
Chapter 6
Experimental Challenges of Shear Rheology:
How to Avoid Bad Data

Randy H. Ewoldt, Michael T. Johnston, and Lucas M. Caretta

Abstract A variety of measurement artifacts can be blamed for misinterpretations
of shear thinning, shear thickening, and viscoelastic responses, when the material
does not actually have these properties. The softness and activity of biological
materials will often magnify the challenges of experimental rheological measure-
ments. The theoretical definitions of rheological material functions are based on
stress, strain, and strain-rate components in simple deformation fields. In reality, one
typically measures loads and displacements at the boundaries of a sample, and the
calculation of true stress and strain may be encumbered by instrument resolution,
instrument inertia, sample inertia, boundary effects, and volumetric effects. Here
we discuss these common challenges in measuring shear material functions in the
context of soft, water-based, and even living biological complex fluids. We discuss
techniques for identifying and minimizing experimental errors and for pushing
the experimental limits of rotational shear rheometers. Two extreme case studies
are used: an ultrasoft aqueous polymer/fiber network (hagfish defense gel) and an
actively swimming suspension of microalgae (Dunaliella primolecta).

1 Introduction

Rheological properties answer the question, “What happens when I poke it?”
A complex material gives a complex answer, e.g., with properties that are functions,
not constants.

For a rheologically complex fluid, there is no single value of viscosity or modu-
lus, but instead the dissipative resistance to flow (viscosity) and elastic resistance to
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Fig. 6.1 Ideally, shear rheological properties are defined from strain γ(t) and stress τyx(t) in
homogeneous simple shear. In reality, boundary displacements and loads are measured and
nonideal experimental artifacts must be considered. The effects labeled as (A)–(I) are particularly
important with biological complex fluids, and include (A) resolution/range of measured load and
displacement, (B) instrument inertia (if load and displacement are measured on same boundary),
(C) fluid inertia and secondary flows, (D) surface tension, (E) free surface interfacial rheology, (F)
slip at boundaries, (G) sample underfill or overfill, (H) small volume and gap, (I) nonhomogeneous
sample from settling, migration, or rheotaxis

deformation (modulus) are functions of the loading time scale, loading amplitude,
or other environmental factors including temperature, pressure, electromagnetic
fields, or the internal activity of living biological systems. These function-valued
rheological properties are known as material functions [1], and they form the
language of descriptive rheology. The descriptive nomenclature is well defined for
simple, ideal deformations [1], including simple shear (Fig. 6.1). The input can
be either strain or stress, and different time-histories can be used, typically step
functions or sinusoidal oscillations [2]. Of course, experimental conditions may be
nonideal.

The big idea of this chapter is that properties are defined from ideal deformations
(in terms of strain and stress), but experimental techniques measure displacements
and loads (such as forces or torques), as outlined in Fig. 6.2. Assumptions are
required to convert displacement to strain and, similarly, load to stress, and therein
lies the risk that nonideal conditions exist as shown in Fig. 6.1. The effects labeled
as (A)–(I) in Fig. 6.1 are particularly important with biological complex fluids and
include (A) resolution/range of measured load and displacement, (B) instrument
inertia (if load and displacement are measured on same boundary), (C) fluid inertia
and secondary flows, (D) surface tension, (E) free surface interfacial rheology, (F)
slip at boundaries, (G) sample underfill or overfill, (H) small volume and gap, and
(I) non-homogeneous sample from settling, migration, or rheotaxis.



6 Experimental Challenges of Shear Rheology: How to Avoid Bad Data 209

Displacement, θ

Strain, γ21

Material Functions, η, G, etc.

Stress, τ21

Load, T

η =  
dγ21/ dt

τ21

Fγ dθ/ dt

FτT
=

Fig. 6.2 Material properties are related to stress and strain, but these cannot be measured directly.
The calculations from measured quantities require assumptions that are commonly violated,
especially for biological fluids that tend to be either low viscosity, soft, or slippery. Arrows in
figure indicate information flow into calculations. The road map is general. Example variables are
shown for measuring shear properties with rotational devices
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Fig. 6.3 Steady shear flow measurements could be misinterpreted as shear thinning and shear
thickening if an experimental window is not identified. Here, shown with dilute suspensions of
motile and nonmotile swimming microalgae Dunaliella primolecta compared to fresh media (no
cells present). The low-torque limit, described in Sect. 3.1, is drawn from Eq. 6.13 using Tmin =
0.1 μN.m. The secondary flow limit, described in Sect. 3.3, is drawn from Eq. 6.31 using Remax = 4.
The Re2 line is from the expected increase in torque due to secondary flow, Eq. 6.29 (Previously
unpublished work of authors RHE and LMC)

Nonideal conditions can translate to misinterpretations of results, such as the
observation of apparent shear thinning and shear thickening for a fluid that is
actually Newtonian within the range of test conditions, as shown in Fig. 6.3.

Figure 6.3 gives examples of rate-dependent shear viscosity measurements,
which include data for a living system of microalgae suspended in water, as well as
the media without cells. The data show shear thinning at low rates and shear thick-
ening at high rates. But this is not actually the case for the true intensive material
property! Note the gray regions in Fig. 6.3. These cover experimental limitations for
measuring shear viscosity; in this case a measurement resolution issue at low rates,
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and at high rates, nonideal flow conditions. Within the experimentally accessible
window, i.e., the white central region, the fluids are more confidently interpreted
as Newtonian. Such limitations are particularly present when measuring biological
complex fluids, since they are often soft, with low viscosity, and may even have
activity (such as the swimming microalgae here) or surface-active components that
modify the liquid-air interface.

This chapter will outline a checklist and guide for believable experimental mea-
surements, interpretations, and descriptions of complex fluid rheology. The checklist
is useful for biological and nonbiological systems alike.

For proper context, two important ideas must be kept in mind. First, rheological
material functions are universally applicable to any class of material. They are used
to describe polymer liquids, polymer solids, colloidal systems, and any other simple
or complex structured fluid of the past, present, or future, so long as the continuum
hypothesis is satisfied for the lengthscale of interest. Like other material properties,
definitions are independent of the underlying structure (polymeric, colloidal, etc.),
yet, the underlying structure can be related to the measured properties through
structure-property relations specific to material classes [3]. Second, we note that
the descriptive material functions resulting from measurements are not necessarily
predictive for more complex deformations, although there are certain limiting cases
where there is correspondence between descriptive material functions and predictive
tensorial constitutive equation parameters [4]. Material functions are of course used
to fit existing models (see Chap. 1 of this book) or used to motivate new constitutive
models.

Here we focus on measurements and the corresponding descriptive quantities.
Of course, such measurements are often used for either structure-property relations
or model selection/fitting of predictive constitutive models. For those follow-up
steps to be successful, the measurements must first be free from errors.

Avoiding bad data is a serious challenge with complex fluids in general and soft
biological fluids in particular. Throughout this chapter, three key materials will serve
as examples of soft, watery, or active fluids. This includes (i) actively swimming
microalgae in a suspension of aqueous media (Fig. 6.3) (see also Chap. 9 of this
book on active suspensions), (ii) a biopolymer hagfish defense gel (Fig. 6.4), which
involves mucin-like molecules (see Chap. 2 of this book for a discussion of mucins),
and (iii) water itself, which is the basis of biological fluids. Material details are
outlined in the appendix.

2 Background: Material Functions

The theoretical definitions of material functions are based on stress, strain, and
strain-rate components in simple deformation fields. (See Chap. 1 of this book for
additional background on stress, and strain-rate tensors.) With real measurements,
one typically measures loads and displacements at the boundaries of a sample
(Fig. 6.1), and the calculation of true stress and strain may be encumbered by
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Fig. 6.4 Hagfish defense gel (a.k.a. slime) is one extreme case study used here to outline
experimental rheology challenges. Hagfish produce heroic amounts of slime as a predatory defense
mechanism, using a very small amount of exudate (0.01 wt% of final gel mass); (a) top-down
view of three Atlantic hagfish (Myxine glutinosa) in a large glass beaker; (b) for experiments,
exudate can be collected from an anesthetized hagfish with a pipette and then mixed with seawater
to form “hagfish slime,” an ultra-dilute network of polymeric mucus and fibrous protein-based
intermediate filament threads, shown in (c) with a rotational rheometer geometry in the raised
position after testing (diameter 28 mm). The ultrasoft material pushes experimental limits of
low torque, instrument inertia, and sample inertia; measurements also demonstrate interio-elastic
ringing (Figure adapted from [5])

the issues labeled A–I in Fig. 6.1. This chapter summarizes key experimental
challenges for complex fluids, especially for biological fluids. These experimental
challenges may invalidate results and sometimes cause measured properties to
incorrectly appear nonlinear or non-Newtonian. A useful approach is to identify the
experimental windows for proper measurements (Figs. 6.3, 6.5, 6.6, 6.10, 6.11, 6.14,
and 6.15). The boundaries of these figures will be described in Sect. 3.

Here we will focus on simple shear deformation, rather than shear-free flows,
although many of the experimental challenges will also affect measurements of
extensional properties. Ideal simple shear characterization is defined by the velocity
field u = e1γ̇(t)x2, giving a homogeneous rate of deformation tensor

γ̇ =

⎛
⎝

0 γ̇(t) 0
γ̇(t) 0 0

0 0 0

⎞
⎠ . (6.1)

In principle, Eq. 6.1 results in a spatially homogeneous stress tensor

σ =

⎛
⎝

−p+ τ11(t) τ21(t) 0
τ21(t) −p+ τ22(t) 0

0 0 −p+ τ33(t)

⎞
⎠ , (6.2)

where symmetry arguments have been used to limit the number of independent
stress quantities.
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Fig. 6.5 Low-torque limit shown for oscillatory strain-amplitude sweep of hagfish gel. The exper-
imental boundary helps identify the most believable data and explains the increased measurement
variability of G′′ compared to G′ at the same strain amplitude. Low-torque limit drawn from
Eq. 6.14 using Tmin = 0.003 μN.m (Data originally published in [5])

Material functions are then defined by reporting an output normalized by an input
amplitude. The controlled input can be either shear deformation (Eq. 6.1) or shear
stress (Eq. 6.2), and there are many ways to “poke” a material, even with simple
shear, including steps and oscillations.

The simplest rheological characteristic of a fluid is the steady shear flow
viscosity, defined from steady shear stress τ21 and steady shear rate γ̇ as

η(γ̇) = τ21(γ̇)/γ̇ . (6.3)

A Newtonian response would produce constant η(γ̇), but in general it is a function-
valued property. This descriptive material function happens to be the same function
used in the predictive equation known as the generalized Newtonian fluid (see
Chap. 1 of this book). But in general, descriptive material functions need not be
identical to constitutive model parameters.

Consider the more general possibility of a transient response. For example, a step
input of shear rate γ̇(t) = γ̇0H(t) where H(t) is the Heaviside step function. In this
case, the transient shear viscosity is defined as

η+(t; γ̇0) = τ21(t; γ̇0)/γ̇0. (6.4)

Transient normal stress differences are also used to define material functions, but
we will focus on shear stress. A different way to probe the material is to apply a step
stress input τ21(t) = τ0H(t), from which the creep compliance is defined as
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Fig. 6.6 Low-torque and instrument inertia limits shown for oscillatory frequency sweep of
hagfish gel. Low-torque limit from Eq. 6.14 with constant γ0; instrument inertia limit from Eq. 6.18;
sample inertia limit from Eq. 6.26. The inertial torque response (solid line) is from Eq. 6.20 with
ε = 0.01 being the error in the instrument inertia torque correction. Gray circles indicate when
raw phase angle jumps from < 15◦ to > 130◦ which is also an indication that instrument inertia
corrections must be made (Data originally published in [5])

J(t;τ0) = γ(t;τ0)/τ0. (6.5)

In this chapter we will also discuss oscillatory inputs [6]. For an input shear
rate γ̇(t) = γ0ω cos(ωt), the oscillatory shear stress output can be represented by a
Fourier series

τ21(t;ω,γ0) = ∑
n

{
τ ′21,n(ω,γ0)sinnωt + τ ′′21,n(ω,γ0)cosnωt

}
. (6.6)

From this, the first harmonic is the most basic feature used to calculate material
functions, e.g.,

G′
1(ω,γ0) = τ ′21,1(ω,γ0)/γ0 (6.7)

G′′
1(ω,γ0) = τ ′′21,1(ω,γ0)/γ0, (6.8)

which are known as the first-harmonic elastic storage and viscous loss moduli,
respectively. In the limit of small amplitude oscillatory shear (SAOS), one may
expect linear scaling of the stress coefficients with the input amplitude. In this limit
of linear viscoelasticity, we need only report the so-called linear viscoelastic storage
and loss moduli, G′(ω) and G′′(ω), respectively.
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Shear deformation can be applied with various geometric configurations. We
will consider configurations where the stress and strain fields can be calculated
without strong assumptions of a particular constitutive model, be it liquid, solid, or
nonlinear viscoelastic. For example, indentation tests and embedded particle micro-
rheometry impose nonhomogeneous loading scenarios that change depending on
the underlying constitutive model, whereas simplified geometries such as parallel
plate, cone and plate and concentric cylinder geometries have well-defined stress
and/or strain fields for any material tested (when sample inertia can be neglected;
Sect. 3.3), and a constitutive model need not be assumed in order to report the
material functions.

Shear stress is the most commonly measured stress component, but normal
stresses are also relevant for describing rheological properties in shear. Many of
the challenges described here will also apply to normal force measurements, such
as experimental windows based on instrument specifications. The reader may find it
useful to consult related texts on the topic of rheological measurement for additional
details on certain topics [7–9].

3 Challenges

In general, one must keep a system-level perspective to identify bad data and avoid
misinterpretations of rheological properties. The following subsections outline
particularly problematic sources of error and should serve as a checklist for
verifying rheological measurements, especially with soft and slippery biological
materials.

3.1 Instrument Specifications

The measurable ranges of load and displacement serve as primary limits to
measuring rheological material functions. As shown in Fig. 6.2, the primary mea-
sured variables for rotational rheometry include torque T , displacement θ , and
rotational velocity Ω . We will use the following notation for conversion factors
to calculate stress and deformation

τ21 = Fτ T, (6.9)

γ = Fγ θ , (6.10)

γ̇ = Fγ θ̇ = Fγ Ω . (6.11)

The minimum torque is typically the most important limitation for soft biological
systems. Minimum torque is often specified by instrument manufacturers but can
often be higher due to other effects (such as surface tension producing torque,
Sect. 3.4).
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To identify experimental limitations, we will use the approach of drawing
boundary lines within the coordinate axes used to report material functions, as done
in Fig. 6.3. First, write the reported material functions in terms of the measured
quantities and conversion factors. For example, steady shear viscosity from Eq. 6.3
would be

η(γ̇) =
τ21(γ̇)

γ̇
=

Fτ
Fγ

T (Ω)

Ω
. (6.12)

Next, we state the condition for acceptable data that measured torque is above some
minimum limit, T > Tmin. Substituting Eq. 6.12 into the condition T > Tmin provides
the criteria

η >
Fτ Tmin

γ̇
, (6.13)

for avoiding bad data. This equation was used in Fig. 6.3 for the cone-plate geometry
Fτ = 3/(2πR3) where R is the cone radius and Tmin = 0.1 μN.m was used.

The appropriate value for Tmin can sometimes be larger than instrument spec-
ification, e.g., with dilute polymers in aqueous solution [10–12]. Recent results
show that surface tension torque may be responsible for torque limits higher than
instrument specifications [13], as discussed in Sect. 3.4. The limit of minimum
measurable viscosity decreases as the shear rate is increased. This is because the
limit corresponds to a minimum measurable shear stress τ21,min = Fτ Tmin, and
viscosity is calculated as shear stress divided by shear rate.

A similar downward-sloping low-torque limit appears for other material func-
tions that are plotted as a function of an amplitude. Consider viscoelastic moduli
as a function of strain amplitude (Fig. 6.5), for which the low-torque limit sets the
minimum measurable viscoelastic moduli

Gmin =
Fτ Tmin

γ0
, (6.14)

where Gmin refers to either G′ or G′′. For the concentric cylinder geometry (single
gap) used in Figs. 6.5 and 6.6, Fτ = 1/(2πR2L) with minimum torque in oscillation
Tmin = 0.003μN.m as specified by the manufacturer (TA Instruments, AR-G2). In
Fig. 6.6, the frequency sweep at fixed strain amplitude, the low-torque limit is simply
a horizontal line, since γ0 = constant.

The other primary variable measurements of displacement (θmin, θmax) and
velocity (Ωmin, Ωmax) also provide limits. These can also be plotted as lines within
the coordinate axes. In Fig. 6.3 with η(γ̇), the limits (Ωmin, Ωmax) would appear as
vertical lines defining the minimum and maximum γ̇ .

Experimental limits also depend on the geometry choice. This is well known
among practitioners. As an example, consider a soft material that may not exceed
the minimum measurable torque. Writing Eq. 6.14 more generally, the minimum
measurable shear modulus could be written as
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Fig. 6.7 Step torque test with hagfish gel in concentric cylinder geometry. Plotted as apparent
compliance J(t) = Fγ θ(t)/(Fτ T0), showing instrument inertia effects: acceleration (inset) and
inertio-elastic ringing. These effects can occur in rheometer designs where load is measured
at the moving boundary. The acceleration can be predicted by Eq. 6.23, here using the value
IFτ
Fγ

= 2.9465 · 10−2 Pa.s2. The ringing can be used to extract linear and nonlinear viscoelastic
information as described in the text. Both effects obscure the true creep compliance of the material
(Data originally published in [14])

Gmin =
Fτ
Fγ

Tmin

θmax
. (6.15)

To measure a very small modulus, one could use a larger displacement ampli-
tude θ0. However, this may miss the linear viscoelastic regime if the corresponding
strain amplitude γ0 is too large. One can also increase the“gain” in the system that
generates the torque from the material resistance. This corresponds to maximizing
Fγ/Fτ , e.g., for a cone-plate system Fγ/Fτ = 2πR3/(3β ), where β is the small cone
angle. For a soft material, one may choose a large R to generate sufficient torque
to make the measurement or switch to a different geometry with a larger value of
Fγ/Fτ , such as concentric cylinders used in Figs. 6.5, 6.6, and 6.7 for the soft hagfish
defense gel.

Geometry choices influence other challenges, and there may be trade-offs
between different experimental limitations. One issue is inertia of the moving
instrument components, if the torque is being measured at the moving boundary.
This is outlined in the following section.
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3.2 Instrument Inertia

Instrument inertia causes experimental artifacts under transient conditions. This
includes oscillatory tests (e.g., limiting the high-frequency data in Fig. 6.6) and step
tests (e.g., influencing the short-time creep compliance data in Fig. 6.7). This is
only a problem if the load is measured at a moving boundary with unsteady
motion (as drawn in Fig. 6.1), which is common for many, but not all, commercial
rheometers. Unsteady instrument motion involves acceleration, and this requires a
load (torque); therefore the measured load is not simply associated with material
deformation but also instrument acceleration.

At worst, instrument inertia causes errors that look like real data. Consider
yourself warned! For example, the high-frequency data in Fig. 6.6 and short-time
data in Fig. 6.7 are not true material properties. In some cases, the effects can
be corrected if the instrument inertia is known. At best, the inertial correction is
negligible. In still other cases, instrument inertia can cause free oscillations in step
load tests. These inertio-elastic free oscillations can actually be used advantageously
to characterize material elasticity and dissipation from the ringing frequency and
periodic decay, respectively [15–18].

Biomaterials can be exceedingly soft, and instrument inertia artifacts are exag-
gerated for very soft materials. As examples of softness, the elastic modulus of
hagfish gel is G′ ≈ 0.2 Pa (Figs. 6.6 and 6.7), microtubule networks have a plateau
modulus G′ ∼ 0.4–20 Pa [19], vitreous gel G′ ≈ 2 Pa [20], actin networks as low
as G′ ≈ 1 Pa [21, 22], fibrin at low concentration G′ ≈ 10 Pa [23], and collagen–
hyaluronic acid interpenetrating polymer network hydrogels G′ ≈ 1–100 Pa [24].
In any soft material, instrument inertia must be carefully considered with transient
rheological measurements.

To avoid bad data in oscillatory shear, the “material torque” should exceed the
“instrument inertia torque.” Thus, the criteria for good data is satisfied under the
following condition:

Tmaterial > Tinertia, (6.16)

Gγ0

Fτ
> Iθ0ω2, (6.17)

G >
IFτ
Fγ

ω2, (6.18)

where the variable G represents either G′ or G′′ in oscillation. Equation 6.18 is used
to draw the “instrument inertia” boundary in Fig. 6.6 for the onset of instrument-
inertia effects. For the experiment in Fig. 6.6, with a concentric cylinder geometry,
IFτ
Fγ

= 2.9465 · 10−2 Pa.s2. Equation 6.18 corresponds to the jump in raw phase.
Instrument inertia corrections can be made beyond this point, and this requires the
subtraction of the instrument inertia torque from the single. This is reasonable to
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a point, but artifacts may eventually appear, e.g., with moduli increasing close to
G′ ∼ G′′ ∼ ω2. This signature can be explained by inertia effects.

Some of the most prevalent undiagnosed errors in rheometry involve artifacts in
high-frequency oscillatory measurements. One should be very careful when inter-
preting high-frequency data. For example, without drawing the instrument-inertia
boundary line in Fig. 6.6, one might be tempted to interpret a curious power-law
scaling of viscoelastic properties as a function of frequency. However, this data at
high frequency is completely associated with instrument inertia, and not at all a
material property.

An instrument inertia artifact at high frequency is most easily diagnosed by
looking at the raw phase difference between the oscillating displacement and torque
signals and being critical of data points with raw phase > 90◦. To see why, consider
that a purely elastic material response would have load proportional to displacement,
T ∼ θ , a purely viscous material gives T ∼ θ̇ , and a purely inertial effect T ∼ θ̈ . For
time periodic oscillatory signals T (t) and θ(t), this corresponds to phase differences
of 0◦, 90◦, and 180◦, respectively. Without instrument inertia effects, the phase
would be limited to the viscoelastic range 0◦ < δ < 90◦. So, when this raw phase
is > 90◦, instrument inertia must be playing a role. Corrections can be made by
calibrating the rotational inertia and subtracting the expected inertial torque from
the total signal (as done for the data in Fig. 6.6). But, this become exceedingly
difficult at large values of raw phase when the inertial torque dominates the total
torque signal.

Inertia corrections are not 100 % perfect, and this explains the specific signature
at high frequency of G′ ∼ G′′ ∼ ω2. One expects inertial torque T = Iθ̈ , and for
θ(t) = θ0 sin(ωt) this is

T0 = Iθ0ω2. (6.19)

This can be subtracted from the measured signal, but if the subtraction is not exact,
then some of this inertial torque will remain in the processed signal, say εT0 where ε
is (hopefully) a small number. Translated to material properties, this would produce
apparent viscoelastic moduli

G =
Fτ(εT0)

Fγ θ0
= ε

Fτ I
Fγ

ω2. (6.20)

With ε = 0.01, Eq. 6.20 explains the high-frequency signature in Fig. 6.6. Therefore,
even with inertia corrections, viscoelastic moduli will eventually have frequency-
dependent power-law scaling that approaches G′ ∼ G′′ ∼ ω2, since they are
calculated from a torque signal that is increasingly dominated by inertia and
corrections are only precise to within factor of ε .

Instrument inertia affects high-frequency oscillation data, as well as short-time
data in step tests. For creep tests (step load input), the instrument inertia can
significantly alter the displacement response (Fig. 6.7, hagfish gel). This includes
(i) the time required to accelerate and (ii) free oscillations via “inertio-elastic”
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ringing, in which the sample elasticity couples with the finite instrument inertia to
“ring” at a resonant frequency, just like a mass at the end of a spring [15,17,18,25].
A careful analysis of the inertio-elastic oscillations can reveal both linear and
nonlinear viscoelastic properties of the sample [5, 18].

By conservation of momentum, the measured dynamic load must satisfy

T (t) = Iθ̈(t)+ τ21(t)/Fτ , (6.21)

where we have considered a rotational rheometer with instrument inertia I. For a
step torque T (t) = T0H(t), the initial conditions at t = 0 are θ = 0, θ̇ = 0, and
typically τ21 = 0 if starting from rest. Initially, the applied torque is dominated by
the acceleration term in Eq. 6.21, since the sample stress term is initially zero and
only appears as strain and strain rate increase above zero. The creep response then
always has the following form in the limit of short time [17]:

θ(t) =
1
2

T0

I
t2 + · · · . (6.22)

Converting this to the apparent material function J(t)

J(t) =
γ(t)
τ0

=
1
2

Fγ

Fτ I
t2 + · · · (6.23)

which shows the general short-time instrument acceleration artifact, independent of
applied torque when plotted as apparent compliance J(t). This is shown in the inset
of Fig. 6.7 for the soft hagfish gel.

Inertio-elastic ringing analysis can probe both linear viscoelasticity [15, 17]
and nonlinear viscoelasticity [5, 18] in novel ways. Such analysis requires the
assumption of an underlying constitutive model for τ21(t) in Eq. 6.21, e.g., a three-
element fluid (Jeffreys), or two-element solid (Kelvin–Voigt). Detailed calculations
associated with the inertio-elastic ringing analysis can be found in the references
above.

To avoid the instrument inertia effects discussed in this section, one can
measure the load (torque) at the stationary boundary, e.g., with a force rebalancing
transducer, rather than measuring load at the moving boundary, e.g., through a
motor. This requires more complex instrumentation to separate the imposed dis-
placement from the measured load, but such separated motor-transducer instruments
are commercially available. These setups can eliminate important errors due to
instrument inertia including the accurate measurement of stress jumps in response
to step displacement inputs [26].
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3.3 Fluid Inertia and Secondary Flows

Even if instrument inertia is eliminated, the sample itself will always have finite
inertia which can produce artifacts from momentum diffusion, viscoelastic waves,
and secondary flows, all of which can violate the assumption of homogeneous
simple shear deformation in Eq. 6.1. Purely elastic instability can also produce
secondary flows even in the limit of vanishing Reynolds number [27–30]. This
section will discuss the symptoms of both wave propagation and secondary flows
and how to identify experimental limits due to these artifacts.

3.3.1 Wave Propagation at High Frequencies and Short Timescales

The assumption of homogeneous simple shear strain is violated when there are
waves propagating through the material. Propagating waves may come from
either viscous momentum diffusion or elastic shear waves or both for viscoelastic
materials in general.

The general criteria for approximately homogeneous strain in the velocity
gradient direction is that the wavelength l of any propagating wave should be much
larger than the geometry gap D

l � D (6.24)

so that, in the gap region, the velocity field is negligibly affected by the propagating
wave [31]. Two key questions must be answered: (i) how much smaller must the
gap D be for tolerable errors, and (ii) how can the wavelength l be calculated?
The wavelength l depends on material properties and the frequency (time scale) of
motion. Most importantly, l decreases with high driving frequency, and we therefore
expect wave propagation issues at high frequency and short time scales.

Schrag gave a detailed analysis of linear viscoelastic wave propagation [31],
showing that linear viscoelastic shear waves between a moving boundary and a fixed
reflecting boundary have wavelength

l =
1

cos(δ/2)

( |G∗|
ρ

)1/2 2π
ω

, (6.25)

where ω is the driving frequency, |G∗| =
√

G′2 +G′′2 is the magnitude of the
complex modulus, δ is the viscoelastic phase angle, and ρ is the fluid density.
The scaling in Eq. 6.25 is l ∼ cT where c is the wavespeed c ∼ (|G∗|/ρ)1/2 and
T = 2π/ω is the wave period. Using the criteria l ≥ 10D to avoid errors of
possibly 10 % [31], along with Eq. 6.25, we can identify an approximate edge of
the experimental window for plots of viscoelastic moduli,

|G∗|>
(

10
2π

)2

cos2(δ/2)ρω2D2, (6.26)
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which is used in Fig. 6.6 to identify the “sample inertia limit,” using a value
cos2( δ

2 ) = 1. Equation 6.26 scales as |G∗| ∼ ρω2D2, showing the important
sensitivity to both driving frequency ω and geometry gap D. Higher frequencies
are problematic. Smaller gas are helpful. The numerical front factor has weak
dependence on δ , since 1

2 < cos2( δ
2 ) < 1. The more sensitive number is the factor

by which l > D. More precise experiments require a larger separation of these
lengthscales, as detailed in Schrag [31] (his Table 1). Whatever the front factor,
the shape of the experimental limit will still be the same, scaling as |G∗| ∼ ρω2D2.
The sample inertia impacts measurement at high frequency and low modulus, and
therefore soft gels and low-viscosity fluids will have greater propensity for sample
inertia effects.

Although strain amplitude does not appear explicitly in Eq. 6.26, fluid inertia
problems can appear due to large-amplitude oscillations [32], even with constant
forcing frequency. For these nonlinear tests, one can conceptually think about |G∗|
changing in the nonlinear regime, which would influence the wave propagation
speed and therefore the wavelength l. When large-amplitude oscillatory shear strain
softens a sample (decreasing |G∗| which is typical for polymer melts), then the
sample inertia issue will become more problematic at large strain amplitudes. This is
consistent with detailed studies in the literature on flexible polymers [32]. However,
if a sample becomes more stiff in the nonlinear regime (increasing |G∗| which is
typical of semiflexible biopolymer gels [33]), then one could argue that the inertia
artifact may actually be less problematic due to increasing viscoelastic wavelength l.
This possibility, however, has not yet been studied in any detail. One challenge for
universal analysis of nonlinear viscoelastic measurements with wave propagation is
that no universal constitutive equation exists for nonlinear viscoelasticity.

The experimental boundary line defined by Eq. 6.26 should serve as a general
guideline to identify possible experimental windows due to shear waves when
measuring oscillatory shear material functions. It is useful in linear viscoelastic
plots, e.g., G′(ω),G′′(ω) (as in Fig. 6.6), and may also be useful to estimate the
boundary for nonlinear tests, e.g., large-amplitude oscillatory shear (LAOS) tests in
terms of |G∗

1|(γ0). For all these cases, the artifact of viscoelastic waves will limit
measurement of low modulus and high-frequency data.

3.3.2 Secondary Flows at High Velocity

Sample inertia can also cause nonideal velocity fields during steady flow. Even
before turbulent flow, high velocities can cause secondary flows superposed on
the primary simple shear flow due to finite sample inertia and curved streamlines
in unstable configurations. This includes cylindrical geometries with a rotating
inner cylinder and planar geometries including cone-plate and parallel disk flow. In
each case, secondary flow increases the measured torque and therefore incorrectly
increases the apparent viscosity of the fluid. For example, a Newtonian fluid with
secondary flow present would incorrectly appear as shear thickening, since the
secondary flow effects grow with increasing velocity. This is observed in Fig. 6.3
with the microalgae suspension at high shear rates.
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Concentric cylinder measurements have a well-known secondary flow instability
that appears when the inner cylinder is rotating at sufficiently large velocity Ω .
Known as Taylor–Couette flow after the initial work of Taylor [34], the inertial
instability causes axisymmetric vortices. The stability criteria is well established for
Newtonian fluids in the limit of small gaps. It is based on a sufficiently small Taylor
number Ta [35, 36]:

Ta =
ρ2Ω 2(Ro −Ri)

3Ri

η2 < 1,700, (6.27)

where Ri is the inner radius moving at angular velocity Ω and Ro is the fixed outer
radius. The criteria has been mapped for corotating and counterrotating cylinders
as well [88], but the most useful criterion for standard shear rheometry is given in
Eq. 6.27. There is some evidence that non-Newtonian polymer solutions increase the
critical Taylor number, so that Eq. 6.27 is a conservative estimate for experimental
rheological measurements [8]. To draw an experimental boundary line on a plot of
viscosity versus shear rate η(γ̇), rearrange Eq. 6.27 and use the definition of shear
rate γ̇ = ΩRi/(Ro −Ri). This gives the condition

η >
(Ro −Ri)

5/2

1,700R1/2
i

ργ̇ (6.28)

to avoid Taylor vortices. The criteria emphasizes that low-viscosity fluids are more
prone to this secondary flow and that small gaps are very helpful in the geometry
design. The scaling η ∼ γ̇ defines the shape of the boundary on a plot of η(γ̇) and
limits high shear rate measurements. As a quantitative example of an experimental
limit for the concentric cylinder geometry, consider properties typical of biological
fluids, density ρ = 103 kg/m3, and viscosity near water η = 1 mPa.s. For a nominal
concentric cylinder geometry with gap (Ro − Ri) = 1 mm and inner radius Ri =
11.8 mm (based on the ISO 3219 standard with Ro/Ri = 1.0847 [37]), Eq. 6.28
can be rearranged to show the shear rate is limited to γ̇ < 5.8 · 103 s−1. This is
reasonably high, but of course will change depending on the actual viscosity and
size of geometry being used.

Cone-plate and parallel disk geometries have a secondary flow that is always
present at finite rotational velocity [38] (the critical Taylor number does not apply
to these geometries). Here, centrifugal effects create a radial velocity component
with outward flow at the rotating boundary. Due to conservation of mass this causes
inward flow at the stationary boundary. (Highly elastic liquids can change this
scenario as discussed in the following section.) For the Newtonian case, the strength
of the flow is based on a Reynolds number. The secondary flow increases the
measured torque, and this can be used to set a criteria and draw experimental limits
for measurement. For Newtonian fluids with cone-plate or parallel disk geometry,
the measured torque T is predicted to depend on the Reynolds number as [39]
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T
T0

= 1+
3

4,900
Re2, (6.29)

where T0 is the ideal torque due to shear flow alone and Re is the Reynolds number
defined as

Re =
ρΩL2

η0
, (6.30)

where L is the representative gap lengthscale. For cone-plate, L = βR where β is
the angle between the cone and plate, and for a parallel plate, L = H where H
is the gap. For a given error bound on T/T0, we can identify a critical Reynolds
number Recrit. For example with 1 % error, i.e., T/T0 = 1.01, the critical Reynolds
number is Recrit = 4. This clearly occurs before turbulence could be sustained [38],
and therefore sets the experimental boundary for rheological measurements. Using
the criteria Re < Recrit and the definition of shear rate γ̇ = ΩR/L, results in an
experimental limit that can be shown on plots of steady shear viscosity η(γ̇),

η >
L3/R
Recrit

ργ̇ (6.31)

which is used in Fig. 6.3 to draw the “secondary flow limit” line, using Recrit = 4 and
L = βR for the cone-plate geometry. Figure 6.3 also shows the expected apparent
shear thickening of the shear viscosity, based on Eq. 6.29, and converting to apparent
viscosity. Equation 6.31 shows the scaling η ∼ ργ̇ , similar to the shape of the
boundary with concentric cylinders and the Taylor–Couette instability, Eq. 6.28.

In all the rotational geometries discussed here, lower viscosity fluids have
a smaller experimental window with limitations at high shear rate due to sec-
ondary flow.

3.3.3 Purely Elastic Instabilities

Undesirable secondary flows can also be created by purely elastic instabilities,
in the limit of vanishingly small Reynolds number. These secondary flows arise
from a different physical effect than the previous subsection (i.e., not fluid inertia).
For purely elastic instabilities, curved streamlines carrying tension cause instability
[27–30]. The effect occurs at high Weissenberg number Wi = λ1γ̇ (where λ1 is
the longest relaxation time of the fluid) for elastic liquids in rotational geometries
including concentric cylinder, cone-plate, and parallel disk.

The primary symptom of secondary flow is increased torque. Hence, the apparent
steady-state viscosity may incorrectly appear to shear thicken (Fig. 6.8). Increased
normal force may also occur. The purely elastic secondary flow occurs at a critical
Wi which depends on the measurement gap and constitutive behavior of the fluid.
Specific predictions are available for certain models including upper-convected
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Fig. 6.8 Purely elastic instabilities cause apparent shear thickening of steady shear viscosity. Here
with a dilute solution of polyisobutylene with nominal molecular weight 2.7 · 106 from [27].
The thickening appears at a critical shear rate (Weissenberg number); the accessible range of
experiments is extended by decreasing the gap, here with a parallel disk geometry at different
gaps ranging from 2 mm (open circles) to 0.3 mm (filled circles). (Reprinted from Magda
and Larson [27], Journal of Non-Newtonian Fluid Mechanics, Fig. 10, Copyright (1988), with
permission from Elsevier)

Maxwell and Oldroyd-B [28, 29]. Smaller geometry gaps inhibit the instability,
pushing the critical shear rate higher as shown in Fig. 6.8. Very large solvent
viscosity can also inhibit the instability. The effect is time-dependent, appearing
after prolonged shearing [27]. A general instability criteria applicable to complex
geometries has been suggested which includes dependence on both Weissenberg
and Deborah numbers [29,30]. Purely elastic instabilities in pressure-driven channel
flow have also been described [40, 41].

For elastic instabilities to occur before the fluid inertia instabilities (Sect. 3.3.2),
the fluid must have a long relaxation time so that the Weissenberg number can
be large while Reynolds number or Taylor number is low. For polymeric systems
including biological fluids, elastic instabilities are relevant with high-molecular-
weight polymers in solution.

For all secondary flows, due to either fluid inertia (Sect. 3.3.2) or fluid elasticity
(this subsection), the symptoms are similar: increased viscosity at high shear rates,
as seen in Figs. 6.3 and 6.8. These effects limit the high shear rate experimental
range for measuring simple shear rheological properties, and tempt misinterpreta-
tion of apparent shear thickening at high rates.
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Fig. 6.9 Contact line and interface angle: ideal versus nonideal. Nonideal asymmetries are
exaggerated compared to typical loading and can also occur as a result of overfilling. The nonideal
condition may create artifacts of apparent shear thinning due to the presence of a constant surface
tension torque (Figure adapted from [13])

3.4 Surface Tension Forces

For rotational rheometers, surface tension results in a torque that should not occur in
an ideal, rotationally symmetric geometry [13] (Fig. 6.9). It is typically neglected,
but the phenomenon may exceed the instrument low-torque limit Tmin by orders of
magnitude. The effect causes Newtonian fluids, including water, to appear as shear
thinning with finite elastic modulus (Figs. 6.10 and 6.11). We discuss the symptoms
of the effect, methods for drawing experimental boundaries with a different Tmin, and
techniques to minimize the effect, which is particularly important when measuring
aqueous solutions such as biological fluids.

In this section, the focus is rotational geometries where surface tension influences
the measurement of shear stress. This is a significant experimental challenge
for measuring soft, active, or low-viscosity biological fluids. Related issues not
discussed here include (i) normal force from surface tension [42, 43] which
is highly dependent on meniscus shape [44–46]; (ii) sliding plate instruments
which dilate free surface area and cause surface tension artifacts in shear stress
calculations [47–49]; and (iii) surface rheology artifacts from films of surface-active
components [50, 51] which will be discussed in Sect. 3.5.

Surface tension torque is caused by traction forces around a material contact
line that has broken rotational symmetry, both in terms of geometric location
and non-constant contacting angle (or nonconstant surface tension) [13] (Fig. 6.9).
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Fig. 6.10 Surface tension can generate torque in steady shear (a), which could be mistaken as
shear thinning (b), as shown here with water at room temperature. The effect grows with slight
overfilling that increases contact line rotational asymmetry, here with 1 or 3 small extra droplets
of water at the boundary, yet the effect can be present even with best practices (“0 droplets”)
where residual torque plateaus appear above the instrument low-torque limit. Views from below in
(a) indicate droplet contact lines around the D = 40 mm plate, as viewed through a glass bottom
plate. Low-torque limits for ηmin drawn from Eq. 6.13 using Tmin = 5 nN.m (instrument low torque)
and Tmin = 1μN.m (surface tension torque, extreme case) (Figure adapted from [13])

Historically, rotational symmetry has been a primary assumption [2, 8], even when
considering effects of surface tension [42, 43]. However, the rotational symmetry
assumption can be violated easily. Finite deviations of contact line rotational
symmetry, from manufacturing tolerances or sample overfill/underfill, allow surface
tension to produce a torque which may dramatically impact measurements of shear
rheology, particularly at low shear rates and for low-viscosity fluids.

Symptoms of surface tension torque include apparent viscous shear thinning
and elastic shear modulus. In steady shear flow, the effect appears as a superposed
constant torque independent of rate (Fig. 6.10a). These torque plateaus would appear
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Fig. 6.11 Surface tension can generate torque in oscillatory shear, which could be mistaken as
shear elasticity (a) and nonconstant dynamic viscosity (b), as shown here with water at room
temperature. Slight underfill or overfill can break contact line rotational symmetry (sample volume
459–495 μL for a D = 60 mm steel cone), as shown in the inset view from below at 459 μL.
Oscillatory strain amplitude γ0 = 100%. Instrument low-torque limit for G′

min and η ′
min from

Eq. 6.14 with Tmin = 0.5 nN.m in oscillation and instrument inertia limit for G′
min and η ′

min from
Eq. 6.18 using IFτ

Fγ
= 3 ·10−3 Pa.s2 (Figure adapted from [13])

inaccurately as apparent shear thinning of water (Fig. 6.10b). This example shows
the dramatic impact of slight overfill that breaks the rotational symmetry of the
contact line. The impact is to raise the effective Tmin in the low-torque limit for η(γ̇),
based on Eq. 6.13. This may help explain studies showing a practical low-torque
limit 20 times larger than that stated by the equipment manufacturer [10–12].

In oscillatory measurements, surface tension artifacts can mistakenly appear as a
storage modulus G′ plateau. We see this for water in Fig. 6.11a. Figure 6.11b also
demonstrates frequency-dependent dynamic viscosity η ′, which should be constant
for water over this range of frequencies. The inset image shows the asymmetric
contact line for a slightly underfilled sample. When the geometry is visually
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properly filled (to within 5μL, red triangles in Fig. 6.11), the elastic modulus is
unmeasurable to within the experimental limits of low torque and instrument inertia,
and the proper dynamic viscosity η ′ is measured down to ω = 10−1 rad/s.

The examples of Figs. 6.10 and 6.11 show that the surface tension torque effect
is highly variable due to sample loading, wetting conditions, and contact line asym-
metries and cannot be deterministically corrected in experimental measurements.
It therefore raises the lower bound of the instrument low-torque limit Tmin, in some
cases by orders of magnitude.

Experimental techniques and careful geometry selection must be used to mini-
mize surface tension effects. The surface tension torque is reduced by maximizing
rotational symmetry of the contact line, minimizing evaporation and the migration
of the contact line, reducing the radial location of the contact line, and lowering the
surface tension. Experimental techniques for controlling the contact line symmetry
such as using matched plate geometries are helpful. Reducing evaporation with a
solvent trap and precision sample loading with a micropipette can also minimize
surface tension torque plateaus.

Identifying and eliminating the surface tension torque is critical for low vis-
cosities, intrinsic viscosities, soft materials, subdominant viscoelastic components,
small gaps, and any circumstance where the low-torque limit is experimentally
important. This phenomenon should be especially important in aqueous systems,
including biological fluids, due to the high surface tension of water.

3.5 Free Surface Films

Biological fluids may contain proteins and other components that are surface active.
Such components have an affinity to accumulate at liquid-air interfaces and may
create a rigid or semirigid surface film. The film itself can be a fascinating object
of study (e.g., see Chap. 4 of this book), but the film formation is a problem
when the bulk flow properties of the solution are of interest. This experimental
challenge has been known for some time [8, 50]. Care must be taken when
measuring rheology using a geometry that involves a free surface, otherwise fluids
may appear non-Newtonian when they are not measurably so [50, 51]. This applies
to all the rotational geometries discussed in this chapter.

The primary signatures of a free surface film include increased viscosity,
enhanced shear thinning, and often the presence of an apparent yield stress. For
example, this is shown in Fig. 6.12 for aqueous solutions of the protein bovine
serum albumin (BSA) [51]. The figure compares measurements using a cone-
plate geometry (with liquid-air interface) and a microchannel pressure-driven flow
viscometer (internal flow without a liquid-air interface). The microchannel mea-
surements suggest Newtonian viscosities for this range of protein concentrations
and shear rates, and do not match the cone-plate measurements which show higher
viscosities and shear thinning at low rates. The increased viscosity and shear
thinning are caused by a free surface film of the BSA [51]. A film is undesirable
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Fig. 6.12 Surface-active components in solution, such as the protein bovine serum albumin (BSA)
shown here, may form a film at a free interface. Such films can show apparent yield stress
and shear thinning of the apparent bulk viscosity when tested with cone-plate (hollow symbols).
However, this is an interfacial rheological property and not a true bulk property as shown by
the internal channel flow measurements (filled symbols). BSA at bulk concentrations of 10–
200 mg/mL, triangles-squares (Data originally reported by Sharma et al. [51])

when measuring bulk properties. Of course, the presence of a film does provide an
opportunity for interfacial surface rheology measurements if this is desired.

Internal flow geometries and guard rings (which eliminate the interface) can
avoid the problem (although even in a closed system, there is the possibility of
biofilm formation in biological fluids). When these are not available or possible,
then one must be mindful of the symptoms of a free surface film. To test for
the artifact of surface film rheology, one could make repeated measurements with
different geometries and check for reproducibility of apparent material functions.
For example, cones with increasing diameters could be used. The larger diameters
create a longer film length and larger moment arm to produce torque and would
generally be expected to have increased torque effects due to free surface films.

3.6 Slip

In rheological characterization, it is typically assumed that the sample sticks to the
contacting boundaries whose motion defines the assumed strain field. In fluids,
this is known as the no-slip condition. However, slip can easily occur [52–54],
especially with biological gels and tissues. Slip violates the assumptions of standard
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Fig. 6.13 Slip behavior on a smooth geometry surface can decrease flow stress and cause
inconsistent gap dependence, as shown here for Nivea Lotion tested with different surfaces and
gaps using parallel disks of diameter D = 40 mm. A sandpaper surface eliminates slip artifacts,
showing superposed data for different gap heights (Previously unpublished work of author RHE)

rheological characterization and may cause significant artifacts in the data. This
section describes slip artifacts, methods of checking for slip, and techniques for
avoiding the problem altogether.

The key signatures of slip include a decreased flow stress and inconsistent
apparent stress and strain rate that depend on the geometry gap (gap height with
parallel disks or cone angle with cone-plate). Figure 6.13 demonstrates these slip
artifacts as seen with a non-Newtonian fluid (Nivea Lotion). The smooth boundary
geometry produces artifacts and the true material behavior can be seen with a
roughened surface. The steady-state flow sweep is conducted from high to low rates
using a combined motor-transducer rotational rheometer (AR-G2, TA Instruments)
with a parallel disk of diameter D= 40 mm and controlling temperature to T = 23◦C
with a Peltier plate. The sandpaper surfaces are adhesive-back sandpaper, 600 grit
(McMaster-Carr Part #47185A51) attached to the standard rheometer geometry
on both bounding surfaces. Apparent shear stress is calculated as τa = Fτ T with
Fτ = 2/(πR3) for the disk, and apparent shear rate from γ̇a = Ω/h where h is the
geometry gap.

Figure 6.13 shows an apparent stress plateau at low rates (an apparent dynamic
yield stress) that depends on the geometry being used. The smooth geometry shows
a lower apparent yield stress. This is a common experimental artifact that has been
discussed in the literature, especially with yield stress fluids [55, 56]. In a recent
study with a dense colloidal system, apparent yield stress behavior at low rates
was associated with a sub-colloidal lubrication layer at the wall, as confirmed by
confocal microscopy [56].



6 Experimental Challenges of Shear Rheology: How to Avoid Bad Data 231

The gap is varied to check for slip in Fig. 6.13. For the rough sandpaper surface,
the measurements superpose for all gaps therefore confirming the absence of slip.
However, for the smooth plate, the data shifts to higher apparent strain rate as the
gap is decreased. This shift is important evidence to indicate slip. To understand
why, consider the simple example where an applied stress results in a particular slip
velocity at the boundary of a sample. The gap-independent slip velocity contributes
a fixed amount to the total velocity Ω . Therefore, as the gap h decreases, the
apparent shear rate γ̇a = ΩR

h will have a numerator that decreases slower than the
denominator, therefore increasing γ̇a at small gaps for a fixed stress. This is shown
by the arrow in Fig. 6.13 pointing to the right. Varying the geometry checks for the
presence of slip but can also be used to correct for slip [57]. With very good control
and sensitive instruments, gap-dependent measurements with a linear sliding plate
rheometer have been used to characterize the slip itself including slip velocities [58].

Although sandpaper may be sufficient for some biological gels, e.g., as used
for biopolymer mucin gels (snail slime) [59], sandpaper roughness is not always
sufficient and other techniques must be considered. This includes the addition of
grooves [55] or “cleats” [60] in plates, e.g., as used to measure vitreous humor [61].
Vane rotors are also commonly available [62], which are modifications of the
concentric cylinder geometry. For more challenging solid materials, such as soft
biological tissues, the sample can be squeezed slightly with an applied normal load
to prevent slip during shear tests [63]. In extreme cases, gluing the tissue to the
plate is required, as shown to be important with porcine kidney tissue, especially in
nonlinear tests [64].

3.7 Small Volume and Small Gap

Biological fluids may be available only in small quantities. A variety of techniques
can be used for measurements on small sample volumes [49]. This section describes
a few techniques that have been useful with biological fluids and then focuses on
the most widely accessible technique: parallel disks at small gaps. This section then
describes the artifacts, corrections, and experimental windows for measurements at
small gap.

Several techniques have been used for sample volumes around 10 μL and below.
An early example is a capillary rheometer apparatus requiring only about 10 μL
in volume [65]. A more recent pressure-driven flow setup (microfluidic cross-slot
extensional flow) requires approximately 1 μL volumes [66], as demonstrated with
hyaluronic acid and saliva. Boundary-driven flow examples include modification
of parallel disks to confine a sample near the outer radius over a small area,
approximating sliding plate flow with volumes 1–25 μL [48]. A custom-built linear
sliding plate instrument has also been developed for precise, small gap tests (the so-
called flexure-based microgap rheometer (FMR) [67, 68]). The FMR has been used
to measure microliter quantities of spider silk [69] and sub-microliter quantities
of carnivorous plant mucilage [70]. In those studies, samples were also tested
with a small-scale extensional instrument based on capillary breakup extensional
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rheometry (CaBER). Embedded probe techniques are also useful. Nanoliter droplets
of butterfly saliva have been characterized with an embedded magnetic rod [71]. Of
all the demonstrated techniques, standard parallel disks at small gaps may be the
most experimentally accessible option for a researcher interested in small volumes
of biological fluid.

With parallel disks, the smallest accessible gap will be limited by disk paral-
lelism, precise knowledge of the true gap, and the size of the underlying material
structure in the fluid. Confinement effects that violate the continuum hypothesis
will not be discussed here (although this is sometimes relevant in biological fluids,
such as blood exhibiting a confinement-dependent viscosity [72]). Finite boundary
roughness and tribological contact will not be discussed either, since other gap errors
are typically encountered first. Gap errors, including parallelism and gap precision,
are the primary concern, assuming the continuum hypothesis holds true.

For gap errors, measurement artifacts include a decreasing apparent viscosity at
smaller gaps (Fig. 6.14). This occurs under the typical scenario where the true gap h
is larger than the apparent gap ha calibrated by apparent contact of the plates [73].
These symptoms and limitations apply similarly to any boundary-driven drag flow
at small gaps, such as the sliding plate FMR [67] and techniques to isolate samples
to a small region under a conventional parallel disk geometry [48], although the
difference between h and ha may change depending on the calibration procedure.
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Figure 6.14 shows the expected artifacts for small gap measurements, here with
water using a disk with diameter D = 20 mm down to apparent gap ha = 10 μm
(down to apparent volume around 3μL). Using small gaps requires less volume and
allows for higher shear rates. On average, the viscosity is what we expect for water,
η ≈ 1 mPa.s, but there are some issues. For small gaps (ha < 50 μm), the apparent
viscosity decreases as a function of gap. For the larger gaps (ha ≥ 100 μm), the
viscosity seems to shear thicken at high shear rates, but at different critical shear
rates. These are not true material properties of water, but are artifacts that can be
explained.

For larger gaps at high rates, the inertia of the liquid may cause secondary flows
(as described in Sect. 3.3). It is common to assume that the liquids will travel in
circular stream lines, but centrifugal effects will tend to push fluid outward near
a rotating boundary. This secondary flow increases dissipation, resulting in higher
measured torque and hence a larger apparent viscosity. The effect increases as a
function of Reynolds number, defined as Re = ρΩh2/η , so the effect is evident
for higher velocity Ω , larger gaps h, and low-viscosity fluids. Lines for Re = 4 are
shown in the figure for two representative gap heights.

For small gaps, the main error is caused by a gap offset εh, which is the difference
between the apparent calibrated gap ha and true gap h [73],

h = ha + εh. (6.32)

(The term “true” gap means the “effective” or “average” gap since the disks have
finite roughness and finite parallelism manufacturing tolerance. Hence the gap is not
precisely constant throughout the test geometry.) Since apparent gap ha is used to
calculate apparent viscosity ηa, one expects deviation from the true viscosity to be
of the form

ηa = η
ha

h
(6.33)

which indicates ηa < η for offset εh > 0. The apparent gap ha is typically calibrated
based on contact force at the first point of contact, where ha is set to zero. Two
issues arise to create gap offset error εh > 0. (i) A finite force is often observed
before solid–solid contact due to viscous resistance of air flow in the squeezing gap.
(ii) The parallelism is not perfect, and the average gap will often be larger than
the “first point of contact” gap. The nonparallelism contribution generates normal
forces [74] and this can be used to identify the relative importance of the two sources
of gap offset error. Both of these effects contribute to gap offset error εh > 0, so that
the actual gap is larger than the apparent value. Typical values for εh are on the order
of 10–50 μm [75, 76].

Gap offset εh can be corrected if Eq. 6.32 holds true [73, 75, 76], although the
correction will depend on the uncertainty in calibrating for εh. Uncertainly in the
calculated viscosity will grow dramatically as the gap approaches the uncertainty
of εh. Gap offset errors can be minimized by using a smaller radius plate, since
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Fig. 6.15 Experimental window for small volume aqueous solutions, using Eqs. 6.34–6.38 to draw
the boundaries. Representative values used are Tmin = 5 nN.m, Ωmax = 300 rad/s, Remax = 4, η =
1 mPa.s, ρ = 1,000 kg/m3, plate diameter D= 8 mm, Vmax = 5μL, and minimum gap hmin = 10 μm

this decreases the viscous squeeze force at apparent contact and also decreases the
nonparallelism (angular misalignment) contribution to εh due to the smaller radius.
However, a smaller radius plate changes other experimental limits such as increasing
ηmin due to the low-torque limit (Eq. 6.13). The experimental window for small gap
measurements is therefore bounded by several limitations.

Figure 6.15 is an example experimental window for small volume and small gap
measurements, in the operational space of gap h and velocity Ω . Several limitations
are considered including (i) minimum torque, (ii) maximum velocity, (iii) secondary
flow, (iv) maximum volume available, and (v) small gap limit, e.g., due to gap
offset errors. The exact locations of the boundaries will shift depending on the fluid
properties and instrument used, but their shapes will not change. Representative
values are used in Fig. 6.15 for aqueous fluids. Specific equations for boundary
lines come from consideration of each limit. The minimum torque, item (i), is set
either by the instrument specification (Sect. 3.1) or surface tension torque which
becomes increasingly important at small gaps (Sect. 3.4). Based on the criteria
T > Tmin, where torque from steady viscosity is T = (ηΩR/h)/Fτ , the boundary
line is defined by

h <
ηΩR
Fτ Tmin

(6.34)
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which shows the scaling h ∼ Ω that appears in Fig. 6.15. The instrument limit of
maximum velocity, item (ii), is simply set by the criteria

Ω < Ωmax (6.35)

and therefore appears as a vertical line in the figure. The limit of secondary flow,
item (iii), was discussed in Sect. 3.3. There, a maximum Reynolds number Remax

sets the boundary line and is based on the definition Re= ρΩh2

η for parallel disks.
Then, the criteria Re< Remax can be written

h <

(
Remaxη

ρΩ

)1/2

(6.36)

which shows the scaling h ∼ Ω−1/2 seen in the top right of Fig. 6.15. The last two
criteria come from this section, considering small volume and small gap limitations.
The volume limit is simply V < Vmax where Vmax is the maximum sample volume
available. For parallel disks, V = πR2h, and the boundary line is defined by

h <
Vmax

πR2 . (6.37)

The final boundary, item (v), is the minimum gap. This boundary line is defined by

h > hmin, (6.38)

where hmin is set by the gap offset error, or possibly the minimum gap where
confinement effects are negligible and the material can still be considered a
continuum. Figure 6.15 uses Eqs. 6.34–6.38 with representative parameters given
in the caption. The minimum gap h = 10 μm is used, assuming uncertainty in gap
error much less than 10 μm which would allow for gap offset corrections. Based on
the maximum sample volume and minimum gap limits, the experimental window is
confined between h = 10−100μm for this example. If larger volumes are available,
then larger gaps can be used, eventually being limited by the secondary flow (e.g., as
seen in Fig. 6.14 at larger gaps). At very large gaps, the experimental window closes.
This occurs where the minimum torque and secondary flow boundaries intersect, for
gaps h > 1,000 μ m with this particular geometry.

3.8 Other Issues

Additional challenges, basic and exotic, can also be included on the list of possible
ways that rheological measurements can go astray.

One basic but important point is sample volume underfill or overfill. In cone-
plate and parallel disk geometries, torque is a very sensitive function of the radial
extent of contact T ∼ 1

R3 [8]. Underfill is more sensitive than overfill, but for
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both cases one may have the problem of an uncontrolled contact line that loses
rotational symmetry which can introduce additional torque due to surface tension
forces (Sect. 3.4). Underfill can also develop as a sample evaporates. This is relevant
to aqueous biological fluids. Evaporation can be eliminated or reduced by the use of
a solvent trap. The use of a micropipette and close attention to fill level can further
eliminate the basic issue of sample volume underfill or overfill.

An exotic but relevant issue with some biological fluids is particle settling
and migration, in particular with active-swimming microorganisms in suspension.
In general, the concentric cylinder geometry is recommended when gravitational
particle settling may be an issue, since a depletion layer is not created across the
velocity gradient direction as would be the case with cone-plate or parallel disk
geometries. But, if the sample volume is not sufficient, parallel disks or the cone-
plate geometry must be used. One particularly striking example is with the same
microalgae suspension whose flow data is given in Fig. 6.3. Those measurements
were made with a cone-plate geometry. The data needed to be collected within the
first 2 min of flow due to microalgae rheotaxis (flow-induced swimming), coupled
with particle settling and secondary flow. The microalgae migration was visualized
through a transparent bottom plate during shear flow, as shown in Fig. 6.16. The
migration to a nonhomogeneous state is indicated by the development of a dark
green circle toward the center of the geometry. The particles are negatively buoyant
and therefore settle to the bottom fixed plate. A finite secondary flow exists which
draws fluid radially outward near the moving cone (Sect. 3.3), which is balanced
by a radially inward flow near the stationary boundary. This inward flow carries
the negatively buoyant microalgae toward the center. The visualization in Fig. 6.16
indicated the time scale of developing a non-homogeneous sample. This set an
experimental boundary on the time that could be used to collect steady-state shear
data, under 2 min for this configuration.

t = 0 min 1 min 2 min 3 min 4 min 5 min 6 min 13 min

Fig. 6.16 Visualization can be used to check for nonhomogeneous conditions due to rheotaxis,
particle settling, and secondary flow. Here, shear flow of a microalgae suspension is viewed from
below through a transparent bottom plate, showing that a nonhomogeneous distribution develops
over time (Previously unpublished work of authors RHE and LMC)
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An issue relevant to biological gels, and stiffer biological materials, is edge
fracture. This is a well-studied phenomenon, and polymer melts and solutions have
tended to receive the most attention [8, 77, 78]. The problem can be identified by
visually monitoring the edge of the sample; the experimental artifact is a decreased
load (apparent stress) since the true sample contact area is effectively decreased.
There are some experimental configurations that minimize edge fracture artifacts,
all of which move the free surface away from the transducer surface. For example, a
“plate and cup” or “sea of fluid” geometry has been used [79], as well as partitioned
plates with the torque transducer plate set inside the larger geometry plate [80–82].

As materials become more viscous and more stiff, additional problems arise. Of
all the remaining possible experimental errors [7,8], viscous heating and instrument
compliance are worth mentioning briefly here.

Viscous heating is an issue with higher viscosity fluids. The symptom is a
decrease in the apparent viscosity as a function of shear rate, since higher rates
further increase temperature and decrease viscosity. The key dimensionless number
to check is the Nahme number [2], which can be interpreted as a ratio of viscosity
change due to viscous heating compared to the baseline viscosity. Values near zero
indicate negligible viscosity change. Smaller gaps help minimize the heating effect,
since they decrease the length of the thermal conduction path. This is most important
for liquids with high viscosity and low thermal conductivity. For low-viscosity
biological fluids, this is less of an issue.

System compliance is an issue with higher stiffness materials. The problem
lies in the possibility of finite movement of a “fixed” boundary due to system
compliance, or small but finite movement of the load cell, even with modern force
rebalancing transducers [83,84]. Instrument compliance issues have been identified
with the dynamic shear measurement of glycerol [85] and polymer melts [86].
Recommendations have been identified for experimental protocol and instrument
design to avoid, minimize, and correct for compliance effects [87]. Instrument
compliance errors should be considered for stiff, solid materials, or the short-time
data from step strain inputs when material stiffness may also be large.

4 Conclusions

The experimental challenges described here will serve as a checklist for trou-
bleshooting and debugging rheological measurements of complex fluids. These
challenges are especially evident with biofluids and biological materials. Common
artifacts cause a fluid to inaccurately appear as shear thinning, shear thickening,
having frequency dependence, time dependence, or having an elastic modulus, when
these behaviors are not actually present in the true intensive material response.

We encourage the reader to think critically about experimental rheological
measurements, and to ask appropriate and fair questions about the validity of data
(including their own and those published in the open literature). This is particularly
relevant for biological complex fluids which are soft, have low viscosity, and may
contain active components.
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For each potential artifact, the system-level perspective can identify an
experimental boundary and/or a method of minimizing the effect (Sects. 3.1–3.8).
The focus here has been on the most commonly used technique for measuring
shear material functions, i.e., drag flow at the boundary ([8] Chap. 5), especially
when imposed by rotational geometries such as parallel disks, cone-plate, or
concentric cylinders (Fig. 6.1). Other measurement techniques, including those
described in this book (Chap. 1, 3–4), will also benefit from a system-level
perspective that acknowledges non-ideal conditions for rheological material
function measurement (as in Fig. 6.1). The identification of experimental boundaries
(similar to Figs. 6.3, 6.5, 6.6, 6.10, 6.11, 6.14, and 6.15) will be especially relevant
to biological fluids and materials that are of limited volume, as well as soft, active,
and rheologically complex materials more generally.
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Appendix: Material Details: Hagfish Gel and Microalgae
Suspension

Hagfish gel serves as an example of an ultrasoft biomaterial gel. It is prepared as
in [5, 14] and used in Figs. 6.5, 6.6, and 6.7.

The actively swimming microalgae suspension provides an example of a low-
viscosity biological solution and is used in Figs. 6.3 and 6.16. The algal species
Dunaliella primolecta was used. It is a motile, biflagellated, cell-wall-less, unicellu-
lar green algae that does not clump. It has slight negative buoyancy, approximate
characteristic diameter 11 μm, and natural concentration on the order of 3 ·
106 cells/mL. Dunaliella Primolecta (UTEX LB 1000) was obtained from UTEX,
The Culture Collection of Algae at the University of Texas at Austin. Nonmotile
samples were prepared by adding 2 mL of 4 %wt/vol of formaldehyde in phosphate
buffered saline (PBS) solution to 25 mL of the bulk sample. The fixed sample was
analyzed under light microscope to ensure it was nonmotile.
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