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Abstract Scientific applications are becoming data intensive, and traditional
load-balance solutions require reconsideration for scaling data and computation in
various parallel systems. This chapter examines state-transition applications, which
is a representative scientific application that handles grand-challenging problems
(e.g., weather forecasting and ocean prediction) and relates to intensive data. We
propose an adaptive workload partitioning and allocation scheme for parallelizing
state-transition applications in various parallel systems. Existing schemes
insufficiently balance both computation of complicated scientific algorithms and
increasing volumes of scientific data simultaneously. Our solution addresses this
problem by introducing a time metric to unify the workloads of computation and
data. System profiles in terms of CPU and I/O speeds are considered for embracing
system diversity, suggesting accurate estimation of workload. The solution consists
of two major components: (1) an adaptive decomposition scheme that uses the
quad-tree structure to break up workload and manage data dependency; and (2)
a decentralized scheme for distributing workload across processors. Experimental
results from real-world weather data demonstrate that the solution outperforms other
partitioning schemes, and can be readily ported to diverse systems with satisfactory
performance.

1 Introduction

Modern scientific applications are becoming data intensive and increasingly rely
on various computing systems to analyze data and discover insights quickly. Low-
cost sensors and other scientific technologies (e.g., fine-granularity computing
models) drive the increase of scale of scientific data. Scientists start to explore new
computing systems such as clouds to scale data and computation in an extended
deployment while spending reduced cost. As a consequence, solutions effective
in traditional computing settings require reconsideration for performance purpose.
In this chapter, we use state-transition scientific application as an example to
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discuss modifications when porting traditional solutions to new computing settings.
Specifically, the adaptive partitioning and allocation methods for processing state-
transition applications in a load-balance manner are examined.

State-transition applications tackle grand-challenge scientific problems (e.g.,
weather forecasting [1] and ocean prediction [2]). They simulate the evolvement of
environments, named states, such as atmosphere, ocean, and so on. Sensors or other
scientific instruments are deployed in environments for collecting observations.
Ideally, these observations can be used to predict the changes of environments
directly. But in reality, errors are generally common in them. For example,
measurements from scientific instruments might not be accurate, fluctuations exist
in environments, or the underlying mathematical models may be inaccurate. As a
result, observations need to be calibrated before describing environmental states.
State-transition algorithms are applied here for calibrating observations using
previous states.

Most applications of interest in this domain are modeled in a 2D or 3D coordinate
space, and need to handle two independent datasets (represented as logic arrays) for
observations and states. These two arrays need to follow a same decomposition
pattern and distribute partitioned blocks across a parallel system (e.g., a cluster, a
virtual organization in a grid, or a virtual cluster in clouds). Observations typically
reflect fluctuations of the environment and exist in a few local regions where
significant phenomena occur, resulting in a sparse array. To address such dynamism,
adaptive partitioning solutions [3–7] are typically used to balance the distribution
of computation of observations, generating blocks of different sizes for the data
of states. While many state-transition applications increasingly use a growing
volume of scientific data for high-resolution, extended-coverage and timely results,
solutions that balance the computation of observations need to balance the data of
states as well.

In addition, to make solutions portable across various parallel computing sys-
tems, performance profiles of systems need to be considered. Modern HPC clusters
are often built with different hardware configurations, indicating different CPU and
I/O speeds [8]. Newly emerging virtual clusters are built using various types of
virtual machines to meet various computing needs. New issues due to virtualization,
such as network jitters [9] and processor sharing [10] on Amazon EC2, affect the
performance as well. As profiles reflect CPU and I/O speeds, we should adjust
workload partitioning and allocation schemes accordingly to match different system
profiles.

1.1 Summary of Contributions

In this chapter, we present an adaptive partitioning and load-balancing scheme,
called Apala, for balancing state-transition applications in a computer cluster
system. Apala consists of an adaptive decomposition scheme for decompos-
ing arrays into blocks to maximize parallelism and a decentralized scheme for
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distributing blocks across processors. Based on the quad-tree [11] structure, blocks
are decomposed adaptively and recursively. The distributing scheme distributes
the blocks across processors by leveraging the linear representation of the quad-
tree structure. Techniques of virtual decomposition and finding-side-neighbor are
proposed for organizing data dependencies of updating “halos” (i.e., accessing non-
local distributed arrays [12, 13]) between adjacent blocks.

An important feature of Apala is that the decomposition decision is based on
both computation and data. Balancing either one independently suggests different
decomposition patterns. To consider both jointly, Apala introduces a time metric
to unify the workloads of computation and data. More specifically, the workload
in terms of time is calculated by adding the time of computing observations (i.e.,
computation amount/system’s CPU speed) and that of loading the data of states
(i.e., data amount/system’s I/O speed).

1.2 Organization

The rest of this chapter is organized as follows. We discuss related work in Sect. 2.
The partitioning problems in parallelizing state-transition applications are described
in Sect. 3. Section 4 presents Apala, including unifying the workloads of com-
putation and data with the consideration of system profiles, decomposing unified
workloads adaptively, and distributing workloads across processors. Experimental
results are given for comparing Apala with other partitioning schemes and showing
Apala’s portability in Sect. 5. We conclude our work in “Conclusion” section.

2 Related Work

Efficient partitioning and balancing of workloads in parallel systems are both
needed to achieve good performance and scalability. The scientific computing
community has made significant efforts in partitioning computations using a number
of non-overlapping regular blocks while minimizing the maximally loaded block.
Adaptive partitioning methods are widely used in the presence of computation
skews [3–5, 7, 15].

The GBD [5, 15] partitioning, also called rectilinear partitioning, uses
(M�1)*(N�1) lines to decompose a 2D domain into M*N blocks. In case
computations distribute non-uniformly in the domain, these blocks are of different
sizes but contain the same amount of computations. The GBD partitioning is widely
applied [19] due to its approved load-balance effectiveness and easy-to-organize
communications of block boundaries. [5] also proposes a semi-GBD partitioning.
The semi-GBD first uses M�1 lines to divide a 2D domain into M stripes. Then,
it either divides every stripe into N blocks (called M�N-way jagged partitioning),
or divides each stripe according to the amount of computations the stripe contains



134 X. Yang and X. Li

(called M-way jagged partitioning) that stripes need not to have the same number
of blocks. According to [7], the semi-GBD partitioning has a better load-balance
effectiveness in some cases. However, synchronization complexity increases. The
HB [3] partitioning is an adaptive and recursive partitioning method similar to the
quad-tree structure we use. Different from the quad-tree manner, HB uses a split to
divide a block into two sub-blocks every time.

These adaptive partitioning methods require a global view of computations to
determine the placement of lines or splits. They also imply a significant overhead
of finalizing a decomposition pattern for a domain, i.e., the domain is scanned
again and again to determine every partitioning decision. In parallel environments,
maintaining a global view for intensive computations and data is hardly feasible,
and frequent workload scans incur substantial overheads. Apala overcomes these by
presenting a distributed partitioning method that every processor partitions a local
block independently. There is no need to maintain a global view of workloads in
Apala, and the scan is for the local block only.

Although finding an optimal decomposition plan is NP-hard [20], many parallel
frameworks use heuristics to integrate these adaptive partitioning methods for
handling computation skews at runtime, such as [21, 22] for the adaptive mesh
refinement problem. Apala resembles them but uses a decentralized strategy to par-
tition the workload instead of the centralized mechanisms used in these frameworks.

Data is playing a more important role in state-transition applications. Apala
explicitly considers data in its partitioning decisions and uses a time metric to
unify computation and data according to system profiles. A related work to Apala
is Mammoth [13] that processes state-transition applications using a MapReduce
system. For the load imbalance issue, Mammoth relies on a runtime management
by launching shadow tasks for heavy blocks. SkewReduce [23] is a specially
designed system for feature-extracting scientific applications. SkewReduce defines
two cost functions to estimate the costs of the partitioning and merging operations.
A block will be bi-partitioned if the performance gain of parallelizing the two parts
outweighs the partitioning and merging costs. SkewReduce samples the data to
estimate the workload and guide the partitioning. Its MapReduce programming
model and runtime make it easy-to-use and efficient. In contrast, Apala still
addresses the partitioning and load-balance problem in the conventional MPI
programming model.

workload workload

P1

P2

P3

P4

P1

P2

P3

P4

Fig. 1 Example of parallelizing a state-transition application by equally partitioning
the computation (dark blue) or by equally partitioning the data (light blue). For both scenarios,
the computation and the data cannot be equally partitioned simultaneously, and consequently the
workloads allocated to processors P1, P2, P3, and P4, are not equal (Color figure online)
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3 Problem Description

For state-transition applications, the workloads of computation and data are deter-
mined by observations and states, respectively. The data of observations is generally
of small size and does not bring in data workloads in terms of I/Os. An efficient
parallelization scheme needs to partition and balance both workloads. However, the
inconsistent distributions of the two workloads complicate the parallelization work.
Consider the example in Fig. 1. The state-transition application of the weather data
assimilation is modeled in a 2D coordinate space with a bounding domain, and
changes of states (e.g., severe regional weather phenomena) are observed in a small
region. Balancing the parallelization of this application’s computation may result in
the partitioning illustrated by the dash lines. We can see that, although the workload
of computation is balanced, the workload of data corresponding to block size is not.
Likewise, partitioning with the consideration of balancing data (illustrated by lines)
suffers from the imbalanced partitioning of computation.

The partitioning problem becomes more complex if porting the parallelization
work across different systems. Although the application’s computation scale and
data volume are constant, the CPU and I/O times spent on computing and loading
data vary as systems have different CPU and I/O speeds. The length of the bars
indicating the workloads of computation and data in Fig. 1 will change when porting
to different systems due to their different profiles. Consequently, the partitioning
strategies should be adjusted accordingly.

4 Apala

Apala features three key design merits: (1) it unifies and balances computation and
data requirements; (2) it leverages the quad-tree structure to conduct the adaptive
and recursive decomposition; (3) it utilizes a decentralized mechanism to distribute
workloads across processors for load balance.

4.1 Unifying Workloads

Apala unifies the workloads of computation and data by quantifying the two in
terms of time. Specifically, Apala first estimates the time needed for computing
the observations as well as for loading the data of states. The combined time is then
considered for partitioning. Ideally, every processor spends an equal amount of time
on loading and computing its assigned workload.

Two factors affect the time estimation: the speed of loading the states and the
speed of computing the observations. In our work, we mainly consider the system’s
CPU and I/O speeds. Consider a simple example of processing a block on two
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Fig. 2 Apala consists of two major steps: decomposing and partitioning. The decomposing step
generates a decomposition plan for the application, and the partitioning step adjusts workload
allocations among processors for load balance. The decomposing step involves three detailed sub-
steps. (1) The entire application is uniformly decomposed, and each processor takes one equal-
sized block. (2) Each processor independently generates an adaptive decomposition using the quad-
tree structure. This decomposition is for the local block only. (3) Some blocks are “virtually”
decomposed for finding side neighbors to set up data dependencies across processors

clusters, cluster1 and cluster2. cluster1 features 2,000 average MOPS
(Million Operations Per Second) CPU speed and 100 average MBPS (Megabytes
Per Second) I/O speed, while cluster2 has 1,500 average MOPS CPU speed
and 1,000 average MBPS I/O speed. If the block associates with 100 MB data of
states and needs 100 million CPU operations to compute observations using state-
transition algorithms, its unified workload on cluster1 is 100

100
C 100

2;000
D 1:05 s,

while that on cluster2 is 100
1;000

C 100
1;500

D 0:17 s.

4.2 Decomposing the Unified Workload

Apala decomposes the unified workload into blocks for exposing parallelism as
much as possible. In addition, the decomposition should be well structured so
that synchronizations among blocks are organizable. Apala exploits the quad-tree
structure in its decomposition scheme. A block with an intensive workload will
be decomposed into four equal-sized sub-blocks. Each sub-block is checked to
determine if further decomposition is needed. The decomposition continues until
every block has a bounded workload.

There are two advantages for the quad-tree structure. First, blocks are regularly
decomposed in which every decomposition operation generates four equal-sized
sub-blocks. The decomposition shape is critical to simplify synchronization com-
plexity and consequently reduce synchronization overhead. Rectangles are the most
preferred shape to decompose 2D workloads for such purpose [7, 14], and quad-
decomposing blocks can guarantee this. Second, it is easy to follow the quad-tree
manner and decompose blocks adaptively and recursively.
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Algorithm 1: Local decomposition
Require: L: single-layer workload (2D) of the state-transition application

N : number of processors
i : processor id

Ensure: Pi : local decomposition at processor i

1: Threshold T  L
N

2: Decomposition Qi  ¿; Pi  ¿
3: block p uniform_decompose(L, i , N )
4: Qi  Qi [ fpg
5: repeat
6: block p choose the first block from Qi

7: if p:wl > T then
8: blocks subs quad_decompose(p)
9: for all block p0 in subs do

10: if p0:wl > T then
11: Qi  Qi [ p0

12: else
13: Pi  Pi [ p0

14: end if
15: end for
16: else
17: Pi  Pi [ p

18: end if
19: until Qi ¤ ¿
20: return Pi

Although state-transition applications are typically modeled in a 3D coordinate
space, the workload decomposing is conducted layer by layer along the vertical
direction (z-axis). All layers apply the same 2D decomposition. So we describe the
decomposition scheme based on the 2D array of a single layer in the following.

The decomposition is summarized in Algorithm 1. At the beginning, the 2D
array is uniformly decomposed into blocks, one for each processor. Every processor
independently decomposes its local block in the adaptive and recursive manner.
The block’s workload is computed, and the block will be decomposed into four
equal-sized sub-blocks if it exceeds the threshold. We define the threshold as the
average workload across the system, i.e., the number of processors divides the
amount of workloads. This recursive decomposing operation continues for every
sub-block until each of them meets the threshold. This procedure is analogous to
the construction of a quad-tree: the initial local block corresponds to the root; the
sub-blocks that contain heavy workloads and are further decomposed correspond to
internal nodes; and the final sub-blocks correspond to the leaves.

Synchronizations between adjacent blocks for swapping “halo” updates also
benefit from the quad-tree structure. Data dependencies among blocks can be set
up by finding side neighbors for the leaves in the quad-tree, and synchronizations
occur when adjacent blocks are distributed to different processors. The algorithm
introduced in [11] can be used for side-neighbor-finding, but it is restricted to
find side neighbors with equal or larger size. As illustrated in Fig. 2, block G’s
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Algorithm 2: Building block dependencies
Require: P : “virtually decomposed” blocks

r : node (block that finds neighbors)
d : direction where to find neighbors

Ensure: S : set of neighbor nodes
1: set vdnodes nodes in P decomposed from r

2: for node sub_r in vdnodes do
3: node p ancestor node of both r and its neighbor
4: addr address of sub_r to p

5: addr mirror operation
6: node dest tree traversal from p using addr
7: S  S [ fdestg
8: end for
9: return S

left-side neighbor will be ambiguous when using this algorithm as there are two such
neighbors. We circumvent this restriction by introducing the virtual decomposition
technique: large blocks are virtually decomposed as finely as the smallest one.
As a result, finding a side neighbor for a large block is split into finding a set of
side neighbors for its virtual sub-blocks. The decomposition is virtual because the
original block is the minimum unit of distributing workloads. The virtual blocks
will not be distributed separately to different processors, nor will there be data
dependencies among these virtual blocks.

Building data dependencies for blocks is conducted via the quad-tree traversal.
We use node and block interchangeably to ease the understanding of operations
related to the quad-tree structure. The concept of address is used: except the root,
the address of a quad-tree node is defined as its corresponding block’s position in
its super-block (i.e., LT as lefttop, LB as leftbottom, RB as rightbottom, and RT as
righttop). Two nodes can concatenate the addresses between them as path to refer
to each other. The node (or sub-node from the virtual decomposition) locates its
side neighbor in three steps: first, finds the path to the common ancestor of the
neighbor; second, executes a mirror operation on the path; finally, search down
from the ancestor along the mirrored path. The mirror operation replaces every L/R
with R/L if the direction is left or right, or every T/B with B/T if the direction is
top or bottom, along the path. Algorithm 2 summarizes the procedure of building
dependency. An example is given in Fig. 2 that block G is virtually decomposed for
finding its two left side neighbors, i.e., C and D.

4.3 Distributing the Unified Workload

Apala’s distributing scheme is responsible for mapping blocks to processors with
the consideration of load balance. It is based on the linear representation of the
quad-tree at every processor and a decentralized scheme for re-mapping blocks from
overloaded processors to underloaded ones.
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The linear representation is generated using the in-order traversal of quad-tree
leaves. A block’s four sub-blocks are mapped in the order of “TL, BL, BR, TR”
(counterclockwise order from topleft). Further decomposition of any sub-block
is represented by replacing it with an expanded mapping of its sub-blocks (e.g.,
decomposing the topleft in “TL, BL, BR, TR” will generate the mapping of “[TL,
BL, BR, TR], BL, BR, TR”). This linear representation eases the distributing work
of mapping blocks to processors. The first a few blocks with the total workload
approximating the threshold will be reserved for the local processor. The rest will
be distributed to underloaded processors. Recall that the quad-tree structure is used
for building dependencies for blocks. The block distributed to other processors
can explore its neighbor blocks quickly, and subsequently processors can set up
communication for swapping “halo” updates.

Overloaded processors distribute their extra workloads to underloaded ones
in a decentralized manner. Every processor independently checks the available
capacity of every underloaded processor, sorts the blocks to be distributed in the
ascending order according to their workloads, and maps every such block to the first
underloaded processor that is available.

This decentralized mechanism allows an overloaded processor to complete its
distributing action quickly. However, it might also lead to a situation that too
many overloaded processors push workloads to the same underloaded processor
simultaneously, resulting in a new overloaded processor. To overcome this, we
introduce a throttle factor � to control the amount of workload an overloaded
processor can push to an underloaded one. Algorithm 3 outlines this decentralized
distributing scheme.

Algorithm 3: Decentralized distributing scheme
Require: Pi : the blocks at processor i

L: workload amount
N : number of processors

1: blocks to be distributed O  ¿
2: P l

i ; P r
i  divides Pi that P l

i are blocks reserved locally and P r
i are to be distributed.

3: O  O [ P r
i

4: sort(O)
5: Ta  L

N

6: for all underloaded processors j do
7: j:f ree � � .Ta � j:wl/

8: end for
9: for block p in O do

10: for all underloaded processors j do
11: if p:wl � j:f ree then
12: p:owner  j ;
13: j:wl  j:wl C p:wl

14: j:f ree j:f ree � p:wl

15: end if
16: end for
17: end for



140 X. Yang and X. Li

5 Evaluation

In this section, we present the experimental evaluation. It includes two parts: (1)
comparing Apala with other partitioning schemes (i.e., uniform partitioning, Gen-
eralized Block Distribution (GBD) [5, 15], and Hierarchical Bipartition (HB) [3])
in terms of the effectiveness of load balance; (2) evaluating Apala’s portability of
adjusting its partitioning and load-balance scheme according to system profiles; (3)
evaluating Apala’s overhead of partitioning.

5.1 Setup

Applications and Datasets The state-transition application of weather data assim-
ilation [16] is used. It models states of the environment and observations of the
atmosphere in a 3D bounding box. The data assimilation algorithm is performed
layer-by-layer along the z-axis and point-by-point within each layer. At every point,
the states and the observations are assimilated for new states. These states will not
only update the point itself but also the neighbor points in a 4 � 4 “halo”.

We use two datasets (Fig. 3) in the evaluation. The first contains 75 GB data of
states and 25 MB data of observations, while the second contains 19 GB data of

Fig. 3 The datasets we use in the experimental evaluation. The first dataset is from the Center for
Analysis and Prediction of Storms at the University of Oklahoma, which described the observations
covering the Oklahama state on May 20, 2010. The second one was captured from weather.com,
which described the observations covering Gainesville, Florida on January 1, 2012. Both are
modeled in the 3D coordinate space but showed with the 2D view. The first is bounded in a
1;323 � 963 � 10 box, while the second is bounded in a 400 � 400 � 20 box. The decomposition
patterns with different schemes for both datasets are illustrated as well
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states and 3 MB data of observations. Both states and observations are stored in
the key-value format in plain text files, i.e., “x,y,z,var1,var2,. . . ,varN” for states
and “x,y,z,ob” for observations, where “x,y,z” represents the coordinate, “varI”
represents the environmental variable, and “ob” represents the observation.

Computer Clusters We use four clusters for the evaluation: two HPC clusters
of Alamo and Sierra at FutureGrid, and two virtual clusters, EC2.Small and
EC2.Large, consisting of Amazon EC2 small and large instances, respectively.

Each node at Alamo contains two 2.66 GHz Intel Xeon X5550 processors (four
cores per processor) and 12 GB memory and is interconnected via InfiniBand.
Alamo uses a NFS-based parallel file system for the shared data storage. Each
node at Sierra contains two 2.5 GHz Intel Xeon L5420 processors (four cores per
processor) and 32 GB memory and is also interconnected via InfiniBand. Sierra uses
a ZFS file system for the shared data storage.

Each small instance in EC2.Small has 1 EC2 compute unit, 1.7 GB memory, and
moderate I/O speed, while each large instance in EC2.Large has four EC2 compute
units, 7.5 GB memory, and high I/O speed. Due to the virtualization overhead, the
two virtual clusters perform much more moderately (particularly the EC2.Small
cluster) than the physical HPC clusters. For their data storage, we create an Amazon
EBS (Elastic Block Service) volume, attach it to a dedicated instance, and mount it
to the cluster using the NFS file system.

Benchmark Tools We use the NAS Parallel Benchmark (NPB) [17] and the IOR
HPC benchmark [18] to measure the CPU and I/O speeds for every cluster. The
NPB consists of several benchmarks that simulate the computational fluid dynamics
applications, and these applications cover various computing patterns. The CPU
speeds of these benchmarks are averaged, and the average value is used to represent
the CPU speed of the cluster. To measure the I/O speed, the IOR HPC benchmark
is used to reproduce the I/O patterns of our data assimilation application, i.e.,
concurrently and randomly accessing a continuous block of a single file. Table 1
lists the profiles of the CPU and I/O speeds of the four clusters.

Table 1 Profiles of the
clusters

Alamo Sierra EC2.Large EC2.Small

I/O (Read, MB/s) 1233 1099 938 478

I/O (Write, MB/s) 391 70 15 16

CPU (MOPS) 824 351 128 33

Implementation Apala is implemented using C++ with the standard MPI-2 library.
It reads the benchmark results describing system profiles (i.e., the CPU speed and
the I/O speed) from a configure file. The paths to the data of states and observations
are contained in this file as well. Apala generates a quad-tree-based decomposition
plan using a partition method, and allocates the workload to processors using a
distribute method. For each processor, its workload allocation is organized as a list
of rectangular blocks. These blocks are represented using indexes of arrays (i.e., the
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bottom-left coordinate and the top-right coordinate). State-transition algorithms are
programmed from the perspective of an individual point. For updates in “halos”
that are out of original blocks, Apala has a synchronize method for users to
manage synchronizations. Indexes of points and data dependencies are built when
generating decomposition plans, and they are used to drive the synchronize method.
An aggregate method is opened for users to define how to finalize the result of a
point covered by multiple “halos”.

We set the throttle factor � to 0.5, implying at most half of the processors can
push their workloads to an underloaded one. Note that every result in the following
figures is the average value of five runs. The error bars are small, indicating
performance fluctuations are marginal, even on virtual clusters.

5.2 Decomposition Patterns

Two static partitioning strategies, “DataPart” and “CompPart”, are used for the
comparison purpose. The “DataPart” partitions the workload according to the data
of states only, while the “CompPart” accords to that of observations only. Figure 3
illustrates the decomposition patterns of using “DataPart”, “CompPart”, and Apala
to decompose both datasets for eight processors. We can see that, “DataPart”
generates a uniform decomposition as the data of states indicating I/Os distributes
evenly, “CompPart” generates a much finer decomposition for the regions with
dense observations. In comparison, the decomposition from Apala is in between
due to its comprehensive consideration of computation and data.

Fig. 4 Comparison of the
load balance effectiveness
among Uniform, GBD, HB,
and Apala, with the first
dataset
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Fig. 5 Comparison of the
load balance effectiveness
among Uniform, GBD, HB,
and Apala, with the second
dataset
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5.3 Effectiveness of Load Balance

The effectiveness of load balance is measured according to .Max � Avg/=Avg,
where Max is the execution time of the longest processor, and Avg represents the
average execution time of all the processors. Smaller values indicate better load
balance.

The results comparing Apala with other partitioning schemes are presented in
Figs. 4 and 5 for the two datasets, respectively. We can see that, Apala outperforms
the partitioning schemes of uniform, GBD, and HB for both datasets by at most ten
times. Uniform, GBD, and HB partition the workload according to the computation
only. Ignoring the workload of loading the large volume of states results in load
imbalance. The first dataset shows more significant imbalance. That is because the
observations in the first dataset mainly concentrate on hot spots, and the block sizes
are more diverse after decomposition. However, Apala performs stably because it
accounts for both computation and data.

5.4 Portability

When porting to a new computer cluster, the CPU and I/O speeds of the system
change, and Apala will adjust its workload estimation and the subsequent partition-
ing and load-balance scheme. To evaluate Apala’s portability, we deploy Apala to
the four clusters and compare its performance to static (not portable) partitioning
strategies. Due to space limit, only results about the first dataset is presented in this
paper.

According to the CPU and I/O speeds listed in Table 1, Alamo and Sierra show
excellent CPU and I/O speeds. EC2.Large and EC2.Small are expected to present
poor I/O speeds due to using the shared EBS volume. All the I/Os for the data of
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Fig. 6 Comparison of the
execution time of “DataPart”,
“CompPart”, and Apala on
the Alamo cluster, with the
first dataset
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Fig. 7 Comparison of the
execution time of “DataPart”,
“CompPart”, and Apala on
the Sierra cluster, with the
first dataset
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Fig. 8 Comparison of the
execution time of “DataPart”,
“CompPart”, and Apala on
the EC2.Large cluster, with
the first dataset
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states will be directed to the shared EBS storage. EC2.Small also shows a poor CPU
speed due to the shared use of physical processors [10].

Intuitively, for the system that has a fast I/O speed, the time spent on loading the
data of states is relatively short in the workload estimation, and partitioning using
“CompPart” that depends on observations is preferred (and vice versa for the system
with a fast CPU speed).
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Fig. 9 Comparison of the
execution time of “DataPart”,
“CompPart”, and Apala on
the EC2.Small cluster, with
the first dataset
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We use “DataPart”, “CompPart” and Apala to partition the first dataset for the
evaluation of portability. Results are presented in Figs. 6, 7, 8, and 9. As “DataPart”
and “CompPart” are static, their partitioning and load-balance schemes are constant
across systems. We can observe that, partitioning according to observations out-
performs that based on states for Alamo, Sierra and EC2.Small, while partitioning
according to states performs better on EC2.Large. This matches our expectation that
partitioning according to the weak factor yields a better load balance. In contrast,
Apala always shows excellent performance on all systems. It outperforms both static
schemes significantly on the HPC clusters and almost performs best on the virtual
clusters (ties with “DataPart” on EC2.Large and “CompPart” on EC2.Small). The
reason is straightforward, jointly considering computation and data always benefits
the partitioning and load-balance scheme.

5.5 Overhead of Partitioning

We measure the partitioning overhead for Apala with the two datasets and show
the results in Figs. 10 and 11. Since the results cover all the four clusters, they are
normalized to be plotted in the same figure. For each cluster, the execution time
with 8 processors is set to 1, and the values with 16, 32, 64, and 128 processors
are adjusted proportionally. The “CPU+I/O” parts for Apala include scientific
computations and data loads. The “Synchronization” parts represent the time Apala
spends on MPI_Isend, MPI_Irecv, and MPI_Barrier. The “Partitioning Overhead”
means processors are decomposing their local blocks and distributing the workload
to (or receiving from) others for load balance. At each tick, the four bars from the
left to the right represent Alamo, Sierra, EC2.Large, and EC2.Small, respectively.

We can see that the partitioning overhead in Apala is minimal for both datasets
on all the clusters. This is reasonable as each processor only estimates its local
workload, and such estimation is merely based on the data size, the computation
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Fig. 10 Comparison of the
CPU+I/O, the
synchronization, and the
partitioning overhead in terms
of time on the four clusters,
the first dataset
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Fig. 11 Comparison of the
CPU+I/O, the
synchronization, and the
partitioning overhead in terms
of time on the four clusters,
the second dataset
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scale, and system profiles. The partitioning overhead increases with respect to the
number of processors, as distributing the workloads involves more processors, and
the communication complexity increases accordingly.

Conclusion
In this chapter, we presented Apala, an adaptive workload partitioning and
allocation scheme for parallelizing data intensive state-transition applications
in various parallel systems. State-transition applications are representative
data-intensive scientific applications. They generally tackle grand-challenge
problems (e.g., weather forecasting, ocean prediction) and involve extremely
complex algorithms. Apala considers both computation and data in its
workload partitioning and allocation scheme. It introduces a time metric for
unifying the workloads of computation and data and profiles systems for
accurate workload estimation. The quad-tree structure is used to represent

(continued)
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the procedure of breaking up arrays into blocks, and techniques of virtual
decomposition and finding-side-neighbors are introduced to organize data
dependency. A decentralized distributing strategy is applied for distributing
blocks across processors. Experimental results from the real-world data
show that, Apala outperforms other partitioning schemes in terms of the
effectiveness of load balance by at most ten times. Moreover, it shows
excellent portability on diverse systems from HPC clusters to virtual clusters
in clouds and incurs marginal overhead of partitioning.
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