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To life, in all its wondrous
and stupefying complexity





Preface

The complexity of biological systems, even on the smallest length scales, is
staggering. Biological systems are replete with active functionality, heterogeneity,
memory, and interconnectedness on a vast spectrum of length and time scales.
With our ever-advancing abilities to observe nature in vivo at the microscale,
and with continuing developments of mathematical and numerical machinery
for understanding multiscale physical systems, the fields of complex fluids and
biological systems are ripe for fruitful cross-pollination. There have already been
many successful scientific advances along these lines, as will be made clear in the
chapters that follow. The aim of this book is to introduce the reader to many of the
exciting directions that this research is taking and to provide a valuable reference
on fundamental phenomena, models, and analysis of complex fluids in a variety of
biological systems.

The book is organized into four parts. In Part I, Newtonian and complex fluids
are introduced, along with the terminology and models that will appear frequently
throughout the book. The first chapter provides the mathematical framework of
continuum mechanics and presents common constitutive laws used to describe fluids
with such properties as shear-dependent viscosity and viscoelasticity. Classical
rheological flows frequently used in experiments are introduced. The second chapter
lays the foundations for the topics to be covered in the book and explores critical
functional roles played by complex fluids in a familiar biological system, the human
body. Using mucus as an illustrative example, a multidisciplinary approach to
studying and modeling soft, complex biological matter is emphasized.

In Part II, the measurement of biological material properties, or rheology, takes
center stage. The first chapter is devoted to microrheology, wherein the behavior
of small immersed particles is used to infer material properties of the surrounding
environment. Both passive microrheology and active microrheology are discussed,
beginning with the famed Stokes-Einstein relation and marching through a history
of the field towards a “nonequilibrium equation of state.” The following two
chapters return to specific biological structures, namely the cell membrane and cell
cytoskeleton. Microrheology is revisited as a means of studying the viscoelastic
properties of molecularly thin shells, and the intricate biopolymer network internal
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to individual cells is introduced. A final chapter in this section explores a variety of
challenges faced by experimentalists in the study of complex biological fluids and
shows how a misinterpretation of data can suggest complex fluid properties when
there are none and vice versa.

Part III focuses on the locomotion of microorganisms through complex biological
fluids, as described from experimental, analytical, and numerical perspectives. The
first chapter reviews the recent experimental studies of biolocomotion in viscous and
viscoelastic fluids and then turns to intriguing experimental results on the propulsion
of a model organism, the roundworm C. elegans. This sets the stage for the following
chapter, which covers a detailed mathematical theory of locomotion in complex
fluids, and connections between microrheology and biolocomotion are described.
The interaction of swimming organisms in complex fluids is also discussed, which
leads naturally into the final chapter of the part. In the last chapter, the focus turns to
a model of large collections of such swimming organisms, or an active suspension,
which can exhibit large-scale correlated motions, pattern formation, and complex
fluid properties including normal stress differences. The model is extended to the
study of other systems, including the interaction of microtubules and translocating
motor proteins as found in individual cells.

Finally, Part IV covers methods for computing fluid flows with intricate
immersed boundaries. Common numerical approaches are made considerably more
challenging when the fluid is highly elastic. The first chapter describes many of
these challenges, including the catastrophic high-Weissenberg number problem, and
offers solutions. The immersed boundary method is introduced, and the locomotion
of C. elegans in viscoelastic fluids is revisited as a test problem from a numerical
perspective. The final chapter of the book presents a cell-level numerical study of
blood flow, where the shapes and dynamics of individual cells and their interactions
are captured in a boundary integral formulation of the problem. The numerical
method is used to understand physical effects well known to physiologists such as
the Fåhræus effect, Fåhræus-Lindqvist effect, and the margination of leukocytes
and platelets.

The chapters contained herein will provide the reader with an overview as well as
a detailed inspection of the challenges and opportunities that await us in the coming
decades of research in complex biological flows, and the observations, methods,
and tools available for their study. Active areas of exploration are presented by
many of the world’s foremost experts in their respective fields. Consequently, each
chapter both provides a substantial review of the literature and delivers the very
cutting edge of our current knowledge. The book was developed with advanced
undergraduate and early graduate students in the engineering, biological, and
mathematical sciences in mind, but it will appeal to anyone interested in the intricate
and beautiful nature of complex fluids in the context of living systems.

Numerous acknowledgements are in order. It has been a great pleasure to work
with the many authors of this book, who continue to forge new paths in their
respective fields and to inspire with their creativity and remarkably hard work. It
is immensely gratifying to toil as a member of an extended scientific family that
knows no geographical borders. I am particularly indebted to Harvey Segur, Michael
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Shelley, Eric Lauga, Thomas Powers, and Jean-Luc Thiffeault, and I would like
to thank Gwynn Elfring for dependable consultation on this project. Finally, I am
forever grateful to my wife Elena for her love and support, and to my daughter
Carina for joining the adventure.

Madison, WI, USA Saverio E. Spagnolie
July, 2014
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Chapter 1
Introduction to Complex Fluids

Alexander Morozov and Saverio E. Spagnolie

Abstract In this chapter we introduce the fundamental concepts in Newtonian and
complex fluid mechanics, beginning with the basic underlying assumptions in con-
tinuum mechanical modeling. The equations of mass and momentum conservation
are derived, and the Cauchy stress tensor makes its first of many appearances.
The Navier–Stokes equations are derived, along with their inertialess limit, the
Stokes equations. Models used to describe complex fluid phenomena such as
shear-dependent viscosity and viscoelasticity are then discussed, beginning with
generalized Newtonian fluids. The Carreau–Yasuda and power-law fluid models
receive special attention, and a mechanical instability is shown to exist for highly
shear-thinning fluids. Differential constitutive models of viscoelastic flows are
then described, beginning with the Maxwell fluid and Kelvin–Voigt solid models.
After providing the foundations for objective (frame-invariant) derivatives, the
linear models are extended to mathematically sound nonlinear models including
the upper-convected Maxwell and Oldroyd-B models and others. A derivation of
the upper-convected Maxwell model from the kinetic theory perspective is also
provided. Finally, normal stress differences are discussed, and the reader is warned
about common pitfalls in the mathematical modeling of complex fluids.

1 Introduction

The complexity of biological systems is extraordinary and, from a mathematical
modeling point of view, daunting. Even the continuum approximations that give rise
to the classical equations of fluid and solid mechanics do not survive the intricacy
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4 A. Morozov and S.E. Spagnolie

of biological matter, and the systems of equations describing the relevant flows,
deformations, and stresses are coupled and nonlinear. This book will be concerned
with the dynamics of these complex fluid flows in relation to a number of important
biological systems. Many of the biological fluids to be discussed are far from
homogeneous. Highly heterogeneous biological materials include mucus, which
forms a three-dimensional network with a potentially fractal length-scale distribu-
tion, and the cytoskeleton, which is an active structure that undergoes continuous
remodeling in response to external and internal stimulation. Nevertheless, with the
introduction of a more involved microstructure, such as the inclusion of long chain
molecules (e.g., DNA, proteins, microtubules, etc.), continuum assumptions are
commonly made to make mathematical modeling and analysis possible. Continuum
modeling is even possible when each fundamental parcel includes numerous active
particles such as swimming microorganisms, which allows for the derivation of
partial differential equations describing active suspensions. As will be seen in
the chapters to come, the continuum approach has already been an enormously
successful method for modeling and understanding real biological systems.

In this first chapter we will lay out the mathematical framework of continuum
mechanics and present common constitutive laws used to describe fluids with
such properties as shear-dependent viscosity and viscoelasticity. The chapter is
organized as follows. We begin with an introduction to the classical equations of
Newtonian fluid mechanics in Sect. 2, covering material and spatial descriptions
of variables, the mathematization of physical conservation laws, stress, the Navier–
Stokes equations, and dimensional analysis. In Sect. 3 we take a first step away from
the classical Newtonian constitutive law into elementary models of complex fluids
where the viscosity depends on the local flow rate, so-called generalized Newtonian
fluids, which include the power-law and Carreau–Yasuda models. More advanced
differential constitutive models are the topic of Sect. 4, beginning with the linearly
viscoelastic Maxwell fluid and Kelvin–Voigt solid models. After a discussion about
objectivity (frame-invariance), the upper-convected Maxwell (UCM), Oldroyd-B,
and many other models of nonlinear viscoelastic flow are introduced. A derivation
of the UCM model from the perspective of kinetic theory is also provided. In Sect. 5,
the material properties of viscoelastic fluids are discussed, and in particular we
introduce normal stress differences and describe some of the classical rheological
flows that are used to measure the various complex responses to deformation in
real fluids. We conclude with a few words of caution about common but ill-advised
choices made in the mathematical modeling of complex fluids in Sect. 6, and closing
remarks in Sect. 7.

2 Newtonian Fluid Mechanics

The problems to be described in the chapters to come are extraordinarily involved
when viewed at the molecular level. The basic mathematical idealization of a
homogeneous liquid such as pure water assumes that the fundamental elements
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describing the material are parcels only somewhat larger than the molecular mean
free path. Quantities such as density and pressure in the fluid are assumed to be
constant throughout each such volume, but the parcel size is small enough so that
the variations in such variables in neighboring parcels are effectively continuous.
Partial differential equations modeling the response of a solid or fluid (or a material
with both solid-like and fluid-like responses to deformations) are made possible by
this continuum approximation.

The analysis of classical fluid flows has been one of the great successes of applied
mathematics since the time of the Bernoullis, and there are countless excellent
presentations of the subject. The reader is referred to the comprehensive texts by
Batchelor [1], Landau and Lifshitz [2], Leal [3], and Pozrikidis [4] and the more
concise introductions by Acheson [5] and Childress [6]. Here we introduce the
basic concepts of mathematical fluid mechanics which, upon the application of mass
and momentum conservation laws and specification of a particular constitutive law,
result in the Navier–Stokes equations of classical Newtonian flow.

2.1 Material (Lagrangian) and Spatial (Eulerian) Variables

We begin by introducing two important descriptions of independent variables such
as density, velocity, and pressure. The first is the material description, also known
as the Lagrangian description, in which parcels of fluid (or other material) are
associated with a “label” a, commonly chosen to be the initial position of the
parcel in space. The pressure, for instance, measured at a parcel of material as it
moves through space may be written at time t as P(a, t). The second is the spatial
description, also known as the Eulerian description, in which the same variables are
described in terms of a fixed position x in space, e.g., P(a, t) = p(x(a, t), t).

The relationship between the two descriptions is a map χ of each label a in the
reference configuration to its current position, x = χ(a, t), as illustrated in Fig. 1.1.

χ x(a,t)a

Ω(0) Ω(t)

Fig. 1.1 The reference (Lagrangian) configuration is deformed to the current (Eulerian) con-
figuration at a time t . The material “label” a maps to a new spatial position x = χ(a, t), where
χ(a,0) = a
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A control volume in the reference domain Ω(0) maps to a volume in the current
configuration,Ω(t). Defining the velocity of material at a point x in space as u(x, t),
then the velocity of a material point labeled by a is given by

dx
dt

∣
∣
∣
a
=

d
dt
χ(a, t) = u(x(a, t), t), (1.1)

where x(a,0) = a. Similarly, the time rate of change of a scalar variable F in the
material description is given simply as ∂tF(a, t). However, if F is described instead
in terms of the spatial variables, F(a, t) = f (x(a, t), t), then the derivative must
correct for the change of frame, and instead (using the chain rule) we find

d
dt

f (x(a, t), t)
∣
∣
∣
a
=
∂ f
∂ t

+
∂ f
∂xi

∂xi

∂ t
= (∂t +u ·∇) f =

D f
Dt

. (1.2)

We have used the Einstein summation notation where a summation is implied over
the repeated index i. The operator D/Dt = ∂t +u ·∇ is the material derivative, which
is a time derivative that follows the material as it deforms. The acceleration of a fluid
particle, written in terms of the spatial representation of the velocity field u(x, t), is
then given by

Du
Dt

=
∂u
∂ t

+u ·∇u. (1.3)

Finally, an important measure of the fluid deformation is the Jacobian matrix of
the map x = χ(a, t), also known as the deformation gradient tensor, given by F =
∂x/∂a (where Fi j = ∂xi/∂a j), and F(x,0) = I, the identity operator. For instance,
a line element da from one material point to another in the reference configuration
transforms to a new line element dx in the current configuration as dx = F ·da. As
we proceed to consider conservation laws of mass and momentum we will require
the time derivative of the determinant of the deformation gradient tensor J = det F,
which is given by

dJ
dt

= (∇ ·u)J, (1.4)

(see [6]). A volume-preserving or incompressible material is one for which J(x, t) =
1 and hence ∇ ·u = 0 for all x and t. All of the fluids considered in this book are
treated as incompressible.

2.2 Conservation of Mass

The density of a fluid, ρ(x, t), is defined as the mass per volume in an infinites-
imal fluid parcel centered at x. Consider a material volume Ω(t) in the current
configuration. As the material volume moves and deforms under the flow, the mass
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of fluid in Ω(t) is determined by integrating the density throughout the volume,
M(t) =

∫
Ω(t) ρ(x, t)dV . Absent the creation or destruction of mass, we will then

have that the mass in the material volume at any time is equal to its initial value,
M(t) = M(0) or dM/dt = 0. Mass conservation may then be written in the Eulerian
form as

d
dt

∫

Ω(t)
ρ(x, t)dVx = 0, (1.5)

with dVx = dx1 dx2 dx3. A differential form of mass conservation is achieved by first
representing the density in the material coordinates,

0 =
d
dt

∫

Ω(t)
ρ(x, t)dVx =

d
dt

∫

Ω(0)
ρ(x(a, t), t)J dVa

=
∫

Ω(0)

(
Dρ
Dt

(x(a, t), t)+ρ(x(a, t), t)(∇ ·u)
)

J dVa

=

∫

Ω(t)

(
Dρ
Dt

(x, t)+ρ(x, t)(∇ ·u)
)

dVx. (1.6)

This relation is a special case of the Reynolds transport theorem, or convection
theorem, as applied to the scalar function ρ(x, t). Since the above holds for all
material volumes, we arrive at a differential form of mass conservation:

Dρ
Dt

+ρ(∇ ·u) = 0. (1.7)

In the event that the fluid is incompressible, ∇ ·u = 0, so that Dρ/Dt = 0. In other
words, in an incompressible flow, the density associated with any material point
remains constant as it moves with the fluid.

2.3 Conservation of Momentum

While the mass in a control volume is given by the integrated fluid density, the
fluid momentum contained in a volume Ω(t) may be written in terms of Eulerian
variables as p(t) =

∫
Ω(t) ρ(x, t)u(x, t)dVx. In a similar calculation as in the previous

section and using Eq. (1.7), we have the following identity:

d
dt

p(t) =
d
dt

∫

Ω(t)
(ρu)(x, t)dVx =

d
dt

∫

Ω(0)
(ρu)(x(a, t), t)J dVa

=

∫

Ω(0)

(
Dρ
Dt

u+ρ
Du
Dt

+ρu(∇ ·u)
)

J dVa
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=

∫

Ω(0)
ρ

Du
Dt

J dVa =

∫

Ω(t)
ρ

Du
Dt

(x, t)dVx. (1.8)

According to Newton’s second law, the rate of change of the momentum in the
material volume Ω(t) must balance with any forces acting on the contained fluid.
The forces on the fluid come in two varieties: external body forces such as gravity,
which we denote as a force per unit volume by f, and surface forces such as viscous
or elastic stresses, which we denote as a force per unit area by t, the traction.
The surface of the fluid volume is described locally by the outward-pointing unit
normal vector, denoted by n, and the surface traction may be represented generally
as t = n ·� , where � is the Cauchy stress tensor (see Sect. 2.4). The standard proof
of this representation is achieved by applying Newton’s second law to a tetrahedron
of shrinking volume (see [3]). Balancing the forces, another application of Newton’s
second law, now to an arbitrary material volume, provides the following integral
form of momentum conservation,

d
dt

p(t) =
∫

Ω(t)
ρ

Du
Dt

dVx =

∫

Ω(t)
fdVx +

∫

∂Ω(t)
tdSx, (1.9)

where ∂Ω(t) is the boundary of Ω(t) and dSx is an infinitesimal surface area
element. The last integral can be converted to a volume integral using the divergence
theorem, so that

∫

Ω(t)
ρ

Du
Dt

dVx =

∫

Ω(t)
fdVx +

∫

Ω(t)
∇ ·� dVx. (1.10)

Since the above holds for all material volumes, we arrive at the general differential
form of momentum conservation:

ρ
Du
Dt

= f+∇ ·� . (1.11)

2.4 The Cauchy Stress Tensor and the Navier–Stokes
Equations

The wide array of mathematical models for vastly different types of materials and
fluids reduce to a specification of the Cauchy stress tensor, � . In a classical elastic
solid the stress tensor depends locally on the material deformation; in a classical
viscous fluid the stress tensor depends locally on the rate of material deformation.
Generally, however, and particularly for the complex fluids to be described in this
book, � may even evolve in a nonlinear and history-dependent way through a partial
differential equation of its own.

The components of the stress tensor may be interpreted by considering a cubic
volume as illustrated in Fig. 1.2. Since the traction (the force per unit area) on a
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σ31
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σ32
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t = e1 · σ

Fig. 1.2 The stress tensor � contains all of the information about the surface tractions, save for
the surface geometry. The traction (force per unit area) on the rightmost face of the cube, which is
characterized by the outward pointing normal vector e1, is given by t = e1 ·� = σ11e1 +σ12e2 +
σ13e3

surface is represented generally as t = n · � , where n is the unit normal vector
pointing out of the control volume, σi j represents the traction in the jth direction on
a surface which is perpendicular to the ith direction. The traction on the rightmost
boundary in Fig. 1.2, for instance, is given by t = e1 ·� = σ11e1 +σ12e2 +σ13e3.

The net force F and the torque L about a point x0 acting on an immersed body
with boundary denoted by ∂S are given by integrating the traction over the surface:

F =
∫

∂S
n ·� dS, L =

∫

∂S
(x− x0)× (n ·� ) dS. (1.12)

In every case considered in this book, there are no body torques that may give
rise to internal angular momentum. The consequence is a broad statement about
the stress tensor; namely, for all materials studied in this book, the stress tensor is
symmetric

� = � T . (1.13)

This result is recovered by evaluating the torque on a small control volume
and imposing the conservation of angular momentum (see [3]). One important
consequence of this fact is that the complete specification of the stress tensor in
three dimensions requires the identification of only six components instead of nine.

The discussion thus far has made no assumptions about the specific fluid or
material, and the relations above apply to any continuum model. Where the nature
of the particular fluid of interest enters into the modeling is in the statement of
a constitutive law, or a specification of the fluid response to deformation. This is
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achieved by establishing an equation for the evolution of the stress tensor � , which
is commonly written as

� =−pI+�, (1.14)

where p is the pressure, I is the identity operator, and � is the deviatoric stress tensor
which contains viscous and other stresses. The pressure may be of thermodynamic
origin, but often is defined to represent the isotropic part of the stress tensor so
as to render � traceless (though that is not done in much of this chapter). Many
constitutive laws, including that which results in a Newtonian fluid model and the
Navier–Stokes equations, relate the deviatoric stress to the local strain rate, which
we now describe.

Consider the velocity field written in the spatial coordinates, u(x, t). Taking the
convention that (∇u)i j = ∂u j/∂xi, the first terms in a Taylor expansion of the
velocity field about a point x in space are given by

u(x+ dx, t) = u(x, t)+ dx ·∇u(x, t)+O
(|dx|2) . (1.15)

The gradient of the velocity field is usefully decomposed into its symmetric and
antisymmetric parts, ∇u = (�̇ +!)/2, where

�̇ =
(
∇u+(∇u)T ) , ! =

(
∇u− (∇u)T ) . (1.16)

�̇ is the (symmetric) rate-of-strain tensor, and ! is the (antisymmetric) vorticity
tensor. Consider a line element dx extending from a point x that evolves in a
linear flow field. Then d(dx)/dt = u(x + dx, t)− u(x, t) = dx · (�̇ +!)/2. Let
us consider the response of the line element to the velocity gradient through the
roles of the symmetric and antisymmetric parts separately. First, the action of �̇

is best appreciated through its spectral decomposition. Since �̇ is symmetric its
eigenvectors are orthogonal, which we write as di for i = 1,2,3 (the principle
axes of �̇), and the eigenvalues 2λi associated with the principal axes are twice
the principal rates-of-strain. Then we may represent the symmetric tensor �̇ as
∑i(2λi)didi, where didi is a dyadic product, so if the flow gradient has only a
symmetric part then

d
dt

dx =
1
2

dx · �̇ =∑
i
λi(dx ·di)di. (1.17)

A spherical control volume is thus instantaneously deformed by �̇ to an ellipsoid
along the principal axes of �̇ with axis lengths indicated by the principal rates-of-
strain. Meanwhile, the response of the line element dx to the antisymmetric part of
the flow, !, is a rigid body rotation,

d
dt

dx =
1
2

dx ·! =
1
2
(∇×u)× dx, (1.18)
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u = γ21e2e1 γ/2 = γ21 (e2e1 + e1e2)/2 ω/2 = γ21 (e2e1 − e1e2)/2˙ ˙˙ ˙

Fig. 1.3 A linear shear flow is decomposed into its extensional (symmetric) and rotational
(antisymmetric) components, ∇u = (�̇ +!)/2

where ∇× u is the vorticity. An example of the decomposition of ∇u into its
symmetric and antisymmetric parts is shown in Fig. 1.3. A linear shear flow
u(x, t) = x · (γ̇21e2e1) = (γ̇21y,0,0), where γ̇21 is a constant shear rate, contains both
extensional (symmetric) and rotational (antisymmetric) features.

A classical (Newtonian) viscous fluid is defined to be that in which the deviatoric
stress is linear in the rate of strain and the fluid is isotropic (there is no preferred
direction in the fluid response to deformation). Given that the stress is symmetric,
the most general form of the deviatoric stress tensor that satisfies these constraints
reduces to a linear combination of �̇ and (∇ ·u)I. Decomposing this general form
into a traceless part and an isotropic part, the resulting constitutive relation is
given by

� = μ
(

�̇ − 2
3
(∇ ·u)I

)
+ μ ′(∇ ·u)I. (1.19)

The coefficient of the traceless part of �, or μ , is the fluid viscosity, while μ ′ is
the dilational viscosity. In the event that the fluid is incompressible (∇ ·u = 0) then
Eq. (1.19) reduces to � = μ�̇ and the total stress tensor has the simple form

� =−pI+ μ�̇. (1.20)

Let us now revisit the momentum balance equation. Inserting the stress above into
Eq. (1.11), we obtain the equations

ρ
Du
Dt

=−∇p+ μ∇2u+ f, (1.21)

∇ ·u = 0. (1.22)

Equations (1.21) and (1.22) are known as the incompressible Navier–Stokes
equations.
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2.5 Dimensional Analysis and the Stokes Equations

An important practice in the development of theory is to nondimensionalize the
equations of motion, which reduces (often dramatically) the number of parameters
that characterize the dynamics. Consider a flow with a characteristic time scale T ,
velocity scale U , and length scale L. For instance, U might be a swimming speed or
a background flow speed, and L might be the approximate length of an immersed
body or the gap width in a channel. Defining the dimensionless variables,

x∗ = x/L, u∗ = u/U, t∗ = t/T, p∗ = Lp/(μU), f∗ = L2f/(μU),
(1.23)

and inserting them into Eqs. (1.21) and (1.22), the dimensionless incompressible
Navier–Stokes equations are obtained:

Re

(
St
∂u∗

∂ t∗
+u∗ ·∇u∗

)
=−∇p∗+∇2u∗+ f∗, ∇ ·u∗ = 0. (1.24)

Here we have introduced the dimensionless Reynolds and Strouhal numbers,

Re =
ρUL
μ

, St =
L

UT
, (1.25)

which characterize the flow. If the characteristic time scale is chosen to be the time
for a velocity perturbation to be transported convectively by the flow, T = L/U , then
St = 1. The Reynolds number indicates the relative importance of inertial effects to
viscous dissipation in (1.24), and also gives the ratio between the time scale for a
velocity perturbation to diffuse away due to viscosity, ρL2/μ , and the convective
time scale L/U .

The topics of interest in this book will focus on complex fluid flows at
exceedingly small Reynolds numbers. For instance, in the fluid flow generated by
the swimming of microorganisms, the relevant Reynolds number is on the order
of 10−4–10−2. A common simplifying assumption is then to consider the idealized
zero Reynolds number flow, resulting in the Stokes equations:

−∇p+ μ∇2u+ f = 0, ∇ ·u = 0. (1.26)

The linearity of the Stokes equations makes many methods of solution possible; in
particular, Green’s functions (fundamental singular solutions) may be derived and
used to write representation formulae for the flow in terms of integrals over the
fluid boundaries, and the Lorentz reciprocal theorem (see Chap. 8) may be used in
many settings with tremendous effect. The reader is referred to [7] for a thorough
discussion on the fundamental solutions and boundary-integral representations of
Stokes flow and also to Chap. 11 where this approach is used in the study of blood
flow.
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In certain settings a more appropriate choice of characteristic time scale is related
to the frequency of oscillation, ω , as may be relevant in rotational rheometers,
or a frequency of undulation, as in flagellar locomotion. Taking T = ω−1, the
Strouhal number is St = Lω/U . Even for very small Reynolds numbers, Re �
1, a sufficiently large frequency may result in ReSt = O(1), specifically, when
ρL2ω/μ = O(1). This ratio is commonly referred to as the frequency Reynolds
number. In this setting, the time scale for viscous diffusion of a velocity perturbation,
ρL2/μ , is commensurate with the time scale of oscillation. The resulting idealized
equations are the unsteady Stokes equations, where the momentum balance equation
in (1.26) is replaced by ρ ut =−∇p+ μ∇2u+ f.

3 Generalized Newtonian Fluids

In the previous section we introduced the classical Newtonian constitutive model,
Eq. (1.20), which is a linear relationship between the stress and velocity gradient
in the fluid. This linear relationship can be viewed as the first term in a Taylor
expansion of the true constitutive equation for the material in terms of small velocity
gradients. The Newtonian approximation has been shown to work remarkably well
for fluids consisting of small molecules, like water, liquid argon, etc., even at
flow rates corresponding to fast and turbulent flows. Its success can be attributed
to the separation of length and time scales in the flows of such fluids; realistic
flows of Newtonian fluids do not alter the dynamics of individual constituents
(atoms, molecules, etc.). In other words, typical intermolecular distances or velocity
distributions of individual constituents even in very turbulent flows are the same as at
rest, and, hence, the energy dissipation mechanism in the fluid, which is represented
by viscosity in the Newtonian constitutive law, is not affected by the flow.

Only when the applied flows are capable of altering the local microstructure of
the fluid might the classical Newtonian approximation fail to provide an adequate
mathematical model of the dynamics. In Newtonian fluids this corresponds to
velocity fields varying either across fluid parcels of order 10–100 particles or on
time scales comparable to typical stress relaxation times. In simple fluids like liquid
argon, the stress relaxation time scale is related to the typical time of molecular self-
diffusion and is on the order of 10−13–10−12 s [8]. Accessing either of these regimes
requires very large velocity gradients that are very rarely achieved in natural or even
experimental environments.

The situation is very different for solutions of colloidal particles, long flexible
polymers, wormlike micelles, and similar complex fluids [9]. These particles are
significantly larger than individual molecules of typical Newtonian fluids discussed
above, and the time scales of stress relaxation in complex fluids are significantly
longer than in their Newtonian counterparts and can easily be achieved in real-life
situations. For example, in colloidal suspensions, while in dilute polymer solutions
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the stress relaxation time is proportional to the time required for a single polymer
to regain its equilibrium configuration after being stretched, the Maxwell relaxation
time, and is typically of order 10−3–100 s [9]. Although there are often multiple
mechanisms of stress relaxation in complex fluids, one can use the longest relaxation
time λ to form a dimensionless group Wi = λ γ̇—the Weissenberg number. Here,
the shear rate γ̇ =

√
(�̇ : �̇)/2 is an invariant measure of the rate of strain in the fluid

(see Sect. 3.1). For small velocity gradients, Wi � 1, complex fluids obey the linear
constitutive law, Eq. (1.20), and flow like Newtonian fluids at the same Reynolds
number. When the Weissenberg number is comparable to or larger than unity,
complex fluids exhibit non-Newtonian behavior and obey complicated constitutive
models, often involving nonlinear dependence of the local stress on the velocity
gradient and the deformation history of the fluid. In this section we focus on the
simplest extension of Eq. (1.20) in which the flow only influences the instantaneous
viscosity of the fluid, the so-called generalized Newtonian model. A general theory
dealing with history-dependent properties of viscoelastic fluids will be discussed in
the following sections.

3.1 Shear-Thinning and Shear-Thickening Fluids

A generalized Newtonian fluid is a phenomenological model that assumes that the
applied flow only changes the dissipation rate in the fluid (i.e., its viscosity), but does
not change the tensorial structure of the Newtonian constitutive model Eq. (1.20).
The constitutive laws for this class of models can be written in the following general
form:

� =−pI+η(�̇)�̇, (1.27)

where η(�̇) is the viscosity, made distinct from the Newtonian viscosity μ due to its
possible dependence upon the fluid flow. First note that the local viscosity η can only
depend on the invariants of the tensor �̇ , otherwise a similarity transform (a change
of coordinate system) could change the value of the viscosity, which is unphysical.
Also, it would be natural to require in the linear shear flow with a constant shear
rate γ̇21 considered in the previous section, u(x, t) = (γ̇21y,0,0), that the viscosity
should simply be a function of the scalar γ̇21. The second tensorial invariant of �̇ is
the lowest invariant that satisfies this condition, and we may write

η(�̇) = η(γ̇), (1.28)

where

γ̇2 =
1
2

�̇ : �̇ =
1
2
(∇u+∇uT )i j(∇u+∇uT ) ji, (1.29)



1 Introduction to Complex Fluids 15

summing over both repeated indices. The material properties of a generalized
Newtonian fluid are determined entirely by the behavior of the function η(γ̇). The
simplest possibility, a monotonic function, results in:

• ∂η/∂ γ̇ > 0, a shear-thickening fluid, or
• ∂η/∂ γ̇ < 0, a shear-thinning fluid.

Shear-thickening fluids, as the name suggests, exhibit an increasing resistance to
shear as the shear rate increases, while shear-thinning fluids exhibit the opposite
behavior; “Oobleck” (cornstarch and water) and pastes are typical examples of
the former type of fluids, while solution and melts of long flexible polymers and
semidilute solutions of wormlike micelles are examples of the latter. Real materials
can exhibit complicated combinations of the two, e.g., shear-thinning at low shear
rates followed by shear-thickening at higher shear rates [10]. While these trends
can easily be incorporated into a model for η(γ̇), the generalized constitutive law,
Eq. (1.27), is a strictly phenomenological model that mimics all the changes in the
internal structure of the fluid due to the applied flow by a shear-dependent effective
viscosity. The presence of shear-thinning and shear-thickening in the same material
typically implies several competing mechanisms of stress creation and relaxation,
and a naive model like Eq. (1.27) would most certainly fail in properly describing
even simple flows of such fluids. Therefore, generalized Newtonian models should
only be used in flows of complex fluids where there is a good reason to believe that
the dynamics of principle concern are caused by the shear-induced changes in the
viscosity of the fluid and only in the simplest of flows.

3.2 Carreau–Yasuda and Power-Law Fluids

One of the most popular models for shear-thinning fluids is the Carreau–Yasuda
viscosity model:

η(γ̇) = η∞+(η0 −η∞)
[
1+

(
λ γ̇

)a] n−1
a

(Carreau–Yasuda) (1.30)

that interpolates between the zero-shear-rate viscosity η0 and the infinite-shear rate
viscosity η∞. A relaxation time λ sets the crossover shear rate: for γ̇ < λ−1, the
Carreau–Yasuda fluid exhibits, essentially, a Newtonian behavior with the viscosity
η0, while for higher shear rates its viscosity drops to η∞ < η0. The Carreau–
Yasuda model contains two constants: the power-law index n < 1 that characterizes
the degree of shear-thinning of the model and the constant a that sets the size
and curvature of the crossover region between the Newtonian and shear-thinning
behavior. A typical viscosity of the Carreau–Yasuda model is shown in Fig. 1.4.

For high shear rates, λ γ̇ � 1, the Carreau–Yasuda model can be simplified
significantly to
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Fig. 1.4 Viscosity of the Carreau–Yasuda model for various values of the power index n with
η∞/η0 = 10−3 and a = 2

η(γ̇)≈ η∞+(η0 −η∞)
(
λ γ̇

)n−1
. (1.31)

The second term in this expression corresponds to the power-law model, which is
closely related to the Carreau–Yasuda model, Eq. (1.30). To reduce the number of
parameters, it is customary to write this term as Kγ̇n−1, although the parameter K
in this expression has the strange dimensions of Pa·sn. Since the constitutive law
corresponding to Eq. (1.31) is a sum of two contributions, a Newtonian term with
the viscosity η∞ and a power-law term, one can study the latter separately. Also, the
relative magnitude of the Newtonian term in Eq. (1.31) is typically much smaller
than the power-law contribution and can safely be neglected. This is the case, for
example, in dilute polymer solutions where the Newtonian contribution in Eq. (1.31)
corresponds to the viscosity of the solvent η∞, while at moderate shear rates, the
viscosity of the solution, η∞ + (η0 −η∞) (λ γ̇)n−1, is typically several orders of
magnitude larger.

In order to illustrate the typical features of flows of shear-thinning materials,
we now consider flow in a pipe of a power-law fluid. We choose the cylindrical
coordinate system with the z-direction along the axis of the pipe of radius R. The
flow is assumed to be laminar, unidirectional, and axisymmetric, u = (0,0,U(r)),
and the second tensorial invariant of �̇ reduces to γ̇ = |U ′(r)|, where the prime
denotes the r-derivative. Combining the momentum balance equation (1.11), the
generalized Newtonian constitutive law, Eq. (1.27), and the power-law model for
the viscosity, η(γ̇) = Kγ̇n−1, we obtain the following equation of motion:

−∂z p+
1
r
∂r (rσrz) = 0, (1.32)
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where the shear stress σrz is given by

σrz = KU ′(r)
∣
∣U ′(r)

∣
∣n−1

. (1.33)

The flow is driven by the applied constant pressure gradient −∂z p = ΔP/L =
(Pinlet −Poutlet)/L, where L is the pipe length. Integrating Eq. (1.32) and requiring
that the shear stress remains finite on the centerline r = 0, we obtain the following
distribution of the shear stress in the cross section of the pipe

σrz(r) =−σw
r
R
, (1.34)

where

σw =
1
2
ΔP
L

R (1.35)

is the value of the shear stress at the wall. At the wall, we expect the fluid to satisfy
the no-slip boundary condition, U(R) = 0, and therefore U ′(r) should be negative
resulting in the following equation for the velocity:

K
∣
∣U ′(r)

∣
∣n = σw

r
R
. (1.36)

Integrating this equation with the no-slip boundary condition, we obtain

U(r) =
(σw

K

) 1
n nR

n+ 1

[
1−

( r
R

) n+1
n
]
. (1.37)

For the Newtonian case, n = 1, we have K = μ , the Newtonian viscosity, and
Eq. (1.37) reduces to the usual parabolic Hagen–Poiseuille profile:

U(r) =
ΔPR2

4Lμ

[
1−

( r
R

)2
]
. (1.38)

To demonstrate the effect of shear-thinning on the spatial profile in the pipe, we
normalize Eq. (1.37) with the mean velocity in the pipe

U =
1
πR2

∫ 2π

0
dθ

∫ R

0
U(r)r dr =

(σw

K

) 1
n nR

3n+ 1
, (1.39)

to obtain

U(r)

U
=

3n+ 1
n+ 1

[
1−

( r
R

) n+1
n
]
. (1.40)
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Fig. 1.5 The normalized velocity profile of a pressure-driven pipe flow, from Eq. (1.40), for
various values of the power-law index n. As the fluid becomes more shear-thinning (decreasing
n), the high-shear region of the flow moves progressively towards the wall and the region near the
center of the pipe becomes more plug-like

The normalized velocity profile, Eq. (1.40), is shown in Fig. 1.5 for various values
of the power-law index n. As the fluid becomes more shear-thinning (decreasing n),
the high-shear region of the flow moves progressively towards the wall and the
region near the center of the pipe becomes more plug-like. This is typical of all
shear flows of shear-thinning fluids: they split into regions with high shear rates
near boundaries where the local viscosity of the fluid is low and parts that move
almost like solid bodies. As Eq. (1.40) suggests, in the pipe flow the tendency for
shear to localize next to a boundary increases as n decreases until n reaches zero,
at which point Eq. (1.40) becomes unphysical. This is a signal of a more general
mechanical instability present in shear flows of extremely shear-thinning fluids, to
which we now turn.

3.3 Mechanical Instability of Extremely
Shear-Thinning Fluids

To demonstrate the origin of the mechanical instability mentioned above, we
consider a plane Couette flow (linear shear flow) of a shear-thinning fluid. The fluid
is confined between two parallel plates located at y = 0 and y = h in a 2-dimensional
Cartesian coordinate system x = (x,y). The base flow is given by u(x) = (γ̇0 y,0) =
(u(y),0), and the equations of motion and the constitutive equation are given by
Eqs. (1.11) and (1.27). The upper wall moves with the velocity γ̇0 h in its plane while
the lower wall is kept stationary.
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Consider an infinitesimal perturbation to the base profile of the following form:

u(x, t) = (γ̇0 y,0)+ (δu(y, t),0) . (1.41)

This perturbation deforms the original profile but does not change the unidirectional
nature of the flow. An equation of motion for the perturbation reduces to

ρ
∂
∂ t
δu(y, t) =

∂
∂y

{(
γ̇0 +

∂
∂y
δu(y, t)

)
η
(
γ̇0 +

∂
∂y
δu(y, t)

)}
. (1.42)

Assuming the perturbation to be small relative to the background shear flow, a
linearization of this equation returns:

ρ
∂
∂ t
δu(y, t) =

(
η(γ̇0)+ γ̇0

∂η
∂ γ̇

(γ̇0)

)
∂ 2

∂y2 δu(y, t). (1.43)

The no-slip boundary conditions are already satisfied by the base profile, so that the
perturbation must have δu(0, t)= δu(h, t)= 0. Therefore, without loss of generality,
the perturbation can be written as

δu(y, t) =
∞

∑
m=1

δum eαmt sin
mπ y

h
. (1.44)

Here the δum are unknown coefficients of the expansion and αm is an eigenvalue
associated with the Fourier mode m. If the real part of αm is positive, the
corresponding Fourier mode will grow exponentially in time, indicating a loss of
stability of the base flow. Substituting this expansion into the equation of motion we
obtain

αm =−
(mπ

h

)2
(
η(γ̇0)+ γ̇0

∂η
∂ γ̇

(γ̇0)

)
. (1.45)

For a power-law fluid, η(γ̇) = Kγ̇n−1, the term in parentheses reduces to nKγ̇n−1
0 ,

and hence αm is positive for n < 0. In other words, steady shear flows of shear-
thinning fluids with a power-law steeper than −1 are unstable and cannot be
realized. More generally, Eq. (1.45) implies that any shear flow is unstable if its
shear stress σ12 decreases with γ̇ , i.e.,

∂σ12

∂ γ̇
< 0. (1.46)

Generally, in dilute polymer solutions this condition is never satisfied and steady
shear flows are possible for these fluids. However, linear shear flows of semidilute
wormlike micellar solutions have been demonstrated to split into piecewise linear
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shear flow with regions of different shear rates. This phenomenon of shear-banding
is well studied and is usually attributed to the region of the flow where Eq. (1.46) is
satisfied. Comprehensive reviews of shear-banding can be found elsewhere [11,12].

4 Differential Constitutive Equations for Viscoelastic Fluids

In the previous section we introduced the generalized Newtonian fluid model, a
simple extension of the linear relation between the stress and velocity gradient in the
classical Newtonian constitutive law. While exhibiting shear-dependent viscosity
these fluids are essentially Newtonian in the following aspects: the structure of the
stress tensor of generalized Newtonian fluids in a particular flow is the same as
in their Newtonian counterparts, and their velocity fields adjust instantaneously to
changes in stresses. Many complex fluids behave quite differently. One of the key
features of viscoelastic fluids is the presence of memory; stresses in such fluids
depend on the flow history. Another is stress anisotropy. Generally, a viscoelastic
fluid generates stresses that are absent in a Newtonian fluid subjected to the same
deformation history.

The consequences of these features are dramatic: viscoelastic fluids do not
flow like their Newtonian counterparts. In this section, we develop a mathematical
framework that will allow us to incorporate memory and stress anisotropy into
constitutive equations for viscoelastic fluids. Unfortunately, there is no single model
that describes all viscoelastic fluids similar to the Navier–Stokes equations for
Newtonian flows. Instead, one usually chooses a model that is known to describe
a particular type of fluid microstructure in a particular type of flow. In this section
we introduce several popular models used for polymer solutions and discuss their
physical interpretations and the domains of their applicability.

4.1 Linear Maxwell Fluids and Kelvin–Voigt Solids

Viscoelastic fluids are materials that exhibit both viscous and elastic responses to
forces. The distinction between viscous and elastic materials is best illustrated by
their responses to a sudden deformation: stresses created in an elastic material stay
constant in time for as long as the deformation is present, while stresses in a viscous
fluid dissipate on a time scale governed by its viscosity. For example, a bow is
stressed as long as it is strung by a bowstring, while in spilled water all stresses
disappear once the fluid comes to rest. Essentially, whether a material is fluid-like
or solid-like is determined by its longtime response to a deformation.

To explore the distinction between the two types of responses, consider a simple
shear deformation where adjacent layers of a material are shifted impulsively in
the same direction along their planes relative to each other. The strength of this
deformation can be characterized by its gradient, denoted by γ , which for small
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Fig. 1.6 Graphical depiction of two types of material response: (left) a dashpot (viscous fluid) and
(right) a spring (elastic solid)

Fig. 1.7 Illustrations of the one-dimensional (left) Maxwell and (right) Kelvin–Voigt linear
viscoelastic models

displacements is approximated as the ratio of the total relative shift between two
layers to the distance between them. The shear stress σ created in an elastic solid
by such a deformation obeys Hooke’s law and can be written as

σ = Gγ, (1.47)

where G is the elastic constant of the material, or shear modulus. Meanwhile, the
constitutive equation for a Newtonian viscous fluid is a linear relationship between
the stress and velocity gradient, Eq. (1.20), and, adopted to the case of present
interest, reads

σ = η γ̇. (1.48)

Here, as before, η is the viscosity of the fluid, and the dot denotes a time derivative.
Note the distinction between γ̇ , the velocity gradient, and γ , the displacement
gradient. Due to obvious similarities, linear solids and liquids are often denoted
graphically by springs and dashpots (shock-absorbing devices based on viscous
fluids used, for example, to prevent doors from slamming); see Fig. 1.6. The simplest
viscoelastic material is a linear combination of the two types of material responses
discussed above. In direct analogy with electric circuits, one can think of either
serial or parallel connection between the basic elements from Fig. 1.6, and the two
possible combinations are shown in Fig. 1.7. Each combination should be thought
of as a fluid with both elastic and viscous properties.

The serial connection of a spring and a dashpot is a viscoelastic fluid, while
the parallel connection is a viscoelastic solid. To demonstrate this we consider both
types of viscoelastic elements subjected to a fixed displacements of their ends. In the
serial connection, both the spring and the dashpot are stretched initially. However,
the displacement of the spring can be redistributed to the dashpot, keeping the total
displacement constant, and resulting in the absence of stress in this material at long
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times, since σ ∼ γ̇ for a dashpot. On the contrary, the parallel connection remains
under stress for as long as γ 	= 0, as evident from Fig. 1.7. Historically, these models
have been called the Maxwell fluid and Kelvin–Voigt solid models, and they are
the simplest models of viscoelastic materials. Alternatively, the same models are
sometimes referred to as solid-like liquids and liquid-like solids, where the last word
of the name identifies the model’s behavior at long times.

To derive constitutive equations for the Maxwell and Kelvin–Voigt materials,
we introduce the total deformation γ and the total stress σ for each model. The
corresponding deformations and stresses of the spring and dashpot are denoted by γs

and γd , and σs and σd , correspondingly. We note here that only the total deformation
and stress are measurable quantities, while the deformations and stresses of the
springs and dashpots are auxiliary variables that are used to describe internal
mechanisms of stress creation and dissipation within each material. The present
goal is to find a constitutive relation between σ and γ for both models. Continuing
the analogy with electric circuits, we observe that γ = γs + γd and σ = σs = σd for
the Maxwell fluid, while γ = γs = γd and σ = σs +σd for the Kelvin–Voigt solid.
Using Eqs. (1.47) and (1.48), we obtain

σ +
η
G
σ̇ = η γ̇ (Maxwell fluid), (1.49)

σ = Gγ+η γ̇ (Kelvin–Voigt solid). (1.50)

While neither the Kelvin–Voigt or Maxwell linear models are generally adequate
for describing real materials, they are prototype models for systems like polymer
brushes grafted on a surface and dilute polymer solutions, respectively. Since the
scope of this chapter is complex fluids, we focus our attention on the Maxwell
model.

The Maxwell model, Eq. (1.49), can be formally solved to yield

σ (t) =
1
λ

∫ t

−∞
e−

t−t′
λ η γ̇(t ′)dt ′, (1.51)

where we have introduced the Maxwell relaxation time λ = η/G. As can be seen
from the solution, the stress created by a steplike deformation relaxes exponentially
on the time scale λ indicating viscous-fluid-like properties, while at short times,
σ (t)∼ ηγ(t)/λ and the Maxwell material is solid-like.

Since Eq. (1.49) is linear, its behavior is easily analyzed in terms of its response to
a periodic deformation with a frequencyω . Time evolution of the stress for arbitrary
time-dependent deformations may then be reconstructed through the evolution of
decoupled Fourier coefficients. Integrating Eq. (1.51) with only one frequency of
deformation, γ(t) = γ0 sinωt, we obtain

σ(t) = γ0ηω
cosωt +λω sinωt

1+(λω)2 =
η

1+(λω)2 γ̇(t)+G
(λω)2

1+(λω)2 γ(t). (1.52)
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Equation (1.52) demonstrates that the Maxwell model exhibits stress response both
in and out of phase with the applied deformation. Comparing this expression to
Eqs. (1.47) and (1.48), we conclude that the stress response can be interpreted in
terms of a frequency-dependent viscosity, η̃(ω), and shear modulus, G̃(ω), where

η̃(ω) =
η

1+(λω)2 , G̃(ω) = G
(λω)2

1+(λω)2 . (1.53)

Once again, at short times (λω � 1), the Maxwell model behaves like a solid
with the shear modulus G̃(ω) ≈ G, while at long times (λω � 1) it behaves as a
viscous fluid with the viscosity η̃(ω) ≈ η . The crossover between the two regimes
occurs when the time scale of deformation is similar to the time scale of relaxation,
ω−1 ∼ λ .

Equations (1.52) and (1.53) form the theoretical basis of linear rheology. For
very small deformation amplitudes γ0, even very nonlinear viscoelastic materials
are expected to obey Eq. (1.49), and measuring the in- and out-of-phase response
of the shear stress σ(t) allows one to determine the viscosity, elastic modulus,
and Maxwell relaxation time of the fluid. Linear rheological measurements are
usually interpreted in terms of the complex modulus, G∗(ω) = G′(ω) + iG′′(ω),
defined for the case considered here by σ(t) = ℑ

(
G∗ (ω)γ0eiω t

)
, where ℑ(·)

denotes the imaginary part of its complex argument. Commercial rheometers readily
provide the storage and loss moduli G′(ω) and G′′(ω) as functions of ω (the so-
called frequency sweep), and for the Maxwell model the relaxation time can be
determined as λ = ω−1

0 , with ω0 as the frequency where G′(ω0) = G′′(ω0). The
other parameters are then determined by fitting the low-frequency behaviors of G′
and G′′. In reality, however, the Maxwell model is often insufficient to describe even
the linear rheology of polymer solutions and G′ and G′′ do not cross due to additional
dissipation mechanisms that will be discussed later in this section. Nevertheless, it
is a very useful minimal model that sets the stage for more complete theories.

4.2 Objectivity and Convected Derivatives

In Sect. 4.1 we introduced the linear Maxwell model that combines viscous and
elastic responses to deformations. For the simplest case of linear shear that model
was written as σ +λσ̇ = η γ̇ , where σ is the shear stress and γ̇ is the shear rate. To
generalize this model for arbitrary flows, it would seem that one would only need to
rewrite this equation in terms of the stress � and velocity gradient ∇u tensors as

� +λ
∂�

∂ t
= η�̇. (1.54)

However, this equation suffers from a serious physical problem: it is not frame-
invariant. To demonstrate this, assume that we perform the same experiment twice:
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once in a stationary lab frame, the other on a (very smoothly operated) train moving
with a constant velocity u0 with respect to the lab frame. The stress components of
the moving-frame experiment can be written in terms of the lab frame coordinates
as σi j (x+u0t, t) and their time derivatives become

∂
∂ t
σi j (x+u0t, t) =

∂σi j

∂ t
+u0 ·∇σi j. (1.55)

Obviously, both experiments should be described by the same equations since a
constant velocity added to each point in the fluid does not result in any velocity
gradients; hence no additional stresses should be created in the fluid. However, the
time derivatives in Eqs. (1.54) and (1.55) differ by a term proportional to u0. Clearly,
this indicates that Eq. (1.54) is not frame-invariant and it should not be used.

The problem, as we can see from this example, is that the time derivatives of
individual components of the stress tensor do not form a tensor themselves, i.e., the
generalization ∂σ/∂ t → ∂�/∂ t is unphysical since it does not lead to a frame-
invariant equation. This problem is reminiscent of the argument that led to the
introduction of the material derivative in Eq. (1.2). There we showed that the frame-
invariant time derivative of a vector field embedded in a moving fluid is given by
D/Dt. Our goal now is to derive a similar expression for a second-rank tensor.
A detailed treatment of this derivation can be found in [13–15].

Recall the reference and current configurations described in Sect. 2.1, illustrated
again in Fig. 1.8. We will make use of the curvilinear coordinate system defined
by the material (Lagrangian) coordinates, Oa1a2a3, which moves and deforms with
the fluid (the so-called convected frame). The new coordinates are related to the
fixed Cartesian system Ox1x2x3 by x = x(a, t), and the relation is assumed to be
invertible. Recall the choice (without loss of generality) to set x(a,0) = a, so that
the convected and Cartesian frames are in alignment at t = 0; while this is a useful
illustration for how the convected frame moves and deforms, we will only make use
of the convected and Cartesian frames in the current configuration.

a

O

g2

g1

e1

e2

g2

g1

g2

g1

O e1

e2

x(a,t)

Fig. 1.8 The curvilinear, convected frame, has base vectors {gi} which move and deform with the
material deformation. The base vectors are aligned with the Cartesian basis {ei} in the reference
configuration (left). The reciprocal vectors {gi} form an orthonormal basis and satisfy gi · g j =
δi j. While a useful illustration, the curvilinear and Cartesian frames are only used in the current
configuration (right) to derive objective time derivatives
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Consider an arbitrary point in space, x, which may be represented in terms of
base vectors in a given, fixed curvilinear coordinate system, {gi}, as

x =
3

∑
i=1

ai gi. (1.56)

The base vectors may then be defined as

gi =
∂x
∂ai , (1.57)

which change both in length and orientation along with the material and are
tangential to the lines of constant material coordinates as can be seen from their
definition. In a curvilinear system we may also introduce reciprocal vectors, {gi},
that are orthogonal to the base vectors, {gi}, in the following sense: gi · g j = δi j,
where δi j is the Kronecker delta. This implies that the reciprocal vectors are
orthogonal to planes spanned by two base vectors. They can be constructed, for
example, by the usual orthogonalization procedure: gi = g j × gk/(gi · (g j × gk))
for all cyclic permutations of (i, j,k) = (1,2,3) compatible with the right-handed
coordinate system, and gi · (g j ×gk) = 1 in an incompressible flow. Here we choose
the reciprocal vectors

gi =
∂ai

∂x
, (1.58)

which satisfy all the requirements listed above.
Observe that any point x may be expressed in terms of the Cartesian system,

x = ∑3
j=1 x j e j (see Fig. 1.8), so that

gi =
∂x
∂ai =

∂
∂ai

3

∑
j=1

x je j =
3

∑
j=1

Fjie j, (1.59)

where

F =
∂x
∂a

=
3

∑
i, j=1

∂xi

∂a j eie j (1.60)

is the deformation gradient tensor introduced in Sect. 2.1. In a similar fashion, we
may write

gi =
∂ai

∂x
=

3

∑
j=1

(
e j
∂
∂x j

)
ai =

3

∑
j=1

(F−1)i je j, (1.61)
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where

F−1 =
∂a
∂x

=
3

∑
i, j=1

∂ai

∂x j
eie j. (1.62)

The deformation gradient tensors, F and F−1, are both expressed in terms of the
fixed Cartesian basis, and naturally F−1 ·F = F ·F−1 = I.

Next we show how F and F−1 change in time. Consider the time derivative of F,

d
dt

Fi j =
d
dt
∂xi

∂a j =
∂ui

∂a j =
3

∑
k=1

∂ui

∂xk

∂xk

∂a j =
[
(∇u)T ·F

]

i j
, (1.63)

or dF/dt = (∇u)T ·F. The time evolution of F−1 can be obtained by taking the time
derivative of the orthogonality condition, F ·F−1 = I, which gives

dF
dt

·F−1 +F · dF−1

dt
= 0. (1.64)

Using dF/dt = (∇u)T ·F, we obtain

dF−1

dt
=−F−1 · (∇u)T . (1.65)

We are now set to derive the frame-invariant time derivative of the stress tensor or
any other second-rank tensor embedded in a moving fluid. The total stress tensor �

may be represented alternately in terms of its Cartesian, covariant, or contravariant
components:

� =
3

∑
m,n=1

σmnemen =
3

∑
i, j=1

σ̂ i jgig j =
3

∑
i, j=1

σ̂i jgig j. (1.66)

Since the base vectors gi and the reciprocal vectors gi can be expressed in terms of
Cartesian unit vectors, Eqs. (1.59) and (1.61), the co- and contravariant components
of � can be expressed through its Cartesian components as

σmn =
3

∑
i, j=1

σ̂ i jFmiFn j =
3

∑
i, j=1

σ̂i jF
−1
im F−1

jn . (1.67)

These relations can be inverted to read

σ̂ i j =
3

∑
m,n=1

F−1
im F−1

jn σmn = [F−1 ·� ·F−T ]i j, (1.68)
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σ̂i j =
3

∑
m,n=1

FmiFn jσmn = [FT ·� ·F]i j, (1.69)

where F−T = (F−1)T , and the subscripts on the right-hand side indicate components
in the Cartesian coordinate system. We notice that these equations are, in fact,
definitions of co- and contravariant components of a second-rank tensor, as they
state the transformation laws for the components upon a change of the coordinate
system. Any set of quantities that obey these transformation laws form a second-
rank tensor and are thus frame-invariant.

Let us now calculate the time derivative of the co- and contravariant components
of the stress tensor � . From Eq. (1.68),

dσ̂ i j

dt
=

[
dF−1

dt
·� ·F−T +F−1 · d�

dt
·F−T +F−1 ·� · dF−T

dt

]

i j
, (1.70)

and, after using Eq. (1.65) and rearranging, we obtain

dσ̂ i j

dt
=

[
F−1 ·

(
∂�

∂ t
+u ·∇� − (∇u)T ·� −� ·∇u

)
·F−T

]

i j
, (1.71)

where we have used Eq. (1.2) for the total time derivative of σmn(x(a, t), t). We
observe here that Eq. (1.71) has the same structure as the transformation laws,
Eq. (1.68), and therefore dσ̂ i j/dt and the terms in the brackets on the right hand side
are components of a second-rank tensor in the corresponding coordinate systems.
Therefore,

�
� ≡ ∂�

∂ t
+u ·∇� − (∇u)T ·� −� ·∇u (1.72)

is a second-rank tensor, and it is a time derivative of the second-rank tensor �

embedded in a fluid with the velocity field u. In a similar fashion, considering
dσ̂i j/dt, we arrive at another tensorial formulation of the full-time derivative:

�
� ≡ ∂�

∂ t
+u ·∇� +� · (∇u)T +∇u ·� . (1.73)

Equations (1.72) and (1.73) define the so-called upper-convected and lower-
convected derivatives of a second-rank tensor. Time derivatives in constitutive
relations are generally in one of these two forms in order to ensure that the relation is
frame-invariant; other choices of frame-invariant time derivatives are possible (e.g.,
the so-called Jaumann or corotational derivative), but the most popular polymeric
constitutive equations are formulated in terms of the upper- and lower-convected
derivatives only.
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4.3 Canonical Nonlinear Differential Constitutive Equations

4.3.1 A Cooking Recipe

As we have seen in the previous sections, not all combinations of stress and velocity
gradient tensors result in physically meaningful equations. It was demonstrated, for
example, that a term dσmn/dt, where σmn are the Cartesian coordinates of the stress
tensor, can only enter a constitutive equation in a combination with other terms given
by the upper- or lower-convected derivatives, Eqs. (1.72) and (1.73). Here we extend
this argument and present general principles for formulating a physically admissible
constitutive equation. For polymer flows these principles were first formulated by
J. Oldroyd and are extensively discussed by Bird et al. [13]. They consist of three
main requirements:

• An admissible equation should be frame-invariant.
• The stress tensor � (t) can depend only on the past deformations, t ′ < t, and not

on the future t ′ > t.
• Equations should be local in space, i.e., stresses should not depend on the stresses

and velocities in the neighboring fluid elements, save through their continuity at
the interfaces.

These conditions severely restrict the form of an admissible constitutive equation.
Essentially, they imply that such an equation can only be written in terms of
functions of frame-invariant combinations of stress and velocity gradient tensors
(or, more generally, deformation tensors), as well as their spatial gradients and
convected time derivatives. Unfortunately, while eliminating a large number of
possible equations, these conditions do not sufficiently restrict the form of the
constitutive relation and there is no unique equation that describes viscoelastic
polymer solutions similar to the Navier–Stokes equation for Newtonian fluids.

When modeling polymer solutions there are two classes of modeling strategies
that one can adopt. The first approach is based on a combination of field-
theoretical/symmetry arguments and experimental input. As a first step, one selects
a particular order of approximation; for instance, only terms that are at most
quadratic in the stress and velocity gradient tensors are considered. Next, the
constitutive relation is expressed as a linear combination of these terms with
unknown coefficients. Finally, one uses experimentally determined rheological
properties in various types of flows to determine whether the equation is sufficient
to describe the behavior observed and to fix the values of the unknown coefficients.
There is a degree of art involved in this procedure since it is a priori unclear which
allowed terms should be included in the model constitutive equation. However, at
moderately weak and slow deformations, one would expect only moderate stresses
and, hence, the approach outlined above can be seen as using a Taylor expansion to
construct successive approximations to the true constitutive law.

The second modeling strategy is to build upon a kinetic theory. Assuming a
particular model for polymer molecules, their self-interactions and interactions with
other molecules, and their behaviors under flow, one can derive a hydrodynamic
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equation relating the macroscopic stress and velocity gradient tensors (albeit often
only by using rather uncontrolled approximations). Obviously, this approach cannot
produce an equation that is not generated through the first modeling strategy. Indeed,
this would imply that the “new” terms somehow do not satisfy the admissibility
conditions outlined above and, hence, the resulting equation is unphysical. The
strength of this approach is that it provides a microscopic basis for the arbitrary
coefficients introduced by the first approach. It also allows one to build up intuition
as to how particular molecular models project onto macroscopic constitutive
equations.

In the next section we will discuss several popular models constructed with
the first strategy, while in Sect. 4.4 we will use the second strategy and develop a
macroscopic model for a dilute solution of noninteracting dumbbells using a kinetic
theory.

4.3.2 Constitutive Equations from Field-Theoretical
and Symmetry Arguments

The simplest class of equations for viscoelastic solutions involves the expression of
the stress tensor as a sum of all admissible combinations of the velocity gradient
tensor. Depending on the highest algebraic power of the velocity gradient tensor
involved, they are called the second-order fluid, third-order fluid, etc. For example,
the deviatoric stress of the second-order fluid is given by

� = η�̇ + b2
�
�̇ + b11�̇ · �̇ (second-order fluid), (1.74)

where η is the total viscosity of the solution, b2 and b11 are material constants,
and the triangle denotes the upper-convected derivative, Eq. (1.72). As is clear by
observation of Eq. (1.74), the highest-order nonlinearity is quadratic in the velocity
gradient, accounting for the name of the model. We also see that model materials of
this class exhibit nonlinear responses to applied deformations but have no memory
of past stresses and therefore should only be used in situations where the flow
changes on time scales significantly longer than the polymer relaxation time. In
fact, as we will show later on in Sect. 6, the second-order model is unphysical in any
time-dependent flow and should only be used in weak stationary flows.

The simplest equations that take the relaxation of the stress into account are
produced by writing a frame-invariant analogue of the linear Maxwell model,
already discussed in Sects. 4.1 and 4.2. By choosing either the upper- or lower-
convected derivative for the full-time derivative in Eq. (1.54) we arrive at

� =−pI+�p, (1.75)
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where the polymeric contribution to the stress � p obeys

� p +λ
�
�p = ηp�̇ (upper-convected Maxwell), (1.76)

� p +λ
�
�p = ηp�̇ (lower-convected Maxwell). (1.77)

Here λ is the polymer relaxation time introduced in Sect. 4.1 and ηp is the polymer
contribution to the viscosity. Alternatively, one can use a linear combination of the
upper- and lower-convected derivatives in the Maxwell model to obtain the so-called
Johnson–Segalman equation

� p +λ
(

1+ a
2

�
� p +

1− a
2

�
� p

)
= ηp�̇ (Johnson–Segalman). (1.78)

The slip parameter a (a ∈ [−1,1]) sets the relative importance of the two objective
time derivatives derived in Sect. 4.2. Despite their apparent similarities, Eqs. (1.76)–
(1.78) produce very different rheological predictions. While the UCM model can
capture the properties of many dilute polymer solutions to a relatively good first
approximation, the rheological predictions of the lower-convected Maxwell (LCM)
model are in strong qualitative disagreement with experimental observations and
this model is not generally used. The Johnson–Segalman model predicts non-
monotonic behavior of the shear stress with the shear rate in simple shear flows
for a wide range of the model parameters and is also not usually used to describe
polymeric systems. Instead, it is often employed as a model for shear-banding in
wormlike micellar solutions together with the Giesekus model to be introduced
shortly [11, 12].

Often a Newtonian stress with a viscosity ηs is added to the total stress in
Eq. (1.75):

� =−pI+ηs�̇ +�p. (1.79)

If � p obeys the UCM model, the resulting set of equations is called the Oldroyd-B
model. The Oldroyd-B model is often formulated in terms of the total deviatoric
stress, � = ηs�̇ +�p, which satisfies

� +λ
�
� = η

(
�̇ +λr

�
�̇

)
(Oldroyd-B), (1.80)

where η = ηs +ηp is the total viscosity. The so-called retardation time λr is not
an independent time scale, but is in fact a combination of the Maxwell relaxation
time λ and the solvent and polymeric viscosities, λr = λ (ηs/η). One drawback
of the viscoelastic models above is that tensile stresses can grow without bound in
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extensional flows. As will be made clear in Sect. 4.4, this can be understood as a
continuous stretching of polymers in the flow and an unbounded Hookean stress
response.

In the spirit of including all possible tensorial invariants up to a particular order,
one can generalize this equation to the so-called Oldroyd 8-constant model given by
the following constitutive equation:

�+λ1
�
�+λ2 (�̇ ·�+� · �̇)+λ3Tr(�) �̇ +λ4 (� : �̇)I

= η
(

�̇ +λ5
�
�̇ +λ6�̇ · �̇ +λ7

(
�̇ : �̇

)
I
)

(Oldroyd 8-constant),

(1.81)

where Tr(A) is the trace of A and A : B = ∑i, j Ai jB ji as before. The time scales
λ1 . . .λ7 and the total viscosity η are the model parameters that are usually deter-
mined from experiments. This model covers a wide range of possible rheological
predictions and, in principle, can be used to describe a variety of viscoelastic
systems. In practice, this is prevented by the large number of model parameters
that usually cannot all be fixed by standard rheological measurements. Even in
theoretical studies, determining the predictions of the Oldroyd 8-constant model
requires a scan of a very large space of possible parameter values and is also not
practical. The Oldroyd-B model is a special case of the Oldroyd 8-constant model,
partially capturing numerous important viscoelastic phenomena but with many
fewer parameters, and is a popular model among experimentalists and theoreticians.

Another class of models is formed by adding various terms nonlinear in � p to the
UCM model, Eq. (1.76). One example of such models is the Giesekus equation,

� p +λ
�
�p +α

λ
ηp

� p ·�p = ηp�̇ (Giesekus). (1.82)

Here α is a dimensionless model parameter that should be kept smaller than 1/2 to
avoid a non-monotonic dependence of the shear stress on the shear rate in simple
shear flows. Another example is given by the Phan–Thien–Tanner (PTT) model,

f (� p)� p +λ
�
�p = ηp�̇ (PTT), (1.83)

where f (� p) is a nonlinear function that can be chosen either in its exponential or,
more commonly, in its linear form:

f (� p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp

{
λε
ηp

Tr(� p)

}
(exponential),

1+
λε
ηp

Tr(� p) (linear).

(1.84)
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The dimensionless parameter ε controls how fast the effective polymeric viscosity
and the relaxation time decrease with the stress.

Other constitutive relations were developed to correct the unphysical behavior
in the Oldroyd-B and similar models, the so-called finite-extensibility-nonlinear-
elastic (FENE) models. These models are comprised of various approximations to
the kinetic theory of the FENE model to be discussed in the following section. The
two most commonly used models of this type are the FENE-CR model (suggested
by Chilcott and Rallison [16]) and the FENE-P model (a Gaussian closure of the
kinetic theory model suggested by Peterlin [17]):

� p +λ
�(
� p

f (� p)

)
= ηp�̇ (FENE-CR) (1.85)

and

� p +λ
�(
� p

f (� p)

)
=

ηp

f (� p)
�̇ −ηp

D
Dt

(
1

f (� p)

)
I (FENE-P). (1.86)

In the equations above the upper-convected derivatives act on the entire parenthetical
expressions, and the function f is given by

f (� p) = 1+
λ

ηpL2 Tr(� p) , (1.87)

where L is a dimensionless parameter related to the maximum possible extension of
polymer chains. There are several versions of these models in the literature, but in
the limit of large L they all reduce to Eqs. (1.85) and (1.86) above.

Finally we introduce the Rolie-Poly model, which in its simplest form is given by

� p +λ
�
�p = ηp�̇ − 2

3
λ (� p : ∇u)

(
I+(1+ ε)

λ
ηp

� p

)
(Rolie-Poly). (1.88)

Here again, ε is a dimensionless parameter. The Rolie-Poly model is a relatively new
constitutive relation and, as such, has not been studied as much as the other models
described in this section. However, it is based on our most detailed molecular picture
of polymer solutions and is believed to be one of the best models for concentrated
polymeric systems [18].

In this section we have only listed a few popular constitutive models without
discussing their physical implications. Some basic predictions of the Oldroyd-B
model and how they differ from their Newtonian counterparts will be discussed
in Sect. 5. But first, let us turn to the second strategy for developing constitutive
laws: using kinetic theories of the polymeric structure and dynamics to build from
the ground up.
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4.4 A Kinetic Theory: The Linear Elastic Dumbbell Model

In this section we develop a basic kinetic theory for very dilute polymer solutions.
Our goal here is to give the reader a taste of how microscopic dynamics of model
polymers project onto a particular constitutive equation. In this way we will re-
derive the UCM model discussed in Sect. 4.3 and provide relationships between
the polymeric viscosity and the relaxation time of the UCM equation and the
microscopic properties of polymers.

We begin by considering one of the simplest models of polymer molecules:
dumbbells consisting of two beads connected by an elastic spring. Much more
intricate models are considered at great length in other texts (see [19–21]), but
this simple example remains instructive. The solution of polymers in solvent is
assumed to be so dilute that the dumbbells do not affect each other through either
hydrodynamic interactions or intermolecular forces. In this setting it is sufficient
to consider a single polymer molecule in a background fluid flow, and the total
contribution of polymer molecules to the stress of the fluid will simply be a sum of
individual contributions. We assume that a spring cannot be bent, i.e., it is always
oriented along the line connecting the beads of a dumbbell.

The calculation to follow hinges on a critical separation of scales. Even in very
turbulent flows, spatial variations of the velocity field occur over much longer scales
than the very small length of a single polymer, and the velocity field “seen” by
a single polymer is safely assumed to be linear. Moreover, and importantly, the
spatial variation of the velocity field occurs over much longer scales than very
many polymers. Therefore, in deducing an averaged effect of polymers on the fluid
rheology, we need only consider the dynamics of a suspension of polymers in a
single linear background flow,

u(x, t) = u0 + x ·A, (1.89)

where u0 is a constant velocity vector and A=∇u is the (constant) velocity gradient
tensor. Finally, as discussed in Sect. 3, there is a significant separation of time and
length scales between the polymer and the solvent molecule dynamics, and therefore
the polymers are assumed not to disturb the equilibrium properties of the solvent
molecules. These are the same assumptions made when considering the Brownian
motion of a large particle in a solvent (see Chap. 3). In what follows, the solvent is
treated as a heat bath with a large number of degrees of freedom kept at a constant
temperature T .

4.4.1 Dumbbell Dynamics and the Smoluchowski Equation

The dumbbell dynamics are found by balancing the forces acting on the two beads.
For illustration the beads are assumed to be spherical, and we will not consider the
balance of torques. Since the Reynolds number associated with a bead’s motion is
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Fig. 1.9 A schematic of the model dumbbell studied in Sect. 4.4 as it passes through an imaginary
planar surface with normal vector m. The vector from the first bead (lying in the “−m” half-space)
to the second bead (lying in the “+m” half-space) is denoted by R = r2 −r1. The force exerted by
the elastic spring on the first bead is denoted by Fs and on the second by −Fs

exceptionally small in accordance with its small size, inertia may be safely neglected
(see Sect. 2.5). The beads, labeled as “1” and “2”, have respective positions r1, r2

and velocities ṙ1, ṙ2 (see Fig. 1.9), and the equations of motion are given by

ζ (u(r1)− ṙ1)+Fs− kBT ∇r1 lnΨ = 0, (1.90)

ζ (u(r2)− ṙ2)−Fs− kBT ∇r2 lnΨ = 0, (1.91)

where the subscript on the gradient operator indicates the variables over which the
derivatives are taken, and u(x, t) = u(x) from Eq. (1.89). The first term in each
equation is the viscous drag on each bead as it moves relative to the flow; the drag
coefficient ζ is given by the Stokes drag law, ζ = 6πηsa, where ηs is the solvent
viscosity and a is the radius of each bead—we have neglected the hydrodynamic
interactions between the two beads. The force exerted by the elastic spring on the
first bead is denoted by Fs and on the second by −Fs. The last terms in Eqs. (1.90)
and (1.91) are thermodynamic forces exerted by the fluid on the beads, where kB

is the Boltzmann constant. This force has entropic origins and is written in terms
of the distribution functionΨ (r1,r2, t) that gives the probability of finding the first
bead at r1 and the second bead at r2 at time t. Below we will provide an intuitive
explanation for this particular form of the thermodynamic force.

It is convenient to introduce the position of the center of mass of each dumbbell,
X = (r1 + r2)/2, and the end-to-end vector, R = r2 − r1. Since we have assumed a
constant velocity gradient, space is homogeneous in our problem (i.e., the polymer
“sees” the same velocity gradient A at each point in space), so that the probability
distribution must be independent of the location of the dumbbell. The probability
density function may then be written instead as Ψ = Ψ(R, t). Since Ψ is a
probability density we require

∫
Ψ (R, t)d3R = 1, and it is assumed to decay

sufficiently fast for large |R|.
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Adding and subtracting Eqs. (1.90) and (1.91) and using Eq. (1.89), we find

Ẋ = u(X), (1.92)

Ṙ = R ·A− 2
ζ

Fs(R)− 2kBT
ζ

∇R lnΨ . (1.93)

The center of mass is advected by the background flow, while the end-to-end vector
evolves in time due to the gradient of the background flow, the spring force, and the
thermal fluctuations.

Our next step is to derive an evolution equation for the distribution functionΨ .
While such an equation may be derived using a nearly identical approach to that
described in Sect. 2.2 (see Chap. 9 for more details), it is more instructive to provide
an analogy with the diffusion equation that will allow us to better understand the
origin of the terms in Eqs. (1.90) and (1.91). Consider a concentration field c(x, t)
of particles suspended in a fluid. The behavior of the concentration is governed by
a diffusion equation,

∂c
∂ t

+∇ ·J = 0, (1.94)

where the flux J is given by the familiar Fick’s law, J = −D∇c, with D a diffusion
constant. If an additional force F is acting on the particles it creates an extra flux
cv, where the velocity v is given by the balance of the force F and the viscous drag
−ζv acting on each particle, and then the total flux can be written as

J =−D∇c+
c
ζ

F =
c
ζ

(
− ζ D∇ lnc+F

)
. (1.95)

Invoking the fluctuation-dissipation theorem one obtains the Stokes-Einstein rela-
tion, ζ D = kBT (see Chap. 3), and the term in parentheses may be identified as
the total force acting on the particle. The first term is an entropic force that acts to
remove any concentration gradients in the solution and has the same form as we
have used in Eqs. (1.90) and (1.91) if we identify the concentration field c with the
probability distributionΨ .

Analogously, the equation of probability conservation takes the form

∂Ψ
∂ t

+∇R · (ṘΨ)
= 0, (1.96)

which is known as the Smoluchowski equation. Upon insertion of Eq. (1.93) into
Eq. (1.96) we obtain
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∂Ψ
∂ t

+∇R ·
{(

R ·A− 2
ζ

Fs(R)− 2kBT
ζ

∇R lnΨ
)
Ψ
}
= 0. (1.97)

The Smoluchowski equation is nonlinear and in general can only be solved
numerically.

4.4.2 The Special Case of the Hookean Dumbbell

Although Eq. (1.97) is analytically intractable in general, for a simple Hookean
spring force Fs = K R, with K a spring constant, a constitutive equation may be
derived without knowing the exact form ofΨ . To accomplish this we will require
an equation of motion for the average dyadic product of two end-to-end vectors:

〈RR〉 ≡
∫

RRΨ (R, t)d3R. (1.98)

Here the angle brackets denote an ensemble average with the distribution function
Ψ . The desired equation of motion is readily obtained by multiplying Eq. (1.97) by
RR, taking the ensemble average, and using the following identities (see [21]):

∫
RR

∂Ψ
∂ t

d3R =
∂
∂ t

〈RR〉, (1.99)

∫
RR∇R · (R ·AΨ ) d3R =−AT · 〈RR〉− 〈RR〉 ·A, (1.100)

∫
RR∇R · (RΨ ) d3R =−2〈RR〉, (1.101)

∫
RR∇R · (∇R (lnΨ )Ψ) d3R = 2I, (1.102)

and assuming that the spring force acts only along the axis of the dumbbell, Fs =
Fs(R)R, the resulting equation for the evolution of 〈RR〉 is

�
〈RR〉= 4kBT

ζ
I− 4

ζ
〈RFs〉. (1.103)

In deriving this equation we have used the assumption that Ψ decays sufficiently
fast for large |R| to neglect the boundary terms during the integration by parts.
Equation (1.103) implies that in equilibrium, in the absence of flow, we have

〈RFs〉equil = kBT I. (1.104)
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4.4.3 Completing the Picture: The Upper-Convected Maxwell Model

We now have the ingredients needed to calculate the polymer contribution to the
stress tensor, which will involve measuring the number of dumbbells crossing a
given surface and identifying the forces from the stretched dumbbells with the
polymeric fluid stress.

To begin, consider an imaginary planar surface in the fluid with area dS and
normal vector m as illustrated in Fig. 1.9. According to the definition given in
Sect. 2.4, the traction from the fluid acting on the surface facing in the direction
of m is given by m ·� p, which is positive when the resultant force points into the
same half-space as m. Consider now a dumbbell with the end-to-end distance R with
its first bead in the “−m” half-space and its second bead in the “+m” half-space, as
shown in Fig. 1.9. A dumbbell with the end-to-end distance R can span both sides
of the plane only if its second bead is within a distance m · R of the plane and,
then depending on that distance, only for a certain range of R. Let n be the number
density of dumbbells in the solution. The total number of dumbbells straddling the
imaginary surface is then given by ndS (m ·R).

In the convention we have introduced for the elastic spring, its force Fs acts on the
first bead (−Fs acts on the second bead). The local force balance on the “+m”-side
of the surface implies that the traction on the surface at the point where the end-to-
end vector crosses it is equal to Fs. Since the probability of finding a dumbbell in
such a configuration is given byΨ (R, t)d3R, the traction due to this configuration
is given by

t+ =
∫

R·m>0
ndS (m ·R)FsΨ (R, t)d3R = ndS m ·

∫

R·m>0
RFsΨd3R, (1.105)

where the restriction of the integration domain to R ·m > 0 ensures that the beads
are in the configuration depicted in Fig. 1.9. On the opposite face of the surface, a
similar argument yields the traction there:

t− = ndS m ·
∫

R·m<0
RFsΨd3R. (1.106)

The total traction acting on the imaginary surface is given by the sum of the two
tractions above, t = t++ t− = nm · 〈RFs〉dS. Since the same traction can be written
as m ·�p dS, the polymeric contribution to the stress tensor must be equal to

� p = n〈RFs〉− 2nkBT I. (1.107)

The last term is the isotropic pressure of the ideal gas of the beads, where 2n is the
number density of the beads, and in the absence of flow this stress tensor does not
vanish. Indeed, when u = 0,

(� p)equil = n〈RFs〉equil − 2nkBT I =−nkBT I, (1.108)
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using Eq. (1.104). The flow-induced polymeric contribution to the stress tensor
is then

� p = n〈RFs〉− 2nkBT I− (� p)equil = n〈RFs〉− nkBT I. (1.109)

Equations (1.97) and (1.109) are the key results of the kinetic theory for dilute
solutions of polymers. For a particular choice of the spring law, Fs = Fs (R)R, one
would need to solve Eq. (1.97) for the end-to-end distribution function, find the
average 〈RFs〉, and use that result in Eq. (1.109) to find the stress. For the particular
case of the Hookean spring law, Fs =K R, we have 〈RFs〉=K〈RR〉, and we can use
Eqs. (1.109) and (1.98) to eliminate 〈RR〉. At last we have reached the final result.
Identifying a relaxation time λ = ζ/(4K) and polymer viscosity ηp = λnkBT , the
polymeric stress above satisfies the following equation:

� p +λ
�
�p = ηp�̇ . (1.110)

As discussed in Sect. 4.3, kinetic theories cannot produce new types of constitutive
equations. Instead, they provide connections between a particular type of molecular
theory and a constitutive law and give expressions for the parameters in terms of
molecular properties. In the particular case considered here, we have shown that a
dilute solution of Hookean dumbbells is described by the UCM model.

The reader should take care to note that the opposite point of view is incorrect:
the fact that a particular solution is well described by the UCM model does not
necessarily imply that one is dealing with a very dilute solution that consists of
approximately Hookean springs. The reason why this statement is incorrect is that
the UCM model is one of the simplest frame-invariant models, and many types of
kinetic theories project (at least for weak flows) onto that model. In other words, for
small deformations, a constitutive equation for polymer solutions almost cannot be
anything else save for a few special cases. One possible way of thinking about this is
based on one of the central concepts from solid state physics. There it is shown that
excitations of a complicated lattice of point-like masses connected by elastic springs
can be described as noninteracting degrees of freedom (phonons) that all perform
independent harmonic motion with various frequencies. Although these degrees of
freedom involve many particles moving in a complicated fashion, these effective
degrees of freedom are decoupled from each other. In a similar fashion, for small
deformations, one can think of an entangled polymer solution as a dilute solution
of effectively noninteracting elastic degrees of freedom, each of which involves
a significant number of polymers. In turn, this dilute “solution” of the effective
degrees of freedom corresponds to the UCM model where the role of dumbbells
is played by the collective excitations (normal modes).
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5 Material Properties of Viscoelastic Fluids

5.1 Normal Stress Differences

In this section we will discuss the rheological predictions of some of the constitutive
models introduced in this chapter. We will show that in a viscoelastic fluid, unlike
in a Newtonian fluid, even a two-dimensional shear flow commonly gives rise not
only to the off-diagonal elements of the stress tensor (shear stresses), but also to
the diagonal components, the normal stresses. Many of the surprising phenomena
seen in the flow of complex fluids, and in viscoelastic fluids in particular, can
be understood by an examination of these normal stresses and the normal stress
differences. We will also show that in shear flows with curved streamlines, normal
stresses generate extra forces that are directed towards the center of curvature,
pushing fluid elements from their streamlines.

The general mechanism of normal stress development, if not the details which
are fluid dependent, is simple to understand and is illustrated in Fig. 1.10a. Polymers
are stretched and rotated under the action of the local shear and tend on average to
align with the streamlines, while the entropic forces acting to return the molecule
to its undisturbed conformation lead to an extra tension in the direction of the flow.
Many physical effects attributed to fluid elasticity can be qualitatively understood
immediately through this simple concept alone. One of the most famous examples
is the Weissenberg effect (viscoelastic rod climbing), illustrated in Fig. 1.10b.
A rotating rod in a fluid produces circular streamlines in the flow. In a viscoelastic
fluid, polymers align with and stretch along streamlines and respond with a so-
called hoop stress (a “strangulation” of the immersed rod, illustrated in Fig. 1.10c,
to be discussed). Absent an upper boundary, this response drives the fluid up the rod
and out of the bulk. Similar reasoning also accounts for die swell in fluid extrusion
and a great number of other fluid phenomena (see a wonderful gallery in [22]). In
addition to large-scale collective effects, the presence of normal stress differences
in flow can be important on smaller scales as well: cells and other soft biological
matter may experience extra polymeric stresses that lead to deformation or possibly
rupture.

Each of the many constitutive laws introduced in this chapter comes with its own
predictions of normal stress differences, which we shall now investigate using the
linear shear flow u(x, t) = x ·(γ̇ e2e1) = (γ̇ y,0,0). The first and second normal stress
differences, N1 and N2, and their coefficients,Ψ1 andΨ2, are defined as

N1 = τ11 − τ22 =Ψ1γ̇2, N2 = τ22 − τ33 =Ψ2γ̇2. (1.111)

The first normal stress difference monitors the variation in normal stress between
the direction of flow (where tension along streamlines is expected as illustrated in
Fig. 1.10) and the direction of shear. The first normal stress difference is usually
positive in viscoelastic flows,Ψ1 > 0. The second normal stress difference monitors
the stress difference in the two directions normal to the flow direction and is,
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a

b c

Fig. 1.10 (a) An illustration of the mechanism of normal stress differences in viscoelastic fluids.
A shear flow rotates and stretches polymers along streamlines creating anisotropic elastic stresses.
(b) The Weissenberg effect (rod climbing): a rotating rod inside of a viscoelastic fluid excites an
upward climb of fluid, unlike in a Newtonian flow (adapted from [22] with permission). (c) The
Weissenberg effect is explained by normal stress differences, here by the development of hoop
stresses along curved streamlines, leading to “strangulation” and an upward ascent

generally, negative and very small compared to the first normal stress difference.
Normal stress differences in a general flow may be pronounced near boundaries,
including the boundaries of immersed bodies, as the no-slip velocity boundary
condition and/or stagnation points of the flow generally introduce a shear flow local
to the boundary surface.

In a Newtonian shear flow the pressure is constant, p = p0 [found by inserting
the velocity field into Eqs. (1.21) and (1.22)], and the deviatoric stress is

� = μ�̇ = μγ̇ (e2e1 + e1e2) , (1.112)
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so that clearlyΨ1 =Ψ2 = 0. In fact there are no normal stresses whatsoever outside
of the constant isotropic pressure in this case, let alone normal stress differences.
It is a short exercise to find that there are no normal stress differences associated
with the generalized Newtonian fluids introduced in Sect. 3, but this is in keeping
with our physical explanation of the source of normal stress differences described
above. The linearly viscoelastic fluids introduced in Sect. 4 also do not predict
normal stress differences in a shear flow. In order to capture or predict normal
stress differences, we must look to the nonlinear constitutive models of viscoelastic
fluids. Interestingly, as we shall see below, the normal stresses are generated by the
nonlinear terms in the convected derivatives introduced to ensure frame-invariance,
revealing a deep connection between geometry and mechanical properties.

Consider the second-order fluid model described in Sect. 4.3. The coefficients
in the constitutive law, Eq. (1.74), are in fact directly related to the normal stress
differences. Inserting the steady shear flow above into the constitutive relation we
find that

� = ηγ̇ (e2e1 + e1e2)− 2b2γ̇2e1e1 + b11γ̇2 (e1e1 + e2e2) . (1.113)

Unlike in a Newtonian fluid, the nonlinear terms in the second-order model allow
for nonzero normal stress differences in the fluid,Ψ1 =−2b2 andΨ2 = b11. Hence,
if the viscosity and normal stress differences (the viscometric functions) have been
measured for a particular fluid, they can be used to specify this particular constitutive
model directly as

� = η�̇ −Ψ1

2

�
�̇ +Ψ2�̇ · �̇. (1.114)

We also see from Eq. (1.113) that the second-order fluid model has no shear-
dependent viscosity τ12/γ̇ = η (constant). Shear-dependent viscosity can be cap-
tured at the next order in the retarded-motion expansion, (the third-order fluid
model), which has the same normal stress differences as in the second-order model.
It is common in the literature to see the approximation −Ψ2/Ψ1 = 1/2, which
overestimates the ratio’s value as observed in experiments with most fluids, but is of
great use in improving the mathematical tractability of the model. For in this case,
the effect of viscoelasticity at first order variation away from the Newtonian flow is
simply to modify the pressure and not the fluid velocity field (see [13]).

Next, consider the Oldroyd-B model fluid, Eq. (1.80):

� +λ
�
� = η�̇ +ηsλ

�
�̇. (1.115)

Assuming the same steady shear flow, the individual components of the stress are
found to be

� = 2ληpγ̇2e1e1 +ηγ̇ (e1e2 + e2e1) (1.116)
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(recall that η = ηs + ηp). Hence, the first normal stress difference coefficient
is Ψ1 = 2ληp (≥ 0). The first normal stress difference is linear in the polymer
relaxation time, λ , and vanishes in the limit ηp → 0. In the Oldroyd-B model
there are no transverse normal stresses in a shear flow, τ22 = τ33 = 0, and then
triviallyΨ2 = 0. In this model as well we see that the viscosity is always equal to
the zero-shear-rate viscosity, τ12/γ̇ = η (constant). This prediction is inconsistent
with experimental observations, in that the viscosity of real polymer solutions often
exhibits shear-thinning. Shear-thinning is, however, successfully captured by other
nonlinear models, including the FENE-P, Giesekus, and PTT models discussed in
Sect. 4.3.

As we have demonstrated above, the only nontrivial component of the stress
tensor that appears in the second-order and Oldroyd-B fluids is τ11. Within the
kinetic theory approach, Eq. (1.109) allows us to conclude that this stress component
is generated by a nonzero component of the end-to-end tensor 〈R1R1〉. In turn,
this implies that the polymers are stretched and oriented in the flow direction as
described at the beginning of this section. From symmetry arguments, changing the
direction of the shear, γ̇→−γ̇, does not change the polymer stretch and orientation.
Hence, τ11 and N1 in general should depend on an even power of γ̇ . As we see in the
Oldroyd-B model from Eq. (1.116), N1 ∼ γ̇2.

Note that the picture of polymers being stretched and aligned in the direction
of flow is only accurate on average. Recent simulations [23, 24] of individual
dumbbells in shear flows suggest that a dumbbell performs the motion that is similar
to the Jeffery orbit of a rod in shear flows [9]: most of the time the dumbbell is
oriented at an angle with respect to the flow direction, but it periodically tumbles out
of this configuration. The relative time spent tumbling and the angle with respect to
the flow direction decrease with the shear rate, while its stretch increases with γ̇ ,
giving support to the coarse-grained molecular picture discussed above.

5.2 Normal-Stress Measurements

There are a number of ways in which the normal stress differences may be measured
in the lab. Oftentimes, the only significant component of the normal stresses in a
two-dimensional linear shear flow is τ11. In order to measure it, one has to somehow
access the forces exerted by the fluid in the flow direction without disturbing the
velocity profile. This is very difficult technically and instead one usually takes
advantage of the coupling between the normal stresses and the forces on the
boundaries that exist in some curvilinear geometries. One of the most common
devices for measuring the material properties of a fluid, or rheometers, is the cone-
and-plate apparatus illustrated in Fig. 1.11. In this device a cone is rotated above a
horizontal plate with the fluid under investigation filling the gap between them. The
fluid meniscus is exposed to the atmosphere.
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Fig. 1.11 Illustration of a
common cone-and-plate
rheometer for measuring
material properties. The
meniscus of the fluid is
exposed to the surrounding
atmosphere (the curved blue
line). The geometry is special
because the shear rate is
uniform throughout the
sample R

θ0

ereθ

In order to most easily connect the measurements of the cone-and-plate rheome-
ter to the constitutive equations we will assume that the cone touches the plate at a
point. The gap between the cone and the plate has the shape of a spherical segment
with a small opening angle θ0, which typically measures only a few degrees. The
most convenient way to describe this geometry is to introduce a spherical coordinate
system (r,θ ,φ), with r measuring the distance from the point of contact between the
cone and plate. The angle θ is measured from the axis of rotation and the angle φ—
around that axis, see Fig. 1.11. The fluid fills the gap up to r =R. Given the rotational
symmetry, the fluid velocity at each point has only one component, uφ , that depends
only on the local distance between that point, the cone, and the plate; that position
in the gap is set by θ .

The advantages of this geometry are that it is curvilinear (we shall see below why
this is important) and that it has a constant shear rate. Indeed, since the angle θ0

is small, the azimuthal velocity of a point on the cone is given by ωr, where ω is
the angular velocity of the cone and r is the radial position of the point. The distance
between the cone and the plate at that point is given by rθ0, which results in the shear
rate at that radial distance, ω/θ0, independent of r! Since the shear rate is the same
everywhere, the polymeric stresses may be assumed position-independent in the
sample, similar to the case of linear shear considered above.

In what follows, we do not employ any constitutive relation between the
polymeric stress and the velocity gradient and only consider the momentum balance
equation. Since, typically, polymeric fluids are rather viscous and the measurements
are performed at relatively low flow velocities (though the velocity gradients are not
small), fluid inertia is generally neglected. The radial component of the momentum
balance equation in spherical coordinates then reads

−∂ p
∂ r

+
1
r2

∂
∂ r

(
r2τrr

)− τθθ + τφφ
r

= 0, (1.117)

where � is the deviatoric stress tensor that has both polymeric and Newtonian
solvent contributions and p is the pressure. Using the definition of the first and
second normal stress differences, N1 and N2, we can write
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N1 = τφφ − τθθ , N2 = τθθ − τrr, (1.118)

where the φ - and θ -directions have been identified as the flow and gradient
directions. Using these definitions in Eq. (1.117) and employing the fact that � is
constant in space, we obtain

−∂ p
∂ r

=
2N2 +N1

r
. (1.119)

This result is the mathematical foundation of the hoop stresses discussed in the last
section: in curved geometries, the tension along the flow lines N1 is balanced by
an inward-pointing pressure gradient that grows in the direction of the origin. In an
open geometry, this pressure gradient can result in the rod-climbing effect shown in
Fig. 1.10b. Integrating Eq. (1.119), we have

−p(r) =−p(R)+ (2N2 +N1) ln
r
R
, (1.120)

where the value of the pressure at the meniscus of the cone and plate rheometer,
p(R), is an unknown integration constant to be determined. Since the meniscus is
in equilibrium, we require that the force per unit area acting on it from the fluid
perpendicular to its surface is balanced by the atmospheric pressure patm from the
outside

−p(R)+ τrr(R)+
2α
R

= patm. (1.121)

The third term on the l.h.s. is the Laplace pressure under a curved surface and α is
the surface tension. Note that the meniscus is the surface of a spherical segment and
its principle radii of curvature R1 and R2 are the same, R1 = R2 = R. Force balance,
Eq. (1.121), allows us to determine the unknown constant p(R).

The normal force exerted on the plate by the fluid is given by

F = 2π
∫ R

0
r
[− p(r)+ τθθ

]
dr+ 2παR. (1.122)

The first term is the local fluid stress normal to the plate, −p(r)+ τθθ , integrated
over its surface, and the last term is the contribution of the line tension of the
meniscus on the plate. The total stress perpendicular to the plate can be rearranged as

−p(r)+ τθθ = (2N2 +N1) ln
r
R
+ patm +N2 − 2α

R
, (1.123)
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where we have made use of Eqs. (1.120) and (1.121). After integration, we obtain

F = πR2 patm − πR2

2
N1. (1.124)

The force acting on the plate from the atmosphere is simply πR2 patm, and the excess
force ΔF is, finally,

ΔF =−πR2

2
N1. (1.125)

This expression provides a simple way of measuring the first normal stress differ-
ence by measuring the total force exerted on the plate when the cone is rotating. We
note here that this is only possible because of the curvilinear geometry of this setup.
As can be seen from Eq. (1.117) or Eq. (1.119), in the limit of a linear shear that is
attained by r → ∞, the normal stresses decouple from the pressure gradient and one
cannot access N1 by measuring the force on the plate. A similar argument shows that
the normal stresses cannot be measured in the Taylor–Couette geometry (flow in the
gap between two rotating coaxial cylinders), but are accessible in another curvilinear
geometry, the plate-and-plate setup, that is essentially the cone-and-plate rheometer
with the cone replaced by another plate. In that setup, however, the shear rate is
not constant everywhere in the sample and it is often difficult to interpret measured
quantities.

In practice there are many sources of experimental error, and great care must
be taken in interpreting the measured data correctly. Fluid and instrument inertia,
secondary flows, elastic instabilities, slip, and many other real issues can lead to
Newtonian samples appearing to be complex and vice versa. The derivation of the
force exerted by the fluid on the plate, the quantity that is measured by commercial
rheometers, helps us to identify potential sources of errors in such experiments. One
contribution to the experimental error is due to the instrumental resolution of the
pressure transducer used to measure the force, and it is typically rather small. More
importantly, the effects of the surface tension in the stress continuity at the meniscus,
Eq. (1.121), and the force due to the line tension in Eq. (1.122) strongly depend on
the contact angle between the fluid and the walls of the rheometer. In fact, the contact
angle between the fluid and the walls of the rheometer can vary from experiment to
experiment giving rise to an extra force on the plate that would depend on how the
gap was filled with the fluid. Obviously, this extra force has nothing to do with the
normal stresses and is a major source of nonsystematic experimental errors. These
challenges and others, along with the techniques for reducing errors, are the topic
of Chap. 6.
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5.3 Other Flows

Besides the simple shear flows discussed above, there are many ways of assessing
the material properties of viscoelastic fluids. A natural generalization of the steady
two-dimensional shear flow introduces time dependence, u = x · (γ̇(t)e2e1) =
(γ̇(t)y,0,0). Using the Oldroyd-B constitutive law as an illustrative example, it
is a simple exercise to show that the stress has the form �(t) = τ11(t)e1e1 +
τ12(t)(e1e2 + e2e1) and that the stress components satisfy the following coupled
differential equations:

(
1+λ

d
dt

)
τ11 − 2λ γ̇(t)τ12 =−2ηsλ γ̇2(t), (1.126)

(
1+λ

d
dt

)
τ12 =

(
η+ληs

d
dt

)
γ̇(t). (1.127)

From these expressions the normal stress differences may be predicted for arbitrary
time-dependent shear flows. Many experimental apparatuses, including the popular
cone and plate, plate and plate, and capillary rheometers, are designed to impose
the time dependence of the shear rate and infer material parameters by the forces
and torques found in response. Such tests include steady shear, γ̇(t) = γ̇0; stress
growth and relaxation, γ̇(t) = γ̇0H(t) and γ̇(t) = γ̇0H(−t) with H(t) the Heaviside
function; step strain, γ̇(t) = γ̇0 (H(t)−H(t − t0)) with t0 > 0; and small-amplitude
oscillatory shear, γ̇ = γ̇0 sin(ωt) (as discussed in Sect. 4.1). Another common test
uses a creep flow, in which an impulsive and constant shear stress is applied to the
material and the time dependence of the fluid response is observed. Another method
of rheology growing in popularity makes use of large-amplitude oscillatory shear
[25–27]. An entirely different approach to measuring material properties makes use
of the fluctuations of small probes at the microscale and is termed microrheology.
Theoretical microrheology is discussed extensively in Chap. 3 and used as a basis to
study the material properties of membranes in Chap. 4.

Other rheometers have been designed to measure the stress-strain responses
in another important rheological flow, an extensional flow. A pure extensional
flow is written as u(x, t) = x · (ε̇e1 − ε̇(e2 + e3)/2) = ε̇(x,−y/2,−z/2), where ε̇
is the rate of extension, so that �̇ = ε̇ (2e1e1 − e2e2 − e3e3). This flow is called
extensional since two material points originally close to each other will be separated
exponentially in time by this flow as can be seen from the kinematic equations

ẋ(t) = ε̇ x, ẏ(t) =− ε̇
2

y, ż(t) =− ε̇
2

z, (1.128)

where a dot denotes a time derivative. A commonly measured material response in
this setting is called the “extensional viscosity,” defined as
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η̄ =
τ11 − τ22

ε̇
, (1.129)

though the use of the term in time-dependent flows is “fraught with danger” [28].
In a Newtonian fluid, with � = μ�̇ , we have simply that η̄ = 3μ . In a second-order
fluid we have

η̄ = 3(η+(b11 − b2) ε̇) , (1.130)

and in an Oldroyd-B fluid,

η̄ = 3
η−ηsλ ε̇− 2ηsλ 2ε̇2

(1− 2λ ε̇) (1+λ ε̇)
. (1.131)

This expression indicates that the stresses grow very rapidly with ε̇ since polymers
oppose exponential separation of their ends and, in the case of the Oldroyd-B model,
Eq. (1.131), even diverge for λ ε̇ = 1/2. This phenomenon, sometimes miscalled
the coil-stretch transition, is the consequence of the unrealistic behavior of the
underlying Hookean force law for the dumbbells—their ends can be separated
without limits producing very large stresses. Finite extensibility of polymer chains,
or other nonlinear mechanisms presented in models like FENE-P, Giesekus, PTT,
and others, cures this problem while still exhibiting a rapid growth of η̄ with ε̇ .
However, in all of the models above, large extensional stresses and its gradients have
proven to be very problematic in the computation of highly elastic flows. Together
with the loss of positive definiteness discussed in Sect. 6, it forms the basis of the
High-Weissenberg-Number Problem in computational complex fluids in both two
and three dimensions. This topic is addressed in detail in Chap. 10.

6 Final Words of Caution: A Health Warning

Modeling complex fluids can be a tricky business. The primary challenges when
dealing with the constitutive models described in this chapter generally arise due
to their strongly nonlinear nature. Unless these models are used to study simple,
steady flows, it is generally impossible to derive analytical solutions. Instead, one
is faced with making perhaps severe analytical approximations or performing time-
dependent direct numerical simulations. While both strategies have proven to be
fruitful in understanding complicated flows of viscoelastic fluids, they both open the
door to serious potential pitfalls. To conclude this chapter we will describe several
typical problems that can arise in approximating solutions to viscoelastic equations
of motion, whether the approximation be analytical or numerical.

The Linear Maxwell Model Is Not Objective One of the more common mistakes
made is the inappropriate use of the linear Maxwell model, Eq. (1.54), in actual
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calculations. It is often argued that studying this model allows one to understand
how fluid memory affects the flow, as opposed to normal stress differences, shear-
thinning, and other effects that arise from various nonlinear terms in the constitutive
models. The trouble with this approach is that the linear Maxwell model, Eq. (1.54),
is not frame-invariant and none of the conclusions drawn from studying this model
are guaranteed to be physical. The only way to check whether its predictions
are physical is to perform an analysis of the full original constitutive model and
compare the two results, at which point the analysis of Eq. (1.54) will have become
unnecessary. Unless the original constitutive model reduces exactly to the linear
Maxwell model (as is the case with the shear-stress equation for the small-amplitude
oscillatory shear flow1), the use of the linear Maxwell model should be forbidden!

Time-Dependent Flows in Weakly-Nonlinear Viscoelastic Fluids Are Unstable
A second common problem arises in studying weakly nonlinear flows of viscoelastic
systems. Consider, for instance, the complete Oldroyd-B model equations (see
Sect. 4.3):

ρ
(
∂u
∂ t

+u ·∇u
)
=−∇p+∇ ·�, (1.132)

� +λ�
� = η

(
�̇ +λ (ηs/η)

�
�̇

)
, (1.133)

∇ ·u = 0. (1.134)

A weakly nonlinear flow is a situation wherein the flow changes on time scales much
longer than the relaxation time, λ , and therefore λ is in some sense small and can
be used as an expansion parameter. It is generally a bad practice to perform a Taylor
expansion in a dimensional variable; a better expansion parameter might be λ/τ0,
where τ0 is the typical time scale set by the flow, which becomes apparent when
Eqs. (1.132)–(1.134) are written in dimensionless form. Nevertheless, formally we
might write

� = �(0) +λ�(1) +O(λ 2). (1.135)

Substituting this expression into Eq. (1.133), at leading order we recover a Newto-
nian constitutive relation:

�(0) = η�̇, (1.136)

(recall that η = ηs +ηp), and

�(1) =−�
�(0)+ηs

�
�̇ =−ηp

�
�̇ . (1.137)

1Note, however, that this coincidence is only partial: for example, equations for the normal
components of the stress tensor do not reduce to the linear Maxwell equations in the same
geometry.
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Truncating the O
(
λ 2
)

terms in Eq. (1.137), we are thus left with a particular case
of the second-order model, Eq. (1.74), where b1 = −ληp and b11 = 0. With this in
mind, let us consider the more general constitutive relation given by Eq. (1.74).

Consider a two-dimensional shear flow given by u = (u(y, t),0). Upon insertion
into the momentum balance equation Eq. (1.132), and using the second-order fluid
model, Eq. (1.74), an equation for the evolution of u(y, t) is found:

ρ
∂u
∂ t

=
∂
∂y
τxy, (1.138)

where the shear stress is given by

τxy = η
∂u
∂y

+ b2
∂
∂ t
∂u
∂y

· (1.139)

Combining these two equations we find that

ρ
∂u
∂ t

= η
∂ 2u
∂y2 + b2

∂
∂ t
∂ 2u
∂y2 · (1.140)

Just as in Sect. 3.3, we take no-slip boundary conditions at the walls of a channel
located at y = 0 and y = h and write the flow velocity as a Fourier series:

u(y, t) =
∞

∑
m=1

um eαmt sin
mπy

h
· (1.141)

The growth rates αm associated with each mode are obtained by substituting this
expression into Eq. (1.140), revealing

αm =
−η

b2 +ρh2/(mπ)2 · (1.142)

For polymer solutions b2 is typically negative (recall its value based on the Oldroyd-
B model, b2 = −ληp), so that αm is positive for sufficiently large m. This implies
that a steady shear flow of a second-order fluid is unstable to short-wavelength
perturbations and cannot be realized. In the case of negligible inertia, achieved in
the above by setting ρ = 0, Eq. (1.142) predicts that all Fourier modes are unstable.
The implications of this result are profound: it shows that an approximation of slow
flows, or, in other words, Taylor expansions of the stress in terms of the relaxation
time cannot be used in time-dependent flows where any shear component would
result locally in a linear instability and exponential growth of the stress. Hence, the
second-order fluid and similar approximations should generally not be used to study
time-dependent flows!
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The Conformation Tensor Must Remain Positive-Semidefinite Finally, we com-
ment on a problem that is often encountered in the numerical solution of viscoelastic
flows. We will base our discussion on the UCM model for simplicity, but the
conclusions we will reach are much more general. In the kinetic theory outlined
in Sect. 4.4, we concluded that the polymeric contribution � p to the stress tensor is
related to the dyadic tensor 〈RR〉 by

� p = nK〈RR〉− ηp

λ
I, (1.143)

where R is the end-to-end distance of a polymer molecule that was represented by
a dumbbell in Sect. 4.4. To obtain this expression we have used Eq. (1.109) and
the molecular expressions for ηp and λ obtained in Sect. 4.4. The tensor 〈RR〉
in its dimensionless form is often referred to as the conformation tensor. At a
given point in an arbitrary flow, the 〈RR〉-tensor can be diagonalized, 〈RR〉 =
diag

(
R2

1,R
2
2,R

2
3

)
, where R1, R2, and R3 are the projections of the end-to-end vector

on the corresponding coordinate axes. Since the diagonal entries are the squares
of these projections, they cannot be negative in any flow if the 〈RR〉-tensor is to
remain physical. Since, by construction, R2

1, R2
2, and R2

3 are the eigenvalues of the
〈RR〉-tensor at the considered point in space and time, this statement translates into
the requirement that the eigenvalues of the 〈RR〉-tensor always remain nonnegative
in the whole domain considered.

Although we have introduced this requirement based on the kinetic theory, it is
more general. Even if nothing is stated about the physical meaning of the 〈RR〉-
tensor, it can be formally introduced through, say, Eq. (1.143) (if one deals with the
Oldroyd-B model) and it is then possible to prove that if at time t0 the eigenvalues
of 〈RR〉 are nonnegative everywhere in the domain, they remain nonnegative for
all later times. This property is often referred to as the evolutionary nature of
the corresponding constitutive equation and has been proven for the Oldroyd-B
(UCM), Giesekus, and other models [29]. Since the rest state with no stress is clearly
positive-semidefinite (its eigenvalues are not negative), any time evolution starting
from this state should remain positive-semidefinite. Unfortunately, this is not the
case in both simulations and analytic calculations involving approximations.

Often, due to either accumulation of numerical errors or a severe approximation
the conformation tensor may develop negative eigenvalues and become unphysical.
Unfortunately, the constitutive equations that have been used in this chapter do not
provide a clear indicator of when this will happen (i.e., the stress values do not
suddenly diverge at this point or similar). In order to ensure that the results are
physical it is therefore advisable to check that the conformation tensor is positive-
semidefinite in the whole domain at each time-step in simulations or at the end of
analytical calculations. If the conformation tensor is ever found not to be positive-
semidefinite, the resulting calculation should not be trusted!
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7 Conclusion

In this chapter we presented the fundamental concepts in continuum mechanics and
laid the foundations for the mathematical modeling of complex fluids. Numerous
constitutive models were introduced, each used to describe complex fluid phe-
nomena such as shear-dependent viscosity and viscoelasticity at varying levels
of sophistication. The importance of frame-invariance was stressed in the path
to developing mathematically and physically sound nonlinear models including
the upper-convected Maxwell (UCM) and Oldroyd-B models and others. Kinetic
theory was used as an alternate means of deriving a constitutive law, namely the
UCM model, from the ground up. Finally, normal stress differences were discussed,
and warnings were given about common dangers encountered in the mathematical
modeling of complex fluids.

There are great challenges that remain in the study of complex fluid flows in
biological systems. The mathematical modeling of real biological materials by
a careful selection of constitutive relation remains problem dependent and is a
delicate art. Some of the most popular constitutive laws, such as the Oldroyd-
B model of viscoelastic fluids, still present challenges to mathematical analysis
and even numerical simulation of highly elastic fluid flows. We may have made
great strides in understanding how complex fluid flows change the behavior of
immersed soft biological structures, from individual cells to motile microorganisms,
but we have barely scratched the surface when it comes to understanding the
evolution of biological materials and organisms in the context of non-Newtonian
fluid environments. There is much yet to learn in this very exciting convergence of
fields.
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Chapter 2
Complex Fluids and Soft Structures
in the Human Body

Paula A. Vasquez and M. Gregory Forest

Abstract The human body is a composite of diverse materials able to perform
specific functions. Few of these materials are simple liquids or solids; rather they
share both liquid-like and solid-like properties. The material world between liquids
and solids is unlimited and exploited by Nature to form complex fluids and soft
structures with properties that are tuned to perform highly specialized functions.
This chapter will briefly summarize the diversity of materials in the human body,
and then drill deeper into one complex fluid (mucus, which coats every organ in the
body) and one soft structure (an individual cell), and their remarkable properties.
Some progress in characterizing these materials and modeling their functional
properties, by others and our research group, will be presented with the take home
message that we are in the early stages of interpreting experimental data and
building predictive models and simulations of biological materials.

1 Introduction

This review chapter takes a multidisciplinary point of view toward complex fluids,
or soft matter, in the human body. This multidisciplinary approach is required since
the remarkable properties and functions of biological complex fluids are hard to
resolve from a singular disciplinary approach. Examples of disciplines encountered
in the study of biological fluids are systems biology, molecular biology, applied
mathematics, medical biology, chemistry, physics, computer science, and several
aspects of engineering. In this chapter, we highlight two biological fluids, lung
mucus and single cells, and use them to illustrate the challenges faced in faithfully
modeling their function and behavior.
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A fundamental goal of systems biology is to understand the mechanisms underly-
ing material performance, e.g., clearance of mucus from lung airways, intracellular
organization during phases of a cell cycle, and motility of cells in one environment
versus another. What these mechanisms have in common is that they are emergent
processes from the collective behavior of many (perhaps thousands) molecular
components. The challenge in systems biology and molecular biology is to describe
the dynamic network that results from the complex interactions among molecular
constituents. Such interactions dictate material properties and functions, such as the
distribution of mucins, other proteins and ions that determine the flow and diffusive
transport properties of mucus, how dynein motors control spatial extent and polarity
of the mitotic spindle, and how intracellular structures, activating and deactivating
proteins, and remodeling processes conspire to achieve cell motility.

The applied mathematical goal is to capture the molecular constituents and
their interactions in a modeling and simulation toolkit that reproduces collective,
organized behavior and thereby reveals biological mechanisms. An understanding
of how mechanisms work is prerequisite to understanding failure and strategies to
recover from compromised functionality. Systems biology has traditionally aver-
aged over molecular details, positing continuum-scale balance laws for observable
macroscopic properties. From a bottom-up approach, coarse-graining methods, such
as projection onto moments of distributions for molecular constituents, often lead
to continuum equations that resemble and validate continuum-scale models and
give molecular meaning to their coefficients. These connections between molecular
kinetic and continuum models have been studied for many model complex fluid
systems within the statistical physics literature. For polymers, the books by Bird,
Curtiss, Armstrong, and Hassager [1], Beris and Edwards [2], Larson [3], and
Rubinstein and Colby [4] give excellent treatments.

A medical biology challenge is to detect and quantify the sources of disruptions
in normal material functionality, e.g., a genetic defect that disrupts an ion channel
in cystic fibrosis or DNA damage that leads to a runaway cascade in a cell cycle.
Once understood, these insights explain symptoms (e.g., dehydrated lung mucus,
proliferation of cell division), point to diagnostics for disease progression, and focus
medical treatment on the sources of compromised function.

The engineering and clinical challenge is to design health solutions to restore
function, aided by validated models and predictive simulations to test outcomes of
alternative therapies. The solution could likewise be molecular (e.g., drugs specific
to cellular pathways, gene therapy, DNA repair) or systems level (e.g., a percussive
therapy), or both.

Each challenge above provides research opportunities in complex biological
fluids for experimental and theoretical scientists. The aim of this chapter is to
give young researchers an insight into fascinating aspects of biological complex
fluids through the lens of our experiences with colleagues spanning all of the above
disciplines. Subsequent chapters in this book will focus and go into significant
detail on:
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• Diverse biological fluids
• Methods to experimentally probe their behavior
• Observations and data afforded by advanced instrumentation
• Progress in theory, modeling, and direct numerical simulation

There are open problems as far as one can foresee in the quest to understand,
measure, characterize, model, or predict biological soft matter behavior, a point that
will become clear throughout this and other chapters. Two materials are discussed
in this chapter as already mentioned: mucus and a single cell. Mucus is a barrier
complex fluid, coating every human organ, whose components and properties are
considered to be stationary on short time scales (perhaps hours depending on the
organ). A single cell is an assembly of diverse structural components that are locally
in time (perhaps minutes) spatially organized yet undergoing continuous activation
by molecular events that maintain a living cell as a nonstationary complex fluid
mixture.

We will highlight lung mucus in particular, a remarkable functional material that
is continuously forced toward the larynx by coordinated cilia and asymmetric air
drag from breathing and cough, and other mechanisms like chest cavity pumping in
tapered, deformable airways and surfactant gradients in the deep lung airways. Lung
mucus has a dual role: to trap and to clear airborne pathogens, and it is biochemically
tuned to perform both tasks. While lung mucus constituents are locally stationary,
airway mucus in healthy humans is in a state of continuous forcing at diverse length
scales, frequencies, and force scales by the clearance mechanisms noted just above.
In this way, transport of mucus is dictated by its nonequilibrium properties, and
we have yet to determine thresholds of nonlinear behavior from all physiological
forcing conditions and airway geometries. In this chapter we will briefly discuss
nonlinear viscoelastic behavior in the context of lung mucus and we refer the reader
to Chap. 6 for a more detailed discussion of nonlinear viscoelastic behavior. While
Chap. 6 addresses metrics of nonlinearity in macrorheology, a microrheological
alternative that can be applied to microliter volumes to characterize mucus and
substructures inside of cells is still needed.

Chapter 3 addresses active microrheology, which we also touch upon below to
explore whether a single cilium is capable of forcing airway mucus into a nonlinear
response regime. Chapters 7 and 8 are related to cilia-mucus interactions in that cilia
can be viewed as “swimmers” that penetrate and pass through mucus during the
power stroke. A fundamental challenge remains to understand the mechanism for
the transfer of energy spent in a cilium stroke cycle into transport of the mucus layer:
is it simply a momentum transfer, or is there a deformation of the microstructure that
tugs on the entangled polymer network and pulls on the mucus like a carpet layer?
For medical biologists and clinicians, it is critical to understand that mucus changes,
biochemically and functionally, over time scales of disease progression and what
those changes are, to guide potential remedies and therapies. We will address this
issue in more detail below.
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Living cells are inherently active materials, to be distinguished from other
biological materials such as mucus, which are passive materials undergoing active
forcing at free interfaces. The molecular machinery inside a living cell is constantly
working (e.g., molecular motors, polymerization and depolymerization, biochem-
ical reactions), generating forces that easily compete with thermal fluctuations
that would still be present even if the molecular machinery was switched off.
This means that single living cells are maintained out of equilibrium by chemical
and mechanical processes, that these processes change during the cell cycle, that
probes inserted into the cell may interrupt passive and active cell behavior, and
that the influence of active forcing is spatially heterogeneous. For example, if an
activating protein species binds at the bilipid membrane or in the cellular cortex
to cause a local contraction, that deformation propagates. Similar mechanochemical
processes are taking place throughout the cell. Chapters 5–8 highlight the challenges
in characterizing material properties of cellular components in the presence of
often unknown or uncharacterized active forces. Chapters 9 and 10 give further
illustrations of other active materials ranging from bacterial suspensions to motor
proteins.

With respect to biological materials, the first aim and challenge is to prescribe a
series of tests and experiments to characterize the material of interest in physiologi-
cally relevant conditions (e.g., lung mucus at different disease states) or to observe
the material of interest in biologically relevant conditions (e.g., yeast cells at specific
phases of the cell cycle). Of course one has to have sufficient experience and data to
compare these outcomes with other complex fluid species and with diverse samples
of the fluid of interest from “normal” and “dysfunctional” sources. This phase
could be described as comparative rheology or biology, where the measurements
or observational data of a particular specimen are compared to known or possibly
benchmark specimens of similar origin. If there is sufficient data, inferences can be
made by performing various statistical tests to decide if a given specimen lies within
certain percentiles or standard deviations from a population mean.

The second challenge is to build predictive model capabilities. The aim is
to develop quantitatively accurate mathematical models that extrapolate beyond
experimental controls and that can be coupled to physiological forces and in vivo
geometry to predict complex fluid behavior and function. For instance, design and
evaluation of drug or physical therapies for lung disease would be far more efficient
with accurate, predictive models for airway mucus flow and particle diffusion
within mucus layers. Cellular abnormalities likewise would be better understood and
designer molecules for cell repair would be more efficient with accurate predictive
models.

The first step, characterization, is the purview of rheology: the study of how
materials deform or flow due to applied loads. This subject is reviewed in Chap. 1;
subsequent chapters give detailed experimental, theoretical, and computational
insights into biological fluid behavior when forces and strains are applied at
macroscopic scales (macrorheology) and at microscopic scales (microrheology).
The second step, modeling, relies upon fundamental conservation laws, physical,
chemical, and mathematical principles to posit a predictive model (governing
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equations, boundary conditions, and initial data) that when properly parameterized
accurately reproduces experimental observations. An inverse problem can therefore
be solved to infer all model parameters from wisely chosen experiments and
data. Given the model and parameter fittings, accurate simulations of the model
should be feasible and able to predict behavior under conditions more general than
the characterization experiments. These goals are far from complete for almost
all complex fluids in the human body, although progress has been made. For
example, remarkable advances have been made in the modeling of tear films [5],
the mathematical description of soft tissues like articular cartilage [6], and modeling
blood flow discussed in Chap. 11.

To be honest at the outset, the novice to complex fluids is forewarned that
the world of materials that are neither simple viscous fluids nor simple solids
encompasses such diversity that there is no universal class of models to begin
with. In fact, there are few complex fluids for which predictive models exist,
have been validated, and used for biological or biomedical applications. We will
mention some examples, and the other contributors to this volume provide more
specific details. Significant research opportunities in this area lie in: the derivation
of accurate, computationally feasible models for physiologically relevant complex
fluids; characterization in terms of linear and nonlinear constitutive laws and
parameter inference from experimental data; and predictive simulations, especially
those that might support health assessments and therapeutic applications.

The term “fluid” in complex fluid is potentially misleading, since it conjures
images of hydrodynamics to many physical scientists. However, the complexity
of complex fluids lies in the intimate coupling between flow or deformation and
the microstructure of the material. In complex fluids, the dynamics of the flow
or deformation field is on equal footing with the dynamics of the microstructure.
Indeed in rheological experiments, instruments are designed either (1) to control
flow or deformation to learn how the microstructural stresses respond in approx-
imately linear flows or deformations in the relevant geometry of the instrument;
(2) to control stress and study the flow or deformational response. The classical
text by John Ferry [7], or the more recent text by Chris Macosko [8], are excellent
sources for rheological instruments and how to characterize materials based on
experimental data. For predictive purposes, outside of such controlled experiments,
one must have constitutive laws with material parameters that are inferred from
rheological experiments and then simulated or analyzed to predict more general
behavior. In this respect we refer the reader to Chaps. 1 and 6.

The term “soft matter” is more appropriate and indeed is gaining traction as
a descriptive term that encompasses biological as well as synthetic materials that
are neither simple viscous fluids nor simple solids. More traditional descriptors
are viscoelastic or non-Newtonian. The complexity of soft matter is revealed by
the memory exhibited in equilibrium and nonequilibrium responses of soft matter.
This memory is evident macroscopically (press on your flesh, and it recovers on a
time scale that doctors use to assess excess water retention), and with appropriate
instrumentation, memory is evident down to the scales of the microstructure.
A generic challenge in soft matter is to determine the time scales of memory and
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their influence on their transport properties: how a sample deforms or flows under
forcing, how the microstructure fluctuates and diffuses in thermal equilibrium, and
how foreign particles of diverse size, shape, and surface chemistry diffuse within
the material. Indeed, the field of passive microrheology (see reviews by Waigh
[9], Squires and Mason [10], Chen et al. [11] and Crocker and Hoffman [12],
and Chap. 3) aspires to measure the fluctuations of probe microscopic particles and
exploit a generalized fluctuation-dissipation theorem (FDT) to infer the complex
dissipative properties. The remarkable FDT states that the memory spectrum of
the microstructure in the linear response regime is revealed from the colored
noise of the fluctuations of probe particles. For biological materials, including the
internal structure of single cells or lung mucus, there are unknown length scales
and heterogeneity of the microstructure, so it is not sufficient to probe with one
particle or at one location [13, 14]. This is why the techniques of microrheology
have been developed and honed on benchmark complex fluids such as colloids or
pure homogeneous solutions of naked DNA as explained in Chap. 5. The challenges
in biological fluids are addressed in many other articles within this volume, as well
as in the specific sections below on cells and mucus.

The integration of biology and medicine with mathematical modeling and
computational simulations is moving the life sciences toward new frontiers where
physiological and pathological information from living organisms can be quanti-
tatively described in silico [15]. In this chapter, we review the properties of fluids
and soft matter encountered in the human body. As new methods are applied to
increasingly complex biological process, our understanding of the mechanistic role
of these biological materials has grown. However, there is still much to be learned
in order to apply and advance the available tools toward predictive medicine. Here,
and in the subsequent chapters, some of the challenges faced in the mathematical
modeling of biological fluids and soft matter are reviewed.

1.1 Biological Materials in the Human Body

Sciences like rheology [1, 3] and biomechanics [16] study biological materials
to find relationships between forces and deformations or flows. In the human
body, atoms and molecules are organized into cells, tissues, organs, and individual
organisms. As a result, forces, deformations, and flows can originate within the
individual organisms or around them and include a wide range of time and length
scales.

Human biological materials include tissues, organs, blood, plasma, skin, DNA,
RNA, proteins, cells, mucus, saliva, and other body fluids. Some of the common
characteristics of these materials are [17]:

• They are composites, containing both inorganic and organic components.
• They are able to self-assemble.
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• They are multifunctional, with the ability to change their characteristics tailored
to a specific function.

• They are hierarchically organized at the atomistic, molecular, and larger scales.
• Many properties are length and time dependent and can vary significantly across

various scales.

As an example, consider the flow of blood in the microvascular network. The
rheological properties of blood are dependent on shear rate, shear history, and the
dimensions and geometry of the system in which it is contained. The apparent
viscosity of blood measured in tubes with diameters ∼200μm shows a precipitous
decrease with decreasing diameter, reaching a minimum at diameters of ∼5–7μm,
corresponding to the diameter of capillary blood vessels [18]. That is, blood is
a shear-thinning material, whose nonlinear response depends on the particulars
of the flow properties in vivo and is highly specialized to meet the needs of the
specific organ or tissue. Current advances on modeling blood flow as well as a
comprehensive discussion of the constituents of blood are addressed in Chap. 11.
There is even evidence that viscoelasticity of blood is relevant to the fluid-structure
interactions in the highly dynamic conditions in heart chambers, coronary arteries,
and valves [private discussions with Boyce Griffith, NYU and UNC].

1.1.1 Mathematical Modeling of Biological Materials

Above the atomic and molecular level, cells, tissues, organs, and organisms can be
considered as continua and have traditionally been described by classical mechanics.
In this way, descriptions of these systems are derived from fundamental physical
laws like conservation of mass, moment, and energy, together with the respective
constitutive equations for the material.

In their simplest form, constitutive equations relate forces and deformations,
or more precisely, stresses and either strains or velocity fields. Depending on the
experimental of physiological conditions the input can either be the stress or the
strain (or velocity). For example, in active microrheology, the input is the strain
rate if the particle is moved with a constant velocity, such as in optical tweezer
experiments. Alternatively, the particle can be driven with a constant force, such as
in magnetic bead rheology. Determining the stress-strain relationship is then crucial
in the understanding of these materials through the formulation of constitutive
equations.

The basis to solve these problems is the coupling of the conservation of mass and
momentum equations for fluid density ρ and velocity field u, with the appropriate
constitutive equation for the stress, τ ,

∂ρ
∂ t

+∇ · (ρu) = 0, (2.1)

ρ
(
∂u
∂ t

+(u ·∇)u
)

= −∇p+∇ · τ+F. (2.2)
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Under isothermal conditions, simple liquids like water or honey behave as New-
tonian viscous fluids. In this case, the stress is directly proportional to the rate of
strain (γ̇ = ∇u+ (∇u)T ) and the constant of proportionality is the viscosity (η),
which measures resistance to flow:

τ = ηγ̇. (2.3)

For elastic solids, the simplest relation is that of an isotropic Hookean solid where
the stress is directly proportional to the strain (γ , where ∂γ/∂ t = γ̇ ) and the constant
of proportionality is the modulus (G), which measures the stiffness of the material.
The simplest elastic constitutive law is

τ = Gγ. (2.4)

Most biological materials exhibit characteristics of both viscous fluids and elastic
solids. The nature of the response (more viscous-like or more solid-like) depends on
the magnitude of the imposed deformation or forces or on the time scale at which the
input is being imposed. These types of fluids are known as viscoelastic. Chapter 1
provides a more in-depth introduction to modeling and constitutive laws.

The simplest viscoelastic constitutive laws are the linear viscoelastic models,
where the relation between the stress and the strain is linear, with a combination
of both viscous and elastic terms. For example, when a spring and a dashpot are
combined in series, the force on both units is the same, while the total deformation
is the sum of the individual deformations. With these conditions, one can easily find
the constitutive equation for this toy mechanical model as

τ+
η
G

dτ
dt

= ηγ̇. (2.5)

Other linear mechanical models can be formulated by different configurations of
dashpots and spring units. For a detailed review of these models, we refer the reader
to the book by Tschoegl [19].

Besides differential models, as the one given by Eq. (2.5), constitutive equations
can also be represented by integral models. For example, continuing with our spring-
dashpot model, integration of Eq. (2.5) with respect to time gives

τ(t) =
∫ t

−∞
Gexp(−(t − t ′)/λ )γ̇(t ′)dt ′, (2.6)

where the stress is related to the strain history by a kernel, which in the case of
Eq. (2.5) is G(t) = Gexp(−tλ ), and λ = η/G is the relaxation time.

As mentioned above, most biological materials are viscoelastic, but even more
than that the relation between the stress and the strain is not linear for all condi-
tions. Some simplifications can be applied to use linear viscoelastic equations to
describe a material. For example in passive microrheology, the motion of imbedded
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“Brownian” probes is followed to gain insight into the viscoelastic properties of the
material. The fluctuations of the particle arise from fluctuations of the microstructure
and any solvent, and a generalization of the FDT to generalized Langevin equations
(GLEs) is exploited to infer both viscous and elastic moduli of the material. For a
detailed description see Chap. 3.

Another approach is to apply small stresses or deformations to the sample,
guaranteeing that the strain-stress relation is linear. One such experimental approach
is the small amplitude oscillatory shear (SAOS) where a sinusoidal stress with small
amplitude is applied to the sample, for example, using commercial rheometers [8].
In this setup, given a strain of the form

γ = γ0 sin(ωt), (2.7)

Equation (2.5) can be solved to show that the stress is given by

τ(t) = Gγ0

[

− λω
1+(λω)2 e−t/λ +

(λω)2

1+(λω)2 sin(ωt)+
λω

1+(λω)2 cos(ωt)

]

.

(2.8)
At the steady state, t → ∞, the stress becomes the sum of two functions: one
proportional to sin(ωt), i.e., the strain, and one proportional to cos(ωt), i.e.,
the strain rate. Because of their relevance to elastic and viscous behavior, these
functions are known as the elastic (or storage) modulus G′(ω) and the viscous (or
loss) modulus G′′(ω). For the so-called upper convected Maxwell (UCM) linear
viscoelastic constitutive law, these functions are given by

G′(ω) = G
(λω)2

1+(λω)2 , G′′(ω) = G
λω

1+(λω)2 . (2.9)

In this way, if a material obeys G′ > G′′, it is said to be more elastic than viscous
and if G′′ > G′, the material is more viscous than elastic. For a detailed review of
these types of responses and their extensions to nonlinear regimes, see Chap. 6.

Yet another set of experiments are known as creep measurements, where a
constant stress is imposed and the resulting strain is measured. For a Hookean solid,
the strain is directly proportional to the stress so that the resulting strain history is
like the one shown by the purple circles in Fig. 2.1. For a viscous fluid, the stress is
proportional to the time derivative of the strain, with the resulting strain described by
a straight line as shown by the blue squares in Fig. 2.1. Viscoelastic materials exhibit
both viscous and elastic behavior. For example, some experiments in cells [20] have
shown that their behavior is that of a viscoelastic fluid shown in red triangles in
Fig. 2.1. For a further discussion on rheological tests, we refer the reader to Chaps. 1
and 6.

The analysis of the material properties based on linear viscoelastic measurements
have provided great insight into the behavior and function of these materials.
However, as mentioned above under physiological conditions these materials are



62 P.A. Vasquez and M.G. Forest

Elastic

Viscous

0 5 10 15

0

20

0.2

0.4

0.6

0.8

1

1.2

Time (s)

PAA (β = 0)

d(
t)/

d m
ax

PDMS (β = 1)
Cell (β≈ 0.3)

Fig. 2.1 Experimental creep response: the material is loaded at time t = 5 s with a constant force
F and the displacement, d(t), is measured. The figure shows typical responses of three types of
materials: elastic material (purple curve) polyacrylamide-bis-acrylamide (PAA) hydrogel; viscous
material (blue curve) polydimethylsiloxane (PDMS) silicone oil; and cellular material (red curve)
F9 embryonic carcinoma cell. The creep function is defined as J(t) = d(t)/F = j0(t/t ′)β , where
t ′ is a characteristic time scale of the experiment, the prefactor j0 characterizes the softness or
compliance of the material, and the power-law exponent β represents the type of material; β = 0 for
elastic solids, β = 1 for viscous fluids, and 0 < β < 1 for viscoelastic materials. Figure from [20]

often under nonlinear conditions. Consequently, experimental tests and models such
as the ones we have discussed thus far fail to capture features relevant to the
physiological functions of many biological materials.

1.1.2 Nonlinear Viscoelasticity

Chapter 1 provides a detailed description of modeling hydrodynamics in viscoelastic
materials. Here we highlight the main challenges involved in the formulation
and modeling of nonlinear viscoelastic behavior; Chaps. 6 and 10 should also be
consulted.

The main characteristic of viscoelastic materials is that the relationship between
stress and strain depends upon their deformation history. In particular, their rheolog-
ical properties are dictated by the evolution of the conformation of microstructures.
One of the main challenges is how to develop methods to connect the configuration
at the microscopic level to the dynamics involved at macroscopic length scales.
However, this need to bridge disparate length and time scales presents numerous
challenges. As an illustration, consider the range of length and time scales encoun-
tered in a typical polymeric system. Characteristic times can span from O

(
10−13 s

)

for bond vibrations to seconds or minutes for the relaxation of chain orientation



2 Complex Fluids and Soft Structures in the Human Body 63

to hours for glassy states and phase separation. Similarly, relevant length scales
vary from angstroms for bond lengths to nanometers for average chain length to
micrometers or larger for experimental and industrial processes.

Depending on the level of investigation, one can model these systems by using
stochastic differential equations, Fokker–Planck-type equations or macroscopic
constitutive relations that can be differential equations, integral equations, or a
combination of these two. The choice of level of description depends on the
objective, the questions one expects to answer, and the computational capabilities
one has when it comes to solving the resulting coupled system of equations. For
different macroscopic constitutive equations of viscoelastic materials, the reader
is referred to Larson’s book [21]. For a stochastic modeling of the materials, we
refer to Ottinger’s book [22] and for a review on multiscale methods to the article
by Keunings [23]. In addition, Chap. 10 and the book by Owens and Phillips
[24] discuss different numerical approaches used in the simulation of viscoelastic
materials.

The kind of nonlinear behavior and how to tease out such behavior depends
greatly on the type of system under study and the particular information one expects
to gain with modeling. For the scope of this chapter, we will focus on two exemplary
materials: mucus and cells. For other behaviors and fluids the reader is pointed to
other chapters in this book.

Under in vivo conditions, these systems are often subjected to large deforma-
tions and/or stresses rendering the stress-strain relationship nonlinear and time
dependent. The adequate formulation of constitutive equations for these materials
is challenging. In addition, probing the validity of such equations requires testing
of the materials in controlled conditions, e.g., using the protocols and instruments
of rheology. Experiments involving biological fluids and soft matter can be difficult
either because the sample cannot be isolated for testing, or the available volumes
are too small or too “soft” for many devices, or because it is difficult to keep the
specimen in normal living conditions (e.g., controlled temperature and humidity).
Additional perspectives are given in Chaps. 3–6.

Other challenges faced in the modeling of biological fluids include:

• The role of geometry and confinement. The material may reside in a complex,
nonstationary, 3D geometry, e.g., mucus in deformable lung airways or a cell
within a living tissue or exposed to a foreign substrate. Numerical modeling of
in vivo material behavior requires solvers that adapt to these dynamic, complex
geometries.

• Since many biological processes are nonlinear, the constitutive relations that
describe material behavior can include mathematical terms with complex func-
tional forms, e.g., memory over a broad frequency spectrum.

• Material response depends on a large number of variables. For example, blood
flow can be dramatically different depending on capillary diameter, compliance
of surrounding tissue or capillary walls, temperature, pressure, stresses, and heart
rate. For a detailed discussion see Chap. 11.
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• Most biological materials are heterogeneous, consisting of substructures with
markedly different properties. Modeling therefore must either explicitly resolve
the heterogeneity (e.g., phase-field modeling of single cells or dynamics of
molecular constituents of mucus) or posit homogenized models with effective
material parameters that average over the microstructural heterogeneity.

• Biological materials are often anisotropic so that their behavior is directionally
dependent. For example, the filamentous cortex in cells is aligned as opposed to
randomly oriented.

• Some biological systems change their properties during a process in response to
imposed stresses. In this way, there can be dramatic changes in the properties over
both time and position. Modeling efforts must either model the substructures and
their dynamics or capture these effects through coarse-grained parameters and
their space-time variations.

• The development of accurate, meaningful boundary conditions is a major chal-
lenge, including fluid-structure conditions, adherence versus slip at interfaces,
stress versus strain versus velocity boundary conditions, and their compatibility
with models. All of these issues weigh heavily on the choice of numerical
algorithms, and often potential boundary conditions need to be tested against
experimental data to determine their validity.

2 Mucus in the Human Body

In the human body, mucus covers the luminal surface of the gastrointestinal (GI)
[25], respiratory [26], and reproductive [27] tracts. Mucus also coats eyes, the
epithelium of the nose, mouth, and salivary glands, as well as the peritoneal surface
of intra-abdominal organs [28]. All mucus is not made equal; it is biochemically
tuned for diverse barrier and flow transport properties depending on which organ
it coats. For example, mucus acts as a lubricant, as a moisture barrier to prevent
dehydration of underlying tissues, as a chemical barrier to prevent gastric acids
from destroying tissues, and as a diffusional barrier to pathogens and airborne
particulates. In many organs, mucus flows to clear its trapped contents, with the
flow generation mechanisms as diverse as mucus itself, e.g., blinking eyelids,
gravitational drainage in the reproductive tract, airway cilia, airdrag from breathing,
coughing, or sneezing. Typical human mucus co-regulates diffusion of trapped
pathogens and clearance of the trapped load. Since mucus is being swept away
continuously, the particular organs or epithelial tissues are likewise continuously
manufacturing a distribution of high-molecular-weight mucin molecules and con-
trolling water content via ion-nucleotide feedback mechanisms [29, 30]. These
molecules collectively endow mucus with its ability to recognize (in the sense of
control over their diffusion) and discard (by clearance of the mucus layer) particles
ranging from O(10 nm) antibodies to O(100 nm) viruses to O(1)−O(10) micron
bacteria and any number of environmental particulates.
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Disease states are often associated with a breakdown in “normal” properties
of the mucus barrier [31], from stomach ulcers to chronic obstructive pulmonary
disease (COPD). While mucus is ubiquitous in the human body, and therefore
fundamental to human health, the links between the molecular constituents of
mucus, the mechanisms by which they are continuously replenished to maintain
their critical functions, and indeed the key microstructural features and variations
of mucus throughout the body that endow such diverse functional properties remain
active areas of research. It is fair to say that mucus is now “hot,” with a resurgence of
attention since the landmark paper on airway mucus by Knowles and Boucher [32].

Mucus functions as a viscoelastic, dynamic, semipermeable barrier that protects
organs and epithelial tissue by selectively trapping and discarding pathogens, toxins,
and other particulates [32]. At the same time, mucus layers allow the flux of water,
gases, and nutrients that are transported through epithelial cells and distributed
inside the body [28,33]. In performing these functions mucus is constantly secreted,
shed, and digested, recycled, or discarded. The mechanical and chemical properties
of mucus are critical to its functional specificity, as it coats every organ and surface
not covered by skin or nails. These diffusive, flow, and lubricating properties vary
not only across organs but among individuals, with age, and physiological and
pathological conditions [28, 32, 33].

Given the fundamental role of mucus in human health, it is perhaps surprising
how much is known yet how little is understood about its biophysical and rhe-
ological properties. However, the diversity of mucus across the body and across
populations, coupled with the difficulty in procuring samples (extremely low-
volume samples) and the sensitivity of mucus to handling, presents major challenges
in the experimental and theoretical characterization of human mucus. It is only in
the recent past that the heightened awareness of the role of mucus in human health
has converged with new instrumentation and new theoretical advances, in particular
the emergence of the field of microrheology, together with the historical shift of the
physical and mathematical sciences toward the biological and biomedical sciences.

Next, we review the main composition of human mucus and how it affects its
flow and diffusive rheology. We discuss one of the main mechanisms for mucus
clearance, coordinated ciliary beating, and review modeling approaches. Finally,
we discuss diffusion of particulates in mucus.

2.1 Mucus Composition

A typical “healthy” mucus sample consists of 90–95 % (by mass) of water, 2–5 %
high-molecular-weight glycoproteins (mucins), 1–2 % lipids, 1 % salts, and 0.02 %
of DNA and other molecules [34]. Despite its dominant water content, mucus readily
exhibits both viscous and elastic behavior that may vary dramatically with frequency
(or shear rate), with amplitude of forcing (imposed strain or stress), and with the
length scale of forcing. These viscoelastic properties are biochemically regulated by
the relative concentration of, and interplay between, the components listed above.
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Some key studies point to a classification of mucus as a physical gel, distinct
from an entangled polymeric material [35–37]. This gel quality derives primarily
from mucins and other low-molecular-weight proteins that form a three-dimensional
network or gel matrix [35]. Mucins are negatively charged, glycosylated proteins
that are continuously synthesized and secreted to replenish the mucus layer. Mucins
can be divided into secreted (gel-forming and non-gel-forming) and membrane-
anchored. Gel-forming mucins are a complex group of high-molecular-weight,
polymeric glycoproteins. The main gel-forming mucins present in human mucus are
MUC2, MUC5AC, MUC5B, and MUC6 [38–42]. Mucins also contain cysteine-rich
domains where no glycosylation is present. These “naked” domains have hydropho-
bic properties [38, 43, 44]. To avoid contact with water, the hydrophobic portions
of the molecules form dynamic, physical mucin-cross-links. This “intertwining” of
mucins with other musins and biomolecules presents in the mucus constitute the gel
matrix. Among other things, the density of cross-links controls the characteristics of
a gel network. In a 2–5 wt% mucus gel, each mucin molecule overlaps 10–100 other
mucin [28, 45]. In addition, other types of intermolecular interactions of different
characteristic time and length scales contribute to the formation and strength of
the mucus gel network. In particular, electrostatic interactions [39], hydrophobic
interactions [46], and calcium-mediated interactions [47] have a well-documented
role. Figure 2.2 depicts a mucin network including hydrophobic interactions
and strong disulfide bonds (s-s). For extended reviews on mucus gelation see
[36, 45, 48–52].

Fig. 2.2 Mucin molecules are made up of a peptide backbone (solid curves) with glycosylated
regions (perpendicular cross hairs) and naked regions. These naked regions allow mucins to
interact with other mucins and proteins through weak non-covalent bonds. These bonds together
with strong disulfide bonds (s-s in the figure) result in the formation of a cross-linked network,
and, at typical mucin concentrations, a high density of entanglements. Figure from [43]
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2.2 Mucus Viscoelasticity

In general, all mucus secretions are viscoelastic; however, the absolute values of
their viscous and elastic moduli and the stresses they are exposed to in vivo vary
significantly depending on what organ, epithelial tissue, or cell culture the mucus
is harvested from. Furthermore, the viscoelastic moduli from a single organ of
a particular person evolve with environmental exposure (e.g., altitude), disease,
and disease progression. To illustrate this, consider mucus in the stomach. Taylor
and coworkers [53] showed that, in the stomach, two physically distinct mucus
secretions are produced. One is a “shear-resistant” mucus gel that forms a protective
mechanical barrier and the other is a “shear-compliant” secretion, which transforms
into a viscous liquid when subjected to even low mechanical shear stress and acts
as a lubricant facilitating the movement of solid matter through the gut during the
digestive processes.

John Sheehan [54] led the effort to identify which mucin molecules were primar-
ily distributed in sputum and airway mucus compared to the mucin distribution and
concentrations in the periciliary liquid layer (PCL) of lung airways. It is remarkable
to recognize that goblet and other cells in the epithelium manufacture all these
molecules, and thus all are shed from the epithelial surface. Thus, they choose by
physical and chemical affinities to reside in the PCL or mucus layers. Sheehan’s
goal was to biochemically and biophysically characterize the functionalities of
mucus and PCL layers in airways and to understand their evolution during aging,
environmental conditions, and disease progression [34, 42, 44, 47, 48, 51, 54–56].

As is the case with other viscoelastic materials, the interplay between viscous and
elastic properties directly affects the transport capabilities of mucus. However, other
physical properties play an important role in the function of mucus. For instance,
adhesiveness and wettability govern the properties of the interface between mucus
and the epithelial surface [57]. Optimal conditions for the clearance and lubricant
properties of mucus require that both wettability and adhesiveness are high enough
to prevent flow of mucus under body forces (gravity) but low enough to mobilize
mucus by ciliary beating and other air–liquid pumping mechanisms.

Although the mucin network primarily governs the rheological characteristics of
mucus, other biochemical constituents such as proteins, proteoglycans, lipids, DNA
and cellular debris affect the properties of mucus by modifying gel formation and
strength. In the same manner, other macromolecular components of exogenous or
pharmaceutical origin can influence the viscoelastic properties of mucus and as such
alter its functional properties. Below we give several examples where changes in
rheological properties of mucus are induced by factors other than the self-dynamics
of the mucin network.

• Rheological measurements of human tears reveal shear-thinning viscoelastic
properties. However, contrary to other types of mucus, the specific mucins and
their concentration in tears are insufficient to produce the observed degree of non-
Newtonian behavior. Gouveia and Tiffany [58] showed that if the lipids in tears
are removed, the viscous response becomes Newtonian (shear-independent).
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• Airway mucus is normally degraded by proteases [32]. Innes and coworkers
[59] reported that an excess of plasma proteins present in acute asthma patients
inhibits the degradation of mucins in a protease-dependent manner. This results in
changes in the viscoelastic properties of mucus that reduces clearance, resulting
in mucus plugs occluding the airway. Why clearance is reduced is an open
question, relating back to the need for predictive models that evaluate clearance
efficiency versus viscoelastic characterization and comprehensive experiments
and theory to provide viscoelastic characterization.

• Dynamic light scattering and bulk rheology measurements reveal that gastric
mucin solutions undergo a pH-dependent sol-gel transition from a viscoelastic
solution at neutral pH (∼7) to a soft viscoelastic gel in acidic conditions (pH<7),
with the transition occurring near a pH of 4 [45, 49].

• Several studies showed that the presence of salts in mucin solutions greatly
affects their rheological properties [46, 49, 60]. In particular, the concentration
of salts is correlated with decrease in mucin gel strength. This is consistent with
other studies showing that inhalation of hypertonic saline increases mucociliary
clearance (MCC) [61] and aids in mucus clearance for cystic fibrosis patients
[62, 63].

We are still far from a synthesis of the biochemical basis that conveys mucus
with its functional properties, still far from a viscoelastic classification of mucus
specific to human organs or epithelial surfaces, still far from quantifying how
mucus viscoelasticity varies during the life of a healthy human, and still far
from quantifying how mucus viscoelasticity evolves with disease. However, the
importance of the viscoelastic properties of mucus for many physiological functions
is undeniable [38,57–59,64–68], nor can one deny the biomedical potential of tools
that selectively modify mucus viscoelasticity [69–72]. Note that the awareness that
mucus viscoelasticity is the controlling factor for barrier and clearance properties,
and that efficiency of the diffusive barrier to specific foreign particles and of trans-
port from specific clearance mechanisms, is relatively new in biology and medicine.
This recognition can only be exploited effectively if the science and engineering
tools are developed and implemented in physiologically relevant and clinically
relevant conditions.

2.2.1 Rheological Characterization

As discussed above, the rheology of mucus is determined by its composition
and structure. However, rheological properties are dynamic rather than static
measurements. In this sense, it is important to recognize that the rheology of mucus
also depends on its interaction with dynamic forces like ciliary beating and airflow,
eye blinking, gut contractions, etc. Thus, as with any other viscoelastic material,
the rheological testing of mucus gels yields different results with different applied
stresses or deformation frequencies.
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• Dynamic Moduli. One way of classifying the rheological response of viscoelastic
materials is through the frequency-dependent storage (G′(ω)) and loss (G′′(ω))
moduli. In Fig. 2.3, the dynamic moduli of mucus from different sources have
been plotted. The wide range of values observed in the figure arises from
differences in measurement methods, functions and composition of the different
types of mucus secretions, and samples obtained from normal and pathological
individuals. Because of the dependence of mucus viscoelastic properties on the
driving frequency, in the studies of the rheology of airway mucus, frequencies
need to be chosen to mimic different transport mechanisms. Examples are the
low-stress, high-frequency forces applied by beating cilia (∼10 Hz or 62 Rad/s);
the low-stress, low-frequency extrusion of secretions from glands (∼1,z or
6 Rad/s); or the high-velocity, high-stress forces imposed by cough or high-
frequency ventilation or percussive therapies.

It is important to note that the viscosity of human respiratory mucus has often
been given as 12–15 Pa-s with a relaxation time of about 40 s and elastic modulus
of 1 Pa. These values are said to represent an optimal rheological profile for MCC
[33]. However, it becomes apparent in Fig. 2.3 that such a classification of mucus
viscoelastic properties in terms of a single value of the moduli fails to capture the
complex spatial and temporal interactions of mucus with physiological forcing.

• Spinnability. Another rheological measurement used to determine mucus prop-
erties like adhesion and elasticity is spinnability. Spinnability is characterized
by the mucus ability to be drawn into long threads under the effect of traction,
which measures the cohesive forces that hold the mucus together. A typical mea-
surement is performed with a given mucus volume (typically 30-μL) stretched at
some velocity (e.g., 10 mm/s). An electric signal conducted through the sample
is interrupted at the point where the stretched thread is broken. This measured
distance is reported as the spinnability of the sample. The spinnability of normal
respiratory mucus ranges from 40 to 100 mm and becomes less for sputum
[77, 78]. In a model study, a high spinnability was found to correlate inversely
with cough clearance [79]. Table 2.1 shows several values of the spinnability of
respiratory mucus.

2.2.2 Modeling Mucus Rheology

It is clear that, to faithfully characterize mucus in terms of predictive models, one
must consider the dynamics of the gel network together with a wide range of
interactions and conditions that affect the properties of mucus. One of the main
challenges in the study of the rheological properties of mucus resides in the vast
set of factors affecting such properties in vivo. Mucus harvested from human
bronchial epithelial (HBE) cultures provides a model respiratory mucus free of
inhaled infectious and inflammatory materials [56, 83, 84]. Here we show passive
microrheology results for the linear dynamic moduli of HBE mucus and then use a
canonical viscoelastic model, the UCM model, as a mode basis to fit the data. For a
detailed review of microrheology methods see Chap. 3.
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Fig. 2.3 Comparison of the viscoelastic properties of different types of mucus. Data points are a
compilation of viscoelastic properties of mucus reported in the literature including: HBE mucus,
[73], cystic fibrosis (CF) sputum [33], gel fraction of CF sputum [74], cervicovaginal mucus
(CVM) [33], sinonasal mucus in patients with chronic sinusitis (CS) [68], pig gastrointestinal
mucus (PGM) [49, 75], and sputum obtained by direct collection (DC) [76]
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Table 2.1 Values of
spinnability for three different
types of respiratory mucus

Source of mucus Spinnability (mm) Reference

Endotracheal tube technique 35.7 ± 17.5 [80]

CF sputum 12.6 ± 2.99 [81]

Patients with bronchiectasis 11.6 ± 0.4 [82]

Fig. 2.4 Fittings of 5 wt%
HBE mucus to the UCM
model with one relaxation
time (top) and five relaxation
times (bottom). Data courtesy
of David Hill, Cystic fibrosis
Pulmonary Research and
Treatment Center, The
University of North Carolina
at Chapel Hill
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The moduli of a multimode UCM model, consisting of a linear superposition of
UCM modes, are the summation of the moduli, given in Eq. (2.9):

G′(ω) =∑
i

G0,i
(λiω)2

1+(λiω)2 , G′′(ω) =∑
i

G0,i
λiω

1+(λiω)2 . (2.10)

Figure 2.4 shows fittings to a 5 wt% HBE culture sample. The presence of multiple
relaxation modes describing the linear dynamic response of mucus is evident.

A viscoelastic material is said to behave like a liquid at a given frequency if it
dissipates more energy than it stores, i.e., the loss modulus is greater than the storage
modulus (G′′ > G′) at that frequency. Similarly, the material behaves elastically
(or gel-like) at a given frequency if G′′ < G′. In the UCM model, the relaxation
time, λ , marks a transition from liquid-like to elastic-like, as seen in the right
top in Fig. 2.4 where the blue solid curve (G′′) intersects the dashed red curve at
λ =10 rad/s.
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Fig. 2.5 Storage (G′) and
loss (G′′) moduli for two
concentrations of HBE
mucus: 1.5 wt% (blue) and
5 wt% (green). When
G′ < G′′ mucus dissipates
more energy than it stores,
behaving like a liquid. When
G′ > G′′ the storage of energy
is greater than the dissipation
and mucus behaves like an
elastic gel. Data adapted
from [73]
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Across physiological frequencies, e.g., from 0.1–100 Hz, HBE mucus has been
shown to behave like a viscoelastic fluid (G′′ > G′) at low mucin concentrations
and like a viscoelastic gel (G′′ < G′) at larger concentrations as shown in Fig. 2.5.
The concentration at which the transition from a liquid to a gel occurs is called
the gel point (GP). Recent studies show that the GP for HBE mucus is around a
concentration of 4 wt% [73].

2.3 Respiratory Mucus Clearance

The airway epithelium is covered with a layer of fluid called the airway surface layer
(ASL) composed of PCL and a mucus layer; see Fig. 2.6. In the human lungs, the
mucus layer is believed to be ∼2–70μm thick [85]. This thickness is determined by
the balance between the rate of secretion and rate of degradation and shedding [28].
Mucus is produced at a resting rate of 0.5–1 ml of mucus per square centimeter of
epithelial tissue surface over a 24-h period [43]. Studies of mucus transport velocity
in vivo show that typical mucus transport rates in the trachea are 7–14 mm/min
[86]. According to several in vivo studies, airway secretions loaded with organic
and inorganic matter are typically cleared within 6 h [87]. This means that clearance
of the entire tracheobronchial tree is mainly completed within 24 h [88]. In healthy
individuals, the rate of mucus secretion is carefully balanced by mucus clearance.

2.3.1 Mucociliary Clearance

The human airway surface coating consists of an overlaying gel-like mucus layer
and a lower PCL, which protects the epithelial surface from inhaled pathogens
and particulates contained in mucus, as shown in Fig. 2.6. To prevent infection or
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Fig. 2.6 Visualization of
ASL surface setup. The cilia
is in the lower PCL and it is
in constant contact with the
mucus gel layer. Figure
adapted from [89]

inflammation, airway mucus must be cleared by a combination of coordinated cilia
and airdrag; clearance requires a balance between the rheological properties of the
mucus, PCL properties and volume, ciliary beat frequency and cilium length [32],
and air–liquid transport [90, 91]. The PCL in healthy conditions is ∼ 7μm thick
[92,93]. The thickness of the luminal mucus layer varies throughout the respiratory
tract, increasing from distal to proximal airways [93, 94].

The continuous ciliary beating propels mucus, in a proximal direction, up and
out of the lung [28, 32, 43]. The coordinated beating of cilia can propel the mucus
layer at reported speed of 1–10 mm/min [28,95,96]. During the effective stroke, the
ciliary tips penetrate into the mucus layer, and, during the recovery stroke, they
withdraw from this layer, as seen in Fig. 2.7 [97, 98]. Thus, most of the ciliary
motions occur within the PCL, and only the tips of the cilia sweep against the mucus
gel, thereby optimizing the propulsive force of the ciliary beating in MCC. When
cilia penetrate mucus, they tend to bend backwards and if this bend is too great
because of excessive mucus viscosity the system does not work effectively [99].
One can perform a back-of-the-envelope calculation to determine the dissipative
losses per unit volume of the cilia beating in the PCL. These loses are proportional
to ηPCL(ωLδPCL)

2, where ηPCL is the viscosity and δPCL the thickness of the PCL,
L is the length of the cilium, and ω the frequency of the beat. As an illustration, it
has been shown that defects like cilium damage, reduced cilia beat frequency, and
reduction of cilia length are factors that hinder MCC in smokers [100].

Phase shifts between beating cilia result in patches of adjacent cilia that
coordinate in the propulsion of mucus [98,102]. The mechanism of mucus transport
by cilia is a biological illustration of active microrheology discussed in Chap. 3.
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Fig. 2.7 Two layer hypothesis of airway secretions, showing the profile appearance of the cilia
at successive stages of the beat cycle and their relationship to the overlying mucus (mu). Figure
from [101]

Cilia-mucus interactions are related to swimmer-like propulsion in complex fluids,
discussed in Chaps. 7 and 8, with a role reversal: the cilia aim to move the fluid past
them rather than propel themselves. In order to produce a synchronous, wave-like
movement of cilia (a so-called metachronal wave), it is widely believed that the PCL
should have a low viscosity, which we argue against below. The characteristics of the
synchronous metachronal wave are determined by the size and spacing of the cilia
patches as well as the viscoelastic properties of the PCL. In addition, the thickness of
the periciliary layer is critical for effective propulsion of mucus [98,103]. The view
that the PCL is a low-viscosity layer does not recognize that this layer is rich in many
of the same mucin molecules that comprise mucus. A more recent view of the PCL
has been proposed by our colleagues Button et al. [55]. The authors proposed a gel-
on-brush model of the airway surface where the PCL is stabilized by osmotic effects
and intermolecular repulsions. In addition, the macromolecules tethered to the cilia
form a mesh that prevents large molecules and inhaled particles from penetrating
the PCL. In general, if the periciliary layer is too shallow the cilia will not be able to
perform a recovery stroke, and if it is too deep the cilia will not reach the mucus layer
and the mucociliary action will be uncoupled [55]. Volume and composition of the
PCL is mainly controlled by two mechanisms [104–106]: active ion transport and
the continuous replenishment of loss of water by evaporation. For a more detailed
discussion of the composition of the PCL we refer the reader to [55] and references
therein. Finally, some reported characteristics of cilia are given in Table 2.2.

MCC relies not only on coordinated ciliary activity but also on specific rhe-
ological properties of mucus. It is widely believed that mucus viscoelasticity is
optimized for clearance by coordinated cilia, yet as in any biological function,
secondary mechanisms must exist such as tidal breathing and coughing. Indeed,
in conditions such as the rare genetic disorder called primary ciliary dyskinesia or
advanced lung disease, cilia are either asynchronous or unable to penetrate mucus,
and air–liquid pumping is the primary mucus clearance mechanism [109]. Deep
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Table 2.2 Reported properties of cilia

Quantity Value

Cilium heighta 5–8 μm

Cilium diametera 0.15–0.3 μm

Frequency of beata 10–20 Hz (60–120 Rad/s)

Wave length of metachronal wavea 20–40 μm

Cilia spacinga 0.3–0.4 μm

Density of ciliaa 6–10 per μm2

Number of cilia per cella 200–400

Duration of effective strokeb 10 ms

Percentage effective stroke in beat cycleb 20 %

Duration of restb 13 ms

Percentage rest in beat cycleb 26 %

Duration of recovery strokeb 27 ms

Percentage recovery stroke in beat cycleb 54 %

Speed of a tip cilium during effective strokeb 1 mm/s

References a[107], b[108]

in the lung, surfactants are prevalent whereas cilia density is very low and air is
essentially stagnant; surfactant gradients play a significant role in clearing deep lung
particles, a very slow mechanism relative to other mucus clearance modes. Under
normal conditions, when the tip of a cilium engages the surface of the mucus layer,
it sweeps with a shearing motion in the power stroke that is fast (recall cilia beat
cycles are 10–15 Hz) and acts over micron scales. Silberberg argues that the elastic
characteristic of the mucus gel dominates the efficiency of transport [26]. Hence, it
is argued that cilia can only transport mucus if it has the proper viscoelasticity.

It turns out that frog palates are a good model system to evaluate MCC. Although
the palate stops secreting mucus some time after excising the palate, the cilia
continue to beat, allowing the placement of mucus samples or mucus simulants to
be transported by cilia [110, 111]. With this setup, it has been shown that ciliary
beating is unable to transport a variety of purely viscous materials. In addition, as
the elasticity of mucus and mucus simulants is increased, there is a sharp increase
in the clearance rate up to an optimal value, followed by a slow decrease in mucus
transport [112]. Thus there is strong evidence of a mucus viscoelastic “sweet spot,”
yet such results have yet to be reproduced with high-fidelity models. We point the
reader to Chaps. 7 and 8 and the article by Teran, Fauci, and Shelley [113] for issues
of optimal transport in complex fluids.

From the clinical and observational perspectives, there are numerous interpreta-
tions that have guided treatments for compromised mucus clearance. If respiratory
mucus becomes too runny, i.e., more viscous than elastic, gravity may dominate
ciliary transport, as observed when mucus drains from the nasal and sinus cavities.
Often, gravitational drainage therapy is preceded by inhalation of hypertonic saline
solutions to “thin” the airway mucus. On the other hand, if mucus becomes too
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“hardened,” i.e., more elastic than viscous, it hinders transport by cilia for potentially
many reasons. For instance, the storage modulus may be so high that mucus resists
the stress that a beating cilium is capable of generating in the power stroke. Thus,
cilia are unable to penetrate the mucus layer. Often a drug or physical therapy is
capable of softening mucus temporarily to reinstate MCC. The viscoelasticity of
mucus is apparently regulated to obtain the best compromise between the elasticity
needed to prevent gravitational drainage (which leaves airway epithelia exposed
to pathogens) and to provide efficient ciliary transport [26]. Healthy mucus is a
gel with relatively low viscosity and elasticity that is easily transported by ciliary
action, whereas pathological mucus has higher viscosity and elasticity and is less
easily cleared [28, 73, 114]. Although, the viscosity of mucus results in energy
loss, these loses are necessary for mucus to be displaced and either expectorated
or swallowed [26, 32]. The elasticity of mucus is potentially important to minimize
energy, with little energy loss from physiological forcing. As mucus becomes more
viscous, there is a tendency for the ciliary beat frequency to decrease [43, 115]
and the length and coordination of the metachronal wavelength become less
efficient. We refer to several reviews related to these interpretations associated with
efficiency of clearance and mucus viscoelasticity [95,103,116–119]. Again, without
accurate modeling and simulations, it is virtually impossible to quantify all of these
competing effects.

To explore the interplay between phasic forcing conditions and the viscoelastic
properties of a complex fluid such as mucus, we consider the model problem of
a viscoelastic material between two plates, with the upper plate stationary and the
lower plate oscillating with frequency ω and maximum speed U0,

ux(y = 0) =U0 cos(ωt). (2.11)

In this way, the movement of the lower plate captures, in a geometrically simplified
sense, the effect of ciliary beating. We seek to assess the work consumed in phasic
boundary forcing of a viscoelastic layer, and how elasticity contributes to the
workload. Assuming “viscometric conditions” typical of rheometers, the velocity
in the gap is given by [120]

ux(y) =U0

(
1− y

H
cos(ωt)

)
, (2.12)

so that the shear rate is spatially uniform throughout the plate gap:

γ̇xy(y) =
∂ux

∂y
+
∂uy

∂x
=

U0

H
cos(ωt). (2.13)

Finally, the rate of work is given by the dissipation function [21]:

τ : ∇u = τxyγ̇xy. (2.14)
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In one period, 2π/ω , of the oscillating plate, the net work done is

W =

∫ 2π/ω

0
τxyγ̇xydt. (2.15)

For a Hookean elastic solid τxy =Gγxy, so W = 0, whereas for a simple viscous fluid,
τxy = ηγ̇xy, and

W ∗ =
∫ 2πω

0
τxy γ̇xydt = η

(
U0

H

)2 ∫ 2π/ω

0
cos2(ωt)dt = η

(
U0

H

)2 π
ω
. (2.16)

Thus the network is minimal for elastic materials and maximal for viscous materials.
For a linear viscoelastic material of Maxwell type, the scalar shear stress

constitutive equation is

τxy +λ (dτxy)/dt = ηγ̇xy = η
U0

H
cos(ωt), (2.17)

which yields

τxy = η
(

U0

H

)2 1
1+(ωλ )2)

[
e−t/λ + cos(ωt)+ωλ sin(ωt)

]
, (2.18)

so that

W = η
(

U0

H

)2 π
ω

(
1

1+(ωλ )2

)2 [ωλ
π

(
e−2π/ωλ − 1

)
+ 1+(ωλ )2

]
. (2.19)

Figure 2.8, shows values of W normalized by the viscous work per cycle W ∗,
given in Eq. (2.16), and illustrates the compromise between elastic and viscous
characteristics of the fluid. This simple calculation involves far too restrictive
assumptions on geometry and constitutive modeling, and it assumes that work per
cycle is a relevant metric for biology. The point of this illustration is to show that one
can formulate any number of metrics, e.g., mass transport for asymmetric forcing
conditions, but any quantitative analysis requires a constitutive model, so that a
heavy premium is placed on the accuracy of constitutive modeling for lung mucus.

Since the mucin network controls viscoelasticity, the rheological properties of
mucus can be modified, potentially dramatically, by overproduction of mucins
(common in COPD), by the presence of other molecules that disrupt the gel (such
as inhaled or ingested drugs or environmental toxins), or by dehydration of the
mucus layer (common in cystic fibrosis (CF)). It follows that the balance between
secretion and clearance must be maintained so that mucus viscoelasticity remains
within efficient ranges for the mechanism(s) that mucus performs in different parts
of the human body. The evolution from healthy to pathological mucus occurs
by multiple processes such as abnormal secretion of salts and water, increased
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Fig. 2.8 Normalized rate of work for viscous, elastic, and viscoelastic materials as a function of
driving frequency in a parallel plate shear cell under viscometric flow assumptions. Normalization
is with respect to the viscous work per cycle W ∗, given in Eq. (2.16)

production of mucins, infiltration of mucus with inflammatory cells, and height-
ened bronchia-vascular permeability [121]. Some inflammatory conditions induce
mucin overproduction and hypersecretion. In cystic fibrosis (CF) and other chronic
inflammatory airways diseases [57, 122–125], other large polymers predominate in
the airway secretions; these biological macromolecules together with bacteria and
other cell components are prevalent in the larger airways of the respiratory tract,
constituting sputum that is recovered in the clinic. Breakdown in mucus clearance
leads to a cascade of deleterious effects, including clogging of airways and safe
harbor for infectious microbes [121]; see Fig. 2.9.

On the other hand, if the mucus mesh becomes more dilute or porous or
chemically unresponsive so that bacteria and viruses diffuse more freely and rapidly,
epithelial cells and tissue are under-protected and once again risk of infection
increases [126,127]. Similar conditions arise in the viscoelasticity of cervical mucus
(CVM). For instance, in women with bacterial vaginosis, the viscosity of the CVM
is lower than in those with normal flora, which may be responsible for the increased
risk of infection by HIV and other sexually transmitted pathogens, as well as other
adverse gynecological conditions [126]. An understanding of the diffusive barrier
properties of mucus in the human body and the development of predictive models
based on experimental rheological data are major areas of open research, with public
health implications.
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2.3.2 Modeling Mucociliary Clearance (MCC)

Mathematical models of mucociliary transport incorporate the effects of a large
number of cilia beating in a coordinated manner with the two-layer (mucus and
PCL) airway surface liquid (ASL). Low Reynolds numbers characterize the fluid
mechanics of the ASL, since small velocities (microns per second), length scales
(microns), and high viscosities (low-frequency shear viscosity of typical lung mucus
is 2–3 orders of magnitude greater than water [33]) are prevalent. The reader is
forewarned that low Reynolds number is a simple viscous fluid “guiding parameter”
and only a small part of the story in viscoelastic fluid mechanics. The sentence just
above makes perfect sense in viscous fluids, yet it does not say anything about the
elasticity of the medium, the frequency-dependence of viscous and elastic moduli,
nonlinearity of the microstructure during transport, etc. Theoretical models, to the
extent that they encode the relevant viscoelastic properties of mucus, can provide
information on the transport induced by an imposed cilia beat pattern or stresses
from air drag. However, several length scales are involved: molecular length scales,
relative to the biochemical structure of mucus; length scales associated with the
cilium tip (∼1μm); lengths associated with the cilium length, cell size, and ciliary
wavelength; length scales associated with the length and diameter of an airway
(5–10 mm). Of particular importance with regard to cilia-mucus interaction is
the scale of the cilium tip with respect to the entangled network of molecules
constituting the mucus, since at these scales the cilium tip is comparable to the
molecular characteristics of the mucin network [28, 107, 128].

Flow models, to be useful, should enable the prediction of MCC and, more
importantly, suggest means for modifying the system. King et al. [129] proposed
a planar two-layer fluid model to study the transport of mucus in the respiratory
tract due to cilia beating and air motion. While their model was based on certain
restrictive assumptions, such as zero mean PCL transport, they predicted that
clearance increases as the elastic modulus decreases in agreement with experimental
observations.

In contrast to the well-described axial transport of mucus along airway surfaces
via ciliary action, theoretical analyses predict that the PCL is nearly stationary.
However, experimental studies have concluded that the entire PCL is transported at
approximately the same rate as mucus, 39.2 ± 4.7 and 39.8 ± 4.2μm/s, respectively
[117]. Removing the mucus layer reduced PCL transport by > 80 %, to 4.8± 0.6μm
/sec, a value close to that predicted from theoretical analyses of the ciliary beat
cycle; hence, the rapid movement of PCL is dependent upon the transport of mucus
[117]. In addition, movement of the PCL has proven important for mixing effects
[117]. These seminal studies, and a revisitation of the conclusions drawn from tracer
markers in the PCL and mucus layers, were the focus of initial conversations by
Forest and the applied math group at UNC with faculty in the cystic Fibrosis Center
at UNC and Richard Superfine from Physics at UNC. That was a decade ago, with
interactions leading to the Virtual Lung Project at UNC.
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Several theoretical mucociliary transport models are discussed by Sleigh
et al. [93, 130]. We summarize some of them next and point the reader to Chaps. 7
and 8 for a related discussion of locomotion through complex fluids.

• Envelope model [131]. This model assumes that cilia are densely packed, so that
the fluid effectively experiences an oscillating material “sheet”.

• Sublayer model [132]. Initially proposed by Blake, in this model individual
cilium is modeled as a flexing cylindrical body anchored at the cell surface. The
action of a large number of cilia is modeled by a continuous distribution of force
per unit volume within the cilia sublayer.

• Discrete cilia model [133]. The cilia are represented by a distribution on
of Stokeslets with appropriate mirror images to satisfy the no-slip velocity
boundary condition at the cell surface. The flow in the cilia sublayer is then
determined by summing the individual cilium velocity fields, in the infinite plane
approximation.

• Traction layer model [134, 135]. This model is the continuous version of the
sublayer model. The action of a large number of cilia is modeled by a continuous
distribution of force per unit volume within the cilia sublayer.

2.3.3 Modeling Mucus Transport in the Human Respiratory Tract

In healthy subjects, the layer of mucus lining the respiratory tract epithelia is only
∼5–10µm thick and rests on an ∼7µm sol phase. The diameter of an adult human
trachea is ∼1 cm, while the diameters for subsequent branches are successively
smaller [136]. The manipulations of physical therapists are known to be clinically
efficient, but outcomes are mostly empirical since the biophysical mechanisms
involved in these manipulations are not well understood. Mauroy and coworkers
[137] developed a model of mucus clearance in idealized rigid human bronchial
trees to study the interaction between tree geometry, mucus physical properties,
and amplitude of flow rate in the tree. Their results showed that airflow rate and
viscoelastic properties of mucus determine the maximal possible mucus thickness
in each branch of the tree, resulting in a specific distribution of mucus thickness
and properties along the tree. In general, most models of mucus transport in the
respiratory tract include the following assumptions [105]:

• Mucus layer thickness is assumed constant within single airway bifurcations.
• Transport of the mucus layer has a constant net velocity.
• Mucus production rates in the terminal bronchioles are considered equal.
• Thickness of the mucus layer lining the wall of a given airway tube is negligibly

small with respect to the airway diameter.

Recent work by Sorin Mitran [138, 139] attempts to bridge cilia geometry, cilia
force generation, cilia density, a viscous PCL layer, a viscoelastic mucus layer, and
an air phase toward a predictive tool for mucus hydrodynamics. Similar modeling
and simulation tools are under development by (and partially with) our colleagues,
including Ricardo Cortez, Lisa Fauci, Anita Layton, and Karin Leiderman.
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2.3.4 Cough Clearance

A second mechanism for the expulsion of mucus from the airways is cough
clearance, which becomes a primary clearance mechanism when MCC fails. The
hydration of mucus dramatically affects its viscous and elastic properties, which
in turn determines how effectively it is cleared by ciliary action and cough [121].
This may help explain why lung diseases caused by impaired ciliary function
are less severe than those caused by dehydration, which impedes both clearance
mechanisms [121].

King and coworkers [140] examined the relationship between mucus rheology,
depth of the mucus layer, and clearance by simulated cough. Cough clearance
and adhesion were explored in experiments on mucus transport. They found that
high elasticity of the mucus, G′ > G′′, impedes clearance. These findings show
an opposite relationship to that seen in ciliary clearance, suggesting that healthy
mucus may exhibit intermediate levels of elasticity because it must be capable
of responding to both forms of clearance, i.e., mucociliary and cough. It follows
that medications that decrease viscosity, such as mucolytics, may benefit ciliary
clearance but hamper cough clearance, while medications that decrease the adhesion
of secretions to the epithelial surface are likely to improve airflow-dependent
clearance [141].

Camassa et al. [90] studied, experimentally and theoretically, flows where an
annular viscous liquid film lining the wall of a tube is forced upwards against
gravity by turbulent airflow up the core of the tube. This core-annular flow
configurations mimics mucus clearance in the trachea and was pursued to reproduce
and extend seminal experiments by Kim et al. [91, 142, 143]. The authors derived a
longwave, fully nonlinear asymptotic model to interpret experimental observations
and data against model simulations. Traveling wave solutions of their model predict
a transition between different mass transport regimes. Past a certain threshold
that can be identified with surface tension of the liquid-air interface, sufficiently
large-amplitude waves begin to trap boluses of fluid, which propagate upward
disconnected from the wetting layer similar to vortex rings sliding between the
viscous film and air. This theoretical result is then confirmed by a second set of
experiments that show ring waves of annular fluid propagating over the underlying
creeping flow. By tuning the parameters of the experiments, the strength of this
phenomenon can be adjusted in a way that is predicted qualitatively by the model.
Recent results based on a different turbulent airdrag closure have brought the
theory and experiments much closer to quantitative accuracy [Camassa et al. 2013,
preprint]. The extension of these experiments and models to viscoelastic fluids that
mimic mucus is in progress. Furthermore, the modeling platform of Mitran [144]
is proposed to explore fully resolved air–liquid pumping simulations. The goal of
these studies is to assess the efficiency of turbulent air drag in transporting mucus
layers in airways. The relative efficiency of air–liquid pumping versus coordinated
cilia or chest cavity compressive pumping is unknown.
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2.4 Diffusion in Mucus

The following discussion can be more profitably read after Chap. 3, since passive
microrheology is based on diffusion of microbead probes in soft matter. The depo-
sition and clearance of particulates in mucus layers have been under investigation
for decades [145]. Generation of suitable therapies that effectively deposit particles
in the mucus layer has long been thought to be the only relevant factor for successful
drug absorption. However, efficient deposition of particles, although still important,
is not always a sufficient condition for successful drug delivery. Particle diffusion
through the mucus barrier, just like the flow of mucus, is not a simple process
where particles obey simple diffusion laws. New experimental tracking methods
have provided a wealth of data on particles with diameters down to tens of nm
up to microns, where the particles not only range in size (hydrodynamic radius)
but also in their surface interactions with the mucin gel network. Because of this
heightened awareness, there is a compelling need to understand and control what
happens after particles have landed in the mucus layer. We refer to our recent articles
and references therein [73, 146–148].

In the lungs, objects trapped in the mucus gel are transported at rates up to
5–10 mm/min by beating cilia and are delivered to the GI tract for inactivation
and digestion. The luminal gel layer of respiratory mucus is replaced as rapidly
as every 10–20 min, resulting in extremely efficient clearance of inhaled particles.
Trapping and rapid clearance is crucial to protect the airway epithelium from the
onslaught of pathogens and environmental toxins we breathe everyday. However,
the “mucociliary escalator” also serves as a major barrier to the delivery of
therapeutic nanoparticles. Strategies to address this barrier and more efficiently
deliver therapeutic nanoparticles to the lungs include mucoadhesive particles,
mucus-penetration particles, and mucolytics [145]. The success of these strategies
lies in the experimental and theoretical understanding of the diffusive properties of
mucus and the underlying interactions between the deposited particulates and the
mucus gel matrix.

The study of self-diffusion of nm and micron-scale particles in mucus is
important to determine the movement of toxic agents within the layer, as well as
for drug delivery and gene delivery therapies [96]. This study is twofold. On one
hand, there is the need to understand to what extent particles, characterized by a
given surface charge and hydrophobic or hydrophilic properties, are able to diffuse
through the network structure. On the other hand, one needs to understand how
the network hydrophobic and hydrophilic regions, negatively charged biopolymers
[96], and topological constraints arising from the pores present in the network
affect such diffusion. That is, if one controls the particle diameter and modifies
surface chemistry, then physics of adhesion or repulsion of nearby polymer chains
can likewise dramatically alter the diffusive paths. If one varies the particle
diameter with controlled surface chemistry, then the observed diffusive scaling
varies significantly. This is accentuated if the particle diameter is comparable to
the pore/mesh scales in the polymeric network [149, 150].
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The various mucin molecules and other proteins in mucus form a heterogeneous,
three-dimensional network with a potentially fractal length-scale distribution. The
incorporation of the complex mucus microstructure into estimates of particle
diffusion in mucus has been modeled in various ways. One approach is to consider
the microstructure as a physical obstruction to particle diffusion. This effect is
then modeled as a reduced self-diffusion coefficient of the particles. In addition to
reduced particle mobility (i.e., lower diffusion coefficients than in the pure saltwater
solvent), these obstructive effects can result in a broad distribution of effective
particle diffusivities within the gel matrix; clearly one particle may not sample
the same length scales of the mucus network as another. It is an intriguing open
problem to explore how these effective diffusivities (again, assuming particles obey
simple diffusion but with reduced diffusivity relative to the solvent) reflect the
heterogeneity of the mucus microstructure. One can, for example, use the mean
diffusivity of multiple particle paths with a range of particle diameters to infer a
mesh distribution of pore sizes. Carrying this out in a reasonably rigorous manner
remains an open problem, yet it is highly relevant to understand the diffusion of
diverse species in mucus, including viruses, bacteria, airborne particulates, and
many other inhaled substances.

Studies of passage times through mucus layers are riddled with complications
that arise because the particles not only have to overcome the gel matrix barrier
but also it is not completely known how different particles will interact with mucus
under pathological conditions. For instance, Sanders and coworkers [96] performed
a study of passage times in CF and COPD sputum. They observed that a low
percentage of nanospheres, with a diameter of 270 nm, moved through a 220-μm-
thick CF sputum layer after 150 min. Whereas larger nanospheres (560 nm) were
almost completely blocked by the sputum, smaller nanospheres (124 nm) were
retarded only by a factor of 1.3 as compared with buffer. In addition, they found
that sputum from a patient with COPD retarded the transport of nanospheres to the
same extent as CF sputum [96]. Interestingly, the authors found that nanospheres
diffused significantly more easily through the more viscoelastic sputum samples.
These findings are in contrast to studies that showed that mucolytic agents, which
decrease the viscoelasticity of biogels, enhance the transport of drugs and colloidal
drug carriers [151,152]. Sanders and coworkers argued that this increase in the mean
diffusion of the nanospheres in the more viscoelastic medium is due to the increased
heterogeneity in the network. This claim is supported by studies with synthetic
gels. Mallam et al. [153] observed that increasing the concentration of junctions
in these gels changes the network structure from a homogeneous microporous
matrix into a more heterogeneous macroporous network. These studies point to the
importance of determining the mesh length-scale spectrum and identifying degrees
of heterogeneity in the sample. Below we summarize several research efforts to
determine mesh sizes in mucus samples. Characterization of heterogeneity is more
challenging and relies on the formulation of mathematical models and tools capable
of faithfully reproducing the observed diffusive behavior of particles in mucus.
Several steps have been taken in this direction and we summarize them at the end of
this section.
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If we are able to screen two related effects: the binding-unbinding kinetics of
the various diameter particles to the mucus mesh and the repulsion vs. attraction
of the mesh to the particle surface chemistry, then, in principle, single particle
microrheology should reveal sufficient information about the mesh length-scale
distribution of a given mucus sample. One should note, however, that the inference
of mesh length scales is not immediate. The particle increment process (the
measurable data) is a result of all lengthscale fluctuations of the mucus network,
not simply those associated with the particle diameter. Therefore, the challenge
is to somehow learn how different length-scale particles behave across the entire
relaxation spectrum of the mucus gel and then to be able to learn the mucus network
structure from the cumulative results of particle paths across a range of particle
diameters. This inverse problem is far from solved; each particle diameter reflects a
different sampling of the colored noise spectrum from the mucus microstructure.

2.4.1 Modeling Diffusion in Mucus

A standard practice in the microrheology and drug delivery literature is to report
mean-squared displacement (MSD) of particle position data on a log-log plot. MSD
is calculated as

〈
Δr2(τ)

〉
=
〈
[r(t + τ)− r(t)]2

〉
, (2.20)

where r(t) is the position of the particle at time t, τ is the lag time between the
two positions taken by the particle used to calculate the displacement Δr, and the
average 〈· · · 〉 designates a time average over t and/or an ensemble-average over
several trajectories.

Reported values of MSD in mucus [73, 75, 154–156] show a sub-diffusive MSD
scaling over an intermediate dynamic range,

〈
Δr2(τ)

〉
= Dτα , (2.21)

where the power-law exponent is 0 < α < 1 and often a transition to linear scaling
(α = 1) over sufficiently long lag times. The prefactor D is the effective diffusion
coefficient with units μm2/sα .

For direct modeling of tracer particles in a viscoelastic medium, a sufficiently
robust family of stochastic processes is needed that reflects these fundamental MSD
signatures of transient sub-diffusion. With a robust family of stochastic processes in
hand, then one can build inference methods to fit model parameters to experimental
data and give a means to characterize diffusive properties of a given particle in a
viscoelastic medium [146, 148]. Below we summarize two models that have been
successfully used to describe diffusion of particles in mucus, together with simple
Brownian motion.
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• Brownian Motion
The velocity of a particle driven by Brownian motion is described by the

Langevin equation

m
d2x
dt2 =−ζ dx

dt
+F(t), (2.22)

where x is the position of a Brownian particle with mass m and drag coefficient
ζ . The force F comes from random fluctuations and is assumed to be white
noise, i.e.,

〈F(t)〉 = 0

〈F(t)F(s)〉 = 2ζkBTδ (t − s),

here kB is the Boltzman constant and T the absolute temperature. In the zero mass
limit (inertialess), Brownian motion is described by the equation

ζdx = F(t)dt. (2.23)

The MSD of a particle with a diffusion coefficient D = kBT/(6πηa) and
undergoing Brownian motion is

〈
Δr2(τ)

〉
= Dτ.

• Fractional Brownian Motion
Fractional Brownian motion [157] is a self-similar Gaussian process with

stationary increments and a uniform MSD scaling behavior,

〈
Δr2(τ)

〉
= DfBmτα , (2.24)

where DfBm is the generalized diffusion coefficient with dimensions L2/tα . The
autocorrelation function for fBm is likewise known and given by

E [Bα(t)Bα(s)] =
1
2
(|t|α + |s|α −|t − s|α) . (2.25)

Furthermore, long-range correlations are given by

〈ξα(0)ξα(t)〉 ≈ α(α − 1)tα−2, (2.26)

where ξα is the fractional Gaussian noise, so that the Langevin equation
describing simple fBm is

ζdx = ξα(t)dt. (2.27)
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From Eq. (2.26) is easy to see that uncorrelated, regular Brownian motion
corresponds to α = 1. For 0 < α < 1 the prefactor is negative and the incre-
ments are negatively correlated, rendering the associated process sub-diffusive.
Conversely, when α > 1 the motion is persistent (positively correlated), resulting
in superdiffusion in which successive steps tend to follow in the same direction.
fBm has been used to model a variety of processes including diffusion of
biopolymers inside cells [158], monomer diffusion in a polymer chain [159],
bacteria chromosomal loci [160], polymer translocation [161], diffusion in
crowded fluids [162], and diffusion of one micron particles in HBE mucus [73].

Hill and coworkers [73] found for different mucus concentrations and over
the experimental time scales (1 min) that single particle and ensemble MSD
data were remarkably well approximated by a uniform power law and therefore
consistent with a scaling of the form (2.24). Furthermore, the power law and pre-
factor were well described by the following functions of wt% of solids in the
mucus samples:

α ≈ −0.17wt%+ 1.1, for 1.5 ≤ wt% ≤ 5, (2.28)

DfBm ≈ 1.6exp(−1.5wt%), for 1.5 ≤ wt% ≤ 5, (2.29)

where the units of DfBm are μm2/sα . These excellent fits to fBm need to be
validated for longer time scales in order to apply the fBm models to predictions
of passage time distributions of particles through mucus barrier layers. It is an
open problem of intense study in our research group to predict passage time
distributions and their scaling with thickness of the mucus layer.

• Generalized Langevin Equations
Inspection of Eqs. (2.23) and (2.27) shows a general form of Langevin

equations describing the diffusion of particles. In fact, if F(t) in Eq. (2.22) is
not white noise, the motion of the particle has been described by a GLE of the
form

m
d2x
dt2 =−

∫ t

0

dx(s)
ds

K(t − s)ds+F(t), (2.30)

and the FDT connects the memory kernel function, K(t), with the random
fluctuation force by

〈F(t)F(s)〉= kBT K(|t − s|).

In the Laplace transform space, the one-dimensional GLE becomes

mz2X̃(z) =−K̃(z)z X̃ + F̃. (2.31)

This is similar to the simple Langevin equation for viscous diffusion, except with
a frequency-dependent drag coefficient given by the transform of the memory
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kernel. In the viscous limit, K̃ reduces to the constant Stokes drag coefficient:
6πηa, where η is the fluid viscosity and a is the particle radius.

Fricks et al. [146] explored GLEs with memory functions consisting of an
arbitrary sum of exponentials (a Prony series) and showed that the GLE can
be transformed to a large vector Langevin equation. This transformation allows
the application of well-known tools for inference from noisy time-series data
(e.g., maximum likelihood estimators and the Kalman filter) to GLEs and for
numerical generation of paths for given Prony series kernels. These tools were
implemented to illustrate the transient anomalous diffusive statistics for the two
classic, solvable models of polymer chain dynamics, namely Rouse and Zimm
models. These models exhibit transient sub-diffusive behavior with intermediate
time scale MSD scaling of t1/2 and t2/3, respectively, which are reproduced
accurately in [146]. However, the inference of parameters in the memory kernel
was restricted to a small number of memory time scales, on the order of less
than 10, whereas mucus and similar biological fluids have a broad spectrum with
decades of memory time scales.

McKinley et al. [148] made an important advance for GLEs and their
application to transient anomalous sub-diffusion, showing how to prescribe an
arbitrarily specified sub-diffusive power-law scaling in MSD on intermediate
time scales (between the shortest and longest time scales of memory in the fluid).
To do so, they generalized the Rouse and Zimm models, showing (and proving)
how the scaling in the memory spectrum can be dictated so that the MSD scales
with a tunable power law between 0 and 1. Shortly afterward, Amitai et al. [163]
published a related result on tunable MSD exponents. McKinley et al. [148]
further showed that the zero mass limit of the GLE, for an arbitrary memory
kernel, is given by a sum of exponentials and is exactly solvable, giving an
explicit particle path formula [148],

X(t) =CB(t)+
N

∑
k=1

CkZk(t), (2.32)

where X(t) is the particle position at time t, B(t) is a standard Brownian motion,
and the second term in the right-hand side is a sum of Ornstein–Uhlenbeck
(OU) processes. In this sum, each term represents one color of noise in the
process and the full-colored noise spectrum is related by explicit polynomial
interpolation to the kernel memory spectrum. Each Zk satisfies the stochastic
differential equation:

dZk(t) =−λkZk + dBk(t). (2.33)

These results now pose a three-parameter family of GLE memory kernels,
essentially dictated by the shortest and longest time scale of memory and the
intermediate power law exponent of MSD, with which to fit to experimental
particle time series data. These kernels are candidates along with fractional



2 Complex Fluids and Soft Structures in the Human Body 89

Brownian motion for best fit to particle paths in mucus and other biological
fluids. The determination of which models fit the data more accurately is an open
challenge currently being explored in collaboration with S. McKinley, J. Mellnik,
N. Pillai, and M. Lysy [164].

2.4.2 Mesh Size Distribution

Since the distribution of mesh spacing (and attractive versus repulsive interactions)
is determinant in the diffusive properties of particulates through mucus, several
studies have focused on determining the mesh size of different types of mucus based
on an obstruction scaling model. We note that these studies must assume a model for
the mucus mesh, and all inferences are based on those model assumptions. A more
fundamental approach than the one summarized next is a very important project.

2.4.3 Obstruction Scaling Model

The obstruction scaling model [165,166] assumes that the reduction in diffusivity is
due to the particle encountering polymer chain obstacles. However, this approach
assumes an effective diffusivity (i.e., Brownian motion), even though it is now
evident that particles above a few hundred nm have sublinear scaling of MSD with
time. Said differently, if one fixes a time scale of observation of paths, then it is
possible to associate a viscous diffusivity of the sample fluid for that fixed time
scale. The downside of this approach is that one will get different results for the
effective diffusivity for every time scale. Nonetheless, this modeling approach is a
common standard so it is worth understanding before proposing alternatives.

The model assumes that the effective radius of the mesh spacing is greater than
the hydrodynamic radius of the diffusing particle and there is no interaction between
the solute and the polymer. From this model, the ratio of diffusion in a gel and
diffusion in pure water is given by

Dg

Dw
= exp

[

−π
4

(
rs + r f

rg + r f

)2
]

, (2.34)

where Dg is the diffusion coefficient of the particle in the polymer gel, Dw is the
diffusion coefficient in water, rs is the particle radius, r f is the gel fiber radius, and
rg is the effective radius of the pore. For an extended discussion about these models
of diffusion through mucus, we refer the reader to Cu and Saltzman [167]. Some
reported values of mucus mesh sizes inferred from these assumptions are shown in
Table 2.3.

Note that the results from these studies imply that the mucus gel network has
pores that are larger than the diameter of many known viruses [168]. It is clear that
mucus employs methods other than obstruction to prevent viruses from infecting
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Table 2.3 Mesh size in
mucus samples

Mucus type Mesh size (nm)

Cervicovaginal mucus (CVM)a 340±70

Cystic fibrosis sputumb 145±50

Chronic rhinosinusitis mucusc 150±50

CVM treated with nonionic surfactant N9d 130±50

References: a[168], b[150], c[156], d[169]

mucosal surfaces, indicating that mucus is not just a steric barrier to deposited
particulates. Namely, mucus is also an effective “adhesive” that can immobilize
particles by hydrophobic and electrostatic interactions and hydrogen bonding [145].
These binding affinities suggest at the very least a generalization of the obstruction
scaling model to include waiting times for particle binding and unbinding, which
leads to sub-diffusive scaling [170]. Note, it is precisely these binding affinities
that surface treatments of synthetic particles are designed to screen, in order for
passive microrheology to faithfully reflect the innate fluctuations of the material. In
particular, antibodies found in mucosal secretions have been reported to immobilize
viruses and bacteria [171–175]. While one region of an antibody is capable of
forming low affinity bonds with mucus, the other region can specifically link to the
surface of pathogens. Thus, even viruses that are smaller than the average mucus
mesh spacing and that do not bind to mucin molecules can be trapped with the help
of antibodies [28]. Our research group has teamed with Sam Lai in the School of
Pharmacy at UNC to study the intricate kinetic and diffusive interactions between
antibodies, viruses, and mucus gels [176, 177]. However, to circumvent the mucus
barrier, some viruses have evolved to contain hydrophilic coatings that enhance their
mobility through the barrier by minimizing interactions with the components of the
mucus gel network [173].

One also has to keep in mind that the mucus gel is not a rigid structure.
As discussed above, the orientation and spacing between the components of the
matrix gel is maintained by a series of interactions between the various macro-
molecules and small molecules in the solvent. Mucus network fluctuations can be
strongly affected by changes in the small molecules in the solvent, e.g., significant
changes in GI mucus versus PH has been observed by several research groups
[46, 49, 178–181]. Then the use of average mesh values to describe the gel network
is a crude way to estimate mean passage time. Our focus has been on more accurate
methods of estimating passage time distributions for particles in mucus versus
particle diameter, which can vary dramatically with disease conditions [73]. To
do so, it is necessary to first identify models to describe diffusion through mucus.
Our group has spent a significant effort on modeling of the primitive particle time
series afforded by the advanced microscopy and particle tracking tools. As noted
earlier, we have focused on parametric methods [73, 146–148], based on assumed
stochastic processes and models from which we infer parameters of the model from
the experimental particle time series data, and on nonparametric methods [73],
based on statistical analyses of the time series data without any assumptions on
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an underlying model for the particle paths. Continued advances are needed in the
understanding of how particle size and surface chemistry affect the passage times
through mucus layers. These studies also provide insights into the length-scale
distribution of the mucus network, although it is an open and intriguing problem
to infer details of the mucus network structure from particle fluctuations. Clearly,
attractive and repulsive particle-mucus microstructure kinetics need to be filtered
in order to isolate fluctuations arising purely from mucus microstructure. This goal
is the reason why two-particle microrheology was developed, for a discussion see
Chap. 3.

3 Modeling Structure and Dynamics Within a Single Cell:
The Mitotic Yeast Spindle

A predictive simulation of the structure and dynamics within an individual living
cell remains a fundamental modeling and computational challenge. Cells are highly
complex structures and there are multitudes of organizational charts for a single
cell, e.g., search for “eukaryotic cell component chart.” Most research labs in cell
biology focus on specific aspects of cells and cellular processes. We will restrict
our discussion to mitosis in yeast. Yeast are a model system for eukaryotic cells,
which are distinguished by a membrane-bound nucleus and nuclear chromosomes
packaged into chromatin fibers. The lab of Kerry Bloom at UNC explores the
intricate behavior of these structures during different phases of the yeast cycle, and
our work in yeast mitosis has been with Kerry Bloom and his students, specifically
Andrew Stephens and Jolien (Verdaasdonk) Tyler.

3.1 Modeling Mitosis in Yeast Cells

In cell biology, yeast provide model systems for the study of the cell cycle and
regulatory mechanisms. Yeast are readily available, and while less complex than
animal cells, the cell cycle in yeast is remarkably similar. In general, the cell cycle
encompasses a series of events leading to the division and duplication of the cell.
Within these processes, mitosis and its regulation play a key role. Mitosis is the stage
of the cell cycle where the cell focuses its energy toward a single goal: chromosome
segregation. Models of cell mitosis based on experimental evidence serve as in vitro
labs, where different theories and mechanisms, not accessible experimentally, can
be tested. Modeling of cell mitosis can be performed at different levels. On one
hand, one can use generalized logical network models where the self-regulating cell
division system is modeled as an intricate molecular network [182–185]. In addition
to the different molecular players, the network includes a series of checkpoints
that place cell division under external control and ensure that every single step
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Fig. 2.10 Schematic of the mitotic spindle. Figure from [185]

has been completed before the next one begins. For example, sister chromatids are
not separated until chromosomes are correctly aligned during the metaphase phase.
Another approach consists on describing the mechanical and physical interaction
of the main components of the cell via force balances [185–191]. The approach
described next falls within this category. In this model the regulation of cell division
results from a force balance applied to the mitotic spindle.

The mitotic spindle ensures the equal distribution of chromosomes during cell
division. In the mitotic spindle, sister chromatids are bi-oriented and bound via
the kinetochore to microtubules emanating from opposite spindle pole bodies;
see Fig. 2.10. The kinetochore is a specialized protein/DNA structure built on
centromere DNA that binds to the plus-end of dynamically growing and shortening
kinetochore microtubules (kMTs). In yeast, each of the sixteen chromosomes is
tethered to the spindle via a single kMT [192, 193]. Other microtubules extend
inward from the spindle pole bodies and are not attached to replicated sister
chromatids. These microtubules are known as interpolar microtubules. Interpolar
microtubules (ipMT), from opposite spindle poles, overlap and are cross-linked by
microtubule motor proteins and microtubule-associated proteins, represented in red
in Fig. 2.10. These proteins (when double bound) exert outward forces as they slide
pulling the ipMTs apart [194,195]. In addition, the replicated chromosomes form the
sister chromatids (blue in Fig. 2.10) and exert inward forces through their connection
to the kMTs. Two proteins play a fundamental role in the structure of the sister
chromatids: cohesin and condensin [196–200]. These complexes, together with
DNA, constitute the “chromatin spring” [201, 202]. The balance of microtubule-
based extensional force and a chromatin spring contractile force is necessary to
produce a steady-state spindle length and tension at the kinetochore that satisfies
the spindle checkpoint [203]. The spindle checkpoint is a control mechanism that
ensures that sister chromatids are attached and aligned before the two poles separate
to form the two daughter cells.
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The microtubules, microtubule-based motor proteins, and kinetochore compo-
nents of the segregation apparatus have been explored with biophysical techniques,
leading to a detailed understanding of their function [204–208]. However, the
inherent complexity of the cell division process has made it challenging to under-
stand the underlying mechanisms, even for a single phase such as metaphase.
Mathematical and computational models are necessary to integrate experimental
results with biochemical and biophysical cellular components, with the goal to
understand the mechanochemical principles of the cell division process. From
such a basic framework, one can then begin to understand cellular dysfunction
and then apply that understanding in beneficial ways. Different models have been
formulated to study individual components of the metaphase spindle. For instance,
mathematical models of the spindle aim to account for the distribution and dynamics
of spindle microtubules [188, 189, 209–212]. One class of models consists of
stochastic equations describing kMT plus-end dynamics [188,211,213,214]. These
models include spatial gradients in dynamic instability across the spindle, as well
as tension-mediated regulation of kMT plus-end dynamics [188]. Another stochastic
model that includes kinetochore attachment and detachment was formulated by Gay
and coworkers [189]. Although microtubule dynamics were not explicitly modeled,
this model incorporated a spatial gradient in kMT detachment rate that is analogous
to the spatial gradients of Gardner and colleagues [188]. Overall, with appropriate
tuning of the spatial gradients, these models were able to recapitulate experimentally
observed features of microtubule plus-end dynamics and kinetochore separation.
However, none of the models explicitly consider the physical properties of the
chromatin spring (for a review see the article by Mogilner and Craig [206]) which
is one focus of the Bloom lab.

Some models have coupled the microtubules and motor dynamics to the chro-
matin spring. For a review, the reader is referred to Mogilner et al. [185]. What
these models have in common is that they assume the chromatin behaves as a
Hookean spring, i.e., a linear force-extension relation. The chromatin spring is
presumed to be derived via cohesion between sister chromatids [189], cohesin and
condensin-based chromatin loops [202, 215], or an entropic worm-like chain [216].
However, Stephens et al. [191, 202] developed a series of models based on
experimental observations in budding yeast cells and showed that the dynamics of
the chromatin spring are not explained by a simple Hookean spring assumption.
Using spindle length, chromatin dynamics, and stretching of individual and multiple
chromosomes in the spindle, Stephens and coworkers probed the physical nature of
the spring by comparison of measurable data with a predictive mathematical model,
described next.

3.1.1 Force Balance Within the Budding Yeast Mitotic Spindle

The components contributing to force balance in the mitotic spindle are depicted
in Fig. 2.11. We consider three main force-generating processes: (i) an extensional
force arising from double-bound motors walking directionally along ipMTs, Fip;
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Fig. 2.11 Representation of the mitotic spindle in vivo and modeling assumptions. Figure adapted
from [191]

[D] [Sip] [U] [SkMt]
koff,1

kon,1

koff,2

kon,2

kon,3

koff,2

Fig. 2.12 Schematic representation of the motors population balance. Values of the “off” and “on”
rates are discussed in the text and in Table 2.4. Figure from [191]

(ii) an opposing contractile (restoring) force generated by the chromatin spring, Fk;
and (iii) a viscous drag force, Fdrag, that accounts for the cumulative viscous drag
on the spindle. Holding one spindle pole fixed and summing all forces acting along
the primary spindle axis, the net force on the spindle pole is

∑Fon spindle pole = Fip +Fk +Fdrag = Fnet. (2.35)

The basis for a stable spindle length in the model is that a quasi-steady state is
reached between inward and outward forces, with fluctuations about a mean spindle
length arising from microtubule-based motor activity. Each force contribution is
calculated as follows.

1. Motor Force, Fip

The outward force (Fip) arises from the sliding of antiparallel ipMTs due to
plus-end-directed motors bound in the overlap region (denoted double-bound
motors, D(t)). The forces exerted by each motor, Fm, are additive, so Fip is
proportional to the total number of double-bound motors:

Fip = D(t) ·Fm. (2.36)

Four types of motors are considered in the model: Sip for motors single bound to
ipMTs, SkMT for motors single bound to the kMTs, U for unbound or free motors,
and D for double-bound motors in the ipMT overlap zone. The total number of
motors D+Sip+U+SkMT is conserved. The population dynamics is summarized
in Fig. 2.12.
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Table 2.4 Transition rates of motors; see Fig. 2.12

Description Dependence Value Notes

kon,1: attachment rate of single-bound motors to ipMTs Constant 0.13 s−1 (a)

kon,2: attachment rate of unbound motors to ipMTs Lip, Lleft, right
kMT Eq. (2.37) (b)

kon,3: attachment rate of unbound motors to kMTs Lip, Lleft, right
kMT Eq. (2.38) (b)

koff,1: detachment rate of double-bound motors Constant 0.3 s−1 (c)

koff,2: detachment rate of single-bound motors Constant 0.3 s−1 (c)

(a) The dynamics of attachment of single-bound motors in ipMTs to become
double-bound motors is assumed to follow a binomial process,

Sip → D ∼ B
(
Slap,0.12

)
,

where Slap is the number of motors in the overlap region, Llap, of the ipMTs,

Slap = Sip · 2Llap

Lip +Llap
.

The probability of success is constant and equal to 12 %. Since the relation
between the probability of attachment, pon, and the rate of attachment, kon,1, is

pon = 1− ekon,1 ,

it follows that kon,1 ≈ 0.13.
(b) The rate of attachment of free motors to ipMTs and kMTs is assumed to be

proportional to the tubulin concentration (constant) and the percentage of the
total length that is available for attachment:

kon,2 = [tubulin] · Lip +Llap

Lip +Llap +Lleft
kMT+Lright

kMT

, (2.37)

kon,3 = [tubulin] · Lright or right
kMT

Lip +Llap +Lleft
kMT+Lright

kMT

. (2.38)

(c) The rate of detachment of bound motors is assumed constant:

k off,1 = koff,2 = 0.3s−1.

2. Drag Force, Fdrag

At the low Reynolds numbers inside the cell, Fdrag is proportional to the
velocity of the spindle length (denoted Lip) given by the Stokes drag law [217],

Fdrag =−CdragVip, (2.39)

where Vip = dLip/dt.
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3. Spring force, Fk

The length of the chromatin spring Lsp is total spindle length Lip minus the

length of each kinetochore microtubule
(

Lleft
kMT,L

right
kMT

)
, where Lleft

kMT and Lright
kMT

are the length of the left and right kMT, respectively. Thus the chromatin length
is Lsp = Lip −Lleft

kMT −Lright
kMT −Lrest, where Lrest is the rest length of the spring in

the absence of force. To determine Lsp, the length of the left and right kMTs need
to be defined. We follow the model of Gardner et al. [188] as explained next.

3.1.2 Kinetochore Microtubule Length Dynamics

The kMTs grow and shrink stochastically through polymerization and depolymer-
ization, but the process is biased by the state of the kMTs, i.e., their length relative
to a threshold length and the tension in the kMTs. The dynamics of this process
was studied by Gardner et al. [188], giving the following relationships for the
probabilities of rescue (growth), pr, and catastrophe (shortening), pc,

pr = |0.21− 9.5Fk| , (2.40)

pc =
∣
∣∣0.38− 0.65(LkMT − 0.75)2

∣
∣∣ . (2.41)

To find if at a given time step a kinetochore microtubule is growing or shortening,
the following procedure is implemented. Two random numbers, rc and rr, are drawn
from a uniform distribution. These numbers are used to compute two logical values,
a1 and a2, as

a1 =

{
0 if pc < rc

1 if pc > rc
a2 =

{
0 if pr < rr

1 if pr > rr

Changes in kMT length are then determined by the following rules:

a1 a2 Process

0 0 Do nothing

0 1 Rescue (rate 17 nm/s)

1 0 Catastrophe (rate 25 nm/s)

1 1 Same as previous time step
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Fig. 2.13 Experimental
evidence and graphic
representation of piecewise
continuous spring law. In the
experimental data (top) the
spindle pole bodies (Spc29)
are labeled red, while the
green spots correspond to
labeled DNA arrays that are
1.8 kb from the centromere
(CEN 15). Figure adapted
from [191]

3.1.3 Functional Form of the Spring Force

The model assumes a nonlinear spring force that posits a threshold value for the
spring extension. Spring lengths above the threshold value result in a decreased
spring constant and an increase in rest length as depicted in Fig. 2.13.

The spring piecewise continuous spring force is given by

Fk,i =

⎧
⎪⎨

⎪⎩

−ksp
(
Lsp −Lr1

)
, Lsp < Xthres,

−ksp

(
L1

L1+xloop

) (
Lsp −Lr2

)
, Lsp ≥ Xthres,

(2.42)

where xloop and L1 are constants and the “switching” between states is assumed
instantaneous.

In addition, the 16 springs are arranged in parallel and linked to their two
nearest neighbors. The links are assumed soft linear springs with spring constant
kcross-link � ksp. Then the force law in each link is given by

Fcross-link|n+1 = −kcross-link
[(

Lsp −Lsp|n+1
)

cosθ
]
,

Fcross-link|n−1 = −kcross-link
[(

Lsp|n−1 −Lsp
)

cosθ
]
,

where θ is the angle between a cross-link and a spring, and we assumed that adjacent
springs are close enough to each other so that θ ≈ 0 and cosθ ≈ 1. The force exerted
by the spring is then

Fcross-link
k,i = Fk,i +Fcross-link|i+1 +Fcross-link|i−1,

Fcross-link
k,i = Fk,i − kcross-link

(
Lsp|i−1 −Lsp|i+1

)
,
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where Fk,i is calculated using Eq. (2.42). The total spring force is

Fk =
16

∑
i=1

Fk,i. (2.43)

4. Force-Velocity Relationship.
To calculate the force balance, Eq. (2.35), in a physically meaningful way

we impose a linear force-velocity relationship defined by two parameters: a
maximum (stall) force, FM = 6 pN, and a maximum speed, Vmax = 50 nm/s.
The net force (sum of forces) felt by double-bound motors on ipMTs is Fnet =
Fip+Fk+Fdrag, which is then distributed evenly across double-bound motors and
gives an average force per motor:

Fnet

D
=

Fip +Fk +Fdrag

D
=

FMD+Fk +Fdrag

D
,

Fper motor = FM +
Fk +Fdrag

D
.

The interpolar microtubule (therefore spindle) velocity can be determined as

Vip(t) =
Fnet

D
· Vmax

FM
=Vmax

(
1+

Fk(t)+Fdrag(t)

FMD(t)

)
. (2.44)

From Eq. (2.44) we see that:

• If Fk + Fdrag = 0, then Vip = Vmax. In other words, if the forces from the
chromatin spring and fluid drag cancel, the spindle will move at the maximum
speed of one motor.

• If the net force on the ipMTs is zero, Fnet = 0, then Vip = 0 and the spindle
is stationary. In this quasi-equilibrium condition, each motor is at or near stall
force (6 pN) and this force arises from the spring and drag forces acting on the
motors.

• The average force acting on a motor can be found as Fper motor = FM(1 −
Vip/Vmax).

5. Numerical Integration
Solving Eq. (2.44) for the spindle velocity gives

Vip(t) =

(
Umax

FMD(t)+UmaxCdrag

)
· (FMD(t)+Fk(t)) ,

so that

Vip(t) =

(
Umax

FMD(t)+UmaxCdrag

)
×

(
FMD(t)− ksp

(
Lip(t)−Lleft

kMT(t)−Lright
kMT(t)−Lrest

))
.
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To integrate this equation in time and find Lip(t+Δ t), we perform a predictor-
corrector scheme. The spindle length in the predictor step, Lip(t∗), is calculated as

Lip(t
∗) = Lip(t)+Δ tVip(t).

After this predictor step, we use Lip(t∗) to find D(t∗) and Lleft,right
kMT (t∗) and perform

a corrector step

Lip(t +Δ t) = Lip(t)+
Δ t
2

[
Vip(t)+Vip(t

∗)
]
,

where

Vip(t
∗) =

(
Umax

FMD(t∗)+UmaxCdrag

)

×
(

FMD(t∗)− ksp

(
Lip(t

∗)−Lleft
kMT(t

∗)−Lright
kMT(t

∗)−Lrest

))
.

Solutions of the model have been shown to correctly recapitulate the observed
experimental behavior and give insight into the dynamics of the chromatin
network; for a detailed discussion see [191, 218].

Finally, we point out several aspects of the modeling amenable to further
investigation. In this sense, the open research questions regarding this model
include:

• How microtubules attach to the chromosomes. It is well known that as the kMTs
grow and shorten, they “probe” space until they capture the chromosomes in a
process rightly called search-and-capture [206,219,220]. The dynamic instability
leading to growth/shrinkage of kMTs is included in the model; however the
attachment/detachment dynamics are not included, i.e., the model assumes that
the chromosomes are attached to the kMTs at all times.

• Three-dimensional resolution. The model assumes one-dimensional force bal-
ances. A generalization to a full 3-D geometry is a current research project.

• Spring force law. The piecewise continuous function used in the model cor-
rectly recapitulates the experimental observations. However, it assumes a single
“unfolding” event and an instantaneous transition. New laws can be incorporated
into the model based on a formal description of the transition states of the
chromatin loops. For example, dynamics like those used to describe folding and
unfolding of proteins [221] are being explored.

• Astral microtubules. In yeast cells, during metaphase there are approximately
2–3 astral microtubules extending from the spindle pole into the cytoplasm
(see Fig. 2.10) versus the ∼40 spindle microtubules. The astral microtubules are
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critical for spindle orientation and are acted upon by cytoplasmic dynein [222].
While the spindle force balance proposed in the model guarantees that the sister
chromatids are “centered” with respect to the spindle poles, the position of the
chromatids with respect to the cell nucleus is governed by the astral microtubules.
This coupling is another ongoing project.

• Nuclear membrane forces. The nuclear membrane has a heterogeneous morphol-
ogy. As interactions of the spindle with the nucleus wall are introduced in the
model, nuclear shape needs to be considered.

• Inward motor forces. An important component of the spindle machine is
the minus-end motor Kar3 [194, 223, 224]. Kar3 is a nonessential gene that
nonetheless contributes to the fidelity of chromosome segregation in mitosis.
Kar3 is found in metaphase along the ipMTs as well as kMTs and microtubule
plus-ends. The simplest model is that Kar3 opposes the outward motors Cin8 and
Kip1. This more detailed resolution of motor activity is another research project.

• Kinetochore forces. Kinetochore forces are implicit as the mechanism that
translates the spatial catastrophe gradient and tension-dependent rescue from
the chromatin spring to kinetochore microtubule plus-ends. The rupture force
to dissociate the kinetochore from a microtubule is approximately 9pN [225].
Note that this is comparable to the force of a single motor protein ( 6pN) so that
its effects on the model might not be negligible.

• Variation among the chromatin springs is not incorporated in the model includ-
ing: histone exchange in the pericentric chromatin [226], the likelihood that
spring constants for different chromosomes are not identical nor are the switching
thresholds, and variation in chromatin protein number (e.g., cohesin, condensin).
These sources account for in vivo noise but are not believed to alter the overall
trends or behavior of the model.

We end this discussion with a quote from Mogilner et al. [185] “A complete
understanding of complex mitotic processes will inevitably require multidisci-
plinary efforts, of which modeling will undoubtedly be a major part. Three
aspects of modeling will be crucial for success. First, the iterative character of the
model-experiment loop will allow models to be adapted and improved. Although
the initial models proposed will probably not survive experimental scrutiny, the
development of first, even relatively crude, models is essential for the emergence of
second generation models. Second, modeling will become more comprehensive and
powerful through the combination of mathematical and computational approaches.
Also, detailed mechanistic models will have to be combined with informatics-
type models to deal with incomplete and sometimes noisy data of high-throughput
studies. Third, simplistic models might have to become very detailed [. . .] Which
way mitotic models will turn out is unclear, but the great challenge is to build
adequate models of mitosis without making the models as complex as the mitotic
spindle itself.” Our philosophy is aligned with theirs!
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4 Modeling Cell Motility

In the interests of space, we only briefly highlight the modeling approach of our
group (Q. Wang, X. Yang, J. Zhao at U. So. Carolina, A. Chen, T. Wessler at UNC)
toward the fundamental phenomenon of living cell motility. There are many reviews
easily found in a search, such as [227,228], that can lead a modeling approach. Our
group has teamed with Ken Jacobson, Maryna Kapustina, Denis Tsyngkov, and Tim
Elston to explore an intriguing cell oscillation phenotype and to search via modeling
for the mechanochemical mechanisms to explain this remarkable oscillatory phe-
nomenon. For details of our approach, we refer to our book chapter [229]; for details
of the oscillatory cell phenotype, we refer to [230], and we recommend in particular
the “biosights” video podcast for their paper. Our modeling approach assumes
a phase-field formulation of the cell, based on a relatively coarse organizational
structure that ignores molecular-scale complexity. This level of description is chosen
because we want to understand the minimum mechanical and chemical species and
processes necessary to reproduce the experimental observations. For an excellent
overview of cell mechanics refer the reader to the recent article by Hoffman and
Crocker [231].

In our approach, the cell is modeled as a composite of substructures (see
Fig. 2.14): a lipid bilayer membrane, a thin cortex (cytoskeleton) that is the primary
structural component, a nucleus, and a cytoplasm that fills the remainder of the
cell’s interior volume. Each substructure (phase) is governed by specific material
properties and constitutive relations. In the phase field formalism, the boundary
between adjacent phases is diffuse, modeled with a thin transition layer, and an
energy functional prescribes the mass, momentum, and energy exchange across the
transition layer. The cytoplasm contains various protein filaments, other organelles,
and aqueous cytosol [232] and should properly be modeled as a viscoelastic
fluid phase. Many laboratories focus specifically on the viscoelastic properties of
the cytoplasm and in particular on fluid flow and transport within; we posit a

Fig. 2.14 Schematic of cell
components. Figure from
[232]
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homogeneous viscoelastic fluid phase in our level of modeling, averaging overall the
molecular complexity. The cortical layer not only provides the cell with mechanical
integrity, but also provides a pathway for chemical activation and momentum
transfer to the rest of the cell. The cytoskeleton is a network of protein filaments
that spans the cell body and it is continuously remodeling. This constant remodeling
makes the cytoskeleton highly adaptable, allowing the cell to change shape, to move,
and to divide or merge. In our modeling, we adopt the description of the cortical
layer as an active nematic gel [233].

Active polar nematic gel models have emerged as a new and popular topic in
soft matter and complex fluids [233–235]. In an active material system, energy is
continuously supplied by internal as well as external sources to drive the movement
of the material system. The driving force behind these cell motility studies was
the urge to understand the interaction between molecular motors and cytoskeletal
filaments in cell motion and self-propelled motion of certain living cells. In a
living cell, cross-linking proteins bind two or more self-assembled filaments (e.g.,
F-actin or F-actin and microtubules) to form a dynamical gel, in which motor
proteins bind to filaments and hydrolyze nucleotide ATP. This process coupled to
a corresponding conformational change of the binding protein turns stored energy
into mechanical work, thereby leading to relative motion between bound filaments.
In active nematic gel models, these molecular processes are upscaled to activation
terms in the velocity field and extra stresses in the momentum balance.

Self-propelled gliding motion of certain bacterial species is another example of
such an active material system, where molecular motors drive the cellular motion
in a matrix of another material [233–245]. Both continuum mechanical models and
kinetic theories have been proposed for active complex fluid systems [235, 240,
245, 246]. The mathematical framework incorporates the source of “active forcing”
into an otherwise passive material system. The models are based on free energy
considerations, both equilibrium and nonequilibrium, where one can keep track of
dissipative and conservative principles, and the challenge for biological fidelity is to
construct relevant energy potentials and chemical-mechanical activation functions.
These potentials require detailed viscous and elastic properties of the fundamental
cell components or phases, for which experimental techniques are now advanced
enough to make progress. The energy formulation is likewise compatible with
mathematical modeling, numerical algorithms, and simulation tools that have been
developed for the hydrodynamics of multiphase complex fluids in evolving spatial
domains. The simultaneous modeling of reaction and diffusion of biochemical
species is self-consistent with the energetic formulation. These advances lay the
groundwork for our approach.

Given the collective advances in membrane and cytoskeletal modeling, cell-
substrate coupling, and biochemical kinetics, it is now feasible to develop a
coarse-grained, whole cell model for migration on substrates or suspended in a
saltwater solvent. This global cell-substrate model will enable us to investigate
cell motility, dynamics of signaling proteins, cytoskeleton-substrate coupling, and
contact cue guidance of motile cells. The model predictions will provide quali-
tative comparisons with cell experiments in the first proof-of-principle stage and
potentially guide future experiments on detailed mechanisms associated with
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motility. As properties of each substructure become more quantified, the model will
be able to make predictions to guide cell motility experiments. Given the complex
nature of cell migration on topographically designed substrates, one should adopt a
theoretical and computational platform that is capable of reproducing a variety of
dynamical modalities.

Among the competing mathematical models for multiphase soft matter phenom-
ena, a field phase approach is sufficiently versatile to handle the complexity of this
challenge and to incorporate additional biological complexity. This is, admittedly, a
top-down approach and is not to be expected to resolve detailed molecular or even
supramolecular structure of the lipid bilayer, cortex, cytoplasm, and nucleus. These
four phases are coarse-grained into constitutive relations and material parameters,
with laws for interphase mass, momentum and energy exchange, and activation
(what makes the cell alive) provided by a set of chemical species. These small
molecule proteins responsible for activation are the focus of molecular biologists.
There are many to choose from, and we begin with a handful of species that diffuse
within the four phases with phase-specific diffusion coefficients that allows the
model to enforce membrane-bound or cortex-bound constraints, for example. The
concentrations of these kinetic species, their reactions with one another, and their
activation energy within each phase are hypothesized and tested with simulations.
Our current simulations are focused on the oscillatory phenotype. We posit one
protein species that binds to filaments in the cortex, modeled as a contractile
activation proportional to protein concentration; another protein species triggers
unbinding by the kinetics of reaction and diffusion among the protein species.

The test of this modeling approach rests on whether we are able to establish
fundamental mechanisms of cell motility that follow from a minimal set of coupled
mechanochemical processes and structures within single cells, together with cues
from their environment. We refer again to our review article [229] where we
put the mechanical phases, chemical processes, and external environment into
one formulation. The success of this framework remains to be determined. In
particular, there are significant challenges to full three-dimensional simulations of
these models, requiring the tuning of all material phases and chemical species.
A current focus of the Jacobson lab and our modeling effort calls into question the
geometry of cells suspended in a solvent. Essentially all modeling efforts assume
a spherical equilibrium cell morphology. However, Jacobson and Kapustina have
convincing evidence that the equilibrium morphology is highly folded if viewed
from two-dimensional focal planes and indeed severely blistered if viewed as a
three-dimensional structure. This evidence implies in our phase field formulation
that cells have far more surface area available than that required to enclose the cell
volume with a sphere. We are currently exploring excess surface area versus volume
constraints, which are natural within the phase-field formulation. We likewise are
exploring the current leading constitutive characterizations and material properties
of cell membranes, cortex, cytoplasm, and nucleus, as well as the current leading
candidates for chemical activation species and their mechanical activation rules
within the cortex.
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Rheology of Complex Biological Fluids



Chapter 3
Theoretical Microrheology

Roseanna N. Zia and John F. Brady

Abstract The importance of microrheology in the study of biological systems
has a long and rich history, tracing its roots to the work of the botanist Robert
Brown in the early nineteenth century. Indeed, passive microrheology and Brownian
motion are one and the same. Brown’s observation of microscopic pollen grains
dancing about in water was initially thought to reveal some sort of “fundamental
life force.” However, upon further investigation, it turned out the motion depended
only on the microscopically small size of the particles. The mysterious phenomenon
went unexplained until the turn of the next century when Einstein and Perrin
utilized Brownian motion to prove the atomic nature of matter. In addition to this
profound result, the foundation of modern-day passive microrheology had been laid.
Einstein combined the theory of diffusion with the Stokes’ solutions for creeping
flow to yield the Stokes–Einstein relation connecting observable particle motion—
diffusion—to material properties: the viscosity. Perrin’s experiments confirmed the
theory. But Einstein’s arguments and the Stokes–Einstein relation rely on the exis-
tence of equilibrium and other narrow criteria. New approaches have extended the
idea of tracking the motion of a Brownian particle to understand material properties
far beyond this limited model. These advancements are critical to the study of
many biological systems which conduct much of their function in a nonequilibrium
condition. In this chapter we will see how one can study biological systems from
a rheological perspective, showing the unique role played by microrheology in
understanding such systems. In a sense, Brown’s initial hypothesis was not too far
off the mark: rather than being driven by life, Brownian motion plays the role of
the invisible hand that drives many of the processes required for life to proceed and
indeed may have played a role in the very origin of the life process.
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1 Introduction

Complex biological fluids span a remarkable range of systems, from blood to
biofilms to the crowded, watery interior of eukaryotic cells. Uniting these materials
is the rich structure their name suggests: a macroscopic medium comprising a
collection of microscopically small domains—a microstructure—which fluctuates
and relaxes over observable time scales. Imposing a flow on such a material deforms
the embedded microstructure, giving rise to dramatic changes in material behavior,
including now-familiar non-Newtonian behaviors such as increases or decreases in
viscosity (shear thickening and thinning) and viscoelastic behavior. Such changes in
behavior are linked to biological functionality such as the shear thinning that allows
mucus to be coughed out of the lungs [1–4]. This important bio-rheological fluid
is studied in detail in Chap. 2. Rheology—the study of material flow behavior—
is traditionally carried out by imposing bulk displacements on a macroscopic
sample of material in a viscometer, e.g. via a shearing or extensional flow. When
displacements are steady in time, a range of flow strengths may be imposed to
study flow rate-dependent behaviors. Oscillatory and other time-varying motions
may be applied in order to study viscoelastic and transient responses. Constitutive
relations between the imposed flow and the stress may then be developed and, from
these, material properties such as the viscosity inferred. Barnes et al. [5] provide a
thorough review of traditional rheological techniques.

Theoretical rheology has the additional goal of connecting these non-Newtonian
macroscopic behaviors with their underlying microstructural origins. For example,
as flow strength is increased, the role played by Brownian motion in structural
evolution decreases. For weak flows, this leads to a reduction in viscosity (shear
thinning) [6, 7]. Hydrodynamic interactions between particles become increasingly
important as flow strength increases, however, and can lead to increases in viscosity
(shear thickening) [7–11]. Transient flows give further insight into the microme-
chanics of rate-dependent processes in steady-state flow: sudden removal of external
forcing demonstrates that the microstructure relaxes over multiple time scales, each
associated with distinct physical processes [12–17]. Such time-dependent behavior
is a hallmark of non-Newtonian fluids; they can display both liquid-like (viscous)
and solid-like (elastic) behavior, depending on the rate with which they are perturbed
relative to the relaxation time scale(s) of the microstructure. Linear viscoelastic
properties are typically studied by imposing a small-amplitude oscillatory shearing
motion on a bulk sample of material [18]. In this linear-response regime, the
resultant shear stress is linear in the imposed strain and strain rate, with coefficients
that form the real and imaginary parts of a complex modulus. The phase shift and
amplitude change with respect to strain rate or strain are thus related in a simple way
to the storage (elastic modulus) and loss (viscous modulus) of energy in the sheared
material. Viscoelastic behavior is found even in systems as simple as a colloidal
dispersion of hard spheres [16, 17, 19–22]. Importantly, theoretical approaches to
colloidal dispersions permit separation of the suspension stress (and viscosity) into
solvent and particle phases, and the particle-phase stress can be further resolved
into hydrodynamic, interparticle-force, and entropic contributions [20, 23–25].
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Fig. 3.1 (a) Microrheology model system. (b) Confocal microscopy image of microrheology of a
concentrated colloidal dispersion of PMMA beads in Newtonian solvent (P. Habdas and E. Weeks,
with permission). (c) Spatiotemporal changes in P granule size in the 1-cell C. elegans embryo.
From [35]. Reprinted with permission from AAAS

Such contributions can become more (or less) important under variations in, e.g.,
ionic strength; thus, biologically relevant changes in pH, for example, can lead
to profound changes in material properties such as viscosity. Recent work in
the direct observation of particle microstructure, in contrast to indirect methods
such as light and neutron scattering, has successfully merged the micromechanical
approach of theory with experiments, allowing computation of the suspension stress
via the statistical mechanics theory [26, 27]. But in these traditional rheological
approaches, material perturbations are applied over macroscopic length scales and
may therefore exclude important materials of interest. These include, for example,
materials whose response varies over microscopic distances, or materials not
available in sufficient quantities for bulk interrogation, e.g., rare biological fluids.
Understanding the in vivo viscoelastic behavior of actin and determination of the
diffusive speed of DNA, proteins, and nano-pharmaceuticals devices inside cells are
a just few examples [28–31].

An alternative approach is to interrogate the material over microscopic length
scales—a microscale version of rheometry. This type of microscale probing, known
as “microrheology,” traces its roots to the turn of the twentieth century and the work
of Einstein [32] and Perrin [33]. Microrheology comprises a theoretical framework
and experimental technique in which the motion of a Brownian particle (or set of
particles) is tracked and its motion studied to infer the properties of the surrounding
medium [34] [see Fig. 3.1a]. Advances in microscopy and other techniques (see,
e.g., Crocker and Grier [36]) have prompted considerable new study in recent years,
both experimental and theoretical [17, 34, 37–43] [see Fig. 3.1b, c].

Much work has since followed, including the extension of the Stokes–Einstein
relation to viscoelastic materials [44] and studies of the effect of probe size [45] and
shape [21]. Microrheological techniques have been used to study a diverse set of
systems: cells [46–48], actin networks [49,50], gelatin [51], DNA and polyethylene
oxide solutions [52], and the behavior of colloids near the glass transition [37], as
well as fundamental interactions between pairs of colloidal spheres [53–55] and
entropic forces in binary colloids [56]. Microrheology has also been proposed as
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a tool for studying basic physics in atomic or molecular systems and for high-
throughput material screening [57, 58].

Both equilibrium (linear-response) properties and the nonlinear response of
a material can be probed, via passive and active microrheology, respectively.
In the former, thermal fluctuations of a particle cause it to undergo a random-
walk process; equilibrium and linear viscoelastic properties are then obtained by
correlating the random thermally driven displacements of tracers to the complex
modulus through a generalized Stokes–Einstein relation. In order to obtain nonlinear
response properties, however, the material must be driven out of equilibrium. In this
active (or nonlinear) microrheology regime, tracer particles undergo displacements
due not only to random thermal fluctuations but also due to the application of an
external force applied directly to the tracer, or “probe,” by applying a constant or
oscillatory external force to the particles, for example, by using optical tweezers
or magnetic fields [37, 38, 41, 59, 60]. As with macrorheology, dynamic-response
properties such as the viscosity can then be measured. Since the tracer interrogates
the material at the microscopic length scale, much smaller samples are required
compared to traditional macrorheology, and localized material heterogeneity can be
explored. Recently a Stokes–Einstein-like relation has been developed which con-
nects nonequilibrium particle motion and material properties [43]. Microrheology
thus holds a particular benefit for rare biological materials and small systems such
as cells. The theory that predicts the microviscosity and microdiffusivity of dilute
systems of colloids and defines the relationship between micro- and macrorheology
has recently been established [17,21,39,40,42,43,61]. Recent experiments confirm
the theory [38, 41].

In the majority of theoretical approaches in microrheology, focus has been placed
on the model of a colloidal dispersion of hard spheres [17, 39, 40, 42, 43, 62], with
some effort focused on spheroidal probes [63] and suspensions of ellipsoids [64].
This simple model system recovers much of the rich physical behavior of more com-
plicated systems (e.g., the viscoelastic behavior of entangled polymers, the shear
thinning and thickening of particles of many shapes and polydisperse composition)
[65]. While biological fluids are inevitably more complex than a simplified model
system, e.g., with particles that may be irregularly shaped or polydisperse, often
such details make quantitative rather than qualitative contributions to behavior. But
inclusion of such details in a model can quickly render its analysis intractable,
hindering the study of some of the most basic questions regarding their material
behavior. Toward achieving fundamental insight into such systems, in this chapter
we shall focus on the model system of a colloidal dispersion, about which much is
known, allowing us to address many questions of material behavior rigorously and
precisely.

The remainder of this chapter is organized as follows: in Sect. 2, passive
microrheology is discussed, including historical perspectives, the Stokes–Einstein
relation, and its extension to non-Newtonian materials via the generalized Stokes–
Einstein relation. Limitations on its use are described, with a focus on the breakdown
of the continuum assumption and alternative approaches. We then turn our atten-
tion to nonequilibrium material properties and active, nonlinear microrheology
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Fig. 3.2 (a) Robert Brown’s microscope (by permission of the Linnean Society of London).
(b) Reproduction of Brown’s experiment: pollen grains released from pollen sacs (image courtesy
P. Jones)

in Sect. 3. We review the microrheology model system, the microviscosity, the
force-induced diffusion, and a recently developed nonequilibrium Stokes–Einstein
relation giving the suspension stress in terms of diffusion and viscosity. In Sect. 3.5
an overview of time-dependent flows in microrheology is presented, followed
by a brief discussion of the Brownian dynamics simulation method in Sect. 3.6.
An important connection between active microrheology and a newly proposed
“nonequilibrium equation of state” is the focus of Sect. 4. An effort is made through-
out to highlight major results and to connect them to the study of relevant complex
biological fluids. In Sect. 5, guidelines for implementation in laboratory experiments
are suggested. The final section, Sect. 6, offers a summary and discussion.

2 Passive Microrheology: Brownian Motion

In 1827 Robert Brown peered through his microscope into a collection of tiny pollen
grains suspended in water [66] (see Fig. 3.2). He watched them dance vigorously
through the fluid, as if propelled by some invisible force. Contemporaneous scien-
tific thought included the notion that living matter was composed of microscopic
“fundamental life-force” blocks. Brown hypothesized that the particles were self -
propelled and that the motion evidenced this fundamental life force. In an effort
to test this provocative hypothesis, he killed the pollen particles, expecting the
motion to cease. His excitement gave way to surprise and puzzlement when the
lifeless particles continued their unrelenting dance. In the ensuing weeks Brown
stared through his microscope at suspensions of coal dust, arsenic, and pulverized
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stone—all executing the same lively steps. It turned out that the movement—
Brownian motion—did not depend on life at all; in fact, it depended only on the
microscopically small size of the particles. Brown carefully documented his findings
and published them in 1828 with no conclusive explanation for the underlying origin
of the motion, leaving a legacy for future generations so important it bears his name.
Three quarters of a century passed before the motion was definitively linked to
its origin: the molecular motion of solvent molecules. In his 1906 paper on the
theory of Brownian motion, Einstein developed the theoretical connection between
the macroscopic motion of small particles to the random trajectories of solvent
molecules. From this, and Stokes’ solution for creeping flow past a sphere, Einstein
derived a fundamental relation connecting hydrodynamics and thermodynamics:
the Stokes–Einstein relation. The result is both profound and profoundly useful:
Avogadro’s number and a method to determine the viscosity of a fluid by tracking
the diffusive motion of a single-probe particle.

We thus commence our discussion of theoretical microrheology in its earliest
form: Einstein’s theory of Brownian motion.

2.1 Single-Particle Diffusion and the Viscosity
of Newtonian Solvents

In his theory of Brownian motion Einstein presented two approaches to connect ther-
mal motion and diffusion to mechanical motion and hydrodynamics [32]. A central
assumption in both approaches is thermodynamic equilibrium between the solvent
and the suspended particles. In one approach, one imagines a dilute suspension of
colloids settling under gravity toward the bottom of a container, thereby generating
a weak spatial concentration gradient from bottom to top. The gradient in the colloid
number density n = N/V drives a diffusive flux upward. Because the system is at
equilibrium in the external gravitational potential Vg, the diffusive flux, jD, is exactly
balanced by the advective flux owing to sedimentation, jsed. Assuming a Fickian
diffusion process, jD = −D ·∇n, and an advective flux given by hydrodynamic
mobility, M, times the driving force of gravity, jsed = −nM ·∇Vg, and recognizing
that the equilibrium Boltzmann distribution, n ∼ exp(−Vg/kBT ), applies, Einstein
deduced that

D = kBT M, (3.1)

the Einstein–Smoluchowski equation relating the translational diffusivity D to the
thermal energy kBT and the hydrodynamic mobility M. Implicit in this result is
the notion that the fluid behavior produced by the tracer’s motion obeys the Stokes
equations; that is, the fluid is a homogeneous, isotropic, incompressible continuum
and the particle is small in some sense, such that the inertial terms in the Navier–
Stokes equations may be neglected, and Stokes’ equations govern fluid motion.
To connect particle motion to fluid motion, one can solve Stokes’ equations for
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the fluid velocity, which in turn yields the hydrodynamic force exerted on the
particle by the fluid. The linearity of Stokes flow demands a linear relationship
between particle motion U and this hydrodynamic force, FH , as U = −M · FH ,
where the hydrodynamic mobility M couples force to motion, thus obtaining the
probe mobility M. For a translating rigid sphere of radius a, the Stokes mobility
M = I/6πηa, giving the Stokes–Einstein relation for the translational diffusivity of
a spherical particle in a solvent

D =
kBT

6πηa
I, (3.2)

where kB, as in equation (3.2) k is Boltzmann’s constant, T is the absolute
temperature, η is the viscosity of the solvent, and I is the isotropic tensor. The
Stokes–Einstein relation asserts that a small particle of size a placed in a fluid
of viscosity η and temperature T will fluctuate due to random impacts from
solvent molecules. These fluctuations cause the particle to undergo a random-
walk process—it diffuses. Its diffusivity D is driven by the thermal energy kBT ,
which is then dissipated back into the solvent by viscous drag ∼ 1/η . This direct
connection between the thermal energy of the solvent and the hydrodynamic drag
on a microscopic particle is a statement of the fluctuation-dissipation theorem. It is
easy to show the corresponding relationship between particle rotation and diffusion
to obtain the rotational diffusivity of spheres:

Drotation =
kBT

8πηa3 I. (3.3)

Without much trouble the solution can be extended to particles of other shapes
immersed in a simple continuum Newtonian solvent.

The first microrheology experiment was carried out by Jean-Baptiste Perrin in
an effort to prove Einstein’s theory [33, 66]. Projecting light through a suspension
of gamboge spherules, Perrin tracked the motion of individual particles by tracing
their movements on paper (the precursor to modern particle-tracking microscopy!)
As shown in the traces excerpted from Perrin’s laboratory notebook (reproduced in
Fig. 3.3), the particles executed a random walk through the fluid. An ensemble aver-
age showed a linear growth of the mean-square displacement over time, confirming
the hypothesis of diffusion due to random impacts from solvent molecules. Perrin
published his results in his Ph.D. thesis and in the work Brownian Movement and
the Molecular Reality [33]. It is generally accepted as a central finding in the proof
of the existence of the atom and earned Perrin a Nobel Prize in 1926. The result is
profound in its simplicity: just watching a particle move revealed the existence of
the atom. It is as though a particle is a microscope, a lens through which we were
able to “see” atoms and molecules for the first time. Einstein’s theory and Perrin’s
experiments thus formed the basis of modern-day passive microrheology.

While his underlying goal in this work was to obtain Avogadro’s number, NA,
an important outcome of Einstein’s study was the leading-order correction to the
viscosity of dilute suspensions which accounted for the presence of particles.
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Fig. 3.3 Reproduced from the book of Jean-Baptiste Perrin, Les Atomes [67]. Reprinted with
permission. (a) Three tracings of the motion of colloidal particles of radius 0.53μm, as seen under
the microscope, are displayed. Successive positions every 30 s are joined by straight line segments.
The mesh size is 3.2μm. (b) Normalized distribution of the displacements

He first utilized the diffusive motion of sugar molecules of unknown size a to
determine the quantity NAa = RT/6πηD, where R is the universal gas constant.
To show that the sugar itself was composed of atoms (or molecules) and would
dissolve in a fluid, he asserted that the viscosity of the fluid must now be that of
a suspension rather than a pure solvent. He derived an expression for the effective
viscosity of a dilute suspension, ηeff = (1+ 5φ/2)η , where the volume fraction of
particles φ = (4πa3/3)(NAρ/M ), ρ is the particle density, and M the molar mass.
The two expressions were combined to reveal Avogadro’s number and the size of
the diffusing sugar particles. But by its very nature, Einstein’s derivation shows
that a tracer diffusing in a suspension is not connected in a simple way to the bulk
suspension viscosity. That is,

D 	= kBT
6πηeffa

, (3.4)

a fact made clear some 70 years later by the work of Batchelor [6, 68, 69] .
The Stokes–Einstein relation thus holds for a rigid particle in a Newtonian

solvent and is thence limited to a rather narrow class of simple fluids. But many
biological fluids are far from simple: they frequently comprise suspensions of
many micro- or nanoscale particles, short- or long-chain polymeric structures which
may be entangled or give rise to elastic networks, among others. In such materials,
key assumptions of the Stokes–Einstein relation may no longer hold. In the next
sections we examine how the Stokes–Einstein relation can be modified or its
experimental application adjusted to accommodate a wider class of complex fluids.
Two important cases in biological fluids include homogenous viscoelastic fluids and
particle suspensions, treated next.
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2.2 Extension to Viscoelastic Fluids: The Generalized
Stokes–Einstein Relation

The non-Newtonian behavior of many fluids, in particular biological fluids, renders
questionable the use of the Stokes–Einstein relation to infer bulk rheology [44, 54].
Examples include entangled polymer melts, solutions of flexible polymers, and gels
which include mucus, saliva, synovial fluid, and the interior of eukaryotic cells
[1,4,29,46,48,70–72]. Such soft materials exhibit a time-dependent viscosity, with
both liquid-like and solid-like responses to flow. For example, the mucus that lines
the lungs and airway provides optimal healthy function with both viscous and elastic
behavior. Strong flows, e.g., coughing, ideally produce viscous flow. But when the
elastic modulus dominates the behavior of airway mucus, serious (sometimes life-
threatening) pathology results, for example, in the case of cystic fibrosis [1–4].
When such a material forms a homogenous and isotropic continuum relative to the
length scale of a probe particle, one may propose to model it as “Newtonian-like.”
Suppose such a material undergoes low-Reynolds number flow; one can write down
a generalized form of the Stokes equations to model its behavior:

∇p =
∫ t

−∞
η(t − t ′)∇2udt ′, (3.5)

where p is the dynamic pressure, η(t − t ′) is the time-dependent viscosity, u is
the fluid velocity and is divergence free, and t is time.1 A simple Newtonian
fluid has no memory, and so η(t − t ′) = ηδ (t − t ′), where δ is the Dirac delta
distribution, η is the Newtonian viscosity, and Stokes’ equations are recovered.
To explore frequency-dependent response, one can take the Laplace transform of
Eq. (3.5) and solve for the frequency-dependent fluid velocity. This is in turn a
function of the frequency-dependent viscosity, η̂(s), where the hat symbol signifies
the Laplace-transformed quantity, and the frequency s is the transform of the time
variable. The hydrodynamic force exerted by the fluid on the particle can then be
computed directly. The properties of Stokes flow demand a linear coupling between
the hydrodynamic force and particle velocity; this simple relation connects the
frequency-dependent and frequency-independent hydrodynamic mobilities, M̂(s)
and M, respectively:

M̂(s) =
η
η̂(s)

M. (3.6)

1Equation (3.5) is appropriate for consideration of fluid relaxation in the sense of a steady flow.
It should not be confused with the unsteady Stokes equations which, used in conjunction with a
Langevin equation, are appropriate for the study of vorticity diffusion in molecular liquids and
the time-dependent Stokes drag. Further discussion of the topic may be found in e.g. Russel
(1981) [73].
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The material viscosity is thus obtained by solving the fluid mechanics problem
subject to the boundary condition determined by average probe motion. To for-
mulate a Stokes–Einstein-like connection for such a fluid, one must now connect
fluctuating probe motion—passive diffusion—to material properties. This is done
via the Langevin equation governing particle motion. The generalized Langevin
equation describes the motion of a particle in a medium with memory [74]:

m
dU(t)

dt
=
∫ t

0
R(t − t ′) ·U(t ′)dt ′+ fB(t), (3.7)

where m is the mass of the probe, U is its velocity, R = M−1 is the hydrodynamic
resistance tensor, and fB(t) is the random fluctuating (Brownian) force acting on
the probe due to solvent collisions. A Laplace transform yields the frequency-
dependent probe motion (which is overdamped in this viscous system). The velocity
autocorrelation is thus given by 〈Û(s) · U(0)〉 = m(U(0))2M̂, where U(0) is the
initial probe speed and is uncorrelated with the Brownian force. For simplicity,
the probe has been assumed to be isotropic, M̂(s) = M̂(s)I. Following Einstein’s
approach, Mason and Weitz [44] note that when one assumes the probe to be in
thermal equilibrium with the suspending fluid, the equipartition theorem demands
that the kinetic energy of the probe be given by one-half kBT per degree of
freedom, and 〈Û(s) · U(0)〉 = kBT M̂ for a translating probe. Mason and Weitz
further explored the connection between diffusion, the velocity autocorrelation,
D =

∫ t
0〈U(t ′) ·U(0)〉dt ′, and the definition of the diffusivity as one-half the time

rate of change of the mean-square displacement, 〈Δr2(t)〉, of the probe. From it
they obtained the generalized Stokes–Einstein relation, D̂(s) = kBTM̂(s) [44].

The frequency-dependent viscosity is a response function and is causal; it is thus
straightforward to show via the Kramers–Kronig relations [75, 76] and analytic
continuation to a Fourier transform that it is equivalent to a complex viscosity
which comprises real and imaginary parts, η∗(ω) = η ′(ω)− iη ′′(ω), where i is the
imaginary unit and ω is the frequency. Causality demands restriction of the Fourier
transform to the upper half of the complex plane [77], and thus iω corresponds
to the Laplace variable s. While the latter notation, η̂(s), is more compact, the
former notation, η∗(ω), is more revealing: physically, the real and imaginary
parts correspond to the viscous (loss) and elastic (storage) moduli, respectively.
The frequency-dependent mobility may then be rewritten by simple substitution,
M∗(ω) = (η/η∗)M, and in turn, the generalized Stokes–Einstein relation (for a
rigid sphere) reads:

D(ω) =
kBT

6πη∗(ω)a
I. (3.8)

An equally important definition of the material modulus owes its origins to
the study of solid mechanics and thus is defined with reference to an imposed
strain, rather than an imposed strain rate. The so-called bulk modulus, G∗(ω) =
G′(ω) + iG′′(ω), where G′ and G′′ are the storage and loss moduli, respectively.
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Its connection to the complex viscosity η∗ is G∗(ω) = iωη∗(ω). As shown by
Mason and Weitz [44], the bulk rheology of the material may be inferred by tracking
the mean-square displacements (or their frequency transform), as

Ĝ(s) =
kBT

3πas〈Δ r̂2(s)〉 = |G∗(ω)| , (3.9)

recovering the connection between single-particle tracking and bulk material
rheology.

As noted above, however, expressions (3.8) and (3.9) apply only to isotropic,
incompressible, homogenous materials whose internal structure is small compared
to the microrheology probe—that is, the probe sees the structure as a continuum.
While this extends the Stokes–Einstein relation to a much larger class of materials,
many important materials (such as colloidal dispersions) are still excluded. This is
the subject of the next section in passive microrheology. We begin with a discussion
of the continuum limit.

2.3 Validity of the Stokes–Einstein Relation?

The diffusion of a microscopic particle in a homogenous, isotropic continuum
fluid is a consequence of random impacts the colloid suffers from constituent
molecules of the surrounding fluid. These impacts exert a fluctuating force on
the colloid. Many thousands of impacts on a single colloid may occur in the
time τp over which the momentum of the colloid can change; a simple scaling
analysis shows the number of collisions scales as ∼ (ap/as)

4, where ap is the
colloid size and as is the solvent molecule size [61, 78]. Thus, for a particle-
to-solvent-molecule size ratio of only 10:1, a particle will suffer 10,000 random
impacts before it can experience any change in its momentum. Over this particle
momentum-relaxation time scale, the colloid executes a random walk due to the
solvent impacts: it diffuses. Correspondingly, any momentum acquired by the
particle due to application of, say, an external force decays nearly instantaneously
under the continuous barrage of solvent impacts. The colloid thus interacts with the
solvent as a continuum and experiences the impacts as both a fluctuating stochastic
force and a mean (steady) viscous drag.2 This so-called continuum limit, in which
microscopic particles interact with a solvent as a continuum fluid of viscosity
η and density ρ , centers on a separation in length scales. The particle is very
large compared to the fluid molecules. In the present discussion the continuum
approximation is an appropriate model for the interaction between a single colloid

2Colloid motion and the associated Stokes drag reach steady state over a short but finite time.
However, over times relevant to study of diffusion coefficients, the unsteadiness in particle motion
is superfluous. Further discussion of the topic may be found in, e.g., Russel (1981) [73].
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and a solvent. The particle dynamics are in turn modeled by the Langevin equation,
whereby particle inertia is balanced by the (mean) viscous drag and the (fluctuating)
Brownian force. Over times long compared to the particle’s momentum-relaxation
time scale, the Langevin equation recovers the Stokes–Einstein relation connecting
particle diffusion and material viscosity (see, e.g., Brady [78] or Zia [61]).

But a probe particle embedded in a suspension interacts with both solvent and
other colloidal particles, which occurs over several length scales and gives rise
to multiple relaxation processes [12, 13, 15–17, 19, 21, 22, 79]. A probe particle
moving through such a “microstructure” thus probes multiple time scales, and
the connection between its diffusive motion and “suspension” viscosity requires a
closer look. To do so, we consider the regimes of diffusion in colloidal dispersions
alongside the microstructural contributions to suspension viscosity.

Diffusive Regimes In colloidal dispersions particles undergo three well-defined
diffusive processes: short-time self-diffusion, long-time self-diffusion, and gradient
or collective diffusion, each corresponding to a distinct physical process [80].
In the infinite-dilution limit they are identical and given by a Stokes–Einstein
diffusivity (3.2). The short-time self-diffusivity corresponds to the motion of
a colloidal (probe) particle inside a local “cage” of nearest-neighbor colloids.
Such motion occurs over length scales much smaller than colloid size or equiva-
lently, over times much shorter than that required for the tracer to move its size,
t � τD = a2/D but long compared to the momentum relaxation time of the tracer
t � τp = m/6πηa. As the probe wiggles around it must drag fluid. The no-slip
surfaces of nearby particles resist this fluid motion, thus slowing probe motion.
That is, the probe diffuses more slowly than were it alone in a solvent. This so-
called short-time self-diffusion, denoted Ds

0, occurs over time scales too short to
cause changes to the microstructure, however, and is thus a strictly hydrodynamic
phenomenon. At longer times, the probe is able to exchange places with its
neighbors, and if one waits sufficiently long, t � τD, the probe will execute a
random walk throughout the suspension. This regime corresponds to the so-called
long-time self-diffusivity, Ds

∞. Finally, distinct from both regimes of self-diffusion
is the collective diffusivity, Dc, of particles down a concentration gradient.

The well-known expressions for gradient, short-, and long-time self-diffusion
in dilute dispersions of hydrodynamically interacting particles were developed by
Batchelor in the 1970s and 1980s in a series of seminal papers [6,23,69]. To account
for particle interactions, Batchelor generalized Einstein’s argument by invoking
a broader condition for thermodynamic equilibrium in a multicomponent system:
uniformity of both the temperature and of the chemical potential. In this approach,
the driving force for particle diffusion is a gradient in chemical potential. Batchelor
separated the diffusion problem into two parts: a virial expansion of the chemical
potential to obtain the concentration dependence of the driving force and a virial
expansion of the hydrodynamic mobility functions describing the viscous response
of the particles to applied forces. This general approach allowed the treatment of two
key problems: the gradient diffusion of a single species and simultaneous gradient
diffusion of multiple particle species. In the former regime, he noted the equivalence
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of gradient diffusion to sedimentation and found that gradient diffusion in dilute
dispersions increases with the volume fraction φ = 4πa3n/3 of particles of number
density n: Dc = D0(1 + 1.45φ), where D0 = (kBT/6πηa)I is the diffusion of a
particle of size a alone in a solvent of viscosity η [6] .

In his treatment of multicomponent gradient diffusion in dilute dispersions,
Batchelor extracted an important case: when one species, i, say, is present in only
trace amounts compared to the concentration of another species, j, the former
undergoes tracer diffusion through the suspension. That is, it is formally equivalent
to self-diffusion. The expression for the multicomponent gradient diffusivity Dc then
yields the self-diffusion Ds

i of a tracer species i through a suspension of species j:

Ds
i = Di

(

1+∑
j 	=i

Ki jφ j

)

, (3.10)

where Di = (kBT/6πηai)I is the self-diffusivity of an isolated particle of species
i and size ai. Here, Ki j is a bulk mobility coefficient comprising two contributions
for a system of hydrodynamically interacting particles; when both species are of
the same size, Ki j = −C + Si j.3 The first contribution, C, pertains to diffusive
particle motion within a local cage of nearest neighbors. That is, over times much
shorter than that required for the tracer to move its size, t � a2

i /D, (i.e., before
it can deform the microstructure) but long compared to the momentum relaxation
time of the tracer t � τp = m/6πηai. In this limit, C = −1.83 and Si j = 0 and
Eq. (3.10) gives the short-time self-diffusivity in dilute, monodisperse hard-sphere
dispersions [6, 69]:

Ds
0 = D(1− 1.83φ), φ � 1. (3.11)

Because the species i can be a small subset of species j, the subscripts have been
removed. In contrast to the linear growth of the gradient diffusivity Dc with volume
fraction, the self-diffusion Ds

0 of a tracer species through a suspension diminishes
linearly with concentration of the background species.

Over long times, t � a2/D, the tracer can escape its local cage. After many
such displacements its motion becomes a random walk from cage to cage, and
Si j = 0.27, arising from both structural deformation of the microstructure and
from hydrodynamic interactions between the particles. Equation (3.10) then gives
the long-time self-diffusivity, Ds

∞, in a dilute suspension of hydrodynamically
interacting hard spheres [69]:

3Batchelor combined statistical mechanics theory and the hydrodynamics of Stokes flow to derive
expressions and some values for the coefficients Ki j, C, and Si j by modeling three systems: particle
velocity during sedimentation, gradient diffusion, and tracer diffusion in a polydisperse suspension.
For each an average of the appropriate hydrodynamic functions for particle motion is weighted by
the distribution of positions of particle pairs [6, 69].



126 R.N. Zia and J.F. Brady

Table 3.1 Comparison of diffusion coefficients, with D0 = kBT/6πηa [6, 69, 80, 81]

Dilute Concentrated
Mode HI No HI HI No HI

DS
0 D0(1−1.83φ ) D0 DS

0(φ )
a D0

DS
∞ D0(1−2.1φ ) D0(1−2.0φ ) DS

0/[1+2.0φ g(2;φ )] D0/[1+2.0φ g(2;φ )]
aAs determined by dynamic simulation

Ds
∞ = D(1− 2.1φ), φ � 1. (3.12)

These results have been extended by others for concentrated suspensions. For
example, Brady obtained the short- and long-time self-diffusion coefficients in con-
centrated suspensions of colloids in the presence of strong and weak hydrodynamic
interactions. In the latter case, an extension to higher concentrations is given by [69]:

Ds
∞(φ) = DS

0(φ)[1+ 2.0φ g(2;φ)]−1, (3.13)

where g(2,φ) is the pair distribution of particles at contact. A summary of
self-diffusion coefficients is given in Table 3.1. For the collective diffusivity, a
generalized form of the Stokes–Einstein equation [82],

Dc(φ) = D0K(φ)
d[φZ(φ)]

dφ
(3.14)

reflects the contribution of hydrodynamic and thermodynamic forces in the sedi-
mentation coefficient, K(φ), and the gradient of the compressibility factor, Z(φ),
respectively.

The plot shown in Fig. 3.4 summarizes the three diffusive processes. The
dependence of each on colloid volume fraction reflects the effect of neighboring
particles on average particle motion. For example, collective diffusion increases
linearly with φ at dilute concentrations. As seen in Eq. (3.14), however, the
decreasing hydrodynamic contribution nearly cancels the increasing thermody-
namic contribution, producing a near insensitivity to volume fraction at higher
concentrations [6, 82]. Alternatively, passive self-diffusion is always hindered as
the concentration of nearby particles grows. The short-time self-diffusion decreases
with volume fraction as the number of nearby no-slip surfaces increases. The
long-time diffusion is always slower than short-time self-diffusion, owing to the
distortion of the microstructure that must occur in order for the probe to exchange
places with its neighbors. The transition from short- to long-time self-diffusion
is not a random process; the intermediate regime is characterized by correlated
motion as the probe interacts with its neighbors. Careful identification of such
a transition in the mean-square displacement is critical to understanding the size
dependence of diffusion coefficients measured in experiments, for understanding
measurements of so-called “ballistic” motion, and for revealing the fundamental
connection between the frequency-dependent diffusivity D(ω) and the complex
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Fig. 3.4 Diffusion processes are set by the mechanism of interaction with neighboring particles.
Green symbols, collective or gradient diffusion, Dc; red symbols, short-time self-diffusion; blue
symbols, long-time self-diffusion. Data shown are for monodisperse suspensions of hard spheres

viscosity η∗(ω). To distinguish short- from long-time behavior, for example, one
can plot the diffusion coefficient over long times. When the temporal slope of
the diffusion coefficient ceases to change, the long-time limit has been reached.
The intimate connection between the short- and long-time diffusivities is discussed
further in the active microrheology section.

Suspension Viscosity It has been established in theory and experiment that the
thermal motion of a colloidal tracer through a viscoelastic material reveals its linear
viscoelastic character [34, 36, 44, 52, 83]. That is, the short- and long-time self-
diffusion in suspensions reflect temporal relaxation processes that can be connected
to rates of energy dissipation and storage [21, 34, 36, 44, 52, 80, 83]. In such passive
microrheology experiments, the mean-square displacement of a diffusing probe
particle 〈|Δx(t)|2〉 is proportional to the linear viscoelastic creep compliance of the
material in which it is immersed, J(t), as 〈|Δx(t)|2〉= (kBT/πa)J(t) for a spherical
particle of size a [83]. The mean-square displacement can thence be related to
the complex mobility. In theory all relaxation modes are excited by the random
fluctuating motion, which is measured by dynamic light scattering in reciprocal
time (frequency). But in practice it can be difficult to resolve these measurements
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over very fast or slow frequencies [36, 44]. Alternatively, in traditional macroscale
shear rheology, small-amplitude oscillatory displacements can be applied to a
macroscopic sample of material over a range of frequencies ω to reveal its
viscoelastic properties, e.g., the complex viscosity η∗(ω) = η ′(ω)− iη ′′(ω). Such
displacements are small compared to the length scale of the microstructure, but
every particle on average experiences the same perturbation. Thus the measured
properties represent a suspension average. In the high-frequency limit, ω → ∞,
displacements occur much more quickly than the fastest relaxation process of
the microstructure, precluding any appreciable microstructural rearrangement. The
suspension viscosity thus probed is purely hydrodynamic in origin, η∗(ω → ∞) =
η ′(ω → ∞)≡ η ′

∞ [20]. In the dilute limit, to O(φ2) this is given by [84]:

η ′
∞
η

= 1+
5
2
φ + 5.0φ2, φ � 1. (3.15)

In more concentrated suspensions, other relations have been proposed [19, 85–87],
with limited validity at concentrations near close packing. The high-frequency limit
thus probes the change in viscosity that is due simply to the presence of the particles:
the surfaces of the particles obey a no-slip condition that gives rise to a distortion in
fluid streamlines, leading to an O(φ) increase in viscous dissipation.

Because the short-time diffusion of a tracer and macroscopic high-frequency
oscillation both probe the suspension without deforming its structure and are
hydrodynamic phenomena, it is natural to seek a comparison between the two. That
is, one can ask whether they relate directly via a Stokes–Einstein relation,

Ds
0(φ)

?
=

kBT
6πη ′

∞(φ)a
. (3.16)

For dilute suspensions this relation would give η ′
∞/η = 1 + 1.83φ , which is

clearly not equal to Einstein’s result, ηeff/η = 1+ 2.5φ . Thus it is not possible to
recover exactly the value of the bulk shear viscosity from the motion of a single
diffusing particle. Differences arise when the probe particle selectively interacts
with the immersing material or is not large enough relative to the characteristic
microstructural length scale of the immersing fluid. Indeed, in the dilute limit
it interacts with only one other colloid at a time. In such cases, however, the
diffusive motion of the probe is still indicative of the linear viscoelastic character
of the immersing medium but on a microscopic rather than macroscopic scale.
In fact, qualitative agreement between the high-frequency viscosity, η ′

∞(φ), and
the inverse of the short-time self-diffusivity, 1/DS

0(φ), is excellent. As seen in
Fig. 3.5, quantitative agreement is also quite good—but not exact. In fact, the
inverse of the short-time self-diffusivity is systematically lower than the high-
frequency viscosity, 1/DS

0(φ) < η ′
∞(φ), a disparity which arises precisely because

the characteristic length of the probe particle is comparable to that of the suspending
microstructure. Indeed, Almog and Brenner noted such effects in their study of a
non-Brownian probe driven through a non-Brownian suspension [88]. Comparison
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of the zero-shear-rate viscosity, η0(φ), to the inverse long-time self-diffusivity,
1/DS

∞(φ), reveals similar qualitative agreement (and quantitative differences) as that
seen in Fig. 3.4 [89]. In fact, Brady proposes that this inverse relationship between
the self-diffusivity and the suspension viscosity carries over to arbitrary frequencies,
differing only by a scale factor, that the appropriately normalized frequency-
dependent self-diffusivity should be a universal function of the frequency for all
volume fractions and that this frequency dependence should be virtually identical
to that of the effective viscosity [80]. This universal scaling for the frequency-
dependent viscosity has been verified experimentally [90]. How this view can be
reconciled with the correlated motion during the transition from short- to long-time
diffusion, however, remains an open question.

Nonetheless, if the goal is to recover exactly the “bulk” equilibrium rheology, the
probe must interrogate the material over a length scale that is large compared to the
microstructure. Passive single-probe microrheology works well when the probe is
large in some sense, for example, in water, whose constituent molecules are of size
about an angstrom, or a polymer melt, whose constituent monomer size is also small.
It is also known from the work of Batchelor that for dilute suspensions a very large
probe recovers precisely Einstein’s viscosity correction. The extent to which this
holds at higher volume fractions is not known. As many important biological fluids
are composed of solvents plus particles on the order of nanometers to microns in
size, understanding the interplay between probe and microstructure is an important
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aspect of the rheology of biological systems. For example, a probe inserted in a
networked structure may diffuse locally inside a network pore; naïve application of
the Stokes–Einstein relation for short-time measurements will produce a viscosity
more indicative of the interstitial fluid than of the energy required to deform the
network, often not the desired result. Even the application of the generalized Stokes–
Einstein relation may obtain only pore-solvent viscosity and local network elastic
strength.

At least two alternative approaches in microrheology can be taken to circumvent
the continuum issue. In the first, pioneered by Crocker and coworkers [54], one
tracks the motion of a pair of probes diffusing passively through the medium. In
this so-called two-point microrheology, the motion of two tracers is tracked and
correlations in their motion analyzed, enabling the inference of material properties
over length scales larger than the probe radius [53–55]. This approach is discussed
next. In addition, in Sect. 3 we will see that the motion of a single probe driven
actively through a colloidal dispersion—active microrheology—can be related
closely to the suspension viscosity and in turn, directly to the short- and long-time
self-diffusivity of the probe.

2.4 Dual-Probe Microrheology

Tracking the motion of a single diffusing probe particle through a material has
produced results consistent with the theoretical predictions of the Stokes–Einstein
and generalized Stokes–Einstein relations for a wide range of fluids. The strongest
agreement between theory and experiment is seen in the probing of simple Newto-
nian fluids and in some complex fluids whose internal microstructure interacts with
the probe as a continuum. Examples of the latter include solutions of polymers and
polymer gels [91–97]. However, in other studies of e.g., entangled polymer melts
[98] and the intracellular medium [50, 99] the agreement is poor. For example,
recent studies of intracellular diffusion report unexpectedly large diffusion coeffi-
cients [99,100], superlinear diffusion [48,100], and multiple diffusive regimes [70].
Results can also be probe-size dependent: in F-actin networks, small probes undergo
sterically hindered diffusion, but larger probes must deform the network in order
to diffuse [49, 101]. Interpretation of probe statistics thus requires consideration
of the length and time scales present in the structure, which lead to structural
and dynamical heterogeneities, respectively. Valentine et al. showed that careful
statistical analysis of probe motion can distinguish between dynamical and struc-
tural heterogeneity in a material [92]. In addition, chemical as well as mechanical
factors may contribute to difficulty in interpreting probe statistics. For example,
common in biological systems are attractive interactions between probe and medium
or chemical interactions between probe and structure. These fundamentally alter the
dynamics of probe motion. A review of the experimental literature on the effects
of chemical interactions between probe and structure can be found in Squires and
Mason [97]. However, a structural feature common among such systems is the
presence of multiple length and relaxation time scales which are also comparable
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to that of the diffusing probe—invalidating the continuum hypothesis and calling
into question the validity of Stokes–Einstein relations. One successful approach to
resolving issues of non-continuum interactions between probe and structure is dual-
probe (two-point) microrheology [54, 55].

In an effort to extend the connection between tracer motion and the viscoelastic
properties of the embedding material, Crocker and coworkers [54] introduced the
model of dual-probe microrheology. They noted that a single probe inserted into a
soft, homogeneous matrix may sample only the fluid within the pore, may interact
locally with the matrix itself, or may move from pore to pore by deforming its local
cage, yielding values for the viscoelastic moduli that are quite different from the
viscoelastic modulus one would measure by a bulk shearing motion. Their model
merges, in a sense, the approach of microscale and bulk interrogation: they proposed
that two widely separated probes will interact with each other hydrodynamically—
across the bulk material—with an interaction strength that scales, to leading order,
as a Stokeslet, ∼ 1/r. That is, the motion of one particle entrains the other
through the complex fluid, giving rise to correlated fluctuations in particle position.
Such correlations may then be, in turn, connected to a mean-square displacement
tensor. The Laplace transform of this tensor is scaled on the ratio of the particle
size to separation distance, a/r, giving a form of the generalized Stokes–Einstein
relation (3.8):

D̂(s) =
kBT

2πrs η̂(s)
, (3.17)

where, as before, s is the transformed time variable and η̂(s) is the frequency-
dependent viscosity. Frequency modes corresponding to length scales on the order
of particle size do not produce in-phase motion of the probes. Ideally then, the only
frequency modes encoded into the complex modulus η̂(s) are those corresponding
material response (modulus) over length scales on the order of the separation
distance. That is, the issue of a non-continuum length scale is circumvented by
interrogating the material over a long length scale. Rather than using a single
large probe to interact with many structural features simultaneously, two small
tracers probe the bulk material. Crocker and coworkers then conducted experiments
in several materials to test the connection between viscous moduli obtained via
traditional shear rheology and that obtained single- and dual-probe microrheology
with promising results. Despite its success in recovering bulk rheology for a wide
class of complex materials, however, this technique is hindered by its intrinsic
requirement for prohibitively large statistical sampling.

Recent years have seen an emergence of an alternative approach, active microrhe-
ology, which has shown success in resolving the limitations of continuum and
equilibrium materials. This approach is discussed next.
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3 Nonequilibrium Systems: Active Microrheology

In the previous sections we saw that the random thermal displacements of a
Brownian tracer particle can reveal equilibrium, linear-response properties of an
embedding material. The regimes of validity of such passive microrheology were
shown to include the interrogation of homogeneous, incompressible, isotropic,
continuum Newtonian and non-Newtonian fluids via the Stokes–Einstein and
frequency-dependent Stokes–Einstein relations, respectively, and that the latter
relation could be extended to a dual-probe model to study materials with more
complex structure and relaxation behaviors. But several shortcomings remained.
First and most obvious is the exclusion of nonequilibrium material behaviors. By
their very nature, thermal fluctuations of the probe cannot drive a material from
equilibrium and hence cannot probe nonlinear response properties. Secondly, in
all but the simplest continuum fluids, displacements of a single probe cannot be
related in a simple way to recover the exact bulk viscoelastic or other material
properties as measured via traditional macroscopic shear rheology. While dual-
probe passive microrheology has been shown to recover reasonably well the bulk
rheology of a wide class of complex materials, this technique is hindered by its
intrinsic requirement for prohibitively large statistical sampling. The model of
nonlinear or “active” microrheology can overcome many of these limitations and
obtain accurate predictions of both non-continuum and nonequilibrium material
properties.

To interrogate the behavior of materials driven out of equilibrium, the colloidal
probe is actively driven through the medium by an externally applied force. The
force may be steady or oscillate in time (e.g., via magnetic fields or laser tweezers)
imparting to it a nonzero average velocity. If driven by a fixed external force, the
embedding material will slow the mean motion of the probe. This reduction may be
analyzed via application of Stokes’ drag law [39] and the mean motion connected to
material viscosity [39, 40]. Even when the external force is fixed, probe velocity
will fluctuate, leading to a diffusive spread of its trajectory and force-induced
diffusion, the so-called microdiffusivity [42]. These results can also be combined to
obtain the full tensorial expression for the suspension stress, which leads ultimately
to a nonequilibrium Stokes–Einstein relation [43]. An oscillatory motion applied
to the probe can interrogate the linear response viscoelastic properties [21] and
nonlinear oscillatory behavior as well [22]. As in the previous sections for passive
microrheology, we will make use of the workhorse model for complex fluids: a
dispersion of colloidal spheres in a Newtonian solvent. Because the particles are
Brownian, an understanding of the statistics of the particle distribution is required
in order to determine average material properties.

We begin the discussion with an outline of the microrheology model system.
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3.1 Model System

The microrheology model system comprises a Brownian probe particle of size a
driven through a dispersion of neutrally buoyant colloidal particles, all of size b,
immersed in a Newtonian solvent of viscosity η and density ρ . The relative strength
of fluid inertia to viscous dissipation defines a Reynolds number, Re = ρUa/η ,
where U is the characteristic probe velocity. Because the probe and bath particles
are small, Re � 1; on the particle time scale, inertia can therefore be neglected and
the fluid mechanics are governed by Stokes’ equations. As the probe moves through
the bath, it drives the suspension from equilibrium. Simultaneously, the Brownian
motion of the bath particles acts to recover their equilibrium configuration, giving
rise to an entropic restoring force of order kBT/b, where kBT is the thermal energy
of the bath. The degree to which the suspension is driven from equilibrium, and
hence its effect on probe motion, is determined by the strength of external probe
forcing Fext compared to thermal restoring force kBT/b, defining a Péclet number:
Pe = Fext/(kBT/b). This interplay between probe motion and microstructural
response gives rise to changes in probe velocity, which can be used to interrogate
suspension properties [17, 38–43].

In general, the particles interact through hydrodynamic and interparticle forces
which may be both short and long-ranged; the simplest model for the interactive
force, which shall be adopted here, is the hard-sphere potential. Thusly defined,
the colloids exert no force on each other until their surfaces touch, i.e., when their
separation r = a+ b. At contact, an infinite potential prevents their overlap.

The radii a and b at which the particles exert the hard-sphere force may or may
not be the same as their physical or hydrodynamic radii, ah and bh, where the no-slip
boundary condition is met. Various physical conditions of the colloid or solvent can
extend the effective size of the particle beyond the hydrodynamic radius, e.g., steric
repulsion or an ionic screening layer. The particles then repel each other at their
extended or “thermodynamic” radii, a and b. This approach forms the foundation
of the excluded annulus model of Morris and Brady [25], in which the ratio of
the two radii (λa = a/ah and λb = b/bh) can be modulated to account for the
relative importance of hydrodynamic-to-interparticle forces. When λa,λb � O(1),
the particles are able to approach each other closely enough to experience (long-
range) hydrodynamic interactions. For λa,λb → 1, lubrication interactions also
become important. At the opposite extreme of λa,λb → ∞, long-range interparticle
repulsion keeps the particles sufficiently separated that hydrodynamic interactions
are negligibly weak. The configuration of particles, resulting from imposed forces,
flows, and interactions, is given by an N-particle probability distribution governed
by a Smoluchowski equation; the shape of this structure can be described by the pair-
distribution function g(r) [39, 40]. For example, a suspension of microorganisms in
suspension may be Boltzmann-distributed, g ∼ exp[−V (r)/kBT ], where V (r) is the
potential of their interaction. For a suspension of algae particles this interaction
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Fig. 3.6 Contour plots of the deformed microstructure around an externally forced probe driven
to the right. The Péclet number increases in each from left to right as shown. Top row: negligibly
weak hydrodynamic interactions, λ → ∞. Bottom row: strong hydrodynamic interactions, λ = 1.
Black center is the volume excluded to the probe. Red regions indicate areas of high pair density,
blue indicates strong depletion, and green indicates undisturbed structure. From [40, 62], used in
accordance with the Creative Commons Attribution 3.0 Unported License

may comprise a strong attraction at longer ranges that causes them to aggregate
into colonies, along with a soft repulsion that permits fluid interpenetration and the
activity of surface groups in the colony.

As the probe particle moves through the suspension it must push neighboring
particles out of its way; a buildup of background-particle concentration forms in
front of the advancing probe and a deficit or wake trails it. Brownian diffusion of
the bath particles acts to restore isotropy, but as Pe is increased advection wins
the competition and the microstructural deformation becomes highly anisotropic.
Overall, the microstructure hinders the probe, slowing it down. Figure 3.6 gives
an illustration of the deformed microstructure (the total structure g(r) minus
the equilibrium structure geq(r) gives the deformed shape) at several values of
the Péclet number (where Pe increases from left to right in the frames) and for the
limits of weak and strong hydrodynamic interactions (λa,λb = 1 and λa,λb → ∞,
respectively). The evolution of microstructural shape can clearly be seen. The
microstructural differences between the two rows are discussed in detail in Sect. 3.2.

3.2 Microviscosity

There are two primary modes of probe motion in microrheology: one in which
the probe is driven by a fixed imposed force and the other in which its velocity
is prescribed. The fixed-force case is the more interesting of the two and more
relevant to the study of biological complex fluids, where a translating probe is free
to fluctuate and undergo diffusive motion as well as steady translation. The velocity
U of a probe particle translating under a fixed force, Fext, alone through an otherwise
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quiescent solvent is given by Stokes’ drag law. The probe velocity, U = UStokes =
Fext/(6πηah), is proportional to the applied force and inversely proportional to its
hydrodynamic radius ah and the solvent viscosity η . The probe velocity is thus a
measure of the solvent viscosity. When the probe is driven through a suspension of
other particles, however, the microstructure slows the probe’s motion. Squires and
Brady [39] and Khair and Brady [40] interpreted the mean speed reduction as the
viscous drag of the bath and defined an effective viscosity ηeff via application of
Stokes’ drag law to the average velocity of the probe. In the fixed-force case, this
reads:

Fext = 6πηa
ηeff

η
〈U〉. (3.18)

The effective viscosity is then given by

ηeff

η
=

Fext

6πηa〈U〉 , (3.19)

where 〈U〉=−〈U〉 ·Fext/Fext. The effective viscosity may also be written as

ηeff

η
= 1+

ηmicro

η
, (3.20)

where the microviscosity ηmicro is the viscous drag of the particle microstructure—
above and beyond the solvent viscosity. In general it includes contributions due to
hydrodynamic, interparticle, and Brownian drag: ηmicro =ηH +ηP+ηB. In the case
of negligibly weak hydrodynamic interactions, λa,λb → ∞, only the interparticle
contribution is present [39]:

ηP

η
=

3
4π

Pe−1φb

(
1+

a
b

)2
û ·

∫
ng(2)dΩ. (3.21)

Here, φb is the volume fraction of bath particles, û is a unit vector parallel to the
applied probe force, n is a unit vector along the line of centers of a probe and bath
particle, g(2) is the contact value of the pair-distribution function of the bath relative
to the probe (the “microstructure”), and dΩ is the element of solid angle. When
hydrodynamic interactions cannot be neglected, the statistical mechanics theory can
be applied in a straightforward way to define the corresponding integrals for the
hydrodynamic, interparticle, and Brownian contributions to the microviscosity, ηH ,
ηP, and ηB. Here we shall discuss the physical relevance of the three contributions
to the microviscosity without derivation of the corresponding formulae; these are
given in detail by Khair and Brady [40].

Physically, there are two microstructural contributions to the effective viscosity:
the rigidity of individual particles and the distribution of those particles relative
to each other. The former, the non-deformability of the particles and the no-slip
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condition at their surfaces, leads to distorted fluid streamlines and increasing viscous
dissipation—a hydrodynamic effect. However, the overall arrangement of particles
is also deformable. This has interesting consequences for the viscosity, which
depends both on the strength and on the rate of the structural distortion. Such
flow-dependent viscosity is a hallmark of non-Newtonian behaviors such as shear
thinning, shear thickening, and viscoelasticity.

In Fig. 3.7a the dependence of the microviscosity on the strength of hydrody-
namic interactions has been highlighted; several familiar trends emerge. A New-
tonian plateau at low Pe exists regardless of the importance of hydrodynamic
interactions (i.e., for all values of λ ). When the Péclet number increases, the
plateau gives way to the thinning behavior characteristic of colloidal dispersions
and many other complex fluids. As expected, the onset of this thinning behavior
occurs when the Brownian motion becomes weaker than advection and can no
longer effectively dissipate the work done by the probe, near Pe = 1. In the absence
of hydrodynamic interactions, the thinning continues until a Newtonian plateau is
reached at high Pe. With stronger hydrodynamic interactions, the thinning gives
way to thickening near Pe = 5. The transition from thinning to thickening shifts
to slightly lower Péclet numbers as λ decreases, reflecting the interplay between
entropic and hydrodynamic forces. These trends are in close qualitative agreement
with the corresponding values obtained via dilute theory for sheared dilute colloidal
dispersions [7], which are shown as the filled symbols in Fig. 3.7a, and with
Brownian dynamics simulation [102] and experiment [38].
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Figure 3.7b highlights each of the individual contributions—hydrodynamic,
Brownian, and interparticle—to the microviscosity. Two limiting cases are shown:
weak (square symbols) and strong (circular symbols) hydrodynamic interactions.
In both cases, a transition to force thinning occurs near Pe= 1 as the relative strength
of Brownian motion weakens. For strong hydrodynamic interactions, the transition
from thinning to thickening behavior near Pe = 5 coincides with the rapid decay
of the Brownian contribution ηB and growth of the hydrodynamic contribution
ηH , demonstrating that in fact it is only the hydrodynamic contribution that gives
rise to the thickening behavior. This can be understood in terms of hydrodynamic
mobility: in the presence of strong hydrodynamic interactions, the relative mobility
between particles is zero at contact. This lubrication interaction prevents contact,
thus permitting no contribution by the interparticle viscosity ηP.

The micromechanical origin of this behavior is encoded in the statistical distri-
bution of colloidal particles, which is governed by a Smoluchowski equation. In the
dilute limit, the pair Smoluchowski equation governs their distribution [39]:

∇ ·
[

D ·
(

1
2kBT

Fextg+∇g

)]
= 0. (3.22)

The boundary conditions associated with this equation are zero relative flux at
particle contact and no long-range order. Equation (3.22) gives a generic form,
applicable for either a fixed-force or fixed-velocity probe. In the latter case, one
must simply solve the appropriate force balance and linearity relation between
hydrodynamic force and particle velocity to obtain the external force in terms of
the imposed velocity [39, 62].

The contour plots in Fig. 3.6 give the microstructural solutions to Eq. (3.22)
for several values of the Péclet number, with Pe increasing from left to right in
the figure. The top row gives the microstructural perturbation in the absence of
hydrodynamic interactions, λ → ∞. The second row reflects strong hydrodynamic
interactions, λ = 1. The volume excluded by the probe is shown in black, and
the probe moves from left to right. Red regions indicate a concentration of bath
particles above the equilibrium number density; blue indicates a depletion; and
green represents the equilibrium microstructure. In the linear-response regime,
Pe � 1, the perturbation is a diffusive dipole. As the forcing strength increases,
particles are swept downstream and the symmetry is broken. The downstream
(blue) depletion region shrinks, becoming a defined particle-poor wake that trails
the probe. Particles accumulate on the upstream face of the probe (shown in red),
forming a particle-rich boundary layer that thins as forcing strength grows. In both
the absence and presence of hydrodynamic interactions, the boundary layer thins
as Pe increases. In the case of strong hydrodynamics, when Pe becomes large
the reduction in boundary-layer thickness allows the probe and bath particles to
approach one another closely enough to experience lubrication interactions. Not
only does this inhibit their relative approach, separation is also difficult, effectively
causing the probe to drag particles along—a phenomenon absent at long times when
hydrodynamic interactions are weak. It is this combination of squeeze flow and
suction that leads to force (shear) thickening [7, 40].
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Hydrodynamic interactions thus have a pronounced effect on distortions in the
nonequilibrium microstructure. Since hydrodynamic lubrication reduces both the
relative rates of advection and diffusion to zero near interparticle contact, the
boundary layer that forms at high Péclet number is noticeably more diffuse for λ = 1
than λ → ∞. It has been shown [39] (for negligible hydrodynamic interactions)
that the thickness of the boundary layer scales as Pe−1 while the concentration
of bath particles within scales as Pe. But in the presence of strong hydrodynamic
interactions, λ = 1, the concentration of particles inside the boundary layer is
smaller, which mirrors the weaker gradients near contact [40, 62]. Wake structure
is also affected by hydrodynamic interactions. When they are strong (bottom row in
Fig. 3.6), the boundary layer separates from the probe later than when they are weak
(top row). This has an important consequence for the rheology, as the hydrodynamic
contribution to the effective viscosity depends foremost on the total number of
particles near the probe and not directly on microstructural asymmetry. When
forcing becomes stronger, the boundary layer remains attached longer, wrapping
around the probe into the downstream region.

We return briefly to our earlier discussion about passive microrheology and the
connection (or lack thereof) between the high- and low-frequency viscosity and the
short- and long-time self-diffusivity. For dilute dispersions of hard spheres, the so-
called high-frequency viscosity for microrheology is given by ηH(ω → ∞)≡ η ′

∞=
(1+ 1.83φ)η in the limit of full hydrodynamic interactions [40] and arises simply
due to the presence of the particles and is independent of deformation of their con-
figuration; it is a strictly hydrodynamic phenomenon. In this linear-response regime
(Pe � 1), and in the opposite limit of steady probe motion, ηH(ω → 0) = (1+
2.1φ)η (for a constant-force probe) [21, 40]. In the absence of hydrodynamics, the
pertinent values are ηP(ω→∞) = (1+2.0φ)η and ηP(ω→ 0) = (1+1.0φ)η . The
correspondence between the short- and long-time self-diffusivity and the infinite-
and zero-frequency microviscosity is exact. This important result can be understood
in the following way. Recall from Sect. 2.3 that in passive microrheology, the mean-
squared displacement of a diffusing probe particle is proportional to the linear
viscoelastic creep compliance of the material in which it is immersed, J(t)∼ t/ηeff

[83], and thus to the complex mobility (Fig. 3.8 [103]). The creep compliance is a
memory kernel that encodes the temporal dependence of relaxation for a material.
At short times, when no relaxation can occur, it corresponds to the infinite-frequency
viscosity (cf. Fig. 3.8a). A probe diffusing over long distances, however, must await
the relaxation of structure over longer times, corresponding to the zero-frequency,
or steady, limit. This is precisely what one expects from the linear-response theory:
the thermal motion giving rise to diffusion is the same as the mean motion due to
weak external force.

Constant External Force Versus Constant External Velocity Thus far we have
discussed the motion of a probe driven by a fixed external force and the correspond-
ing deformation of the microstructure through which it moves. Alternatively, one
could drive the probe at a fixed velocity, U. Fixed-force experiments are typically
carried out by driving the probe with magnetic tweezers [37]. In fixed-velocity
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experiments, the probe can be held in a stiff optical trap [38] while the bath is moved
past it at a fixed rate.4 In the fixed-velocity case, the probe’s motion is prescribed
and so it cannot diffuse, which has interesting dynamical consequences [39, 62].
It was recently shown that hydrodynamic interactions cause dissimilarities in the
microstructural evolution and hence quantitative differences in the microviscosity
[62]. In the fixed-force case, however, the probe velocity fluctuates as it moves
through the bath. As a result, the probe experiences a collision-induced diffusive
spread of its trajectory [42]. The constant-force probe is the more biologically
relevant mode, e.g., for gravitational settling or propulsion via a motor protein, and
gives rise to diffusive probe motion—a subject to which we now turn our attention.

3.3 Force-Induced Diffusion: Microdiffusivity

The same collisions between probe and bath particles that reduce mean probe speed
also cause fluctuations in probe velocity, similar in many ways to shear-induced
diffusion in non-colloidal [104, 105] and colloidal [25, 106] suspensions. Zia and
Brady [42] found that collisions between probe and bath particles cause the probe
to undergo a random-walk process: the long-time mean-square fluctuational motion
of the probe is diffusive. They derived an analytical expression for the force-induced

4The idea of a fixed force or fixed velocity is an approximation, the accuracy of which is dictated
by the uniformity of the applied field or the stiffness of the optical trap. Such approximations can
be made quite accurate [37, 38].
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diffusion, or “microdiffusivity” for a dilute suspension of colloids, in the absence
of hydrodynamic interactions:

Deff

D0
=

[
I− 3

4π
φb

(
1+

a
b

)2 ∮

r=a+b
nddΩ

]
. (3.23)

In the limit Pe → 0, the entropically hindered diffusion of a particle in a dilute
suspension without hydrodynamic interactions is recovered, Deff = Ds

∞ = D0(1−
2φb) [6, 69], for a/b = 1. Here, D0 is the diffusivity of an isolated probe alone in a
solvent. To separate passive diffusion from the force-induced diffusion, the hindered
diffusion −2φbD0 is extracted from the effective diffusivity

Deff

D0
= (1− 2φb) I+Dmicro, (3.24)

where the diffusive motion of the probe due to external forcing, the microdiffusivity,
is given by

Dmicro

D0
=

3
4π
φb

(
1+

a
b

)2 ∮
nd ′ dΩ , (3.25)

where d′ is the fluctuation vector describing the collision-induced fluctuations in
probe motion [42]. The effective diffusivity of a tracer particle is its bare diffusivity,
D0I, minus the entropic hindrance of the bath, 2φbD0I, plus an enhancement due
to mechanical scattering by the other bath particles, Dmicro. The force-induced
microdiffusivity is proportional to the number density of bath particles, the isolated
probe self-diffusivity, and to the first moment of the hard-sphere deflections. They
showed that the deflection field obeys a Smoluchowski equation forced by gradients
in the microstructure:

∇2d ′ −Pe û ·∇d ′ =
2

(1+ a/b)
∇g, (3.26)

with a no-flux condition at contact and no fluctuations occurring at infinite
separations. The fluctuation field d′ is a probability-weighted displacement. While
the steady microstructure shown in Fig. 3.6 describes the likelihood of a collision,
the fluctuation field describes the likelihood that such a collision will produces a
deflection of a certain magnitude in a given direction. That is, the former describes
the likelihood of a diffusive “kick,” while the latter describes the size and direction
of that kick. Contour plots of the fluctuation field governed by Eq. (3.26) are
given in Fig. 3.9, which illustrate the fluctuations in microstructure that give rise
to probe diffusion. The top row represents fluctuations that cause diffusion along
the direction of external forcing, while the bottom row gives fluctuations that give
rise to transverse diffusion. The fluctuation field is shown for several values of the
Péclet number, with the probe (excluded volume) as the black center moving from
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Fig. 3.9 The fluctuation field longitudinal (top row) and transverse (bottom row) to probe forcing.
Blue areas indicate regions of weak or no deflection; red areas indicate probability of strong
deflection. Figure from [42], reprinted with permission

left to right. Areas in red indicate likelihood of strong deflections, and areas in blue
indicate low probability of deflections.

The diffusion tensor can also be resolved into orthogonal components parallel
and transverse to the direction of forcing, Dmicro

‖ and Dmicro
⊥ , respectively. At

small Pe Brownian motion dominates and the diffusive behavior of the probe
characteristic of passive microrheology is recovered but with an incremental flow-
induced microdiffusivity that scales as Dmicro ∼ D0Pe2φb:

Dmicro
‖ =

79
180

(
1+

a
b

)2
D0 Pe2φb, (3.27)

Dmicro
⊥ =

11
60

(
1+

a
b

)2
D0 Pe2φb. (3.28)

The force induced microdiffusivity is anisotropic, with diffusion longitudinal to the
direction of forcing larger in both limits compared to transverse diffusion but more
strongly so in the high-Pe limit. At the other extreme of high Péclet number the
fluctuational motion is still diffusive, and the diffusivity becomes primarily “force
induced”, scaling as Dmicro ∼ D0Peφb:

Dmicro
‖ =

1
4

(
1+

a
b

)2
(

ln2− 1
4

)
D0 Peφb +O(1), (3.29)

Dmicro
⊥ =

1
32

(
1+

a
b

)2
D0 Peφb +O(1). (3.30)
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As in the low-Pe limit, the large-Pe microdiffusivity is also transversely anisotropic,
with a longitudinal-to-transverse preference of approximately 7/2. The effect of the
hard-sphere collisions is a Pe-large diffusive scattering of the probe’s trajectory.

A plot of the microdiffusivity components is shown in Fig. 3.10. For weak probe
forcing, Brownian motion dominates the behavior, and the probe essentially goes
nowhere on average. In the other extreme of high Péclet number the fluctuational
motion is still diffusive, and the diffusivity becomes primarily force induced, scaling
as (Fext/η)φb, where η is the viscosity of the solvent; its scattering off the mean
path is Pe-large. For microscopic particles in biological systems undergoing such
motion, the ideal range of Pe for coherent motion is thus Pe ∼ 1, as shown by the
numerical solutions to (3.25) and (3.26) (the open symbols in the figure), which
agree closely with the asymptotic limits.

The dilute theory results can also be scaled up to the higher concentrations
relevant in biological systems, as shown by the filled circles in the figure, repre-
senting the microdiffusivity obtained via Brownian dynamics simulation [42], in
which the Péclet number was scaled on the long-time self-diffusivity. The simple
rescaling gives excellent agreement between the dilute theory and the results shown
for concentrated suspensions. This important result extends the applicability of
the dilute theory to concentrated systems, which is critical to its use in biological
complex fluids, which are, more often than not, crowded and concentrated. These
latter results highlight the benefit of including dynamic simulations in theoretical
approaches to microrheology. They provide an ideal “experimental” system in
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which all particle-level interactions—hydrodynamic as well as thermodynamic—
can be rigorously and systematically controlled. Brownian dynamics simulations
are discussed further in Sect. 3.6.

3.4 A Complete Picture: Microviscosity, Microdiffusivity,
and Normal Stresses

To give a physical picture of the importance of normal stresses, one can imagine
a soft particle, such as an organelle inside the cell or such as a bubble, placed in a
suspension. If the particle is compressible, then a change in the osmotic pressure will
cause it to shrink or expand—and possibly burst—due to the particle pressure. If the
particle is soft, normal stress differences will elongate it—possibly causing rupture.
These effects have important implications in the consideration of nanoparticle drug
delivery and the escape of viruses from the endosomal pathway, for example.

The microviscosity and microdiffusivity, as noted above, can be obtained by two
simple quantities: mean and mean-square displacement of a probe driven through a
complex fluid. The notion that diffusive flux is driven by stress gradients leads to
the idea that the stress can be related directly to the microdiffusivity and suggests
that the anisotropy of the diffusion tensor reflects the presence of normal stress
differences in nonlinear microrheology [43].

The work of Einstein and Batchelor discussed in the passive-microrheology
section of this chapter connected gradients in osmotic pressure and chemical
potential to collective diffusion [23, 32]; these treatments applied to equilibrium
Brownian suspensions. An extension of the connection between gradients in the
pressure or more generally in the stress Σ to diffusion in nonequilibrium systems
holds appeal in that the simple measurement of mean-square displacement would
then provide a measurement of suspension stress and overcome a long-standing
shortcoming of passive microrheology. A naïve first approach is simply to apply
the relation ∂Σ/∂n ∝ D to nonequilibrium suspensions. While much of the correct
qualitative behavior is recovered, it falls short of predictive theory. Zia and Brady
assert that the primary feature of the equilibrium model limiting its generalization
to nonequilibrium systems is that it was derived from an equation of state,
while for nonequilibrium systems an equation of motion is required. Cauchy’s
momentum balance is the appropriate equation of motion of the suspension. Zia
and Brady derived this connection, finding that stress gradients drive both diffusive
and advective flux of the probe, corresponding to the microdiffusivity and the
microviscosity, respectively [43]:

− Σneq

nakBT
=

(
2− ηmicro

ηφb

)
Dmicro

D0
+

1
3

tr

(
Dmicro

D0

)
I, (3.31)
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where the superscript neq indicates the nonequilibrium value and na is the number
density of probes. They rearranged this expression to assert a nonequilibrium
Stokes–Einstein relation [43]:

Dmicro =−
(
Σneq

na
+P

)
·Mneq, (3.32)

where the isotropic pressure term with P ≡ R · tr(Dmicro)I/3. The nonequilibrium
mobility tensor is given by

Mneq =

(
2− ηmicro

ηφb

)−1

M (3.33)

and M = I/6πηa. Like the equilibrium Stokes–Einstein relation (3.1), the nonequi-
librium Stokes–Einstein relation (3.32) gives a relationship between fluctuation and
dissipation. Fluctuations, Dmicro, driven by the energy, Σneq/na and P, are dissipated
back to the solvent by viscous drag (Mneq)−1.

This is an important result in the quest to fully characterize complex fluids by
relating tracer motion to material properties. In order to obtain viscosity, diffusion,
viscoelastic behavior, and all elements of the stress tensor, one need only track the
displacements of a single-probe particle [43].

Normal stress differences can be important in the context of single-particle
forcing in many physical systems; they may cause soft particles, e.g., subcellular
organelles, to elongate or even rupture. The normal stress differences are defined by
N1 ≡ Σzz −Σyy and N2 ≡ Σyy −Σxx, where z is the direction of probe forcing and
x and y are the two orthogonal axes. According to (3.31), the first normal stress
difference is then

− 〈Nneq
1 〉

nakBTφb
=

Dmicro
‖ −Dmicro

⊥
D0φb

[
2− ηmicro

ηφb

]
. (3.34)

Due to the axisymmetric structure around the probe, the second normal stress
difference is zero. While normal stress differences indicate how a soft object might
elongate, the osmotic pressure indicates how a compressible object might shrink
or expand. The osmotic pressure is the trace of the probe-phase stress tensor; the
corresponding nonequilibrium contribution is

〈Πneq〉
nakBTφb

=
1
3

Dmicro
‖ + 2Dmicro

⊥
D0φb

[
3− ηmicro

ηφb

]
. (3.35)

The strength of this approach is the ability to predict all of the rheologically inter-
esting information about a material: shear thinning, shear thickening, normal stress
differences, viscoelastic behavior, and force-induced diffusion—all by tracking the
motion of a single colloidal probe [43].



3 Theoretical Microrheology 145

One can ask how well this phenomenological theory compares to the known
results for the stress obtained via the statistical mechanics theory [24, 107]:

− 〈Σ〉
nakBT

= 1+
3

8π
φb

(
1+

a
b

)3 ∫

r=a+b
nng(r)dΩ. (3.36)

Equation (3.36) is an exact formula (for hard spheres) of the stress contribution from
the probe particles no matter what the concentration of bath (or probe) particles and
for any type of forcing, e.g., shearing motion or an external force for microrheology.

The predictive theory presented above in Eqs. (3.34) and (3.35) is shown in
Fig. 3.11, alongside the micromechanical approach (3.36) and with a measurement
of the stress via Brownian dynamics simulations [43]. The normal stress differences
were compared side by side among the three approaches, showing excellent agree-
ment (Fig. 3.11a). For large Pe, the first normal stress difference scales linearly in the
forcing and in the volume fraction of bath particles, 〈N1〉/nakBT ∼ Peφb. For very
weak forcing, Pe � 1, 〈N1〉 vanishes as ∼ O(Pe4)—because the Brownian motion
of the bath particles easily restores deformation caused by the probe’s motion, and
the structure is nearly isotropic. One could expect instead that 〈N1〉 should vanish
as Pe2, as might be predicted from the near-equilibrium, linear-response theory.
But this is where the importance of normal viscous stresses plays a special role
in microrheology. Without these, the decay in 〈N1〉 for very weak forcing would
indeed scale quadratically in Pe. Although viscosity plays a role in the stress due to
fluctuations, the viscous drag due to mean motion always acts to slow the probe;
at small Pe, the effect is a stronger suppression of the advective motion, which
results in a stronger suppression of microstructural asymmetry. Preliminary results
for the microdiffusivity in the presence of hydrodynamic interactions are also shown
in the figure (filled triangles), obtained via Stokesian dynamics simulation [61].
Hydrodynamics appear to contribute a primarily quantitative effect. The first normal
stress difference is more pronounced, as one would expect: close-range longitudinal
encounters between a probe and bath particle in the lubrication limit scale as
the inverse of the separation distance, while the transverse encounter produces a
logarithmically weak force.

The osmotic pressure computed via the theory is shown in Fig. 3.11b, where
it is also compared to the statistical mechanics and Brownian dynamics results,
with excellent agreement. For large Pe, the osmotic pressure scales linearly in the
forcing and in the volume fraction of bath particles. For very weak forcing, Pe � 1,
the total nonequilibrium osmotic pressure asymptotes to the value predicted by the
Carnahan–Starling equation of state [108]. A comparison of the osmotic pressure
to the dilute theory result for macroscopically sheared suspensions shows excellent
agreement [7, 43]. Overall, the similarity between micro and macro is very strong:
the same scaling in Pe is evident for the full range of Pe and the quantitative
agreement is good. However, fundamental differences manifest in the second normal
stress difference, which is zero in microrheology, and O(Pe) for strong forcing in
macrorheology [43, 106].
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Fig. 3.11 (a) First normal stress difference via dilute theory, Eq. (3.34) (filled diamonds); statis-
tical mechanics theory, Eq. (3.36) (open squares); Brownian dynamics simulation (filled circles);
Stokesian dynamics simulations with hydrodynamic interactions (filled triangles). (b) Osmotic
pressure via dilute theory, Eq. (3.35) (filled diamonds); statistical mechanics theory, Eq. (3.36)
(open squares); Brownian dynamics simulation (filled circles) [43]. To highlight the strictly
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Starling equation of state (dashed lines) [108]. Data from [43], reprinted with permission by the
Society of Rheology
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Although the proposed theory was constructed for and compared with dilute
dispersions, the physical ideas underlying the theory should hold more generally,
and indeed, it can be seen in Fig. 3.11 that the proposed relation (3.31) also applies to
much more concentrated colloidal dispersions, when Pe is rescaled on the long-time
self-diffusivity [42, 43]. This important result holds both practical and fundamental
appeal. From a practical standpoint the applicability of the theory to concentrated
systems is critical to its use in many systems of interest, e.g., watery biophysical
systems such as the crowded interior of the cell.

3.5 Time-Dependent Flows

Most work thus far in nonlinear microrheology has focused on steady dynamic
behavior, to establish the relationship between steady-state microstructural mechan-
ics and transport properties such as the diffusivity, viscosity, and stress [17, 39, 40,
42,43]. Transient behavior has been studied in the near-equilibrium, linear-response
regime—in the microrheological context via its connection to low-amplitude oscil-
latory probe forcing and the complex modulus [21, 80]. Such studies show that for
very weak forcing, the microstructural response that drives stress (and relaxation) is
indistinguishable from equilibrium fluctuations. Previous macrorheological studies
of transient behavior in colloidal dispersions also reveal a range of interesting time-
dependent phenomena, including temporary stress overshoot behavior, viscoelastic
and memory effects such as strain recovery, and the existence of multiple relaxation
modes [16].

Stress formation and relaxation in colloidal dispersions accompany the storage
and loss of microstructural memory. In equilibrium colloidal dispersions, the
thermal fluctuation of a single particle in a solvent is dissipated back to the solvent
via viscous drag [32, 33]. The decay of viscous particle momentum occurs on the
order of 10−7 s (for a 0.5-μm particle in water); from a particle perspective, memory
loss is nearly instantaneous (for a discussion of relaxation on the solvent time
scale, see e.g., Russel [73] or Hocquart and Hinch [109]). But a particle diffusing
through a dispersion of other particles deforms the suspension, giving rise to stresses
that relax on time scales much longer than the individual-particle momentum
relaxation time. The temporal decay of stress (and velocity) fluctuations can be
understood from the perspective of linear-response theory [110,111]: while the shear
stress in an equilibrium system is zero on average, thermal fluctuations produce
small perturbations in microstructural isotropy, which give rise to temporary shear
stresses, which are characterized by the shear stress autocorrelation function,
Cs(t) = 〈σ ′

xy(t)σ ′
xy(0)〉 [79]. That is, stress relaxation accompanies memory decay.

A material may have multiple relaxation modes which can be probed via
low-amplitude oscillatory displacements, for example. The high-frequency limit
corresponds to the shortest relaxation time scale of the material; for hard-sphere
colloidal dispersions the stress decays as t−1/2 at very short times (in the absence
of hydrodynamic interactions) [19–21, 80]. Nonequilibrium transient behavior has
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also been studied experimentally for sheared dispersions, where it has been shown
that multiple mechanisms play a role in suspension stress and viscosity e.g., hydro-
dynamic, interparticle, and Brownian forces—and give rise to distinct relaxation
processes. For example, Mackay, Kaffashi, and coworkers [12, 15] studied the
decay of stress immediately after the cessation of imposed strain rate on a sheared
suspension; they found that the hydrodynamic stress decays instantaneously, as it
must—the hydrodynamic stress is proportional to the imposed strain rate, and thus
must vanish in the absence of flow. Watanabe and coworkers [13,14] analyzed stress
development and relaxation in sudden start-up and cessation of shearing flow and
found both short- and long-time relaxation modes. And although at long times after
flow has been initiated a colloidal dispersion behaves as a viscous fluid, at early
times during the startup of the flow, an “overshoot” in the material stress or viscosity
may be observed [16], mirroring the microstructural rearrangements responsible
for the transition from elastic to viscous behavior. When the flow is shut off, one
would expect the elastic behavior to manifest as creep recovery: removal of the
force should allow the microstructure to return to a previous state. These studies
show that the macroscopic stress relaxes via distinct transport processes, but the
microstructural evolution that accompanies this relaxation was not as thoroughly
studied until recently.

The formation and relaxation of nonequilibrium stress in colloidal disper-
sions were recently studied by Zia and Brady using the framework of nonlinear
microrheology [17]. The comparison between transient nonlinear macrorheology
and microrheology shows that in both cases, the early stress evolution scales with
the square root of time and shows the same shear (force) thinning over a range
of Pe [16]. In both micro- and macrorheology, the long-time relaxation behavior
collapses onto a single curve, indicating that memory of the initial condition is
lost. After the forcing is removed, the motion of the probe and suspension do
not cease instantaneously. The suspension relaxation occurs over at least two time
scales: first, an initially rapid decay in stress that accompanies diffusive relaxation of
the boundary layer. Stronger departures from equilibrium recover faster: the stress
relaxation time depends on the boundary-layer thickness, which it must, because the
primary contribution to suspension stress is due to near-contact particle interactions.
The dilute microrheology theory, in the absence of hydrodynamic interactions,
captures the physics of the relaxation process: the pair-level equation obtained
for the relaxation of the viscosity also found agreement with the concentrated
suspension in accompanying simulations [17]. That is, the relaxation rate of the
boundary layer is evidently independent of volume fraction. These results are
consistent with similar findings by Foss [16].

Creep recovery after shutoff provides insight into the connection between stress,
free-energy storage, and entropic memory. During start-up and at steady state, the
probe’s motion compresses the particle distribution, restricting its entropy; the free-
energy change required to do so is released by the microstructure as it relaxes
and regains access to more configuration states. As shown by Zia and Brady
[17], when the force is abruptly removed, not all of the strain can be recovered;
the remaining energy is dissipated viscously to the solvent by the probe and the
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bath particles. The storage is entropic in origin (not enthalpic), and this is the origin
of nonequilibrium suspension stress. They showed that the connection between the
entropic force and the osmotic compressibility supports this view of the stress as
energy storage.

Recent work in large-amplitude oscillatory flows is useful for understanding
the relative importance of different forces, conservative and nonconservative,
in determining unsteady and nonlinear flow properties. Recent work includes
large-amplitude oscillatory forcing (LAOF) microrheology, in which a colloidal
dispersion is deformed by a probe particle driven with an oscillatory force of
arbitrary magnitude and frequency [22]. This is the microrheological analogue to
the large amplitude oscillatory shear (LAOS) experiment.

3.6 Brownian Dynamics Simulations

An alternative approach to the Smoluchowski theory emphasized thus far is Brown-
ian dynamics, in which one examines the detailed motion of the individual particles;
no assumption of diluteness is then required. Here, the dynamics are governed by
the Langevin equation, a stochastic force balance that includes Brownian, external,
hydrodynamic, and other interparticle forces:

M · dU
dt

= FH +Fext +FB +FP, (3.37)

where M is the mass (or moment of inertia) tensor and U is the particle velocity.
The left-hand side is zero because inertia is not important for colloidal dispersions.
Periodic replication of the cell simulates an infinite domain. On the right-hand side
are the forces that act on a particle, which include the hydrodynamic drag FH , along
with external, Brownian, and interparticle forces, Fext, FB, and FP, respectively. The
external force (or probe velocity) is prescribed, and the Brownian force obeys the
appropriate statistics. The velocity of the particle U = (Fext +FB +FP)/6πη a can
then be integrated forward in time to obtain a particle’s displacement. To begin, a
probe of size a is placed among a randomly distributed bath of particles of size b
in the simulation cell. At each time step every particle is given a randomly directed
Brownian displacement, simulating a continuum Newtonian solvent of viscosity η .
The probe is also displaced at each time step in the direction of the external force
F̂ext. When two particles contact one another, the hard-sphere collision is treated
via a “potential-free” algorithm [102,112], where the overlap between two particles
is prevented by separating the colliding pair along their line of centers until they
are no longer in contact. The collision contributes to the particle’s displacement and
velocity and to the average stress in the suspension. For a complete description of
Brownian dynamics of active microrheology, see Carpen and Brady [102].

To obtain the microviscosity, the probe velocity 〈U〉 and applied force 〈Fext〉 are
the quantities that are directly computed in simulation and theory and measured
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in experiment: in the constant-force case one measures the reduction in probe
speed due to collisions with the background bath particles [17, 102]. As before
(cf. Sect. 3.2) we interpret the reduced mean speed as an effective viscosity of the
dispersion. Recall the definition of the effective viscosity for constant external force:

ηeff

η
=

Fext

6πηa〈U〉 .

Here, 〈U〉 = U0 + 〈UP〉 and U0 = Fext/6πηa, where the bath particles slow the
probe’s mean speed, 〈UP〉< 0. Thus the mean speed of the probe provides a measure
of the effective viscosity [17, 102]:

ηeff
F

η
=

[
1+

〈UP〉
Fext/6πη a

]−1

, (3.38)

and the reduction in mean speed gives a measure of the particle contribution to the
viscosity, ηP

F :

ηP
F

η
≡− 〈UP〉

Fext/6πη a
. (3.39)

The subscript F indicates constant-force mode. Finally, in the case of a dilute bath,
the interparticle contribution to the viscosity measured in simulation is identical to
the microviscosity defined by theory,

ηP
F

η
=
ηmicro

η
, φb � 1. (3.40)

The average noted by the angle brackets indicates a time average over the duration
of the simulation, given a sufficient duration for the probe to encounter a statistically
large number of microstructural arrangements. Equivalently, the ensemble average
of an instantaneous velocity can be computed across simulations to achieve the same
result.

For the microdiffusivity, the trajectory of the probe can be measured directly,
and the ensemble average across many simulations of its mean, 〈x〉, and mean-
square displacement 〈Δx2〉 can be computed to obtain the total or effective probe
diffusivity:

Deff(Pe) =
1
2

d〈ΔxΔx〉
dt

. (3.41)

The passive diffusion of a tracer is recovered when Pe = 0; this value may then
be subtracted from the effective diffusivity in Eq. (3.41) to obtain the force-induced
portion of probe diffusion, Dmicro. The procedure is entirely analogous to that used
in an experiment. The results of Brownian dynamics simulation conducted by Zia
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and Brady [42, 61] are shown in Fig. 3.10. As is seen in the plot, no assumption
of diluteness is required in such simulations, allowing one to test the scaling-up of
the dilute theory to concentrated suspensions. As noted above, defining the Péclet
number in terms of the long-time (passive) self-diffusivity, rather than the bare
diffusion, collapses the data for concentrated dispersions onto the dilute theory.

The nonequilibrium contribution to the particle stress due to a collision between
the probe and a bath particle is 〈Σ〉=−na〈rFP〉 where the angle brackets 〈·〉 indicate
an average over the duration of the simulation. Here, r is the collisional displacement
along the line of centers of the colliding particles. Simulations conducted by Zia and
Brady, shown in Fig. 3.11, were conducted for a range of Pe and at concentrations up
to a volume fraction of bath particles φb = 0.45 [43]. The scaling in volume fraction
φb appears to hold for much more concentrated systems as is seen in the plot of
the first normal stress difference (Fig. 3.11a) and in the plot of the osmotic pressure
(Fig. 3.11b). The good agreement adds weight to the supposition that Eq. (3.31) is
general and not restricted to dilute colloidal dispersions. This important outcome
has both practical and fundamental implications. In practice the theory predicts that
the relation (3.31) holds for a large range of concentrations which opens a wide class
of natural and engineered complex media for investigation.

It is important to ask whether collisions between probe and bath provide
a measure of stress that corresponds to values measured via bulk rheology;
that is, do collisions between the bath particles themselves matter? In a dilute
bath, interactions between the bath particles make an O(φ2

b ) contribution to the
nonequilibrium osmotic pressure, which is small for a dilute bath; hence, the
probe-phase pressure dominates the pressure of all the particles (probe plus
background bath particles) [43]. This simple scaling prediction is borne out by the
Brownian dynamics simulations, in which the bath particles interact via excluded-
volume interactions. The contribution to the osmotic pressure of both probe
and bath particles can be monitored during simulations. The stress measured by
probe/bath-particle collisions, 〈Σ〉/nakBTφb, and that for bath/bath-particle colli-
sions, denoted 〈Σ〉bb/nbkBTφb, was recorded. The osmotic pressure thus obtained,
as a function of Pe, is shown alongside those for the dilute bath in Fig. 3.11b. While
the osmotic pressure measured by the probe, 〈Π〉/nakBT , increases linearly with
Pe, the osmotic pressure due to the bath/bath-particle interactions 〈Π〉bb/nbkBT
remains at the equilibrium value regardless of Pe and is indistinguishable from the
equilibrium osmotic pressure predicted by the Carnahan–Starling equation of state
[108]. Zia and Brady also found this to hold at higher concentrations. The behavior
seen in the figure reflects the fact that most of the bath particles interact with each
other due to Brownian motion only, whereas the probe and bath particles interact
due to the external forcing. In order to understand if this matches what one would
expect from traditional macrorheology experiments, the dilute theory results for a
bath undergoing simple shear [7] are plotted alongside the microrheology results in
figure; the two agree.
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4 A “Non-equilibrium Equation of State”

The work reviewed in Sect. 3.4 suggests that nonlinear microrheology may provide
more than a microscale technique for interrogating complex fluids. As discussed
previously in the introduction to this chapter, it provides a window through which
one can view the atomic (microstructural) world. In 1906, Einstein invented the
“passive microrheology” theory to prove the atomic nature of matter. He proposed
that if matter were indeed composed of atoms, then the motion of a small particle
suspended in a fluid would move with the same random trajectories as the solvent
particles. Combining the theory from kinetics, diffusion, and thermodynamics he
gave the relationship between fluctuation and dissipation at equilibrium, which
showed that the diffusive motion of a small particle is indeed evidence of the
existence of the atom. Perrin confirmed the theory with measurement in 1909.
This is a profound conclusion, drawn by simply watching the motion of a single
particle in a fluid. Together, theory and experiment produced the numerical value
for Avogadro’s number by relating the bulk temperature at the macroscale to
the energy of individual particles at the microscale. Thus the ideal gas equation
of state PV = nRT (where n is the number of moles) became P = nkBT (where n is
the number density of particles). Inspired by this, others have watched a particle
move in a complex fluid—but now for a system that is not at equilibrium. By
studying fluctuations away from equilibrium, Zia and Brady have proposed an
analogous non-equilibrium relation between fluctuation and dissipation, shown in
Eq. (3.32) [43]. It can be understood as follows.

Kinematically, the diffusivity is given by the sum of correlations in velocity
fluctuations over time,

D ∼
∫

U ′U ′dt ∼ (U ′)2τ, (3.42)

where τ is the characteristic time scale for the decay in the velocity correlations.
For Brownian motion, (U ′)2 ∼ kBT/m and τ ∼ m/6πηa, where m is the particle
mass, and the usual Stokes–Einstein diffusivity is recovered. But more generally,
the magnitude of the velocity fluctuations defines the “temperature,” T ∼ U ′U ′,
whence [43]:

Σ∼ naC T eff. (3.43)

They define the proportionality factor C ≡ (Mneq)−1τ with the “effective tempera-
ture” of the dispersion given by particle velocity fluctuations, T eff ≡ 〈U ′U ′〉. The
proportionality of the stress to 〈U ′U ′〉 prompted them to interpret the stress, or
osmotic pressure, as the energy density of the particle phase. Zia and Brady thus
interpreted Eq. (3.43) can thus also be interpreted as a “non-equilibrium equation
of state” for the particle phase, with C the factor of proportionality that connects
the microscopic energy density to the macroscale effective temperature. They also
proposed that one may also view the time dependence τ of the factor C as the
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time scale over which the energy stored by the microstructure is dissipated [17].
The proposed generality of this relation may be important in unifying the analysis,
understanding, and treatment of a wide class of soft materials.

5 Experimental Measurement

We have reviewed a theoretical framework for microrheology that relates the
viscosity, diffusion, and particle-phase stress of a colloidal dispersion to the mean
and mean-square displacement of a probe driven through the material, which can
be of practical use in making physical measurements. As noted below, detailed
knowledge of the embedding material is not required. In order to obtain the stress
tensor, the only quantity which must be measured is the total displacement of the
probe over time. From this, the average speed 〈U〉 = d〈x〉/dt can be computed to
obtain the microviscosity via the relation

ηmicro
F

η
=

6πηa
〈Fext〉F

〈U〉, (3.44)

where 〈Fext〉F is a constant external force applied to the probe and ηmicro
F is the

microviscosity. From the total and mean displacement one may then compute the
microdiffusivity as

Dmicro =
1
2

d
dt
〈x′(t)x′(t)〉, (3.45)

where x′(t) ≡ x(t)− 〈x〉(t) is the displacement from the mean as function of
time and the angle brackets signify an average over realizations. The development
of the relation (3.31) is sufficiently general as to apply to a very wide class of
complex media, ranging from colloidal dispersions to gels to solids with suspended
dislocations. Combining (3.31) with (3.44) and (3.45), Zia and Brady proposed that
the stress in a general material can be obtained by measuring the mean and mean-
square motion of a probe driven through the medium by a constant external force:

− Σneq

nakBT
=

(
2− ηmicro

F

ηφb

)
Dmicro

D0
+

1
3

tr

(
Dmicro

D0

)
I. (3.46)

It should be noted that for Pe� 1, the strong influence of Brownian motion can make
it difficult to detect the small differences between the longitudinal and transverse
microdiffusivity and hence between the corresponding normal stresses. It is thus
recommended that the regime most suitable for experimental measurement using
this analysis is Pe � 1.
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6 Summary

We have presented a broad overview of theoretical microrheology as an approach
for interrogating and understanding the behavior and material properties of complex
fluids, with a view toward application to complex biological fluids. To the extent
that biological fluids span an enormous range of complexity, we have attempted to
elucidate the applicability (and limitations) of both the passive and active forms of
microrheology.

In passive microrheology, we saw that the Stokes–Einstein relation is a powerful
technique for probing continuum materials and that its applicability can be extended
via a frequency-dependent version, due to Mason and Weitz, to interrogate a wider
range of biologically relevant materials. When structural and dynamical heterogene-
ity in a material preclude the use of either of these relations, the dual-probe model
of Crocker and co-workers has been shown to effectively correlate the motion of
a pair of tracers to the bulk rheology the some very complex materials. In all of
these models, however, one major shortcoming remains: the ability to understand
nonlinear material properties. Microrheology provides powerful complement to
more traditional models for the study of biological membranes, for example that
presented next, in Chap. 4.

To this end, Squires and Brady introduced the theory of active, nonlinear
microrheology and showed that the “microviscosity” measured via single-particle
motion and an interpretation of Stokes’ drag law showed, in the absence of hydro-
dynamic interactions, close qualitative and near-quantitative agreement with the
pair-level particle-phase contribution to material viscosity obtained via traditional
macroscale shear rheology. Khair and Brady extended this model to study linear
viscoelasticity, and later to include hydrodynamic interactions, recovering the shear-
thickening behavior that plays a prominent role in complex fluid rheology. However,
neither study had yet addressed the effect of probe fluctuations. More importantly,
these studies were able to obtain only scalar expressions for the viscosity—
precluding any interpretation of the material stress.

Zia and Brady took on this challenge, formulating an expression for the stress
tensor measured via microrheology given in terms of two contributions: fluctuation
(the microdiffusivity) and dissipation (the viscosity). They proposed that this non-
equilibrium fluctuation-dissipation relation constitutes a “nonequilibrium equation
of state,” thus providing the desired relation between particle tracking and rheology
in nonequilibrium colloidal dispersions. The dilute theory accurately predicts
behavior in much more concentrated colloidal dispersions, increasing its appeal and
practical value as a tool for interrogating the typically concentrated and crowded
environments found in complex biological fluids.
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Chapter 4
Membrane Rheology

Arthur A. Evans and Alex J. Levine

Abstract Surfactant monolayers and lipid bilayers are intrinsically
two-dimensional structures with viscoelastic mechanical properties. Monolayers
display a plethora of complex broken symmetry phases, each with its own
rheological signature, while bilayers are of fundamental biological importance
in forming the cell membrane and the principal internal partitions of the cell.
Understanding the low-energy excitations and mechanical response of these
materials is thus an important probe of novel two-dimensional phases and
essential to biomechanics at the cellular level, cell recognition, and transport across
membranes; as such, a number of macroscopic and microscopic techniques have
been developed to explore the rheological properties of monolayers and membranes.
In this chapter we review the fundamental physics and rheology of molecularly
thin membranes, paying particular attention to the fact that these systems are
necessarily bounded on one or both sides by an aqueous fluid. We develop the basic
theory of both the in- and out-of-plane viscoelastic response of membranes and
monolayers and apply this theory to the study of particle transport at the surface.
Such transport measurements form the basis of typical rheological experiments. We
also report on more recent investigations regarding the role of nontrivial membrane
geometry on particle transport and examine a novel approach to monolayer and
membrane microrheology using the thermal fluctuations of particles submerged
beneath the membrane. We conclude with a discussion of open questions in the
field and some speculations on future research directions.
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1 Overview of Membranes and Langmuir Monolayers

There is a class of molecules that, when introduced to water, spontaneously
assemble at the air/water interface into a layer only one molecule thick. This
nanoscale film is termed a Langmuir monolayer and its dynamics or rheology is
the focus of the present chapter. While the ability to self-assemble into nanometer-
thick monolayers sounds like a dispatch from the frontiers of modern nanoscience,
these systems are ubiquitous in nature and their study ancient in origin. In fact, such
quotidian materials as olive oil and soap form these remarkable nanoscale structures.
The historical record is rife with observations providing hints about these systems.
Pliny the Elder remarked on the effect of oil on a body of water in the first century
of the common era [1]:

. . . all sea water is made smooth by oil, and so divers sprinkle oil on their face because it
calms the rough element and carries light down with them.

He was noting what was a common practice among divers in the Mediterranean
who, by releasing a small quantity of oil that goes to the surface of the water
above them and forms a thin film, flattened the waves and allowed for the better
penetration of light into the depths. The spreading of oil on water was noted
repeatedly over the next 2,000 years by others including Ben Franklin, who observed
it from shipboard on a trip to England to complain about taxes (on behalf of the
Pennsylvania Assembly). He later performed more careful experiments to determine
how much oil was necessary to affect a certain area of the air/water interface [2].
It took over another century for these experiments to be repeated more precisely
by Lord Rayleigh [3] and then Agnes Pockels [4] and to receive their modern
interpretation: these oil layers, as calculated by Lord Rayleigh, were actually one
molecule thick [5].

In 1917 Irving Langmuir presented the modern picture of what causes these
monolayers to form in terms of the amphiphilic nature of the molecules in question.
Each molecule of this type consists of a charged or polar “head group” that is
hydrophilic and a nonpolar part, typically a short carbon chain, that is hydrophobic.
At low concentrations such molecules become localized at the air/water interface
where their head groups remain in contact with water while their hydrophobic tails
are exposed to the air. In recognition of his understanding of the localization and
orientational order of these molecules at the air/water interface, Langmuir received
the Nobel Prize in Chemistry in 1932. Today the standard experimental approach to
studying the phase behavior of such surface-active agents or surfactant molecular
systems is in a Langmuir trough.

Despite the antiquity of these earliest observations, Langmuir monolayers
continue to present important questions in physics, chemistry, biology, and the
applied sciences. The main reason for the interest in the basic physical sciences
is that Langmuir monolayers present a rare opportunity to study complex ordered
phases in effectively two-dimensions. As briefly reviewed below, surfactant systems
at the air/water interface present a plethora of complex broken symmetry phases
including those that have no three-dimensional counterpart, such as the hexatic
phase that exists between the solid and liquid states only in two dimensions.
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In addition, Langmuir monolayers present novel dynamical questions associated
with flow in a two-dimensional fluid (or perhaps in a viscoelastic solid) coupled
to the underlying aqueous layer. From the point of view of the applied sciences,
there are intriguing issues associated with the ability to form and then deposit
monolayers of particular molecules onto another material. In this way, one can
control the structure of complex heterostructures at the nanoscale, at least in the one
direction normal to these monolayers.

Langmuir monolayers also serve as an important biomimetic model for in
vitro experiments relevant to the life sciences. There are well-known examples of
surfactant monolayers in biology. The one receiving the most attention is that found
coating the lung. These pulmonary surfactants are essential for normal breathing
as they dramatically lower the surface tension of the air/water interface in the
lung [6, 7]. Without this effect, the work required to inflate the lung against surface
tension would be prohibitive. Moreover, biology abounds with surfactant-based
membranes, typically having the structure of a lipid bilayer [8]. Such structures
bound the cell and its internal organelles, such as mitochondria or the nucleus. In
fact, some organelles, such as the smooth and rough endoplasmic reticulum (ER),
are essentially a complex network of folded and highly invaginated membranes; the
“smooth” ER is the site of lipid synthesis while the “rough” ER appears rough due
to the large number of attached ribosomes which are the main engines of protein
synthesis in the cell. Understanding the mechanics of and phase separation within
these bilayers in the nonequilibrium environment of the cell is a forefront problem
in the life sciences and biological physics. Giant unilamellar vesicles (GUVs) are a
useful in vitro testing ground for exploring the molecular basis of phase separation in
cellular mimics. These large vesicles display surfactant-mediated phase separation,
curvature-induced localization, and dynamical “blebbing,” all of which relate to
processes that effect cellular function. Furthermore, the hydrodynamics associated
with the transport (either actively or via passive diffusion) of transmembrane
proteins embedded in these bilayers is essential for developing a complete picture
for complex biological issues such as cell–cell signaling. The basic physics,
however, remains obscure and is a subject of some debate. It has been suggested
that one can learn relevant dynamical/rheological information about these biological
membranes as well as lung surfactant monolayers using the Langmuir trough, which
allows for precise chemical control of the system and experimental access with a
variety of probes, as discussed later in this chapter.

Since Langmuir monolayers sit at the confluence of a number of research
traditions in a variety of related fields, it is not practical to survey the subject
too broadly. We do not attempt to give an exhaustive overview of the field. In
this chapter, we concentrate on the dynamics or rheology of Langmuir monolayers
giving special emphasis to microrheological investigations. To give sufficient
background to appreciate the continuing interest in monolayer rheology, we briefly
review (and refer the reader to more thorough reviews regarding) the equilibrium
phase behavior of monolayers. We also discuss a number of other probes used
to explore membrane/monolayer rheology. We propose that by developing new
experimental techniques and new theories of transport in membranes/monolayers
or the fluid hydrodynamics near these membranes, one can address a number of
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questions relevant to their physics, chemistry, and application in the life sciences.
For example, the microrheological measurements discussed here may be able to
address the (visco-)elastic response of the various complex broken symmetry phases
of monolayers. Such measurements can test theories of their equilibrium phase
behavior as some phase transitions have dynamical signatures in new hydrody-
namic modes. Given the historical difficulty in identifying phase transitions in
these systems (discussed below), it is possible that having a fluctuation-based or
microrheological approach to observing the new generalized elasticity emerging
from the broken continuous symmetries of the various phases might be useful in
addressing the equilibrium phase diagram of Langmuir monolayers.

In addition, these studies are also relevant to understanding phase separation
in multicomponent monolayers, particulate transport within the layers, and the
complex folding and buckling of monolayers in response to area pressure. Finally,
we will show that the dynamics of particles in a the fluid near the monolayer or a
membrane is modified by the viscoelasticity of that boundary. As a result one can
perform a type of noncontact microrheology using particles that do not touch (and
thus do not disrupt the structure of) the monolayer. This noncontact approach is
also important for intracellular microrheology. Understanding in a truly quantitative
manner how to interpret the Brownian fluctuations of particles in a fluid near a
monolayer or membrane is essential in this field since the cell is bounded by a
viscous membrane and its interior is quite densely packed with a variety of other
membrane-bound structures. As a result, nearly all tracer particles in cells are
necessarily near one or more membranes.

The remainder of this chapter is organized as follows: after our brief review of
the equilibrium phase behavior of Langmuir monolayers (Sect. 2) we develop the
basic theory of linear response for a 2D membrane embedded in a 3D viscous fluid
(Sect. 3). Following this we discuss macro- and microrheological methods that have
been developed for measuring the viscoelastic moduli of these membranes (Sect. 4),
and finally close with a discussion of open questions (Sect. 5).

Phase Diagram of Langmuir Monolayers The equilibrium phase behavior of
surfactant systems is remarkably complex and a complete review of their fascinating
phenomenology is beyond the scope of this chapter. It is nevertheless worthwhile to
comment briefly on their equilibrium phase behavior inasmuch as some features
are fundamental to understanding those dynamical properties to be discussed in
more detail here. Fortunately, the reader interested in learning more about the
various equilibrium phases of surfactant monolayers, the experimental probes of
their structure, and the theoretical explorations of their various phase transitions
may consult one of a few excellent reviews of the subject [10, 11].

The complexity of monolayer phase behavior arises in part from the fact that
the head groups of the surfactants can break translational symmetry in a number
of ways, leading to, e.g., various periodic (in fact, quasiperiodic—more on that
below) arrangements and the hydrophobic tail groups can be disordered or aligned
in various ways with respect to the air/water surface normal and with respect to the
crystallographic axis defining the order of the head groups. The traditional method
of investigation of their phase behavior has been to examine two-dimensional
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Fig. 4.1 (a) Isotherm for a Langmuir monolayer composed of dipalmitoylphosphatidylcholine
(DPPC), the primary component of pulmonary surfactant. As the trough area is decreased, the
surface pressure increases and the monolayer of DPPC undergoes phase transitions from the liquid-
expanded (LE) phase to the liquid-condensed (LC) phase, with a region of coexistence in between.
Reproduced from [9] with permission. (b) An example of how complicated the phase transitions
in monolayers can become. The vast array of chain and tilt order associated with the molecules
means that there exists the possibility that each crystallographic symmetry leads to a specific
thermodynamic phase. Adapted from [10] with permission

pressure Π versus area A isotherms, i.e., the variation of the pressure as a function
of the area of the surfactant layer at fixed temperature. Having access to the
independent thermodynamic variables surface pressure (henceforth just “pressure”)
and temperature, one can develop a phase diagram spanned by those variables.

At a fixed temperature the generic behavior of the system can be roughly
summarized as follows (see also Fig. 4.1a for a specific example). At largest areas
corresponding to lowest pressures, there is a translationally disordered phase that
is the two-dimensional analog of a nearly ideal gas. In this phase the free energy
is dominated by the translational entropy of the surfactants so that the pressure
vs. area follows the usual ideal gas law Π = nkBT , where n = N/A is the two-
dimensional number density of molecules on the surface of area A. For historical
reasons this ideal gas phase is labeled liquid-expanded phase, which is also
denoted in the literature as LE or L1. Upon increasing pressure at fixed surfactant
number, the hyperbolic pressure vs. area isotherm terminates at a critical pressure
Πc(T ) at which one encounters two-phase coexistence between the aforementioned
liquid-expanded phase and a denser liquid-condensed phase (L2). The pressure
remains on a plateau Π = Πc(T ) throughout the coexistence region; this behavior
is indicative of a canonical first-order phase transition. In some systems, deviations
from this Gibbs phase rule have been observed, calling the first-order nature of
the transition into question, but direct observations of two-phase coexistence in
the 1980s [12] strongly support this former interpretation. Since studies have
observed (quasi-)long-range order in spatial arrangement of the head groups, the
term liquid condensed appears to be a misnomer. Modern reviews suggest that
the term condensed phase or simply the designation L2 be used hereafter. We follow
this suggestion in the current chapter.
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The L2 phase has a significantly higher area modulus (less compressibility) than
the L1 phase. In the more densely packed L2 phase the hydrophobic tails of the
surfactants are also now ordered and generically tilted with respect to the air/water
normal. Given the simultaneous order between the head groups and the direction
of the chain tilt, there are, in fact, a plethora of different thermodynamic phases in
this condensed regime (see Fig. 4.1b). For example, the chains can tilt towards a
nearest neighbor molecule or towards a next nearest neighbor molecule. In addition,
there are phase transitions which involve a simultaneous distortion of the head group
lattice and a change in the direction of the tail tilt with respect to the now lower
symmetry unit cell of the heads. Finally, there are untilted tail phases typically
obtained at even higher area pressures where closer head group packing presumably
forces the tails to align with the local interface normal.

Phase behavior measurements can rely in part on the pressure-area isotherms,
where small signals of kinks indicate second-order transitions and short coexistence
plateaus are associated with first-order transitions. But direct evidence of the
crystallographic symmetry of the head group packing in the condensed phases
comes from scattering experiments. As early as 1938, electron-scattering studies
by Germer and Storks demonstrated the triangular packing of the head groups.
The specular reflection signal contains information about the electron-density
distribution in the direction normal to the interface and thus informs one regarding
tail tilt [13, 14], while diffuse scattering has been used to study the height-height
correlation spectrum on the surface, from which the bending modulus of the surface
may be extracted. The key scattering technique for studying the packing of the
surfactants, however, is grazing incidence x-ray diffraction, where the intensity vs.
in-plane momentum of the scattered photons provides a direct measurement of the
Brillouin zone of the head group lattice [15].

There are other experimental techniques used to probe the chain order on the
interface over longer length scales using optical probes. These include polarized
fluorescence microscopy (PFM) and Brewster angle microscopy (BAM) [16]. In
the former, one introduces small molecular fluorescent dyes at low concentration.
These preferentially absorb in the higher density phases of the monolayer and
thus identify islands of condensed phase(s) in the condensed-liquid-expanded
coexistence regime. In the latter technique, laser illumination is directed at the
monolayer at the Brewster angle in a polarization state such that there should be
no reflected light from a pure air/water surface. The observed reflections are solely
due to the local change in index of refraction due to the surfactants. As this index
depends sensitively on the orientation of the tails, subtle changes in tail orientation
and tilt are observable. This technique has, in fact, observed new ordered phases of
the monolayer that produced no observable signal in the pressure vs. area isotherms.

Two-dimensional order also opens up a new phase of matter in between the solid
and liquid states, characterized by the presence of quasi-long-range orientational
order but short-range translational order. This new phase, deemed the hexatic, is
predicted to arise from the unbinding of thermally generated dislocations in the
crystal lattice [17]. The hexatic phase has been observed in colloidal suspensions
confined into a single layer by two flat plates [18, 19]. Hexatic phases also display
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a universal combination of elastic constants and are only terminated by another
unbinding transition of dislocation dipoles (or disclinations); the existence and
values of these predictions require a fundamental understanding of the mechanical
response of the two-dimensional system.

2 Membrane Mechanics

There is no such thing as a typical membrane, and because the molecular con-
stituents that compose Langmuir monolayers and lipid bilayers can interact via
chemical reactions, in general a large number of possible models are available
to describe the equilibrium configurations of such materials; herein we discuss
the simplest models that allow for a continuum elasticity approach and refer the
interested reader to other sources for a review on the treatment of lipid membranes
and vesicles in other contexts [10, 11, 20, 21].

While actually composed of a number of constitutive molecules, if we consider
deformations on length scales much larger than the size of these components
then continuum elasticity may be used to good effect. Furthermore, if the internal
structure of the membrane is not drastically changed by these deformations such
that the position of any point on the material may be described by a suitably
defined “middle surface,” then we may use the language of differential geometry
and elasticity to write the energy of deformation associated with such a surface.
By the location of the surface with a position vector r and an orthonormal vector
field {n̂, t̂1, t̂2}, we fully determine the middle surface of the undeformed membrane.
From this we may construct the two important tensor quantities that will enable
the quantitative description of deformation of the surface: the metric tensor gαβ =

∂αr ·∂βr and the curvature tensor dαβ = ∂α n̂ ·∂β t̂.
When the surface deforms, new metric and curvature tensors g∗αβ and d∗

αβ must
be defined. To quantify these deformations we define the strain tensor Eαβ = g∗αβ −
gαβ and the bending tensor Kαβ = d∗

αβ − dαβ . Then, in the framework of linear
elasticity, these modes of deformation may be used to construct the simplest elastic
energy for a membrane:

F =
1
2

∫ [
2μEαβ Eβα +λ (Eαα )

2 +κ(Kα
α )

2
]
dS, (4.1)

where we used the metric tensor to raise the tensorial indices, i.e., Eαα = gαγEγα
(see, e.g., [22, 23]). The “Lamé coefficients” μ ,λ are energy penalties per unit area
associated with deformations of the membrane. Since the parametrization of our
surface cannot matter, the functional above depends only on the tensor invariants of
deformation, i.e., the trace and determinant of the strain tensor, and the trace of the
bending tensor, so the material described is isotropic in space. Physically, the off-
diagonal terms in the strain tensor relate to shear modes, while the trace component
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incorporates the ability of the membrane to compress or stretch. Similarly, the trace
of the bending tensor is related to the mean curvature of the surface, and κ is
the bending rigidity that penalizes changes of this mean curvature from the flat
reference state.

For an initially flat membrane, deformations of the surface may be parametrized
by the vector ζ n̂ + ξα t̂α , and the strain and bending tensors are simplified to
Eαβ ≈ 1

2(Dαξβ +Dβ ξα),Kαβ ≈ DαDβ ζ , with Dα the covariant derivative. The
Euler-Lagrange equations for the surface, in the presence of external normal forces
p and in-plane forces fα can then be written as

κ∂ 4ζ = p, (4.2)

μ∂ 2ξα +(μ+λ )∂α∂βξβ = fα , (4.3)

where ∂ 2 = ∂ 2
x + ∂ 2

y is the linearized 2D Laplacian. Note that in this linear regime
the normal and tangential modes decouple, and thus we may treat them separately.
This situation is complicated by curvature of the shell, and we discuss this below.
In-plane elasticity and flow, coupled to external fluids from a three-dimensional
subphase, will be the primary topic of this chapter, but the undulatory (or flexural)
deformations of a membrane (or shell) are important for biological membranes that
are heavily cross-linked and thus display elastic behavior. As a result the mechanical
response of viral capsids [24–27], red blood cells [28], and other soft materials (both
in and out of fluids) [29–32] have been studied using this formulation.

We should state that this is the simplest elastic membrane model: an isotropic,
linearly elastic material. Many biologically relevant materials will obey different
constitutive laws. For example, Langmuir monolayers existing in different broken
symmetry phases will not necessarily behave isotropically, and thus additional terms
from the strain tensor may be required to describe their elastic response, while
lipid bilayers behave like a fluid in plane, so only the bending response is elastic.
Furthermore, many soft materials obey viscoelastic constitutive relations, an issue
that we discuss below in the framework of dynamic linear response.

3 Dynamical Linear Response

With the wealth of data-gathering techniques for the equilibrium phases of
Langmuir monolayers and armed with the knowledge that the elastic moduli of
the membrane can be affected by subtle changes in symmetry associated with the
molecular constituents, we now turn to the study of dynamics.

Understanding the mechanical response of Langmuir monolayers requires
knowledge of how the two-dimensional membrane couples to the three-dimensional
solvent. Ultimately, if one can calculate the response function for the combined
membrane/subphase system, then the behavior of the monolayer can be probed. The
calculations presented below are equally valid for membranes (bilayers) as they are
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for monolayers1. Hereafter we refer to the two-dimensional viscoelastic medium as
the membrane for convenience, but the results are valid for monolayers as well.

Consider a rigid particle embedded in the membrane which reports on the
displacement field at that point. One may extract the relevant dynamical/rheological
information about the membrane from that particle’s linear response to an applied
force. To characterize that response we introduce a susceptibility tensor χi j(ω)
defined by

Uj =
1

−iω
Vj = χ jk(ω)Fk, (4.4)

where V (ω) is the particle’s velocity, which is simply related to the membrane
deformation Uj in the Fourier (frequency) domain, and Fj is the force applied. We
consider here and throughout a coordinate system in which the z axis is normal to
the interface and points outwards from the fluid subphase. The interface occupies
the z = 0 plane. We treat the fluid subphase as having infinite depth and lateral
extent, although calculations have been performed that include a subphase of finite
depth [33].

The membrane at the air/water interface breaks the full rotational symmetry of
the problem; as a consequence, the susceptibility tensor is no longer proportional
to the identity. It remains diagonal, however, and has only two independent, non-
vanishing components. This may be inferred from the following argument. On one
hand, if the force were applied in the z direction (i.e., normal to the interface),
there can be no motion induced in the xy plane by rotation invariance about the z
axis. On the other hand, if a force F applied in the x̂ direction were to generate
motion in the ẑ direction, then the sign of that displacement would be reversed
under the application of an equal and opposite force −F . However, these applied
forces are related by a symmetry of the system—a rotation of π about the z axis–
and thus must produce the same displacement in the vertical direction. We conclude
that the vertical displacement in response to a force in the xy plane must vanish.
Finally, the same rotational symmetry requires χxx = χyy. Consequently, there are
only two distinct components of the mobility tensor to calculate, χxx = χyy and χzz.
The nontrivial components of the susceptibility tensor can be calculated from linear
modes of deformation of the coupled membrane and subphase system.

3.1 Flat Membranes

For in-plane deformations, two linear modes exist [34] corresponding to longitudi-
nal and transverse (shear) excitations [35]. These modes are linearly independent
for a flat (visco-)elastic membrane bounding a fluid subphase. Thus we may
calculate the response of the subphase due to either shear or compression waves
independently.

1We neglect slip between the two leaflets of the bilayer here.
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Working in the limit of zero Reynolds number, we solve the Stokes equation
η∇2u =∇p in the subphase subject to the condition of incompressibility,∇ ·u = 0.
We must apply boundary conditions to this bulk fluid flow, and one of the most
commonly used (and generally justifiable) assumptions is to impose no slip between
the bulk fluid and the membrane, i.e., u|z=0 = ∂ξ/∂ t. To exploit the translational
invariance of the problem in the plane of the membrane it is useful to decompose
these deformations into Fourier modes such that u =

∫
u(q,ω)eiq·xd2x so that

the shear and compression response of the bulk fluid generated by membrane waves
are given by [35]:

uT =−iωξT e−|q|zeiq·x−iωt , (4.5)

uL =−iω(1−|q|z)ξLe−|q|zeiq·x−iωt , (4.6)

where we have suppressed the (q,ω) dependence for notational convenience. Here

the transverse uT and longitudinal uL fluid flows are acquired from uT
α = P(T )

αβ uβ

and uL
α = P(L)

αβ uβ , with the projection operators P(T)
αβ = δαβ −P(L)

αβ = δαβ − q̂α q̂β .
Physically, this bulk fluid flow generates stresses in the membrane. We now consider
the problem of stress balance across that interface:

μ∂ 2ξα +(μ+λ )∂α∂βξβ −ηwα = fα , (4.7)

where ηwα = η∂zuα |z=0 is the shear stress generated by the subphase fluid acting
on the membrane surface. If the membrane is viscoelastic, these Lamé constants
are complex and frequency dependent. In that case, the above equation must be
rewritten as a convolution integral over time, but this leads to an equation analogous
to the one above when it is recast in the frequency domain. There the real elastic
constants are replaced by their complex frequency-dependent ones. Transforming
to Fourier space (q,ω) once again, and dividing this equation into transverse T and
longitudinal L components, we find that

(2μ+λ )|q|2ξ L
α −ηwL

α = f L
α , (4.8)

μ |q|2ξ T
α −ηwT

α = f T
α , (4.9)

wL
α = 2iω |q|ξ L, (4.10)

wT
α = iω |q|ξ T , (4.11)

where we have used the results from Eq. (4.5) to find the transverse and longitudinal
components of the bulk fluid stress. From these results it is straightforward to
calculate the Green’s function defined by ξα = Gαβ fβ for the longitudinal and
transverse modes:
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Gαβ = G L qαqβ
|q|2 +

(
δαβ −

qαqβ
|q|2

)
G T , (4.12)

G L =
1

(2μ+λ )|q|2 − iωη |q| , (4.13)

G T =
1

μ |q|2 − iωη |q| . (4.14)

The response tensor for a force applied to a (point) particle embedded in the
membrane can be calculated using these Green’s functions and inverted into real
space if so desired.

Out-of-plane deformations can be calculated similarly. In this case there is one
mode associated with the deformation, and the resistance to these deformations
comes from surface tension or bending rigidity. The response function is

G⊥ =
1

κ |q|4 + γ|q|2 − 2iωη |q| , (4.15)

where κ is the bending rigidity of the membrane and γ is the surface tension.
Undulatory waves in membranes have been used to probe the passive thermal
fluctuations of biological and other soft surfaces that display a bending rigidity
[36], while thermally activated capillary waves in micro- and nanoscopic fluids
have been probed using grazing incidence x-ray scattering to extract rheological
data [37, 38]. In active membrane systems, such as plasma membranes or other
protein-embedded surfaces, the chemistry of the inclusion coupled with hydrostatic
or osmotic pressure leads to material and transport properties that can be measured
and modified [39–44].

We now discuss the physical implications of these results generally. The subtle
issues of measuring the flow properties of membranes lies in the fact that these
membranes never occur without a viscous fluid in contact with them, and the com-
peting physics between membrane-based 2D viscoelasticity and 3D hydrodynamics
changes the mechanical response of the membrane depending on the length scale
on which the flow response is probed. It should be borne in mind that length
scales introduced by the curvature of the reference state of the membrane further
complicate this analysis. We comment on this in the next section.

For these flat membranes there is one natural length scale that arises in calcu-
lating the response function of the membrane—the Saffman–Delbrück (SD) length,
named in homage to the original hydrodynamic calculation that was performed to
determine the mobility of a rigid cylindrical inclusion moving in a liquid membrane
[45]. This calculation generally applies to the diffusion of proteins in cellular
membranes and the motion of lipid rafts at the interface of other biomembranes. The
SD length emerges from a simple dimensional analysis of a lipid membrane with
two-dimensional viscosity ηm resting on an infinite Newtonian fluid of viscosity η :
the ratio of these two parameters ηm/η = � introduces a length scale � which serves
as a natural cutoff between the purely 2D physics of the membrane and the 3D
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hydrodynamics of the subphase. The most natural interpretation of the SD length is
that it is the distance in the plane of the membrane over which in-plane momentum
bleeds off into the third dimension, the subphase. At lengths smaller compared to the
SD length, L � �, the membrane dynamics is dominated by in-plane stress balance
and the subphase plays a small role. At larger length scales, L � �, however, in-
plane momentum is converted into flows in the subphase, which now dominates the
dynamics.

The SD length cuts off the log divergence of the point-force response function
in two-dimensional elasticity theory or hydrodynamics, where this divergence is
known as Stokes’ paradox [46]. For a membrane with no coupling to a three-
dimensional fluid phase, the logarithmic divergence associated with 2D Stokes flow
leads to the result that boundary conditions at the edge of the membrane will always
be important in determining the point-force response. For Langmuir monolayers,
however, the loss of in-plane momentum to the subphase on the scale of the SD
length screens this effect and cuts off the log divergence discussed by Stokes.

3.2 Curved Surfaces

So far we have explored the linear response of nearly flat membranes, where
deformation modes can be successfully decomposed into shear, compression,
and undulatory deformations, but when a surface is curved intrinsically then the
surface geometrically couples the in-plane and out-of-plane responses. In fact,
the radius of curvature of the reference state results in corrections to the membrane
hydrodynamics analogous to those associated with the SD length. One may say that
geometry acts as another type of viscosity in such circumstances. It is not merely of
academic importance to study curved membranes, since lipids in solution naturally
self-assembly into micelles, vesicles, and other shapes that have one (or more)
natural radii of curvature. Again, the literature in the cellular biology, biological
physics, and biochemistry community is extensive [20, 47, 48], and here we shall
mention only the rheological consequences (i.e., dynamical mechanical response)
for introducing curvature into the problem. Once this natural curvature is introduced,
the strain and bending tensors couple in- and out-of-plane deformations at leading
order:

Eαβ =
1
2
(Dαξβ +Dβ ξα)− dαβζ , (4.16)

Kαβ = DαDβ ζ − dγαdγβ ζ . (4.17)

Note that for dαβ ≡ 0 these reduce to the form that will yield the 2D force-balance
equations discussed above. Except in very simple situations the Euler-Lagrange
equations that result from balancing the free energy above with hydrodynamic
forces are very difficult to solve, owing to the deformation out of plane changing
the reference surface that the embedding fluid acts on.
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To isolate the rheological effects of curvature one may consider in-plane flows
in a membrane with nontrivial geometry, but which cannot deform normal to the
surface. This constraint fixes the geometry of the system. Without this constraint,
the flows could in principle change the local geometry which would then act back
on the flows making the hydrodynamic problem nonlinear. To our knowledge, this
more complex problem has not been adequately analyzed. Specializing to purely
viscous membranes, the covariant 2D Stokes equations may be formulated and
then balanced at the membrane surface with the 3D hydrodynamics. The coupling
between geometry and fluid mechanics can then be seen clearly in the modification
of the Stokes flow on a curved surface [49]:

ηm[D
βDβuα(r)+K(r)uα(r)] = Dα p(r). (4.18)

Here K(r) = Det(d) is the local Gaussian curvature on the membrane surface
parametrized by the vector r. Obtaining the Gaussian curvature in the above
equation is simplified if one uses the fact that the commutator of the covariant
derivatives acting on a vector field wα (r) is just the product of that field with the
local Gaussian curvature: [Dβ ,Dα ]wβ (r) = K(r)wα (r).

Understanding how curvature affects the rheological properties of an incom-
pressible 2D fluid has implications for the flow patterns observed in cylindrical
and spherical vesicles. For the case of a flat monolayer, there is only one natural
length scale arising from the balance of 2D and 3D viscosities, but with the
inclusion of a radius of curvature R there is now an additional regime that must
be considered [49–51]. Ultimately, the accurate calculation and measurement of
flow within lipid vesicles [52, 53] requires an understanding of this length scale.
Furthermore, as discussed in the first section, the lipid properties themselves can
lead to important morphological changes. In general, the bending energy discussed
above requires an additional term such that

Ebend =

∫ κ
2
(Kα

α −C0)
2dS, (4.19)

where C0 is a spontaneous curvature preferred by the lipid constituents. Since some
lipids have conical or even chiral shapes, this contribution to the mechanical stability
can lead to important shape changes in a membrane. For example, Fig. 4.2 shows
the consequences of changing the lipid constituents of a biphasic membrane. The
top row of vesicles is composed of an inverse-conical lipid, and through a cyclic
change of temperature, the first pattern-forming phase separation occurs, followed
by membrane tabulation similar to that seen in biological systems [54]. When this
inverse-cone lipid is replaced with a cylindrical lipid, no such tubule formation
occurs. These effects, among others, indicate that curvature-mediated behavior
is important in transport and aggregation phenomena that occur in biological
membranes [55–57].
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Fig. 4.2 Top row: A binary-mixture GUV (giant unilamellar vesicle), composed of DPPC and
DMPE (an inverse-cone lipid). As the temperature is changed from hot (TH ) to cold (TL) and back
again, phase separation and tubulation occurs. Bottom row: A binary mixture of DPPC and DLPC
(a cylinder-shaped lipid). No tubules are formed throughout the temperature cycling process,
indicating that the shape of the lipid is key to forming these structures. Figure adapted from [54]
with permission

4 Monolayer Rheology Experiments

There are a number of experimental approaches to monolayer rheology. These
have been well reviewed in the literature [58] and although we have made no
attempt to be complete in our discussion of this active field of experimental
research, the interested reader will find some representative references below. The
measurement approaches may be divided into two broad groups: (1) macroscopic
methods, which examine macroscopic flows in response to applied stresses, such
as in a two-dimensional analog of Couette flow, forcing the monolayer to flow
between two rigid barriers, or examining the mobility of large (i.e., non-Brownian)
driven particles in the monolayer; and (2) microscopic methods, which consider the
(usually equilibrium) fluctuations of small particles embedded in the monolayer.
This distinction is well known in other contexts and typically referred to as
rheology or microrheology, respectively. We draw attention to the differences in
these methods mainly because they have been in poor agreement and may not even
reflect the same sorts of dynamics within the monolayers.
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4.1 Macroscopic Methods

Macroscopic measurements of interfacial flow must be carefully constructed due
both to the fragility of the system under examination and to prevent the effects
of unexpected physical phenomena such as Laplace or Marangoni stresses. If
dilatational interface measurements are taken then the area expansion of the surface
can lead to gradients in surface tension and drive Marangoni flows. Shear rheology
is generally performed at constant surface area, however, and usually involves
the controlled translation or rotation of a solid boundary in contact with the
membrane. Traditional interface shear rheology has been performed using a channel
flow apparatus with characteristic length scale L, in the limit of small Boussinesq
number: Bo = ηm/(ηL) � 1; this dimensionless group, long used in interfacial
rheological studies, is the ratio defined above relating the Saffman–Delbrück length
to the size of the system. For larger values of Bo, an oscillatory needle confined to
the interface provides a probe of rheological properties in the frequency domain.
From the point of view of this chapter, each class of experiments measures some
linear response function that is associated with the rheological properties of the
monolayer.

Ghaskadvi and Dennin [59] developed a surface Couette apparatus that is
capable of simultaneously measuring the shear response of a monolayer and
visualizing the flows within it under applied shear stress. The basic idea is to
reproduce the Couette flow used to study the viscosity of three-dimensional fluids
by trapping them between two coaxial cylinders, which are then rotated relative to
one other [60, 61]. To adapt this to the monolayer, one replaces the inner cylinder
by a Teflon knife-edge disk hung from a wire. The outer cylinder is a circular barrier
that can be rotated to generate the shear flow, while the angular displacement of the
inner cylinder measures the shear stress.

Another approach to monolayer rheology relies on modifying the archetypal
Poiseuille flow between parallel plates to the monolayer geometry. By using floating
barriers to take the place of the walls in the three-dimensional experiment, one may
drive monolayer flow between the plates by an area pressure gradient [62,63]. This
is rather complex to analyze since the plates enforce stick boundary conditions (e.g.,
the velocity field goes to zero) on the monolayer but not on the subphase which
is partially entrained by the flowing monolayer. When the drag of the subphase
dominates, the monolayer flow profile between the plates is elliptic, rather than
the usual parabolic profile, which would be found if the monolayer’s viscosity were
the dominant source of dissipation. In general when dissipative stresses in both the
monolayer and the bulk have to be accounted for, a difficult set of dual integral
equations must be solved [63, 64] to obtain the flow profile and from that relate the
flow data to a monolayer rheology.

Finally, dragging a macroscopic particle through the monolayer provides yet
another class of monolayer rheological experiments [65, 66]. Typically one uses
a needle, which may be dragged in the plane of the monolayer in the direction of its
tip or broadside on. Understanding the drag force acting on the particle also provides
a fairly complex hydrodynamic problem [35,67,68], but one that has been analyzed
in great detail—see Ref. [65].
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4.2 Microrheology of Membranes

Another approach to rheology is to use the inherent thermal fluctuations of soft
materials as a probe of its mechanical/rheological properties. This basic idea of
using strain fluctuations in a frequency-resolved manner to obtain rheological data
is now quite common and generally termed microrheology due to the use of a
microscopic tracer particle to obtain the strain fluctuation data. The details of this
form of passive microrheology through particle tracking is well detailed in the
literature. The reader interested in an overview of the techniques and some of the
more simple extensions of the basic idea is referred to Refs. [9, 69–78].

Most of the principal benefits of microrheology are due to its passive nature.
One does not need to be concerned with accessing nonlinearities in the mechanical
response of highly compliant materials or damaging (i.e., structurally modifying)
extremely fragile ones. Microrheology is well adapted to probing a very wide
frequency range reaching quite high frequencies since one is not required to drive
the system but only to be able to obtain passive frequency-resolved fluctuation
data. The current state of the art allows for at least six orders of magnitude of
frequency range up to 105 Hz [79]. In addition, microrheology is clearly helpful
for systems that are inherently small (e.g., living cells) where there are significant
experimental challenges associated with applying a well-controlled shear strain.
The same point may be raised for monolayer and membrane rheology, where there
are difficulties associated with quantitatively controlling the applied shear strain
(although some of the techniques mentioned above address these issues). In addi-
tion, monolayer structures are notoriously fragile so that structural modification in
response to macroscopic shear-based measurements are a source of concern. Finally,
microrheology allows for rheological probes in spatially heterogeneous materials,
such as in many phases of Langmuir monolayers. There is a reasonable expectation
that microscopic fluctuation data in such materials should be dominated by their
local rheology, opening the possibility of a type of scanning probe rheometer based
on particle-tracking data from many sites within the material.

Because monolayer structures are commonly fragile and because it is difficult to
drive them with high-frequency oscillatory shear, it would appear that microrheol-
ogy is ideally suited to their exploration. This may be true, but there are new issues
associated with the interpretation of microrheological data. In monolayers and
membranes there appears to be generic and remarkably large discrepancies between
the rheological data obtained using macro- and microrheology. As we outline below,
recent work suggests that these discrepancies result from a poor understanding of
the probe’s response function and resulting inaccuracies with the interpretation
of the fluctuation-based data. As such, it is worthwhile to briefly review how
microrheology can go wrong. First, the probe’s fluctuations reflect all thermally
excited modes of the systems that couple to the probe’s position. These may include
hydrodynamic modes unrelated to shear. Second, the introduction of the exogenous
probes may, in fact, locally perturb the structure of particularly soft and fragile
materials. In fact, it is well known that in at least some polymer solutions the
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introduction of a rigid colloidal particle can produce a local depletion zone in which
that probe fluctuates [72, 74]. This issue of probe-induced structural perturbations
can be handled in three-dimensional materials by focussing on the correlated
motion of two well-separated probes [72, 73, 80], and the combination of one- and
two-particle microrheology has been used to probe the structure of the depletion
zone [74]. For monolayers and membranes, we propose another way—using a
noncontact approach in which the tracer particle is in the fluid near the monolayer
but not in direct contact with it. This noncontact approach avoids the issue of the
probe altering the monolayer’s local structure and greatly simplifies the analysis
of the (purely hydrodynamic) coupling of the probe to the monolayer. We believe
that this non-contact approach puts interfacial and membrane microrheology on
a stronger footing and opens up new possibilities for the quantitative study of
particular fragile and even heterogeneous monolayers.

4.3 The Case of the Missing Modulus

Figure 4.3 shows there is a significant discrepancy between the monolayer modulus
obtained by macroscopic methods and by particle-tracking microrheology [81].
This discrepancy appears to be quite common, appearing in a variety of surfactant
systems. The modulus obtained via macroscopic methods exceeds that obtained by
microrheology by a factor of ∼ 103 − 104 over the accessible range of frequencies.
The dependence of the modulus as a function of surfactant type (e.g., chain length)
or area pressure obtained from these two classes of measurements, however, appears
to be similar. It is as though the microrheological method uniformly underreports the
modulus (or, conversely the macroscopic methods overreport it) by a multiplicative
factor that is only weakly dependent on surfactant chemistry or monolayer phase.

We term this large discrepancy, the “missing modulus problem,” and discuss
below possible explanations for eliminating this issue in both microrheology and
rheology.

The resolution of this discrepancy is more than a simple problem of instrument
calibration, but speaks to basic questions of the mechanical coupling of the probe
particle to the monolayer or membrane. There are several possible ways to account
for this inconsistency having to do with an imperfect knowledge of the interaction
of the probe with the monolayer at the microscopic scale. As shown schematically
in Fig. 4.4a, one would like to imagine that the probe is well embedded in an
otherwise undisturbed monolayer and thus simply reports on the strain field at that
point in space. Since the structure of the monolayer is generally quite fragile, the
probe may produce a local structural distortion as shown in Fig. 4.4b resulting in
the probe particle sitting in a less ordered and perhaps more compliant region of
the monolayer. The nature of how the lipid fluid interacts with the bead is poorly
understood, and the reactivity of the molecules with the bead surface certainly
have the ability to affect the mobility of the particles. If the surface pressure of
the membrane is high enough, the bead may be shoved entirely out of the membrane
and diffuse along the surface without being embedded in it.
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Fig. 4.3 Surface shear viscosity of poly(t-butyl acrylate) as a function of molecular weight at
constant surface pressure, measured by macroscopic methods and microscopic particle tracking.
In some regions as much as four orders of magnitude separate the two measurements, but the
general trend in the moduli appears to be qualitatively similar. Adapted from Ortega et al. [81]
with permission

Fig. 4.4 Schematic of particle-tracking microrheology and potential problems with the implemen-
tation. (a) The assumed set-up for particle tracking: a tracer particle is embedded in the membrane
and it’s thermal fluctuations are monitored. (b) The interaction between the molecules and the
bead surface are not well understood and at this stage very difficult to measure, so the position and
coupling of the bead may be uncertain due to this. (c) If the surface pressure is large enough the
bead may be pushed entirely out of the interface. It is rare to have a microscope that has submicron
resolution, and thus verifying that the bead is actually embedded in the monolayer is difficult

Such effects related to the perturbation of the material by the tracer particle have
been observed in three-dimensional microrheology. Their single particle-tracking
measurements and two-particle measurements give different rheological measures
of the material. In that case, observing the correlated fluctuations of pairs of
particles [72,73] is necessary to determine the rheology of the undistorted material,
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and a combination of one- and two-particle microrheology measurements allows
one to examine the local rheological perturbation surrounding the probes [80].
A third possibility is that the probe particle is actually not well embedded or even
directly coupled to the monolayer at all, as shown in Fig. 4.4c. This is possible since
the resolution of the microscope along the optical axis (normal to the plane of the
monolayer) is significantly poorer than that in the plane perpendicular to that axis.

We have pointed out above that many assumptions upon which the interpretation
of microrheology hinges are difficult to verify. Of course, it is also possible that
microrheological techniques are correctly measuring the monolayer’s rheology. The
macroscopic methods, which rely on straining the monolayer over longer length
scales, may be corrupted by structural heterogeneities in the material. Additionally,
Langmuir monolayers are notoriously fragile systems, and traditional viscometry
methods may access the nonlinear regime. Below we turn to a new approach to
resolving this issue using noncontact microrheology.

4.4 Submerged Particle Microrheology

One approach to eliminating these difficulties is to modify microrheology by
locating the probe particle away from the membrane. Specifically, if one places
the probe particle at a known distance from the monolayer and within the fluid
subphase, the questions arising about the detailed nature of the coupling of the probe
to the monolayer are completely avoided. Issues associated with the local disruption
of the monolayer by the probe are removed as well. In this noncontact form of
microrheology the probe never directly interacts with the monolayer/membrane but
is only hydrodynamically coupled to it. Although the coupling between particle
and membrane is simplified, the interaction is substantially weaker. However, by
examining the change in the fluctuations of the probe as a function of distance from
the monolayer, one is able to extract the mechanical contribution of the monolayer to
the observed fluctuations and thereby determine the frequency-dependent rheology
of the monolayer in this noncontact approach. This technique using submerged
particles or SPIM (submerged particle interfacial microrheology) requires a new
theoretical understanding of the Green’s function of the particle in a fluid bounded
by a viscoelastic monolayer. On top of this, new experimental developments are
necessary to measure the particle’s position with sufficient spatial and temporal
resolution to observe the change in the fluctuation spectrum due to the presence
of the viscoelastic monolayer above the particle. The details of the measurement
technique have been presented elsewhere [82]; here we expand on the calculations
necessary to understand that fluctuation spectrum by presenting a more detailed
account of the calculation of the necessary Green’s function.

We determine the velocity response function for a spherical particle of radius
a in a fluid with viscosity η , submerged a depth d beneath a monolayer (see
Fig. 4.5a). The ultimate goal is to determine the velocity response V of the particle
due to a force F as a function of the rheological properties of the membrane and
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Fig. 4.5 (a) Schematic of
submerged particle
microrheology. A tracer bead
of radius a is placed a
distance d = d̄a beneath, the
surface is contained using an
optical trap, and its thermal
fluctuations are measured.
(b) Response functions
calculated using the
formalism described in the
text. For a free surface the
susceptibility measured is
enhanced near the surface,
while for increasing values of
the in-plane compression
modulus λ the susceptibility
decreases
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distance from the surface. To do this we will need to know the flow in both the
monolayer and the bulk subphase. Given the linearity of the equations of motion,
it is permissible to divide the solution of the Stokes equations in the bulk into two
parts, i.e., u = u(1) +u(2). The first part u(1) is the flow field resulting from a point
force at the position of the probe, but with the monolayer replaced by a perfect
slip surface; this field satisfies the force balance in the bulk but does not satisfy
the stress balance condition on the monolayer. To correct this, we add the second
solution u(2), which is the fluid velocity field induced by the surface stresses arising
from u(1) and satisfying the homogeneous equations. The physical solution, u(1)

+ u(2), now satisfies all the necessary stress balance conditions in the bulk and in
the interface. Associated with each bulk velocity field u(1,2) there is an in-plane
membrane displacement ξ (1,2) determined by the no-slip matching condition, and
from which the interfacial displacement field can be computed.

The perfect slip solution u(1) can be obtained using image solutions (see, for
example, [83–85]). By assuming that the interface at z= 0 can exert no shear stresses
we find the perfect slip solution in the spatial Fourier domain to be

u(1)j =
Fx

ηk2

(
δx j − k̂xk̂ j

)
cos(kzd), (4.20)

u(1)β =
Fx

2ηω i
e−k⊥d

[−2δxβ

k⊥
+

kxkβ

k3
⊥

(1+ k⊥d)

]
, (4.21)
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where k and k⊥ are the three- and two-dimensional (in the plane of the interface)

wavevectors, respectively. By symmetry, the normal velocity u(1)z vanishes at the

surface (z = 0), so that the associated normal displacement is zero, ξ (1)z = 0.
Projecting the in-plane components of the interfacial velocity into longitudinal and

transverse channels, ξβ = ξ (L)β + ξ (T)β , we find

ξ (L1)
β = Lβαξ

(1)
α =− Fα

2ηω i
e−k⊥d

(
kαkβ
k3
⊥

(1− k⊥d)

)
, (4.22)

ξ (T1)
β = Tβαξ

(1)
α =− Fα

ηω i
e−k⊥d

(δαβ
k⊥

− kαkβ
k3
⊥

)
. (4.23)

From Eq. (4.7) and noting that the fluid stresses on the interface due to v(1) vanish
by construction (as they must for a perfect slip surface), we find that the v(1) solution
generates unbalanced interfacial stresses

S(L)α = −k2
⊥(2μ+λ )ξ

(L1)
α , (4.24)

S(T)α = −k2
⊥μξ

(T1)
α . (4.25)

The presence of unbalanced stresses at the interface are due to our imposing
a boundary condition that is not correct. We know that the in-plane stresses must
satisfy force balance throughout the membrane, which is a more complicated
condition than perfect slip or no slip. However, due to the linearity of Stokes
equations, we may add additional flow solutions to cancel any component of the
flow that results from a nonzero stress; this is the essence of the SPIM calculation.

The correct “counter stresses” required to cancel these unbalanced stresses
coming from the perfect slip solution v(1) are calculated using the fundamental
solutions for longitudinal and transverse flow derived in a previous section:

u(L2)
α =−iω

∫
S(L)α

(1+ k⊥z)eik⊥·x⊥+k⊥z

(2μ+λ )k2
⊥− 2iωηk⊥

d2k⊥
(2π)2 (4.26)

u(T2)
α =−iω

∫
S(T)α

eik⊥·x⊥+k⊥z

μk2
⊥− iωηk⊥

d2k⊥
(2π)2 . (4.27)

The integrals over the in-plane wavevector return the solution to the real spatial
domain. This result may be thought of as the effect of two-dimensional rheology of
the membrane—specifically how it differs from that of a perfect slip interface used
in the calculation of u(1). In principle there is nothing stopping us from imposing a
no-slip interface and then calculating the rheological difference from this simplified
case, but the image solutions for a no-slip interface are more complicated than those
corresponding to the perfect slip.
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Performing the integrals in Eqs. (4.26) and (4.27), we determine the velocity field
correction from the surface rheology u(2) at the position of the tracer. Now it is a
simple matter of using Faxén’s law [83, 84] to find the change in particle velocity
due to the surface rheology. This contribution to the particle’s velocity needs to be
added to that first contribution giving the velocity of the particle in the subphase
below a rigid wall with perfect slip boundary conditions: u(1). From this sum,
we write the susceptibility matrix χi j as defined earlier. For convenience, we take
the case of an incompressible membrane at the interface. In that case, the in-plane
part of the response function is given by

χxx

χ∞
= 1− 9a

16d
+

a3

16d3 −
3a
2�

[
Ei

(−2d
�

)
− iπ

]
e(

2d
� ), (4.28)

with Ei(x) as the exponential integral function and χ∞ = i/6πaηω the Stokes
susceptibility of a spherical tracer infinitely far from interface. � = μ/(−iηω)
is, once again, the Saffman–Delbrück (SD) length [86], which is complex for
viscoelastic membranes. The phase of the complex SD length is determined by
whether interfacial stresses are dissipative or reactive. In Fig. 4.5b we plot the
response function for a membrane with varying degrees of elastic response. The
first three terms in this expression correspond to the mobility of a sphere near a
no-slip wall, and thus have no rheological significance.

The susceptibility approaches given by the simple Stokes drag on a sphere for
any SD length for deep particles, i.e., those far from the membrane. This is to
be expected and it is clear that distant tracers are useless as rheological probes of the
membrane. Key microrheological data is obtained from probes near the membrane.
To improve signal-to-noise ratios in measurements, we have found it advantageous
to observe the change in the fluctuation spectrum of the probe as a function of depth
near to the membrane. More details can be found in Ref. [82].

The first tests of this method involved studies of the fluctuation spectrum of
tracers at various depths below monolayers of arachidic acid (AA), eicosanol, and
dipalmitoylphosphatidylcholine (DPPC). Previous work had demonstrated three
different dependencies of viscosity on surface pressure [9, 77, 78, 87–90]. AA is
viscoelastic but with a large elastic modulus in the frequency range studied and
thus should be indistinguishable from a rigid boundary. Each of these three types
of monolayers displays distinct rheological characteristics that serve as benchmarks
for testing the SPIM system.

As discussed in Ref. [82], a tracer particle was trapped at various depths beneath
the monolayer using an optical tweezer. Its fluctuations in the plane parallel to the
monolayer were then measured at those depths. Using the fluctuation-dissipation
theorem [34] in the usual way, the imaginary part of the tracer’s response function
is measured from the power spectrum of those fluctuations in thermal equilibrium.
To simplify the analysis, it was assumed that the three monolayers could be treated
as being purely viscous, making � real. The results of these measurements for tracers
submerged below AA (red circles), eicosanol (blue squares), and DPPC (black
triangles) monolayers as a function of surface pressure in Fig. 4.6. Fluctuations of
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Fig. 4.6 Data obtained using noncontact microrheology. The yellow regions indicate areas in
parameter space where the experimental technique is insensitive to changes in the viscoelastic
moduli of the membrane. This sensitivity can be increased through various means (see text). The
left panel of the figure is from Ref. [82] and used with permission

the immersed bead are measured and converted into the imaginary part of the tracer
response function, normalized by the Stokes result. This is, in turn, converted into
surface viscosities using Eq. (4.28).

Eicosanol has a phase transition to a fluid phase above a pressure threshold,
and the rheological signature of this structural transition is indeed observed
using SPIM in the expected regime (15 mN/m)—see Refs. [82, 90]—as well as
the expected decreasing viscosity with increasing surface pressure. The surfaces
viscosities, however, are about one order of magnitude less than that previously
measured macroscopically [90]. Frequency dependence of modulus [61], errors in
the macroscopic measurements, or the assumption of a purely viscous response
in the fluid phase are all valid explanations for the persistence of the difference
in modulus.

SPIM finds DPPC viscosities that are consistent with previous macroscopic
measurements at higher pressures, indicating that the missing modulus from other
microrheological techniques has been eliminated, at least in this case. A range of
viscosities (1–4)×10−7 Ns/m is observed at surface pressures between (2–5) mN/m.
Previous active rheology measurements (using a driven rotating disk) gave 4 ×
10−7 Ns/m [9] at similar pressures and temperatures, where the monolayer was in
the same phase. Given the fact that SPIM reproduces rheological measurements
obtained from macroscopic measurements, we believe that the correct resolution
to the missing modulus problem is to be found in a correction to interfacial
microrheology. Using a noncontact approach appears to be successful at providing
this correction.
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5 Open Questions and New Challenges

There remain a number of open questions related to membrane and monolayer
microrheology. Some of these involve straightforward generalizations of the work
presented above or mentioned in the references. These include finding a tractable
approach to the complex mathematics associated with these sorts of hydrodynamic
questions. Other theoretical questions are more open-ended; no paths towards
their resolutions are obvious, and we simply point out that their solution would
be interesting and likely to stimulate new work in the field. There are questions
fundamentally of an experimental nature, where new instrument development may
be necessary. Ultimately, the most interesting questions involve some combination
of the abovementioned difficulties: new theories and new experiments are needed.

As pointed out in the introduction, biology presents a number of interesting
membrane or monolayer systems composed of a mixture of lipids and protein
surfactants. Generally speaking, one expects to find partial phase separation of
these constituents in at least some ranges of temperature, area pressure, and
composition. The cell membrane (although a nonequilibrium structure) appears
to be phase separated [91]. Even single component systems present regions of
phase coexistence where the membrane is inhomogeneous. With the introduction
of multiple domains, translational invariance is broken in the membrane. If the
characteristic length scale of the heterogeneity is small then a homogenization
procedure may be employed [64]. In essence one may develop a type of mean field
model or effective medium theory that incorporates the generalized elasticity of the
various domains and their area fraction on the surface. The more interesting limit,
however, is found in systems where the length scale of the membrane/monolayer
heterogeneity is sufficiently large as to be observable. In that case, is it possible to
push the submerged particle microrheology technique into a scanning probe mode,
whereby moving the particle parallel to the interface, one obtains local rheological
information about the monolayer or membrane above it? Since the principal surface
stresses associated with the motion of the probe particle are essentially local, it is
reasonable to suppose that such a local rheological probe is possible and that the
lateral resolution of the rheological probe should scale inversely with the depth
of the particle. Still, new theoretical work is necessary to learn how to interpret
the fluctuation data below a heterogeneous membrane/monolayer and experimental
proofs of principle are required to calibrate scanning or S-SPIM.

SPIM has the advantage of rendering irrelevant our ignorance of the direct
mechanochemical coupling between the tracer probe and the monolayer. Neverthe-
less, the understanding of this coupling remains an open question. In some cases at
least the boundary conditions assumed by Saffman and Delbrück for point-like par-
ticles [92] or Hughes Pailthorpe and White for particles with a finite size [93] appear
to provide the experimentally observed mobilities [94,95]. Other experiments, such
as those by Gambin et al. [96] on engineered proteins, cannot be reconciled with
these classic results for membrane/monolayer hydrodynamics. These experimental
results, if supported by further work, may point to an important and fundamental
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problem in membrane hydrodynamics since the observed protein mobilities cannot
be explained by treating the monolayer as a 2D Newtonian fluid coupled to the
surrounding aqueous fluid via no-slip boundary conditions. One proposal to resolve
this conflict by Naji and collaborators [97] suggested that proteins engineered to
embed in the membrane cause local distortions of the lipid tilt order or chain stretch.
In either case, if the dominant mode of dissipation occurs in a boundary layer around
the protein due to its coupling to these other degrees of freedom, mobilities similar
to those observed experimentally by Gambin et al. can be obtained. Coarse-grained
molecular dynamic simulations for these protein/membrane interactions by Stevens
and collaborators [98] are far from conclusive and the experimental results have
not, to our knowledge, been corroborated by other groups so the situation remains
murky. However, if the mobility of proteins in a membrane depends on the details of
the local interaction between that protein and the local shell of surrounding lipids,
many of our assumptions regarding the mobility of transmembrane proteins in a
biological context will have to be revisited. This problem has important biological
as well as physical implications and deserves further scrutiny.

Finally, a full theory of the dynamics of membranes and monolayers should
account for dramatic changes in the monolayer’s geometry. It is now well known
that highly compressed monolayers can form giant folds [99–103]. Under some cir-
cumstances these folds are reversible, opening up to reform the flat monolayer with
little to no loss of surfactant (to micelle formation) under reexpansion. This property
is physiologically essential for lung surfactant. While the static structure of the folds
is now understood, the associated in-plane flows during the folding process remain
less well studied. Such flows play an important role in controlling the transport of
particles within the monolayer and across the monolayer during cyclic compression
that generates repeated folding and unfolding the monolayer. Recent unpublished
experiments by M. Dennin and collaborators suggest that cyclic compression does
enhance particulate transport across monolayers in a size-selective manner and that
probes coupled to the monolayer become concentrated in the folds produced by the
compression. We are not aware of any theoretical understanding of this underlying
processes leading to these observations.

Other motions in the third dimension may be caused by active processes such
as the inclusion of transmembrane/monolayer pumps, which necessarily generate
active (nonthermal) forces in the direction normal to the membrane. This problem
brings the rheology/dynamics of membranes and monolayers into contact with the
broader field of elastic continua driven out of equilibrium by active processes.
Common examples are found in biology including that of molecular motors acting
on the cytoskeletal filaments. There one observes that active processes dramatically
change the elastic/rheological properties of the material. It is unknown if there are
similar examples in the world of membranes and monolayers.
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Chapter 5
Rheology and Mechanics of the Cytoskeleton

Hamed Hatami-Marbini and Mohammad R.K. Mofrad

Abstract The cytoskeleton is a series of intertwined proteins with the primary
function of providing the cell with structure and shape. The distinctive rheology
and mechanical properties of the cytoskeleton are detrimental for cell’s ability to
perform its different and often critical functions in health and disease. From the
mechanics point of view, the cytoskeleton is a dynamic and constantly changing
structure which can be considered as a randomly crosslinked semiflexible polymer
network. This chapter briefly reviews salient features of the cytoskeletal biopolymer
network and discusses various computational and numerical methods that have been
proposed for investigating its rheology and mechanical properties. In particular,
an overview of the physical and mechanical behavior of individual constituents of
the three-dimensional cytoskeletal network, i.e., F-actin, microtubules, intermediate
filaments, binding proteins, and cross-link filaments, is first given. Then recent
advancements on characterizing the response of cells to external stimuli are
discussed. For this purpose, a summary of common experimental and computa-
tional studies on cytoskeletal rheology and mechanics are presented and critically
compared against each other.

1 Introduction: Intracellular Structure and Composition

Cells, complex systems of self-assembled polymers, are basic building blocks
of all living things. They are composed of numerous subunits with distinctive
rheology and structural properties. Cells respond and interact with their surrounding
environment by changing their morphology and biological signaling; therefore,
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many aspects of cellular physiology such as motility and force generation directly
rely upon their shape and structure. Cellular force generation often leads to remod-
eling of the extracellular matrix and/or pathological conditions. The particular shape
and integrity of cells are determined by their internal structure, cytoskeleton, which
lies between the nucleus and membrane. The cytoskeleton plays numerous roles
and can be studied from different perspectives. For example, many cells spread and
migrate during the development as well as at maturity for wound healing and cancer
metastasis among others. Moreover, cells sense mechanical forces and convert
them into a cascade of biochemical signaling events influencing their function and
properties. The possibility of examining cells from a variety of perspective is why
there exists such a diverse conceptual opinion about the mechanical properties
of cytoskeleton. While biophysicists often model the cytoskeleton as a series of
randomly cross-linked polymer chains, structural engineers see the cytoskeleton as
a continuum over a certain length scale. It is noted that these very different models
for cytoskeletal mechanics have often been backed by compelling experimental
measurements; therefore, future studies are required for developing a better and
possibly unified description for all of the observed phenomena.

The primary objective of this chapter is to present a concise overview of
various key experimental and computational models regarding cytoskeletal rheology
and mechanics. The cytoskeleton is a three-dimensional composite network of
actin filaments, microtubules, and intermediate filaments through which water,
solutes, and small organelles diffuse. Depending on the observation length scale,
network fiber density, and degree of filament cross-linking, the cytoskeleton and
subsequently the cells can have wide-range material properties from a viscous
fluid to an elastic gel. For instance, while cells behave as a viscous fluid in
slow deformation, they show elastic behavior in fast deformations. The main
microstructural constituents of the cytoskeleton are actin filaments, microtubules,
intermediate filaments, binding proteins, and cross-link filaments.

Actin filaments are considered as the primary structural component of cells;
they play a key role in cell migration and respond rapidly to external forces. Actin
filaments are twisted strands of filaments with a diameter of 7–9 nm and structural
polarity, Fig. 5.1a. They constitute about 1 to 10 percent of all the proteins in most
cells and are formed by polymerization of the globular monomeric actin (G-actin).
The F-actin is composed of about 375 amino acids with a molecular weight of
about 43 KDa. The growth of the filament occurs when adenosine-5’-triphosphate
(ATP) binds to the barbed end and is hydrolyzed to ADP. Depolymerization occurs
as ADP bound actin drops off the pointed ends. The polymerization and depoly-
merization processes are regulated by many factors such as ionic concentration of
the surrounding environment, capping, binding, branching, and severing proteins.
Actin filaments are the primary structural component of most cells and fall under
the category of stiff structures [1–7]. These filaments have a persistence length of
several micrometers and an effective Young’s modulus of about 1–3 MPa. To put
this value into perspective, note that the Young’s moduli of polystyrene and bone
are approximately 3 MPa and 9 MPa, respectively.
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Fig. 5.1 Three main constituents of the cytoskeleton: (a) actin filaments, (b) microtubules, and
(c) intermediate filaments. (a) Actin filaments are formed by polymerization of actin monomers
(G-actin). The filaments have a distinct polarity because actin monomers are oriented in the same
direction. Actin polymerization is a reversible process and G-actins can associate and dissociate
from the filaments. (b) The microtubules are hollow rods with an inner diameter of about 14 nm
and are composed of thirteen protofilaments. The protofilaments are built by assembly of dimers
of α-tubulin and β -tubulin. (c) Intermediate filaments are composed of approximately eight
protofilaments; each protofilament is formed from the end-to-end association of tetramers. The
building blocks of tetramers are dimers which are two polypeptides wound around each other in a
coiled–coiled structure

Microtubules are another component of the cytoskeleton; they are polymerized
filaments constructed from tubulin, a heterodimer of α-tubulin and β -tubulin, and
are arranged in a helical arrangement with a molecular weight of about 55 KDa,
Fig. 5.1b. These filaments are in the form of small hollow cylinders with an outer
diameter of about 25 nm. The bending stiffness of the microtubules is higher than
that of the actin filaments. These filaments have a large persistence length of about
6 mm which is three orders of magnitudes larger than the average length scale of
the cell [8]. Microtubules are highly dynamic with constant polymerization and
depolymerization and a half-life of only a few minutes. They are involved in a
number of cellular processes such as vesicle transport and cell division [9, 10].

Intermediate filaments are the third set of cytoskeletal filaments which are found
nearly in all eukaryotic cells. The major function of intermediate filaments is to
stabilize the cytoskeletal structure and integrity. They are smaller in size than
microtubules but larger than microfilaments. The proteins forming intermediate
filaments, Fig. 5.1c, are divided into five groups based on gene structure, primary
structure, assembly properties, and development-regulated tissue-specific expres-
sion patterns [11]. Unlike F-actin and microtubules, intermediate filaments are
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composed of filamentous proteins with no enzymatic activity and are in the form of
coiled-coil bundles of protofilaments. They are nonpolar structures with long-term
stability, little solubility in salts, and no vectorial transport role. The persistence
length of intermediate filaments is about few micrometers with bending modulus of
about 300 MPa [12,13]. They are very flexible in bending and can be stretched up to
three-folds before rupture [14, 15]. Their remarkable extensibility is because, upon
stretching, the α-helical coiled-coil dimer is converted into β -sheet-type structures.
Because of their nonlinear mechanical properties, it is believed that intermediate
filaments protect the cells from large deformation by acting as mechanical stress
absorbers.

The structure of the cytoskeleton (e.g., the length and density of its filaments)
is regulated by many binding proteins and cross-link filaments such as filamin and
α-actinin, which constitutes a pathway for transmitting mechanical force through
the cytoskeleton. Depending on the length and degree of cross-linkings of cytoskele-
tal fibers, cells can exhibit a wide range of material properties ranging from a
viscous fluid to an elastic gel. The cytoskeletal components are constantly changing
in order to accommodate both slow and fast cell dynamic processes such as cellular
movement and division. In general, a cell behaves elastically (or viscoelastically) in
response to quick (or slow) deformations through arrangement and rearrangement of
microfilaments. For instance, treadmilling is a dynamic process where the addition
and removal of actin subunits from two ends of a microfilament occur at the
same rate.

A variety of actin-binding proteins (ABPs) regulates the formation of actin
cytoskeleton network. These actin-binding proteins are an essential part of the cell
and play important roles ranging from regulating assembly and disassembly of F-
actins to controlling actin network dynamics and structure, Fig. 5.2. A plethora of
actin monomers and a large number of actin-monomer-binding proteins are required
for the rapid growth of actins in motile cells and also for their sudden reorganization
in response to intra- and extracellular stimuli. These proteins are also required for
the maintenance of cell integrity by interconnecting different cytoskeletal elements
together. For instance, they connect actin filaments to microtubules and intermediate
filaments. Another group of actin-binding proteins is molecular motor protein
myosin which is involved in cytoskeleton dynamic behavior. Myosin binds to actin
filaments, moves along them, and generates tensile forces. It converts the chemical
energy of the ATP into mechanical energy in order to move along the cytoskeletal
substrate. For example, two-headed myosin II generates tension and contraction
inside the cytoskeleton.

Myosin is a motor protein which has a central role in force generation required
for cellular locomotive and protrusive activities among others. Myosin is composed
of two identical heavy chains and two pairs of light chains. There are three
distinguishable domains in each heavy chain: the head, neck, and tail. The head
region is located near the end of the two heavy chains and is where forces can
be generated. The globular head domain includes binding sites for actin and is
formed by folding one half of a single heavy chain. The other halves of the heavy
chains twist around each other and form a helical fibrous structure. In the neck
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Fig. 5.2 Schematic representation of the role of actin-binding proteins (ABPs) in forming actin
bundle and actin network. The smaller actin-binding proteins such as α-actinin often have different
actin-binding sites and form actin bundles. On the other hand, the larger actin-binding proteins such
as filamin usually push actin filaments apart and form actin networks

domain (the connection between the head and the tail), a pair of light chains stiffen
and stabilize the structure. The energy required for myosin movement along actin
filaments is obtained from ATP hydrolysis. The nucleotide-binding sites are at a
distance of about 3.5 nm from actin-binding sites. The gamma phosphate sensor
and the relay helix are essential within the myosin. Myosin uses the gamma
phosphate protein sensor to distinguish between ATP- and ADP- bound states. In
muscle cells, the myosin head moves 5–10 nm with respect to the sarcomere due
to the lever arm rotation of about 70 degrees in each power stroke (i.e., the large
sweeping movement of the myosin head), Fig. 5.3. This process starts by myosin
head being released from the actin because of the ATP binding to myosin. The ATP
is hydrolyzed quickly to ADP plus inorganic phosphate. The myosin head rotates
from the sarcomere midline and attaches to the actin filament through ADP at a
further location. Upon attachment, the ADP and inorganic phosphate are released.
This causes the myosin lever arm to rotate and slide the myosin head toward the
sarcomere midline. Chapter 9 discusses particle simulations and continuum kinetic
theories which can be used to investigate the relation between the mechanics and
interactions of solutions of motor proteins and actin filaments. These model could
provide insight into the relation between the mechanics and interactions on the scale
of individual particles.
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Fig. 5.3 Schematic representation of actin-myosin force generation. The interaction of myosin
motor proteins with actin filaments results in the relative movement of actin filaments and myosins.
This movement is ATP-dependent and results from the attachment, bending, and detachment of the
myosin head to an actin filament

The cytoskeleton plays important roles in cell mechanics as well as in
mechanosensation which itself regulates the cellular response to mechanical
loadings. Cells can sense and respond to physical forces through a number of
biological pathways such as changes in membrane channel activity, gene expression,
or protein synthesis. For example, hair cells, located in the sensory cells of the inner
ear, transduce the mechanical vibration of inner ear fluid into an electrical signal
which propagates to the brain [16–18]. The details of force transmission into
the ion channel during hair cell excitation are not fully known. Nevertheless,
similar mechanosensitive ion channels such as the mechanosensitive channel
of large conductance (MscL) have been investigated extensively [16, 19]. For
instance, molecular dynamics simulations have shown how mechanical stress in
the cell membrane acts directly on ion channels and may possibly change their
conductance [20].

To date, a large number of computational and experimental methods have been
developed in order to characterize the rheology and mechanics of the cytoskeleton.
Although the importance of the cytoskeleton is well established, the field still
lacks a complete understanding of the biophysical properties of the cytoskeletal
network and there is no general theoretic model. In particular, the relationship
between microstructural details and the macroscopic rheological behavior of the
cytoskeleton remains elusive. The remaining of this chapter discusses some of the
common theoretical and experimental methods that have been proposed to model
and measure cytoskeletal rheology.

2 Cytoskeletal Rheology and Mechanics

The mechanical properties of the cytoskeleton have been studied using a number
of different experimental and computational techniques. The primary cytoskeletal
ingredients (F-actin, microtubules, and intermediate filaments) bundle together
and form a dynamic network with unique properties. This network has an essen-
tial role in a variety of cellular functions such as adhesion, migration, and
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mechano-transduction. This section reviews some of the computational and exper-
imental models that have been proposed for investigating the cytoskeletal rheology
and mechanics.

Fiber networks are divided into different categories depending on the mechanical
properties of the filaments and their network structure. The cytoskeleton is a
semiflexible fiber network. The deformation of a filament in thermal networks is
dominated by a strong entropic component which is often modeled as an entropic
spring model,

f =−T
∂S
∂�

, (5.1)

where f is the thermodynamic force, S is the entropy, � is the filament contour
length, and T is the absolute temperature [21]. The deformation of athermal
semiflexible fibers is mainly enthalpic. Semiflexible networks include filamentous
aggregates that are heavily cross-linked on the length scale proportional to their
thermal persistence length, i.e., the length at which the thermal bending fluctuations
become apparent. In particular, the persistence length,

�p = κ/KBT, (5.2)

characterizes the competition between the bending energy and the thermal fluc-
tuations. Here, KB is the Boltzmann constant, and κ is the bending stiffness of
the filament [22, 23]. In semiflexible fibers, the persistence length exceeds other
relevant length scales of the polymer chain; therefore, there exists strong correlation
on length scales larger than the average segment length. The average segment
length �c equals the average filament length divided by the average number of
segments. Many examples of structures composed of semiflexible polymers are
found in biology. In cytoskeleton, the filamentous actin (F-actin) and microtubules
have respective persistence lengths of ∼10 μm and ∼7 mm while their contour
length is between 10 and 50 microns; therefore, �p > �c, [1, 8, 24, 25]. In semi-
flexible polymers, the energy is stored in bending, axial, torsion, and shear modes
of deformation. The response of a filament in two dimensions can be modeled
according to the classical linear elastic continuum beam theory which gives the
elastic strain energy (Hamiltonian) as

U =
1
2

∫

�

(
κ(∇ψ(s))2 +η (d�(s)/ds)2

)
ds in 2D, (5.3)

where ψ(s) is the rotation of the cross-sectional plane of the beam, �(s) is the
location of the beam cross section, κ and η are the bending and axial stiffness
of the beam, and s is the beam arc-length parameter [26–28]. In general, the
macroscopic behavior of a semiflexible network and its relation to the properties
of its constituents are quite different than that of a flexible network. Thus, none
of the many models developed for the behavior of flexible networks, such as
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rubbers, can accurately predict the mechanics of semiflexible systems [26, 29–34].
The mechanics of semiflexible fiber networks exhibit very interesting (and some-
times peculiar) behaviors. The cytoskeleton is highly heterogeneous and consists
of semiflexible filaments with interconnection lengths on the same order as the
fiber persistence length. Although many studies have been focused on elucidating
the biophysical properties of cytoskeleton, the underlying physical origins of
its complex and heterogeneous microstructure and mechanics are still unknown.
Cytoskeleton is an active and dynamic structure undergoing constant remodeling
in response to external and internal stimulants. For example, it has experimentally
been observed that F-actin networks subjected to oscillatory shear deformation show
negative normal stresses as large as shear stresses [35]. This phenomenon does not
appear in the behavior of flexible polymer networks. In flexible fiber networks,
similar to most materials, the tendency to expand in the direction normal to the
applied shear forces yields positive normal stresses. Both stiffening and softening
are among other unique properties of actin networks. Unlike common polymer
gels, networks of semiflexible filaments nonlinearly stiffen in order to resist large
deformations and maintain the network integrity [36, 37]. Furthermore, a reversible
compressive stress-softening response in actin networks has been observed; this
behavior is deemed to be necessary for preventing catastrophic fracture of the
structure. In contrast to semiflexible networks, flexible and rigid polymers only
exhibit monotonic stiffening when subjected to compression. The origins of above
macroscopic behaviors are under study.

2.1 Experimental Studies

F-actin networks behave nonlinearly and can exhibit very different mechanical prop-
erties depending on the length scale of observations and experimental conditions.
Therefore, it is necessary to pay extra attention to implications of length scales
when analyzing and/or developing models for the mechanics of cytoskeleton [38].
The cytoskeleton has viscoelastic properties and can show characteristics of both
elastic solids and viscous fluids. The effective elastic modulus and the amount
of stored/dissipated mechanical energy in the cytoskeletal network can be studied
by applying oscillatory external stresses. As it is discussed in Chap. 1, in these
frequency-dependent viscoelasticity measurements, the reaction stress σ0 sin(ωt +
δ ) due to the application of a small-amplitude oscillatory strain ε0 sin(ωt) is
measured. Here σ0 is the stress amplitude, ε0 is the strain amplitude, δ is the phase
shift between stress and strain, ω is the frequency of the oscillation, and t is time.
The storage elastic modulus which is a measure of the stored mechanical energy is
given by

G′(ω) =
σ0

ε0
cosδ (ω), (5.4)
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and the loss elastic modulus which is a measure of the energy dissipated as heat is
given by

G′′(ω) =
σ0

ε0
sinδ (ω). (5.5)

It is seen that loss and storage moduli are frequency-dependent. In other words,
depending on the applied frequency, a material may show solid-like or liquid-like
behavior, see Chap. 4. Complex variables are used to write the above moduli as

G∗(ω) = G′(ω)+ iG′′(ω) (5.6)

The experimental measurements of the cell microrheology often characterize the
complex modulus G∗(ω) over a wide range of frequencies. The real and imaginary
parts of the complex modulus are used to represent the respective elastic energy
stored and the frictional energy dissipated within the cell as a function of oscillatory
frequency.

Different types of microrheology experiments have been proposed to measure
and characterize the rheology of the cytoskeleton. Chapter 3 of this book gives
an overview of theoretical microrheology for investigating the material properties
of complex biological fluids. These techniques can be divided into two broad
categories of active techniques and passive techniques. In passive techniques
such as passive microrheology, fluorescence correlation spectroscopy, and dynamic
light scattering, the behavior of the cytoskeleton is determined by monitoring the
Brownian movements of inherent or external particles due to thermal fluctuations.
The thermal fluctuations of a microscopic probe in a soft medium are measurable
and representative of viscoelastic parameters of the medium surrounding the probe.
For example, micron-sized beads are embedded into the cytoskeletal network in
passive microrheology and their displacement is measured from video recordings or
laser beam interferometry [39–44]. One- and two-particle methods of this technique
are commonly used. In the one-particle technique, the positions of individual
particles are recorded to calculate the mean square displacement of the Brownian
motion. Then the fluctuation dissipation theorem is employed to determine the
complex shear modulus of the environment [45]. One of the drawbacks of this
method is that active movement of the probe particles may affect viscoelastic
properties of the embedding domain and cause errors in the measurements. In order
to overcome this problem, two-particle microrheology has been proposed in which
the cross correlation of the displacement fluctuations of two particles located at
a known distance from each other is measured. While short-length fluctuations are
isolated in one-particle microrheology, the bulk rheology of the cytoskeletal network
is estimated using the two-particle microrheology method [42, 44, 46].

The active microrheology methods involve the application of mechanical forces
and characterization of the localized properties by applying an external force at the
site of the interrogation. These methods include atomic force microscope, optical
traps, microplates, micropipette aspiration, and magnetic traps. For example, the
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Fig. 5.4 (a) Ferrimagnetic beads (arrow) bind to the actin cytoskeleton (stained with phalloidin)
of HASM cells via cell adhesion molecules (integrins). (b) The moment induced by a magnetic
field causes the ferrimagnetic bead to rotate and to displace. The figure is adapted and obtained
from Fabry et al. 2001

magnetic trap method uses the ferromagnetic microbeads coated with a protein
which can bind to the intracellular proteins. These microbeads can be used to apply
large forces either on the surface of cells or in the intracellular environment. The
elastic modulus of cell types such as white blood cells and fibroblasts is about 1–10
KPa; therefore, large forces on the order of nano-Newtons are required to investigate
the deformation of these cells. A high magnetic field is first used to magnetize the
beads and create parallel magnetic moments in order to apply a torque, Fig. 5.4.
Both ferromagnetic and paramagnetic particles are used to apply torques of several
pico-newtons and forces up to 10 nN, respectively [47–54]. Furthermore, glass
microneedles are used to apply nano-Newton or smaller forces on neurons and
to initiate neurite extension [55]. Glass needles are calibrated to determine the
bending constant of cells by applying small and meaningful forces. The calibration
process uses a precalibrated large rod to calibrate a rod slightly smaller than itself.
Each rod is then used to sequentially calibrate smaller rods until the given thin
microneedle rod is calibrated. In the experiment, two needles are often mounted in a
micromanipulator; one needle is calibrated for measuring the bending constant and
the other needle is used as an unloaded reference point for bending of the calibrated
needle and for possible drift of the micromanipulator system [56, 57].

2.2 Computational Studies: Continuum
and Discrete Descriptions

The relationship between microstructural details and macroscopic rheological
behavior of the cytoskeleton can be investigated using phenomenological and/or
micromechanics models. Phenomenological models are based on macroscopic
observations and ignore the discrete nature of the cytoskeleton. The cytoskeletal
network is modeled as a continuum domain for which a macroscale constitutive
relation such as a simple elastic, viscoelastic, and poroelastic model is chosen based
on experimental observations and properties of interest. Chapter 1 of this book
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presents the mathematical framework of continuum mechanics and its application
in modeling complex fluid mechanics. Continuum-level models are suitable if the
length scale of interest is much larger than the characteristic length scale of the
cell microstructure [48, 50, 58–60]. In other words, when considering whole-cell
deformation, a cell behaves at the macroscopic length scale which is at least two to
three orders of magnitudes larger than length scale of microstructural constituents.
Examples of such cases are the behavior of erythrocytes/neutrophils in micropipette
aspiration and magnetocytometry-induced deformations [61–64]. The micropipette
aspiration method measures the cellular elasticity and viscosity by pulling on cells
such as monocytes, erythrocytes (red blood cells), and leukocytes (white blood
cells). In magnetocytometry, magnetic microbeads tightly bound to the cell are used
to apply controlled forces to a single cell. In these situations, the length scale of
the observed deformation is such that a continuum model can often capture the
mechanical properties with a sufficient level of accuracy.

The continuum-level models often consider cells as single-phase materials and
neglect their multiphasic nature. The biomechanical and biochemical properties of
cells are influenced by ionic water solution and charged macromolecules forming
the cell environment. For example, osmotic loads caused by variations in the ionic
concentrations may change the cell volume. A number of multiphasic models have
been developed to model possible structural roles of interactions among solid, fluid,
and free ions in the cytoskeleton [65]. The first multiphasic model and most of
the related work in this area have been developed in order to study the articular
cartilage and chondrocyte cells. In the biphasic theory, the mixture is assumed
to be intrinsically incompressible and the balance laws for solid and fluid phases
are written in order to obtain the governing partial differential equations. It is
known that viscoelastic behavior in cells can arise from flow-dependent and flow-
independent mechanisms. The traditional biphasic model only considers the flow
dependent viscoelastic behavior in order to describe the transient cell response.
Nevertheless, there are instances in which the biphasic model is unsuccessful in
describing the viscoelastic behavior of the cells. For example, an elastic biphasic
model is unable to accurately describe the creep and time-dependent response
of chondrocytes during micropipette aspiration [66, 67]. The triphasic continuum
mixture model enhances the capability of the biphasic model by its ability to
better describe mechanochemical couplings between different phases [65, 68]. In
continuum-level modeling of the cell behavior, the small but important Brownian
motions of the cytoskeleton due to thermal fluctuations are neglected. Moreover, the
infinite number of time scales, a fundamental property of the power-law rheology
of the cell response, is replaced with a limited number of time constants. Finally,
although inhomogeneous anisotropic properties of cells can be modeled using
appropriate constitutive laws, these models often cannot be related to and derived
from the details of the cell microstructure. Therefore, the continuum-level methods
are highly specific to experimental observations and usually cannot be generalized.

In the methods of micromechanics, the main microstructural features of the
system, which are usually characterized separately, are included in the model.
One of the fundamental features missing from continuum-level models is the
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intrinsic fibrous and discrete structure of cytoskeleton. The long fibers in the
F-actin cytoskeleton are cross-linked with average segment length of about 10–
100 nm [69, 70]. In addition to the required discretization of the spatial domain,
many small time steps are necessary for numerical stability and a reasonable
accuracy. Therefore, a fully discretized numerical model of the fiber network
is computationally expensive and very time-consuming. In discrete models, the
cytoskeleton microstructure is represented by a network of randomly cross-linked
filaments. A complete review of these models has been presented in [29]. Since actin
filaments are heavily cross-linked on the scale of their thermal persistence length,
bending, twisting, and stretching are common modes of deformation. Therefore,
the cytoskeleton is classified as a semiflexible network with strongly non-affine
behavior. As it was stated earlier, the behavior of a semiflexible fiber network
and its relationship to mechanical properties of the network constituents are more
complicated than those of a flexible fiber network. The commonly used models for
flexible networks are not appropriate to characterize the mechanics and rheology of
semiflexible networks. Despite various research efforts, a unified model to describe
the elasticity of semiflexible gels such as large shear moduli, nonlinear response,
and power-law scaling of the cytoskeletal rheology does not exist. The cytoskeletal
filaments resist bending deformation and have thermally induced fluctuations due
to Brownian forces; therefore, they can be modeled as elastic rods with bending
and stretching rigidities due to both enthalpic and entropic elasticity. The Langevin
equation describes the hydrodynamics drag force of the filaments through the
solvent.

The presence of cross-linkers in semiflexible gels significantly influences net-
work properties. There are two distinct single-filament responses, i.e., bending
and stretching modes, which may exist in the semiflexible networks. If individual
filaments are only allowed to rotate and uniaxially deform under uniform loadings
and the macroscopic strain distributes uniformly throughout the medium (affine
deformation assumption), affine network models are appropriate to represent the
network behavior [71]. The accuracy of these models reduces as the behavior of
the network becomes non-affine, i.e., bending motions of the filaments become
important. The reader is referred to our recent papers for a detailed discussion on
affine versus non-affine behavior [26, 28, 70]. Hatami-Marbini and Picu recently
developed a new methodology to solve boundary value problems on dense random
fiber networks. This novel stochastic finite element based computational technique
yields the statistics of the network mechanical behavior at a desired length scale
by accounting for all possible configurations [38]. In this methodology, the total
potential energy of the fiber network subjected to far-field loading is minimized
in order to compute the nodal displacements. A regular mesh of square elements
is then overlaid on the network in order to calculate the probability distribution
of average stress and strain inside the domain. The elasticity of the discrete fiber
network is mapped to a homogeneous continuum domain having correlated elastic
moduli. The equivalent continuum domain has the main features and correlations of
the network microstructure. The efficiency of this new technique has been analyzed
by comparing its predictions with those obtained from Monte Carlo simulations
[29, 38, 72, 73].
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Fig. 5.5 (a) Molecular mechanics of filamin’s rod domain; force along the rod domain to the
right induces a conformational change in repeat 4 within 300 ps at F = 50 pN. (b) The percentage
extension of the whole rod domain is calculated versus time during the application of a constant
force. These figures are obtained from Kolahi and Mofrad, 2008

In micromechanical models for F-actin network, the filaments are often assumed
to be permanently hinged or rigidly cross-linked. Nevertheless, these cross-links
undergo constant disassociation in the cytoskeleton and have variable strength
depending on the ABPs’ structures and properties. For instance, filamins are approx-
imately 150 nm long V-shaped ABP which cross-link actin fibers preferentially. The
filamin cross-link is composed of β -sheets which unfold under external loads and
depict a sawtooth force displacement curve [74–78], Fig. 5.5. Therefore, it may not
be appropriate to model the cross-links between filaments as simple rigid structural
elements in discrete models of cytoskeleton. This issue is conveniently ignored in
many of the current network models.

Moreover, the cytoskeleton is an active biological system which undergoes
constant arrangement and rearrangement in response to various kinds of signals
resulting from cell locomotion, division, and extension. The interplay of multiple
phenomena including myosin contraction, actin network elasticity, and internal and
external constraints imposed on the cytoskeleton creates the stress distribution inside
the cell. For instance, Arp2/3 complex forms 70◦ branching networks, fimbrin and
α-actinin put F-actins in parallel bundles, and filamin and spectrin form three-
dimensional actin networks. Filamin and spectrin are protein complexes composed
of multiple actin-binding domains which are responsible to arrange actin filaments
into dense meshworks. Other types of ABPs are those which are used as a physical
support or scaffold. They are less “directly” involved in regulating actin structure.
Myosins are the most important member of this category of ABPs.
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There are over fifteen different types of myosins which move their specific
cargo inside the cell using actin filaments. Myosins are molecular motors which
produce movement through ATP hydrolysis and can generate forces on order of
pico-Newtons. The mechanical properties and structure of cytoskeleton are greatly
influenced through the contribution of forces generated by myosin so their effect
in cell mechanics cannot be overlooked. The effect of motor molecules may be
included in the filamentous network models for the cytoskeleton. In these models,
internal forces exerted by myosin motor molecules induce a state of prestress
condition inside the system. These networks, whose elasticity is controlled by
myosin, are often called active networks and their behavior is different than those
of passive networks. It has been shown experimentally that active myosin stresses
stiffen the network by about two orders of magnitude [79]. Nevertheless, a complete
mathematical and theoretic model of active network has not yet been developed.

The stress field in the cytoskeletal network depends on the contractile machinery
called stress fibers. They are formed by the actin-myosin interactions and are
characterized by repeating units of myosin proteins. The movement of myosin
motors in the stress fibers causes actin filaments to contract and slide past one
another. The dynamics of stress fibers has not yet been well understood and is
currently under study. However, it is known that their elasticity is a function of
myosin spacings and changes over time. Cellular functions such as wound healing,
proliferation, shape stability, and apoptosis depend strongly on how the force is
acted upon the cell. Forces transmit into and out of the cytoskeleton through these
bundles at the basal surface, where it interacts with the surrounding extracellular
matrix, and where cytoskeletal contractility is resisted. At these interaction sites
(called the focal adhesion), stress fibers often form [80, 81]. They also form along
the direction of external forces, e.g., it is found that stress fibers orient with the
direction of fluid flow in endothelial cells under shear stress [82,83]. The mechanical
properties of stress fibers can be nonuniform because of the variations in myosin
spacings along the stress fiber length. Moreover, the direction and strength of stress
fibers depend on stress field within the cell. Forces are transferred and propagated
directly and in a band-like structure from stress fibers to discrete sites on the nuclear
envelope [84, 85]. As stress fibers enable the cell to focus myosin contractility
along a specific direction of resistance, the cell can stiffen directionally to protect
itself against excess stress and strains in this particular direction. Moreover, the
cell explores the matrix rigidity and migrates in the direction of increasing rigidity
through stress fibers [86]. Cell locomotion is believed to depend on and even be
controlled by changes in substrate rigidity. In particular, cell response on culture
surfaces is dictated by substrate rigidity: actin stress fibers are oriented along
the stiffest direction of the microfabricated substrates [87].

In the literature, stress fibers have often been simulated by continuum models.
These models predict the diffusion of stress away from the points of matrix
attachment, as opposed to the directed and focused stress propagation observed
in experiments. A recent study, however, showed that in translating the discrete
microscale actin-myosin interaction to the continuum scale, these models are miss-
ing the perpendicular component of the myosin force acting on the actin filaments
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[88, 89]. Inclusion of this correction in the model recovers the directed and focused
nature of stress fibers. Moreover, the stress fiber arrangements for simple cell-matrix
attachments predicted by this model match those observed in experimental studies.
Key aspects of the interactions are missing in coarse graining and in approximating
discrete macromolecular interactions by a continuum model. Therefore, a multi-
scale approach retaining the discrete nature of the macromolecular interactions and
keeping material properties in the discrete macromolecular scale is required. Such a
model requires taking into account the discrete nature of cytoskeleton as well as the
effects of hydrodynamic interactions on the behavior of individual filaments [88,89].

It has been shown that elastic modulus of stress fibers in living endothelial
cells is approximately 10–15 KPa which remains constant over large strains up
to 12 % [90]. This stiffness is a function of myosin II since disturbing its activity
by adding myosin inhibitor blebbistatin causes a 30 % loss of the modulus [91].
The elastic modulus of fibroblast cells also decreases due to the application of this
myosin inhibitor [92]. This further confirms the importance of the tension generated
by myosin to the overall cellular stiffness. Despite considerable experimental and
computational efforts to study basic physical principles of cell contractility due
to myosin II motors, our understanding is still limited. It is not yet clear how
contractility and pattern formation change with microscopic parameters such as
number of myosin motors, number of cross-linkers, and density of actin filaments. It
is known that the motor activity inside the cell is a controlled process which results
in the formation of the stress fibers in cells on flat substrates and the contractile rings
during cytokinesis [93–95]. The contractile rings, which are composed of actin,
myosin II, septins, and GTP-binding hetero-oligomers, generate a furrow which
partitions one cell into two. There have been some efforts to describe these rings
using continuum-level hydrodynamics models whose accuracy have been confirmed
by in vitro studies [96, 97]. In these models, the actin network is modeled as an
active viscoelastic polar gel which is forced out of its equilibrium state because
of the ATP hydrolysis. These studies suggest that the assembly and disassembly of
cytoskeletal structures can be tuned via varying the concentration of local myosin II.
Furthermore, F-actin cross-linkers such as filamin A andα-actinin should be present
for the contraction of F-actin networks induced by myosin II at physiological
ATP concentrations. In other words, myosin cannot generate large forces if actin
filaments are not cross-linked. The dependence of contractility on the number of
cross-linkers and myosin motors per actin filament has been studied by constructing
well-controlled model system of purified actin, myosin, andα-actinin. The results of
recent theoretical studies show that the force generated by myosin is not sufficiently
large for ring contraction during cytokinesis unless the actin filaments are heavily
cross-linked.

The study of reconstituted biopolymer networks is an excellent way to model
and understand the important mechanical features of living cytoskeleton [79, 97].
These reconstituted networks of filamentous actin combined with myosin motors
are a new class of active materials whose mechanical properties can be adjusted
and tailored by enzymatic activities [98]. It has been observed that molecular motor
proteins can either stiffen or weaken the F-actin solution depending on the density
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of F-actin cross-linkers. While the presence of actin cross-linker provides sites for
mechanical anchorage and accommodates internal tension, active filament sliding
occurs in their absence because of myosin activity. Protein myosin permits active
control over the mechanical behavior of F-actin network solutions. For instance,
the stress relaxation time of actin solutions will shorten upon addition of molecular
motor myosin. The interaction of single polymer chains with surrounding polymers
induces the viscoelastic behavior. The viscoelasticity of actin-myosin networks can
be modulated using the ability of myosin to supersede reptation with sliding motion:
myosin II replaces the thermally driven transport of individual polymers (snake-
like movement described by reptation model) with active filament sliding motion.
In reptation model, a tube represents the topological constraints of neighboring
polymers on the movement of a single chain. A modified tube model has been
proposed to model the dynamics of polar actin filaments with active, motile centers
generating longitudinal motion [99]. Molecular dynamics simulations have also
been used to investigate the rheology and the structure of F-actin solution interacting
with molecular motors [100].

In summary, this chapter reviewed important features of the cytoskeletal biopoly-
mer network. The physical and mechanical behavior of individual constituents of the
cytoskeleton, i.e., F-actin, microtubules, intermediate filaments, binding proteins,
and cross-link filaments, was discussed. A summary of the experimental and com-
putational methods that have been commonly used to investigate the rheology and
mechanics of the cytoskeleton was also presented. We hope that this chapter would
help the readers become more familiar with this field of research and appreciate the
fact that despite much have been learned about cytoskeletal mechanics and rheology,
still little is known about the underlying molecular mechanisms!
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Chapter 6
Experimental Challenges of Shear Rheology:
How to Avoid Bad Data

Randy H. Ewoldt, Michael T. Johnston, and Lucas M. Caretta

Abstract A variety of measurement artifacts can be blamed for misinterpretations
of shear thinning, shear thickening, and viscoelastic responses, when the material
does not actually have these properties. The softness and activity of biological
materials will often magnify the challenges of experimental rheological measure-
ments. The theoretical definitions of rheological material functions are based on
stress, strain, and strain-rate components in simple deformation fields. In reality, one
typically measures loads and displacements at the boundaries of a sample, and the
calculation of true stress and strain may be encumbered by instrument resolution,
instrument inertia, sample inertia, boundary effects, and volumetric effects. Here
we discuss these common challenges in measuring shear material functions in the
context of soft, water-based, and even living biological complex fluids. We discuss
techniques for identifying and minimizing experimental errors and for pushing
the experimental limits of rotational shear rheometers. Two extreme case studies
are used: an ultrasoft aqueous polymer/fiber network (hagfish defense gel) and an
actively swimming suspension of microalgae (Dunaliella primolecta).

1 Introduction

Rheological properties answer the question, “What happens when I poke it?”
A complex material gives a complex answer, e.g., with properties that are functions,
not constants.

For a rheologically complex fluid, there is no single value of viscosity or modu-
lus, but instead the dissipative resistance to flow (viscosity) and elastic resistance to
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Fig. 6.1 Ideally, shear rheological properties are defined from strain γ(t) and stress τyx(t) in
homogeneous simple shear. In reality, boundary displacements and loads are measured and
nonideal experimental artifacts must be considered. The effects labeled as (A)–(I) are particularly
important with biological complex fluids, and include (A) resolution/range of measured load and
displacement, (B) instrument inertia (if load and displacement are measured on same boundary),
(C) fluid inertia and secondary flows, (D) surface tension, (E) free surface interfacial rheology, (F)
slip at boundaries, (G) sample underfill or overfill, (H) small volume and gap, (I) nonhomogeneous
sample from settling, migration, or rheotaxis

deformation (modulus) are functions of the loading time scale, loading amplitude,
or other environmental factors including temperature, pressure, electromagnetic
fields, or the internal activity of living biological systems. These function-valued
rheological properties are known as material functions [1], and they form the
language of descriptive rheology. The descriptive nomenclature is well defined for
simple, ideal deformations [1], including simple shear (Fig. 6.1). The input can
be either strain or stress, and different time-histories can be used, typically step
functions or sinusoidal oscillations [2]. Of course, experimental conditions may be
nonideal.

The big idea of this chapter is that properties are defined from ideal deformations
(in terms of strain and stress), but experimental techniques measure displacements
and loads (such as forces or torques), as outlined in Fig. 6.2. Assumptions are
required to convert displacement to strain and, similarly, load to stress, and therein
lies the risk that nonideal conditions exist as shown in Fig. 6.1. The effects labeled
as (A)–(I) in Fig. 6.1 are particularly important with biological complex fluids and
include (A) resolution/range of measured load and displacement, (B) instrument
inertia (if load and displacement are measured on same boundary), (C) fluid inertia
and secondary flows, (D) surface tension, (E) free surface interfacial rheology, (F)
slip at boundaries, (G) sample underfill or overfill, (H) small volume and gap, and
(I) non-homogeneous sample from settling, migration, or rheotaxis.
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Fig. 6.2 Material properties are related to stress and strain, but these cannot be measured directly.
The calculations from measured quantities require assumptions that are commonly violated,
especially for biological fluids that tend to be either low viscosity, soft, or slippery. Arrows in
figure indicate information flow into calculations. The road map is general. Example variables are
shown for measuring shear properties with rotational devices
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Fig. 6.3 Steady shear flow measurements could be misinterpreted as shear thinning and shear
thickening if an experimental window is not identified. Here, shown with dilute suspensions of
motile and nonmotile swimming microalgae Dunaliella primolecta compared to fresh media (no
cells present). The low-torque limit, described in Sect. 3.1, is drawn from Eq. 6.13 using Tmin =
0.1 μN.m. The secondary flow limit, described in Sect. 3.3, is drawn from Eq. 6.31 using Remax = 4.
The Re2 line is from the expected increase in torque due to secondary flow, Eq. 6.29 (Previously
unpublished work of authors RHE and LMC)

Nonideal conditions can translate to misinterpretations of results, such as the
observation of apparent shear thinning and shear thickening for a fluid that is
actually Newtonian within the range of test conditions, as shown in Fig. 6.3.

Figure 6.3 gives examples of rate-dependent shear viscosity measurements,
which include data for a living system of microalgae suspended in water, as well as
the media without cells. The data show shear thinning at low rates and shear thick-
ening at high rates. But this is not actually the case for the true intensive material
property! Note the gray regions in Fig. 6.3. These cover experimental limitations for
measuring shear viscosity; in this case a measurement resolution issue at low rates,
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and at high rates, nonideal flow conditions. Within the experimentally accessible
window, i.e., the white central region, the fluids are more confidently interpreted
as Newtonian. Such limitations are particularly present when measuring biological
complex fluids, since they are often soft, with low viscosity, and may even have
activity (such as the swimming microalgae here) or surface-active components that
modify the liquid-air interface.

This chapter will outline a checklist and guide for believable experimental mea-
surements, interpretations, and descriptions of complex fluid rheology. The checklist
is useful for biological and nonbiological systems alike.

For proper context, two important ideas must be kept in mind. First, rheological
material functions are universally applicable to any class of material. They are used
to describe polymer liquids, polymer solids, colloidal systems, and any other simple
or complex structured fluid of the past, present, or future, so long as the continuum
hypothesis is satisfied for the lengthscale of interest. Like other material properties,
definitions are independent of the underlying structure (polymeric, colloidal, etc.),
yet, the underlying structure can be related to the measured properties through
structure-property relations specific to material classes [3]. Second, we note that
the descriptive material functions resulting from measurements are not necessarily
predictive for more complex deformations, although there are certain limiting cases
where there is correspondence between descriptive material functions and predictive
tensorial constitutive equation parameters [4]. Material functions are of course used
to fit existing models (see Chap. 1 of this book) or used to motivate new constitutive
models.

Here we focus on measurements and the corresponding descriptive quantities.
Of course, such measurements are often used for either structure-property relations
or model selection/fitting of predictive constitutive models. For those follow-up
steps to be successful, the measurements must first be free from errors.

Avoiding bad data is a serious challenge with complex fluids in general and soft
biological fluids in particular. Throughout this chapter, three key materials will serve
as examples of soft, watery, or active fluids. This includes (i) actively swimming
microalgae in a suspension of aqueous media (Fig. 6.3) (see also Chap. 9 of this
book on active suspensions), (ii) a biopolymer hagfish defense gel (Fig. 6.4), which
involves mucin-like molecules (see Chap. 2 of this book for a discussion of mucins),
and (iii) water itself, which is the basis of biological fluids. Material details are
outlined in the appendix.

2 Background: Material Functions

The theoretical definitions of material functions are based on stress, strain, and
strain-rate components in simple deformation fields. (See Chap. 1 of this book for
additional background on stress, and strain-rate tensors.) With real measurements,
one typically measures loads and displacements at the boundaries of a sample
(Fig. 6.1), and the calculation of true stress and strain may be encumbered by
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Fig. 6.4 Hagfish defense gel (a.k.a. slime) is one extreme case study used here to outline
experimental rheology challenges. Hagfish produce heroic amounts of slime as a predatory defense
mechanism, using a very small amount of exudate (0.01 wt% of final gel mass); (a) top-down
view of three Atlantic hagfish (Myxine glutinosa) in a large glass beaker; (b) for experiments,
exudate can be collected from an anesthetized hagfish with a pipette and then mixed with seawater
to form “hagfish slime,” an ultra-dilute network of polymeric mucus and fibrous protein-based
intermediate filament threads, shown in (c) with a rotational rheometer geometry in the raised
position after testing (diameter 28 mm). The ultrasoft material pushes experimental limits of
low torque, instrument inertia, and sample inertia; measurements also demonstrate interio-elastic
ringing (Figure adapted from [5])

the issues labeled A–I in Fig. 6.1. This chapter summarizes key experimental
challenges for complex fluids, especially for biological fluids. These experimental
challenges may invalidate results and sometimes cause measured properties to
incorrectly appear nonlinear or non-Newtonian. A useful approach is to identify the
experimental windows for proper measurements (Figs. 6.3, 6.5, 6.6, 6.10, 6.11, 6.14,
and 6.15). The boundaries of these figures will be described in Sect. 3.

Here we will focus on simple shear deformation, rather than shear-free flows,
although many of the experimental challenges will also affect measurements of
extensional properties. Ideal simple shear characterization is defined by the velocity
field u = e1γ̇(t)x2, giving a homogeneous rate of deformation tensor

γ̇ =

⎛

⎝
0 γ̇(t) 0
γ̇(t) 0 0

0 0 0

⎞

⎠ . (6.1)

In principle, Eq. 6.1 results in a spatially homogeneous stress tensor

σ =

⎛

⎝
−p+ τ11(t) τ21(t) 0
τ21(t) −p+ τ22(t) 0

0 0 −p+ τ33(t)

⎞

⎠ , (6.2)

where symmetry arguments have been used to limit the number of independent
stress quantities.
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Fig. 6.5 Low-torque limit shown for oscillatory strain-amplitude sweep of hagfish gel. The exper-
imental boundary helps identify the most believable data and explains the increased measurement
variability of G′′ compared to G′ at the same strain amplitude. Low-torque limit drawn from
Eq. 6.14 using Tmin = 0.003 μN.m (Data originally published in [5])

Material functions are then defined by reporting an output normalized by an input
amplitude. The controlled input can be either shear deformation (Eq. 6.1) or shear
stress (Eq. 6.2), and there are many ways to “poke” a material, even with simple
shear, including steps and oscillations.

The simplest rheological characteristic of a fluid is the steady shear flow
viscosity, defined from steady shear stress τ21 and steady shear rate γ̇ as

η(γ̇) = τ21(γ̇)/γ̇. (6.3)

A Newtonian response would produce constant η(γ̇), but in general it is a function-
valued property. This descriptive material function happens to be the same function
used in the predictive equation known as the generalized Newtonian fluid (see
Chap. 1 of this book). But in general, descriptive material functions need not be
identical to constitutive model parameters.

Consider the more general possibility of a transient response. For example, a step
input of shear rate γ̇(t) = γ̇0H(t) where H(t) is the Heaviside step function. In this
case, the transient shear viscosity is defined as

η+(t; γ̇0) = τ21(t; γ̇0)/γ̇0. (6.4)

Transient normal stress differences are also used to define material functions, but
we will focus on shear stress. A different way to probe the material is to apply a step
stress input τ21(t) = τ0H(t), from which the creep compliance is defined as
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Fig. 6.6 Low-torque and instrument inertia limits shown for oscillatory frequency sweep of
hagfish gel. Low-torque limit from Eq. 6.14 with constant γ0; instrument inertia limit from Eq. 6.18;
sample inertia limit from Eq. 6.26. The inertial torque response (solid line) is from Eq. 6.20 with
ε = 0.01 being the error in the instrument inertia torque correction. Gray circles indicate when
raw phase angle jumps from < 15◦ to > 130◦ which is also an indication that instrument inertia
corrections must be made (Data originally published in [5])

J(t;τ0) = γ(t;τ0)/τ0. (6.5)

In this chapter we will also discuss oscillatory inputs [6]. For an input shear
rate γ̇(t) = γ0ω cos(ωt), the oscillatory shear stress output can be represented by a
Fourier series

τ21(t;ω ,γ0) =∑
n

{
τ ′21,n(ω ,γ0)sin nωt + τ ′′21,n(ω ,γ0)cosnωt

}
. (6.6)

From this, the first harmonic is the most basic feature used to calculate material
functions, e.g.,

G′
1(ω ,γ0) = τ ′21,1(ω ,γ0)/γ0 (6.7)

G′′
1(ω ,γ0) = τ ′′21,1(ω ,γ0)/γ0, (6.8)

which are known as the first-harmonic elastic storage and viscous loss moduli,
respectively. In the limit of small amplitude oscillatory shear (SAOS), one may
expect linear scaling of the stress coefficients with the input amplitude. In this limit
of linear viscoelasticity, we need only report the so-called linear viscoelastic storage
and loss moduli, G′(ω) and G′′(ω), respectively.
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Shear deformation can be applied with various geometric configurations. We
will consider configurations where the stress and strain fields can be calculated
without strong assumptions of a particular constitutive model, be it liquid, solid, or
nonlinear viscoelastic. For example, indentation tests and embedded particle micro-
rheometry impose nonhomogeneous loading scenarios that change depending on
the underlying constitutive model, whereas simplified geometries such as parallel
plate, cone and plate and concentric cylinder geometries have well-defined stress
and/or strain fields for any material tested (when sample inertia can be neglected;
Sect. 3.3), and a constitutive model need not be assumed in order to report the
material functions.

Shear stress is the most commonly measured stress component, but normal
stresses are also relevant for describing rheological properties in shear. Many of
the challenges described here will also apply to normal force measurements, such
as experimental windows based on instrument specifications. The reader may find it
useful to consult related texts on the topic of rheological measurement for additional
details on certain topics [7–9].

3 Challenges

In general, one must keep a system-level perspective to identify bad data and avoid
misinterpretations of rheological properties. The following subsections outline
particularly problematic sources of error and should serve as a checklist for
verifying rheological measurements, especially with soft and slippery biological
materials.

3.1 Instrument Specifications

The measurable ranges of load and displacement serve as primary limits to
measuring rheological material functions. As shown in Fig. 6.2, the primary mea-
sured variables for rotational rheometry include torque T , displacement θ , and
rotational velocity Ω . We will use the following notation for conversion factors
to calculate stress and deformation

τ21 = FτT, (6.9)

γ = Fγθ , (6.10)

γ̇ = Fγ θ̇ = FγΩ . (6.11)

The minimum torque is typically the most important limitation for soft biological
systems. Minimum torque is often specified by instrument manufacturers but can
often be higher due to other effects (such as surface tension producing torque,
Sect. 3.4).
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To identify experimental limitations, we will use the approach of drawing
boundary lines within the coordinate axes used to report material functions, as done
in Fig. 6.3. First, write the reported material functions in terms of the measured
quantities and conversion factors. For example, steady shear viscosity from Eq. 6.3
would be

η(γ̇) =
τ21(γ̇)
γ̇

=
Fτ
Fγ

T (Ω)

Ω
. (6.12)

Next, we state the condition for acceptable data that measured torque is above some
minimum limit, T > Tmin. Substituting Eq. 6.12 into the condition T > Tmin provides
the criteria

η >
FτTmin

γ̇
, (6.13)

for avoiding bad data. This equation was used in Fig. 6.3 for the cone-plate geometry
Fτ = 3/(2πR3) where R is the cone radius and Tmin = 0.1 μN.m was used.

The appropriate value for Tmin can sometimes be larger than instrument spec-
ification, e.g., with dilute polymers in aqueous solution [10–12]. Recent results
show that surface tension torque may be responsible for torque limits higher than
instrument specifications [13], as discussed in Sect. 3.4. The limit of minimum
measurable viscosity decreases as the shear rate is increased. This is because the
limit corresponds to a minimum measurable shear stress τ21,min = FτTmin, and
viscosity is calculated as shear stress divided by shear rate.

A similar downward-sloping low-torque limit appears for other material func-
tions that are plotted as a function of an amplitude. Consider viscoelastic moduli
as a function of strain amplitude (Fig. 6.5), for which the low-torque limit sets the
minimum measurable viscoelastic moduli

Gmin =
FτTmin

γ0
, (6.14)

where Gmin refers to either G′ or G′′. For the concentric cylinder geometry (single
gap) used in Figs. 6.5 and 6.6, Fτ = 1/(2πR2L) with minimum torque in oscillation
Tmin = 0.003μN.m as specified by the manufacturer (TA Instruments, AR-G2). In
Fig. 6.6, the frequency sweep at fixed strain amplitude, the low-torque limit is simply
a horizontal line, since γ0 = constant.

The other primary variable measurements of displacement (θmin, θmax) and
velocity (Ωmin, Ωmax) also provide limits. These can also be plotted as lines within
the coordinate axes. In Fig. 6.3 with η(γ̇), the limits (Ωmin, Ωmax) would appear as
vertical lines defining the minimum and maximum γ̇ .

Experimental limits also depend on the geometry choice. This is well known
among practitioners. As an example, consider a soft material that may not exceed
the minimum measurable torque. Writing Eq. 6.14 more generally, the minimum
measurable shear modulus could be written as
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Fig. 6.7 Step torque test with hagfish gel in concentric cylinder geometry. Plotted as apparent
compliance J(t) = Fγθ (t)/(FτT0), showing instrument inertia effects: acceleration (inset) and
inertio-elastic ringing. These effects can occur in rheometer designs where load is measured
at the moving boundary. The acceleration can be predicted by Eq. 6.23, here using the value
IFτ
Fγ

= 2.9465 · 10−2 Pa.s2. The ringing can be used to extract linear and nonlinear viscoelastic
information as described in the text. Both effects obscure the true creep compliance of the material
(Data originally published in [14])

Gmin =
Fτ
Fγ

Tmin

θmax
. (6.15)

To measure a very small modulus, one could use a larger displacement ampli-
tude θ0. However, this may miss the linear viscoelastic regime if the corresponding
strain amplitude γ0 is too large. One can also increase the“gain” in the system that
generates the torque from the material resistance. This corresponds to maximizing
Fγ/Fτ , e.g., for a cone-plate system Fγ/Fτ = 2πR3/(3β ), where β is the small cone
angle. For a soft material, one may choose a large R to generate sufficient torque
to make the measurement or switch to a different geometry with a larger value of
Fγ/Fτ , such as concentric cylinders used in Figs. 6.5, 6.6, and 6.7 for the soft hagfish
defense gel.

Geometry choices influence other challenges, and there may be trade-offs
between different experimental limitations. One issue is inertia of the moving
instrument components, if the torque is being measured at the moving boundary.
This is outlined in the following section.
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3.2 Instrument Inertia

Instrument inertia causes experimental artifacts under transient conditions. This
includes oscillatory tests (e.g., limiting the high-frequency data in Fig. 6.6) and step
tests (e.g., influencing the short-time creep compliance data in Fig. 6.7). This is
only a problem if the load is measured at a moving boundary with unsteady
motion (as drawn in Fig. 6.1), which is common for many, but not all, commercial
rheometers. Unsteady instrument motion involves acceleration, and this requires a
load (torque); therefore the measured load is not simply associated with material
deformation but also instrument acceleration.

At worst, instrument inertia causes errors that look like real data. Consider
yourself warned! For example, the high-frequency data in Fig. 6.6 and short-time
data in Fig. 6.7 are not true material properties. In some cases, the effects can
be corrected if the instrument inertia is known. At best, the inertial correction is
negligible. In still other cases, instrument inertia can cause free oscillations in step
load tests. These inertio-elastic free oscillations can actually be used advantageously
to characterize material elasticity and dissipation from the ringing frequency and
periodic decay, respectively [15–18].

Biomaterials can be exceedingly soft, and instrument inertia artifacts are exag-
gerated for very soft materials. As examples of softness, the elastic modulus of
hagfish gel is G′ ≈ 0.2 Pa (Figs. 6.6 and 6.7), microtubule networks have a plateau
modulus G′ ∼ 0.4–20 Pa [19], vitreous gel G′ ≈ 2 Pa [20], actin networks as low
as G′ ≈ 1 Pa [21, 22], fibrin at low concentration G′ ≈ 10 Pa [23], and collagen–
hyaluronic acid interpenetrating polymer network hydrogels G′ ≈ 1–100 Pa [24].
In any soft material, instrument inertia must be carefully considered with transient
rheological measurements.

To avoid bad data in oscillatory shear, the “material torque” should exceed the
“instrument inertia torque.” Thus, the criteria for good data is satisfied under the
following condition:

Tmaterial > Tinertia, (6.16)

Gγ0

Fτ
> Iθ0ω2, (6.17)

G >
IFτ
Fγ
ω2, (6.18)

where the variable G represents either G′ or G′′ in oscillation. Equation 6.18 is used
to draw the “instrument inertia” boundary in Fig. 6.6 for the onset of instrument-
inertia effects. For the experiment in Fig. 6.6, with a concentric cylinder geometry,
IFτ
Fγ

= 2.9465 · 10−2 Pa.s2. Equation 6.18 corresponds to the jump in raw phase.
Instrument inertia corrections can be made beyond this point, and this requires the
subtraction of the instrument inertia torque from the single. This is reasonable to
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a point, but artifacts may eventually appear, e.g., with moduli increasing close to
G′ ∼ G′′ ∼ ω2. This signature can be explained by inertia effects.

Some of the most prevalent undiagnosed errors in rheometry involve artifacts in
high-frequency oscillatory measurements. One should be very careful when inter-
preting high-frequency data. For example, without drawing the instrument-inertia
boundary line in Fig. 6.6, one might be tempted to interpret a curious power-law
scaling of viscoelastic properties as a function of frequency. However, this data at
high frequency is completely associated with instrument inertia, and not at all a
material property.

An instrument inertia artifact at high frequency is most easily diagnosed by
looking at the raw phase difference between the oscillating displacement and torque
signals and being critical of data points with raw phase > 90◦. To see why, consider
that a purely elastic material response would have load proportional to displacement,
T ∼ θ , a purely viscous material gives T ∼ θ̇ , and a purely inertial effect T ∼ θ̈ . For
time periodic oscillatory signals T (t) and θ (t), this corresponds to phase differences
of 0◦, 90◦, and 180◦, respectively. Without instrument inertia effects, the phase
would be limited to the viscoelastic range 0◦ < δ < 90◦. So, when this raw phase
is > 90◦, instrument inertia must be playing a role. Corrections can be made by
calibrating the rotational inertia and subtracting the expected inertial torque from
the total signal (as done for the data in Fig. 6.6). But, this become exceedingly
difficult at large values of raw phase when the inertial torque dominates the total
torque signal.

Inertia corrections are not 100 % perfect, and this explains the specific signature
at high frequency of G′ ∼ G′′ ∼ ω2. One expects inertial torque T = Iθ̈ , and for
θ (t) = θ0 sin(ωt) this is

T0 = Iθ0ω2. (6.19)

This can be subtracted from the measured signal, but if the subtraction is not exact,
then some of this inertial torque will remain in the processed signal, say εT0 where ε
is (hopefully) a small number. Translated to material properties, this would produce
apparent viscoelastic moduli

G =
Fτ(εT0)

Fγθ0
= ε

Fτ I
Fγ
ω2. (6.20)

With ε = 0.01, Eq. 6.20 explains the high-frequency signature in Fig. 6.6. Therefore,
even with inertia corrections, viscoelastic moduli will eventually have frequency-
dependent power-law scaling that approaches G′ ∼ G′′ ∼ ω2, since they are
calculated from a torque signal that is increasingly dominated by inertia and
corrections are only precise to within factor of ε .

Instrument inertia affects high-frequency oscillation data, as well as short-time
data in step tests. For creep tests (step load input), the instrument inertia can
significantly alter the displacement response (Fig. 6.7, hagfish gel). This includes
(i) the time required to accelerate and (ii) free oscillations via “inertio-elastic”
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ringing, in which the sample elasticity couples with the finite instrument inertia to
“ring” at a resonant frequency, just like a mass at the end of a spring [15,17,18,25].
A careful analysis of the inertio-elastic oscillations can reveal both linear and
nonlinear viscoelastic properties of the sample [5, 18].

By conservation of momentum, the measured dynamic load must satisfy

T (t) = Iθ̈(t)+ τ21(t)/Fτ , (6.21)

where we have considered a rotational rheometer with instrument inertia I. For a
step torque T (t) = T0H(t), the initial conditions at t = 0 are θ = 0, θ̇ = 0, and
typically τ21 = 0 if starting from rest. Initially, the applied torque is dominated by
the acceleration term in Eq. 6.21, since the sample stress term is initially zero and
only appears as strain and strain rate increase above zero. The creep response then
always has the following form in the limit of short time [17]:

θ (t) =
1
2

T0

I
t2 + · · · . (6.22)

Converting this to the apparent material function J(t)

J(t) =
γ(t)
τ0

=
1
2

Fγ
Fτ I

t2 + · · · (6.23)

which shows the general short-time instrument acceleration artifact, independent of
applied torque when plotted as apparent compliance J(t). This is shown in the inset
of Fig. 6.7 for the soft hagfish gel.

Inertio-elastic ringing analysis can probe both linear viscoelasticity [15, 17]
and nonlinear viscoelasticity [5, 18] in novel ways. Such analysis requires the
assumption of an underlying constitutive model for τ21(t) in Eq. 6.21, e.g., a three-
element fluid (Jeffreys), or two-element solid (Kelvin–Voigt). Detailed calculations
associated with the inertio-elastic ringing analysis can be found in the references
above.

To avoid the instrument inertia effects discussed in this section, one can
measure the load (torque) at the stationary boundary, e.g., with a force rebalancing
transducer, rather than measuring load at the moving boundary, e.g., through a
motor. This requires more complex instrumentation to separate the imposed dis-
placement from the measured load, but such separated motor-transducer instruments
are commercially available. These setups can eliminate important errors due to
instrument inertia including the accurate measurement of stress jumps in response
to step displacement inputs [26].
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3.3 Fluid Inertia and Secondary Flows

Even if instrument inertia is eliminated, the sample itself will always have finite
inertia which can produce artifacts from momentum diffusion, viscoelastic waves,
and secondary flows, all of which can violate the assumption of homogeneous
simple shear deformation in Eq. 6.1. Purely elastic instability can also produce
secondary flows even in the limit of vanishing Reynolds number [27–30]. This
section will discuss the symptoms of both wave propagation and secondary flows
and how to identify experimental limits due to these artifacts.

3.3.1 Wave Propagation at High Frequencies and Short Timescales

The assumption of homogeneous simple shear strain is violated when there are
waves propagating through the material. Propagating waves may come from
either viscous momentum diffusion or elastic shear waves or both for viscoelastic
materials in general.

The general criteria for approximately homogeneous strain in the velocity
gradient direction is that the wavelength l of any propagating wave should be much
larger than the geometry gap D

l � D (6.24)

so that, in the gap region, the velocity field is negligibly affected by the propagating
wave [31]. Two key questions must be answered: (i) how much smaller must the
gap D be for tolerable errors, and (ii) how can the wavelength l be calculated?
The wavelength l depends on material properties and the frequency (time scale) of
motion. Most importantly, l decreases with high driving frequency, and we therefore
expect wave propagation issues at high frequency and short time scales.

Schrag gave a detailed analysis of linear viscoelastic wave propagation [31],
showing that linear viscoelastic shear waves between a moving boundary and a fixed
reflecting boundary have wavelength

l =
1

cos(δ/2)

( |G∗|
ρ

)1/2 2π
ω

, (6.25)

where ω is the driving frequency, |G∗| =
√

G′2 +G′′2 is the magnitude of the
complex modulus, δ is the viscoelastic phase angle, and ρ is the fluid density.
The scaling in Eq. 6.25 is l ∼ cT where c is the wavespeed c ∼ (|G∗|/ρ)1/2 and
T = 2π/ω is the wave period. Using the criteria l ≥ 10D to avoid errors of
possibly 10 % [31], along with Eq. 6.25, we can identify an approximate edge of
the experimental window for plots of viscoelastic moduli,

|G∗|>
(

10
2π

)2

cos2(δ/2)ρω2D2, (6.26)
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which is used in Fig. 6.6 to identify the “sample inertia limit,” using a value
cos2( δ2 ) = 1. Equation 6.26 scales as |G∗| ∼ ρω2D2, showing the important
sensitivity to both driving frequency ω and geometry gap D. Higher frequencies
are problematic. Smaller gas are helpful. The numerical front factor has weak
dependence on δ , since 1

2 < cos2( δ2 ) < 1. The more sensitive number is the factor
by which l > D. More precise experiments require a larger separation of these
lengthscales, as detailed in Schrag [31] (his Table 1). Whatever the front factor,
the shape of the experimental limit will still be the same, scaling as |G∗| ∼ ρω2D2.
The sample inertia impacts measurement at high frequency and low modulus, and
therefore soft gels and low-viscosity fluids will have greater propensity for sample
inertia effects.

Although strain amplitude does not appear explicitly in Eq. 6.26, fluid inertia
problems can appear due to large-amplitude oscillations [32], even with constant
forcing frequency. For these nonlinear tests, one can conceptually think about |G∗|
changing in the nonlinear regime, which would influence the wave propagation
speed and therefore the wavelength l. When large-amplitude oscillatory shear strain
softens a sample (decreasing |G∗| which is typical for polymer melts), then the
sample inertia issue will become more problematic at large strain amplitudes. This is
consistent with detailed studies in the literature on flexible polymers [32]. However,
if a sample becomes more stiff in the nonlinear regime (increasing |G∗| which is
typical of semiflexible biopolymer gels [33]), then one could argue that the inertia
artifact may actually be less problematic due to increasing viscoelastic wavelength l.
This possibility, however, has not yet been studied in any detail. One challenge for
universal analysis of nonlinear viscoelastic measurements with wave propagation is
that no universal constitutive equation exists for nonlinear viscoelasticity.

The experimental boundary line defined by Eq. 6.26 should serve as a general
guideline to identify possible experimental windows due to shear waves when
measuring oscillatory shear material functions. It is useful in linear viscoelastic
plots, e.g., G′(ω),G′′(ω) (as in Fig. 6.6), and may also be useful to estimate the
boundary for nonlinear tests, e.g., large-amplitude oscillatory shear (LAOS) tests in
terms of |G∗

1|(γ0). For all these cases, the artifact of viscoelastic waves will limit
measurement of low modulus and high-frequency data.

3.3.2 Secondary Flows at High Velocity

Sample inertia can also cause nonideal velocity fields during steady flow. Even
before turbulent flow, high velocities can cause secondary flows superposed on
the primary simple shear flow due to finite sample inertia and curved streamlines
in unstable configurations. This includes cylindrical geometries with a rotating
inner cylinder and planar geometries including cone-plate and parallel disk flow. In
each case, secondary flow increases the measured torque and therefore incorrectly
increases the apparent viscosity of the fluid. For example, a Newtonian fluid with
secondary flow present would incorrectly appear as shear thickening, since the
secondary flow effects grow with increasing velocity. This is observed in Fig. 6.3
with the microalgae suspension at high shear rates.
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Concentric cylinder measurements have a well-known secondary flow instability
that appears when the inner cylinder is rotating at sufficiently large velocity Ω .
Known as Taylor–Couette flow after the initial work of Taylor [34], the inertial
instability causes axisymmetric vortices. The stability criteria is well established for
Newtonian fluids in the limit of small gaps. It is based on a sufficiently small Taylor
number Ta [35, 36]:

Ta =
ρ2Ω 2(Ro −Ri)

3Ri

η2 < 1,700, (6.27)

where Ri is the inner radius moving at angular velocity Ω and Ro is the fixed outer
radius. The criteria has been mapped for corotating and counterrotating cylinders
as well [88], but the most useful criterion for standard shear rheometry is given in
Eq. 6.27. There is some evidence that non-Newtonian polymer solutions increase the
critical Taylor number, so that Eq. 6.27 is a conservative estimate for experimental
rheological measurements [8]. To draw an experimental boundary line on a plot of
viscosity versus shear rate η(γ̇), rearrange Eq. 6.27 and use the definition of shear
rate γ̇ =ΩRi/(Ro −Ri). This gives the condition

η >
(Ro −Ri)

5/2

1,700R1/2
i

ργ̇ (6.28)

to avoid Taylor vortices. The criteria emphasizes that low-viscosity fluids are more
prone to this secondary flow and that small gaps are very helpful in the geometry
design. The scaling η ∼ γ̇ defines the shape of the boundary on a plot of η(γ̇) and
limits high shear rate measurements. As a quantitative example of an experimental
limit for the concentric cylinder geometry, consider properties typical of biological
fluids, density ρ = 103 kg/m3, and viscosity near water η = 1 mPa.s. For a nominal
concentric cylinder geometry with gap (Ro − Ri) = 1 mm and inner radius Ri =
11.8 mm (based on the ISO 3219 standard with Ro/Ri = 1.0847 [37]), Eq. 6.28
can be rearranged to show the shear rate is limited to γ̇ < 5.8 · 103 s−1. This is
reasonably high, but of course will change depending on the actual viscosity and
size of geometry being used.

Cone-plate and parallel disk geometries have a secondary flow that is always
present at finite rotational velocity [38] (the critical Taylor number does not apply
to these geometries). Here, centrifugal effects create a radial velocity component
with outward flow at the rotating boundary. Due to conservation of mass this causes
inward flow at the stationary boundary. (Highly elastic liquids can change this
scenario as discussed in the following section.) For the Newtonian case, the strength
of the flow is based on a Reynolds number. The secondary flow increases the
measured torque, and this can be used to set a criteria and draw experimental limits
for measurement. For Newtonian fluids with cone-plate or parallel disk geometry,
the measured torque T is predicted to depend on the Reynolds number as [39]
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T
T0

= 1+
3

4,900
Re2, (6.29)

where T0 is the ideal torque due to shear flow alone and Re is the Reynolds number
defined as

Re =
ρΩL2

η0
, (6.30)

where L is the representative gap lengthscale. For cone-plate, L = βR where β is
the angle between the cone and plate, and for a parallel plate, L = H where H
is the gap. For a given error bound on T/T0, we can identify a critical Reynolds
number Recrit. For example with 1 % error, i.e., T/T0 = 1.01, the critical Reynolds
number is Recrit = 4. This clearly occurs before turbulence could be sustained [38],
and therefore sets the experimental boundary for rheological measurements. Using
the criteria Re < Recrit and the definition of shear rate γ̇ = ΩR/L, results in an
experimental limit that can be shown on plots of steady shear viscosity η(γ̇),

η >
L3/R
Recrit

ργ̇ (6.31)

which is used in Fig. 6.3 to draw the “secondary flow limit” line, using Recrit = 4 and
L = βR for the cone-plate geometry. Figure 6.3 also shows the expected apparent
shear thickening of the shear viscosity, based on Eq. 6.29, and converting to apparent
viscosity. Equation 6.31 shows the scaling η ∼ ργ̇, similar to the shape of the
boundary with concentric cylinders and the Taylor–Couette instability, Eq. 6.28.

In all the rotational geometries discussed here, lower viscosity fluids have
a smaller experimental window with limitations at high shear rate due to sec-
ondary flow.

3.3.3 Purely Elastic Instabilities

Undesirable secondary flows can also be created by purely elastic instabilities,
in the limit of vanishingly small Reynolds number. These secondary flows arise
from a different physical effect than the previous subsection (i.e., not fluid inertia).
For purely elastic instabilities, curved streamlines carrying tension cause instability
[27–30]. The effect occurs at high Weissenberg number Wi = λ1γ̇ (where λ1 is
the longest relaxation time of the fluid) for elastic liquids in rotational geometries
including concentric cylinder, cone-plate, and parallel disk.

The primary symptom of secondary flow is increased torque. Hence, the apparent
steady-state viscosity may incorrectly appear to shear thicken (Fig. 6.8). Increased
normal force may also occur. The purely elastic secondary flow occurs at a critical
Wi which depends on the measurement gap and constitutive behavior of the fluid.
Specific predictions are available for certain models including upper-convected
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Fig. 6.8 Purely elastic instabilities cause apparent shear thickening of steady shear viscosity. Here
with a dilute solution of polyisobutylene with nominal molecular weight 2.7 · 106 from [27].
The thickening appears at a critical shear rate (Weissenberg number); the accessible range of
experiments is extended by decreasing the gap, here with a parallel disk geometry at different
gaps ranging from 2 mm (open circles) to 0.3 mm (filled circles). (Reprinted from Magda
and Larson [27], Journal of Non-Newtonian Fluid Mechanics, Fig. 10, Copyright (1988), with
permission from Elsevier)

Maxwell and Oldroyd-B [28, 29]. Smaller geometry gaps inhibit the instability,
pushing the critical shear rate higher as shown in Fig. 6.8. Very large solvent
viscosity can also inhibit the instability. The effect is time-dependent, appearing
after prolonged shearing [27]. A general instability criteria applicable to complex
geometries has been suggested which includes dependence on both Weissenberg
and Deborah numbers [29,30]. Purely elastic instabilities in pressure-driven channel
flow have also been described [40, 41].

For elastic instabilities to occur before the fluid inertia instabilities (Sect. 3.3.2),
the fluid must have a long relaxation time so that the Weissenberg number can
be large while Reynolds number or Taylor number is low. For polymeric systems
including biological fluids, elastic instabilities are relevant with high-molecular-
weight polymers in solution.

For all secondary flows, due to either fluid inertia (Sect. 3.3.2) or fluid elasticity
(this subsection), the symptoms are similar: increased viscosity at high shear rates,
as seen in Figs. 6.3 and 6.8. These effects limit the high shear rate experimental
range for measuring simple shear rheological properties, and tempt misinterpreta-
tion of apparent shear thickening at high rates.
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Fig. 6.9 Contact line and interface angle: ideal versus nonideal. Nonideal asymmetries are
exaggerated compared to typical loading and can also occur as a result of overfilling. The nonideal
condition may create artifacts of apparent shear thinning due to the presence of a constant surface
tension torque (Figure adapted from [13])

3.4 Surface Tension Forces

For rotational rheometers, surface tension results in a torque that should not occur in
an ideal, rotationally symmetric geometry [13] (Fig. 6.9). It is typically neglected,
but the phenomenon may exceed the instrument low-torque limit Tmin by orders of
magnitude. The effect causes Newtonian fluids, including water, to appear as shear
thinning with finite elastic modulus (Figs. 6.10 and 6.11). We discuss the symptoms
of the effect, methods for drawing experimental boundaries with a different Tmin, and
techniques to minimize the effect, which is particularly important when measuring
aqueous solutions such as biological fluids.

In this section, the focus is rotational geometries where surface tension influences
the measurement of shear stress. This is a significant experimental challenge
for measuring soft, active, or low-viscosity biological fluids. Related issues not
discussed here include (i) normal force from surface tension [42, 43] which
is highly dependent on meniscus shape [44–46]; (ii) sliding plate instruments
which dilate free surface area and cause surface tension artifacts in shear stress
calculations [47–49]; and (iii) surface rheology artifacts from films of surface-active
components [50, 51] which will be discussed in Sect. 3.5.

Surface tension torque is caused by traction forces around a material contact
line that has broken rotational symmetry, both in terms of geometric location
and non-constant contacting angle (or nonconstant surface tension) [13] (Fig. 6.9).



226 R.H. Ewoldt et al.

surface tension
low-torque limit (extreme case)

instrument
low-torque limit

Symptom: apparent shear-thinning viscosity

A
pp

ar
en

t V
is

co
si

ty
, η

a 
 [m

Pa
.s]

 

0
1

3

surface tension
low-torque limit
(extreme case)

3 Droplets
1 Droplet
0 Droplets

Surface tension torque plateaus

3

1

0

To
rq

ue
, T

 (μ
N

.m
)

Velocity, Ω (rad/s)

views
from
below

instrument
low-torque limit

10310210110010–110–1

100

101

102

103

Shear Rate, γ [s–1].

10–3 10–2 10–1 100 101
10–3

10–2

10–1

100

101

102
a

b

Fig. 6.10 Surface tension can generate torque in steady shear (a), which could be mistaken as
shear thinning (b), as shown here with water at room temperature. The effect grows with slight
overfilling that increases contact line rotational asymmetry, here with 1 or 3 small extra droplets
of water at the boundary, yet the effect can be present even with best practices (“0 droplets”)
where residual torque plateaus appear above the instrument low-torque limit. Views from below in
(a) indicate droplet contact lines around the D = 40 mm plate, as viewed through a glass bottom
plate. Low-torque limits for ηmin drawn from Eq. 6.13 using Tmin = 5 nN.m (instrument low torque)
and Tmin = 1μN.m (surface tension torque, extreme case) (Figure adapted from [13])

Historically, rotational symmetry has been a primary assumption [2, 8], even when
considering effects of surface tension [42, 43]. However, the rotational symmetry
assumption can be violated easily. Finite deviations of contact line rotational
symmetry, from manufacturing tolerances or sample overfill/underfill, allow surface
tension to produce a torque which may dramatically impact measurements of shear
rheology, particularly at low shear rates and for low-viscosity fluids.

Symptoms of surface tension torque include apparent viscous shear thinning
and elastic shear modulus. In steady shear flow, the effect appears as a superposed
constant torque independent of rate (Fig. 6.10a). These torque plateaus would appear
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Fig. 6.11 Surface tension can generate torque in oscillatory shear, which could be mistaken as
shear elasticity (a) and nonconstant dynamic viscosity (b), as shown here with water at room
temperature. Slight underfill or overfill can break contact line rotational symmetry (sample volume
459–495 μL for a D = 60 mm steel cone), as shown in the inset view from below at 459μL.
Oscillatory strain amplitude γ0 = 100%. Instrument low-torque limit for G′
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min from
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min and η ′

min from
Eq. 6.18 using IFτ

Fγ
= 3 ·10−3 Pa.s2 (Figure adapted from [13])

inaccurately as apparent shear thinning of water (Fig. 6.10b). This example shows
the dramatic impact of slight overfill that breaks the rotational symmetry of the
contact line. The impact is to raise the effective Tmin in the low-torque limit for η(γ̇),
based on Eq. 6.13. This may help explain studies showing a practical low-torque
limit 20 times larger than that stated by the equipment manufacturer [10–12].

In oscillatory measurements, surface tension artifacts can mistakenly appear as a
storage modulus G′ plateau. We see this for water in Fig. 6.11a. Figure 6.11b also
demonstrates frequency-dependent dynamic viscosity η ′, which should be constant
for water over this range of frequencies. The inset image shows the asymmetric
contact line for a slightly underfilled sample. When the geometry is visually
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properly filled (to within 5μL, red triangles in Fig. 6.11), the elastic modulus is
unmeasurable to within the experimental limits of low torque and instrument inertia,
and the proper dynamic viscosity η ′ is measured down to ω = 10−1 rad/s.

The examples of Figs. 6.10 and 6.11 show that the surface tension torque effect
is highly variable due to sample loading, wetting conditions, and contact line asym-
metries and cannot be deterministically corrected in experimental measurements.
It therefore raises the lower bound of the instrument low-torque limit Tmin, in some
cases by orders of magnitude.

Experimental techniques and careful geometry selection must be used to mini-
mize surface tension effects. The surface tension torque is reduced by maximizing
rotational symmetry of the contact line, minimizing evaporation and the migration
of the contact line, reducing the radial location of the contact line, and lowering the
surface tension. Experimental techniques for controlling the contact line symmetry
such as using matched plate geometries are helpful. Reducing evaporation with a
solvent trap and precision sample loading with a micropipette can also minimize
surface tension torque plateaus.

Identifying and eliminating the surface tension torque is critical for low vis-
cosities, intrinsic viscosities, soft materials, subdominant viscoelastic components,
small gaps, and any circumstance where the low-torque limit is experimentally
important. This phenomenon should be especially important in aqueous systems,
including biological fluids, due to the high surface tension of water.

3.5 Free Surface Films

Biological fluids may contain proteins and other components that are surface active.
Such components have an affinity to accumulate at liquid-air interfaces and may
create a rigid or semirigid surface film. The film itself can be a fascinating object
of study (e.g., see Chap. 4 of this book), but the film formation is a problem
when the bulk flow properties of the solution are of interest. This experimental
challenge has been known for some time [8, 50]. Care must be taken when
measuring rheology using a geometry that involves a free surface, otherwise fluids
may appear non-Newtonian when they are not measurably so [50, 51]. This applies
to all the rotational geometries discussed in this chapter.

The primary signatures of a free surface film include increased viscosity,
enhanced shear thinning, and often the presence of an apparent yield stress. For
example, this is shown in Fig. 6.12 for aqueous solutions of the protein bovine
serum albumin (BSA) [51]. The figure compares measurements using a cone-
plate geometry (with liquid-air interface) and a microchannel pressure-driven flow
viscometer (internal flow without a liquid-air interface). The microchannel mea-
surements suggest Newtonian viscosities for this range of protein concentrations
and shear rates, and do not match the cone-plate measurements which show higher
viscosities and shear thinning at low rates. The increased viscosity and shear
thinning are caused by a free surface film of the BSA [51]. A film is undesirable



6 Experimental Challenges of Shear Rheology: How to Avoid Bad Data 229

100 101 102 103 104 105

10-3

10-2

10-1

filled symbols:
internal flow
in microchannelA

pp
ar

en
t

Sh
ea

r 
V

is
co

si
ty

a
(P

a.
s)

hollow symbols:
film on free surface

Shear rate, (s-1)

Fig. 6.12 Surface-active components in solution, such as the protein bovine serum albumin (BSA)
shown here, may form a film at a free interface. Such films can show apparent yield stress
and shear thinning of the apparent bulk viscosity when tested with cone-plate (hollow symbols).
However, this is an interfacial rheological property and not a true bulk property as shown by
the internal channel flow measurements (filled symbols). BSA at bulk concentrations of 10–
200 mg/mL, triangles-squares (Data originally reported by Sharma et al. [51])

when measuring bulk properties. Of course, the presence of a film does provide an
opportunity for interfacial surface rheology measurements if this is desired.

Internal flow geometries and guard rings (which eliminate the interface) can
avoid the problem (although even in a closed system, there is the possibility of
biofilm formation in biological fluids). When these are not available or possible,
then one must be mindful of the symptoms of a free surface film. To test for
the artifact of surface film rheology, one could make repeated measurements with
different geometries and check for reproducibility of apparent material functions.
For example, cones with increasing diameters could be used. The larger diameters
create a longer film length and larger moment arm to produce torque and would
generally be expected to have increased torque effects due to free surface films.

3.6 Slip

In rheological characterization, it is typically assumed that the sample sticks to the
contacting boundaries whose motion defines the assumed strain field. In fluids,
this is known as the no-slip condition. However, slip can easily occur [52–54],
especially with biological gels and tissues. Slip violates the assumptions of standard
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inconsistent gap dependence, as shown here for Nivea Lotion tested with different surfaces and
gaps using parallel disks of diameter D = 40 mm. A sandpaper surface eliminates slip artifacts,
showing superposed data for different gap heights (Previously unpublished work of author RHE)

rheological characterization and may cause significant artifacts in the data. This
section describes slip artifacts, methods of checking for slip, and techniques for
avoiding the problem altogether.

The key signatures of slip include a decreased flow stress and inconsistent
apparent stress and strain rate that depend on the geometry gap (gap height with
parallel disks or cone angle with cone-plate). Figure 6.13 demonstrates these slip
artifacts as seen with a non-Newtonian fluid (Nivea Lotion). The smooth boundary
geometry produces artifacts and the true material behavior can be seen with a
roughened surface. The steady-state flow sweep is conducted from high to low rates
using a combined motor-transducer rotational rheometer (AR-G2, TA Instruments)
with a parallel disk of diameter D= 40 mm and controlling temperature to T = 23 ◦C
with a Peltier plate. The sandpaper surfaces are adhesive-back sandpaper, 600 grit
(McMaster-Carr Part #47185A51) attached to the standard rheometer geometry
on both bounding surfaces. Apparent shear stress is calculated as τa = FτT with
Fτ = 2/(πR3) for the disk, and apparent shear rate from γ̇a = Ω/h where h is the
geometry gap.

Figure 6.13 shows an apparent stress plateau at low rates (an apparent dynamic
yield stress) that depends on the geometry being used. The smooth geometry shows
a lower apparent yield stress. This is a common experimental artifact that has been
discussed in the literature, especially with yield stress fluids [55, 56]. In a recent
study with a dense colloidal system, apparent yield stress behavior at low rates
was associated with a sub-colloidal lubrication layer at the wall, as confirmed by
confocal microscopy [56].
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The gap is varied to check for slip in Fig. 6.13. For the rough sandpaper surface,
the measurements superpose for all gaps therefore confirming the absence of slip.
However, for the smooth plate, the data shifts to higher apparent strain rate as the
gap is decreased. This shift is important evidence to indicate slip. To understand
why, consider the simple example where an applied stress results in a particular slip
velocity at the boundary of a sample. The gap-independent slip velocity contributes
a fixed amount to the total velocity Ω . Therefore, as the gap h decreases, the
apparent shear rate γ̇a = ΩR

h will have a numerator that decreases slower than the
denominator, therefore increasing γ̇a at small gaps for a fixed stress. This is shown
by the arrow in Fig. 6.13 pointing to the right. Varying the geometry checks for the
presence of slip but can also be used to correct for slip [57]. With very good control
and sensitive instruments, gap-dependent measurements with a linear sliding plate
rheometer have been used to characterize the slip itself including slip velocities [58].

Although sandpaper may be sufficient for some biological gels, e.g., as used
for biopolymer mucin gels (snail slime) [59], sandpaper roughness is not always
sufficient and other techniques must be considered. This includes the addition of
grooves [55] or “cleats” [60] in plates, e.g., as used to measure vitreous humor [61].
Vane rotors are also commonly available [62], which are modifications of the
concentric cylinder geometry. For more challenging solid materials, such as soft
biological tissues, the sample can be squeezed slightly with an applied normal load
to prevent slip during shear tests [63]. In extreme cases, gluing the tissue to the
plate is required, as shown to be important with porcine kidney tissue, especially in
nonlinear tests [64].

3.7 Small Volume and Small Gap

Biological fluids may be available only in small quantities. A variety of techniques
can be used for measurements on small sample volumes [49]. This section describes
a few techniques that have been useful with biological fluids and then focuses on
the most widely accessible technique: parallel disks at small gaps. This section then
describes the artifacts, corrections, and experimental windows for measurements at
small gap.

Several techniques have been used for sample volumes around 10μL and below.
An early example is a capillary rheometer apparatus requiring only about 10μL
in volume [65]. A more recent pressure-driven flow setup (microfluidic cross-slot
extensional flow) requires approximately 1μL volumes [66], as demonstrated with
hyaluronic acid and saliva. Boundary-driven flow examples include modification
of parallel disks to confine a sample near the outer radius over a small area,
approximating sliding plate flow with volumes 1–25μL [48]. A custom-built linear
sliding plate instrument has also been developed for precise, small gap tests (the so-
called flexure-based microgap rheometer (FMR) [67, 68]). The FMR has been used
to measure microliter quantities of spider silk [69] and sub-microliter quantities
of carnivorous plant mucilage [70]. In those studies, samples were also tested
with a small-scale extensional instrument based on capillary breakup extensional
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rheometry (CaBER). Embedded probe techniques are also useful. Nanoliter droplets
of butterfly saliva have been characterized with an embedded magnetic rod [71]. Of
all the demonstrated techniques, standard parallel disks at small gaps may be the
most experimentally accessible option for a researcher interested in small volumes
of biological fluid.

With parallel disks, the smallest accessible gap will be limited by disk paral-
lelism, precise knowledge of the true gap, and the size of the underlying material
structure in the fluid. Confinement effects that violate the continuum hypothesis
will not be discussed here (although this is sometimes relevant in biological fluids,
such as blood exhibiting a confinement-dependent viscosity [72]). Finite boundary
roughness and tribological contact will not be discussed either, since other gap errors
are typically encountered first. Gap errors, including parallelism and gap precision,
are the primary concern, assuming the continuum hypothesis holds true.

For gap errors, measurement artifacts include a decreasing apparent viscosity at
smaller gaps (Fig. 6.14). This occurs under the typical scenario where the true gap h
is larger than the apparent gap ha calibrated by apparent contact of the plates [73].
These symptoms and limitations apply similarly to any boundary-driven drag flow
at small gaps, such as the sliding plate FMR [67] and techniques to isolate samples
to a small region under a conventional parallel disk geometry [48], although the
difference between h and ha may change depending on the calibration procedure.
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Figure 6.14 shows the expected artifacts for small gap measurements, here with
water using a disk with diameter D = 20 mm down to apparent gap ha = 10 μm
(down to apparent volume around 3μL). Using small gaps requires less volume and
allows for higher shear rates. On average, the viscosity is what we expect for water,
η ≈ 1 mPa.s, but there are some issues. For small gaps (ha < 50 μm), the apparent
viscosity decreases as a function of gap. For the larger gaps (ha ≥ 100 μm), the
viscosity seems to shear thicken at high shear rates, but at different critical shear
rates. These are not true material properties of water, but are artifacts that can be
explained.

For larger gaps at high rates, the inertia of the liquid may cause secondary flows
(as described in Sect. 3.3). It is common to assume that the liquids will travel in
circular stream lines, but centrifugal effects will tend to push fluid outward near
a rotating boundary. This secondary flow increases dissipation, resulting in higher
measured torque and hence a larger apparent viscosity. The effect increases as a
function of Reynolds number, defined as Re = ρΩh2/η , so the effect is evident
for higher velocity Ω , larger gaps h, and low-viscosity fluids. Lines for Re = 4 are
shown in the figure for two representative gap heights.

For small gaps, the main error is caused by a gap offset εh, which is the difference
between the apparent calibrated gap ha and true gap h [73],

h = ha + εh. (6.32)

(The term “true” gap means the “effective” or “average” gap since the disks have
finite roughness and finite parallelism manufacturing tolerance. Hence the gap is not
precisely constant throughout the test geometry.) Since apparent gap ha is used to
calculate apparent viscosity ηa, one expects deviation from the true viscosity to be
of the form

ηa = η
ha

h
(6.33)

which indicates ηa < η for offset εh > 0. The apparent gap ha is typically calibrated
based on contact force at the first point of contact, where ha is set to zero. Two
issues arise to create gap offset error εh > 0. (i) A finite force is often observed
before solid–solid contact due to viscous resistance of air flow in the squeezing gap.
(ii) The parallelism is not perfect, and the average gap will often be larger than
the “first point of contact” gap. The nonparallelism contribution generates normal
forces [74] and this can be used to identify the relative importance of the two sources
of gap offset error. Both of these effects contribute to gap offset error εh > 0, so that
the actual gap is larger than the apparent value. Typical values for εh are on the order
of 10–50 μm [75, 76].

Gap offset εh can be corrected if Eq. 6.32 holds true [73, 75, 76], although the
correction will depend on the uncertainty in calibrating for εh. Uncertainly in the
calculated viscosity will grow dramatically as the gap approaches the uncertainty
of εh. Gap offset errors can be minimized by using a smaller radius plate, since
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Fig. 6.15 Experimental window for small volume aqueous solutions, using Eqs. 6.34–6.38 to draw
the boundaries. Representative values used are Tmin = 5 nN.m, Ωmax = 300 rad/s, Remax = 4, η =
1 mPa.s, ρ = 1,000 kg/m3, plate diameter D= 8 mm, Vmax = 5μL, and minimum gap hmin = 10 μm

this decreases the viscous squeeze force at apparent contact and also decreases the
nonparallelism (angular misalignment) contribution to εh due to the smaller radius.
However, a smaller radius plate changes other experimental limits such as increasing
ηmin due to the low-torque limit (Eq. 6.13). The experimental window for small gap
measurements is therefore bounded by several limitations.

Figure 6.15 is an example experimental window for small volume and small gap
measurements, in the operational space of gap h and velocityΩ . Several limitations
are considered including (i) minimum torque, (ii) maximum velocity, (iii) secondary
flow, (iv) maximum volume available, and (v) small gap limit, e.g., due to gap
offset errors. The exact locations of the boundaries will shift depending on the fluid
properties and instrument used, but their shapes will not change. Representative
values are used in Fig. 6.15 for aqueous fluids. Specific equations for boundary
lines come from consideration of each limit. The minimum torque, item (i), is set
either by the instrument specification (Sect. 3.1) or surface tension torque which
becomes increasingly important at small gaps (Sect. 3.4). Based on the criteria
T > Tmin, where torque from steady viscosity is T = (ηΩR/h)/Fτ , the boundary
line is defined by

h <
ηΩR
FτTmin

(6.34)
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which shows the scaling h ∼ Ω that appears in Fig. 6.15. The instrument limit of
maximum velocity, item (ii), is simply set by the criteria

Ω <Ωmax (6.35)

and therefore appears as a vertical line in the figure. The limit of secondary flow,
item (iii), was discussed in Sect. 3.3. There, a maximum Reynolds number Remax

sets the boundary line and is based on the definition Re= ρΩh2

η for parallel disks.
Then, the criteria Re< Remax can be written

h <

(
Remaxη
ρΩ

)1/2

(6.36)

which shows the scaling h ∼ Ω−1/2 seen in the top right of Fig. 6.15. The last two
criteria come from this section, considering small volume and small gap limitations.
The volume limit is simply V < Vmax where Vmax is the maximum sample volume
available. For parallel disks, V = πR2h, and the boundary line is defined by

h <
Vmax

πR2 . (6.37)

The final boundary, item (v), is the minimum gap. This boundary line is defined by

h > hmin, (6.38)

where hmin is set by the gap offset error, or possibly the minimum gap where
confinement effects are negligible and the material can still be considered a
continuum. Figure 6.15 uses Eqs. 6.34–6.38 with representative parameters given
in the caption. The minimum gap h = 10 μm is used, assuming uncertainty in gap
error much less than 10 μm which would allow for gap offset corrections. Based on
the maximum sample volume and minimum gap limits, the experimental window is
confined between h = 10−100μm for this example. If larger volumes are available,
then larger gaps can be used, eventually being limited by the secondary flow (e.g., as
seen in Fig. 6.14 at larger gaps). At very large gaps, the experimental window closes.
This occurs where the minimum torque and secondary flow boundaries intersect, for
gaps h > 1,000μm with this particular geometry.

3.8 Other Issues

Additional challenges, basic and exotic, can also be included on the list of possible
ways that rheological measurements can go astray.

One basic but important point is sample volume underfill or overfill. In cone-
plate and parallel disk geometries, torque is a very sensitive function of the radial
extent of contact T ∼ 1

R3 [8]. Underfill is more sensitive than overfill, but for
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both cases one may have the problem of an uncontrolled contact line that loses
rotational symmetry which can introduce additional torque due to surface tension
forces (Sect. 3.4). Underfill can also develop as a sample evaporates. This is relevant
to aqueous biological fluids. Evaporation can be eliminated or reduced by the use of
a solvent trap. The use of a micropipette and close attention to fill level can further
eliminate the basic issue of sample volume underfill or overfill.

An exotic but relevant issue with some biological fluids is particle settling
and migration, in particular with active-swimming microorganisms in suspension.
In general, the concentric cylinder geometry is recommended when gravitational
particle settling may be an issue, since a depletion layer is not created across the
velocity gradient direction as would be the case with cone-plate or parallel disk
geometries. But, if the sample volume is not sufficient, parallel disks or the cone-
plate geometry must be used. One particularly striking example is with the same
microalgae suspension whose flow data is given in Fig. 6.3. Those measurements
were made with a cone-plate geometry. The data needed to be collected within the
first 2 min of flow due to microalgae rheotaxis (flow-induced swimming), coupled
with particle settling and secondary flow. The microalgae migration was visualized
through a transparent bottom plate during shear flow, as shown in Fig. 6.16. The
migration to a nonhomogeneous state is indicated by the development of a dark
green circle toward the center of the geometry. The particles are negatively buoyant
and therefore settle to the bottom fixed plate. A finite secondary flow exists which
draws fluid radially outward near the moving cone (Sect. 3.3), which is balanced
by a radially inward flow near the stationary boundary. This inward flow carries
the negatively buoyant microalgae toward the center. The visualization in Fig. 6.16
indicated the time scale of developing a non-homogeneous sample. This set an
experimental boundary on the time that could be used to collect steady-state shear
data, under 2 min for this configuration.

t = 0 min 1 min 2 min 3 min 4 min 5 min 6 min 13 min

Fig. 6.16 Visualization can be used to check for nonhomogeneous conditions due to rheotaxis,
particle settling, and secondary flow. Here, shear flow of a microalgae suspension is viewed from
below through a transparent bottom plate, showing that a nonhomogeneous distribution develops
over time (Previously unpublished work of authors RHE and LMC)



6 Experimental Challenges of Shear Rheology: How to Avoid Bad Data 237

An issue relevant to biological gels, and stiffer biological materials, is edge
fracture. This is a well-studied phenomenon, and polymer melts and solutions have
tended to receive the most attention [8, 77, 78]. The problem can be identified by
visually monitoring the edge of the sample; the experimental artifact is a decreased
load (apparent stress) since the true sample contact area is effectively decreased.
There are some experimental configurations that minimize edge fracture artifacts,
all of which move the free surface away from the transducer surface. For example, a
“plate and cup” or “sea of fluid” geometry has been used [79], as well as partitioned
plates with the torque transducer plate set inside the larger geometry plate [80–82].

As materials become more viscous and more stiff, additional problems arise. Of
all the remaining possible experimental errors [7,8], viscous heating and instrument
compliance are worth mentioning briefly here.

Viscous heating is an issue with higher viscosity fluids. The symptom is a
decrease in the apparent viscosity as a function of shear rate, since higher rates
further increase temperature and decrease viscosity. The key dimensionless number
to check is the Nahme number [2], which can be interpreted as a ratio of viscosity
change due to viscous heating compared to the baseline viscosity. Values near zero
indicate negligible viscosity change. Smaller gaps help minimize the heating effect,
since they decrease the length of the thermal conduction path. This is most important
for liquids with high viscosity and low thermal conductivity. For low-viscosity
biological fluids, this is less of an issue.

System compliance is an issue with higher stiffness materials. The problem
lies in the possibility of finite movement of a “fixed” boundary due to system
compliance, or small but finite movement of the load cell, even with modern force
rebalancing transducers [83,84]. Instrument compliance issues have been identified
with the dynamic shear measurement of glycerol [85] and polymer melts [86].
Recommendations have been identified for experimental protocol and instrument
design to avoid, minimize, and correct for compliance effects [87]. Instrument
compliance errors should be considered for stiff, solid materials, or the short-time
data from step strain inputs when material stiffness may also be large.

4 Conclusions

The experimental challenges described here will serve as a checklist for trou-
bleshooting and debugging rheological measurements of complex fluids. These
challenges are especially evident with biofluids and biological materials. Common
artifacts cause a fluid to inaccurately appear as shear thinning, shear thickening,
having frequency dependence, time dependence, or having an elastic modulus, when
these behaviors are not actually present in the true intensive material response.

We encourage the reader to think critically about experimental rheological
measurements, and to ask appropriate and fair questions about the validity of data
(including their own and those published in the open literature). This is particularly
relevant for biological complex fluids which are soft, have low viscosity, and may
contain active components.
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For each potential artifact, the system-level perspective can identify an
experimental boundary and/or a method of minimizing the effect (Sects. 3.1–3.8).
The focus here has been on the most commonly used technique for measuring
shear material functions, i.e., drag flow at the boundary ([8] Chap. 5), especially
when imposed by rotational geometries such as parallel disks, cone-plate, or
concentric cylinders (Fig. 6.1). Other measurement techniques, including those
described in this book (Chap. 1, 3–4), will also benefit from a system-level
perspective that acknowledges non-ideal conditions for rheological material
function measurement (as in Fig. 6.1). The identification of experimental boundaries
(similar to Figs. 6.3, 6.5, 6.6, 6.10, 6.11, 6.14, and 6.15) will be especially relevant
to biological fluids and materials that are of limited volume, as well as soft, active,
and rheologically complex materials more generally.
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Appendix: Material Details: Hagfish Gel and Microalgae
Suspension

Hagfish gel serves as an example of an ultrasoft biomaterial gel. It is prepared as
in [5, 14] and used in Figs. 6.5, 6.6, and 6.7.

The actively swimming microalgae suspension provides an example of a low-
viscosity biological solution and is used in Figs. 6.3 and 6.16. The algal species
Dunaliella primolecta was used. It is a motile, biflagellated, cell-wall-less, unicellu-
lar green algae that does not clump. It has slight negative buoyancy, approximate
characteristic diameter 11 μm, and natural concentration on the order of 3 ·
106 cells/mL. Dunaliella Primolecta (UTEX LB 1000) was obtained from UTEX,
The Culture Collection of Algae at the University of Texas at Austin. Nonmotile
samples were prepared by adding 2 mL of 4 %wt/vol of formaldehyde in phosphate
buffered saline (PBS) solution to 25 mL of the bulk sample. The fixed sample was
analyzed under light microscope to ensure it was nonmotile.
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Part III
Locomotion and Active Matter



Chapter 7
Locomotion Through Complex Fluids:
An Experimental View

Josué Sznitman and Paulo E. Arratia

Abstract Recently, there has been renewed interest in the swimming of
microorganisms for applications that include artificial swimmers, novel materials,
drug delivery, and micro-robotics. Due to small length scales, the fluid mechanics
of swimming of microorganisms are governed by low Reynolds number
hydrodynamics. In such a regime, linear viscous forces dominate over nonlinear
inertial forces. While our current understanding of locomotion at low Reynolds
numbers is derived mainly from investigations in simple, Newtonian fluids (e.g.,
water), many of the fluids in which locomotion occurs contain solids and/or
(biological) polymers that are instead not Newtonian. Examples include wet soils,
human mucus, and fluids in the cervix and female reproductive track. A major
challenge is to understand the propulsion mechanisms in fluids that display complex
rheological behavior such as viscoelasticity and shear-thinning viscosity. Here, we
will briefly review a few notable swimming experiments in Newtonian fluids and
then discuss the latest experimental results on swimming in complex fluids, focusing
on viscoelastic fluids.

1 Introduction

Microorganisms are surrounded by fluids. They cope and take advantage of water
or wind currents to move, feed, and reproduce. Many, if not most, living organisms
live in the realm of low Reynolds numbers [1], usually defined as Re = ρUL/μ ,
where U is a characteristic speed, L a characteristic length (e.g., body size), and
ρ and μ are the fluid’s density and dynamic viscosity, respectively. For example,
the typical Reynolds number for microorganisms such as eukaryotic protozoa
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(e.g., sperm cells [2–4]), prokaryotes (e.g., bacteria [5]), and even multicellular
organisms (e.g., nematodes [5–7]) is much less than unity (Re � 1) due to the
organism’s small length scale L. By contrast, humans when swimming in the ocean
or water pools can reach Reynolds numbers of approximately 104. This means
that humans can take advantage of nonlinear inertial forces for propulsion, while
microorganisms simply cannot. Small living organisms instead have to overcome
the linear viscous forces and drag arising from the fluid in order to achieve any
appreciable net motion. The picture that emerges is that moving (and living) at low
Reynolds number is drastically different from what we (humans) are accustomed
to experience in our everyday lives. For the case of swimming microorganisms in
simple fluids such as water, the equations of fluid motion become time-reversible
(for a more in-depth discussion on the governing equations, please see Chap. 1). As a
result, net locomotion can only be generated from nonreciprocal kinematics in order
to break time-reversal symmetry [2,8,9]; this is also known as the “scallop theorem”
[1] which states that organisms that rely on reciprocal motion for locomotion cannot
achieve net motion in the limit of vanishing Reynolds numbers. A more detailed
discussion on the scallop theorem is given in Chap. 8.

Microorganisms have developed diverse strategies to break time-symmetry and
create nonreciprocal motion (see Fig. 7.1). Such strategies include body undulations
and the presence of moving flagella. For example, the motility of various multi-
cellular organisms including the worm nematode Caenorhabditis elegans originates
from the propagation of undulatory waves from head to tail as a result of patterns of
muscle activation and neuromuscular control [10–12]. Locomotion may also result
from flagellar motility where one or several bundled appendages protrude from the
cell body of certain prokaryotic and eukaryotic cells. One can typically distinguish
between bacterial flagella that are helical filaments (e.g., Escherichia coli [13–16])
and eukaryotic flagella that are flexible filaments undergoing “whiplike” motions
resulting from the action of molecular motors distributed along the filament length;
this latter mode of flagellar actuation is seen for example in many sperm cells
[17–19]. Other eukaryotic organisms (e.g., Paramecium) have instead their body
surface covered with thousands of small hairlike protrusions (cilia) that beat in a
coordinated manner [17, 20].

Fig. 7.1 Examples of microorganisms. (a) The green algae Chlamydomonas reinhardtii, a model
eukaryotic organism, (b) sperm cells moving next to boundaries, and (c) the bacterium E. coli, one
of the most widely studied prokaryotic model organisms
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There are many other cellular environments that are characterized by low
Reynolds number locomotion. In mammals, for instance, cells featuring motile
cilia include the epithelium of the female Fallopian tubes, where rhythmic beating
guarantees translocation of the ovum from the ovary into the uterus [21–23]. Motile
cilia are also found in the epithelial lining of the tracheobronchial airways of the
lungs [24]. There, the ciliated epithelium prevents mucus accumulation in the airway
lumen and serves as an immune barrier against pathogens and foreign particulate
matter by the action of the so-called mucociliary escalator [25, 26] characterized
by synchronous waves of ciliary beating. These waves effectively transport mucus
secretions towards the laryngopharynx for expectoration or swallowing to the
stomach.

It is clear from everyday observation and from the few examples cited above
that nature has found many fascinating ways to break time-reversibility and achieve
net motion at the microscopic scale. And thanks to theoretical, numerical, and
experimental investigations, our understanding of swimming of microorganisms
at low Reynolds numbers has significantly improved in the past 60 years or
so [1,3,8,9,13,27–30]. While much of our efforts have been restricted to swimming
in simple, Newtonian fluids (e.g., water), there are many microorganisms that live
in (complex) fluids that contain particulates and/or polymers (e.g., human mucus,
blood, wet soil, gels, and tissues) and are not Newtonian. Such fluids often possess
complex (non-Newtonian) rheological behavior such as shear-thinning viscosity and
viscoelasticity. One may expect that swimming in complex fluids such as mucus to
be markedly different from swimming in water. But is it? Is swimming in complex
fluids at low Reynolds numbers still dominated by purely viscous effects? Does
fluid elasticity matter at low Reynolds numbers? Here, we will try to address
those questions by examining the recent experimental investigation of swimming
of microorganisms in both Newtonian and complex fluids. This chapter is organized
as follows: (i) a brief introduction is given on swimming at low Reynolds numbers
in simple, Newtonian fluids, (ii) experiments in Newtonian fluids are discussed,
(iii) a brief discussion of locomotion in complex fluids is given, (iv) experiments in
viscoelastic fluids are discussed, and (v) conclusions and outlook are provided. We
begin by introducing some basic principles of swimming at low Reynolds numbers
in Newtonian fluids; we note that a more detailed discussion on the basic principles
of locomotion in Newtonian and complex fluids can be found in Chaps. 1 and 8.

2 Basic Principles: Fluid Dynamics of Swimming
at Low Reynolds Number

Let us begin our discussion of swimming of microorganisms by estimating the
Reynolds numbers of the bacterium E. coli in water. The shear viscosity μ of
water is 1mPa · s (or 1 cP) and independent of shear rate (i.e., Newtonian). The
characteristic size L of E. coli is approximately 2μm, and the bacterium is known
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to achieve net swimming speeds U of approximately 25μm/s [31]. Following these
parameters, we can estimate the Reynolds number for E. coli to be approximately
Re = ρUL/μ = 5× 10−5 � 1, where ρ is fluid density (103 kg/m3). Such low
value of Re implies that linear viscous forces dominate over inertial forces, and the
nonlinear convective term in the Navier–Stokes equation can be safely ignored (see
Chap. 1). Additionally, one can compute the frequency-based Reynolds number,
typically defined as Refreq = ρL2ω/μ , to assess unsteady flow effects, where ω
is the frequency at which the bacterium flagella rotate (∼ 100 Hz). We find again
for E. coli that Refreq � 0.1, and thus one can assume the flow to be steady. Under
those conditions and assuming that the bacterium is moving in an incompressible
(∇ ·u = 0), Newtonian fluid (and ignoring body forces like gravity), the equation of
fluid motion reduces to

∇p = μ∇2u, (7.1)

where u is the velocity vector, p is the pressure, and ∇ is the divergence operator.
The above equation is often referred to as the Stokes equation, named after the
mathematician Sir George Stokes. Equation (7.1) is the main equation governing the
hydrodynamics of swimming microorganism and has some interesting properties.
For example, the above equation is instantaneous in the sense that it has no
dependence on time other than via boundary conditions. Equation (7.1) is also linear
in both velocity and pressure. Furthermore, it is time-reversible in the sense that any
time-reversed Stokes flow solves the same equations as the original Stokes flow. This
time-reversibility, or kinematic reversibility, forms the hydrodynamic basis of the
“scallop theorem” introduced earlier [1]. These properties illustrate that swimming
at low Reynolds numbers can seem at first as a highly confined phenomenon, yet
microorganisms have found a variety of ways to overcome the constraints of the
scallop theorem. In what follows, we briefly review some of the classical theories
that have shed light on the hydrodynamic mechanisms leading to net propulsion at
low Reynolds numbers. The discussion will be limited but the reader can find a more
thorough review in [2, 5, 8, 30] as well as in Chaps. 1 and 8 of this book.

Over half a century ago, Taylor [27, 28] beautifully demonstrated that an infinite
waving sheet (see Fig. 7.2a) could swim in an incompressible, Newtonian fluid by
generating traveling waves in the absence of inertia or vanishing Reynolds numbers.
Note that the hydrodynamics of Taylor’s waving sheet is governed by Eq. (7.1). In
Taylor’s work, the planar sheet oscillates in time in a prescribed form according to
y(x, t) = asin(kx−ωt), where a is the traveling wave amplitude,ω is the frequency,
λ = 2π/k is the wavelength, c = ω/k is the traveling wave speed, and k is the
wave number. Taylor found that the sheet oscillations induce a forward velocity
U = ωa2k/2+O(ka)4 [27], where the sheet is propelled in the direction opposite
to that of the propagating wave (Fig. 7.2a).

Many important investigations followed Taylor’s landmark contribution. Of
particular relevance, we highlight the well-known resistive force theory (RFT)
introduced by Gray and Hancock in analyzing the locomotion of sperm cells
[3]. There, the authors assumed that the hydrodynamic forces experienced by the
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Fig. 7.2 (a) Two-dimensional waving sheet in a viscous fluid illustrating the traveling wave of
velocity c progressing in the x-direction and the forward swimming speed (U) in opposite direction.
(b) Resistive force theory (RFT) diagram illustrating the normal and tangential components of the
velocity U and force F , and the resulting net propulsive force

organism would be approximately proportional to the local body velocity such that
the force exerted by a body or flagellar segment is given by F = CNUN +CT UT,
where C corresponds to the local drag coefficient per unit length (dependent
on geometry and fluid viscosity) and N and T are the normal and tangential
components, respectively (see Fig. 7.2b). Hence, the total thrust can then be obtained
by integrating the propulsive force over the entire body or flagellum length. It is
namely the anisotropy between the normal and tangential drag coefficients, with
CN >CT , that lies at the origin of the drag-based thrust.

Using RFT, Gray and Hancock obtained (for the case of large-amplitude
displacements) a closed-form solution for the swimming speed of an undu-
lating filament given by the expression U = πc(a/λ )2(CN/CT − 1)/ (1 +
2π2(CN/CT )(a/λ )2). Here, CN = 2CN = 4πμ/ ln(L/a) for a straight rod of length
L such that the ratio of normal to tangential drag coefficients yields CN/CT = 2 for
a sine wave of wavelength λ where a is the amplitude. For example, more recent
experiments using the nematode C. elegans estimated this ratio at CN/CT = 1.4 [7];
such value lies closely with earlier estimates reported by Gray and Lissmann [6]
who dropped thin wires into viscous fluids (CN/CT = 1.4–1.6).

Lighthill [9] later recognized the importance of long-range hydrodynamic inter-
actions and improved RFT by incorporating slender-body approximations. Such
improvements led to CN/CT = 1.5 for the case of an undulating filament swimming
in an infinite fluid medium. When incorporating wall effects into the analysis, a sig-
nificantly larger value of the drag coefficient ratio (CN/CT = 4.1) was subsequently
obtained using the corrections of Katz et al. [32].

But what can we say about the flow fields generated by swimming microorgan-
isms in fluids? A common way to determine flow fields at low Reynolds numbers is
to solve the Stokes equation [Eq. (7.1)] with a forcing term replaced by a point force
or disturbance [33]. As noted earlier, the flow disturbances driven by the swimming
motion of microorganism in a Newtonian fluid depend linearly upon the stresses
exerted by the moving body on the fluid [see Eq. (7.1)]. These boundary-driven
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flows are known to decay very slowly with the distance r away from the body
[2, 8, 34]. Most often, such flow disturbances are mathematically cast as linear
superpositions of the fundamental solutions of the Stokes equation and decay with
inverse powers of r. The first solution, referred to as a “Stokeslet,” arises from the
net force on the fluid, and has a velocity field that decays as 1/r. The next solution,
also known as a “stresslet” flow, is induced by the first force moment exerted by the
body on the fluid and decays more rapidly (1/r2); higher-order solutions decay even
more rapidly (1/r3). As a result, linear combinations of the basic solutions of the
creeping equations of fluid motion can generate a multitude of complex flow fields,
exhibiting contrasting near- and far-field behaviors [34].

3 Experiments in Newtonian Fluids

Experimental studies on low Reynolds number locomotion in Newtonian fluids have
undoubtedly complemented early theories on the topic [3, 4, 6, 9, 27, 28]. Many of
these works have aimed at addressing the validity of classical theoretical models. In
the section below, we briefly review a number of relevant experimental efforts that
have helped over time characterize low Reynolds propulsion in Newtonian media.

3.1 From Scale-Up Models to Live Microorganisms

Scale-Up Experiments Experiments with live microorganisms are generally
challenging due to difficulties with imaging/optical setups and to the lack of control
over the organisms themselves. One attractive experimental approach to circumvent
some of these issues relies on leveraging scale-up systems, often designed to
mimic the organism’s main swimming kinematics (see Fig. 7.3). Scale-up models
provide much valuable insight into the main physical mechanisms governing micro-
swimming phenomena; they have brought valuable insight in understanding the net
motion resulting from traveling waves along elastic tails [35–37], helical flagella
[38,39], and flagellar bundles [40,41] as well as in uncovering the motility resulting
from surface traveling waves along cylindrical shells [42].

Beyond fundamental research into microorganism locomotion, a broad range of
scale-up designs has been employed in the context of artificial swimming strategies
at low Reynolds numbers [8], including Purcell’s seminal “three-link swimmer”
which possesses two hinges actuated with both time and phase differences [43] and
a flapping body performing reciprocal motions near a deformable free surface [44].
Smaller mechanical systems have also been investigated. For example, the shapes
of an oscillating passive actin filament have been experimentally probed [45] and
more recently, a three-sphere design has been implemented using colloidal beads
and optical tweezers [46]. There is also much interest in artificial micro-swimmers
from the robotics and engineering community [47].
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Fig. 7.3 Example of scale-up model of flagellar bundling dynamics [40]. (a) Image sequence of
semi-coiled helices shown at various instances in time. (b) Same helices viewed from the side. The
scale bars are 100 mm long; the helices are 310 mm long (from chuck to tip), 4.0 mm in diameter,
and turning at 0.1 Hz (Refreq ≈ 3×10−5). Copyright (2003) National Academy of Sciences, USA

Experiments with Live Microorganisms Despite challenges in working with live
microorganisms, microscopy imaging of bacterial flagella has gained tremendous
traction following the pioneering work of Berg [13,14,48–50]. Of utmost relevance,
flagellar kinematics of individual bacteria have been visualized in real time using
fluorescent staining of both cells and flagellar filaments [51]. In more recent years,
these initial microscopy techniques have been further developed to obtain time-
resolved imaging of flagellar motility using setups with high-speed cameras [52] as
well as to track swimming microorganisms three-dimensionally (3D), for instance,
in a fluid far from surfaces [53]. These exquisite measurements provide much
valuable data for our understanding of swimming and for the development of more
realistic models.

Since, however, microorganisms evolve constantly near solid boundaries (e.g.,
migration of infectious bacteria through tissues), a growing number of experi-
ments have shown that it is important to consider the presence of surfaces; namely,
surfaces and wall effects drastically alter the kinematics of swimming microor-
ganisms relative to ideal unbounded swimming conditions. A best-known example
is perhaps illustrated for helical flagella (e.g., E. coli): swimming trajectories are
modified from straight to circular in the vicinity of boundaries, clockwise when
the wall is rigid [54] and anticlockwise near a free surface [55]. In particular, solid
surfaces not only lead to the reorientation of microorganisms in the direction parallel
to the surfaces, they also attract the organism to the closest wall [56].
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Fig. 7.4 Swimming of Paramecium in tubes of different diameters [60]. Here, Λ denotes the
wavelength, c denotes the radius of the organism, and A the amplitude of the helical trajectory
traced by the organism in tubes of different diameter. (a) Paramecium swimming in large tube
(R/c = 2.63) where the trajectory of the motion is helical. (b) Small wavelength helices are
seen inside tubes of intermediate diameters (R/c = 1.67). (c) In very small tubes (R/c = 0.9),
Paramecium swims in a straight line. Figure reproduced with permission from the American
Institute of Physics

Uncovering the fundamental hydrodynamic interactions between surfaces and
swimming microorganisms has helped shed light on experimental observations of
the accumulation of confined spermatozoa on boundaries [57–59]. It was recently
observed [60] that ciliated Paramecium swimming in capillary tubes executes
helical trajectories that slowly transition to straight lines as the tube diameter
decreases (Fig. 7.4). Further experimental studies mimicking bio-locomotion in
confined environments (e.g., female reproductive tract) have also revealed that the
migration of motile spermatozoa in 3D microchannels is strongly influenced by
specific wall shapes, including the turning angles at corners [61]. Beyond single-cell
eukaryotic and prokaryotic microorganisms, it has also been noted that multicellular
organisms, such as C. elegans, may display some finite attraction to the presence of
boundaries [62] and certainly exhibit changes in their swimming kinematics under
confinement conditions (e.g., setups with parallel-wall cells) [63]. As we can see,
the presence of surfaces, solid or fluid-like, can significantly affect the dynamics of
swimming microorganisms and cannot be ignored.

3.2 Propulsive Force and Flow Measurements

There has also been much effort in measuring the propulsive forces (i.e., thrust)
and energy generated by swimming microorganisms. For instance, optical
traps have been used to measure the forces required to tether sperm cells and
bacteria [31, 64, 65]. In parallel, atomic force microscopy (AFM) has enabled the
measurements of forces exerted by mucus-propelling cilia that lie on the order of
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< 1nN per cilium during the effective stroke [66]. Recently, force measurements
using optical tweezers have been obtained on individual bacteria to test the
validity of RFT and determine the swimming efficiency of E. coli [67]. These
latter measurements have revealed for the first time that long-range hydrodynamic
interactions are indeed critical in capturing accurately single-cell propulsion; in
contrast, relying on RFT assumes a stationary background fluid while ignoring
local flows induced from the other moving parts of the cell. Such observations have
been most recently corroborated in scale-up models of helical flagella, where the
validity of RFT breaks down for increasing pitch angles of the helix [39].

Concurrently, macroscopic (scale-up) experiments with helical bodies of dif-
ferent wavelengths λ , radii R, and lengths L (relevant to bacterial flagella) have
highlighted the qualitative and quantitative discrepancies with RFT predictions [68].
This may be ascribed to the fact that RFT only takes into account local effects and
neglects any hydrodynamic interactions between different parts of the swimmer.
More accurate results can be obtained by using slender-body theories (SBT) that
exploit the high aspect ratios seen in swimmer geometries and are based on the use
of singularity solutions to the Stokes equations [69–72]. Since nonlocal hydrody-
namic interactions between different parts of the swimmer may be incorporated in
these theories, they provide much better results. While analytical expressions for the
drag forces are generally difficult to obtain (here RFT can be of much value [9]),
numerical solutions have been used to choose between different forms of resistance
coefficients [73, 74] as well as study swimming in eukaryotic swimmers [75].

Despite the tremendous experimental progress, it is still difficult to measure the
flow fields generated by swimming microorganisms due to limited spatial resolution
of common velocimetry methods. One of the first attempts of visualizing the
flow of swimming organism dates back to the1960s when Gray and Lissmann [6]
presented qualitative path lines of freely swimming nematodes (worms) in water
seeded with starch grains. With the advent of modern micro-PIV (μPIV) techniques
[76] and fast cameras, flow field measurements of swimming microorganisms
are within reach. For example, path lines generated by an individual ciliated
Paramecium have been recently imaged [60], and velocity fields generated by
individual unicellular microorganisms [52] and multicellular nematodes [7] have
been resolved. In the case of the swimming nematode [7], the authors demonstrated
that velocity magnitudes of fluid motion follow closely an exponential decay of
the form exp(−2πr/λ ) as a function of the distance r away from the nematode
body (see Fig. 7.5); this analytical solution was originally derived by Lighthill
[9] for an undulating sheet of wavelength λ in Stokes flow. Further extension of
high-speed imaging techniques using for example tomographic PIV, where multiple
cameras image simultaneously the interrogation volume from different angles [77],
has enabled measurements of 3D time-resolved flow fields surrounding millimeter-
sized copepods (Calanus finmarchicus).

There are two recent experiments [78, 79] that deserve much consideration and
attention. The experiments by Drescher et al. [78] and Guasto et al. [79] were able
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Fig. 7.5 Flow behavior surrounding a swimming C. elegans. Adapted from Sznitman et al. [7].
(a) Color-coded particle path lines are shown via the trace of dispersed fluorescent particles.
Particle trajectories are tracked over ten consecutive frames (∼ 0.06 s). Colors are associated with
the lengths of trajectories. Two dominant recirculation regions are resolved along the nematode
body. Scale bar represents 200 μm. (b) Normalized fluid velocity magnitude (|u|/|u|max) as a
function of the dimensionless distance (r/L) away from the nematode body, where L is the
nematode body length. Data points of different colors correspond to fluids of different viscosities.
The solid line corresponds to exp (−2πr/λ ) [9]. Inset: representative velocity magnitude field at a
given instant in time surrounding a nematode (marked with a black line). Figure reproduced with
permission from the American Institute of Physics

to beautifully resolve the flow fields surrounding freely swimming micro-algae and
demonstrated that local fluid motions were much more complex than analytical
models initially suggested. This observation is particularly true in the near field,
where the largest flow velocities occur. For example, Drescher et al. detailed
quantitative measurements of time-averaged flows using μPIV for two different
types of microalgae: Volvox carteri, a ciliated multicellular spherical alga, and
Chlamydomonas reinhardtii, a unicellular alga featuring two flagella that beat in
a breaststroke-like fashion. Guasto et al. resolved rather the oscillatory nature of
the flow field driven by C. reinhardtii over one period of motion using high-speed
imaging, where the swimming microorganisms were confined in thin liquid films.
Both studies have emphasized how distinct species are likely to drive qualitatively
different disturbance flows, as recently highlighted by Saintillan [34]. This flow
feature remains true in the far field as well, where it is commonly assumed that
there, flow fields can be described in terms of a stresslet. As a final word, we note
that the representation of these driven flows using time-averaged velocity fields falls
short of capturing the true nature of the flow, since time fluctuations can be of the
same order as the mean.
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4 From Newtonian to Complex Fluids

As mentioned before, much of our understanding of low Reynolds number
locomotion arises from considerations in simple, Newtonian fluids [2–4, 9]. Many
microorganisms, however, evolve and live in complex fluids such as mucus, gels,
and wet soil [80–83]. But, what are complex fluids? Here, we define complex fluids
as a broad class of materials that are usually homogeneous at the macroscopic scale
and disordered at the microscopic scale, but possess structure at an intermediate
scale (typically, a few sizes of its particles). Examples include colloidal suspensions,
foams and emulsions, polymeric fluids, gels, human mucus, and blood. In colloidal
crystals, for example, the intermediate scale is set by the size of the organized
crystalline structure; that is, if one considers a cup of a cornstarch suspension,
then the microscopic scale is the matrix that includes both the water molecules and
the cornstarch grains (∼ 1μm), and the macroscopic scale is the size of the cup
(∼ 10cm), while the intermediate scale is set by the structural length scale (if any)
of the cornstarch grains. The cornstarch suspension will respond quite differently
to an applied stress, depending on the grain size, concentration, and the grain
arrangement in the suspending liquid. Thus, the macroscopic flow behavior (or
rheology) of complex fluids is a strong function of the fluid microstructure.

Complex fluids are usually not Newtonian, and they often exhibit viscoelasticity
and shear-thinning viscosity. Much recent effort has been devoted to the understand-
ing of the effects of non-Newtonian fluid behavior (shear-thinning, viscoelasticity)
on the swimming of microorganisms [8, 80, 81, 83, 84]. For example, the nonlinear
relationship between shear stress and strain rate that characterizes shear-thinning
fluids can have significant consequences to locomotion at low Reynolds numbers
including (i) a breakdown of the “scallop” theorem, (ii) kinematic changes in the
organism’s swimming motion, and (iii) changes in the drag forces experienced by
the organism. In fact, it was recently shown by Vélez-Cordero and Lauga [85]
for an infinite waving sheet (similar to Taylor’s original work) immersed in a
shear-thinning fluid that while the sheet’s propulsion speed remained the same as
in the Newtonian case, the cost of transport was reduced. Simulation studies by
Montenegro-Johnson et al. [84] showed that undulatory swimmers with a head or
“payload” (similar to a sperm cell) are assisted by shear-thinning viscosity, resulting
in increased speed. These recent studies illustrate that even relatively simple non-
Newtonian fluid behavior such as shear-thinning may have a significant impact on
the swimming behavior of microorganisms.

The effects of fluid elasticity on swimming at low Reynolds numbers have
received considerable more attention [83, 86–93] than shear-thinning effects.
Viscoelastic fluids possess shear stress that is time dependent and that depends on
the history of deformation. Such features give rise to flow behavior in viscoelastic
fluids that is markedly different from that of Newtonian fluids even at low
Reynolds numbers [94–96], and they can even lead to the breakdown of the
scallop theorem [92]. Most of the nonlinear flow behavior observed in the flow
of viscoelastic fluids results from the extra elastic stresses due to the presence, of
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Fig. 7.6 Snapshot of sperm
cells moving in (a)
Newtonian fluid (semen) and
viscoelastic fluid (mucus);
adapted from Ho and
Suarez [97]

usually, polymer molecules in the fluid. Mechanical stresses in viscoelastic fluids
are history-dependent and depend namely on a characteristic time λ that in dilute
solutions is proportional to the relaxation time of a single polymer molecule. In
semi-dilute solutions, λ depends also on molecular interactions. For more details
on fluid viscoelasticity and shear-thinning viscosity, please see Chaps. 1, 8, and 10.

The nonlinear response of viscoelastic fluids is expected and has been seen to
play a significant role on the swimming behavior of microorganisms. Consider for
example the swimming behavior of motile sperm cells [86, 97, 98] that usually
swim as a result of (single) flagellar beating. For freely swimming spermatozoa
in Newtonian semen (Fig. 7.6a), the flagellum exhibits a regular sinusoidal beating
pattern [81]. But once the organism encounters a viscoelastic medium (i.e., cervical
mucus), the regular beating pattern is transformed into high-amplitude, asymmetric
bending of the flagellum (Fig. 7.6b). This “hyper-activated” sperm is believed to be
dramatically influenced by its fluidic environment [81, 97], which in turn can affect
human fertility [80, 99]. Other examples of motility in viscoelastic media include
the removal of mucus in the human respiratory track by beating cilia [24, 26], the
locomotion of bacteria in biofilms [100, 101], and the burrowing of organisms in
wet soil [102, 103]. Understanding how microorganisms move in viscoelastic fluids
is, therefore, of both scientific and practical importance.

Despite many recent efforts to be discussed below, the effects of bulk fluid
elasticity on the motility behavior of live organisms at low Reynolds numbers are
still not clear and well understood. In order to provide the reader with some basic
insight into this issue, we turn to our favorite dimensionless parameters. The first,
of course, is the Reynolds number, which is a measure of the relative importance
of the fluid inertia to viscous forces. We already showed that the Reynolds number
is approximately 10−4 for E. coli swimming in water. The effects of fluid elasticity
are often estimated using the Deborah number, defined as De = λ f where λ is the
fluid relaxation time and f is the organism’s beating frequency. Note that De= 0 for



7 Locomotion Through Complex Fluids: An Experimental View 257

Newtonian fluids and De →∞ for purely elastic solids. One could imagine that fluid
elasticity may begin to play a dominant role for De ≥ 1. If one considers the beating
frequency f of sperm cells to range from 20 to 50 Hz and the relaxation time λ of
cervical mucus to range from 1 to 10 s (depending on factors like hydration, among
others), one can expect fluid elasticity to play a significant role on the motility of
spermatozoa since De � 1. One can also compare the ratio of the (fluid) elastic
time scale λ to the (fluid) viscous time scale ρL2/μ . This is the so-called elasticity
number, defined as El = λμ/ρL2. Elastic effects are expected to dominate for El > 1.
Because of the nonlinear (squared) dependence of El on the (swimmer) length scale
L, one anticipates the effects of fluid elasticity to become increasingly important for
swimming microorganisms.

4.1 Swimming in Viscoelastic Fluids: Expectations

In 1979, Chaudhury [87] attempted to incorporate the effects of fluid elasticity on
swimming using a second-order fluid and a series of expansions similar to Taylor’s
analysis. It was then predicted that fluid elasticity could either increase or decrease
the propulsion speed of the waving sheet (Fig. 7.2), depending on the value of Re.
Later, inspired by experimental observations of spermatozoa swimming in mucus
[81, 97], the effects of elasticity on beating flagellar structures were considered in
Stokes flow using the Maxwell model [104]. It was shown that self-propulsion was
not affected by viscoelasticity even at large Deborah numbers (De), where De = λ f
and λ is the fluid relaxation time and f is the beating frequency. However, the total
work decreased with increasing De. It was then suggested that a microorganism
could swim faster in a viscoelastic fluid with the same expenditure of energy
compared with a Newtonian fluid.

More recently, Lauga [83] showed that, for a 2D waving sheet (Fig. 7.2), elastic
stresses could significantly alter the organism speed and the work required to
achieve net motion. Using nonlinear viscoelastic fluid models such as the Oldroyd-B
and the FENE-P models (see Chap. 1), Lauga [83] showed that the sheet’s forward
speed U in a purely elastic fluids is given by

U
UN

=
1+De2(ηs/η)

1+De2 , (7.2)

where UN is the swimming speed of the sheet in a viscous Newtonian fluid (i.e.,
Taylor’s original result) and ηs is the solvent viscosity; note that the solution
viscosity η is assumed to be the sum of the solvent viscosity and the polymer
viscosity such that η = ηs + ηp. Hence, for a given (i.e., prescribed) swimming
gait UN ≥ U , that is, elastic stresses reduce the overall speed of the waving sheet.
Equation (7.2) is an elegant and interesting result and has spurred much of the
recent interest in swimming in viscoelastic fluids. See Chap. 8 for a more detailed
discussion on the derivation of Eq. (7.2).
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A similar result to Eq. (7.2) was also obtained for a waving cylinder by Fu et al.
[88]. These important results imply that fluid elasticity can reduce the swimming
speed of microorganisms when compared to simple, Newtonian fluids. An important
caveat, of course, is that organisms may compensate the reduction in velocity
by increasing their beating frequency and/or concurrently decreasing their body
wavelength. In other words, microorganisms can alter their swimming kinematics to
adjust or adapt to varying fluidic environments. It is worth noting that the analysis
by Lauga [83] and Fu et al. [88] reveals the net magnitude of locomotion scales
quadratically with the amplitude of the local oscillatory motion, and therefore
nonlinear terms in viscoelastic constitutive relationships cannot be neglected (as in
the case of [104]).

Numerical simulations have also been used to address the role of fluid elas-
ticity on the swimming behavior of microorganisms. In particular, Teran and
co-workers [89] considered two-dimensional swimming “free” sheets (i.e., with
free head and tail) of finite length L in viscoelastic fluids. The simulations were
performed by solving Stokes equation using the Oldroyd-B model as the constitutive
equation using an immersed boundary method. The simulations show that, for
accentuated tail motions, the sheet swims faster at De ≈ 1 than in a Newtonian fluid.
This regime corresponds to where “swimmer” stroke frequency matches the fluid
relaxation time. This is a fascinating result and is unlike Eq. (7.2) which predicts
that the swimmer speed in viscoelastic fluids is always slower than in Newtonian
fluids. The simulations do show that for De > 1, the swimming speed decreases as
De increases (Fig. 7.7).

As briefly discussed above, fluid elasticity can strongly affect both the swimming
dynamics and kinematics of microorganisms even at low Reynolds numbers. Recent
analytical works predict that fluid elasticity hinders swimming speed while numeri-
cal simulations show that it is possible to obtain an enhancement in self-propulsion
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Fig. 7.7 (a,b) Polymer stress tensor fields for a finite length, two-dimensional undulating sheet.
The ellipses in the figures represent the directions and degree of distension of the polymer field. The
arrows represent the fluid velocity on the immersed filament. (c) Normalized average swimming
speed of the sheet as a function of the Deborah number. Note the enhancement in propulsion at De
≈ 1. Figures adapted from [89]
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in a regime where the fluid relaxation time matches the swimmer stroke frequency,
that is De ≈ 1. Despite such important advances, it is still not clear whether elastic
stresses enhance or hamper self-propulsion since theoretical and numerical results
are model dependent. So the question still stands: does fluid elasticity enhance or
hinder self-propulsion at low Re? Perhaps experiments will shed more light into this
important question.

5 Experiments in Viscoelastic Fluids

5.1 Scale-Up Experiments

Swimming experiments in complex fluids are hard to come by and systematic
investigations are scarce in the literature. Part of the problem is undoubtedly the
difficulty in identifying a model organism or swimmer that is both able to move
in different types of media and relatively easy to image and track. To circumvent
some of these difficulties, many investigators choose to build instead macroscopic-
scaled versions of the microorganisms’ propulsion mechanism [35, 41, 90, 105].
In this section, we discuss an interesting experimental setup proposed by Liu and
coworkers [90] in which a scale-up model of bacterial filaments is investigated.

The experimental setup is shown in Fig. 7.8 and consists of a large cylindrical
tank filled with either a viscous Newtonian fluid or a viscoelastic fluid. The Newto-
nian fluid is silicon oil and the polymeric solution is a mixture of polyisobutylene

Fig. 7.8 (a) Scale-up mechanical apparatus used for measuring the motility of a rotating helix
[90]. The helical structure, shown in (b), is slowly immersed into a Newtonian or viscoelastic fluid
and rotates about the vertical direction. The net hydrodynamic force on the helix is determined
by a laboratory balance beneath the tank as shown in (a). (c) Normalized propulsion speed as
a function of the Deborah number for two polymeric solutions and helices with different pitch
angles. Copyright (2011) National Academy of Sciences, USA
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(PIB) in polybutene solvent. More details on the polymeric solutions are given in
the next paragraph and in [90]. A rigid helix rotating at speed ω is slowly immersed
or plunged at a constant speed into fluid-filled tank. Helices of varying pitch angles
are used to mimic the geometry of bacterial flagellar filaments (e.g., E. coli). The
hydrodynamic force exerted on the helices by the fluid is measured by placing the
tank on top of a sensitive digital balance. In these experiments, zero-force swimming
is achieved by adjusting the translation speed until the measured axial force is zero.
Because the helix is inserted from above, a positive vertical force on the helix
represents a drag, and a negative vertical force on the helix is a thrust. The force-
free swimming speed is measured as a function of helix rotation rate, helix geometry
(i.e., pitch angle), and fluid properties (i.e., Newtonian vs. viscoelastic).

Because the fluids are very viscous, the Reynolds number is well below 0.01
and inertial effects are negligible. In order to decouple the effects of fluid elasticity
from those of rate-dependent viscosity (e.g., shear-thinning) common in polymeric
solutions, a nearly constant-viscosity, elastic fluid was prepared. Such fluids are
often called “Boger fluids” in reference to David Boger who first proposed the use
of such model fluids [106]. Boger fluids are constructed by adding a small amount
(usually in part per millions) of high molecular weight (MW) flexible polymer to
a very viscous solvent. Because the polymer contribution to the overall solution
viscosity is small, the solution viscosity is overwhelmed by the viscosity of the
Newtonian solvent. But the addition of high MW flexible polymers is able to add
elasticity to the fluids. As a result, Boger fluids have nearly constant viscosity while
still possessing elasticity. In the work of Liu et al. [90], Boger fluids are prepared
by dissolving either 3,000 ppm or 6,000 ppm of PIB in polybutene (solvent).
The average relaxation time λ for both polymeric solutions is approximately 0.6 s.

The main result of this very clever experiment is shown in Fig. 7.8 (rightmost
panel). The investigators find an enhancement of the measured swimming speed
of a rotating helix in a viscoelastic fluid near De = 1, where De = ωλ/2π . This
result is similar to the enhancement observed in numerical simulations of 2D
flexible filaments in Oldroyd-B fluids by Teran and coworkers [89] and of helical
filaments [93], but is in contrast with the decrease observed in analytical calculations
[83, 107] and experiments with live organisms [91]. As the rotating speed (and
De) increases, the helix propulsion speed decreases even below the purely viscous
Newtonian speed.

An important take-away message is that it appears that the nature of the
dependence of propulsion speed on fluid elasticity (or De) depends strongly on
the geometry of the waveform used for swimming. This is made obvious by the
sensitivity of the peak enhancement of swimming speed on the pitch angle of the
helix, as shown in Fig. 7.8 (rightmost panel). This is an important point which we
will further discuss later in this chapter.

While scale-up experiments can provide much useful information, they cannot
fully capture the complexity of live organisms. Therefore, it is important to perform
systematic studies using live organisms. In the next section, we will discuss
experiments using a well-known biological model system, namely, the nematode
C. elegans.
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5.2 Experiments with Live Organisms

Despite recent advances, the effects of fluid elasticity on the swimming behavior
of microorganisms are still not clear [108], in part due to the lack of systematic
experiments with live organisms. In this section, we will discuss swimming exper-
iments in viscoelastic fluids with a biological model system, namely the nematode
C. elegans. Model organisms are nonhuman species which are extensively studied
to understand particular biological phenomena. Examples include the zebra fish, E.
coli, fruit fly (Drosophila melanogaster), and mice, among many others. The idea is
that discoveries made in model organisms will provide insight into the workings of
other non-model organisms.

5.2.1 C. elegans: An Attractive Model Organism for Swimming Studies

An interesting model system that has received much attention in the biological
community is nematode C. elegans, which is a small, multicellular, free-living
roundworm found in soil environments. Much is known about the nematode’s
genetics and physiology; its genome has been completely sequenced [109] and a
complete cell lineage has been established [110]. These nematodes are equipped
with 95 muscle cells that are highly similar in both anatomy and molecular makeup
to vertebrate skeletal muscle [11]. Their neuromuscular system controls their body
undulations which allows C. elegans to swim, dig, and crawl through diverse
environments. The wealth of biological knowledge accumulated to date makes
C. elegans ideal candidates for investigations that combine aspects of biology,
biomechanics, and the fluid mechanics of propulsion.

Figure 7.9 shows an image of an adult, wild-type C. elegans swimming in
a water-like buffer (M9) solution. The nematode is characterized by a relatively
long and quasi-cylindrical body shape (Fig. 7.9). Its length can vary from 50μm
(embryonic stage) to 1 mm (adult stage) while its radius is approximately 80μm.
The nematode length scale is an important feature they are large enough that flow
fields can be accurately obtained.

5.2.2 Swimming Experiments with C. elegans: Dilute Polymeric Solutions

We now discuss swimming experiments using the nematode C. elegans in some
detail. Experiments with the two main types of fluids, namely Newtonian and
viscoelastic, are discussed. Experiments are performed in small channels that are
made of acrylic and are 1.5 mm wide and 500μm deep; they are sealed with a thin
(0.13 mm) cover glass. In order to minimize three-dimensional motion, the channels
are relatively shallow, yet the nematode is able to freely move in all directions. The
swimming motion of C. elegans is imaged using standard bright-field microscopy
and a fast CMOS camera. The image acquisition rate is kept constant at 125
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Fig. 7.9 (a) Snapshot of the nematode C. elegans moving in a water-like buffer solution. The red
line along the nematode corresponds to the body centerline or “skeleton,” obtained using image
analysis. The centroid (dashed) and the trajectory of the tail (blue) are tracked at a sampling rate
of 125 frames per second. (b) Body-shape lines as a function of time color-coded by time over
one beating period

frames per second to guarantee small linear displacements along the nematode’s
body between consecutive frames. All data presented here pertain to nematodes
swimming at the center plane of the fluidic channel. Out-of-plane recordings are
discarded.

An important consideration in swimming experiments with live organisms is
the fluid medium. Fluids must be developed such that they possess the desirable
rheological property (elasticity, shear-thinning, etc.) but without being toxic to the
organism. Here, Newtonian fluids of different shear viscosities are prepared by
mixing two low molecular weight oils (halocarbon oil, Sigma-Aldrich). Viscoelastic
fluids are prepared by adding small amounts of carboxymethyl cellulose (CMC,
7 ×105 MW) into deionized water. CMC is a long, flexible polymer with an overlap
concentration (c∗) of approximately 104 ppm. In order to rule out the effects of
shear-rate-dependent viscosity, an aqueous solution of the stiff polymer xanthan
gum (XG) that is shear-thinning but possesses negligible elasticity is also used in
experiments.

Fluid Rheology: Viscosity Data An important step in these experiments is fluid
rheological characterization. How viscous or elastic are the fluids? (A very useful
discussion on fluid characterization and rheology is given in Chap. 6.) A strain-
controlled rheometer RSF III (TA Instruments) with a cone-and-plate geometry
is used to characterize the rheological properties of the CMC and XG solutions.
Figure 7.10 shows the viscosity curves of both CMC and XG solutions. The
viscosity data are fitted with the power-law fluid model of the type η = m(γ̇)n−1,
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Fig. 7.10 (Left) Fluid shear viscosity curves for the flexible carboxymethyl cellulose (CMC)
and semi-rigid xanthan gum (XG) solutions. The concentrations of CMC solution ranges from
1,000 ppm to 8,000 ppm by weight, from bottom to top in the plot. Solid circles represent the
3,000 ppm XG aqueous solution. The values of the power law index n are 0.65 and 0.35 for the
8,000 ppm CMC and the 3,000 ppm XG solutions, respectively. Table: the power law indexes of
the CMC aqueous solutions

where m is a flow consistency factor and n is the power law index. Results from
the fits are shown in the table in Fig. 7.10. The CMC solutions show a relatively
weak shear-thinning behavior, particularly in the shear rate range of 1–20 s−1. This
is the range of shear rates produced by the swimming C. elegans in fluids. As the
CMC concentration in solution increases, shear-thinning effects also increases. In
the most concentrated CMC solution, i.e., at 8,000 ppm, the power law index n is
approximately 0.65. As a comparison, the xanthan gum solution at 3,000 ppm shows
much stronger shear-thinning behavior (n = 0.35). Note that the mixture of low
molecular weight halocarbon oils shows constant shear viscosity and is not shown.

Fluid Rheology: Relaxation Times Shear viscosity or flow curves are not
sufficient to describe the material properties of viscoelastic fluids. An important
quantity used to characterize viscoelastic fluids is the fluid relaxation time λ .
Measuring λ is not a trivial task for several reasons including the fact that most
real viscoelastic fluids have not one but a spectrum of relaxation times; λ can also
be shear rate dependent. What is usually reported in the literature (and used in
many models) is the longest, most dominant value of λ . There are several ways to
obtain λ including (i) measurements of the first normal stress difference N1 from
steady rheology combined with an appropriate constitutive model, (ii) oscillatory
or frequency-dependent measurements in which both the viscous G′′ and elastic G′
moduli are measured for small strains, and (iii) stress relaxation experiments. For
more detailed information on rheological measurements and applications, please
see Chap. 6.
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Fig. 7.11 (Left) Stress relaxation data and (table) fluid relaxation time λ for all polymeric (CMC)
solutions

The values of λ for all the viscoelastic CMC solutions are obtained using a stress
relaxation technique after a sudden applied strain or shearing displacement. This
technique is sometimes referred to as step-strain stress relaxation. In the experiment,
the time decay of the shear stress is described by a relaxation modulus G(t)
(Fig. 7.11), which is fitted with the generalized linear viscoelastic model of a single
relaxation time of the type G(t) = Goe−t/λ . By varying the polymer concentration
in solution, the values of λ can range by as much as an order of magnitude from
0.4 s for the most dilute concentration (1,500 ppm) to about 5.6 s for the most
concentrated solution (8,000 ppm). The values of λ for all CMC solutions are shown
in the table in Fig. 7.11.

Swimming Kinematics Now that the fluids have been characterized, we can begin
to discuss the swimming experiments using C. elegans. Because it is important to
establish a baseline, results obtained with the viscoelastic fluids (CMC solutions)
are compared to swimming in Newtonian fluids (halocarbon oils). An important
quantity that is used to characterize the swimming behavior of undulatory swimmers
such as the nematode C. elegans is the bending curvature, defined as κ(s, t) =
dφ/ds=. Here, φ is the angle made by the tangent to the x-axis in the laboratory
frame at each point along the body centerline, and s is the arc length coordinate
spanning the head of the nematode (s = 0) to its tail (s = L). Note that the y-axis
corresponds to the dimensionless position s/L along the nematode’s body where
s = 0 is the head and s = L the tail and the x-axis cuts across the nematode as
shown in Fig. 7.12a. The spatiotemporal evolution of the nematode’s body curvature
κ(s, t) for 3T, or 3 swimming cycles is shown in Fig. 7.12a. The contour plots show
the existence of periodic, well-defined diagonally oriented lines characteristic of
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Fig. 7.12 The kinematics of swimming C. elegans at low Re number in viscous Newtonian fluids
(Re ≈ 0.1). (a) Contour plot of the measured curvature (κ) along the nematode’s “skeleton” or
body centerlines as a function of time. The y-axis corresponds to the dimensionless position s/L
along the nematode’s body where s = 0 is the head and s = L the tail; the x-axis cuts across the
nematode. (b) Frequency spectra of κ at different selected positions s/L. The nematode’s beating
frequency peaks at a single value (2.0 Hz), irrespective of the location s/L

bending waves, which propagate in time along the nematode body length. By taking
the Fourier transform of the contour plots (along the axis of time), a single peak at
2 Hz is found, indicating that the nematode beating is periodic in time (Fig. 7.12b).
Other kinematic metrics such as wavelength (1 mm) and wave speed (5 mm/s) can
also be extracted from the contour plots.

Propulsion Speed—Newtonian vs. Viscoelastic Now, it is possible to address the
question of whether fluid elasticity hinders or enhances the propulsion speed of live
organisms using C. elegans. The average nematode forward velocity U is calculated
by differentiating the nematode’s centroid position with respect to time (Fig. 7.9).
For nematodes swimming in a Newtonian fluid of shear viscosity μ of 5mPa · s
(or 5× the viscosity of water), the value of U is approximately 0.4 mm/s and the
Reynolds number (Re=ρUL/μ) is approximately 0.05. Hence, the model organism
C. elegans can be considered a low Re swimmer.

The nematode’s swimming speed as a function of fluid viscosity for both
Newtonian and viscoelastic (CMC) solutions is shown in Fig. 7.13a. For relatively
low viscosity values, the swimming speed is independent of fluid viscosity μ and
the values of U are nearly identical for both cases. For μ> 30mPa ·s, the swimming
speed decreases with increasing μ even for Newtonian fluids. This decrease in U is
most likely due to the nematode’s finite power. Note that, for a nematode swimming
with constant power at low Re, P ∼ μU2 where P is power. Results show that,
over the admittedly limited range of μ , the nematode’s propulsion speed shows a
decay that is slower than μ−1/2 , which strongly suggests that the nematode does
not swim with constant power. The maximum power generated by the organism is
approximately 200 pW, calculated for μ= 30mPa · s.
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Fig. 7.13 (a) Nematode’s swimming speed U as a function of shear viscosity μ for Newtonian
(red circle) and viscoelastic (blue square) fluids. Triangle symbol represents the nonelastic xanthan
gum solution. The data shows that fluid elasticity decreases the nematode’s swimming speed when
compared to a Newtonian fluid of same viscosity. For μ > 30mPa · s , the nematode’s swimming
speed decreases, indicating a limit in power for this type of organism. Inset in (a) shows the
nematode’s wave speed as a function of viscosity for all fluids. There is no apparent difference
between the different fluids at a given viscosity value. (b) Normalized swimming speed as a
function of the Deborah number. Experimental data is plot, together with numerical [89] and
theoretical predictions [83]. Note that swimming speed decreases as De is increased

Importantly, the values of U for viscoelastic fluids are found to be 35 %
lower than the Newtonian fluid of same shear viscosity (Fig. 7.13a). For example,
the nematode’s swimming speeds for the viscoelastic and Newtonian cases are
0.18 mm/s and 0.25 mm/s, respectively, even though the shear viscosity for both
fluids is 300mPa · s (Fig. 7.13a). The decrease in swimming speed in CMC
(polymeric) solutions does not seem to be due to shear-thinning effects since
nematode swimming in the non-viscoelastic, shear-thinning fluid (XG) showed no
apparent decrease in propulsion speed (Fig. 7.13a, triangle symbol) compared to the
Newtonian case. This result with XG is in agreement with the recent theoretical
analysis of a waving sheet in a shear-thinning fluids [85].

So far, experiments using an undulatory, low Re swimmer (i.e., C. elegans)
show that for similar viscosities fluid elastic stresses seem to hinder the organisms’
propulsion speed. An important question is whether the organism is responding or
adapting to the extra elastic stresses present in the fluid or are the polymer molecules
toxic to the organism? In other words, is the observed decrease in swimming
speed due to hydrodynamics or biology? This is a difficult question to answer
with certainty, but one can address it at least in part by comparing the swimming
phenotypic behavior (i.e., kinematics) between Newtonian and viscoelastic fluids.
The wave speed c produced by the nematode is of particular interest since it has been
shown that the values of c seem to change significantly once the nematode adopts
a different swimming gait, i.e., swimming versus crawling [111]. The wave speed



7 Locomotion Through Complex Fluids: An Experimental View 267

can be easily measured from the curvature contour plots. The inset in Fig. 7.13a
shows the nematode’s bending wave speed c as a function of fluid viscosity. Results
indicate that viscoelasticity (and polymer molecules) has negligible effect on the
nematode’s swimming kinematics. That is, the changes in kinematics including the
decrease in beating frequency and wave speed are due to viscous effects only. In
addition, there is no evidence of change in motility gait (e.g., swimming to crawling)
as μ increases since the beating amplitudes remain constant (A = 0.26mm) even for
the most viscous fluid (μ= 400mPa · s).

The effects of fluid elasticity on the nematode’s swimming behavior are best
illustrated by plotting the normalized swimming speed U/UN as a function of
the Deborah number (De = λ f ), where UN is the Newtonian speed. Figure 7.13b
shows that the normalized swimming speed decreases monotonically with De and
reaches an asymptotic value of 0.4 as De is further increased. In other words, as the
elastic stresses increase in magnitude in the fluid, it introduces a larger resistance to
propulsion, therefore decreasing the nematode’s swimming speed.

Comparing Experiments to Calculations We can now compare the experimental
results to the numerical and theoretical predictions discussed earlier. Of course, such
comparisons are not quite fair because there are significant differences between
the experiments and the calculations. For example, most calculations are two-
dimensional (2D) and for small-amplitude displacements while the nematode is
allowed to swim in 3D and can bend quite a bit. Most importantly, while the
calculations assume prescribed kinematics or waveform, the nematode is free to
choose its own. Nevertheless, qualitative assessments can be made.

We begin by noting that for all the experiments presented in this section, the
ratio of the solvent viscosity to the total solution viscosity is below 0.05, which
is similar to the calculations [83, 107]. As shown in Eq. (7.2), the swimming
speed U of an undulating sheet is predicted to decrease with increasing De. While
the experimental data supports the predicted trend, at least qualitatively, there
are quantitative discrepancies between the experimental and theoretical results as
shown in Fig. 7.13b. Some of the possible reasons for the observed discrepancies
may be the finite length of the swimmer and the assumption of small beating
amplitude in the theoretical works. That is, only small deflections are considered
for both the waving sheet and cylinder while the nematode shows significant
bending. Nevertheless, the theoretical models are able capture the main trends in
the experimental data and perform surprisingly well.

How do the experimental results compare to the numerical simulations of Teran
et al. [89]? Remember that the simulations predict an interesting enhancement of
the sheet swimming speed at De = 1. The experimental results do not reveal such
swimming speed enhancement, although a scale-up mechanical experiment did find
such enhancement [90]. Nevertheless, for De > 1, the simulation predicts a gradual
decrease in U as elasticity is increased. The discrepancies between the experiment
and the simulations are most likely due to the difference in the swimming beating
patterns. While simulations used a left-moving traveling wave with an amplitude
that increased from head to tail, the experiments with C. elegans reveal a traveling
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wave with an exponential decay from head to tail. Therefore, it is a bit unfair to
directly compare the numerical simulations with the C. elegans work since the
swimming kinematics are very different. As a side note, a recent three-dimensional
numerical simulation of helical bodies in viscoelastic fluids by Spagnolie et al. [93]
found that an enhancement in propulsion speed is indeed possible at De= 1, in good
agreement with scale-up experiments [90]. Clearly, swimming kinematics matter,
and Chap. 10 provides an interesting discussion on the effects of swimming beating
patterns on propulsion in viscoelastic fluids.

A Possible Mechanism: The Role of Extensional Viscosity So what could
explain the decrease in swimming speed for nematodes moving in viscoelastic
fluids? One possible explanation may be related to the extensional viscosity of
polymeric fluids. The reader may be very familiar with the concept of shear viscosity
μ , which is the fluid resistance to a shear deformation. The concept of extensional
viscosity may be less familiar because it is not usually taught in standard fluid
dynamics textbooks. Simply put, extensional viscosity ηe is the fluid resistance to
an extensional deformation. Pure extensional flows are devoid of shear; such flows
are often referred to as shear-free flows. Examples of shear-free flows also include
biaxial stretching and elongation flows.

For Newtonian fluids, the extensional viscosity is equal to three times the shear
viscosity such that ηe = 3μ . This result was first reported by Trouton over a century
ago in 1906 [112]. The quantity ηe/μ is often referred as the Trouton ratio; for
Newtonian liquids, the Trouton ratio is constant (Tr = ηe/μ = 3). Viscoelastic
fluids, however, can exhibit an enhancement in ηe compared to Newtonian fluids
due to the extra elastic or polymeric stresses. Many experiments have shown that
the extensional viscosity of liquids containing flexible polymers can be orders of
magnitude larger than the extensional viscosity of Newtonian fluids [113, 114].
This is true even for viscoelastic and Newtonian fluids that have similar values
of μ . In addition, while Newtonian fluids exhibit ηe values that are independent
of strain, viscoelastic fluids show strain-hardening behavior. It should be evident
that viscoelastic and Newtonian fluids will behave quite differently in flows with a
strong extensional component [115].

But, how can extensional viscosity explain the reduced swimming speed of C.
elegans in viscoelastic fluids? A clue may be in the velocity fields produced by
the swimming nematodes. Figure 7.14 shows typical streamlines computed from
experimentally measured velocity fields using particle-tracking methods for both
the (a) Newtonian and (b) viscoelastic cases. Overall, the streamlines display large
recirculation flow structures, or vortices, that are attached to the nematode’s body.
While the large-scale patterns are similar for both cases, detailed inspections shows
the appearance of a distinct hyperbolic point near the nematode for the viscoelastic
case. A recent computational effort by Guy and Thomases also found the existence
of such hyperbolic points in the velocity fields of swimming nematodes (Fig. 10.9 in
Chap. 10 of this book). It is important to note that a flow near such hyperbolic points
is purely extensional. The hypothesis is that the decrease in U (in the nematode
case, at least) is mostly likely due to the sudden increase of elastic stresses near the
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Fig. 7.14 (a) Streamlines computed from instantaneous velocity fields of Newtonian (Re < 10−3)
and (b) polymeric (Re < 10−3;De = 3.0) fluids. Arrows in (a, b) indicate the flow direction and
the box in (b) shows a hyperbolic point in the flow

regions of high velocity gradients such as hyperbolic points. Near such regions, the
extensional viscosity of a solution of flexible polymers can be orders of magnitude
larger than a Newtonian fluid, resulting in an additional resistance to fluid transport
and swimming.

In summary, experiments with the nematode C. elegans show that fluid elasticity
can hinder its swimming speed. Further, it appears that the nematode’s swimming
speed decreases with increasing fluid elasticity, that is, U decreases as the Deborah
number is increased. This trend is predicted by both numerical simulations [89, 93]
and theory [83, 107], but the agreement is only qualitative. Hence, there is plenty
of room for refining the experiments, theory, and simulations. It is clear that
knowledge of the flow fields is important in determining how fluid elasticity
(and other rheological properties) affects the organism’s swimming kinematics and
dynamics. In the case of complex fluids in particular, one is interested in the
interactions between the fluid microstructure (e.g., polymer molecules, networks)
and the flow fields produced by swimming microorganisms. (Of course different
swimming kinematics usually result in different flow fields.) In the next section, we
will discuss the undulatory swimming of C. elegans in non-dilute (i.e., semi-dilute
and concentrated) solutions, where polymer networks rather than single molecules
are of interest.

5.2.3 Swimming Experiments with C. elegans: Beyond the Dilute Regime

In this section, we will briefly discuss the swimming behavior of C. elegans in semi-
dilute and concentrated polymeric solutions. Such solutions are characterized by the
formation of polymer networks. The interplay between the fluid’s internal structure
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(e.g., polymer networks) and self-propulsion is critical to many biological pro-
cesses such as reproduction [116], bacterial infection [117], and biodegradation in
soil [118]. Early experimental observations have revealed that polymer networks can
enhance the swimming speed of flagellated bacteria moving in solutions containing
long-chain polymer molecules [119, 120]. For these small organisms (L < 10μm),
it has been argued that the main mechanism for this propulsion enhancement is
due to the benefits of pushing against a quasi-rigid polymer network [119, 121]. It
is worth noting that the exact mechanism responsible for the observed propulsion
enhancement is still not clear.

The role of the mechanical properties of fluid internal networks on an organism’s
swimming behavior has recently been investigated in numerical [121–124] and
theoretical [125] studies. Numerical studies of swimming in structured fluids have
postulated that the shapes and dynamics of internal networks are accounted for
by two effective anisotropic viscosities [121, 124], which qualitatively explain
some of the observed propulsion enhancement in microorganisms [119, 120]. Such
anisotropic viscosities, however, are difficult to measure and apply to quantita-
tive analysis. In heterogeneous, gel-like environments, modeled by embedding
stationary objects in an incompressible viscous fluid, the swimming speed of a
microorganism can be enhanced by the underlying structures in the fluid [125].
For internal networks made of small molecules, such as a binary blend of two
intermixed fluids, a two-fluid model predicts an enhancement in swimming speed
for stiff and compressible networks [122] and a reduction in swimming speed when
local distributions of volume fractions of the two phases scale differently for thrust
and drag [123]. Overall, the observed propulsion speed variations in these studies
underscore the important role of the fluid internal structures on the swimming
behavior of microorganisms.

But let’s see how the fluid internal structures, in this case polymer networks,
affect the swimming behavior of C. elegans; more details can be found else-
where [126]. Polymer networks are formed by controlling the concentration of the
biocompatible rodlike polymer xanthan gum (XG) in water. Polymer concentration
ranges from 300 ppm to 5,000 ppm by weight. These XG solutions transition from
the semi-dilute to the concentrated regime at a concentration of approximately
3,000 ppm [126]. This is made clear by plotting the solutions’ zero-shear viscosity
μ0 as a function of polymer concentration, as shown in Fig. 7.15a. Note that the
values of μ0 increase as the polymer concentration c is increased, as expected. But
we find a change in slope as the solution transitions from the semi-dilute to the
concentrated regime at a concentration of approximately 2,800 ppm. This transition
is commonly interpreted as a structural transition [127, 128]. In concentrated
solution, the shape and dynamic properties of polymer networks dominate flow
behaviors; in semi-dilute solution, the hydrodynamic interactions among individual
polymers dominate flow behaviors [128].

Effects of Polymer Networks on Swimming Speed Fig. 7.15b shows that U
remains relatively constant for polymer concentrations below 3,000 ppm. Surpris-
ingly, however, the data shows sudden increase in U for concentrations above
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Fig. 7.15 (Left) Xanthan gum’s (XG) zero-shear viscosity μ0 as a function of polymer concentra-
tion c. The values of μ0 increase with polymer concentration, as expected. The change in slope at
c ≈ 2,800 ppm is often associated with a structural transition. (Right) Nematode swimming speed
U as a function of concentration. Swimming speed exhibits a rapid increase as the solution enters
the concentrated regime at approximately 2,800 ppm

3,000 ppm. The values of U are maintained around 0.15 mm/s in semi-dilute
solutions (c < 2,800 ppm), but they quickly rise by 65 % to about 0.25 mm/s in
concentrated solutions (c > 2,800 ppm) despite a significant increase in solution
viscosity. As expected, the swimming speed ultimately decreases as the concentra-
tion is further increased due to the nematode’s finite power output [91]. A recent
theoretical work suggests that such increase may be due to the presence of polymer
networks in the media and that microorganisms may be able to push against
such quasi-static networks and move more efficiently [121]. However, because
of the large difference in length scales between the nematode (≈ 1 mm) and the
polymer networks (≈ 10μm), this notion does not adequately explain the observed
propulsion enhancement.

A possible explanation for this enhancement in U in concentrated solutions is
given in [126], in which the authors argue that the phenomenon is most likely due
to shear-induced fluid anisotropy. That is, the increase in U observed in Fig. 7.15b
is probably due to the anisotropic response of the fluid microstructure to applied
stress due to the nematode’s swimming motion. In short, the undulatory swimming
motion of C. elegans induces a structural anisotropy which leads to an increase in the
effective drag coefficient ratio Cn/Ct (see RFT equation in Sect. 1) and consequently
an enhancement in U .

The above results show that the nematode C. elegans can swim faster in con-
centrated solutions than in semi-dilute solutions. This is an unexpected result since
the fluid viscosity increases as polymeric solution transitions from the semi-dilute
to the concentrated regime. This sudden increase in U is thought to be connected to
the anisotropic response of the fluid microstructure to applied shear stresses due the
nematode’s motion [126]. While intriguing, the proposed mechanism is speculative
due to the difficulty to measure or visualize the polymer microstructure during
swimming. In these cases, numerical simulations and theoretical calculations can
provide much needed clarity and understanding to the problem.
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5.2.4 Swimming Experiments with C. elegans: Final Remarks

In this section, we discussed the swimming behavior of the nematode C. elegans in
Newtonian and viscoelastic (i.e., polymeric) fluids. For dilute polymeric solutions,
experiments show that fluid elasticity hinders the swimming speed of nematodes by
40 % compared to Newtonian fluids. The swimming speed is also shown to decrease
as elasticity (i.e., Deborah number) increases. On the other hand, for concentrated
polymeric solutions, the presence of polymer networks seem to enhance swimming
speed by as much as 65 % when compared to semi-dilute and dilute polymeric
solutions. These results underscore the importance of the fluid microstructure and its
interactions with the applied stresses generated by the swimmer. Perhaps the main
message so far is that it is difficult to quantitatively describe a priori the motility of
microorganisms in complex fluids without knowledge of the interactions between
the fluid microstructure and the applied stresses. It becomes clear that these non-
trivial interactions need to be accounted for in theoretical calculations and numerical
simulations.

5.3 Fluid-Assisted Locomotion in Complex Fluids:
Artificial Swimmers

As shown above, fluid elasticity can significantly affect the swimming behavior of
live organisms. In this section, we will explore a different, and perhaps simpler,
question: Can fluid elasticity enable propulsion?

To answer the above question, one needs to think back to the “scallop theorem,”
which tells us that only nonreciprocal deformations of the swimmer can break
time-reversal symmetry and result in net motion [1]. The main assumptions of the
theorem is that the swimmer is moving at low Reynolds numbers (Re < 0.1) and
that the fluid is purely viscous or Newtonian. So, in order to break the “scallop
theorem” or kinematic reversibility one needs to increase the amount of inertia
in the system (i.e., increase Re) or alternatively use fluids that possess nonlinear
rheological behavior. In this section, we will review recent experiments [92] in
which artificial particles with reciprocal swimming strategies are able to break the
scallop theorem once immersed in complex fluids. The experiments focus mainly
on the role of viscoelasticity, and two main types of fluids will be used: (i) dilute
polymeric solutions [92] and (ii) wormlike micellar (WLM) solutions [129].

Before we begin, it is worth noting that the possibility that fluid elasticity can
enable rather than modify propulsion circumventing the scallop theorem is still
largely unexplored. Propulsion enabled by fluid elasticity has been predicted for
the three special cases of reciprocal motion: a flapping surface extending from a
plane [130, 131]; a sphere which generates small-amplitude sinusoidal motion of
fluid along its surface [8]; and a “wriggling” cylinder with reciprocal forward and
backward strokes at different rates [88]. However, there remains little experimental
demonstration, and such propulsion of free, finite-amplitude swimmers has been
seldom studied.
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Fig. 7.16 (a) Snapshot of the polar dimer. An epoxy bead is attached to a steel wire to form polar
(asymmetric) dimers. (b) Top view of the experiment. Two aligning electromagnets at constant
current are orthogonal to two driving magnets, controlled by a computer. (c) The dimer with
magnetization m experiences torque τmag to align with the magnetic field. Dimer orientation â
oscillates around 〈â〉, which is parallel to Balign

5.3.1 Experiments with Reciprocal Swimmers: Can Fluid Elasticity
Enable Propulsion?

Here, we briefly discuss recent experiments [92,129] in which a single rigid object,
in this case a dumbbell particle or dimer, is actuated in a reciprocal manner in very
viscous fluids. In the experiments, the dimer such as the one shown in Fig. 7.16 is
immersed in a fluid and repeatedly reoriented by a magnetic field. The effects of
inertia are absent due to the high fluid viscosity (∼ 10Pa · s), resulting in Re �
0.1 comparable to that of a swimming microorganism. By applying only magnetic
torques, the apparatus reciprocally actuates just one degree of freedom in the system,
the dimer’s orientation â. For a purely viscous Newtonian fluid at low Reynolds
numbers, the authors found no net motion because â(t) is cyclic; this is as expected.

Experimental Setup Before diving into the discussion, let us briefly describe the
experimental setup. More details can be found elsewhere [92, 129]. The artificial
swimmer is a polar (asymmetric) dimer (Fig. 7.16a); symmetric dimers are also used
for control but no net motion is expected. The polar dimer consists of a piece of
carbon steel wire of length 2Rdimer = 2.5–3mm and diameter 230μm, with an epoxy
bead of diameter 2Rdimer ∼ 500μm at one end. The dimer is then immersed in a
fluid bath that is surrounded by four electromagnets; a schematic of the apparatus
is shown in Fig. 7.16b. The dimer has orientation â and is magnetized with moment
m = âm, so that a uniform magnetic field B reorients it with torque ømag = m×B,
as depicted in Fig. 7.16c.

Working Fluids The dimer is immersed in a container (50 mm tall, 30 mm in
diameter) of either Newtonian or viscoelastic fluid (Fig. 7.16b). The Newtonian
fluid is a 96 %-corn syrup aqueous solution (by mass) with a kinematic viscosity
μ/ρ of approximately 4×104 cSt. Two viscoelastic solutions are prepared: a dilute
polymeric solution and a WLM solutions. The polymeric solution is made by adding
0.17 % (by mass) of high-molecular-weight polyacrylamide (PAA, MW = 1× 106)
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to a viscous Newtonian solvent (93 %-corn syrup aqueous solution). The solution
has nearly constant shear viscosity of approximately 50Pa · s and a relaxation time
λ of approximately 2 s.

The WLM solution is prepared by slowly adding 130 mM hexadecyltrimethy-
lammonium bromide (CTAB) to an aqueous solution of 130 mM sodium salicylate
(NaSal). This type of WLM solutions is known to form long wormlike micelles that
continuously break and reform due to thermal fluctuations leading to viscoelastic
stress relaxation. The relaxation time λ of the WLM solution is approximately
1.5 s [129]. Here, the Deborah number is defined as De fdriveλ .

Swimming with Reciprocal Motion Now that the methods are in place, we can
ask an important question: Can the nonlinear rheological properties of a given fluid
enable propulsion at low Re? Before we discuss the results, it is worth making
sure that artifacts that could lead to net motion are not being introduced in the
experiment. To that end, the investigators [129] calibrated their results against a
polar and symmetrical dimer immersed in a viscous Newtonian fluid with similar
shear viscosity as the polymeric and WLM solutions. As shown in Fig. 7.17a, they
found negligible net displacement, comparable to the effects of magnetic drift and
sedimentation when driving is turned off altogether.

Evidence of purely elastic propulsion is shown in Fig. 7.17b–d for the polar
dimer immersed in dilute polymeric (b) and WLM solutions (c, d). Overall, the data
show a striking contrast between performing reciprocal motion in Newtonian and in
complex, viscoelastic fluids. For example, Fig. 7.17b shows that in dilute polymeric
solutions, far from any boundaries, the polar dimer at De= 5.7( fdrive = 2.8Hz;Re =
1.2× 10−4) is able to achieve net motion at constant speed even under reciprocal
forcing. The same is true for the WLM solution (Fig. 7.17b, d). It is interesting to
note that, unlike the polymeric solution case, the swimming direction in the WLM
solutions seems to depend on De. For low elasticity values (De < 1), the particle
moves towards the bead while the particle moves preferentially towards the rod for
cases in which actuating frequency is approximately similar to the fluid relaxation
time (De ∼ 1). The dimer directional dependence on De in WLM solutions is still
not understood.

Fig. 7.17 Centroid trajectories from ◦ to + reciprocally actuated polar dimer (leftmost panel) in
Newtonian, dilute polymeric, and wormlike micellar (WLM) solutions at low and high Deborah
numbers. No appreciable net motion is found in the Newtonian case. Appreciable net motion is
found once small amounts of polymers or surfactants (WLM) are added to a Newtonian solvent
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Fig. 7.18 Dimer net displacement as a function of time. The reciprocally actuated dimer is
immersed in (a) polymeric and (b) wormlike micellar solutions. Shaded areas correspond to the
dimer drift due to small but finite magnetic gradients

Fig. 7.19 Dependence of mean propulsion velocity on Deborah (De) for a reciprocally actuated
dimer immersed in (a) dilute polymeric and (b) wormlike micellar (WLM) solutions

Figure 7.18a, b shows the net displacement for the dilute polymeric and WLM
solutions, respectively. Both cases show dimer displacements well above the noise
or drift level (shaded area). Clearly, a much larger displacement can be achieved
with the WLM solutions, although the mechanisms are still unknown. The data also
shows that the dimer can move either towards the bead (positive velocity) or towards
the rod (negative velocity) depending on the De as discussed above.

In order to gain further understanding on the effects of fluid elasticity on the
dimer motion, it is helpful to plot the displacement data as a function of De.
Figure 7.19a, b shows the dimer velocity as a function of De for the dilute polymeric
and WLM solutions, respectively. Recall that the positive velocity means that the
polar dimer is moving towards its bead and negative velocity means that the dimer
is moving towards its rod. For the polymeric solution case, the velocity increases
monotonically as a function of De. In fact, the velocity seems to obey a De2 scaling.

The effects of elasticity are less obvious for the WLM solutions. While it is clear
that the polar dimer speed increases as De increases, the velocity trend is more
complex. It seems that for low elasticity values (0 < De < 1, the trend and dimer
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swimming direction resemble the polymeric solution data. For De ≥ 1, the dimer
swimming direction reverses, and for De � 1 the dimer comes to a complete stop.
While the exact mechanisms leading to such behaviors in WLM solutions are not
well understood, the data underscore the rich nonlinear behavior encountered in
complex fluids.

In summary, we find that polar particles (dimers) undergoing reciprocal motion
can indeed achieve locomotion at low Reynolds numbers in complex, viscoelastic
fluids. This is fascinating because it opens the door for a new way to achieve
locomotion, one that relies on the fluid itself. For the case of dilute polymeric
solutions, the net motion achieved by the dimers results from elastic stresses due to
flow-induced changes in polymer conformation. These elastic stresses are history-
dependent and do not entirely cancel out over one forcing period, but instead have
a small rectified component that accumulates. In fact, Keim and Arratia [92] claim
that the combination of the fluid first normal stress difference N1 and the curved
streamlines produced by the actuated dimer leads to a volume force (or “hoop
stress”) that is able to displace the dimer. The proposed mechanism is reasonable
but it is yet to be validated. The picture is less clear for WLM solutions where
shear-bands are known to occur in addition to elasticity.

Finally, this type of work is a proof-of-concept for an artificial “swimmer”
that moves through complex fluids with only reciprocal actuation, a simple body
shape, and no moving parts—a less complicated design than for other propulsive
strategies [47, 132]. There may thus be a practical route to studies of collective
phenomena among large numbers of such particles. These principles could also be
applied to microfluidic pumps [130, 131] or to exploiting other types of nonlinear
fluid rheology. Further understanding of this effect and similar ones could greatly
simplify fabrication of microswimmers for many artificial environments or for
biological settings where viscoelasticity is ubiquitous.

6 Conclusions and Outlook

In this chapter, we discussed swimming in complex fluids. The discussion was
given from an experimental point of view and was centered on a few fundamental
experiments both in living and in artificial systems that we hope illustrate the
rich dynamics encountered by organisms moving in complex fluids, particularly in
viscoelastic fluids. Much of the investigations in viscoelastic fluids was driven by a
simple question: does elasticity hinder or enhance swimming speed?

Theoretical analysis on idealized swimming models, following the seminal work
of Taylor [27], showed that in general fluid elasticity hinders propulsion [83, 107].
Numerical simulations [89, 93], however, found that fluid elasticity could in fact
enhance propulsion under certain conditions (De ∼ 1). Experiments [90,91] seem to
confirm such predictions, at least qualitatively. For example, the swimming speed of
C. elegans effectively decreases once the organism is immersed in dilute viscoelastic
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fluids, while propulsion speed increased for De ∼ 1 in scale-up mechanical experi-
ments with helical bodies. In more concentrated polymeric solutions, the nematode
C. elegans showed a remarkable increase in speed for solutions possessing polymer
networks. (There are of course many other impressive experimental investigations
of swimming in anisotropic media such as liquid crystals [133–135] that could not
be covered here.) Overall we find that it is very hard to know a priori whether
fluid elasticity enhances or hinders the propulsion speed of microorganisms. In
fact, it may be an unfair question altogether as the answer depends on the type of
swimming kinematics (i.e., waveform) and the interactions of the swimmer with the
fluid microstructure (i.e., polymer or particles). That is, the local details may matter
quite a bit. Nevertheless, it is clear from both experiments and simulations that fluid
elasticity can significantly affect the motility behavior of microorganisms.

Parallel to these considerations, we also discussed an exciting avenue of new
developments, that is, the possibility of fluid-assisted propulsion. This type of
propulsion is driven by the nonlinear rheological properties of the fluid such as
viscoelasticity and formation of shear-bands. We showed that even for reciprocally
actuated polar particles, the extra elastic stresses of polymeric fluids can lead to
net motion at low Reynolds numbers. It is important to note that under the same
conditions, the same particle in a Newtonian fluid achieves no net motion due to
kinematic reversibility. These findings are exciting because such discovery opens
a new mechanism for the study of “active” particles and collective behavior in
complex fluids.

So where do we go from here? Of course there is still much to be done
and understood. The question of how microorganisms move in complex fluids
is still largely unanswered. We still do not know how microorganisms move in
rheologically complex materials that possess rate-dependent viscosity, yield stress,
and thixotropy. But a picture is starting to emerge, and it seems that the interaction of
the swimmer with the fluid microstructure is very important. That is not surprising
since microorganisms with different swimming kinematics will likely produce
different velocity fields in a given fluid, and the bulk response will be determined
by the way the fluid microstructure interacts with the velocity field. For example,
it is well known that extensional flows are more efficient in stretching and aligning
polymer molecules than shear flows, and swimmers that produce flows with a large
extensional component are dominated by the fluid extensional viscosity. On the
other hand, swimmers that produce large amounts of curvature may experience a
viscoelastic instability due to hoop stresses. So knowledge of the velocity field is
quite important, but equally important is how the molecules or particles respond to
the imposed velocity field. In a way, the swimmer may be thought of as a local
probe for fluid rheology. An exciting and important direction that would allow
us to gain a more complete understanding of swimming in complex fluids is to
determine how single polymer molecules, particles, and networks interact with
microorganisms. This direction will ultimately take us from the continuum to a
statistical mechanics description of the problem. The challenge lies in connecting
the statistical representation with the continuum (bulk) description.
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Finally, one can also ask the question of how multiple swimmers interact in
complex fluids. One would anticipate that the fluid microstructure will significantly
alter the way multiple microorganisms interact. The type of work is related to
the field of active matter or fluid in which “active” or live particles are present in the
fluid medium. Active fluids differ from their passive counterpart in that the active
particles have the ability to absorb and dissipate energy and to generate motion
and mechanical stresses in the fluid medium (see Chap. 9). Importantly, these active
particles can drive the system out of equilibrium even in the absence of external
forcing. Active fluids exhibit novel properties not seen in conventional (passive)
complex fluids such as large-scale flows and collective motion on length scales much
greater than the particle dimensions [136], anomalous shear viscosity [137], giant
density fluctuations [138], and enhanced fluid mixing [139]. While much recent
progress has been made, the dynamics and flow behavior (rheology) of such active
complex fluids are still poorly understood. In this case, one can take advantage of a
vast body of knowledge developed to understand passive complex fluids.
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Chapter 8
Theory of Locomotion Through Complex Fluids

Gwynn J. Elfring and Eric Lauga

Abstract Microorganisms such as bacteria often swim in fluid environments that
cannot be classified as Newtonian. Many biological fluids contain polymers or other
heterogeneities which may yield complex rheology. For a given set of boundary
conditions on a moving organism, flows can be substantially different in complex
fluids, while non-Newtonian stresses can alter the gait of the microorganisms
themselves. Heterogeneities in the fluid may also be characterized by length scales
on the order of the organism itself leading to additional dynamic complexity. In this
chapter we present a theoretical overview of small-scale locomotion in complex
fluids with a focus on recent efforts quantifying the impact of non-Newtonian
rheology on swimming microorganisms.

1 Introduction

Many microorganisms swim through fluids that display non-Newtonian charac-
teristics. For example, as spermatozoa make their journey through the female
reproductive tract they encounter several complex fluids including glycoprotein-
based cervical mucus in the cervix [1], mucosal epithelium inside the fallopian
tubes, and an actin-based viscoelastic gel outside the ovum [2, 3]. These complex
fluids often have dramatic effects on the locomotion of microorganisms. Human
sperm flagella beat with higher frequency but smaller amplitude and wavelength
in cervical mucus compared to semen. This results in roughly the same swimming
speed but along straighter paths due to a reduction of wobbling and end effects [1].
Sperm hyperactivation (larger amplitude, asymmetric beating patterns) increases
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the ability to penetrate viscoelastic fluids [4, 5]. Experimental evidence suggests
therefore that spermatozoa both passively and actively modulate their swimming
kinematics due to the presence of non-Newtonian stresses. In contrast, the bacterium
Helicobacter pylori actively modulates the viscoelastic properties of its environment
in order to move [6]. H. pylori lives in the human stomach and produces urease
which leads to a drastic reduction of viscoelastic moduli, allowing the bacterium to
swim freely.

In order to understand these, and related, effects, one must develop a theory
for locomotion in complex fluids. The equations of motion governing the flow of
most non-Newtonian fluids are nonlinear and hence classical Stokes flow methods
involving the superposition of fundamental solutions are invalid. As a result, useful
properties which constrain locomotion in a Newtonian fluid, such as the kinematic
reversibility of the field equations, break down in viscoelastic fluids. The presence
of time-dependent stresses, normal stress differences, and shear-dependent material
functions in complex fluids are able to fundamentally alter the physics of locomotion
[7, 8]. In this chapter we present a very general overview of the theoretical
framework used to describe the effect of complex fluids on the locomotion of
microorganisms. In Sect. 2 we elucidate the mathematical framework used to study
locomotion in fluids and review well-established principles governing swimming
in Newtonian fluids. In Sect. 3 complex constitutive relations are introduced and
considered in this framework. Section 4 presents analytical results obtained for
geometrically simple model swimmers in complex fluids, and comparisons with
numerical simulation and theory are made. Finally we close this chapter by offering
our perspective on the direction of research in this area in Sect. 5.

2 Locomotion in Fluids

Experience may furnish the reader with intuition on swimming in fluids but as
illustrated in the previous chapter of this book (Chap. 7), locomotion in fluids is
quite different for humans than it is for microorganisms. In this section we present a
mathematical definition of locomotion in fluids, elucidate what it means to swim in
a fluid if one is very small, and demonstrate consequences if the fluid is Newtonian.

2.1 Boundary Motion

In order to swim, a body undergoes (periodic) changes in its surface S(t) (see
Fig. 8.1). When in a fluid, this surface deformation leads to stresses exerted from the
fluid on the body and, in general, motion. Periodic deformations may be described
as deviations from a reference surface S0. The position, xS, of a point on the surface
of a swimmer, S(t), may be decomposed as
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S (t)

uS

S 0

U + W × rS

Fig. 8.1 Schematic representation of a general swimmer, adapted from Ref. [9]. A swimmer is
defined as body with whose surface deforms in time thereby effecting an instantaneous rigid-body
translation, U, and rotation, Ω

xS(t) = x0(t)+ rS(t), (8.1)

where x0 is a body-fixed position (the center of mass). The swimming gait of the
body is defined using a body-fixed frame as follows

rS(t) = R(t) · r(t), (8.2)

where the rotation operator, R, orients the reference frame as

dRik

dt
R jk =−εi jkΩk, (8.3)

in whichΩ is the angular velocity. Upon differentiation of the position of a point on
the body we obtain the velocity

dxS

dt
=

dx0

dt
+

dR
dt

·R� ·R · r+R · dr
dt

= U+Ω× rS +uS. (8.4)

Stresses imparted on the body by the fluid may lead to an instantaneous
rigid-body translation, U, and/or rotation, Ω , due to Newton’s second law. Math-
ematically, one can freely move between the lab frame and the body-fixed frame,
the sole difference being that the rigid-body motion of the body is either reflected
on the body or at infinity. In non-inertial frames, additional inertial forces have to
also be considered in general.

If a typical time scale of the periodic deformation is ω−1, for a body of size
L, and density ρb, in a fluid of dynamic viscosity η and density ρ , the Stokes
number,ρbωL2/η , determines the magnitude of inertial forces versus viscous forces
on the body. Similarly the ratio of gravitational body forces to viscous fluid forces
is given by the Archimedes number, Ar = gL(ρb −ρ)/ηω . For microorganisms of
sufficiently small length scales and which are close to density matched with the
surrounding fluid, we can ignore the inertial and body force terms and thus the body
is instantaneously force- and torque-free,
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F =

∫

S
n ·� dS = 0, (8.5)

L =

∫

S
rS × (n ·� )dS = 0, (8.6)

where the surface S is implicitly a function of time and the normal to the surface
n points into the fluid. The stress tensor � can be decomposed into an isotropic
and deviatoric part � = −pI+ � (see Chap. 2 in this book for more details). We
assume here the fluid is incompressible, ∇ · u = 0, and that the Reynolds number,
Re = ρωL2/η , is small and so any fluid parcel is in instantaneous mechanical
equilibrium

∇ ·� = 0. (8.7)

In a Newtonian fluid the deviatoric stress is linearly proportional to the strain-rate
tensor

� = η�̇ = η(∇u+∇u�), (8.8)

where � is the transpose. Upon substitution of this constitutive equation into Eq. 8.7
we have, together with incompressibility, the Stokes equations

η∇2u = ∇p (8.9)

∇ ·u = 0. (8.10)

The linearity of the Stokes equations allows the superposition of solutions and so
we can think of the problem of swimming as the sum of two, conceptually simpler
problems. In the first, a body is held fixed and so the boundary motion is due
only to the swimming gait u(xS) = uS. Because U = 0 and Ω = 0, there may
arise a non-zero hydrodynamic force, F1, and torque, L1, on the body (indicated
with a 1 subscript). In the second problem, conversely, an undeforming swimmer
with the same instantaneous shape is subjected to rigid-body motion and so
u(xS) = U+Ω× rS. This rigid-body motion leads to drag forces (indicated by a 2
subscript). The force and the torque on the body may be written as a linear equation

(
F2

L2

)
=−

(
RFU RFΩ
RLU RLΩ

)
·
(

U
Ω

)
, (8.11)

where the resistance tensors, RFU , RFΩ , RLU , and RLΩ connect the kinematics
to the force and torque. We write this relationship more compactly in terms of six-
dimensional tensors as F2 =−R ·U. Naturally, since swimming is force- and torque-
free, we must have F1 +F2 = 0, (essentially thrust balances drag) and so the rigid-
body-motion arising during free swimming is simply
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U =R−1 ·F1. (8.12)

This simple form belies the fact that we still must solve for both the hydrodynamic
forces F1 and the rigid-body resistance tensor R at each instant for a deforming
body, a considerable task even in a Newtonian fluid.

The rate of work (power) expended by a swimming organism by deforming its
surface in time in the fluid is instantaneously equal to the total energy dissipation
rate in the fluid exterior to S,

P =

∫

S
−n ·� ·udS =

∫

V
� : ∇udV. (8.13)

The contraction A : B ≡Ai jB ji in this chapter. If the fluid is Newtonian we may write

P =
η
2

∫

V
�̇ : �̇ dV. (8.14)

2.2 The Lorentz Reciprocal Theorem

Solving for the motion of the swimmer is complicated by the fact that the boundary
conditions are not fully prescribed but must satisfy the integral constraints of force-
and torque-free motion for all times. Stone and Samuel showed in Ref. [10] that
determining the rigid-body motion of the free swimmer, U and Ω , may be greatly
simplified by appealing to the Lorentz reciprocal theorem [11].

We denote u and � as the velocity field and its associated stress tensor for a
force- and torque-free swimmer of surface S, while û and �̂ the velocity field and its
associated stress tensor for a body of the same instantaneous shape subject to rigid-
body translation and rotation with speeds Û and Ω̂ . Each fluid is in mechanical
equilibrium ∇ ·� = ∇ · �̂ = 0 so by the equality of virtual powers

∫

V
∇ ·� · ûdV =

∫

V
∇ · �̂ ·udV = 0, (8.15)

where the volume of fluid V is external to the surface S with normal n into the fluid.
Invoking the divergence theorem we obtain

∫

S
n ·� · ûdS−

∫

V
� : ∇ûdV =

∫

S
n · �̂ ·udS−

∫

V
�̂ : ∇udV. (8.16)

Because the swimmer is force- and torque-free, the first term on the left-hand side
of Eq. (8.16) is zero and hence so is the second term on the left-hand side by
construction,
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∫

V
� : ∇ûdV = 0. (8.17)

The first term on the right-hand side of Eq. (8.16) may be expanded by using the
boundary motion on S from Eq. (8.4), meanwhile the stress tensor � = −pI+ �,
and so assuming the fluids to be incompressible

F̂ ·U+ L̂ ·Ω =−
∫

S
n · �̂ ·uS dS+

∫

V
�̂ : ∇udV. (8.18)

Here F̂ and L̂ represent the force and torque resulting from the rigid-body motion
of S. As we shall show, if both fluids are Newtonian, then the last term vanishes and
one is left simply with the swimming kinematics U and Ω as a function of known
quantities uS and the auxiliary rigid-body problem. For the purposes of this work we
will always assume that the fluid in the rigid-body problem is Newtonian, a dramatic
simplification that is without penalty. Taking �̂ = η̂ ˆ̇� we can write

F̂ ·U+ L̂ ·Ω =−
∫

S
n · �̂ ·uS dS+ η̂

∫

V
�̇ : ∇ûdV, (8.19)

where we have used the identity ˆ̇� : ∇u = �̇ : ∇û. Due to the linearity of the
Stokes equations we may write û = Ĝ · Û , �̂ = T̂ · Û while F̂ = −R̂ · Û (using
six-dimensional tensors for compactness, and so T̂ is [3× 3]× 6). The resistance
tensor takes the form

R̂ =−
∫

S

[
n · T̂

r× (
n · T̂)

]
dS. (8.20)

Substituting into the reciprocal theorem yields

−U · R̂ · Û =−
∫

S
uSn : T̂ · Û dS+ η̂

∫

V
�̇ : ∇Ĝ · Û dV. (8.21)

where uSn : T̂ · Û = uS
jniTi jkUk. Discarding the arbitrary vector Û and using the

symmetry of the resistance tensor R̂ [12], we finally arrive at a general integral
theorem for swimming

U = R̂−1 ·
[∫

S
uSn : T̂ dS− η̂

∫

V
�̇ : ∇Ĝ dV

]
. (8.22)

The volume integral in Eq. (8.22) only contributes if the fluid in the swimming
problem is not Newtonian and hence is a measure of the modification of the
swimming dynamics due to the presence of non-Newtonian stresses.

There remain two difficulties however: the first is that the surface S(t) is changing
and so the auxiliary rigid-body problem must be solved for all possible shapes; the
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second is the unknown integrand in the volume integral. We show below that both
difficulties may be tackled by taking a perturbative approach.

Note that the reciprocal theorem above may be extended to N swimmers by
taking S =

⋃
α Sα which gives

U = R̂−1 ·
[(

∑
α

∫

Sα
uSn : T̂ dS

)
− η̂

∫

V
�̇ : ∇Ĝ dV

]
, (8.23)

except now the tensors are 6N in size where N is the number of bodies.

2.3 Swimming in Newtonian Fluids

When swimming in a Newtonian fluid, Eq. (8.17) dictates that

∫

V
�̇ : ∇ûdV = 0, (8.24)

and so the velocity of the swimmer, as given by Eq. (8.22), reduces simply to

U = R̂−1 ·
[∫

S
uSn : T̂ dS

]
. (8.25)

This is a marked simplification because now the swimming motion, U = [U Ω ]�,
can be resolved without the knowledge of the entire flow field u, rather one must
simply ascertain the solution of the auxiliary field û and its associated stress tensor.
Swimming in a Newtonian fluid is therefore reduced to solving, pointwise, the stress
on a body of the same shape undergoing instantaneous rigid-body translation. We
observe that the term in the brackets is simply the hydrodynamic force and torque
exerted by the fluid on the swimmer if it was held instantaneously in place (see
Eq. (8.12) for comparison). In practice one must solve the auxiliary problem of rigid-
body translation and rotation in a Newtonian fluid for each shape of S(t) for all time
t at a resolution desired for integrating the instantaneous velocity. Note that because
of the relationship between R̂ and T̂ , Eq. (8.25) implies that the locomotion of the
body is independent of the viscosity of the fluid. As an example, if the body is a
sphere of radius a, then the rigid-body problem is well known, the resistance matrix
is diagonal and hence easily invertible, R̂FU = 6πηaI, R̂LΩ = 8πηa3I, R̂FΩ = 0,
and R̂LU = 0, while n · T̂ =− 3η

2a [I 2Θ ] whereΘi j = εi jkrk. With these the swimming
speed for a sphere with only tangential deformations is given by

U =− 1
4πa2

∫

S

[
I

3
2a2Θ�

]

·uS dS, (8.26)

as shown by Stone and Samuel [10].
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Swimming gaits are typically periodic in time (with period T ), and often we are
only interested in the steady swimming speed given by a time-average of Eq. (8.25)

〈U〉=
〈
R̂−1 ·

[∫

S
uSn : T̂ dS

]〉
, (8.27)

where 〈U〉 ≡ T−1 ∫
T U dt.

2.3.1 The Scallop Theorem

Because the Stokes equations are linear and independent of time, time only enters
the problem as a parameter in the boundary conditions and the locomotion is
instantaneously linear in uS (Eq. 8.25). This has two profound implications for
locomotion in Newtonian fluids. The first is that the rate of actuation of the
boundaries is irrelevant to the distance traveled over a period—in other words it
does not matter if the actuation rate is fast or slow over a period [7]. This is
because re-parameterizing time t ′ = f (t) changes the velocity uS → ḟ u′S but also the
interval dt → ḟ−1dt ′ to no net effect. This also implies that if a swimmer reverses
its sequence of shapes after a period it goes back to where it started, regardless
of the rate of motion. Finally if a swimmer goes through the same sequence of
shapes whether forwards and backwards in time (time-reversible) then it will have
no net motion. More precisely stated, if the deformation of the swimmer shape over
a period, t2 − t0, is such that there exists a t1 ∈ (t0, t2) where the sequence of shapes
after t1 is exactly reversed, then the net motion is zero [8]. We can show this by
invoking Eq. (8.27) as follows:

〈U〉= 1
t2 − t0

∫ t2

t0

∫

S(t)
uSn : T̂ · R̂−1 dS dt, (8.28)

=
1

t2 − t0

[∫ t1

t0

∫

S(t)
uSn : T̂ · R̂−1 dS dt +

∫ t2

t1

∫

S(t′)
u′Sn : T̂ · R̂−1 dS dt ′

]
,

=
1

t2 − t0

[∫ t1

t0

∫

S(t)
uSn : T̂ · R̂−1 dS dt +

∫ t0

t1

∫

S(t)
uSn : T̂ · R̂−1 ḟ−1 dS ḟ dt

]
,

= 0.

This statement is often called the scallop theorem because the physical actuation
of a scallop was used by Purcell to first elucidate this principle [7] (for a detailed
mathematical treatment see [13]). The scallop is an example of a swimmer with only
one degree of freedom, namely its hinge. In general, if a body has only one degree of
freedom it can only execute time-reversible motion if it is to perform a cyclical gait
and thus no such body can swim in a Newtonian fluid in the absence of inertia [9].

This impediment means often that the simplest designs of swimmers in the
inertial realm, for example, objects with a rigid flapping tail, cannot locomote at
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small scales in Newtonian fluids. We will see below that in non-Newtonian fluids,
the mathematical details which lead to the scallop theorem, namely linearity and
an independence of time, are no longer present and time-reversible swimmers can
generally self-propel.

2.4 Small-Amplitude Motion

When a swimming motion results from small deformations of a body from a
reference surface S0, as is the case for ciliated organisms [14], one can describe
this motion theoretically by writing

rS = R ·
[

r0 +∑
m
εmrm(r0, t)

]
, (8.29)

where ε � 1 is a dimensionless measure of the gait amplitude. The position of a
point on the reference surface xS0 = x0 +R · r0 and xS − xS0 = εR · r1 +O(ε2).
Such a gait presents several mathematical advantages for calculating the swimming
kinematics. In general, in order to use the reciprocal formulation, one must know the
solution to the auxiliary problem �̂ for all S(t), which is typically impractical for
a nontrivial gait. When S(t) deviates only slightly from S0 we can, through Taylor
series expansions, recast the problem onto S0 [15,16]. As the shape of S0 is invariant
in time we then need only the resolution of a single auxiliary problem. Furthermore,
as discussed below, by posing the problem as a perturbation expansion in ε we are
able to tackle the constitutive relationships in a systematic fashion.

2.4.1 Recasting the Problem onto S0

The swimming gait, uS(xS), represents motion of the material points, xS, on the
swimmer surface. To represent the boundary condition on a surface, S0, which is
not material, we Taylor expand the flow field u,

u(xS) = u(xS0)+ (xS − xS0) · ∇u|xS
0
+O(ε2), (8.30)

⇒ u(xS0) = U+Ω×R · (r0 + εr1)+uS − ε(R · rS) · ∇u|xS0 +O(ε2), (8.31)

where we have used u(xS) = U+Ω ×rS +uS and where |xS0 means that derivatives
are evaluated at xS0 . The first two terms in Eq. (8.31) represent rigid-body rotation
of the undeforming surface S0, and the remaining terms are the boundary condition
that one must impose on S0 to obtain the appropriate solution on S. We refer to these
terms as uS0 , the swimming gait defined on S0, and so write

u(xS0 , t) = U+Ω× rS0 +uS0 , (8.32)
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where rS0 = R · r0 and

uS0 = ε
{

R · dr1

dt
+Ω × (R · r1)− (R · r1) · ∇u|xS0

}
+O(ε2). (8.33)

This formulation leads to a swimming problem defined entirely on S0 which satisfies
the correct boundary conditions on S.

In order to solve for the swimming kinematics, we then apply the reciprocal
theorem on S0 (namely assuming a rigid-body translation and rotation of S0 for the
auxiliary field). The motion of a point on S0 in the swimming problem is given by
u(xS0) = U+Ω × rS0 +uS0 while for rigid-body motion û(xS0) = Û+ Ω̂ × rS0 . In
the swimming problem the force and torque on S are both zero and because the fluid
stress in the volume between S0 and S is divergence free, ∇ ·� = 0, the total force
and torque on S0 must also be zero. Applying the integral theorem for swimming,
Eq. (8.22), on the surface S0 we get

U = R̂−1 ·
[∫

S0

uS0n : T̂ dS− η̂
∫

V0

�̇ : ∇Ĝ dV

]
. (8.34)

The great benefit of this approach is that one need only resolve the rigid-body
translation for a single shape, that of the undeforming surface S0. Note that we do
not get something for nothing. In particular the swimming gait on S0, uS0 , depends
on gradients of the (unknown) flow field u and the rotation rate of the swimmer Ω .
However, because these terms are O(ε) upon a perturbation expansion they will
vanish to leading order.

3 Locomotion in Non-Newtonian Fluids

The motion of a swimming body in a viscous fluid is characterized, in general, by the
integral relationship given by Eq. (8.22). In a non-Newtonian fluid, the expression
for the deviatoric stress, �, is not linear in the strain-rate tensor, �̇ , and hence the
term in brackets on the right-hand side of Eq. (8.22) will not vanish even as we
continue to take the auxiliary fluid to be Newtonian �̂ = η ˆ̇� . Let us assume for the
moment, for illustrative purposes, that the stress tensor may be decomposed into a
Newtonian contribution and an additional non-Newtonian part, � = η�̇ +A(x, t).
With this form of constitutive equation, Eq. (8.17) yields

∫

V
�̇ : ∇ûdV =− 1

η

∫

V
A : ∇ûdV (8.35)
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and so substitution into Eq. (8.22) leads to

U = R̂−1 ·
[∫

S
uSn : T̂ dS+

η̂
η

∫

V
A : ∇Ĝ dV

]
, (8.36)

or substitution into (8.34), for the problem recast onto S0, yields

U = R̂−1 ·
[∫

S0

uS0n : T̂ dS+
η̂
η

∫

V0

A : ∇Ĝ dV

]
. (8.37)

Swimming in a non-Newtonian fluid involves the solution of a second integral
which is, in general, a function of the complex flow field and may depend on the
history of the deformations S(t). For example, if the sequence of shapes is time-
reversible, then there may still exist net locomotion due to that non-Newtonian
integral, a breakdown of the scallop theorem [17].

The dissipation due to swimming would likewise be modified by nonlinearities as

P =
η
2

∫

V
�̇ : �̇ dV +

∫

V
A : ∇udV. (8.38)

In order to derive a more precise statement about swimming in non-Newtonian
fluids we have to specify a constitutive relationship that gives rise to non-Newtonian
behavior. For modeling purposes we assume here that the deviatoric stress tensor
can be decomposed into a sum of relaxation modes j,� = ∑�( j). We write the
relationship between each stress mode and the velocity field very generally as

A j�
( j) = η jB j�̇ +N j(u,�( j)), (8.39)

where η j is the zero-shear-rate viscosity for the j-th mode, A j and B j are linear
operators in time, and N j is a symmetric tensor which depends nonlinearly on the
velocity and stress and represents the transport and stretching of the polymeric
microstructure by the flow. This general constitutive relationship includes, in
particular, all classical models of polymeric fluids [9].

From this point forward it can be very difficult to make analytical progress
in large part because of the presence of the nonlinear operators N j. One way to
make progress in light of this difficulty is to consider the constitutive relationship
perturbatively. In this manner at each order, the nonlinear terms are functions of the
previous order solutions only. We detail this approach below.

3.1 Small-Amplitude Perturbations

As shown in Sect. 2.4, when the deformation of the body is small, ε � 1, one
can recast the problem onto a body whose shape is not deforming, S0 (recall that
ε is a dimensionless measure of the amplitude deformation of the surface S(t)).
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By employing perturbation expansions, the nonlinear non-Newtonian constitutive
equations are linearized order-by-order facilitating analytical solution.

Expanding all fields formally in a regular perturbation series, e.g., u =∑m εmum,
the boundary condition, Eq. (8.32), becomes at each order m

um(xS
0) = Um +Ωm × rS0 +uS0

m , (8.40)

where

uS0
1 = uS

1, (8.41)

uS0
2 = uS

2 +Ω1 × (R · r1)− (R · r1) · ∇u1|xS0 . (8.42)

The constitutive relation at each order m becomes

A j�
( j)
m = η jB j�̇m +N( j)

m [u1, . . . ,um−1], (8.43)

where N is a functional of previous order solutions, for example, N( j)
1 = 0 and

N( j)
2 ≡ N( j)

2 [u1].

3.1.1 Fourier Series

Given a swimmer with a time-periodic swimming gait, it is a reasonable assumption
to write the flow and stress fields as time periodic and expand them in a Fourier
series in time as

u =∑
n

u(n)einωt . (8.44)

As we shall describe below, this assumption means we neglect the influence of a
particular initial stress state in the fluid, but is suitable for determining the steady
swimming speed of a microorganism, and all harmonic oscillations around it. The
constitutive relationship for each Fourier mode, n, is

�( j,n) = η j
B j(n)

A j(n)
�̇ (n) +

1
1+A j(n)

N( j,n),

= η∗
j (n)�̇

(n) +A( j,n), (8.45)

where A j(n) and B j(n) are the characteristic polynomials of the differential oper-
ators (i.e., e−inωtA j[einωt ]) while A j(0) = B j(0) = 1. Summing over all relaxation
modes, j, we then have

�(n) = η∗(n)�̇(n) +A(n). (8.46)
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For each Fourier mode we thus have a linear response with complex viscosity,
η∗(n), and a nonlinear term which depends on the solutions at previous orders.

We may now decompose the boundary conditions into Fourier modes and solve
for the flow field order-by-order in ε using the aforementioned small-amplitude
expansion about the static surface S0. Upon substitution of (8.46) into the reciprocal
relationship for swimming, Eq. (8.37), we obtain, order-by-order,

U
(n)
m = R̂−1 ·

[∫

S0

uS0,(n)
m n : T̂ dS+

η̂
η∗(n)

∫

V0

A(n)
m : ∇Ĝ dV

]
, (8.47)

while the mean swimming speed is given by the zeroth Fourier mode, 〈U〉 = U(0),
and thus satisfies

〈Um〉= R̂−1 ·
[∫

S0

〈
uS0

m

〉
n : T̂ dS+

η̂
η∗(n)

∫

V0

〈Am〉 : ∇Ĝ dV

]
, (8.48)

where we have used the notation that η0 = η∗(0) is the zero-shear-rate viscosity.
The values of both η̂ and η0 do not affect U and so we may set η̂ = η0 for the sake
of convenience.

At leading order, m = 1, A1 = 0 and so the swimming speed, as shown by
Eq. (8.47), is the Newtonian one for all times. This is expected because we simply
have a set of Stokes equations for each Fourier mode

∇p(n)1 = η∗(n)∇2u(n)
1 . (8.49)

The velocity field is independent of the viscosity and identical to the Newtonian
solution. Furthermore, because the kinematics of the swimmer are periodic with
zero mean, by Eq. (8.48) the swimmer will have zero mean translation or rotation to
leading order. Using the integral equation to determine the kinematics of the body,

U(n)
1 and Ω (n)

1 , we may then proceed to solve the Stokes equations and obtain the
entire flow field, u1.

At second order, m = 2, one need not solve for the full velocity field, u2, in order
to find the mean swimming velocity 〈U2〉. One must simply compute the mean of

the nonlinear tensor A(0)
2 [u1] and the mean of the gait at second order,

〈
uS0

2

〉
=
〈
uS

2 +Ω 1 × xS
1(x

S
0, t)− xS

1(x
S
0, t) ·∇ u1|xS0

〉
, (8.50)

both of which depend only on the first order solution, u1.
Now consider a swimmer with a time-reversible gait. Such a swimmer will have

zero net motion in a Newtonian fluid as demonstrated in Sect. 2.3.1, and hence its
velocity in a complex fluid will be entirely determined by non-Newtonian stresses.
Consider for example a sphere with tangential surface motion only, a model known
as a squirmer. The shape is not deforming, and if the gait is time-reversible then〈
uS0

〉
= 0. The leading-order swimming speed is given by the integral



296 G.J. Elfring and E. Lauga

〈U〉= ε2 η̂
η0

∫

V0

〈A2〉 : ∇Ĝ · R̂−1 dV +O(ε4), (8.51)

where for a sphere

Ĝ · R̂−1 =
1

8πη

[(
1+ a2

6 ∇
2
)

G 1
|x|3Θ

]
, (8.52)

and G = 1
|x|
(

I+ xx
|x|2

)
is the Oseen tensor. We see that there is an O(ε2), strictly

non-Newtonian swimming speed which arises from the nonlinear terms in a given
constitutive relationship, A2. Because we chose a gait which does not locomote in a
Newtonian fluid, any net motion is then a measure of the non-Newtonian rheology
of the fluid. For a generic gait which achieves locomotion in a Newtonian fluid, there
is instead a non-Newtonian correction to the swimming speed at quadratic order in
amplitude.

3.1.2 Linear Viscoelasticity

Here we address an important point on locomotion in linearly viscoelastic fluids.
As we have seen, the swimming speed of a microorganism is Newtonian at linear
order in amplitude while non-Newtonian effects do not appear until quadratic order.
If the fluid is linearly viscoelastic then Am = 0 at all orders and hence the fluid
yields no change in swimming speed from that of a Newtonian fluid for prescribed
kinematics, as found in Ref. [18].

It is also typical for organisms executing time-periodic gaits to exhibit ε → −ε
symmetry. In such a case the Newtonian swimming speed itself is at least quadratic
in amplitude and hence it is desirable to keep nonlinearities in the constitutive
relation which would emerge at the same order as the swimming speed itself [19].

3.1.3 Transients

Specifying periodicity in time, as done above, neglects any transient regime in
which stresses and velocities evolve from an initial condition, {�(0),u(0)}, to
a periodic steady state. This simplification is desirable when we are concerned
with determining the time-averaged steady-state swimming speed of an organism.
Swimming organisms are however intrinsically unsteady organisms in the sense
that while the swimming gait may be periodic over a short period, the swimmers
may stop and start or change direction, as exemplified by bacteria executing run-
and-tumble motion [20]. Here we examine briefly the effects on locomotion of an
arbitrary initial stress state. We note that we will still assume that the swimmer is
instantaneously force-free, in other words that the inertial time scale is still much
smaller than the relevant relaxation time scale.
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Taking the Laplace transform of the constitutive relation, Eq. (8.39), we obtain

˜

A j�
( j)
m = η j ˜B j�̇m +

˜
N( j)

m , (8.53)

where the tilde indicates a unilateral Laplace transform f̃ (s) =
∫ ∞

0 f (t)e−st dt.
Rearranging and summing over all relaxation modes, j, we may write

�̃m = η∗(s)˜̇�m + Ãm + B̃m, (8.54)

where

η∗(s) =∑
j
η j

B j(s)

A j(s)
, (8.55)

Ãm =∑
j

1
A j(s)

˜
N( j)

m . (8.56)

The tensor B̃ represents the effect of the initial condition on the stress. For example,
if our fluid of interest is a single-mode Boger fluid [21], then for the Oldroyd-B
equations have A = 1+λ1∂t while B = 1+λ2∂t , where λ1 is the relaxation time
and λ2 is the retardation time, and hence

η∗(s) = η0
1+λ2s
1+λ1s

, (8.57)

Ãm =
1

1+λ1s
Ñm, (8.58)

B̃m =
λ1

1+λ1s
[�m(t = 0)−η0(λ2/λ1)�̇m(t = 0)] . (8.59)

In order to understand the effect the constitutive equation (8.54) has on locomo-
tion we appeal to the reciprocal theorem for swimming,

Um = R̂−1 ·
[∫

S0

uS0
m n : T̂ dS+ η̂

∫

V0

L −1
(

Ãm + B̃m

η∗(s)

)
: ∇Ĝ dV

]
, (8.60)

where L −1 indicates an inverse Laplace transform. Again we see that we need
not know the solution for the flow field at order m to determine the swimming
kinematics at that order. The nonlinear term, Am, is a function of the flow field
at previous orders while the tensor Bm consists entirely of the initial conditions.

At leading order the nonlinear contribution vanishes, A1 = 0. In an Oldroyd-B
fluid the contribution at leading order may thus be written as
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U1 = R̂
−1 ·

[∫

S0

uS0
1 n : T̂ dS+

η̂
η0

e−t/λ2

∫

V0

(
λ1

λ2
�1(0)−η0�̇1(0)

)
: ∇Ĝ dV

]
.

(8.61)

We see that the influence of the initial condition decays exponentially on the
retardation time scale of the fluid. That time scale needs then to be compared with
the other relevant time scales in each specific swimming problem.

3.2 Slowly Varying Flows

We have demonstrated the utility of small-amplitude deformations as a method
to probe the nonlinear effects of a particular non-Newtonian fluid in the context
of small-scale locomotion. A particular benefit of such an approach is that the
actuation time scales of the microorganisms can be arbitrary in comparison to
the relaxation time scales of the non-Newtonian medium in which they are
moving [9].

Conversely, one may be interested in gaits which do not display small-amplitude
motions but instead lead to slowly varying flows. In such cases, one can resort to
the use of the second-order fluid model which describes the first non-Newtonian
behavior in an expansion of stress in strain rate. In the weakly nonlinear regime the
deviatoric stress for almost all complex fluids can be represented by

� = η�̇ − 1
2
Ψ1

�
�̇ +Ψ2�̇ · �̇, (8.62)

whereΨ1 andΨ2 are the first and second normal stress coefficients [22, 23], and so

A =−1
2
Ψ1

�
�̇ +Ψ2�̇ · �̇. (8.63)

If we scale strain rates as �̇ = ω�̇ ′ and stresses as � = ηωτ ′, where ω is the
characteristic actuation frequency of the body, then we have in dimensionless form
(primes indicate dimensionless quantities)

�′ = �̇ ′ −De

( �
�̇ ′+B�̇ ′ · �̇ ′

)
. (8.64)

The Deborah number, De = ωΨ1/2η , is the ratio of the relaxation time scale of the
fluid compared to the time scale of actuation and B =−2Ψ2/Ψ1 ≥ 0.

If we now assume a regular perturbation expansion of the flow field in Deborah
number, u′ = u′

0 + Deu′
1 + . . ., then at leading order we have simply a Newto-

nian fluid

�′
0 = �̇0

′, (8.65)
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while at first order we have

�′
1 = �̇ ′

1 −
( �

�̇ ′
0 +B�̇ ′

0 · �̇ ′
0

)
≡ �̇ ′

1 +A′
1[u

′
0]. (8.66)

3.2.1 Locomotion

Using the above constitutive relation in the integral theorem for swimming (8.22)
we obtain

U ′ = R̂′−1 ·
[∫

S′
u′Sn : T̂ ′ dS′+De

∫

V ′
A′

1 : ∇′Ĝ′ dV ′
]
+O(De2). (8.67)

Hence in order to compute the O(De) correction to the swimming speed we need
only solve for the Newtonian flow field, u0(x).

Consider the counterrotation of two connected but different axisymmetric bodies
(e.g., two unequal spheres). Such a swimmer will not locomote in Stokes flow due
to the kinematic reversibility of the field equations but may have net motion in a
second-order fluid due to the O(De) term. Because we explicitly chose a gait which
would not swim in a Newtonian fluid, the rigid-body motion of the swimmer is given
by the non-Newtonian contribution only,

U ′ = De
∫

V ′
A′

1 : ∇′Ĝ′ · R̂′−1 dV ′+O(De2). (8.68)

The swimming speed is at best linear in Deborah number. The dimensional
swimming speed scales thus as U ∼ ωLDe, where L is the typical length scale.
Note this is invariant under a reversal of actuation ω → −ω (because De ∝ ω),
as expected due to the axisymmetry of the body. The Newtonian problem may not
be available analytically, but one could obtain the solution numerically using the
boundary integral method, for instance.

Now due to the symmetry of this body, we expect the only rigid-body motion to
be translation along the axis connecting the spheres. For this reason it is unnecessary
to compute the full resistance tensor. In order to find the swimming speed one needs
only to solve the auxiliary problem of rigid-body translation of the same body in the
direction of swimming and the integration reduces to

U ′ = DeR′−1
FU

∫

V ′
A′

1 : ∇′û′ dV ′+O(De2), (8.69)

where û′ = û/Û is the dimensionless flow field due to rigid-body translation along
the axis of rotation.
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3.2.2 Rheology

In the previous section we were able to construct locomotion which depended on
the presence of non-Newtonian stresses. Rather than calculating the swimming
speed for a known constitutive equation, we may use this technique instead to
infer unknown rheological properties, namely the normal stress coefficientsΨ1 and
Ψ2, of a fluid through experimental measurement of the swimming kinematics of
deforming bodies [24] based on theory proposed by Khair and Squires [23]. This
idea is summarized below.

One can recast Eq. (8.69) as a linear equation in the normal stress coefficients

U =
ω2L
η

[C1Ψ1 +C2Ψ2] , (8.70)

where

C1 =−1
2

R̂−1
FU

∫

V ′

�
�̇ ′

0 : ∇′û′ dV ′, (8.71)

C2 = R̂−1
FU

∫

V ′
(�̇ ′

0 · �̇ ′
0) : ∇′û′ dV ′, (8.72)

are so-called coupling coefficients, functions of the zeroth order solution, indepen-
dent of the non-Newtonian properties of the flow and hence are functions of the
geometry alone.

Since typicallyΨ1 � |Ψ2|, a reasonable approximation of the first normal stress
coefficient would be

Ψ1 ≈ ηU
C1ω2L

· (8.73)

By measuring swimming kinematics in a non-Newtonian fluid (one which does not
display net motion in a Newtonian fluid) we may thus obtain a good approximation
of the first normal stress coefficient.

In order to unambiguously determine both the first and second normal stress
coefficients, two independent measurements must be made. One may, for example,
devise another independent swimmer or one could measure kinematics other than
a swimming speed. An example of the latter would be to measure the relative
displacement of two equal counterrotating spheres. Experimentally this could be
accomplished by an axial coupling that transmits torque but allows free translation.
In such a case it is helpful to decompose the body as S = S1∪S2 where S1 and S2 are
the two sphere surfaces. By symmetry we expect only a relative displacement of the
spheres UR = U1 −U2 = 2U1, equal and opposite, along the axis of rotation (with
resistance to this motion, defined by R̂R

FU ) and so this is the only rigid-body motion
that needs resolution. By kinematic reversibility we know the rotation of the spheres
produces no net displacement in a Newtonian fluid so the reciprocal theorem yields
directly
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Fig. 8.2 (a) Two unequal
spheres rotating together as a
rigid body will move in the
direction of the smaller
sphere due to an imbalance of
hydrodynamic interactions
driven by viscoelastic stresses
[24]. (b) Experiments on two
rigidly connected spheres
rotating about an out-of-plane
axis leads to net viscoelastic
locomotion in the direction of
the larger sphere [25]

U

U

a b

U ′R = De
1

R̂′R
FU

∫

V ′
A′

1 : ∇′û′ dV ′+O(De2), (8.74)

where û′ = û/(ÛR/2) is the dimensionless flow field due to rigid-body translation
of two equal spheres away from one another with relative speed ÛR. With this
second kinematic measurement one has two equations for the unknown normal
stress coefficients of the fluid. We can write this simply in matrix form

(
U

UR

)
=

Lω2

η

(
C1 C2

CR
1 CR

2

)(
Ψ1

Ψ2

)
. (8.75)

The normal stress coefficients are obtained by inverting the matrix of coupling
coefficients, C. Practically, one may manipulate the geometries in the experiment
so as to minimize the condition number of C and hence the potential error in the
values of the normal stress coefficients obtained through the measurements of U
and UR which are subject to experimental error [23] (Fig. 8.2).

Although we have emphasized here experimental observation of the kinematics
of force- and torque-free bodies as means to decipher the normal stress coefficients,
one could alternatively directly measure the forces on bodies which move with
prescribed kinematics. In the method first proposed by Khair and Squires [23], one
would pull two equal spheres in the direction joining their two centers, U‖, in a first
experiment and in a direction orthogonal to the line joining their centers, U⊥, in a
second experiment, each time measuring the force on each sphere. The difference
between the forces on each sphere is then a measure of the non-Newtonian stresses,
because in each case these forces would be identical in a Newtonian fluid. The
suggested experimental method would be to trap two particles in a dual optical trap,
then translate the bulk fluid uniformly and measure the difference in the trapping
force on each probe [23].
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Alternatively Pak and Lauga proposed a setup involving force-free but not
torque-free spheres. In their model, two spheres are externally rotated together as
a rigid body about the axis connecting their centers. In that case the spheres will
impart a net torque onto the fluid and are thus not strictly swimmers. Nevertheless,
because the spheres impart no net force on the fluid, the equations for translation
precisely mimic those presented in this section for a force- and torque-free swimmer.
Physically, the direction in which such an object moves can be understood by
means of the hoop stresses generated along curved streamlines. A secondary, purely
elastic flow is created by each rotating sphere, contracting in along the equator of
each sphere and flowing out of the poles. Because the spheres are unequal in size,
hydrodynamic interactions due to this secondary flow are unbalanced leading to
propulsion in the direction of the smallest sphere. The same mechanism causes a
net drift when a single rotating sphere is placed near a wall in a viscoelastic fluid.
The rotating sphere drives fluid radially out in the direction of its poles and if a
no-slip wall is placed opposite of one pole, the sphere is driven away from the wall.

A similar object, two unequal spheres connected by a rigid rod, was used in
experiments by Keim et al. [25]. In that case the spheres oscillate together as a rigid
body about an axis orthogonal to the line connecting their centers. This motion is
time-reversible and hence does not yield time-averaged locomotion in a Newtonian
fluid, yet in a viscoelastic fluid there is net migration. These experiments also
demonstrated that a wall acts as a symmetry-breaking mechanism for the propulsion
of a dimer with equal spheres. Analytical studies have also indicated that time-
reversible motions of anchored bodies (flapping a rigid rod for instance) may pump
fluid [26,27] in a viscoelastic fluid when such net flow is not possible in a Newtonian
fluid due to the scallop theorem.

4 Infinite Models

In the previous section we looked at a formulation for the swimming speed based
on a modification of the reciprocal theorem for locomotion in a viscoelastic fluid.
Historically the simplest possible models for understanding swimmers in Newtonian
fluids have been infinite models with reduced dimensionality, in particular the
canonical Taylor swimming sheet [28]. Here again, the reciprocal theorem may be
used to solve for the swimming speed of a two-dimensional sheet and yield insight
into the effects of complex fluids interacting with nontrivial boundary actuation.

The analysis of the correction to the swimming speed of the swimming sheet
due to a non-Newtonian fluid was first performed by Chaudhury using a second-
order fluid (or Rivlin-Erickson fluid of grade 2) [29] and later by Sturges for a
second-order fluid of grade N [30]. In both cases no change in swimming speed was
observed in the zero Reynolds number limit. The analysis was then performed for
a variety of nonlinear non-Newtonian constitutive equations by Lauga [31]. There,
it was shown that, for fixed swimming kinematics, the swimming speed for the
swimming sheet systematically decreases compared to the Newtonian case for all
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Oldroyd-type fluids to leading order in small-amplitude waveforms. Subsequently
the same result was obtained for planar undulating filaments [32] and helical waves
[33] in Oldroyd-B fluids.

In the following we give an overview of the use of the reciprocal theorem to
obtain, in a direct fashion, the influence of complex flows on the swimming sheet in
a general waveform. We also derive viscoelastic corrections to the swimming speed
of a general sheet near walls.

4.1 Taylor Swimming Sheet

Consider a two-dimensional sheet which propagates traveling waves. In a frame
moving with the traveling waves the sheet has the static shape y1 = ag(ξ ) where g
is written very generally as

g(ξ ) =∑
n

cneinξ , (8.76)

with a being the dimensional wave amplitude and ξ = kx−ωt with wavenumber
k and frequency ω . In Fig. 8.3 we illustrate a sinusoidal swimming sheet which
has only one mode c1 = −i/2. Ostensibly the sheet generates vorticity which is
oppositely signed from peak to trough, and thus for a waveform traveling to the
right the fluid forces act to drive the sheet to the left [8].

The boundary conditions for an inextensible sinusoidal sheet were first described
by Taylor [28] and catalogued in detail in Ref. [34] for general waveforms.
Following Taylor, we take the approach that the amplitude of transverse oscillations
of the sheet is small and expand all fields a regular perturbation series in ak = ε� 1.
The boundary conditions are redefined onto the surface y = 0 (S0) through Taylor
expansion. Finally we introduce a no-slip wall at y = h, and by taking the limit
h → ∞ we will obtain swimming in an unbounded fluid. We take the auxiliary flow
to be simple shear flow between y = 0 and y = h, for which the reciprocal theorem
simplifies dramatically to give

U
ex

ey

Fig. 8.3 A sinusoidal swimming sheet propagates waves of transverse oscillation in a Newtonian
fluid (adapted from Ref. [8]). The grey arrows indicate the transverse oscillations of the wave
which travels to the right at speed ωk−1. The vorticity generated drives the sheet to the left at
speed U
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U =−uS0,(0)
x +

1
η0

∫ h

0
A(0)

xy dy, (8.77)

where uS0,(0)
x =

〈
uS0

〉 · ex while A(0)
xy = 〈A〉 : eyex (with basis vectors as shown in

Fig. 8.3). This framework can also be used for a sheet unequally spaced between
two walls at y = h1 and y =−h2, In that case, due to the lack of symmetry both the
upper and lower surfaces of the sheet and the volume of fluid above and below each
surface must be accounted for and the reciprocal theorem then yields

U =
1

h1 + h2

[
−h2uS1,(0)

x − h1uS2,(0)
x +

1
η0

(
h2

∫ h1

0
A(0)

xy dy+ h1

∫ 0

−h2

A(0)
xy dy

)]
.

(8.78)

Coming back to the one-wall case, we consider as an example an Oldroyd-B fluid
[22]. The complex viscosity is given by

η∗ = η0
1+ inωλ2

1+ inωλ1
· (8.79)

At leading order in ε , A1 = 0 and �
(n)
1 = η∗(n)�̇(n)

1 , while at second order

A(0)
2 =∑

q

[
η0

iqω

(
1− η∗(q)

η0

)(
∇u(-q)T

1 · �̇(q)
1 + �̇

(q)
1 ·∇u(−q)

1 −u(−q)
1 ·∇�̇

(q)
1

)]
.

(8.80)

Following the framework described in Sect. 3, we seek a perturbative solution to the
swimming speed as U(ε) = ∑εmUm and similarly expand all fields in powers of ε .
Referring to Eq. (8.77) one can find immediately that U1 = 0.

In order to obtain the swimming speed at quadratic order, U2, we must find the
nonlinear contribution at second order, A2, the boundary conditions, uS0

2 , and the
full leading-order flow field, u1. The mean of the boundary condition on S0 is given
by

uS0,(0)
2 = ωk−1∑

n
n2ϒ (nh)cnc†

nex, (8.81)

where ϒ (x) = (sinh2(x)+ x2)/(sinh2(x)− x2). In a Newtonian fluid the swimming
speed is given directly as

U2 =−
〈

uS0
2

〉
, (8.82)

and in particular when h → ∞ we have ϒ → 1. For Taylor’s swimming sheet
(c1 =−i/2) we recover the classical result,

U =−1
2
ωk−1ε2ex +O(ε4). (8.83)
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Resolving A2 in the Oldroyd-B case we have

1
η0

∫ h

0
A(0)

2,xy dy = ωk−1∑
n

[
1− η∗(n)

η0

]
n2cnc†

nϒ (nh). (8.84)

Here we see that the nonlinear forcing term, for each mode, is proportional to the
boundary condition on S0 at second order. With this result the swimming speed is
expressed as

U2 =−ωk−1∑
n

n2cnc†
nϒ (nh)

η∗(n)
η0

· (8.85)

Each component of the Newtonian swimming speed is therefore simply scaled by
the dimensionless viscous modulus. Now if the sheet is unevenly spaced between
two walls, at distances h1 and h2, application of Eq. (8.78) yields

U2 =−ωk−1∑
n

n2cnc†
n

h2ϒ (nh1)+ h1ϒ (nh2)

h1 + h2

η∗(n)
η0

· (8.86)

In both cases we see that the factor which differentiates the result from the
Newtonian swimming speed, namely that which arises strictly from non-Newtonian
stresses, is simply the dimensionless loss modulus for each mode

R

[
η∗(n)
η0

]
=

1+ n2βDe2

1+ n2De2 , (8.87)

where De = ωλ1 and β = λ2/λ1, β < 1 as it indicates the ratio of the suspending
solvent viscosity to total viscosity in the fluid. When De � 1, the fluid is probed
on time scales much longer than it takes to relax, and the Newtonian behavior is
recovered R[η∗/η0] → 1. When the Deborah number is nonzero the swimming
speed is always less than the Newtonian one. In particular in the De � 1 limit, we
obtain R[η∗/η0]≈ β and the swimming speed is simply a factor of the Newtonian
swimming speed, U = βUN .

The results obtained above indicate that in a Oldroyd-B fluid, each Fourier mode
in the swimming speed is rescaled by the respective (dimensionless) viscosity for
that mode. It may appear obvious that the linear response of the fluid should affect
the swimming speed but it is not. If the fluid were simply linearly viscoelastic there
would be no change in the swimming speed from that of a Newtonian fluid. It is
thus the nonlinear response that leads to change in the locomotion speed. As the
flow field scales linearly with the sheet amplitude, the first nonlinear correction
(the tensor A2) is at the origin of the modification in swimming. The tensor A2,
oddly enough, conspires to give the correction of rescaling by the linear viscoelastic
modulus.

For the sinusoidal swimming sheet originally considered by Taylor, the only
nonzero coefficient is c1 = −i/2 leading to a swimming speed of −ω/2k in a
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Newtonian fluid [28]. The viscoelastic correction to this result, R[η∗(1)/η0], was
first derived in Ref. [31]. The leading-order result is, written in a dimensional form,

U =−1
2

a2kω
1+βω2λ 2

1

1+ω2λ 2
1

+O(ε4). (8.88)

The swimming speed is no longer linear in the actuation frequency ω , rather it is
strictly decreasing with Deborah number from the Newtonian speed, U = UN as
De → 0, to U = βUN as De → ∞, as illustrated in Fig. 8.4.

The rate at which a certain gait is performed now has a direct impact on the
distance, ΔD, traveled over a period,

ΔD =−πa2k
1+βω2λ 2

1

1+ω2λ 2
1

, (8.89)

clear evidence of the breakdown of Purcell’s scallop theorem due to the presence of
viscoelastic stresses [33].
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Fig. 8.4 The leading-order viscoelastic swimming speed scaled by the Newtonian solution, U/UN ,
as a function of Deborah number, De = ωλ1, for a Taylor swimming sheet in an Oldroyd-B fluid
with β = 0.5. The swimming speed is Newtonian, U = UN , in the small Deborah number limit,
De → 0, while U = βUN as De → ∞
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Beyond kinematics, one might need to compute the power expended by the
swimming motion. The energy dissipated in the fluid due to the actuation of the
swimmer is given by an integration of �1 : �̇1 over the whole fluid domain. Because
the swimmer propagates periodic traveling waves, only the mean value is important
and it is given by

〈�1 : �̇1〉=∑
n
η∗(n)�̇(n)

1 : �̇
(−n)
1 . (8.90)

We see again that the only difference between the viscoelastic dissipation here and
that in a Newtonian fluid is the complex viscosity, η∗(n), for each Fourier mode in
comparison to ηN in the Newtonian fluid. Note that it matters, in a comparison of
the dissipation, what we choose the Newtonian dissipation to be. As shown above
as De � 1 (or n � 1) R[η∗(n)/η0]≈ β and a comparison to the energy dissipated
in a Newtonian fluid with viscosity ηN yields a factor of η0β/ηN which is less than
one if ηN = η0 (i.e., if we compare the dissipation in the complex fluid to that of a
Newtonian fluid of the same viscosity). If the Newtonian fluid has the viscosity of
the solvent in the Oldroyd-B fluid then ηN = βη0, and we see by comparison that the
viscoelastic energy dissipated is always higher, meaning the addition of elasticity to
a solvent always increases energy dissipation. This effect is diminished for higher
Fourier modes and at higher actuation rates and eventually, for De � 1, only the
solvent is dissipating energy as the network does not have time to flow [31].

4.2 Large-Amplitude Deformations

One of the interesting debates in the literature in the field concerns the question of
whether some swimming gaits could see a swimming speed increase in viscoelastic
fluids. It is obviously possible to construct a swimmer which has no net locomotion
in a Newtonian fluid yet displays net motion in a non-Newtonian fluid and we
discussed this strategy as a measurement technique to recover rheological properties
of a fluid. Less obvious is the effect on swimming speed for a gait that already
leads to nonzero net motion in a Newtonian fluid. We showed above that a
swimming sheet of arbitrary geometry will always swim slower in a viscoelastic
fluid. However, that result and the theory presented above rely on small gait
amplitudes in order to take advantage of perturbation expansions. Clearly, small-
amplitude theory need not hold for gaits that are significantly straining the fluid.

Recent experiments by Liu et al. [35] showed a modest increase in swimming
speed of a force-free (but not torque-free) rotating helix in a Boger fluid near De = 1
and showed that this enhancement is independent of end effects. In contrast, prior
asymptotic analysis by Fu et al. [33] showed that, like the swimming sheet, the
leading-order swimming speed (in a small-amplitude perturbation series) of a body
propagating helical waves in an Oldroyd-B fluid is always slower than in a non-
Newtonian fluid. This discrepancy between the small-amplitude asymptotics and
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large-amplitude experiments was resolved in numerical work by Spagnolie et al.
for a helix in an Oldroyd-B fluid [36]. They showed that there is a smooth tran-
sition between small-amplitude hindered swimming and large-amplitude enhanced
locomotion near De = 1. The authors argued that a reason the speed enhancement
occurs at an actuation rate that is on the same order as the relaxation rate of the fluid,
ω−1 ≈ λ1, may be because this is the time scale in which the flagellum revisits the
viscoelastic wake it creates upon rotation.

A question that one might ask is whether this mechanism translates to other
unsteady swimming gaits. Numerical simulations by Teran et al. [37] showed that
a finite two-dimensional swimmer, propagating deformation waves of increasing
amplitude head to tail, sees an increase in swimming speed near De = 1 in an
Oldroyd-B fluid with β = 1/2. The authors rationalize that the increase in swimming
speed results as a consequence of the highly strained fluid localized at the swimmers
tail. Alternatively, in a set of experiments with the nematode C. elegans swimming
in a Boger fluid, Shen and Arratia [38] found that non-Newtonian stresses strictly
decrease the swimming speed. This nematode swims by propagating traveling waves
with amplitudes which decay from head to tail. The functional dependence of the
swimming speed on the Deborah number in their experiments [38] is reminiscent of
the systematic decay found for a small-amplitude swimming sheet in an unbounded
fluid [31]. Indeed numerical simulations documented later in this book (Chap. 10)
show that if the gait of the nematode is reversed (reflection of the wavevector),
yielding an increasing amplitude head to tail, then the nematode would experience a
speed enhancement similar to the results presented by Teran et al. Additionally,
numerical simulations of potential squirmers [39] and pushers or pullers [40]
showed a speed decrease in a Giesekus fluid versus a Newtonian one.

In an effort to understand these large-amplitude results, we extend the small-
amplitude result for Taylor’s swimming sheet to higher order by deriving the next
two orders of the perturbation series for the swimming velocity, U = ε2U2 +
ε4U4 + ε6U6 +O(ε8) (the perturbation series contains only even terms because of
the ε → −ε symmetry). In a Newtonian fluid the first two terms were found by
Taylor [28], while the third was later derived by Drummond [41]. The series was
recently resolved to arbitrarily high order by Sauzade et al. [42] who showed that
the series converges only for small ε and then only slowly, but methods to accelerate
convergence prove very effective enabling accurate prediction up of the swimming
speed for order-one amplitudes.

The leading-order steady swimming speed in an Oldroyd-B fluid, U2, was
computed in Eq. (8.88). The next two nonzero orders in the asymptotic series, U4 and
U6, can be found with a straightforward, but laborious, application of the formalism
presented in this chapter. At fourth order we obtain analytically
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U4 = ωk−1

(
1+De2β

)

128
(
1+De2

)3 (
1+De2β 2

)

×
[

76+ 50De2 + 47De4 +De2 (102+ 29De2)β

+De2 (76+ 45De2 + 42De4)β 2 +De4 (107+ 34De2)β 3

]

, (8.91)

while at sixth order we find a much lengthier but still entirely analytical formula
(not shown).

The swimming speed found using a conventional sum of the first three terms
of the perturbation series for a Newtonian fluid is inaccurate past ε ≈ 0.5, but by
using the method of Padé approximants [43], with just three terms in the series, the
P1

1 (ε) approximate is accurate up to ε ≈ 1 (within 1% of the computational result
determined using the boundary integral method) [42]. We follow the same tactic
for the coefficients of the viscoelastic swimming speed based on the assumption
that the Padé P1

1 (ε) approximate is accurate for a larger range of amplitudes. In
Fig. 8.5 we plot the swimming speed scaled by the wavespeed, U ′ = U/ωk−1, as
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β = 0.75

Newtonian

De

U

Fig. 8.5 Dimensionless swimming speed, U ′ = U/ωk−1, as a function of dimensionless ampli-
tude, ε = ak, for a Taylor swimming sheet in an Oldroyd-B fluid. Plotted is the P1

1 (ε) Padé
approximate of a 3-term perturbation series valid up to O(ε6). The solid line shows the Newtonian
swimming speed, while the dashed line indicates the non-Newtonian result with β = 0.5 and
dashed-dot is β = 0.75, with Deborah numbers De = 0.5,1,1.5. The circles are numerical results
from boundary integral computation for De = 0. Viscoelasticity strictly decreases swimming
speeds in this range of amplitudes
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a function of dimensionless amplitude ε = ak. Under our modeling approach, we
see that viscoelasticity serves to strictly hinder the swimming speed of the sheet
even for dimensionless amplitudes on the order of ε = 1. This result is in agreement
with the experiments for the undulatory nematode but in contrast to numerical and
experimental work on the propulsion of a rotating helix.

Recent computational work confirms that the Taylor sheet is indeed hindered at
all amplitudes by the presence of viscoelastic stresses [44]. This was interpreted as
due to stagnation points in the stress near the peak and trough of the sheet, which act
to retard the motion of the sheet. Exploiting this insight, sheets asymmetric about
the horizontal axis, reminiscent of hyperactivated sperm flagella, may be constructed
which see a speed increase in an Oldroyd-B fluid [44].

Recent experiments using a cylindrical variant of a Taylor sheet do show a speed
increase in a Boger fluid (but not for a shear-thinning one) [45]. In these experiments
a Couette-like device has a flexible inner cylinder which passes angular traveling
waves of radial deformation while the outer cylinder rotates freely supported by low-
friction bearings and hence at steady state yields an approximation of a swimming
sheet near a wall. A noticeable speed increase is observed if a Boger fluid is used
instead of a Newtonian fluid for all wavespeeds but with an increasing difference
for larger wavespeeds—in stark contrast to the results for a planar sheet.

4.3 Shear-Dependent Viscosity

Many biological fluids through which microorganisms might swim, such as mucus,
are not only viscoelastic but also have shear-dependent viscosity. Studies on the
effects of a variable viscosity on the swimming speed of microorganisms, like those
of elasticity, show mixed results. Shen and Arratia’s experiments with C. elegans
show that shear-thinning fluids have no noticeable effect on swimming speeds [38].
In contrast, experiments on the cylindrical Taylor sheet show a marked decrease in
the swimming speed [45].

A recent theoretical study on the Taylor swimming sheet in a Carreau fluid was
undertaken by Vélez-Cordero and Lauga [46]. A Carreau fluid has a shear-rate-
dependent deviatoric stress given by

� = η0

[
1+λ 2

t |�̇ |2
]N

�̇, (8.92)

with |�̇ |2 = �̇ : �̇/2 and N = (n−1)/2 where n is the so-called power-law index for
the fluid and λt is the relaxation time of fluid. Physically, we see from Eq. (8.92) that
at high shear rates, the typical shear stress scales as τ ∝ γ̇n and thus the number n
is the power-law dependence in the stress/shear rate relationship at high shear rates.
If the typical shear rate in the flow scales as ω then the Carreau number Cu = ωλt

is a dimensionless measure of the extent to which the fluid viscosity is altered; if
Cu � 1 the fluid behaves as Newtonian with (zero-shear-rate) viscosity η0.
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In the small-amplitude study of Ref. [46] it was found that a shear-thinning fluid
has actually no effect on the swimming speed of the sheet if it deforms inextensibly.
If instead the motion of the material is extensible, then there is an additional higher
order non-Newtonian contribution, U −UN ∼±ε4NCu2, with a sign which depends
on the details of the waving kinematics. Recent numerical work at high amplitude
and for finite swimmers by Montenegro-Johnson et al. confirms that the (often weak)
effects of a shear-thinning fluid depend on the gait of the swimmer with examples
of both faster and slower swimming given for a variety of model swimmers [47,48].

In addition, we note that the swimming sheet model has also been used to address
swimming near a wall in shear-rate-dependent and yield-stress fluids [49–51]. In
these studies, it was assumed that the separation between the sheet and the wall was
much smaller than the wavelength of the sheet, hk � 1, thus taking advantage of the
long-wavelength lubrication approximation.

4.4 Prescribed Forcing

Instead of imposing the wave kinematics, an alternative modeling approach to the
problem of locomotion consists in prescribing the internal forcing which, through a
dynamic balance, leads to the deformation of the body. Fu and Powers investigated
theoretically the effects of viscoelasticity on the shape of a beating eukaryotic
flagellum [32]. Flagellar beat patterns are determined by an interplay between
the mechanical properties of the flagellum, the internal action from the dynein
motor proteins which produce active bending moment, and the hydrodynamic
forces [52]. Using a simplified sliding filament model for a sperm flagellum, the
investigation in Ref. [32] showed that the introduction of viscoelasticity into the
fluid can dramatically affect the shape of the waving flagellum.

One approach to model the impact of this change in kinematics on locomotion
is to consider the body of swimmer to be composed of a repeated series of
simple shapes, such as spheres. Najafi and Golestanian proposed the simplest such
swimmer which can locomote in Newtonian fluid [53], consisting of three equal
co-linear spheres with prescribed, periodically varying, relative displacements (as if
connected by hydrodynamically invisible rods of time-varying lengths). A system
of two such spheres cannot self-propel in a Newtonian fluid as it has but a single
degree of freedom, but with three spheres, one can produce time-irreversible motion
and swimming [53].

Curtis and Gaffney recently endeavored to determine the motion of the three-
sphere swimmer in an Oldroyd-B fluid [54]. In general the superposition of far-field
singularity solutions, which is the standard method to solve the N-sphere Newtonian
problem, is not possible in a viscoelastic fluid due to the nonlinearities in the govern-
ing equations. However, if the flow field is resolved as a perturbation expansion in
small-amplitude disturbances then the constitutive relation can be linearized order-
by-order. After expanding to quadratic order in small-amplitude motion (relative to
the sphere radii) and for prescribed kinematics, the net displacement over a period
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is found to be identical to that of a Newtonian fluid [54]. This surprising result,
at odds with the swimming sheet result, might be a consequence of the far-field
approximation. However, the simplicity of this model allows for a straightforward
implementation of prescribed-forcing case, rather than prescribed kinematics. In this
case, the relative forces exerted by each sphere on its neighbor are prescribed and
the gait and swimming kinematics are then determined. For prescribed forcing the
time-averaged swimming speed U differs from the Newtonian swimming speed UN

by a factor

U
UN

=
1+De2

1+β 2De2 , (8.93)

which is always greater than one since β ≤ 1. Prescribing the internal forcing of a
swimmer rather than its kinematics leads to a qualitatively different response and a
speed increase ensues. It will be interesting to extend this approach in the future to
more realistic models of swimming cells.

We close by also noting that numerical simulations performed using the
immersed boundary method by Chrispell et al. [55] involve specifying preferred
waving kinematics with the true kinematics then resolved as a balance between
elastic and fluid forces (in a sense, a hybrid between specifying kinematics and
specifying the internal forces).

4.5 Two-Fluid Models

Microorganisms may swim in environments where heterogeneities in the fluid
exist on length scales similar to the swimmers themselves. Berg and Turner
found propulsion enhancement in gel-like environments (methylcellulose solutions)
where the solute forms a loose, quasi-rigid network [56]. They postulated the
microorganisms could then push directly on this network and that a helical flagellum
would move as would a corkscrew through a cork, with less circumferential slip than
in a Newtonian fluid. In order to properly capture this behavior the material should
possess a nonzero zero-frequency elastic shear modulus, and the swimmer must be
able to slip past the solid medium.

Fu et al. used a two-fluid model to explore the effects of a cross-linked network
on the swimming speed of Taylor’s waving sheet [57] (illustrated in Fig. 8.6). In this
model a drag force density, proportional to the relative local velocity,

fd = Γ
(

d
dt

X−u
)
, (8.94)

couples the elastic network (displacement field X) to the Newtonian solvent
(velocity field u),

∇ ·� n = fd, ∇ ·� s =−fd, (8.95)



8 Theory of Locomotion Through Complex Fluids 313

a b

Fig. 8.6 Schematic representation of a Taylor swimming sheet in a two-fluid model fluid [57].
(a) in a dense network the sheet interacts directly with the elastic network; (b) if the network is
dilute the interactions between the sheet and the network are mediated through the fluid

where n indicates the network and s indicates the solvent. The friction coefficient
Γ introduces an intrinsic length scale into the problem typically known as the
screening length, ls =

√
η/Γ . The ratio of the screening length to the physical

length scale of the sheet, kls, is a dimensionless measure of the interaction between
the fluid flow and the network and as expected if kls � 1 then the sheet effectively
sees only a Newtonian fluid.

If the network is dense as illustrated in Fig. 8.6a, the sheet comes into direct
contact with the network which is then deformed while permitting tangential slip
via a Navier friction law

t ·� n(y = y1) ·n = Ξ t ·
(

d
dt

X−u
)∣∣∣
∣
y=y1

, (8.96)

with slip coefficient Ξ . If the network is dilute as illustrated in Fig. 8.6b, then no
contact is made and hence no traction is applied to the sheet, � n(y = y1) ·n = 0.

The rigidity of the network has a dramatic effect on the swimming speed, and stiff
networks enhance swimming speed compared to a Newtonian fluid while compliant
networks retard swimming speed, regardless of whether the network contact is direct
or solvent mediated [57]. If the network is considered immobile then the model
above reduces to a Brinkman fluid [58]. In this limit the swimming speed is seen to
be systematically enhanced by a factor

U
UN

=
√

1+Γ/(ηk2), (8.97)

as shown by Leshansky [59]. As expected if we take kls � 1 then the swimming
speed reduces to that in a Newtonian fluid.

A two-fluid model was also used by Du et al. to study two intermixed Newtonian
fluids of different viscosities [60]. In this case it was shown that swimming in a
mixture of two Newtonian fluids is always slower and less efficient than swimming
in a single viscous fluid.
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4.6 Collective Effects

When microorganisms are swimming close to one another, they may interact
hydrodynamically. Namely the presence of a flow field created by one organism
affects the dynamics of nearby swimmers and vice versa. Because the decay of
a low-Reynolds number flow field is often long tailed, hydrodynamic interactions
may significantly alter collective dynamics. For instance, dense suspensions of
microswimmers display transient ordered flow structures with much larger length
and velocity scales than the organisms themselves [61]. Hydrodynamic interactions
also enable synchronous flagellar beating for the alga Chlamydomonas, synchrony
that then facilitates directed locomotion [62].

Non-Newtonian fluids affect not only how microorganisms self-propel individ-
ually but also impact hydrodynamic interactions between microorganisms in close
proximity. A striking example of hydrodynamic synchronization occurs in the phase
locking of two (or several) spermatozoa flagella when they are near one another [63].
This synchronization leads to a speed increase of the group of cells and thereby a
competitive advantage.

Taylor first attempted to model synchronization in the Newtonian case by solving
for the hydrodynamic interaction between two sinusoidal sheets. He found that
energy dissipation in the fluid is minimized if the two sheets are oscillating with
no phase difference [28]. However, in this symmetric sinusoidal setup, there can be
no evolution of the phase from an arbitrary initial condition, due to the kinematic
reversibility of the Stokes flow-field equations [64, 65]. If two such sheets are
swimming in a viscoelastic fluid, such as those present along the path through
the female reproductive system, then kinematic reversibility no longer constrains the
dynamics. Two Taylor sheets are found to systematically synchronize to an inphase
conformation in an Oldroyd-B fluid [66].

Here again, the reciprocal theorem may be used to study the interactions between
two general sheets in a complex fluid. Taking into account the force-free motion of
both sheets we find that in an Oldroyd-B fluid the phase, φ , between two sheets
evolves in time as

dφ
dt

=−ε2ω∑
n

2cnc†
nnsin(nφ)C(nh)

G∗(n)
η0ω

, (8.98)

where C(x) = (xsinh x+ x2 coshx)/(sinh2 x− x2). The rate of sheet synchronization
is thus dependent on the elastic modulus of the of the fluid, R[G∗/η0ω ] = n2

(1−β )De/(1+ n2De2) where G∗(n) = inωη∗(n), rather than the viscous modulus
which affects the collective locomotion speed. Clearly, in a Newtonian fluid (De =
0) there is no evolution of phase in time while the addition of viscoelastic forces
(De 	= 0 and β 	= 1) leads to the evolution of all initial configurations to an in-phase
state, φ = 0 [34]. Similar results were recently demonstrated numerically [55], a
study that also addressed the transient evolution of stress from an initial condition.
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A variety of numerical and analytical studies have examined the evolution
of suspensions of swimmers in Newtonian fluids, as reviewed for example by
Saintillan and Shelley in the following chapter of this book (Chap. 9). Recent studies
have adapted the mean-field theories for suspensions in Newtonian fluids [67–70]
to quantify the impact of the addition of viscoelasticity [71, 72]. Specifically a
polymeric stress is incorporated into the mean-field description of the flow which is
forced by a configurational average of the force dipoles exerted by the swimmers
on the fluid. Under these conditions the stability of an isotropic suspension is
qualitatively unchanged for up De ≈ O(1) while showing significant variation for
larger Deborah number.

We finally note that the addition of swimmers (more generally, a suspension of
active particles) modifies the apparent rheology of the fluid when viewed from a
continuum perspective [73]. That swimmers should modify the bulk rheology of a
system is already clear by simply looking at the passive analogue. As discussed
earlier in this book (Chap. 3), a dilute suspension of rigid spheres leads to the
famous Einstein correction to viscosity [74], while the addition of Brownian motion
and weakly anisotropic particles leads to non-Newtonian rheological features [75].
Passive rod-shaped Brownian particles tend to align with imposed shear on average
and hence a suspension of rods, while possessing a larger zero-shear rate, displays
shear thinning at higher shear rates. The preferred alignment of the swimmers with
the shear direction then leads, in the active case, to additional stresslets imposed on
the fluid and further impact the rheological properties.

5 Perspective

Despite the fact that the first studies on the locomotion of microorganisms in non-
Newtonian fluids are over thirty years old, the bulk of the field has developed very
recently. In spite of recent progress in developing a theory to describe the effects
which non-Newtonian fluids have on swimming kinematics, many subtleties remain
to be parsed out. What we do know is that there is no simple answer as to the impact
of viscoelasticity on locomotion. Changes in the gait of a swimmer seem to lead
to drastic changes in the non-Newtonian effects. For example, when propagating
helical waves, a swimmer is retarded by a viscoelastic (Boger) fluid if the helical
amplitude is small but enhanced if the helical amplitude is large. In contrast, for
swimmers propagating sinusoidal undulatory waves, elastic stresses only serve to
slow it down regardless of the amplitude of the motion, yet if the amplitude is
increasing tip to tail on finite swimmers, a speed increase may yet be obtained.

In general complex fluids are both shear-dependent and viscoelastic, and biolog-
ical swimming gaits show a great deal of diversity. Developing an understanding of
the differences which arise amongst various gaits and the non-Newtonian response
of a particular fluid will lead to insight into the swimming strategies observed in
different natural environments. In particular, future work should help shed light on
how organisms passively or actively modulate their behavior to cope with complex
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stresses. This understanding may also lead to more effective designs of artificial
microswimmers for use in biological environments such as in therapeutic delivery
devices. As is often the case in physics, progress in this field so far has been achieved
through careful analysis of the locomotion of simple model swimmers which then
raises questions to be addressed by numerical simulation and experiment and we
hope that in the future, work will be also fueled by novel biological experimental
insights.
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Chapter 9
Theory of Active Suspensions

David Saintillan and Michael J. Shelley

Abstract Active suspensions, of which a bath of swimming microorganisms is a
paradigmatic example, denote large collections of individual particles or macro-
molecules capable of converting fuel into mechanical work and microstructural
stresses. Such systems, which have excited much research in the last decade, exhibit
complex dynamical behaviors such as large-scale correlated motions and pattern
formation due to hydrodynamic interactions. In this chapter, we summarize efforts
to model these systems using particle simulations and continuum kinetic theories.
After reviewing results from experiments and simulations, we present a general
kinetic model for a suspension of self-propelled rodlike particles and discuss its
stability and nonlinear dynamics. We then address extensions of this model that
capture the effect of steric interactions in concentrated systems, the impact of
confinement and interactions with boundaries, and the effect of the suspending
medium rheology. Finally, we discuss new active systems such as those that involve
the interactions of biopolymers with immersed motor proteins and surface-bound
suspensions of chemically powered particles.

1 Background

The emerging field of soft active matter has excited much research in the last decade
in areas as diverse as biophysics, colloidal science, fluid mechanics, and statistical
physics [7–9]. Broadly speaking, an active matter system consists of a large
collection of individual agents, such as particles or macromolecules, that convert
some form of energy (typically chemical) into mechanical work. This work, in turn,
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leads to microstructural changes in the system, either via direct contact interactions
or through long-ranged nonlocal interactions mediated by a suspending medium.
Dramatic manifestations of these interactions include spontaneous unsteady flows
on mesoscopic length scales, the formation of complex spatiotemporal patterns,
and the emergence of directed collective motion. A wide variety of biological and
physical systems fall into this broad definition, including (see Fig. 9.1): suspensions
of self-propelled microorganisms such as motile bacteria and microscopic algae
[10–12], the cell cytoskeleton and cytoplasm [13–15], solutions of motor proteins
and biological filaments such as actin [4] and microtubules [3, 16, 17], reactive and
driven colloidal suspensions [18–22], reactive emulsions [5], and shaken granular
materials [23, 24]. A central question in all of these systems is the relation between
the mechanics and interactions on the scale of individual particles and the ensuing
self-organization and collective dynamics on the system scale [25].

Of particular interest to us here are so-called wet active systems, or active
suspensions, in which the active particles are suspended in a viscous fluid and
long-ranged hydrodynamic interactions are important. Numerous experiments have
focused on the dynamics in suspensions of swimming bacteria. Some of the
observations that have been made on this system include: the emergence of

Fig. 9.1 Examples of soft active systems: (a) collective motion in a suspension of swimming
Bacillus subtilis, where arrows show the velocity field [1]; (b) dynamic clusters in swarms of
bacteria, where arrows show the direction of motion of the particles [2]; (c) spontaneous motion in
a suspension of microtubules and kinesin motors confined at a two-dimensional interface [3]; (d)
large-scale swirling motion in a suspension of actin filaments transported by wall-tethered myosin
molecular motors [4]; (e) swarming of self-propelling liquid droplets in a Hele-Shaw cell [5]; (f)
long-range order of vibrated polar disks on a two-dimensional substrate [6]. (Reproduced with
permission)
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complex chaotic flows on length scales much greater than the particle dimensions
and characterized by unsteady whirls and jets [10–12, 26, 27], enhanced particle
velocities [10], a transition to collective motion when the bacterial density exceeds
a certain threshold [11], local polar ordering [11], complex patterns and density
fluctuations [28], enhanced swimmer and passive tracer diffusion [29–32], efficient
fluid mixing [28,33,34], and bizarre rheologies created by particle activity [35–38].

The key ingredient to understanding how hydrodynamic interactions can yield
such phenomena is the fluid flow set up by an isolated swimming particle. Because
of their small sizes and the highly viscous environments in which they live,
biological swimmers such as bacteria and microphytes move in the realm of
low Reynolds numbers, where inertial forces are negligible and viscous stresses
dominate [39]. In this regime, typical macroscopic mechanisms for locomotion
are inefficient (or even inoperative) and novel strategies have evolved that are
based on so-called non-reciprocal shape deformations [40]. Common locomotion
mechanisms are based on the beating or rotation of flagellar appendages or the
propagation of metachronal waves on the surface of ciliated cells [39,41]. In the case
of flagellar propulsion, which is the typical mode of locomotion in motile bacteria
such as Bacillus subtilis and Escherichia coli as well as certain types of microalgae
including Chlamydomonas reinhardtii, the cyclic nonreciprocal deformation of the
flagella imparts a net propulsive thrust Fp on the surrounding fluid in the direction
opposite the net swimming motion, which we henceforth characterize in terms of
a unit vector p. As microorganisms are typically neutrally buoyant, or nearly so,
the net force on a particle must vanish in the limit of zero Reynolds number unless
an external field is applied, and therefore an equal and opposite viscous drag force
Fd =−Fp is also exerted on the fluid by the other parts of the organism (typically the
cell body). This simple description of the forces on a microorganism suggests that
their net effect on the suspending fluid is a force dipole, which drives a long-ranged
flow with slow 1/r2 spatial decay in three dimensions, where r is the distance from
the particle center. In the far field, the fluid velocity at relative position r from the
particle can be expressed as

ud(r|p) = S(p) : ∇J(r) (9.1)

in terms of the fundamental solution J(r) = (1/8πη)(I + r̂r̂)/r of the Stokes
equations or response to a localized point force [44]. In Eq. (9.1), η denotes the
viscosity of the fluid, and the second-order tensor S, called the stresslet, is the
symmetric first moment of the stresses exerted by the particle on the fluid and can
be obtained as S(p) = σ0pp. Its magnitude is given by σ0 = ±|Fp|�, where � is the
distance between the points of application of the thrust and drag forces and scales
with the particle length. The sign of σ0 depends on the position of the thrust and drag
forces relative to the swimming direction: σ0 < 0 for a pusher particle that exerts
a thrust with its tail (such as B. subtilis and E. coli), whereas σ0 > 0 for a head-
actuated puller particle (such as C. reinhardtii). A simple force balance on the cell
body and based on Stokes drag also shows that the stresslet is linearly related to the
swimming speed Vs of the particle as σ0 ∝Vsη�2. Schematic diagrams of pusher and
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Fig. 9.2 (a)–(b) Schematic diagrams of pusher and puller particles, of which E. coli and C.
reinhardtii are paradigmatic examples. The swimming direction is indicated by p, and the red
arrows show the direction of the induced fluid flow. (c) Experimental measurement of the flow
field near an individual E. coli, showing good agreement with an extensile dipole flow [42].
(d) Experimental measurement of the time-averaged flow field near an individual C. reinhardtii,
showing a complex flow in the near field and good agreement with a contractile dipole flow in the
far field [43]. (Parts (c) and (d) reproduced with permission)

puller particles and their flows are shown in Figs. 9.2a–b. It is interesting to note that
the notion of pushers and pullers is not limited to self-propelled particles. One can
indeed envisage a particle that exerts a force dipole on the fluid (σ0 	= 0) but does
not swim (Vs = 0), and so-called shakers, which can be either pushers or pullers,
have been proposed as a very basic model for the dynamics of suspensions of
microtubule bundles that extend in length due to motor-protein activity [3]. Immotile
force dipoles could also be produced by elaborations of the synthesis process that
produces the motile chemically-powered motors discussed in Sect. 4.2.

The elementary description of a swimming particle in terms of a force dipole has
been tested experimentally with relative success. As illustrated in Fig. 9.2c, Drescher
et al. [42] used particle-image velocimetry to measure the flow field around isolated
E. coli cells and found good agreement with the flow field predicted by Eq. (9.1)
with a negative stresslet, although strong noisy fluctuations were reported in the
far field where the velocity field is the weakest. Similarly, Guasto et al. [43] and
Drescher et al. [45] observed the flow field driven by C. reinhardtii: they uncovered
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a complex near-field flow structure that is best captured by a set of three off-centered
point forces (corresponding to the cell body and two anterior flagella), but confirmed
that the far-field flow can again be modeled as a dipole flow with a net positive
stresslet. Guasto et al. [43] also noted that the flow around C. reinhardtii is time-
periodic, with period equal to the duration of a swimming stroke, and in fact even
reverses direction over the course of one stroke: we will not consider such time-
dependence in the following discussion and only focus on the effect of the net
time-averaged flow. Recent theoretical models, however, have suggested that such
unsteady dynamics can lead to synchronization and novel instabilities as a result of
hydrodynamic interactions [46, 47].

Knowledge of the velocity field driven by an isolated particle forms the basis
for the modeling and study of hydrodynamic interactions between swimmers.
While this description has been used to consider pair interactions [48–50], it can
also be deployed to model large-scale suspensions. Hernández-Ortiz et al. [51]
developed a minimal swimmer model in which a self-propelled microorganism is
represented as a rigid bead-rod dumbbell. Propulsion arises as a result of a “phantom
flagellum” exerting a force on the fluid at an off-centered point along the swimmer
axis, causing the translation of the dumbbell at a velocity Vs = |Fp|/2ζ , where
ζ = 6πηa is the drag coefficient of each bead of radius a, and where hydrodynamic
interactions between the two beads have been neglected. Because the propulsive
force exerted by the flagellum is exactly balanced by the total drag on the dumbbell,
the leading effect on the fluid is again that of a force dipole. This model was
applied to simulate confined suspensions of many swimmers [51, 52], where it was
shown to capture many qualitative features observed in experiments on bacterial
suspensions, including enhanced diffusivities and large-scale correlated flows. More
elaborate simulation models have also been developed over the years, though at the
cost of increased computational complexity. This includes Pedley and coworkers’
Stokesian dynamics simulations of spherical squirmers [53], which propel as a
result of a prescribed surface slip velocity and are an appropriate model for ciliated
microorganisms. These simulations also showed enhanced motile particle and tracer
diffusion [54, 55], as well as the development of large-scale coherent structures
[56–58]. In recent work, we also developed detailed simulations of active sus-
pensions based on a slender-body model for hydrodynamically interacting rodlike
particles [59, 60]. In this model, the particles propel themselves by exerting a
prescribed tangential stress on some part of their surfaces, and both pusher and
puller particles can be modeled by an appropriate choice of the stress distribution.
In semi-dilute suspensions of pushers, large-scale chaotic flows taking place near the
system size were observed (Fig. 9.3), together with increased swimming speeds and
strong particle diffusion; no such dynamics were found in suspensions of pullers,
which always remained uniform and isotropic.

Such particle simulations are useful for testing models and for detailed compari-
son with experiments, but are often too costly to simulate systems of realistic sizes
and only yield limited analytical insight into the physical mechanisms involved.
Another approach, which circumvents these limitations, consists in modeling the
suspension as a continuum. Several continuum models have been developed for
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Fig. 9.3 Numerical simulation of a semi-dilute suspension of self-propelled slender-rods above
the onset of collective motion [59]: (a) snapshot of the particle distribution, showing coherent
dynamic clusters with local orientational order; (b) hydrodynamic velocity field in a plane.
(Adapted with permission)

active suspensions, using a variety of approaches. In a seminal paper, Simha
and Ramaswamy [61] extended phenomenological models for passive polar liquid
crystals to account for activity. They wrote down an evolution equation for the
polarization field n(r, t), which will be defined more precisely in Sect. 2.1, in
which terms accounting for self-propulsion, diffusion, and rotation by the mean-
field flow were included. This evolution equation was coupled to the Navier-Stokes
equations for the fluid motion, forced by an active stress term capturing the
effect of the force dipoles on the fluid. Based on this model, they predicted in
the Stokesian limit a long-wave instability of globally aligned suspensions. Other
phenomenological models have been proposed to account for additional effects such
as steric interactions, which are included via ad hoc terms constructed based on
symmetries [8, 12, 62–65].

In another related approach, which is the focus of this chapter, kinetic equa-
tions are self-consistently derived from a first-principles mean-field description of
interactions between particles using coarse-graining. Such a model was introduced
in our previous work [66, 67] and is based on a Smoluchowski equation for
the conservation of the particle probability distribution function, in which the
fluxes describe the linear and angular motions of the particles in the mean-field
hydrodynamic flow driven by self-propulsion. This flow is obtained by solution
of the Stokes equations forced by a coarse-grained active stress tensor similar to
that used in the model of Simha and Ramaswamy [61]. This coupled system of
partial differential equations can then be analyzed theoretically in the vicinity of
theoretically relevant base states, or integrated numerically to investigate dynamics
in the nonlinear regime. Extensions to include more complex effects such as an
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external flow [68], chemotaxis in a chemical field [69, 70], or steric interactions at
high concentrations [71] have also been described.

In this chapter, we review our recent theoretical work on the continuum modeling
of active suspensions. We begin in Sect. 2 by deriving a basic kinetic model
for a suspension of slender swimmers interacting via force-dipole hydrodynamic
interactions, where we show that the dynamics can be captured by a Smoluchowski
equation for the particle distribution function, coupled to the Stokes equations for
the fluid velocity in which the effect of the force dipoles on the flow is shown to
amount to an effective active stress. After discussing theoretical and computational
results on this model, a number of extensions are presented in Sects. 3 and 4, and
we conclude in Sect. 5.

2 A Simple Kinetic Model

2.1 Smoluchowski Equation

In this section, we present the basic kinetic model introduced in our previous
work [66, 67], which shares similarities with classic models for suspensions of
passive rodlike particles [72, 73]. A very similar theory for active suspensions was
independently proposed by Subramanian and Koch [74].

In the present model, we describe the configuration of the suspension at time t
in terms of the probability distribution functionΨ(r,p, t) of finding a particle with
center-of-mass position r and orientation p (with |p|2 = 1). It is normalized as

1
V

∫

V

∫

Ω
Ψ (r,p, t)dpdr = n, (9.2)

where V is the volume of the system, Ω is the unit sphere of orientations, and n =
N/V is the mean number density in a suspension of N particles. Conservation of
particle number requires thatΨ (r,p, t) satisfy the Smoluchowski equation [72]

∂tΨ +∇r · (ṙΨ)+∇p · (ṗΨ) = 0, (9.3)

where ∇p = (I − pp) · (∂/∂p) denotes the gradient operator on the unit sphere.
The flux velocities ṙ and ṗ describe the linear and angular motions of the particles
in the suspension. The linear velocity of a particle is expressed as the sum of the
single-particle swimming velocity Vsp (assumed to be unaffected by interactions)
and the local background fluid velocity u(r, t) and also includes a contribution from
translational diffusion with diffusivity D (assumed to be isotropic):

ṙ =Vsp+u−D∇r lnΨ . (9.4)

The rotational velocity of a swimmer is modeled as
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ṗ = (I−pp) · (βE+W) ·p− d∇p lnΨ . (9.5)

The first term on the right-hand side captures rotation of an anisotropic particle in
the local flow according to Jeffery’s equation [75], where E = (∇u+∇uT )/2 and
W = (∇u−∇uT )/2 denote the rate-of-strain and vorticity tensors, respectively. The
parameter β characterizes the shape of the particle, with β = (a2−1)/(a2+1) for a
spheroid of aspect ratio a and β ≈ 1 for a slender particle [76]. Rotational diffusion
is also included with diffusivity d.

Equations (9.4)–(9.5), and in particular the contributions from the mean-field
flow u(r, t), are strictly valid for a linear flow field and provide an accurate estimate
of the velocities if the characteristic length scale of the flow is much greater than the
particle size, a good approximation in a sufficiently dilute suspension. If velocity
variations on the scale of a particle are significant, these can be captured using the
more accurate Faxén laws for a slender body [77] or a spheroidal particle [44].

The physical origin of the diffusive terms in Eqs. (9.4)–(9.5) deserves some
discussion. While Brownian diffusion due to thermal fluctuations can be significant
in colloidal systems [19, 21], it is generally negligible in suspensions of biological
swimmers. As demonstrated in experiments [42,78], diffusion still occurs in biolog-
ical systems owing to shape imperfections or noise in the swimming actuation. In
a dilute suspension, these effects can be described in terms of constant diffusion
coefficients D0 and d0. We note, however, that rotational diffusion alone leads
to a random walk in space owing to its coupling with the swimming motion,
resulting in enhanced spatial diffusion at long times by a mechanism similar to
generalized Taylor dispersion [79, 80], with a net translational diffusivity given
by D = D0 +V 2

s /6d in three dimensions [60, 81]. In addition to diffusion due to
noise, fluid-mediated hydrodynamic interactions between particles can also result
in hydrodynamic diffusion in semi-dilute and concentrated systems. At fairly low
concentrations (n�3 � 1), a simple argument based on pair interactions suggests
that d ∝ n�3, from which D ∝ (n�3)−1 [74, 82], and such scalings have indeed been
verified in particle simulations [60].

While the distribution function Ψ(r,p, t) fully characterizes the configuration
of the particles in the suspension, it is often useful to consider its orientational
moments, which have easy physical interpretations. Of particular interest are the
zeroth, first, and second moments, which correspond respectively to the concentra-
tion field c(r, t), polar order parameter n(r, t), and nematic order parameter Q(r, t).
These are defined as

c(r, t) = 〈1〉, n(r, t) =
〈p〉

c(r, t)
, Q(r, t) =

〈pp− I/3〉
c(r, t)

, (9.6)

where 〈·〉 denotes the orientational average:

〈h(p)〉=
∫

Ω
h(p)Ψ(r,p, t)dp. (9.7)
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Evolution equations for c, n, and Q can be obtained by taking moments of the
Smoluchowski equation (9.3):

Dt c =−Vs∇ · (cn)+D∇2c, (9.8)

Dt(cn) =−Vs [∇ · (cQ)+ (1/3)∇c]+D∇2(cn)

+ (cIn−〈ppp〉) : (βE+W)− 2dcn,
(9.9)

Dt (cQ) =−Vs[∇ · 〈ppp〉− (I/3)∇ · (cn)]+D∇2(cQ)

+βc[E · (Q+ I/3)+ (Q+ I/3) ·E]
+ c[W ·Q−Q ·W]−2β〈pppp〉 : E− 6dcQ,

(9.10)

where Dt ≡ ∂t + u · ∇ is the material derivative. Unsurprisingly perhaps, these
equations involve the third and fourth moments 〈ppp〉 and 〈pppp〉 of the distribution
function and can therefore only be used together with a closure model, unlike the
more general and self-contained description in terms ofΨ(r,p, t). Several closure
models have been proposed in the past, usually based on various approximations
such as weak or strong flow or near isotropy (see references in Saintillan and
Shelley [9]) or by interpolating between such states [83].

2.2 Mean-Field Flow and Active Stress Tensor

Evolution of the Smoluchowski equation requires knowledge of the mean-field
hydrodynamic velocity in the suspension. While this velocity could include a
contribution from an external flow [68], we are primarily interested in the flow
driven by the suspended particles themselves as they propel through the fluid. In
a dilute suspension, the velocity u(r, t) can then be obtained as the superposition of
all the point dipole flows induced by individual particles. For a given distribution
Ψ(r,p, t), the velocity at point r is therefore expressed as a convolution:

u(r, t) =
∫

V

∫

Ω
ud(r− r0|p)Ψ (r0,p, t)dpdr0, (9.11)

where ud(r|p) is the single-particle dipolar flow given in Eq. (9.1). This single-
particle flow can be shown to satisfy the Stokes equations forced by a dipole
singularity as

−η∇2ud(r)+∇qd(r) = σ0pp ·∇δ (r), ∇ ·ud(r) = 0, (9.12)

where δ (r) is the three-dimensional Dirac delta function and qd denotes the
pressure. By combining Eqs. (9.11) and (9.12), it is straightforward to show that
the mean-field velocity u(r, t) and its associated pressure field q(r, t) satisfy
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−η∇2u(r, t)+∇q(r, t) =
∫

V

∫

Ω
σ0pp ·∇δ (r− r0)Ψ(r0,p, t)dpdr0, (9.13)

together with the incompressibility condition ∇ · u(r, t) = 0. After manipulations,
this can be rewritten

−η∇2u(r, t)+∇q(r, t) = ∇ · 〈σ0pp〉. (9.14)

The second-order tensor inside the divergence on the right-hand side is the local
configurational average of the particle stresslet: 〈σ0pp〉= 〈S(p)〉. Following classic
theories for the stress in particle suspensions [84, 85], it can be interpreted as an
extra stress induced by the particles, which we term active stress and define more
precisely as

Σ a(r, t) = 〈σ0(pp− I/3)〉. (9.15)

We have made the tensor traceless by removing an isotropic tensor that only
modifies the pressure but has no effect on the flow. It can be seen that the active
stress is related to the nematic order parameter as: Σ a(r, t) = σ0c(r, t)Q(r, t),
implying that active stresses vanish in the isotropic state and are caused by the
nematic alignment of the swimmers. We also note that the active stress has the same
tensorial form as the Brownian stress Σb(r, t) = 〈3kT (pp − I/3)〉 in suspensions
of passive rodlike polymers [72]. One significant difference, however, lies in the
sign of the stresslet strength σ0, which is negative for pusher particles. Note also
that the expression for the active stress tensor (9.15), which we derived here for a
distribution of point dipoles, is in fact more general and can be used for a suspension
of finite-sized axisymmetric particles such as swimming rods [9], though these
more detailed derivations yield additional contributions of higher order in volume
concentration [71, 86].

In the following, we find it useful to nondimensionalize lengths by the charac-
teristic scale lc = �/ν , where ν = N�3/V = n�3 is an effective volume fraction, and
time by tc = Vs/lc. The distribution functionΨ is also scaled by the mean number
density n. Upon these scalings, the dipole strength σ0 appearing in the active stress
tensor is replaced by a dimensionless signed coefficient α = σ0/Vsη�2. After non-
dimensionalization, the basic kinetic system is given by

∂tΨ + ∇r · (ṙΨ)+∇p · (ṗΨ ) = 0, (9.16)

ṙ = p+u−D∇r lnΨ , (9.17)

ṗ = (I−pp) · (βE+W) ·p− d∇p lnΨ , (9.18)

−∇2u + ∇q = ∇ · 〈αpp〉 and ∇ ·u = 0, (9.19)

whose nondimensional coefficients, aside from the shape factor β , are the signed
O(1) parameter α and the rescaled diffusion coefficients D and d.
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This model is very similar structurally to those developed by Doi and coworkers
to describe the dynamics of passive rod suspensions [72, 87]. The primary dif-
ferences are the additional contribution (i.e., p) to Eq. (9.17) for ṙ coming from
locomotion and that α > 0 for the dipolar extra stress in passive rod suspensions.
That said, the origins of the dipolar stress are very different in the two cases. For
active suspensions it arises from the swimming of pushers or pullers, while in the
passive case it arises from rotational thermodynamic fluctuations which we have
neglected here. For both passive and active systems, the existence of global “entropy
solutions” has recently been proved by Chen and Liu [88].

2.3 The Conformational Entropy

Much insight can be gained into the differences between pusher and puller
suspensions by consideration of the system’s conformational entropy [67], which
we define in terms of the distribution function as

S (t) =
∫

V

∫

Ω

Ψ
Ψ0

ln

(
Ψ
Ψ0

)
dpdr, (9.20)

whereΨ0 = 1/4π denotes the constant value ofΨ for a uniform isotropic suspen-
sion. It is straightforward to show that the entropy is a positive quantity and that it
reaches its minimum of zero only forΨ ≡Ψ0. The entropy S (t) therefore provides
a global measure of the level of fluctuations in the system, both orientational and
spatial. When linearized about the uniform isotropic state Ψ0, it reduces to the
squared L2 norm in r and p. Using the kinetic equations above, one can derive
an expression for its rate of change:

4π
d
dt
S (t) =− 6

α

∫

V
E : Edr−

∫

V

∫

Ω

[
D|∇r lnΨ |2 + d|∇p lnΨ |2]Ψ dpdr.

(9.21)
The last term in Eq. (9.21), which is always negative, arises due to diffusive
processes which tend to homogenize the suspension and decrease the entropy.
However, the first term on the right-hand side, which arises from active stresses
in the fluid, can be either positive or negative depending on the sign of α . In a
suspension of pullers (α > 0), this term is negative definite and drives the system
towards equilibrium. In the case of pushers (α < 0), however, the active stress term
becomes positive and can increase fluctuations in the system by driving S away
from zero. This suggests that pusher suspensions may be subject to the spontaneous
growth of fluctuations whereas pullers are not, and this fundamental difference
between the role of active stresses in pusher and puller suspensions is further
examined by a more detailed stability analysis as described next.
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2.4 Stability of the Uniform Isotropic State

The uniform isotropic stateΨ ≡Ψ0 = 1/4π is an exact steady solution of the above
continuum model, whose stability can be investigated. Perturbing Ψ0 by a plane
wave of the form Ψ̃(p,k)exp(ik · r+ λ t) and linearizing the governing equations
yields an eigenvalue problem for the growth rate λ and eigenmode Ψ̃ that can be
solved numerically [66, 67]. In agreement with the analysis on the configurational
entropy in Sect. 2.3, solutions of the eigenvalue problem reveal fundamentally
different dynamics in suspensions of rear- and front-actuated swimmers. In puller
suspensions, the real growth rate Re(λ ) is found to be negative at all wavenumbers,
indicating that the uniform isotropic state is stable to infinitesimal perturbations.
This is indeed borne out by particle simulations in the dilute and semi-dilute regimes
[59], which never show the emergence of collective motion. On the other hand, the
solution of the eigenvalue problem for a suspension of pushers, which is shown
in Fig. 9.4a, shows a positive growth rate at low wavenumbers, suggesting that
long-wavelength fluctuations can amplify as a result of hydrodynamic interactions.
Moreover, Fig. 9.4a shows that the fastest growing linear modes occur near k = 0,
implying that the linear analysis does not yield a dominant length scale independent
of system size.

Consideration of the eigenmodes demonstrates that this linear instability is not
associated with the growth of concentration fluctuations (c̃ = 0), but rather with the
local nematic alignment of the particles. More precisely, the nematic order tensor
parameter for the unstable eigenfunctions can be shown to be of the form
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Fig. 9.4 (a) Real and imaginary parts of the complex growth rate λ for a plane-wave perturbation
with respect to the uniform isotropic state as function of wavenumber k in the absence of diffusion.
(b) Evolution of the concentration field c(r, t) in a three-dimensional periodic simulation of a
suspension of pushers, starting near the state of uniform isotropy
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Q̃(k) = k̂k̂⊥+ k̂⊥k̂, (9.22)

where k̂ denotes the wave direction and k̂⊥ is any direction orthogonal to k̂. In the
language of liquid crystals, such spatial fluctuations of the nematic order parameter
correspond to “bend” modes, as also predicted in other studies based on moment
equations [89], and such bend modes are indeed visible in particle simulations such
as that of Fig. 9.3a.

An important result also shown in Fig. 9.4a is the decay of the growth rate with
increasing wavenumber, which even results in stabilization at high k. As discussed
by Hohenegger and Shelley [90], this indicates that there exists a critical system size
above which pusher suspensions become unstable. In dimensional variables, this
criterion is written more specifically in terms of the linear system size L =V 1/3 as

Lν
�

≥ 2π
kc

, (9.23)

where kc is the dimensionless wavenumber for which λ (kc) = 0 and is a function of
α and of the diffusion coefficients. The condition (9.23) states that instability occurs
either in dense systems (large ν) or in large systems (large L/�), and this criterion
was systematically tested and confirmed in our previous particle simulations [59],
where good agreement was found for the value of kc.

Another interesting interpretation for this instability involves the active power
input generated by the swimming particles in the fluid. The global power inputP(t)
was introduced in our previous work [67], where we also used an energy balance on
the momentum equation (9.19) to show that it equates the rate of viscous dissipation
in the fluid:

P(t) =−α
∫

V

∫

Ω
[E(r, t) : pp]Ψ(r,p, t)dpdr =

∫

V
2E(r, t) : E(r, t)dr. (9.24)

Assuming a cubic periodic domain of unit length L, a simple application of
Parseval’s identity allows one to rewrite P(t) in terms of the Fourier coefficients
Ẽ(k, t) of the rate-of-strain tensor, which themselves can be related to the Fourier
coefficients Q̃(k, t) of the nematic order tensor parameter:

P(t) = L3∑
k
|Ẽ(k, t)|2 ≈ L3α2

2 ∑
k
|(I− k̂k̂) · Q̃(k, t) · k̂|2, (9.25)

where the last term was obtained assuming that c(r, t) ≈ 1, a valid approximation
in the linear regime. From the form of the right-hand side, it is clear that only
Fourier modes of the form of (9.22) will contribute to the power input, which can be
interpreted as the total energy of the unstable bend modes in the system. The growth
of P(t) therefore provides a direct measure of instability. Its evolution in particle
simulations was considered in our previous work [59] and is shown in Fig. 9.5
for suspensions of pushers and pullers at various concentrations. In agreement
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Fig. 9.5 Time evolution of the active power input per particle in direct numerical simulations of
pushers and pullers in a cubic periodic box of size L = 10� at various volume fractions ν . (Adapted
with permission from Saintillan and Shelley [59])

with the theoretical prediction, the power only grows in sufficiently concentrated
suspensions of pushers. In suspensions of pullers, it decreases below the dilute value
corresponding to isolated swimmers, suggesting that particles in fact reorganize in
a subtle way so as to suppress bend modes in the system.

After the initial transient growth, a statistical steady state is reached as a result
of diffusive processes, which counteract the instability as expected from Eq. (9.21).
No steady solution is observed in simulations, which instead show unsteady chaotic
dynamics with the formation of dense and nematically aligned particle clusters
that quasi-periodically form and break up over time as shown in Fig. 9.4b. As we
argued above, the growth of concentration fluctuations is not predicted by the linear
analysis, but it can be explained as a result of nonlinearities. Equation (9.8) for the
concentration field, which is written in dimensionless variables as

∂t c+u ·∇c−D∇2c =−∇ · (cn), (9.26)

shows that concentration fluctuations can only grow through the source term on
the right-hand side, which arises from self-propulsion. The mechanism can be
understood as follows [67]: (i) the linear instability for the nematic order parameter
first causes local alignment of the particles, which is primarily nematic but also
generally involves some weak polarity due to random fluctuations in the initial
condition; (ii) this net polarity then leads to concentration of particles as a result
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of self-propulsion in regions where ∇ · (cn) < 0. Interestingly, this also suggests
that no concentration fluctuations would arise in a suspension of either apolar or
non-self-propelled active particles (so-called shakers), for which the source term on
the right-hand side of Eq. (9.26) is strictly zero.

As a side note, the case of nonmotile shakers is particularly revealing as to the
linear structure of an active suspension. As discussed in Sect. 1, a shaker suspension
is simply an ensemble of immotile force dipoles that are moved by whatever velocity
field they produce by their collective flows (i.e., set Vs = 0 in Eq. (9.4) while
retaining the active stress in the momentum equation). This simple model again
satisfies the entropy equality (9.21). Betterton et al. [91] further showed that in
this case the linearized model simplifies remarkably by introducing a vector stream
functionΦ and the vorticity ω . Then we have

∇2Φ = ω and ∇2ω = h, (9.27)

where Betterton et al. showed that h satisfies the simple dynamics

∂th =−
(α

5
+ 6d

)
h+D∇2h. (9.28)

For plane-wave perturbations, this equation has the simple growth-rate relation
λ (k) =−(α/5+6d)−Dk2 and hence can show instability only if particle extensile
flows are sufficiently strong to overcome rotational diffusion, that is, when α <
−30d. More to the point though, Eq. (9.28) shows that an active suspension has a
very elementary underlying linear structure of a simple exponential growth, driven
by activity and damped by rotational diffusion and regularized by spatial diffusion.
Note that unlike the motile case [90], there is no loss of solutions, at a finite k, to the
plane-wave eigenvalue problem when d = 0.

3 Extensions and Applications

3.1 Concentrated Suspensions

The kinetic model described above is based on a dilute assumption and only includes
mean-field hydrodynamic interactions between particles. While this approximation
is valid at sufficiently low volume fractions [59], it is likely to break down
in concentrated systems in which particle-particle contact interactions become
significant. Including such interactions is important to accurately capture dynamics
in bacterial suspensions, as the onset of collective motion in experiments is typically
observed at high densities [11]; in fact, it has sometimes even been suggested
that contacts may be the dominant effect leading to collective dynamics. While
accounting for contacts in particle simulations is feasible [60, 92], albeit at a high
computational cost, it is not as straightforward within the context of our kinetic
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theory as such interactions are discrete and pairwise. Aranson et al. [62] proposed a
continuum model to account for steric interactions based on a collision operator
having the effect of aligning contacting particles, in qualitative agreement with
experimental observations. To correctly account for collisions, however, their model
requires knowledge of the pair distribution function in the suspension, which was
approximated as the product of two singlet distributions. Similarly, Baskaran and
Marchetti [93] developed a kinetic theory for self-propelled hard rods in two
dimensions accounting for pairwise collisions. They were able to show that the
leading effect of collisions is to modify the orientational flux by addition of an
aligning torque of the same form as the classic Onsager potential for excluded-
volume interactions in passive rodlike polymer suspensions [94].

Based on this observation, Ezhilan et al. [71] adapted the kinetic model discussed
in Sect. 2 to account for contact interactions in a mean-field framework similar to
that used in classic theories for passive rods. Specifically, following the work of
[87], we account for contacts by including an effective steric torque derived from a
potential U :

U(r,p, t) =
∫

Ω
Ψ(r,p′, t)K(p,p′)dp′, (9.29)

where the interaction kernel is taken to be the phenomenological Maier-Saupe
kernel: K(p,p′) = −U0(p · p′)2 with strength constant U0 [95]. Inserting the
expression for K into Eq. (9.29) and taking the orientational gradient yield a new
expression for the rotational velocity:

ṗ = (I−pp) · (βE+W+ 2U0cQ) ·p− d∇p lnΨ , (9.30)

where it can be seen that the new term causes alignment of p along the principal
axes of the nematic order tensor parameter Q associated with positive eigenvalues,
i.e., along the local preferred directions of nematic alignment.

The first effect of this additional torque is to allow for non-isotropic nematic
base states as volume concentration increases. As shown by Ezhilan et al. [71], the
transition from isotropy to nematic alignment, which is the same as that occurring
in liquid crystalline systems, is governed by the dimensionless group ξ = 2U0ν/d
representing the ratio of the steric alignment torque to rotational diffusion. All
spatially uniform base states can be shown to be axisymmetric and of the Boltzmann
form

Ψ(r,p, t) =Ψ0(θ ) =
exp(δ cos2θ )

2π
∫ π

0 exp(δ cos2θ ′)dθ ′ , (9.31)

where θ denotes the angle between p and the direction of nematic alignment,
which must be specified. Here, the parameter δ governs the shape of the orientation
distribution and is a zero of the function
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g(δ ) = δ −
∫ π

0 sinθ (3cos2 θ − 1)exp(δ cos2θ )dθ
∫ π

0 sinθ exp(δ cos2θ )dθ
. (9.32)

It is easy to see that δ = 0 is a solution, which corresponds to the isotropic base
state. However, when ξ ≥ ξc ≈ 13.46, there exist two other zeroes corresponding
to nematic orientation distributions, as illustrated in Fig. 9.6a showing the three
branches of the function δ (ξ ). Positive values of δ are achieved on branch 2, which
corresponds to the strongest nematic alignment; negative values are also possible
along branch 3 and indicate a preferential alignment in the plane normal to the
axis of symmetry. A simple consideration of the total steric interaction energy on
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each branch suggests that above ξc the energy is minimized on branch 2, which is
consistent with the concept of an isotropic-to-nematic transition as concentration
increases.

This energy argument, however, does not imply that such base states are
hydrodynamically stable. To investigate the stability of these branches, the kinetic
model of Sect. 2 must also be modified to account for additional stresses that arise
at finite concentrations: first, passive viscous stresses due to the interactions of the
particles with the local flow [83] have to be included and lead to an effective increase
in the viscosity of the suspension, unlike active stresses that tend to decrease it in
suspensions of pushers [37]. Second, steric interactions also lead to an additional
stress contribution which was previously calculated for slender particles [71, 72].
Using this model, Ezhilan et al. [71] numerically studied the stability of the various
base states, and results are summarized in Figs. 9.6b–c for both pusher and puller
particles. In the case of pushers, the isotropic base state (branch 1) becomes unstable
with increasing concentration before the isotropic-to-nematic transition occurs: this
instability is of hydrodynamic origin and simply corresponds to the basic instability
described in Sect. 2.4. The case of pullers, however, is more interesting. It is found
that the isotropic base state loses stability at ξ = 15 when branch 1 intersects
branch 3 as a result of steric interactions only. Branch 3, however, is always
unstable. Branch 2, which has the lowest steric interaction energy, is stable at
first but eventually also loses stability when ξ increases as result of hydrodynamic
modes. This high-concentration instability of puller suspensions is quite surprising
and is corroborated by numerical simulations. To our knowledge it has never been
observed in experiments, perhaps because biological pullers are scarce and the few
species that exist, including Chlamydomonas, have nearly spherical bodies and are
therefore unlikely to undergo the isotropic-to-nematic transition.

While the model described above provides a qualitative understanding of the
effect of collisions on the dynamics, it is based on a number of strong approxi-
mations and on a phenomenological mean-field description of steric interactions
in terms of the Maier-Saupe potential. First, the validity of this description can
be questioned and should ideally be tested using particle simulations. These are
quite expensive in the concentrated regime even for passive rods [96] and have
yet to be developed for self-propelled particles in three dimensions. Second, the
description of the stresses typically used in the kinetic models such as those
discussed herein is based on a dilute assumption, resulting in stresses that depend
linearly or quadratically on density; a more accurate description of these stresses
should account for multiple reflections between particles as well as multi-body
interactions, though models of this type have been limited to passive rod suspensions
[97]. Finally, the kinetic theory outlined above used a single velocity field u to
describe the transport of the fluid and particle phases. This is a good approximation
in the dilute limit but is likely to break down at high volume concentrations, where
a two-fluid approach would be more appropriate [63, 98].
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3.2 Confinement

Experimental evidence suggests that interactions with rigid boundaries in confined
environments can be highly complex and play an important role in the dynamics
and transport properties. Some examples of the complex effects that have been
reported under confinement include: accumulation of particles at boundaries [38,99,
100], upstream swimming in channel flows [101], unexpected scattering dynamics
[102, 103], modified diffusivities [104], circular swimming trajectories [105], and
spontaneous flow transitions [106, 107]. Modeling efforts on the role of boundaries
and the effects of confinement, however, have been relatively scarce. Analytical
models and numerical simulations indeed predict concentration at boundaries
[51, 52, 108, 109], both as a result of hydrodynamic interactions [110] and because
of particle self-propulsion, though models for collision rules are often chosen in an
ad hoc manner.

The modeling of wall interactions in continuum theories has also been relatively
limited. In phenomenological theories for active liquid crystals, boundary conditions
are often formulated in terms of anchoring conditions for the nematic order
parameter [111–113], which are borrowed from classic liquid crystal theories but
do not account for the unique nature of wall interactions due to self-propulsion.
Within the context of the kinetic model of Sect. 2, a natural boundary condition to
enforce at impenetrable walls consists in prescribing zero net translational flux in
the wall-normal direction (with unit normal N): N · ṙ = 0. Inserting Eq. (9.17) for
the flux velocity, this translates into a Robin boundary condition

Vs(p ·N)Ψ = DN ·∇rΨ , (9.33)

which expresses the balance between the swimming flux towards the wall and the
diffusive flux away from it, and this simple boundary condition has been shown to
capture many features observed in experiments. Note that Eq. (9.33) neglects the
finite size of the particles, which forbids configurations near the boundaries leading
to overlap of the particles with the wall and is expected to result in a thin depletion
layer as seen in experiments [114]; more complex boundary conditions that account
for excluded-volume interactions have also been formulated, both in the context of
passive suspensions [115] and also recently for active particles [116].

As a simple example of application of Eq. (9.33), Ezhilan and Saintillan [116]
analyzed the case of a suspension confined between two parallel flat plates separated
by a gap 2H in the limit of infinite dilution where hydrodynamic interactions can
be entirely neglected. Assuming the Taylor dispersion relation D = V 2

s /6d for the
translational diffusivity, the dimensionless Smoluchowski equation (9.16) reduces
at steady state to a simple partial differential equation expressing the balance of
self-propulsion and translational and rotational diffusion:

Pes cosθ ∂zΨ − 1
3 Pe2

s ∂zzΨ = 1
2∇

2
pΨ . (9.34)



338 D. Saintillan and M.J. Shelley

0.8

1.2

1.6

c(
z/

H
 )

–1.0 –0.5 0.0 0.5 1.0 –1.0 –0.5 0.0 0.5 1.0
z/H

Pes = 0 .25
Pes = 0 .5
Pes = 1
Pes = 2

–0.8

–0.4

0.0

0.4

0.8

m
  (

z/
H

)
z

z/H

a b

Fig. 9.7 (a) Concentration profile and (b) wall-normal polarization at steady state in a dilute
suspension of particles confined between two parallel flat plates separated by H. Profiles were
obtained by numerical solution of Eqs. (9.34)–(9.35) for various values of Pes =Vs/2Hd

Here, z ∈ [−1,1] is the wall-normal coordinate, θ = cos−1(p ·N) is the polar angle
measured with respect to the wall-normal direction, and we have introduced a
swimming Péclet number comparing the relative magnitude of self-propulsion to
rotational diffusion: Pes =Vs/2Hd. Equation (9.34) should be solved subject to the
boundary condition (9.33), which simplifies to

Ψ cosθ − 1
3 Pes ∂zΨ = 0 at z =±1. (9.35)

A numerical solution of Eqs. (9.34)–(9.35) was obtained by Ezhilan and Saintillan
[116] and is shown in Fig. 9.7, where both the concentration c(z) and wall-normal
polarization mz(z) = c(z)nz(z) are plotted. A net accumulation of particles is
observed near both boundaries, in agreement with experiments [99] and simulations
[51, 109]. This accumulation is accompanied by a net polarization towards the
boundaries, and both effects are found to become stronger as Pes decreases, which
corresponds to an effective decrease in translational diffusivity owing to the Taylor
dispersion scaling. This accumulation and corresponding polarization are easily
understood physically: any particle inside the channel will tend to swim to the
wall towards which it points and accumulate there until rotational diffusion causes
it to reverse polarity. Note that this accumulation is not a result of hydrodynamic
interactions with the boundaries, though it has been suggested that hydrodynamic
interactions can reinforce migration in pusher suspensions due to the reflection
of the dipolar flow driven by the swimmers [99]. One interesting consequence
of this net polarization occurs when a pressure-driven flow is applied between
the two plates: particles near the walls rotate under the flow in such a way that
they preferentially point upstream, causing them to swim against the flow. This
curious prediction is consistent with experimental observations using bacteria in
microfluidic devices [101, 117, 118] and has also been observed in simulations
[109, 119].
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Fig. 9.8 Numerical simulation by Woodhouse and Goldstein [106] of the spontaneous flow in a
two-dimensional shaker suspension confined in a circular domain and modeled using a closure
approximation: (a) shows Schlieren patterns of the nematic order director, whereas (b) shows flow
streamlines, with darker streamlines indicating faster flow. (Adapted with permission)

The effect of confinement has also been studied theoretically in closed domains.
Woodhouse and Goldstein [106] posited that a suspension of shakers could serve as
a basic model for the dynamics of biopolymers moved by immersed motor proteins.
To simplify the model, they assumed a uniform particle concentration (which is an
allowable state of the system) and employed a classical moment closure scheme
of Hinch and Leal [83] to find an approximate dynamical equation for the nematic
order parameter Q. Evolving this equation in a circular two-dimensional domain,
they assumed a no-slip boundary condition on the background velocity and the
boundary condition ∂Q/∂N = 0 for the nematic tensor, which is consistent with
Eq. (9.33) after setting Vs = 0. Using numerical simulations, they identified the
existence of a bifurcation, with increasing active stress strength α , from an isotropic
state with no flow to a unipolar vortical flow driven by suspension activity, as shown
in Fig. 9.8. Higher levels of active stress can lead to successive bifurcations with yet
more complex vortical flows, sometimes oscillatory, and with nematic orientation
singularities. Such vortical flows are indeed observed in experiments on confined
drops of cytoskeletal extracts [15], as well as in drops of confined suspensions [107].
Jhang and Shelley [120] found consistent results using the full unapproximated
suspension model of Sect. 2, again using the no-slip condition and the no-flux
boundary condition ∂Ψ/∂N = 0 on the boundary of a circular domain.

Not only does confinement affect particle distributions in the dilute regime, but
it also modifies the way particles interact hydrodynamically. This is particularly
apparent in the case of strong confinement where the size of the particles is on the
order of the geometric dimensions of the domain, say the gap width in a Hele-Shaw
geometry. This situation was analyzed theoretically by Brotto et al. [121] using
a similar continuum kinetic theory as in Sect. 2 in the case of a two-dimensional
monolayer of particles confined between two flat plates. As explained in their study,
the leading effects of confinement are twofold. Firstly, as is well known from studies
on passive suspensions [122, 123], momentum screening by the rigid boundaries
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leads to the rapid decay as 1/r3 of the flow driven by the force dipole due to self-
propulsion. On the other hand, the motion of the finite-sized swimmers relative to
the fluid results in a mass dipole which now decays as 1/r2 in confinement, as
opposed to 1/r3 in bulk systems. On large length scales, the disturbance flow due to
this mass dipole is expected to dominate interactions and is now expressed in two
dimensions as

um(r|p) = 1
2πr2 (2r̂r̂− I) · χ. (9.36)

The dipole strength is proportional to the relative velocity between the swimmer
and the suspending fluid: χ = χ0[ṙ− u(r)], where the prefactor χ0 scales as the
particle surface area in the plane of the flow and is independent of the propulsion
mechanism. Secondly, Brotto et al also argued that confinement can modify the way
particles respond to a given flow field: in particular, fore-aft asymmetric particles
(such as much flagellated swimmers) are expected to align not only with the velocity
gradient as in Jeffery’s equation (9.18) but also with the velocity itself as a result
of the lubricated friction with the neighboring walls. To capture this effect, they
derived a modified equation for the rotational flux velocity to read

ṗ = β (I−pp) ·∇ru ·p+β ′(I−pp) ·u− d∇p lnΨ . (9.37)

Here, the parameter β ′ depends on particle shape: it is zero for a fore-aft symmetric
particle, positive for a “large-tail” swimmer that aligns with the flow, and negative
for a “large-head” swimmer that aligns against the flow. Based on these effects,
they derived a kinetic model similar to that of Sect. 2 and analyzed the stability
of the uniform isotropic base state. They uncovered a long-wave instability in
suspensions of large-head swimmers (for which β ′ < 0), which pertains to splay
components of the nematic tensor above a certain level of activity. Their analysis
was subsequently refined by Lefauve and Saintillan [124], who also performed
direct numerical simulations of point particles in two-dimensional geometries.
Above the threshold of instability, complex dynamics illustrated in Fig. 9.9 were
observed that differed significantly from those observed in unconfined suspensions:
when β ′ < 0, particles were found to arrange in longitudinal polarized waves with
a net curvature indicative of splay, whereas for β ′ > 0 they converged into active
lanes circulating around large-scale vortices. Recent numerical work on the same
system by Tsang and Kanso [125] also predicted the formation of stable clusters
when β ′ < 0 and proposed an interpretation of β ′ in terms of flagellar activity.

3.3 Chemotaxis

The ability of swimming microorganisms to detect and respond to external stimuli
such as chemical fields is critical to biological functions such as nutrient and oxygen
uptake, toxin avoidance, colony growth, and cell-cell communication for gene
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Fig. 9.9 Particle simulations of two-dimensional swimmer suspensions in a Hele-Shaw geometry,
based on the model of Brotto et al. [121]: (a) large-head swimmers (β ′ < 0) form polarized density
waves with splay, whereas (b) large-tail swimmers (β ′ > 0) organize into active lanes circulating
around large-scale vortices. (Adapted with permission from Lefauve and Saintillan [124])

regulation or aggregation. The method used by many bacteria to perform chemotaxis
(or directed migration along a chemical gradient) is a modulated run-and-tumble
dynamics [126]. Here, “runs” of directed bacterial swimming are interspersed with
random reorientations, or “tumbles,” resulting from the unbundling and rebundling
of their flagella. These arbitrary changes in swimming direction lead to a random
walk in space [81], which can be biased towards a particular direction by modulating
the frequency λ of tumbles. More specifically, a bacterium that tumbles less
frequently when it swims in the direction of increasing chemical concentration will
on average drift towards regions of higher concentration. Run-and-tumble dynamics
can be easily incorporated into the kinetic framework discussed here. In particular,
the Smoluchowski equation is modified to

∂tΨ +∇r · (ṙΨ)+∇p · (ṗΨ) =−λ (D̃tC)Ψ +
1

4π

∫

Ω
λ (D̃tC)K(p,p′)Ψ(r,p′, t)dp′.

(9.38)

Here λ is the tumbling frequency away from orientation p and depends upon D̃tC =
∂tC+(u+Vsp) ·∇C, which is the rate of change of the chemical concentration C
along the swimming path. The function K(p,p′) is called the “turning kernel” and
captures correlations between pre- and post-tumbling orientations. One expects K
to be independent of frame orientation and so depend only upon p ·p′. Subramanian
et al. [127] proposed the form K(p,p′) = Bexp(Bp · p′)/4π sinhB, which yields
small changes in orientation for large values of B, and an uncorrelated, uniform
post-tumble orientation as B → 0. The fluxes and stresses are taken to be unchanged
from Sect. 2.
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Motivated by experiments [28], recent studies have considered chemotaxis in an
externally imposed gradient of a chemoattractant, say oxygen. Koch and coworkers
[127–129] focused on linear stability analyses in the case where the oxygen field
is prescribed and unaffected by the flow. Subramanian et al. [127] considered an
infinite suspension of run-and-tumble bacteria in a uniform oxygen gradient, using
a model very similar to the one described here. They showed that run-and-tumble
dynamics yields an anisotropic orientation distribution, with a net polarization in
the direction of the gradient. Performing a linear stability analysis, they found
that chemotaxis has a destabilizing effect and tends to reduce the critical bacterial
concentration for instability that they had previously derived in the absence of
the tumbling bias [74]. Kasyap and Koch [128, 129] analyzed the stability of a
confined suspension of run-and-tumble bacteria when the chemoattractant gradient
lies in the direction of confinement, as in the experiments of Sokolov et al. [28].
In this geometry they showed that the base state is one of inhomogeneous bacterial
concentration and stress, both increasing exponentially across the channel. These
inhomogeneous base states allow new couplings within the linearized dynamics.
Kasyap and Koch [128] performed a long-wavelength analysis and showed a
quadratic increase of the perturbation growth rate with wavenumber, and that active
stresses drive flows that tend to reinforce density fluctuations in the plane of the
film. Kasyap and Koch [129] later presented a more complete analysis and showed
the existence of a linear mode of maximal growth, providing quite good quantitative
agreement with the transition to instability observed in the experiments of Sokolov
et al. [28].

The effects of oxygen transport were also modeled in numerical simulations by
Ezhilan et al. [69]. They considered the dynamics of aerotactic bacteria confined
to liquid films suspended in an oxygen-rich environment and swimming towards
sources of oxygen while simultaneously consuming it. The dynamics they observed
were quite similar to the experiments of Sokolov et al. [28] and are illustrated in
Fig. 9.10(a): first, bacteria and oxygen concentration approached steady profiles in
thin films, but above a critical film thickness, three-dimensional chaotic dynamics
were observed with dense plumes of bacteria penetrating the bulk. In very thick
films, a dense bacterial layer was also observed near the film centerline and
was explained by the nearly uniform oxygen concentration in that region, where
chemotaxis ceases. The onset of instability in these nonlinear simulations compared
favorably to the prediction of the linear stability analysis of Kasyap and Koch [128].

A very different situation arises when the chemoattractant is secreted by the
swimming bacteria themselves, as was recently modeled by Lushi et al. [70]
who were inspired by studies showing bacterial self-concentration as a result
of chemotactic focusing [130], as well as communication processes in bacterial
colonies via quorum sensing [131, 132]. This situation has been studied using the
celebrated Keller–Segel model [133] and its many variants, though all neglected the
effect of the fluid flow generated by the swimmers. Lushi et al. [70] coupled the
run-and-tumble chemotaxis model to a transport equation for the chemoattractant
concentration that modeled chemoattractant production, depletion, and diffusion.
One steady state for this system is uniform isotropy for the swimmers, with a balance



9 Theory of Active Suspensions 343

0.75 1.0 1.25 1.5 0.2 0.4 0.6 0.8 1.0

a bbacteria oxygen
pullers pushers 

th
in

 fi
lm

 
L 

= 
10

0 
μm

 
th

ic
k 

fil
m

 
L 

= 
60

0 
μm

 

Fig. 9.10 (a) Dynamics in films of aerotactic bacteria in the continuum simulations of Ezhilan
et al. [69]: in thin films (top row), both bacterial and oxygen concentrations reach steady profiles;
as the film thickness is increased (bottom row), a transition to unsteady dynamics is observed,
with the formation of bacterial plumes and enhanced oxygen transport. (b) Structure and dynamics
of swimmer concentration in autochemotactic suspensions in simulations by Lushi et al. [70].
Lower figures show the corresponding flow streamlines and polar order parameter. (Adapted with
permission)

of production and degradation in the chemoattractant concentration. Linearizing
around this state for a simplified version of the model, Lushi et al. [70] found two
uncoupled stability problems for chemotactically driven aggregation and alignment-
driven large-scale flows. As a function of tumbling frequency, they identified
different regimes where instabilities to aggregation, or alignment, or both, are
dominating. Their nonlinear simulations showed, for pushers, that chemotactically
driven aggregation was halted by the eruption of local hydrodynamic instabilities,
while for pullers the competition of aggregation and active stresses yielded steady-
state spots of finite size.

3.4 Fluid Viscoelasticity

The effect of non-Newtonian fluid response upon microorganism locomotion has
been studied intensely over the past few years; see, for example, Vélez-Cordero and
Lauga [134] and the references therein, as well as the chapter by Guy and Thomases
in this volume. The main issue considered has generally been the effect of fluid
viscoelasticity upon single swimmer speeds and efficiencies, while comparatively
little has as yet been understood on non-Newtonian effects upon collective behavior.
In a first effort, Bozorgi and Underhill [135,136] have extended the kinetic model of
Sect. 2 by adding a non-Newtonian stress tensor to the momentum equation (9.19):

−∇2u+∇q = ∇ · (〈αpp〉+βΣ e) , (9.39)



344 D. Saintillan and M.J. Shelley

where the stress tensor Σ e arises from various viscoelastic constitutive laws and
where β captures the nondimensional strength of polymer stress coupling to the
momentum balance. Bozorgi and Underhill analyzed the linear stability of various
viscoelastic fluid models near the state of isotropy and homogeneity.

One model they studied closely is the Oldroyd-B model [137], which is built
upon the assumption that polymer coils respond as Hookean springs to distension
by the flow. In this case, the polymer stress obeys the upper-convected evolution
equation

DtΣ e − (
∇u ·Σ e +Σ e ·∇uT )=−Wi−1 (Σ e − I) , (9.40)

where Wi is the Weissenberg number relating the strength of flow forcing to polymer
relaxation. For Oldroyd-B, they use the analytic reduction developed by Hohenegger
and Shelley [86] and study the linearized dynamics when projected to the first
azimuthal mode on the unit sphere of orientations. By expanding in associated
Legendre polynomials, this yields an infinite-dimensional, but essentially tridiago-
nal, eigenfunction/eigenvalue problem for the growth rates. From this, they showed
that rotational diffusion, in confluence with viscoelasticity, fundamentally alters the
nature of collective instabilities, yielding growing oscillations at long wavelengths,
and a biased suppression of growth as a function of k that shifts the maximal growth
rate from k = 0 to intermediate values. One possible weakness of their approach
is that viscoelasticity is only felt by the swimmers through the large-scale stresses
that produce the background velocity field against which the swimmers move. In
particular, viscoelasticity is not introduced in determining the single-particle fluxes
of Eqs. (9.17)–(9.18), which assume a Newtonian flow on the scale of the particles.

4 Other Active Fluids

While we have focused on suspensions of micro-swimmers, there are other exam-
ples of active fluids where the active stresses devolve from other sources of
activity and microstructural displacement. We discuss two here: suspensions of
microtubules and bound translocating motor proteins and surface-bound populations
of particles whose chemical activity creates Marangoni stresses.

4.1 Microtubules and Motor Proteins

Microtubules (MTs; stiff biological polymers composed of tubulin protein subunits)
and motor proteins are the building blocks of self-organized biological structures
such as the mitotic spindle and the centrosomal MT array [138]. They are also the
ingredients in liquid-crystalline active fluids powered by ATP and driven out of
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equilibrium by motor-protein activity to display complex flows and persistent defect
dynamics. MTs are polar polymers, typically polymerizing and depolymerizing
from their “plus-end.” The interactions of a motor protein with an MT are also
typically polar, with its active motion along the MT being towards either plus- or
minus-ends, depending on the motor type.

Active stresses or forces can be created in such systems by the interaction of MTs
with immersed motor proteins, often bound to cellular organelles or vesicles, or by
motor proteins mechanically coupling together MTs, with their activity inducing
their relative displacement. A possible example of the first is the process of nuclear
migration in early development, where the “pronuclear complex” containing male
and female genetic material is transported to the center of an embryonic cell as
shown in Fig. 9.11a. This transport is associated with two dynamic MT arrays
emanating from “centrioles,” and ends with the nuclear complex rotating so that
the centrioles are aligned with the cell’s anterior-posterior axis. This is the so-called
proper position of the complex so that cell division may proceed smoothly.

While various models of pronuclear migration have been put forward, including
interactions of the MT array with the cell cortex, one possible contributing
mechanism is the active transport of organelles along MTs towards the centrosomes
by dynein motor proteins–minus-end-directed motor proteins–bound to organelle
surfaces. Inspired by previous modeling work by Kimura and Onami [139], Shinar
et al. [14] investigated this nuclear positioning model as a fluid-structure interaction
problem where active agents within the cytoplasm (the cellular fluidic medium)
exert minus-end-directed pulling forces upon immersed MTs. To achieve proper
force balance–motor proteins can exert no mean force upon the system—these
pulling forces upon MTs are balanced by oppositely directed forces acting upon
the cytoplasm. Shinar et al. [14] simulated this model using a computational method
related to the immersed boundary method [140], and Fig. 9.11b shows the migration

Fig. 9.11 (a) MT-based dynamics in a live single-celled Caenorhabditis elegans embryo: migra-
tion of the male and female pronuclei, pronuclear meeting, centration, and spindle reorientation.
(b) Numerical simulation of MT-based pronuclear translation, showing transport of a passive scalar
(top) and flow streamlines (bottom). (Adapted with permission from Shinar et al. [14])
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and cytoplasmic flows as a model nuclear complex is pulled into the cell center
by immersed motor proteins and is then rotated into proper position. We note
that the observed cytoplasmic flows along MTs are also observed in vivo and that
experiments of Kimura and Kimura [141] showed that positioning and cytoplasmic
flows were much slowed by blocking the binding of dynein to organelles. Finally,
in unpublished work using a reduced model, Fang and Shelley have shown that the
rotation can be explained by a stability calculation that shows that “proper position”
is the only mechanically stable orientation for the centriole axis.

Motor proteins can also mediate interactions between MTs by providing a direct
and active mechanical coupling of MTs by motor complexes of two or more end-
directed motors connected by a molecular tether. Here, the nature of this interaction
will depend strongly on whether an MT pair is polar-aligned or anti-aligned. In the
latter case, the complex’s motors walk in opposite directions on each MT, inducing
a relative sliding of the MTs. This process is called “polarity sorting.”

The physics of filament sliding and polarity sorting by two-headed molecu-
lar motors has been studied experimentally [4, 16, 143]. In early experiments,
biofilaments were driven into static self-organized patterns such as vortices and
asters, reminiscent of structures observed in vivo. Very recently, in experiments of
Sanchez et al. [3], active networks were formed of MTs and synthetic tetrameric
kinesin-1 motor complexes with the aid of a depletant. In the presence of ATP,
motor complexes can bind pairs of MTs and walk along MTs towards their
plus-ends. When suspended in bulk, depletion interactions drove the formation
of extended, highly ordered MT bundles characterized by bundle extension and
fracture and correlated with spontaneous large-scale fluid flows. When MT bundles
were adsorbed onto an oil-water interface, they formed a dense, nematically ordered
2D state and exhibited an active nematic phase characterized by the spontaneous
generation and annihilation of disclination defect pairs.

Gao et al. [142] have developed a multiscale model that identifies the possible
sources of destabilizing active stresses. They first performed detailed Brownian
dynamics-Monte Carlo (BDMC) simulations which incorporate excluded-volume
interactions between model MTs, thermal fluctuations, explicit translocating motors
with binding/unbinding kinetics that satisfy detailed balance, and a force-velocity
relation. These simulations show the generation of activity-driven extensile stresses
from polarity sorting of anti-aligned MTs and from “cross-link relaxation” of polar-
aligned MTs. It also provides coefficients for polarity-specific active stresses for
a kinetic theory that incorporates polarity sorting and long-range hydrodynamic
interactions, using a similar approach to that described in Sect. 2. Roughly, the
center-of-mass flux in Eq. (9.17) is replaced by

ṙ = (n−p)+u−D∇r lnΨ , (9.41)

where, again, n is the polar order parameter defined in Eq. (9.6). This new term
captures the sliding of an MT (at orientation p) relative to a background of MTs
of mixed polarity and can be derived by considering a cluster of polar-aligned and
anti-aligned MTs coupled together by translocating cross-links. The active stress is
replaced by
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Fig. 9.12 (a) Experiment by Sanchez et al. [3] showing the active nematic state of a suspension of
MTs and kinesin clusters confined at an interface between two fluids, showing the generation and
annihilation of disclination defect pairs. (b)–(c) Two-dimensional continuum simulation by Gao
et al. [142] of a suspensions of MTs and kinesin clusters: (b) velocity field overlaying the vorticity,
and (c) nematic director field and scalar order parameter. (Adapted with permission)

Σ a =
αaa

2
c(Q−nn)+

αpa

2
c(Q+nn), (9.42)

where αaa and αpa are dimensionless stresslet strengths associated with anti-aligned
and polar-aligned interactions, respectively. The BDMC simulations estimate these
as being negative, and hence corresponding to destabilizing dipolar stresses, with
αaa being the larger. The anti-aligned stresses arise from extensional flows, similar
to those for pusher particles, induced by polarity sorting and biases in motor-protein
binding and unbinding. The polar-aligned stresses are also extensile but arise from a
more subtle statistical mechanical effect associated with temporal relaxation of the
motor-protein tether.

Simulations of this polar active nematic model are shown in Fig. 9.12b–c.
Simulating in regions of flow instability, Gao et al. [142] find persistently unsteady
flows that are correlated with the continual genesis, propagation, and annihilation
of ±1/2 order disclination defect pairs. To wit, Fig. 9.12b shows the background
velocity field u = (u,v) overlaying the vorticity ω . The dynamics are complex and
turbulent, and qualitatively very similar to those reported by Sanchez et al. [3].
Also very similar are the MT orientation dynamics. Fig. 9.12c shows the nematic
director field and scalar order parameter from the tensor order parameter Q. The
local orientation is highly correlated with the flow structures seen in (b). We see
also that the plane is littered with ±1/2 order defects which propagate freely about
the system. These defects exist in regions of small nematic order and are born
as opposing pairs in elongated low-order regions. These regions are themselves
associated with fluid jets, locally decreasing nematic order, and increasing curvature
of director field lines. The +1/2 order defects propagate away along their central
axis and at a much higher velocity than those of −1/2 order. The relatively higher
velocity in the neighborhood of a +1/2 order defect appears as a localized jet, in
the direction of defect motion, between two oppositely signed vortices.
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Gao et al. [142] also identified the characteristic length scales of this model as
those associated with linearized plane-wave models of maximal growth rate, and
posited experimental tests of their model. Related to this work are studies based
upon Q-tensor field theories similar in flavor to that of Woodhouse and Goldstein
[106]; see for instance Giomi et al. [144] and Thampi et al. [145]. In these general
models, the precise origins of the active stress driving the system are unidentified,
though they do reproduce elements of the experiments such as defect genesis,
motion, and annihilation.

4.2 Chemically Active Particles

Recent technological advances have enabled the fabrication of synthetic
microswimmers that convert chemical energy into directional motion [20, 147].
One widely studied system consists of micron-scale bimetallic gold-platinum
rods. When immersed in a hydrogen peroxide solution, the rods show directed
motion along their axes [18]. Theoretical studies have proposed that these rods
move through a chemically powered electrophoretic mechanism which generates
a slip flow along the rod surface from the gold to the platinum portions [148].
Experimental studies show that such particles interact with surfaces by flipping and
sliding along walls and being captured into orbits around sedimented colloids as
shown in Fig. 9.13a and b. Little if any work has, as yet, studied hydrodynamically
mediated collective dynamics. One inhibiting feature of this system is that oxygen
is an end product of the chemical reactions driving the rods, and when the rods are
at high concentration the dissolved oxygen comes out of solution, forming large
bubbles that disrupt the experiment. Work on collective behavior in these systems

Fig. 9.13 (a) Typical trajectories of self-propelled rods on a surface, showing the circular
trajectories caused by shape asymmetry [21]. (b) Self-propelled rods moving on a surface are
found to orbit around sedimented spherical colloids [114]. (c) Continuum simulations of the model
of Masoud and Shelley [146] for chemotactic collapse of active colloids at an interface, showing
both the velocity field and chemical concentration field in the bulk of the liquid. (Adapted with
permission)
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has tended to focus instead on the role of the fuel concentration field, which diffuses
and is consumed by the active particles, and its relations to chemokinetic behaviors
[149, 150].

Chemically active particles were recently considered in a very different setting.
Masoud and Shelley [146] studied the dynamics of chemically active immotile
particles that are embedded in a gas-fluid interface. The particles’ chemical
activity does not produce any phoretic flows, but does create a spatially diffusing
chemical concentration field C. On the surface, this chemical field changes the local
surface tension, and any consequent surface tension gradients will produce “active”
Marangoni shear stresses driving fluid flows that move the particles [151].

Masoud and Shelley [146] considered the case of a flat interface over a
incompressible Stokesian fluid of depth H and viscosity η , assuming that diffusion
of the chemical species was fast compared with advection and that surface tension
depended linearly upon the surface chemical concentration. The surface concentra-
tionΨ of active particles obeys the advection-diffusion equation

∂tΨ +∇2 · (UΨ) =
1

Pep
Δ2Ψ , (9.43)

where Pep is a Péclet number comparing the particle diffusion time scale to
advection arising from Marangoni stresses, ∇2 = (∂x,∂y) is the 2D surface gradient
operator, Δ2 = ∇2

2, and U is the 2D surface velocity found by solving the 3D Stokes
equations driven by a surface Marangoni stress induced by chemical gradients. Of
particular interest is the case where particle activity raises the surface tension.

Both the 3D quasi-static diffusion equation for chemical concentration and the
3D Stokes equations for the fluid flow can be solved via Fourier transform in (x,y),
and Masoud and Shelley [146] show that the surface velocity’s Fourier transform
satisfies the relation

Ũ(k, t) = (ik/k2)Ω(kδ )Ψ̃ (k, t) , (9.44)

where k = (kx,ky) is the 2D wave vector, k = |k|, and δ = H/L is the dimensionless
layer depth where L is a horizontal system length scale. Equation (9.44) can be
interpreted as a nonlocal surface integral operator acting upon the densityΨ . Here
Ω(λ ) is an explicit monotonically increasing function for which Ω = 1/4+O(λ 2)
for small λ (shallow layers) andΩ→ 1/2 exponentially fast as λ→∞ (deep layers).

Particularly interesting are the limits of shallow and deep layers where Eq. (9.44)
reduces to Ũ = νik/k2Ψ̃ with ν = 1/4 (shallow) or 1/2 (deep) or U =−νΔ−1

2 ∇2Ψ .
Hence, in real space we have

∂tΨ −ν∇2 ·
(
[Δ−1

2 ∇2Ψ ]Ψ
)
=

1
Pep

Δ2Ψ , (9.45)

and this equation is spatially nonlocal due to the inverse Laplacian.
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Very surprisingly, upon rescaling, this PDE recovers the iconic 2D parabolic-
elliptic Keller–Segel (KS) model of autotactic aggregation:

∂tφ = ∇ · ([χ∇ρ ]φ)+Δφ and Δρ = φ , (9.46)

which was originally conceived as a model for the aggregation of slime molds [133].
Here φ is the concentration field of microorganisms that produces a rapidly diffusing
chemoattractant of concentration ρ . Read as a kinetic equation for species number
conservation, Eq. (9.46) states that microorganisms move along gradients of the
self-generated chemoattractant with speed χ∇ρ . The KS model has been the focus
of decades of study in PDE analysis (see Horstmann [153] for a comprehensive
review), and a great deal is understood about its dynamics. Especially interesting is
the 2D case, as is relevant here. For instance, given a sufficient mass of organisms
in the plane, the 2D Keller–Segel model suffers chemotactic collapse in finite
time, with a finite mass of organisms concentrating at a point. The collapse is
approximately self-similar, with φ ≈ ζ (t)−2Φ (x/ζ (t)) for some scaling functionΦ
and a scale ζ whose dominant algebraic behavior is

√
tc − t where tc is the collapse

time.
Chemotactic collapse describes very well the aggregation dynamics observed

for chemically active particles. Masoud and Shelley [146] simulated Eqs.
(9.43)–(9.44) for mean values ofΨ that are large enough to induce two-dimensional
instabilities. Figure 9.13c shows the result by plotting the 3D structure of the
chemical concentration field and the fluid velocity field. On the surface there has
been a rapid accumulation of active particles to the centers and corners of the
domain, where the initial particle concentration was peaked. Descriptively, the
initial higher concentration of particles yielded a peak in the chemical surface
concentration and hence higher surface tensions there. The associated Marangoni
stresses created inward flows which concentrated yet more active particles there,
leading to yet greater surface tension and stronger flows. Like the KS model, an
aggregative finite-time collapse is observed, and Fig. 9.13c is a snapshot right before
the collapse time. The particle density fieldΨ has a similar structure to that of the
surface field of C, but is yet sharper as C is one derivative smoother. In a marked
difference from the KS model, here the surface fluid flows towards the aggregation
points are associated with 3D flow structures, and Fig. 9.13c shows the formation
of a downward jet and encircling vortex ring within the bulk fluid.

The model by Masoud and Shelley [146] is in search of an experiment and
originally arose from casual observations of chemically powered motile rods
moving on a free surface. However, if such a scenario could be realized, then this
dynamics of particle aggregation and 3D flows might prove useful in self-assembly
processes and in droplet locomotion.
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5 Outlook

There is tremendous ongoing activity in the field of active matter, of which active
suspensions are a particular subset. One area which we did not discuss here, because
it is yet substantially unformed, is that of flocking or schooling of organisms flying
or swimming at high Reynolds number. A complicating factor is that a flocking
organism is likely responding to both unsteady fluid forces and sensory information
of multiple modalities (and of course, these are not even well separated). There has
been great progress in understanding how perception and response may influence
ordering and collective behavior, via Vicsek-type models [25, 152]. However, a
particular aspect of high Reynolds flows is that the “storage” of shed vorticity into
the flow yields a history dependence to body-body interactions that is difficult to
capture in a phenomenological model.

Another large area of increasing inquiry is the activity-induced robustness and
self-assembly of cellular structures such as the mitotic spindle and the cellular
cytoskeleton. Here, theoretical approaches from soft-condensed matter physics,
such as generalized hydrodynamics, elasticity, liquid crystals, and polymer dynam-
ics, have proven very useful. Most of the activity in these areas has been carried
out by theoretical biophysicists and relatively little by applied mathematicians and
engineers. Consequently, tools such as high-performance computing and sophisti-
cated methods from computational fluid dynamics have not as yet made a substantial
impact.

Finally, we have heard it remarked that there are many more theoretical models in
the field of active matter than there are definitive experiments. This seems patently
true and is partly a reflection of the relative ease of coming up with a model
with some interesting dynamics (usually agent-based) versus the difficulty of per-
forming experiments using real organisms or synthesizing active materials. Firmly
connecting mathematical models to experiments through principled modeling and
thorough exploration is difficult and seems best pursued through both many-particle
simulations and continuum models.
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Chapter 10
Computational Challenges for Simulating
Strongly Elastic Flows in Biology

Robert D. Guy and Becca Thomases

Abstract Understanding the behavior of complex fluids in biology presents
mathematical, modeling, and computational challenges not encountered in classical
fluid mechanics, particularly in the case of fluids with large elastic forces that
interact with immersed elastic structures. We discuss some of the characteristics
of strongly elastic flows and introduce different models and methods designed
for these types of flows. We describe contributions from analysis that motivate
numerical methods and illustrate their performance on different models in a simple
test problem. Biological problems often involve the coupled dynamics of active
elastic structures and the surrounding fluid. The immersed boundary method has
been used extensively for such problems involving Newtonian fluids, and the
methodology extends naturally to complex fluids in conjunction with the algorithms
described earlier in this chapter. We focus on implicit-time methods because the
large elastic stresses in complex fluids necessitate high spatial resolution and
long time simulations. As an example to highlight some of the challenges of strongly
elastic flows, we use the immersed boundary method to simulate an undulatory
swimmer in a viscoelastic fluid using a data-based model for the prescribed shape.

There are many different kinds of complex fluids in biology, and they frequently
contain dynamic active or passive structures in the fluid. Numerical simulations
of these complex flows can be a powerful tool in understanding these biological
systems. Existing techniques in computational fluid dynamics are often sufficient
for problems with weak flows and low elasticity. However, when elastic forces
become large due to, for example, long relaxation times, extra forces from internal
structures, or interactions with complex boundaries, more care must be taken
to properly simulate these flows. This chapter is devoted to the challenges that
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arise when internal elastic forces are modeled in complex fluids with an eye
towards recognizing, understanding, and properly treating the features of strongly
elastic flows.

We will focus on the Oldroyd-B model as one of the simplest closed continuum
models of viscoelastic fluids. In the original derivation [1], Oldroyd set out
requirements for constitutive equations so that the material properties would be
frame invariant in a coordinate system which convected with the material. This
procedure leads to the upper-convected time derivative (also called the Oldroyd
derivative, see Eq. (10.5)) which gives the rate of change of a tensor property of a
small volume of fluid written in a coordinate system rotating and stretching with the
fluid. The most widely used Oldroyd model is the Oldroyd-B model, in part because
this model can also be derived from a theory of dilute polymer solutions [2]. The
Oldroyd-B model is given below for u the velocity of the fluid, p the pressure, and �

the deviatoric stress tensor; see also Chap. 1. From balance of momentum and mass
conservation for an incompressible fluid we have

ρ
Du
Dt

=−∇p+∇ ·� (10.1)

∇ ·u = 0, (10.2)

with

� = ηs�̇ +�p. (10.3)

Here ηs�̇ is the viscous stress from the Newtonian solvent, with viscosity ηs and
rate-of-strain tensor �̇ = ∇u+(∇u)T , and � p is the polymeric stress contribution.
In the Oldroyd-B model the polymer stress evolves by

� p +λ
�
�p = ηp�̇ , (10.4)

with polymer viscosity ηp and relaxation time λ . The upper-convected derivative is
defined as

�
� p ≡ (D/Dt)�p − (∇u)T ·� p −�p ·∇u. (10.5)

The relaxation time characterizes the time it takes for a material to adjust to applied
stresses or deformations. For the majority of this chapter we will focus on the
low Reynolds number (or creeping flow) regime where inertial forces are small
compared with viscous forces.

There are two important dimensionless parameters related to the relaxation time
of a fluid used in rheology. The Weissenberg number (Wi) is the ratio of the
relaxation time of the fluid and a specific process time. For example, in steady shear,
the Weissenberg number is defined as the shear rate (γ̇ =

√
�̇ : �̇/2, see Chap. 1)

times the relaxation time Wi= γ̇λ . The Deborah number (De) is used to characterize
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flows under specific flow conditions and is defined as the ratio of the relaxation time
to the characteristic time scale for fluid deformations, such as an imposed oscillation
period, De = λ

Tf
.

Weakly elastic flows (De or Wi � 1) can be handled using standard techniques
from computational fluid dynamics, and special treatment of the stress tensor is not
necessary. By contrast, strongly elastic flows (De or Wi � 1) create regions of high
stress and fine features that require high resolution for accurate flow solutions. Naive
implementations of standard CFD techniques may fail.

In Sect. 1 we identify and demonstrate some of the characteristics of strongly
elastic flows. These include large stresses and large gradients which require fine
meshes for accurate representation. We introduce a host of models and methods
designed to overcome these challenges and use a simple test problem to demonstrate
some of these techniques and models. In Sect. 2 we briefly present the ideas of the
immersed boundary method, a popular technique for simulating problems in biology
which typically involve fluid-structure interactions with large deformations and
complex flow patterns. One advantage of the immersed boundary method is that it
can be easily coupled with a preexisting fluid solver; however, long time simulations
and fine meshes necessitate the use of an implicit time stepping method. In Sect. 3
we use the immersed boundary method to simulate an undulatory swimmer with
a data-based model for the target shape. This problem highlights some of the
additional challenges associated with strongly elastic flows in biology, due, in part,
to the large forces which arise in the coupling of fluid to dynamic structures.

1 Strongly Elastic Flows

Simulating strongly elastic flows is difficult and requires care in the choice of
model and numerical method to ensure that the chosen technique treats the elastic
stresses and corresponding time scale properly. In this chapter we emphasize the
importance of recognizing these difficulties and understanding their origin, and we
provide some approaches for fixing them. As an example of one difficulty with the
Oldroyd-B model, we present a sample simulation of an extensional point flow in
Sect. 1.6 which demonstrates fine scales: near-singularities in the stress field and
near-jumps in the vorticity. In these simulations a body force drives a flow in which
u ∼ ε̇(x,−y) near the origin, where ε̇ is the strain rate. To demonstrate the flow
behavior we examine the vorticity and the trace of the polymer stress tensor, which
is proportional to the elastic energy. Figure 10.1a shows a contour plot of the trace of
the conformation tensor, Tr(C), which is related to the polymer stress tensor for the
Oldroyd-B model by � p = Wi−1(C− I). The vorticity of the flow (∇×u) is plotted
in Fig. 10.1b. These plots show the near-steady behavior for a strongly elastic flow
where large stress and stress gradients have developed at the extensional stagnation
point at the origin. The fine structures can be seen in slices of Tr(C) and vorticity,
which are shown in Figs. 10.1c and d. The details of the simulation are given in
Sect. 1.6.
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Fig. 10.1 Contour plots of (a) Tr(C) and (b) vorticity for Wi = 5.0 at t = 8. (c) Trace of
conformation tensor along line (0,y) : Tr(C(0,y)). (d) Vorticity along line (−π/2,y) : ∇×
u(−π/2,y)

1.1 Historical Perspective

Computational simulations of strongly elastic flows have historically suffered
from difficulties not seen in comparable Newtonian flows. These difficulties fre-
quently manifest in numerical methods as a breakdown beyond a critical Deborah
(or Weissenberg) number. These computational challenges have been observed
since the earliest numerical approximations of complex fluids were attempted in
the late 1970s. Standard finite difference and Galerkin finite element approaches
that were successful for Newtonian flows were converging only for O(1) Deborah
(or Weissenberg) numbers [3–5]. There are modeling and analytical questions
underlying the somewhat mysterious “high-Weissenberg number problem,” and so
the appropriate choice of numerical method is a delicate and extremely important
question which has received much attention over the years. Significant progress
has been made in the subsequent decades, but many questions related to the
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high-Weissenberg number problem are still subjects of active research. We discuss
some of the open analytical questions related to these problems in Sect. 1.2 and some
current numerical approaches which address these difficulties in Sect. 1.4. We focus
on the Oldroyd-B model in Sect. 1.3 and models derived from different molecular
assumptions in Sect. 1.5.

Several benchmark problems in engineering have been developed to test pro-
posed constitutive laws and numerical methods. These problems include flow
around a cylinder or sphere [6–12] and planar contractions [13–19]. A simplified
explanation for why flow around obstacles or near boundaries can cause difficulties
in viscoelastic flows which are not seen in corresponding Newtonian flows is that
when the velocity of the flow is near zero (due to a no-slip boundary condition or
a stagnation point in the flow) the internal elastic structures in the fluid have a long
time to get stretched and induce areas of high stress. Large stress gradients then
induce more stress on the flow and this leads to sharp boundary layers which require
high spatial resolution. Long time simulations or time-dependent simulations for
finding steady-state solutions are particularly difficult.

One must be aware of other challenges which arise when modeling viscoelastic
fluids such as possible change of type or loss of evolution in the flow. These
problems do not arise with the Oldroyd-B and the other models discussed here. We
leave further discussions of those problems and more detailed reviews of numerical
issues to the following books and review articles, and the citations contained within,
[5, 20–26].

1.2 Advances from Analysis

To begin to understand the complicated high-Weissenberg problem we note that
fundamental analytical questions about the Oldroyd-B model (Eq. (10.1)–(10.4)) are
still open. For example, it is unknown whether global solutions to the Oldroyd-B
equations exist. Even for the Stokesian limit in two space dimensions, the question
is challenging due to the lack of scale-dependent dissipation in the polymer stress
advection equation1. These basic questions are important because if a model is well
posed, i.e., unique solutions exist and are sufficiently smooth on some time interval,
then appropriate numerical approximations of these solutions are reliable. If not,
then even convergence of the method cannot guarantee that the correct solution has
been chosen.

Though having a well-posedness theory is useful for a numerical study of a
particular model, in many cases, notably the 3D Euler or Navier-Stokes equations,

1When derived from the kinetic theory of dumbbells [2, 27] there is polymer stress diffusion;
however the stress diffusion coefficient is proportional to the square of the ratio of the bead
diameter (or polymer radius of gyration) to the flow length scale, and even in the context of micro-
fluidics, it is minute, O(10−9), and is typically ignored.
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this is not available. However, there are often mathematical theorems which can be
helpful for guiding numerics. One particular example is a well-known condition for
the 3D Euler equations, referred to as the Beale-Kato-Majda criteria [28], which
states that the maximum norm of the vorticity controls the breakdown of smooth
solutions. More specifically this criteria states that the breakup of solutions in any
norm will imply the divergence of the supremum norm of the vorticity. This makes
investigating the loss of existence of solutions more tractable as you only have
to keep track of one quantity. A similar result can be derived for the Oldroyd-B
equations and the quantity to track is the supremum norm of the polymer stress
tensor [29, 30].

Along with this nonexistence criterion, some progress in well posedness has
been made. For example, if the initial data are sufficiently small, solutions to
the Oldroyd-B model are globally well posed [29, 31, 32], but this prescribes an
unrealistic constraint for many problems of interest. Additionally, these analytical
proofs require either an unbounded or periodic domain, while the question of how to
treat problems in complicated geometries remains an issue of current research that
is of significant importance in many applications.

As mentioned above, one of the main difficulties in obtaining analytical proofs of
global existence for the Oldroyd-B model is the lack of scale-dependent dissipation
in the stress advection equation, Eq. (10.4). A simple regularization is to include a
dissipative term in such as α∇2� p. With this type of polymer stress diffusion, some
analytical results are available [27], and, in particular, the Oldroyd-B equations
in two space dimensions are globally well posed for all initial data [33, 34]. The
addition of polymer stress diffusion is not without physical justification as stress
diffusion does arise in the physical model [2, 27, 35], but the diffusion is at such
small scales that it is typically ignored. However, artificially large polymer stress
diffusion can be introduced as a regularization parameter in numerical simulations
[36,37]. The effect of artificially large stress diffusion was studied in [36] where the
authors concluded that the stress diffusion had a stabilizing effect, in particular for
large Reynolds number calculations. Adding polymer stress diffusion is particularly
common in simulations of turbulent drag reduction [38, 39]. Although the polymer
stress diffusion may be artificially large in the context of the molecular derivation,
if the length scale of the artificial polymer stress diffusion is on the scale of the grid,
then the errors due to the regularization are on the order of the spatial discretization
errors.

1.3 High-Weissenberg Number Problem
in the Oldroyd-B Model

If the simulations presented in Fig. 10.1 are continued (without decreasing the
grid size), numerical oscillations will cause the solutions to break down at some
point in time. A “local” analytical solution given in [40] indicates that the polymer
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stress is likely approaching a diverging solution exponentially in time. Hence the
breakdown of the numerical solution appears to be due to the fact that at a fixed
grid size it becomes impossible to resolve the steeper and steeper gradients of an
underlying diverging solution. These oscillations can already be seen if one looks
closely in Fig. 10.1c at the polymer stress near y = 0. There are many possible
reasons for the breakdown of the numerical simulation; in particular it may be the
case that the solution itself does not exist for all time, and this is simply not known.
However, even if the solution remains smooth in time, other problems including
loss of positive-definiteness of the stress tensor, problems with the model (such
as infinite extension of polymer coils), or large stress gradients which create even
larger forces on the fluid which must be resolved can lead to the breakdown of a
numerical method. Problems with the Oldroyd-B model are typically blamed on the
linear elastic nature of the model, but as we will see in Sect. 1.6 this is probably not
the heart of the problem.

The Oldroyd-B model is attractive because it is the simplest closed continuum
model which can be derived from molecular assumptions. One derivation of the
Oldroyd-B model comes from representing immersed polymer coils in a Newtonian
solvent as two beads connected by a linear spring with a Hookean spring force
[2,41]. Additional forces on the beads include drag from the Newtonian solvent and
randomly fluctuating Brownian forces. Using statistical mechanics, one can derive
an expression for the stress tensor which evolves according Eq. (10.4).

This model predicts that in steady extensional flows, such as uniaxial extension,
the extensional viscosity, defined as the ratio of extensional stress to extensional
strain rate, will become infinite at finite strain rate. This happens when the frictional
drag force that stretches the dumbbell overcomes the spring force. When the
strain rate is “small” relative to the relaxation time the spring force dominates
and the dumbbell remains coiled. As the strain rate is increased the molecules
undergo a “coil-stretch” transition and the steady-state extensional viscosity goes
to infinity [41]. This is related to the fact that the linear Hooke’s law puts no
limit on the length of a dumbbell and has been seen as an underlying cause of the
“high Weissenberg number problem.” Rallison and Hinch questioned the “physics”
of the constitutive model [42], and later it was noted that even below the coil-
stretch transition the “smoothness of stresses should be expected to deteriorate with
increasing Weissenberg number” [43].

Numerical simulations in [40] found solutions that exhibit the Weissenberg
number-dependent smoothness described above. When an extensional flow is
posited, namely u = ε̇(x,−y), the equation for the polymer stress tensor (10.4)
decouples and can be solved exactly via the method of characteristics. In two space
dimensions the solution for one component of the stress tensor can be written as

S11(x,y, t) =
1

1− 2ε̇Wi
+ e(2ε̇Wi−1)tF(xe−ε̇Wit ,yeε̇Wit), (10.6)

where the unknown function F must be determined with proper initial and boundary
conditions. This solution indicates that for ε̇Wi < 1/2 the stress should be bounded
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but for ε̇Wi > 1/2 the stress is diverging exponentially in time. Furthermore, the
solutions have a collapsing inner length scale in y which also depends on ε̇Wi.

One time-independent solution which was found to be in close agreement
with numerical simulations and which demonstrates decreasing regularity in the
Weissenberg number is

S∞11 = |y|(1−2ε̇Wi)/ε̇Wi. (10.7)

It is important to be aware of exponential-in-time stress near-singularities, which
are not removed by simply modifying the constitutive model, as we will show in
Sect. 1.6. Next we look at a few ways to treat these near-divergent solutions.

1.4 Numerical Approaches

Defeating the “high-Weissenberg number problem” has been the aim of many
numerical methods developed over the past several decades. Techniques have been
developed to address issues of stability and convergence, for example, the use of
upwinding [44,45] has been successfully applied to viscoelastic flow problems using
finite element methods [46]. Other variations of finite element methods applied
to viscoelastic fluid simulations include using discontinuous Galerkin techniques
[47–49] and splitting techniques, such as EVSS (elastic viscous stress splitting)
[19,23,50–52], among others [53–55]. Another way to provide local diffusion is by
applying ENO schemes (essentially non-oscillatory shock capturing) [56] which use
upwinding with a high-order correction [57]. To resolve fine structures in problems
like the flow around a cylinder, techniques to improve accuracy include using hp-
spectral elements [12] and highly accurate finite volume methods [9]. For a more
complete review of the literature we refer the interested reader to a computational
rheology book [5] and several review articles that deal with specific aspects of
the numerical simulations of viscoelastic fluid flow [22–26]. In what follows we
describe in more detail a few ways to handle the near-singularities that arise in the
Oldroyd-B model discussed in Sect. 1.3.

1.4.1 Log-Conformation Method

The log-conformation method [58,59] is a numerical approach specifically designed
to address exponential singularities in the polymer stress tensor. The method was
designed for a large class of differential constitutive models (including Oldroyd-B)
in which an equation is derived for the matrix logarithm of the conformation tensor
or configuration tensor, C(x, t). C is the conformational average of the dumbbells,

C =

∫
RRΨdR, (10.8)
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where R is the end-to-end vector of the dumbbell andΨ(x,R, t) is the probability
that a dumbbell at position x in the flow has orientation and extension R at time t
(see Chaps. 1 and 9). For the Oldroyd-B model, the conformation tensor is related
to the polymer stress tensor by

� p = Wi−1(C− I), (10.9)

and is advected by

(C− I)+Wi
�
C = 0. (10.10)

From the molecular derivation, the conformation tensor should be symmetric
positive definite, and it will remain so according to Eq. (10.10) if it is initially. Loss
of positivity of C is one source of numerical errors. The log-conformation method
maintains positivity by definition which can be a source of increased stability.

The log-conformation method replaces Eq. (10.10) with an equation for the
matrix logarithm of C:

A(x, t) = logC(x, t).

This is possible because a symmetric positive definite matrix, S, can always be
diagonalized, S = R�RT and hence logS = R(log�)RT . The method relies on
the fact that if u is a divergence-free velocity field and C is a symmetric positive
definite tensor, then there is a decomposition

∇u = ˝ +B+N ·C−1, (10.11)

where ˝ and N are anti-symmetric and B is symmetric, traceless, and commutes
with C. With this decomposition, the evolution of A is

∂A
∂ t

+(u ·∇)A− (˝ ·A−A ·˝)− 2B = Wi−1e−A(I− eA). (10.12)

Under this transformation, the extensional components of the deformation act
additively, rather than multiplicatively. Higher Wi values can be achieved than in
similar studies without the matrix logarithm, and the log-conformation method has
been particularly successful in some standard benchmark problems [10,60–62]. This
method has been implemented in many different numerical frameworks including
finite difference, finite volume, and finite elements. There is a nontrivial cost
associated with implementation of this method, both in obtaining the decomposition
in Eq. (10.11) and in computing the matrix exponential to obtain C from A.
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1.4.2 Square-Root Method

A method which is simpler to implement and also maintains positive definiteness
of the polymer stress tensor is the square-root method [63]. An exact equation for
the square root of the conformation tensor is advected rather than the conformation
tensor itself, and therefore, the conformation tensor will remain positive. In this
method Eq. (10.10) is replaced with an equation for b(x, t), the unique positive
symmetric square root of C(x, t). The equation for b is

∂b
∂ t

+(u ·∇)b = b ·∇u+ a ·b+
1

2Wi

(
(bT )−1 −b

)
, (10.13)

where a is any anti-symmetric matrix. Furthermore, a can be prescribed uniquely so
that if b is initially symmetric it will remain symmetric. In two dimensions the form
of a is

a =

(
0 a12

−a12 0

)
, (10.14)

where

a12 =

(
b12

∂u
∂x

− b11
∂v
∂x

)
+

(
b22

∂u
∂y

− b12
∂v
∂y

)

b11 + b22
,

for u = (u,v). An exact formula is also available in 3 space dimensions, but the
details are more complicated [63]. This method was tested in a spectral framework,
and it was observed that in practice the square-root method can be applied at higher
Wi and for longer time than methods for evolving the conformation tensor directly
[63]. This method does not address the exponential nature of the singularities
of the polymer stress tensor like the log-conformation method, but the cost of
implementation is no different than a direct implementation of the original model.

1.4.3 Polymer Stress Diffusion

As mentioned in Sect. 1.2, adding polymer stress diffusion will regularize the
Stokes-Oldroyd-B equations, and in two space dimensions, the problem is well
posed. In [37] it was shown that the exponential-in-time singularity obtained in [40]
is removed with the addition of polymer stress diffusion, and smooth and bounded
steady-state solutions can be found. Consider the polymer stress advection equation
with diffusion, which we write in nondimensional form as

(C− I)+Wi
�
C = α∇2C. (10.15)
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If a steady flow, u = Wi−1(x,−y), is prescribed, this leads to a decoupling of
Eq. (10.15), which is now linear in C. An exact solution can be found which has
the form

C =

(
−1+Ae−y2/(2α) 0

0 1/3

)

. (10.16)

The Gaussian structure of C11 is a regularization of the delta-like singularities seen
without diffusion in [40]. When comparing this local analytical solution to the
numerical simulations the dependence on α and Wi is

C11(0,y)≈−1+C Wiα−1/2e−y2/(2α). (10.17)

These solutions are bounded and smooth for all α > 0, and hence polymer diffusion
may be used with some confidence as a regularization of the Oldroyd-B equation as
long as care is taken to choose the length scale over which diffusion acts to be at or
below the grid discretization.

1.5 Molecular Models

Instead of trying to address the singularities of the Oldroyd-B model directly, it is
reasonable to criticize the molecular derivation of the Oldroyd-B model and use
a model with a bounded extensional viscosity or a model which penalizes infinite
extension of polymer coils. Many such models exist, and new molecular models
are still being developed to match desired experimental data. Unfortunately, many
modifications made at the molecular scale cannot be closed at the macroscopic level,
resulting in multiscale or micro-macro models which are extremely computationally
expensive. We discuss a few of the macroscopic models which are related to the
Oldroyd-B model here and refer the interested reader to [2, 5, 41] for many other
models. For various approaches to multiscale modeling of viscoelastic fluids see
[26, 64, 65].

1.5.1 Giesekus Model

Like the Oldroyd-B model, the Giesekus model is also derived using a simple
dumbbell model [66]. Giesekus proposed introducing an anisotropic drag force on
the dumbbell which depends on the stress tensor based on the reasoning that the
drag should be lower in the “direction” the fluid has been stressed. This could be
true for a polymer solution in which the stress causes the molecules to line up in one
direction resulting in lower drag in the direction of alignment. In this model, the drag
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coefficient becomes a drag tensor and adds a nonlinear term to the Oldroyd-B model.
Eq. (10.4) is replaced with

� p +λ
�
�p +α

λ
ηp

(� p)
2 = ηp�̇ . (10.18)

This additional nonlinear term leads to physically realistic normal stress differences
and bounded extensional viscosity but does not address infinite extension of polymer
coils.

1.5.2 PTT Model

A very different way to derive a similar constitutive model comes from transient
network model theory. Phan-Thien and Tanner [67] derived a model (called the
PTT model) which assumes that polymers are entangled but they can break and
reform. If the breaking rate increases with increasing average chain length, then a
closed constitutive model can be derived which predicts shear thinning and bounded
extensional viscosity. Eq. (10.4) is replaced with

� p +λ
�
�p +α

λ
ηp

Tr(� p)� p = ηp�̇. (10.19)

1.5.3 Finite Extension Models

Another modification at the molecular level involves enforcing finite extensibility of
polymer coils. The following modification to the linear Hooke’s law was proposed
by Warner [68]. The force is penalized if the polymers stretch beyond some given
maximum stretch length, R0, which results in a force law

F =
HR

(1−Tr
(
RR)/R2

0

) , (10.20)

where H is a spring constant and R is the end-to-end vector of the dumbbell. The
main drawback with this force law is that one cannot obtain a closed continuum
model for the polymer stress tensor. There have been many closure approximations
suggested, see for example [69–72]. The simplest and most commonly used
approximation is to assume that the force depends on the average extension of the
distribution of springs, and this leads to the FENE-P model [73]; see also Chap. 1.
Including the full form for the force in Eq. (10.20) leads to micro-macro models
which are numerically expensive and beyond the scope of this chapter.
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1.6 Extensional Flow Simulations

Simulations with these models in place of the Oldroyd-B model show that neither
finite extensibility nor maintaining positive definiteness of the polymer stress tensor
will solve the high-Weissenberg number problem. An unavoidable cause of the
problem seems to be that advection of the polymer stress near extensional points
causes large stress gradients which create large forces on the fluid. In [40] it was
shown that although the polymer stress was bounded for the FENE-P model, sharp
gradients and corner singularities were still found in the simulations, perhaps as a
consequence of the force penalization. Here we show new simulations using the
Giesekus and PTT models, which are more stable than the Oldroyd-B model, but
they still break down in long time simulations beyond a critical Wi. These simula-
tions illustrate some of the ideas mentioned in Sects. 1.4 and 1.5 and highlight the
need for careful consideration of the polymer stress tensor. We compare the PTT,
Giesekus, and polymer stress diffusion models to the (Stokes) Oldroyd-B model
in a simple 2D (periodic) extensional flow. We repeat the numerical experiment
performed in [40] which involved solving the Stokes-Oldroyd-B equations in two
space dimensions with a background force prescribed to enforce an extensional flow.

The various models used for the following example all have the same form, given
non-dimensionally as

∇2u−∇p+ ξ∇ ·�p + f = 0, (10.21)

∇ ·u = 0, (10.22)

(C− I)+Wi
�
C+αR(C) = 0, (10.23)

where the conformation tensor is related to the polymer stress tensor as � p =

Wi−1(C− I). For the Stokes-Oldroyd-B equations we set R ≡ 0; the other models
are defined below.

Giesekus R(� p) = (� p)
2

PTT R(� p) = Tr(� p)� p

polymer stress diffusion R(� p) =−∇2� p

Wi = λ/Tf is the Weissenberg number, with λ the polymer relaxation time and
Tf the time scale of the fluid flow. The dimensional scaling F of the forcing f is
used to set the flow time scale as Tf = ηs/ρLF, where ηs is the solvent viscosity,
ρ the fluid density, and L the system size. This sets the dimensionless force and the
time scale of transport to be order one. The parameter ξ = GTf /ηs measures the
relative contribution of the polymer stress to momentum balance, where G is the
isotropic stress in the polymer field in the absence of flow. Note that the parameter
ξ is the ratio of the polymer viscosity to the solvent viscosity and in what follows
we set ξ = 0.5.
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The Giesekus and PTT models both have bounded extensional viscosity, unlike
Oldroyd-B, although we will see below that they still have large stress gradients
near extensional points in the flow for sufficiently large Wi. In what follows, the
parameter α is fixed at 0.001. We note that for this value, the resulting length scale
for the polymer stress diffusion is smaller than the grid spacing.

The numerical experiment in [40] involved analyzing the stress near hyperbolic
extensional points in the flow. The background force

f =
(

2sinxcosy
−2cosxsiny

)
. (10.24)

sets up a four vortex “mixer” in each [−π ,π ]2 cell, which in a purely Newtonian
Stokes flow (Wi = 0) has solution u =−f/2.

This 2D periodic “4-roll mill” geometry provides an opportunity to compare
solutions to these different models in an extensional flow with no boundary effects.
Given the regular domain, this problem is well suited to a pseudo-spectral method.
Furthermore, as the local analytical solution in Eq. (10.6) suggests, beyond a critical
Wi the polymer stress � p grows exponentially near extensional points, and using
a pseudo-spectral method allows one to analyze the regularity and evolution of the
singularity in Fourier space [74–76].

The algorithm used in [40] for solving (10.21)–(10.23), which is similar here for
R 	= 0, was to prescribe initial data for � p, invert the Stokes equation to find the
velocity, and with that update the polymer stress via any appropriate time stepping
method (second-order Adams-Bashforth was used in [40] and will be used here).
We set C(0) = I for isotropic initial data. Inverting the Stokes equation amounts to
solving for u j in Fourier space ( j = 1,2)

û j =
1

|k|2
[
ik j p̂+ iξ k�(�̂ p)� j + f̂ j

]
, (10.25)

where the pressure is found using the incompressibility constraint

p̂ =
1

|k|2
[
ξ k jk�(�̂ p)� j − ik j f̂ j

]
, (10.26)

with summation convention applied for all repeated indices. The stress update is also
performed in Fourier space but care must be taken as the stress advection equation is
nonlinear. In Eq. (10.23) the quadratic nonlinearities are computed using de-aliasing
techniques [77]. We use a filter to zero the high wave numbers before inverting and
multiplying the terms in real space to avoid aliasing errors. The filter we apply
is similar to a simple 2/3 cutoff, but instead we apply a smooth rapidly decaying
exponential cutoff [78] which helps stabilize the simulations. The Fourier transform
is applied again and the nonlinear terms are used to update the polymer stress.

Simulations of the Stokes-Oldroyd-B model (R = 0) were performed with this
algorithm for n2 = 10242 grid points in the [−π ,π ]2 domain. In [40] two critical
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Fig. 10.2 Wi = 0.6 at t = 5.5: (left) C11(0,y) the first component of the conformation tensor
along the axis of compression where solution is at steady state. (right) Relative difference between
models (Giesekus, PTT, and Polymer diffusion) and the Stokes-OB solution

Weissenberg numbers were identified from the numerical simulations: for Wi < 0.5
it was seen that the polymer stress was smooth, for 0.5 < Wi < 1 the stress
approached a finite-valued cusp exponentially in time and for Wi > 1 the stress was
diverging exponentially in time. These different polymer stress solutions correspond
to different modifications to the velocity field. For sufficiently small Weissenberg
number, Wi � 1, the stress perturbation only modifies the amplitude of the flow,
namely u ≈ Cf where C depends on Wi. The dependence of C on Wi is described
in [40]. However for Wi � 1 the 4-roll mill structure persists, but oppositely signed
vortices arise along the axis of extension and compression. Figure 10.1a shows a
contour plot of Tr(C) at t = 8 for Wi = 5.0. At t = 8 the solution is at “near-steady
state.” Although the polymer stress is still increasing in a neighborhood of the axis of
compression and extension, the size of that neighborhood is decreasing, and the L2

norm of the stress is nearly constant as is the L2 norm of the velocity. The stress has
concentrated along the stable and unstable manifolds of the extensional stagnation
points in the flow. These stress regions are localized and need to be well resolved for
accurate simulations. Figure 10.1b shows a contour plot of the vorticity at the same
time. The near-delta-function stress creates near-cusps in the velocity field which
yield near-jumps in the vorticity. These features are seen in detail when looking at
slices of the polymer stress and vorticity in Figs. 10.1c and d.

In what follows, to compare the different models, we look at two singular
cases separately, namely Wi = 0.6 which has a cusp solution and Wi = 2.0 which
has diverging solutions. Simulations were done for the Stokes-Oldroyd-B model
(R ≡ 0) for Wi = 0.6 and Wi = 2.0 with n2 = 10242 grid points in the [−π ,π ]2
domain. These “exact solutions” are compared with coarser solutions of the various
models: Giesekus, PTT, polymer diffusion, at 4× coarser resolution, n2 = 2562, and
α = 0.001.
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1.6.1 Cusp Solution: Wi=0.6

Figure 10.2 (left) shows the solution, C11(0,y), for Stokes OB with Wi = 0.6 at
t = 5.5. At this time, the solution has reached steady state, the maximum difference
in the stress over 0.1 time units is O(10−3), and the maximum difference in the
velocity is 2 orders of magnitude smaller. The cusp in the polymer stress is located
at the extensional point in the flow (0,0). The other constitutive models were run
at 4× coarser resolution, n2 = 2562 grid points, and are compared with the Stokes-
OB solution in Fig. 10.2 (right). The different models agree well with Stokes OB.
As expected, the polymer stress diffusion model fails to capture the cusp. However,
outside an O(10−1) region near the extensional point all three models are accurate
to 2 digits. Examining the Fourier spectrum for each of these models (not shown)
reveals that the polymer diffusion model has a decaying spectrum similar to that of
the higher resolution Stokes-OB solution. The spectra of the Giesekus and PTT
models decay much less rapidly, which indicates the approach of a singularity.
Long time simulations with polymer diffusion go to steady state, while the other
models and the Stokes-OB simulations will eventually break down from oscillations
as the solutions become more singular over time.

1.6.2 Diverging Solution: Wi=2.0

When Wi = 2.0 the results from [40] and the local analytical solution indicate that
the polymer stress should be diverging near the extensional point at (0,0). Although
the stress is diverging, the set on which the stress is growing diminishes in time
so that the resultant velocity field approaches a steady state. In these simulations
between t = 6.9 and t ′ = 7.0 we see sup(x,y) |u(t)− u(t ′)| = O(10−4), although
the polymer stress is diverging. If we revisit Fig. 10.1, we see that the effect of
the concentration of polymer stress is to create recirculation cells in the vorticity.
Figure 10.3a shows a slice of the x−component of the velocity u1(π/2,y), at t = 7
(near-steady state) for Wi = 2. This value of Wi is beyond the coil-stretch transition
and we see that the diverging stress leads to a more significant modification to the
flow than the near-cusp stresses for Wi = 0.6. In Fig. 10.3a the flow perturbation
occurs near u1(π/2,0) and as t → ∞ this becomes a near-corner singularity. These
near-corners lead to the near-jumps in the vorticity seen in Fig. 10.1b.

Figure 10.3b compares the other constitutive models (at 4× coarser resolution) to
the Stokes-OB solution for the velocity u1(π/2,y) for Wi = 2, at t = 7. The results
are plotted on a log-log scale for 0 < y < π/2. Here the polymer stress diffusion
model captures the near-corner singularity almost one order of magnitude better
than the Giesekus and PTT models (whose data lies practically on top of one another
in the figure). Figures 10.3c and d show the Fourier spectra of the spatial data in
Fig. 10.3a and b, respectively. The Stokes-OB solution is well resolved at this time
with n2 = 10242 grid points, but the polymer diffusion model captures the essential
features of the flow and is well resolved with n2 = 2562 grid points. The Giesekus
and PTT models are both beginning to lose accuracy in the high frequencies which
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Fig. 10.3 Wi = 2.0 at t = 7: (a) C11(0,y) the first component of the conformation tensor along
the axis of compression where solution is “near-steady state.” (b) Difference between models
(Giesekus, PTT, and polymer diffusion) and the Stokes-OB solution. (c) and (d) Fourier spectra
û1(π/2,k) for different models

may indicate that the solutions are approaching a singularity. Long time simulations
of this problem break down for the Stokes-OB, PTT, and Giesekus model, whereas
the polymer stress diffusion smooths the singularity and the solutions converge to
steady state.

Simulations of FENE-P in this simple framework were done in [40]. It was
shown that simply adding a cutoff to the polymer stress does not solve the problem
of large stress gradients in extensional flows. The cusp-type singular solutions for
1/2 < Wi < 1 were still found for a sufficiently large maximum extension parameter
� and for Wi > 1 the diverging solutions became bounded for finite �, but numerical
evidence indicated an exponential approach to a pair of corner singularities. Some
numerical smoothing appears to be necessary even for this finite extension model
for accurate long time simulations.
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1.6.3 Simulation Conclusions

We see from this simple numerical test that long time simulations for strongly elastic
flows require care in choice of model and method. These high-stress regions arise
in many continuum models based on the upper-convected derivative (Eq. (10.5))
and care must be taken to resolve these regions for accurate information about the
polymer stress contribution to the flow. Adding polymer stress diffusion leads to a
nice balance of smoothing the stress locally while closely matching the flow outside
the small smoothing region.

It is important to be aware of underlying near-singularities in these complex fluid
models when designing numerical experiments. Model modifications which add
finite extension (FENE-P) or which produce finite steady-state extensional viscosity
(PTT and Giesekus) do not entirely get away from the underlying difficulties
with the polymer stress advection equation given in Eq. (10.4). When long time
simulations are required, these stress near-singularities can lead to loss of accuracy
in numerical simulations unless care is taken to identify and address those features.
The addition of polymer stress diffusion as a numerical smoothing, carefully chosen,
does a good job capturing the fine structures while maintaining accuracy over long
times.

Biological applications nearly always involve complex flows near walls and
around obstacles and these flows contain extensional stagnation points which are
subject to high-Weissenberg number problems. Near these regions, the flow has to
be sufficiently well resolved to incorporate the fine stress structures which arise and
feedback to create nontrivial flow patterns. The relaxation time of the elastic stress
also introduces a new time scale which needs to be considered. Coupling fluids with
structures adds further challenges which need to be addressed separately.

2 Immersed Boundary Methods

A common challenge of computational fluid mechanics is solving the equations
of motion in complex geometry. Biological systems are particularly challenging
because they often involve the coupled dynamics of active elastic structures and
the surrounding fluid. There are many examples of such systems involving complex
fluids, some of which were discussed in earlier chapters: beating cilia in mucus in
the respiratory system, swimming sperm in the mucus of the female reproductive
tract, and peristaltic pumping in the reproductive and digestive systems. In each of
these systems, the collective dynamics of the material is an emergent phenomenon
and is the product of the interactions between the fluid and the elastic material.

A popular method for biological fluid dynamics problems involving large
deformations is the immersed boundary (IB) method [79]. The IB method was
originally developed to study blood flow in the heart [80], and it has been applied to
a large range of biological and nonbiological systems over the past thirty years.
The IB method uses two coordinate systems: a moving Lagrangian coordinate
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system for the immersed structures and a fixed Eulerian coordinate system for the
fluid. The Eulerian domain is discretized with a regular, Cartesian mesh which
permits the use of fast methods for solving the equations of fluid mechanics.
A key feature of the method is that it does not require conforming discretizations
of the fluid and structure; instead, the curvilinear mesh is free to cut through the
background Cartesian grid in an arbitrary manner. Consequently, IB simulations
do not require dynamic grid generation, even for problems involving very large
structural deformations.

The popularity and longevity of the immersed boundary method are partly due to
its robustness and simplicity. The method is highly adaptable, and codes require few
changes to be modified for different applications. Typical implementations of the IB
method generally require only solvers for the fluid equations along with routines
to compute elastic forces and to transfer data between the Lagrangian and Eulerian
grids. IB codes can be built on top of existing codes for solving the equations of
the fluid. In fact, the computational examples presented in Sect. 3 use the same
viscoelastic fluid solver for Stokes Oldroyd-B with polymer diffusion that was
used to generate the results in Sect. 1. In Chap. 11, a boundary integral method is
presented to simulate the dynamics of a suspension. We note that boundary integral
methods can only be used for linear equations, and they do not extend to the Stokes
Oldroyd-B model. In this way, immersed boundary methods are more general.

Recently, the IB method has been used to investigate several classical low
Reynolds number bio-fluid problems involving complex fluids in place of New-
tonian fluids. For example, [57, 81] use the IB method to investigate peristaltic
pumping of viscoelastic fluids, and [82–84] use the IB method to explore the
swimming of microorganisms in complex fluids. The goal of this chapter is not
to review the many variants and applications of immersed boundary methods, but
rather to highlight key considerations when using immersed boundary methods
for applications involving strongly elastic fluids at low Reynolds number. In the
remainder of this section, we briefly introduce the key ideas of the immersed
boundary method. We pay particular attention to time stepping algorithms. As we
show in the later sections, traditional explicit-time methods are severely limited for
strongly elastic flows with stiff boundaries.

As discussed in Sect. 1, viscoelastic flows tend to form regions of high stress
with sharp velocity gradients near extensional points. These regions of highly
concentrated stress can be generated by active immersed objects in the fluid, and
resolving these stresses requires finer grid resolution than similar problems of
Newtonian fluid mechanics. Viscoelastic stresses introduce additional time scales
into the problem, and at moderate to high-Weissenberg numbers, the stress evolves
on very long time scales. Capturing these slow dynamics requires performing
long time simulations. In Sect. 3, we illustrate these ideas using an example problem
of a swimming organism in a viscoelastic fluid.
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2.1 Immersed Boundary Equations

Let x ∈ ˝ denote fixed physical coordinates, with ˝ ⊂ R

nf being the physical
domain where nf = 2 or 3 is the dimension of the fluid. Let s ∈ Γ denote
material coordinates attached to the immersed structure, with Γ ⊂ R

ns denoting
the Lagrangian coordinate domain and ns denoting the dimension of the structure.
The physical location of material point s at time t is given by X(s, t) ∈ ˝ . The name
immersed boundary method suggests that the elastic structure is a thin interface, i.e.,
an object of codimension one with respect to the fluid (ns = nf−1). While this is the
case in many applications of the IB method, this formulation applies equally well to
immersed structures that have nonzero thickness.

In many biological problems, the structure has the same density as the fluid,
and thus the combined fluid and structure can be described by a single momentum
balance equation, and their motion can be described by a single velocity field.
In the absence of other loading, the forces generated by the deformations of the
structure drive the motion of the fluid through a body force term in the balance of
momentum equation. In this chapter we consider the boundary to be immersed in an
Oldroyd-B fluid (with diffusion coefficient α) at zero Reynolds number. The system
of equations describing the fluid and structure is

ηsΔu−∇p+∇ ·�p + f = 0, (10.27)

∇ ·u = 0, (10.28)

� p +λ
�
�p = μp�̇ +λαΔ� p, (10.29)

f(x, t) =
∫

Γ
F(s, t)δ (x−X(s, t)) ds, (10.30)

∂X(s, t)
∂ t

= U(s, t) =
∫

˝
u(x, t)δ (x−X(s, t)) dx, (10.31)

in which u(x, t) is the velocity field, U(s, t) is the velocity of the structure, p(x, t)
is the pressure, � p(x, t) is the viscoelastic stress, f(x, t) is the Eulerian elastic force
density generated by the immersed structure, F(s, t) is the Lagrangian elastic force
density generated by the immersed structure, and δ denotes the Dirac delta function.

The integral operator in (10.30) that determines the Eulerian force density from
the Lagrangian force density is called the spreading operator, which we denote by
S. The interpolation operator that transfers the velocity to the structure is the adjoint
of the spreading operator. Using this notation, equations (10.30) and (10.31) can be
compactly expressed as

f = S F, (10.32)

∂X
∂ t

= U = S∗u, (10.33)
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respectively. Note that the spreading operator depends on the current position of the
structure. For a discussion of discretizing these operators see [79].

A constitutive law which relates the boundary configuration to the force is
needed to complete the description of the system. The form of the constitutive law
depends on the application being considered. In Sect. 3 we present an example in
which penalty forces are used to actively drive the immersed boundary to follow a
prescribed shape to mimic the undulatory stroke of a swimming worm.

2.2 Explicit-Time Stepping

Typical implementations of the IB method use a fractional time stepping approach
to solve the equations of motion. In the simplest version of such a scheme, the fluid
velocity, pressure, and viscoelastic stress are updated while keeping the position
of the structure fixed, and then the structural position is updated using the newly
computed velocity. In this section, we consider that the viscoelastic stress is known
at the beginning of a time step and thus can be described by its force density
fve = ∇ ·�p. For the model equations considered here, the explicit-time method
advances the solution variables from time tn = nΔ t to time tn+1 = (n+ 1)Δ t via

ηsΔhun+1 −∇h pn+1 + fn+1
ve + Sn

hF(Xn) = 0, (10.34)

∇h ·un+1 = 0, (10.35)

Xn+1 = Xn +Δ t (Sn
h)

∗ un+1. (10.36)

Notice that the explicit-time method effectively decouples the computation of
the boundary mechanics from the computation of the fluid velocity, pressure, and
viscoelastic stress. This decoupling makes it easy to use existing codes for solving
the fluid mechanics for IB simulations. In this way, the IB method for complex fluids
is identical to the IB method for Newtonian fluids.

It is well known that for applications involving stiff elastic structures, the explicit-
time method requires very small time steps to maintain stability. We let L −1

denote the inverse Stokes operator which maps force densities to velocity fields.
The boundary update equation (10.36) can be expressed as

Xn+1 = Xn +Δ t (Sn
h)

∗L −1Sn
hF(Xn), (10.37)

where we have suppressed the viscoelastic forces for simplicity. This expression
shows that the explicit-time scheme is essentially a forward-Euler method for the
boundary positions, which explains the origin of the stability restriction. For many
constitutive laws, as the grid is refined the problem becomes increasingly stiff.
Because viscoelastic fluids require high grid resolution and sometimes involve long
time integration, the stability restriction may be more limiting than for Newtonian
fluids.
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2.3 Implicit-Time Stepping

Much effort has been devoted both to understanding and to alleviating the severe
time step restriction of fractional step IB methods [85–87]. The solution methods
used in early implicit IB methods were not efficient and were not competitive with
explicit methods [88], and some semi-implicit methods intended to allow for large
time steps still suffered from significant time step restrictions [89,90]. Newren et al.
[86] analyzed the origin of instability in semi-implicit IB methods using energy
arguments, and they gave sufficient conditions to achieve unconditional stability in
the sense that the total energy is bounded independent of the time step size. An
important result by Newren et al. [86] is that it is not necessary to employ a fully
implicit-time discretization to achieve unconditional stability, but the stable time
stepping schemes proposed therein do simultaneously solve for both the Eulerian
velocity field and the Lagrangian structural configuration. As indicated by the early
experience with implicit IB methods, however, developing efficient solvers for the
coupled equations is challenging.

More recently, a number of stable semi-implicit [91–94] and fully implicit
[95, 96] IB methods have been developed. The efficiency of these methods is
generally competitive with explicit methods, and in some special cases, these
implicit schemes can be faster than explicit methods by several orders of magnitude.
Many implicit methods use a Schur complement approach to reduce the coupled
Lagrangian-Eulerian equations to purely Lagrangian equations [94, 95, 97]. These
methods achieve a substantial speedup over explicit methods especially when there
are relatively few Lagrangian mesh nodes [94]. An open question is whether there
exist robust, general-purpose implicit methods that are more efficient than explicit
methods or whether specialized methods must be developed for specific problems.

We present an example of a semi-implicit method which is very similar to
methods presented in [91, 94, 95]. In our implicit-time method, the fluid velocity
at time tn+1 depends on structure forces at time tn+1, rather than on the forces at
time tn as in the explicit method. Again we consider the viscoelastic forces as given.
The system of equations that must be solved for the fluid velocity, pressure, and
structure position is

ηsΔhun+1 −∇h pn+1 + fn+1
ve + Sn

hF(Xn+1) = 0, (10.38)

∇h ·un+1 = 0, (10.39)

Xn+1 = Xn +Δ t (Sn
h)

∗ un+1. (10.40)

Notice that in this time stepping scheme, the structural positions used to define the
spreading and interpolation operators are lagged in time. As shown by Newren et al.
[86], this scheme is unconditionally stable, despite the fact that the positions of the
spreading and interpolation operators are treated explicitly rather than implicitly.
This type of scheme is often termed semi-implicit to emphasize that not all of the
terms are treated implicitly.
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Rather than solve for the velocity, pressure, and boundary position simultane-
ously, we reduce the equations to a single equation for the unknown boundary
positions. Using the inverse operator for the Stokes equations, L −1, the boundary
update equation (10.40) can be written as

Xn+1 = Xn +Δ t (Sn
h)

∗L −1Sn
hF(Xn+1), (10.41)

which resembles a backward-Euler scheme for advancing the boundary positions.
This is a nonlinear equation, which we solve by applying Newton’s method to

G(X) = X−Xn −Δ t (Sn
h)

∗L −1Sn
hF(X) = 0. (10.42)

Let Xk represent the approximate solution at the kth step of the Newton iteration.
Each Newton step involves the update

JδX =−G(Xk) (10.43)

Xk+1 = Xk + δX, (10.44)

where J is the Jacobian of G. We do not explicitly form J. Rather, we perform
multiplication by J as described below, and we solve equation (10.43) using the
generalized minimum residual method (GMRES).

Let JF represent the Jacobian of the force function, F. The Jacobian of G may be
expressed as

J = I−Δ t (Sn
h)

∗L −1Sn
hJF . (10.45)

The product JδX is accomplished by first explicitly multiplying by JF (which is
sparse), then spreading the result to the grid, solving the Stokes equations, and inter-
polating back to the structure. This procedure avoids the need to explicitly form J.
The GMRES solver requires a good preconditioner for efficient performance. As a
preconditioner, we ignore the Stokes solve and use

M = I−Δ t (Sn
h)

∗ Sn
hJF . (10.46)

This matrix is sparse and relatively small (number of the IB points) and can be
factored quickly. The performance of the method is discussed in Sect. 3.5.

Note that each evaluation of the objective function, G, as well as each application
of the Jacobian, J, involves the application of L −1. This operator is never explicitly
constructed. Its application is achieved by solving the Stokes equations for the
fluid velocity. This implicit-time method uses the same code as the explicit-time
method for finding the fluid velocity. Although the immersed boundary code for the
implicit-time method is significantly more involved than the explicit-time method,
this method retains the appealing modularity of the original IB method and allows
the algorithms presented in Sect. 1 to be used without modification.
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3 Locomotion of Undulatory Swimmers

Locomotion of microorganisms at low Reynolds number occurs in numerous
biological processes, and swimming in a Stokesian Newtonian fluid has been
extensively studied and the underlying physics is well understood. See [98] for
a review of low Reynolds number locomotion. There have been many recent
theoretical studies on locomotion in complex fluids [83, 84, 99–106]. Asymptotic
analyses of infinitely long, small-amplitude, undulatory swimmers in a viscoelastic
fluid showed that swimming is hindered by the addition of elastic stresses [100,101].
However, numerical simulation of finite-length large-amplitude swimmers in a
viscoelastic fluid showed that under some conditions, the swimming speed may
be enhanced by the elastic stresses [83]. A similar enhancement was shown for
numerical simulations of infinite-length helical swimmers with large pitch angles
[105]. The results from these papers highlight the importance of computational
methods in exploring problems that are beyond the reach of asymptotic analysis.

In the remainder of this chapter, we use the problem of a finite-length free
swimmer to illustrate the ideas of the immersed boundary method. We pay particular
attention to the additional complications introduced from the viscoelastic fluid,
namely, the need for high grid resolution and the presence of long time dynamics
at high-Weissenberg numbers. The problem we explore is very similar to that
presented in [83], except that the stroke pattern of the swimmer is based on data for a
swimming nematode presented in Chap. 7 of this book and in [107]. In this chapter,
we primarily use this problem as a computational example of the methodology.
For a more in-depth analysis of how the fluid elasticity, body elasticity, and stroke
kinematics affect swimming speed in this problem, see [106].

3.1 Swimmer Model

The worm is modeled as an inextensible infinitely thin sheet, which in two
dimensions is a curve in the plane. The position of the worm is given by X(s, t),
where s ∈ [0,L] is the Lagrangian coordinate. The swimming is driven using a
prescribed target curvature κ0(s, t), which in the absence of resistance from the
surrounding medium represents the shape of the worm.

3.1.1 Immersed Boundary Forces

Both the inextensibility and the shape are enforced by forces that are designed to
penalize extension and deviation from the prescribed curvature. These forces are
derived from expressions for the bending and extension (stretching) energy, which
are given below. For a given configuration of the worm the energy from stretching is
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Es =
ks

2

∫

Γ

(|Xs|− 1
)2

ds, (10.47)

where ks is a stiffness coefficient. The bending energy is

Eb =
kb

2

∫

Γ
(κ−κ0(s, t))

2 ds, (10.48)

where kb is the bending stiffness, κ is the curvature of the worm, and κ0 is the
prescribed target curvature. The total energy is the sum of the bending and stretching
energy:

E = Es +Eb. (10.49)

The Lagrangian force densities come from the variational derivative of the total
energy:

δE
δX

X̃ =−
∫ L

0
FX̃ds =−

∫ L

0
(Fs +Fb)X̃ds, (10.50)

where Fs and Fb are the force densities corresponding to stretching and bending,
respectively. The expressions for the force densities are derived by first discretizing
the structure (and hence the energy functional) and then taking the variational
derivative of the discrete energy. The advantage of this approach is that it guarantees
that the total forces discretely sum to zero, which is a requirement to be able to find
a solution to Stokes equations in a periodic domain.

The signed curvature is computed using a discretized version of

κ = n̂ · ∂ t̂
∂ s

= n̂ · ∂
2X
∂ s2 , (10.51)

where t̂ is the tangent vector and n̂ is the normal vector. We are assuming that the
material is inextensible and the tangent vector is expressed as t̂ = Xs. We compute
the discrete curvature at an interior point using the expression

κ j =

(
n̂ j+1/2 + n̂ j−1/2

2

)
·
(

t̂ j+1/2 − t̂ j−1/2

Δs

)

, (10.52)

where the discrete tangent vector is

t̂ j+1/2 =
X j+1 −X j

Δs
(10.53)

and the discrete normal is the π/2 rotation of the tangent. The discretized expression
for the total energy is
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E =
ks

2

N−1

∑
j=1

(∣∣
∣
∣
X j+1 −X j

Δs

∣∣
∣
∣− 1

)2

Δs+
kb

2

N−1

∑
j=2

(
κ j −κ0 j

)2Δs. (10.54)

3.1.2 Curvature Model

We take shape data of a nematode swimming in the water to identify the target
curvature.2 The measured curvature as a function of time and position along the
worm are shown in Fig. 10.4. The body coordinate (in units of mm) runs from s = 0
at the head to s = 1.2 at the tail. The worm shows a periodic motion with a dominant
frequency around 2 Hz (period of 0.5 s), which is evident in the curvature data.

For the model swimmer, we use a curvature function of the form

κ0 = A(s)cos

(
2π
T

(
t +φ(s)

)
)
, (10.55)

where A is the amplitude, φ is the phase, and T = 0.5 s is the period. We identify the
phase function, φ , by finding the peak cross-correlation between the head and points
along the body. This phase function and a linear fit to it are shown in Fig. 10.5. The
slope of the linear fit is −0.250 s/mm, and so we use a phase function of φ(s) =
−s/4+φ0, where φ0 is the value of the phase assigned to the head.
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Fig. 10.4 Color field of the curvature (in mm−1) data of the swimming nematode as a function of
time and body coordinate along the worm. s = 0 is the head and s = 1.2 is the tail

2The data are kindly provided by Paulo Arratia and Xiaoning Shen.
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Fig. 10.5 Phase (left) and amplitude (right) functions based on the curvature data of a swimming
nematode and their linear fits that are used to define the curvature in the model computations
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Fig. 10.6 Time sequence of worm shapes from the data (left) and model (right). The colors
correspond to the time progressing from blue to red. The body is positioned with a fixed center
of mass and horizontal end-to-end vector

We compute the time-averaged curvature of the data by

κ̄(s) =
√

1
N∑t j

κ (s, t j)
2 (10.56)

and fit this with a linear function. The averaged curvature and the linear fit are
displayed in Fig. 10.5. We choose the amplitude of the curvature in the model by
A(s) =

√
2κ̄fit, so that the model matches the data in the mean squared curvature.

Figure 10.6 shows a time sequence of the actual shapes and the shapes produced
by the model fit. Changes in curvature propagate as phase waves from the head
(s = 0), where the amplitude of the curvature is largest, to the tail. In what follows
we call this type a swimmer a “burrower.” The exact form of the curvature function
used to drive the swimming worm is



386 R.D. Guy and B. Thomases

κburrower
0 = (5.3− 3.1s)cos

(
4π(t − s/4+φ0)

)
, (10.57)

where φ0 = L/4 is the phase shift chosen to have zero phase at the tail. We note
that in [83] the desired motion of the swimmer involved waves of curvature that
propagated with an increasing amplitude along the direction of the wave. We call
this type of swimmer a “kicker.” For comparison we simulate a kicker using the
change of coordinates

κkicker
0 (s, t) = κburrower

0 (L− s, t0 − t), (10.58)

where L is the length of the swimmer and t0 is a phase shift that keeps the head at
the same phase as the burrower.

3.1.3 Simulation Parameters/Nondimensionalization

The length of the swimmer is 1.2 mm, the period of the oscillation is 0.5 s, and
the phase velocity of the bending motion is 4 mm/s. We nondimensionalize the
equations using a characteristic length scale of L = 1 mm, a time scale of 1 s, and a
velocity scale of U = 1 mm/s. The viscoelastic stresses are scaled by ηpU/L. As in
the previous sections, we set the ratio of the polymer viscosity to the fluid viscosity
to be ξ = ηp/ηs = 0.5. In the viscoelastic fluid we use the Deborah number, De, to
characterize the ratio of the relaxation time of the polymers to the time scale of the
flow. We note that we use the characteristic time scale of 1 s to define the De rather
than the period of swimmer.

For the bending stiffness we choose a characteristic bending stiffness of nema-
todes: kb = 2×10−15 Nm2 [108], which when nondimensionalized becomes kb = 2.
For the stretching stiffness we choose a nondimensional value of ks = 2500. We note
that with this value of the bending stiffness, the actual curvature may be significantly
different from the target curvature. We return to examining the effect of changing
the bending stiffness in Sect. 3.4.

The computations are performed in a 2 mm by 1 mm doubly periodic domain,
with the worm initially aligned in the x-direction. The domain is discretized using a
regular Nx = 256 by Ny = 128 grid, and the points on the swimmer are spaced so that
Δs ≈ Δx. We use the implicit-time stepping scheme with a time step of Δ t = 10−3

and a stopping tolerance of 5× 10−5 for the nonlinear solver.
The viscoelastic fluid solver used here is the same solver described in Sect. 1.6.

The dimensionless polymer stress diffusion coefficient is fixed at α = 0.01. The
length scale associated with polymer stress diffusion over a time step is smaller
than the grid spacing (

√
Δ tα ≈ 0.0032 � Δx = 1/27 ≈ 0.0078).
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3.2 Swimming Speed

We simulate the swimming of both the burrower and the kicker until time t =
max(10,10De) which allows sufficient time to establish a periodic motion inde-
pendent of the initial transients. We measure their steady-state swimming speed
by computing the displacement of the center of mass over the last period of the
simulation. In Fig. 10.7 we show the swimming speeds for both the burrower and
the kicker as a function of De, scaled by the swimming speeds for De= 0. While the
burrower always swims slower in a viscoelastic fluid, the kicker swims up to 25%
faster in a viscoelastic fluid. The swimming speed changes non-monotonically as a
function of De for both swimmers, with a local maximum a little beyond De = 1.
The relative swimming speed for the kicker is consistent with the result reported
in [83].

Figure 10.8 shows contours of the elastic energy, Tr(� p), for both the burrower
and kicker at the ending time of the simulation for De = 0.1,0.5,1.0,2.0. These
plots demonstrate the significant differences between both the size and location of
the elastic stresses for the burrower and the kicker. Generally, the elastic stresses are
larger for the kicker, and much more concentrated at the tail.

In Sect. 1, we showed that large, highly concentrated elastic stresses were
produced around extensional points. It is not a priori clear whether the swim-
mer problem is prone to exhibit the flow characteristics associated with high-
Weissenberg number problems. In Fig. 10.9 we show the extensional points, centers,
and streamlines at four representative times in a steady frame translating at the
worm’s average swimming speed for the burrower at De = 0. Periodically, a new
extensional point and center are generated at the head, and shortly after this, an
extensional point and center coalesce at the tail. In between these events, there
are a pair of extensional points and a pair of centers traveling from the head to
the tail. In the plots shown, the strengths of the extensional points range from
0.9 to 2.8, which is in the range subject to high-Weissenberg number phenomena.

Fig. 10.7 Scaled swimming
speed of both the burrower
and the kicker as a function of
De. The swimming speed is
scaled by the speed at De = 0
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Fig. 10.8 Contours of the elastic energy at the end of the simulation for both the burrower and
kicker for different De. The head is on the right

However, examining streamlines provides only limited information. It remains
an open question whether these moving extensional points are related to high-
Weissenberg number phenomena. See Chap. 7 for a similar discussion, and see
[106] for a more detailed study of the effects of fluid elasticity, body mechanics,
and stroke kinematics on swimming speed for this problem.
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time =  1.000

time =  1.195

time =  1.185

time =  1.250

Fig. 10.9 Streamlines in the frame translating with the average swimming speed of the worm for
the burrower in a Newtonian fluid (De = 0). The extensional points are marked with dots and
centers are marked with squares. Four representative times are shown including the creation of a
new extensional point at the head and the disappearance of an extensional point at the tail. The
head is on the right

3.3 Time and Space Resolution

The results of the previous section show that the swimmer problem involves strong
extensional points and highly concentrated elastic stresses that are associated with
high-Weissenberg number problems. Here we demonstrate the importance of long
time scales and fine spatial scales for the swimmer problem.

Figure 10.10 (left) shows the polymer elastic energy, measured as the trace of the
polymer stress tensor, for three different De up to time 20. These data demonstrate
that for high De the elastic stresses evolve very slowly. For De= 5 the elastic energy
is still growing substantially at time t = 20, while the energy is near-steady state
for the lower values of De. The elastic energy for De = 5 up to time 50 is shown
in the inset. The effect of this slow evolution of stress on the swimming speed is
demonstrated in Fig. 10.10 (right) which shows the swimming speed (averaged
over the previous period) as a function of time for different De. For De = 1, the
swimming speed rapidly approaches a steady state, but for high De the swimming
speed increases on a time scale on the order of De, but on long time scales it slowly
decays to a much smaller value. These data demonstrate that understanding the
effects of elastic stresses in systems with large De (or large Wi) requires performing
long-time simulations.
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Fig. 10.10 (left) Time course of the elastic energy in the kicker simulations up to t = 20 for De =
1,2,5. The inset shows the data for De = 5 up to time 50. (right) Swimming speed averaged over
previous period as a function of time for the same parameters
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Fig. 10.11 Swimming speed for burrower and kicker for Ny = 32,64,128,256 and varying De

As Fig. 10.8 shows, highly localized stresses develop around the swimmer for
large De. Here we demonstrate the importance of adequately resolving these large
stress gradients. Figure 10.11 shows the swimming speeds as a function of De for
both the burrower and the kicker as the grid is refined. The results from the two
coarsest meshes and the two finest meshes are notably different. In fact, on the
coarsest mesh, the simulations predict the wrong dependence of swimming speed
on De.
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3.4 Effect of Increasing Bending Stiffness

In these simulations, the active forces of the worm are driven by changes in the
desired curvature, κ0. In the limit that the bending stiffness goes to infinity, the
curvature of the worm approaches the desired curvature, but for any finite value
of the bending stiffness, the curvature of the worm and the desired curvature are
different. In the simulations presented in the previous sections, the bending stiffness
was chosen based on the measured bending stiffness of nematodes. In this section
we examine the effect of changing the bending stiffness on the swimming speed.

Figure 10.12 shows the swimming speed at De = 0.5 for eight different bending
stiffness values from four times lower than that used in the previous sections to 50
times higher. As the bending stiffness increases, the curvature of the simulated worm
more closely follows the prescribed curvature, and the swimming speed approaches
a constant. It is notable that the swimming speed for kb = 100 is about 80 % larger
than for kb = 2, which was the value used in the previous sections.

We repeat the calculations of the steady-state swimming speed from Sect. 3.2
for a range of De for a larger bending stiffness. Figure 10.13 shows the relative
swimming speeds for both the burrower and the kicker for De = 0− 5 for both
kb = 2 and kb = 40. For both swimmers, the results are very different between the
two stiffness values. In contrast to the softer worm, with the larger bending stiffness,
the burrower’s swimming speed decreases monotonically with De, and the kicker’s
swimming speed is always slower than in a Newtonian fluid.

For the softer bending stiffness, there is a significant difference between the
prescribed curvature and the realized curvature. The target curvature represents
the equilibrium shape that would be achieved in the absence of resistance from
the surrounding medium. The product kbκ0 can be related to the internal torque
density resulting from muscular contraction. In the soft regime, the realized shape

Fig. 10.12 Average
swimming speed at De = 0.5
for different values of the
bending stiffness
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Fig. 10.13 Scaled swimming speed of both the burrower and the kicker as a function of De for
two different bending stiffnesses. The swimming speed is scaled by the speed at De = 0. The data
for kb = 2 is the same as that from Fig. 10.7

results from the complex interaction between the fluid, passive body mechanics,
and actively generated torques. For large elastic stresses, the fluid offers significant
resistance to deformation, and the bending forces must be stiff enough to maintain
the prescribed shape if the intention is to simulate that prescribed shape.

These results demonstrate that care must be exercised when using penalty
methods to ensure that the forces are sufficiently stiff so that the choice of numerical
parameters does not affect the predicted results. Even with the lower bending
stiffness, the equations are extremely numerically stiff, and explicit-time methods
would be very inefficient (see next section). The implicit-time method is necessary
to be able to simulate on long time scales, with a fine grid, and with sufficiently
large stiffness to capture the correct dynamics of the prescribed shape swimmers.

3.5 Efficiency of the Implicit-Time Method

For given stiffness coefficients and grid spacing, we let Δ texp represent the largest
time step that gives a stable simulation in the explicit-time method. We identify
Δ texp using a bisection algorithm. The worm simulation is run until time 0.1, and
considered unstable if the elastic energy rises above a prescribed threshold. In
Table 10.1, we report Δ texp for two different bending stiffnesses and four different
grid resolutions, for De = 0.5. The table shows that when the grid is refined by a
factor of 2, the time step shrinks by a factor of about 8, which is as expected for
bending forces at low Reynolds number [109]. On the finest grid, the reported time
step restriction is an estimate from the coarse grid values.

Each time step of the implicit method requires repeated solution of the Stokes
equations. Each evaluation of the objective function in the Newton’s method and
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Table 10.1 Maximum stable
time step for the explicit
method. The value reported
on the finest grid is estimated
from the coarser grids

Δx kb = 2 kb = 20

2−5 2.76e-4 2.65e-5

2−6 3.28e-5 3.14e-6

2−7 4.01e-6 3.86e-7

2−8 (est) 4.81e-7 3.49e-8

Table 10.2 Average number
of Stokes solves over 1,000
time steps of the implicit code
with Δt = 10−3

tol = 5×10−5 tol = 1×10−5

Δx kb = 2 kb = 20 kb = 2 kb = 20

2−5 17.82 21.70 22.21 32.34

2−6 20.99 33.45 33.10 43.02

2−7 24.23 44.11 39.48 67.44

2−8 39.58 – 64.41 102.93

each application of the Jacobian require solving the Stokes equations. In Table 10.2
we report the number of times the Stokes equations are solved per time step
for 1,000 time steps of the implicit method with Δ t = 10−3 (two periods of
the swimming motion). We report these values for two different stiffnesses, four
different grid resolutions, and two different stopping tolerances for the Newton’s
method.

Note that on the finest grid with the largest stiffness, the solver failed with the
larger tolerance during the simulation. With a smaller tolerance, no failure occurred.
A more sophisticated nonlinear solver, e.g., including line searching or trust region
methods, would likely be able to compute with the larger tolerance [110, 111]. This
failure illustrates one of the many added difficulties of working with implicit-time
methods in place explicit-time methods.

To estimate the efficiency of the implicit method we compare the number of
times the Stokes equations are solved per time unit with the explicit-time method.
We measure the efficiency as the ratio of Stokes solves in the explicit method to
the implicit method per unit time. This efficiency estimate ignores the extra work
involved in the GMRES iteration in the implicit method. However, it also ignores the
extra updates of the stress equation in the explicit method, and the fact that one is not
likely to run the explicit method exactly at the stability limit. With this in mind, one
may loosely interpret the efficiency measurement as the expected speedup gained
by using the implicit method in place of the explicit method.

The efficiency is reported in Table 10.3 for two different bending stiffnesses, four
different grid resolutions, and two different stopping tolerances for the Newton’s
method. Only on the coarsest grid is the explicit method ever significantly more
efficient than the implicit method. However, as noted previously, the solutions on
the two coarsest grids have very large errors. The coarsest grid spacing which
we consider usable is Δx = 2−7. At this resolution and above, the implicit solver
significantly outperforms the explicit method.

As the grid is refined, the problem gets significantly stiffer, but the work involved
in the nonlinear solver grows only mildly. The number of Stokes solves required per
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Table 10.3 Efficiency of the
implicit method measured as
the ratio of the number of
times the Stokes equations
are solved per time unit in the
explicit method to the
implicit method

tol = 5×10−5 tol = 1×10−5

Δx kb = 2 kb = 20 kb = 2 kb = 20

2−5 0.20 1.15 0.16 1.16

2−6 1.45 6.84 0.92 7.39

2−7 10.28 58.68 6.31 38.38

2−8 52.42 – 32.27 278.23

Numbers greater than one indicate that the
implicit method is more efficient than the
explicit method

time step increases by only a factor between about 2 and 3 as the grid is refined by a
factor of 8, while in the explicit method, the number of Stokes solves would increase
by a factor of over 500. Similarly, when the bending stiffness is increased by a factor
of 10, the work increases by less than a factor of 2 in the implicit method and by
about a factor of 10 in the explicit method. These results illustrate that implicit
methods far outperform explicit methods for very stiff problems on fine grids.

4 Conclusions

Strongly elastic flows at low Reynolds numbers share some characteristics of
high Reynolds number flows, namely, regions of highly localized stress and sharp
gradients in the velocity. One does not expect to be able to use the same algorithms
for low and high Reynolds number, and similarly, special care must be used to
simulate flows at high-Weissenberg numbers. We have highlighted some recent
analytical work on low Reynolds number viscoelastic fluids which has led to new
algorithms for successfully simulating flows at high-Weissenberg numbers. The
unbounded stress growth exhibited by the Oldroyd-B model is not present in many
other models with nonlinear relaxation rates. However, these models also exhibit
large stress gradients at high-Weissenberg numbers, and the algorithms developed
for Oldroyd-B are often still necessary to mitigate these numerical challenges. In
particular, we have demonstrated that the polymer stress diffusion modification
regularizes the Oldroyd-B model so that accurate, smooth, and bounded solutions
are obtained in periodic extensional flow.

It is not obvious how the standard benchmark problems for the high-Weissenberg
number phenomenon such as flow in a contracting channel or steady elongational
flow are directly related to biological problems. We used the classical problem of
an undulatory swimmer at low Reynolds number to demonstrate that when elastic
stresses are under-resolved, the predicted relative swimming speed is qualitatively
different from simulations with resolved stresses. We note that the immersed
boundary method is first-order accurate near structures, and this low accuracy may
make the resolution of stresses more difficult.
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The popularity of the immersed boundary method comes from its simplicity
and robustness which make it more attractive than using a significantly more
complicated high-order method, in particular for problems in biology where high-
order accuracy is often not paramount. Any algorithm for solving the forced
equations of motion for the fluid on a structured grid can be used in an immersed
boundary simulation. The methodology extends to complex fluids without modifi-
cation. The method is not without its drawbacks; notably, its low accuracy and the
severe stability restriction imposed by explicit-time stepping schemes in problems
involving stiff elastic structures. Accurately resolving the stress in strongly elastic
flows requires high grid resolution and long time integration of the equations.
The implicit-time method presented in this chapter makes it possible to perform
simulations on long time scales, with a fine grid, and with large elastic stiffness.
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Chapter 11
Cell Distribution and Segregation Phenomena
During Blood Flow
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Abstract Blood is the archetype of a biological complex fluid. It is complex in the
microstructural and mechanical sense, as a multiphase non-Newtonian viscoelastic
fluid, and also in the biological sense, as a tissue that has a wide range of functions
from delivery of oxygen and nutrients to response to injury and inflammation.
These forms of complexity are interconnected, as the physical nature of blood as
a multiphase fluid is intimately related to its biological functions. In the present
chapter, we summarize basic features of the structure and biology of blood as well
as observations of its dynamics during flow in the body. Emphasis will be put
on flow at small scales, where the particulate nature of blood as a suspension of
many different types of cells becomes important both physically and functionally.
The first part of the chapter describes the nature and biological functions of the
various components of blood, as well as the distribution of these components in
blood vessels. In particular, it has long been observed that the various cellular
components of blood are distributed very nonuniformly, a phenomenon that is
physiologically important as well as fascinating from the fluid-dynamical point
of flow. The second part of the chapter focuses on computational and theoretical
approaches for predicting and understanding the distribution and segregation of
blood cells in flow. Various numerical methods are described, with a focus on one
of the most widely used for multiphase small-scale flows, the boundary integral
method. Computational results for model suspensions are presented that allow
careful study of the basic mechanisms underlying segregation phenomena and a
model framework is introduced that incorporates these mechanisms in an idealized
way. This framework is a stepping stone toward a unified understanding of these
segregation phenomena that will hopefully be useful in aiding the development of
therapies to modify and exploit blood flow phenomena for disorders as varied as
cancer, sickle cell disease, and hemorrhage.
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Blood is the archetype of a biological complex fluid. It is complex in the microstruc-
tural and mechanical sense, as a multiphase non-Newtonian viscoelastic fluid,
and also in the biological sense, as a tissue that has a wide range of functions
from delivery of oxygen and nutrients to response to injury and inflammation.
These forms of complexity are interconnected, as the physical nature of blood as
a multiphase fluid is intimately related to its biological functions. In the present
chapter, we summarize basic features of the structure and biology of blood as well
as observations of its dynamics during flow in the body. Emphasis will be put
on flow at small scales, where the particulate nature of blood as a suspension of
many different types of cells becomes important both physically and functionally.
The first part of the chapter describes the nature and biological functions of the
various components of blood, as well as the distribution of these components in
blood vessels. In particular, it has long been observed that the various cellular
components of blood are distributed very nonuniformly, a phenomenon that is
physiologically important as well as fascinating from the fluid-dynamical point
of flow. The second part of the chapter focuses on computational and theoretical
approaches for predicting and understanding the distribution and segregation of
blood cells in flow. Various numerical methods are described, with a focus on one
of the most-widely used for multiphase small-scale flows, the boundary integral
method. Computational results for model suspensions are presented that allow
careful study of the basic mechanisms underlying segregation phenomena and a
model framework is introduced that incorporates these mechanisms in an idealized
way. This framework is a stepping stone toward a unified understanding of these
segregation phenomena that will hopefully be useful in aiding development of
therapies to modify and exploit blood flow phenomena for disorders as varied as
cancer, sickle cell disease and hemorrhage.

1 Background

1.1 Blood: Components and Physiological Functions

Blood is a suspension of various kinds of cells and cell fragments in an aqueous
background fluid known as plasma [1]. Red blood cells (RBCs) or erythrocytes
are the predominant cellular component; in humans the overall volume percent of
RBCs, or hematocrit, is about 40 % in females and 45 % in males [2]. A mature
RBC is a biconcave discoid about 8 μm across and 2 μm high. It has no nucleus
or cytoskeleton and to a first approximation can be viewed mechanically as a
deformable fluid-filled capsule with an elastic membrane [3]. The primary function
of red blood cells is oxygen transport—they contain the oxygen-carrying protein
hemoglobin. The other cellular components of blood are white blood cells (WBCs)
or leukocytes and platelets or thrombocytes . WBCs are outnumbered by the RBCs
by about 500:1 and platelets by 12–14:1 [5]. Figure 11.1 shows a schematic of blood
flow in a small vessel, qualitatively illustrating the three cell types.
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Fig. 11.1 A schematic
depicting blood flow in a
small channel or blood vessel,
showing RBCs (red), a
leukocyte (large sphere), and
several platelets (small
disks) [4]

There are various kinds of WBCs, ranging in size from about 7 μm to 15 μm.
The majority, 60–70 %, are neutrophils, which are between 10 and 12 μm across
and approximately spherical [6]. In contrast to RBCs, WBCs are intact cells with
a cytoskeleton and nucleus and as such are best viewed mechanically as soft
solid objects [5]. White blood cells are part of the immune system. For example,
neutrophils and monocytes extravasate (pass through blood vessel walls) in response
to infection. These cells can then capture and phagocytose the bacteria or the foreign
body, thereby killing them [5, 7].

Platelets are 2–3 μm cell fragments that form in the bone marrow by pinching
off from precursor cells called megakaryocytes that remain in the marrow. They
are discoidal in blood under normal conditions and are central to blood clotting
(coagulation). Blood vessel walls are lined with endothelial cells, to which platelets
do not normally adhere. An injury to a blood vessel exposes the extracellular
matrix, which is predominantly collagen; platelets adhere to the exposed collagen
and become activated [8–12], initiating the coagulation process. Once activated,
platelets develop fingerlike projections called pseudopodia [9]. In case of injury,
coagulation is normal. However, platelets also play a substantial role in the
pathological conditions of thrombosis, the formation of a thrombus (clot) within
a blood vessel, and atherosclerosis, the thickening of arterial walls. These are both
central elements of cardiovascular and cerebrovascular diseases [11].

Functionally, plasma is equally important as the cellular components of blood.
Dissolved within it are a great many small molecules–gases, salts, urea, hormones,
amino acids, lipids, glucose, vitamins—as well as a variety of proteins. The most
abundant of these, making up several percent of the total volume of blood, is
albumin. Albumin is a compact globular protein, and aside from its role as a carrier
of many small molecules in blood, it is a primary contributor to the osmotic pressure
of the blood. Albumin is too large to pass through the vessel walls and thus maintains
an osmotic driving force that resists the tendency of water to leak out from the blood
vessels. In the physiology literature, the contribution of albumin and other proteins
to the osmotic pressure is called the oncotic pressure, to distinguish it from the
contribution of small molecules like salts that pass much more easily between the
blood and surrounding tissues. Globulins are also abundant proteins, transporting
other proteins and playing a role in the immune response: antibodies, molecules that
bind to foreign bodies as part of the immune response, are members of this family.
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Many of the other proteins in the plasma are involved in coagulation [8, 12].
Fibrinogen polymerizes into fibrin, the major protein component of blood clots, as
part of the coagulation process [13]. Fibronectin is important for the stabilization
of platelet aggregates after vascular injury [14]. Von Willebrand factor (VWF) is a
particularly interesting protein that is found in plasma as well as in the endothelial
cells of the vessel walls. Various sizes are found, with lengths when fully extended
that are as large as ∼ 100 μm [15]–ten times longer than the size of a blood cell.
VWF plays an important role in the formation of clots. Recall that platelet adhesion
to collagen initiates the coagulation response. During blood flow with low shear
rates at the vessel walls (γ̇w � 100 s−1) platelet adhesion is not affected by the
presence or absence of VWF. At high shear rates (� 1000 s−1), however, VWF is
essential for adhesion [16–18]. Indeed the molecule is named after the physician
who identified the clotting disorder that arises when it is deficient [19]. Strong
evidence suggests that shear-induced unfolding of VWF at high shear rates leads
to its increased efficacy at initiation of coagulation [15, 20].

1.2 Rheology and Nonuniform Flow Phenomena in Blood

In the larger arteries and veins, blood can often be satisfactorily treated as a single-
phase fluid. There are many important high-Reynolds number flow phenomena
including turbulence, vortices, and recirculation zones in these large vessels, many
of which play an important role in cardiovascular health and disease [21]. The focus
of the present work, however, is flow at smaller scales, where blood flow is laminar
[21] and the multiphase nature of blood comes into play. Typical values [10, 22]
of the wall shear rate γ̇w in various vessels are ∼ 100–500 s−1 in larger veins and
arteries such as carotid, femoral, and coronary, 104 s−1 in arterioles, 103 s−1 in
capillaries, and slightly lower in venules. In arteries with severe stenosis, shear rates
as high as 105 s−1 can occur [10].

Macroscopic viscosity measurements of blood show that it is a shear-thinning
fluid with a yield stress [23]. At 37 ◦C, the viscosity becomes constant at about
3–5 mPa s once γ̇w � 100 s−1 and the yield stress is about 4 mPa. At 20 ◦C, the vis-
cosity reaches a high-shear-rate plateau of about 10 mPa s. These numbers depend
somewhat on temperature and hematocrit. Plasma itself is generally considered to
be Newtonian with a viscosity of about 1.3–2 mPa s, although very recent evidence
suggests that it does have some viscoelasticity, with a relaxation time of about
2 ms [24]. The shear-thinning of blood is largely attributable to the deformability
of the RBCs under flow; suspensions of chemically stiffened RBCs do not shear-
thin [25]. Blood is also somewhat viscoelastic, again due to the deformability of the
RBCs [26].

The yield stress of blood is small—any flow with γ̇ � 1–10 s−1 is strong enough
to exceed it. Situations with very weak flow may occur near recirculation regions
and stagnation points but will not be present in the bulk of the circulatory system.
Nevertheless, the origin of this yield stress is interesting. It has long been known
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Fig. 11.2 Apparent viscosity
vs. tube diameter for blood as
measured by a large number
of separate investigators [31]

that RBCs in stagnant blood form rouleaux, aggregates in which the RBCs stack like
coins. Rouleau formation does not seem to be completely understood, but classical
depletion flocculation (which is osmotic in origin [27]) due to the presence of the
large number of albumin and globulin molecules seems to play a substantial role
[28, 29]. In any case the rouleaux are broken up in any appreciable flow field.

The rheological properties just described are relevant for macroscopic flow
geometries, i.e., those with scales much larger than that of a blood cell. Fåhræus and
Lindqvist [30] made the important observation that the apparent viscosity at shear
rates � 100 s−1 (i.e., in the constant viscosity plateau beyond the shear-thinning
region) determined in a capillary viscometer using Poiseuille’s law is a strong
function of the capillary tube diameter, as shown in Fig. 11.2 [31]. This phenomenon
is called the Fåhræus-Lindqvist effect. For large tubes, there is a plateau, but for
diameters between 10 and 1000 μm, the apparent viscosity decreases substantially
with decreasing tube size, before increasing sharply for tubes smaller than 10 μm.
The increase for very small tubes is easily understood by recalling that the RBCs
are about 8 μm across, but the behavior at larger tube diameters is more subtle.

The origin of this phenomenon is related to another classical observation in blood
physiology called the Fåhræus effect [32, 33]. This effect is the observation that the
measured hematocrit of blood in a tube—i.e., the true average volume fraction–can
be less than the hematocrit inferred from measurements of the blood discharged
by flow out from a tube. The ratio of “tube hematocrit” to “discharge hematocrit”
displays a similar tube size dependence as the apparent viscosity. In particular, in

a tube of 20 μm diameter, the tube hematocrit (i.e., the true hematocrit within the
tube) is about half the discharge hematocrit [22, 32, 33].

The resolution to this apparent paradox lies in the fact that the discharge
hematocrit is weighted by the nearly parabolic velocity profile in the tube while the
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tube hematocrit is not. If the local concentration of RBCs in the tube were uniform,
then the two measures would yield the same result, so the Fåhræus effect indicates
that the concentration is not uniform and that the concentration of RBCs is higher
near the center of the channel where the velocity is high than near the walls where
the velocity is low. One reason for this concentration variation is the simple volume
exclusion effect–cells cannot pass through the wall so there is always a region near
the wall with a cell volume fraction lower than the nominal value. The other, more
interesting reason is that RBCs and indeed all deformable particles migrate away
from walls during shear due to hydrodynamic interaction effects with the walls.
This is further discussed below. The cell-depleted region near vessel walls is called
a “cell-free layer” or “marginal layer” [34, 35].

A further consequence of the nonuniform concentration of RBCs during flow is
“plasma-skimming.” The circulatory system is highly branched. The cell-depleted
wall region causes the hematocrit in a daughter vessel to be smaller than in the
parent vessel, as the daughter disproportionately draws fluid from near the wall
of the parent [34, 36]. Related to plasma-skimming is the Zweifach-Fung effect:
the observation that when a suspension of particles encounters an asymmetric
bifurcation, the RBC volume fraction in the outlet branch with the higher flow
rate is higher than in the branch with the lower [37, 38]. Recent work suggests that
this effect is primarily due to the cell distribution in the inlet branch: just as in
the plasma-skimming effect, the presence of the cell-free layer strongly affects the
distribution in the outlet branches [39]. In vivo measurements in small blood vessels
confirm the substantial drop in tube hematocrit that arises from the combination of
the Fåhræus and plasma-skimming effects [22].

1.3 Distribution of Blood Cells During Flow: Cell-Free
Layer and Margination

The Fåhræus-Lindqvist, Fåhræus, plasma-skimming, and Zweifach-Fung effects all
indicate that the concentration of RBCs is not uniform in blood vessels during
flow. We can qualitatively understand this result through consideration of two
basic phenomena in flowing suspensions: cross-stream migration and shear-induced
diffusion [40]. Even at zero Reynolds number, any deformable object in shear
(capsule, drop, vesicle, flexible macromolecule) migrates away from the wall
[41–44] with migration velocity vmig. Roughly speaking, this migration is driven
by the flow generated by a deformable particle as it tries to relax to its rest shape
and how that flow is modified in the presence of a wall. It has been described in
a number of works, both in the context of deformable particles [42, 45] as well
as for flexible macromolecules [46–48]. Additionally, if the velocity gradient is
not constant, as in Poiseuille flow, a single deformable particle can undergo lateral
migration even in the absence of hydrodynamic wall effects [42]. The deformability
of a suspended object in flow is characterized by the nondimensional capillary
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number Ca = ηγ̇a/G, which measures the ratio of viscous to elastic and/or stresses.
Here a is a characteristic size of the object (say 4 μm for an RBC) and G is an
interfacial modulus: for an RBC, G ≈ 4 · 10−6 N/m [34, 49–52]. In the circulation
the capillary number can be in the range 0.1 � Ca � 1. For an isolated suspended
object flowing far above a plane wall, the migration velocity is given by

vmig =
a3γ̇g(Ca)

y2 , (11.1)

where y is the distance from the wall and g(Ca) depends on the deformability
and shape of the particles. Theory and simulations [53, 54] for deformable cells
or capsules indicate that g ∼ Ca at low Ca and g(Ca) ∼ Ca0.6 when Ca = O(1). If
the Reynolds number is finite, there is also an inertial lift force [55–58]. This effect
can be important in microfluidic applications at relatively high flow rates [59, 60],
but is small under the conditions present close to vessel walls [54].

In a suspension, migration is counterbalanced by shear-induced diffusion, the
random motion of particles in a suspension that is driven by the fluid motion
generated by other particles in the suspension. In particular, the “collisions” between
neighboring particles contribute significantly to this effect. The shear-induced
diffusivity D of particles in a dilute suspension is expected to be proportional to
the product of collision frequency (proportional to γ̇φ , where φ is the local volume
fraction) and the mean squared displacement per collision (proportional to a2):

D = γ̇φa2 fs, (11.2)

where fs(Ca) depends on the deformability and shape of the capsules. A simple
mathematical model [54] containing these two phenomena yields a prediction that
the cell-free-layer thickness δ is given by

δ
a
=

g(Ca)
fs(Ca)φb

, (11.3)

where φb is the bulk volume fraction. An important implication of the above
equation is that the thickness of the cell-depleted layer scales inversely with φ . It
also shows a direct relationship of δ with the wall-induced migration, g(Ca), and an
inverse relationship with the magnitude of shear-induced diffusion (∼ f−1

s (Ca))—
indicating that wall-induced migration favors the formation of capsule-depleted
layer whereas shear-induced diffusion opposes it. This result provides a simple
expression that at least qualitatively captures the experimentally observed trends.

White blood cells and platelets are also distributed nonuniformly in flow, but in
contrast to RBCs they are preferentially found near the walls of the flow channel, a
phenomenon called margination [61–63]; this is schematically shown in Fig. 11.1.
Physiologically, margination of WBCs and platelets is desirable in general, because
the natural functions of these cells are closely associated with their interactions with
blood vessel walls as noted earlier. A number of recent “blood on a chip” devices
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have relied on this phenomenon to effect separations between different components
of normal blood (e.g., [64, 65]) or between healthy and diseased cells [66, 67].

Experimental studies characterizing the margination behavior of leukocytes,
both in vivo and in vitro, find a stronger dependence on the shear rate than on
the hematocrit [61, 68–70]. At least at shear rates � 100 s−1, the margination of
leukocytes is found to decrease with increasing shear rate. Inducing aggregation
of RBCs by the addition of dextran (and thus promoting depletion flocculation)
increases margination [61, 69], so this trend with shear rate may be a consequence
of the decrease in aggregation as shear rate increases [61, 69, 70]. The effect of
hematocrit on margination is less clear. Some studies indicate that margination is
either unaffected (within experimental errors) with hematocrit or increases slightly
[61,70]. However, a recent study found margination to be a non-monotonic function
of hematocrit with a maximum in margination observed at φ = 0.2 [71]. This non-
monotonic dependence on hematocrit was also observed in a recent computational
effort [72].

The effect of channel width on the margination of leukocytes has also been
characterized, with the degree of margination usually found to decrease with
increasing channel width [69, 71]. Margination behavior at sudden expansions in
in vitro studies suggest that a 25–50 μm sudden expansion results in an optimal
margination. This optimal expansion size range is in good agreement with the
capillary-postcapillary expansion of 30–40 μm observed during inflammation [71].

Computational studies have shed some light on the mechanism of leukocyte
margination. These studies usually find a stack of RBCs leaning upstream on the
marginated leukocyte [73, 74], which is believed to stabilize their position near the
walls [74]. Furthermore, the computational studies show that, while aggregation of
RBCs increases leukocyte margination [72], it is not a necessary condition [72, 74].

The margination characteristics of platelets in blood flow has also been inves-
tigated in many in vivo and in vitro experimental studies [62, 75–78]. It is
typically found to increase with increasing hematocrit [76–78] as well as with
increasing shear rate [76,77]. However, some studies show a more complicated non-
monotonic dependence on shear rate [78]. Nonetheless, the trends in the margination
behavior of platelets with increasing shear rate is in direct contrast with that of
leukocytes, as the latter exhibit decreasing margination with increasing shear rate. It
certainly appears that the RBC aggregation is not as important a factor for platelet
margination as it is for leukocyte margination, but the cause of this difference is
unknown.

Several computational studies have also focused on the platelet margination
behavior. Some authors have suggested that the platelet drift toward the wall at the
edge of the red-cell-free layer due to one-sided collisions with the RBCs contributes
significantly to the margination of platelets [79]. Other authors have argued that
higher-velocity fluctuation near the center of the vessel, due to the higher hematocrit
there, drive the platelets toward the walls where these fluctuations are negligible
[80]. Lastly, it has been shown that the platelet margination is correlated with the
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difference in the size of RBCs and platelets–simulations performed with RBCs
replaced by platelet-sized (but still deformable) particles did not exhibit platelet
margination [81].

There is also significant current interest in the field of targeted drug delivery
via the bloodstream. Targeted delivery of drugs has been explored in a variety of
diseases including cancer, cardiovascular, pulmonary, and inflammation diseases
[82–85]. Drug delivery for cancer treatment is easily the most widely studied
problem among these. In fact, efficient delivery of drugs to tumors is one of the
major goals of current cancer research as it can lead to a reduction in dosages and
side effects [84, 85].

To achieve targeted drug delivery, a variety of nanocarrier-based drug-delivery
systems are being developed [86]. These carriers are typically based on polymers
(including micelles, vesicles, dendrimers, nanogels), lipids (including liposomes,
micelles, niosomes), metals (including iron oxide, gold nanoparticles, quantum
dots), and carbon (including carbon nanotubes) among others [84]. In addition to
compositions, the carriers can also have varied shapes and sizes as well as surface
modifications [86]. The targeting of tumors by these carriers can either be passive
or active [82]. In passive targeting, the enhanced permeability and retention effect
(EPR) of the tumors is exploited for drug delivery. The EPR effect of tumors is
due to their leaky blood vessels and an impaired lymphatic drainage system [85]. In
active targeting, the carrier surface is modified with ligands, peptides, or counter-
receptors specific to molecules expressed on the tumor cells [82, 87]. Irrespective
of targeting mechanism, an efficient drug delivery particle must possess an inherent
propensity to marginate so as to maximize its interaction with the tumor vascular
walls. Optimization of the physical design parameters of the drug delivery particle,
such as shape, size, and deformability, to maximize delivery efficiency is therefore
a very important area of research.

Margination of drug delivery particles has not been extensively studied, although
there have been a few recent efforts. Charoenphol et al. [88] examined the binding
efficiency of vascular-targeted spherical carriers in parallel plate reconstituted blood
flow assays. Investigating the effect of particle size, the authors found that the
binding of particles to the walls decreased when the particle diameter decreased
from 10 μm to 100 nm at a shear rate of 200 s−1. In these studies the hematocrit
was varied between φ = 0.3 and 0.5 without a significant variation in the results.
Another feature of the particle adhesion behavior was that it exhibited a maximum
at a critical wall shear rate, i.e., the adhesion decreases at shear rates lower or higher
than the critical shear rate; the critical shear rate was lower for the larger particles.
The authors concluded that the particle margination did not change appreciably with
changing shear rate–the maximum in the adhesion results from the balance between
the increased particle flux with increasing shear rate and the increasingly disruptive
effect of the shear stress on the adhered particle. Based on this study, the authors
concluded that spheres with diameter in the 2 to 5 μm range display significantly
better margination to the wall at intermediate to high wall shear rates and channel
heights than the nanometer-sized spheres. Recently, Tan et al. [89] numerically
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investigated the influence of red blood cells on the drug delivery particle distribution
in the vessel. These authors found the particle distribution profile to be nonuniform
with a higher particle concentration near the vessel wall. The authors observed
that the tumbling motion of RBCs in the core region of the capillary enhances the
radial dispersion of the particles. This effect, in addition to the volume exclusion
of the RBCs, was suggested to result in the enhanced margination of drug delivery
particles.

1.4 Effect of Plasma Rheology on Cell Distribution

Blood plasma is generally regarded as Newtonian, though a subtle viscoelastic
effect may be present [24]. A number of studies have addressed how blood
flow behavior changes if the plasma rheology is changed by the addition of
long-chain water-soluble polymers such as poly(ethylene oxide) (PEO) or
hyaluronic acid (HA). These studies were originally motivated by the knowledge
that small amounts of long-chain polymer additives—“drag-reducing polymers”
(DRPs) —can dramatically reduce drag in turbulent flows while having negligible
effect on laminar flows [94]. Studies with laboratory animals indicate that the
addition of DRPs to blood leads to many beneficial effects, including (1) reduced
atherosclerotic plaque deposition (Figure 11.3(a)) [90, 95]; (2) increased cardiac
output [96] and reduced severity of cardiac stenosis or myocardial infarction
[97–100]; (3) improved survival probability after severe hemorrhage with use of
polymer-containing resuscitation fluids [91, 93, 101] (see Fig. 11.3(b)); (4) reduced
immune attack of implanted polymeric tissue scaffolds [92] (see Fig. 11.3c). Blood
flow in small vessels is laminar, so turbulent drag reduction per se is not the source of
these observations. Chemically different polymers (e.g., PEO, HA, polyacrylamide,
various polysaccharides) yield very similar results as long as the molecular weight
is sufficiently high (typically � 106 Da). These observations indicate that the origin
of the physiological effects is not chemical but physical.

Complementing the in vivo studies are a small number of experimental studies
of the effects of DRPs on flow of blood or blood cell suspensions in tubes or
fabricated microchannels. Many studies of polymer solutions in channels with
complex geometries [102, 103] in the Reynolds number regime relevant for arteries
have shown that recirculation regions and the corresponding stagnation zones near
contractions, expansions, and branches are reduced in size by polymer additives.
Since these zones are at increased risk for atherogenesis [104], their reduction
is a likely reason for the observed in vivo reduction in plaque deposition and
atherosclerotic lesions. On the other hand, the effect of polymers on the macroscopic
fluid dynamics does not seem to explain the other observations described above.

Therefore, examination of the effects of polymer additives on flows at the
scale of the microcirculation is important. Experiments in microfluidic devices
[93, 105] have shown that the addition of a small amount of DRPs to suspension
of RBCs results in a redistribution of RBCs with a significant reduction in the
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Fig. 11.3 Examples of physiological effects of addition of drag-reducing polymers. (a) Processed
images of cross sections of aortas from rabbits fed a high-cholesterol diet: left, control animal,
right, animal intravenously injected with poly(acrylamide) [90]. (b) Survival vs. time for rats
subjected to hemorrhage and not treated (CON), treated by injection of normal saline (NS) or
intravenously injected with saline containing a drag-reducing polymer [91]. (c) Poly(L-lactate)
tissue scaffolds recovered after 7 weeks of implantation in a rat. Top: from control animal. Bottom:
from animal treated with intravenous injections of poly(ethylene oxide) [92]. (d) Cell-free layer
thickness vs. flow rate for microchannel experiments with RBCs in saline or saline with containing
a drag-reducing polymer [93]

thickness of the cell-free layer. Direct simulations of a suspension of model cells and
polymer molecules corroborates these experimental results [54]. Additionally, the
thinning of the cell-free layer is observed to attenuate the plasma-skimming effect
at microchannel branches so these branches display a larger RBC concentration
than would arise otherwise. By increasing the hematocrit in the smallest arterioles
and capillaries, this effect may contribute to the improvements in oxygen transport
observed in vivo.

In addition to reducing the thickness of the cell-free layer, the addition of
these DRPs is experimentally observed to reduce the concentration of platelets in
this region, i.e., it attenuates margination [106]. This likely occurs because the
increased number of RBCs near the walls leads to an increased effective (shear-
induced) diffusivity of the platelets, leading them to be more uniformly distributed.
This phenomenon may alter platelet aggregation and thrombus formation and
may provide the explanation for the reduced deposition rate of atherosclerotic
plaques. Margination of leukocytes is probably disrupted as well, reducing their
ability to adhere to vessel walls and extravasate into surrounding tissue. This
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phenomenon might explain the reduced immune response to implantation of a
polymer scaffold [92].

1.5 Motivation and Goals

The above discussion provides a brief background on various blood components
and their distribution during blood flow. Having provided this background, we now
turn to the main goal of this chapter, which is to describe efforts to mechanistically
understand the margination phenomenon observed in blood flow using both sim-
ulations and theory. It will be helpful to first critically examine the status of the
available literature on this topic.

As noted above, a variety of studies have focused on margination of leukocytes
and platelets in blood. A number of physical parameters may contribute to this
margination behavior including size, shape, and deformability differences between
the leukocytes and platelets and the majority component RBCs. Note that the leuko-
cytes are larger than RBCs and the platelets smaller, while both are considerably
stiffer than RBCs. Their shapes differ as well: RBCs have a biconcave discoid
shape, leukocytes are nearly spherical, and platelets are disk shaped. In studies
on whole blood, on which most prior works have focused [72, 74, 80, 107, 108],
the individual components–RBCs, leukocytes, and platelets–differ simultaneously
in size, shape, and deformability. As such, it is not clear from these studies how the
above determinants affect the margination behavior. To clarify the effects of these
determinants, well-controlled studies that focus on changing only one property at a
time, for example, the stiffness of the particle, are necessary. Such controlled studies
are lacking in the literature.

On the theoretical front, most attempts on elucidating the mechanism of the
margination have relied on simple transport models, the most common of which is
the drift-diffusion equation [79,109]. These models are, however, phenomenological
with the drift and diffusion terms extracted from experimental or computational
results. These models by themselves do not provide any mechanistic understand-
ing of the phenomenon, i.e., how the size, shape, and deformability affect the
margination behavior. To enable progress, more mechanistic models are necessary,
for example, models that estimate the drift and diffusion of the species from
fundamental transport processes occurring in the suspension.

The present authors have sought to address the above shortcomings by per-
forming well-controlled computational studies in which the components in a
multicomponent suspension differ only in their rigidity [110,111] or their size [112],
thereby clarifying their roles on the margination behavior. Furthermore, we have
also developed a simple master equation model of suspension dynamics capable of
reproducing results from detailed numerical simulations [111]. This master equation
model is based on two key transport mechanisms in confined suspensions: the wall-
induced migration and hydrodynamic pair collisions. These fundamental transport
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processes account for the deformability and size of the species and therefore clarify
how these determinants contribute to the margination behavior.

The remainder of the article is organized as follows. First, in Sect. 2, we formulate
the multiphase flow problem relevant to blood and discuss procedures for its
numerical solution. In particular, this section describes the boundary integral method
commonly used for simulating blood flow. In Sect. 3, we characterize the effect of
rigidity on segregation and margination behavior in binary capsule suspensions. In
this section, results are presented both from the detailed boundary integral method
as well as from the master equation model discussed above. The master equation
model enables a mechanistic understanding of the segregation behavior. In Sect. 4,
we briefly discuss results from recent simulation efforts investigating the effect of
long-chain polymer additives to blood. Finally, concluding remarks and an outlook
are provided in Sect. 5.

2 Problem Formulation and Implementation

We present this section in two parts. We first formulate the multiphase fluid flow
problem and subsequently describe its numerical solution procedures (Sec. 2.1).
Following this, we introduce the framework employed for computing the elastic
membrane forces (Sect. 2.2). These two problems are obviously coupled—the fluid
flow leads to membrane deformation and hence forces, while the forces themselves
appear as a forcing term in the fluid flow problem. These aspects are discussed
further in the sections below.

2.1 Fluid Flow Problem

Consider a suspension of fluid-filled deformable particles, such as RBCs or cap-
sules, in a three-dimensional domain as shown in Fig. 11.4. The domain boundary
is denoted by SE , while the interface of the mth particle is denoted by Sm. Both the
suspending and the enclosed fluid are Newtonian and incompressible. The viscosity
of the suspending fluid is μ , while the viscosity of enclosed fluid is λμ . Our interest
is in blood flow in the microcirculation where the Reynolds number is typically
small and inertial forces can be neglected [113]. In this case, the momentum balance
for the fluid reduces to the Stokes equation :

−∇P1 + μ∇2u1 = 0 , −∇P2 +λμ∇2u2 = 0, (11.4)

where u1 and P1 refer to the velocity and pressure fields in the fluid outside the
particles, while u2 and P2 refer to the velocity and pressure fields in the fluid inside
the particles. The mass balance and incompressibility require that
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Fig. 11.4 Problem schematic: a dispersed phase with viscosity μ inside the domain boundaries
denoted by SE , containing, for example, three particles with internal viscosity λμ . The surfaces of
the particles are denoted by S1, S2, S3, respectively. The undisturbed flow is denoted by u∞

∇ ·u1 = 0 , ∇ ·u2 = 0. (11.5)

This set of equations are closed with appropriate boundary conditions at the particle
interfaces (Sm) as well as at the domain boundary (SE). The boundary conditions
on the particle interface are the continuity of the velocity and zero net force on an
infinitesimal area. These are respectively expressed by the following [114]:

u1 = u2 , (� 1 −� 2) ·n =−∇s ·�, (11.6)

where � is the stress tensor in the fluid, n is the outward normal at the interface,
∇s is the surface divergence operator, and � is the tension tensor in the membrane.
We will discuss the membrane tension in detail in Sect. 2.2. The term (� 1 −� 2) ·n
expresses the hydrodynamic traction jump across the interface and will be denoted
as Δ fH ; hence, Δ fH = −∇s · �. As noted above, the solution must also satisfy the
appropriate boundary conditions at the domain boundary SE [115]. Some common
examples are periodic boundary conditions and no-slip conditions at solid walls.

There are several commonly employed techniques for solving the multiphase
flow equations. A popular technique for multiphase Stokes flow is the boundary
integral (BI) method [114]. In this method the fluid velocity at any point in the
domain is expressed as an integral over all the boundaries in the system, which
includes the particle interface as well as the domain boundary. The BI method
has been used successfully for a variety of multiphase Stokes flow problems
including blood flow, drops, capsules, and vesicles among others [115–120]. In this
chapter, we discuss the BI method in detail. Another commonly used technique for
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multiphase flows is the immersed boundary (IB) method [121] (see Chap. 10). In
this method, the particle interface appears as forcing term–typically known–in the
momentum balance for the fluid, which can then be solved by a Navier-Stokes solver
on an Eulerian grid. The particle interface in the IB method is explicitly tracked
by a separate Lagrangian mesh. An important consideration in the IB method is
the regularization of the Dirac-delta function, which is employed to distribute the
interfacial forces on the Eulerian grid [121]. The immersed boundary and related
techniques like the front tracking method have also been used in many works on
blood flow and other multiphase flow problems [122–125]. Besides these methods,
there are also various non-continuum-based approaches. These include, among
others, the lattice-Boltzmann method where a discrete analog of the Boltzmann
equation is solved [126, 127], and the dissipative particle dynamics method where
coarse-grained fluid particles are considered [128,129]. These techniques have also
been used in various studies on multiphase flow problems including blood flow
[79, 130, 131].

2.1.1 Boundary Integral Method

As preliminaries for the boundary integral equation, we introduce the Green’s
function G and its associated stress tensor T. By definition, G and T give the
velocity and stress fields due to a point force F as follows [114]:

ui(x0) = FjGi j(x0,x) , σik(x0) = FjTi jk(x0,x), (11.7)

where x is the location of the point force (pole) and x0 is the location of the
target (field) point. In the present case, it is assumed that the velocity and stress
fields above satisfy the appropriate boundary conditions of the domain, i.e., G and
T are geometry-specific. There are several different formulations of the boundary
integral equation employed in the literature. The most commonly used form is the
following [114]:

u j(x0) =
2

1+λ
u∞j (x0)− 1

4πμ(1+λ )

Np

∑
n=1

∫

Sn
Δ f H

i (x)G ji(x0,x)dS(x)

+
(1−λ )

4π(1+λ )

Np

∑
n=1

∫

Sn
ui(x)Ti jk(x,x0)nk(x)dS(x), (11.8)

where x0 lies on the interface of particle m (i.e., x0 ∈ Sm), u∞(x0) is the undisturbed
fluid velocity at x0, and the sums are over all the Np particles in the system. The
integrals involving G and T as kernels are typically referred to as the single-
layer and the double-layer integral, respectively [114, 132]. From here onwards, a
principal value of the double-layer integral over a part of the boundary is assumed
whenever the target point x0 lies on that boundary. For example, in the above
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equation, the double-layer integral over Sn is assumed to denote the principal value
when n = m. A crucial aspect of the above formulation is that the integrals only
involve the internal (interfacial) boundaries and not the external domain boundaries.
This is a direct consequence of using the geometry-specific G and T; if G and T
for any other geometry is employed (e.g., free space), additional integrals over the
domain boundaries arise in Eq. (11.8).

An alternative formulation of the BI equation is the following where the velocity
field is expressed solely in terms of the single-layer integral [114]:

u j(x0) = u∞j (x0)+
Np

∑
n=1

∫

Sn
qi(x)G ji(x0,x)dS(x), (11.9)

where q(x) is the single-layer density and other quantities are as defined for
Eq. 11.8. The single-layer density q(x0) itself satisfies

q j(x0) +
κ

4π
nk(x0)

Np

∑
n=1

∫

Sn
qi(x)Tjik(x0,x)dS(x)

= − 1
4πμ

(
Δ f H

j (x0)

λm + 1
+κ f∞j (x0)

)

, (11.10)

where κ = (λ−1)/(λ+1) and f∞ is the traction at a given point (computed with the
suspending fluid viscosity μ) due to the stress generated in the fluid corresponding to
the undisturbed flow u∞. An important distinction of the second BI formulation over
the first formulation is that (a) the target point of both the kernels G and T is the same
as the target point of the overall BI equation and (b) the source point of the kernels G
and T are same as the location of its multiplicand. These properties are critical for
employing certain acceleration schemes, especially the general-geometry-Ewald-
like method (GGEM) described below [115].

2.1.2 General Considerations

A key step in the numerical evaluation of the integrals is the discretization of the
surface into elements and the corresponding choice of basis functions over each
element. The surface discretization employed in the literature includes both finite-
element-like discretizations with low-order basis functions [116–118] as well as
global spectral discretization schemes [119, 133]. A widely used discretization in
the former category is the choice of triangular elements with linear basis functions
[115, 116]. An example of spectral discretization is the choice of spherical harmon-
ics basis functions [119, 134].

Another point of interest is the numerical evaluation of singular integrals.
Singular integrals arise naturally in the BI method because both the single-layer
and the double-layer integrals become singular as x → x0, with the singularity
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scaling as 1/r, where r = |x− x0| [133]. These singular integrals require special
care and a variety of schemes have been developed in the literature to evaluate
them accurately. A common approach is to transform the surface integral to polar
coordinates centered at x0, which cancels the 1/r singularity automatically with the
Jacobian of the polar coordinate transformation [117]. Other approaches include
a stretched coordinate mapping that clusters points near the singularity locations
and enables accurate evaluation of the integrals [133]. The singularity subtraction
technique is also a widely used approach which renders the integral non-singular
[116, 118].

2.1.3 Computational Cost

Traditional implementations of the BI equation typically scale as O(N2), where N is
proportional to the number of degrees of freedom in the system. For a system with
Np particles, each of which have been discretized into NΔ elements, the number of
degrees of freedom in the system scales as N ∼NpNΔ . The O(N2) scaling essentially
arises as the contribution from every element has to be evaluated at all elements in
the system and assumes an iterative solution of the discretized system of equations,
where the number of iterations is independent of N; a direct solution will result
in a scaling of O(N3), while a system-size-dependent number of iterations with
an iterative solution results in a scaling higher than O(N2). The O(N2) scaling is
usually prohibitive, such that it precludes a numerical study of large system sizes.
It is therefore not surprising that many of the past studies have been limited to an
O(1) number of particles.

To overcome these limitations, there have been several efforts to develop
accelerated techniques giving a scaling closer to the ideal O(N). These techniques
employ either some variant of the particle-particle-particle-mesh (P3M) method
[135], or the fast multipole method (FMM) [136]. In the P3M-based techniques,
like the particle-mesh-Ewald (PME) method, the periodic Green’s function given
by Hasimoto [137] is employed. This periodic Green’s function can be expressed
as the sum of a real-space sum and a wave-space sum. The real-space sum decays
exponentially from the origin of the singularity and hence only the nearest neighbors
within a cutoff distance need to be considered when evaluating this contribution.
The wave-space sum can be accurately and quickly computed on a uniform mesh
using the fast Fourier transforms (FFT). When this acceleration method is applied
to the boundary integral method, the real-space sum leads to a computational cost
of O(N), while the wave-space sum has a cost of O(N logN), thereby leading to the
overall scaling of O(N logN) [119]. In the FMM method, the basic idea involved
is to calculate the interactions between distant elements using truncated multipole
expansions and those between nearby elements directly. The overall approach is
developed in such a way that the computational cost is O(N), while maintaining
a given level of accuracy. Both of the above methods can be adapted to confined
geometries [119, 138].
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Fig. 11.5 Variation of the global ρg(x) and the local ρl(x) force density along the x-axis, given
the center of the force density is at the origin [115]. Note that ρg(x)+ρl(x) = δ (x). For plotting
ρg(x) and ρl(x) here, we set α = 1. (a) ρg(x) (b) ρl(x)

An alternative acceleration technique is the general-geometry-Ewald-like
method (GGEM) [139]. As the name suggests, it bears similarity to PME-based
acceleration technique for periodic geometries. However, the GGEM method is
more naturally suited to nonperiodic domains with several distinct advantages over
PME-based methods [115]. A particular advantage is that the pressure drop in a
simulation can be directly specified in GGEM-accelerated methods, while it cannot
be in a PME-based method. In addition, the domain of interest has to be embedded
in a periodic domain for it to be amenable for acceleration by PME-based methods,
which can lead to unwarranted inefficiencies due to discretization of extra domain
not central to the problem. There is no such drawbacks of the GGEM methodology.

The key idea in the GGEM methodology is to express a Dirac-delta force density
as a sum of a smooth quasi-Gaussian global density ρg(x) and a second local density
ρl(x); these are respectively given by the following expressions:

ρg(x) =
α3

π3/2
e−α

2r2
(

5
2
−α2r2

)
, ρl(x) = δ (x)−ρg(x), (11.11)

where α−1 represents a length scale over which the delta-function density δ (x)
has been smeared using the quasi-Gaussian form above, while for the moment x
is position vector relative to the pole of the singularity. See Fig. 11.5 for pictorial
representations of ρg and ρl . It is important to emphasize that the total density
remains a delta function; i.e., ρg(x) + ρl(x) = δ (x). The solution associated with
a local force density, which is known analytically, is short ranged and is neglected
beyond a length scale of O(α−1) from its pole. We note that the local solution is
obtained assuming free-space boundary conditions. The solution associated with
the global force density is numerically computed, while ensuring that the boundary
conditions associated with the overall problem are satisfied. The cost associated with
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the local solution is O(N). The cost associated with the global solution depends on
the exact choice of numerical scheme and virtually any numerical method developed
for the Stokes equation is valid here. When employing a finite difference or a finite-
element scheme with proper preconditioners, the global solution can be obtained at
a cost of O(N).

2.2 Membrane Mechanics

The hydrodynamic traction jump across the interface, Δ fH , is an unknown in the
fluid flow problem and must be computed independently. This is achieved by
writing a force balance on an infinitesimal patch of the membrane, which upon
simplification yields: Δ fH = −∇s · �. This is exactly the same as the second
boundary condition in Eq. 11.6. In this section, we will describe the procedure
commonly employed to compute the membrane tension (Sect. 2.2.2). However, it
is appropriate to first provide some background on the RBC membrane structure
and some other relevant properties.

2.2.1 RBC Membrane

We noted in Sect. 1 that RBCs are a nucleate cells and essentially consist of a
plasma membrane enclosing the cytoplasm. The plasma membrane has a complex
composite structure consisting of a lipid bilayer envelope anchored to a network
of skeletal protein [34, 140, 141]. The lipid bilayer essentially behaves as a two-
dimensional incompressible fluid that strongly resists surface area changes and
endows the membrane with a small bending resistance, but lacks a shear resistance.
The protein skeletal network behaves as a two-dimensional elastic solid resisting
deformation of the RBCs. The structural properties of RBCs (low elastic modulus
coupled with large excess area due to their shape) allow them to undergo large
deformation while in circulation, thereby enabling them to flow through capillaries
smaller than their size. RBCs have been observed to withstand linear extensions
of about 250 %; however, even a small increase in its surface area (3–4 %) can
lead to their lysis [141]. A brief comment is also in order about the cytoplasm.
The cytoplasm is essentially a concentrated solution of hemoglobin [141]. The
flow behavior of cytoplasm is approximately Newtonian with a viscosity in the
range 6–10 mPa s [142]. The viscosity of the cytoplasm is strongly dependent on
the hemoglobin concentration, which is tightly regulated in the range 27–37 g/dL
[141]. See Chaps. 4 and 5 for more detailed discussions of the cell membrane and
cytoskeleton.
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2.2.2 Membrane Tension Tensor

The tensions in the membrane are typically computed using finite deformation
theory for thin continuum elastic shells [53, 143]. Alternative mesoscopic models
based on a network of springs have also been developed, e.g., [144], though here
we will focus only on continuum models. The membrane bending modulus is
very small [34, 145] and, because it adds complexity to the formulation as well
as substantial computational expense, is often neglected in simulations. However,
its absence can lead to spurious wrinkling instabilities as well as development of
artificially sharp corners in the interface shape [143, 146]. These difficulties can be
circumvented to some extent by introducing a small prestress into the membrane
[147]. While we neglect the membrane bending modulus in the present discussion,
this can play a role in determining the detailed dynamics of an RBC in flow
[148, 149]. Additionally, recent evidence suggests that the biconcave RBC shape
exhibits residual stress and that the spontaneous curvature of the cell actually favors
an oblate spheroid [150, 151].

It is common to assume that the membrane is isotropic and hyperelastic, with a
strain energy potential that is a function of its deformation. The elastic tension in
the membrane can be obtained from the knowledge of this strain energy potential.
We next provide a brief overview of the finite deformation theory and connect it to
the computation of the membrane tension tensor.

We begin by denoting the coordinates of a material point in the initial unstressed
condition by X and at a later time t by x(X, t). The surface deformation gradient
tensor F is then defined as follows [53]:

F = (I−nn) · ∂x
∂X

· (I−NN), (11.12)

where N and n are normals to the surface in the initial and the deformed state,
respectively. The symmetric surface left Cauchy-Green strain tensor is then defined
as [143]

b = F ·FT (11.13)

The tensor b has two nonzero eigenvalues λ 2
1 , λ 2

2 , where λ1 and λ2 are called the
principal extension ratios [143]; the third eigenvalue is 0. The local area dilation
is denoted by J = λ1λ2. For an isotropic hyperelastic membrane, the strain energy
potential W is solely expressible in terms of invariants of the tensor b [143]. For
example, Skalak et al. [152] introduced the following invariants:

I1 = λ 2
1 +λ 2

2 − 2 , I2 = λ 2
1λ

2
2 − 1. (11.14)

Using standard relations, the Cauchy tension tensor � can be expressed in terms of
the strain energy potential W as follows [143]:
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� =
1
J

F · ∂W
∂F

=
1
J

F · ∂W
∂E

·FT , (11.15)

where E = (FT · F − I − NN)/2 is the Green-Lagrange strain tensor. From the
preceding equation, it can be shown that the principal tensions in the membrane
are given by [143]

τ p
1 =

1
λ2

∂W
∂λ1

, τ p
2 =

1
λ1

∂W
∂λ2

. (11.16)

Note that the principal directions of tensions and deformation are collinear in view
of the isotropy of the membrane. In terms of Skalak invariants introduced above, the
tension tensor takes the form

� =
2

λ1λ2

∂W
∂ I1

b+ 2λ1λ2
∂W
∂ I2

(I−nn). (11.17)

Therefore, once the strain energy function W (I1, I2) or W (λ1,λ2) is known, then the
membrane tensions can be computed using the above equations. We discuss several
popular strain energy potential constitutive laws next.

2.2.3 Membrane Constitutive Laws

A popular constitutive law is the neo-Hookean (NH) law for which the strain energy
function has the following form [53]:

W =
G
2

(
I1 + 2+

1
I2 + 1

)
, (11.18)

where G is the two-dimensional shear modulus and has units of force per unit length.
The neo-Hookean model has a strain-softening response and is a good model for
volume-incompressible rubberlike materials like artificial polymeric capsules [53].
The Skalak model for the strain energy function, which is a good model for RBCs,
is the following [53]:

W =
G
4

(
(I2

1 + 2I1− 2I2)+CI2
2

)
(11.19)

where the parameter C is the energy penalty due to area change. The area dilation
modulus for the Skalak law can be shown to equal K = 2G(1+ 2C). A variety of
experiments have attempted to characterize the RBC membrane properties. These
include micropipette aspiration experiments [153] and experiments with optical
tweezers [50]. These experiments usually provide values for the shear modulus in
the range 2–12 μN/m. The value of the parameter C is typically very high (C � 1),
signifying the near area incompressibility of the membrane [143].
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3 Segregation by Membrane Rigidity:
Simulations and Theory

The goals of this section are twofold: first is to characterize the effect of rigidity
on margination and segregation behavior and second is to establish the mechanism
underlying the observed segregation. We do this in two parts. First, in Sect. 3.1, we
consider detailed boundary integral simulations of a model problem that isolates
the effect of stiffness on the segregation behavior. Following this, in Sect. 3.2, we
consider an idealized master equation model of the suspension dynamics that will
enable a mechanistic understanding of the segregation phenomenon.

3.1 Boundary Integral Simulations of Binary Suspensions

The effect of rigidity alone on the segregation and margination behavior was
recently characterized by Kumar and Graham [110, 111]. These authors considered
a binary suspension of neo-Hookean capsules subjected to simple shear or pressure
driven flows in a planar slit, i.e., between two planar walls. The two components of
the binary suspension had the same spherical rest shape and size, but differed in their
membrane rigidity. The rigidity was characterized as usual by the nondimensional
capillary number, Ca = μγ̇a/G, where μ is the suspending fluid viscosity, γ̇ is the
characteristic shear rate, a is the capsule rest radius, and G is the shear modulus.
The component with the higher capillary number in these studies was termed floppy,
while the component with the lower capillary number was termed stiff. The authors
systematically explored the effect of a variety of parameters on the segregation
behavior including the capillary number Ca f of the floppy particle, capillary number
of the stiff particle Cas (Cas < Ca f ), the overall volume fraction φ , the confinement
ratio 2a/H (H is the channel height), and the number fraction of the floppy particles
in the mixture Xf .

Figure 11.6 shows some typical results for the normalized number density profile
for both the species as a function of Xf [111]. Note that the number density profile
was normalized in such a way that a uniform distribution will result in n̂α(y) = 1
throughout. The parameters in this study were Ca f = 0.5, Cas = 0.2, 2a/H = 0.197,
and φ = 0.12. Also, the bulk flow was a simple shear flow. Focusing first on pure
suspensions of stiff and floppy particles, it can be seen that the number density
profiles are similar (Figs. 11.6a and 11.6d). Obvious in both of these plots is a
particle-depleted layer next to the wall, known as the cell-free layer in the blood
literature; see Sect. 1. Also evident is a substantial near-wall peak just beyond
the cell-free layer. The cell-free layer arises due to the fact that a deformable
particle such as a capsule has a tendency to migrate away from the wall [45].
The interparticle collisions, which are the other key source of particle motion,
generally displace the particles toward the wall on average. The near-wall peak is a
consequence of the competition between these two opposing effects.
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Fig. 11.6 Normalized number density profile n̂ for both the stiff and the floppy particles at several
values of Xf , the number fraction of floppy capsules [111]. Simulation parameters are Cas = 0.2,
Ca f = 0.5, φ = 0.12, and a/h = 0.197. One of the channel walls is at the left end, while the
channel center is at the right end of the plots (only half the channel is shown). Note that a uniform
distribution of the species will yield a value of n̂ = 1 throughout

We next focus on the number density profiles in binary suspensions. Figure 11.6b
shows n̂ for both the stiff and the floppy particles at Xf = 0.2, a suspension which
is relatively dilute in floppy particles. In comparison to the pure suspension results,
n̂ for the stiffer particles indicates a slight enrichment in the near-wall region; in
contrast, there is a substantial depletion of the floppy particles in the near-wall
peak accompanied by their enrichment near the centerline. The latter behavior is
clearly opposite of the margination behavior and was termed demargination by the
authors. Consider next a suspension with Xf = 0.8, which has the stiff particles
as the dilute component. Figure 11.6c shows n̂ for both the species in this case.
In comparison to the pure suspension results, the floppy particles reveal a slight
depletion in the near-wall region. In comparison, there is a significant enrichment of
the stiff particles in the near-wall region, indicating that the stiff particles undergo
substantial margination. Thus, to summarize, it can be said that stiff particles
undergo margination when they are the dilute component in the suspension, while
floppy particles undergo demargination when they are the dilute component in
the mixture. The authors observed a qualitatively similar behavior over the entire
parameter range they investigated.
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3.2 Master Equation Model for Binary Suspensions

Kumar and Graham [111] developed a very simple theoretical model for describing
particle transport in confined multicomponent suspensions of deformable particles.
They subsequently employed this model for providing a mechanistic understanding
of the segregation phenomena described above. For making theoretical progress,
the authors assumed that the suspension is dilute. Further details of their model are
described next. Closely related models for single-component suspensions of rigid
and deformable particles appear in [154] and [155], respectively.

In a dilute suspension of particles, the particle interactions can be treated as a
sequence of uncorrelated pair collisions [154, 156]. In addition, since the capsules
are deformable, they also have a wall-induced migration velocity vmig(y) away from
the wall [45, 48]. The effect of the pair collisions and the wall-induced particle
migration can be consistently described by a kinetic master equation (cf. [154]).
The authors focused on a model of a monolayer in the x− y (flow-gradient) plane
for simplicity–its extension to three dimensions is straightforward [154]. The mean
area number density of all the particles in the monolayer is denoted n0, such that the
areal fraction in the x−y plane at rest is φa = πa2n0. The mean area number density
of each of the species α in the mixture is denoted nα0 , while its distribution in the y
direction is denoted nα(y). The master equation for this case is given by

∂nα(y)
∂ t

=− ∂
(
vαmignα

)

∂y
+

Ns

∑
S=1

(∫ y

−(H−y)

{
nα(y−Δαβ ) nβ (y−Δαβ − δ )

− nα(y) nβ (y− δ )
}
γ̇ |δ |dδ

)
, (11.20)

where δ is the pre-collision pair offset in the y direction, Δαβ (δ ) is the cross-stream
displacement of particle of type α after collision with another particle of type β ,
while the sum is over all the species Ns in the suspension; see (Fig. 11.7b) for
a schematic of a pair collision. The first term on the right-hand side arises from
the wall-induced migration, while the integral term represents the effect of pair
collisions [154].

The above equation is analogous to the Boltzmann equation for rarefied gases
[157, 158]. The dynamic simulation Monte Carlo (DSMC) approach is a popular
technique to obtain solutions of the Boltzmann equation [157, 158]. The authors
developed a similar technique for obtaining steady-state solutions from the master
equation model (Eq 11.20) and named their method as the hydrodynamic Monte
Carlo (HMC) method. Similar approaches have also found application in recent
works on colloidal suspensions of rigid spheres [154]. As in the case of DSMC
[157, 159], the HMC approach is appropriate in the dilute limit and requires the
assumption of chaotic particle dynamics, an assumption that is valid for particulate
flows [160].
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Fig. 11.7 (a) System geometry in HMC simulations, (b) schematic of particle trajectories in a pair
collision, (c) isolated particle migration velocity at confinement ratio 2a/H = 0.197, and (d) cross-
stream displacement Δ in various types of pair collisions as a function of the initial offset δ . Here
“s” refers to the stiffer particle (Cas = 0.2), while “f” refers to the floppier particle (Ca f = 0.5)[111]

In the HMC approach, the y positions of Np particles are followed in time.
Each particle is assumed to represent an infinite number of particles at the same
y position randomly distributed in the flow direction with an average spacing of L,
where L is given by L = Np/(n0H). A distinguishing feature of this method is that
the collisions between particles are treated probabilistically. The authors neglected
pair collisions with large initial offsets δ > δcut, as their effect on cross-stream
displacement is weak (e.g., δcut = 2.5a in [111]). A time step of the simulation
involves choosing a pair of particles which satisfies the condition δ ≤ δcut. The
pair is subsequently selected or rejected for collision with a probability proportional
to their relative velocity of approach γ̇|δ | [154, 157, 161]. An important aspect of
the simulation is the time interval between collisions Δ t, because the wall-induced
particle migration occurs simultaneously with the collisions. In order to determine
Δ t at each time step, the authors assumed that the number of particle collisions
with time follows a Poisson process with a mean collision frequency ν , such that
the time interval between collisions is distributed with probability P(Δ t) = νe−νΔ t

[161]. The collision frequency is estimated as
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ν = 0.5
∫ L

0

∫ H

0
n(y)

(∫ y+δcut

y−δcut

n(y+ δ ) γ̇|δ |dδ
)

dydx. (11.21)

Once the collision pair and time interval are set, the positions of all particles are
updated. For a particle k this reads as yk(t +Δ t) = yk(t)+ vmigΔ t +Δk, where Δk is
nonzero only for the colliding particle pair (i, j). It is important to emphasize that in
a mixture, a collision could occur between two species of the same type, termed
as homogeneous collisions, or between two species of different type, termed as
heterogeneous collisions. For the current time step, if the collision is homogeneous,
then Δk = Δ ss or Δ ff for stiff and floppy particles, respectively; if the collision is
heterogeneous, then Δk = Δ sf for the stiff particle and Δk = Δ fs for the floppy one.
The procedure outlined above for a time step is repeated until a statistical steady
state is obtained.

3.2.1 Pair Collisions and Wall-Induced Migration

The HMC method requires as inputs the cross-stream displacements Δαβ in pair
collisions and the wall-induced migration velocity vαmig. The authors computed these
using the boundary integral method [115]. Figure (11.7c) shows the isolated particle
migration velocity as a function of y/H for Cas = 0.2 and Ca f = 0.5 capsules at
a confinement ratio 2a/H = 0.197. Results for Δαβ (δ ) for the same two species
(in an unbounded domain) are shown in Fig. (11.7d) for offsets δ � a, Δ ff < Δ ss.
Furthermore, an important feature in this plot is that the displacement of the
stiffer particle in heterogeneous collisions is higher than that of the floppy particle
(Δ sf > Δ fs), while the cross-stream displacements in homogeneous collisions are
between these two limits, i.e., Δ fs < Δ ff ,Δ ss < Δ sf . This ordering will turn out to be
crucial in determining the segregation behavior.

The above particle migration velocity and pair collision results were determined
in idealized systems, namely, by considering an isolated particle and an unconfined
system, respectively. Since the system of interest is a confined suspension, cor-
rections are necessary for both the migration as well as the pair collision results.
The wall-induced migration velocity vmig arises due to the disturbance velocity
created by the particle’s image and is a far-field effect [45, 48]. As a result of its
far-field nature, in a suspension of particles, it can be expected that the wall-induced
migration of a particle will result not only due to interaction with its own images, but
also due to images of other particles–this can be expected to introduce an averaging
effect in a suspension of particle mixtures. To model this, the authors modified the
migration velocity of a particle as vα ,smig = ξ vαmig +(1− ξ ) ∑Ns

1 Xβ vβmig, where vα ,smig
is the migration velocity of the species α in the suspension and ξ is an adjustable
parameter. By taking ξ = 1, the isolated particle migration velocity is recovered for
each species, while for ξ = 0, each of the species in the suspension has the same
migration velocity.
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The authors adopted a similarly simple model to account for the confinement
effects on cross-stream displacement Δ in pair collisions. For a spherical particle
with center at y = a, its Δ in a pair collision is expected to be zero as it will be
touching the wall, while its Δ will approach the unconfined result at large particle-
wall separations. To account for this effect, the Δ of the particle in an unconfined
system was multiplied by a factor η = 1− e−(dw−a)/a, where dw is the distance of
the particle from the nearest wall, assumed to satisfy dw > a.

3.2.2 Evaluation of n0 and ξ

The HMC model has two adjustable parameters, n0 and ξ , which can be tuned to
obtain good agreement with BI simulations for a given suspension. The authors
sought the agreement of the mean normalized distance of a species from the
centerline d̂ = 2d̄/H (see Fig. 11.7a) between the two methods.

The parameters n0 and ξ in the HMC method are expected to depend on φ and
2a/H, while their dependence on Cas, Ca f , and Xf is expected to be weak – this
assumption was corroborated by the results. To estimate n0 and ξ corresponding to
a suspension with a given (φ , 2a/H, Cas, Ca f ), the following two-step procedure
was adopted: (i) consider the pure suspension of stiff particles and tune the value of
n0 to obtain a good match in d̂ from HMC and BI simulations, and (ii) consider the
binary suspension with Xf = 0.5 and tune the value of ξ , while using the value
of n0 obtained in (i), to obtain a good match in d̂ of both the species between
the two methods. As an example, the authors considered a binary suspension with
φ = 0.04 and Cas = 0.2, Ca f = 0.5, and 2a/H = 0.197. For this system, the above
procedure to estimate n0 and ξ yields n0 = 0.026a−2 and ξ = 0.23. The HMC
method can then be used to predict results for other suspensions at the same φ
and 2a/H. To show this, consider the same binary suspension as above (Cas = 0.2,
Ca f = 0.5) and predict d̂ for both the species for a range of Xf and compare
them with the corresponding BI results (Fig. 11.8a). Excellent agreement can be
observed at all values of Xf . A similar close agreement was also observed for
different sets of (Cas,Ca f ): (0.1, 0.5) and (0.3, 0.4) with no adjustment of n0 and
ξ (see [111]). The HMC method described above when repeated for higher volume
fraction suspensions gave a similar good agreement with BI simulations. Note that
the highest volume fraction considered by the authors was φ = 0.2.

Besides the averaged measure d̂, the authors also compared the particle number
density distribution in the wall normal direction in the HMC and BI simula-
tions. Results for the normalized number density distribution n̂α(y) are shown in
Figs. (11.8c) and (11.8d) for the Cas = 0.2 and Ca f = 0.5 mixture at φ = 0.04,
2a/H = 0.197, and Xf = 0.5 (see [111] for a complete set of plots). Very good
agreement of n̂ with the BI results is observed in all cases. The agreement is
remarkably good in the region around the centerline, though the peak near the wall
is usually smeared in the HMC results in comparison to the BI results. Nonetheless,



426 A. Kumar and M.D. Graham

0

0.2

0.4

0.6

0 0.5 1

a

Xf

s

f

H
B

d̂

0

0.2

0.4

0.6

0 0.5 1

b

Xf

s

f

H
B

d̂
0

2

4

6

0.1 0.3 0.5
y/H

c

H

B

n̂ s

0

2

4

6

0.1 0.3 0.5
y/H

d

H
B

n̂ f

Fig. 11.8 (a) and (b): Mean normalized distance of a species d̂ = 2d̄/H from the centerline in
HMC (H) and BI (B) methods in (a) (Cas,Ca f ,φv) = (0.2,0.5,0.04) mixture as a function of Xf

and in (b) (0.2,0.5,0.12) mixture. (c) and (d): Normalized number density profile n̂ for (c) stiff
and (d) floppy particles at Xf = 0.5 for the suspension in ( a). In all cases 2a/H = 0.197 [111]

given the broad agreement of d̂ as well n̂ in HMC and BI simulations in various
suspensions, it is apparent that the HMC model captures the key aspects of the
particle distributions in these suspensions.

3.2.3 Mechanisms of Flow-Induced Segregation

A key benefit of the HMC approach is that it allows estimation of independent con-
tributions from various sources of particle dynamics on the margination behavior.
To illustrate this, let us consider the same suspension as above with parameters
Cas = 0.2, Ca f = 0.5, φ = 0.04, and 2a/H = 0.197. The HMC results for this system
can be generated by setting n0 = 0.026a−2 and ξ = 0.23 (see Sect.). Consider first
the prediction from the full HMC model—for this case, Figs. (11.9a) and (11.9d)
show n̂ for both the stiff and floppy particles at Xf = 0.01 (dilute in floppy) and
Xf = 0.99 (dilute in stiff), respectively. It is clear from these plots that the stiff
particles accumulate in the particle layer formed nearest to the wall as they become
dilute in the suspension, i.e., they marginate with increasing Xf . In contrast, the
floppy particles do the opposite as they become dilute (Xf decreases), accumulating
near the centerline and thus demarginating.

To disentangle the effects of wall-induced migration and pair collisions, a number
of control cases were considered. First, the impact of heterogeneous collisions was
estimated by (i) setting the particle migration velocities of both the species to the
simple average migration velocity of these two species and (ii) setting Δ ss and Δ ff

to the average value for the two species. Therefore, the only difference between
the two species is their behavior in heterogeneous collisions: Δ sf > Δ fs. Plots of
n̂(y) for these simulations are shown in Figs. (11.9b) and (11.9e). The difference
between Δ sf and Δ fs is sufficient to lead to a segregation between the two species.
In fact, as will be quantified shortly, most of the segregation appears to result from
heterogeneous collisions.
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Fig. 11.9 Number density n̂ for stiff (top row) and floppy (bottom row) particles in simulations at
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(0.2,0.5,0.04) [111]

The effect of differences in migration velocity on the segregation behavior was
estimated by setting the cross-stream displacement in all types of collisions for
both the species to the simple average of the four curves on Fig. (11.7d), yielding
Δ sf = Δ ss = Δ fs = Δ ff . Plots for n̂(y) in this case are shown in Figs. (11.9c) and
(11.9f). Here too some segregation is observed, though the degree of segregation is
considerably smaller than in the full model.

The degree of segregation between the two species is more quantitatively
characterized by computing the difference in d̂ of each of the species from the
corresponding pure species result; this is denoted by Δ d̂. The plots for Δ d̂ in
various cases described above are shown in Figs (11.10a) and (11.10b) for the
stiff and floppy particles, respectively. For the present parameter set, the degree of
segregation from the full model (case A) and the model where only heterogeneous
collisions are distinct (case B) is almost identical, while that resulting from
differences in the migration velocity (case C) is much weaker.
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Finally, similar studies conducted at higher volume fractions (up to φ = 0.2) show
that the effects of heterogeneous collisions and differential migration velocities
(cases B and C) are comparable (see [111]). In blood flow in the microcirculation,
the average volume fraction is between φv = 0.1 and 0.25 and it appears that in this
regime, both the migration velocity and the heterogeneous collisions may be playing
an important role in the segregation between the various species.

4 Effect of Polymer Additives

The above results illustrate the basic phenomena and mechanisms of cell-free-
layer formation and margination. In Sect. 1.4 we reviewed experiments that show
that these phenomena are altered when long-chain polymers are added to blood
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plasma. Pranay et al. [54, 125] have simulated the effects of polymers on the
flow of elastic capsules, using a variant of the boundary integral method described
above along with simple bead-spring-chain models of polymer molecules [162].
Simulations of an isolated capsule in a polymer solution indicate that wall-induced
migration is dramatically attenuated even with very small polymer concentrations.
This observation is consistent with numerical simulation results of a single rigid
sphere in viscoelastic fluid in Couette flow by D’Avino et al. [163]. They showed
that viscoelasticity induces particle motion toward the wall and made a heuristic
argument that the viscoelasticity leads to normal stress differences in the solution
that are asymmetric in the presence of a wall and this asymmetry leads to the cross-
stream migration toward the wall. These results are qualitatively consistent with the
observations of Pranay et al. [54], suggesting that the viscoelastic effects that drive
the particle toward the wall are competing with the dipole-wall interaction effects
that drive a deformable particle away from the wall. Reduction of the migration
velocity is expected to lead to thinning of the cell-free layer and this is indeed what
is observed in simulations. Figure 11.11a shows a snapshot from a simulation of a
suspension of capsules in a polymer solution. Consistent with the expectation from
the single particle migration results, as well as experimental results, the addition of
polymers attenuates cell-free layer formation. Figure 11.11 shows the cell-free layer
thickness as a function of capillary number for a suspension in a Newtonian fluid
as well as in polymer solutions with different concentrations (the quantity 1−β is
proportional to polymer concentration). In the simulations the Weissenberg number
is held constant at 20 as capillary number increases—in experiments capillary
and Weissenberg numbers increase together, since they are both proportional to
shear rate. Keeping in mind this difference, we nevertheless see that the results of
Fig. 11.11 and 11.3d are qualitatively consistent.

We noted above that experiments indicate that platelet margination is impeded
in the presence of polymers, and there is indirect evidence from the tissue scaffold
degradation experiments margination of leukocytes is probably disrupted as well.
Given the thinning of the cell-free layer in the presence of polymer, one might expect
disruption of margination since the RBCs will be present very close the wall, thus
knocking the platelets and WBCs back into the bulk flow. This hypothesis awaits
systematic experimental and computational study.

5 Conclusions and Outlook

Blood flow is highly complex and exhibits a variety of interesting and physiologi-
cally important phenomena. Most of these arise from the particulate nature of blood:
examples include the Fåhræus effect, Fåhræus-Lindqvist effect, and margination
of leukocytes and platelets. The Fåhræus and Fåhræus-Lindqvist effects are now
fairly well understood—these arise due to the deformability of the RBCs, as a result
of which they tend to migrate away from vessel walls toward the vessel centers.
However, margination, while being known for decades, is still poorly understood.



430 A. Kumar and M.D. Graham

Some recent progress is nevertheless discernible, primarily due to detailed computer
simulations as well as advances in theoretical descriptions of phenomena in flowing
suspensions.

Margination occurs primarily due to the size, shape, and deformability differ-
ences between the majority component, RBCs, and the leukocytes and platelets,
which are present in trace amounts. Simulation efforts have mostly focused on
model problems mimicking blood. While these studies are important, they are
not well suited to isolate specific mechanisms of margination, as in these studies
all of the above three determinants of margination vary simultaneously. Well-
controlled studies are necessary where only one of these properties are different
at a time. Some recent studies taking this approach have been performed [110,111],
yielding some progress in elucidating the role of deformability on margination.
These studies considered a binary suspension in which the two components have
the same spherical rest shape and size, but have unequal membrane rigidities.
Stiffer particles undergo margination when they are the dilute component in the
suspension, in agreement with the margination of leukocytes and platelets, as
they are stiffer than the RBCs. Additionally, a simple master equation model for
suspension dynamics has been developed that incorporates the two key sources of
particle motion in confined deformable particle suspensions: wall-induced migration
and hydrodynamic pair collisions. Using this model, it is found that heterogeneous
pair collisions, i.e., collisions between a stiff and a floppy particle, contribute
significantly to the margination behavior, particularly at low volume fractions;
at higher volume fractions, the collisions as well as migration make comparable
contributions. In heterogeneous pair collisions, the stiffer particles undergo larger
cross-stream displacement than floppy particles, which result in the former getting
pushed toward the wall more than the latter. The wall-induced migration also leads
to the margination of the stiffer particles, as the stiffer particles have a smaller
migration velocity than floppy particles.

There are no well-controlled studies examining the effects of size and shape on
margination, though some preliminary results exist for the former [112]. Among
these, the effect of shape could be particularly challenging to explore as it is not
clear a priori how to prepare systems where the components vary only by shape
while keeping their size and deformability the same. Perhaps one could use the
volume of the particle as a measure of size and some “characteristic” capillary
number as the measure of deformability. Studies of nonspherical particles are also
complicated as these particles display a variety of unsteady motions in flow [164],
which complicates the interpretation of results on migration and pair collision
dynamics. These challenges present exciting opportunities for further research. The
outcome of this research is also expected to have practical applications, for example,
in the area of optimal drug delivery particle design or in label-free hydrodynamic
sorting of multicomponent suspensions in microfluidic devices. This research will
also be beneficial for understanding the consequences of various diseases like sickle
cell disease and malaria where the mechanical and geometric properties of RBCs
are known to be altered—these changes are likely to modify the distribution of cells
in the circulation and hence affect various blood functions.
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The study of rheological modifiers such as drag-reducing polymers on blood
flow is also nascent. Recent simulation studies have shown that the wall-induced
migration of RBCs is attenuated in the presence of long-chain polymers [54]. This
explains the experimental observations of cell-free-layer thickness reduction with
the addition of polymers. However, simulations studies also show an increase in
wall shear stress and hence increased dissipation. This result contradicts the in
vivo studies showing an increase in cardiac output. Examining the source of this
discrepancy and providing a resolution is also expected to be a fertile area for future
research. Ultimately, adaptation of blood rheology modifiers for therapies will be
greatly facilitated by a microscopic and mechanistic understanding of their effects.
The advances described in this chapter provide steps toward this understanding.
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