
DOI 10.1007/978-1-4939-2038-9_24
Reprinted from Solar Physics Journal, DOI 10.1007/s11207-014-0515-9

On the Origin of Pulsations of Sub-THz Emission
from Solar Flares

V.V. Zaitsev · A.V. Stepanov · P. Kaufmann

Received: 26 November 2013 / Accepted: 4 March 2014 / Published online: 18 March 2014
© Springer Science+Business Media Dordrecht 2014

Abstract We propose a model to explain fast pulsations in sub-THz emission from solar
flares. The model is based on the approach of a flaring loop as an equivalent electric cir-
cuit and explains the pulse-repetition rate, the high-quality factor, Q ≥ 103, low modulation
depth, pulse synchronism at different frequencies, and the dependence of the pulse-repetition
rate on the emission flux, observed by Kaufmann et al. (Astrophys. J. 697, 420, 2009). We
solved the nonlinear equation for electric current oscillations using a Van der Pol method
and found the steady-state value for the amplitude of the current oscillations. Using the pulse
rate variation during the flare on 4 November 2003, we found a decrease of the electric cur-
rent from 1.7 × 1012 A in the flare maximum to 4 × 1010 A just after the burst. Our model is
consistent with the plasma mechanism of sub-THz emission suggested recently by Zaitsev,
Stepanov, and Melnikov (Astron. Lett. 39, 650, 2013).

Keywords Solar flares · Sub-terahertz emission · Pulsations · Electric circuit

1. Introduction

Observations of sub-THz emission from solar flares at 212 and 405 GHz (Kaufmann et al.,
2004, 2009) have posed new questions for solar physicists. These observations revealed a
W-shaped spectrum of the emission instead of the well-known U-shaped one: the emission

V.V. Zaitsev
Institute of Applied Physics, Ulianova str. 46, Nizhny Novgorod 603950, Russia
e-mail: za130@appl.sci-nnov.ru

A.V. Stepanov (B)
Pulkovo Observatory, Pulkovo chaussee 65, Saint Petersburg 196140, Russia
e-mail: stepanov@gao.spb.ru

P. Kaufmann
Centro de Rádio-Astronomia e Astrofísica Mackenzie, Escola de Engenharia, Uniersidade Presbiteriana
Mackenzie, Rua Consolação 896, 01302-907 São Paulo, SP, Brazil
e-mail: kaufmann@craam.mackenzie.br

395 Reprinted from the journal

mailto:za130@appl.sci-nnov.ru
mailto:stepanov@gao.spb.ru
mailto:kaufmann@craam.mackenzie.br


V.V. Zaitsev et al.

flux grows from frequencies >30 GHz and extends towards the THz domain. This suggests
some unknown mechanism of the solar radio emission.

Various attempts to explain the origin of this mysterious spectral component were made,
based on free–free emission, gyrosynchrotron radiation, and synchrotron emission of elec-
trons with the energy exceeding 10 MeV in a strong (≥1000 G) magnetic field. Fleish-
man and Kontar (2010) suggested Cherenkov emission from chromospheric layers. Unlike
those in the corona, atoms and molecules in the partially ionized chromosphere contribute
positively to the dielectric permittivity, ε(ω), which may exceed unity; therefore, the par-
ticle velocity, V > c/

√
ε(ω), and Cherenkov radiation is indeed possible. However, the

acceleration mechanism of electrons with energies higher than 10 MeV is still unknown,
and, in the case of Cherenkov radiation, a more detailed calculation of ε(ω) and radiation
flux is needed. An alternative interpretation suggests a plasma radiation mechanism that is
quite efficient under the conditions of the solar and stellar coronae (Zheleznyakov, 1997;
Zaitsev and Stepanov, 1983; Stepanov et al., 1999, 2001). A coherent plasma radiation
mechanism implies the excitation of plasma waves driven by a beam or loss-cone insta-
bility and subsequently, the conversion of plasma waves into electromagnetic radiation at
the electron plasma frequency and at its second harmonic due to Rayleigh and Raman scat-
tering. One attempt to simulate the THz spectral component in terms of plasma radiation
was undertaken by Sakai et al. (2006), who simulated the generation of Langmuir waves
by high-energy electron beams. A recent review of sub-THz emission mechanisms has been
published in Krucker et al. (2013).

Plasma mechanism of sub-THz emission proposed recently by Zaitsev, Stepanov, and
Melnikov (2013) suggests that the emission source is localized at the chromospheric foot-
points of coronal magnetic loops, where the electron density is n ≥ 1014 cm−3. This requires
the chomosphere to be heated to coronal temperatures at heights ≈500 km, which provides
the high degree of ionization needed for Langmuir frequencies, 200 – 400 GHz. Zaitsev,
Stepanov, and Melnikov (2013) have shown that the electron acceleration and plasma heat-
ing in the sub-THz source can occur when the ballooning mode of the flute instability de-
velops at the chromospheric footpoints of a flare loop. The flute instability deforms the
magnetic field at the loop footpoints. Thus, the electric current flowing in the loop changes
and an inductive electric field appears. This field causes the acceleration of electrons that do
not escape from the chromosphere, providing the excitation of plasma waves and the in situ
heating of the chromospheric plasma. The heated chromospheric plasma evaporates from
the loop footpoints, heats the overlying layers of the solar atmosphere and thereby reduces
free–free absorption of the generated sub-THz emission. It is important to note that the ob-
servations with the New Solar Telescope at Big Bear Solar Observatory (Ji, Cao, and Goode,
2012) give us distinct indications on the heating of chromospheric footpoints of thin coronal
loops to coronal temperatures as well as upward injection of hot plasma that excite the thin
loops from the photosphere to the base of the corona.

The best observed sub-THz flaring events were accompanied by fast (second and sub-
second) pulsations superimposed on the main bursts. The most important peculiarities of
such pulsations are the high quality-factor, Q, pulse synchronism at different frequencies,
and a puzzling linear relationship between pulse-repetition rate and mean emission fluxes.
This proportionality was previously indicated qualitatively at 10 – 90 GHz (Kaufmann et al.,
1980). It might be interpreted as a response to discrete and successive energetic injections,
quantized in energy (Kaufmann et al., 1980, 2009). Other interpretations suggested the emis-
sion modulation by magnetic-field variations driven by magneto-hydrodynamic (MHD) os-
cillations of a coronal loop (Qin et al., 1996) or due to wave–particle plasma instabilities
with a saturation time inversely proportional to the radiation time (Huang, Qin, and Yao,
1996).
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At the same time, pulsations with a high Q-factor in solar and stellar flares were
explained successfully by the model of a current-carrying loop as an equivalent elec-
tric (RLC) circuit (Zaitsev et al., 1998, 2001; Stepanov, Zaitsev, and Nakariakov, 2012;
Stepanov and Zaitsev, 2013). Here, we analyze rapid pulsations of sub-THz emission consid-
ering a flaring loop as an equivalent electric circuit. This idea was first formulated by Alfvén
and Carlqvist (1967) for the circuit model of a flare. Later, the electric-circuit approach
was successfully developed by numerous authors (i.e. Sen and White, 1972; Ionson, 1982;
Kan, Akasofu, and Lee, 1983; Zaitsev and Stepanov, 1992; Cargill, Ghen, and Garren, 1994;
Zaitsev et al., 1998; Tan et al., 2007; Khodachenko et al., 2009) and used as an effective di-
agnostic tool of flaring plasma. In this article, we try to explain the observed peculiarities of
pulsations of sub-THz emission in terms of an RLC-circuit and present additional arguments
in favor of the plasma mechanism of this emission.

2. Pulsation Characteristics

Time profiles of sub-THz emission from solar flares reveal rapid pulsations with some pe-
culiarities (Raulin et al., 2003; Makhmutov, Raulin, and de Castro, 2003; Kaufmann et al.,
2004, 2009). Kaufmann et al. (2009) presented the most comprehensive study of pulsa-
tion characteristics at 212 and 405 GHz using the data for the events on 2 and 4 Novem-
ber 2003, and 6 December 2006, obtained with the Solar Submillimeter Telescope (Kauf-
mann et al., 2008). The superimposed pulsations displayed a repetition rate, νr(t), from
0.2 s−1 to 8.5 s−1. A remarkable peculiarity was the similarity of the time profile of νr(t) to
that of the flux density F(t) (see Figure 3 in Kaufmann et al., 2009).

The radiation flux density, F , at 212 and 405 GHz depends on the repetition rate νr

linearly as a rule, with very large correlation coefficients. The scatter diagram for the event
on 4 November 2003 (Figure 1a) yields F = kνr, where k = 400 sfu at 405 GHz and k = 800
to 1200 sfu at 212 GHz.

Because of the poor atmospheric transmission on 6 December 2006, the data for this
event (Figure 1b) were substantially more scattered than those for the event on 4 November
2003 (Figure 1a). As a result, for the event on 6 December 2006, the linear correlation
between the flux and repetition rate is less evident, and the dependence of F(νr) for 212 GHz
may even be quadratic, F ∼ ν2

r .
In all events studied by Kaufmann et al. (2009), the typical modulation depth of the

pulsations was about 5 – 8 %. Note that observations at 44 GHz show a modulation depth up
to 80 % (Kaufmann et al., 2009). This suggests that sub-mm emission might have a different
physical origin. Important distinctions of the rapid pulsations in sub-THz are synchronism
at different frequencies and their high Q-factor. For example in the decay pulsation phase
of the 4 November 2003 flare (Figure 5 of Kaufmann et al., 2004) the Q-factor is Q =
πDνr ≈ 850, where D is the exponentially decaying train duration. This estimation can be
considered as a minimum value of Q because rapid pulsations were observed throughout
the burst durations of about 10 min. Therefore, the sub-THz pulsation model should explain
the pulse-repetition rate, the dependence, F(νr), the high quality of pulsations, Q ≥ 103, the
pulse synchronism, and low modulation depth compared with that observed at 44 GHz.

3. Review of Sub-THz Pulsation Models

The most popular models of pulsations in solar flares suggest that the pulsations originate
from MHD oscillations of whole coronal magnetic loops. The oscillations modulate the
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Figure 1 (a) The correlation between the flux and the pulse-repetition rate for the flare on 4 November 2003
at 212 GHz (open diamonds) and 405 GHz (filled circles). The best-fit linear correlation coefficients are 0.975
and 0.953 at 212 and 405 GHz, respectively. (b) The correlation between the flux density and pulse-repetition
rate for the event on 6 December 2006 at 212 GHz (open diamonds) and 405 GHz (filled circles). The data
are highly scattered because of poor atmospheric transmission. The best-fit linear correlation is 0.87 only at
212 GHz. The scatter at 405 GHz is too large to determine the correlation (Kaufmann et al., 2009).

emission of accelerated electrons due to variations of the loop magnetic field and the number
density of the accelerated particles. The period of the loop oscillations corresponds to the
radial sausage mode:

Psaus = 2.6r√
c2

A + c2
s

, (1)

where r is the minor radius of the loop, cA = B/
√

4πρ is the Alfvén velocity, cs =√
10kBT/3mi is the sound speed. For example, if the plasma average density in a coronal

flaring loop is n = 1012 cm−3 and the temperature T = 106 K with β = 8πnkBT/B2 < 1,
where kB is the Boltzmann constant, which suggests a loop magnetic field B ≥ 100 G, we

have
√

c2
A + c2

s ≈ 2.7 × 107 cm s−1. Then the observed pulsation period P ≈ 0.1 – 5 s can be

explained if the minor radius of the coronal loop is sufficiently small, r ≈ (0.1 – 5)×107 cm.
Note that Equation (1) describes the period of sausage oscillations if the loop has a steep
radial profile of the Alfvén speed. For smoother profiles the sausage-mode period becomes
shorter (Nakariakov, Hornsey, and Melnikov, 2012). On the other hand, for “thick” loops the
period of the global sausage mode can be several times longer than Equation (1) (Nakari-
akov, Melnikov, and Reznukova, 2003).

Based on Equation (1), Qin et al. (1996) have shown that the period of the sausage os-
cillations can decrease for higher plasma temperatures, but it requires β = 3c2

s /5c2
A > 1.

However, for β > 1, the flaring loop collapses very rapidly and high-quality pulsations be-
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come impossible. The long train of pulsations is also unlikely to occur because of strong
acoustic damping of loop-sausage oscillations.

In the slow magneto-acoustic mode, the oscillation period increases with the time be-
cause of the expansion of the heated region. In the kink mode, the period depends on the
loop length, l, as P ≈ l/cA ≥ 10 s, and it cannot modulate a compact source at the loop
footpoints with a period ≤1 s. Consequently, these two modes are inapplicable to the inter-
pretation of the observations.

The linear correlation, F(νr), between the emission flux and pulse rate was also suggested
by Huang, Qin, and Yao (1996) based on the inverse correlation between the saturation time
of the plasma instability caused by the burst and the radiation flux. They assumed that as a
result of this inverse correlation the sequence of spike bursts is formed with a spike-to-spike
time interval that decreases with the increase in the radiation level. However, Huang, Qin,
and Yao (1996) neither specified the type of the plasma instability that explains the linear
dependence F = kνr nor discussed reasons for the high Q-factor of the pulsations.

Zaitsev (1971) suggested a pulsation model of a “rain” type, using induced scattering of
excited plasma waves on the ions of the thermal plasma. This nonlinear process of the trans-
fer of plasma waves from the resonant (instability) domain to the nonresonant (damping)
domain is described by Lotka–Volterra equations for the “predator–prey” problem:

dw

dt
= γw − ξww∗,

dw∗

dt
= ξww∗ − νw∗. (2)

Here, w = W/nkBT , w∗ = W ∗/nkBT , W and W ∗ are the energy densities of plasma waves
in resonant and nonresonant regions of the phase velocities, respectively, γ is the instability
growth rate, ξ is the coefficient of induced nonlinear transfer of plasma waves along the
wave spectrum, ν is the wave decrement. Equation (2) allows periodic solutions that cor-
respond to closed trajectories around a center-type point, w0 = ν/ξ and w∗

0 = γ /ξ . The
pulse rate around this point is νnl ≈ (γ ν)1/2. In the vicinity of the instability threshold
(γ ≈ ν = νei), for T = 2 × 106 K and n = (1010 – 5 × 1014) cm−3 in the low corona and
chromosphere (Zaitsev, Stepanov, and Melnikov, 2013) the electron–ion collision frequency
is νei ≈ 60 n/T 3/2 ≈ (6 × 102 − 107) s−1. Because νnl ≈ νei � νr, the rain-type model does
not explain the observed pulse rates in the sub-THz emission.

Some other models of pulsations are discussed, for example, quasi-periodical electron ac-
celeration or injection (Fleishman, Bastian, and Gary, 2008), multiple-particle acceleration
in the reconnection process (Kliem, Karlický, and Benz, 2000), and multiple-coalescence
instabilities (Tajima, Brunel, and Sakai, 1982). However, these mechanisms cannot explain
all peculiarities of rapid pulsations at 212 and 404 GHz described in Section 2. At the same
time, in many cases the pulsations in solar and stellar flares were explained successfully by
the model of a current-carrying loop as an equivalent electric (RLC) circuit (Zaitsev et al.,
1998; Stepanov, Zaitsev, and Nakariakov, 2012).

4. Oscillations of a Coronal Loop as an Equivalent Electric Circuit

The high Q-factor and phase synchronism of rapid pulsations at sub-THz are consistent
with the electric current oscillations in a flaring loop as an equivalent electric circuit. Photo-
spheric convective motions interacting with the magnetic field at the loop footpoints gener-
ate an electric current, which flows from one footpoint to the other through the coronal part
of the loop and closes below the photosphere, where the conductivity becomes isotropic.
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Therefore, a coronal magnetic loop with a subphotospheric current channel may be con-
sidered as a wire loop with electric current. In this case, we can write the equation for the
equivalent electric circuit. For small deviations of the electric current, I , which flows along
the loop axis, from the steady-state value, I0, this equation can be represented as follows
(i.e. Khodachenko et al., 2009):

1

c2
L

d2y

dt2
+

[
R(I0) − |Vr|l1

c2r1

]
dy

dt
+ 1

C(I0)
y = 0. (3)

Here, y = (I − I0)/I0, L is the loop inductance, R is the loop resistance, C is the loop
capacitance, Vr is the radial component of the velocity of the photosphere plasma in the
footpoints of the loop. Approximating the flare loop as a wire with the length l and a minor
radius r 	 l, we can use the well-known expression for the circular wire-loop inductance
(Landau and Lifshitz, 1984):

L ≈ 2l

(
ln

4l

πr
− 7

4

)
. (4)

The effective capacity, C(I0), depends on the electric current in the loop:

1

C(I0)
≈ I 2

0 l

c4ρπr4
2

(
1 + b−2

)
. (5)

The parameter b is determined by the magnetic-field components and the gas pressure at the
loop axis and outside the loop:

b = Bϕ0(r)

Bz0(r) − Bz0(0)
≈ 6

Bϕ0(r)Bz0(0)

8π [p(∞) − p(0)] . (6)

Here, ρ is the loop plasma density, r2 is the loop radius at the coronal part of the loop, Bϕ0,
Bz0 are the azimuthal and axial components of the loop magnetic field. The effective loop
resistance is determined as in Khodachenko et al. (2009),

R(I0) ≈ F 2
1 I 2

0 l1

(2 − F1)c4n1miν
′
iaπr4

1

(
1 + b−2

)
, (7)

where l1, r1, n1 are the height scale of the photospheric electromotive force, (emf), loop
radius, electron number density, respectively, F1 = ρa/ρ is the relative density of neutrals in
the chromosphere, and ν ′

ia is the effective frequency of ion–atom collisions. The second term
in Equation (3) is related to the emf of the equivalent electric circuit. The electromotive force
appears due to the interaction of the velocity Vr with the azimuthal component of magnetic
field, Bφ ∼ I . In Equation (3) for oscillations of the electric current in a loop, the emf appears
as a negative resistance R(−) = −|Vr|l1/c2r1.

A horizontal plasma flow into the loop appears due to either photospheric convection,
when the loop footpoints are located at the nodes of several granulation cells, or the bal-
looning mode of the flute instability, as we suggested analyzing the plasma mechanism of
sub-THz emission from the heated loop footpoints in the chromosphere (Zaitsev, Stepanov,
and Melnikov, 2013). The main contribution to the circuit resistance (Equation (7)) comes
from the footpoints of a loop with relatively low conductivity caused by ion–atom collisions
(the so-called Cowling conductivity). As for the loop eigen-frequency we have to consider
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the whole loop, with a larger part in the corona. In the coronal part of the loop, the inequality
b2 � 1 is satisfied, and the frequency of the LRC-oscillations is

ω0 = c√
LC(I0)

≈ 1

(2π)1/2
√

�

I0

cr2
2
√

n2mi
. (8)

Here, � = ln 4l2
πr2

− 7
4 and n2 is the electron density in the coronal part of the loop, mi is the

ion mass. Equation (8) suggests that electric current oscillations are in-phase in all points
of the loop as an equivalent electric circuit (lumped circuit approach). On the other hand,
variations of the current propagate along the loop with the Alfvén velocity. Hence the in-
phase condition requires the Alfvén time, τA = l2/cA2, to be shorter than the oscillation
period, τLRC = 2π/ω0. Since the Biot–Savart law gives I0 ≈ cr2Bϕ0(r2)/2, the synchronism
condition is (Zaitsev et al., 2012)

Bϕ0(r2)

Bz0(0)
< 2π

√
2�

r2

l2
. (9)

This means that the ratio of the azimuthal to the longitudinal components of the magnetic
field of the loop should be low. This condition is consistent with the stability condition
against the kink mode. Equation (8) describes Alfvén oscillations of the coronal loop with
the wave vector |�k| ≈ r−1

2 directed almost perpendicular to the loop axis with the angle θ ,
such that cos θ ≈ (Bϕ/Bz). In this case

ωA = kcA cos θ ≈ 1

r2

√
B2

z + B2
ϕ√

4πn2mi

Bϕ

Bz

≈ 1√
π

I 0

cr2
2
√

n2mi
. (10)

Equation (10) coincides with Equation (8) with the coefficient � on the order of unity. Here,
we take into account that I0 ≈ Bϕcr2/2.

The quality of the oscillations

Q = 1

cR

√
L/C (11)

can be very high because of the high loop inductance and comparatively low circuit resis-
tance (see below). From Equation (3) it follows that oscillations of a loop as an equivalent
electric circuit are excited if the negative resistance exceeds the circuit resistance,

R(I0) ≤ |Vr|l1/
(
r1c

2
)
. (12)

Zaitsev et al. (2001) have shown that the nonlinear character of the capacitance (Equa-
tion (5)) and the resistance (Equation (7)) on the amplitude of the current transforms
Equation (3) into Equation (18) (see Appendix A). Solution of Equation (18) using the
Van der Pol method yields the steady-state value of the oscillations’ amplitude (Equation
(26)): y∞ = 2

√
δ, where δ = |Vr|l1

c2r1R(I0)
− 1. The steady-state amplitude is specified by the

excess of the negative resistance of the photospheric emf over the active resistance of the
equivalent electric circuit.

5. The Influence of RLC Oscillations on Sub-THz Emission from a Coronal Loop

We considered the influence of eigen-RLC-oscillations of a coronal loop on the modulation
of sub-THz emission. Zaitsev, Stepanov, and Melnikov (2013) presented some arguments in
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Figure 2 A sketch of a footpoint
of a current-carrying loop.
A sub-THz source (gray) and the
free–free absorption domain
above the source (dashed) are
indicated. Plasma tongues
penetrate into the loop because of
the flute instability and induce
the electric field.

support of the plasma radiation mechanism of the sub-THz emission from solar flares. They
suggested that the source of sub-THz emission is located in the chromospheric footpoints
of coronal loops. The main driver for electron acceleration and in situ heating of chromo-
spheric plasma is the flute instability. The ballooning mode of flute instability leads to the
penetration of the external chromospheric plasma into a current-carrying flare loop, which
deforms the magnetic field at the loop footpoints (Figure 2). As a result, the electric cur-
rent flowing along the loop changes and an inductive electric field emerges. The inductive
electric field causes the acceleration of electrons to energies 500 – 2500 keV which do not
escape from the chromosphere, providing the excitation of plasma waves and the heating of
the chromospheric plasma.

From Appendix B it follows that the sufficient condition for the instability of the bal-
looning mode requires n ≥ na, which implies pre-heating of the chromospheric footpoints
of a coronal magnetic loop to a temperature T ≥ 1.5 × 104 K. Such pre-heating can be
provided by electric current dissipation due to Cowling resistivity related to ion–atom colli-
sions. From Equation (40) it follows that the Joule heating rate exceeds radiation losses for
the rate of photospheric convection, Vr ≥ 4×104 cm s−1. Horizontal velocities of convective
flows in the vicinity of the boundaries of supergranulation cells, where the current-carrying
magnetic loops are usually formed, are equal to (3 – 5) × 104 cm s−1. In 5 min photospheric
oscillations, these velocities may reach (1 – 2) × 105 cm s−1. Therefore, it is expected that
the region of manifestation of the flute-type instability effects in the chromosphere reaches
the heights h ≥ 500 km for densities of ntot ≤ 1015 – 1016 cm−3 (within the framework of the
chromosphere model of Avrett and Loeser, 2008).

The scale of the height of the sub-THz source �z ≈ 100 – 150 km is on the order of that
of the plasma “tongue” penetrating into the loop because of the flute instability. Accelerated
electrons with the collisional mean free path, λ < �z, do not escape from the source and
contribute to the ionization in the chromosphere.

The origin of the modulation of sub-THz emission are the electric current oscillations in
a coronal loop – an equivalent RLC-circuit. These current oscillations cause the modulation
of the particle accelerator that modulates the plasma turbulence level and, as the result of
Rayleigh and Raman scattering, modulates the sub-THz plasma emission. It is important
to note that the sub-THz source must be quite compact, but the whole coronal loop oscil-
lates with a frequency (Equation (8)) depending on the electric current value I0 and on the
parameters of the coronal part of the loop l2, r2, and n2.

5.1. The Relation of the Flux-to-Repetition Rate

The Rayleigh and Raman scattering of plasma waves produces radio emission with fun-
damental and harmonic plasma frequencies, respectively. If the source optical depths with
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respect to both conversion processes are lower than that with respect to the free–free ab-
sorption, the brightness temperatures of sub-THz emission are proportional to the level of
plasma turbulence, w, at the fundamental frequency and to the squared of w at the harmonic
(Zaitsev and Stepanov, 1983; Zaitsev, Stepanov, and Melnikov, 2013):

Tb1 = a1

μc1
∝ w ∝ nbεb, Tb2 = a2

μc2
∝ w2 ∝ (nbεb)

2, (13)

where a1,2 and μc1,2 are the emissivity and absorption coefficients at the fundamental and
harmonic frequencies, respectively, nb is the density of the electron beam, and εb is the
electron beam energy.

Here we used the isotropic plasma approximation because the Langmuir frequency,
νp ≈ 200 GHz corresponding to the electron density n ≈ 5 × 1014 cm−3, in the heated chro-
mosphere is much higher than the electron gyrofrequency, νc = 8.4 GHz (νp/νc ≈ 24 � 1),
even for a comparatively high magnetic-field value, B = 3000 G.

The electron beam energy, εb, is proportional to the value of accelerating electric field.
In turn, the inductive electric field generated by the flute instability is proportional to the
electric current (Zaitsev, Stepanov, and Melnikov, 2013). Thus, from Equation (13) it follows

Tb1 ∝ I (t), Tb2 ∝ I 2(t). (14)

As the frequency of RLC-oscillations depends on the electric current, an important con-
clusion follows from Equations (8) and (14): in the framework of the plasma mechanism of
sub-THz emission, the pulsation frequency grows with the emission intensity, and the time
profile of the pulse-repetition rate, νr(t), should be similar to that of the flux. This conclusion
is consistent with the observations (see Figure 1):

Tb1 ∝ ω0(t), Tb2 ∝ ω2
0(t). (15)

If the emission at the fundamental tone prevails over that at the harmonic, the flux is
proportional to the pulse-repetition rate (Figure 1a). If the emission at the harmonic domi-
nates, the dependence of the emission flux on the modulation frequency follows a quadratic
law. A possible illustration of this law is presented in Figure 1b. Note that two branches in
Figure 1a, F = kνr(t) with k (ν = 405 GHz) approximately equal to 4k (ν = 212 GHz), can
be explained by the well-known connection between the emission flux and the brightness
temperature, F ∝ Tbν

2S, where S is the source area, which is approximately constant.
Consequently, in the framework of the plasma emission mechanism, the modulation of

THz emission by eigen-oscillations of a coronal loop as a RLC circuit explains a very im-
portant characteristic of the observed rapid pulsations: the dependence of the emission flux
on the repetition rate. Below we show that the electric-circuit approach also explains the
other peculiarities of the pulsations under investigations.

5.2. Pulse Rate

From Equation (8) it follows that the pulsation repetition rate depends on the electric current
and on the parameters of the coronal part of a flaring loop:

νr = ω0

2π
= 1

(2π)3/2
√

�

I0

cr2
2
√

n2mi
. (16)

Assuming a loop radius of r2 ≈ 108 cm and plasma density of n2 ≈ 1010 cm−3, from Equa-
tion (16) we obtain νr = (I11/2) s−1, where I11 = 10−11I (A). From Figure 3 of Kaufmann
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et al. (2009) it follows that in the event of 4 November 2003, the pulse rate varied from
8.5 s−1 at the flare maximum to 0.2 s−1 after the burst. This corresponds to the decrease of
the electric current from 1.7 × 1012 A to 4 × 1010 A. Note that a similar modification of the
pulse period with the emission flux was observed at 17 GHz in the flare of 30 March 2001
(Zaitsev et al., 2012). These electric-current estimates are reasonable for powerful flares.
For example, vector-magnetograph measurements revealed almost the same current value at
the footpoints of a flaring loop (Hagyard, 1988).

5.3. Q-Factor

For the events under study, the pulsation quality, Q, can be estimated independently assum-
ing an effective electric-circuit resistance, Reff ≈ (W/I 2), where W ≈ 1018 – 3 × 1020 W
is the flare power, I ≈ 3 × 1011 A is the current in a loop. As a result, we obtain Reff ≈
10−5 – 3×10−3 �. This estimated value of Reff fits the highest value of the electric-circuit re-
sistance well that is located near the region of the lowest temperature in the chromosphere at
h = 560 km above the level of τ5000 = 1, where T = 4400 K, na = 1.55×1015 cm−3 and n =
1.47 × 1011 cm−3 (Avrett and Loeser, 2008). Indeed, using Equation (7) with b � 1,
I0 = 3 × 1011 A, l1 = 3 × 107 cm, r1 = 107 cm, and F1 = 1, taking into account Equa-
tion (37), we obtain the Cowling resistance, Reff ≈ 2 × 10−3 �. Analogous calculations
for h = 175 km, with T = 5100 K, na = 3.55 × 1016 cm−3, n = 3.3 × 1012 cm−3, give
Reff ≈ 3 × 10−6 �.

The capacitance and inductance in the coil-condenser circuit are determined from Equa-
tions (5) and (4), respectively: C ≈ (r2

2 /l2)(c
2/V 2

Aϕ) = 3 × 1010 cm = 3 × 10−2 F, L ≈
10l2 ≈ 1010 cm ≈ 10 H. In this way, we obtain the Q-factor, Q ≈ 6 × 102 − 106 � 1. Thus
the LRC-model of a flaring loop yields a high pulsation quality, which corresponds to the
observation of a long-duration pulse-train.

5.4. Pulse Amplitude

The amplitude of the pulses relative to the mean flux, �F/F , is about 5 – 8 % at 212 and
405 GHz (Kaufmann et al., 2009). Taking into account that F ∝ Tb, from Equation (14) it
follows that in the framework of the plasma mechanism, the modulation depth is equal to the
relative amplitude of electric-current oscillations in a circuit (in the case of the emission at
the fundamental frequency), or equal to the double relative amplitude of current oscillations
(in the case of emission at the harmonic). Equation (26) shows that in the steady-state regime
of oscillations, the excess of negative resistance of the photospheric emf above the circuit
resistance is low, 2

√
δ = (5 – 8) × 10−2, e.g. in a congruent circuit the nonlinear circuit

resistance is consistent with the photospheric emf. Then from Equation (12) we obtain an
independent estimate for the effective circuit resistance:

Reff ≈ |Vr|l1
r1c2

. (17)

Assuming the velocity of a plasma tongue under the conditions of ballooning instability on
the order of the ion thermal velocity of the chromospheric plasma at the loop footpoints, and
the tongue scale-height of about 100 – 500 km, we obtain Reff ≈ (1 – 5)× 10−3 �. This does
not contradict the estimate of Reff made in Section 5.3.

Note that a deep modulation of the emission flux at 44 GHz (Kaufmann et al.,
2009) can be understood in terms of optically thin gyrosynchrotron emission. Using ap-
proximated formulas (Dulk, 1985), the modulation depth can be represented as � ≈
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2(0.9α – 0.22)δB/B . Assuming that the power-law spectral index of accelerated electrons is
α = 4.0 for δB/B = 0.1, we obtain � ≈ 0.7.

5.5. Pulse Synchronism

The pulse synchronism at different frequencies can also be explained in the framework of
the plasma emission mechanism. Indeed, if the condition described by Equation (9) is ful-
filled, the model of a lumped circuit is realized and all parts of the loop oscillate in phase.
Equation (9) shows that pulse synchronism is achieved in relatively short and “thick” loops
and that it imposes restrictions on the shear of the loop’s magnetic field. For instance, at
r2 ≈ 108 cm, l2 ≈ 109 cm, and Bz ≈ 2 × 103 G, in-phase condition is true for an electric
current I0 ≤ 1012 A.

6. Discussion and Conclusions

Raulin et al. (2003) noted that the sub-THz emission fine structure consists of a mixture
of spikes and pulsations. The fast pulse locations appear to be discrete and stationary in
space (5′′ – 15′′), spread across the entire active region, and probably spaced by more than
30′′. As a possible origin of this fine structure, Raulin et al. (2003) proposed mechanisms
of multiple explosive magnetic islands (Sturrock and Uchida, 1981), multiple-coalescence
instabilities (Tajima, Brunel, and Sakai, 1982), or the interaction of multiple magnetic loops
within the active region (Sturrock et al., 1984). These models can indeed explain, to some
extent, some properties of pulsations, but they encounter difficulties when attempting to
explain the observed F(νr) dependence and the high Q-factor. On the other hand, the loop–
loop coalescence in multi-loop flares that transport electric current (Khodachenko et al.,
2009) naturally explains the highly developed fine structure. This approach has something in
common with the interpretation proposed by Sturrock et al. (1984); however, instead of the
interaction of multiple magnetic fluxes, Khodachenko et al. (2009) suggested the presence
of LRC-oscillations of current-carrying loops and loop–loop interactions.

Moreover, the model proposed here favors the hypotheses of discrete and successive ener-
getic injections, quantized in energy. Indeed, small electric current variations produce varia-
tions of the azimuthal component of the magnetic field, Bφ , which, in turn, gives an electric
field along the loop axis. This electric field is the reason for additional electron accelera-
tion and injection into the emission region. As a result, a comparatively weak (5 – 10 %)
emission pulse appears. In this way, a growing electric current gives enhanced emission at
sub-THz and at the same time the pulse-repetition rate also grows. Because the flaring pro-
cess is very unsteady, the loop plasma parameters can change radically. So the pulse period
can also change and the observed pulsations are nonperiodical. Note that the plasma emis-
sion mechanism also explains two possible dependences of F(νr) in the considered events
(Figure 1).

The pulsation model suggested here is based on the modulation of the sub-THz emis-
sion by eigen-oscillations of a coronal magnetic loop as an equivalent electric circuit and
may explain the following peculiarities of the pulsations: i) the observed repetition rate,
νr = 0.2 – 8 s−1, ii) the high Q-factor, Q ≥ 103, iii) the small pulse amplitude, and iv) the
pulse synchronism at different frequencies of the sub-THz emission. Moreover, the proposed
model can explain the observed variations of the pulse-repetition rate with the variations of
the sub-THz emission flux within the hypothesis of plasma emission. This is a strong ad-
ditional argument in favor of the plasma emission mechanism of sub-THz radiation. Other
models have difficulties attempting to explain all the characteristics of the observational
data.
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Appendix A: Current Oscillation Amplitude

Taking into account the dependence of the nonlinear capacitance and resistance on the am-
plitude of the current in a magnetic loop, one can write the following expression instead of
Equation (3) (Zaitsev et al., 2001; Khodachenko et al., 2009):

1

c2
L

d2y

dt2
+

[
R(I0)(1 + y)2 − |Vr|l1

c2r1

]
dy

dt
+ 1

C(I0)

(
1 + 3

2
y + 1

2
y2

)
y = 0. (18)

Introducing the dimensionless time τ = ω0t , Equation (18) can be written as

d2y

dτ 2
− ε

(
δ − 2y − y2

)dy

dτ
+

(
1 + 3

2
y + 1

2
y2

)
y = 0. (19)

Here

ε = 1

Q
, δ = |Vr|l1

c2r1R(I0)
− 1. (20)

In the case of a high Q-factor, in Equation (19) ε 	 1. Hence, the solution of (19) can be
obtained by the Van der Pol method

y = A(τ)eiτ + A∗(τ )e−iτ , (21)

where A(τ), A∗(τ ) are time-dependent functions, which are slowly varying on the time
scale equal to the oscillation period. Substituting (21) in (19) and averaging over the period,
T = 2π , we obtain the equation for A(τ):

dA

dτ
= 1

2

(
εδ − ε|A|2)A − 3

4
i|A|2A. (22)

Assuming A(τ) = 1
2a(τ)eiϕ(τ) and separating the real and imaginary parts in Equation (22),

we obtain two equations for the amplitude and the phase:

da

dτ
= 1

2
ε

(
δ − 1

4
a2

)
a, (23)

dϕ

dτ
= − 3

16
a3. (24)

As a result, we have the following solution for the oscillation amplitude:

a(τ) = 2
√

δ

[1 + (
4δ−a2

0
a2

0
) exp(−εδω0t)]1/2

. (25)
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We can see that the oscillation amplitude may vary from the initial value a0 to the steady-
state value a∞ = 2

√
δ. In the steady state, the solution is

y = I (t) − I0

I0
= 2

√
δ cos

[
ω0

(
1 − 3

√
2

8
δ3/2

)
t

]
. (26)

Thus, the nonlinearity of Equation (18) yields the steady-state value of the oscillations and
a minor shift of the frequency from that in the linear case.

Appendix B: Flute-Type Instability in a Current-Carrying Magnetic Loop

Favorable conditions for the flute-type instability to develop exist in the vicinity of the chro-
mospheric footpoints of magnetic loops. In this case, the sharp decrease of the plasma pres-
sure with height results in the presence of magnetic-field curvature (effective gravitation),
directed inside the loop. The curvature radius of the magnetic-field lines is on the order of
the scale height of the inhomogeneous atmosphere (Priest, 1982),

Rc ≈ kBT

mig
. (27)

We use the relation (27) because near the chromospheric loop footpoints the loop’s cross-
section is proportional to the plasma’s gas pressure and grows with the scale height (27). As
a result, the loop becomes thicker and a magnetic-field curvature appears.

The magnetic-field curvature produces the centrifugal force

�fc = 2nkBT

R2
c

�Rc, (28)

which acts on a cubic centimeter of plasma with a density ρ ≈ (n+na)mi. Thus, the effective
centrifugal acceleration of the chomospheric plasma around the footpoint of the loop is equal
to

�gc = ( �fc/ρ) = 2kBT

miR2
c

n

n + na

�Rc, (29)

where n and na are the number density of electrons and neutral atoms, respectively. Substi-
tuting (28) into (29), we obtain

gc = 2g
n

n + na
. (30)

The condition for the ballooning instability is

gc − g cos θ > 0, (31)

where θ is the angle between the direction of the curvature radius, Rc, and the vertical.
If Rc is roughly perpendicular to g, the build-up time of the ballooning mode of the flute
instability is

τb = 1

2

(
λ

πg

)0.5(
n

n + na

)−0.5

, (32)
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where λ is the perturbation wavelength. The estimate (32) corresponds to the most unstable
case, when the perturbation wave-vector is perpendicular to the magnetic field (Priest, 1982).
In the case of na 	 n

τb ≈ 2 × 10−3λ0.5 s, (33)

and perturbations with wavelengths λ ≈ 107 cm (on the order of the loop radius in the
chromosphere) develop in times on the order of 10 s.

It follows from (30) and (31) that the sufficient condition for the development of the
instability is

n ≥ na. (34)

Under normal conditions in the chromosphere, the degree of ionization is small, ∼10−4,
therefore, in order to increase it, a source of heating should exist. To determine the tem-
perature to which the chromosphere should be heated so that the condition (34) is fulfilled,
one can use the modified Saha formula, which is applicable under the lower-chromospheric
conditions (Brown, 1973):

(n + na)x
2

1 − x
= 7.2 × 1018T 0.5 exp

(
−6.583 − 1.185 × 105

T

)
, (35)

where x = n/(n + na). It follows from (35) that for the regions of the chromosphere
with densities ntot = n + na = 1016,1015,1014 cm−3, the instability criterion (34) is ful-
filled when the corresponding layers are heated to temperatures of T ≈ 2 × 104 K,
1.5 × 104 K, 1.2 × 104 K, respectively. If a magnetic flux tube is formed by converg-
ing flows of photoshperic plasma with a velocity Vr(r), then electric currents are gener-
ated within it, and their dissipation results in additional heating. The basic contribution
to the dissipation is provided by the Cowling conductivity related to electron–atom col-
lisions. Then the dissipation rate is determined by the formula (Sen and White, 1972;
Zaitsev and Khodachenko, 1997)

qJ = nmiν
′
iaV

2
r (1 + x)

(1 − x)2
. (36)

Under chromospheric conditions, the basic contribution to the ion–atom collisions is made
by the process of recharging, for which, within the temperature interval 4 × 103 < T <

105 K, we can write

ν ′
ia ≈ 2.25 × 10−11na

√
T . (37)

Hence

qJ = 3.76 × 10−35 1 + x

1 − x
(n + na)n

√
T V 2

r erg cm−3 s−1. (38)

To increase the chromospheric temperature, the Joule heating rate should exceed the radia-
tion losses. In the temperature interval 8 × 103 < T < 2 × 104, the rate of radiation losses is
determined by (Peres et al., 1982)

qr = (
1.397 × 10−8T

)6.15
(n + na)n. (39)

From the condition qr ≤ qJ, we obtain the lower boundary for the rate of photospheric con-
vection that provides pre-heating and the necessary ionization degree for the ballooning
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mode of the flute instability to develop:

n + na = 1014 cm−3, Vr ≥ 2 × 104 cm s−1,

n + na = 1015 cm−3, Vr ≥ 4 × 104 cm s−1,

n + na = 1016 cm−3, Vr ≥ 4 × 105 cm s−1.

(40)
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