
Chapter 7
Locomotion Through Complex Fluids:
An Experimental View

Josué Sznitman and Paulo E. Arratia

Abstract Recently, there has been renewed interest in the swimming of
microorganisms for applications that include artificial swimmers, novel materials,
drug delivery, and micro-robotics. Due to small length scales, the fluid mechanics
of swimming of microorganisms are governed by low Reynolds number
hydrodynamics. In such a regime, linear viscous forces dominate over nonlinear
inertial forces. While our current understanding of locomotion at low Reynolds
numbers is derived mainly from investigations in simple, Newtonian fluids (e.g.,
water), many of the fluids in which locomotion occurs contain solids and/or
(biological) polymers that are instead not Newtonian. Examples include wet soils,
human mucus, and fluids in the cervix and female reproductive track. A major
challenge is to understand the propulsion mechanisms in fluids that display complex
rheological behavior such as viscoelasticity and shear-thinning viscosity. Here, we
will briefly review a few notable swimming experiments in Newtonian fluids and
then discuss the latest experimental results on swimming in complex fluids, focusing
on viscoelastic fluids.

1 Introduction

Microorganisms are surrounded by fluids. They cope and take advantage of water
or wind currents to move, feed, and reproduce. Many, if not most, living organisms
live in the realm of low Reynolds numbers [1], usually defined as Re = ρUL/μ ,
where U is a characteristic speed, L a characteristic length (e.g., body size), and
ρ and μ are the fluid’s density and dynamic viscosity, respectively. For example,
the typical Reynolds number for microorganisms such as eukaryotic protozoa
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(e.g., sperm cells [2–4]), prokaryotes (e.g., bacteria [5]), and even multicellular
organisms (e.g., nematodes [5–7]) is much less than unity (Re � 1) due to the
organism’s small length scale L. By contrast, humans when swimming in the ocean
or water pools can reach Reynolds numbers of approximately 104. This means
that humans can take advantage of nonlinear inertial forces for propulsion, while
microorganisms simply cannot. Small living organisms instead have to overcome
the linear viscous forces and drag arising from the fluid in order to achieve any
appreciable net motion. The picture that emerges is that moving (and living) at low
Reynolds number is drastically different from what we (humans) are accustomed
to experience in our everyday lives. For the case of swimming microorganisms in
simple fluids such as water, the equations of fluid motion become time-reversible
(for a more in-depth discussion on the governing equations, please see Chap. 1). As a
result, net locomotion can only be generated from nonreciprocal kinematics in order
to break time-reversal symmetry [2,8,9]; this is also known as the “scallop theorem”
[1] which states that organisms that rely on reciprocal motion for locomotion cannot
achieve net motion in the limit of vanishing Reynolds numbers. A more detailed
discussion on the scallop theorem is given in Chap. 8.

Microorganisms have developed diverse strategies to break time-symmetry and
create nonreciprocal motion (see Fig. 7.1). Such strategies include body undulations
and the presence of moving flagella. For example, the motility of various multi-
cellular organisms including the worm nematode Caenorhabditis elegans originates
from the propagation of undulatory waves from head to tail as a result of patterns of
muscle activation and neuromuscular control [10–12]. Locomotion may also result
from flagellar motility where one or several bundled appendages protrude from the
cell body of certain prokaryotic and eukaryotic cells. One can typically distinguish
between bacterial flagella that are helical filaments (e.g., Escherichia coli [13–16])
and eukaryotic flagella that are flexible filaments undergoing “whiplike” motions
resulting from the action of molecular motors distributed along the filament length;
this latter mode of flagellar actuation is seen for example in many sperm cells
[17–19]. Other eukaryotic organisms (e.g., Paramecium) have instead their body
surface covered with thousands of small hairlike protrusions (cilia) that beat in a
coordinated manner [17, 20].

Fig. 7.1 Examples of microorganisms. (a) The green algae Chlamydomonas reinhardtii, a model
eukaryotic organism, (b) sperm cells moving next to boundaries, and (c) the bacterium E. coli, one
of the most widely studied prokaryotic model organisms
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There are many other cellular environments that are characterized by low
Reynolds number locomotion. In mammals, for instance, cells featuring motile
cilia include the epithelium of the female Fallopian tubes, where rhythmic beating
guarantees translocation of the ovum from the ovary into the uterus [21–23]. Motile
cilia are also found in the epithelial lining of the tracheobronchial airways of the
lungs [24]. There, the ciliated epithelium prevents mucus accumulation in the airway
lumen and serves as an immune barrier against pathogens and foreign particulate
matter by the action of the so-called mucociliary escalator [25, 26] characterized
by synchronous waves of ciliary beating. These waves effectively transport mucus
secretions towards the laryngopharynx for expectoration or swallowing to the
stomach.

It is clear from everyday observation and from the few examples cited above
that nature has found many fascinating ways to break time-reversibility and achieve
net motion at the microscopic scale. And thanks to theoretical, numerical, and
experimental investigations, our understanding of swimming of microorganisms
at low Reynolds numbers has significantly improved in the past 60 years or
so [1,3,8,9,13,27–30]. While much of our efforts have been restricted to swimming
in simple, Newtonian fluids (e.g., water), there are many microorganisms that live
in (complex) fluids that contain particulates and/or polymers (e.g., human mucus,
blood, wet soil, gels, and tissues) and are not Newtonian. Such fluids often possess
complex (non-Newtonian) rheological behavior such as shear-thinning viscosity and
viscoelasticity. One may expect that swimming in complex fluids such as mucus to
be markedly different from swimming in water. But is it? Is swimming in complex
fluids at low Reynolds numbers still dominated by purely viscous effects? Does
fluid elasticity matter at low Reynolds numbers? Here, we will try to address
those questions by examining the recent experimental investigation of swimming
of microorganisms in both Newtonian and complex fluids. This chapter is organized
as follows: (i) a brief introduction is given on swimming at low Reynolds numbers
in simple, Newtonian fluids, (ii) experiments in Newtonian fluids are discussed,
(iii) a brief discussion of locomotion in complex fluids is given, (iv) experiments in
viscoelastic fluids are discussed, and (v) conclusions and outlook are provided. We
begin by introducing some basic principles of swimming at low Reynolds numbers
in Newtonian fluids; we note that a more detailed discussion on the basic principles
of locomotion in Newtonian and complex fluids can be found in Chaps. 1 and 8.

2 Basic Principles: Fluid Dynamics of Swimming
at Low Reynolds Number

Let us begin our discussion of swimming of microorganisms by estimating the
Reynolds numbers of the bacterium E. coli in water. The shear viscosity μ of
water is 1mPa · s (or 1 cP) and independent of shear rate (i.e., Newtonian). The
characteristic size L of E. coli is approximately 2μm, and the bacterium is known
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to achieve net swimming speeds U of approximately 25μm/s [31]. Following these
parameters, we can estimate the Reynolds number for E. coli to be approximately
Re = ρUL/μ = 5 × 10−5 � 1, where ρ is fluid density (103 kg/m3). Such low
value of Re implies that linear viscous forces dominate over inertial forces, and the
nonlinear convective term in the Navier–Stokes equation can be safely ignored (see
Chap. 1). Additionally, one can compute the frequency-based Reynolds number,
typically defined as Refreq = ρL2ω/μ , to assess unsteady flow effects, where ω
is the frequency at which the bacterium flagella rotate (∼ 100 Hz). We find again
for E. coli that Refreq � 0.1, and thus one can assume the flow to be steady. Under
those conditions and assuming that the bacterium is moving in an incompressible
(∇ ·u = 0), Newtonian fluid (and ignoring body forces like gravity), the equation of
fluid motion reduces to

∇p = μ∇2u, (7.1)

where u is the velocity vector, p is the pressure, and ∇ is the divergence operator.
The above equation is often referred to as the Stokes equation, named after the
mathematician Sir George Stokes. Equation (7.1) is the main equation governing the
hydrodynamics of swimming microorganism and has some interesting properties.
For example, the above equation is instantaneous in the sense that it has no
dependence on time other than via boundary conditions. Equation (7.1) is also linear
in both velocity and pressure. Furthermore, it is time-reversible in the sense that any
time-reversed Stokes flow solves the same equations as the original Stokes flow. This
time-reversibility, or kinematic reversibility, forms the hydrodynamic basis of the
“scallop theorem” introduced earlier [1]. These properties illustrate that swimming
at low Reynolds numbers can seem at first as a highly confined phenomenon, yet
microorganisms have found a variety of ways to overcome the constraints of the
scallop theorem. In what follows, we briefly review some of the classical theories
that have shed light on the hydrodynamic mechanisms leading to net propulsion at
low Reynolds numbers. The discussion will be limited but the reader can find a more
thorough review in [2, 5, 8, 30] as well as in Chaps. 1 and 8 of this book.

Over half a century ago, Taylor [27, 28] beautifully demonstrated that an infinite
waving sheet (see Fig. 7.2a) could swim in an incompressible, Newtonian fluid by
generating traveling waves in the absence of inertia or vanishing Reynolds numbers.
Note that the hydrodynamics of Taylor’s waving sheet is governed by Eq. (7.1). In
Taylor’s work, the planar sheet oscillates in time in a prescribed form according to
y(x, t) = asin(kx−ωt), where a is the traveling wave amplitude, ω is the frequency,
λ = 2π/k is the wavelength, c = ω/k is the traveling wave speed, and k is the
wave number. Taylor found that the sheet oscillations induce a forward velocity
U = ωa2k/2+O(ka)4 [27], where the sheet is propelled in the direction opposite
to that of the propagating wave (Fig. 7.2a).

Many important investigations followed Taylor’s landmark contribution. Of
particular relevance, we highlight the well-known resistive force theory (RFT)
introduced by Gray and Hancock in analyzing the locomotion of sperm cells
[3]. There, the authors assumed that the hydrodynamic forces experienced by the
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Fig. 7.2 (a) Two-dimensional waving sheet in a viscous fluid illustrating the traveling wave of
velocity c progressing in the x-direction and the forward swimming speed (U) in opposite direction.
(b) Resistive force theory (RFT) diagram illustrating the normal and tangential components of the
velocity U and force F , and the resulting net propulsive force

organism would be approximately proportional to the local body velocity such that
the force exerted by a body or flagellar segment is given by F = CNUN +CT UT,
where C corresponds to the local drag coefficient per unit length (dependent
on geometry and fluid viscosity) and N and T are the normal and tangential
components, respectively (see Fig. 7.2b). Hence, the total thrust can then be obtained
by integrating the propulsive force over the entire body or flagellum length. It is
namely the anisotropy between the normal and tangential drag coefficients, with
CN >CT , that lies at the origin of the drag-based thrust.

Using RFT, Gray and Hancock obtained (for the case of large-amplitude
displacements) a closed-form solution for the swimming speed of an undu-
lating filament given by the expression U = πc(a/λ )2(CN/CT − 1)/ (1 +
2π2(CN/CT )(a/λ )2). Here, CN = 2CN = 4πμ/ ln(L/a) for a straight rod of length
L such that the ratio of normal to tangential drag coefficients yields CN/CT = 2 for
a sine wave of wavelength λ where a is the amplitude. For example, more recent
experiments using the nematode C. elegans estimated this ratio at CN/CT = 1.4 [7];
such value lies closely with earlier estimates reported by Gray and Lissmann [6]
who dropped thin wires into viscous fluids (CN/CT = 1.4–1.6).

Lighthill [9] later recognized the importance of long-range hydrodynamic inter-
actions and improved RFT by incorporating slender-body approximations. Such
improvements led to CN/CT = 1.5 for the case of an undulating filament swimming
in an infinite fluid medium. When incorporating wall effects into the analysis, a sig-
nificantly larger value of the drag coefficient ratio (CN/CT = 4.1) was subsequently
obtained using the corrections of Katz et al. [32].

But what can we say about the flow fields generated by swimming microorgan-
isms in fluids? A common way to determine flow fields at low Reynolds numbers is
to solve the Stokes equation [Eq. (7.1)] with a forcing term replaced by a point force
or disturbance [33]. As noted earlier, the flow disturbances driven by the swimming
motion of microorganism in a Newtonian fluid depend linearly upon the stresses
exerted by the moving body on the fluid [see Eq. (7.1)]. These boundary-driven
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flows are known to decay very slowly with the distance r away from the body
[2, 8, 34]. Most often, such flow disturbances are mathematically cast as linear
superpositions of the fundamental solutions of the Stokes equation and decay with
inverse powers of r. The first solution, referred to as a “Stokeslet,” arises from the
net force on the fluid, and has a velocity field that decays as 1/r. The next solution,
also known as a “stresslet” flow, is induced by the first force moment exerted by the
body on the fluid and decays more rapidly (1/r2); higher-order solutions decay even
more rapidly (1/r3). As a result, linear combinations of the basic solutions of the
creeping equations of fluid motion can generate a multitude of complex flow fields,
exhibiting contrasting near- and far-field behaviors [34].

3 Experiments in Newtonian Fluids

Experimental studies on low Reynolds number locomotion in Newtonian fluids have
undoubtedly complemented early theories on the topic [3, 4, 6, 9, 27, 28]. Many of
these works have aimed at addressing the validity of classical theoretical models. In
the section below, we briefly review a number of relevant experimental efforts that
have helped over time characterize low Reynolds propulsion in Newtonian media.

3.1 From Scale-Up Models to Live Microorganisms

Scale-Up Experiments Experiments with live microorganisms are generally
challenging due to difficulties with imaging/optical setups and to the lack of control
over the organisms themselves. One attractive experimental approach to circumvent
some of these issues relies on leveraging scale-up systems, often designed to
mimic the organism’s main swimming kinematics (see Fig. 7.3). Scale-up models
provide much valuable insight into the main physical mechanisms governing micro-
swimming phenomena; they have brought valuable insight in understanding the net
motion resulting from traveling waves along elastic tails [35–37], helical flagella
[38,39], and flagellar bundles [40,41] as well as in uncovering the motility resulting
from surface traveling waves along cylindrical shells [42].

Beyond fundamental research into microorganism locomotion, a broad range of
scale-up designs has been employed in the context of artificial swimming strategies
at low Reynolds numbers [8], including Purcell’s seminal “three-link swimmer”
which possesses two hinges actuated with both time and phase differences [43] and
a flapping body performing reciprocal motions near a deformable free surface [44].
Smaller mechanical systems have also been investigated. For example, the shapes
of an oscillating passive actin filament have been experimentally probed [45] and
more recently, a three-sphere design has been implemented using colloidal beads
and optical tweezers [46]. There is also much interest in artificial micro-swimmers
from the robotics and engineering community [47].
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Fig. 7.3 Example of scale-up model of flagellar bundling dynamics [40]. (a) Image sequence of
semi-coiled helices shown at various instances in time. (b) Same helices viewed from the side. The
scale bars are 100 mm long; the helices are 310 mm long (from chuck to tip), 4.0 mm in diameter,
and turning at 0.1 Hz (Refreq ≈ 3×10−5). Copyright (2003) National Academy of Sciences, USA

Experiments with Live Microorganisms Despite challenges in working with live
microorganisms, microscopy imaging of bacterial flagella has gained tremendous
traction following the pioneering work of Berg [13,14,48–50]. Of utmost relevance,
flagellar kinematics of individual bacteria have been visualized in real time using
fluorescent staining of both cells and flagellar filaments [51]. In more recent years,
these initial microscopy techniques have been further developed to obtain time-
resolved imaging of flagellar motility using setups with high-speed cameras [52] as
well as to track swimming microorganisms three-dimensionally (3D), for instance,
in a fluid far from surfaces [53]. These exquisite measurements provide much
valuable data for our understanding of swimming and for the development of more
realistic models.

Since, however, microorganisms evolve constantly near solid boundaries (e.g.,
migration of infectious bacteria through tissues), a growing number of experi-
ments have shown that it is important to consider the presence of surfaces; namely,
surfaces and wall effects drastically alter the kinematics of swimming microor-
ganisms relative to ideal unbounded swimming conditions. A best-known example
is perhaps illustrated for helical flagella (e.g., E. coli): swimming trajectories are
modified from straight to circular in the vicinity of boundaries, clockwise when
the wall is rigid [54] and anticlockwise near a free surface [55]. In particular, solid
surfaces not only lead to the reorientation of microorganisms in the direction parallel
to the surfaces, they also attract the organism to the closest wall [56].
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Fig. 7.4 Swimming of Paramecium in tubes of different diameters [60]. Here, Λ denotes the
wavelength, c denotes the radius of the organism, and A the amplitude of the helical trajectory
traced by the organism in tubes of different diameter. (a) Paramecium swimming in large tube
(R/c = 2.63) where the trajectory of the motion is helical. (b) Small wavelength helices are
seen inside tubes of intermediate diameters (R/c = 1.67). (c) In very small tubes (R/c = 0.9),
Paramecium swims in a straight line. Figure reproduced with permission from the American
Institute of Physics

Uncovering the fundamental hydrodynamic interactions between surfaces and
swimming microorganisms has helped shed light on experimental observations of
the accumulation of confined spermatozoa on boundaries [57–59]. It was recently
observed [60] that ciliated Paramecium swimming in capillary tubes executes
helical trajectories that slowly transition to straight lines as the tube diameter
decreases (Fig. 7.4). Further experimental studies mimicking bio-locomotion in
confined environments (e.g., female reproductive tract) have also revealed that the
migration of motile spermatozoa in 3D microchannels is strongly influenced by
specific wall shapes, including the turning angles at corners [61]. Beyond single-cell
eukaryotic and prokaryotic microorganisms, it has also been noted that multicellular
organisms, such as C. elegans, may display some finite attraction to the presence of
boundaries [62] and certainly exhibit changes in their swimming kinematics under
confinement conditions (e.g., setups with parallel-wall cells) [63]. As we can see,
the presence of surfaces, solid or fluid-like, can significantly affect the dynamics of
swimming microorganisms and cannot be ignored.

3.2 Propulsive Force and Flow Measurements

There has also been much effort in measuring the propulsive forces (i.e., thrust)
and energy generated by swimming microorganisms. For instance, optical
traps have been used to measure the forces required to tether sperm cells and
bacteria [31, 64, 65]. In parallel, atomic force microscopy (AFM) has enabled the
measurements of forces exerted by mucus-propelling cilia that lie on the order of
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< 1nN per cilium during the effective stroke [66]. Recently, force measurements
using optical tweezers have been obtained on individual bacteria to test the
validity of RFT and determine the swimming efficiency of E. coli [67]. These
latter measurements have revealed for the first time that long-range hydrodynamic
interactions are indeed critical in capturing accurately single-cell propulsion; in
contrast, relying on RFT assumes a stationary background fluid while ignoring
local flows induced from the other moving parts of the cell. Such observations have
been most recently corroborated in scale-up models of helical flagella, where the
validity of RFT breaks down for increasing pitch angles of the helix [39].

Concurrently, macroscopic (scale-up) experiments with helical bodies of dif-
ferent wavelengths λ , radii R, and lengths L (relevant to bacterial flagella) have
highlighted the qualitative and quantitative discrepancies with RFT predictions [68].
This may be ascribed to the fact that RFT only takes into account local effects and
neglects any hydrodynamic interactions between different parts of the swimmer.
More accurate results can be obtained by using slender-body theories (SBT) that
exploit the high aspect ratios seen in swimmer geometries and are based on the use
of singularity solutions to the Stokes equations [69–72]. Since nonlocal hydrody-
namic interactions between different parts of the swimmer may be incorporated in
these theories, they provide much better results. While analytical expressions for the
drag forces are generally difficult to obtain (here RFT can be of much value [9]),
numerical solutions have been used to choose between different forms of resistance
coefficients [73, 74] as well as study swimming in eukaryotic swimmers [75].

Despite the tremendous experimental progress, it is still difficult to measure the
flow fields generated by swimming microorganisms due to limited spatial resolution
of common velocimetry methods. One of the first attempts of visualizing the
flow of swimming organism dates back to the1960s when Gray and Lissmann [6]
presented qualitative path lines of freely swimming nematodes (worms) in water
seeded with starch grains. With the advent of modern micro-PIV (μPIV) techniques
[76] and fast cameras, flow field measurements of swimming microorganisms
are within reach. For example, path lines generated by an individual ciliated
Paramecium have been recently imaged [60], and velocity fields generated by
individual unicellular microorganisms [52] and multicellular nematodes [7] have
been resolved. In the case of the swimming nematode [7], the authors demonstrated
that velocity magnitudes of fluid motion follow closely an exponential decay of
the form exp(−2πr/λ ) as a function of the distance r away from the nematode
body (see Fig. 7.5); this analytical solution was originally derived by Lighthill
[9] for an undulating sheet of wavelength λ in Stokes flow. Further extension of
high-speed imaging techniques using for example tomographic PIV, where multiple
cameras image simultaneously the interrogation volume from different angles [77],
has enabled measurements of 3D time-resolved flow fields surrounding millimeter-
sized copepods (Calanus finmarchicus).

There are two recent experiments [78, 79] that deserve much consideration and
attention. The experiments by Drescher et al. [78] and Guasto et al. [79] were able
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Fig. 7.5 Flow behavior surrounding a swimming C. elegans. Adapted from Sznitman et al. [7].
(a) Color-coded particle path lines are shown via the trace of dispersed fluorescent particles.
Particle trajectories are tracked over ten consecutive frames (∼ 0.06 s). Colors are associated with
the lengths of trajectories. Two dominant recirculation regions are resolved along the nematode
body. Scale bar represents 200 μm. (b) Normalized fluid velocity magnitude (|u|/|u|max) as a
function of the dimensionless distance (r/L) away from the nematode body, where L is the
nematode body length. Data points of different colors correspond to fluids of different viscosities.
The solid line corresponds to exp(−2πr/λ ) [9]. Inset: representative velocity magnitude field at a
given instant in time surrounding a nematode (marked with a black line). Figure reproduced with
permission from the American Institute of Physics

to beautifully resolve the flow fields surrounding freely swimming micro-algae and
demonstrated that local fluid motions were much more complex than analytical
models initially suggested. This observation is particularly true in the near field,
where the largest flow velocities occur. For example, Drescher et al. detailed
quantitative measurements of time-averaged flows using μPIV for two different
types of microalgae: Volvox carteri, a ciliated multicellular spherical alga, and
Chlamydomonas reinhardtii, a unicellular alga featuring two flagella that beat in
a breaststroke-like fashion. Guasto et al. resolved rather the oscillatory nature of
the flow field driven by C. reinhardtii over one period of motion using high-speed
imaging, where the swimming microorganisms were confined in thin liquid films.
Both studies have emphasized how distinct species are likely to drive qualitatively
different disturbance flows, as recently highlighted by Saintillan [34]. This flow
feature remains true in the far field as well, where it is commonly assumed that
there, flow fields can be described in terms of a stresslet. As a final word, we note
that the representation of these driven flows using time-averaged velocity fields falls
short of capturing the true nature of the flow, since time fluctuations can be of the
same order as the mean.
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4 From Newtonian to Complex Fluids

As mentioned before, much of our understanding of low Reynolds number
locomotion arises from considerations in simple, Newtonian fluids [2–4, 9]. Many
microorganisms, however, evolve and live in complex fluids such as mucus, gels,
and wet soil [80–83]. But, what are complex fluids? Here, we define complex fluids
as a broad class of materials that are usually homogeneous at the macroscopic scale
and disordered at the microscopic scale, but possess structure at an intermediate
scale (typically, a few sizes of its particles). Examples include colloidal suspensions,
foams and emulsions, polymeric fluids, gels, human mucus, and blood. In colloidal
crystals, for example, the intermediate scale is set by the size of the organized
crystalline structure; that is, if one considers a cup of a cornstarch suspension,
then the microscopic scale is the matrix that includes both the water molecules and
the cornstarch grains (∼ 1μm), and the macroscopic scale is the size of the cup
(∼ 10cm), while the intermediate scale is set by the structural length scale (if any)
of the cornstarch grains. The cornstarch suspension will respond quite differently
to an applied stress, depending on the grain size, concentration, and the grain
arrangement in the suspending liquid. Thus, the macroscopic flow behavior (or
rheology) of complex fluids is a strong function of the fluid microstructure.

Complex fluids are usually not Newtonian, and they often exhibit viscoelasticity
and shear-thinning viscosity. Much recent effort has been devoted to the understand-
ing of the effects of non-Newtonian fluid behavior (shear-thinning, viscoelasticity)
on the swimming of microorganisms [8, 80, 81, 83, 84]. For example, the nonlinear
relationship between shear stress and strain rate that characterizes shear-thinning
fluids can have significant consequences to locomotion at low Reynolds numbers
including (i) a breakdown of the “scallop” theorem, (ii) kinematic changes in the
organism’s swimming motion, and (iii) changes in the drag forces experienced by
the organism. In fact, it was recently shown by Vélez-Cordero and Lauga [85]
for an infinite waving sheet (similar to Taylor’s original work) immersed in a
shear-thinning fluid that while the sheet’s propulsion speed remained the same as
in the Newtonian case, the cost of transport was reduced. Simulation studies by
Montenegro-Johnson et al. [84] showed that undulatory swimmers with a head or
“payload” (similar to a sperm cell) are assisted by shear-thinning viscosity, resulting
in increased speed. These recent studies illustrate that even relatively simple non-
Newtonian fluid behavior such as shear-thinning may have a significant impact on
the swimming behavior of microorganisms.

The effects of fluid elasticity on swimming at low Reynolds numbers have
received considerable more attention [83, 86–93] than shear-thinning effects.
Viscoelastic fluids possess shear stress that is time dependent and that depends on
the history of deformation. Such features give rise to flow behavior in viscoelastic
fluids that is markedly different from that of Newtonian fluids even at low
Reynolds numbers [94–96], and they can even lead to the breakdown of the
scallop theorem [92]. Most of the nonlinear flow behavior observed in the flow
of viscoelastic fluids results from the extra elastic stresses due to the presence, of
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Fig. 7.6 Snapshot of sperm
cells moving in (a)
Newtonian fluid (semen) and
viscoelastic fluid (mucus);
adapted from Ho and
Suarez [97]

usually, polymer molecules in the fluid. Mechanical stresses in viscoelastic fluids
are history-dependent and depend namely on a characteristic time λ that in dilute
solutions is proportional to the relaxation time of a single polymer molecule. In
semi-dilute solutions, λ depends also on molecular interactions. For more details
on fluid viscoelasticity and shear-thinning viscosity, please see Chaps. 1, 8, and 10.

The nonlinear response of viscoelastic fluids is expected and has been seen to
play a significant role on the swimming behavior of microorganisms. Consider for
example the swimming behavior of motile sperm cells [86, 97, 98] that usually
swim as a result of (single) flagellar beating. For freely swimming spermatozoa
in Newtonian semen (Fig. 7.6a), the flagellum exhibits a regular sinusoidal beating
pattern [81]. But once the organism encounters a viscoelastic medium (i.e., cervical
mucus), the regular beating pattern is transformed into high-amplitude, asymmetric
bending of the flagellum (Fig. 7.6b). This “hyper-activated” sperm is believed to be
dramatically influenced by its fluidic environment [81, 97], which in turn can affect
human fertility [80, 99]. Other examples of motility in viscoelastic media include
the removal of mucus in the human respiratory track by beating cilia [24, 26], the
locomotion of bacteria in biofilms [100, 101], and the burrowing of organisms in
wet soil [102, 103]. Understanding how microorganisms move in viscoelastic fluids
is, therefore, of both scientific and practical importance.

Despite many recent efforts to be discussed below, the effects of bulk fluid
elasticity on the motility behavior of live organisms at low Reynolds numbers are
still not clear and well understood. In order to provide the reader with some basic
insight into this issue, we turn to our favorite dimensionless parameters. The first,
of course, is the Reynolds number, which is a measure of the relative importance
of the fluid inertia to viscous forces. We already showed that the Reynolds number
is approximately 10−4 for E. coli swimming in water. The effects of fluid elasticity
are often estimated using the Deborah number, defined as De = λ f where λ is the
fluid relaxation time and f is the organism’s beating frequency. Note that De = 0 for
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Newtonian fluids and De → ∞ for purely elastic solids. One could imagine that fluid
elasticity may begin to play a dominant role for De ≥ 1. If one considers the beating
frequency f of sperm cells to range from 20 to 50 Hz and the relaxation time λ of
cervical mucus to range from 1 to 10 s (depending on factors like hydration, among
others), one can expect fluid elasticity to play a significant role on the motility of
spermatozoa since De � 1. One can also compare the ratio of the (fluid) elastic
time scale λ to the (fluid) viscous time scale ρL2/μ . This is the so-called elasticity
number, defined as El = λ μ/ρL2. Elastic effects are expected to dominate for El > 1.
Because of the nonlinear (squared) dependence of El on the (swimmer) length scale
L, one anticipates the effects of fluid elasticity to become increasingly important for
swimming microorganisms.

4.1 Swimming in Viscoelastic Fluids: Expectations

In 1979, Chaudhury [87] attempted to incorporate the effects of fluid elasticity on
swimming using a second-order fluid and a series of expansions similar to Taylor’s
analysis. It was then predicted that fluid elasticity could either increase or decrease
the propulsion speed of the waving sheet (Fig. 7.2), depending on the value of Re.
Later, inspired by experimental observations of spermatozoa swimming in mucus
[81, 97], the effects of elasticity on beating flagellar structures were considered in
Stokes flow using the Maxwell model [104]. It was shown that self-propulsion was
not affected by viscoelasticity even at large Deborah numbers (De), where De = λ f
and λ is the fluid relaxation time and f is the beating frequency. However, the total
work decreased with increasing De. It was then suggested that a microorganism
could swim faster in a viscoelastic fluid with the same expenditure of energy
compared with a Newtonian fluid.

More recently, Lauga [83] showed that, for a 2D waving sheet (Fig. 7.2), elastic
stresses could significantly alter the organism speed and the work required to
achieve net motion. Using nonlinear viscoelastic fluid models such as the Oldroyd-B
and the FENE-P models (see Chap. 1), Lauga [83] showed that the sheet’s forward
speed U in a purely elastic fluids is given by

U
UN

=
1+De2(ηs/η)

1+De2 , (7.2)

where UN is the swimming speed of the sheet in a viscous Newtonian fluid (i.e.,
Taylor’s original result) and ηs is the solvent viscosity; note that the solution
viscosity η is assumed to be the sum of the solvent viscosity and the polymer
viscosity such that η = ηs + ηp. Hence, for a given (i.e., prescribed) swimming
gait UN ≥ U , that is, elastic stresses reduce the overall speed of the waving sheet.
Equation (7.2) is an elegant and interesting result and has spurred much of the
recent interest in swimming in viscoelastic fluids. See Chap. 8 for a more detailed
discussion on the derivation of Eq. (7.2).
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A similar result to Eq. (7.2) was also obtained for a waving cylinder by Fu et al.
[88]. These important results imply that fluid elasticity can reduce the swimming
speed of microorganisms when compared to simple, Newtonian fluids. An important
caveat, of course, is that organisms may compensate the reduction in velocity
by increasing their beating frequency and/or concurrently decreasing their body
wavelength. In other words, microorganisms can alter their swimming kinematics to
adjust or adapt to varying fluidic environments. It is worth noting that the analysis
by Lauga [83] and Fu et al. [88] reveals the net magnitude of locomotion scales
quadratically with the amplitude of the local oscillatory motion, and therefore
nonlinear terms in viscoelastic constitutive relationships cannot be neglected (as in
the case of [104]).

Numerical simulations have also been used to address the role of fluid elas-
ticity on the swimming behavior of microorganisms. In particular, Teran and
co-workers [89] considered two-dimensional swimming “free” sheets (i.e., with
free head and tail) of finite length L in viscoelastic fluids. The simulations were
performed by solving Stokes equation using the Oldroyd-B model as the constitutive
equation using an immersed boundary method. The simulations show that, for
accentuated tail motions, the sheet swims faster at De ≈ 1 than in a Newtonian fluid.
This regime corresponds to where “swimmer” stroke frequency matches the fluid
relaxation time. This is a fascinating result and is unlike Eq. (7.2) which predicts
that the swimmer speed in viscoelastic fluids is always slower than in Newtonian
fluids. The simulations do show that for De > 1, the swimming speed decreases as
De increases (Fig. 7.7).

As briefly discussed above, fluid elasticity can strongly affect both the swimming
dynamics and kinematics of microorganisms even at low Reynolds numbers. Recent
analytical works predict that fluid elasticity hinders swimming speed while numeri-
cal simulations show that it is possible to obtain an enhancement in self-propulsion
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Fig. 7.7 (a,b) Polymer stress tensor fields for a finite length, two-dimensional undulating sheet.
The ellipses in the figures represent the directions and degree of distension of the polymer field. The
arrows represent the fluid velocity on the immersed filament. (c) Normalized average swimming
speed of the sheet as a function of the Deborah number. Note the enhancement in propulsion at De
≈ 1. Figures adapted from [89]
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in a regime where the fluid relaxation time matches the swimmer stroke frequency,
that is De ≈ 1. Despite such important advances, it is still not clear whether elastic
stresses enhance or hamper self-propulsion since theoretical and numerical results
are model dependent. So the question still stands: does fluid elasticity enhance or
hinder self-propulsion at low Re? Perhaps experiments will shed more light into this
important question.

5 Experiments in Viscoelastic Fluids

5.1 Scale-Up Experiments

Swimming experiments in complex fluids are hard to come by and systematic
investigations are scarce in the literature. Part of the problem is undoubtedly the
difficulty in identifying a model organism or swimmer that is both able to move
in different types of media and relatively easy to image and track. To circumvent
some of these difficulties, many investigators choose to build instead macroscopic-
scaled versions of the microorganisms’ propulsion mechanism [35, 41, 90, 105].
In this section, we discuss an interesting experimental setup proposed by Liu and
coworkers [90] in which a scale-up model of bacterial filaments is investigated.

The experimental setup is shown in Fig. 7.8 and consists of a large cylindrical
tank filled with either a viscous Newtonian fluid or a viscoelastic fluid. The Newto-
nian fluid is silicon oil and the polymeric solution is a mixture of polyisobutylene

Fig. 7.8 (a) Scale-up mechanical apparatus used for measuring the motility of a rotating helix
[90]. The helical structure, shown in (b), is slowly immersed into a Newtonian or viscoelastic fluid
and rotates about the vertical direction. The net hydrodynamic force on the helix is determined
by a laboratory balance beneath the tank as shown in (a). (c) Normalized propulsion speed as
a function of the Deborah number for two polymeric solutions and helices with different pitch
angles. Copyright (2011) National Academy of Sciences, USA
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(PIB) in polybutene solvent. More details on the polymeric solutions are given in
the next paragraph and in [90]. A rigid helix rotating at speed ω is slowly immersed
or plunged at a constant speed into fluid-filled tank. Helices of varying pitch angles
are used to mimic the geometry of bacterial flagellar filaments (e.g., E. coli). The
hydrodynamic force exerted on the helices by the fluid is measured by placing the
tank on top of a sensitive digital balance. In these experiments, zero-force swimming
is achieved by adjusting the translation speed until the measured axial force is zero.
Because the helix is inserted from above, a positive vertical force on the helix
represents a drag, and a negative vertical force on the helix is a thrust. The force-
free swimming speed is measured as a function of helix rotation rate, helix geometry
(i.e., pitch angle), and fluid properties (i.e., Newtonian vs. viscoelastic).

Because the fluids are very viscous, the Reynolds number is well below 0.01
and inertial effects are negligible. In order to decouple the effects of fluid elasticity
from those of rate-dependent viscosity (e.g., shear-thinning) common in polymeric
solutions, a nearly constant-viscosity, elastic fluid was prepared. Such fluids are
often called “Boger fluids” in reference to David Boger who first proposed the use
of such model fluids [106]. Boger fluids are constructed by adding a small amount
(usually in part per millions) of high molecular weight (MW) flexible polymer to
a very viscous solvent. Because the polymer contribution to the overall solution
viscosity is small, the solution viscosity is overwhelmed by the viscosity of the
Newtonian solvent. But the addition of high MW flexible polymers is able to add
elasticity to the fluids. As a result, Boger fluids have nearly constant viscosity while
still possessing elasticity. In the work of Liu et al. [90], Boger fluids are prepared
by dissolving either 3,000 ppm or 6,000 ppm of PIB in polybutene (solvent).
The average relaxation time λ for both polymeric solutions is approximately 0.6 s.

The main result of this very clever experiment is shown in Fig. 7.8 (rightmost
panel). The investigators find an enhancement of the measured swimming speed
of a rotating helix in a viscoelastic fluid near De = 1, where De = ωλ/2π . This
result is similar to the enhancement observed in numerical simulations of 2D
flexible filaments in Oldroyd-B fluids by Teran and coworkers [89] and of helical
filaments [93], but is in contrast with the decrease observed in analytical calculations
[83, 107] and experiments with live organisms [91]. As the rotating speed (and
De) increases, the helix propulsion speed decreases even below the purely viscous
Newtonian speed.

An important take-away message is that it appears that the nature of the
dependence of propulsion speed on fluid elasticity (or De) depends strongly on
the geometry of the waveform used for swimming. This is made obvious by the
sensitivity of the peak enhancement of swimming speed on the pitch angle of the
helix, as shown in Fig. 7.8 (rightmost panel). This is an important point which we
will further discuss later in this chapter.

While scale-up experiments can provide much useful information, they cannot
fully capture the complexity of live organisms. Therefore, it is important to perform
systematic studies using live organisms. In the next section, we will discuss
experiments using a well-known biological model system, namely, the nematode
C. elegans.
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5.2 Experiments with Live Organisms

Despite recent advances, the effects of fluid elasticity on the swimming behavior
of microorganisms are still not clear [108], in part due to the lack of systematic
experiments with live organisms. In this section, we will discuss swimming exper-
iments in viscoelastic fluids with a biological model system, namely the nematode
C. elegans. Model organisms are nonhuman species which are extensively studied
to understand particular biological phenomena. Examples include the zebra fish, E.
coli, fruit fly (Drosophila melanogaster), and mice, among many others. The idea is
that discoveries made in model organisms will provide insight into the workings of
other non-model organisms.

5.2.1 C. elegans: An Attractive Model Organism for Swimming Studies

An interesting model system that has received much attention in the biological
community is nematode C. elegans, which is a small, multicellular, free-living
roundworm found in soil environments. Much is known about the nematode’s
genetics and physiology; its genome has been completely sequenced [109] and a
complete cell lineage has been established [110]. These nematodes are equipped
with 95 muscle cells that are highly similar in both anatomy and molecular makeup
to vertebrate skeletal muscle [11]. Their neuromuscular system controls their body
undulations which allows C. elegans to swim, dig, and crawl through diverse
environments. The wealth of biological knowledge accumulated to date makes
C. elegans ideal candidates for investigations that combine aspects of biology,
biomechanics, and the fluid mechanics of propulsion.

Figure 7.9 shows an image of an adult, wild-type C. elegans swimming in
a water-like buffer (M9) solution. The nematode is characterized by a relatively
long and quasi-cylindrical body shape (Fig. 7.9). Its length can vary from 50μm
(embryonic stage) to 1 mm (adult stage) while its radius is approximately 80μm.
The nematode length scale is an important feature they are large enough that flow
fields can be accurately obtained.

5.2.2 Swimming Experiments with C. elegans: Dilute Polymeric Solutions

We now discuss swimming experiments using the nematode C. elegans in some
detail. Experiments with the two main types of fluids, namely Newtonian and
viscoelastic, are discussed. Experiments are performed in small channels that are
made of acrylic and are 1.5 mm wide and 500 μm deep; they are sealed with a thin
(0.13 mm) cover glass. In order to minimize three-dimensional motion, the channels
are relatively shallow, yet the nematode is able to freely move in all directions. The
swimming motion of C. elegans is imaged using standard bright-field microscopy
and a fast CMOS camera. The image acquisition rate is kept constant at 125
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Fig. 7.9 (a) Snapshot of the nematode C. elegans moving in a water-like buffer solution. The red
line along the nematode corresponds to the body centerline or “skeleton,” obtained using image
analysis. The centroid (dashed) and the trajectory of the tail (blue) are tracked at a sampling rate
of 125 frames per second. (b) Body-shape lines as a function of time color-coded by time over
one beating period

frames per second to guarantee small linear displacements along the nematode’s
body between consecutive frames. All data presented here pertain to nematodes
swimming at the center plane of the fluidic channel. Out-of-plane recordings are
discarded.

An important consideration in swimming experiments with live organisms is
the fluid medium. Fluids must be developed such that they possess the desirable
rheological property (elasticity, shear-thinning, etc.) but without being toxic to the
organism. Here, Newtonian fluids of different shear viscosities are prepared by
mixing two low molecular weight oils (halocarbon oil, Sigma-Aldrich). Viscoelastic
fluids are prepared by adding small amounts of carboxymethyl cellulose (CMC,
7 ×105 MW) into deionized water. CMC is a long, flexible polymer with an overlap
concentration (c∗) of approximately 104 ppm. In order to rule out the effects of
shear-rate-dependent viscosity, an aqueous solution of the stiff polymer xanthan
gum (XG) that is shear-thinning but possesses negligible elasticity is also used in
experiments.

Fluid Rheology: Viscosity Data An important step in these experiments is fluid
rheological characterization. How viscous or elastic are the fluids? (A very useful
discussion on fluid characterization and rheology is given in Chap. 6.) A strain-
controlled rheometer RSF III (TA Instruments) with a cone-and-plate geometry
is used to characterize the rheological properties of the CMC and XG solutions.
Figure 7.10 shows the viscosity curves of both CMC and XG solutions. The
viscosity data are fitted with the power-law fluid model of the type η = m(γ̇)n−1,
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Fig. 7.10 (Left) Fluid shear viscosity curves for the flexible carboxymethyl cellulose (CMC)
and semi-rigid xanthan gum (XG) solutions. The concentrations of CMC solution ranges from
1,000 ppm to 8,000 ppm by weight, from bottom to top in the plot. Solid circles represent the
3,000 ppm XG aqueous solution. The values of the power law index n are 0.65 and 0.35 for the
8,000 ppm CMC and the 3,000 ppm XG solutions, respectively. Table: the power law indexes of
the CMC aqueous solutions

where m is a flow consistency factor and n is the power law index. Results from
the fits are shown in the table in Fig. 7.10. The CMC solutions show a relatively
weak shear-thinning behavior, particularly in the shear rate range of 1–20 s−1. This
is the range of shear rates produced by the swimming C. elegans in fluids. As the
CMC concentration in solution increases, shear-thinning effects also increases. In
the most concentrated CMC solution, i.e., at 8,000 ppm, the power law index n is
approximately 0.65. As a comparison, the xanthan gum solution at 3,000 ppm shows
much stronger shear-thinning behavior (n = 0.35). Note that the mixture of low
molecular weight halocarbon oils shows constant shear viscosity and is not shown.

Fluid Rheology: Relaxation Times Shear viscosity or flow curves are not
sufficient to describe the material properties of viscoelastic fluids. An important
quantity used to characterize viscoelastic fluids is the fluid relaxation time λ .
Measuring λ is not a trivial task for several reasons including the fact that most
real viscoelastic fluids have not one but a spectrum of relaxation times; λ can also
be shear rate dependent. What is usually reported in the literature (and used in
many models) is the longest, most dominant value of λ . There are several ways to
obtain λ including (i) measurements of the first normal stress difference N1 from
steady rheology combined with an appropriate constitutive model, (ii) oscillatory
or frequency-dependent measurements in which both the viscous G′′ and elastic G′
moduli are measured for small strains, and (iii) stress relaxation experiments. For
more detailed information on rheological measurements and applications, please
see Chap. 6.
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Fig. 7.11 (Left) Stress relaxation data and (table) fluid relaxation time λ for all polymeric (CMC)
solutions

The values of λ for all the viscoelastic CMC solutions are obtained using a stress
relaxation technique after a sudden applied strain or shearing displacement. This
technique is sometimes referred to as step-strain stress relaxation. In the experiment,
the time decay of the shear stress is described by a relaxation modulus G(t)
(Fig. 7.11), which is fitted with the generalized linear viscoelastic model of a single
relaxation time of the type G(t) = Goe−t/λ . By varying the polymer concentration
in solution, the values of λ can range by as much as an order of magnitude from
0.4 s for the most dilute concentration (1,500 ppm) to about 5.6 s for the most
concentrated solution (8,000 ppm). The values of λ for all CMC solutions are shown
in the table in Fig. 7.11.

Swimming Kinematics Now that the fluids have been characterized, we can begin
to discuss the swimming experiments using C. elegans. Because it is important to
establish a baseline, results obtained with the viscoelastic fluids (CMC solutions)
are compared to swimming in Newtonian fluids (halocarbon oils). An important
quantity that is used to characterize the swimming behavior of undulatory swimmers
such as the nematode C. elegans is the bending curvature, defined as κ(s, t) =
dφ/ds=. Here, φ is the angle made by the tangent to the x-axis in the laboratory
frame at each point along the body centerline, and s is the arc length coordinate
spanning the head of the nematode (s = 0) to its tail (s = L). Note that the y-axis
corresponds to the dimensionless position s/L along the nematode’s body where
s = 0 is the head and s = L the tail and the x-axis cuts across the nematode as
shown in Fig. 7.12a. The spatiotemporal evolution of the nematode’s body curvature
κ(s, t) for 3T, or 3 swimming cycles is shown in Fig. 7.12a. The contour plots show
the existence of periodic, well-defined diagonally oriented lines characteristic of
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Fig. 7.12 The kinematics of swimming C. elegans at low Re number in viscous Newtonian fluids
(Re ≈ 0.1). (a) Contour plot of the measured curvature (κ) along the nematode’s “skeleton” or
body centerlines as a function of time. The y-axis corresponds to the dimensionless position s/L
along the nematode’s body where s = 0 is the head and s = L the tail; the x-axis cuts across the
nematode. (b) Frequency spectra of κ at different selected positions s/L. The nematode’s beating
frequency peaks at a single value (2.0 Hz), irrespective of the location s/L

bending waves, which propagate in time along the nematode body length. By taking
the Fourier transform of the contour plots (along the axis of time), a single peak at
2 Hz is found, indicating that the nematode beating is periodic in time (Fig. 7.12b).
Other kinematic metrics such as wavelength (1 mm) and wave speed (5 mm/s) can
also be extracted from the contour plots.

Propulsion Speed—Newtonian vs. Viscoelastic Now, it is possible to address the
question of whether fluid elasticity hinders or enhances the propulsion speed of live
organisms using C. elegans. The average nematode forward velocity U is calculated
by differentiating the nematode’s centroid position with respect to time (Fig. 7.9).
For nematodes swimming in a Newtonian fluid of shear viscosity μ of 5mPa · s
(or 5× the viscosity of water), the value of U is approximately 0.4 mm/s and the
Reynolds number (Re= ρUL/μ) is approximately 0.05. Hence, the model organism
C. elegans can be considered a low Re swimmer.

The nematode’s swimming speed as a function of fluid viscosity for both
Newtonian and viscoelastic (CMC) solutions is shown in Fig. 7.13a. For relatively
low viscosity values, the swimming speed is independent of fluid viscosity μ and
the values of U are nearly identical for both cases. For μ > 30mPa ·s, the swimming
speed decreases with increasing μ even for Newtonian fluids. This decrease in U is
most likely due to the nematode’s finite power. Note that, for a nematode swimming
with constant power at low Re, P ∼ μU2 where P is power. Results show that,
over the admittedly limited range of μ , the nematode’s propulsion speed shows a
decay that is slower than μ−1/2 , which strongly suggests that the nematode does
not swim with constant power. The maximum power generated by the organism is
approximately 200 pW, calculated for μ = 30mPa · s.
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Fig. 7.13 (a) Nematode’s swimming speed U as a function of shear viscosity μ for Newtonian
(red circle) and viscoelastic (blue square) fluids. Triangle symbol represents the nonelastic xanthan
gum solution. The data shows that fluid elasticity decreases the nematode’s swimming speed when
compared to a Newtonian fluid of same viscosity. For μ > 30mPa · s , the nematode’s swimming
speed decreases, indicating a limit in power for this type of organism. Inset in (a) shows the
nematode’s wave speed as a function of viscosity for all fluids. There is no apparent difference
between the different fluids at a given viscosity value. (b) Normalized swimming speed as a
function of the Deborah number. Experimental data is plot, together with numerical [89] and
theoretical predictions [83]. Note that swimming speed decreases as De is increased

Importantly, the values of U for viscoelastic fluids are found to be 35 %
lower than the Newtonian fluid of same shear viscosity (Fig. 7.13a). For example,
the nematode’s swimming speeds for the viscoelastic and Newtonian cases are
0.18 mm/s and 0.25 mm/s, respectively, even though the shear viscosity for both
fluids is 300mPa · s (Fig. 7.13a). The decrease in swimming speed in CMC
(polymeric) solutions does not seem to be due to shear-thinning effects since
nematode swimming in the non-viscoelastic, shear-thinning fluid (XG) showed no
apparent decrease in propulsion speed (Fig. 7.13a, triangle symbol) compared to the
Newtonian case. This result with XG is in agreement with the recent theoretical
analysis of a waving sheet in a shear-thinning fluids [85].

So far, experiments using an undulatory, low Re swimmer (i.e., C. elegans)
show that for similar viscosities fluid elastic stresses seem to hinder the organisms’
propulsion speed. An important question is whether the organism is responding or
adapting to the extra elastic stresses present in the fluid or are the polymer molecules
toxic to the organism? In other words, is the observed decrease in swimming
speed due to hydrodynamics or biology? This is a difficult question to answer
with certainty, but one can address it at least in part by comparing the swimming
phenotypic behavior (i.e., kinematics) between Newtonian and viscoelastic fluids.
The wave speed c produced by the nematode is of particular interest since it has been
shown that the values of c seem to change significantly once the nematode adopts
a different swimming gait, i.e., swimming versus crawling [111]. The wave speed
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can be easily measured from the curvature contour plots. The inset in Fig. 7.13a
shows the nematode’s bending wave speed c as a function of fluid viscosity. Results
indicate that viscoelasticity (and polymer molecules) has negligible effect on the
nematode’s swimming kinematics. That is, the changes in kinematics including the
decrease in beating frequency and wave speed are due to viscous effects only. In
addition, there is no evidence of change in motility gait (e.g., swimming to crawling)
as μ increases since the beating amplitudes remain constant (A = 0.26mm) even for
the most viscous fluid (μ = 400mPa · s).

The effects of fluid elasticity on the nematode’s swimming behavior are best
illustrated by plotting the normalized swimming speed U/UN as a function of
the Deborah number (De = λ f ), where UN is the Newtonian speed. Figure 7.13b
shows that the normalized swimming speed decreases monotonically with De and
reaches an asymptotic value of 0.4 as De is further increased. In other words, as the
elastic stresses increase in magnitude in the fluid, it introduces a larger resistance to
propulsion, therefore decreasing the nematode’s swimming speed.

Comparing Experiments to Calculations We can now compare the experimental
results to the numerical and theoretical predictions discussed earlier. Of course, such
comparisons are not quite fair because there are significant differences between
the experiments and the calculations. For example, most calculations are two-
dimensional (2D) and for small-amplitude displacements while the nematode is
allowed to swim in 3D and can bend quite a bit. Most importantly, while the
calculations assume prescribed kinematics or waveform, the nematode is free to
choose its own. Nevertheless, qualitative assessments can be made.

We begin by noting that for all the experiments presented in this section, the
ratio of the solvent viscosity to the total solution viscosity is below 0.05, which
is similar to the calculations [83, 107]. As shown in Eq. (7.2), the swimming
speed U of an undulating sheet is predicted to decrease with increasing De. While
the experimental data supports the predicted trend, at least qualitatively, there
are quantitative discrepancies between the experimental and theoretical results as
shown in Fig. 7.13b. Some of the possible reasons for the observed discrepancies
may be the finite length of the swimmer and the assumption of small beating
amplitude in the theoretical works. That is, only small deflections are considered
for both the waving sheet and cylinder while the nematode shows significant
bending. Nevertheless, the theoretical models are able capture the main trends in
the experimental data and perform surprisingly well.

How do the experimental results compare to the numerical simulations of Teran
et al. [89]? Remember that the simulations predict an interesting enhancement of
the sheet swimming speed at De = 1. The experimental results do not reveal such
swimming speed enhancement, although a scale-up mechanical experiment did find
such enhancement [90]. Nevertheless, for De > 1, the simulation predicts a gradual
decrease in U as elasticity is increased. The discrepancies between the experiment
and the simulations are most likely due to the difference in the swimming beating
patterns. While simulations used a left-moving traveling wave with an amplitude
that increased from head to tail, the experiments with C. elegans reveal a traveling
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wave with an exponential decay from head to tail. Therefore, it is a bit unfair to
directly compare the numerical simulations with the C. elegans work since the
swimming kinematics are very different. As a side note, a recent three-dimensional
numerical simulation of helical bodies in viscoelastic fluids by Spagnolie et al. [93]
found that an enhancement in propulsion speed is indeed possible at De= 1, in good
agreement with scale-up experiments [90]. Clearly, swimming kinematics matter,
and Chap. 10 provides an interesting discussion on the effects of swimming beating
patterns on propulsion in viscoelastic fluids.

A Possible Mechanism: The Role of Extensional Viscosity So what could
explain the decrease in swimming speed for nematodes moving in viscoelastic
fluids? One possible explanation may be related to the extensional viscosity of
polymeric fluids. The reader may be very familiar with the concept of shear viscosity
μ , which is the fluid resistance to a shear deformation. The concept of extensional
viscosity may be less familiar because it is not usually taught in standard fluid
dynamics textbooks. Simply put, extensional viscosity ηe is the fluid resistance to
an extensional deformation. Pure extensional flows are devoid of shear; such flows
are often referred to as shear-free flows. Examples of shear-free flows also include
biaxial stretching and elongation flows.

For Newtonian fluids, the extensional viscosity is equal to three times the shear
viscosity such that ηe = 3μ . This result was first reported by Trouton over a century
ago in 1906 [112]. The quantity ηe/μ is often referred as the Trouton ratio; for
Newtonian liquids, the Trouton ratio is constant (Tr = ηe/μ = 3). Viscoelastic
fluids, however, can exhibit an enhancement in ηe compared to Newtonian fluids
due to the extra elastic or polymeric stresses. Many experiments have shown that
the extensional viscosity of liquids containing flexible polymers can be orders of
magnitude larger than the extensional viscosity of Newtonian fluids [113, 114].
This is true even for viscoelastic and Newtonian fluids that have similar values
of μ . In addition, while Newtonian fluids exhibit ηe values that are independent
of strain, viscoelastic fluids show strain-hardening behavior. It should be evident
that viscoelastic and Newtonian fluids will behave quite differently in flows with a
strong extensional component [115].

But, how can extensional viscosity explain the reduced swimming speed of C.
elegans in viscoelastic fluids? A clue may be in the velocity fields produced by
the swimming nematodes. Figure 7.14 shows typical streamlines computed from
experimentally measured velocity fields using particle-tracking methods for both
the (a) Newtonian and (b) viscoelastic cases. Overall, the streamlines display large
recirculation flow structures, or vortices, that are attached to the nematode’s body.
While the large-scale patterns are similar for both cases, detailed inspections shows
the appearance of a distinct hyperbolic point near the nematode for the viscoelastic
case. A recent computational effort by Guy and Thomases also found the existence
of such hyperbolic points in the velocity fields of swimming nematodes (Fig. 10.9 in
Chap. 10 of this book). It is important to note that a flow near such hyperbolic points
is purely extensional. The hypothesis is that the decrease in U (in the nematode
case, at least) is mostly likely due to the sudden increase of elastic stresses near the
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Fig. 7.14 (a) Streamlines computed from instantaneous velocity fields of Newtonian (Re < 10−3)
and (b) polymeric (Re < 10−3;De = 3.0) fluids. Arrows in (a, b) indicate the flow direction and
the box in (b) shows a hyperbolic point in the flow

regions of high velocity gradients such as hyperbolic points. Near such regions, the
extensional viscosity of a solution of flexible polymers can be orders of magnitude
larger than a Newtonian fluid, resulting in an additional resistance to fluid transport
and swimming.

In summary, experiments with the nematode C. elegans show that fluid elasticity
can hinder its swimming speed. Further, it appears that the nematode’s swimming
speed decreases with increasing fluid elasticity, that is, U decreases as the Deborah
number is increased. This trend is predicted by both numerical simulations [89, 93]
and theory [83, 107], but the agreement is only qualitative. Hence, there is plenty
of room for refining the experiments, theory, and simulations. It is clear that
knowledge of the flow fields is important in determining how fluid elasticity
(and other rheological properties) affects the organism’s swimming kinematics and
dynamics. In the case of complex fluids in particular, one is interested in the
interactions between the fluid microstructure (e.g., polymer molecules, networks)
and the flow fields produced by swimming microorganisms. (Of course different
swimming kinematics usually result in different flow fields.) In the next section, we
will discuss the undulatory swimming of C. elegans in non-dilute (i.e., semi-dilute
and concentrated) solutions, where polymer networks rather than single molecules
are of interest.

5.2.3 Swimming Experiments with C. elegans: Beyond the Dilute Regime

In this section, we will briefly discuss the swimming behavior of C. elegans in semi-
dilute and concentrated polymeric solutions. Such solutions are characterized by the
formation of polymer networks. The interplay between the fluid’s internal structure
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(e.g., polymer networks) and self-propulsion is critical to many biological pro-
cesses such as reproduction [116], bacterial infection [117], and biodegradation in
soil [118]. Early experimental observations have revealed that polymer networks can
enhance the swimming speed of flagellated bacteria moving in solutions containing
long-chain polymer molecules [119, 120]. For these small organisms (L < 10μm),
it has been argued that the main mechanism for this propulsion enhancement is
due to the benefits of pushing against a quasi-rigid polymer network [119, 121]. It
is worth noting that the exact mechanism responsible for the observed propulsion
enhancement is still not clear.

The role of the mechanical properties of fluid internal networks on an organism’s
swimming behavior has recently been investigated in numerical [121–124] and
theoretical [125] studies. Numerical studies of swimming in structured fluids have
postulated that the shapes and dynamics of internal networks are accounted for
by two effective anisotropic viscosities [121, 124], which qualitatively explain
some of the observed propulsion enhancement in microorganisms [119, 120]. Such
anisotropic viscosities, however, are difficult to measure and apply to quantita-
tive analysis. In heterogeneous, gel-like environments, modeled by embedding
stationary objects in an incompressible viscous fluid, the swimming speed of a
microorganism can be enhanced by the underlying structures in the fluid [125].
For internal networks made of small molecules, such as a binary blend of two
intermixed fluids, a two-fluid model predicts an enhancement in swimming speed
for stiff and compressible networks [122] and a reduction in swimming speed when
local distributions of volume fractions of the two phases scale differently for thrust
and drag [123]. Overall, the observed propulsion speed variations in these studies
underscore the important role of the fluid internal structures on the swimming
behavior of microorganisms.

But let’s see how the fluid internal structures, in this case polymer networks,
affect the swimming behavior of C. elegans; more details can be found else-
where [126]. Polymer networks are formed by controlling the concentration of the
biocompatible rodlike polymer xanthan gum (XG) in water. Polymer concentration
ranges from 300 ppm to 5,000 ppm by weight. These XG solutions transition from
the semi-dilute to the concentrated regime at a concentration of approximately
3,000 ppm [126]. This is made clear by plotting the solutions’ zero-shear viscosity
μ0 as a function of polymer concentration, as shown in Fig. 7.15a. Note that the
values of μ0 increase as the polymer concentration c is increased, as expected. But
we find a change in slope as the solution transitions from the semi-dilute to the
concentrated regime at a concentration of approximately 2,800 ppm. This transition
is commonly interpreted as a structural transition [127, 128]. In concentrated
solution, the shape and dynamic properties of polymer networks dominate flow
behaviors; in semi-dilute solution, the hydrodynamic interactions among individual
polymers dominate flow behaviors [128].

Effects of Polymer Networks on Swimming Speed Fig. 7.15b shows that U
remains relatively constant for polymer concentrations below 3,000 ppm. Surpris-
ingly, however, the data shows sudden increase in U for concentrations above
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Fig. 7.15 (Left) Xanthan gum’s (XG) zero-shear viscosity μ0 as a function of polymer concentra-
tion c. The values of μ0 increase with polymer concentration, as expected. The change in slope at
c ≈ 2,800 ppm is often associated with a structural transition. (Right) Nematode swimming speed
U as a function of concentration. Swimming speed exhibits a rapid increase as the solution enters
the concentrated regime at approximately 2,800 ppm

3,000 ppm. The values of U are maintained around 0.15 mm/s in semi-dilute
solutions (c < 2,800 ppm), but they quickly rise by 65 % to about 0.25 mm/s in
concentrated solutions (c > 2,800 ppm) despite a significant increase in solution
viscosity. As expected, the swimming speed ultimately decreases as the concentra-
tion is further increased due to the nematode’s finite power output [91]. A recent
theoretical work suggests that such increase may be due to the presence of polymer
networks in the media and that microorganisms may be able to push against
such quasi-static networks and move more efficiently [121]. However, because
of the large difference in length scales between the nematode (≈ 1 mm) and the
polymer networks (≈ 10 μm), this notion does not adequately explain the observed
propulsion enhancement.

A possible explanation for this enhancement in U in concentrated solutions is
given in [126], in which the authors argue that the phenomenon is most likely due
to shear-induced fluid anisotropy. That is, the increase in U observed in Fig. 7.15b
is probably due to the anisotropic response of the fluid microstructure to applied
stress due to the nematode’s swimming motion. In short, the undulatory swimming
motion of C. elegans induces a structural anisotropy which leads to an increase in the
effective drag coefficient ratio Cn/Ct (see RFT equation in Sect. 1) and consequently
an enhancement in U .

The above results show that the nematode C. elegans can swim faster in con-
centrated solutions than in semi-dilute solutions. This is an unexpected result since
the fluid viscosity increases as polymeric solution transitions from the semi-dilute
to the concentrated regime. This sudden increase in U is thought to be connected to
the anisotropic response of the fluid microstructure to applied shear stresses due the
nematode’s motion [126]. While intriguing, the proposed mechanism is speculative
due to the difficulty to measure or visualize the polymer microstructure during
swimming. In these cases, numerical simulations and theoretical calculations can
provide much needed clarity and understanding to the problem.
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5.2.4 Swimming Experiments with C. elegans: Final Remarks

In this section, we discussed the swimming behavior of the nematode C. elegans in
Newtonian and viscoelastic (i.e., polymeric) fluids. For dilute polymeric solutions,
experiments show that fluid elasticity hinders the swimming speed of nematodes by
40 % compared to Newtonian fluids. The swimming speed is also shown to decrease
as elasticity (i.e., Deborah number) increases. On the other hand, for concentrated
polymeric solutions, the presence of polymer networks seem to enhance swimming
speed by as much as 65 % when compared to semi-dilute and dilute polymeric
solutions. These results underscore the importance of the fluid microstructure and its
interactions with the applied stresses generated by the swimmer. Perhaps the main
message so far is that it is difficult to quantitatively describe a priori the motility of
microorganisms in complex fluids without knowledge of the interactions between
the fluid microstructure and the applied stresses. It becomes clear that these non-
trivial interactions need to be accounted for in theoretical calculations and numerical
simulations.

5.3 Fluid-Assisted Locomotion in Complex Fluids:
Artificial Swimmers

As shown above, fluid elasticity can significantly affect the swimming behavior of
live organisms. In this section, we will explore a different, and perhaps simpler,
question: Can fluid elasticity enable propulsion?

To answer the above question, one needs to think back to the “scallop theorem,”
which tells us that only nonreciprocal deformations of the swimmer can break
time-reversal symmetry and result in net motion [1]. The main assumptions of the
theorem is that the swimmer is moving at low Reynolds numbers (Re < 0.1) and
that the fluid is purely viscous or Newtonian. So, in order to break the “scallop
theorem” or kinematic reversibility one needs to increase the amount of inertia
in the system (i.e., increase Re) or alternatively use fluids that possess nonlinear
rheological behavior. In this section, we will review recent experiments [92] in
which artificial particles with reciprocal swimming strategies are able to break the
scallop theorem once immersed in complex fluids. The experiments focus mainly
on the role of viscoelasticity, and two main types of fluids will be used: (i) dilute
polymeric solutions [92] and (ii) wormlike micellar (WLM) solutions [129].

Before we begin, it is worth noting that the possibility that fluid elasticity can
enable rather than modify propulsion circumventing the scallop theorem is still
largely unexplored. Propulsion enabled by fluid elasticity has been predicted for
the three special cases of reciprocal motion: a flapping surface extending from a
plane [130, 131]; a sphere which generates small-amplitude sinusoidal motion of
fluid along its surface [8]; and a “wriggling” cylinder with reciprocal forward and
backward strokes at different rates [88]. However, there remains little experimental
demonstration, and such propulsion of free, finite-amplitude swimmers has been
seldom studied.
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Fig. 7.16 (a) Snapshot of the polar dimer. An epoxy bead is attached to a steel wire to form polar
(asymmetric) dimers. (b) Top view of the experiment. Two aligning electromagnets at constant
current are orthogonal to two driving magnets, controlled by a computer. (c) The dimer with
magnetization m experiences torque τmag to align with the magnetic field. Dimer orientation â
oscillates around 〈â〉, which is parallel to Balign

5.3.1 Experiments with Reciprocal Swimmers: Can Fluid Elasticity
Enable Propulsion?

Here, we briefly discuss recent experiments [92,129] in which a single rigid object,
in this case a dumbbell particle or dimer, is actuated in a reciprocal manner in very
viscous fluids. In the experiments, the dimer such as the one shown in Fig. 7.16 is
immersed in a fluid and repeatedly reoriented by a magnetic field. The effects of
inertia are absent due to the high fluid viscosity (∼ 10Pa · s), resulting in Re �
0.1 comparable to that of a swimming microorganism. By applying only magnetic
torques, the apparatus reciprocally actuates just one degree of freedom in the system,
the dimer’s orientation â. For a purely viscous Newtonian fluid at low Reynolds
numbers, the authors found no net motion because â(t) is cyclic; this is as expected.

Experimental Setup Before diving into the discussion, let us briefly describe the
experimental setup. More details can be found elsewhere [92, 129]. The artificial
swimmer is a polar (asymmetric) dimer (Fig. 7.16a); symmetric dimers are also used
for control but no net motion is expected. The polar dimer consists of a piece of
carbon steel wire of length 2Rdimer = 2.5–3mm and diameter 230μm, with an epoxy
bead of diameter 2Rdimer ∼ 500μm at one end. The dimer is then immersed in a
fluid bath that is surrounded by four electromagnets; a schematic of the apparatus
is shown in Fig. 7.16b. The dimer has orientation â and is magnetized with moment
m = âm, so that a uniform magnetic field B reorients it with torque ømag = m×B,
as depicted in Fig. 7.16c.

Working Fluids The dimer is immersed in a container (50 mm tall, 30 mm in
diameter) of either Newtonian or viscoelastic fluid (Fig. 7.16b). The Newtonian
fluid is a 96 %-corn syrup aqueous solution (by mass) with a kinematic viscosity
μ/ρ of approximately 4×104 cSt. Two viscoelastic solutions are prepared: a dilute
polymeric solution and a WLM solutions. The polymeric solution is made by adding
0.17 % (by mass) of high-molecular-weight polyacrylamide (PAA, MW = 1× 106)
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to a viscous Newtonian solvent (93 %-corn syrup aqueous solution). The solution
has nearly constant shear viscosity of approximately 50Pa · s and a relaxation time
λ of approximately 2 s.

The WLM solution is prepared by slowly adding 130 mM hexadecyltrimethy-
lammonium bromide (CTAB) to an aqueous solution of 130 mM sodium salicylate
(NaSal). This type of WLM solutions is known to form long wormlike micelles that
continuously break and reform due to thermal fluctuations leading to viscoelastic
stress relaxation. The relaxation time λ of the WLM solution is approximately
1.5 s [129]. Here, the Deborah number is defined as De fdriveλ .

Swimming with Reciprocal Motion Now that the methods are in place, we can
ask an important question: Can the nonlinear rheological properties of a given fluid
enable propulsion at low Re? Before we discuss the results, it is worth making
sure that artifacts that could lead to net motion are not being introduced in the
experiment. To that end, the investigators [129] calibrated their results against a
polar and symmetrical dimer immersed in a viscous Newtonian fluid with similar
shear viscosity as the polymeric and WLM solutions. As shown in Fig. 7.17a, they
found negligible net displacement, comparable to the effects of magnetic drift and
sedimentation when driving is turned off altogether.

Evidence of purely elastic propulsion is shown in Fig. 7.17b–d for the polar
dimer immersed in dilute polymeric (b) and WLM solutions (c, d). Overall, the data
show a striking contrast between performing reciprocal motion in Newtonian and in
complex, viscoelastic fluids. For example, Fig. 7.17b shows that in dilute polymeric
solutions, far from any boundaries, the polar dimer at De= 5.7( fdrive = 2.8Hz;Re=
1.2× 10−4) is able to achieve net motion at constant speed even under reciprocal
forcing. The same is true for the WLM solution (Fig. 7.17b, d). It is interesting to
note that, unlike the polymeric solution case, the swimming direction in the WLM
solutions seems to depend on De. For low elasticity values (De < 1), the particle
moves towards the bead while the particle moves preferentially towards the rod for
cases in which actuating frequency is approximately similar to the fluid relaxation
time (De ∼ 1). The dimer directional dependence on De in WLM solutions is still
not understood.

Fig. 7.17 Centroid trajectories from ◦ to + reciprocally actuated polar dimer (leftmost panel) in
Newtonian, dilute polymeric, and wormlike micellar (WLM) solutions at low and high Deborah
numbers. No appreciable net motion is found in the Newtonian case. Appreciable net motion is
found once small amounts of polymers or surfactants (WLM) are added to a Newtonian solvent
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Fig. 7.18 Dimer net displacement as a function of time. The reciprocally actuated dimer is
immersed in (a) polymeric and (b) wormlike micellar solutions. Shaded areas correspond to the
dimer drift due to small but finite magnetic gradients

Fig. 7.19 Dependence of mean propulsion velocity on Deborah (De) for a reciprocally actuated
dimer immersed in (a) dilute polymeric and (b) wormlike micellar (WLM) solutions

Figure 7.18a, b shows the net displacement for the dilute polymeric and WLM
solutions, respectively. Both cases show dimer displacements well above the noise
or drift level (shaded area). Clearly, a much larger displacement can be achieved
with the WLM solutions, although the mechanisms are still unknown. The data also
shows that the dimer can move either towards the bead (positive velocity) or towards
the rod (negative velocity) depending on the De as discussed above.

In order to gain further understanding on the effects of fluid elasticity on the
dimer motion, it is helpful to plot the displacement data as a function of De.
Figure 7.19a, b shows the dimer velocity as a function of De for the dilute polymeric
and WLM solutions, respectively. Recall that the positive velocity means that the
polar dimer is moving towards its bead and negative velocity means that the dimer
is moving towards its rod. For the polymeric solution case, the velocity increases
monotonically as a function of De. In fact, the velocity seems to obey a De2 scaling.

The effects of elasticity are less obvious for the WLM solutions. While it is clear
that the polar dimer speed increases as De increases, the velocity trend is more
complex. It seems that for low elasticity values (0 < De < 1, the trend and dimer
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swimming direction resemble the polymeric solution data. For De ≥ 1, the dimer
swimming direction reverses, and for De � 1 the dimer comes to a complete stop.
While the exact mechanisms leading to such behaviors in WLM solutions are not
well understood, the data underscore the rich nonlinear behavior encountered in
complex fluids.

In summary, we find that polar particles (dimers) undergoing reciprocal motion
can indeed achieve locomotion at low Reynolds numbers in complex, viscoelastic
fluids. This is fascinating because it opens the door for a new way to achieve
locomotion, one that relies on the fluid itself. For the case of dilute polymeric
solutions, the net motion achieved by the dimers results from elastic stresses due to
flow-induced changes in polymer conformation. These elastic stresses are history-
dependent and do not entirely cancel out over one forcing period, but instead have
a small rectified component that accumulates. In fact, Keim and Arratia [92] claim
that the combination of the fluid first normal stress difference N1 and the curved
streamlines produced by the actuated dimer leads to a volume force (or “hoop
stress”) that is able to displace the dimer. The proposed mechanism is reasonable
but it is yet to be validated. The picture is less clear for WLM solutions where
shear-bands are known to occur in addition to elasticity.

Finally, this type of work is a proof-of-concept for an artificial “swimmer”
that moves through complex fluids with only reciprocal actuation, a simple body
shape, and no moving parts—a less complicated design than for other propulsive
strategies [47, 132]. There may thus be a practical route to studies of collective
phenomena among large numbers of such particles. These principles could also be
applied to microfluidic pumps [130, 131] or to exploiting other types of nonlinear
fluid rheology. Further understanding of this effect and similar ones could greatly
simplify fabrication of microswimmers for many artificial environments or for
biological settings where viscoelasticity is ubiquitous.

6 Conclusions and Outlook

In this chapter, we discussed swimming in complex fluids. The discussion was
given from an experimental point of view and was centered on a few fundamental
experiments both in living and in artificial systems that we hope illustrate the
rich dynamics encountered by organisms moving in complex fluids, particularly in
viscoelastic fluids. Much of the investigations in viscoelastic fluids was driven by a
simple question: does elasticity hinder or enhance swimming speed?

Theoretical analysis on idealized swimming models, following the seminal work
of Taylor [27], showed that in general fluid elasticity hinders propulsion [83, 107].
Numerical simulations [89, 93], however, found that fluid elasticity could in fact
enhance propulsion under certain conditions (De ∼ 1). Experiments [90,91] seem to
confirm such predictions, at least qualitatively. For example, the swimming speed of
C. elegans effectively decreases once the organism is immersed in dilute viscoelastic
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fluids, while propulsion speed increased for De ∼ 1 in scale-up mechanical experi-
ments with helical bodies. In more concentrated polymeric solutions, the nematode
C. elegans showed a remarkable increase in speed for solutions possessing polymer
networks. (There are of course many other impressive experimental investigations
of swimming in anisotropic media such as liquid crystals [133–135] that could not
be covered here.) Overall we find that it is very hard to know a priori whether
fluid elasticity enhances or hinders the propulsion speed of microorganisms. In
fact, it may be an unfair question altogether as the answer depends on the type of
swimming kinematics (i.e., waveform) and the interactions of the swimmer with the
fluid microstructure (i.e., polymer or particles). That is, the local details may matter
quite a bit. Nevertheless, it is clear from both experiments and simulations that fluid
elasticity can significantly affect the motility behavior of microorganisms.

Parallel to these considerations, we also discussed an exciting avenue of new
developments, that is, the possibility of fluid-assisted propulsion. This type of
propulsion is driven by the nonlinear rheological properties of the fluid such as
viscoelasticity and formation of shear-bands. We showed that even for reciprocally
actuated polar particles, the extra elastic stresses of polymeric fluids can lead to
net motion at low Reynolds numbers. It is important to note that under the same
conditions, the same particle in a Newtonian fluid achieves no net motion due to
kinematic reversibility. These findings are exciting because such discovery opens
a new mechanism for the study of “active” particles and collective behavior in
complex fluids.

So where do we go from here? Of course there is still much to be done
and understood. The question of how microorganisms move in complex fluids
is still largely unanswered. We still do not know how microorganisms move in
rheologically complex materials that possess rate-dependent viscosity, yield stress,
and thixotropy. But a picture is starting to emerge, and it seems that the interaction of
the swimmer with the fluid microstructure is very important. That is not surprising
since microorganisms with different swimming kinematics will likely produce
different velocity fields in a given fluid, and the bulk response will be determined
by the way the fluid microstructure interacts with the velocity field. For example,
it is well known that extensional flows are more efficient in stretching and aligning
polymer molecules than shear flows, and swimmers that produce flows with a large
extensional component are dominated by the fluid extensional viscosity. On the
other hand, swimmers that produce large amounts of curvature may experience a
viscoelastic instability due to hoop stresses. So knowledge of the velocity field is
quite important, but equally important is how the molecules or particles respond to
the imposed velocity field. In a way, the swimmer may be thought of as a local
probe for fluid rheology. An exciting and important direction that would allow
us to gain a more complete understanding of swimming in complex fluids is to
determine how single polymer molecules, particles, and networks interact with
microorganisms. This direction will ultimately take us from the continuum to a
statistical mechanics description of the problem. The challenge lies in connecting
the statistical representation with the continuum (bulk) description.
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Finally, one can also ask the question of how multiple swimmers interact in
complex fluids. One would anticipate that the fluid microstructure will significantly
alter the way multiple microorganisms interact. The type of work is related to
the field of active matter or fluid in which “active” or live particles are present in the
fluid medium. Active fluids differ from their passive counterpart in that the active
particles have the ability to absorb and dissipate energy and to generate motion
and mechanical stresses in the fluid medium (see Chap. 9). Importantly, these active
particles can drive the system out of equilibrium even in the absence of external
forcing. Active fluids exhibit novel properties not seen in conventional (passive)
complex fluids such as large-scale flows and collective motion on length scales much
greater than the particle dimensions [136], anomalous shear viscosity [137], giant
density fluctuations [138], and enhanced fluid mixing [139]. While much recent
progress has been made, the dynamics and flow behavior (rheology) of such active
complex fluids are still poorly understood. In this case, one can take advantage of a
vast body of knowledge developed to understand passive complex fluids.
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