
Chapter 5
Consequences of Convexity

In this chapter, we wish to explore the geometric aspects of the Hahn–Banach The-
orem. The crucial property, it turns out, is local convexity. We will first recall some
notions from general topology and then introduce the concept of a topological vector
space. These spaces, which include Banach spaces, are sufficiently complex that
we can say something interesting about their structure. Banach spaces are topolog-
ical vector spaces where the topology is determined by a complete norm, and in
this chapter we will get some idea of how they fit into a more general topological
framework.

5.1 General Topology

Let E be a set. A topology τ on E is a collection of subsets called open sets satisfying
the following three criteria:

1. The collection τ contains both E and the empty set ∅.
2. If {Ui}i∈I is a (possibly uncountable) family of sets in τ , then

⋃
i∈I Ui is in τ .

3. If U and V are in τ , then U ∩ V is in τ .

When E is equipped with a topology τ , we call the pair (E, τ ) a topological space.
When there is no ambiguity, we will suppress the τ and simply write E for the
topological space (E, τ ), and say U is open in E when U ∈ τ .

If (E, τ ) and (F , τ ′) are topological spaces, then a function f : E → F is called
continuous if f −1(U ) is open in E whenever U is open in F . For x a point in E, a
neighborhood of x is any subset N of E for which there exists an open set U such
that x ∈ U and U ⊂ N .

Example 5.1 Let (E, τ ) be a topological space. If every set in E is open, then τ is
called the discrete topology. If τ = {E, ∅}, then τ is called the indiscrete topology.

Example 5.2 Let (E, τ ) and (F , τ ′) be two topological spaces. The product E × F

can be given the product topology, denoted τ × τ ′, as follows: W ⊆ E×F is open if
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W =
⋃

i∈I

(Ui × Vi),

where Ui ∈ τ and Vi ∈ τ ′ for each i ∈ I , where I is a (possibly uncountable) index
set.

Let (E, τ ) be a topological space. The topology τ is said to have a base of open
sets {Ui}i∈I if for each open set V ∈ τ , there exists an index set J ⊆ I such that
V = ⋃

i∈J Ui . When τ has a base, we say the base generates the topology τ . In
Example 5.2, the product topology on E × F is generated by the base

{U × V : U ∈ τ , V ∈ τ ′}.

Example 5.3 (Product topology). Let I be a (possibly uncountable) index set. For
each i ∈ I , let (Ei , τi) be a topological space. The product topology on the product∏

i∈I (Ei , τi) is a topology with a base consisting of sets of the form

Ui1 × · · · × Uin ×
∏

i∈I\{i1,... ,in}
Ei ,

where Uij is open in Eij for ij ∈ I , n ∈ N, and j ∈ {1, . . . , n}. Observe that all but
finitely many elements of the product are the entire space. This example contains
Example 5.2 as a special case, because the product in that example is finite.

Example 5.4 Suppose M is a set with a metric d . We will show that the metric d

determines a topology on M . For each x ∈ M and r > 0, let

B(x, r) = {z ∈ M : d(x, z) < r}.
This set is the open ball about x of radius r . We declare a subset V of M to be open
if for each x ∈ V , there is an r > 0 such that B(x, r) ⊆ V . The collection of all such
open sets forms a topology on M called the metric topology on M generated by the
metric d, or just the metric topology on M , if the metric d is understood.

Suppose V is open in the metric topology. For each x ∈ V , there exists a number
rx > 0 such that B(x, rx) ⊆ V . Thus, V = ⋃

x∈V B(x, rx), and so the collection of
open balls forms a base for the metric topology.

Let E be a topological space and let x ∈ E. A local base at x is a collection η

of open sets, all of which contain x, such that any neighborhood U of x contains an
element of η.

In Example 5.4, any point in the metric space M has a local base. For x ∈ M , the
collection of open balls B(x, r) for all r > 0 forms a local base at x. In fact, if we
consider the collection of sets η = {B(x, 1/n) : n ∈ N}, then η is a countable local
base at x.

A topological space (E, τ ) with a countable local base at every point x ∈ E is
called first countable. Further, (E, τ ) is called second countable if τ has a countable
base. From Example 5.4 (and the comments following it), we see that any metric
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space M is first countable; however, M will not be second countable unless M is
separable. (See Exercise 5.9.)

Let (E, τ ) be a topological space. We say (E, τ ) is metrizable if there exists a
metric d such that d generates the topology τ . That is, if the open balls in (E, d)
form a base for the topology τ . We call (E, τ ) a Hausdorff space if for any distinct
points x and y in E there exist open sets U and V in τ such that x ∈ U , y ∈ V , and
U ∩ V = ∅.

Example 5.5 Any metrizable space is a Hausdorff space. To see this, suppose (M , d)
is a metric space and let x and y be two distinct points in M . Since x �= y, it
follows that d(x, y) > 0. Let δ = d(x, y). Furthermore, let U = B(x, δ/2) and
V = B(y, δ/2). Then U and V are open in the metric topology on M , x ∈ U , y ∈ V ,
and U ∩ V = ∅.

Example 5.6 Any nonempty set E with the discrete topology (see Example 5.1) is
metrizable. Define a metric on E by

d(x, y) =
{

0 if x = y,

1 if x �= y,
for (x, y) ∈ E × E.

It is easy to see that d is, in fact, a metric. This metric is called the discrete metric
on E and it is not hard to show that d generates the discrete topology on E.

Of particular interest to us is the notion of compactness. A topological space is
said to be compact if any open cover contains a finite open subcover. To be more
precise, let X be a topological space. Then X is compact if for any collection U of
open sets such that X ⊆ ⋃

U∈U U there exists a finite collection {U1, . . . , Un} of
elements in U such that X ⊆ U1 ∪ · · · ∪ Un.

For a (not necessarily compact) topological space, we define a compact subset in
a similar way: A subset E of a topological space X is compact if any cover of E by
sets open in X admits a finite subcover of E.

Some well-known properties of compact sets are treated in the exercises at the
end of this chapter. (See Exercise 5.2.)

A topological space is said to be locally compact if every point has a compact
neighborhood. Naturally, all compact spaces are locally compact, but the converse
need not be true. For example, the real line R with its standard topology is locally
compact, but not compact.

A notion of fundamental importance in topology is that of a convergent sequence.
If X is a topological space, and (xn)∞n=1 is a sequence of elements from X, then
(xn)∞n=1 is said to converge to a point x ∈ X if for every open neighborhood U of x

there exists an N ∈ N such that xn ∈ U for all n ≥ N . In such a case, we say x is
the limit of the sequence (xn)∞n=1 and we write x = lim

n→∞ xn. (Note that this notion of

a limit agrees with the standard definition of a limit in a metric space.)
In general, the limit of a sequence need not be unique. The spaces we consider,

however, are Hausdorff spaces, and limits are necessarily unique in a Hausdorff
space. (See Exercise 5.8.)
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A subset U of a topological space X is called sequentially open if every sequence
(xn)∞n=1 that converges to a point in U is eventually in U . That is, if there exists some
N ∈ N such that xn ∈ U for all n ≥ N . We call X a sequential space if every
sequentially open set is open. Any first countable topological space is a sequential
space. In particular, any metric space is a sequential space.

5.2 Topological Vector Spaces

We now consider topological spaces with additional structure, namely an underlying
linear structure.

Let X be a vector space over the field K (which is either R or C). A topology τ

on X is called a vector topology if the maps

(λ, x) �→ λx, λ ∈ K, x ∈ X,

and
(x1, x2) �→ x1 + x2, (x1, x2) ∈ X × X,

are both continuous. That is, if both scalar multiplication and addition are continuous
in the topology on X. In this case, (X, τ ) is called a topological vector space.

Example 5.7 Any normed vector space X is a topological vector space, where the
topology is given by the base of open balls:

x + λ(intBX), λ > 0, x ∈ X.

Equivalently, the topology on X is generated by the metric d given by the formula
d(x, y) = ‖x − y‖ for (x, y) ∈ X × X.

A vector topology is determined by a base of neighborhoods at the origin, since
sets can be translated and scaled continuously. We will denote the origin by 0. Let
η be a base of neighborhoods of the origin in a topological vector space (X, τ ). A
set V ∈ η is called absorbent if X = ⋃∞

n=1 n V . A set V ∈ η is called balanced if
λV ⊆ V for all scalars λ such that |λ| ≤ 1.

Lemma 5.8 In a topological vector space, any open neighborhood of the origin is
absorbent.

Proof Let X be a topological vector space. Suppose V is an open neighborhood
of 0 and let x ∈ X. Scalar multiplication is continuous, and so the map λ �→ λx

is continuous. Consequently, the set {λ : λx ∈ V } is open in K. By assumption, V

is a neighborhood of 0, and so 0 ∈ {λ : λx ∈ V }. We have established that the set
{λ : λx ∈ V } is open in K and contains 0. Thus, it must contain 1

n
for a sufficiently

large n ∈ N. We conclude that x
n
∈ V , and consequently x ∈ nV . Therefore, V is

absorbent. �
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Proposition 5.9 Any topological vector space has a base of neighborhoods η of
the origin such that for all V ∈ η: (i) V is balanced, (ii) V is absorbent, and (iii)
there exists W ∈ η such that W + W ⊆ V .

Proof Let (X, τ ) be a topological vector space and let U be a neighborhood of the
origin. Let s : K × X → X be scalar multiplication, so that s(λ, x) = λx for all
λ ∈ K and x ∈ X. By assumption, s is continuous. Thus, since U is open in X, the
preimage s−1(U ) is open in K × X. Certainly, (0, 0) ∈ s−1(U ), and so there exists
some δ > 0 and an open neighborhood W of 0 in X such that δBK × W ⊆ s−1(U ).
Therefore, s(δBK × W) ⊆ U , and hence αW ⊆ U for all |α| ≤ δ. Let

V =
⋃

α∈δBK

αW.

Then V is open, balanced, and contained in U . For each open neighborhood of 0,
such a V can be constructed. Let η be the collection of all such balanced sets. Then
(i) follows from the construction and (ii) follows from Lemma 5.8.

It remains to verify (iii). Let V ∈ η. By the continuity of addition, there exist two
open neighborhoods U1 and U2 of 0 ∈ X such that U1 +U2 ⊆ V . Let U = U1 ∩U2.
Then U is an open neighborhood of 0 such that U +U ⊆ V . As demonstrated earlier
in this proof, U contains a subset W ∈ η, and this W is the required set. �

Proposition 5.10 Let X be a topological vector space with η a base of open sets
about the origin. Then X is a Hausdorff space if and only if

⋂
V∈η V = {0}.

Proof Without loss of generality, we may assume that η satisfies the conclusions of
Proposition 5.9.

Assume X is a Hausdorff space. Certainly 0 ∈⋂V∈η V . Suppose x �= 0. We will
show that x �∈ ⋂V∈η V . Since X is a Hausdorff space, there are open sets U and W

such that 0 ∈ U and x ∈ W and U ∩ W = ∅. By assumption, η is a base of open
sets about the origin, and consequently there exists a set V0 ∈ η such that V0 ⊆ U .
It follows that x �∈ V0, and so x �∈⋂V∈η V . Therefore,

⋂
V∈η V = {0}.

Now assume
⋂

V∈η V = {0}. We will show that X is a Hausdorff space. Let x

and y be elements of X that cannot be separated by disjoint open sets. Let V ∈ η.
By Proposition 5.9, there exists a set W ∈ η such that W +W ⊆ V . By assumption,
x + W and y + W are not disjoint. Then there exist elements w1 and w2 in W such
that

x + w1 = y + w2.

Therefore, x − y = w2 − w1 ∈ W −W . The set W is balanced, and so we conclude
x − y ∈ W +W ⊆ V . This is true for every V ∈ η, and so x − y ∈⋂V∈η V = {0}.
It follows that x = y, and consequently X is a Hausdorff space. �

In our discussions of normed spaces, a key notion was that of the dual space. In
the more general context of topological vector spaces, this will remain true.

Definition 5.11 Let X be a topological vector space. The dual space X∗ consists
of all continuous linear scalar-valued functionals on X.
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5.3 Some Metrizable Examples

In this section, we consider some examples of real topological vector spaces which
are metrizable, but do not have a norm structure.

Example A: Lp(0, 1), 0 < p < 1

If 0 < p < ∞, the symbol Lp(0, 1) denotes the collection of all (equivalence classes
of) Lebesgue measurable real-valued functions f on [0, 1] such that

‖f ‖p =
( ∫ 1

0
|f (t)|p dt

)1/p

< ∞.

If p ≥ 1, then Lp(0, 1) is a Banach space. If 0 < p < 1, however, then ‖ · ‖p

does not determine a norm, because it is no longer subadditive. On the other hand,
if 0 < p < 1, then it is true that

‖f + g‖p
p ≤ ‖f ‖p

p + ‖g‖p
p.

This fact follows from the proposition below.

Proposition 5.12 If {a, b} ⊆ R and 0 < p < 1, then |a + b|p ≤ |a|p + |b|p.

Proof Without loss of generality, assume that a and b are nonnegative real numbers
such that a + b = 1. Let a = t and b = 1 − t , and let f (t) = tp + (1 − t)p. We will
show that f (t) ≥ 1 for all t ∈ [0, 1]. Since f (0) = f (1) = 1, it will suffice to show
that f is a concave function.

We require only techniques of elementary differential calculus. Calculating the
first derivative of f , we have f ′(t) = ptp−1 −p(1− t)p−1, and so f has one critical
point, which is at t = 1/2. Differentiating a second time, we have

f ′′(t) = p(p − 1)tp−2 + p(p − 1)(1 − t)p−2.

Therefore, f ′′(1/2) = 23−pp(p−1) < 0, and so f has a local maximum at t = 1/2.
The result follows. �

From the above proposition, we conclude that ‖f +g‖p
p ≤ ‖f ‖p

p+‖g‖p
p whenever

0 < p < 1. Consequently,
d(f , g) = ‖f − g‖p

p

determines a metric on Lp(0, 1) when 0 < p < 1. It follows that if 0 < p < 1, then
Lp(0, 1) is a metrizable space, if not a normed space.

The metric d is even complete. The proof of this fact is similar to the case when 1 ≤
p < ∞. Observe that the proof of the Cauchy Summability Criterion (Lemma 2.24)
requires only subadditivity of the norm, a property which is shared with ‖ · ‖p

p when
0 < p < 1. Consequently, we can use Lemma 2.24 to prove that Lp(0, 1) is complete
when 0 < p < 1. The details of the proof are left to the reader. (See Exercise 5.12.)
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Let B = {f : ‖f ‖p < 1}. Then the collection of open sets (2−nB)∞n=1 determines
a countable base at 0 which satisfies the conclusions of Proposition 5.9. The first two
properties are clear. To see property (iii), simply observe that 2−NB + 2−NB ⊆ B

whenever N > 1/p.
We will now compute Lp(0, 1)∗ for 0 < p < 1. Suppose φ is a continuous linear

functional on Lp(0, 1). Then φ is bounded on ∂B, so that

‖φ‖ = sup
‖f ‖p=1

|φ(f )| < ∞.

This should be taken as the definition of ‖φ‖ in this context. The function φ is a
linear functional, but not on a normed space, and consequently the notation ‖φ‖ has
not yet been given a meaning.

Let f ∈ Lp(0, 1) be such that ‖f ‖p = 1. The map

t �→
∫ t

0
|f (s)|p ds, t ∈ [0, 1],

is continuous with range [0, 1]. Therefore, by the Intermediate Value Theorem, there
exists some a ∈ [0, 1] such that

∫ a

0 |f (s)|p ds = 1/2.
Define two functions g and h in Lp(0, 1) by

g = f χ(0,a) and h = f χ(a,1).

By the choice of a,

‖g‖p =
( ∫ a

0
|f (s)|p ds

)1/p

=
(1

2

)1/p

,

and similarly, ‖h‖p = (1/2)1/p.

By the linearity of φ, together with the definition of ‖φ‖, we have the two bounds
|φ(g)| ≤ ‖φ‖(1/2)1/p and |φ(h)| ≤ ‖φ‖(1/2)1/p. Thus, again using the linearity of
φ,

|φ(f )| ≤ 2 · ‖φ‖(1/2)1/p = ‖φ‖ 21− 1
p .

Taking the supremum over all functions f ∈ Lp(0, 1) with ‖f ‖p = 1, we have

‖φ‖ ≤ ‖φ‖ 21− 1
p .

However, this can happen only if φ = 0. This implies that Lp(0, 1)∗ = {0}.
The preceding remark guarantees that Lp(0, 1) does not satisfy a Hahn–Banach

Theorem if 0 < p < 1. On the other hand, since Lp(0, 1) is a complete metric space,
even when 0 < p < 1, we can apply the Baire Category Theorem (Theorem 4.1).
It is also possible to prove a version of the Open Mapping Theorem (Theorem 4.29)
and the Closed Graph Theorem (Theorem 4.35) for these spaces.



90 5 Consequences of Convexity

Example B: L0(0, 1)

We denote by L0(0, 1) the set of all (equivalence classes of) scalar-valued Lebesgue
measurable functions on [0, 1]. (As usual, we identify functions if they agree almost
everywhere.) The topology on L0(0, 1) is determined by convergence in Lebesgue
measure. More precisely, we define a set to be open when it is sequentially open, and a
sequence converges when it converges in Lebesgue measure. Recall that a sequence
(fn)∞n=1 of measurable functions converges in Lebesgue measure to a measurable
function f if for every ε > 0,

lim
n→∞m{t : |f (t) − fn(t)| ≥ ε} = 0,

where m is Lebesgue measure on [0, 1].
We claim the topology on L0(0, 1) is metrizable and is induced by the metric

d(f , g) =
∫ 1

0

|f (t) − g(t)|
1 + |f (t) − g(t)| dt,

where f and g are measurable functions. The only property of a metric that is not
immediate is the triangle inequality. In order to verify this, it suffices to show that
the function φ(x) = x/(1 + x) is a nondecreasing subadditive function on [0,∞).

A simple application of the quotient rule reveals that φ′(x) = 1/(1 + x)2, and so
φ is strictly increasing for all x ≥ 0. To see that φ is subadditive on [0,∞), observe
that

φ(x+y) = x + y

1 + x + y
= x

1 + x + y
+ y

1 + x + y
≤ x

1 + x
+ y

1 + y
= φ(x)+φ(y),

because x ≥ 0 and y ≥ 0. Given these properties, the triangle inequality follows
readily from the fact that d(f , g) = ∫ 1

0 φ(|f (t) − g(t)|) dt.
To see that the topology on L0(0, 1) coincides with that induced by the metric

d, it suffices to show that the same sequences converge in each topology (since
both spaces are sequential spaces). Suppose the sequence (fn)∞n=1 of measurable
functions converges in the metric d to a measurable function f . Then d(f , fn) → 0
as n → ∞. Therefore, |f−fn|

1+|f−fn| → 0 in the L1-norm, and hence in measure. It
follows that fn → f in measure, as required.

The reverse implication, that convergence in measure implies convergence in d,
is true by the Lebesgue Dominated Convergence Theorem. (We state the Lebesgue
Dominated Convergence Theorem in Theorem A.17 for almost everywhere conver-
gence, but it remains valid for sequences that converge in measure on a σ -finite
measure space.)

It remains to show that the metric d is complete. Let

‖f ‖0 =
∫ 1

0

|f (t)|
1 + |f (t)| dt, f ∈ L0(0, 1).

Observe that d(f , g) = ‖f − g‖0 for all measurable functions f and g on [0, 1].
Certainly, ‖ · ‖0 is not a norm (it is not homogeneous), but it does satisfy the triangle
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inequality, because ‖f ‖0 = ∫ 1
0 φ(|f (t)|) dt and φ is subadditive on [0,∞). Conse-

quently, we may use Lemma 2.24 (the Cauchy Summability Criterion) to prove that
d is a complete metric space (because the proof of Lemma 2.24 does not require
homogeneity of the norm).

Suppose (fn)∞n=1 is a sequence of measurable functions such that
∑∞

n=1 ‖fn‖0 <

∞. Then, by Fubini’s Theorem,

∞∑

n=1

‖fn‖0 =
∞∑

n=1

∫ 1

0

|fn(t)|
1 + |fn(t)| dt =

∫ 1

0

( ∞∑

n=1

|fn(t)|
1 + |fn(t)|

)

dt < ∞.

It follows that, for almost every t ∈ [0, 1], there exists some Mt > 0 such that∑∞
n=1

|fn(t)|
1+|fn(t)| ≤ Mt . Consequently, by the subadditivity of φ, for every N ∈ N,

φ

(
N∑

n=1

|fn(t)|
)

≤
N∑

n=1

φ(|f (t)|) ≤ Mt < ∞ a.e.(t).

Since φ is a strictly increasing function on the interval [0,∞), we conclude that, for al-
most every t , the sequence (

∑N
n=1 |fn(t)|)∞N=1 converges. Therefore, (

∑N
n=1 fn)

∞
N=1

converges almost everywhere, and hence in measure. Therefore, L0(0, 1) is a
complete metric space.

As was the case in Example A (where 0 < p < 1), the dual space of L0(0, 1) is
trivial; that is, L0(0, 1)∗ = {0}. We leave the verification of this fact as an exercise.
(See Exercise 5.14.)

Example C: ω = R
N

Let J be a (possibly uncountable) index set. Let R
J denote the product space∏

j∈J Rj , where Rj = R for each j ∈ J . An element x in R
J is a function x : J → R,

where x(j ) ∈ R(= Rj ) for each j ∈ J .
When the space R

J is equipped with the product topology, it becomes a topological
vector space. The vector space operations are done pointwise; that is, if x and y are
elements in R

J , then (x + y)(j ) = x(j ) + y(j ) for each j ∈ J . Convergence, too,
is pointwise: xn → x in R

J as n → ∞ if xn(j ) → x(j ) in Rj as n → ∞ for each
j ∈ J .

If J is an uncountable index set, then R
J is not metrizable, since R

J with the
product topology is not first countable; i.e., it does not have a countable local base
at 0. (See Example 5.4.)

In this example, we are interested in countable index sets, and so we let J = N.
We denote R

N by the Greek letter ω. Generally, we think of ω as the collection of all
sequences in R. If ξ ∈ ω, we let ξk = ξ (k) for each k ∈ N, and we write ξ = (ξk)∞k=1.
In this context, the vector space operations are done coordinate-wise. Convergence
is also now viewed coordinate-wise, so that ξ (n) → ξ in ω as n → ∞ if ξ

(n)
k → ξk

in R as n → ∞ for each k ∈ N.



92 5 Consequences of Convexity

Unlike R
J when J is uncountable, the space ω is first countable. A base of

neighborhoods at the origin is formed by sets of the type

(−ε1, ε1) × · · · × (−εn, εn) × R × R × · · · , (5.1)

where n ∈ N and εi > 0 for each i ∈ {1, . . . , n}. If we denote elements of ω by
ξ = (ξk)∞k=1, then the set in (5.3.1) can be written

{ξ : |ξ1| < ε1, · · · , |ξn| < εn}.
To identify a countable base, consider the sets with εi = 1

k
, where k ∈ N, for all

i ∈ {1, . . . , n} and n ∈ N.
Not only is ω first countable, but it is also metrizable. Recall that ω was defined

to be
∏∞

k=1 Rk . Denote the metric on Rk by dk . We define a metric d on ω by

d(ξ , η) =
∞∑

k=1

1

2k

dk(ξk , ηk)

1 + dk(ξk , ηk)
,

where ξ = (ξk)∞k=1 and η = (ηk)∞k=1.
We now wish to identify the space dual to ω. To that end, we prove the following

proposition.

Proposition 5.13 Let X be a topological vector space and let K be the field of
scalars. A linear functional f : X → K is continuous if and only if there exists a
neighborhood V of 0 such that the set f (V ) is bounded in K.

Proof Let UK be the open unit ball in K. If f is continuous, then f −1(UK) is an
open neighborhood of 0, and f (f −1(UK)) ⊆ BK is bounded in K.

Now suppose V is a neighborhood of 0 such that f (V ) is bounded in K. By
definition, there is some M > 0 such that f (V ) ⊆ MUK. Let ε > 0 be given. Then
f ( ε

M
V ) ⊆ εUK. Therefore, |f (x)| < ε whenever x ∈ ε

M
V . In other words, f is

continuous at zero. Continuity then follows from the linearity of f . �

We can now use the preceding proposition to identify the continuous linear func-
tionals on ω. Let f ∈ ω∗. By Proposition 5.13, there must be some neighborhood V

of 0 such that f (V ) is bounded in R. Without loss of generality, we may assume V

is a basic set, say V = {ξ : |ξ1| < ε1, · · · , |ξn| < εn} for some n ∈ N.
The set f (V ) is bounded, and so there exists some M > 0 such that |f (ξ )| ≤ M

for any ξ ∈ V . Let ξ = (0, . . . , 0, ξn+1, . . . ). Then ξ ∈ V , and so too is any constant
multiple of ξ . Therefore, for any K > 0, we have that |f (Kξ )| ≤ M , and hence
|f (ξ )| ≤ M/K , by the linearity of f . Since this inequality holds for all K > 0, it
must be that f (ξ ) = 0. This is true for any ξ ∈ V having ξi = 0 for all i ∈ {1, . . . , n}.
Thus, because f is linear, it follows that f (ξ ) = f (ξ ′) for any ξ and ξ ′ that agree on
the first n coordinates.

Define a function g : R
n → R by g(ξ1, . . . , ξn) = f (ξ1, . . . , ξn, 0, . . . ). Since f

is linear and continuous, it follows that g ∈ (Rn)∗. Consequently, there exists αk ∈ R
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for each k ∈ {1, . . . , n} such that

g(ξ1, . . . , ξn) =
n∑

k=1

αk ξk , (ξk)nk=1 ∈ R
n.

Since the value of f (ξ ) depends only on the first n coordinates of ξ , we conclude
that

f (ξ ) =
n∑

k=1

αk ξk , ξ = (ξk)∞k=1 ∈ ω.

5.4 The Geometric Hahn–Banach Theorem

In this section, we will meet the Hahn–Banach Theorem without the advantages of a
norm structure. The key property a space must have, we shall see, is local convexity.

Definition 5.14 Let X be a real or complex vector space. A subset V of X is called
convex if given any x and y in V , we have (1 − t)x + ty ∈ V for all t ∈ [0, 1]. That
is, if two points are in V , then the line segment joining them is also in V . A balanced
convex set is called absolutely convex.

Lemma 5.15 Let X be a real or complex vector space. A subset V of X is absolutely
convex if and only if αx + βy ∈ V whenever x and y are in V and α and β are
scalars such that |α| + |β| ≤ 1.

Proof We first observe that V is absolutely convex if the latter condition holds: to
show balance, take β = 0; to show convexity, let α = t − 1 and β = t .

Now suppose V is absolutely convex. Let x and y be in V and suppose α and β

are scalars such that |α| + |β| ≤ 1. We wish to show αx + βy ∈ V . Observe that

αx + βy = α

α + β
(α + β)x + β

α + β
(α + β)y.

Since V is balanced, x ′ = (α+β)x and y ′ = (α+β)y are both elements of V . Thus,
by convexity,

αx + βy = α

α + β
x ′ + β

α + β
y ′ ∈ V.

This completes the proof. �

Definition 5.16 A topological vector space is locally convex if there is a base of
neighborhoods of 0 consisting of convex sets.

By Proposition 5.9, we can always take the elements of a base in a locally convex
topological vector space to be balanced, and hence absolutely convex.

Example 5.17 Any normed space is locally convex. It is easy to see that balls with
center at the origin are convex.
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p= 1

p= 2

p= ∞

0 p 1< <

Fig. 5.1 Closed unit balls in �2
p for various values of p

Example 5.18 Consider the space �2
p of ordered pairs in the ‖ · ‖p norm for p > 0.

(We use the term “norm” here even though it is not a norm when 0 < p < 1.) If
p ≥ 1, then the unit ball is convex and balanced; however, if 0 < p < 1, then the
unit ball is balanced, but not convex. (See Fig. 5.1.)

Example 5.19 Let X = Lp(0, 1) for 0 < p < 1. (See Example A in Sect. 5.3.) We
claim that the only nonempty open convex subset of X is X. To show this, let V be a
nonempty open convex subset of X. Without loss of generality, assume 0 ∈ V . Then
there exists some δ > 0 such that δB ⊆ V , where B = {f : ‖f ‖p < 1}. (We remind
the reader that ‖ · ‖p is not a norm in this case.)

Choose any f ∈ X. Because p < 1, there is some n ∈ N such that np−1‖f ‖p
p < δ.

Pick real numbers {t0, t1, . . . , tn} so that 0 = t0 < t1 < · · · < tn = 1 and such that

∫ tk

tk−1

|f (s)|p ds = 1

n
‖f ‖p

p, k ∈ {1, . . . , n}.

For each k ∈ {1, . . . , n}, let gk = n f χ(tk−1,tk ]. Then ‖gk‖p
p = np−1‖f ‖p

p < δ, and
therefore gk ∈ δB ⊆ V . This is true for each k ∈ {1, . . . , n}, and so {g1, . . . , gn} ⊆
V . Observe that f = 1

n
(g1 + · · · + gn). Since V is convex, it follows that f ∈ V .

The choice of f ∈ X was arbitrary, and so V = X, as required.
Note that this argument implies that Lp(0, 1)∗ = {0}, a fact we first observed in

Example A in Sect. 5.3.
The next theorem is a geometric version of the Hahn–Banach Theorem. This

version of the theorem is not set in the context of a complete normed space, but in
that of a locally convex topological vector space.

Theorem 5.20 (Hahn–Banach Separation Theorem) Let E be a real locally con-
vex topological vector space. Let K be a closed nonempty convex subset of E. If
x0 �∈ K , then there exists a continuous linear functional f on E such that

f (x0) > sup
y∈K

f (y).
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Proof Without loss of generality, we may assume 0 ∈ K . (If not, use a translation.)
Since K is closed and x0 �∈ K , there exists some open neighborhood N of x0 such
that N ∩K = ∅. It follows that there exists an absolutely convex open neighborhood
W of 0 such that (x0 + W ) ∩ K = ∅. This implies that x0 �∈ K + W , for otherwise
there would exist some k ∈ K and w ∈ W such that x0 − w = k, contradicting
the fact that the intersection of x0 + W with K is empty. (Here we use the fact that
W = −W , because W is balanced.)

Let V = K + 1
2W . Then V is a convex neighborhood of 0. Define a function

p : E → R by
p(x) = inf{λ > 0 : x ∈ λV }, x ∈ E.

Recall that every neighborhood of 0 is absorbent. In particular V is absorbent, and
so p(x) < ∞ for all x ∈ E. We claim p is sublinear. For any x ∈ E and α ≥ 0,

p(αx) = inf{λ > 0 : αx ∈ λV } = α inf

{
λ

α
> 0 : x ∈ λ

α
V

}

= αp(x).

This proves positive homogeneity. It remains to show that p is subadditive.
Let x and y be in E and let ε > 0. Because p(x) and p(y) are infima, there exist real

numbers λ > 0 and μ > 0 such that p(x) < λ < p(x)+ ε
2 and p(y) < μ < p(y)+ ε

2 .
By the definition of p, we have that x

λ
∈ V and y

μ
∈ V . By the convexity of V ,

x + y

λ + μ
= λ

λ + μ

(x

λ

)
+ μ

λ + μ

( y

μ

)
∈ V.

Therefore,
p(x + y) ≤ λ + μ < p(x) + p(y) + ε.

The choice of ε was arbitrary, and so p(x+y) ≤ p(x)+p(y), as required. Therefore
p is sublinear.

By definition, p(x) ≤ 1 for all x ∈ V . We now show p(x0) > 1. Suppose to the
contrary that p(x0) ≤ 1. It follows that x0

λ
∈ V for all λ ≥ 1. Since x0

λ
→ x0 as

λ → 1, we conclude that x0 ∈ V , and consequently (x0 + 1
2W ) ∩ V �= ∅.

Recall that V = K + 1
2W . Thus, (x0 + 1

2W )∩ (K + 1
2W ) �= ∅, and so there exists

an element k ∈ K and elements w1 and w2 in W such that x0 + 1
2 w1 = k + 1

2 w2.
Hence,

x0 = k + 1

2
w2 − 1

2
w1 ∈ K + 1

2
W − 1

2
W.

Because W is absolutely convex, we have that 1
2W − 1

2W ⊆ W . From this we
conclude that x0 ∈ K +W . This is a contradiction, and so it must be that p(x0) > 1.

We now make use of Exercise 3.9. There exists a linear functional f on E such
that f ≤ p and f (x0) > 1. Because K ⊆ V , and because p(x) ≤ 1 for all x ∈ V ,
we have

sup
y∈K

f (y) ≤ 1 < f (x0).

It remains to show that f is continuous. We will demonstrate this by showing that
f is bounded on some neighborhood of zero and applying Proposition 5.13. Since



96 5 Consequences of Convexity

0 ∈ K , we have that 1
2W ⊆ K + 1

2W = V. By construction, f (x) ≤ p(x) ≤ 1 for
all x ∈ V , and hence f (x) ≤ 1 for all x ∈ 1

2W . The set W is balanced, and thus
|f (x)| ≤ 1 for all x ∈ 1

2W . Therefore, we have demonstrated that f ( 1
2W ) ⊆ [−1, 1].

Consequently, the linear functional f is continuous, by Proposition 5.13. �

Example 5.21 Suppose E is a real locally convex topological vector space and K

is a closed linear subspace of E. If x0 �∈ K , then, by Theorem 5.20, there exists
a continuous linear functional f on E such that f (K) = 0 and f (x0) > 0. (See
Exercise 5.20.)

There is also a version of Theorem 5.20 for complex topological vector spaces.

Theorem 5.22 Let E be a complex locally convex topological vector space. Let K

be a closed nonempty convex subset of E. If x0 �∈ K , then there exists a continuous
linear functional f on E such that

�(f (x0)) > sup
x∈K

�(f (x)).

Proof Ignoring multiplication by complex scalars, we may treat E as a vector space
over R. Therefore, by Theorem 5.20, there exists a real linear functional g on E

such that g(x0) > supx∈K g(x). Now, define a complex linear functional on E by
f (x) = g(x) − ig(ix) for all x ∈ E. The functional f is the desired continuous
linear functional on E. �

Definition 5.23 Let X be a vector space and let K denote the scalar field. A function
p : X → R is called a semi-norm if the following three conditions are satisfied:

(i) p(x) ≥ 0 for all x ∈ X,
(ii) p(x + y) ≤ p(x) + p(y) for all {x, y} ⊆ X, and

(iii) p(α x) = |α|p(x) for all α ∈ K and x ∈ X.

What distinguishes a semi-norm from a norm is that a semi-norm p may satisfy
p(x) = 0 even when x �= 0. As in the case of a norm, we call the property in (ii)
subadditivity (or the triangle inequality) and we call the property in (iii) homogeneity.

Theorem 5.24 Suppose {pα}α∈A is a family of semi-norms on a vector space X.
Let

V (α, n) = {x : pα(x) < 1/n}, α ∈ A, n ∈ N.

If η is the collection of all finite intersections of the sets V (α, n), where α ∈ A

and n ∈ N, then η determines a locally convex vector topology on X in which the
elements of η form an absolutely convex base of neighborhoods at 0.

Proof We define a topology on X by declaring a set E ⊆ X to be open if and only if
E is a (possibly empty) union of translates of elements in η. This defines a topology
for which all members of η are absolutely convex (that is, convex and balanced).

It remains to show that addition and scalar multiplication are continuous. Let U

be an open neighborhood of 0 in X. Without loss of generality, we may assume U is
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an element of η. Thus,

U = V (α1, n1) ∩ · · · ∩ V (αk , nk) (5.2)

for {α1, . . . , αk} ⊆ A and {n1, . . . , nk} ⊆ N. If V = V (α1, 2n1) ∩ · · · ∩ V (αk , 2nk),
then V + V ⊆ U (because pα is subadditive for every α ∈ A). Therefore, addition
is continuous.

Now, let x ∈ X and κ ∈ K, where K is the scalar field. A basic open neighborhood
of κx can be written as κx + U , where U is written as in (5.2). We will show there
exists an open neighborhood W of x and a δ > 0 such that λW ⊆ κx + U for all
|κ − λ| < δ.

Let V = V (α1, 2n1)∩· · ·∩V (αk , 2nk), as above. Since V is an open neighborhood
of 0, it is absorbent. Thus, there exists some n ∈ N such that x ∈ nV . Let

δ = 1

n
and W = x + n

1 + |κ|nV.

Suppose w ∈ W and λ ∈ B(κ , δ). Then

κx − λw = (κ − λ)x + λ(x − w).

Observe that x = nv1 and w − x = n
1+|κ|nv2 for some choice of v1 and v2 in V .

Hence,

κx − λw = (κ − λ)nv1 − λn

1 + |κ|nv2.

Therefore, because V is balanced,

κx − λw ∈ |κ − λ| nV + |λ|n
1 + |κ|nV ⊆ V + V ⊆ U.

It follows that scalar multiplication is continuous, and so the proof is complete. �

Definition 5.25 Suppose X is a topological vector space and let U be an absorbent
subset of X. The Minkowski functional of U on X is the function pU : X → R

defined by
pU (x) = inf{λ > 0 : x ∈ λU}, x ∈ X.

Note that pU (x) < ∞ for all x ∈ X, because U is absorbent.
Suppose that X is a locally convex topological vector space. Then X has a base

of neighborhoods of 0 that are absolutely convex. Such sets are absorbent, and so
each such set will give rise to a well-defined Minkowski functional.

Proposition 5.26 Let X be a topological vector space and let U be an absorbent
absolutely convex subset of X. The Minkowski functional pU is a semi-norm on X.

Proof Certainly pU (x) ≥ 0 for each x ∈ X, by the definition of pU .
To show the subadditivity of pU , we will use the convexity of U . Let x and y be

elements in X and let ε > 0. By the definition of pU , there exist numbers λ1 > 0
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and λ2 > 0 such that pU (x) < λ1 < pU (x) + ε
2 and pU (y) < λ2 < pU (y) + ε

2 . It is
necessarily the case that x/λ1 and y/λ2 are both in U . By the convexity of U ,

x + y

λ1 + λ2
= λ1

λ1 + λ2

( x

λ1

)
+ λ2

λ1 + λ2

( y

λ2

)
∈ U.

Therefore,
pU (x + y) ≤ λ1 + λ2 < pU (x) + pU (y) + ε.

The choice of ε was arbitrary, and so pU (x + y) ≤ pU (x)+pU (y). (Compare to the
proof of Theorem 5.20.)

Finally, we show homogeneity. Let α ∈ K, where K is the field of scalars.
Computing directly, we have

pU (αx) = inf{λ > 0 : αx ∈ λU} = |α| inf

{
λ

|α| > 0 : x ∈ λ

|α| · sign(α)U

}

.

Since U is balanced, sign(α)U = U . Letting λ′ = λ/|α|,
pU (αx) = |α| inf

{
λ′ > 0 : x ∈ λ′U

} = |α|pU (x).

Therefore, pU is a semi-norm on X, as claimed. �

If X is a locally convex topological vector space, then there exists a base of
absolutely convex neigborhoods of 0, say η. By Proposition 5.26, the Minkowski
functional pU is a semi-norm on X for each U ∈ η. By Theorem 5.24, the family of
semi-norms {pU }U∈η generates a locally convex vector topology on X. We leave it
as an exercise to show that the topology generated by {pU }U∈η is, in fact, the original
topology. (See Exercise 5.17.)

So far, we have considered general topological vector spaces. We now focus our
attention on topological vector spaces that have a complete norm structure—that is,
Banach spaces. We have already said much about the norm topology of a Banach
space X. We now consider a new topology on X, the so-called weak topology.

Definition 5.27 Let X be a topological vector space. The weak topology on X (or
the w-topology) is defined by a base of neighborhoods at 0 of the form

W (x∗
1 , . . . , x∗

n ; ε) = {x : |x∗
i (x)| < ε, 1 ≤ i ≤ n},

where ε > 0 and {x∗
1 , . . . , x∗

n} ⊆ X∗ for n ∈ N.

The weak topology on X is the topology it inherits as a subspace of the space
K

X∗
with the product topology. The space K

X∗
is the collection of all functions from

X∗ into the scalar field K, and we identify X with a subspace of K
X∗

by identifying
x ∈ X with x̂ ∈ K

X∗
via the relationship x̂(x∗) = x∗(x) for all x∗ ∈ X∗.

To distinguish between the norm and weak topologies on X, we will frequently
denote X with the norm topology by (X, ‖ · ‖) and X with the weak topology by
(X, w). The weak and norm topologies are generally quite different. Any weakly
open set is necessarily open in the norm topology (the basic sets are intersections of
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preimages of open sets under continuous maps), but not every set open in the norm
topology will be weakly open. (We will demonstrate this shortly.)

The weak topology on X generally has fewer open sets, and so it is “harder” for a
function on (X, w) to be continuous than a function on (X, ‖·‖). For example, consider
the identity map IdX on X. The map IdX : (X, ‖ · ‖) → (X, w) is always continuous,
but IdX : (X, w) → (X, ‖ · ‖) need not be. Indeed, if both maps are continuous,
then the topologies must coincide, and then X must be finite-dimensional. (See
Proposition 5.30.)

Let us consider which sequences converge in X with the weak topology. Without
loss of generality, we may consider only those sequences converging to 0. If a
sequence (xn)∞n=1 converges to 0 in the weak topology on X, we say that (xn)∞n=1
converges weakly to 0 (or xn → 0 weakly). The sequence (xn)∞n=1 converges weakly
to 0 precisely when it converges coordinate-wise to 0 in K

X∗
. That is to say, xn → 0

weakly if and only if

lim
n→∞ x∗(xn) = 0, for all x∗ ∈ X∗.

In other words, xn converges to 0 in the weak topology if and only if every weak
neighborhood of the origin eventually contains the sequence (xn)∞n=1.

A sequence converges to 0 in the norm topology if and only if every “strong”
neighborhood of the origin eventually contains the sequence. However, the norm
topology has more open neighborhoods about 0 than the weak topology. Conse-
quently, it is more “difficult” for a sequence to converge in the norm topology than
to converge in the weak topology.

Example 5.28 Consider �p for 1 ≤ p < ∞. For each n ∈ N, let en be the sequence
with 1 in the nth coordinate, and 0 elsewhere. If m and n are elements of N such
that m �= n, then ‖em − en‖�p

= 21/p. Consequently, the sequence (en)∞n=1 does not
converge in the norm topology. On the other hand, if x∗ = (x∗

n)∞n=1 is a sequence in
(�p)∗ = �q , where p > 1 and q is the exponent conjugate to p, then

lim
n→∞ x∗(en) = x∗

n = 0.

Since this is true for all x∗ ∈ �q , we conclude that en → 0 weakly.
The above conclusion does not remain true when p = 1. In this case, q = ∞. Let

e = (1, 1, 1, . . . ) be the constant sequence with all terms equal to 1. This sequence
is bounded, and so e ∈ �∞ = (�1)∗. For each n ∈ N, we have that e(en) = 1, and so
en �→ 0 in the weak topology in this case.

Example 5.29 Consider the Banach space Lp(T) of p-integrable complex-valued
functions on the torus T = [0, 2π ), where 1 ≤ p < ∞. For each n ∈ N, define a
function fn : T → C by fn(θ ) = einθ , where θ ∈ T. Let Λ ∈ Lp(T)∗. By duality,
there exists some g ∈ Lq(T), where 1/p + 1/q = 1, such that

Λ(f ) =
∫

T

f (θ ) g(θ )
dθ

2π
, f ∈ Lp(T).
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Therefore,

lim
n→∞Λ(fn) = lim

n→∞

( ∫

T

einθ g(θ )
dθ

2π

)
= lim

n→∞ ĝ(−n) = 0.

This last equality follows from the Riemann–Lebesgue Lemma (Theorem 4.37).
Therefore, limn→∞ Λ(fn) = 0 for all Λ ∈ Lq(T), and so fn → 0 weakly. However,
‖fn‖Lp(T) = 1 for all n ∈ N, and so fn �→ 0 in the norm topology.

If X is a finite-dimensional Banach space, then all linear functionals are
continuous.

Proposition 5.30 Let X be a Banach space. The following are equivalent:

(i) dim(X) < ∞,
(ii) the weak topology on X coincides with the norm topology on X, and

(iii) the weak topology on X is metrizable.

Proof The implications (i) ⇒ (ii) ⇒ (iii) are clear. It remains to show (iii) ⇒ (i).
Assume the weak topology on X is metrizable.

Then (X, w) is first countable, and so there exists a weak base of neighborhoods
(Wn)∞n=1 at the origin of the form

Wn = {x : |x∗
n,j (x)| ≤ εn, 1 ≤ j ≤ Nn},

where x∗
n,j ∈ X∗, εn > 0, and Nn ∈ N, for all n ∈ N and all j ∈ {1, . . . , Nn}.

For each n ∈ N, define

En = span{x∗
n,j : 1 ≤ j ≤ Nn}.

Fix some x∗ ∈ X∗. The set {x : |x∗(x)| ≤ 1} is a weak neighborhood of 0 in X, and
consequently must contain Wn for some n ∈ N. For this fixed n, define a linear map
T : X → K

Nn , where K is the scalar field, by

T (x) = (x∗
n,1(x), . . . , x∗

n,Nn
(x)), x ∈ X.

We claim x∗ ∈ (kerT )⊥. (Recall Definition 3.50.) To verify this, suppose y ∈ ker(T ).
By the definition of T , we have that x∗

n,j (y) = 0 for all j ∈ {1, . . . , Nn}. Naturally,
if λ ∈ K, then it follows that x∗

n,j (λy) = 0 for all j ∈ {1, . . . , Nn}. Consequently,
λy ∈ Wn for all λ ∈ K. By design, Wn ⊆ {x : |x∗(x)| ≤ 1}, and so |x∗(λy)| ≤ 1 for
all λ ∈ K. This can occur only if |x∗(y)| ≤ 1/λ for all λ ∈ K, and thus x∗(y) = 0.
This remains true for any y ∈ ker(T ), and so we have that x∗ ∈ (kerT )⊥.

By Lemma 4.33, there then exists some f ∈ (KNn )∗ such that x∗(x) = (f ◦T )(x)
for all x ∈ X. Since K

Nn is finite-dimensional, there exists a finite sequence (aj )Nn

j=1
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such that

f (ξ1, . . . , ξNn
) =

Nn∑

j=1

aj ξj , (ξj )Nn

j=1 ∈ K
Nn.

Therefore,

x∗(x) = f (x∗
n,1(x), . . . , x∗

n,Nn
(x)) =

Nn∑

j=1

aj x∗
n,j (x), x ∈ X,

and so x∗ ∈ En.
We have shown that each x∗ ∈ X∗ is in En for some n ∈ N. We therefore

conclude that X∗ = ⋃∞
n=1 En. For each n ∈ N, the space En is finite-dimensional,

and so is closed. Therefore, by Theorem 4.7 (the complementary version of the Baire
Category Theorem), there exists some n ∈ N such that int(En) �= ∅. We conclude
that En is an open neighborhood of the origin in X∗, and consequently is absorbent.
Therefore, X∗ = ⋃∞

k=1 kEn = En. Thus, the space X∗ is finite-dimensional, and so
X is finite-dimensional, as well. �

Proposition 5.31 Let X be a Banach space. Then:

(i) The weak topology on X is a Hausdorff topology.
(ii) A linear functional is continuous in the weak topology if and only if it is

continuous in the norm topology.

Proof (i) Assume x1 and x2 are elements in X such that x1 �= x2. By the Hahn–
Banach Separation Theorem (Theorem 5.20), there exists an x∗ ∈ X∗ such that
ε = x∗(x2 − x1) > 0. Therefore, the set {x : |x∗(x) − x∗(x1)| < ε/2} is a weak
neighborhood ofx1, the set {x : |x∗(x)−x∗(x2)| < ε/2} is a weak neighborhood ofx2,
and these two neighborhoods are disjoint. Hence, (X, w) is a Hausdorff topological
space.

(ii) If a linear functional f is continuous in the weak topology on X, then f −1(V )
is a weakly open set whenever V is an open set in the scalar field. But the norm
topology contains all of the weakly open sets, so f −1(V ) is open in the norm topology.
Therefore, f is continuous in the norm topology on X. (The idea is that it is “easier”
to be continuous in the norm topology, because there are more open sets.)

Now, suppose f is a norm continuous linear functional. Then f ∈ X∗, and so
the set {x : |f (x)| < ε} is a weak neighborhood of 0 (by the definition of the weak
topology). Thus, f is continuous in the weak topology on X. �

The weak topology on X is the weakest topology on X such that all norm contin-
uous linear functionals remain continuous. When we say a topology is weaker, we
mean that it contains fewer open sets. The norm topology on X is stronger than the
weak topology on X, because it contains more open sets. Weakly open sets are open
in the norm topology, but the converse need not be true. A function is continuous if
the preimage of any open set is open. The stronger the topology on the domain, the
easier it is for a function to be continuous, because with more open sets, it is more
likely that a given preimage is open.
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Definition 5.32 Let X be a topological vector space. The weak∗ topology on X∗
(or the w∗-topology) is defined by a base of neighborhoods at 0 of the form

W ∗(x1, . . . , xn; ε) = {x∗ : |x∗(xi)| < ε, 1 ≤ i ≤ n},
where ε > 0 and {x1, . . . , xn} ⊆ X for n ∈ N.

The weak∗ topology on X∗ is the topology inherited from viewing X∗ as a subspace
of K

X, the space of all scalar-valued functions on X. As before, we endow K
X with

the product topology. We use (X∗, w∗) to denote X∗ with the weak∗ topology.
Observe that any x ∈ X can be thought of as a linear functional on X∗ via the

mapping x �→ φx , where φx(x∗) = x∗(x) for all x∗ ∈ X∗. The weak∗ topology on
X∗ is the weakest topology on X∗ for which the linear functionals φx are continuous
for all x ∈ X.

The Banach space X∗ has also a weak topology that is induced by it’s dual space
(X∗)∗ = X∗∗ (the bidual of X). The weak∗ topology on X∗ is weaker than the weak
topology on X∗, because it requires fewer members in X∗∗ to be continuous. (Only
those coming from X.)

Example 5.33 Consider the sequence space �1. In Example 5.28, we saw that �1

had a weak topology induced upon it by �∗1 = �∞. In this weak topology, we saw
that the sequence (en)∞n=1 did not converge to 0 (because e(en) = 1 for all n ∈ N,
where e = (1, 1, . . .) is the constant sequence with all terms equal to 1). The space
�1 can also be given a weak∗ topology as the dual space of c0.

Suppose ξ = (ξk)∞k=1 is an element of c0. Since c0 consists of sequences that
converge to 0, it follows that en(ξ ) = ξn → 0 as n → ∞. This is true for every
ξ ∈ c0, and so the sequence (en)∞n=1 converges to 0 in the weak∗ topology on �1.

In this example we have found a sequence which converges in the weak∗ topology
on �1, but not in the weak topology on �1. This happens because the weak∗ topology
has fewer open sets than the weak topology. (That is to say, the weak∗ topology is
weaker than the weak topology).

Proposition 5.34 Let X be a Banach space. Then:

(i) The weak∗ topology on X∗ is a Hausdorff topology.
(ii) A linear functional f on X∗ is weak∗-continuous if and only if there exists some

x ∈ X such thatf (x∗) = x∗(x) for allx∗ ∈ X∗. (In other words, (X∗, w∗)∗ = X.)

Proof (i) Let x∗
1 and x∗

2 be elements in X∗ such that x∗
1 �= x∗

2 . Then there exists
some x ∈ X such that x∗(x) �= x∗

2 (x). (Otherwise they would be the same as linear
functionals on X.) If ε = |(x∗

1 − x∗
2 )(x)|, then the sets {x∗ : |x∗(x) − x∗

1 (x)| < ε/2}
and {x∗ : |x∗(x)− x∗

2 (x)| < ε/2} are disjoint weak∗-open sets containing x∗
1 and x∗

2 ,
respectively.

(ii) Certainly, if f (x∗) = x∗(x) for all x∗ ∈ X∗, then f is continuous in the weak∗
topology. It remains only to show that any weak∗-continuous linear functional on X∗
can be achieved in this way.
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Assume f is a continuous linear functional on (X∗, w∗). By Proposition 5.13,
there exists a basic neighborhood of (X∗, w∗) on which f is bounded. Thus, there
exists a real number ε > 0 and a finite set {x1, . . ., xn} ⊆ X such that |f (x∗)| ≤ 1
for all x∗ ∈ W ∗(x1, . . ., xn; ε).

Define a map T : X∗ → K
n, where K is the scalar field, by

T (x∗) = (x∗(x1), . . ., x∗(xn)), x∗ ∈ X∗.

Suppose x∗ ∈ ker(T ). Then x∗(xj ) = 0 for each j ∈ {1, . . ., n}. Thus, for any λ ∈ K,
we have that x∗(λxj ) = 0 for j ∈ {1, . . ., n}, and so (λx∗) ∈ W ∗(x1, . . ., xn; ε). It
follows that |f (λx∗)| ≤ 1, and consequently |f (x∗)| ≤ 1/|λ| for all λ �= 0. From
this we conclude that f (x∗) = 0, and hence f ∈ (kerT )⊥. By Lemma 4.33, then,
there exists a bounded linear functional φ : K

n → K such that f = φ◦T . Therefore,
there exists a finite collection of scalars {a1, . . ., an} ⊆ K such that

f (x∗) = φ(T x) = φ(x∗(x1), . . ., x∗(xn)) =
n∑

j=1

aj x∗(xj ), x∗ ∈ X∗.

The desired element of X is x =
n∑

j=1

aj xj . �

Remark 5.3 In Example 5.33 we saw that the weak∗ topology may be strictly weaker
than the weak topology. If X is a reflexive space (recall Definition 3.33), however,
then the weak and weak∗ topologies coincide.

Shortly, we will prove Proposition 5.37 which (in some sense) demonstrates that it
is “hard” to be compact in a normed space. Before we state and prove this proposition,
however, we need a lemma, which is of independent interest.

Lemma 5.36 All norms on a finite-dimensional vector space are equ ivalent.

Proof Let X be a finite-dimensional vector space over the scalar field K. Choose
x1, . . ., xn in X so that X = span{x1, . . ., xn}. We recall that each element of X has

a unique representation of the form
n∑

i=1

αixi , where αi ∈ K for each i ∈ {1, . . ., n}.
Define a norm |||·||| on X as follows:

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

i=1

αixi

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
=

n∑

i=1

|αi |.

It is straightforward to show that this does indeed define a norm on X.
Now, let ‖ · ‖ be another norm on X. We will find positive constants c and C such

that c|||x||| ≤ ‖x‖ ≤ C|||x||| for all x ∈ X. By the triangle inequality,

∥
∥
∥

n∑

i=1

αixi

∥
∥
∥ ≤

n∑

i=1

|αi | · ‖xi‖ ≤ (max
i
‖xi‖)

( n∑

i=1

|αi |
)
= (max

i
‖xi‖)

∣
∣
∣
∣
∣
∣
∣
∣
∣

n∑

i=1

αixi

∣
∣
∣
∣
∣
∣
∣
∣
∣.

(5.3)
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Thus, we may choose C = maxi‖xi‖.
Next, define a set

S = {
(α1, . . ., αn) :

n∑

i=1

|αi | = 1
}
.

Observe that S is a closed and bounded subset of K
n. Therefore, S is compact by the

Heine–Borel Theorem. Define a function f : S → R
+ by

f (α1, . . ., αn) =
∥
∥
∥

n∑

i=1

αixi

∥
∥
∥.

We claim that the function f is continuous. To see this, observe that

∣
∣
∣f (α1, . . ., αn)−f (β1, . . ., βn)

∣
∣
∣ =

∣
∣
∣
∥
∥

n∑

i=1

αixi

∥
∥−∥∥

n∑

i=1

βixi

∥
∥
∣
∣
∣ ≤ ∥∥

n∑

i=1

αixi−
n∑

i=1

βixi

∥
∥

=
∥
∥
∥

n∑

i=1

(αi − βi)xi

∥
∥
∥ ≤

n∑

i=1

|αi − βi |‖xi‖ ≤
( n∑

i=1

|αi − βi |2
)1/2( n∑

i=1

‖xi‖2
)1/2

.

The last inequality follows from the Cauchy–Schwarz Inequality. From this, it
follows that f is continuous.

By the Extreme Value Theorem, since f is continuous on a compact set, the
function f attains a minimum value on the set S. Let c be that minimum value. Then

f (α1, . . ., αn) ≥ c for all (α1, . . ., αn) in S. This means that
∥
∥
∥

n∑

i=1

αixi

∥
∥
∥ ≥ c for all

(α1, . . ., αn) in K
n such that

n∑

i=1

|αi | = 1. Alternately, for any (α1, . . ., αn) in K
n,

∥
∥
∥

n∑

i=1

αixi

∥
∥
∥ ≥ c

n∑

i=1

|αi | = c

∣
∣
∣
∣
∣
∣
∣
∣
∣

n∑

i=1

αixi

∣
∣
∣
∣
∣
∣
∣
∣
∣. (5.4)

Combining (5.3) and (5.4), we conclude that the two norms are equivalent. Since the
norm ‖ · ‖ was arbitrary, it follows that all norms on X are equivalent. �

Proposition 5.37 Suppose X is a Banach space (or just a normed linear space).
Then BX is compact in the norm topology on X if and only if dim(X) < ∞.

Proof Suppse X is a finite-dimensional normed vector space. By Lemma 5.36, X

is homeomorphic to K
n with the Euclidean norm. Therefore, BX is compact by the

Heine–Borel Theorem.
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Next, suppose BX is compact in the norm topology on X. Denote by B(x, r) the
open ball of radius r centered at x ∈ X. Since BX is compact, there exists a finite
sequence {x1, . . ., xk} of elements in X, such that

BX ⊆
k⋃

j=1

B
(
xj ,

1

2

)
=

k⋃

j=1

(
xj + 1

2
BX

)
. (5.5)

Let F = span{x1, . . ., xk}. Then (5.5) implies that BX ⊆ F + 1
2BX. This is a recursive

statement, and so we apply it to itself to get

BX ⊆ F + 1

2

(
F + 1

2
BX

)
= F + 1

2
F + 1

4
BX = F + 1

4
BX.

Continuing recursively, we have BX ⊆ F + 1
2n BX for all n ∈ N. Therefore,

BX ⊆
∞⋂

n=1

(
F + 1

2n
BX

)
.

However, F is closed, as a consequence of Lemma 5.36 (because F is finite-
dimensional). Thus,

∞⋂

n=1

(
F + 1

2n
BX

)
= F ,

and so BX ⊆ F . Since BX is absorbent, we have X = ⋃∞
n=1 nBX ⊆ ⋃∞

n=1 nF . But
F is a vector space, and so X ⊆ F . Therefore, X = F , as required. �

While the unit ball in a Banach space can be compact in the norm topology only
if the space is finite-dimensional, the unit ball in the weak∗ topology will always be
compact. Before proving this statement, known as the Banach-Alaoglu Theorem, let
us recall a theorem from general topology.

Theorem 5.38 (Tychonoff’s Theorem) Let I be an arbitrary index set. If {Ki}i∈I

is a collection of compact topological spaces, then
∏

i∈I Ki is compact in the product
topology.

We will not prove this theorem, but we do wish to point out it relies on the Axiom
of Choice. We are now ready to state and prove the Banach-Alaoglu Theorem.

Theorem 5.39 (Banach-Alaoglu Theorem) If X is a Banach space, then BX∗ is
compact in the weak∗ topology on X∗.

Proof Let X be a Banach space over the scalar field K. Recall that X∗ in the weak∗
topology is achieved by viewing X∗ as a subspace of K

X = ∏
x∈X K in the product

topology. We make this explicit by defining the map φ : X∗ → K
X by

φ(x∗) = (x∗(x))x∈X, x∗ ∈ X∗.

If x∗ ∈ BX∗ , then for each x ∈ X, we have |x∗(x)| ≤ ‖x‖. Consequently,

φ(BX∗ ) ⊆
∏

x∈X

‖x‖BK,
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where BK is the closed unit ball in the scalar field K and ‖x‖BK is the closed ball
of radius ‖x‖ centered at the origin. The product A = ∏

x∈X ‖x‖BK is compact, by
Tychonoff’s Theorem. There is no reason the image of BX∗ would be all of A, but it
is a closed subspace. Indeed, the image is precisely the collection of elements in the
following set:

⋂

{α1,α2}⊆R

{x1,x2}⊆X

{
f : f (α1x1 + α2x2) = α1f (x1) + α2f (x2)

} ⋂ ∏

x∈X

‖x‖BK.

(The first set of relations ensures f ∈ K
X is linear, while the second ensures it is

bounded.) Therefore, φ(BX∗ ) is a closed subset of the compact set A, and hence
φ(BX∗ ) is compact in the product topology on K

X. It follows that BX∗ is compact in
the weak∗ topology on X∗, as required. �

The Banach–Alaoglu Theorem as given here is due to Leonidas Alaoglu [1],
although the result was known to Banach. Banach did not have the notions of general
topology available to him, and so he could not formulate it in this way.

5.5 Goldstine’s Theorem

Let X be a Banach space. Recall that X can be thought of as a subspace of it’s bidual
X∗∗. The space X∗∗ is the dual space for X∗, and as such can be given a weak∗
topology. The weak∗ topology on X∗∗ is the weakest topology under which elements
of X∗ define continuous functions on X∗∗. If we restrict to the subspace X, then the
weakest topology under which elements of X∗ are continuous is the weak topology
on X. Therefore

(X∗∗, w∗)|X = (X, w).

In other words, the restriction of the weak∗ topology on X∗∗ to X is the weak topology
on X.

Theorem 5.40 (Goldstine’s Theorem) If X is a Banach space, then BX is weak∗-
dense in BX∗∗ .

Proof Let X be a Banach space. For simplicity, we will assume X is real. (If X is
complex, the argument is similar.) Denote the closure of BX in the weak∗ topology

on X∗∗ by BX
(w∗)

. Our goal is to show the equality BX
(w∗) = BX∗∗ .

By the Banach–Alaoglu Theorem (Theorem 5.39), the set BX∗∗ is a compact (and
hence closed) set in the weak∗ topology on X∗∗. Therefore, since X ⊆ X∗∗, we see

that BX
(w∗) ⊆ BX∗∗ .

Suppose x∗∗
0 ∈ BX∗∗\BX

(w∗)
. By the Hahn–Banach Separation Theorem (The-

orem 5.20), there exists a weak∗-continuous linear functional f on X∗∗ such
that

f (x∗∗
0 ) > sup {f (u∗∗) : u∗∗ ∈ BX

(w∗)}. (5.6)
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By Proposition 5.34, since f is continuous in the weak∗ topology on X∗∗, there
exists an x∗ ∈ X∗ such that f (x∗∗) = x∗∗(x∗) for all x∗∗ ∈ X∗∗. Therefore, (5.5.1)
becomes

x∗∗
0 (x∗) > sup {u∗∗(x∗) : u∗∗ ∈ BX

(w∗)} ≥ sup{x∗(x) : x ∈ BX} = ‖x∗‖.
This implies ‖x∗∗

0 ‖ > 1, contradicting the assumption that x∗∗
0 ∈ BX∗∗ . The result

follows. �

In the proof of Goldstine’s Theorem, we assumed that X was a real Banach space
for the sake of simplicity. The argument is similar when the Banach space is complex,
but instead of Theorem 5.20, which is the Hahn–Banach Separation Theorem for real
spaces, we use Theorem 5.22, which is the Hahn–Banach Separation Theorem for
complex spaces, and we replace f with �(f ).

Theorem 5.41 A Banach space X is reflexive if and only if the closed unit ball BX

is weakly compact.

Proof Assume first that X is reflexive. Then BX = BX∗∗ . By the Banach–Alaoglu
Theorem (Theorem 5.39), the set BX∗∗ is compact in the weak∗ topology on X∗∗.
Since X is reflexive, the weak∗ topology on X∗∗ coincides with the weak topology
on X. Therefore, BX is compact in the weak topology on X.

Now, assume instead that BX is weakly compact. The weak topology on X is the
restriction of the weak∗ topology on X∗∗, and so BX is compact (and hence closed) in
the weak∗ topology on X∗∗. By Goldstine’s Theorem (Theorem 5.40), we conclude
that BX = BX∗∗ , since BX is closed and dense in BX∗∗ . Therefore, X is reflexive. �

Proposition 5.42 Suppose X and Y are Banach spaces (or simply normed linear
spaces). If T : X → Y is a linear map, then the following are equivalent:

(i) T is bounded (i.e., norm-to-norm continuous).
(ii) T is (X, ‖ · ‖) to (Y , w) continuous.

(iii) T is (X, w) to (Y , w) continuous.

Proof Certainly (iii) implies (ii). We will show that (ii) implies (i), and then (i)
implies (iii).

Assume (ii). We wish to show that T (BX) is bounded in the norm topology on
Y . Let y∗ ∈ Y ∗. Then y∗ is continuous in the weak topology on Y . Consequently,
since T is norm-to-weak continuous, the functional y∗ ◦T is continuous in the norm
topology on X. Thus, y∗ ◦ T ∈ X∗, and so

sup
‖x‖≤1

|y∗(T x)| = sup
‖x‖≤1

|(y∗ ◦ T )(x)| < ∞. (5.7)

Since (5.5.2) holds for each y∗ ∈ Y ∗, we conclude that the set T (BX) is weakly
bounded in Y . Therefore, T (BX) is bounded in the norm topology, by Theorem 4.12.

Now assume (i). Consider a weak neighborhood in Y , say

WY = WY (y∗
1 , . . ., y∗

n ; ε) = {y : |y∗
j (y)| < ε, 1 ≤ j ≤ n},
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for {y∗
1 , . . ., y∗

n} ⊆ Y ∗ and ε > 0. Suppose x ∈ X is such that T x ∈ WY . Then for
each j ∈ {1, . . ., n}, we have |y∗

j (T x)| < ε. Recall that the adjoint operator T ∗ was
defined so that T ∗ ◦ y∗ = y∗ ◦ T . Therefore, |T ∗y∗

j (x)| < ε for all j ∈ {1, . . ., n},
and so it follows that x ∈ WX = WX(T ∗y∗

1 , . . ., T ∗y∗
n ; ε), a weak neighborhood of

X. We conclude that T −1(WY ) ⊆ WX. Equality is obtained by running through the
same argument in reverse, and so T is weak-to-weak continuous, as required. �

Suppose that T : X → Y is a bounded linear mapping between real Banach
spaces. If X is reflexive, then T (BX) is weakly compact, and hence norm-closed in
Y . This is not true in general (i.e., for non-reflexive spaces X). Consider any x∗ ∈ X∗
with ‖x∗‖ = 1. Then x∗(BX) could be either (−1, 1) or [−1, 1]. If X is reflexive, then
the second interval (the closed one) is the only option.

Example 5.43 Consider the real Banach space X = �1. Recall that �∗1 = �∞. Let ξ

in �∞ be the bounded sequence ξ = (1 − 1/n)∞n=1. Now suppose x = (xn)∞n=1 is any
element in B�1 , so that

∑∞
n=1 |xn| ≤ 1. Then

|ξ (x)| = ∣
∣

∞∑

n=1

ξn xn

∣
∣ ≤

∞∑

n=1

ξn |xn| < 1.

Since ‖ξ‖�∞ = 1, we have a norm-one element ξ ∈ �∗1 such that ξ (B�1 ) = (−1, 1).
We see that a linear functional on a reflexive Banach space attains its maximum

value on the closed unit ball. It was a long standing question whether or not this
property characterized reflexive spaces. In 1964, R.C. James showed that it did when
he proved the statement: If every bounded linear functional on X attains its maximum
value on the closed unit ball, then X is reflexive [19].

We conclude this section with a result about the adjoint operator.

Proposition 5.44 If T : X → Y is a bounded linear map between Banach spaces,
then T ∗ : Y ∗ → X∗ is weak∗-to-weak∗ continuous.

Proof The proof is very similar to the proof that (i) implies (iii) in Proposition 5.42.
Consider a weak∗ neighborhood in X∗, say

WX∗ = WX∗ (x1, . . ., xn; ε) = {x∗ : |x∗(xj )| < ε, 1 ≤ j ≤ n},
for {x1, . . ., xn} ⊆ X and ε > 0. Suppose y∗ ∈ Y ∗ is such that T ∗y∗ ∈ WX∗ . Then
|T ∗y∗(xj )| < ε for all j ∈ {1, . . ., n}. But T ∗y∗(x) = y∗(T x) for all x ∈ X, and so
|y∗(T xj )| < ε for all j ∈ {1, . . ., n}. Then y∗ ∈ WY ∗ = WY ∗ (T x1, . . ., T xn; ε), which
is a weak∗ neighborhood of Y ∗. This implies that (T ∗)−1(WX∗ ) ⊆ WY ∗ . Similarly,
WY ∗ ⊆ (T ∗)−1(WX∗ ), and so T ∗ is weak∗-to-weak∗ continuous, as required. �

5.6 Mazur’s Theorem

In this section we explore the consequences of convexity in weak topologies.

Theorem 5.45 (Mazur’s Theorem) Let X be a locally convex topological vector
space. A convex subset of X is closed if and only if it is weakly closed.
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Proof Without loss of generality, assume X is a real topological vector space. A
weakly closed set is always strongly closed, regardless of convexity. Suppose K is

closed in the original topology, and let K
(w)

denote the closure of K in the weak

topology. Assume x0 ∈ K
(w)\K . Then, by the Hahn–Banach Separation Theorem

(Theorem 5.20), there is an x∗ ∈ X∗ such that

x∗(x0) > sup{x∗(x) : x ∈ K}.
This contradicts the assumption x0 is in the weak closure of K , and so K

(w) = K . �

Example 5.46 Consider the real sequence space �p, where 1 < p < ∞. As usual,
for each n ∈ N, let en be the sequence with 1 in the nth coordinate, and 0 elsewhere.
We know that en → 0 weakly as n → ∞ (see Example 5.28), and so 0 is in the
weak closure of the set E = {en : n ∈ N}. Let co(E) denote the set of convex linear
combinations of elements in E:

co(E) =
{ m∑

j=1

λjej : λj ≥ 0,
m∑

j=1

λj = 1, m ∈ N

}
.

We denote the closure of co(E) in the norm topology by co(E). This set is convex
and closed in the norm topology, and hence weakly closed by Mazur’s Theorem
(Theorem 5.45). It follows that co(E) contains 0, since 0 is a weak limit point of E.
We conclude that 0 can be approximated (in norm) by convex linear combinations
of elements in E = {en : n ∈ N}. In fact, if 1 < p < ∞, then

∥
∥
∥

1

n
(e1 + · · · + en)

∥
∥
∥

�p

= 1

n

( n∑

j=1

1p
)1/p

= n
1
p
−1 −−−→

n→∞ 0.

The same cannot be said of �1—in this case, there exists no convex combination of
elements in {en : n ∈ N} that will approximate 0. To see this, let λ1e1 + · · · + λnen

be any convex combination of elements from {en : n ∈ N}. Then

‖λ1e1 + · · · + λnen‖�1
= ‖(λ1, λ2, · · · , λn, 0, . . . )‖�1

=
n∑

j=1

λj = 1.

In the above example, we introduced the notation co(E) to denote the set of convex
linear combinations of elements in the set E. This idea will prove important later,
and so we give the following definition.

Definition 5.47 Let X be a topological vector space and let A be any subset of
X. The convex hull of A is the smallest convex subset of X that contains A. The
convex hull of A is denoted by co(A) and consists of all convex linear combinations
of elements in A; that is,

co(A) =
{ m∑

j=1

λjaj : aj ∈ A, λj > 0,
m∑

j=1

λj = 1, m ∈ N

}
.

The closed convex hull of A is the closure of the convex hull and is denoted co(A).
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Example 5.48 Let X = Lp(0, 1), where 0 < p < 1. (See Example A in Sect. 5.3.)
In Example 5.19, we saw that the only nonempty open convex subset of X is X itself.
Consequently, if BX = {f : ‖f ‖p ≤ 1}, then co(BX) = X.

Let W be a subset of a topological vector space X. If f is a linear functional
on X such that |f (x)| ≤ M for all x ∈ W , then, by the definition of the convex
hull, it must be that |f (x)| ≤ M for all x ∈ co(W ). In the case of Lp(0, 1), where
0 < p < 1, from the example above, the convex hull of the unit ball is the entire
space. Since no nonzero linear functionals are bounded on Lp(0, 1) (see Example A
in Sect. 5.3), it follows that there are no nonzero linear functionals bounded on the
unit ball of Lp(0, 1). Indeed, there are no nonzero linear functionals bounded on any
nonempty open subsets of Lp(0, 1) if 0 < p < 1.

We now give an example of how convexity can help to solve optimization
problems. We begin by making a definition.

Definition 5.49 Let X be a vector space. A function f : X → R is called convex if

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y),

for all {x, y} ⊆ X and t ∈ [0, 1].

Our problem is as follows: Suppose K is a closed bounded convex set in a Banach
space X and let f : X → R be a continuous convex function. Does there exist some
x0 ∈ K such that

f (x0) = min{f (x) : x ∈ K}?
There is no reason we should assume this minimum exists, as there is no compactness
assumption made on K .

Suppose for a moment that X is reflexive. Then BX is weakly compact, by The-
orem 5.41. Since K is closed in norm, K is weakly closed, by Mazur’s Theorem. It
follows that K is weakly compact. (Here, we use the fact that BX is weakly com-
pact and absorbent.) We now have continuity and compactness, but not in the same
topology: f is continuous in the norm topology, and K is compact in the weak
topology.

Despite this, we claim that if X is a reflexive Banach space and if f is a convex
function, then f does attain its minimum value on K . Let α = inf{f (x) : x ∈ K}.
Our goal is to show that α > −∞ and that f (x0) = α for some x0 ∈ K .

Suppose α = −∞ and, for each n ∈ N, define Kn = {x ∈ K : f (x) ≤ −n}. For
each n ∈ N, the set Kn is closed (and hence weakly closed by Mazur’s Theorem),
convex, and nonempty (since α = −∞). Therefore, (Kn)∞n=1 forms a nested sequence
of weakly compact nonempty sets. By the Nested Interval Property (Corollary B.7),
it must be that

⋂∞
n=1 Kn �= ∅. But this implies that there is some x0 ∈ K such that

f (x0) ≤ −n for all n ∈ N, an impossibility. Consequently, α > −∞.
Define for n ∈ N a sequence of sets K ′

n = {x ∈ K : f (x) ≤ α + 1/n}. As
before, (K ′

n)∞n=1 is a nested sequence of weakly compact nonempty sets, and so⋂∞
n=1 K ′

n �= ∅. If x0 ∈⋂∞
n=1 K ′

n, then x0 ∈ K and f (x0) = α, as required.
We summarize in the following proposition.
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Fig. 5.2 Some elementary convex objects

Proposition 5.50 Suppose K is a nonempty closed bounded convex set in a Banach
space X and let f : X → R be a continuous convex function. If X is reflexive, then
there exists an x0 ∈ K such that f (x0) = min{f (x) : x ∈ K}.
Proof See the discussion preceding the statement of the proposition. �

A special case of the above is f (x) = ‖u − x‖, the function representing the
distance between x ∈ X and a fixed point u ∈ X. If X is a reflexive Banach space,
and if K is a closed and bounded convex set in X (not containing u), then there exists
a x0 ∈ K such that

‖u − x0‖ = min
x∈K

‖u − x‖.
That is, there exists some point x0 ∈ K which is closest to u. (Actually, the
boundedness assumption on K is not needed for this statement to be true.)

5.7 Extreme Points

In this section, we consider sets K that are convex in some vector space X.

Definition 5.51 Let X be a vector space and suppose K is a convex subset of X.
A point x ∈ K is an extreme point of K if it does not lie on a line segment in K .
That is, x is an extreme point of K provided that the following is true: If u and v are
elements of K such that x = (1 − t)u + tv for some t ∈ (0, 1), then x = u = v.

The set of extreme points of K is denoted ex(K).
For example, a triangle has an extreme point at each vertex, while any boundary

point of a circle is an extreme point. (See Fig. 5.2.)

Example 5.52 We now determine the extreme points for the unit ball BX in several
cases where X is a real Banach space. Note that no point of the interior of BX can
be extreme, and so we must consider only points on the boundary ∂BX.

(i) X = �2. Denote the inner product on �2 by 〈·, ·〉. Suppose x ∈ �2 is such
that ‖x‖ = 1. Now let {u, v} ⊆ B�2 and suppose x = (1 − t)u + tv for some
t ∈ (0, 1). By the triangle inequality, ‖u‖ = ‖v‖ = 1 (otherwise ‖x‖ < 1).
Since ‖x‖ = 1, we have

1 = 〈x, x〉 = (1 − t)〈u, x〉 + t〈v, x〉. (5.8)
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By assumption, 0 < t < 1, and so (5.7.1) implies that 〈u, x〉 = 〈v, x〉 = 1
(again using the triangle inequality). Observe that 〈u, x〉 = 1 = ‖u‖‖x‖, and
thus we have equality in the Cauchy–Schwarz Inequality. This can only happen
if u = x. Similarly, v = x. Therefore, x is an extreme point of B�2 whenever x

is on the boundary ∂B�2 .
(ii) X = Lp(0, 1), 1 < p < ∞. We will take our cue from the preceding example.

Suppose f ∈ Lp(0, 1) is such that ‖f ‖p = 1. Let {g, h} ⊆ Lp(0, 1) and
suppose that f = (1 − t)g + th for some t ∈ (0, 1). Then ‖g‖p = ‖h‖p = 1,
by the triangle inequality (as in (i)). By the Hahn–Banach Theorem, there exists
a linear functional φ in Lp(0, 1)∗ such that ‖φ‖ = 1 and φ(f ) = 1. In fact, in
this case we can write φ explicitly:

φ(k) =
∫ 1

0
|f (x)|p−1(signf (x)) k(x) dx, k ∈ Lp(0, 1).

Since φ(f ) = ‖f ‖p
p, we have

1 = φ(f ) = (1 − t)φ(g) + tφ(h).

Again using the triangle inequality, we have that φ(g) = φ(h) = 1.
By Hölder’s Inequality,

|φ(g)| ≤
∫

|f (x)|p−1 |g(x)| dx ≤
(∫

|f (x)|(p−1)q dx
)1/q

‖g‖p = ‖f ‖p/q
p ‖g‖p,

where 1
p
+ 1

q
= 1 (and so q = p

p−1 ). Since the left and right sides of the above
inequality are both equal to 1, we have equality in Hölder’s Inequality. This
happens only if there are positive constants a and b such that a(|f |p−1)q =
b|g|p (as members of Lp(0, 1)). Because q = p

p−1 , this equality (which is
valid almost everywhere) becomes a|f |p = b|g|p, which is equivalent to
a1/p|f | = b1/p|g|. Since ‖f ‖p = ‖g‖p, this can only happen if |f | = |g| in
Lp(0, 1).A similar argument shows |f | = |h| inLp(0, 1). From these equalities,
together with the assumption that f is a convex combination of g and h, we
conclude that f = g and f = h. It follows that f is an extreme point of
BLp(0,1). The choice of f was arbitrary in ∂BLp(0,1), and therefore any f on the
boundary of the unit ball is an extreme point of the unit ball BLp(0,1).

A similar argument shows that the extreme points of the unit ball in �p,
where 1 < p < ∞, are the elements of the boundary ∂B�p

.
(iii) X = L1(0, 1). If f is an extreme point of BL1(0,1), then f is on the boundary

of BL1(0,1). Let f be a function in L1(0, 1) such that ‖f ‖1 =
∫ 1

0 |f (s)| ds = 1.
Define a new function F on [0, 1] by

F (t) =
∫ t

0
|f (s)| ds, t ∈ [0, 1].

The function F is continuous with F (0) = 0 and F (1) = 1. By the Intermediate
Value Theorem, there exists a τ ∈ (0, 1) such that F (τ ) = 1/2.
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Let g = 2f χ(0,τ ) and h = 2f χ(τ ,1). By the choice of τ , we have ‖g‖1 = 1
and ‖h‖1 = 1. We have found distinct functions g and h in BL1(0,1) such that
f = 1

2g + 1
2h. Therefore, f is not an extreme point of the unit ball of L1(0, 1).

Since f was an arbitrary element of ∂BL1(0,1), we conclude that the unit ball in
L1(0, 1) has no extreme points.

(iv) X = c0. We will show there are no extreme points in Bc0 . Suppose x = (xk)∞k=1
is a sequence in Bc0 . Then lim

k→∞ xk = 0, and so there exists some n ∈ N such

that |xn| < 1/2. We will define sequences y = (yk)∞k=1 and z = (zk)∞k=1 in c0 so
that x = 1

2y + 1
2 z. If xn �= 0, then define y and z as follows:

yk =
{

xk if k �= n,

0 if k = n
and zk =

{
xk if k �= n,

2xn if k = n.

We have x = 1
2y + 1

2 z and, because |xn| < 1/2, the sequences y and z are
in Bc0 . The previous sequences work only if xn �= 0. If instead xn = 0, then
define y and z so that:

yk =
{

xk if k �= n,
1
2 if k = n

and zk =
{

xk if k �= n,

− 1
2 if k = n.

Once again, we have x = 1
2y + 1

2 z, where the sequences y and z are in Bc0 .
Therefore, x is not an extreme point of the set Bc0 .

(v) X = C[0, 1]. In this case the extreme points of BC[0,1] are the two functions
χ[0,1] and −χ[0,1]. (That is, the constant functions 1 and −1.) If f ∈ BC[0,1] is a
continuous function such that |f (t)| < 1 for some t ∈ (0, 1), then we may use
an argument similar to the perturbation argument used in (iv). (That is, we can
put a small “wiggle” in the function.)

Similarly, if K is a compact Hausdorff space, then the extreme points of
BC(K) are the two functions χK and −χK , which are the constant functions 1
and −1 on K .

In the case that C(K) is a complex Banach space, the extreme points of
BC(K) are all functions f ∈ C(K) for which |f (s)| = 1 for all s ∈ K .

(vi) X = �1. The set of extreme points in B�1 is {±en : n ∈ N}. First, let us
show that each of these points is indeed extreme in B�1 . Fix some n ∈ N. Let
y = (yk)∞k=1 and z = (zk)∞k=1 be elements of B�1 such that en = ay + bz, where
a and b are positive numbers such that a + b = 1. (Note that these conditions
imply yn > 0 and zn > 0.) We have that ayn + bzn = 1 and ayk + bzk = 0
for all k �= n. By assumption, we know that a �= 0, and so yn = 1

a
− b

a
zn and

yk = − b
a

zk for k �= n. Once again making use of the triangle inequality, we
see that ‖y‖1 = 1 and ‖z‖1 = 1. Computing ‖y‖1 directly, we have

(∑

k �=n

|yk|
)
+yn =

(∑

k �=n

b

a
|zk|
)
+
(1

a
− b

a
zn

)
=
(b

a

∞∑

k=1

|zk|
)
+
(1

a
− 2b

a
zn

)
.
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Thus,

‖y‖1 = b

a
‖z‖1 +

(1

a
− 2b

a
zn

)
.

But ‖y‖1 = 1 and ‖z‖1 = 1, and so

1 = b

a
(1) +

(1

a
− 2b

a
zn

)
= b + 1 − 2bzn

a
.

A little arithmetic (and the fact that a + b = 1) reveals that zn = 1, and so z
must in fact be en. Therefore, en is an extreme point. A similar argument shows
that −en is an extreme point for each n ∈ N.

Now we show that no other element of ∂B�1 is an extreme point. Suppose
x ∈ B�1 with ‖x‖1 = 1, but x �= ±en for any n ∈ N. Then there must be
at least two non-zero entries, say xm1 and xm2 . Without loss of generality, we
may assume both terms are positive. Choose some constant ε > 0 such that
ε < min{xm1 , xm2 , 1− xm1 , 1− xm2}. Define y = (yk)∞k=1 and z = (zk)∞k=1 in �1

as follows:

yk =

⎧
⎪⎨

⎪⎩

xk if k �∈ {m1, m2},
xm1 + ε if k = m1,

xm2 − ε if k = m2

and zk =

⎧
⎪⎨

⎪⎩

xk if k �∈ {m1, m2},
xm1 − ε if k = m1,

xm2 + ε if k = m2.

It follows that x = 1
2y+ 1

2 z, where {y, z} ⊆ B�1 . Therefore, x is not an extreme
point.

The next theorem describes a condition under which the set of extreme points is
never empty.

Theorem 5.53 (Krein–Milman Theorem) Suppose E is a locally convex Haus-
dorff topological vector space. If K is a nonempty compact convex subset of E, then
K = co(exK). In particular, ex(K) �= ∅.

Before proving Theorem 5.53, let us observe a consequence.

Corollary 5.54 If X is a Banach space, then BX∗ = co(w∗)(exBX∗ ).

Proof By Theorem 5.39, the set BX∗ is compact in the w∗-topology whenever X is
a Banach space. The result then follows from the Krein–Milman Theorem. �

What makes this result so interesting is that we can now, courtesy of Example 5.52,
conclude that neither c0 nor L1(0, 1) is a dual space of a Banach space, since the unit
balls in these spaces have no extreme points. While the unit ball of C[0, 1] does have
extreme points, it does not have enough (only two!) to construct the entire unit ball
using only convex linear combinations. Therefore, C[0, 1] cannot be the dual space
of any Banach space, either.

In order to proceed with the proof of Theorem 5.53, we now introduce a definition
and a lemma.

Definition 5.55 Let E be a topological vector space with nonempty subset K . A
subset F of K is called extremal (in K) if F is a nonempty compact convex set such
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that the following holds: If {u, v} ⊆ K and (1 − t)u + tv ∈ F for all t ∈ (0, 1), then
{u, v} ⊆ F .

Lemma 5.56 Suppose K is a nonempty compact convex subset of a locally convex
topological vector space. Every extremal subset of K contains an extreme point.

Proof Let K be a nonempty compact convex subset of the locally convex topological
vector space E and suppose F is an extremal set in K . Consider the partially ordered
set of all subsets of F that are extremal in K , where G ≥ H whenever G ⊆ H . We
wish to find a maximal element of this partially ordered set (which in turn will be a
minimal extremal subset of F ).

Suppose C = (Gi)i∈I is a chain of subsets of F that are extremal in K . Let G be the
intersection of all sets in C, so G =⋂

i∈I Gi . Then G is a compact and convex subset
of F . For any finite collection of indices i1, . . ., in in I , we have

⋂n
k=1 Gik = Gij

for some j ∈ {1, . . ., n}, because C is a chain of subsets. Therefore, by the Finite
Intersection Property, G is nonempty.

We claim that G is extremal in K . Suppose {u, v} ⊆ K and (1 − t)u + tv ∈ G

for all t ∈ (0, 1). For each i ∈ I , we have G ⊆ Gi , and so (1 − t)u + tv ∈ Gi

for all t ∈ (0, 1). But Gi is extremal in K , and hence {u, v} ⊆ Gi . It follows that
{u, v} ⊆⋂

i∈I Gi = G. Thus, G is extremal in K .
By Zorn’s Lemma, there exists a maximal element in the partially ordered set

of subsets of F that are extremal in K . Hence, there is a minimal subset of F

that is extremal in K . Denote this minimal extremal set by F0. We will show that F0

consists of only one element. Assume to the contrary that there exist distinct elements
u and v in F0. The space E is Hausdorff, and so {u} and {v} are closed sets. By the
Hahn–Banach Separation Theorem (Theorem 5.20 for real spaces and Theorem 5.22
for complex spaces), there exists a continuous linear functional φ on E such that
φ(u) �= φ(v). In particular, φ is not constant on F0.

Without loss of generality, we may assume φ is real-valued. The functional φ is
continuous on E, and therefore attains its maximum on the compact set F0. Let

G0 =
{
x ∈ F0 : φ(x) = max

ξ∈F0
φ(ξ )

}
.

Let M denote the maximum value of φ on F0, so that φ(x) = M for all x ∈ G0.
The set G0 is nonempty (by the continuity of φ), compact, and convex. It is also

a proper subset of F0, because φ is not constant. We claim that G0 is extremal in K .
Suppose {u, v} ⊆ K and (1− t)u+ tv ∈ G0 for all t ∈ (0, 1). We know that G0 ⊆ F0,
and we know that F0 is extremal; hence {u, v} ⊆ F0. For each t ∈ (0, 1), we have
that (1 − t)u + tv ∈ G0, and so

M = φ((1 − t)u + tv) = (1 − t)φ(u) + tφ(v),

for all t ∈ (0, 1). From this we conclude that φ(u) = φ(v) = M , and consequently
{u, v} ⊆ G0. This implies G0 is extremal, but this violates the minimality of F0.
We have derived a contradiction, and so it must be the case that F0 contains only
one element. The set F0 is a single-point set and an extremal set. Therefore, the one
element of F0 is an extreme point.
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We are now prepared to prove the Krein–Milman Theorem.

Proof of Theorem 5.53 Without loss of generality, we may assume E is a real
topological vector space. The set K is extremal in itself, and so must contain an
extreme point, by Lemma 5.56. Let K0 = co(exK), the closed convex hull of the
set of extreme points in K . Suppose x ∈ K\K0. By the Hahn–Banach Separation
Theorem (Theorem 5.20), there exists a continuous linear functional f on E such
that

f (x) > max
y∈K0

f (y). (5.9)

Let
G0 =

{
z ∈ K : f (z) = max

y∈K
f (y)

}
.

The set G0 is nonempty because f is continuous and K is compact; it is also disjoint
from K0 because of (5.9). The set G0 is extremal (see the argument in the proof of
Lemma 5.56), and consequently contains an extreme point of K , by Lemma 5.56.
This, however, is a contradiction, because K0 contains all of the extreme points of
K , and K0 and G0 are disjoint. Therefore, K = K0, as required.

The Krein–Milman Theorem originally appeared in a work by Krein and Mil-
man in 1940 [21]. The local convexity assumption on E was needed to invoke the
Hahn–Banach Separation Theorem (Theorem 5.20). Local convexity is a necessary
condition, a fact which was not shown until the 1970s [32]. The Krein–Milman
Theorem has a deep relationship with the Axiom of Choice. (See [4].)

5.8 Milman’s Theorem

Suppose K is a compact Hausdorff space. The Riesz Representation Theorem iden-
tifies the dual space of the space of continuous functions on K as the space of regular
Borel measures on K; that is, C(K)∗ = M(K). (See Theorem A.35.) We recall that
the norm on M(K) is the total variation norm: ‖μ‖M = |μ|(K) for all μ ∈ M(K).
We define the probability measures on K to be elements in the set

P(K) = {μ ∈ M(K) : μ ≥ 0, ‖μ‖M = 1}.
This set is convex. It is also closed in the w∗-topology, which can be seen from the
equality P(K) = {μ ∈ BM(K) :

∫
K

1 dμ = 1}. (See Exercise 5.27.)
By the Banach–Alaoglu Theorem (Theorem 5.39), the unit ball BM(K) is compact

in the w∗-topology, and hence P(K) is w∗-compact as a w∗-closed subset. A simple
computation shows that P(K) is an extremal set in the unit ball of M(K). (Again,
see Exercise 5.27.) Since P(K) is a w∗-compact convex extremal set, Lemma 5.56
assures us that P(K) must have at least one extreme point.

Proposition 5.57 Let K be a compact Hausdorff space. A probability measure in
M(K) is an extreme point of P(K) if and only if it is a Dirac measure.
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Proof We first show that δs is an extreme point of P(K) for s ∈ K . Suppose there
exist probability measures μ and ν such that δs = (1− t)μ+ tν for some t ∈ (0, 1).
It follows that μ({s}) = ν({s}) = 1. Thus, μ = ν = δs , as required.

Now suppose μ is an extreme point of P(K). We will show that μ = δs for some
s ∈ K . Let U = {U open : μ(U ) = 0} and let V = ⋃

U∈U U . We claim μ(V ) = 0.
Suppose E is a compact subset of V . The collection of sets U forms an open cover
of E, and so by compactness there exists a finite subcover, say E ⊆ U1 ∪ · · · ∪ Un.
The measure μ is nonnegative, and so (by subadditivity)

μ(E) ≤ μ(U1) + · · · + μ(Un) = 0.

Therefore, μ(E) = 0 for all compact subsets of V . By the regularity of μ,

μ(V ) = sup{μ(E) : E is a compact subset of V } = 0.

Let F = K\V . Then μ(F ) = 1. We wish to show that F contains only one point.
Assume to the contrary that F contains more than one point. Let {s, t} ⊆ F . By the
Hausdorff property, there are open sets W1 and W2 in K such that s ∈ W1, t ∈ W2,
and W1 ∩ W2 = ∅. Since W1 and W2 are not subsets of V , they have non-zero
μ-measure. Define measures μ1 and μ2 on K as follows:

μ1(B) = μ(W1 ∩ B)

μ(W1)
and μ2(B) = μ((K\W1) ∩ B)

μ(K\W1)
,

where B is any measurable subset of K . We note that μ(K\W1) �= 0 since μ ≥ 0
and W2 ⊆ K\W1.

Both μ1 and μ2 are probability measures, and

μ(W1) μ1 + μ(K\W1) μ2 = μ.

By assumption, μ is an extreme point of P(K). Thus, since μ(W1)+μ(K\W1) = 1,
it follows that μ = μ1 = μ2. This is not possible, however, since μ1(W1) = 1 and
μ2(W1) = 0. We have derived a contradiction. Therefore, there can be no more than
one point in the set F , say s. Since μ(F ) = 1, it follows that μ = δs , as required.

In the above proof, the set V is the maximal open set of μ-measure zero. The
entire μ-mass of K is contained in K\V . This motivates the next definition.

Definition 5.58 Suppose μ is a positive nonzero measure on K . If V is the maximal
open set of μ-measure zero, then K\V is called the support of μ. If μ is a signed (or
complex) measure, the support of μ is defined to be the support of |μ|.

In the proof of Proposition 5.57, observe that the measures μ1 and μ2 were defined
in such a way that they had disjoint supports. As a result, it was certainly the case
that μ1 �= μ2. (They “live” on different sets, so to speak.)

Theorem 5.59 (Milman’s Theorem) Suppose E is a locally convex Hausdorff
topological vector space and let K be a compact subset of E. If D is a closed subset
of K such that K = co(D), then ex(K) ⊆ D. Furthermore, for every x ∈ K , there
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exists a μx ∈ P(D) such that f (x) = ∫
D

f (y) μx(dy) for all linear functionals
f ∈ E∗.

Proof Observe that E ⊆ K
E∗

, the collection of all scalar-valued functions on E∗,
where the superspace is equipped with the product topology. The inclusion is made
explicit by the embedding ρ : E → K

E∗
defined by

ρ(e) = (f (e))f∈E∗ , e ∈ E.

(We often make this identification implicitly, suppressing the letter ρ.)
Introduce a map T : M(D) → K

E∗
, defined by

T (μ) =
( ∫

D

f (y) μ(dy)
)

f∈E∗
, μ ∈ M(D).

Observe that T is continuous in the w∗-topology on M(D).
For each s ∈ D, we have

T (δs) = (f (s))f∈E∗ = s. (5.10)

By the w∗-continuity of T , then, it follows that T maps co(w∗)({δs}s∈D) onto co(w)(D).
We note that we have the weak closure of co(D) in E because the topology E inherits
from K

E∗
is the weak topology. (See the comments after Definition 5.27.)

By Theorem 5.53 (the Krein–Milman Theorem) and Proposition 5.57, we make
the identification co(w∗)({δs}s∈D) = P(D). By assumption, K = co(D), and so
by Mazur’s Theorem (Theorem 5.45), we have that K = co(w)(D). Therefore, the
restriction T |P(D) : P(D) → K is a surjection. This proves the second part of the
theorem.

It remains to prove the first part of the theorem; that is, that the extreme points
of K are in D. Suppose x ∈ ex(K). We claim that the set T −1(x) ⊆ P(D) is an
extremal set. Suppose {μ, ν} ⊆ P(D) and (1 − t)μ+ tν ∈ T −1(x) for all t ∈ (0, 1).
It follows that (1 − t)T (μ) + tT (ν) = x for all t ∈ (0, 1). By assumption, x is an
extreme point in K , and consequently T μ = T ν = x. Therefore, {μ, ν} ⊆ T −1(x),
and so T −1(x) is extremal.

By Lemma 5.56, T −1(x) contains an extreme point of P(D). Therefore, there
exists some s ∈ D such that δs ∈ T −1(x), and consequently T (δs) = x. By (5.10),
however, T (δs) = s, and so x = s ∈ D. The result follows. �

5.9 Haar Measure on Compact Groups

We now turn our attention to topological groups. We saw in Sect. 3.4 that if G is
a compact abelian metrizable group, then there exists a unique translation-invariant
probability measure on G. We noted at the time that the metrizability assumption
was not needed. Now, using the tools of the previous sections, we will extend this
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result to include compact topological groups that are not abelian. Let us review some
definitions.

Definition 5.60 A group G is called a topological group if the set G is endowed
with a topology for which the group operations (multiplication and inversion)

(s, t) �→ s · t and s �→ s−1, (s, t) ∈ G × G,

are continuous. If G is compact in the given topology, then G is called a compact
group.

Classical examples of topological groups include R
n (where the group multipli-

cation is given by addition) and the set of orthogonal n × n matrices On (where the
group multiplication is matrix multiplication). Multiplication in a group is usually
denoted either with a dot (·) or by juxtaposition. When the group is abelian, however,
it is traditional to use a plus symbol (+), provided it will not result in any confusion.

When G is a compact group, we denote the space of continuous functions on G

by C(G). The σ -algebra on G is implicitly taken to be the Borel σ -algebra generated
by the open sets in G. We denote the Borel σ -algebra on G by B.

Definition 5.61 Let G be a compact group with Borel algebra B. A measure μ on G

is called left-invariant if μ(gB) = μ(B) for all B ∈ B and g ∈ G. Correspondingly,
the measure μ is called right-invariant if μ(Bg) = μ(B) for all B ∈ B and g ∈ G.

Theorem 5.62 (Existence of Haar Measure) Suppose G is a compact group. There
exists a unique left-invariant probability measure on the Borel sets of G. Furthermore,
this measure is also the unique right-invariant probability measure on the Borel sets
of G.

Proof First, we assume we can find a left-invariant probability measure λ and a
right-invariant probability measure μ. We will show that λ = μ. (Notice that this
will imply uniqueness.)

Let f ∈ C(G). By Fubini’s Theorem,
∫

G

( ∫

G

f (s · t) λ(dt)
)

μ(ds) =
∫

G

( ∫

G

f (s · t) μ(ds)
)

λ(dt). (5.11)

By the left-invariance of λ,
∫

G

( ∫

G

f (s · t) λ(dt)
)

μ(ds) =
∫

G

( ∫

G

f (t) λ(dt)
)

μ(ds) =
∫

G

f (t) λ(dt),

since μ(G) = 1. Similarly, by the right-invariance of μ,
∫

G

( ∫

G

f (s · t) μ(ds)
)

λ(dt) =
∫

G

( ∫

G

f (s) μ(ds)
)

λ(dt) =
∫

G

f (s) μ(ds),

since λ(G) = 1. Substituting into (5.11), we obtain
∫

G

f (t) λ(dt) =
∫

G

f (s) μ(ds).

The choice of f ∈ C(G) was arbitrary, and so by duality we conclude λ = μ.
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It remains to prove the existence of a left-invariant measure on G. (A similar
argument will produce a right-invariant measure.) We begin by defining for each
s ∈ G a left-multiplication operator Ls : C(G) → C(G) by

(Lsf )(t) = f (s · t), t ∈ G.

Observe that ‖Ls‖ = 1, L−1
s = Ls−1 , and Lu ◦Ls = Lu·s , whenever u and s are in G.

Claim 1 Let f ∈ C(G). The map s �→ Lsf is continuous from G into C(G).

We wish to estimate, for s and s ′ in G, the quantity

‖Lsf − Ls′f ‖∞ = sup
t∈G

|f (s · t) − f (s ′ · t)|.

Multiplication in the group is continuous, and so the map (s, t) �→ f (s · t) is contin-
uous on G×G. Since the group G is compact, we conclude the map (s, t) �→ f (s · t)
is in fact uniformly continuous. Therefore, for any given ε > 0, there exists an
open neighborhood Vε of the identity such that |f (s · t) − f (s ′ · t ′)| < ε whenever
s ′ · s−1 ∈ Vε and t ′ · t−1 ∈ Vε . In this case, we have t ′ = t , and so if s ′ · s−1 ∈ Vε ,
then

‖Lsf − Ls′f ‖∞ = sup
t∈G

|f (s · t) − f (s ′ · t)| < ε.

This proves Claim 1.

Claim 2 Let μ ∈ C(G). The map s �→ L∗
s μ is w∗-continuous from G into M(G).

Observe that L∗
s : M(G) → M(G). Then, for f ∈ C(G), by the definition of the

adjoint,
∫

f dL∗
s μ = ∫

Lsf dμ. If s and s ′ are in G, then

∣
∣
∣

∫

G

f dL∗
s μ−

∫

G

f dL∗
s′μ
∣
∣
∣ =

∣
∣
∣

∫

G

Lsf dμ−
∫

G

Ls′f dμ

∣
∣
∣ ≤ ‖Lsf−Ls′f ‖∞‖μ‖M.

The rest follows from Claim 1.

Claim 3 If s ∈ G, then L∗
s (P(G)) ⊆ P(G).

If f ≥ 0, then
∫

f dL∗
s μ = ∫

Lsf dμ ≥ 0, whenever μ ≥ 0. Thus, L∗
s μ ≥ 0 for

any μ ∈ P(G). Furthermore,

L∗
s μ(G) =

∫

G

1 L∗
s μ(dt) =

∫

G

Ls(1) μ(dt) = μ(G) = 1.

Thus, L∗
s μ is in P(G) whenever μ is a probability measure. This proves Claim 3.

The gist of Claim 3 is that the set P(G) is invariant under multiplication on the
left; i.e., P(G) is left-invariant. We wish to find a set with this property that contains
only one element. To that end, let K be the collection of all weak∗-compact convex
subsets of P(G) that are left-invariant; that is, all weak∗-compact convex subsets K

such that L∗
s K ⊆ K for all s ∈ G. Define a partial order ≤ on K so that A ≤ B when

A ⊆ B. We know that K is nonempty, because P(G) ∈ K. If (Ci)i∈I is a chain in K,
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then C =⋂
i∈I Ci is nonempty, by the Finite Intersection Property. Furthermore, C

is a lower bound for the chain (Ci)i∈I . Therefore, by Zorn’s Lemma, there exists a
minimal element of K, say K .

We wish to show that K is a single-point set. Assume to the contrary that μ1 and
μ2 are distinct elements in K . Let ν = 1

2 (μ1 + μ2). Then ν ∈ K , by convexity.
Define a new set E = {L∗

s ν : s ∈ G}. By Claim 2, the set E is weak∗-compact (as
the image of the compact set G under a weak∗-continuous mapping). Furthermore,
E ⊆ K , by the left-invariance of K .

For all u and s in G,

L∗
u(L∗

s ν) = L∗
uL

∗
s ν = L∗

s·uν ∈ E.

Thus L∗
u(E) ⊆ E, and so E is left-invariant.

Let K0 = co(w∗)(E). The set K0 is convex by construction. We also have that
K0 is weak∗-compact, because it is weak∗-closed in the weak∗-compact set K . By
construction, K0 is left-invariant, and so K0 ∈ K. But K0 ⊆ K and K is minimal in
K. Therefore, K = K0.

By the Krein–Milman Theorem (Theorem 5.53), there is some extreme point in
K; and by Milman’s Theorem (Theorem 5.59), every extreme point of K is in E.
Therefore, there exists some s ∈ G such that L∗

s ν is extreme in K . Recalling the
definition of ν, we see that

L∗
s ν = 1

2
(L∗

s μ1 + L∗
s μ2).

But L∗
s μ1 and L∗

s μ2 are in K , by left-invariance, and L∗
s ν is extreme in K . Therefore,

L∗
s ν = L∗

s μ1 = L∗
s μ2. If we multiply all sides of this equation by s−1 on the left

(that is, apply L∗
s−1 to all sides), we discover that ν = μ1 = μ2. This violates the

assumption that μ1 and μ2 are distinct. Thus, K contains only one element, say λ.
The measure λ is the desired left-invariant probability measure on G.

Definition 5.63 Let G be a compact group. The unique left-invariant probability
measure on the Borel subsets of G is called Haar measure on G.

5.10 The Banach–Stone Theorem

In this section, we prove a classical theorem about the structure of spaces of contin-
uous functions. We recall that two Banach spaces X and Y are called isometrically
isomorphic if there exists a continuous linear bijection that preserves norms. That is,
if there exists some linear bijection T : X → Y such that ‖T ‖ = ‖T −1‖ = 1.

Theorem 5.64 (Banach–Stone Theorem) Suppose K1 and K2 are compact Haus-
dorff spaces. If C(K1) and C(K2) are isometrically isomorphic, then K1 and K2 are
homeomorphic. Furthermore, if T : C(K1) → C(K2) is an isometric isomorphism,
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then there exists some u ∈ C(K2) such that |u(s)| = 1 for all s ∈ K2, and such that

Tf (s) = u(s) f (φ(s)), s ∈ K2,

where φ : K2 → K1 is a homeomorphism.

Before proving the Banach–Stone Theorem, we will provide a simple lemma that
will not only help us now, but will come in handy later, too. In order to prove this
lemma, however, we need to make use of another result from general topology.

Theorem 5.65 (Urysohn’s Lemma) A topological space X is normal if and only if
any two disjoint closed subsets A and B can be separated by a continuous function.
That is, if there exists a continuous function f : X → [0, 1] such that f |A = 0 and
f |B = 1.

We recall that a topological space X is normal if for disjoint closed sets E and
F , there exist disjoint open sets U and V such that E ⊆ U and F ⊆ V . We will not
prove Urysohn’s Lemma; however, we will observe that, as a consequence, if K is a
compact Hausdorff space, then C(K) separates the points of K . That is, if a and b

are distinct points in K , then there is a function f ∈ C(K) such that f (a) = 0 and
f (b) = 1. (See Exercise 5.7.)

Lemma 5.66 Let K be a compact Hausdorff space. If Δ = {δs : s ∈ K}, then K is
homeomorphic to Δ with the subspace topology inherited from (M(K), w∗).

Proof We remind the reader that for each s ∈ K , the Dirac measure at s is a measure
δs defined so that

∫
K

f dδs = f (s) for all f ∈ C(K). The set Δ is closed in the w∗
topology and Δ ⊆ BM(K). Therefore, Δ is w∗-compact.

Define a map ψ:K→Δ by ψ(s) = δs for every s ∈ K . Clearly, ψ is a surjection.
Suppose that s and t are two distinct points in K such that ψ(s) = ψ(t). Then
δs = δt . This means that δs(f ) = δt (f ) for all f ∈ C(K). Thus, f (s) = f (t) for
all f ∈ C(K). This contradicts the fact that C(K) separates the points of K . (See
the comments before the statement of Lemma 5.66.) Therefore, ψ(s) = ψ(t) only if
s = t , and so ψ is an injection as well as a surjection.

We next show that ψ is a homeomorphism by showing that it is a continuous
closed map (so that it maps closed sets to closed sets). Certainly, ψ is continuous in
the w∗ topology on Δ, since for every f ∈ C(K),

ψ(s)(f ) =
∫

K

f dδs = f (s), s ∈ K ,

and because f is continuous (by assumption). Now let F be a closed set in K . Then F

is compact, because it is a closed subset of the compact set K . Since ψ is continuous
for Δ with the w∗ topology, it follows that ψ(F ) is w∗-compact in Δ. Since ψ(F ) is a
compact set in a Hausdorff topology, it must be closed (in that topology). Therefore,
ψ is a closed map, and it follows that ψ is a homeomorphism. (See Exercise 5.4.)

We are now prepared to prove the Banach–Stone Theorem.

Proof of Theorem 5.64 Let K1 and K2 be compact Hausdorff spaces and suppose
T : C(K1) → C(K2) is an isometric isomorphism. We wish to show that K1 and K2
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are homeomorphic. Observe that T maps extreme points of BC(K1) to extreme points
of BC(K2). To see this, let f be an extreme point in BC(K1) and suppose that g and h

are functions in BC(K2) such that Tf = 1
2 (g + h). Then f = 1

2 (T −1g + T −1h), and
from this we deduce that T −1g = T −1h = f (because f is an extreme point). It
follows that g = h = Tf , and so Tf is an extreme point in BC(K2) whenever f is an
extreme point in BC(K1). In particular, since χK1 (which is identically equal to 1 on
K1) is extreme in BC(K1), its image T (χK1 ) is extreme in BC(K2). Consequently, we
have that |T (χK1 )(s)| = 1 for all s ∈ K2.

If we define an operator S : C(K1) → C(K2) by Sf = (Tf )/T (χK1 ) for all
functions f ∈ C(K1), then S is an isometry such that S(χK1 ) = χK2 . Therefore, we
may assume without loss of generality that T (χK1 ) = χK2 .

The adjoint T ∗ : M(K2) → M(K1) is also an isometry because (T ∗)−1 = (T −1)∗,
and so T ∗(BM(K2)) = BM(K1). Suppose μ ∈ P(K2). Then

(T ∗μ)(K1) =
∫

K1

1 d T ∗μ =
∫

K2

T (1) dμ =
∫

K2

1 dμ = μ(K2) = 1.

(Here we use the fact that χK1 = 1 on K1 and χK2 = 1 on K2.) The measure T ∗μ is
then an element of BM(K1) such that T ∗μ(K1) = 1. It can be shown that these two
facts imply that T ∗μ ∈ P(K1). (See Exercise 5.28.)

As an isometry, T ∗ will map extreme points to extreme points. By Proposi-
tion 5.57, the extreme points in M(K1) and M(K2) are the Dirac masses, and so
for each s ∈ K2, there must be some ts ∈ K1 (depending on s) such that T ∗δs = δts .
Define a map φ : K2 → K1 by φ(s) = ts for each s ∈ K2. Then,

T ∗δs = δφ(s), s ∈ K2.

The map φ is a bijection from K2 onto K1, which follows from the fact that T ∗ is a
bijection from M(K2) onto M(K1). We wish to show that φ is a homeomorphism,
and as such we must show that both φ and φ−1 are continuous.

Let ψ : K1 → {δt : t ∈ K1} and ϕ : K2 → {δs : s ∈ K2} be defined by ψ(t) = δt

and ϕ(s) = δs for all t ∈ K1 and s ∈ K2. By Lemma 5.66, the maps ψ and ϕ are
homeomorphisms. Observe that, for all s ∈ K2,

φ(s) = ψ−1(δφ(s)) = ψ−1(T ∗δs) = (ψ−1 ◦ T ∗ ◦ ϕ)(s).

We assumed T was continuous, and hence T ∗ : M(K2) → M(K1) is weak∗-to-
weak∗ continuous, by Proposition 5.44. Therefore, φ is continuous. Similarly, we
can show that φ−1 = ϕ−1 ◦ (T −1)∗ ◦ ψ , and so φ−1 is continuous. Thus, φ is a
homeomorphism.

Finally, we have

Tf (s) =
∫

K2

(Tf ) dδs =
∫

K1

f d(T ∗δs) =
∫

K1

f dδφ(s) = f (φ(s)).

The factor u appearing in the statement of the theorem does not appear now because
of the normalization we made at the beginning of the proof. Had we not assumed
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T (χK1 ) = χK2 , then we would have u = T (χK1 ), which is a function with the
property that |T (χK1 )(s)| = 1 for all s ∈ K2.

Remark T here are other ways to prove that K1 and K2 are homeomorphic using
properties of C(K1) and C(K2). For example, it is possible to prove that K1 and
K2 are homeomorphic using only the fact that C(K1) and C(K2) are isomorphic as
rings, so that no norm structure is required in the proof. (See [15] for more.)

Exercises

Exercise 5.1 Let a and b be real numbers such that a < b. Show explicitly that
(a, b) is not a compact set in R by finding an open cover with no finite subcover.
(Use the standard topology on R.)

Exercise 5.2 Prove the following theorems:

(a) Every closed subset of a compact space is compact.
(b) The image of a compact space under a continuous map is compact.
(c) Every compact subset of a Hausdorff space is closed.
(d) Let X be a compact space and Y be a Hausdorff space. If f : X → Y is

continuous, then f is a closed map. (That is, f (C) is closed in Y whenever C is
closed in X.)

Exercise 5.3 Let K be a compact topological space and suppose φ : K → E is a
continuous one-to-one map, where E is a Hausdorff topological space. Show that φ

is a homeomorphism onto its image φ(K). (Hint: See Exercise 5.2.)

Exercise 5.4 Let X and Y be topological spaces. If φ : X → Y is a continuous
closed bijection, show that φ is a homeomorphism.

Exercise 5.5 Let X be a Hausdorff space. If A and B are disjoint compact subsets
of X, then show there exist disjoint open sets U and V such that A ⊆ U and B ⊆ V .

Exercise 5.6 Suppose X is a compact Hausdorff space. Show that X is a normal
space. That is, if E and F are disjoint closed subsets of X, show there exist disjoint
open sets U and V such that E ⊆ U and F ⊆ V . (Hint: Use Exercise 5.5.)

Exercise 5.7 Suppose X is a compact Hausdorff space. Use Urysohn’s Lemma
(Theorem 5.65) and Exercise 5.6 to show that C(X) separates the points of X. That
is, if a and b are distinct points in X, show there is a function f ∈ C(X) such that
f (a) = 0 and f (b) = 1.

Exercise 5.8 Show that limits in a Hausdorff space are unique. That is, if X is a
Hausdorff space, show that a sequence (xn)∞n=1 in X cannot converge to two distinct
limits x and x̃.

Exercise 5.9 Prove a metric space is second countable if and only if it is separable.
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Exercise 5.10 (a) Suppose (M , d) is a metric space and A is a set. If f : A → M is
an injective function, show that dA(x, y) = d(f (x), f (y)) for (x, y) ∈ A×A defines
a metric on A.
(b) Show that ρ(x, y) = | log (y/x)| defines a metric on the set R

+ = (0,∞).

Exercise 5.11 Let d(x, y) = |φ(x) − φ(y)|, where φ(x) = x/(1 + |x|). Show that
d is a metric on R that is not complete.

Exercise 5.12 Show that the space Lp(0, 1), where 0 < p < 1, is a complete metric
space with metric d(f , g) = ‖f − g‖p

p, where ‖f ‖p
p = ∫ 1

0 |f (t)|p dt. (Hint: Use
Lemma 2..4, which still applies in this case, despite the fact that ‖ · ‖p

p is not a norm.)

Exercise 5.13 Let L0(0, 1) denote the space of all (equivalence classes of) Lebesgue
measurable functions on [0, 1]. Define

d(f , g) =
∫ 1

0
min

(
1, |f (s) − g(s)|

)
ds, {f , g} ⊆ L0(0, 1).

Prove that d is a metric on L0(0, 1). Furthermore, show that d(fn, f ) → 0 if and
only if f → 0 in measure. Conclude that L0(0, 1) is a topological vector space (i.e.,
show that addition and scalar multiplication are continuous).

Exercise 5.14 Show that any continuous linear functional on L0(0, 1) is identically
zero.

Exercise 5.15 Suppose (Ω , μ) is a positive measure space such that μ(Ω) = 1.

(a) If 0 < p < q ≤ 1, then show ‖f ‖p ≤ ‖f ‖q for all measurable functions f .
(b) Assume that f is a measurable function such that ‖f ‖r < ∞ for some r ≤ 1.

Prove that

lim
p→0+

‖f ‖p = exp
( ∫

Ω

log |f (ω)|μ(dω)
)

,

where we adopt the convention that e−∞ = 0.

(Compare to Exercise 2.13.)

Exercise 5.16 Suppose (Ω , μ) is a positive measure space such that μ(Ω) = 1. Let
L0(μ) denote the space of all (equivalence classes of) μ-measurable functions on Ω .
For any measurable function f , define

‖f ‖0 = exp
( ∫

Ω

log |f (ω)|μ(dω)
)
.

(See Exercise 5.15.) If d(f , g) = ‖f − g‖0 for all measurable functions f and g in
L0(μ), does d define a metric on L0(μ)?

Exercise 5.17 Let X be a locally convex topological vector space with η a base of
absolutely convex neighborhoods of 0. Verify that the topology on X is generated by
the family of Minkowski functionals {pU }U∈η. Deduce that xn → 0 in X if and only
if pU (xn) → 0 for all U ∈ η.
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Exercise 5.18 Consider the set ∂B�2 = {x ∈ �2 : ‖x‖2 = 1}. Show that ∂B�2 is
closed in the norm topology, but not the weak topology on �2. (This example shows
that the convexity assumption cannot be omitted from Mazur’s Theorem.)

Exercise 5.19 Let K be a compact subset of a Hausdorff topological vector space E,
and suppose C is a closed subset of E. Show that C −K = {x − y : x ∈ C, y ∈ K}
is a closed subset of E.

Exercise 5.20 Let E be a locally convex topological vector space and suppose K is
a closed linear subspace of E. If x0 �∈ K , show that there exists a continuous linear
functional f ∈ E∗ such that f (x0) = 1, but f (x) = 0 for all x ∈ K .

Exercise 5.21 Let E be a real locally convex topological vector space. Suppose K is
a nonempty compact convex subset of E, and C is a nonempty closed convex subset
of E, and that K ∩C = ∅. Show there is a continuous linear functional φ on E such
that

inf
x∈C

φ(x) > sup
y∈K

φ(y).

(We say φ separates K and C.)

Exercise 5.22 Let X be a real Banach space and let E be a weak∗-closed subspace
of X∗. If φ is a weak∗ continuous linear functional on E with ‖φ‖ = 1, show for
any ε > 0 there exists an x ∈ X with ‖x‖ < 1 + ε such that φ(e∗) = e∗(x) for all
e∗ ∈ E. (Hint: Consider the sets C = {e∗ ∈ E : φ(e∗) = 1} and K = (1+ε)−1BX∗ .)

Exercise 5.23 Let (X, ‖ · ‖) be a real reflexive Banach space and let φ ∈ X∗. Define
a map f : X → R by f (x) = 1

2‖x‖2 − φ(x) for all x ∈ X. Show that f attains a
minimum value.

Exercise 5.24 Let (fn)∞n=1 be a bounded sequence in C[0, 1]. Show that fn(s) → 0
for every s ∈ [0, 1] if and only if fn → 0 weakly.

Exercise 5.25 Let p ∈ [1,∞) and for each n ∈ N let en be the sequence with 1
in the nth coordinate, and 0 elsewhere. Show that the sequence (nen)∞n=1 does not
converge weakly to 0 in �p. (Compare to Example 5.28.)

Exercise 5.26 Let p ∈ (1,∞) and for each n ∈ N define a function fn : [0, 1] → R

by fn(x) = n1/pχ[0,1/n](x) for all x ∈ [0, 1]. Show that fn → 0 weakly in Lp(0, 1),
but not in norm. (Recall that χA is the characteristic function of the measurable
set A.)

Exercise 5.27 Suppose K is a real compact Hausdorff space. Show that the set
P(K) of regular Borel probability measures on K is a convex and w∗-closed subset
of M(K), the set of regular Borel measures on K . Show that P(K) is an extremal
set in the unit ball of M(K). (See Sect. 5.8.)

Exercise 5.28 Let K be a compact Hausdorff space and let ν be a Borel measure on
K so that ‖ν‖M(K) ≤ 1 and ν(K) = 1. Show that ν is a probability measure.
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Exercise 5.29 Let G be a group that is also a topological space. Show that G is a
topological group if and only if the map g : G×G → G defined by g(x, y) = x−1y

is continuous.

Exercise 5.30 Let X be a real separable Banach space. Show that BX∗ is metrizable
in the weak∗ topology. (Hint: Let (xn)∞n=1 be a countable dense subset in X and define
φ(x∗) = (x∗(xn))∞n=1 ∈ R

N.)

Exercise 5.31 Let X be a Banach space. If x ∈ X, use the Banach–Alaoglu Theorem
to prove that there exists an element x∗ ∈ X∗ such that ‖x∗‖ = 1 and x∗(x) = ‖x‖.
(Note: We proved this in Proposition 3.29 using the Hahn–Banach Theorem.)

Exercise 5.32 A subset E of a topological vector space X is called bounded if for
every open neighborhood V of 0, there exists an n ∈ N such that E ⊆ nV . Show
that any compact subset of a topological vector space is bounded.

Exercise 5.33 A topological vector space X has the Heine–Borel property if every
closed and bounded subset of X is compact. (See Exercise 5.32 for the definition of
a bounded set in a topological vector space.)

(a) Show that a Banach space has the Heine–Borel property if and only if it is
finite-dimensional. (Hint: Use Lemma 5.36.)

(b) Show that (X∗, w∗) has the Heine–Borel property if X is a Banach space.

Exercise 5.34 Show that C[0, 1] is not reflexive by showing that BC[0,1] is not
compact in the weak topology. (Hint: Find a Λ ∈ C[0, 1]∗ such that Λ(BC[0,1])
is open.)

Exercise 5.35 Let X be an infinite-dimensional Banach space. Show that (X∗, w∗)
is of the first category in itself.
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