Managed File Transfer as a Cloud Service

Brandon Ross, Engin Arslan, Bing Zhang, and Tevfik Kosar

Abstract Applications in science and industry have become increasingly complex
and more demanding in terms of their computational and data requirements. Sharing
and disseminating large datasets has become a big challenge despite the deployment
of petascale computing systems and optical networking speeds reaching into the
hundreds of gigabits per second. Having high-speed networks in place is necessary
but not sufficient for achieving high data transfer rates. Being able to effectively
use high-speed networks is becoming increasingly important for cloud computing.
Cloud-hosted managed file transfer (MFT) applications simplify high-performance
data transfer in the cloud by efficiently utilizing underlying networks and effectively
coscheduling concurrent data transfer tasks. This chapter explores the concept of
MFT in the cloud and looks at the design and implementation of one such MFT
system—StorkCloud—as a case study.

1 Introduction

Data analysis is now more important to industrial and scientific research than
ever before. As its importance has grown, so too has the need to share and
analyze the very large datasets that are now commonplace in research. Large
scientific experiments, including environmental and coastal hazard prediction [15],
climate modeling [13], high-energy physics simulations, and genome mapping [7]
generate petascale data volumes on a yearly basis [11]. Data collected from remote
sensors and satellites, dynamic data-driven applications, and digital libraries and
preservations also produce large datasets [9,20].

Today, a large portion of big-data processing and analysis is performed with the
help of cloud services. Economies of scale have made outsourcing the processing
of this data to distributed cloud services a popular alternative to deploying and
maintaining similar services on-site. However, this change in system architecture
from local to distributed has not come without its complications. The importance

B. Ross ¢ E. Arslan * B. Zhang ¢ T. Kosar (<)

Department of Computer Science & Engineering, University at Buffalo,

The State University of New York, 338] Davis Hall, Buffalo, NY 14260, USA

e-mail: bwross @buffalo.edu; earslan@buffalo.edu; bingzhan @buffalo.edu; tkosar @buftalo.edu

© Springer Science+Business Media New York 2014 379
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__16

mailto:bwross@buffalo.edu
mailto:earslan@buffalo.edu
mailto:bingzhan@buffalo.edu
mailto:tkosar@buffalo.edu

380 B. Ross et al.

of data analysis to modern research and industry necessitates global collaboration
and sharing among many organizations, which results in frequent large-scale data
movements across widely distributed sites.

Several national and regional optical networking initiatives such as Internet2 [4],
ESnet [3], XSEDE/TeraGrid [21], and LONI [18] provide high-speed network
infrastructure for sharing this data, and recent developments in networking technol-
ogy make high-speed optical links reaching up to and beyond 100 Gbps in capacity
available [1] for members of the scientific community. Yet despite the availability of
these high-speed wide-area networks and the use of modern data transfer protocols
designed for high performance, data transfers in practice often only attain fractions
of their theoretical maximum throughput. Indeed, many organizations even resort
to sending their data through shipment services such as UPS or FedEx rather
than moving data through the Internet [10]. This inability to fully utilize network
infrastructure and easily move data is a contributing factor to the “data deluge” we
are now in the midst of.

From this, it is apparent that having high-speed networking infrastructure in place
is a necessary but not sufficient condition for performing high-speed data transfers.
Being able to effectively use these high-speed networks is increasingly important
for wide-area data replication and federated cloud computing in a distributed
setting. Doing so requires effectively coscheduling and dynamically optimizing data
replication tasks in a way that maximizes transfer efficiency and minimizes resource
contention.

A number of cloud services have been established that aim to do just this.
These cloud-based managed file transfer (MFT) applications offer a solution to the
problem of making effective use of networking infrastructure for cloud data transfer
by providing a service-based approach to the planning, scheduling, monitoring,
and management of data placement tasks. Their position as a centralized and
dedicated data transfer coordination system allows these services to offer increased
data transfer reliability and security, effectively coschedule concurrent data transfer
operations, and deliver performance improvements through capabilities such as
connection caching, scheduled storage management, and end-to-end throughput
optimization for broad ranges of data-intensive cloud computing applications and
storage systems. This chapter will introduce the concept of MFT and describe its
role in today’s widely distributed cloud computing ecosystem.

StorkCloud, developed by the Data Intensive Distributed Computing Lab at the
University at Buffalo, is one example of an MFT system, and will be used as a case
study of such systems in this chapter.

This chapter will also discuss various data transfer optimization techniques that
can be employed by MFT applications. Techniques such as command pipelining,
data channel parallelism, concurrent file transfers, and other techniques which can
mitigate the factors which lead to poor network utilization will be discussed, along
with algorithms and heuristics which can be used in centralized scheduling to
increase long-term transfer throughput.

Managed File Transfer as a Cloud Service 381
2 The Problem of Data Insolubility

The complementary roles of processing and storage have a long history in the field
of computing. The flow of data from storage medium to locus of processing and
back again could be said to be computation’s defining feature. Given the importance
of computation to all modern technology, it’s no surprise that bigger data storage
and faster processing systems are always in demand.

With the advent of cloud computing and the benefits it brings, outsourcing
data storage and processing to the cloud is a very compelling option for many
organizations versus providing such services on-site. However, the transition to
the cloud has not been without its difficulties, particularly where data needs to be
moved to, from, and especially within the cloud—activities that are becoming more
common as both storage media and loci of processing disappear into the cloud.

Most storage services focus on data storage primarily and offer simple—usually
proprietary—data transfer schemes solely for the purpose of allowing clients to store
and retrieve data directly. As their primary focus is on storage, they typically do not
concern themselves heavily with transfer performance, optimization, scheduling, or
the details of the underlying transfer protocols. Migrating or copying data between
cloud storage services also poses a challenge due to the proprietary data access
solutions employed by many cloud storage providers. Indeed, storage services may
even have incentive to keep it that way if it makes it more difficult for a client to
switch to a competitor.

Staging data into cloud data processing centers from an external storage system
poses similar challenges. These processing services often either provide their own
proprietary data staging schemes, or otherwise require users to manage data place-
ment themselves. In most cases, unless the cloud storage service and computation
service are both managed by the same provider, the exercise of moving data from
one site to the other is a detail left to the client. Cloud computation services, like
storage services, likewise do not usually concern themselves much with transfer
performance. The data staging process is frequently treated like an afterthought, or
at least something outside of the provider’s domain of concern.

This insularity has unfortunately led to an ecosystem in which users must make
sacrifices in order to reap the cloud’s benefits. Either they forsake flexibility and
constrain their applications to services explicitly designed to exchange data—
usually limited to a single provider or a small handful of cooperating ones—or
else they take on the burden of custom rigging their own data transfer solution, as
well as guaranteeing its reliability, security, compliance to regulation, availability,
performance, and future maintainability. Is this choice between inconvenience and
inflexibility not antithetical to the nature of the cloud, whose very benediction is
supposed to be the flexibility and convenience it offers over traditional solutions?

382 B. Ross et al.
2.1 Solutions

There are two immediately apparent solutions to the problem of data insolubility in
the cloud:

1. widespread agreement on and subsequent deployment of an open standard for
data placement, or
2. the institution of services which manage data transfer on clients’ behalf.

The first solution has a number of issues. Whose standard do we use? Many
competing standards, open and otherwise, already exist and have not seen
widespread adoption. History tells us that new “universal” standards intended
to replace competing standards often turn out to be just another competing standard,
exacerbating the problem. Furthermore, as was mentioned, cloud storage providers
have economic incentive to continue using proprietary standards. The inertia
required to change the ecosystem at the provider level likely makes this approach
infeasible, at least in the short term.

The second solution is perhaps a more feasible approach, and the one that
seems to be gaining the most traction. Cloud-hosted MFT applications which aim
to provide large-scale data placement between remote sites have begun to appear
as recently as 2010. These services provide a “software as a service” (SaaS)
approach to data management, and purport to offer a solution to the problems of
vendor lock-in and incompatible APIs (application programming interfaces) that
are responsible for the data insolubility problem we face today.

At the very least, MFT in the cloud provides a stopgap measure to mitigate these
problems. However, these services also confer a wide range of potential benefits and
new possibilities, as we shall soon see. Indeed, the future may very well find MFT
a valuable and permanent resident in the cloud ecosystem.

3 Managed File Transfer

Before going any further, a clarification must be made regarding the meaning of the
“MFT” as used in this chapter. MFT has been used in the past to describe any kind of
solution which facilitates large-scale secure data transfer over wide areas and allows
organizations to centrally control and monitor data transfers as they take place. This
includes hardware and software installed on local sites to manage the movement of
data into and out of the physical premises in which the data is stored or processed.

This chapter uses the term MFT to describe such a solution provided as a cloud
service—that is, entirely off-site and without special provisions at the endpoints.
Each instance of “MFT” in this text could very well be replaced with “MFT as a
service” or “MFT in the cloud”, however this would be considerably more onerous
to read, and should be obvious given the subject of this book. It should be assumed
that when “MFT” is used in this chapter it is referring to MFT as a cloud service
unless otherwise noted.

Managed File Transfer as a Cloud Service 383

A distinction must also be made between MFT applications and other types
of services which are commonly identified as data or file transfer services. Many
so-called data transfer services are temporary data storage systems used as an
intermediary for exchanging files between individuals. In these systems, file data is
uploaded to the hosting system by the sender and stored there for a limited amount
of time or until it has been retrieved by the recipient. Such services are mostly
indistinguishable from cloud storage services, with the difference being that files are
hosted temporarily with the intention of being downloaded only by a small number
of recipients.

An MFT application, in contrast, is used to schedule and coordinate data transfers
between distributed endpoints, in a sense acting as “glue” for data storage and pro-
cessing systems in the cloud. MFT applications do not necessarily act as a physical
intermediary for data, though they are of course not excluded from doing so. They
may instead communicate with remote storage systems using protocols understood
by the end systems, and negotiate direct system-to-system transfers without data
flowing through the MFT system. Such transfers are called third-party transfers.
An MFT system might offer temporary data hosting (sometimes called “data
parking” in this context) in order to offer improved transfer reliability, though this
is not necessarily the case.

MFT introduces a number of benefits over ad hoc data transfer implementations.
For one, MFT services can offer asynchronous “fire-and-forget” functionality,
where a client can specify an immediate or future data transfer and delegate
reliability and performance concerns to the MFT system. The system will monitor
transfer progress and deal with issues as they arise. Clients can check on transfer
progress through the system, cancel or reschedule transfers if they so desire, and be
notified by the system when the transfer completes or if it cannot be completed.

MFT applications can also provide support for numerous transfer protocols, and
even perform translations between otherwise incompatible protocols by acting as an
intermediary. This allows existing storage infrastructure to be used without needing
to reconfigure end systems to “speak” the same protocols.

MFT applications may also offer suites of transfer performance optimizers to
algorithmically tweak transfer settings and schedule transfers in order to minimize
conflicts and avoid network congestion. Such optimizers can take into account
transfer priority and user-specified deadlines. An MFT system can also maintain
a historical transfer performance database for different systems to better estimate
transfer completion time and schedule transfers to meet deadlines.

An MFT system should also be able to access remote system directory listings
and file metadata for the systems and protocols it supports and present it in a unified
format. In most cases, the capability of accessing remote metadata is a prerequisite
for performing remote data transfers in first place, making the provision of directory
listing information by an MFT system straightforward. In this chapter, a service
offering such functionality is referred to as a directory listing service (DLS). Such
services can be used for the development of interactive interfaces for browsing file
system hierarchies on remote endpoints. With user interactivity in mind, a DLS may
also take measures to improve the responsiveness of metadata and listing access
operations by, for example, caching and prefetching directory listings.

384 B. Ross et al.

As is typical of cloud services, an MFT system should offer both a graphical
(typically web-based) front end for users to interact with the system, as well as an
API for allowing programmatic access to the system’s services and the development
of third-party client applications. The availability of a machine-accessible API is
important for an MFT system to serve its role as an in-cloud connectivity layer
between distributed cloud-based data storage and processing services.

Lastly, MFT applications can relieve users of the burden of having to manage
transfer security themselves. Such applications can securely manage remote system
credentials on a per-user or per-organization basis, allowing clients to schedule
regular secure transfers and reduce the frequency of credential exchanges with
the system. MFT applications may also take the steps necessary to comply with
regulations regarding secure and private transfer of sensitive data, such as those put
forth in HIPAA.!

An MFT application has the advantage of not needing to invest heavily in either
storage or computation resources. Instead, the only critical resource in an MFT
system is network connectivity, allowing for inexpensive, geographically distributed
deployment of the system.

3.1 Examples of MFT

A number of MFT services exhibiting some or all of these features already exist and
are well-established in the cloud ecosystem. Even at the time of writing this list is
not complete; these are only a few examples.

Globus® is a service offered by The Globus Alliance at the University of
Chicago [6]. It is aimed at the scientific community and, introduced in November
2010, is one of the earliest examples of an MFT service in the cloud. Globus offers
fire-and-forget GridFTP file transfers as a service, and provides a web-based front
end to their transfer scheduler, as well as a unified interface for requesting authen-
tication credentials for various well-known Grid computing resources. In addition,
the interface offers the ability to graphically list and browse directory contents on
remote GridFTP servers in real time. Globus also applies a number of heuristic
optimizations to its transfers [12] which will be detailed later in the chapter.

Ipswitch’s MOVEit Cloud® is an MFT service aimed at enterprise organiza-
tions with large-scale data requirements [5]. MOVEit Cloud is built on top of
Ipswitch’s MOVEit File Transfer application. MOVEit Cloud supports a number
of protocols and authentication mechanisms, secure person-to-person file transfers,
and is HIPAA and PCI compliant.

'The Health Insurance Portability and Accountability Act of 1996—a United States legislative act
regarding the privacy of medical records.

Zhttp://globus.org/.

3http://www.moveitmanagedfiletransfer.com/.

http://globus.org/
 http://www.moveitmanagedfiletransfer.com/

Managed File Transfer as a Cloud Service 385

Mover* is another MFT application designed for use with popular cloud-hosted
data storage systems such as Dropbox and SkyDrive, though it also supports
transfers via FTP and WebDAV [2]. Mover provides an interface for browsing
cloud storage systems and a web-based REST API for interacting with the service
programmatically. It can be used to schedule future and recurring data transfers, and
offers a simplified method for reusing transfer parameters using transfer templates.

StorkCloud’ is an MFT application created by the Data Intensive Distributed
Computing Lab at the University at Buffalo (Fig. 1). It provides support for a number
of data transfer protocols and storage systems, including FTP, GridFTP, HTTP,
SMTP, BitTorrent, SCP/SFTP, and iRODS, as well as a collection of protocol-
agnostic transfer optimization algorithms. The architecture of StorkCloud will be
discussed in detail as a case study of an MFT system in the next section.

4 StorkCloud

StorkCloud is an MFT application based on open source software and is available
to the public free of charge. This chapter will take an in depth look at StorkCloud as
a case study on the design and implementation of MFT systems.

The major components of the StorkCloud system include:

* an extensible multi-protocol transfer job scheduler for queuing, scheduling,
monitoring, and optimizing data transfer jobs;

* a directory listing service (DLS) for prefetching and caching remote directory
metadata in the cloud to minimize response time to users;

* a web API adhering to representational state transfer (REST) design principles;

* pluggable transfer modules which can be used to communicate and negotiate
with different data transfer protocols and storage systems; and

* pluggable protocol-agnostic optimization modules which can be used to dynam-
ically optimize various transfer settings to improve performance.

StorkCloud schedules, optimizes, and monitors data transfer requests from users
through its lightweight thin client utilities (including an Android application, a
web browser interface, and command line tools). The API it exposes through its
client interface layer can be used by third-party clients and libraries, allowing for
StorkCloud to be used as a data connectivity layer in federated cloud systems.
The StorkCloud core is written in Java and is open source. The source code can
be downloaded from the Stork GitHub repository.®

“https://mover.io/.
Shttps://storkcloud.org/.
Shttps://github.com/didclab/stork.

https://mover.io/
https://storkcloud.org/
https://github.com/didclab/stork

386 B. Ross et al.

FTP Server FTP Server

,,,,,, » Control

[StorkCloud P
’SCP/SFTP‘ ’ FTP/GridFTP ‘ ’ HTTP ‘

~

’ Transfer Module Interface ‘

’ Cred. Manager ‘ ’ Scheduler ‘ ’ DLS ‘

’ Client Interface ‘

A A
) |

- H ! J

e

OoC——
Mobile
Web Browser D

Fig. 1 This illustration depicts the interactions between StorkCloud system components

4.1 StorkCloud Scheduler

StorkCloud’s scheduler is a modular, multi-protocol task scheduler which handles
the queuing and execution of data transfer jobs and ensures that they complete
successfully and in a timely manner. The scheduler’s external module interface
allows arbitrary protocol support to be implemented as standalone modules and
introduced to the system with minimal hassle. As the core component of the
StorkCloud system, the scheduler’s job is to take in transfer jobs and provide clients
with information about the progress of jobs upon request.

Jobs submitted to the scheduler are assigned a numerical identifier—the job
ID—which can be used to reference jobs in subsequent requests. The scheduler
can be queried to obtain a job status report, which includes information such as the
source and destination endpoint URLSs, the job state (e.g., scheduled, in progress,
failed, complete), the size of the transfer in bytes, the progress of the transfer,
instantaneous and average transfer speeds, job submission and start times, and
estimated transfer completion time.

StorkCloud provides additional reliability to cloud data transfers via data transfer
checkpointing and checksumming for protocols that support them, as well as
alternative protocol fallback mechanisms. These are especially useful in large file
transfers where the likelihood of errors over the lifetime of a transfer is increased.

StorkCloud also provides mechanisms to monitor end-to-end data transfer tasks
to provide clients with real-time progress information as well as to detect failures
and performance problems as early as possible. StorkCloud’s error reporting
framework can distinguish the locus of failure (e.g, network, server, client, software,
hardware) in the event of problems, classify problems as transient or permanent,

Managed File Transfer as a Cloud Service 387

and provide possible recovery options. These error detection, classification, and
recovery mechanisms provide greater reliability and agility to transfers performed
by the system.

The StorkCloud scheduler is based heavily on the Stork Data Scheduler [16]. The
Stork Data Scheduler is considered to be one of the first examples of data scheduling
and optimization tools and has been actively used in many data-intensive application
areas including coastal hazard prediction and storm surge modeling, oil flow
and reservoir uncertainty analysis, numerical relativity and black hole collisions,
digital sky imaging educational video processing and behavioral assessment, and
multiscale computational fluid dynamics.

4.2 Directory Listing Service (DLS)

StorkCloud’s Directory Listing Service (DLS) provides a metadata retrieval service
to clients to enable efficient remote file system browsing before issuing a data
transfer request. Conceptually, DLS is an intermediate layer between StorkCloud
thin clients and arbitrary remote data storage systems that provides access to
directory listings as well as other metadata information in a unified format. In that
sense, DLS acts as a centralized metadata server hosted in the cloud. When a thin
client wants to list a directory or access file metadata on a remote server, it sends a
request containing necessary information (i.e., URL of the top directory to perform
listing on, along with required credentials) to DLS, and DLS responds back to the
client with the requested metadata.

During this process, DLS first checks if the requested metadata is available
in its cache. If it is available in the cache (and the provided credentials match
the associated cached credentials, and the cache entry has not expired, etc.), DLS
directly sends the cached information to the client without connecting to the remote
server. Otherwise, it connects to the remote server, retrieves the requested metadata,
and sends it to the client. Meanwhile, several levels of subdirectories will be
prefetched in the background and cached under the assumption that the user will
visit one of the subdirectories in the near future [24].

Any metadata information handled by DLS will be cached and periodically
checked with the remote server to ensure freshness of the information. Clients also
have the option to refresh/update the DLS cache on demand to bypass the cached
metadata and make sure they are receiving the most up-to-date directory listings and
metadata.

4.3 Web API and Thin Client GUIs

StorkCloud exposes a RESTful web API that allows thin clients—or even other
cloud services and applications—to log in to the system, schedule and control
transfer jobs, perform remote directory listings, manage user credentials, and

388 B. Ross et al.

more. Responses to REST requests are represented in JSON, allowing for easy
development of browser-based thin client applications. The web API can also be
used to develop hybrid web applications which may use StorkCloud’s data transfer
or metadata retrieval services in conjunction with other cloud-based services.

StorkCloud provides two thin client user interfaces: a web browser interface
accessible through the StorkCloud website and a native Android client. Through
these interfaces, users can visually observe transfer progress in real time and stop,
pause, and cancel transfer jobs using a point-and-click interface. Users can also
browse two remote servers simultaneously through a graphical interface which
communicates with StorkCloud’s DLS to access remote directory contents. Users
can traverse remote file systems, select files and directories for transfer, and initiate
a transfer between them.

The thin clients provided by StorkCloud cache and prefetch remote directory data
provided by StorkCloud’s DLS—much in the same way as DLS itself—to provide
a much more responsive and interactive user experience.

In addition to these client interfaces which communicate with StorkCloud using
the web API, the open source scheduler component comes bundled with a command
line utility for communicating with the scheduler directly using either HTTP or a
raw TCP connection.

4.4 Transfer Module Interface

StorkCloud acts as a negotiating system between different data storage systems and
protocols. In order to do this, StorkCloud must be able to “speak” the protocols of
the remote systems it aims to coordinate between. This is done using pluggable,
independent “transfer modules” that provide StorkCloud with a uniform interface to
a given protocol or storage system.

The transfer module interface allows StorkCloud users to develop modules to
support their favorite storage systems, protocols, or middleware easily. Modules
can be written in any language recognized by the operating system, as all commu-
nication between the transfer modules and scheduler is done in JSON. Users who
want to have tighter integration with the system as well as better communication
performance may implement transfer modules in Java to communicate directly with
the StorkCloud scheduler in memory.

StorkCloud supports a mechanism for protocol translation for cross-protocol data
movement using the StorkCloud system as a rendezvous point. It also offers direct
access to file data through its HTTP interface, allowing other StorkCloud thin clients
and third-party applications to access data though any supported protocol or storage
system, with StorkCloud operating as a proxy.

Managed File Transfer as a Cloud Service 389
4.5 Optimization Modules

StorkCloud can perform protocol-agnostic optimization of data transfers using
pluggable optimization algorithms. Optimization modules (also called optimizers),
similar to transfer modules, can be plugged into the server, and incoming jobs
can then request an optimization algorithm to be used for the transfer. Optimizers
advertise which parameters they are designed to optimize, and transfer modules can
likewise advertise which parameters they allow to be adjusted.

If a transfer module allows an optimization algorithm to be used, it queries the
optimizer for sample parameters, runs a sample, and reports the throughput back to
the optimizer. The optimizer uses the reported information to determine parameters
for the next sampling, and continues until either the transfer is complete or the
sampling phase is over. This design allows optimizers to be protocol-agnostic—
as long as the transfer module supports the features the optimizer exposes, neither
needs to know the other’s implementation details.

StorkCloud implements a number of dynamic optimization techniques as opti-
mization modules to provide a method for determining which combination of
parameters is “just right” for a given transfer. The optimization techniques Stork-
Cloud implements try to maximize transfer throughput by choosing optimal paral-
lelism, concurrency, and pipelining levels through combinations of sampling, file set
analysis, heuristic clustering, and learning algorithms applied to historical transfer
statistics.

The optimization algorithms StorkCloud supports will be discussed in the
following sections.

5 Transfer Level Throughput Optimization

Oftentimes during the course of a data transfer, one may experience periods of
poor transfer performance where transfer throughput drops to mere fractions of
maximum possible network capacity. Sometimes such effects are intermittent and/or
out of the control of the user, such as during times of heavy network utilization on
shared networks. However, poor transfer performance can be due to a number of
other confounding factors, e.g., underutilization of end system CPU cores, low disk
I/O speeds, traffic at inter-system routing nodes, unsuitable system-level tuning of
networking protocols, servers not taking advantage of parallel I/O opportunities.
Many of these effects can be remedied by properly configuring application-level
transfer settings at either the source or destination endpoints and dynamically
applying combinations of optimization techniques.

This section will cover algorithms and methodologies for optimizing data
placement operations from the perspective of an MFT application.

390 B. Ross et al.
5.1 Optimization Techniques

Per-transfer optimizations can be used to increase the goodput’ of an individual
data transfer. Adjusting transfer parameters and applying different techniques can
play a significant role in increasing transfer throughput. However, determining
the appropriate transfer settings and the degree to which techniques should be
applied can be difficult, and poor application of the techniques can either cause
underutilization of the network or overburden the network and degrade the perfor-
mance due to factors such as increased packet loss. Inappropriate application of
certain techniques can also violate network policies or cause service disruption in
environments with shared resources. It is therefore important that care is taken when
applying optimization techniques so as to avoid potential issues (Fig. 2).

A number of transfer options and techniques can be applied to many different file
transfer protocols, and the appropriateness of their application differer depending on
the nature of the end-system subnets, storage systems, and network interconnects.
This section will talk about some of these techniques and parameters from the
perspective of an MFT system using the following definitions:

¢ Pipelining—This involves queuing up multiple sending or receiving commands
at the end-systems in control channel-based transfer applications, as opposed to
waiting for transfer to complete before issuing subsequent commands. This helps
mitigate the effect of latency in a multi-file transfer.

¢ TCP tuning—A large majority of data transfer protocols are based on TCP,
making TCP tuning techniques a valuable tool for optimizing data transfers.
In particular, TCP tuning refers to reconfiguring end system TCP buffer sizes
to increase performance on networks with high Bandwidth—Delay Products.
However, the effectiveness of this technique only goes so far, as oftentimes end
systems enforce a maximum buffer size that is less than optimal, requiring the
use of other techniques.

e Data channel parallelism (or just parallelism)—This refers to the use of
multiple aggregated data streams (e.g., TCP connections) to a single endpoint,
and can be used to overcome the effect of system level limitations on buffer size.
The throughput of the aggregate channel approximates that of a single connection
with buffer sizes equal to the sum of the individual stream buffer sizes.

e Concurrency—This technique involves transferring different files simultane-
ously, which can take advantage of concurrent I/O in parallel and distributed
storage systems. In some application protocols (e.g., FTP and HTTP), this is
achieved using parallel control channel or session connections, and in those cases
can be used to almost identical effect as parallelism, even when the underlying
storage system does not allow parallel I/O.

7Goodput is the number of useful bits of information transmitted per unit time in a data transfer,
in distinction to the amount of bandwidth actually consumed. The ratio of goodput to throughput
is the transfer efficiency.

Managed File Transfer as a Cloud Service

391

Striping—This is the use of multiple source and/or destination endpoints to
transfer file data to or from a shared (usually networked) storage subsystem. Like
concurrency, this takes advantage of parallel I/O in the storage system, but the use
of multiple endpoint hosts also allows it to take advantage of parallel CPUs and
sometimes network routes. In the context of network data transfers, the concept
of striping is different from, though analogous to, the concept of striping in a disk
storage array.®

Compression—This can increase the efficiency of a transfer by increasing the
number of useful bits of information transferred per transmission unit. However,
the use of compression comes at increased computational overhead at both
endpoints, and might not be worth it in cases where file data is highly random
and thus of poor compressibility.”

a b
g -4
o o
~ ~
(=] (=]
| | : — :
File 1 File 2 File 3 z File1 | File2 | File3 } z

Regular Transfer Pipelining (pp=3)

c d
S B S e File 3 g
[& o
S| |8 _‘ 5 File 2 5
- B 5 5
N = z File 1 | z

File1 File2 File3
Parallelism (p=3) Concurrency (c=3)

Fig. 2 Effects of pipelining, parallelism, and concurrency on network load

8In the context of storage systems, striping refers to dividing file contents across several disks in a

RAID to improve read throughput.

9Specifically this refers to lossless compression, as the file data must be totally reconstructible at
the destination endpoint. This chapter does not consider lossy compression for purposes of data
transfer, though it might be useful depending on the application. Imagining examples of such

applications is left as an exercise for the reader.

392 B. Ross et al.
5.2 Dynamic Optimization

These optimization techniques can be used in combination to different degrees to
improve the efficiency of the transfer, insofar as the underlying transfer protocol
supports them. However, the degree to which each technique should be used—and
when—depends highly on the configuration of the network and end systems, and
temporal network conditions. Oftentimes these factors are not explicitly known by
users initiating transfers, and so automatic optimization subroutines are an enticing
feature for an MFT application to have. Such optimization subroutines can range
from simple heuristics that optimize according to file size or historical performance
to advanced algorithms that discover network conditions on the fly and tune transfer
parameters accordingly.

5.3 Examples in MFT Systems

Globus applies a heuristic optimization for GridFTP transfers based on the average
file size of a dataset. At the time of writing, their optimization heuristic always
transfers two files concurrently, and chooses parallelism and pipelining levels
according to the following rules [12].

e If there are more than 100 files with an average file size smaller than 50 MB,
it uses two parallel data channels per file and pipelines up to 20 outstanding
commands a time. '’

» If the average file size is larger than 250 MB, it uses eight parallel data channels
per file and pipelines up to five outstanding commands.

e In the default case, it uses four parallel data channels and pipelines up to 10
outstanding commands.

StorkCloud employs a number of dynamic throughput optimization algorithms
designed for optimizing different sets of transfer parameters, which users may select
when they submit a transfer job. Some of these algorithms “sense” the network
between the remote endpoints by performing sample transfers and measuring
transfer performance. Others refer to performance information from past transfers
between the same endpoints, or use additional information about end-system and
configuration to choose theoretically optimal transfer settings. The algorithms
provided by StorkCloud include:

10T the case of Globus, a pipelined command does not necessarily correspond to one data
transfer, meaning pipelining in this sense does not precisely fit the definition given earlier in the
chapter. Nevertheless, the relationship between pipelined commands and pipelined data transfers
is effectively linear.

Managed File Transfer as a Cloud Service 393

e anumber of parallel stream modeling and prediction algorithms [14,22,23],

e the Parallelism—Concurrency—Pipelining optimizer which uses historical
database information and clustering, and

e the Single Chunk Concurrency and Multi Chunk Concurrency algorithms
which optimize parallelism, concurrency, and pipelining using clustering and
heuristics [8].

Some transfer options can also be used to limit the maximum speed of a data
transfer. For example, limiting the TCP buffer size will constrain the number of
bits that may be transferred in a given window of time, thus imposing an upper
limit on the speed of the transfer. Though this may seem counterproductive, it can
be useful in cases where a data transfer is low priority or has a far-off deadline,
and minimizing the strain a transfer puts on the network might be desirable. This
technique is especially useful when scheduling simultaneous transfers with known
start times and deadlines.

6 Scheduling Optimization and Reservation

Aside from optimizing individual data transfers for maximum performance, MFT
systems also have the responsibility of coscheduling data transfer jobs of widely
variable scale with arbitrary earliest start times and deadlines specified by clients.

As was mentioned in the beginning of the previous section, drops in transfer
throughput can sometimes be time-dependent, as is often the case with slowdowns
during hours of peak usage. These predictable periods of poor performance can
sometimes be mitigated through effective use of timing strategies, especially in
cases of very large transfers. Strategies which take transfer priority and desired
transfer completion time into account can also increase overall throughput and the
number of transfers which complete successfully before their due time.

In practice, an MFT system will be presented with a variety of data transfer tasks
with different requirements. This can include small jobs that should complete as
quickly as possible, to large, long-running jobs that might have a much broader
window of time for completion. Much of the time these transfer jobs are independent
and can be coscheduled without the risk of competing for resources (e.g., bandwidth
at inter-system routing nodes or end system storage devices). However, there will
inevitably be jobs scheduled with destinations that have overlapping routes or are
transferring from the same source endpoint, as well as jobs that have a deadline
in the far future and need not begin immediately. In these cases, MFT applications
are in an advantageous position to make scheduling decisions that reduce resource
contention and network load, and maximize the number of deadlines met.

This section will discuss algorithms and practical considerations for performing
coscheduling from the perspective of an MFT system.

394 B. Ross et al.
6.1 Coscheduling Algorithms

In the context of data transfer, coscheduling is the process of scheduling multiple
concurrent transfer tasks of varying degrees of dependence on shared resources
while taking into account time constraints and minimizing the lateness—time spent
incomplete after the deadline—of a job. In this sense, the coscheduling problem is
“merely” a problem of mathematical optimization.

A number of algorithms exist for coscheduling transfer tasks to minimize
resource contention, maximize long-term throughput, and reduce the probability
of missing transfer deadlines. Depending on the algorithm used, different sets of
information regarding the underlying network characteristics and the nature and
constraints of the data transfers in question may be necessary.

One intuitive approach to coscheduling involves framing it as a variant of the bin
packing problem with two-dimensional “objects” representing transfer jobs being
packed into “bins” which represent available bandwidth between a given source and
destination. The “volume” of the objects being packed corresponds to the size of
the data that must be transferred for a particular job, and the “dimensions” of the
objects are the throughput of the job at particular times.

The dimensions of the objects can vary subject to the time constraints of the job,
so long as the volume remains the same. This allows for some great variability—
some “squishiness”—in the shape of the object (job) being packed into the bin. It is
even permissible to “split” the objects into unconnected parts by having periods of
time in which the throughput dimension is zero.

By varying the dimensions of object—making them “thinner” or “fatter”—or
splitting them, it may be possible to fit more objects in the bin while satisfying
all the constraints. This packing corresponds to a schedule which satisfies the
constraints of all the jobs being coscheduled. The manipulation of the dimensions
of the objects being packed manifests in actual systems as taking measures which
might at first seem to be counterproductive, such as throttling the rate of a transfer
or intermittently pausing transfers. Despite its counterintuitive nature, the concept
of throttling jobs to achieve overall greater across multiple jobs throughput is an
established and well-explored technique [19].

One difficulty with the bin packing approach, however, is introduced by the fact
that the volume of the bins cannot be so simply defined as “available bandwidth”.
Indeed, faithfully representing the nature of the Internet in the reduced problem
would involve overlapping and interdependent bins corresponding to the convoluted
nature of data paths through the Internet. This detail is likely too fine to capture
in the metaphor of bin packing. Nevertheless, the bin packing reduction of the
coscheduling problem can still be applied with useful results [17].

Managed File Transfer as a Cloud Service 395
6.2 Estimation with Historical Performance Data

In addition to having knowledge about transfers in advance, MFT applications can
also take advantage of historical transfer performance to make better decisions
about future data transfers. This information can be fed into learning algorithms
to discover patterns in network usage and make better predictions about optimal
transfer settings. This historical data can also be exchanged with third-party
scheduling applications or even other MFT services to allow for an even richer
transfer history database to be built collaboratively.

Combining information about historical and future transfer jobs can also be used
to develop better methods for estimating transfer completion time. This information
can be used by MFT schedulers for the sake of making smarter scheduling decisions
and for providing users with better estimations of data transfer duration.

Using its historical transfer database and information about ongoing and sched-
uled transfer jobs, StorkCloud is able to provide information to its clients regarding
available end-to-end throughput for the user, the estimated total time it would take
to transfer a particular dataset, and the parameters that need to be used in order
to achieve the highest end-to-end throughput. If the information necessary to make
this predication cannot be found in the historical database, StorkCloud can perform
dummy transfers on the fly and use the results to make predictions.

This estimation service allows users to test network resources and conditions, and
lets data transfer operations be scheduled in advance with preferred time constraints
given by the user—i.e., the requested earliest start time and desired latest completion
time. It also lets users and higher level meta-schedulers plan ahead and reserve
a time period for their data movement operations. This service can potentially be
used to eliminate long delays in transfer completion and increase utilization by
giving opportunities to provision required network and storage resources in advance,
and also enables third-party data schedulers to make more informed scheduling
decisions by organizing requests and focusing on a specific time frame to maximize
performance and resource utilization.

6.3 Practical Considerations

Although in some cases information regarding underlying networks may be pro-
vided by users, ideally such information would be discovered by the MFT system
itself. However, it may not always be possible to do so, especially when conducting
third-party transfers as many transfer protocols and applications do not offer ways to
collect diagnostics information that may be necessary to determine certain network
characteristics.

For example, because of its decentralized nature, data transfers between Internet
hosts may not always take the same route. Furthermore, the routes a given transfer

396 B. Ross et al.

may take might not be even discoverable by the MFT system (or sometimes even
the remote hosts themselves), because diagnostic protocols for discovering routing
information are not universally implemented and much of the time are blocked by
intermediate routing nodes for purposes of security. This means it might not always
be possible to determine with certainty which data transfers might have overlapping
routes, and thus potentially interfere during data transfers.

Even if the route a given data transfer will take is knowable, because of the
heterogeneous nature of the Internet and the lack of diagnostic protocols for doing
so, it is generally difficult to determine the capacity and transient load of the links
in a route. This makes doing beforehand estimations of the maximum data rate of a
transfer, even knowing the routes it will take, a difficult task.

Another difficulty arises in actually controlling transfer rate and guaranteeing
a transfer will be able to maintain a given rate for the entirety of its scheduled
time. The extent to which an MFT application can utilize these techniques varies
depending on the capabilities of the underlying network, the system’s ability to
control and sense the network between two end systems remotely, and the nature of
the transfer protocol underlying the transfer. The use of reservations on networks
that support them can give an MFT application much more control over and
predictive power regarding a transfer.

One other difficulty is that, given that the bin packing approach is NP-hard, it is
infeasible to expect that an exactly optimal coscheduling can be found in every case.
It is more likely then that a heuristic approach will be necessary in real applications.
Combining a heuristic bin packing approach with machine learning techniques
applied to historical transfer data can likely produce near-optimal schedulings
without succumbing to the potential pitfalls of non-polynomial algorithms.

7 Potential Applications of MFT

Many practical applications exist for MFT in the cloud ecosystem. This section will
list a few possible applications in a cloud-connected environment.

7.1 Cloud Data Placement Middleware

One application that was mentioned earlier in the chapter was using MFT as a sort
of “glue” to bridge the gap between cloud storage and cloud computation services.
Centralized data transfer managers have been used successfully to manage dataset
staging in locally distributed computation systems, e.g. HTCondor [16]. MFT would
fulfill an analogous role and confer the same benefits for cloud-based computation
systems.

Managed File Transfer as a Cloud Service 397

An MFT system can be used to stage data between cloud storage systems
and cloud computation systems, freeing users from needing to manage staging
themselves and also taking advantage of transfer and scheduling optimizations
provided by the MFT system.

7.2 Backup Management and Replication

MFT systems can also perform automatic backup of data in cloud storage or
replicate and synchronize data across multiple cloud services. Individuals and
organizations who make regular backups of data can outsource this task to cloud-
hosted MFT systems and take advantage of reliability guarantees and optimized data
transfers.

7.3 Data Transfer for Thin Applications

One of the useful properties of cloud service systems is that they give client
applications the opportunity to offload expensive or difficult tasks to remote systems.
The client then only has to worry about communicating with the remote system and
presenting responses from the server to the user.

MFT systems that offers a programmatic interface for transferring data and navi-
gating remote file systems could be integrated into a thin client application to allow
it to support multiple protocols and optimization algorithms without increasing the
size of the application or burdening the developer to worry about application details.
These applications could even be very lightweight web applications that run in the
browser, allowing web applications to perform file transfers and access file metadata
for multiple protocols and storage systems—something that has until now been
difficult to do in web applications.

7.4 Going Further with MFT

The uses of MFT systems can also reach beyond simply managing data transfers
and fetching directory listings. Indeed, some creative cases may elicit the need for
categorization as something other than “managed file transfer”. Advanced MFT
systems are essentially protocol polyglots, and may be extended to take advantage
of this.

398 B. Ross et al.

Consider that MFT systems are necessarily capable of listing and crawling
storage systems. Add an indexing mechanism, and it can become something
else entirely. Imagine providing a service that allows organizations to index and
search their own data stores, and easily locate, collate, and compare organizational
documents no matter where or how they are stored. Typically such services
are provided only for particular storage systems, but with MFT-as-abstraction layer,
the underlying system can be anything. Imagine applying this to build a search
engine on an index of publicly accessible storage systems—Google, but for more
than just common web protocols.

Consider now that an MFT system that performs protocol translation is essen-
tially a “Swiss Army knife” of storage system clients. Imagine going an extra
step and making it a “Swiss Army knife” of server facades as well. Such systems
could act as gateway to any supported protocol or storage system, accessible by
anything that speaks the “language” of any other supported protocol or storage
system. For example, a system that speaks FTP would be able to interface with a
system that speaks HTTP—the MFT system acting as a translator—and meanwhile
both systems would think they’re speaking to a “native speaker” of the protocol they
are configured to use.

Imagine a world where data transfer is routinely handled by cloud services. Users
would not need to install special software in order to transfer files to or from other
users or services in the cloud. The specifics of the underlying protocol or storage
system would no longer matter. All of the details of the transfer will be offloaded
to the cloud, and when the details change the cloud will adapt and users will never
need to know.

It is left up to the reader to imagine other such creative use cases. Certainly the
possibilities are great when data can flow so readily in the cloud.

Conclusion

This chapter has taken a look at the challenges faced in moving data into, out
of, and around in the cloud. We’ve seen the issues surrounding data solubility
that have arisen as data storage and processing have moved into the cloud, and
how these issues can be addressed by MFT services.

We’ve examined the features of an ideal MFT system, and seen how MFT
services in the cloud can take advantage of their centralized nature in order to
offer benefits over other transfer management solutions. We’ve seen a number
of established examples of research and commercial MFT systems, and we’ve
taken a close look at the architecture of one such system—StorkCloud.

Hopefully this chapter has made a convincing case for MFT. Perhaps in the
future MFT will be as commonplace in the cloud as storage and processing
are today.

Managed File Transfer as a Cloud Service 399

References
1. ARRA/ANI testbed. https://sites.google.com/a/lbl.gov/ani- 100g-network.
2. Backup, copy, and migrate files between cloud storage services | Mover. https://mover.io/.
3. Energy Sciences Network (ESnet). http://www.es.net/.
4. Internet2. http://www.internet2.edu/.
5. Ipswitch MOVEit Managed File Transfer. http://www.moveitmanagedfiletransfer.com/.
6. ALLEN, B., BRESNAHAN, J., CHILDERS, L., FOSTER, 1., KANDASWAMY, G.,

10.

11.

12.

13.

14.

15.

16.

17.

18.
. SOUDAN, S., CHEN, B. B., AND VICAT-BLANC PRIMET, P. Flow scheduling and endpoint rate

19

20.

21.
22.

23.

24.

KETTIMUTHU, R., KORDAS, J., LINK, M., MARTIN, S., PICKETT, K., AND TUECKE, S.
Software as a service for data scientists. Communications of the ACM 55:2 (2012), 81-88.

. ALTSCHUL, S. F,, GisH, W., MILLER, W., MYERS, E. W., AND LIPMAN, D. J. Basic Local

Alignment Search Tool. Journal of Molecular Biology 3, 215 (October 1990), 403—410.

. ARSLAN, E., RosS, B., AND KOSAR, T. Dynamic protocol tuning algorithms for high

performance data transfers. In Euro-Par (2013), F. Wolf, B. Mohr, and D. an Mey, Eds., Lecture
Notes in Computer Science, Springer, pp. 725-736.

. CEYHAN, E., AND KOSAR, T. Large scale data management in sensor networking applications.

In In Proceedings of Secure Cyberspace Workshop (Shreveport, LA, November 2007).

CHO, B., AND GUPTA, 1. Budget-constrained bulk data transfer via internet and shipping
networks. In The 8th International Conference on Autonomic Computing (ICAC) (2011).
HEY, T., AND TREFETHEN, A. The data deluge: An e-Science perspective. In In Grid
Computing - Making the Global Infrastructure a Reality, pp. chapter 36, pp. 809-824. Wiley
and Sons, 2003.

JUNG, E.-S., KETTIMUTHU, R., AND VISHWANATH, V. Toward optimizing disk-to-disk
transfer on 100G networks.

KIEHL, J., HACK, J. J., BONAN, G. B., BOVILLE, B. A., WILLIAMSON, D. L., AND RASCH,
P. J. The national center for atmospheric research community climate model: Ccm3. Journal
of Climate 11:6 (1998), 1131-1149.

Kim, J., YILDIRIM, E., AND KOSAR, T. A highly-accurate and low-overhead prediction model
for transfer throughput optimization. In Proceedings of ACM SC’12 DISCS Workshop (2012).
KLEIN, R. J. T., NICHOLLS, R. J., AND THOMALLA, F. Resilience to natural hazards: How
useful is this concept? Global Environmental Change Part B: Environmental Hazards 5, 1-2
(2003), 35-45.

KOSAR, T., BALMAN, M., YILDIRIM, E., KULASEKARAN, S., AND RoOsS, B. Stork data
scheduler: Mitigating the data bottleneck in e-science. The Phil. Transactions of the Royal
Society A 369(3254-3267) (2011).

LEINBERGER, W., KARYPIS, G., AND KUMAR, V. Multi-capacity bin packing algorithms
with applications to job scheduling under multiple constraints. In Parallel Processing, 1999.
Proceedings. 1999 International Conference on (1999), IEEE, pp. 404—412.

LONI. Louisiana Optical Network Initiative (LONI). http://www.loni.org/.

control in gridnetworks. Future Generation Computer Systems 25, 8 (2009), 904-911.
TUMMALA, S., AND KOSAR, T. Data management challenges in coastal applications. Journal
of Coastal Research special Issue No.50 (2007), 1188-1193.

XSEDE. Extreme Science and Engineering Discovery Environment. http://www.xsede.org/.
YILDIRIM, E., YIN, D., AND KOSAR, T. Prediction of optimal parallelism level in wide area
data transfers. IEEE TPDS 22(12) (2011).

YIN, D., YILDIRIM, E., AND KOSAR, T. A data throughput prediction and optimization service
for widely distributed many-task computing. IEEE TPDS 22(6) (2011).

ZHANG, B., RoSs, B., TRIPATHI, S., BATRA, S., AND KOSAR, T. Network-aware data caching
and prefetching for cloud-hosted metadata retrieval. In Proceedings of the Third International
Workshop on Network-Aware Data Management (2013), ACM, p. 4.

https://sites.google.com/a/lbl.gov/ani-100g-network
https://mover.io/
http://www.es.net/
http://www.internet2.edu/
http://www.moveitmanagedfiletransfer.com/
http://www.loni.org/
http://www.xsede.org/

	Managed File Transfer as a Cloud Service
	1 Introduction
	2 The Problem of Data Insolubility
	2.1 Solutions

	3 Managed File Transfer
	3.1 Examples of MFT

	4 StorkCloud
	4.1 StorkCloud Scheduler
	4.2 Directory Listing Service (DLS)
	4.3 Web API and Thin Client GUIs
	4.4 Transfer Module Interface
	4.5 Optimization Modules

	5 Transfer Level Throughput Optimization
	5.1 Optimization Techniques
	5.2 Dynamic Optimization
	5.3 Examples in MFT Systems

	6 Scheduling Optimization and Reservation
	6.1 Coscheduling Algorithms
	6.2 Estimation with Historical Performance Data
	6.3 Practical Considerations

	7 Potential Applications of MFT
	7.1 Cloud Data Placement Middleware
	7.2 Backup Management and Replication
	7.3 Data Transfer for Thin Applications
	7.4 Going Further with MFT

	References

