predict user access intention. The algorithm
includes the follows steps:

Before carrying out pattern matching, the pattern and text need to be changed into
the reverse form, which means compare the pattern with text forward one by one
from the last character.

1248 C. Wu and J. Guo

In matching process, if a complete subsequence of the patterns in text is not
found, it needs to find a match sequence as long as possible. Regard the longest
match sequence found from each text as the matching of the pattern subsequence
under the text, marked as P|T (i).

The returning results are P|T (i) and the predicted follow-up visits sequence. For
example:

A record in users access pattern library is T：1 3 4 6 4 8 1 2

The current users access sequence is P：5 4 8

In the current access sequence, the last visited page class 8 has the greatest impact
to the follow-up prediction result, and then followed by 4 and 5. Therefore, before
applying the KMP algorithm, the current access sequence is set and the library record
is reversed. The results are as follows:

：A record in users access pattern library is T 2 1 8 4 6 4 3 1

：The current users access sequence is P 8 4 5

T does not exist 5, so string P cannot be found in T, which is considered that the
matching is unsuccessful in general KMP algorithm. However, the improved KMP
algorithm finds the longest matching string as much as possible if there is not a
complete match. The record 5 has impact in the user intention in P, so it needs to
remove 5, and continue to search for 8 and 4 in T. When finding the string ‘8 4’, the
match succeeds. The general KMP algorithm returns the position 2, where string ‘8
4’ is located in T.

The improved KMP algorithm returns the follow-up sequence and matching
length: ‘2 1 2’, which ‘2 1’ is the reverse order sequence of the predicted follow-
up visits, and the last ‘2’ means the length of matching is 2. The string ‘4 8’ in P
matches the string ‘4 8’ in T, and then it shows that this user probably accesses as
this pattern. Therefore, it can be predicted that the user’s follow-up visit sequence is
‘1 2’ according to the follow-up sequence is ‘1 2’ in T.

6.5 Tools

Recently, there are many performance testing products, such as HP Load Runner,
IBM RPT (Rational Performance Tester), Apache JMeter, Segue Silk Performer, Red
View Web Load, Compuware QA Load and so on. Here HP Load Runner, IBM RPT
and Apache JMeter will be introduced as the following.

Software Monitoring in Data Centers 1249

1. HP Load Runner
HP Load Runner is the industry-standard performance testing product for pre-
dicting system behavior and performance [76]. Load Runner emulates thousands
of concurrent user requests to put the application through the rigors of real-life
user requests. An application can be stressed from end-to-end and the response
times of key business processes can be measured. Simultaneously, Load Runner
collects system and component-level performance information through a com-
prehensive array of system monitors and diagnostics modules. These metrics are
combined into a sophisticated analysis module that allows teams to drill down to
isolate bottlenecks within the architecture. Load Runner is widely, customized,
and certified to work with ERP/CRM applications from PeopleSoft, Oracle, SAP,
and Siebel.
– Three smaller applications [77]
The Virtual User Generator enables you to determine what actions you would
like the Vusers, or virtual users, to perform under stress within the application.
Some scripts generate a series of actions, such as logging on, navigating through
the application, and exiting the program, which can be taken to run through a
schedule pre-setup by controller. The controller should know how many Vusers
to activate, when to activate them, and how to group the Vusers and keep track
of them. The Results and Analysis program returns the results of the load test in
various forms.
– Load Runner Testing Process [77]
The process includes planning the test, creating the Vuser scripts, creating the
scenario, running the scenario, and analyzing test results.
– HP Load Runner in the Cloud [77]
In May 2010, HP announced that an on-demand version of the application perfor-
mance testing software would be available via Amazon Elastic Compute Cloud.
HP Load Runner in the Cloud is offered as beta software in the U.S and is available
with pay-as-you-go pricing, which is for businesses of very big size.

2. IBM RPT
IBM Rational Performance Tester [78] is a test creation, execution, and analysis
tool that validate application scalability and reliability under multiple user loads.
Rational Performance Tester enables teams to pinpoint system bottlenecks before
application deployment. Teams need little even no programming knowledge to
understand and modify the tests. Using an intuitive graphical test scheduler and
data pooling capability, teams can accurately organize their tests to simulate the
different types of users and their activities. During test execution, while emulating
the desired number of concurrent users, Rational Performance Tester generates
reports that highlight poorly performing Web pages, URLs, and transactions.
Teams can expose performance problems for problem identification and repair
before the system goes live.

3. Apache JMeter
The Apache JMeterTM desktop application [79] is open source software, a 100 %
pure Java application designed to load test functional behavior and measure
performance. It was currently expanded to other test functions, besides Web

1250 C. Wu and J. Guo

Applications. Apache JMeter may be used to test performance both on static and
dynamic resources (files, Servlets, Perl scripts, Java Objects, Data Bases and
Queries, FTP Servers and more). It can be used to simulate a heavy load on a
server, network or object to test its strength or to analyze overall performance un-
der different load types. It can be used to make a graphical analysis of performance
or to test the server/script/object behavior under heavy concurrent load.

References

1. Boulon J, Konwinski A, Qi R, et al. Chukwa: a large-scale monitoring system//Proceedings of
IEEE International Conference on Control Applications, 2008, 8.

2. http://blog.sina.com.cn/s/blog_5433a9f80100byg0.html
3. http://en.wikipedia.org/wiki/Software_aging
4. Cheng S, Pan Y, Analysis of cloud service reliability model based on node failure recovery.

Journal of Software Guide, 2012, 11 (5): 90–92.
5. Sahoo R K, Squillante M S, Sivasubramaniam A, et al., Failure data analysis of a large-scale

heterogeneous server environment//IEEE International Conference on Dependable Systems
and Networks, 2004: 772–781.

6. Heath T, Martin R P, Nguyen T D, Improving cluster availability using workstation validation.
ACM SIGMETRICS Performance Evaluation Review, 2002, 30(1): 217–227.

7. http://www.d1net.com/cloud/xaas/88623.html
8. Shang Y, Li D, Xu M, Energy-aware routing in data center network//Proceedings of the first

ACM SIGCOMM Workshop on Green Networking, 2010: 1–8.
9. Srikantaiah S, Kansal A, Zhao F., Energy aware consolidation for cloud comput-

ing//Proceedings of the Conference on Power Aware Computing and Systems. USENIX
Association, 2008, 10.

10. HOOPER A. Green computing. Communications of the ACM, 2008, 51(10): 1–13.
11. Avizienis A, Laprie J C, Randell B, et al., Basic concepts and taxonomy of dependable and

secure computing. IEEE Transactions on Dependable and Secure Computing, 2004, 1(1):
11–33.

12. Dawson D, Desmarais R, Kienle H M, et al., Monitoring in adaptive systems using reflec-
tion//Proceedings of the International Workshop on Software Engineering for Adaptive and
Self-managing Systems, 2008: 81–88.

13. http://baike.baidu.com/view/23710.html .
14. Zhang Y, Li, Zhang J, et al., Reviewed on middleware technology. Computer Engineering and

Applications, 2002, 15(1): 80–82.
15. Lin Z, Lai Y, Lin C, et al., The research on cloud database. Journal of Software, 2012,

23(5):1148–1166.
16. Chang F, Dean J, Ghemawat S, et al., Bigtable: A distributed storage system for structured

data. ACM Transactions on Computer Systems (TOCS), 2008, 26(2): 4–11.
17. Web Services Architecture [S],W3C Working Draft, 2002. http://www.w3.org/TR/ws-arch.
18. Bai X, Liu Y, Wang L, et al., Model-based monitoring and policy enforcement of services.

Simulation Modelling Practice and Theory, 2009, 17(8): 1399–1412.
19. Delgado N, Gates A Q, Roach S. A taxonomy and catalog of runtime software-fault monitoring

tools. IEEE Transactions on Software Engineering, 2004, 30(12): 859–872.
20. Da Cruz S M S, Campos M L M, Pires P F, et al., Monitoring e-business Web services us-

age through a log based architecture//Proceeding of IEEE International Conference on Web
Services, 2004: 61–69.

21. Sahai A, Graupner S, Machiraju V, et al. Specifying and monitoring guarantees in commercial
grids through SLA//Proceedings of 3rd IEEE International Symposium on Cluster Computing
and the Grid, 2003: 292–299.

Software Monitoring in Data Centers 1251

22. Devine S W, Bugnion E, Rosenblum M. Virtualization system including a virtual machine
monitor for a computer with a segmented architecture: U.S. Patent 6,397, 242, 2002-5-28.

23. http://www.connectix.com/ products/vs.html.
24. Barham P, Dragovic B, Fraser K, et al., Xen and the art of virtualization. ACM SIGOPS

Operating Systems Review, 2003, 37(5): 164–177.
25. Kivity A, Kamay Y, Laor D, et al., KVM: the Linux virtual machine monitor//Proceedings of

the Linux Symposium, 2007(1): 225–230.
26. Agichtein E, Brill E, Dumais S., Improving web search ranking by incorporating user be-

havior information//Proceedings of the 29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2006: 19–26.

27. Shin J, Narayanan S S, Gerber L, et al. Analysis of user behavior under error conditions in
spoken dialogs//INTERSPEECH. 2002.

28. Granka L A, Joachims T, Gay G., Eye-tracking analysis of user behavior in WWW
search//Proceedings of the 27th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. 2004: 478–479.

29. Bellare M, Miner S K. A forward-secure digital signature scheme//Advances in Cryptology—
CRYPTO’99. Springer Berlin Heidelberg, 1999: 431–448.

30. Günther C G. An identity-based key-exchange protocol//Advances in Cryptology—Eurocryp
’89. Springer Berlin Heidelberg, 1990: 29–37.

31. Padala P, Hou K Y, Shin K G, et al. Automated control of multiple virtualized re-
sources//Proceedings of the 4th ACM European Conference on Computer Systems, 2009:
13–26.

32. Lowe S. Mastering VMware vSphere 4. Indianapolis: Wiley Publishing, 2009.
33. Matthews J N, Dow E M, Deshane T, et al., Running Xen: a hands-on guide to the art of

virtualization. Prentice Hall PTR, 2008.
34. Williams D E. Virtualization with Xen (tm): Including XenEnterprise, XenServer, and

XenExpress: Including XenEnterprise, XenServer, and XenExpress.Syngress, 2007.
35. SzymańskaKwiecień A, Kwiatkowski J, Pawlik M, et al., Performance prediction meth-

ods//Proceedings of the International Multiconference. 2006, 1896: 7094.
36. Kwiatkowski J. Evaluation of parallel programs by measurement of its granularity//Parallel

Processing and Applied Mathematics. Springer Berlin Heidelberg, 2006: 145–153.
37. Jin’an Hu. The data centers in the cloud computing resources monitoring system research and

design. Journal of University of Electronic Science and Technology. 2012.5.
38. ZHAO Fang, LI Lan-ying. Study of web application monitoring system based on business

process. Journal of Beijing Forestry University. 2013.6.
39. Wikipedia, the resource monitor[OL]. http://en.wikipedia.org/wiki/Resource_Monitor .
40. Han F, Peng J, Zhang W, et al. Virtual resource monitoring in cloud computing. Journal of

Shanghai University (English Edition), 2011, 15: 381–385.
41. Fastest VPN for Asia. How to use the resource monitor in vista. http://www.vistax64.com/

tutorials/111020-resource-monitor.html
42. Manage Engine-IT Enterprise Management. CPU, Memory and Disk Monitoring [OL].

http://www.manageengine.com/network-monitoring/cpu-memory-disk.html
43. Zhuohao Wang, Zhuofeng Zhao. A Model-Driven Approach for Business-Oriented Monitor-

ing of Service Operation//Proceeding of IEEE International Conference on Service Sciences
(ICSS). 2010, 5:13–14.

44. Thomas M, Redmond R, Yoon V, et al. A semantic approach to monitor business process.
Communications of the ACM, 2005, 48(12): 55–59.

45. Ince D C, Andrews D. The Software Life Cycle. Butterworth-Heinemann, 1990.
46. Kleinrock L. A vision for the Internet. ST Journal of Research, 2005, 2(1): 4–5.
47. Buyya R, Beloglazov A, Abawajy J., Energy-efficient man-agement of data center resources

for cloud computing:a vision, architectural elements, and open challenges//Proceeding of
the 2010 International Conference on Parallel and Distributed Processing Techniques and
Applications,2010:1–12.

48. Weiss A. Computing in the clouds. Networker, 2007, 11(4):16–25.

http://www.vistax64.com/tutorials/111020-resource-monitor.html
http://www.vistax64.com/tutorials/111020-resource-monitor.html

1252 C. Wu and J. Guo

49. Barham P, Dragovic B, Fraser K, et al. Xen and the art of virtualization. ACM SIGOPS
Operating Systems Review, 2003, 37(5): 164–177.

50. Padala P, Shin K G, Zhu X, et al. Adaptive control of virtualized resources in utility computing
environments. ACM SIGOPS Operating Systems Review, 2007, 41(3): 289–302.

51. Marston S, Li Z, Bandyopadhyay S, et al. Cloud Computing—The business perspective.
Decision Support Systems, 2011, 51(1): 176–189.

52. Xiong K, Perros H. Service performance and analysis in cloud computing//Proceeding of IEEE
2009 World Conference on Services-I, 2009: 693–700.

53. http://www.brighthub.com/computing/smb-security/articles/11337.aspx.
54. http://www.wisegeek.com/what-is-software-development.htm.
55. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39064
56. Eick S G, Graves T L, Karr A F, et al. Does code decay? assessing the evidence from change

management data. IEEE Transactions on Software Engineering, 2001, 27(1): 1–12.
57. FormalOn-SiteMonitoringApril7, 2006. http://www.research.ucsf.edu/chr/Forms/ chrOnsite-

Monit.asp
58. Contact Hole Roughness (CHR). http://www.research.ucsf.edu/chr/Forms/chrOnsiteMonit.asp
59. Vaculín R, Sycara K. Semantic web services monitoring: An OWL-S based ap-

proach//Proceedings of the 41st Annualon IEEE Hawaii International Conference on System
Sciences, 2008: 313–313.

60. Dan A, Davis D, Kearney R, et al. Web services on demand: WSLA-driven automated
management. IBM Systems Journal, 2004, 43(1): 136–158.

61. Lundy L, Pradeep R. On the migration from enterprise management to integrated service level
management. IEEE on Network, 2002, 16(1): 8–14.

62. Avery, Robert B., Off-Site Surveillance Systems. History of the Eighties: Lessons for the
Futur,1997,2:25–29.

63. Snodgrass R. A relational approach to monitoring complex systems. ACM Transactions on
Computer Systems (TOCS), 1988, 6(2): 157–195.

64. De Chaves S A Uriarte R B Westphall C B. Toward an Architecture for Monitoring Private
Clouds. IEEE on Communication Magazine, 2011, 49(12): 130–137.

65. Saaty T L. What is the analytic hierarchy process? [M]. Springer Berlin Heidelberg, 1988.
66. Sun Z, Xu Z, Da Q.A Model Based onAlternative Similarity Scale for Uncertain Multi-Attribute

Decision-Making. Journal of Management Science, 2001, 9(6): 58–62.
67. Wu D, Cheng H, Xi X, et al. Annual Peak Power Load Forecasting Based on Fuzzy

AHP//Proceedings of the Chinese Society of Universities for Electric Power System and
Automation, 2007, 1: 009.

68. Keufmann A, Gupta M M. Introduction to Fuzzy Arithmetic:Theory and Application. NY: Van
Nostrand Reinhold, 1991.

69. Liu H, Kong F. A new MADM algorithm based on fuzzy subjective and objective integrated
weights. International Journal of Information System and Sciences, 2005, 1(3–4): 420–427.

70. Kukavica I, Robinson J C. Distinguishing smooth functions by a finite number of point values,
and a version of the Takens Embedding Theorem. Physica D: Nonlinear Phenomena, 2004,
196(1): 45–66.

71. Kember G, Fowler A C. A Correlation Function for Choosing Time Delays in Phase Portrait
Reconstructions. Physics Letters A, 1993, 179(2): 72–80.

72. Rosenstein M T, Collins J J, De Luca C J.A Practical Method for Calculating Largest Lyapunov
Exponents From Small Data Sets. Physica D: Nonlinear Phenomena, 1993, 65(1): 117–134.

73. Chambers J M. Graphical Methods for Data Analysis.Spring Science, 1983.
74. Gao J, Pattabhiraman P, Bai X, et al. SaaS Performance and Scalability Evaluation in

Clouds//Proceeding of IEEE the 6th International Symposium on Service Oriented System
Engineering (SOSE), 2011: 61–71.

75. Guo J, Huang H, Wang B, et al. Research on the prediction of web application system aging
trend oriented to user access intention.Instrumentation, Measurement, Circuits and Systems.
Springer Berlin Heidelberg, 2012: 983–991.

http://www.research.ucsf.edu/chr/ Forms/chrOnsiteMonit.asp

Software Monitoring in Data Centers 1253

76. HP LoadRunner—Free download and Software Reviews—CNET Download.com.
http://download.cnet.com/HP-LoadRunner/3000-2383_4-10306263.html#ixzz2a39AvT61 .

77. Load Runner Load Testing Tools Resources. http://www.load-testing-tools.com/loadrunner.
html.

78. Brown A, Johnston S K, Larsen G, et al. SOA Development Using the IBM Rational Software
Development Platform: APractical Guide.Rational Software, 2005.

79. Apache JMeter, ApacheCon North America Portland, Oregon 26th–28th February 2013,
http://jmeter.apache.org

http://www.load-testing-tools.com/loadrunner.html
http://www.load-testing-tools.com/loadrunner.html

Part IX
Resource Management

Usage Patterns in Multi-tenant Data Centers:
a Large-Case Field Study

Robert Birke, Lydia Chen and Evgenia Smirni

1 Introduction

Data centers are nowadays ubiquitous and have become a commonplace computing
platform for corporations as well as individuals, providing a diverse array of services.
Data centers may be universal and prevalent, but so are their administrative challenges
that include how to best use them, as well as how to optimize their power and cooling
costs. The sheer diversity of customer demands (e.g., one may expect very different
needs and performance expectations between individual users of cloud-based data
centers versus corporate customers) make data center administration challenging and
without clear solutions. Studying the workload that typical data centers experience
can provide many useful insights for the better usage of data centers, for the design
of autonomic management policies for various resources, even for more efficient
power and/or cooling management policies.

Most of existing data center studies can be roughly classified as those that focus on
power and thermal management [4–7], capacity planning and resource provisioning
[11–13], and traffic engineering [1, 2, 8–10]. The above works either aim at a
specific architectural component (e.g., network) or evaluate resource provisioning
via simulation or via small scale prototypes at a laboratory setting. To the best of our
knowledge, there is very little information on how exactly corporate data centers are
used by clients, how their workload demands change across time, and how customer
demands on different resources fluctuate across time. In this paper we fill this gap by
providing the first very detailed resource allocation study that considers two specific

R. Birke (�) · L. Chen
IBM Research Zurich Lab, 8803 Rüschlikon, Switzerland
e-mail: bir@zurich.ibm.com

L. Chen
e-mail: yic@zurich.ibm.com,

E. Smirni
College of William and Mary, Williamsburg, VA 23187, USA
e-mail: esmirni@cs.wm.edu

© Springer Science+Business Media New York 2015 1257
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_43

1258 R. Birke et al.

data centers and focuses on the usage patterns of several corporate customers across
different time scales.

Birke et al, [3] present a workload characterization study of corporate data centers
consisting of several thousand servers that are geographically dispersed across the
entire globe. The collected data represent the evolution of cloud workload in a time
span of 24 months and give a view on how data center workloads evolve across
different enterprises, countries, even continents. The focus of [3] is on the time
evolution and seasonal characteristics of resource demands from a capacity planning
viewpoint. The holistic view that is adopted in [3] gives an excellent perspective
for an economics analysis but does not shed any light into the interdependency of
workloads that are collocated within the same datacenters, how specific enterprises
utilize specific data center resources, or how the demands on the various resources
are correlated.

In this study, we select two specific data centers, which host multiple enterprises
from the data set collected by Birke et al. [3]. One is a “small” data center that
consists of 393 servers and hosts service applications from three enterprises and the
other one is a “large” datacenter that consists of 3681 servers and hosts more than 10
enterprises. Here, we focus on how specific enterprises use specific data centers. We
adopt a per-enterprise view and concentrate on how six different enterprises, three
from each data center, utilize each center’s resources. While we give an overview of
resource utilization for CPU, disk, memory, and file system, we especially focus on
the per-server CPU utilization by each enterprise. We illustrate the importance of the
granularity of the observation by showing the per day utilizations of the servers used
by each enterprise across a time period of 1 month and then we focus on a random
weekday and a random weekend day to further untangle utilization patterns but at a
much finer time granularity.

The presented study aims at characterizing the workload diversity by looking
at how specific enterprises utilize data center resources across time. We especially
focus on CPU utilizations because we find that CPUs are consistently underutilized.
This characterization can be incorporated in the design of autonomic solutions for
workload consolidation and load balancing. Beyond that, this characterization could
be further used in combination with temperature/cooling information for better power
management in data centers, but we believe that it can be primarily used in the design
of autonomic policies for data center resource allocation.

Despite the fact that this study is based on a very rich data set that reveals how
corporate data centers use data center resources, it does not provide any information
on the type of applications that different enterprises use or on the response times
of these applications. Nevertheless, from the utilization values across the different
servers and across time, one could speculate about the effects of over provisioning as
well as the efficacy of designing better autonomic policies for workload consolidation
and resource management in today’s data centers.

Usage Patterns in Multi-tenant Data Centers: a Large-Case Field Study 1259

2 Multi-tenant Datacenters

We collect resource utilization statistics from several thousands of servers from two
in-production data centers. These systems are used by different industries, includ-
ing banking, pharmaceutical, IT, consulting, and retail industries. The collected
samples contain a rich set of representative server statistics reflecting the current prac-
tices of resource management in corporate data centers and contain mainly resource
utilizations.

The average utilization values over base periods are collected via prevailing util-
ities such as vmstat and df. All data is stored in a database and aggregated into
different time scales ranging from 1 min to 1 month. For each timescale only a fixed
number of the most recent records is kept. Consequently, recent data is available at a
higher time resolution than older data in order for the database to maintain an upper
limit of the space footprint per server. In particular, we consider fine grained 15-min
data on Wednesday, May 23, 2012 and Sunday, May 27, 2012. In most cases, we fo-
cus on the comparison between Wednesday and Sunday, i.e., the workload difference
between a working day and a weekend day.

We focus on the basic physical resources per server: CPU, network, memory,
disk, and file system statistics that are collected in units of resource utilization which
is just a percentage value. Since a server can have multiple disks, the disk utilization
is defined by the sum of all used space divided by the sum of all disk sizes. The
file system includes both local and remote data storage, which can be on the media
of disks and memory. Similar to the disk, when there are multiple file systems, the
utilization is computed from the sum of all used space divided the sum of all file
system sizes. The CPU utilization is defined by the percentage of time the CPU is
active over an observation period. Utilization values of memory, disk, and file system
are defined by the volume usage, i.e., used space divided by the total available space.

2.1 Evolution of Resource Demands

Before focusing on how the workload evolves across time, we present some aggregate
measures in Table 1. The table presents the mean and standard deviation of utilization
values of the servers used by the six selected enterprises across an observation period
of 3 years, and gives a per enterprise view, as well as a per data center view. Note that
across all resource utilization values, standard deviations are significant, especially
in light of the fact that utilizations values are bounded between 0 and 100.

We also present how the workload diversity evolves across the observation time.
We depict the time series of monthly utilization across 3 years for all resources in
Fig. 1. The utilization evolution for most of resources and across all enterprises are
rather stable albeit with a slightly increasing trend, which indicates that the growth of
demand of a particular resource is greater than the growth of its supply. A decreasing
trend indicates the opposite, i.e., the growth of supply is greater than the demand.
Dips in the time series correspond to hardware/software upgrades. In general, Fig. 1

1260 R. Birke et al.

Table 1 Overview of resource utilization by different enterprises

Small DC CPU Memory Disk File Sys.

Mean Std Mean Std Mean Std Mean Std

All 23.53 23.17 78.17 9.93 76.03 22.34 51.55 20.62

Ent 1 38.22 23.15 84.18 9.51 82.37 19.63 47.39 15.60

Ent 2 21.64 21.24 84.33 6.61 69.08 23.15 48.54 20.23

Ent 3 20.73 22.86 73.70 11.16 77.86 21.93 53.25 21.22

Large DC

All 20.82 23.84 80.33 10.52 68.89 26.08 40.15 19.82

Ent 4 10.56 14.02 72.80 5.67 70.05 28.00 33.88 18.64

Ent 5 16.10 20.75 85.37 9.47 58.09 26.08 38.14 20.96

Ent 6 37.81 27.89 83.12 13.63 60.34 25.74 43.32 18.95

consistently shows that the CPU is the least utilized resource across all datacenters
and across all enterprises. In the following, we further investigate how CPUs are
utilized by the various data centers.

2.2 CPU Load Balancing

In Fig. 2 we illustrate the time series of daily average CPU utilization for the six
enterprises across the entire month of May 2012. On this figure we also plot the
standard deviation of the average server utilization. Notice that the number of servers
that are assigned to each enterprise range from 130 to 1380, therefore the significant
standard deviation can be viewed as a strong indication of very unbalanced utilization
values across servers, which is a consistent trend across all enterprises. The figure also
illustrates another interesting behavior: there are clear daily patterns, i.e., weekends
can be clearly seen across most enterprises (see the distinct dips in the plots for
enterprises 1, 3, 5, and 6). Weekend utilizations can be as low as ten percentage
points comparing to working day utilizations. Enterprises 2 and 4 have a more even
utilization pattern across time, with only slight ripples in their averages across time.

Motivated by these observations, we now turn to the time series of CPU utilizations
calculated every 15 min. We focus on one representative week day, Wednesday May
23, and one representative weekend day, Sunday May 27. Figure 3 illustrates the
average utilizations together with the standard deviation. On each graph, we plot
data for Wednesday and Sunday. The figure clearly illustrates that there are severe
utilization imbalances across servers within 15-min time periods. In addition, it
shows that some enterprises utilize the CPUs during weekdays very differently from
the weekends (e.g., look in Fig. 3a and 3e where there is a significant change in
values, especially during mid-day) while some others have a quite similar usage on

Usage Patterns in Multi-tenant Data Centers: a Large-Case Field Study 1261

 0

20

40

60

80

100

06/09 12/09 06/10 12/10 06/11 12/11 05/12

[Months]

Cpu Mem Hd Fs

 0

 20

 40

 60

 80

 100

06/09 12/09 06/10 12/10 06/11 12/11 05/12

[Months]

Cpu Mem Hd Fs

Small DC Enterprise 1

 0

20

40

60

80

100

06/09 12/09 06/10 12/10 06/11 12/11 05/12

[Months]

Cpu Mem Hd Fs

 0

 20

 40

 60

 80

 100

06/09 12/09 06/10 12/10 06/11 12/11 05/12

[Months]

Cpu Mem Hd Fs

3esirpretnE2esirpretnE

 0

20

40

60

80

100

06/09 12/09 06/10 12/10 06/11 12/11 05/12

[Months]

Cpu Mem Hd Fs

 0

 20

 40

 60

 80

 100

06/09 12/09 06/10 12/10 06/11 12/11 05/12

[Months]

Cpu Mem Hd Fs

Large DC Enterprise 4

0

20

40

60

80

100

06/09 12/09 06/10 12/10 06/11 12/11 05/12

[Months]

Cpu Mem Hd Fs

 0

 20

 40

 60

 80

 100

06/09 12/09 06/10 12/10 06/11 12/11 05/12

[Months]

Cpu Mem Hd Fs

6esirpretnE5esirpretnE

a b

c d

e f

g h

Fig. 1 Time series of resource utilizations of monthly averages over 3 years. Note that memory,
disk, and file system values correspond to space utilization

1262 R. Birke et al.

05 12 19 26

[Days]

Avg Avg±Std

 0

 10

 20

 30

 40

 50

05 12 19 26

[Days]

Avg Avg±Std

 0

 10

 20

 30

 40

 50

05 12 19 26

[Days]

Avg Avg±Std

Enterprise 1 Enterprise 2 Enterprise 3

10

20

30

40

50

60

70

80

−5

0

5

10

15

20

25

30

05 12 19 26

[Days]

Avg Avg±Std

 0

 10

 20

 30

 40

 50

 60

 70

 80

05 12 19 26

[Days]

Avg Avg±Std

−10

 0

 10

 20

 30

 40

 50

 60

05 12 19 26

[Days]

Avg Avg±Std

Enterprise 4 Enterprise 5 Enterprise 6

a b c

d e f

Fig. 2 Time series of daily CPU utilization over during the entire month of May 2012

0
00

20

40

60

80

100

a b c

d e f

02 04 06 08 10 12 14 16 18 20 22 00

[hours]

Wed Avg
±Std

Sun Avg
±Std

−10

 0

 10

 20

 30

 40

 50

 60

 70

00 02 04 06 08 10 12 14 16 18 20 22 00

[hours]

Wed Avg
±Std

Sun Avg
±Std

−10

 0

 10

 20

 30

 40

 50

 60

 70

00 02 04 06 08 10 12 14 16 18 20 22 00

[hours]

Wed Avg
±Std

Sun Avg
±Std

−10

0

10

20

30

40

00 02 04 06 08 10 12 14 16 18 20 22 00

[hours]

Wed Avg
±Std

Sun Avg
±Std

 0

 20

 40

 60

 80

 100

00 02 04 06 08 10 12 14 16 18 20 22 00

[hours]

Wed Avg
±Std

Sun Avg
±Std

−10

 0

 10

 20

 30

 40

 50

 60

 70

00 02 04 06 08 10 12 14 16 18 20 22 00

[hours]

Wed Avg
±Std

Sun Avg
±Std

Enterprise 1 Enterprise 2 Enterprise 3

Enterprise 4 Enterprise 5 Enterprise 6

Fig. 3 Time series of 15-min CPU utilization during a representative workday (Wednesday, May
23 2012) and during a representative weekend day (Sunday, May 27 2012)

both Wednesday and Sunday. Across several enterprises, we also observe a slightly
spiky pattern at the beginning of each hour. This pattern is consistent across most
graphs in Fig. 3 and is especially prominent during off-peak hours. Close observation
on the data and on what CPU does during these periods shows that this is due to the
scheduling of batch jobs on the hour, commonly done via a cron utility. In addition,

Usage Patterns in Multi-tenant Data Centers: a Large-Case Field Study 1263

05

a b c

d e f

12 19 26

[days]

0

10

20

30

40

50

 0

 20

 40

 60

 80

 100

05 12 19 26

[days]

 250

 260

 270

 280

 290

 300

 0

 20

 40

 60

 80

 100

05 12 19 26

[days]

 280

 290

 300

 310

 320

 0

 20

 40

 60

 80

 100

Small DC

05 12 19 26

[days]

180

190

200

210

220

 0

 20

 40

 60

 80

 100

05 12 19 26

[days]

 400

 410

 420

 430

 440

 450

 0

 20

 40

 60

 80

 100

 5 10 15 20

[days]

 400

 410

 420

 430

 440

 450

 0

 20

 40

 60

 80

 100

Enterprise 1 Enterprise 2 Enterprise 3

Enterprise 4 Enterprise 5 Enterprise 6
Large DC

Fig. 4 CPU daily utilization of different industries for May 2012

the figure illustrates the tendency to schedule batch jobs during off-peak hours. In
general, we observe clear load unbalances across enterprises and at the same time
similar practices in resource usage across time and across all enterprises.

2.3 The Impact of Time Scales

To illustrate fluctuations of resource demands across time and also across servers,
we also present the daily utilizations for 31 representative days, namely May 2012
for the 6 enterprises, see Fig. 4. In the interest of a clearer presentation, we present
heatmaps that illustrate the CPU utilization levels for only a subset of the servers
used by each enterprise, namely only for 50 servers which are mapped on the y-axis
of each graph.1 The x-axis corresponds to the specific days within the selected 31-
day period, (i.e., the entire May). The y-axis corresponds to the server identification
number. We note that despite the fact that we only show daily utilizations for 50
servers, the patterns shown are representative. Dark colors in the figure correspond
to high utilization values, while light colors to low utilizations.

Figure 4 clearly shows that across all enterprises, there are well defined cyclic
patterns that correspond to week- and weekend-days, see for example the illustration
of three vertical lighter regions that signify weekend (lighter) loads across all enter-
prises. In addition, a striking similarity across all enterprises is that there is a clear
load unbalancing, as shown by the presence of multiple colors/shades as well as the

1 Each enterprise uses different number of servers, with the majority of them using more than 130
servers, which unfortunately results in an illegible heat map.

1264 R. Birke et al.

00 04

a b c

d e f

08 12 16 20 24

[hours]

0

10

20

30

40

50

 0

 20

 40

 60

 80

 100

00 04 08 12 16 20 24

[hours]

 250

 260

 270

 280

 290

 300

 0

 20

 40

 60

 80

 100

00 04 08 12 16 20 24

[hours]

 280

 290

 300

 310

 320

 0

 20

 40

 60

 80

 100

Small DC

00 04 08 12 16 20 24

[hours]

180

190

200

210

220

 0

 20

 40

 60

 80

 100

00 04 08 12 16 20 24

[hours]

 400

 410

 420

 430

 440

 450

 0

 20

 40

 60

 80

 100

00 04 08 12 16 20 24

[hours]

 400

 410

 420

 430

 440

 450

 0

 20

 40

 60

 80

 100

Enterprise 1 Enterprise 2 Enterprise 3

Enterprise 4 Enterprise 5 Enterprise 6
Large DC

Fig. 5 CPU utilizations for 15-min time periods for a typical working day (Wednesday, May 23,
2012)

fact that some servers are mostly always highly loaded, even during low weekend
cycles. The graph illustrates opportunities for power savings, e.g., see Fig. 4e as well
as load balancing to improve system usage. Overall, these graphs can be used to
demonstrate the current state-of-the-practice and can be used to evaluate the need of
new load balancing or consolidation techniques.

Figure 5 selects a single day, Wednesday, May 23 2012, and zooms into the
utilization of the same set of selected CPUs as in Fig. 4 but looking at utilizations
at 15-min time periods. This new figure allows us to see more clearly fluctuations
in utilization on the selected CPUs during a 24-h period. Observe that in most of
enterprises, there is a surge in utilizations on the first 15-min period of every hour. In
addition, it appears that load is not steady across time but could fluctuate significantly.

Figure 6 selects the exact same servers as in Fig. 5 but plots 15-min utilizations for a
typical weekend day. For some enterprises there is a dramatic drop in utilizations (see
for example enterprise 6) comparing to the typical working day, while for some others
(e.g., enterprises 2, 4, and 5) the reduction in utilization is only moderate. In general,
comparing Figs. 4, 5, and 6, we observe that there are dramatic load imbalances both
across servers and across time, pointing to excellent opportunities for intelligent
workload consolidation and improved load balancing. This observation, in addition
to the fact that CPUs tend to be lowly utilized, should drive the development of more
effective workload management in data centers.

Usage Patterns in Multi-tenant Data Centers: a Large-Case Field Study 1265

00 04

a b c

d e f

08 12 16 20 24

[hours]

0

10

20

30

40

50

 0

 20

 40

 60

 80

 100

00 04 08 12 16 20 24

[hours]

 250

 260

 270

 280

 290

 300

 0

 20

 40

 60

 80

 100

00 04 08 12 16 20 24

[hours]

 280

 290

 300

 310

 320

 0

 20

 40

 60

 80

 100

Small DC

00 04 08 12 16 20 24

[hours]

180

190

200

210

220

 0

 20

 40

 60

 80

 100

00 04 08 12 16 20 24

[hours]

 400

 410

 420

 430

 440

 450

 0

 20

 40

 60

 80

 100

00 04 08 12 16 20 24

[hours]

 400

 410

 420

 430

 440

 450

 0

 20

 40

 60

 80

 100

Enterprise 1 Enterprise 2 Enterprise 3

Enterprise 4 Enterprise 5 Enterprise 6
Large DC

Fig. 6 CPU utilizations for 15-min time periods for a typical weekend day (Sunday, May 27, 2012)

3 Summary

We characterize workloads collected from two data centers, each of which host
multiple enterprises, for the span of 3 years. We report on the utilization of four
resources, i.e., CPU, memory, disk, and file system, but focus mainly on the CPU
utilizations across different time scales. We show the workload diversity, long-term
evolution, CPU load balancing, and discuss the needs for developing autonomous
resource management at different time scales. This study can be used as a baseline
against which autonomic policies for data center management can be evaluated.

Acknowledgments This paper with the title “Usage Patterns in Multi-Tenant Data Centers: a
Temporal Perspective”, appeared in the Proceedings of International conference on Autonomic
Computing i(ICAC) 2012, San Jose, CA, September 2012, pp. 161–166.

We thank Nishi Gupta for granting us access to the data and share our insights with
the scientific community. Part of this work has been done while Evgenia Smirni
was on sabbatical leave at IBM Research, Zurich Lab. Evgenia Smirni is partially
supported by NSF grants CCF-0937925 and CCF-1218758.

References

1. M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network
architecture. In SIGCOMM, pages 63–74, 2008.

2. T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data centers in the
wild. In IMC, pages 267–280, 2010.

1266 R. Birke et al.

3. R. Birke, L.Y. Chen, and E. Smirni. Data centers in the cloud: A large scale performance study.
In IEEE CLOUD, pages 336–343, 2012.

4. G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao. Energy-aware server provision-
ing and load dispatching for connection-intensive internet services. In NSDI, pages 337–350,
2008.

5. Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam. Managing server
energy and operational costs in hosting centers. In SIGMETRICS, pages 303–314, 2005.

6. N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang, and B. Schroeder. Temperature
management in data centers: why some (might) like it hot. In SIGMETRICS, pages 163–174,
2012.

7. S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A. Baldini. Statistical profiling-
based techniques for effective power provisioning in data centers. In EuroSys, pages 317–330,
2009.

8. C. Guo, H. Wu, K. Tan, L. Shi,Y. Zhang, and S. Lu. Dcell: a scalable and fault-tolerant network
structure for data centers. In SIGCOMM, pages 75–86, 2008.

9. D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D.Wetherall. Augmenting data center networks
with multi-gigabit wireless links. In SIGCOMM, pages 38–49, 2011.

10. B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and N.
McKeown. Elastictree: Saving energy in data center networks. In NSDI, pages 249–264, 2010.

11. M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and M. W. Matthew. Monalytics:
online monitoring and analytics for managing large scale data centers. In ICAC, pages 141–150,
2010.

12. R. Singh, U. Sharma, E. Cecchet, and P. Shenoy. Autonomic mix-aware provisioning for
non-stationary data center workloads. In ICAC, pages 21–30, 2010.

13. X. Zhu, D.Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser, D. Gmach,
R. Gardner, T. Christian, and L. Cherkasova. 1000 islands: an integrated approach to resource
management for virtualized data centers. Cluster Computing, 12(1):45–57, 2009.

On Scheduling in Distributed Transactional
Memory: Techniques and Tradeoffs

Junwhan Kim, Roberto Palmieri and Binoy Ravindran

1 Introduction

Data centers have been increasingly employed in distributed services to support a
vast of amount of consumer requests. The requests range from web services to gam-
ing for computation intensive applications. In order to process these requests, the
data centers exploit in-memory data for high performance and ensure transactional
properties for concurrent requests such as atomicity, consistency, and isolation. Tra-
ditionally lock-based synchronization has been used for the consistency of data, but
is inherently error-prone. For example, coarse-grained locking, in which a large data
structure is protected using a single lock is simple and easy to use, but permits little
concurrency. In contrast, with fine-grained locking, in which each component of a
data structure (e.g., a hash table bucket) is protected by a lock, programmers must
acquire only necessary and sufficient locks to obtain maximum concurrency without
compromising safety, and must avoid deadlocks when acquiring multiple locks. Both
these situations are highly prone to programmer errors. The most serious problem
with locks is that it is not easily composable—i.e., combining existing pieces of
software to produce different functionality is not easy. This is because, lock-based
concurrency control is highly dependent on the order in which locks are acquired
and released. Thus, it would be necessary to expose the internal implementation of
existing methods, while combining them, in order to prevent possible deadlocks.
This breaks encapsulation, and makes it difficult to reuse software.

Transactional memory (TM) is an alternative synchronization model for shared
in-memory data objects that promises to alleviate the difficulties of lock-based syn-
chronization (i.e., scalability, programmability, and composability issues). As TM

J. Kim (�) · R. Palmieri · B. Ravindran
The Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA 24061, USA
e-mail: junwhan.kim@udc.edu

© Springer Science+Business Media New York 2015 1267
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_44

1268 J. Kim et al.

code is composed of read/write operations on shared objects, it is organized as mem-
ory transactions, which optimistically execute while logging any changes made to
accessed objects. Two transactions conflict if they access the same object and one ac-
cess is a write. When that happens, a contention manager (CM) resolves the conflict
by aborting one and allowing the other to commit, yielding (the illusion of) atomicity.
Aborted transactions are re-started, often immediately, after rolling-back the changes.
Sometimes, a transactional scheduler is also used, which determines an ordering of
concurrent transactions so that conflicts are either avoided altogether or minimized.

We first consider the the single object copy DTM model (i.e., SV-STM). A
distributed transaction typically has a longer execution time than a multiproces-
sor transaction, due to communication delays that are incurred in requesting and
acquiring objects, which increases the likelihood for conflicts and thus degraded
performance [4]. We present a novel transactional scheduler called Bi-interval [14]
that optimizes the execution order of transactional operations to minimize conflicts.
Bi-interval focuses on read-only and read-dominated workloads (i.e., those with
only early-write operations), which are common transactional workloads [11]. Read
transactions do not modify the object; thus transactions do not need exclusive ob-
ject access. Bi-interval categorizes concurrent requests for a shared object into read
and write intervals to maximize the parallelism of read transactions. This reduces
conflicts between read transactions, reducing transactional execution times. Further,
it allows an object to be simultaneously sent to nodes of read transactions, thereby
reducing the total object traveling time.

With a single object copy, node/link failures cannot be tolerated. If a node fails,
the objects held by the failed node will be simply lost and all following transactions
requesting such objects would never commit. Additionally, read concurrency cannot
be effectively exploited. Thus, an array of DTM works—all of which are cluster
DTM—consider object replication. These works provide fault-tolerance properties
by inheriting fault-tolerance protocols from database replication schemes, which
rely on broadcast primitives (e.g., atomic broadcast, uniform reliable broadcast)
[3, 5–7, 17]. Broadcasting transactional read/write sets or memory differences in
metric-space networks is inherently non-scalable, as messages transmitted grow
quadratically with the number of nodes [21]. Thus, directly applying cluster DTM
replication solutions to data-flow DTM may not yield similar performance.

We therefore consider a cluster-based object replication model for data-flow DTM.
In this model, nodes are grouped into clusters based on node-to-node distances: nodes
which are closer to each other are grouped into the same cluster; nodes which are
farther apart are grouped into different clusters. Objects are replicated such that each
cluster contains at least one replica of each object, and the memory of multiple nodes
is used to reduce the possibility of object loss, thereby avoiding expensive brute-
force replication of all objects on all nodes. Cluster-based transactional scheduler
(CTS) [16] focuses on how to schedule memory transactions in the cluster-based
partial replication model for high performance. Each cluster has an object owner
for scheduling transactions. In each object owner, CTS enqueues live transactions
and identifies some of the transactions that must be aborted to avoid future conflicts,
resulting in the concurrency of the other transactions.

On Scheduling in Distributed Transactional Memory: Techniques and Tradeoffs 1269

Fig. 1 An example of TFA

2 Preliminaries and System Model

2.1 Distributed Transactions

A set of distributed transactions T = {T1, T2, . . .} is assumed. The transactions
share a set of objects O = {o1, o2, . . .}, which are assumed to be distributed in the
network. A transaction contains a sequence of requests, each of which is a read or
write operation request to an individual object. An execution of a transaction is a
sequence of timed operations. An execution ends by either a commit (success) or
an abort (failure). A transaction is in one of three possible states: live, aborted, or
committed. Each transaction has a unique identifier (id), and is invoked by a node in
the system.

We use the Transactional Forwarding Algorithm (TFA) [21] to provide early
validation of remote objects, guarantee a consistent view of shared objects between
distributed transactions, and ensure atomicity for object operations in the presence of
asynchronous clocks.As an extension of theTransactional Locking 2 (TL2) algorithm
[9], TFA replaces the central clock of TL2 with independent clocks for each node
and provides a means to reliably establish the “happens-before” relationship between
significant events. TFA is responsible for caching local copies of remote objects.
Without loss of generality, objects export only read and write methods (or operations).

For completeness, we illustrate TFA with an example. In Fig. 1, a transaction
updates object o1 at t1 (i.e., local clock (LC) is 14) and four transactions (i.e., T1,
T2, T3, and T4) request o1 from the object holder. Assume that T2 validates o1 at t2
and updates o1 with LC = 30 at t3. Any read or write transaction (e.g., T4), which has
requested o1 between t2 and t3 aborts. When write transactions T1 and T3 validate at
times t4 and t5, respectively, T1 and T3 that have acquired o1 with LC = 14 before t2
will abort, because LC is updated to 30.

TFA ensures atomicity, consistency, and isolation of transactions and has been
extensively evaluated with competitor DTM implementations, resulting in enhanced
performance as much as 4× [20]. We implemented Bi-interval and CTS in the
HyFlow DTM framework [21] and measured the transactional throughput—i.e., the
number of committed transactions per second under increasing number of requesting
nodes, for the different schemes. Thus, Bi-interval and CTS on TFA are evaluated
with only TFA to show the effectiveness of transactional schedulers.

1270 J. Kim et al.

2.2 Definitions

For the purpose of analysis, we consider a symmetric network of N nodes scattered
in a metric space. The metric d(ni , nj) is the distance between nodes ni and nj ,
which determines the communication cost of sending a message from ni to nj . We
consider three different models: no replication (NR), partial replication (PR), and
full replication (FR) in data-flow DTM to show the effectiveness of Bi-interval and
CTS in NR and PR, respectively.

Definition 1 Given a scheduler A and N transactions in DTM,
makespanNA (Model) is the time that A needs to complete N transactions on
Model.

Definition 2 The competitive ratio (CR) of a scheduler A for N transactions in

Model is
makespanNA (Modle)

makespanNOPT (Model)
, where OPT is the optimal scheduler.

Definition 3 The relative competitive ratio (RCR) of schedulers A and B for N

transactions onModel in DTM is
makespanNA (Model)

makespanNB (Model)
.

Also, the RCR of model 1 and 2 for N transactions on scheduler A in DTM

is
makespanNA (Model1)

makespanNA (Model2)
. Given schedulers A and B for N transactions, if RCR (i.e.,

makespanNA (Model)

makespanNB (Model)
) < 1, A outperforms B. Thus, RCR of A and B indicates a

relative improvement between schedulers A and B if makespanNA (Model) <
makespanNB (Model).

The execution time of a transaction is defined as the interval from its beginning
to the commit. In distributed systems, the execution time consists of both com-
munication delays to request and acquire a shared object and the time duration to
conduct an operation on a processor, so the local execution time of Ti is defined as
γi ,
∑N
i=1 γi = ΓN for N transactions.

If only a transaction Ti invoking in ni exists and Ti requests an object from
nj on NR, it will commit without any contention. Thus, makespan1

A(NR) is
2×d(ni , nj)+γi under any scheduler A.

2.3 Transactional Scheduler

As mentioned before, a complementary approach for dealing with transactional con-
flicts is transactional scheduling. Broadly, a transactional scheduler determines the
ordering of concurrent transactions so that conflicts are either avoided altogether
or minimized. Two kinds of transactional schedulers have been studied in the past:
reactive [1, 10] and proactive [4, 23]. When a conflict occurs between two trans-
actions, the contention manager determines which transaction wins or loses, and
then the loosing transaction aborts. Since aborted transactions might abort again in
the future, reactive schedulers enqueue aborted transactions, serializing their future

On Scheduling in Distributed Transactional Memory: Techniques and Tradeoffs 1271

Fig. 2 A scenario consisting of four transactions

execution [1, 10]. Proactive schedulers take a different strategy. Since it is desirable
for aborted transactions to be not aborted again when re-issued, proactive schedulers
abort the loosing transaction with a backoff time, which determines how long the
transaction is stalled before it is re-started [4, 23]. Both reactive and proactive trans-
actional schedulers have been studied for multiprocessor TM. However, they have
not been studied for DTM, which is the focus of this chapter.

3 Bi-interval

3.1 Motivation

Unlike multiprocessor transactions, data flow-based DTM incurs communication
delays in requesting and acquiring objects. Figure 2 illustrates a scenario on data
flow DTM consisting of five nodes and an object o1. Figure 2a shows that nodes n2,
n3, n4, and n5 invoke T2, T3, T4, T5, respectively and request o1 from n1. In Fig. 2b,
T5 validates o1 first. T2, T3, and T4 abort when they validate.

Contention managers deal with only conflicts, determining which transaction
wins or not. Past transactional schedulers (e.g., proactive and reactive schedulers)
serialize aborted transactions but do not consider moving objects in data flow DTM.
In DTM, the aborted transactions request an object again, increasing communication
delays. Motivated by this observation, the transactions requesting o1 are enqueued
and the transactions immediately abort when one of these validate o1. As soon as o1

is updated, o1 is sent to the aborted transactions. The aborted transaction will receive
the updated o1 without any request, reducing communication delays. Meanwhile,
we focus on which order of the aborted transactions lead to improved performance.
Read transaction defined as read-dominated workloads will simultaneously receive
o1 to maximize the parallelism of read transactions. Write transactions including
write operations will receive o1 according to the shortest delay to minimize object
moving time.

1272 J. Kim et al.

3.2 Scheduler Design

Bi-interval is similar to the BIMODAL scheduler [1] in that it categorizes requests
into read and write intervals. If a transaction aborts due to a conflict, it is moved to
a scheduling queue and assigned a backoff time. Bi-interval assigns two different
backoff times defined as read and write intervals to read and write transactions,
respectively. Unless the aborted transaction receives the requested object within an
assigned backoff time, it will request the object again.

Bi-interval maintains a scheduling queue for read and write transactions for each
object. If an enqueued transaction is a read transaction, it is moved to the head of the
scheduling queue. If it is a write transaction, it is inserted into the scheduling queue
according to the shortest path visiting each node invoking enqueued transactions.
When a write transaction commits, the new version of an object is released. If
read and write transactions have been aborted and enqueued for the version, the
version will be simultaneously sent to all the read transactions and then visit the
write transactions in the order of the scheduling queue. The basic idea of Bi-interval
is to send a newly updated object to the enqueued-aborted transactions as soon as
validating the object completes.

There are two purposes for enqueuing aborted transactions. First, in order to
restart an aborted transaction, the cache-coherence (CC) protocol will be invoked
to find the location of an object, incurring communication delays. An object owner
holds a queue indicating the aborted transactions and sends the object to the node
invoking the aborted transactions. The aborted transactions may receive the object
without the help of the CC protocol, reducing communication delays. Second, Bi-
interval schedules the enqueued aborted transactions to minimize execution times and
communication delays. For reduced execution time, the object will be simultaneously
sent to the enqueued read transactions. In order to minimize communication delays,
the object will be sent to each node invoking the enqueued write transactions in order
of the shortest path, so the total traveling time for the object in the network decreases.

Bi-interval determines read and write intervals indicating when aborted read and
write transactions restart, respectively. This intends that an object will visit each
node invoking aborted read and write transactions within read and write intervals,
respectively. As a backoff time, a read interval is assigned to aborted read transactions
and a write interval is assigned to aborted write transactions. A read interval is
defined as the local execution time γi of transaction Ti . All enqueued-aborted read
transactions will wait for γi and receive the object that Ti has updated. A write interval
is defined as the sum of the local execution times of enqueued write transactions and
a read interval. The aborted write transaction may be serialized according to the order
of the scheduling queue. If any of these transactions do not receive the object, they
will restart after a write interval.

Figure 3 shows a scenario consisting of four transactions based on Bi-interval.
Node n1 holds o1 and write transactions T2, T3, T4, and T5 request object o1 from n1.
n1 has a scheduling queue holding requested transactions T2, T3, T4, and T5. If T5

validates o1 first as being illustrated by Fig. 3b, T2, T3, and T4 abort. If n2 is closest

On Scheduling in Distributed Transactional Memory: Techniques and Tradeoffs 1273

Fig. 3 A scenario consisting of four transaction on bi-interval

to n5, o1 updated by T5 is sent to n2, and two backoff times are sent to T3 and T4,
respectively. Figure 3c shows one write interval.

While T5 validates o1, let us assume that other read transactions request o1. The
read transactions will be enqueued and simultaneously receive o1 after T5 completes
its validation. Thus, once the scheduling queue holds read and write transactions, a
read interval will start first. The write transactions will be serialized according to the
shortest object traveling time.

3.3 Analysis

The object moving cost is defined as ηA(u,VTN−1), which is the total communication
delay for visiting each node from node u holding an object to N − 1 nodes in VTN−1 ,
under scheduler A. VTN−1 represents a set of N − 1 nodes invoking transactions.

Theorem 1 Bi-interval’s execution makespan competitive ratio is 1+ Ir
N−k+1 for N

transactions including k read transactions, where Ir is the number of read intervals.

Proof The optimal off-line algorithm concurrently executes all read transactions.
So, Bi-interval’s optimal execution for N transactions including k read transactions
is
∑N−k+1
m=1 γm.

CRBiinterval ≤ γω · Ir +∑N−k+1
m=1 γm∑N−k+1

m=1 γm
≈ Ir +N − k + 1

N − k + 1
,

where γω is γ of a read transaction. The theorem follows.

1274 J. Kim et al.

Theorem 2 Bi-interval’s traveling makespan competitive ratio for k reads of N
transactions is log (N + Ir − k − 1).

Proof Bi-interval follows the nearest neighbor path to visit each node in the
scheduling list. We define the stretch of a transactional scheduler as the maximum
ratio of the moving time to the communication delay—i.e., Stretchη(u,VTN−1) =
max

ηBiinterval (u,VTN−1)

d(u,VTN−1) ≤ 1
2 log (N − 1)+ 1

2 from [19]. Hence, CRBiinterval ≤ log (N +
Ir − k − 1). The theorem follows.

Theorem 3 The total worst-case competitive ratio CRWorstBiinterval of Bi-interval for N
transactions is O(log (N)).

Proof In the worst-case, Ir = k. This means that there are no consecutive
read intervals. Thus, makespanN

OPT and makespanN
Biinterval satisfy the following,

respectively:

makespanNOPT = ΓN−k+1 + mind(u,VTN−k+1) (1)

makespanNBiinterval = ΓN−1 + log (N − 1)maxd(u,VTN−1) (2)

Hence, CRWorstBiinterval ≤ log (N − 1). The theorem follows.
We now focus on the case Ir < k.

Theorem 4 When Ir < k, Bi-interval improves the traveling makespan
(i.e.,makespanNBiinterval(NR)) as much as O(| log (1 − (k−Ir

N−1)|) for k reads of N
transactions.

Proof

max
η(u,VTN+Ir−k−1)

d(u,VTN−1)
(3)

= max

(
η(u,VTN−1)

d(u,VTN−1)
+ ε

d(u,VTN−1)

)

≤ 1

2
log (N − k + Ir − 1) + 1

2

When Ir < k, a read interval has at least two read transactions. We are interested
in the difference between η(u,VTN−1) and η(u,VTN+Ir−k−1). Thus, we define ε as the
difference between two η values.

max
ε

d(u,VTN−1)
≤ 1

2
log

(
N − k + Ir − 1

N − 1

)
(4)

In (4), due to Ir < k,
N−k+Ir−1
N−1 < 1. Bi-interval is invoked after conflicts occur, so

N �= k. Hence, ε is a negative value, improving the traveling makespan. The theorem
follows.

On Scheduling in Distributed Transactional Memory: Techniques and Tradeoffs 1275

The average-case analysis (or, probabilistic analysis) is largely a way to avoid
some of the pessimistic predictions of complexity theory. Bi-interval improves the
competitive ratio when Ir < k. This improvement depends on the size of Ir—
i.e., how many read transactions are consecutively arranged. We are interested in
the size of Ir when there are k read transactions. We analyze the expected size of Ir
using probabilistic analysis. We assume that k read transactions are not consecutively
arranged (i.e., k ≥ 2) whenN requests are arranged according to the nearest neighbor
algorithm. We define a probability of actions taken for a given distance and execution
time.

Theorem 5 The expected number of read intervals E(Ir) of Bi-interval is log (k).

Proof The distribution used in the proof of Theorem 5 is an independent uniform
distribution. p denotes the probability for k read transactions to be consecutively
arranged.

E(Ir) =
∫ 1

p=0

k∑
Ir=1

(
k

Ir

)
· pk(1 − p)k−Ir dp

=
k∑

Ir=1

(
k!

Ir ! · (k − Ir)!
∫ 1

p=0
pk(1 − p)k−Ir dp

)

≈
k∑

Ir=1

k!
Ir ! ·

k!
(2k − Ir + 1)! ≈ log (k) (5)

We derive Eq. 5 using the beta integral. The theorem follows.

Theorem 6 Bi-interval’s total average-case competitive ratio (CRAverage
Biinterval) is

Θ(log (N − k)) for k reads of N transactions.

Proof We define CRmBiinterval as the competitive ratio of node m. CRAverage
Biinterval is

defined as the sum of CRmBiinterval of N + E(Ir) − k + 1 nodes.

CR
Average
Biinterval ≤

N+E(Ir)−k+1∑
m=1

CRmBiinterval

≤ log (N + E(Ir) − k + 1) ≈ log (N − k)

Since E(Ir) is smaller than k, CRAverage
Biinterval = Θ(log (N − k)). The theorem follows.

3.4 Evaluation

We developed a set of four distributed applications as benchmarks (Fig. 4). These
include distributed versions of the Vacation benchmark of the Stanford STAMP

1276 J. Kim et al.

5

a b c d

e f g h

10 15 20 25 30 35 40 45 50
40

60

80

100

120

140

160

180

200

220

Number of Nodes

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Vacation in Low Contention

TFA/Bi−interval
TFA

5 10 15 20 25 30 35 40 45 50
20

40

60

80

100

120

140

160

180
Vacation in High Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes
5 10 15 20 25 30 35 40 45 50

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000
Bank in Low Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes
5 10 15 20 25 30 35 40 45 50

400

500

600

700

800

900

1000

1100
Bank in High Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes

Vacation (Low) Vacation (High) Bank (Low) Bank (High)

5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

85

90

95

100
Loan in Low Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes
5 10 15 20 25 30 35 40 45 50

30

40

50

60

70

80

90

100

110

120
Loan in High Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes
5 10 15 20 25 30 35 40 45 50

60

80

100

120

140

160

180

200

220

240
RB Tree in Low Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes
5 10 15 20 25 30 35 40 45 50

40

60

80

100

120

140

160

180
RB Tree in High Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes

Loan (Low) Loan (High) RB Tree (Low) RB Tree (High)

Fig. 4 Throughput under four benchmarks in low and high contention

(multiprocessor STM) benchmark suite [18], two monetary applications (Bank and
Loan). and Red/Black Tree (RB-Tree) [11] as microbenchmarks. We created 10 ob-
jects, distributed them equally over the 48-nodes, and executed hundred transactions
at each node. We used low and high contention levels, which are defined as 90 % read
transactions and 10 objects, and 10 % read transactions and 5 objects, respectively.

A transaction’s execution time consists of inter-node communication delay, seri-
alization time, and execution time. Communication delay between nodes is limited
to a number between 1 and 10 ms to create a static network. Serialization delay is
the elapsed time to ensure correctness of concurrent transactions. This delay also
includes waiting time in a scheduling queue and Bi-interval’s computational time.

In low contention, Bi-interval produces high concurrency due to the large num-
ber of read-only transactions. In high contention, Bi-interval reduces object moving
time. In both cases, Bi-interval improve throughput, but concurrency of read-only
transactions improves more throughput than reduced object moving time. Our ex-
perimental evaluation shows that Bi-interval enhances throughput over TFA as much
as 1.77 ∼ 1.65× speedup under low and high contention, respectively.

4 Cluster-Based Transactional Scheduler

4.1 Motivation

Directory-based CC protocols (e.g., Arrow and Ballistic) [8, 12] in the single-copy
model often keep track of the single writable copy. In practice, not all transactional
requests are routed efficiently; possible locality is often overlooked, resulting in
high communication delays. A distributed transaction consumes more execution
time, which include the communication delays that are incurred in requesting and

On Scheduling in Distributed Transactional Memory: Techniques and Tradeoffs 1277

Fig. 5 Executing T1, T2, and T3 concurrently

retrieving objects than a transaction on multiprocessors [15]. Thus, the probability
for conflicts and aborts is higher.

Even though a transaction in a full replication model does not request and retrieve
objects, maintaining replicas of all objects at each node is costly. Increasing locality
(and availability) by brute-force replication while ensuring one-copy serializability
[2] can lead to communication overhead. Motivated by this, we consider a k-cluster-
based replication model for cc DTM. In this model, multiple copies of each object are
distributed to k selected nodes to maximize locality and availability and to minimize
communication overhead.

Moreover, a transaction may execute multiple operations with multiple objects,
increasing the possibility of conflicts. Figure 5 shows a scenario two conflicts occur-
ring with three concurrent transactions, T1, T2, and T3 using two objects. Under TFA,
a conflict over o2 between T1 and T2 occurs and another conflict over o3 between T2

and T3 occurs. If T2 commits first, T1 and T3 will abort because T2 will update o3

and o2 even though T1 and T3 do not contend. If T2 aborts as shown in Fig. 5b, T1

and T3 will commit. Motivated by this, CTS aborts T2 in advance and allows T1 and
T2 to commit concurrently. A contention manager resolves a conflict between two
transactions, but CTS avoids two conflicts among three transactions and guarantees
the concurrency of two transactions of them.

4.2 Scheduler Design

In the case of an off-line scheduling algorithm (all concurrent transactions are
known), a simple approach to minimize conflicts is to check the conflict graph of
transactions and determine a maximum independent set of the graph, which is NP-
complete. However, as an on-line scheduling algorithm, CTS checks for conflicts

1278 J. Kim et al.

between a transaction and other ongoing transactions accessing an object whenever
the transaction requests the object.

Let node nx belong to cluster z. When transaction Tx at node nx needs object oy
for an operation, it sends a request to the object owner of cluster z. When another
transaction may have requested oy but no transaction has validated oy , there are two
possible cases. The first case is when the operation is read. In this case, oy is sent to
nx without enqueuing, because the read transaction does not modify oy . In the second
case, when the operation is write, CTS determines whether oy is sent to the requester
(i.e., nx) or not by considering previously enqueued transactions and objects. Once
CTS allows Tx to access oy , CTS moves x and y representing Tx and oy respectively
to two scheduling queues. The object owners for each cluster maintain the following
two queues, O and T. Let O denote the set of enqueued objects and T denote the
set of transactions enqueued by the object owners. If the object owner of cluster z
enqueues x and y, it updates its scheduling queues to the other object owners’.

If x ∈ T and y /∈ O, x and y are enqueued and oy is sent to nx . This case indicates
that Tx has requested another object from the object owner and oy has not been
requested yet. However, if x /∈ T and y ∈ O, CTS has to check for whether T | β
includes more than two transactions or not, where β = O | α and α = T | y. O | α
indicates objects requested by Tα and T | y represents transactions requesting oy .
This case shows when oy is being used by other transactions and the transactions share
an object with another transaction. CTS does not consider a conflict between two
transactions because a contention manager aborts one of them when they validate.
Thus, the transactions involved in T | y ∩ T | β abort, x and y are enqueued, and oy
is sent to nx . The aborted transactions are dequeued.

If x ∈ T and y ∈ O, CTS has to check for whether T | γ is distinct from T | y
or not, where γ = O | x. This case means that Tx has requested an object requested
by another transaction and also oy has been requested by another transaction. If
two different transactions are using different objects that Tx has requested and is
requesting, respectively, CTS aborts Tx to protect two transactions from aborting.
Thus, if T | γ is distinct from T | y, x and y also are enqueued and oy is sent to
nx . Otherwise, oy will not be sent to nx , aborting Tx . In this case, the object owner
knows that Tx aborts. Thus, the objects that Tx has requested will be sent to nx after
the objects are updated.

Figure 6 illustrates an example of CTS after applying the three-clustering al-
gorithm on a six-node network. The black circles represent object owners. The
scheduling queue includes live transactions T1 and T2, and each transaction indicates
its objects in use. If T3 requests o3, CTS checks for conflicts between T3 and the en-
queued transactions (i.e., T1 and T2). CTS aborts T2 because of two conflicts among
T1, T2 and T3. T2 restarts after T1 and T3 commit. The committed transactions are
dequeued, and T2 is enqueued.

We consider two effects of CTS on clusters. First, when a transaction requests an
object, CTS checks for conflicts between the transaction and the previous requesting
transactions and aborts some transactions in advance to prevent other transactions
from aborting. This results in a reduced number of aborts. Second, in TFA, if a
transaction aborts, the transaction will restart and request an object again, incurring

On Scheduling in Distributed Transactional Memory: Techniques and Tradeoffs 1279

Fig. 6 An example of CTS

communication delays. However, in CTS, object owners hold aborted transactions.
When validation of an object completes, the object is sent to the nodes invoking
the aborted transactions. Thus, CTS lets the aborted transactions use newly updated
objects without requesting the object again, reducing communication delays.

4.3 Analysis

In the worst case, N transactions are simultaneously invoked to update an object.
Whenever a conflict occurs between two transactions, let scheduler B abort one of
these and enqueue the aborted transaction (to avoid repeated aborts) in a distributed
queue. The aborted transaction is dequeued and restarts after a backoff time. Let the
number of aborts of Ti be denoted as λi . We have the following lemmas.

Lemma 1 Given scheduler B and N transactions,
∑N
i=1 λi ≤ N − 1.

Proof Given a set of transactions T = {T1, T2, · · · TN }, let Ti abort. When Ti is
enqueued, there are ζi transactions in the queue. Ti can only commit after ζi trans-
actions commit if ζi transactions have been scheduled. Hence, if a transaction is
enqueued, it does not abort. Thus, one of N transactions does not abort. The lemma
follows.

Lemma 2 Given scheduler B and N transactions, makespanNB (NR) ≤
2(N − 1)

∑N−1
i=1 d(ni , nj) + ΓN .

Proof Lemma 1 gives the total number of aborts onN transactions under scheduler
B. If a transaction Ti requests an object, the communication delay will be 2×d(ni , nj)
for both requesting and object retrieving times. Once Ti aborts, this delay is incurred
again. To completeN transactions using schedulerB, the total communication delay
will be 2(N − 1)

∑N−1
i=1 d(ni , nj). The theorem follows.

Lemma 3 Given schedulerB,N transactions, k replications,makespanNB (PR) ≤
(N − k)∑N−k

i=1 d(ni , nj) + (N − k + 1)
∑N−1
i=1

∑k−1
j=1 d(ni , nj) + ΓN .

1280 J. Kim et al.

Proof In PR, k transactions do not need to remotely request an object, because k
nodes hold replicated objects. Thus,

∑N−k
i=1 d(ni , nj) is the requesting time ofN trans-

actions and
∑N−1
i=1

∑k−1
j=1 d(ni , nj) is the validation time based on atomic multicasting

for only k nodes of each cluster. The theorem follows.

Lemma 4 Given scheduler B and N transactions, makespanNB (FR) ≤∑N−1
i=1

∑N−1
j=1 d(ni , nj) + ΓN .

Proof Transactions request objects from their own nodes, so their requesting times
do not occur in FR, even when the transactions abort. The basic idea of transac-
tional schedulers is to minimize conflicts through enqueueing transactions when
the transactions request objects. Thus, the transactional schedulers (i.e, B and
CTS) do not affect makespanNx∈{B,CT S}(FR). Thus, when a transaction commits,

FR takes
∑N−1
i=1

∑N−1
j=1 d(ni , nj) for only atomic broadcasting to support one-copy

serializability.

Theorem 7 Given scheduler B and N transactions, makespanNB (FR) ≤
makespanNB (PR) ≤ makespanNB (NR).

Proof Given k PR, limk→1makespan
N
B (PR) ≤ 2(N−1)

∑N−1
i=1 d(ni , nj)+ΓN , and

limk→N makespanNB (PR) ≤∑N−1
i=1

∑N−1
j=1 d(ni , nj) + ΓN . The theorem follows.

Theorem 8 Given N transactions andM objects, the RCR of schedulers CT S on
PR and scheduler B on FR is less than 1, where N > 3.

Proof Let
∑N−1
i=1 d(ni , nj) denote δN−1. To show that the RCR ofCT S on PR and B

on FR is less than 1,makespanNCT S(PR) < makespanNB (FR). CTS detects potential
conflicts and aborts a transaction incurring the conflicts. The aborted transaction
does not request objects again. Thus we derive makespanNCT S(PR) ≤ 2MδN−k +
M
∑N−1
i=1 δk−1 + MΓN . 2δN−k + (N − 1)δk−1 ≤ (N − 1)δN−1, so that 2δN−k ≤

(N − 1)δN−k . Only when N ≥3, PR is feasible. Hence, makespanNCT S(PR) <
makespanNB (FR), where N > 3. The theorem follows.

Theorem 8 shows that CTS in PR performs better than FR. Even though PR incurs
requesting and object retrieving times for transactions, CTS minimizes these times,
resulting in less overall time than the broadcasting time of FR.

4.4 Evaluation

To select k nodes for distributing replicas of each object, we group nodes into clusters,
such that nodes in a cluster are closer to each other, while those between clusters
are far apart. Recall that the distance between a pair of nodes in a metric-space
network determines the communication cost of sending a message between them.
We use a k clustering algorithm based on METIS [13], to generate k clusters with
small intra-cluster distances i.e., k nodes may hold the same objects. Our partial
replication relies on the usage of a total order multicast (TOM) primitive to ensure

On Scheduling in Distributed Transactional Memory: Techniques and Tradeoffs 1281

5

a b

10 15 20 25
200

400

600

800

1000

1200

1400

1600

Number of Nodes

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Bank in Low Contention

CTS(0)
CTS(30)
CTS(60)
CTS(90)
TFA

Bank (Low)

5 10 15 20 25
200

400

600

800

1000

1200
Bank in High Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes
Bank (High)

Fig. 7 Throughput of bank benchmark with no node failures

agreement on correctness in a genuine multicast protocol [22]. The object owners
for each cluster update objects through a TOM-based protocol.

Our experiments were conducted on 24-node testbed. Each node is an AMD
Opteron processor clocked at 1.9 GHz. We use Ubuntu Linux 10.04 server OS and
a network with a private gigabit ethernet. Each experiment is the average of 10
repetitions. The number of objects for a transaction is selected randomly from 2 to
20. We considered CTS(30) and CTS(60), meaning CTS over 30 and 60 % object
owners of the total nodes, respectively. For instance, CTS(30) under 10 nodes means
CTS over three-clustering algorithm.

Figure 7 intends to show two effects of scheduling by CTS and the improvement
of object availability by increasing object locality. To show the effectiveness of
CTS, TFA is compared with CTS(0)—the combination of CTS and TFA with no
replication. CTS(0) improves throughput over TFA as much as 1.5× under high
contention because the number of conflicts decreases. CTS(0) outperforms CTS(90)
in throughput, but it is non-fault-tolerant. The throughput produced by CTS(90) is
degraded due to the large number of broadcasting messages needed to update all
replicas. Due to high object availability on CTS(90), the requesting times of aborted
transactions are less reduced. Meanwhile, due to low object availability on CTS(0),
the requesting times are more reduced but object retrieving times increase. Thus,
CTS(30) and CTS(60) achieve decreased object requesting and retrieving times,
resulting in a better throughput than CTS(0) and CTS(90).

5 Summary and Conclusion

Bi-interval shows that the idea of grouping concurrent requests into read and write
intervals to exploit concurrency of read transactions—originally developed in BI-
MODAL for multiprocessor TM—can also be successfully exploited for DTM.
Doing so poses a fundamental trade-off, however, one between object moving times

1282 J. Kim et al.

and concurrency of read transactions. Bi-interval’s design shows how this trade-off
can be effectively exploited towards optimizing throughput.

CTS uses multiple clusters to support partial replication for fault-tolerance. The
clusters are built such that inter-node communication within each cluster is small. To
reduce object requesting times, CTS partitions object replicas into each cluster (one
per cluster), and enqueues and assigns backoff times for aborted transactions. CTS’s
design shows that such an approach yields significant throughput improvement.

Data centers have to manage a vast amount of concurrent requests to access data
objects. Given our results, distributed transactional schedulers are a viable strategy
to ensure object consistency and enhance performance in the data centers.

References

1. Hagit Attiya and Alessia Milani. Transactional scheduling for read-dominated workloads.
In Proceedings of the 13th International Conference on Principles of Distributed Systems,
OPODIS ’09, pages 3–17, Berlin, Heidelberg, 2009. Springer-Verlag.

2. Philip A. Bernstein and Nathan Goodman. Multiversion concurrency control—theory and
algorithms. ACM Trans. Database Syst., 8:465–483, December 1983.

3. A. Bieniusa and T. Fuhrmann. Consistency in hindsight: A fully decentralized stm algorithm.
In Parallel Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pages
1–12, 2010.

4. Geoffrey Blake, Ronald G. Dreslinski, and Trevor Mudge. Proactive transaction scheduling
for contention management. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 42, pages 156–167, New York, NY, USA, 2009.
ACM.

5. Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain. Software transactional
memory for large scale clusters. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, PPoPP ’08, pages 247–258, New York, NY,
USA, 2008. ACM.

6. N. Carvalho, P. Romano, and L. Rodrigues. A generic framework for replicated software
transactional memories. In Network Computing and Applications (NCA), 2011 10th IEEE
International Symposium on, pages 271–274, aug. 2011.

7. Maria Couceiro, Paolo Romano, Nuno Carvalho, and Luís Rodrigues. D2STM: Dependable
distributed software transactional memory. In Proceedings of the 2009 15th IEEE Pacific Rim
International Symposium on Dependable Computing, PRDC ’09, pages 307–313, Washington,
DC, USA, 2009. IEEE Computer Society.

8. Michael J. Demmer and Maurice Herlihy. The arrow distributed directory protocol. In Pro-
ceedings of the 12th International Symposium on Distributed Computing, DISC ’98, pages
119–133, London, UK, UK, 1998. Springer-Verlag.

9. David Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC, 2006.
10. Shlomi Dolev, Danny Hendler, and Adi Suissa. CAR-STM: scheduling-based collision avoid-

ance and resolution for software transactional memory. In Proceedings of the twenty-seventh
ACM symposium on Principles of distributed computing, PODC ’08, pages 125–134, New
York, NY, USA, 2008. ACM.

11. Rachid Guerraoui, Michal Kapalka, and Jan Vitek. STMBench7: a benchmark for software
transactional memory. SIGOPS Oper. Syst. Rev., 41(3):315–324, 2007.

12. Maurice Herlihy and Ye Sun. Distributed transactional memory for metric-space networks. In
Proceedings of the 19th international conference on Distributed Computing, DISC’05, pages
324–338, Berlin, Heidelberg, 2005. Springer-Verlag.

On Scheduling in Distributed Transactional Memory: Techniques and Tradeoffs 1283

13. George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20:359–392, 1998.

14. Junwhan Kim and Binoy Ravindran. On transactional scheduling in distributed transactional
memory ystems. In Proceedings of the 12th international conference on Stabilization, safety,
and security of distributed systems, SSS’10, pages 347–361, Berlin, Heidelberg, 2010.
Springer-Verlag.

15. Junwhan Kim and Binoy Ravindran. Scheduling closed-nested transactions in distributed trans-
actional memory. In Parallel Distributed Processing Symposium (IPDPS), 2012 IEEE 26th
International, pages 179–188, 2012.

16. Junwhan Kim and Binoy Ravindran. Scheduling transactions in replicated distribute software
transactional memory. In Proceedings of the 2013 13th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCgrid 2013), CCGRID ’13, Delft , The Netherlands,
2013. IEEE Computer Society.

17. Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján, Chris Kirkham, and Ian
Watson. DiSTM: A software transactional memory framework for clusters. In Proceedings
of the 2008 37th International Conference on Parallel Processing, ICPP ’08, pages 51–58,
Washington, DC, USA, 2008. IEEE Computer Society.

18. Chi Cao Minh, Jaewoong Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford trans-
actional applications for multi-processing. In Workload Characterization, 2008. IISWC 2008.
IEEE International Symposium on, pages 35–46, 2008.

19. Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis II. An analysis of several
heuristics for the traveling salesman problem. SIAM J. Comput., 6(3):563–581, 1977.

20. M.M. Saad and B. Ravindran. Transactional forwarding: Supporting highly-concurrent stm in
asynchronous distributed systems. In Computer Architecture and High Performance Computing
(SBAC-PAD), 2012 IEEE 24th International Symposium on, pages 219–226, 2012.

21. Mohamed M. Saad and Binoy Ravindran. Supporting STM in distributed systems: Mechanisms
and a Java framework. In Sixth ACM SIGPLAN workshop on Transactional Computing, 2011.

22. N. Schiper, P. Sutra, and F. Pedone. P-store: Genuine partial replication in wide area networks.
In Reliable Distributed Systems, 2010 29th IEEE Symposium on, pages 214–224, 2010.

23. Richard M.Yoo and Hsien-Hsin S. Lee. Adaptive transaction scheduling for transactional mem-
ory systems. In Proceedings of the twentieth annual symposium on Parallelism in algorithms
and architectures, SPAA ’08, pages 169–178, New York, NY, USA, 2008. ACM.

Dependability-Oriented Resource Management
Schemes for Cloud Computing Data Centers

Ravi Jhawar and Vincenzo Piuri

1 Introduction

A major factor in the growth of the Information and Communications Technology has
been the widespread use of data centers for deploying and executing web services,
business processes, and scientific and e-commerce applications [12]. While some
data centers are designed to operate a specific business (e.g., Google’s search engine),
others are used as the backbone infrastructure to deliver computing resources as
services to hundreds of users (e.g., Amazon’s EC2 service). Relying on data centers
for running applications, particularly when resources are delivered to the users as
a service, offer significant benefits [13, 33]. For example, applications can benefit
significantly from the economy of scale, and users are relieved from buying expensive
hardware and software licenses and from maintaining the computing infrastructure.

To ensure resource availability, Quality-of-Service (QoS) and dependability to
hundreds of applications in the modern data centers under fluctuating workloads,
server failures, and network congestion, dedicated servers are allocated to applica-
tions and server capacity is often over-provisioned. However, the use of dedicated
hardware not only leads to poor energy usage, but also made it difficult to react to sys-
tem changes. Furthermore, the growing number of under-utilized servers increases
the data center’s operating costs such as system management, energy consumption
of servers, and network and cooling infrastructure costs.

In the last decade, the virtualization technology has emerged as a very effective
approach to address these issues by de-coupling physical servers from the resources
needed by applications. In particular, virtualization provides an efficient way to
insulate and partition server’s resources so that only a portion of them can be utilized

R. Jhawar (�) · V. Piuri
Dipartimento di Informatica, Università degli Studi di Milano,
Via Bramante 65, 26013 Crema, Italy
e-mail: ravi.jhawar@unimi.it

V. Piuri
e-mail: vincenzo.piuri@unimi.it

© Springer Science+Business Media New York 2015 1285
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_45

1286 R. Jhawar and V. Piuri

by an application. It also provides a greater flexibility and control over resource
management, allowing for dynamic adjustment of CPU and memory usage, and live
migration of virtual machines among physical servers (e.g., [20, 21]). Nowadays,
Cloud computing is the most popular approach to create virtualized environments
for application execution in distributed data centers.

Deploying virtualized services in data centers, including those based on Cloud
computing, create new resource management problems, such as optimal place-
ment of virtual machines. Existing solutions focus mainly on placing and adaptive
managing virtual machines in order to (i) reduce energy consumption costs and
maximize profits for the data center owner, and (ii) improve the performance and
QoS of applications. Only a few approaches are available in the literature to im-
prove dependability—fault tolerance and security—of applications (e.g., [2–5, 7,
9–11, 14, 15]). This chapter aims to investigate resource management schemes
that improve dependability (both fault tolerance and security) and performance
of applications in virtualized data centers. In particular, we mainly focus on ini-
tial virtual machine placement and runtime adaption schemes developed for the
Infrastructure-as-a-Service (IaaS) paradigm in Cloud computing data centers.

The remainder of this chapter is organized as follows. Section 2 briefly outlines the
failure characteristics of data centers’ components. Section 3 introduces the analysis
of resource management in data centers by formalizing the virtual machine placement
problem and by defining constraints for representing data center owner and users
perspectives. In Sect. 4 we discuss initial virtual machine placement approaches that
satisfy dependability and performance constraints at the activation of the applications.
Finally, in Sect. 5 we discuss runtime adaption schemes that balance performance
and availability of applications during system operation with possible occurrence of
dependability threats. Section 6 provides some concluding remarks.

2 System Model and Failure Behavior of Data Center
Components

To appreciate the resource management schemes which improve dependability and
performance of applications deployed in Cloud computing data centers, in this Sec-
tion we first review the typical architecture of modern data centers and, then, we
analyze the behavior of the various data center components, the main causes of fail-
ures, and the impact of failures on applications. This is very useful to analyze the
efficacy and efficiency of resource management schemes.

2.1 Overview of the Data Center Architecture

A data center interconnects a large number of physical hosts H to form a resource
pool that is partitioned into a set of clusters [19]. A cluster C is formed by grouping

Dependability-Oriented Resource Management Schemes . . . 1287

the hosts that have identical resource characteristics or administrative parameters
(e.g., hosts that belong to the same network latency class or geographical location).
Each host or server contains multiple processors, storage disks, memory modules
and network interfaces. The resource characteristics of each physical host h ∈ H can
be represented using a D dimensional vector Tmax , where each dimension represents
the amount of host’s residual capacity corresponding to a distinct resource type (e.g.,
CPU, memory, storage, network bandwidth). For simplicity, the resource capacity
of hosts can be denoted using normalized values between 0 and 1. For example, host
h characterized as $h = (CPU,Mem) = (0.6,0.5) implies that 60 % of CPU, 50 % of
memory on h is available for use. A hypervisor is deployed on each host to virtualize
its resources: virtual machines of required size are created on appropriate hosts to
allocate resources for users’ applications.

Hosts are connected using several network switches and routers. The most com-
mon network topology of data centers is as follows [19]. Physical hosts, servers or
racks of servers are first connected to a Top of Rack switch (ToR), which is in turn
connected to two (primary and backup) aggregation switches (AggS). The subsys-
tem formed by the group of servers under an aggregate switch can be viewed as a
cluster. An AggS then connects tens of ToRs to redundant access routers (AccR).
Thus, each AccR handles traffic from thousands of servers and routes it to Core
routers that connect different data centers to the Internet. All links in the data centers
commonly use Ethernet as the link layer protocol and redundancy is applied to all
network components at each layer in the network topology (except for ToRs). In
addition, redundant pairs of load balancers (LBs) are connected to each AggS and
mapping between static IP address presented to the users and dynamic IP addresses
of internal servers that process user’s requests is performed.

Servers and network components are subject to failures during their life, thus
affecting the correct operation of applications. In this Section, we review their typical
failure behavior in order to understand the redundancy that is needed to overcome
critical situations and ensure successful completion of applications.

2.2 Failure Behavior of Servers

Let’s consider first the servers’ life and their possible failures. Vishwanath and Na-
gappan [37] have studied server failures and hardware repair behavior using a large
collection of servers (nearly 100,000 servers) and corresponding data on part re-
placement. For example, they mine data relevant to server configuration, when a
hard disk has been marked for replacement and when it has been actually replaced,
to generate statistical reports on failure behavior. The data repository for their study
includes server collection spanning multiple data centers distributed across different
countries. Some interesting outcomes of this study are as follows:

• The annual failure rate (AFR) of servers is approximately 8 %, and the average
number of repairs per each failure-prone server is 2. The remaining 92 % of servers

1288 R. Jhawar and V. Piuri

do not see any repair events (20 repair/replacement events have been identified in
9 machines over a 14 months period).

• For 8 % AFR, repair costs that amount to 2.5 million dollars are approximately
spent for 100,000 servers.

• Hard disks are the most failure-prone hardware components and the most
significant reason behind server failures. In particular, about 78 % of total
faults/replacements have been detected on hard disks, 5 % on RAID controllers,
and 3 % due to memory failures. 13 % of replacements have been due to a
collection of components (not particularly dominated by a single component
failure).

• About 5 % of servers experience a disk failure in less than 1 year from the date
when it is commissioned (young servers), 12 % when they are 1 year old, and
25 % when they are 2 years old.

• Comparing the number of repairs per machine (RPM) against the number of disks
per server in a group of servers (clusters) indicates that (i) there is a relationship in
the failure characteristics of servers that have already experienced a failure, and
(ii) the number of RPM has a correspondence to the total number of disks on that
machine.

This analysis can be used to develop robust fault tolerance mechanisms (e.g., by
improving the reliability of hard disks to substantially reduce the number of failures)
and resource management schemes (e.g., to improve the availability of a given ap-
plication, its tasks must not be allocated on the server whose hard disks have already
experienced a failure).

2.3 Failure Behavior of Network Components

Let’s consider now the possible network failures. Gill et al. [16] have performed a
large scale study in data centers. A link failure happens when the connection between
two devices on a specific interface is down. A device failure happens when the device
is not routing/forwarding packets correctly (e.g., due to power outage or hardware
crash). Some interesting outcomes from this study are as follows:

• The overall data center network reliability is about 99.99 % for 80 % of the links
and 60 % of devices.

• Among all the network devices, ToRs are most reliable (with a failure rate of
less than 5 %) and load balancers are least reliable (with failure probability of
1 in 5). The root causes for failures in LBs are dominantly software bugs and
configuration errors; moreover, LBs demonstrate frequent but short failures. This
observation clearly indicates that low-cost commodity switches such as ToRs and
AggS provide sufficient reliability.

• The links forwarding traffic from LBs have highest failure rates; links higher in
the topology (e.g., connecting AccRs) and links connecting redundant devices
have second highest failure rates.

Dependability-Oriented Resource Management Schemes . . . 1289

• Network redundancy reduces the median impact of failures (in terms of number
of lost bytes) by only 40 %, as opposed to the common belief that redundancy
almost completely masks failures from applications.

• The estimated median number of packets lost during a failure is 59K and median
number of bytes is 25MB (average size of lost packets is 423Bytes). Based on
prior measurement studies (that observe packet sizes to be bimodal with modes
around 200Bytes and 1400Bytes), it is estimated that most lost packets belong to
the lower-level functions (e.g., ping messages or ACKs).

2.4 Analysis of the Impact of Failures on Applications

A detailed analysis of the impact of various component failures on applications as
well as the definition of the impact boundary of a given failure (e.g., fault region)
are useful to improve the dependability of applications [18, 25, 28, 36]. In [27] such
analysis has been integrated within the resource management schemes to provide fault
tolerance support to applications in the Cloud computing paradigm. For example, if
a switch failure disconnects a rack of servers, then replicas of a given applications
can be allocated in different clusters in order to increase the application’s failure
independence.

Jhawar and Piuri [23] use the notion of fault trees and provide a hierarchical
model to analyze the impact of component failures. As an example, let’s consider
the impact of power failures (other failures can similarly be analyzed in a straight-
forward manner). Assume that a data center receives power via an uninterrupted
power network, and a redundant distribution unit (DU) is deployed for each cluster
within the data center. A DU hence provides power to all the servers within a cluster.
In this context, a failure in the DU is independent of other DUs and the central power
supply. The fault tree for power failures include the conditions (Power1 ∧Power2)
for redundant power units of a server, (DU1 ∧DU2) for a cluster, and (Power1 ∧
Power2)∨ (DU1∧DU2)∨ (Central P ower Supply) for the power failure of the
whole system. An application failure happens when this latter condition evaluates
true. We note that the boundary (server, cluster, data center) of the impact of each
failure can also be identified using this approach.

The fault tree model can also be extended to understand the failure behavior of
applications by integrating it with Markov chains, where the probability values permit
to quantitatively analyze the fault tolerance of the given application in the envisioned
data center. Building on the notion of fault trees and Markov chains, Jhawar and Piuri
[23] identify three main Deployment LevelsDL for applications. A deployment level
is the smallest subsystem within the infrastructure where the replicas of a users’
application are deployed to ensure dependability. Deployment levels correspond to
fault regions in the data center, and describe how replicas of applications can be
allocated, depending on its fault tolerance, performance, availability, and reliability
goals. The three deployment levels are as follows.

1290 R. Jhawar and V. Piuri

• Multiple machines within a cluster: Replicas of an application can be placed on
hosts that are connected by a ToR switch, that is, in a LAN. This deployment
provides benefits in terms of low latency and high bandwidth but offers least fail-
ure independence. Replicas cannot communicate and execute the dependability
protocol upon a single switch failure, or a failure in the power distribution unit
results in an outage of the entire application.

• Multiple clusters within a data center: Replicas of an application can be placed on
hosts that belong to different clusters in the same data center, that is, connected via
a ToR switch and AggS. This deployment still provides moderate benefits in terms
of latency and bandwidth, and offers higher failure independence. The replicas
are not bound to an outage with a single power distribution or switch failure.

• Multiple data centers: Replicas of an application can be placed on hosts that
belong to different data centers, that is, connected via a ToR switch, AggS and
AccR. This deployment has a drawback with respect to high latency and low
bandwidth, but offers a very high level of failure independence. A single power
failure has least effect on the availability of the application.

A partially-ordered hierarchy can be defined between the deployment levels. For
example, a data center is a larger subsystem or deployment level when compared to
a cluster. A transitive closure indicating that “contains-in” relationship also exists
on the hierarchy of deployment levels. For example, a host can be part of a cluster
that in turn exists in the data center. Intuitively, availability (failure independence)
of an application increases with the increase of the deployment level; that is, the
availability of an individual host is smaller than the availability of a cluster, which
is still smaller than the availability of a data center. On the other hand, the network
latency increases with the increase of the deployment level; that is, hosts in the
same rack have lower network latency than hosts across different clusters. Hence, if
Lat(DL) denotes the maximum latency between two hosts in the deployment level
DL, then the virtual machine placement algorithm can decide a suitableDL based on
users desired performance goals (e.g., in terms of the expected response time). In the
next Sections, we discuss how to integrate this analysis within resource management
schemes to improve fault tolerance, security, and performance of applications.

3 Resource Management in Data Center Environments

The problem of resource management in data center environments has gained a wide
attention from the research community and the industry. In this Section, we model the
resource management problem with specific reference to improving dependability
and performance of users applications deployed in the data centers using virtual
machines.

Resource management for Cloud-based data centers can be modeled as a place-
ment problem in which virtual machines are allocated on the data center’s hosts
[20, 21, 24], having been the applications mapped on the appropriate virtual machine
templates available in the data center environment. Existing solutions, particularly

Dependability-Oriented Resource Management Schemes . . . 1291

for services that provision on-demand resources to users, primarily focus on making
virtual machine placement decisions at two distinct levels: (i) initial virtual machine
allocation and (ii) runtime adaption of current virtual machine allocation [30].

Based on user’s requirements and failure characteristics of the envisioned data
center, a set of dependability and performance constraints are specified (e.g., con-
straint specifying that replicas of the user’s application be allocated on two different
physical hosts to avoid single points of failure). The initial resource allocation pro-
cess identifies the physical hosts on which the requested virtual machines can be
allocated such that all the placement constraints are satisfied. Once the required vir-
tual machines are created and delivered to the user, the runtime adaption process
monitors the system and resizes virtual machines or migrates them to other phys-
ical hosts in order to meet the predefined goals (e.g., energy conservation), while
satisfying the placement constraints. While the objective of most resource manage-
ment algorithms in this context has been to maximize the service provider’s goals
(e.g., through resource consolidation, load balancing, satisfaction of SLAs), we will
provide a broader perspective which encompasses both the provider’s and the users’
views, balancing all needs in a comprehensive way.

In this Section, we formulate and categorize various placement constraints that
can be used to specify dependability—fault tolerance and security—and performance
related conditions during resource management. Within this framework, in Sect. 4
we will study resource management schemes for placing applications in the Cloud
computing environment at the initial deployment. Then in Sect. 5 we will discuss
dynamic adaptation of the applications placement to deal with changing working
status of the architecture components, balancing dependability and performance of
users’ applications.

Let us start by defining a mapping function p : V → H that maps each virtual
machine v ∈ V on a physical host h ∈ H in the data center. Notation p(v) = h

denotes that virtual machine v has been allocated on physical host h.
Placement constraints can be distinguished in three main categories.

• Global constraints that must be satisfied across all the hosts and virtual machines
in the data center. These constraints essentially specify the conditions necessary
to maintain a consistent system state.

• Infrastructure-oriented constraints that are specified by the data center owners
and service providers who build their services on top of the data center network
(e.g., a Cloud-based IaaS provider). These constraints aim to ensure security and
quality of service.

• Application-oriented constraints that are specified by the users who use data
center’s resources to execute their applications (e.g., application owners who use
the IaaS service). These constraints allow users to specify conditions relevant to
the specific configuration of their dependability mechanisms, and consequently,
to improve availability, reliability, and response time of their applications.

These constraints have been introduced and formalized in [23]. Other solutions also
formulate the resource allocation problem by including one or more constraints dis-
cussed in this Section (e.g., [1, 6, 32]). Some additional constraints have also been

1292 R. Jhawar and V. Piuri

considered in the past, depending on the specific formulation of the allocation prob-
lem. For example, Shi et al. [32] include FULL and SEC constraints: FULL specify
that either all or none of the virtual machines in a given request must allocated, while
SEC requires that a given physical host can be assigned only the virtual machines
from the same request and no other request. Similarly, Zheng et al. [ZLX2013]
include constraints relevant to the maintenance schedule of the physical hosts. In
particular, they include (i) a constraint that confines each host to finish its mainte-
nance activity before a specified deadline and (ii) a constraint specifying that any
host does not execute any maintenance activity after its deadline.

For simplicity, in the rest of this chapter, we define constraints using virtual
machine and host identifiers. However, these constraints can also be specified in a
straight-forward manner for groups of virtual machines or hosts, clustered by means
of some of their properties (e.g., all the hosts that belong to a given cluster or a
deployment level).

3.1 Global Constraints

Global constraints include the classical resource capacity constraints. Similarly to
the representation of the resource characteristics $h = (h[1], . . . ,h[d], . . . ,h[D]) of
a host h ∈ H , the amount of each resource type d in a virtual machine v ∈ V can
be represented by $v = (v[1], . . . , v[d], . . . , v[D]). The resource capacity constraint
states that the amount of resources consumed by all the virtual machines mapped on
a single physical host cannot exceed the total capacity of that host in any dimension
d. In general, this constraint is formulated as follows: for all the virtual machines
v ∈ V and physical hosts h ∈ H in the system, mapping function p : V → H must
satisfy

∀ h ∈ H , d ∈ [1..D]
∑

v∈V |p(v)=h
v[d] ≤ h[d]

This constraint is taken into account by most solutions existing in the literature, and
is necessary to ensure that the data center operates correctly. Some variants of this
constraint have also been considered in the literature, depending on the problem
context. For example, solutions for server consolidation require that the amount
of resources consumed by a virtual machine when placed in isolation on a host
or with other co-hosted virtual machines may be different. When multiple virtual
machines are placed on a host, several memory pages can be shared between them
thus reducing the overall memory requirements; conversely, the hypervisor or host
operating system may consume additional CPU cycles or I/O bandwidth for resource
scheduling. Similarly, virtual machines may interfere with each other and consume
higher amounts of shared resources (e.g., the L2 cache during context switching).

To avoid performance degradation and inconsistent system state due to the above
factors, the data center owner can define an upper bound on the resource capacity of

Dependability-Oriented Resource Management Schemes . . . 1293

each host that can be used by users’virtual machines. The resource capacity constraint
then ensures that virtual machines are allocated on a host only if its capacity in any
dimension does not exceed the upper bound or threshold value, that is,

∀ h ∈ H , d ∈ [1..D]
∑

v∈V |p(v)=h
v[d] ≤ (h[d] ∗ threshold[d])

The threshold[d] can be specified using percentage or normalized values between
0 and 1.

3.2 Infrastructure-Oriented Constraints

The data center owner may need to impose restrictions on the mapping function
to improve the security, operational performance and reliability of the data center.
While a number of conditions can be introduced depending on the specific system
architecture, here we discuss two representative infrastructure-oriented constraints:
forbid and count.

Forbid To improve security, the data center owner may need to dedicate a set of hosts
only to execute system-level services (e.g., the access control engine or reference
monitor) and, as a consequence, it may need to specify that the mapping function
does not allocate users’ virtual machines on those hosts. In this context, the forbid
constraint prevents a virtual machine v from being allocated on a physical host h.
When the data center owner defines a set Forbid = {

(vi , hj)| vi ∈ V , hj ∈ H}
specifying the virtual machines vi ∈ V that must be forbidden from being allocated
on hosts hj ∈ H , the allocation algorithm guides the mapping function p : V → H

to satisfy the following condition:

∀ v ∈ V , h ∈ H (v,h) ∈ Forbid ⇒ p(v) �= h
Count The performance of a host degrades as the number of virtual machines co-
hosted on it increases. For example, the performance of a storage disk decreases if the
number of I/O intensive applications in the virtual machines increases; similarly, the
network traffic from a host, virtual machine management costs, and CPU utilization
costs gradually increase. To avoid such conditions, the count constraint allows the
data center owner to limit the number of virtual machines that can be allocated on a
given host. When the data center owner defines counth as the maximum number of
virtual machines allowed on host h, the mapping function p : V → H ensures that
the following condition is satisfied:

∀ v ∈ V , h ∈ H |{v ∈ V }: p(v) = h}| ≤ counth

1294 R. Jhawar and V. Piuri

3.3 Application-Oriented Constraints

Based on the dependability policy, users may need to impose a set of restrictions
on the placement of their virtual machines in the data center. For example, suppose
that a user applies a replication technique to increase the reliability and availabil-
ity of her application. She may then need to impose a set of conditions on the
system parameters and relative placement of her virtual machines to correctly imple-
ment the dependability policy while satisfying her performance goals. We discuss
three representative application-oriented constraints that can be used to realize the
aforementioned conditions: restrict, distribute and latency.

Restrict To ensure survival and possible continuous operation of an application
even in the case of failures, it can be replicated in the data center so as to have at
least one replica able to proceed in the application activities. A user may wish to
allocate each replica of her application in a specific region (e.g., cluster, availability
zone) of the data center. To achieve this, the user may leverage the restrict constraint
which limits a virtual machine v ∈ V on being allocated only on a specified group
of physical hosts H ′ ∈ H . We note that the analysis of the failure behavior of the
data center components may be beneficial in this context since each replica can be
placed in a different failure zone or deployment level (see Sect. 2.4), thus increasing
the failure independence of the application replicas. When a user defines the set
Restr = {(vi ,H ′

j

) |vi ∈ V ∧H ′
j ⊆ H}, the mapping functionp : V → H ensures

the following condition:

∀ vi ∈ V ,H ′
j ∈ 2H (vi , H

′
j) ∈ Restr ⇒ p(vi) ∈ H ′

j

The restrict constraint is also beneficial in other scenarios such as enforcement of
privacy policies and improvement of applications performance. For example, a user
may leverage the restrict constraint to satisfy mandatory government enforced obli-
gations (e.g., EU Data Protection 95/46/EC Directive) requiring virtual machines
to be always located within a given community area (e.g., within EU countries).
Similarly, to improve the application’s performance, a user may require the mapping
function to place her virtual machines on the hosts whose geographical location is
closest to her customers.

Distribute A replication-based fault tolerance scheme inherently requires that each
replica be placed on different physical hosts in order to avoid single points of failure.
If a user replicates her application on two virtual machines, and if both the virtual
machines are allocated on the same host, then a failure in the host results in an unavail-
ability of the user’s application. To avoid such situations, the distribute constraint
allows a user to specify that two virtual machines vi and vj must never be allocated on
the same host at the same time. Given the set Distr = {

(vi , vj)|vi , vj ∈ V ′ ⊆ V }
of pairs of virtual machines that cannot be deployed on the same host, the mapping
function p : V → H ensures the following:

∀ vi , vj ∈ V ′ ⊆ V ,h ∈ H (vi , vj) ∈ Distr ⇒ p(vi) �= p(vj)

Dependability-Oriented Resource Management Schemes . . . 1295

Latency To ensure that the response time of an application does not exceed a maxi-
mum value, a user may want to specify the latency allowed between each application
replica. For instance, in a checkpoint-based reliability mechanism, the state of the
backup virtual machine instance must be frequently updated with that of the primary
instance to maintain the system in a consistent state. This task involves high amounts
of message exchanges, and hence an upper bound in the network delay is essential;
otherwise, the wait-time of the primary instance during which the state transfer to
the backup takes place may increase significantly and the overall availability of the
application may be reduced.

For simplicity’s sake, let’s assume that the network latency between two virtual
machines is equal to the network latency between the physical hosts on which they
are deployed. The latency constraint forces the mapping function to allocate two
virtual machines vi , vj ∈ V such that the network latency latency(p(vi), p(vj))
between them is less than a specified value Tmax . Given the set MaxLatency ={
(vi , vj , Tmax)|vi , vj ∈ V } that specifies the acceptable network latency Tmax be-

tween two virtual machine instances vi and vj , the mapping function p : V → H

ensures the following condition:

∀ vi , vj ∈ V , (vi , vj , Tmax) ∈ MaxLatency latency(p(vi), p(vj)) ≤ Tmax

4 Initial Allocation of Virtual Machines in Data Center
Environments

In this Section, we discuss resource allocation schemes that, for each user request,
identify the physical hosts on which the requested virtual machines can be allocated
while satisfying the placement constraints. The solutions discussed here perform ini-
tial allocation considering the fault tolerance, security, and performance constraints,
and aiming at maximizing the data center efficiency. We first analyze the solution by
Jhawar et al. [27] in detail (Sect. 4.1) since it satisfies all the constraints described
in the previous Section, and then provide an overview of other state-of-art schemes
(Sect. 4.2).

4.1 A Comprehensive Scheme for Virtual Machines Allocation

To address the needs of optimum data center management in Cloud-based environ-
ments, while satisfying both data center owner’s constraints and users’ goals, the
approach presented in [27] performs the initial placement of virtual machines by
designing the mapping function p : V → H to meet the following objectives:

• reduce the energy consumption and operational costs by consolidating virtual
machines on physical hosts such that the number of free hosts is maximized;

1296 R. Jhawar and V. Piuri

• reduce the load variance of physical hosts across all the clusters in the Cloud in
order to improve the performance and resilience of the data center.

Besides, the mapping function is also structured to satisfy the resource capacity,
forbid, count, restrict, distribute, and latency constraints, thus satisfying application’s
fault tolerance, security and performance goals.

The allocation algorithm works as follows. Each time a request to allocate new
virtual machines arrives, the data center is analyzed to identify the clusters and the
physical hosts that can be used for resource allocation. For each shortlisted physical
host, the set of virtual machines that can be allocated on that host are identified. In
particular, to reduce the load variance between different clusters, the new virtual
machines are created in the cluster that has highest amount of available resources.

A priority queue CL is built based on the resource availability in each cluster,
and then, the cluster C with maximum resource availability is extracted from CL. To
reduce the energy consumption costs, each host within the selected cluster is analyzed
to allocate as many virtual machines on that host as possible. This heuristics maps
virtual machines on fewer physical hosts, thus leaving the remaining hosts to operate
in the cold-standby mode.

A priority queue VMreq is created based on the vector dot-product [35] value of
virtual machines with respect to the current host and entries from VMreq are ex-
tracted in the decreasing order of the dot-product values and analyzed for performing
the final allocation.

Therefore, the algorithm can be viewed as a two-step process: (i) select the least-
used cluster and (ii) allocate virtual machines on its hosts using the dot-product
method, and satisfies both the aforementioned objectives.

In this allocation algorithm appropriate checks are introduced to guide the map-
ping of virtual machines on physical hosts as follows. Since the forbid and restrict
constraints define conditions on the association between virtual machines and phys-
ical hosts, corresponding checks are applied mainly while building the VMreq
priority queue (i.e., when analyzing the suitability of allocating a given virtual ma-
chine on the current physical host). Hence, a temporary set V ′ that contains all the
virtual machines that must be allocated is created, and a virtual machine v from set
V ′ is discarded if: (i) an entry (v, h) ∈ Forbid exists or (ii) a set of hosts is specified
in theRestr set for the virtual machine v but the considered host h does not belong to
that set. This check allows the allocation algorithm to enforce the forbid and restrict
constraints.

The capacity and count constraints deal with the resource usage of the individual
physical hosts. To enforce the capacity constraint, the residual resource capacity
of each physical host is maintained, based on the threshold values specified by the
data center owner. A virtual machine is allocated on a physical host if the resource
requirements of the virtual machine are less than the residual capacity of that host
in all the dimensions. Each time a virtual machine is allocated on a host, its residual
capacity value is updated.

Dependability-Oriented Resource Management Schemes . . . 1297

To ensure the count constraint, the vector representation of hosts and virtual
machines is extended with respect to Sect. 2.1 by adding a new dimension on each
physical host that denotes the number of virtual machines that can be allocated on that
host h[D+1] = counth. Similarly, the [D + 1]th dimension of each virtual machine
is initialized to 1, and the count control is enforced with the capacity constraint.

The distribute constraint is enforced by verifying whether a given host h al-
ready contains a virtual machine vj for which the user has specified a condition
(v, vj)∈Distr . The algorithm simply does not consider the virtual machine v when
working on the allocation for the host h if p(vj) = h is true.

Finally, the allocation algorithm enforces the latency constraint based on the no-
tions of forward allocation and reserve list. If a virtual machine vi satisfies all other
constraints when considered for allocation on a host h, but is related to other virtual
machines vj ∈ Vi ⊂ V by latency constraints, then the virtual machine vi cannot be
actually allocated on the host h until an allocation for all vj ∈ Vi is found. Therefore,
the allocation algorithm tentatively allocates the virtual machines by saving pair
(vi , h) in the Reserve_list and calls the function Forward_Allocate to find an
allocation for the other virtual machines vj ∈ Vi . The Forward_Allocate function
first determines the virtual machines vj ∈ Vi that are related to vi by the latency con-
straints and stores them in a priority queue. Each virtual machine from the priority
queue is then extracted in the increasing order of Tmax , and the set of hosts that can be
reached from the current host h within the specified network threshold time (and not
conflicting w.r.t. the restrict and forbid constraints) is selected. The capacity, count
and distribute constraints are then verified for each shortlisted host, and the corre-
sponding allocation is saved in theReserve_list . The Forward_Allocate function
is recursively called until an allocation for all the virtual machines is determined. If
an allocation is not obtained, the entries from the Reserve_list are removed, and
the algorithm resumes from another host.

4.2 Other Schemes for Virtual Machines Allocation

In the literature there are other approaches for the initial allocation of virtual machines
in data centers. Existing solutions either use Constraints Programming (CP) solvers
(e.g., [6]) or design heuristics (e.g., [32]) to obtain the placement solutions. In general,
while the goal is to maximize the goals of the data center owner, each solution
takes a different approach in modeling the context of the system and, consequently,
defines different objective functions and placement constraints. In this sub-section,
we discuss four representative solutions to understand different dimensions in which
the overall problem has been studied.

Bin et al. [6] combine the Hardware Predicted Failure Analysis alerts (HwPFA)
and live migration techniques to provide a high availability solution. On predicting
hardware failure alerts, a trigger to the cluster management system is provided so as
to move the virtual machines from the failing host to other working hosts. Depending
on the allowed response time, either a complete live relocation of the virtual machine

1298 R. Jhawar and V. Piuri

is performed so that continuous operation of the applications is ensured, or a cold
relocation is performed by starting a new virtual machine on a working host with a
small interruption.

The goal of their solution is to provide k-resiliency to users applications while
reducing the resource consumption costs. We note that k-resiliency allows a given
application or virtual machine to tolerate up to k host failures. In general, to ensure
k-resiliency, a feasible solution should dedicate at least k hosts for the given virtual
machine (in addition to the virtual machine itself). The proposed approach introduces
the notion of shadow virtual machines that denotes the location or host where a virtual
machine can be evacuated (i.e., a shadow serves as a placeholder) and aim to construct
shadow placement constraints so to reduce the overall resource requirements to a
value less than (k + 1). To achieve this, they transform the placement problem with
k-resiliency constraints into a constraint satisfaction problem including the notion
of shadow virtual machines, and solve it using a constraint programming engine.
All the shadows of a given virtual machine and the virtual machine itself are anti-
colocated (equivalent to the Distribute constraint discussed in Sect. 3.3). In addition,
they employ a scheme of numbering shadows and failures in a way that identifies the
possible overlaps of actual virtual machine evacuations. In particular, each failing
host is assigned a unique index (1 through k) and each shadow of a virtual machine
is assigned a unique index. Upon failure of a host indexed i, the virtual machines on
that host are evacuated to the location of their i-th shadow. The placement constraints
are defined to specifically numbered shadows and virtual machines that may overlap
following host failures, thus reducing the number of backup hosts required. For
example, virtual machines that are placed on different hosts cannot be evacuated
together to shadows with the same index (as each host would be assigned a different
failure index); therefore, their shadows with same index can overlap.

Machida et al. [31] consider consolidated server systems and present a method to
redundant configuration of virtual machines, in anticipation of host server failures
for online applications. They estimate the requisite minimum number of virtual
machines according to the performance requirements of the given application, and
compute the virtual machine placement solution so that the configuration can survive
k host server failures. The overall problem is defined as a combinatorial optimization
problem and a greedy algorithm for determining the placement solution is provided
with the aim of minimizing the number of required hosting servers. Their method
performs better than the conventional N +M redundant configuration in terms of the
number of hosting servers required.

Shi et al. [32] formulate the problem of virtual machine placement as an Integer
Linear Programming (ILP) problem and provide a twofold solution. First, they use
solvers to obtain optimal results. Second, since the scalability of this approach is
limited, they also provide a modified version of the first fit decreasing heuristic to
generate sub-optimal results. In particular, they classify the requests for virtual ma-
chine placements into different categories and satisfy the following constraints using
the first fit decreasing heuristic, in the form of a multidimensional vector packing
problem: (i) the full deployment constraint that ensures either all the virtual machines

Dependability-Oriented Resource Management Schemes . . . 1299

requested by the user are allocated or none; (ii) the anti-colocation constraint requir-
ing all the virtual machines to be placed on different physical hosts; and (iii) the
security constraint requiring a physical host only be assigned virtual machines from
the same user request and not be assigned any virtual machines from other requests.

The three aforementioned resource allocation techniques consider only fault tol-
erance and security constraints. The solution by Jayasinghe et al. [26] that also take
into account various performance attributes while performing initial allocation of
virtual machines. In particular, they propose a structural constraints-aware virtual
machine placement approach to improve the performance and availability of appli-
cations deployed in the data centers. They integrate the structural information of
users applications within the algorithm for initial placement of virtual machines by
means of three constraints: (i) demand constraint, that defines the lower bound of
resource allocations that each virtual machine requires from the service to meet its
SLA; (ii) availability constraint, that improves the overall availability of given ap-
plications using a combination of anti-collocation/collocation constraints; and (iii)
communication constraint, that represents the communication requirement between
two virtual machines. The objective of the proposed algorithm is to minimize the
communication cost while satisfying both the demand and availability constraints.
Their solution uses the divide-and-conquer technique which involves the following
steps: (1) the group of virtual machines requested by the user is divided into a set
of smaller virtual machine groups and the upper bound of the virtual machine group
size is determined by the average capacity of a server rack; (2) a suitable server rack
is identified for each virtual machine group such that the mapping minimizes the total
communication cost and guarantees the satisfaction of availability constraints; (3) a
physical host satisfying the demand constraint is identified for each virtual machine.

5 Runtime Adaption of Virtual Machine Allocation in Data
Center Environments

Data centers are highly dynamic in terms of task activation, bandwidth availability,
component failures and recovery. This implies that static deployment strategies for
virtual machines that perform only initial allocation (such as the p : V → H func-
tion) may not provide satisfactory results at runtime and application’s dependability
and performance requirements may not be satisfied all along their lives. A naı̈ve
approach is to re-compute the allocation from scratch each time system changes
affect an application. However, since this method may not scale well during runtime
[24], a number of solutions have been proposed in the literature to adapt the cur-
rent allocation of applications using fewer actions. In this Section, we first discuss
the solution that balances application’s performance and availability goals at runtime
(Sect. 5.1) and then present other state-of-art adaptive resource management schemes
(Sect. 5.2).

1300 R. Jhawar and V. Piuri

5.1 Runtime Adaption to Balance Availability and Performance

A heuristics-based approach that minimizes the performance and availability degra-
dation of applications due to various system changes has been presented in [24].
To dynamically manage the adaptation of the allocation of applications’ virtual ma-
chines on the hosts of a data center a dedicated monitoring process (called online
controller) is introduced in the data center itself. The online controller uses the mon-
itoring information (e.g., application workload, server’s failure behavior, processor
and bandwidth usage) to create a comprehensive view of the working status of the
whole system. When events may violate the applications’availability or performance
goals, the online controller re-deploys the applications so as to maintain the depend-
ability and performance characteristics of the data center. For example, when the
availability of an application (i.e., the probability that the application is working
correctly and is not affected by hardware failures or security threats) is below the
desired value, the current allocation is adapted by deploying new application task
replicas as a response to server failures and/or by migrating individual tasks on (other
working hosts) across different deployment levels in the system. The initial alloca-
tion algorithm (see Sect. 4) is executed only if the output generated by the online
controller is unfeasible for the users’ applications.

The online controller is based on the notion of deployment levels discussed in
Sect. 2.4 and on the following remarks. First, the availability of the application
increases and the performance (response time) decreases as the number of replicas
increase. Second, the availability of the application increases as the deployment level
in which its replicas are placed increase. On the contrary, response time decreases as
the deployment level increases. Using this analysis, the online controller changes the
current allocation of a given application and redeploys it by applying the following
allocation actions.

• Launch (v,h): The online controller may have to create new application replicas
when a system failure happens. To achieve this, it uses action Launch (v, h) to
create a new virtual machine v on a physical host h, in which deploys a new replica
of the failed application.

• Migrate (v,hi ,hj): The online controller may have to locate a subset of appli-
cation’s replicas on different physical hosts as a response to performance or
availability degradation. For example, to respond to network congestion in cluster
C1, the online controller may want to move replicas initially allocated in C1 to
another cluster C2. Action Migrate (v,hi ,hj) specifies that the virtual machine v
deployed on host hi must be moved to host hj .

• Delete (v,h): Due to performance overhead, the online controller may need to
reduce the number of replicas of the application, even though dependability might
be reduced. Action Delete (v,h) removes virtual machine v, hosting application’s
replica, from host h.

Dependability-Oriented Resource Management Schemes . . . 1301

On the bases of the current allocation, system status, application tasks and the sets
specifying allocation constraints as input, the online controller generates the se-
quence of allocation actions that brings the system to a new allocation state in which
the constraints are again satisfied. The online controller is invoked when a fail-
ure or performance degradation is identified for an application. It is worth noting
that it is therefore useful for maintaining the availability and performance goals for
long-running applications which are more exposed to possible component failures
and overloads, while short-running applications can practically be managed by the
initial deployment alone.

The algorithm for online adaptation of the applications’ allocation consists of two
main conditions, one concerning availability violation due to system failures and the
other concerning performance degradation. If the real availability of an application
is less than the minimum desired value, the online controller first identifies the task
replica failures and tentatively launches new replicas at the same deployment level.
This Launch action is performed only until the current replication level is same
as that of the original level and as long as performance goals are not violated. If
the addition of application’s replicas does not satisfy the user’s requirements, the
online controller tries to move task replicas to a higher deployment level using the
Migrate action. We note that the availability increases with increasing deployment
levels. This action allows the online controller to generate the new allocation solution
without increasing the resource consumption costs. If performance is degraded by
moving tasks to higher deployment levels, additional replicas must be created to
improve the availability. To create new replicas, the online controller starts from
higher deployment levels and moves gradually to lower levels, creating the replicas
at the level where availability and performance goals are fulfilled. These actions are
realized using Migrate and Launch actions.

When real performance is less than desired minimum value, virtual machines are
deleted instead of launching new replicas, and migration takes place to lower de-
ployment levels instead of moving higher in the hierarchy. We note that the response
time of the application improves as the number of replicas and the deployment level
decreases.

5.2 Other Schemes for Runtime Virtual Machines Allocation
Adaption

In the literature other approaches for dynamic adaptation of virtual machines’ allo-
cation in data centers have been studied, even though often they focus only on some
of the constraints discussed above. The placement of application replicas to achieve
dependability becomes especially challenging when they consist of communicating
components (e.g., multi-tier web applications). Recent works on performance op-
timization of such applications (e.g., [8, 22]) address the performance impact of
resource allocation, but does not combine performance modeling with availability
requirements and dynamic regeneration of failed components.

1302 R. Jhawar and V. Piuri

The trade-off between availability and performance is considered in the literature
on dependability since increasing availability (by using more redundancy) typically
increases response time. In fact, the well-known Brewer’s theorem states that consis-
tency, availability, and partition tolerance are the three commonly desired properties
by a distributed system, but it is impossible to achieve all three [17]. Examples of
work that explicitly address this issue include [22, 24, 29, 34]. Among these so-
lutions, [34] considers the problem of when to invoke a (human) repair process to
optimize various metrics of cost and availability defined on the system. The optimal
policies that specify when the repair should be invoked (as a function of system state)
are computed off-line via Markov decision process models of the system. Similarly,
Jung et al. [22] study how virtualization can be used to provide enhanced solutions to
the classic problem of ensuring high availability while maintaining performance of
multi-tier web services. Software components are restored whenever failures occur
and component placement is managed using information about application control
flow and performance predictions.

Addis et al. [1] devise a resource allocation policy for virtualized Cloud com-
puting environments aiming at identifying performance and energy trade-off, with
a priori availability guarantees for the users. They model the problem as a mixed
integer non-linear programming problem and propose a heuristic solution based on
non-linear programming and local-search techniques. In particular, the availability
requirements are introduced as constraints, and the objective is to determine a re-
source allocation that allows improving the total profit (the difference between the
revenues from SLA contracts and the total costs). Their solution defines the follow-
ing four actions to take into account availability constraints: (i) increase/decrease the
working frequency for each server according to the application loads (a frequency
change compatible with the new application loads does not affect availability); (ii)
switch a server to low power sleep state and allocate all applications of that server on
the other available servers (some applications from the overloaded servers can be du-
plicated and allocated on another active server to satisfy availability constraints); (iii)
reallocation of class-tier applications on a server with sufficient availability assur-
ance to satisfy the performance constraints; (iv) servers exchange is used to move all
applications from a server which should be switched to low the power sleep state to a
different active server if the availability of the new server guarantees the availability
requests of all the moved applications.

Zheng et al. [ZLX2013] consider the lack of maintenance to be the root cause
for downtime events in a Cloud computing data center. To address this issue, they
first present a heuristics for resource provisioning under a given maintenance sched-
ule and, then, build on the heuristics to solve the joint resource provisioning and
maintenance scheduling problem. Yang et al. [38] propose an algorithm that uses
Markov chain models to schedule tasks so that they get the best value of utility.
A job being executed on the Cloud possesses the following factors: deadline, data,
and reward factor for completing it on time. The reward is assigned to each task
depending on the time it takes to complete the job with respect to its deadline. The
earlier it completes, the higher is the reward. If a task fails during execution, then
the time required for the task to recover is also added to the total time it takes to

Dependability-Oriented Resource Management Schemes . . . 1303

complete. The proposed algorithm includes reliability while calculating the value of
the reward for each task. The impact of the amount of time which is spent in recovery
from a failure and the useless waiting time in the task queue are added in this model.
The proposed rules are: execute a job as soon as possible when the resources are
available, and pausing a job in the queue till a resource is available or assigning a
new task to free resources. This approach has been tested against well-known task
scheduling algorithms: if there are not system failures results have quality similar to
other conventional scheduling techniques, while in the case of system failures the
proposed algorithm produces better efficiency and stability.

6 Conclusions

This chapter has discussed the state-of-art resource management schemes that are
designed to improve dependability and performance of applications deployed in
data centers based on Cloud computing environments. First, we briefly discussed
the failure characteristics of data center components and presented an approach to
evaluate the impact of system failures on users’ applications. We have formalized
the applications placement problem and formulated various placement constraints,
involving fault tolerance, security and performance conditions of both users and data
center owners. Then, we discussed virtual machine placement algorithms that satisfy
the placement constraints and reduce the management costs for the data center owner.
In particular, the approaches to virtual machines placement discussed in this chapter
apply to two different operating phases: the initial allocation of applications at their
activation, and the runtime adaption of their placement to deal with dependability
threats and performance changes. These strategies ensure dependable data center
based on Cloud computing environment for users’ applications.

References

1. B. Addis, D. Ardagna, B. Panicucci, and L. Zhang, “Autonomic management of cloud ser-
vice centers with availability guarantees,” in Proc. of 3rd International Conference on Cloud
Computing, Miami, FL, USA, July 2010, pp. 220–227

2. M. Albanese, S. Jajodia, R. Jhawar, and V. Piuri, “Reliable Mission Deployment in Vulnerable
Distributed Systems,” in Proc. of the 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops, Budapest, Hungary, June 24–27, 2013, pp.
1–8

3. M. Albanese, S. Jajodia, R. Jhawar, and V. Piuri, “Securing Mission-Centric Operations in the
Cloud,” in Secure Cloud Computing, S. Jajodia, K. Kant, P. Samarati, V. Swarup, C. Wang
(eds.), Springer, 2013

4. C. A. Ardagna, R. Jhawar, and V. Piuri, “Dependability Certification of Services: A Model-
Based Approach,” in Computing, Springer, Oct, 2013, pp. 1–28

5. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri, “On the propagation of faults and their
detection in a hardware implementation of the Advanced Encryption Standard”, in Proc. of

1304 R. Jhawar and V. Piuri

the 2002 IEEE International Conference on Application-Specific Systems, Architectures and
Processors, San Jose, CA, USA, July 2002, pp. 303–312

6. E. Bin, O. Biran, O. Boni, E. Hadad, E. Kolodner,Y. Moatti, and D. Lorenz, “Guaranteeing high
availability goals for virtual machine placement,” in Proc. of 31st International Conference on
Distributed Computing Systems, Minneapolis, USA, June 2011, pp. 700–709

7. C. Blundo, S. Cimato, S. De Capitani di Vimercati, A. De Santis, S. Foresti, S. Paraboschi, P.
Samarati, “Efficient Key Management for Enforcing Access Control in Outsourced Scenarios,”
in Proc. of the 24th IFIP TC-11 International Information Security Conference (SEC 2009),
Cyprus, Greece, May 2009

8. I. Cunha, J. Almeida, V. Almeida, and M. Santos, “Self-adaptive capacity management for
multi-tier virtualized environments,” in Proc. of 10th IFIP/IEEE International Symposium on
Integrated Network Management, Munich, Germany, May 2007, pp. 129–138

9. E. Damiani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, P. Samarati, “Key Management
for Multiuser Encrypted Databases,” in Proc. of the International Workshop on Storage Security
and Survivability, Fairfax, Virginia, USA, Nov 2005

10. S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, “Controlled
Information Sharing in Collaborative Distributed Query Processing,” in Proc. of the 28th
International Conference on Distributed Computing Systems (ICDCS 2008), Beijing, China,
June 2008

11. S. De Capitani di Vimercati, S. Foresti, S. Ja jodia, and G. Livraga, “Enforcing Subscription-
based Authorization Policies in Cloud Scenarios,” in Proc. of the 26th Annual IFIP WG 11.3
Working Conference on Data and Applications Security and Privacy, Paris, France, July 11–13,
2012

12. S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, and P. Samarati,
“Enforcing Dynamic Write Privileges in Data Outsourcing,” in Computers & Security, 2013

13. S. De Capitani di Vimercati, S. Foresti, P. Samarati, “Managing and Accessing Data in the
Cloud: Privacy Risks and Approaches,” in Proc. of the 7th International Conference on Risks
and Security of Internet and Systems (CRiSIS 2012), Cork, Ireland, Oct 2012

14. S. De Capitani di Vimercati, G. Livraga, V. Piuri, F. Scotti, “Privacy and Security in Envi-
ronmental Monitoring Systems,” in Proc. of the 1st IEEE-AESS Conference in Europe about
Space and Satellite Communications (ESTEL 2012), Rome, Italy, Oct 2012

15. S. De Capitani di Vimercati, A. Genovese, G. Livraga, V. Piuri, F. Scotti, “Privacy and Security
in Environmental Monitoring Systems: Issues and Solutions”, in Computer and Information
Security Handbook, 2nd Edition, J.Vacca (ed.), Morgan Kaufmann, Boston, 2013, pp. 835–853

16. P. Gill, N. Jain, and N. Nagappan, “Understanding Network Failures in Data Centers: Mea-
surement, Analysis and Implications”, ACM Computer Communication Review, vol. 41, no.
4, 2011, pp. 350–361

17. S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of Consistent, Available,
Partition-tolerant web services,” SIGACT News, vol. 33, no. 2, Jun 2002, pp. 51–59

18. R. Guerraoui and M. Yabandeh, “Independent faults in the cloud,” in Proc. of 4th International
Workshop on Large Scale Distributed Systems and Middleware, Zurich, Switzerland: ACM,
2010, pp. 12–17

19. U. Helzle and L. A. Barroso, “The Datacenter as a Computer: An Introduction to the Design
of Warehouse-Scale Machines”, 1st ed. Morgan and Claypool Publishers, 2009

20. F. Hermenier, S. Demassey, and X. Lorca, “Bin repacking scheduling in Virtualized
datacenters”, in Proc. of Constraints Programming, Perugia, Italy, 2011

21. F. Hermenier, J. Lawall, J.M. Menaud, and G. Muller, “Dynamic Consolidation of Highly
Available Web Applications”, INRIA, Tech. Rep. RR-7545, 2011

22. G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu, “Performance and availability aware
regeneration for cloud based multitier applications,” in Proc. of 2010 IEEE/IFIP International
Conference on Dependable Systems and Networks, Chicago, IL, USA, July 2010, pp. 497–506

23. R. Jhawar and V. Piuri, “Fault tolerance management in IaaS Clouds,” in Proc. of the 1st IEEE-
AESS Conference in Europe about Space and Satellite Telecommunications, Rome, Italy, Oct
2012, pp. 1–6

Dependability-Oriented Resource Management Schemes . . . 1305

24. R. Jhawar and V. Piuri, “Adaptive resource management for balancing availability and perfor-
mance in Cloud computing,” in Proc. of the 10th International Conference on Security and
Cryptography, Reykjavik, Iceland, Jul 2013, pp. 254–264

25. R. Jhawar and V. Piuri, “Fault Tolerance and Resilience in Cloud Computing Environments,”
in Computer and Information Security Handbook, 2nd ed., J. Vacca (ed.), Morgan Kaufmann,
2013, pp. 125–141

26. D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible, “Improving perfor-
mance and availability of services hosted on IaaS Clouds with structural constraint-aware
virtual machine placement,” in Proc. of IEEE International Conference on Services Computing,
Washington, DC, USA, Jul 2011, pp. 72–79

27. R. Jhawar, V. Piuri, and P. Samarati, “Supporting security requirements for resource manage-
ment in cloud computing,” in Proc. of the 15th IEEE International Conference on Computational
Science and Engineering, Paphos, Cyprus, Dec 2012, pp. 170–177

28. R. Jhawar, V. Piuri, and M. Santambrogio, “Fault Tolerance Management in Cloud Computing:
A System-Level Perspective,” in IEEE Systems Journal 7 (2), June, 2013, pp. 288–297

29. S. Kim, F. Machida, and K. Trivedi, “Availability modeling and analysis of virtualized sys-
tem,” in Proc. of 15th IEEE Pacific Rim International Symposium on Dependable Computing,
Shanghai, China, Nov 2009, pp. 365–371

30. K. Mills, J. Filliben, and C. Dabrowski, “ComparingVM-PlacementAlgorithms for on-demand
Clouds”, in Proc. of CLOUD’11, Washington, DC, USA, 2011, pp. 91–98

31. F. Machida, M. Kawato, and Y. Maeno, “Redundant Virtual Machine Placement for Fault
Tolerant Consolidated Server Clusters”, in Proc. of IEEE/IFIP NOMS’10, Osaka, Japan, 2010,
pp. 32–39

32. L. Shi, B. Butler, D. Botvich, and B. Jennings, “Provisioning of requests for virtual machine
sets with placement constraints in IaaS clouds,” in Proc. of IFIP/IEEE International Symposium
on Integrated Network Management, Ghent, Belgium, May 2013, pp. 499–505

33. P. Samarati and S. De Capitani di Vimercati, “Data Protection in Outsourcing Scenarios: Is-
sues and Directions”, in Proc. of the 5th ACM Symposium on Information, Computer and
Communications Security, Beijing, China, 2010, pp. 1–14

34. K. Shin, C. M. Krishna, andY. Hang Lee, “Optimal dynamic control of resources in a distributed
system,” IEEE Transactions on Software Engineering, vol. 15, no. 10, 1989, pp. 1188–1198

35. A. Singh, M. Korupolu, and D. Mohapatra, “Server-storage virtualization: Integration and load
balancing in data centers,” in Proc. of SC’08, Austin, TX, USA, Nov 2008, pp. 53:1–53:12

36. W.E. Smith, K.S. Trivedi, L.A. Tomek, and J. Ackaret, “Availability Analysis of Blade Server
Systems”, IBM Systems Journal, vol. 47, no. 4, 2008, pp. 621–640

37. K. Vishwanath and N. Nagappan, “Characterizing Cloud Computing Hardware Reliability”,
in Proc. of SoCC’10, Indianapolis, IN, USA, 2010, pp. 193–204

38. B. Yang, X. Xu, F. Tan, and D.-H. Park, “An utility-based job scheduling algorithm for cloud
computing considering reliability factor,” in Proc. of International Conference on Cloud and
Service Computing, Hong Kong, Dec 2011, pp. 95–102

Resource Scheduling in Data-Centric Systems

Zujie Ren, Xiaohong Zhang and Weisong Shi

1 Introduction

Effective resource scheduling is a fundamental issue for achieving high performance
in various computer systems. The goal of resource scheduling is to arrange the
best location of each resource and determine the most appropriate sequence of job
execution, while satisfying certain constraints or optimizations. Although the topic
of resource scheduling has been widely investigated for several decades, it is still
a research hotspot as new paradigms continue to emerge, such as grid computing
[1, 2], cloud computing [3, 4], big data analytics [5, 6], and so on.

With the explosive growth of data volumes, more and more organizations are
building large-scale data-centric systems (DCS). These systems are hosted by one
or more data centers, where they serve as IT infrastructures for data processing,
scientific computing, and a variety of other applications involving “big data”. Data-
centric systems offer new solutions for existing applications and promote warehouse-
scale data businesses such as cloud computing, cloud storage services, and so on.

Unfortunately, there is no widely accepted standard definition for data-centric
systems. However, in general, if a computing system involves large volumes of data
which are hosted by data centers, it can be labeled as “data-centric systems”. Exam-
ples include large-scale web search engine, data management systems, data mining
systems. Particularly, we focus on three kinds of data-centric systems in this chapter:

Z. Ren (�)
School of Computer Science and Technology,
Hangzhou Dianzi University, Hangzhou, China
e-mail: renzju@gmail.com

X. Zhang
Shenzhen Institutes of Advanced Technology,
Chinese Academy of Science, Shenzhen, China
e-mail: xh.zhang@siat.ac.cn

W. Shi
Department of Computer Science, Wayne State University, Detroit, USA
e-mail: weisong@wayne.edu

© Springer Science+Business Media New York 2015 1307
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_46

1308 Z. Ren et al.

• Cloud computing platforms. A cloud computing platform is depicted as a large
pool of computing and storage resources, which provides various services (IaaS,
PaaS and SaaS) and elastic resources [3] to public users via the Internet. Recent
years have witnessed a rapid growth in the number of cloud computing platforms,
such asAmazon EC2 [7], IBM Blue Cloud [8], GoogleAppEngine [9], RackSpace
[10] and Microsoft Azure [11].

• Data-Intensive Super Computing (DISC) systems. DISC systems are new forms
of high-performance computing (HPC) systems that concentrate on high-volume
data, rather than computation. DISC is responsible for the acquisition, updating,
sharing, and archiving of the data. In addition, DISC supports data-intensive
computation over high-volume data [12–14].

• MapReduce-style systems. MapReduce-style processing systems are designed to
deal with big data volume in parallel on large-scale clusters. A traditional and
popular example is Hadoop [15], an open-source implementation of the MapRe-
duce framework [16]. Hadoop can easily scale out to thousands of nodes and work
with petabyte data.

In the context of DCS, effective resource scheduling is notoriously difficult due
to the complexity and diversity of DCS. More specifically, the challenges for
scheduling optimization include the following: (1) the software/hardware stack in
data-centric systems is composed of many layers [17, 18]. The entities and objectives
of scheduling may be completely different across these software/hardware layers.
(2) the workload running the data-centric systems is significantly miscellaneous.
The workload is usually comprised of long-running applications, Web services,
MapReduce jobs, HPC jobs, and so on. Therefore, compared with the traditional
distributed systems like distributed file systems and DBMS, data-centric systems
pose many more challenges for improving resource efficiency by scheduling due to
the system complexity and workload diversity.

To address these challenges, various resource scheduling methods in the context
of DCS have been proposed in recent years. For example, motivated by the market
behaviors in the field of economics, some literature has focused on regulating the
supply and demand of resources in cloud environments, using such as commodity-
based [19, 20] or auction-based strategies [21, 22]. These resource scheduling polices
are designed for reducing cost for resource consumers and maximizing profits for
resource providers. Other literature focuses on optimizing the system throughput by
allocating resources based on various heuristics. For example, the scheduler may con-
centrate on system utilization [23], job completion time [24, 25], load balance [26],
energy consumption [27–29], data locality [30, 31], or real-time satisfaction [32, 33].

While the topic of resource scheduling in data-centric systems is broad enough
to provide enough content for a book, those existing techniques are scattered and
poorly organized. A systematic survey on the existing research advances is necessary
and helpful to further improvement and performance optimization. In this chapter,
we classify the resource scheduling approaches into three categories according to the
scheduling model: resource provision, job scheduling and data scheduling. We give a
systematic review of the most significant techniques for these categories, and present

Resource Scheduling in Data-Centric Systems 1309

some open problems to be addressed. We believe this systematic and comprehensive
analysis can help researchers and engineers to better understand those scheduling
techniques and inspire new developments within this field.

The chapter is organized as follows. Section 2 presents the definitions of a list
of terminologies used in the chapter. A taxonomy of existing works on resource
scheduling is presented in Sect. 3. In Sect. 4, we will look at four case studies, each
of which is derived from practical or productional systems. In Sect. 5, we outline
interesting future trends and challenges of resource scheduling.

2 Terminology

Due to the diversity of data-centric systems, the terminology used in this field is
often inconsistent. To clarify the description in this chapter, we define the following
necessary terminology.

Resource. Resource is a collection of components that can be scheduled to perform
an operation. Some traditional examples of resources are CPU cores for computing,
memory spaces for storage, network links for transferring, electrical power, and so
on.

Task. A task is an atomic action from the scheduler’s point of view. A Task is defined
by a collection of input data and corresponding operations.

Job. A job is a group of tasks that will be executed on a set of resources. The
definition of jobs is recursive, which means that jobs are composed of sub-jobs
and/or tasks, and sub-jobs can be decomposed further into atomic tasks.

Service. A service is a program to enable access to one or more resources, where the
access is provided by a predefined interface. For instance, cloud computing, which
is provisioned as services, are broadly divided into three categories: software-as-a-
service (SaaS), platform-as-a-service (PaaS), and infrastructure as-a-service (IaaS).

Data-Centric Systems. Although there is no de-facto standard definition for the
term “data-centric systems”, they are very common in various forms. In most cases,
they are characterized (partially or fully) by the following features:

• managing of large volumes of data, in range of petabyte-level and beyond
• hosted by one or more data centers
• involving complex software/hardware stacks
• serving for multiple users and execute diverse workloads

Generally, many computing systems can be labeled as “data-centric systems”, such
as web search engines, data management systems, and data mining systems. To sum-
marize, this chapter concentrates on three kinds of traditional data-center systems,
including cloud computing platforms, data-intensive super computing systems, and
MapReduce-style systems.

1310 Z. Ren et al.

3 Classification and State-of-the-Art

In this section, we present a broad view of resource scheduling issues in data-centric
systems. As data-centric systems involve multiple software layers, scheduling oper-
ations take place on multiple layers. For example, assume that a set of MapReduce
jobs are submitted to a data processing application, which is hosted on a cloud plat-
form like Amazon EC2, the scheduling operations will be conducted multiple times.
Firstly, when the application for processing MapReduce jobs, such as Hadoop, is
loaded on the cloud, the application needs to be provisioned with a certain amount of
resources, which is often referred to as resource provision (aka. resource allocation).
Secondly, when the set of job requests are submitted to the application, the scheduler
in the application needs to map the set of jobs to multiple servers in a certain manner,
which is also known as job scheduling. Thirdly, to improve the resource utilization or
job execution efficiency, the scheduler within storage systems needs to schedule the
data transfer, replication, distribution, either during the job execution or in advance,
which is often referred to as data scheduling.

3.1 Hierarchy of Resource Scheduling in DCS

In fact, similar as in the context of a data processing system, the resource scheduling
issue in DCS also can be generally divided into the problems of resource provision,
job scheduling and data scheduling. Although data-centric systems come with vari-
able implementations, we still can abstract a common hierarchical architecture of
various data-centric systems from the perspective of scheduling, which is depicted
in Fig. 1.

• Resource provision. Resource provision is to allocate resources to satisfy multi-
ple applications efficiently. In one aspect, on the top layer of data-centric systems,
various applications, VM instances, Web services etc., run on the data-centric sys-
tems. They demand a certain type and amount of resources when they are loaded.
In the other aspect, the data-centric systems is a unified resource platform, which
holds massive computation and storage resources in the data centers. The re-
sources are allocated to users based on a certain policy to satisfy the requirements
of resource providers and users. Therefore, the scheduling issue in this layer is
often also referred to as resource allocation [34–37].

• Job scheduling. Within a data-centric system, various jobs, such as HPC and
MapReduce-style jobs, will be submitted in parallel by many applications (or
users). Simple scheduling algorithms such as FIFO, are hard to satisfy perfor-
mance requirements in most cases. To improve the job’s execution performance,
a scheduling algorithm is needed to assign jobs or tasks to appropriate nodes in
a certain order. Therefore, the scheduling issue in this layer is also known as job
scheduling.

Resource Scheduling in Data-Centric Systems 1311

Fig. 1 Resource scheduling hierarchy in DCS

• Data scheduling. On the storage layer of data-centric systems, there are large vol-
umes of data stored and managed by distributed nodes. The goal of data scheduling
is two-fold: in one aspect, data-centric systems employ various data placement
and migration techniques to increase the storage resource utilization, data re-
liability and availability; in the other aspect, data-centric systems apply online
scheduling techniques for data prefetching, data transfer etc., for accelerating the
job (request) execution, aiming to reduce to data access/transfer latency Fig. 2.

Resource Scheduling

Data Scheduling

Offline scheduling

migration[75]
replication[76, 77]

placement[78]

Online scheduling

transfer[70, 71]
prefetch[72]

distribution[73, 74]

Job Scheduling

Static scheduling

heuristic[65, 13]
optimization[66, 67]

utility[68, 69]

Dynamic scheduling

scalability[59]
fairness[30][60]
data locality[61]

efficiency[24][33]
deadline[62, 63]

QoS[64]

Resource Provision

Utility-oriented

energy conservation[55]
cost reduction[35, 56]

workload balance[57, 58]

SLA-oriented

static[47, 48]
dynamic[49, 50]
predictive[51]

reactive[52, 53]
hybrid[54]

Economic-based

contracts[38, 39]
bargaining[40, 41]
commodity[42, 20]

auction[43, 44]
posted price[45, 46]

Fig. 2 Resource scheduling taxonomy in DCS

1312 Z. Ren et al.

3.2 Resource Provision

During the past few years, cloud computing has become a main trend in delivering IT
services, where the computing and storage capabilities are shared among multiplex
many users. In a cloud computing platform, the resources are available on-demand,
charged on a pay-as-you-go basis. In one aspect, cloud providers hold enormous
computing resources in their data centers, while in the other aspect, cloud users lease
the resources from cloud providers to run their applications. Usually, the resource
requirement imposed by cloud users are heterogeneous [18] and time-varying [79,
80], which makes the scheduling much more complicated.

According to the provision model, we classify the resource provision techniques
into three groups: economic-based, SLA-oriented, and utility-oriented. The first and
second groups focus on resource provision issues between providers and consumers
using economical models or SLA contracts, while the third group concentrates on
high-efficiency resource management from the perspective of the data center owner.

3.2.1 Economic-Based Resource Provision

To maximize benefits on cloud platforms, many researchers proposed various eco-
nomic models to effectively solve the issues of scheduling problems in the grid or
cloud environments, such as commodity market [81], posted price [45, 82], tender-
ing/contract [38], bargaining [83, 84], auction [43, 21], and so on. Economics-based
methods are very suitable for handling the provision issues in a cloud environment,
as they have been effectively utilized in the field of economics to regulate the supply
and demand of limited resources.

The concept of a commodity market model is similar to commodity trade in real
markets in our daily life. Resource providers specify their service prices and charge
users according to the amount of resources they use. The users can freely choose a
proper service, but the price is unable to change. The prices can be generated based
on the resource supply and demand. Generally, the resources are priced in such a
way that supply and demand equilibrium is reached.

The posted price model is similar to the commodity market model. The only
difference is that the posted price model advertises special offers in order to attract
consumers. The posted-price offers will have usage conditions, but they might be
attractive for some users because the posted prices are generally cheaper compared
to regular prices.

Although some economic-based resource allocation are non-price-based [85],
most of the economic-based schedulers emphasize the schemes for establishing an
appropriate price based upon their users’ demands. They in turn determine a proper
price that keeps supply and demand in equilibrium. Several market principles are
considered in the process of figuring out the price scheme, including equilibrium
price [82], Pareto efficiency [86], individual rationality [87], stability [88], and
communication efficiency [55].

Resource Scheduling in Data-Centric Systems 1313

3.2.2 SLA-Oriented Resource Provision

Although economic-based methods achieve impressive performances for allocating
resources, there exist some limitations in some cases. The limitations lie in the
difficulty for users to determine an quantized resource demand. When a user sends
a request for resources to a provider, the provider looks for resources to satisfy the
request and assigns the resources to the requesting users, usually as a form of virtual
machines with different capabilities. However, for the users of the systems it would
be difficult, even unable, to make a decision about the number and types of resources
needed, especially when the request is time-varying. The ultimate concern of the user
is to meet application-level requirements, instead of determining resource allocation
needs.

To address such problems, many researchers proposed dynamic provisioning of
resource using virtualization. The amount of provisioned resource can be adjusted
with the workload fluctuates over time. Meng et al. [47] proposed a joint-VM provi-
sioning approach in which multiple VMs are consolidated and provisioned together,
based on an estimate of their aggregate capacity needs. This approach exploits statis-
tic multiplexing among the workload patterns of multiple VMs to improve the overall
resource utilization.

Garg et al. [49] proposed a dynamic resource provision strategy that considers
SLAs of different types, particularly transactional and non-interactive applications.
Both types of applications have different types of SLA requirements and specifica-
tions. For transactional workload, the placement decisions are made dynamically
to respond to the workload variation. For non-interactive workload, the resource
manager predicts the future resource availability and schedules the jobs by stealing
CPU cycles.

Cloud providers such asAmazon EC2, usually offer differentiable QoS guarantees
for users, which are essential for ensuring the service quality users received. The QoS
guarantees are defined in the form of SLA (Service Level Agreement). Under such
circumstances, cloud providers are delegated to make the decisions about the number
and types of resources allocated. SLA-oriented methods are proposed to allocate
resources to each user with the fulfillment of SLA [89]. Besides satisfying the SLA,
these methods also concern other system performance metrics, such as improving
the resource utilization [35], energy conservation [90], and cost reduction [56].

3.2.3 Utility-Oriented Resource Provision

Besides these two kinds of resource provision, there are some provision techniques
that neglect actual levels of services required by different users and assume all
requests are of equal importance. These provision techniques focus on the sys-
tem utilization, rather than the profit and SLA contracts, so they are labeled as
utility-oriented resource provision.

Paragon [35] is a heterogeneity and interference-aware data center sched-
uler, which supports the classification of an unknown application with respect to

1314 Z. Ren et al.

heterogeneity and interference. Paragons classification engine utilizes existing data
from previously scheduled applications and offline training and requires only a min-
imal signal about a new workload. It uses singular value decomposition to perform
collaborative filtering and identify similarities between incoming and previously
scheduled workloads.

Researchers [90] improve the service scheduling by historical workload traces
characterization. The long-term workload patterns are derived by workload dis-
cretization. The resources are allocated predictively by the predicted base load at
hour-level scale and reactively allocated to handle any excess workload at minute-
level scale. The combination of predictive and reactive provisioning contributes to
meeting SLA requirements, conserve energy, and reduce allocation cost.

Beloglazov et al. [55] proposed resource provisioning and allocation algorithms
for energy-efficient management in cloud computing environments. The proposed
energy-aware allocation heuristics provision data center resources to client applica-
tions in a way that improves energy efficiency of the data center, while delivering
the negotiated Quality of Service (QoS).

Birke et al. [91] characterized the evolution and the elasticity of workload demands
in several thousands of servers at geographically distributed data centers, to improve
the effectiveness of capacity planning and resource provision in data centers.

Xiong et al. [56] proposed a SLA (Service Level Agreement)-based approach for
allocating resources to satisfy the quality of service (QoS) constraints while mini-
mizing the total cost of computational power. These QoS metrics include percentile
response time, cluster utilization, packet loss rate and cluster availability.

Economic-based methods are very suitable for scheduling resources in cloud envi-
ronments, for regulating the supply and demand of resources at market equilibrium.
With the advent of economic-based methods, SLA-oriented methods are promoted
to differentiate QoS guarantees for users. SLA-oriented methods are suitable for the
users that are only concerned with application-level requirements, rather than the
amounts and types of involved resources. Utility-oriented methods aim to improve
the system utilization, regarding all resource requests as having equal importance.
Therefore, utility-based methods are applicable in cluster computing systems that do
not have to consider customer-driven service managements.

3.3 Job Scheduling

Once the resources are provisioned to applications (or VM instances), each applica-
tion needs to schedule the allocated resources to perform various computation jobs.
In this context, the scheduling problem concerns matching the jobs to the available
resources for maximization of system throughput, execution efficiency, and so on.
The optimal matching is an optimization problem with NP-complete complexity.

Due to the high diversity of jobs and situations, there is no general job scheduling
algorithm that can fit for all jobs. The most widely-used methods are heuristic meth-
ods, such as genetic algorithms, tabu search and simulated annealing. These methods

Resource Scheduling in Data-Centric Systems 1315

have been successfully applied as approximately optimal algorithms to solve the job
scheduling problem.

In this chapter, we classify these job scheduling methods into static scheduling and
dynamic scheduling. Static scheduling techniques are suitable for the environments
where the details of all jobs and resources are known prior to the scheduling being
performed. On the contrary, dynamic job scheduling is performed on the fly each
time a job arrives. Dynamic scheduling techniques are applied in the environments
where job information and resource states cannot be available in advance.

3.3.1 Static Job Scheduling

Static scheduling techniques are commonly used in HPC and computing grid envi-
ronments. In order to minimize the turnaround time, many approximation algorithms
have been proposed, such as genetic algorithms [92], simulated annealing algorithms
[93], and ant colony algorithms [94]. Some of these approximation methods are in-
spired by nature’s phenomena. They do not guarantee an absolute optimal solution,
but they are guaranteed to find an approximate optimal solutions in a timely manner.
The quality of these solutions can be tuned by a series of parameters.

Genetic Algorithm is an evolutionary technique for solving job scheduling prob-
lem where the solution space is large. Using a genetic algorithm, the scheduling
problem is represented as a genome, while a scheduling genome can be defined by
the sequence of tasks. Each task and its corresponding start time represents a gene,
which is a unit of genome.

The Simulated Annealing (SA) is a well-known greedy method where the search
process is simulated by the thermal procedure of obtaining low-energy crystalline
states of a solid. To avoid falling local optimum, SA results in a worse solution in
some cases, however in most cases it results in a better solution. Analogous to the
thermal procedure of metal smelting, the probability is based on the temperature that
decreases for each iteration. This means, as the search progresses, a worse solution
is increasingly difficult to be generated.

So far, static scheduling has been widely applied in the field of grid computing.
Braun et al. [95] evaluated and compared the efficiency of 11 heuristics, includ-
ing GA, SA, Tabu, Minimum Execution Time (MET), Minimum Completion Time
(MCT), and so on. This study gives valuable guidelines for choosing a technique
which outperforms another under a specific circumstance. More details on static
scheduling can also be found in [96].

3.3.2 Dynamic Job Scheduling

Dynamic scheduling are applicable to the situation when the jobs arrive one after
another, rather than being fixed. During the jobs execution, available resources can be
scheduled on the fly to handle the new coming jobs. The goals of various dynamic job
scheduling methods differ greatly. Besides system throughput, many job scheduling

1316 Z. Ren et al.

methods are designed to emphasize other metrics in certain environments, including
fairness, load balance, QoS guarantee, energy consumption, and so on.

Schedulers in Hadoop are a representation of the implementation of dynamic job
scheduling. The original default scheduler in Hadoop uses FIFO policy to sched-
ule jobs. Later significant research efforts have been devoted to developing more
effective and efficient schedulers. Now, the default scheduler in Hadoop is replaced
by FAIR scheduler [60]. Moreover, a variety of alternative job schedulers, i.e. De-
lay Scheduler, Dynamic Proportional Scheduler, Capacity Scheduler etc., have been
proposed.

Zaharia et al. [60] proposed FAIR Scheduler, with a rational of allocating every
job a fair share of the slots over time. In fair scheduler, jobs are assigned to pools,
which are assigned a guaranteed minimum quota of logic units of resources, aka.
slots. Slots are first allocated into pools and then allocated to individual jobs within
each pool. Each pool is given a minimum share and the sum of minimum quota
of all pools does not exceed the system capacity. Idle slots are shared among jobs
and assigned to the job with the highest slot deficit. Due to its simplicity and high
performance, FAIR scheduler has gained a high popularity in Hadoop community.
However, some recent work [97] has shown that the FAIR scheduler is not very
well-suited for scheduling diverse workloads with considerably small jobs.

Similar as FAIR scheduler, Capacity Scheduler was also developed to ensure a fair
allocation of computing resources among large number of users. The jobs from these
users are submitted to different queues. Each queue is configured with a fraction
of resource capacity, and free resources can be shared among the queues. Within
each queue, the share of resources allocated to a user is limited, this is to guarantee
that no user occupies or controls the resources exclusively. In addition, jobs can
be configured with priorities. Jobs with high priorities can be allocated resources
preferentially.

Delay scheduling method proposed by Zaharia et al. [31] preferentially schedule
jobs to nodes where these jobs have good data locality. The method would schedule
the job of which the input data is available on a node with free slots, rather than
the job with the highest priority. Delay scheduling performs well in typical Hadoop
workloads because there are multiple locations where a task can run to access each
data block.

YARN [59], known as the next generation of Hadoop compute platform, sepa-
rates resource management functions from the programming model. This separation
makes various alternative programming models besides MapReduce applicable on
YARN, such as Dryad [98], Spark [99], and so on.

InYARN, the functionalities of the JobTracker node in traditional Hadoop is split
and performed by two components: a global ResourceManager and per-application
ApplicationMasters. The ResourceManager allocates resources among all the appli-
cations in the system. The ResourceManager cooperates with per-node slaves, and
form the data-computation framework. The ApplicationMaster is responsible for
negotiating resources from the ResourceManager and working with the computing
slaves to execute and monitor the tasks.

Resource Scheduling in Data-Centric Systems 1317

Chang et al. [24] proposed a theoretical framework for optimal scheduling in
MapReduce. The authors formulate a linear program which minimizes the job com-
pletion times to solve the problem. Given the hardness at solving the linear program,
approximate algorithms are designed to achieve feasible schedules within a small
constant factor of the optimal value of the objective function.

Sandholm et al. [100] developed a dynamic priority (DP) scheduler, which allows
users to bid for task slots or quality of service levels dynamically. For a given user,
the budget of slots is proportional to the spending rate at which a user has previously
bid for a slot and inversely proportional to the aggregate spending rate of all existing
users. When a group of slots have been allocated to one user, that same spending
rate is deducted from the users budget. Using this mechanism, the scheduler allows
users to optimize and customize their slots allocation according to job requirements
and system overhead.

Sparrow [33] provides low response times for parallel sub-second jobs that are
executed on a large-scale cluster. The authors focus on short task workload scheduling
for low-latency and high throughput. The schedulers run on a set of machines that
operate autonomously and without shared state. Such a decentralized design offers
attractive properties of high scalability and availability.

Energy-aware methods aim to optimize energy consumption by job dispatching.
The method proposed by Wang et al. [29] and the one proposed by Kliazovich et al.
[26] belong to this group of methods. Wang et al. [101] presents a thermal aware
scheduling algorithm for data centers to reduce the temperatures inside of the data
center. An analytical model, which describes data center resources with heat transfer
properties and workloads with thermal features are used to guide the scheduler to
find suitable resources for workload execution.

Nguyen et al. proposed a reputation-based resource selection scheme to reduce
the energy waste caused by failures. They introduced a reputation model, called
Opera, combined with a vector representation of the reputation and the just-in-time
feature that represents the real-time system status. Opera enables the scheduler in
Hadoop to select appropriate nodes which helped to reduce not only the number of
re-executed tasks, but also improve the energy efficiency of the whole system.

Job scheduling focused on matching multiple jobs to multiple nodes using various
heuristics. Scheduling techniques for MapReduce jobs usually use dynamic heuris-
tics, such as fairness, data locality, and execution efficiency. While for HPC jobs,
the scheduling techniques use static heuristics, such as OLB (Opportunistic Load
Balancing), MET, MCT, GA, SA, and so on.

3.4 Data Scheduling

In the early stage of distributed computing systems, such as data grids, the data
scheduling was coupled with job scheduling. In this mechanism, the cost for data
access and movement are taken into considerations when deciding job scheduling.
However, due to the increased growth of data size, data scheduling was gradually

1318 Z. Ren et al.

decoupled from job scheduling [102], and became an important issue in large-scale
distributed systems.

There have been several recent studies investigating new approaches for data man-
agement and data transfer in distributed systems. These approaches can be classified
into two categories: online data scheduling and offline data scheduling. The former
focuses on scheduling data for serving the job (request) execution. The main goal is
to reduce to data access latency and improve the job (request) execution efficiency.
The latter handles the data scheduling for improving the storage resource utiliza-
tion or improving the data reliability. These data scheduling approaches are offline
because they are not directly performed for the online job execution.

3.4.1 Online Data Scheduling

Balman et al. [70] developed data scheduling methodologies and the key attributes for
reliability, adaptability and performance optimization of distributed data placement
tasks. An adaptive scheduling of data placement tasks is proposed for improving
end-to-end performance. The adaptive scheduling approach includes dynamically
tuning data transfer parameters over wide area networks for efficient utilization of
available network capacity and optimized end-to-end data transfer performance.

To optimize the performance of data transfer, Chowdhury et al. [71] proposed a
global data transfer management architecture and a set of network resource schedul-
ing algorithms. Guo et al. [103] decrease the network traffic via inter-flow data
aggregation with an efficient incast tree.

Al-Fares et al. [104] proposed a dynamic flow scheduling system, called Hed-
era, for multi-stage switch topologies found in data centers. Hedera collects flow
information from constituent switches, computes non-conflicting paths for flows,
and instructs switches to re-route traffic accordingly. The design goal of Hedera is
to maximize aggregate network utilization-bisection bandwidth and to do so with
minimal scheduler overhead or impact on active flows.

Seo et al. [72] proposed prefetching and pre-shuffling optimization to improve the
MapReduce performance. The prefetching scheme involves the intra-block prefetch-
ing and the inter-block prefetching. The prefetching scheme exploits data locality,
while the pre-shuffling scheme significantly reduces the network overhead required
to shuffle key-value pairs.

3.4.2 Offline Data Scheduling

To improve data locality, Abad et al. [76] observed the correlation between benefits
of data locality and data access patterns. They propose a distributed adaptive data
replication algorithm, called DARE, that aids the scheduler to achieve better data
locality. DARE addresses two problems, how many replicas for each file and where
to place them. DARE makes use of probabilistic sampling and a competitive aging
algorithm independently at each node. It takes advantage of existing remote data
accesses in the system and incurs no extra network usage.

Resource Scheduling in Data-Centric Systems 1319

To save the energy consumption caused by communication fabric, DENS [26]
combines energy efficiency and network awareness to achieve the balance between
job performance, QoS requirement, traffic demands and energy consumed by the data
center. DENS is designed to avoid hotspots with a data center while minimizing the
number of computing servers required for job execution. DENS is particulary relevant
in data centers running data-intensive jobs which produce heavy data transfer.

Ranganathan et al. [102] developed a data scheduling framework to satisfy various
and general metrics and constraints, including resource utilization response times.
The data movement operations may be either tightly bound to a job, or performed by
a decoupled, asynchronous process on the basis of historical data access patterns.

In the context of traditional data storage systems, such as data grids, various
offline data scheduling have been proposed and implemented. Offline data schedul-
ing focuses on data storage, transfer, copy and replication management, aiming to
improve the utilization ratio of storage resources and data access QoS, instead of
directly serving the process of task execution. Online data scheduling focuses on job
execution acceleration, and explores the strategies of data prefetch, parallel transfer
and distribution for task execution procedure on a massive data processing frame-
work. Compared with offline data scheduling, online data scheduling overcomes the
limitation of lack-responsivity to job execution, and limits data I/O latency during
the job execution.

4 Case Studies

Section 3 reviewed recourse scheduling techniques from three aspects, resource pro-
vision, job scheduling and data scheduling. In this section, we present how these tech-
niques work in practical production systems. Particularly, we have chosen Amazon
EC2, Dawning Nebulae, Taobao Yunti, and Microsoft SCOPE as the cases for study.

4.1 Amazon EC2

Amazon EC2 is one of the most popular IaaS cloud platforms which allow users
to rent computing and storage resources to run applications, typically in forms of
virtual machines. EC2 enables users to create virtual machines, each of which is
called an instance. EC2 defines several type of instances,and configures each type
with different computing power, memory and storage capacity.

EC2 applies commodity market and posted pricing models for provisioning the
resource to users. More specifically, EC2 creates separate resource pools and has
separate capacities for each type of VM. The market price for each VM type can
fluctuate periodically to reflect the balance between demand and supply. Using the
commodity market model, EC2 announces its service price according to the resource
capacity and configuration. Customers can choose an appropriate service that meet

1320 Z. Ren et al.

their objective. The pricing policy can be derived from the resource supply and
demand. In general, services are priced in such a way that achieves a supply and
demand equilibrium. Using the posted price model, EC2 announces the special
offers as a supplement of regular prices. The scheduling compares whether special
offers can meet the requirement of users, and match the supply and demand if they
are matched. If not, the scheduling apply commodity strategy as usual.

In addition, EC2 offers three purchasing models to facilitate the cost optimization
for users. The models provide different guarantees regarding when instances can be
launched and terminated.

1. On-Demand instances, which allow users to pay an hourly fee with no guarantee
that launching will be possible at any given time.

2. Reserved instances, which allow users to pay a low, one-time fee and in turn
receive a significant discount on the hourly usage charge for that instance.Paying
a yearly fee buys clients the ability to launch one reserved instance whenever they
wish.

3. Spot instances, which enable users to bid for unused Amazon EC2 capacity. The
Spot Price changes periodically based on supply and demand, and customers
whose bids meet or exceed it gain access to the available Spot Instances.

4.2 Dawning Nebulae

Supercomputers are regarded as the important infrastructure to carry out high per-
formance computing. They are expected to run not only computation-intensive
applications but also data-intensive applications, which challenges the job scheduling
softwares on these supercomputers. To satisfy the requirements of different users, the
scheduling softwares must exploit various policies, and assign different kinds of jobs
flexibly. Here, we use Dawning Nebulae as a case of the job scheduling techniques
applied to supercomputers.

Dawning Nebulae is a supercomputer developed by ChineseAcademy of Sciences.
It includes more than 9200 multi-core CPUs, and more than 4600 NVIDIA GPUs.
It achieves a performance of more than 1270 trillion operations per second or 1.27
petaflops [105]. It ranked second in the TOP 500 list of the world’s most powerful
supercomputers released in June 2010 [106]. Dawning Nebulae has been set up
in NSCC-Shenzhen[http://www.nsccsz.gov.cn]. It provides about 200 user groups
and research entities with application services such as weather forecast, ocean data
simulation, gene research, universe evolution, and so on.

Dawning Nebulae includes huge computing resource and storage resource, and
has to depend on a special and powerful software platform to manage these resource.
Platform LSF (Load Sharing Facility) [107] is such a platform. It contains multiple
distributed resource management softwares, and it can connect computers into a
cluster, monitor loads of systems, schedule and balance workload and so on. Here,
we only focus on the scheduling software of Platform LSF, and take it as the scheduler
of Dawning Nebulae.

Resource Scheduling in Data-Centric Systems 1321

The scheduler provides several scheduling policies like first-come-first-service
(FCFS), preemption, fair share, and so on. It supports multiple policies co-existing
in the same cluster. For convenience of description, we introduce these policies one
by one.The first policy is FCFS. According to this policy, the scheduler attempts to
assign jobs in the order submitted. However, the shorter jobs with higher priorities
will be pending for a long time if a long job with low priority was submitted earlier.

The second policy is the preemption policy. Preemption is not enabled until all
the job slots in a cluster are occupied. After receiving the job with high priority, the
scheduler suspends one job with low priority to free the slots occupied by the job.
And then, it assigns the job with high priority to these slots. It resumes the suspended
job if free job slots are available.

The third policy is the fair share policy. According to this policy, the scheduler
divides cluster resources into shares, and assign shares to users. The policy can avoid
the cluster resources monopolized by one user. The forth policy is exclusive policy.
With this policy, the scheduler allows a job exclusive use of specified server hosts,
and does not preempt the exclusive jobs. The last policy is the backfill policy. Under
the policy, the scheduler allows small jobs to use the slots reserved for other jobs.
However, it will kill those small jobs if they cannot be finished within their run limit.

4.3 Taobao Yunti

With the rapid growth of data volume in many enterprises, effective and efficient
analytics on large-scale data becomes a challenging issue. Large-scale distributed
computing systems, such Hadoop, have been applied by more and more organiza-
tions. Here, we take a Hadoop production cluster in Taobao [108] as another example
to illustrate job scheduling techniques.

Taobao is the biggest online e-commerce enterprise in Asia, ranked 10th in the
world as reported by Alexa. The Yunti cluster is an internal data platform in Taobao
for processing petabyte-level business data mostly derived from the e-commerce web
site of “www.taobao.com”. The total volume of data stored in theYunti has exceeded
25 PB, and the data volume grows with the speed of 30 TB per day.1 The goal of
the Yunti cluster is to provide multi-user businesses with large-scale data analysis
service for some online applications. Yunti is built on Hadoop 0.19, with some slight
modifications.

In the early stage, the Yunti cluster directly employed FAIR [60] to allocate the
slots because FAIR achieves high performance and supports multi-user clusters.
However, after several months of system running, it is observed that FAIR is not
optimal for scheduling small jobs within a miscellaneous workload. The goal of
FAIR is to assure the fairness among all jobs. FAIR always reassigns idle slots to the
pool with the highest slot deficits. However, small jobs usually apply fewer slots,
thus the slot deficits of small jobs are often smaller than the ones of normal jobs.
Therefore, small jobs are more likely to suffer from long waits than the other jobs.

1 These statistics were released on the year of 2012.

1322 Z. Ren et al.

The users of Yunti submitting small jobs, including application developers, data
analysts and project managers from different departments in Taobao, will complain
about the long-waits.

As new workloads which feature short and interactive jobs are emerging, small
jobs are becoming pervasive. Many small jobs are initiated by interactive and online
analysis, which requires instant and interactive response. Ren et al. [97] proposed
and implemented a job scheduler called Fair4S, to optimize the completion time of
small jobs. Fair4S introduces pool weights and extends job priorities to guarantee
the rapid response for small jobs. It is verified that Fair4S accelerates the average
waiting times by a factor of 7 compared with FAIR scheduler for small jobs.

4.4 Microsoft SCOPE

SCOPE [109] is a distributed computation platform in Microsoft for processing large-
scale data analysis jobs and serving a variety of online services. Tens of thousands
of jobs are executed on SCOPE everyday. Scope integrates parallel databases with
MapReduce systems, achieving both good performance and scalability.

SCOPE relies on a distributed data platform, named COSMOS, for storing large
volumes of data sets. COSMOS is designed to run on tens of thousands of servers and
has similar goals to other distributed storage systems, like Google File System [110]
and Hadoop Distributed File System [111]. COSMOS is an append-only file system
optimized for large sequential I/O.All writes are append-only, and concurrent writers
are serialized by the system. Data are distributed and replicated for fault tolerance
and compressed to save storage and increase I/O throughput.

In SCOPE, the executions of jobs are scheduled by a centralized job manager.
The job manager constructs the job graph (directed acyclic graph) and schedules
the tasks across the available servers in the cluster. The job manager simplifies
job management by classifying distinct types of vertices into separate stages. Like
JobTracker in Hadoop, the job manager maintains the job graph and monitors the
status of each vertex (task) in the graph.

As SCOPE is deployed on globally distributed data centers, an automated mech-
anism to place application data across these datacenters is quite necessary. SCOPE
employs a data placement algorithm, called Volley [112], to minimize the bandwidth
cost and data access latency. Volley analyzes the logs using an iterative optimization
algorithm based on data access patterns and client locations, and outputs migration
recommendations back to the cloud service.

Volley periodically analyzes COSMOS to determine whether the migration should
be executed. To perform the analysis, Volley relies on the SCOPE to accelerate the
analysis efficiency. The analysis procedure is composed of three phases. In Phase 1,
a reasonable initial placement of data items based on client IP addresses is computed.
In Phase 2, the placement of data items by moving them freely over the surface of
the earth is improved iteratively, which consumes the dominant computational time.
Phase 3 iteratively collapses data with the satisfaction of capacity constraints of data
centers.

Resource Scheduling in Data-Centric Systems 1323

5 Future Trends and Challenges

The topic of resource scheduling has been investigated in a great deal of literature,
however, this is still an emerging field and there are many open problems in the area
of data-centric systems. In this section, we enumerate a few such challenges that
may help to inspire new developments in the field.

Increasing System Heterogeneity. With the progress of IT technologies, new
software and hardware products emerge increasingly. In order to improve system
performance and satisfy users’ requirements, data centers have to adopt timely new
products such as SSD and SDN [113], and hence they always include different types
of equipment, even multiple generation equipments of the same type. Data cen-
ters are heterogeneous inevitably, and their heterogeneity grows with the adoption
of new equipments. The ever-growing heterogeneity challenges resource provision
especially when considering the different requirements from users.

It’s very common that some tasks are designed to run on some machines for special
purposes, i.e. the machines with special accelerators for an expected performance
goal. Users define the constraints or preference of the machines to run their tasks
by task specifications, which provide detailed requirements of users, meanwhile this
makes resource provision more difficult and complicated. In addition, such resource
affinity and constraints also complicate task migration.

Scalable Decentralized Scheduling. In a system with a centralized architecture,
scheduling decision are made by a master node. The node maintains all information
about tasks and keeps track of all available resources in the system. A centralized
scheduler can be deployed easily, while its performance is limited by the master
node. However, in a decentralized system, a master node and multiple slave nodes
cooperate to schedule tasks. Hence, the scheduler in such a system can assign tasks
with higher performance and scalability.

Decentralized schedulers have begun to attract more and more attentions as the
scales of data centers grow. In decentralized schedulers, the nodes involved in co-
scheduling are assumed to be autonomous, and responsible for their own scheduling
decisions. However, if these nodes make these decisions independently, they can
only optimize their performance rather than the performance of the whole system.
New techniques and models need to be designed to schedule jobs, and hence optimize
the performance of the whole system.

Enhancing Information Sharing. In data-centric systems of which the resources
belong to multiple providers, users request resources to run their applications, while
providers respond to these requests, and allocate resource for the users. If providers
and users can share detailed information about resources and applications, schedulers
can make efficient decision, and optimize system performance. However, providers
and users only reveal limited information about resources and applications due to
security concerns as well as other reasons. Some works were carried out to capture
characters of workloads by analyzing historical trace, which makes it feasible to opti-
mize job schedulers according to workloads. For periodic jobs, if we can derive their

1324 Z. Ren et al.

characters, we can optimize the scheduling of these kind of jobs by pre-scheduling.
Unfortunately, there exist few examples of such work.

Schedulability Analysis. When processing real-time jobs like interactive queries,
periodic jobs and so on, a data-centric system must satisfy the time constraints of
them. However, it is challenging to satisfy the time constraints because the system
has to respond to the requirements from multiple users with relative QoS, espe-
cially when the job scales increase dramatically. And hence, an efficient and smart
scheduler is needed to handle these kind of real-time jobs. Unfortunately, not all
data-centric systems are suitable for real-time jobs. So it is very important to analyze
whether a system can process real-time jobs with the specified time constraints be-
fore submitting real-time jobs to the system. There exist some research works which
carry out scheduability analysis, however they only apply to multiprocessors [114]
and virtualized platforms [115]. Besides, the models in these works are simple and
only suitable for computing resources. Therefore, these works cannot be exploited
to do scheduability analysis in data-centric systems, and new scheduability analysis
techniques should be investigated as soon as possible with the consideration of com-
puting resources, storage resources, network bandwidth, job scale, data distribution,
resource competition, dynamic load, and so on.

Predictive Resource Allocation. Resource demand prediction [116] plays an es-
sential role in dynamic resource allocation and job scheduling. For example, if a
user has a job that needs to be finished within a certain deadline, an adequate amount
of computing resources must be allocated. To determine whether or not a certain
amount of resources are “adequate”, the user needs to predict the completion time
of the job with the resources. However, due to the heterogeneity and dynamism of
the workload, the prediction of future resource demands would be hardly accurate.
Reiss et al. [18] analyzed Google trace data [117] to reveal several insights which
are helpful for improving the resource scheduling in a cloud infrastructure. The most
notable characteristics of workload are heterogeneity and dynamism, which make
the resource demand prediction very difficult.

6 Conclusions

In this chapter, we gave a survey of the scheduling techniques used in the three
kinds of data-centric systems, including cloud computing platforms, data-intensive
super computing systems, and MapReduce-style systems. According to the schedul-
ing model, we categorized these techniques into three groups, including resource
provision, job scheduling and data scheduling. We reviewed the new techniques
systematically and outlined the open problems in each level. Further more, four
practical systems selected from the industrial field are discussed to further under-
stand the scheduling techniques and their applications. Finally, we concluded with
some open problems in resource scheduling, aiming to inspire new developments
within this field.

Resource Scheduling in Data-Centric Systems 1325

Acknowledgement We thank Raymond Darnell Lemon for his valuable comments on the early
version of this chapter. This research is supported by NSF of Zhejiang (LQ12F02002), NSF of China
(No. 61202094), Science and Technology Planning Project of Zhejiang Province (No.2010C13022).
Xiaohong Zhang is supported by Ph.D. foundation of Henan Polytechnic University (No. B2012-
099). Weisong Shi is in part supported by the Introduction of Innovative R&D team program
of Guangdong Province (NO. 201001D0104726115), Hangzhou Dianzi University, and the NSF
Career Award CCF-0643521.

References

1. Schwiegelshohn, U., Badia, R.M., Bubak, M., Danelutto, M., Dustdar, S., Gagliardi, F.,
Geiger, A., Hluchy, L., Kranzlmüller, D., Laure, E., et al.: Perspectives on grid computing.
Future Generation Computer Systems 26(8) (2010) 1104–1115

2. Xhafa, F., Abraham, A.: Computational models and heuristic methods for grid scheduling
problems. Future generation computer systems 26(4) (2010) 608–621

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Communications of the ACM
53(4) (2010) 50–58

4. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree
compared. In: Grid Computing Environments Workshop, 2008. GCE’08, Ieee (2008) 1–10

5. Dittrich, J., Quiané-Ruiz, J.A.: Efficient big data processing in hadoop mapreduce.
Proceedings of the VLDB Endowment 5(12) (2012) 2014–2015

6. Madden, S.: From databases to big data. Internet Computing, IEEE 16(3) (2012) 4–6
7. Amazon Elastic Compute Cloud: http://aws.amazon.com/ec2/
8. Irwin, D., Chase, J., Grit, L., Yumerefendi, A., Becker, D., Yocum, K.G.: Sharing networked

resources with brokered leases. resource 6 (2006) 6
9. Ciurana, E.: Developing with Google App Engine. Apress (2009)

10. Rackspace: http://www.rackspace.com
11. Windows Azure: http://www.windowsazure.com/
12. Bryant, R.E.: Data-intensive supercomputing: The case for disc. (2007)
13. Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R.: Environment-conscious scheduling of

hpc applications on distributed cloud-oriented data centers. Journal of Parallel and Distributed
Computing 71(6) (2011) 732–749

14. Gorton, I., Gracio, D.K.: Data-intensive computing: A challenge for the 21st century. Data-
Intensive Computing: Architectures, Algorithms, and Applications (2012) 3

15. White, T.: Hadoop - The Definitive Guide. O’Reilly (2009)
16. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: OSDI.

(2004) 137–150
17. Chen, Y.: Workload-driven design and evaluation of large- scale data-centric systems (May,

09 2012)
18. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity and

dynamicity of clouds at scale: Google trace analysis. In: SoCC. (2012) 7
19. Macías, M., Guitart, J.: A genetic model for pricing in cloud computing markets. In: SAC,

ACM (2011) 113–118
20. Niyato, D., Vasilakos, A.V., Zhu, K.: Resource and revenue sharing with coalition formation

of cloud providers: Game theoretic approach. In: CCGRID, IEEE (2011) 215–224
21. Lin, W.Y., Lin, G.Y., Wei, H.Y.: Dynamic auction mechanism for cloud resource allocation.

In: CCGRID, IEEE (2010) 591–592
22. Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Dynamic place-

ment of virtual machines for cost optimization in multi-cloud environments. In: HPCS, IEEE
(2011) 1–7

1326 Z. Ren et al.

23. Wolf, J., Balmin, A., Rajan, D., Hildrum, K., Khandekar, R., Parekh, S., Wu, K.L., Vernica,
R.: On the optimization of schedules for mapreduce workloads in the presence of shared
scans. The VLDB Journal 21(5) (2012) 589–609

24. Chang, H., Kodialam, M.S., Kompella, R.R., Lakshman, T.V., Lee, M., Mukherjee, S.:
Scheduling in mapreduce-like systems for fast completion time. In: INFOCOM, IEEE (2011)
3074–3082

25. Wolf, J.L., Rajan, D., Hildrum, K., Khandekar, R., Kumar, V., Parekh, S., Wu, K.L., Balmin,
A.: Flex: A slot allocation scheduling optimizer for mapreduce workloads. In: Middleware.
(2010) 1–20

26. Kliazovich, D., Bouvry, P., Khan, S.U.: DENS: data center energy-efficient network-aware
scheduling. Cluster Computing 16(1) (2013) 65–75

27. Chen, Y., Alspaugh, S., Borthakur, D., Katz, R.H.: Energy efficiency for large-scale
mapreduce workloads with significant interactive analysis. In: EuroSys, ACM (2012) 43–56

28. Wang, L., Khan, S.U.: Review of performance metrics for green data centers: a taxonomy
study. The Journal of Supercomputing 63(3) (2013) 639–656

29. Wang, L., Khan, S.U., Chen, D., Kolodziej, J., Ranjan, R., Xu, C.Z., Zomaya, A.Y.: Energy-
aware parallel task scheduling in a cluster. Future Generation Comp. Syst 29(7) (2013) 1661–
1670

30. Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Goldberg, A.: Quincy: fair
scheduling for distributed computing clusters. In: SOSP, ACM (2009) 261–276

31. Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.: Delay
scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In:
EuroSys. (2010) 265–278

32. Borthakur, D., Gray, J., Sarma, J.S., Muthukkaruppan, K., Spiegelberg, N., Kuang, H.,
Ranganathan, K., Molkov, D., Menon, A., Rash, S., Schmidt, R., Aiyer, A.S.: Apache hadoop
goes realtime at facebook. In: SIGMOD Conference. (2011) 1071–1080

33. Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: Scalable scheduling for sub-
second parallel jobs. Technical Report UCB/EECS-2013-29, EECS Department, University
of California, Berkeley (April 2013)

34. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging
IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future
Generation Comp. Syst 25(6) (2009) 599–616

35. Delimitrou, C., Kozyrakis, C.: Paragon: QoS-aware scheduling for heterogeneous datacenters.
In: ASPLOS. (2013) 77–88

36. Vasic, N., Novakovic, D.M., Miucin, S., Kostic, D., Bianchini, R.: Dejavu: Accelerating
resource allocation in virtualized environments architectural support for programming lan-
guages and operating systems, (17th ASPLOS’12). In: Proceedings of the 17th International
Conference on, ACM Press (2012) 423–436

37. Zhu, X., Young, D., Watson, B.J., Wang, Z., Rolia, J., Singhal, S., McKee, B., Hyser, C.,
Gmach, D., Gardner, R., Christian, T., Cherkasova, L.: 1000 islands: an integrated approach
to resource management for virtualized data centers. Cluster Computing 12(1) (2009) 45–57

38. Kale, L.V., Kumar, S., Potnuru, M., DeSouza, J., Bandhakavi, S.: Faucets: Efficient resource
allocation on the computational grid. In: Proceedings of the 2004 International Conference
on Parallel Processing (33th ICPP’04), Montreal, Quebec, Canada, IEEE Computer Society
(August 2004) 396–405

39. Rodero-Merino, L., Caron, E., Muresan, A., Desprez, F.: Using clouds to scale grid resources:
An economic model. Future Generation Computer Systems 28(4) (2012) 633 – 646

40. Kang, Z., Wang, H.: A novel approach to allocate cloud resource with different performance
traits. In: Proceedings of the 2013 IEEE International Conference on Services Computing.
SCC ’13, Washington, DC, USA, IEEE Computer Society (2013) 128–135

41. Sim, K.M.: Towards complex negotiation for cloud economy. In: Advances in Grid and
Pervasive Computing. Springer (2010) 395–406

42. Garg, S.K., Vecchiola, C., Buyya, R.: Mandi: a market exchange for trading utility and cloud
computing services. The Journal of Supercomputing 64(3) (2013) 1153–1174

Resource Scheduling in Data-Centric Systems 1327

43. Izakian, H., Abraham, A., Ladani, B.T.: An auction method for resource allocation in
computational grids. Future Generation Comp. Syst 26(2) (2010) 228–235

44. Zaman, S., Grosu, D.: Combinatorial auction-based allocation of virtual machine instances
in clouds. In: CloudCom, IEEE (2010) 127–134

45. Samimi, P., Patel, A.: Review of pricing models for grid & cloud computing. In: Computers
& Informatics (ISCI), 2011 IEEE Symposium on, IEEE (2011) 634–639

46. Wang, Q., Ren, K., Meng, X.: When cloud meets ebay: Towards effective pricing for cloud
computing. In Greenberg, A.G., Sohraby, K., eds.: INFOCOM, IEEE (2012) 936–944

47. Meng, X., Isci, C., Kephart, J.O., Zhang, L., Bouillet, E., Pendarakis, D.E.: Efficient resource
provisioning in compute clouds via VM multiplexing. In Parashar, M., Figueiredo, R.J.O.,
Kiciman, E., eds.: ICAC, ACM (2010) 11–20

48. Zhang, W., Qian, H., Wills, C.E., Rabinovich, M.: Agile resource management in a virtualized
data center. In Adamson, A., Bondi, A.B., Juiz, C., Squillante, M.S., eds.: WOSP/SIPEW,
ACM (2010) 129–140

49. Garg, S.K., Gopalaiyengar, S.K., Buyya, R.: SLA-based resource provisioning for heteroge-
neous workloads in a virtualized cloud datacenter. In Xiang, Y., Cuzzocrea, A., Hobbs, M.,
Zhou, W., eds.: ICA3PP (1). Volume 7016 of Lecture Notes in Computer Science., Springer
(2011) 371–384

50. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic provisioning of multi-tier
internet applications. In: Autonomic Computing, 2005. ICAC 2005. Proceedings. Second
International Conference on, IEEE (2005) 217–228

51. Gong, Z., Gu, X., Wilkes, J.: Press: Predictive elastic resource scaling for cloud systems. In:
Network and Service Management (CNSM), 2010 International Conference on, IEEE (2010)
9–16

52. Padala, P., Hou, K.Y., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant,
A.: Automated control of multiple virtualized resources. In: Proceedings of the 4th ACM
European conference on Computer systems, ACM (2009) 13–26

53. Xu, J., Zhao, M., Fortes, J., Carpenter, R., Yousif, M.: Autonomic resource management in
virtualized data centers using fuzzy logic-based approaches. Cluster Computing 11(3) (2008)
213–227

54. Gmach, D., Krompass, S., Scholz, A., Wimmer, M., Kemper, A.: Adaptive quality of service
management for enterprise services. ACM Transactions on the Web (TWEB) 2(1) (2008) 8

55. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing. Future Generation Computer
Systems 28(5) (2012) 755–768

56. Xiong, K., Perros, H.G.: SLA-based resource allocation in cluster computing systems. In:
IPDPS, IEEE (2008) 1–12

57. Gu, J., Hu, J., Zhao, T., Sun, G.: A new resource scheduling strategy based on genetic
algorithm in cloud computing environment. Journal of Computers 7(1) (2012) 42–52

58. Hu, J., Gu, J., Sun, G., Zhao, T.: A scheduling strategy on load balancing of virtual ma-
chine resources in cloud computing environment. In: Parallel Architectures, Algorithms and
Programming (PAAP), 2010 Third International Symposium on, IEEE (2010) 89–96

59. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves,
T., Lowe, J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed, B.,
Baldeschwieler, E.: Apache hadoopYARN:Yet another resource negotiator. In: SoCC. (2013)

60. Zaharia, M., Borthakur, D., Sarma, J.S., Shenker, S., Stoica, I.: Job scheduling for multi-user
mapreduce clusters. Technical Report No. UCB/EECS-2009-55, Univ. of Calif., Berkeley,
CA (April 2009)

61. Zhang, X., Zhong, Z., Feng, S., Tu, B., Fan, J.: Improving data locality of mapreduce by
scheduling in homogeneous computing environments. In: Parallel and Distributed Processing
with Applications (ISPA), 2011 IEEE 9th International Symposium on, IEEE (2011) 120–126

62. Kc, K., Anyanwu, K.: Scheduling hadoop jobs to meet deadlines. In: Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International Conference on, IEEE
(2010) 388–392

1328 Z. Ren et al.

63. Tang, Z., Zhou, J., Li, K., Li, R.: MTSD: A task scheduling algorithm for mapreduce base on
deadline constraints. In: IPDPS Workshops, IEEE Computer Society (2012) 2012–2018

64. Schwiegelshohn, U., Tchernykh, A.: Online scheduling for cloud computing and different
service levels. In: Proc. 9th High-Performance Grid & Cloud Computing – 9th HPGC’12,
Proc. IEEE International Parallel and Distributed Processing Symposium Workshops & PhD
Forum (26th IPDPS’12), IEEE Computer Society (2012) 1067–1074

65. Venugopal, S., Buyya, R.: An scp-based heuristic approach for scheduling distributed data-
intensive applications on global grids. Journal of Parallel and Distributed Computing 68(4)
(2008) 471–487

66. Chang, R.S., Chang, J.S., Lin, P.S.: An ant algorithm for balanced job scheduling in grids.
Future Generation Computer Systems 25(1) (2009) 20–27

67. Kolodziej, J., Khan, S.U., Xhafa, F.: Genetic algorithms for energy-aware scheduling in
computational grids. In: P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2011
International Conference on, IEEE (2011) 17–24

68. Lee, Y.H., Leu, S., Chang, R.S.: Improving job scheduling algorithms in a grid environment.
Future generation computer systems 27(8) (2011) 991–998

69. Samuel, T.K., Baer, T., Brook, R.G., Ezell, M., Kovatch, P.: Scheduling diverse high per-
formance computing systems with the goal of maximizing utilization. In: High Performance
Computing (HiPC), 2011 18th International Conference on, IEEE (2011) 1–6

70. Balman, M.: Failure-awareness and dynamic adaptation in data scheduling (November 14
2008)

71. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing data transfers in
computer clusters with orchestra. In: SIGCOMM, ACM (2011) 98–109

72. Seo, S., Jang, I., Woo, K., Kim, I., Kim, J.S., Maeng, S.: Hpmr: Prefetching and pre-shuffling
in shared mapreduce computation environment. In: Cluster Computing and Workshops, 2009.
CLUSTER’09. IEEE International Conference on, IEEE (2009) 1–8

73. Çatalyürek, Ü.V., Kaya, K., Uçar, B.: Integrated data placement and task assignment for
scientific workflows in clouds. In: Proceedings of the fourth international workshop on Data-
intensive distributed computing, ACM (2011) 45–54

74. Xie, J., Yin, S., Ruan, X., Ding, Z., Tian, Y., Majors, J., Manzanares, A., Qin, X.: Improving
mapreduce performance through data placement in heterogeneous hadoop clusters. In: Parallel
& Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International
Symposium on, IEEE (2010) 1–9

75. Zeng, W., Zhao, Y., Ou, K., Song, W.: Research on cloud storage architecture and key
technologies. In: Proceedings of the 2nd International Conference on Interaction Sciences:
Information Technology, Culture and Human, ACM (2009) 1044–1048

76. Abad, C.L., Lu, Y., Campbell, R.H.: DARE: Adaptive data replication for efficient clus-
ter scheduling. In: Proc. ’11 IEEE International Conference on Cluster Computing (13th
CLUSTER’11), Austin, TX, USA, IEEE Computer Society (September 2011) 159–168

77. Castillo, C., Tantawi, A.N., Arroyo, D., Steinder, M.: Cost-aware replication for dataflows.
In: NOMS, IEEE (2012) 171–178

78. Chervenak, A.L., Deelman, E., Livny, M., Su, M.H., Schuler, R., Bharathi, S., Mehta, G.,
Vahi, K.: Data placement for scientific applications in distributed environments. In: GRID,
IEEE Computer Society (2007) 267–274

79. Chen, Y., Ganapathi, A.S., Griffith, R., Katz, R.H.: Analysis and lessons from a publicly
available google cluster trace. Technical Report UCB/EECS-2010-95, EECS Department,
University of California, Berkeley (Jun 2010)

80. Chen,Y., Ganapathi, A.S., Griffith, R., Katz, R.H.: Towards understanding cloud performance
tradeoffs using statistical workload analysis and replay. University of California at Berkeley,
Technical Report No. UCB/EECS-2010-81 (2010)

81. Stuer, G., Vanmechelen, K., Broeckhove, J.: A commodity market algorithm for pricing
substitutable grid resources. Future Generation Comp. Syst 23(5) (2007) 688–701

82. Teng, F., Magoulès, F.: Resource pricing and equilibrium allocation policy in cloud
computing. In: CIT, IEEE Computer Society (2010) 195–202

Resource Scheduling in Data-Centric Systems 1329

83. Eymann, T., Reinicke, M., Villanueva, O.A., Vidal, P.A., Freitag, F., Moldes, L.N.: Decen-
tralized resource allocation in application layer networks. In: CCGrid, IEEE (May 12 2003)
645–650

84. Padala, P., Harrison, C., Pelfort, N., Jansen, E., Frank, M.P., Chokkareddy, C.: OCEAN:
The open computation exchange and arbitration network, A market approach to meta com-
puting. In: Proc. 2nd International Symposium on Parallel and Distributed Computing (2nd
ISPDC’03), Ljubljana, Slovenia, IEEE Computer Society (October 2003) 185–192

85. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: PlanetLab: A Blueprint for Introducing
Disruptive Technology into the Internet. In: First ACM Workshop on Hot Topics in Networks,
Association for Computing Machinery (October 2002) Available from http://www.planet-
lab.org/pdn/pdn02-001.pdf.

86. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dominant
resource fairness: Fair allocation of multiple resource types. Technical report, University of
California, Berkeley (2011)

87. Mihailescu, M., Teo, Y.M.: Dynamic resource pricing on federated clouds. In: CCGRID,
IEEE (2010) 513–517

88. Dutreilh, X., Rivierre, N., Moreau, A., Malenfant, J., Truck, I.: From data center resource
allocation to control theory and back. In: Proc. IEEE International Conference on Cloud
Computing (3rd IEEE CLOUD’10). (2010) 410–417

89. Buyya, R., Garg, S.K., Calheiros, R.N.: SLA-oriented resource provisioning for cloud com-
puting: Challenges, architecture, and solutions. In: Cloud and Service Computing (CSC).
(January 21 2012)

90. Gandhi, A., Chen,Y., Gmach, D., Arlitt, M.F., Marwah, M.: Minimizing data center SLA vio-
lations and power consumption via hybrid resource provisioning. In: IGCC, IEEE Computer
Society (2011) 1–8

91. Birke, R., Chen, L.Y., Smirni, E.: Data centers in the cloud: A large scale performance
study. In: Proc. 2012 IEEE Fifth International Conference on Cloud Computing (5th IEEE
CLOUD’12). (June 2012) 336–343

92. Gao, Y., Rong, H., Huang, J.Z.: Adaptive grid job scheduling with genetic algorithms. Future
Generation Computer Systems 21(1) (2005) 151–161

93. Fidanova, S.: Simulated annealing for grid scheduling problem. In: Modern Computing, 2006.
JVA’06. IEEE John Vincent Atanasoff 2006 International Symposium on, IEEE (2006) 41–45

94. neng Chen, W., 0003, J.Z.: An ant colony optimization approach to a grid workflow schedul-
ing problem with various qoS requirements. IEEE Transactions on Systems, Man, and
Cybernetics, Part C 39(1) (2009) 29–43

95. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L., Maheswaran, M., Reuther, A.I., Robertson,
J.P., Theys, M.D., Yao, B., Hensgen, D.A., Freund, R.F.: A comparison of eleven static
heuristics for mapping a class of independent tasks onto heterogeneous distributed computing
systems. J. Parallel Distrib. Comput 61(6) (2001) 810–837

96. Dong, F., Akl, S.G.: Scheduling algorithms for grid computing: State of the art and open
problems. School of Computing, Queens University, Kingston, Ontario (2006)

97. Ren, Z., Wan, J., Shi, W., Xu, X., Zhou, M.: Workload analysis, implications and optimization
on a production hadoop cluster: A case study on taobao. IEEE Transactions on Services
Computing (2013)

98. Isard, M., Budiu, M.,Yu,Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs
from sequential building blocks. In: EuroSys, ACM (2007) 59–72

99. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing
with working sets. In: Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing. (2010) 10–10

100. Sandholm, T., Lai, K.: Dynamic proportional share scheduling in Hadoop. In Frachtenberg,
E., Schwiegelshohn, U., eds.: Job Scheduling Strategies for Parallel Processing. Springer
Verlag (2010) 110–131

101. Wang, L., von Laszewski, G., Dayal, J., He, X., Younge, A.J., Furlani, T.R.: Towards thermal
aware workload scheduling in a data center. In: ISPAN, IEEE Computer Society (2009)
116–122

http://www.planet-lab.org/pdn/pdn02-001.pdf
http://www.planet-lab.org/pdn/pdn02-001.pdf

1330 Z. Ren et al.

102. Ranganathan, K., Foster, I.T.: Decoupling computation and data scheduling in distributed
data-intensive applications. In: HPDC, IEEE Computer Society (2002) 352–358

103. Guo, D., Li, M., Jin, H., Shi, X., Lu, L.: Managing and aggregating data transfers in data
centers (2013)

104. Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., Vahdat, A.: Hedera: Dynamic
flow scheduling for data center networks. In: NSDI, USENIX Association (2010) 281–296

105. Sun, N.H., Xing, J., Huo, Z.G., Tan, G.M., Xiong, J., Li, B., Ma, C.: Dawning nebulae: a
petaflops supercomputer with a heterogeneous structure. Journal of Computer Science and
Technology 26(3) (2011) 352–362

106. : Top500 list
107. Lumb, I., Smith, C.: Scheduling attributes and platform lsf. In: Grid resource management.

Springer (2004) 171–182
108. Taobao: http://www.taobao.com
109. Chaiken, R., Jenkins, B., Larson, P.Å., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.:

Scope: easy and efficient parallel processing of massive data sets. Proceedings of the VLDB
Endowment 1(2) (2008) 1265–1276

110. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: ACM SIGOPS Operating
Systems Review. Volume 37., ACM (2003) 29–43

111. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:
Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, IEEE
(2010) 1–10

112. Agarwal, S., Dunagan, J., Jain, N., Saroiu, S., Wolman, A., Bhogan, H.: Volley: Automated
data placement for geo-distributed cloud services. In: NSDI. (2010) 17–32

113. McKeown, N.: Software-defined networking. INFOCOM keynote talk, Apr (2009)
114. Liu, D., Lee, Y.H.: Pfair scheduling of periodic tasks with allocation constraints on multiple

processors. In: IPDPS. (2004)
115. Lee, J., Easwaran, A., Shin, I.: LLF schedulability analysis on multiprocessor platforms. In:

IEEE Real-Time Systems Symposium. (2010) 25–36
116. Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive resource

provisioning in the cloud. Future Generation Computer Systems 28(1) (2012) 155–162
117. Wilkes, J., Reiss, C.: Details of the clusterdata-2011-1 trace (2011)

Index

3-clustering algorithm, 1110–1125, 1143,
1144, 1180, 1181

A
Access routers (AccR), 851, 1287
Alert correlation system, 1190, 1201–1203
Alerting and alarming system, 1161
Amazon EC2, 491, 564, 584, 670, 1308, 1310,

1313, 1319, 1320
Annual failure rate (AFR), 1287
Apache Hadoop, 677, 679, 680, 682
Architecture, 82–87, 120–125, 198, 201–207,

335, 460, 465, 468, 472, 473, 649, 693,
710, 757, 778, 842, 859, 879, 898, 947,
1098, 1286

B
Bi-interval

motivation, 3, 5, 205, 332, 341, 498, 547,
553, 564, 892, 1030, 1271, 1276

scheduler Design, 1272, 1277
evaluation, 89, 148, 201, 239, 337, 345, 364,

387, 438, 602, 742, 765, 787, 925, 979,
1219, 1235, 1275, 1280

BIRCH, 1114, 1116–1124, 1143
BLS signature, 551, 637, 639, 641
Brewer’s theorem, 1302

C
Carbon neutrality, 147, 608–628
Central logging system, 1156, 1161, 1163,

1164
Computational fluid dynamics (CFD), 149,

196, 197, 199, 200, 206, 241, 863, 871,
1180

CHAIO, 566, 569–580
Checkpoint strategies, 37

Common Intrusion Detection Framework
(CIDF), 1190–1192, 1203

CLARA, 1120, 1121
CLARANS, 1120, 1121
CLIQUE, 1123–1125
Cloud computing, 4, 82, 96, 104, 135, 143,

329, 394, 395, 450, 551, 564, 594, 631,
715, 842, 945, 1113, 1129

Cloud storage, 535–557, 642, 692–694, 714,
720

Cluster, 126, 230, 1071, 1119, 1121, 1123,
1125, 1134, 1144, 1179, 1235, 1268,
1276

Cluster-based transactional scheduler (CTS),
1268, 1276

Clustering algorithms
hierarchical, 1115, 1116
partitioning, 1119
density-based, 1121, 1143
grid-based, 1110, 1123

COCA, 611, 617–628
Cold-standby, 1296
Computing and cooling, 110, 132, 133, 148,

859, 863, 864, 868, 898, 900
Contention manager (CM), 1268, 1270, 1271,

1277, 1278
Control, 121, 134, 138, 146, 172, 173, 177,

384, 385, 485, 716 ,738, 877, 999, 1003,
1022, 1177

Control system, 119, 166, 172, 175, 1176, 1179
CoolEmAll, 94, 191, 193–195, 199, 200, 208,

209, 212, 215, 219, 221, 226, 228, 234,
240

Covert channel, 962–971, 980, 991, 992
CPU thermal model, 920

© Springer Science+Business Media New York 2015 1331
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1

1332 Index

CPU utilization, 114, 125, 127, 128, 142, 176,
177, 7179, 889–899, 920, 933, 1223,
1258, 1260, 1293

Clustering Using REpresentatives (CURE),
1114–1119

D
Data archiving, 1097, 1105
Data broadcasting, 288–292, 297, 299, 302,

304, 311, 316, 319
Data center, 92, 110, 111, 116, 117, 122, 141,

150, 248, 253, 256–260, 356, 373, 449,
476, 875, 1172

system model, 173, 175, 178, 248, 548, 549,
611, 841, 1083, 1269, 1286

long term power purchase, 249, 250
real time power purchase, 250

constraints, 250, 252, 538, 615, 616,
1292–1294, 1297

purchasing accuracy and cost, 250
data center availability, 251
UPS lifetime, 251

cost minimization, 143, 252, 253, 609, 610,
617, 618, 627

algorithm design, 252
performance analysis, 257, 260, 439, 619,

620, 807, 819, 1087, 1221
Data compression, 938, 1133
Data movement, 394, 395, 404, 649, 651, 653,

1096, 1100–1104, 1319
Data preservation, 1097, 1106
Data replication, 697, 706, 1078–1083, 1089,

1092
Data storage system, 916, 927, 1098, 1319
Data summarization, 685, 1109–1113, 1139,

1144
Data-centric systems (DCS), 1307–1311, 1323,

1324
Datagrams, 397–414, 422
Data-Intensive Super Computing (DISC), 1308,

1309
Distribution Based Clustering of Large Spatial

Databases (DBCLASD), 1122, 1123
Density-Based Spatial Clustering of Appli-

cations with Noise (DBSCAN), 1122,
1123, 1143, 1144

DCell DCN models, 956
Data Center Infrastructure Management

(DCIM), 240, 241, 876, 1179
DCworms, 199–214, 227
Data centre Efficiency Building Blocks

(DEBB), 194, 195, 199, 200, 203,
206–219, 227, 231, 240, 242

DENCLUE, 1122, 1123
Disk thermal model, 915, 922, 927
Distributed Out-of-Core (DOoC), 649–652
Dynamic loop scheduling (DLS), 169, 170, 185
Dynamic power switching (DPS), 168
Digital signal processors (DSPS), 264,

1048–1051, 1054–1059, 1068, 1072,
1073

Delay Tolerant Networks (DTN), 1078–1089,
1092

Dynamic voltage and frequency scaling
(DVFS), 38–41, 49, 77, 95, 116,
118–121, 126, 148, 150–152, 164, 172,
185, 623, 877, 880, 918

Dynamic voltage scaling, 6, 42, 138

E
Economic-based methods, 1313, 1314
Energy estimation methodology, 298
Energy models, 38–42, 47, 49, 77, 78, 932

CONTINUOUS model, 39–45, 48, 78
DISCRETE model, 38–43, 47–52, 77
VDD-HOPPING model, 38–45, 48
INCREMENTAL model, 38–49

Energy-efficiency, 81, 90–94, 104, 193, 194,
208, 209, 211, 219, 228, 236, 238, 241,
530, 858, 864, 887, 907, 1178

Energy-proportional computing, 110
Ethernet, 86, 95, 230, 293, 304, 306, 330–333,

397–406, 413–416, 421, 514, 528, 743,
859, 953, 1098, 1100, 1287

F
FatTree DCN model, 951
Fault tolerance, 39, 288–292, 296, 299, 304,

307, 314–321, 450, 509, 525, 530, 564,
565, 675, 730, 731, 750, 830, 1056,
1067, 1071, 1291, 1222

Fault tree, 1289
FC, 1124, 1125
Floating point, 3, 82, 91, 214, 263–272, 280,

281, 285, 1050
representation, 178, 203, 264, 265, 270, 273,

656, 734, 1017, 1048, 1062, 1106, 1110,
1111, 1138, 1140, 1199, 1292, 1317

addition, 266
multiplication, 268
fused multiply-add (FMA), 270–272, 277,

280–285
division, 272, 274, 276

Forbid, 717, 1293, 1296, 1297
FP-units, 279, 280, 285

Index 1333

G
GBarrier, 754–785, 800, 801
GDBSCAN, 1122, 1123
Generalized Flattened Butterfly (GFB), 372,

376, 378
G-Lines, 754–767, 770–777, 784–787,

793–801
Global constraints, 1291, 1292
GLock, 754, 777–801
Green computing, 1174
GRIDCLUS, 1123

H
Hardware Lock Elision, 818
HDFS, 562–566, 578, 580, 675, 677, 678, 683,

685, 704
Heterogeneous, 129, 135–146, 165, 171, 184,

185, 289, 586, 592, 678, 750, 865, 876,
1084, 1180, 1123

Hierarchy, 210, 1135, 1241, 1310
High-performance computing (HPC), 3, 7, 318,

393, 394, 396, 561, 564, 805, 1308
Hot-spot evaluation, 1213, 1219, 1235, 1236
High-performance computing (HPC), 3, 7, 318,

393, 394, 396, 561, 564, 805, 1108
Hybrid/Pipeline, 291, 303, 1346, 319, 320
Hybrid/SAG, 291, 302, 303, 316–320

I
Intrusion detection and prevention systems

(IDPS), 1163
Intrusion detection system (IDS), 1163–1165,

1186–1203
iWARP, 397, 401–422

J
Job Scheduling, 132, 1310, 1314, 1315

K
K-Means, 1114, 1119–1121, 1143

L
Load-Adaptive Active Replication (LAAR),

1048, 1069, 1071, 1073
Lawrence Berkeley National

Laboratory(LBNL), 1174–1176
Linear Algebra Frontend (LAF), 649, 651, 652,

655, 665
Load balancers (LBs), 1287, 1288

M
MANET, 1077–1083, 1087, 1092, 1193
Management Layer Network, 1156–1158

MapReduce, 351, 509, 562–565, 578, 675,
679, 860

Merkle Hash Tree, 554, 637
Micro-clustering, 1111, 1112, 1143
Monitoring, 875, 1155, 1159, 1213, 1215, 1223
MPI/Pipeline, 291, 298, 303, 320
MPI/SAG, 291, 302, 303, 316
Multicore processors, 3–5, 8, 32, 753, 807, 830
Multi-tenant data centers, 1265

N
Network link virtualization, 327–329, 347
Network node virtualization, 327–329, 341,

345, 347, 348
Network-Based Intrusion Detection System

(NIDS), 1164, 1185, 1188, 1190, 1192,
1193, 1195, 1197, 1201, 1202

No replication, 1071
Normalized energy consumption (NEC), 28, 29
Normalized schedule length (NSL), 28, 29
Numerical processing, 263
Non-volatile memory (NVM), 647–649

O
OMNeT++, 841, 842, 844, 845, 847, 849
Online controller, 1300, 1301
OpenFlow rule, 330
Optical components in data centers

Semiconductor Optical Amplifier (SOA),
454

Silicon Micro Ring Resonator, 454
ArrayedWaveguide Grating, 454, 455
Wavelength Selective Switch, 456
MEMS Switch, 457, 458
Circulators, 459
Optical Multiplexer and De-multiplexer, 459

Optical data center networks, 352, 353
Optical packet switches, 352, 353, 356, 357,

359, 360, 361, 364, 366, 367, 370
OPTICS, 467, 1122
OptiGrid, 1123, 1124

P
Paragon, 1313
PDP, 540, 544, 552, 557, 683, 639
Performance evaluation, 96, 337, 602, 662
Performance ratio, 20, 24, 28, 29
Platform configuration management system,

1159
PM and VM, 1213, 1218, 1219
Perfect Matching Disclosure Attack (PMDA),

1039
Proof of Retrievability (POR), 536, 540, 541,

543, 548, 549, 557, 632

1334 Index

Power management, 38, 95, 110–112, 117,
121, 122, 124, 126, 134, 148, 150

Privacy, 553, 555, 692, 715, 716, 718, 720, 990
Privacy enhancing technologies (PETs), 1032

Q
Quality-of-Service (QoS), 1285
Quasit, 1048, 1053, 1059, 1060, 1066, 1073

R
RAID, 623, 712, 730–733, 736, 744, 747
Remote direct memory access (RDMA),

395–398, 400, 401, 406, 1102
model, 410
operation, 412

Replica placement, 38, 50, 65, 1078–1080,
1087, 1092

Replica servers, 51, 525
Resource provision, 1310

economic-based, 1312
utility -oreinted, 1313, 1314, 1323

Resource utilization monitoring, 1161
ROCK, 1116, 1118
Routing, 508,

in data centers, 480, 481
topology-aware, 511
green, 516
symbiotic, 527

RSA signature, 636, 638

S
Sampling, 1110, 1125, 1126
SVD Toolkit, 194, 195, 197, 198, 200,

206–208, 226–228, 231, 237, 241
Scheduling problems, 5, 32, 651, 1312

precedence constraining, 5, 6, 11, 32
system partitioning, 5, 6, 12, 32
task scheduling, 11, 14, 15
power supplying, 5, 6, 32

SDA-2H, 1040, 1041
Security, 642, 1031
Security event manager (SEM), 1162
Service Level Agreement (SLA), 504, 709,

1057, 1210, 1233, 1313, 1314
Simulated Annealing (SA), 522, 1315
Simulation Data, 25, 26
Software, 1231
Software monitoring, 1228

monitoring content, 1213, 1214
monitoring timing, 1223
monitoring site, 1231

monitoring methods, 1233
Solid-State Drives (SSDs), 122, 123, 651, 660,

661, 665, 1097
Static job scheduling, 1315
Statistical Dislcosure Attack (SDA), 1037–1041
STING, 1123, 1124
Stream Processing System (SPS), 1048, 1059

abstract model, 1049
development model, 1051, 1052
execution model, 1052, 1053

T
Taobao Yunti, 1321, 1322
Task graph scheduling, 38, 77
TCP incast, 487, 488, 490, 492, 499, 502
TCP outcast, 488, 489, 492, 497, 499, 502, 504
Terminology, 1056, 1059, 1156, 1193, 1309
Thermal modeling, 871, 907, 918–920, 940
ThreeTier DCN model, 950, 951
Time scales, 247, 1258, 1259, 1263, 1265
Top of Rack switch (ToR), 1287
ToR switches, 357, 358, 360, 362, 364,

366–369, 375, 387, 389, 474
Total order multicast (TOM), 1280, 11281
Transactional Forwarding Algorithm (TFA),

1269, 1277, 1281
Transactional memory (TM), 807, 808, 810,

824, 1267
high-performance, 809
hardware mechanism for, 812

Transactional scheduler, 1268–1271
Trie Merging, 343
TS-SDA, 1038, 1039

U
Unreliable Network Transport, 397

V
Virtual machines (VMs), 137, 138, 490, 865,

905, 962, 964, 965, 967, 1235, 1244,
1287, 1291, 1294, 1296, 1297, 1299,
1300

Virtualization, 96, 97, 135, 143, 327, 328, 339,
344, 348, 395, 828, 865, 962, 968, 1158,
1161, 1302

W
Warehouse, 117, 126, 197, 805, 1166
WAVECLUSTER, 1124
Wireless sensor networksm, 1174, 1179, 1180

	Preface
	Contents
	Part I Energy Efficiency
	Energy-Efficient and High-Performance Processing of Large-Scale Parallel Applications in Data Centers
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions

	2 Related Work
	3 Preliminaries
	3.1 Power and Task Models
	3.2 Problems
	3.3 Lower Bounds

	4 Heuristic Algorithms
	4.1 Precedence Constraining
	4.2 System Partitioning
	4.3 Task Scheduling

	5 Optimal Energy/Time/Power Allocation
	5.1 Minimizing Schedule Length
	5.1.1 Level 1
	5.1.2 Level 2
	5.1.3 Level 3
	5.1.4 Level 4

	5.2 Minimizing Energy Consumption
	5.2.1 Level 1
	5.2.2 Level 2
	5.2.3 Level 3
	5.2.4 Level 4

	6 Simulation Data
	7 Summary and Future Research
	References

	Energy-Aware Algorithms for Task Graph Scheduling, Replica Placement and Checkpoint Strategies
	1 Introduction
	2 Energy Models
	2.1 Literature Survey
	2.1.1 DVFS and Optimization Problems
	2.1.2 Energy Models

	2.2 Example

	3 Minimizing the Energy of a Schedule
	3.1 Optimization Problem
	3.2 The CONTINUOUS Model
	3.2.1 Special Execution Graphs
	3.2.2 General DAGs

	3.3 Discrete Models
	3.3.1 The VDD-HOPPING Model
	3.3.2 NP-Completeness and Approximation Results

	3.4 Final Remarks

	4 Replica Placement
	4.1 Framework
	4.1.1 Replica Servers
	4.1.2 With Power Consumption
	4.1.3 Objective Functions
	4.1.4 Summary of Results

	4.2 Complexity Results: Update Strategies
	4.2.1 Running Example
	4.2.2 Dynamic Programming Algorithm

	4.3 Complexity Results with Power
	4.3.1 Running Example
	4.3.2 NP-Completeness of MINPOWER
	4.3.3 A Pseudo-polynomial Algorithm for MINPOWER-BOUNDEDCOST

	4.4 Simulations
	4.4.1 Impact of Pre-existing Servers
	4.4.2 With Power Consumption
	4.4.3 Running Time of the Algorithms

	4.5 Concluding Remarks

	5 Checkpointing Strategies
	5.1 Framework
	5.1.1 Model
	5.1.2 Optimization Problems

	5.2 With a Single Chunk
	5.2.1 SINGLESPEED Model
	5.2.2 MULTIPLESPEEDS Model

	5.3 Several Chunks
	5.3.1 Single Speed Model
	5.3.2 Multiple Speeds Model

	5.4 Simulations
	5.4.1 Simulation Settings
	5.4.2 Comparison with Single Speed
	5.4.3 Comparison Between EXPECTED-DEADLINE and Hard-Deadline

	5.5 Concluding Remarks

	6 Conclusion
	References

	Energy Efficiency in HPC Data Centers: Latest Advances to Build the Path to Exascale
	1 Introduction
	2 Computing Systems Architectures
	2.1 Architecture of the Current HPC Facilities
	2.2 Overview of the Main HPC Components
	2.3 HPC Performance and Energy Efficiency Evaluation

	3 Energy-Efficiency in HPC Data-Center: Overview & Challenges
	3.1 The Exascale Challenge
	3.2 Hardware Approaches Using Low-Power processors
	3.3 Energy Efficiency of Virtualization Frameworks over HPC Workloads
	3.4 Energy Efficiency in Resource and Job Management Systems (RJMSs)

	4 Conclusion: Open Challenges
	References

	Techniques to Achieve Energy Proportionality in Data Centers: A Survey
	1 Introduction
	2 Energy Proportionality
	2.1 Energy Proportionality at the Server Level
	2.2 Energy Proportionality at Data Center Level
	2.3 Overview on Power Proportionality Techniques at Different Data Center Levels

	3 Energy Proportionality at Component Level
	3.1 Energy Proportionality at the CPU
	3.2 Energy Proportionality at the Memory
	3.3 Energy Proportionality at the Disk
	3.4 Energy Proportionality at the Networking Interface

	4 Power Management Techniques at Server Level
	5 Data Center/Cluster Level Power Management
	5.1 Server Provisioning in Internet Data Centers (IDCs)
	5.2 Virtual Machine Management
	5.3 Other Data Center Level Power Management Techniques

	6 Energy Cost Minimization Through Workload Distribution Across Data Centers
	7 Data Center Simulation Tools
	8 Performance of Server and Data Center Level Power Management Techniques
	9 Conclusions
	References

	A Power-Aware Autonomic Approach for Performance Management of Scientific Applications in a Data Center Environment
	1 Introduction
	2 Background
	3 An Online Look-Ahead Control-based Management Approach
	4 Case Study: Performance Management of a Parallel Loop Execution Environment
	5 Benefits of the Proposed Approach
	6 Combining DLS Techniques with the Proposed Approach
	7 Conclusion
	References

	CoolEmAll: Models and Tools for Planning and Operating Energy Efficient Data Centres
	1 Introduction
	1.1 The CoolEmAll Project
	1.2 RelatedWork

	2 Simulation, Visualisation and Decision Support Toolkit
	2.1 Architecture
	2.2 Application Profiler
	2.3 Data Center Workload and Resource Management Simulator
	2.3.1 Architecture
	2.3.2 Workload Modelling
	2.3.3 Resource Description
	2.3.4 Simulation of Energy Efficiency
	2.3.5 Application Performance Modelling

	2.4 Interactive Computational Fluid Dynamics Simulation
	2.5 Visualization

	3 Data centre Efficiency Building Blocks
	3.1 DEBB Concept and Structure
	3.2 Hardware Models for Workload Simulation
	3.2.1 Hardware Modelling in DCworms Workload Simulator
	3.2.2 Hardware Power Profiles
	3.2.3 Electrical Model of the Power Supply Unit 2.0

	3.3 Hardware Models for Thermodynamic Profiles and Cooling Equipment
	3.4 Hardware Models for CFD Simulation
	3.5 Assessment of DEBBs

	4 Energy Efficiency Metrics
	4.1 State of the Art
	4.2 Selected Metrics for CoolEmAll
	4.2.1 Resource Usage Metrics
	4.2.2 Energy Based Metrics
	4.2.3 Heat-Aware Metrics

	4.3 Application Power Model

	5 Validation of the CoolEmAll Approach
	5.1 Validation Approach
	5.1.1 Capacity Management
	5.1.2 Optimisation of Rack Arrangement in a Compute Room Using Open Data Centre Building Blocks
	5.1.3 Analysis of Free Cooling Efficiency for Various Inlet Temperatures

	5.2 Testbed
	5.3 Analysis and Optimization of Data Centre Efficiency
	5.3.1 Capacity Management
	5.3.2 Analysing Cooling Efficiency in Compute-room

	6 Business Impact
	7 Summary
	References

	Smart Data Center
	1 Introduction
	2 System Model
	2.1 Long Term Power Purchase
	2.2 Real Time Power Purchase

	3 Constraints
	3.1 Purchasing Accuracy and Cost
	3.2 Data Center Availability
	3.3 UPS Lifetime

	4 Cost Minimization
	5 Algorithm Design
	5.1 Drift Plus Penalty Upper Bound
	5.2 Relaxed Optimization
	5.3 Two Timescale Smart Data Center Algorithm

	6 Performance Analysis
	7 Related Work
	8 Conclusions
	References

	Power and Thermal Efficient Numerical Processing
	1 Introduction
	2 Floating-Point Representation
	2.1 Formats
	2.2 Rounding Modes
	2.3 Operations
	2.4 Exceptions

	3 Floating-Point Addition
	4 Floating-Point Multiplication
	5 Floating-Point Fused Multiply-Add
	6 Floating-Point Division
	6.1 Division by Digit Recurrence
	6.1.1 Radix-4 Division Algorithm
	6.1.2 Intel Penryn Division Unit
	6.1.3 Radix-16 by Overlapping Two Radix-4 Stages

	6.2 Division by Multiplication

	7 Energy dissipation in FP-units
	7.1 Energy Metrics
	7.2 Implementation of the FP-Units
	7.3 Energy Consumption in Floating-Point Workloads
	7.4 Thermal Analysis

	8 Conclusions and Outlook on FP-Units
	References

	Providing Green Services in HPC Data Centers: A Methodology Based on Energy Estimation
	1 Introduction
	2 Identifying Operations in a Service
	2.1 Fault Tolerance Case
	2.2 Data Broadcasting Case
	2.3 Associated Parameters

	3 Energy Calibration Methodology
	3.1 Calibration of the Power Consumption op
	3.2 Calibration of the Execution Time top
	3.2.1 Fault Tolerance Case
	3.2.2 Data Broadcasting Case

	4 Energy Estimation Methodology
	4.1 Fault Tolerance Case
	4.1.1 Checkpointing
	4.1.2 Message Logging
	4.1.3 Coordination

	4.2 Data Broadcasting Case
	4.2.1 MPI/SAG and Hybrid/SAG
	4.2.2 MPI/Pipeline and Hybrid/Pipeline

	5 Validation of the Estimations
	5.1 Calibration Results of the Platform
	5.1.1 Calibrating the Power Consumption
	5.1.2 Calibration of the Execution Time

	5.2 Accuracy of the Estimations
	5.2.1 Fault Tolerance Case
	5.2.2 Data Broadcasting Case

	6 Energy-Aware Choice of Services for HPC applications
	6.1 Fault Tolerance Protocols
	6.2 Data Broadcasting Algorithms

	7 Conclusion
	References

	Part II Networking
	Network Virtualization in Data Centers: A Data Plane Perspective
	1 Introduction
	1.1 Network Link Virtualization
	1.2 Network Node Virtualization
	1.3 Organization

	2 Flexible Flow Matching for Network Link Virtualization
	2.1 Background
	2.2 Existing Solutions
	2.3 Algorithmic Solution for Efficient Flexible Flow Matching
	2.3.1 Motivations
	2.3.2 Algorithms
	2.3.3 Architecture

	2.4 Performance Evaluation
	2.4.1 Experimental Setup
	2.4.2 Algorithm Evaluation
	2.4.3 Hardware Implementation

	3 Resource Consolidation in Network Node Virtualization
	3.1 Background
	3.2 Existing Solutions
	3.3 Efficient Algorithm for Resource Consolidation
	3.3.1 Motivations
	3.3.2 Trie Merging
	3.3.3 Lookup Process
	3.3.4 Traffic Isolation

	3.4 Analysis and Evaluation
	3.4.1 Theoretical Comparison
	3.4.2 Experimental Setup
	3.4.3 Scalability
	3.4.4 Execution Time

	4 Summary and Discussion
	References

	Optical Data Center Networks: Architecture, Performance, and Energy Efficiency
	1 Introduction
	2 Optical Switches Used in Optical Data Center Networks
	2.1 Optical Packet Switches
	2.2 Optical Circuit Switches

	3 Approach 1: Optical Data Center Networks to Provide Large Bandwidth for All-to-All Communication
	3.1 Optical Packet Switches with Large Bandwidth
	3.2 Data Center Network Structure Using Optical Packet Switches
	3.2.1 Connection Within Group
	3.2.2 Connection Between Groups
	3.2.3 Routing in Topology

	3.3 Parameter Settings
	3.3.1 Parameters for Connection Between Groups
	3.3.2 Parameters for Connection within Group

	3.4 Evaluation
	3.4.1 Topologies
	3.4.2 Properties of Topologies
	3.4.3 Maximum Link Load

	4 Approach 2: Networks to Achieve Low Energy Consumption
	4.1 Overview
	4.2 Virtual Network Topologies Suitable for Optical Data Center Networks
	4.2.1 Requirements
	4.2.2 Existing Network Structures for Data Centers
	4.2.3 Generalized Flattened Butterfly

	4.3 Control of Virtual Network Topology to Achieve Low Energy Consumption
	4.3.1 Outline
	4.3.2 Control of Topology to Satisfy Requirements

	4.4 Evaluation

	5 Conclusion
	References

	Scalable Network Communication Using Unreliable RDMA
	1 Introduction
	1.1 The Significance of Data Communication
	1.2 Datacenter Computing and RDMA
	1.3 High-Performance Computing and RDMA
	1.4 RDMA and the Current Unreliable Datagram Network Transports

	2 Overview of RDMA Technology
	2.1 Overview of the iWARP Standard
	2.2 Overview of the InfiniBand Standard

	3 The Case for RDMA over Unreliable Transports
	3.1 Importance of Unreliable Connectionless RDMA
	3.2 Benefits of RDMA over Unreliable Datagrams for iWARP

	4 RDMA over Unreliable Datagrams
	4.1 Related Work and Development History
	4.2 iWARP Extension Methodology
	4.3 iWARP Design Changes
	4.4 RDMA Write-Record
	4.5 Packet Loss Design Considerations

	5 Datagram-iWARP Software Implementation
	5.1 iWARP Socket Interface

	6 Experimental Results and Analysis
	6.1 Verbs-Layer Microbenchmarks
	6.2 Send/Recv Broadcast
	6.3 Packet Loss and Performance
	6.4 Datacenter Application Results

	7 Summary
	References

	Packet Classification on Multi-core Platforms
	1 Introduction
	2 Background
	2.1 Multi-field Packet Classification
	2.2 Related Work
	2.3 Multi-core Processor

	3 Decision-Tree Based Approaches
	3.1 Algorithms
	3.2 Challenges and Prior Work

	4 Decomposition-Based Approaches
	4.1 Overview
	4.2 Challenges and Prior Work
	4.3 Preprocessing
	4.4 Searching
	4.5 Merging

	5 Performance Evaluation and Summary of Results
	5.1 Experimental Setup
	5.2 Latency
	5.3 Throughput
	5.4 Cache Performance
	5.5 Impact of the Number of Threads
	5.6 Comparison with Existing Approaches

	6 Conclusion
	References

	Optical Interconnects for Data Center Networks
	1 Introduction
	2 Need for Optical Interconnects in Data Center Networks
	3 Optical Components in Data Centers
	3.1 Semiconductor Optical Amplifier (SOA)
	3.2 Silicon Micro Ring Resonator
	3.3 ArrayedWaveguide Grating
	3.4 Wavelength Selective Switch
	3.5 MEMS Switch(Optical Switching Matrix, Optical Crossbar)
	3.6 Circulators
	3.7 Optical Multiplexer and De-multiplexer

	4 Optical Interconnects in Data Center Networks and their Performance
	4.1 Reconfigurable Architectures
	4.1.1 An Enhanced Optically Connected Network Architecture
	4.1.2 OSA, a Novel Optical Switching Architecture for DCNs
	4.1.3 Wavelength-reconfigurable optical packet and circuit switched platform for DCNs
	4.1.4 Next-Generation Optically-Interconnected High-Performance Data Centers
	4.1.5 The Data Vortex Optical Packet Switched Interconnection Network
	4.1.6 Proteus: A Topology Malleable Data Center Network
	4.1.7 A Hybrid Optical Packet and Wavelength Selective Switch for High-Performance DCNs

	4.2 Power Saving Architectures
	4.2.1 VCSEL Based Energy Efficient and Bandwidth Reconfigurable Architecture
	4.2.2 A Wavelength Striped, Packet Switched, Optical Interconnection Network
	4.2.3 SPRINT: Scalable Photonic Switching Fabric for HIGH PERFORMANCE COMPUTING

	4.3 Low Latency Architectures
	4.3.1 DOS: A Scalable Optical Switch for Data Centers
	4.3.2 Scalable Optical Packet Switch Architecture for Low Latency and High Load
	4.3.3 AWGR Based Data Center Switches Using RSOA-based Optical Mutual Exclusion
	4.3.4 A Petabit Photonic Packet Switch (P3S)
	4.3.5 Optical Interconnection Networks: The OSMOSIS Project
	4.3.6 A Scalable Optical Multi-Plane Interconnection Architecture
	4.3.7 Low Latency and Large Port Count OPS for Data Center Network Interconnects

	4.4 Link Bandwidth Scaling Architectures
	4.4.1 Data Center Network Based on Flexible Bandwidth MIMO OFDM Optical Interconnects
	4.4.2 Photonic Terabit Routers Employing WDM

	4.5 High Radix Switch Design

	5 Data center traffic characteristics
	6 Energy Requirements for Data Center Networks
	7 Routing in Data Centers
	References

	TCP Congestion Control in Data Center Networks
	1 Introduction
	2 TCP Impairments in Data Center Networks
	2.1 TCP Incast
	2.2 TCP Outcast
	2.3 Queue Buildup
	2.4 Buffer Pressure
	2.5 Pseudo-Congestion Effect
	2.6 Summary: TCP Impairments and Causes

	3 TCP Variants for Data Center Networks
	TCP with FG-RTO + Delayed ACKs Disabled [3]
	3.3.1 Explicit Congestion Notification (ECN)

	4 Summary: TCP Variants for DCNs
	5 Open Issues
	6 Concluding Remarks
	References

	Routing Techniques in Data Center Networks
	1 Introduction
	2 Classification of Routing Schemes in Data Centers
	2.1 Topology-Aware Routing
	2.1.1 Server-Centric Approach
	2.1.2 Switch-centric Approach

	2.2 Energy-Aware Routing
	2.2.1 Green Routing
	2.2.2 Power-Aware Routing

	2.3 Traffic-sensitive Routing
	2.3.1 DARD
	2.3.2 Hedera
	2.3.3 ESM: Multicast Routing for Data Centers
	2.3.4 GARDEN

	2.4 Routing for Content Distribution Networks (CDN)
	2.4.1 Request-Routing in CDNs
	2.4.2 Symbiotic Routing
	2.4.3 fs-PGBR: A Scalable and Delay Sensitive Cloud Routing Protocol

	2.5 Summary of All Routing and Forwarding Techniques

	3 Open Issues and Challenges
	4 Conclusions
	References

	Part III Cloud Computing
	Auditing for Data Integrity and Reliability in Cloud Storage
	1 Introduction
	2 Information Auditing: Objective and Approaches
	2.1 Definition of Information Auditing
	2.2 Three Approaches of Information Auditing

	3 Auditing for Data Integrity in Distributed Systems
	3.1 Strategies of Auditing Data Integrity
	3.2 Proof of Retrievability
	3.3 Provable Data Possession
	3.3.1 Preliminaries
	3.3.2 Defining the PDP Protocol
	3.3.3 The Secure PDP Scheme (S-PDP)
	3.3.4 The Efficient PDP Scheme (E-PDP)

	3.4 Compact Proof of Retrievability
	3.4.1 System Model
	3.4.2 Private Verification Construction
	3.4.3 Public Verification Construction

	4 Auditing in Cloud Storage Platform
	4.1 Challenges
	4.2 Public Verifiability
	4.3 Dynamic Data Operations Support
	4.4 Privacy Preserving
	4.5 Multiple Verifications

	5 Open Questions
	6 Conclusions
	References

	I/O and File Systems for Data-Intensive Applications
	1 Parallel File Systems vs. Data-Intensive File Systems: A Comparison
	2 Chunk-Aware I/O: Enabling HPC on Data-Intensive File Systems
	2.1 Motivation
	2.2 Chunk-Aware I/O Design
	2.3 Chunk-Aware I/O Implementation
	2.4 Chunk-Aware I/O Analysis
	2.5 CHAIO Performance
	2.5.1 Experiment Setup
	2.5.2 Performance with Different Request Sizes
	2.5.3 Performance with Two Replicas
	2.5.4 Performance with Different Number of Nodes
	2.5.5 Overhead Analysis in Large-Scale Computing Environments
	2.5.6 Load Balance

	3 Related Works
	3.1 HPC on Data-Intensive File Systems
	3.2 N-1 Data Access and its Handling

	4 Summary
	References

	Cloud Resource Pricing Under Tenant Rationality
	1 Introduction
	2 The Game Model
	2.1 User Model and Virtual Instances Pricing
	2.2 Modeling Cloud Revenue and Tenant Surplus
	2.2.1 Stage I: Cloud Revenue Maximization
	2.2.2 Stage II: Tenant Surplus Maximization

	2.3 Stackelberg Equilibrium

	3 Usage-Based Cloud Resource Pricing
	3.1 Non-Uniform Pricing
	3.1.1 Stage II: Tenant Surplus Maximization
	3.1.2 Stage I: Cloud Pricing Choices

	3.2 Uniform Pricing
	3.2.1 Stage II: Tenant Surplus Maximization
	3.2.2 Stage I: Cloud Pricing Choices

	4 The Effectiveness of Stackelberg Strategies
	4.1 Centralized Aggregate Network Utility Maximization
	4.2 Total Network Utility Under Selfish Interactions
	4.3 Asymptotic Analysis of Price of Anarchy

	5 Broker Resource Pricing
	6 Performance Evaluation
	6.1 Setup
	6.2 Economic Implications of Cloud Resource Pricing
	6.3 Social Welfare Tradeoffs, and Hidden Effects

	7 Related Work
	8 Concluding Remarks
	References

	Online Resource Management for Carbon-Neutral Cloud Computing
	1 Introduction
	1.1 Background
	1.2 Carbon Neutrality: Benefits and Challenges
	1.3 Current Research and Limitations
	1.4 Contributions

	2 Model
	2.1 Some Assumptions
	2.2 Energy Sources
	2.3 Data Center
	2.4 Workload

	3 Problem Formulation
	3.1 Objective and Constraints
	3.2 Offline Problem Formulation

	4 Algorithm for Cost Optimization and Carbon Neutrality
	4.1 Carbon Deficit Queue
	4.2 Optimizing for Cost Minimization and Carbon Neutrality
	4.2.1 Working Principle of COCA
	4.2.2 Distributed Implementation

	4.3 Performance Analysis

	5 Simulation
	5.1 Data Sets
	5.2 Results
	5.2.1 Efficiency of COCA
	5.2.2 Comparison with Prediction-Based Method

	6 Extension to Geographic Load Balancing
	7 Conclusions
	References

	A Big Picture of Integrity Verification of Big Data in Cloud Computing
	1 Introduction
	2 Motivating Examples
	3 Problem Analysis---Framework and Lifecycle
	4 Representative Approaches and Analysis
	4.1 Preliminaries
	4.1.1 RSA Signature
	4.1.2 Bilinear Pairing and BLS Signature
	4.1.3 Merkle Hash Tree

	4.2 Representative Schemes
	4.2.1 PDP
	4.2.2 Compact POR
	4.2.3 DPDP
	4.2.4 Public Auditing of Dynamic Data
	4.2.5 Authorized Auditing with Fine-Grained Data Updates

	5 Other Related Work
	6 Conclusions and Future Work
	References

	An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing
	1 Introduction
	2 Related Work
	3 An Out-of-Core Task-based Middleware
	3.1 Global and Local Schedulers
	3.2 Storage Service

	4 Linear Algebra Frontend (LAF)
	5 A Case Study: Block Iterative Eigensolver Using DOoC+LAF
	5.1 Eigenvalue Problem in the Configuration Interaction Approach
	5.2 Implementation Using 1D partitioning
	5.3 Implementation Using a 2D Partitioning

	6 Experiments
	6.1 Practical Considerations
	6.2 Performance Results for Nmax=8

	7 Conclusions
	References

	Building Scalable Software for Data Centers: An Approach to Distributed Computing at Enterprise Level
	1 Introduction to Big Data Problems
	2 Known Solutions at Design Phase: Overview of Design Patterns for Parallel & Distributed Computing
	3 Introduction to MapReduce Programming Model
	4 Overview of Apache Hadoop: A Framework for Distributed Computing
	4.1 Distributed File System: HDFS
	4.2 MapReduce Framework & API
	4.3 Database Support: HBase
	4.4 High Level Programming Language: Pig
	4.5 Hive: Another Database Support & High Level Programming Language

	5 Conclusions
	References

	Cloud Storage over Multiple Data Centers
	1 Introduction
	2 Cloud Storage in a Nutshell
	2.1 Architecture
	2.2 Metadata Service
	2.2.1 Layout Manager
	2.2.2 Meta-Server
	2.2.3 Lock Service

	2.3 Storage Service
	2.3.1 Namenode
	2.3.2 Chunk Servers

	3 Replication Strategies
	3.1 Introduction
	3.2 Asynchronous Replication
	3.3 Synchronous Replication
	3.4 Placement of Replicas

	4 Data Striping Methods
	4.1 Introduction
	4.2 Erasure Code Types
	4.3 Erasure Codes in Data Centers

	5 Consistency Models
	5.1 Introduction
	5.2 Strong Consistency
	5.3 Weak Consistency

	6 Cloud of Multiple Clouds
	6.1 Introduction
	6.2 Architecture
	6.3 Data Striping
	6.4 Retrieving Strategy
	6.5 Mutual Exclusion

	7 Privacy and Security of Storage System
	7.1 Introduction
	7.2 Fine-Grained Data Access Control
	7.3 Security on Storage Server

	8 Conclusion and Future Directions
	References

	Part IV Hardware
	Realizing Accelerated Cost-Effective Distributed RAID
	1 Introduction
	2 Background
	2.1 Rationale
	2.1.1 Backend vs. Client-driven Parity Generation
	2.1.2 Block-Based vs. Per-File RAID
	2.1.3 Hardware vs. Accelerated Software RAID
	2.1.4 Discussion

	2.2 Enabling Technologies
	2.2.1 Erasure Codes
	2.2.2 The Lustre Parallel File System
	2.2.3 KGPU

	3 Design
	3.1 System Overview
	3.2 RAID-enabled PFS Design
	3.3 Control Flow
	3.4 Degraded Array Reconstruction

	4 Implementation
	4.1 Basic GPU Implementation
	4.2 Optimizations

	5 Evaluation
	5.1 Experimental Setup
	5.2 I/O Throughput Measurement
	5.2.1 Raw Throughput
	5.2.2 Encoding Throughput
	5.2.3 Impact of Number of Disks on Throughput
	5.2.4 End-to-End Data Integrity

	5.3 RAID Reconstruction Cost
	5.4 Impact on Applications

	6 Related Work
	7 Conclusion
	References

	Efficient Hardware-Supported Synchronization Mechanisms for Manycores
	1 Introduction
	2 The G-Lines Technology
	3 Hardware Barrier Synchronization
	4 The GBarrier Synchronization Mechanism
	4.1 Dedicated On-Chip Network Architecture
	4.2 Synchronization Protocol
	4.3 Programmability Issues

	5 Performance Implications
	5.1 Implementation Technologies
	5.1.1 G-Lines Technology
	5.1.2 Standard Technology

	5.2 Raw Performance Statistics

	6 Evaluation
	6.1 Experimental Setup
	6.2 Barrier Implementations
	6.3 Performance Results
	6.3.1 Execution Time
	6.3.2 Network Traffic
	6.3.3 Energy Efficiency

	7 Related Work
	8 Hardware Lock Synchronization
	9 The GLock Synchronization Mechanism
	9.1 Dedicated On-Chip Network Architecture
	9.2 Synchronization Protocol
	9.3 Programmability Issues

	10 Performance Implications
	10.1 Implementation Technologies
	10.1.1 G-Lines Technology
	10.1.2 Standard Technology

	10.2 Raw Performance Statistics

	11 Evaluation
	11.1 Experimental Setup
	11.2 Post-mortem Analysis of Benchmarks
	11.3 Lock Implementations
	11.4 Performance Results
	11.4.1 Execution Time
	11.4.2 Network Traffic
	11.4.3 Energy Efficiency

	12 Related Work
	13 Conclusions
	References

	Hardware Approaches to Transactional Memory in Chip Multiprocessors
	1 Introduction
	2 Why Transactional Memory Is Going Mainstream
	2.1 The Drawbacks of Lock-Based Synchronization
	2.2 The Transactional Abstraction
	2.3 High-Performance Transactional Memory
	2.4 Industrial Adoption of Hardware Transactional Memory

	3 Fundamentals of Transactional Memory
	4 Hardware Mechanisms for Transactional Memory
	4.1 ISA Extensions
	4.2 Transactional Book-Keeping
	4.3 Data Versioning
	4.4 Conflict Detection and Resolution
	4.5 Transaction Commit
	4.6 Transaction Abort

	5 Intel TSX: TM Support in Mainstream Processors
	5.1 Hardware Lock Elision
	5.2 Restricted Transactional Memory

	6 Analysing Intel TSX Performance on Haswell
	7 An Overview of Hardware TM Research
	8 Conclusions
	References

	Part V Modeling and Simulation
	Data Center Modeling and Simulation Using OMNeT++
	1 Introduction to Modeling and Simulation (M&S) Methodology
	1.1 Parallel Discrete Event Simulation---PDES

	2 Data Center Architectures
	3 Data Center Modeling Using OMNeT++
	3.1 Simple Two Node Simulation
	3.2 Advance Level Simulation
	3.3 Data Center Simulation Model

	4 Wrap Up
	References

	Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters
	1 Introduction
	1.1 Overall Datacenter Architecture
	1.2 Datacenter Workload Characteristics
	1.3 Energy Efficiency of Datacenters
	1.4 Chapter Organization

	2 State-of-the-Art in Datacenter Design
	2.1 Computing Servers
	2.2 Cooling Infrastructure

	3 Power and Temperature Modeling and Monitoring
	3.1 Server Modeling
	3.2 Datacenter Modeling
	3.3 Monitoring System for Datacenters

	4 Power and Thermal Managements of Servers
	4.1 Overview of CPU Power and Thermal Management Techniques
	4.2 Run-Time Hierarchical Power and Thermal Management for Server Architectures
	4.3 Design-Time Power and Thermal Optimizations

	5 Power and Thermal Managements for Server Clusters
	5.1 Conventional Solution to Minimize Power Consumption for Server Clusters
	5.2 Correlation-Aware Power and Temperature Management

	6 Power Minimization of Datacenters with Hybrid Cooling Architectures
	6.1 Formal Problem Definition
	6.2 Multi-objective Trade-offs Exploration Between Cooling Mode and Utilization Threshold
	6.3 Simulation Results

	7 Conclusions
	References

	Thermal Modeling and Management of Storage Systems in Data Centers
	1 Introduction
	2 Related Work
	2.1 Efficient Data Centers
	2.2 Thermal Modeling
	2.3 Thermal Management

	3 Thermal Modeling
	3.1 CPU Thermal Model
	3.2 Disk Thermal Model
	3.3 Thermal Model of Data Nodes
	3.4 Evaluation of Temperature Models

	4 Thermal Management Strategies
	4.1 Task Scheduling
	4.2 Predictive Thermal-Aware Data Transmission

	5 Results
	5.1 Task Scheduling
	5.1.1 CPU-Intensive Workload
	5.1.2 I/O-Intensive Workloads

	5.2 Predictive Thermal-Aware Management System

	6 Conclusion
	References

	Modeling and Simulation of Data Center Networks
	1 Data Centers and Cloud Computing
	2 DCN Architectures
	3 DCN Graph Modeling
	3.1 ThreeTier DCN Model
	3.2 FatTree DCN Model
	3.3 DCell DCN Model

	4 DCNs Implementation in ns-3
	4.1 ThreeTier DCN Implementation Details
	4.2 FatTree DCN Implementation Details
	4.3 DCell DCN Implementation Details

	References

	Part VI Security
	C2Hunter: Detection and Mitigation of Covert Channels in Data Centers
	1 Introduction
	2 Background
	3 Threat Model, Scenarios and Assumptions
	3.1 Threat of Data Center
	3.2 Threat Categories of Covert Channels
	3.3 Threat Scenarios of Covert Channels
	3.4 Assumptions

	4 Overview of C2Hunter
	4.1 Challenges
	4.2 Formal Requirements
	4.3 C2Hunter Framework Summary
	4.4 Covert Channel Modeling

	5 Two-Phase Synthesis Detection Algorithm
	5.1 Markov Detection Algorithm
	5.2 Bayesian Detection Algorithm

	6 Mitigation Algorithm
	7 Implementation and Evaluation
	7.1 Covert Channels Scenarios
	7.2 Captor and Detector
	7.3 Interrupter in Hypervisor
	7.4 Experimental Settings
	7.5 Detection Analysis
	7.6 Mitigation Analysis

	8 Discussion
	9 Related Work
	10 Conclusion
	References

	Selective and Private Access to Outsourced Data Centers
	1 Introduction
	2 Access Control Enforcement
	2.1 Selective Encryption
	2.2 Updates to the Access Control Policy
	2.3 Write Privileges
	2.4 Attribute-Based Encryption

	3 Efficient Access to Encrypted Data
	4 Protecting Access Privacy
	4.1 Oblivious RAM
	4.2 Dynamically Allocated Data Structures
	4.3 Shuffle Index

	5 Combining Access Control and Indexing Techniques
	6 Conclusions
	References

	Privacy in Data Centers: A Survey of Attacks and Countermeasures
	1 Introduction
	2 Privacy
	3 Privacy Enhancing Technologies
	4 Anonymous Communications
	5 Mix Networks
	6 Traffic Analysis
	7 Mix Systems Attacks
	8 The Disclosure Attack
	9 The Statistical Disclosure Attack (SDA)
	10 Extending and Resisting Statistical Disclosure
	11 Two Sided Statistical Disclosure Attack (TS-SDA)
	12 Perfect Matching Disclosure Attack (PMDA)
	13 Vida: How to Use Bayesian Inference to De-anonymize Persistent Communications
	14 SDA with Two Heads (SDA-2H)
	15 Conclusions
	References

	Part VII Data Services
	Quality-of-Service in Data Center Stream Processing for Smart City Applications
	1 Introduction
	2 Distributed Stream Processing Systems
	2.1 Abstract Model
	2.2 Development Model
	2.3 Execution Model

	3 Platforms for Distributed Stream Processing
	3.1 IBM InfoSphere Streams
	3.2 Apache S4
	3.3 Storm

	4 QoS-Aware Stream Processing
	5 Quasit
	5.1 Quasit Abstract Model
	5.2 Quasit Development Model
	5.3 Quasit Execution Model

	6 Load-Adaptive Active Replication (LAAR)
	7 Conclusions
	References

	Opportunistic Databank: A context Aware on-the-fly Data Center for Mobile Networks
	1 Introduction
	2 Data Replication in Manets---A Brief Overview
	3 Data Replication in DTNs
	3.1 System Model
	3.2 Hybrid Scheme for Message Replication (HSM) for DTNs
	3.3 Empirical Setups and Results
	3.3.1 Performance Metrics
	3.3.2 Related DTN Replication Schemes
	3.3.3 Simulation Results

	4 Conclusions
	References

	Data Management: State-of-the-Practice at Open-Science Data Centers
	1 Introduction
	2 Data Storage Infrastructure
	2.1 Data Storage Media
	2.2 General Architecture of a Data Storage System
	2.3 Supporting Databases for Structured and Semi-Structured Datasets
	2.4 Examples of Notable Storage Systems at Open-Science Data Centers

	3 Data Movement
	3.1 Parallel File-System Associated with Computational Resources---Secondary Storage
	3.2 Optimizing Data Movement in Context of Secondary Storage System
	3.3 Optimizing Data Movement in Context of Tertiary Storage System

	4 Data Archiving
	5 Data Preservation
	6 Conclusion
	References

	Data Summarization Techniques for Big Data---A Survey
	1 Introduction
	2 Applications of Data Summarization
	3 Clustering Algorithms
	3.1 Background
	3.2 Hierarchical Clustering
	3.3 Partitioning Clustering
	3.4 Density-Based Clustering Algorithms
	3.5 Grid-Based Clustering Algorithms

	4 Sampling
	4.1 Probability Sampling
	4.2 Non-Probabilistic Sampling

	5 Compression
	6 Wavelets
	7 Histograms
	8 Micro-Clustering
	9 Conclusion
	References

	Part VIII Monitoring
	Central Management of Datacenters
	1 Introduction
	2 Organization of the Chapter
	2.1 Management Layer Network
	2.2 Provisioning of Servers
	2.2.1 Reason to Use Provisioning Servers

	2.3 Platform Configuration Management System
	2.4 Resource Utilization Monitoring
	2.5 Alerting and Alarming System
	2.6 Central Logging System
	2.6.1 Security Information Event Management

	2.7 Intrusion Detection and Prevention System
	2.7.1 Types of Intrusion Detection System (IDS)
	Network-Based Intrusion Detection System (NIDS)
	Host-Based Intrusion Detection System (HIDS)
	2.7.2 How Intrusion Detection System Works?
	Anomaly-Based Intrusion Detection System
	Signature-Based Intrusion Detection System

	2.8 Datacenter Backup and Restore
	2.8.1 The Components of Data Backup and Recovery
	Cold and Hot Backup
	Enterprise Backup and Restore Software
	Online and Offline Storage

	2.9 Security Management Systems

	3 Conclusion
	References

	Monitoring of Data Centers using Wireless Sensor Networks
	1 Introduction
	2 Survey Study
	3 Conclusion
	References

	Network Intrusion Detection Systems in Data Centers
	1 Introduction
	2 Origin and Standardization
	3 Architecture
	4 Subjects of Study
	5 Detection Strategies
	6 Alert Correlation
	7 Summary
	References

	Software Monitoring in Data Centers
	1 Introduction
	1.1 Performance Degradation
	1.2 Function Failure
	1.3 Energy Conservation

	2 Monitoring Content
	2.1 Basic Software
	2.2 Middleware
	2.3 Database
	2.4 Application Software
	2.5 PM (Physical Machine) and VM (Virtual Machine)
	2.6 User Behavior Analysis
	2.7 Hot-Spot Evaluation
	2.8 Performance Prediction and Advanced Warning
	2.9 The Performance Bottlenecks Analysis

	3 Monitoring Timing
	3.1 Resource-Oriented Monitoring
	3.2 Business-Oriented Monitoring

	4 Participators
	4.1 Resource Managers
	4.2 Service Operators
	4.3 Data Owner
	4.4 Software Developers

	5 Monitoring Site
	5.1 On-Site Monitor
	5.2 Off-Site Monitor

	6 Monitoring Methods
	6.1 Visualization Monitoring
	6.2 Hot-Spot Evaluation
	6.3 Performance Prediction
	6.4 Analyzing User's Habits
	6.5 Tools

	References

	Part IX Resource Management
	Usage Patterns in Multi-tenant Data Centers: a Large-Case Field Study
	1 Introduction
	2 Multi-tenant Datacenters
	2.1 Evolution of Resource Demands
	2.2 CPU Load Balancing
	2.3 The Impact of Time Scales

	3 Summary
	References

	On Scheduling in Distributed Transactional Memory: Techniques and Tradeoffs
	1 Introduction
	2 Preliminaries and System Model
	2.1 Distributed Transactions
	2.2 Definitions
	2.3 Transactional Scheduler

	3 Bi-interval
	3.1 Motivation
	3.2 Scheduler Design
	3.3 Analysis
	3.4 Evaluation

	4 Cluster-Based Transactional Scheduler
	4.1 Motivation
	4.2 Scheduler Design
	4.3 Analysis
	4.4 Evaluation

	5 Summary and Conclusion
	References

	Dependability-Oriented Resource Management Schemes for Cloud Computing Data Centers
	1 Introduction
	2 System Model and Failure Behavior of Data Center Components
	2.1 Overview of the Data Center Architecture
	2.2 Failure Behavior of Servers
	2.3 Failure Behavior of Network Components
	2.4 Analysis of the Impact of Failures on Applications

	3 Resource Management in Data Center Environments
	3.1 Global Constraints
	3.2 Infrastructure-Oriented Constraints
	3.3 Application-Oriented Constraints

	4 Initial Allocation of Virtual Machines in Data Center Environments
	4.1 A Comprehensive Scheme for Virtual Machines Allocation
	4.2 Other Schemes for Virtual Machines Allocation

	5 Runtime Adaption of Virtual Machine Allocation in Data Center Environments
	5.1 Runtime Adaption to Balance Availability and Performance
	5.2 Other Schemes for Runtime Virtual Machines Allocation Adaption

	6 Conclusions
	References

	Resource Scheduling in Data-Centric Systems
	1 Introduction
	2 Terminology
	3 Classification and State-of-the-Art
	3.1 Hierarchy of Resource Scheduling in DCS
	3.2 Resource Provision
	3.2.1 Economic-Based Resource Provision
	3.2.2 SLA-Oriented Resource Provision
	3.2.3 Utility-Oriented Resource Provision

	3.3 Job Scheduling
	3.3.1 Static Job Scheduling
	3.3.2 Dynamic Job Scheduling

	3.4 Data Scheduling
	3.4.1 Online Data Scheduling
	3.4.2 Offline Data Scheduling

	4 Case Studies
	4.1 Amazon EC2
	4.2 Dawning Nebulae
	4.3 Taobao Yunti
	4.4 Microsoft SCOPE

	5 Future Trends and Challenges
	6 Conclusions
	References

	Index

