
Xiaolin Li · Judy Qiu Editors

Cloud
Computing for
Data-Intensive
Applications

Cloud Computing for Data-Intensive Applications

Xiaolin Li • Judy Qiu
Editors

Cloud Computing
for Data-Intensive
Applications

123

Editors
Xiaolin Li
University of Florida
Gainesville, FL, USA

Judy Qiu
Indiana University
Bloomington, IN, USA

ISBN 978-1-4939-1904-8 ISBN 978-1-4939-1905-5 (eBook)
DOI 10.1007/978-1-4939-1905-5
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2014956660

© Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Foreword

v

This collection of papers is the first volume to explore the rapidly evolving role of
cloud computing in scientific data analytics. This topic is important because almost
every field of science is now data driven. The data comes from sources ranging in
scale from massive physics experiments and instruments that read our DNA to the
multitude of sensors that monitor our environment. It also comes from our digitized
libraries, our media streams, and our personal health monitors. The “Internet of
Things” is set to go through an explosive growth, profoundly changing the way
we understand the world around us. By tapping into vast amounts of data we can
use analytics and machine learning to discover properties of complex systems that
were not visible to us before. This is truly the age of the fourth paradigm of science
where data analytics joins experiment, theory, and computational simulation as a
fundamental pillar of discovery. For example, by doing genome-wide association
studies of large populations we can now begin to understand the causes of many
diseases. The sensors in our urban environments are beginning to help us understand
how to improve the health of our cities and better plan for the future. Machine
learning based on big data is also transforming our personal devices. The computer
vision required to build a driverless car is now enabled by massive deep neural
networks analyzing streams from millions of hours of video and other data. These
same unsupervised machine learning techniques now allow us to do real-time voice-
to-voice natural language translation.

Many of the primary software tools used to do the large-scale data analysis
required by these applications were born in the cloud. Massive cloud data centers
were created to provide the computational foundation for the online services that are
now part of everyday life for billions of people. This includes Internet web search,
e-mail, online commerce, social networks, geo-location and map services, photo
sharing, automated natural language translation, document preparation and collabo-
ration, media distribution, teleconferencing, and online gaming. These applications
all accrue massive amounts of data, and optimizing their performance requires
analysis of the data. For example, understanding how to return the best results from a
web search query requires more than a simple index lookup. Sophisticated machine

vi Foreword

learning techniques are required to make the best selection of links to return to the
user. It did not take long for these ideas to be applied to the full range of scientific
challenges.

The cloud software stack for scalable data analysis has evolved rapidly and so
too has the cloud architecture model. Early cloud data centers are being rebuilt with
new technologies to better support massive data analytics. Data center networks are
starting to take ideas from supercomputer systems to improve bisection bandwidth,
and software defined networking is now a standard part of the designs. Some cloud
providers are starting to consider GPUs in the mix of servers. Private and public
clouds are now working together and clouds and supercomputers are being used in
creative combinations. This volume is extremely timely. It is the first book to cover
the entire spectrum of research on the topic of cloud computing and data intensive
applications. The topics range from basic architecture issues to the challenges of
data analysis for complex scientific applications. It is a “must read” for any student
of modern computing. We are delighted that Professors Li and Qiu have undertaken
this project.

Tony Hey
Dennis Gannon
Microsoft Research, Redmond, WA, USA

Contents

Part I Systems and Applications

Scalable Deployment of a LIGO Physics Application on Public
Clouds: Workflow Engine and Resource Provisioning Techniques 3
Suraj Pandey, Letizia Sammut, Rodrigo N. Calheiros, Andrew
Melatos, and Rajkumar Buyya

The FutureGrid Testbed for Big Data . 27
Gregor von Laszewski and Geoffrey C. Fox

Cloud Networking to Support Data Intensive Applications 61
Maurício Tsugawa, Andréa Matsunaga, and José A.B. Fortes

IaaS Cloud Benchmarking: Approaches, Challenges, and Experience 83
Alexandru Iosup, Radu Prodan, and Dick Epema

GPU-Accelerated Cloud Computing for Data-Intensive Applications 105
Baoxue Zhao, Jianlong Zhong, Bingsheng He, Qiong Luo,
Wenbin Fang, and Naga K. Govindaraju

Adaptive Workload Partitioning and Allocation for Data
Intensive Scientific Applications . 131
Xin Yang and Xiaolin Li

DRAW: A New Data-gRouping-AWare Data Placement
Scheme for Data Intensive Applications with Interest Locality 149
Jun Wang, Pengju Shang, and Jiangling Yin

Part II Resource Management

Efficient Task-Resource Matchmaking Using Self-adaptive
Combinatorial Auction . 177
Han Zhao and Xiaolin Li

vii

viii Contents

Federating Advanced Cyberinfrastructures with Autonomic
Capabilities . 201
Javier Diaz-Montes, Ivan Rodero, Mengsong Zou,
and Manish Parashar

Part III Programming Models

Migrating Scientific Workflow Management Systems
from the Grid to the Cloud . 231
Yong Zhao, Youfu Li, Ioan Raicu, Cui Lin, Wenhong Tian,
and Ruini Xue

Executing Storm Surge Ensembles on PAAS Cloud . 257
Abhirup Chakraborty, Milinda Pathirage, Isuru Suriarachchi,
Kavitha Chandrasekar, Craig Mattocks, and Beth Plale

Cross-Phase Optimization in MapReduce. 277
Benjamin Heintz, Abhishek Chandra, and Jon Weissman

Asynchronous Computation Model for Large-Scale Iterative
Computations . 303
Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang

Part IV Cloud Storage

Big Data Storage and Processing on Azure Clouds:
Experiments at Scale and Lessons Learned . 331
Radu Tudoran, Alexandru Costan, Gabriel Antoniu,
and Brasche Goetz

Storage and Data Life Cycle Management in Cloud
Environments with FRIEDA . 357
Lavanya Ramakrishnan, Devarshi Ghoshal, Valerie Hendrix,
Eugen Feller, Pradeep Mantha, and Christine Morin

Managed File Transfer as a Cloud Service . 379
Brandon Ross, Engin Arslan, Bing Zhang, and Tevfik Kosar

Supporting a Social Media Observatory with Customizable
Index Structures: Architecture and Performance . 401
Xiaoming Gao, Evan Roth, Karissa McKelvey, Clayton Davis,
Andrew Younge, Emilio Ferrara, Filippo Menczer, and Judy Qiu

Part I
Systems and Applications

Automated scalable PaaS platform makes it easier to choose resources on clouds.
FutureGrid: testbed for Big Data scientific computing on cloud/grid/HPC. Eval-
uating available cloud network applications and capabilities. Benchmarking to
improve IaaS cloud services. MapReduce applied in GPUs to handle data-heavy
applications. Study of state-transition applications in parallel systems to handle
large data loads and difficult algorithms; focuses on analysis of system’s processor
speed. Argues against random data placement in frameworks like Hadoop and
MapReduce; proposes DRAW to reorganize data distribution to achieve optimal
parallelism.

Scalable Deployment of a LIGO Physics
Application on Public Clouds: Workflow Engine
and Resource Provisioning Techniques

Suraj Pandey, Letizia Sammut, Rodrigo N. Calheiros, Andrew Melatos,
and Rajkumar Buyya

Abstract Cloud computing has empowered users to provision virtually unlimited
computational resources and are accessible over the Internet on demand. This makes
Cloud computing a compelling technology that tackles the issues rising with the
growing size and complexity of scientific applications, which are characterized by
high variance in usage, large volume of data and high compute load, flash crowds,
unpredictable load, and varying compute and storage requirements. In order to
provide users an automated and scalable platform for hosting scientific workflow
applications, while hiding the complexity of the underlying Cloud infrastructure,
we present the design and implementation of a PaaS middleware solution along
with resource provisioning techniques. We apply our PaaS solution to the data
analysis pipeline of a physics application, a gravitational wave search, utilizing
public Clouds. The system architecture, a load-balancing approach, and the system’s
behavior over varying loads are detailed. The performance evaluation on scalability
and load-balancing characteristics of the automated PaaS middleware demonstrates
the feasibility and advantages of the approach over existing monolithic approaches.

1 Introduction

Cloud computing enables users to get virtually unlimited computational resources
that can be accessed on demand from anywhere at any time. The main features of
Clouds such as elasticity and pay-per-use cost model enable low upfront investment

S. Pandey
IBM Research Australia, Melbourne, Australia
e-mail: suraj.pandey@au.ibm.com

L. Sammut • A. Melatos
School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia
e-mail: l.sammut@student.unimelb.edu.au; amelatos@unimelb.edu.au

R.N. Calheiros (�) • R. Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing
and Information Systems, The University of Melbourne, Parkville, VIC 3010, Australia
e-mail: rnc@unimelb.edu.au; rbuyya@unimelb.edu.au

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__1

3

mailto:suraj.pandey@au.ibm.com
mailto:l.sammut@student.unimelb.edu.au
mailto:amelatos@unimelb.edu.au
mailto:rnc@unimelb.edu.au
mailto:rbuyya@unimelb.edu.au

4 S. Pandey et al.

and low time to market, which in turn enables small to large software applications
to use the Cloud as a hosting platform, in contrast to traditional enterprise infras-
tructure settings. This makes Cloud computing a compelling technology to tackle
the issues rising with the growing size and complexity of scientific applications. For
instance, for a typical problem size, a single physics application may scale to a few
thousand processors, and multi-physics applications not only are increasing in size,
but are also requiring more sophisticated workflows for their execution [1].

Most large-scale applications, such as scientific applications, are characterized
by high variance in usage, mixture of data and compute load, flash crowds,
unpredictable load, and varying compute and storage requirements. This makes
the management of the computational infrastructures supporting such applications a
complex task, even when public Infrastructure as a Service (IaaS) Cloud resources—
such as virtual machines—are used as the underlying system infrastructure.

The above situation can be mitigated with the utilization of Platform as a Service
(PaaS). PaaS Clouds offer to users a complete platform for hosting user-developed
applications, while hiding the underlying infrastructure. Therefore, complex oper-
ations such as automatic scaling, load balancing, and management of virtualized
environments are completely transparent to users, and happen without their direct
interference.

In this article, we describe the design and implementation of a system delivering
a scalable solution to scientific workflow applications, specifically focusing on the
data analysis pipeline underpinning a high-profile scientific (physics) application:
gravitational wave searches. The proposed solution is a PaaS middleware that uses
resources from public Cloud infrastructures (IaaS) for hosting the management and
application services.

Gravitational waves (GW) are ripples in the fabric of space–time that result from
galactic collisions, stellar explosions, or rapid acceleration of large and extremely
dense objects such as neutron stars [22]. In principle, the ripples can be detected by
measuring minute changes in the separation of test masses on Earth, for example the
mirrors on a long-baseline, laser, Michelson interferometer. However, the changes
in separation are so small—one part in 1021 for the strongest predicted sources—
that they have not yet been detected. A worldwide effort is currently under way
to achieve the first detection, led by a new generation of interferometric antennas
like the Laser Interferometer Gravitational-Wave Observatory (LIGO) and partner
facilities around the world like VIRGO, GEO600, and TAMA300 [2].

Numerous search algorithms have been applied to the GW data from the above
detectors, all of them computationally intensive. There are four main types of GW
signal: stochastic, burst, continuous, and compact binary coalescence. Each search
for a specific type of source covers a wide parameter space, with an optimal balance
required between parameter space mismatch and computational resources. The
search space is especially large for blind, all-sky searches where the electromagnetic
counterpart of the source is unknown. In this paper, we concentrate on a search for
periodic gravitational waves from Sco X-1. Sco X-1 is the brightest X-ray source
in the sky. It is thought to be an accreting neutron star [22]. Theoretical analysis
indicates that it may also be a strong GW candidate [4, 16, 24].

Workflow Engine and Resource Provisioning Techniques 5

GW searches can be represented as a workflow consisting of tasks linked through
data dependencies. Execution of the workflow can be parallelized in such a way
that each parallel instance operates in a different multi-dimensional parameter
set. Therefore, with an appropriate support from a platform, numerous scientists
can simultaneously and independently use these workflows to analyse and search
for GWs using their own parameter sets. As the number of concurrent workflow
executions grows and shrinks, the platform can automatically increase and decrease
the number of infrastructural resources deployed to support the platform, in such
a way that the execution time of each individual workflow is not affected by the
number of running workflows. Without support for scheduling and management of
data and tasks, in the worst case, the parallel execution of these workflows will be
reduced to sequential execution due to insufficient resources.

Parallel executions of workflows can lead to resource contention, as each
workflow instance often requires the same set of data as input, requires a specific
number of compute resources, which can be limited, and are bound by deadlines set
by users. Hence, the challenges are to:

1. allocate Cloud resources to tasks, workflows, and users effectively to avoid
resource contention—dynamic resource provisioning problem;

2. minimize execution time of individual workflows—task/workflow scheduling
problem;

3. dynamically expand or shrink Cloud services based on varying load.

In order to tackle the above challenges, we designed a scalable PaaS middleware
and built a prototype system that facilitates the search for Sco X-1. This article
describes the PaaS middleware design, implementation, and performance evaluation
with the support of the GW data analysis application use-case. Specifically, this
paper makes the following novel contributions:

1. Dynamically Provisioning of Multiple PaaS middleware Pools: Our PaaS
middleware is composed of workflow engines that manage a pool of workers
in the Cloud. Instances of the workflow engine can be added and removed on
demand in order to adapt to the observed demand of the system.

2. Load Balancing and Distribution: Our system contains a layer that distributes
user requests to PaaS middleware pools and maintains load balance on each pool
of workers by scaling load across recently spawned PaaS middleware, releasing
resources when not in use.

3. Cloud-Enabled LIGO Software Application (LALApps): We describe how
we used a LIGO software application and executed its operations using our
propose system hosted in a public Cloud infrastructure.

The remainder of the paper is organized as follows: Sect. 2 presents closely
related work in workflow systems and deployment of scientific applications in Cloud
computing environments. We describe the scalable system design in Sect. 3. We then
present the description of the GW data analysis pipeline in Sect. 4. Using the case-
study as workload, we present performance evaluation in Sect. 5. We conclude and
present future directions in “Conclusions and Future Work” section.

6 S. Pandey et al.

2 Related Work

Efforts for accelerating the execution of LIGO applications in distributed systems
date back to 2002 [7]. Such a project established the workflows and data access
policies used for earlier generation of LIGO experiments. After the rise of Clouds as
suitable platforms for execution of scientific operations, Zhang et al. [25] developed
an algorithm for execution of a LIGO workflow in a public Cloud. The application
differs from ours in the method used for detecting the gravitational waves, and the
algorithm is customized for the particular application. Our work proposes a two-
level provisioning approach to scale either the application or the workflow execution
platform. Therefore, Zhang’s LIGO application and the corresponding scheduling
algorithm could be integrated in our proposed system. Chen et al. [6] proposed an
approach for generation of virtual machine images for the LIGO project. This virtual
machine images can be used by platforms (such as the one proposed in this paper)
or directly by researchers wanting to deploy their LIGO application in the Cloud.

Auto scaling of Cloud services and infrastructure results in significant cost
reduction, green energy use, and sustainability. Dougherty et al. [9] proposed
a model-driven configuration of Cloud auto-scaling infrastructure and applied
it to an e-commerce application running on Amazon EC2 platform. Mao and
Humphrey [14] used auto scaling of Cloud resources to minimize deployment costs
while taking into account both user performance requirements and budget concerns.

In the context of platform support for execution of Workflow applications in
Clouds, Workflow Management Systems that were originally proposed for Grids,
such as Pegasus [8, 18], Askalon [20], Kepler [13], Taverna [19], and Cloudbus
Workflow Engine [21] were extended to support utilization of Cloud resources.
However, these systems have limited scalability regarding the total number of
resources and application that can be simultaneously managed by them. Therefore,
our proposed architecture groups such systems in a Platform as a Service layer and
enable the deployment of multiple of such engines to increase the overall system
scalability. In this sense, any of the above systems could be used in the PaaS layer
of our architecture, even though in this paper we used Cloudbus Workflow Engine
for this purpose.

Lu et al. [12] proposed a workflow for large-scale data analytics and visualization
with emphasis in spatio-temporal climate data sets that targets public Cloud
environments as the source of resources for workflow execution. However, the target
scenario of such a tool is one user operating over one dataset, whereas our proposed
solution targets multiple users accessing multiple data sets concurrently.

Kim et al. [11] proposed a system supporting execution of workflows in hybrid
Clouds. This approach differ from our proposal in the sense that the main objective
of such tool is typically keeping the utilization of local infrastructure as high as
possible and keep utilization of public Clouds low, in order to reduce the extra costs
related to public Clouds. Such approach has also to work in the selection of work-
loads to be moved to the public Clouds and the workloads to be kept on premises.
Furthermore, it scales only the number of workers, while our approach is able to
scale the number of engines to support more simultaneous users and resources.

Workflow Engine and Resource Provisioning Techniques 7

On the topic of automatic scaling of applications in Clouds, Vaquero et al. [23]
presents a survey on the topic. It categorizes how scalability can be achieved on
IaaS and PaaS Clouds. According to their classification for the problems, our work
is classified as PaaS scaling via container replication.

Mao and Humphrey [15] proposes a solution for the problem of auto-scaling
Clouds for execution of workflow applications. The approach considers a single
workflow engine that is able to scale resources available for processing workflow
applications. Our approach, on the other hand, considers a two-layers scaling
approach where the number of workflow engines can also be scaled to further
increase the total capacity of the system in managing and executing multiple
simultaneous applications.

Casalicchio and Silvestri [5] explore different architectures for monitoring and
scaling of applications in Clouds. The architectures explore different mixes of
public Cloud provider services with local services for achieving scalability of VM
applications. The proposed architectures operate at the IaaS layer, and utilize with
arbitrary metrics for scalability decisions (for example, application throughput). The
architectures are not aware of dependencies between tasks in workflow applications,
and therefore they are not optimal for this type of application, unlike our approach.

Finally, it is worth noticing that public Cloud providers such as Amazon,1

Microsoft,2 RightScale,3 and Rackspace4 also offer solution for auto-scaling based
on web services or APIs. They allow users to determine simple rules, typically
based on monitored performance metrics (CPU and memory utilization, application
response time), that trigger the auto-scaling process. Rules are used to determine the
amount of machines to be added or removed from the system, typically proportional
to the amount of resources in use (e.g., increase number of resources by 20 % if
average memory utilization is above 80 %) or fixed (e.g., reduce the number of
resources to 5 if utilization is below 40 %). Our approach enables more complex
decisions that are determined algorithmically, and performed at two different levels
(platform and application).

3 System Architecture and Design

In this section, we detail the design of the proposed PaaS middleware for execution
of scientific workflows. Table 1 defines the symbols used in the rest of the article.

The system has a layered design in order to process multiple users and their
workflows in a scalable manner, as depicted in Fig. 1. The bottommost layer is
composed of virtualized resources, provided by public IaaS Cloud service providers,

1http://aws.amazon.com/autoscaling/.
2http://www.windowsazure.com/.
3http://www.rightscale.com/products/automation-engine.php.
4http://www.rackspace.com/cloud/loadbalancers/.

http://aws.amazon.com/autoscaling/
http://www.windowsazure.com/
http://www.rightscale.com/products/automation-engine.php
http://www.rackspace.com/cloud/loadbalancers/

8 S. Pandey et al.

Table 1 Description of symbols used in the article

Symbol Description

Q Queue containing the list of tasks submitted to the system for execution as
applications by end-users

Eengines Set of compute resources where the workflow engine has been installed.
Resources in this set compose the PaaS middleware

VM A virtual machine deployed to support our platform

Rworkers Set of VMs that are configured to execute end-user applications

WpE Workers per Engine. This constant directs the algorithms to allocate up
to the WpE compute resources (workers) to each workflow engine that is
running. For example if there are three engines and WpE D 5, then each
engine will have five worker VMs under its management

NtW Number of Tasks submitted to each worker. Higher values enable multiple
tasks to be submitted to a worker to run in parallel

sizeof .Array/ This function returns the length of the array that is passed to it as a parameter

CCE.integer/ This is the capacity calculation algorithm. Its argument is the length of the
task queue Q

MAXCompTime This value signifies the maximum completion time for a task submitted by
the user

Workflow Engine

Server

Workflow Engine

Server

Workflow Engine

Server

Load Balancer/Distributor
D

yn
am

ic
al

ly
 P

ro
vi

si
on

ed
D

yn
am

ic
al

ly
P

ro
vi

si
on

ed

P
aa

S
Ia

aS

Application Web Portal

A
pp

lic
at

io
ns

LI
G

O
 S

ea
rc

h

Web Service Web Service Web Service

Amazon EC2 Amazon S3+

Fig. 1 Scalable PaaS middleware for scientific workflows

where the application is actually executed. In particular, for supporting LIGO
data analysis we choose Amazon AWS as the public IaaS provider. The entire
system is deployed on Amazon EC2, so that data transfers happen within the
same Cloud provider with lower latency than when using multiple Cloud providers.
Virtualized resources are managed by software components at the next level, which

Workflow Engine and Resource Provisioning Techniques 9

we name platform services. To implement this layer, we use our existing middleware
solution—Workflow Engine [21]—for managing application workflows submitted
by end-users for execution on the Cloud resources.

Because the overhead incurred to each workflow engine increases with the num-
ber of managed workflows, better scalability and response times can be obtained
if multiple workflow engines are deployed and the load is balanced among them.
Thus, the next layer is composed of a Load Balancer/Distributor that is responsible
for enabling dynamic scaling of the platform services. The Load Balancer can
dynamically create workflow engines instances, each running on a separate VM,
at run-time. The provisioning of additional platform services is based on: (a) the
number of waiting jobs (the difference between user requests arriving to the server
and the request-level parallelism) over a period of time, and (b) average completion
time of workflow applications submitted by users.

Finally, at the topmost layer, the Application Web Portal is the interface provided
to end-users, who submit workflow application execution requests and monitor their
progress.

Our architecture enables independent resource scaling at two different levels—
the platform level composed of workflow engine instances that can manage the
actual execution of tasks—and at the infrastructure level, where resources are
deployed to execute the tasks. With the coordination of platform services provi-
sioning and compute resource provisioning at the infrastructure level, the system is
able to efficiently manage multiple workflows submitted by large number of users.

Figure 2 depicts the sequential interaction among different entities in order to
achieve automatic scaling of Cloud resources. The interaction starts with a user
sending an authentication request to access the web portal. After the authorization
is granted, the user sets the parameters of the application workflow, determines
the configuration files, and submits the workflow for execution. Depending on the
number of tasks in the application, the load balancer calculates the number of
VMs (engines) and computing machines (workers) needed and sends the invocation
request to the public Cloud resource provider, as detailed in the next section.
Workers are assigned to a specific workflow engine, and therefore all the tasks
executed from a worker belong to jobs managed by its corresponding engine.

Once the number of required engines and workers is defined, the Load balancer
submits requests for machines to Cloud resource provider, which starts the type
and number of virtual machines according to the request. Once there are enough
available virtual machines to start execution of tasks, the load balancer sends tasks
to the workflow engine, which in turn forwards them to its associated workers for
actual execution.

The worker sends the end result to its assigned workflow engine in order to
direct it to store the data on the Cloud storage. The user can monitor the process
of application execution through the web portal, which is able to supply statistics
such as submission time, allocated resources, execution status, total execution time,
and total stage-out time. Once results of workload execution is available, the user
can download it directly from the Cloud storage. During the whole process, the
load balancer continuously enforces distribution of applications among workflow

10 S. Pandey et al.

Wait for Amazon Instances to
start

[new workers and engine count are
above the minimum threshold]

[Jobs waiting]

No

No

No

Yes

Calculate Engines' Capability

Engines and workers enough?

Assign Jobs to Engines

Invoke Start Engine

Idle Engines and workers?

Stop engine and its workersDelay()

Start New Engines and
workers

Fig. 2 Auto scaling at the PaaS layer of our proposed middleware

Workflow Engine and Resource Provisioning Techniques 11

engines by provisioning the right amount of virtual machines (both workers and
workflow engines). It does so by increasing or decreasing the number of running
virtual machines based on the number of tasks to run and the capability of each
VM (see Algorithms 1 and 2). Therefore, if all the submitted applications finish
execution and no further application are submitted, running engines and workers
are turned off automatically by the load balancer, as detailed in the next section.

Algorithm 1: PaaS load balancing algorithm
Input: WpE: Application-dependent worker-per-engine rate.
while There are incomplete Tasks in L in Q do

Update Rworkers;
Apply the CCE Algorithm to divide newly added instances between Eengines and
Rworkers;
Associate up to WpE workers in {Rworkers} to each engine ei 2 Eengines;
if ((jRworkersj � 0) OR all waiting compute resources available) AND (jQj > 0) then

Number of tasks remaining to be submitted for execution
nPending D CCE.sizeof .Q//;

if nPending > 0 then
Workers to run wr D nPending=NtW ;
wPending D wr;
foreach Engine ei 2 Eengines do

Free slots for engine ei : es D WpE � .current_number_of _workers_in_ei /;
wPending D wPending� es;
if wPending > 0 then

Engines to run er D bwP ending=WpEc;
Provision er engines in the Cloud;
Provision wr workers in the Cloud;

foreach Engine ei 2 Eengines do
repeat

Assign tasks in Q to ei ;
until current_engine reaches it maximum load;
Start execution of tasks assigned to engine ei ;

3.1 Load Balancing

Load balancing in our proposed architecture is managed by the Load Balancer/
Distributor component. This component acts both at task level, in order to balance
the load of workers, and also at the middleware level, by controlling the number of
running Workload Engine instances and balancing the number of jobs submitted to
each engine. The general operation of the Load balancer is detailed in Algorithm 1.

When jobs are submitted to the system, their corresponding tasks are queued
at the Load Balancer (LB) in a queue Q. The LB groups the running resources in

12 S. Pandey et al.

two sets: workflow engines Eengines and computing workers Rworkers. Application-
dependent, user-defined WpE workers are assigned to each engine running in
the system. If new virtual machines were started since the last execution of the
algorithm, each new VM is assigned to an already running workflow engine in a
round-robin basis.

After all the provisioned VMs are ready to accept requests, the Load balancer
checks for jobs waiting. Definition of number of engines to be added to the platform
layer and the number of workers to be added to these engines is based on several
factors. One such factor is the estimated capacity of available resources to handle
extra tasks, which is determined using the method presented in Algorithm 2.
The Load balancer computes the average tasks completion time observed in a
configurable timespan and uses this value to estimate resource availability for the
next time span. The availability estimation and number of waiting tasks are then
compared in order to determine whether existing engines are enough to handle all
the tasks or not.

Algorithm 2: CCE: engine capacity/load calculating algorithm

Set the capability of each free worker to NtW ;
Set the threshold of completion time of a single task to MAXCompTime;
foreach ei 2 Eengines do

Get average task completion time ctei of ei during the last n minutes;
Compute the availability ai of ei ,
ai D .ctei �MAXCompT ime/=MAXCompT ime;
Compute the capability ci of ei , ci D ai�(number of workers of ei)� (max tasks per
worker);

Refresh compute resource status;
if New workers are ready then

Increase the capability of its engine by NtW ;

return list of unassigned tasks;

If the algorithm determines that available resources are not enough, the number of
extra workers and engines is computed and the corresponding number of resources
is started in the public Cloud provider. Each new engine, once ready, receives
waiting tasks belonging to the same job. The assignment step is repeated until each
engine reaches its maximum load or until no more waiting jobs exist. The engines
then start applications that have been assigned for execution, and availability of
resources is recomputed. The load balancing process is repeated until all tasks are
finalized (either completed or canceled after a maximum number of failures).

The algorithm initially sets the capability of each free worker to NtW , which is the
maximum number of tasks that can be allocated to a worker while ensuring that the
tasks can be completed in a reasonable time. The threshold of completion time of a
single task is set MAXCompTime, which is the default threshold for determination
if the engine is overloaded. If it is overloaded, it stops having tasks assigned
to it. Afterwards, for each engine of Eengines, the algorithm computes the average

Workflow Engine and Resource Provisioning Techniques 13

User Portal Load Balancer Engine Worker

Authentication

Amazon EC2, S3

Configure Parms

Submit Tasks

Invoke
Monitor Resources

[No tasks]
Terminate unused
Resources

[Have tasks]
Calculate Engine
Capability / Load

[Not Enough]
Start Resource

[Enough Resource]
Assign Tasks to Engine

Send Task Execute

Return Result
Store Result

Notify Result Available

Get Result

Monitor / Query

View Result

Cloud (Computation and Storage)Server (Request Handling and Load Balancing)

Fig. 3 Sequence diagram showing the interaction between entities involved in scaling PaaS
services

completion time observed in the last time interval, so the estimated availability and
capability can be computed. Based on such values, waiting tasks are assigned to
running engines up to the maximum calculated capacity of each engine. Remaining
tasks are taken into account when deciding to extend the number of engines (Fig. 3).

4 LIGO Data Analysis and the Search for Gravitational
Waves

The system described in the previous sections was implemented and used in an
application scenario: a data analysis pipeline in a gravitational wave search. The
Laser Interferometer Gravitational Wave Observatory (LIGO) is one of the world’s
largest physics projects [2]. It will inaugurate a new era in astronomy by detecting
Einstein’s elusive gravitational waves, vibrations in space–time emitted by various
cosmic sources. LIGO is currently the most sensitive element of an international
detector network including facilities like Virgo, spaced widely around the globe
to take advantage of the dramatically improved angular resolution afforded by
intercontinental baselines. Sophisticated computing is the backbone of LIGO: the
sheer scale of the data flows and the difficulty of detecting minuscule signals make
gravitational wave searches one of the great computing challenges of our time.

To illustrate the application scenario and its requirements, we present a search for
periodic GW signals from neutron starts in binary orbits [10, 17, 22]. Of this class
of source, low mass X-ray binaries (LMXBs) are prime candidates due to numerous

14 S. Pandey et al.

accurate observations across the electromagnetic spectrum [22, 24]. Sco X-1, the
brightest X-ray source in the sky, located in the constellation Scorpius, is likely to
be the LMXB that emits GW most strongly [24]. It is targeted for the development
of the search application investigated in this study.

In working towards the detection of GWs, the LIGO Data Analysis Software
Working Group has built several analysis tools. The sideband search is part of the
LIGO Algorithm Library (LAL).5 We use tools in LAL and its application suite
(LALapps) to generate and analyze synthetic test data. Using the LAL tools we cre-
ate LIGO-like data with an injected signal and synthetic noise and run the sideband
search to retrieve the injected signal. The LAL tools ensure that the synthetic data
resembles the data generated by actual detectors. Real data is available, but remains
proprietary for now; its analysis lies outside the scope of this paper.

The sideband search has two stages. The first stage is a matched filter known as
the F -statistic [10]. It requires knowledge of the source sky position and searches
over the unknown source frequency, by comparing against a signal template via a
maximum likelihood approach. It is computationally intensive. If the source is in
a binary system, the F -statistic power is smeared out over many frequency bins
(sidebands), spaced by integer multiples of the orbital frequency, i.e., a frequency
comb. Hence, the second stage of the sideband search involves summing up
semi-coherently the output of the F -statistic at the frequency of each sideband in
the comb. This requires knowledge of the orbital period and semi-major axis but is
not computationally expensive. It produces a result called C -statistic. The frequency
parameter space can be split to allow parallel distribution. However the F -statistic
and C -statistic steps must be performed sequentially. A search pipeline for this
procedure is shown in Fig. 4. Coherent follow-up (Step 3) proceeds in the event of
a positive provisional detection at the end of Step 2 and may leverage other signal
processing algorithms, whose details lie outside the scope of this paper.

Input: GW time-
series data

Generate 30-min
short Fourier
transforms

Frequency comb

Incoherent
summation oc F-

statistic sidebands

Coherent follow-up
search on candidates
identified in second

stage

Stage 1 Stage 2 Stage 3

Demodulate for sky
position

Input: GW
detection (or
upper limits)

Frequency
dependent

detection statistic
(C-statistic)

Fig. 4 The frequency comb search algorithm for periodic sources in binary systems

5http://www.lsc-group.phys.uwm.edu/daswg/.

http://www.lsc-group.phys.uwm.edu/daswg/

Workflow Engine and Resource Provisioning Techniques 15

Sample plots of F - and C -statistic output obtained from a simulated Sco X-1
search are presented in Fig. 5. The signal is injected at 505 Hz and is clearly
recovered by the C -statistic in Fig. 5d from the two-horned frequency comb
structure in the F -statistic output in Fig. 5b. Figure 5a, c shows null results from
the same experiment but in a region of frequency space away from the injected
frequency of the signal, where the data should contain just noise. Only a few Hz
(out of a total search band of 1 kHz) are plotted for clarity.

A simple workflow for this procedure is depicted in Fig. 6. The various param-
eters that form the input are represented at the top of the figure. For each
frequency range, one workflow task (circles in the figure) is created. For each
F -statistic computing task, a comb search is performed. Once the comb search
is complete, the mean value is calculated and submitted to the last task, which
provides the visualization in the form of a plot. The activity described above can be
triggered multiple times by a user simultaneously considering multiple GW sources.

503.4 503.6 503.8 504 504.2 504.4 504.6
0

5

10

15

20

25

30

35

40a b

c d

Fstat, h0=1, sqrtSh=1, f=505Hz, off target

frequency

F
st

at

504.4 504.6 504.8 505 505.2 505.4 505.6
0

50

100

150

200

250

300
Fstat, h0=1, sqrtSh=1, f=505Hz, on target

frequency

F
st

at

503.4 503.6 503.8 504 504.2 504.4 504.6
3.5

3.55

3.6

3.65

3.7

3.75
x 104 x 105Cstat, h0=1, sqrtSh=1, f=505Hz, off target

frequency

C
st

at

504.4 504.6 504.8 505 505.2 505.4 505.6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Cstat, h0=1, sqrtSh=1, f=505Hz, on target

frequency

C
st

at

Fig. 5 F -statistic (top) and C -statistic (bottom) versus frequency plots obtained after processing
the workflow in Fig. 4, demonstrating the noise (left) and signal (right) cases. The F -statistic (a
and b) calculation is the first stage of the CombSearch workflow, and also the input to the second
stage, C -statistic (c and d) calculation (Color figure online)

16 S. Pandey et al.

Frequency Range1,050Hz50Hz

lalapps_Makefakedata_v4

lalapps_ComputeFStatistic_v2

lalapps_CombSearch

calculate_mean

--s
ta

rtT
im

e

--R
A

--D
ec

--o
rb

itP
er

iod

--o
rb

ita
sin

i

--d
ur

at
ion Input Parameters for

Sco X-1

plot

IN
P

U
T

W
o

rk
fl

o
w

O
u

tp
u

t

US

O
rg

an
is

at
io

n
al

 U
n

it
 U

US

O
rg

an
is

at
io

n
al

 U
n

it
 2

GW Source 1 GW Source 2 GW Source M1

USER 1

GW Source 1 GW Source 2 GW Source M2

USER 2

GW Source 1 GW Source 2 GW Source MN

USER N

O
rg

an
is

at
io

n
al

 U
n

it
 1

Fig. 6 A data analysis application workflow for Sco X-1 search over 1,000 Hz

The figure also depicts the fact that multiple Organizational Units (for example,
research labs belonging to different universities) can have various users requesting
execution of such workflow at the same time.

Workflow Engine and Resource Provisioning Techniques 17

0
0

2000

4000

6000

8000

10000

12000

 100 200 300 400 500 600 700 800 900 1000 1100

C
-s

ta
ti
st

ic

frequency (Hz)

Plot for Source B8 [87b0e...]

mean C (1 σ)
max C

no signal

Fig. 7 C -statistic output versus frequency after processing the workflow in Fig. 6. The cross
with error bars represents the mean C -statistic C=�1 standard deviation for each Hz band. The
maximum C -statistic from each band is indicated with stars. The “no signal” black curve refers
to the theoretically expected value of the C -statistic in the case of pure noise. The black arrow
indicates the outlier from the C -statistic results in the Hz band containing the signal, which was
injected at 721.27 Hz (Color figure online)

As an example, a search for Sco X-1 over a 1,000 Hz band can be divided into
103 jobs of 1 Hz each. The result of each job is a list of C -statistic values for
every frequency bin in the 1 Hz band. The number of frequency bins is determined
by the frequency resolution of the F -statistic, .2T /�1, which is a function of the
observation time T . In our example, for T D10 days, each 1 Hz band contains
� 106 C -statistic values.

To test for a detection, we calculate the C -statistic for each bin in a 1 Hz
band. For each band, the mean, standard deviation, minimum, and maximum values
are collected and used for plotting the output. Figure 7 shows the output from a
simulated search for a signal injected at 721.27 Hz with strength h0 D 1:6 � 10�23

and noise
p

Sh D 6 � 10�23 across the 50–1,050 Hz band. Mean C -statistic values
are shown as crosses and the solid black line indicates the expected signal-free
result. The plot also shows the maximum C -statistic value in each band (stars).
Since the injected signal is narrow band, it only appears in � 10 bins (out of 106

per Hz), so the maximum C is a better diagnostic than the mean. The maximum
C -statistic values shows a clear outlier in the region of the injected signal around
721 Hz, highlighted by the black arrow.

18 S. Pandey et al.

4.1 Application Requirements

Data Requirements The size and quantity of data produced by the workflow
depicted in Fig. 6 are substantial. In our test example, which is deliberately chosen
to be small, if 10 days of synthetic data is generated by LAL, the workflow must
handle 480 files of size 142 KB each, each file is a 1,800-second Short-time Fourier
Transform (SFT). The total volume of data generated depends on the search duration
chosen by LIGO scientists. The ComputeFStatistic and CombSearch scripts each
produce 77 MB of data after processing the synthetic data. Depending on the input
parameters, the result obtained after plotting the points (106 points in a single file;
points are FStat-frequency and CStat-frequency, as depicted in Fig. 5) may need
further processing to produce an image file (e.g. png, eps, etc.) for visualization.

It is vital to emphasize that these data volumes are small because we restrict
ourselves to a small test problem in this paper. In general, full LIGO searches involve
petabytes of data. The LIGO detectors sample the gravitational-wave signal channel
at 16 kHz continuously for several years and generate another � 104 environmental
channels sampled at similar rates. A typical compact binary coalescence search
must process all the environmental channels, as must the pre-processing scripts that
generate the SFTs for Sco X-1-like searches. The LIGO data storage requirements
are determined by the rate at which data is produced by the LIGO interferometers.
Each advanced LIGO interferometer is expected to produce a total data rate of
�10 MB/s. This corresponds to an annual data volume of �315 TB or �200 TB
with best current compression. The Advanced LIGO computing plan calls for each
interferometer to maintain an archive of its own raw data as well as copies of the raw
data generated by the other two interferometers. Additionally, a separate redundant
archive of the raw data is to be maintained at each Tier 1 data center [2, 3].

Computational Requirements The processing time taken by ComputeFStatistic
and CombSearch is around 9 min on an Intel dual core 2 GHz CPU with 7 GB
memory when executed for a single source across the 10-day stretch of data with a
band of 1 Hz.

Multiple GW Sources and Multi-User Environment As noted in the introduc-
tion, GWs can be detected from multiple sources. Users may elect to search for
multiple sources or single sources across different sections of the data. Each source
has different input parameters even though the underlying workflow is the same.
This scenario is depicted in Fig. 6 as GW Source 1–GW Source N. In a LIGO
organizational unit, it is expected that many users conduct searches simultaneously
on different sources. In an organizational unit, e.g., a university research group, there
are many users conducting different search procedures on the same and/or different
GW sources. These users are depicted as User 1–User N in Fig. 6.

Execution Time in Clouds In order to evaluate the expected execution time of the
application in public Clouds, we executed the search procedure on Amazon EC2,
an IaaS service enabling users to buy virtual machines (instances) with specific
characteristics in terms of CPU, memory, and storage (instance types). We repeated

Workflow Engine and Resource Provisioning Techniques 19

the experiment with different instance types (Small, Large, and Extra Large). The
synthetic input data was generated using lalapps_Makefakedata_v4. The execution
times of the applications and their input/output file sizes are reported in Table 2. The
values listed in Table 2 show that the application’s runtime is CPU-intensive, and
therefore dependent on the machine processing capacity and directly affected by the
computing power of the resource in use. Furthermore, the size of data produced will
help us in identifying techniques to manage the transfer and storage of such large
data sets.

Table 2 Execution characteristics on Amazon AWS

Task names
Execution time (s)

Input size (KB) Output sizeSmall Large Extra large

Generate data 37 17 12 – 138 kB

Compute F-statistic 2,611 1202 883 138 KB 480 MB

Comb search 184 85 N/A 480 KB 76 MB

Plot results 32 15 N/A 138 KB 100 KB

5 Performance Evaluation

In this section, we present the experiments conducted for evaluating the performance
of the system design and the load balancing algorithms. We divide the experiments
into two groups, namely Platform scalability and Dynamic provisioning and
instantiation of compute resources.

The PaaS system and the workflow application was demonstrated at the Fourth
IEEE International Scalable Computing Challenge (SCALE 2011), in California,
USA, during May 23–26, 2011. The experimental results presented in this section
are a result of the data collected from the executions during and after the challenge.

5.1 Platform Scalability

As discussed earlier, the PaaS middleware (the Workflow Engine) has limitations
on the number of workers and concurrent workflow applications it can manage.
In an environment such as that of the LIGO project, where it is expected that
multiple users from multiple organizations will be simultaneously performing GW
searches, a single engine can become a bottleneck for the scalability of the solution.
To tackle such a limitation, our proposed system is able to dynamically scale the
PaaS layer and also the worker pools by deploying multiple Engines when the
demand is high.

20 S. Pandey et al.

In order to evaluate the dynamic scaling of PaaS services work, a first series
of experiments was conducted. The experiments consist in a series of execution of
the application described in the previous section with a fixed number of compute
sources and different combination of engines and workers numbers. The application
conducts the search for GW signals between the frequencies of 50 and 1,050 Hz,
performing both the full-range (1,000 Hz) and proximity (within 200 Hz intervals)
searches.

The maximum number of tasks executed was 40. Moreover, in order to enable
us to acquire a better understanding of the practical environment, we use different
sources for each experiment. Experiments were performed with a maximum of one,
two, and four engines. For each number of engines, experiments were executed with
4, 8 and 16 workers per engine.

Figures 8, 9, and 10 show respectively results when the system was allowed to
scale up to one, two, and four engines. The topmost plot on each figures shows the
execution time of individual tasks, while the bottom plots show start and finish time
of each task with different scaling levels related to number of workers.

Figure 8 shows that, when a single workflow engine is available, execution time
of tasks when only four workers are deployed is smaller than when 16 workers are
deployed. Also, there are bigger variation in the execution time when 16 workers are
in use. This demonstrates the limitation of a single workflow engine in managing
too many concurrent workers, caused by overheads related to the management of

0:00:00
0 5 10 15 20 25 30 35

0:01:26
0:02:53
0:04:19
0:05:46
0:07:12
0:08:38
0:10:05
0:11:31
0:12:58

Ex
ec

ut
io

n
tim

e
(h

h:
m

m
:s

)

4 Workers 16 Workers

Task number

a

b c

20:24:00

21:36:00

22:48:00

0:00:00

1:12:00

Ti
m

e
(h

h:
m

m
:s

s)

1 4 7 10 13 16 19 22 25 28 31
Number of tasks

Submit time Finish time

4 workers

Number of tasks

Submit time Finish time

11:31:12
1 2 3 4 5 6 7 8 9 10 11 12 13

12:00:00

12:28:48

12:57:36

Ti
m

e
(h

h:
m

m
:s

s)

16 workers

Fig. 8 Performance of a single workflow engine. (a) Execution time of tasks. (b and c) Submission
and finish time of tasks for 4 and 16 workers, respectively

Workflow Engine and Resource Provisioning Techniques 21

0:00:00
0 5 10 20 25 30 3515

0:02:53

0:05:46

0:08:38

0:11:31

0:14:24

Ex
ec

ut
io

n
tim

e
(h

h:
m

m
:s

s)

Task number

a

b c d

8 Workers 4 Workers 16 Workers

SubmitTime FinishTime SubmitTime FinishTime SubmitTime FinishTime

0:00:00
0:28:48
0:57:36
1:26:24
1:55:12
2:24:00

Ti
m

e
(h

h:
m

m
:s

s)

8 workers

11:31:12
12:00:00
12:28:48
12:57:36
13:26:24

Ti
m

e
(h

h:
m

m
:s

s)

Number of tasks Number of tasks Number of tasks

4 workers

22:33:36
22:40:48
22:48:00
22:55:12
23:02:24
23:09:36
23:16:48

Ti
m

e
(h

h:
m

m
:s

s)

16 workers

1 1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 135 9 13 17 2125 29

Fig. 9 Performance of two concurrent workflow engines. (a) Execution time of tasks. (b–d)
Submission and finish time of tasks for 4, 8, and 16 workers, respectively

0:00:00
0 5 10 15 20 25 30

0:07:12

0:14:24

0:21:36

0:28:48

(h
h:

m
m

:s
s)

Tasks number

a

b c d

4 Workers 8 Workers 16 Workers

1:02:24

0:33:36

0:04:48

9:36:00

SubmitTime FinishTime SubmitTime FinishTime SubmitTime FinishTime

12:43:12 3:07:12

1 4 7 10 13 16 19 22 25Ti
m

e
(h

h:
m

m
:s

s)

Number of tasks Number of tasks Number of tasks

4 workers
11:45:36
12:00:00
12:14:24
12:28:48

1 4 7 10 13 16 19 22Ti
m

e
(h

h:
m

m
:s

s)

Ti
m

e
(h

h:
m

m
:s

s)

8 workers 2:09:36
2:24:00
2:38:24
2:52:48

1 2 3 4 5 6 7 8 9101112

16 workers

Fig. 10 Performance of four concurrent workflow engines. (a) Execution time of tasks. (b–d)
Submission and finish time of tasks for 4, 8, and 16 workers, respectively

multiple workers. for the scenario with one workflow engine, utilization of only
four workers makes execution time of tasks more homogeneous. The same trend
is observed with two and four simultaneous workflow engines, as shown in Figs. 9
and 10, respectively. When the ratio of workers per engine is low, increase in the
number of concurrent engines reduces tasks runtime.

22 S. Pandey et al.

Fig. 11 (a) A single workflow engine handles all the user requests. (b) Multiple workflow engines
are “dynamically” provisioned based on user requests, thus forming resource pools

5.2 Dynamic Provisioning of Workers

The next set of experiments aimed at evaluating the performance of the mechanism
for dynamic provisioning of workers. The experiment consisted in the execution of
the same application used in the previous experiments with an increasing number of
tasks in order to stress the system, triggering the dynamic provisioning process.

The graphs presented in Fig. 11 shows tasks completion time as a function of
number of resources and the number of workflow engines running. Due to overheads
cause by monitoring and management of workers, as the number of workflow tasks
increases until a maximum value of 40, the task completion time increases, which in
turn triggers the instantiation of new compute resources (workers). Figure 11a shows
the completion time of tasks when the number of workers increases linearly, with
only one workflow middleware handling all the requests. It can be noticed that, in
this case, the completion time steeply falls when more compute resources are added.
However, we also observed that efficiency is constantly decreasing. For instance,
the completion time when there are 170 workers is around 11 min, as compared to
around 5 min when there are 35 resources. Although the ratio of tasks to workers is
the same, a single PaaS middleware introduces higher overheads for a large number
of tasks and workers, which affects the completion time. The same trend is not
observed when multiple workflow engines are deployed.

In contrast, in Fig. 11b, we can observe that the completion time decreases for
the same task to worker ratio as in Fig. 11a. As the completion time starts to
climb, we instantiate a new workflow engine, which has an immediate impact on
the completion times of new tasks. This effect is visible as a ladder-like curve
in Fig. 11b. When 170 workers are instantiated, the completion time is around
2 min 20 s, nearly five times less than in Fig. 11a. Multiple workflow engines (PaaS
middleware) divide the overheads of scheduling and execution.

Workflow Engine and Resource Provisioning Techniques 23

Conclusions and Future Work
Cloud computing is a promising technology for transparently managing the
challenges brought by large-scale research applications that are characterized
by large volumes of data, computationally demanding applications, and exe-
cution concurrency. However, such scientific applications demand specialized
platform tools capable of coordinating the different stages of execution of
tasks while optimizing user-defined deadlines and Cloud usage cost. Because
platforms for scientific applications supporting such features are not readily
available, we designed and implemented an automated PaaS middleware that
uses public IaaS providers to host and support scalable execution of scientific
application workflows.

The proposed middleware is able to independently manage and scale the
platform layer composed of workflow engines and the infrastructure layer
composed of worker units able to execute application tasks. The scalable
PaaS middleware architecture was described, algorithms for load balance and
scaling were presented, and an application case study in the area of particle
physics was presented. The application is a search for gravitational waves
from the LIGO project, and workflows of such project were executed in a
prototype of the discussed architecture in order to validate our approach and
enable us to evaluate the systems performance. Results show that our goals
of independent and automated scaling of different layers is achievable and
enable reduction in execution time of applications even with variable pattern
and size of user requests.

As future work, we intend to evaluate the impact of different types of
applications in the performance of our proposed architecture. We also plan
to enhance the load balance algorithm and extend them to support execution
of workflows in multi-cloud scenarios, where resources from different Cloud
providers, both public and private, are used at the same time in a federated
environment.

Acknowledgements This project is partially supported by project grants from the University
of Melbourne (Sustainable Research Excellence Implementation Fund and Melbourne School of
Engineering) and the Australian Research Council (ARC). We thank Amazon for providing access
to their Cloud infrastructure, the Australian and international LIGO communities for their guidance
and support, and Dong Leng for his contribution towards extending the Workflow Engine for the
LIGO experiment.

References

1. Large scale computing and storage requirements for basic energy sciences research. Workshop
Report LBNL-4809E, Lawrence Berkeley National Laboratory, USA, Jun. 2011.

2. B. P. Abbott et al. LIGO: the laser interferometer gravitational-wave observatory. Reports on
Progress in Physics, 72(7):076901, Jul. 2009.

24 S. Pandey et al.

3. Advanced LIGO Team. Advanced ligo reference design. Technical Report LIGO
M060056-08-M, LIGO Laboratory, USA, May 2007.

4. Lars Bildsten. Gravitational radiation and rotation of accreting neutron stars. The Astrophysical
Journal Letters, 501(1):L89–L93, Jul. 1998.

5. E. Casalicchio and L. Silvestri. Architectures for autonomic service management in
cloud-based systems. In Proceedings of the 2011 IEEE Symposium on Computers and
Communications (ISCC’11), 2011.

6. Wei Chen, Junwei Cao, and Ziyang Li. Customized virtual machines for software provisioning
in scientific clouds. In Proceedings of the 2nd International Conference on Networking and
Distributed Computing (ICNDC’11), 2011.

7. Ewa Deelman et al. GriPhyN and LIGO, building a virtual data grid for gravitational wave
scientists. In Proceedings of the 11th IEEE International Symposium on High Performance
Distributed Computing (HPDC’02), 2002.

8. Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kesselman,
Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anastasia Laity, Joseph C. Jacob,
and Daniel S. Katz. Pegasus: A framework for mapping complex scientific workflows onto
distributed systems. Scientific Programming, 13(3):219–237, Jul. 2005.

9. B. Dougherty, J. White, and D. C. Schmidt. Model-driven auto-scaling of green cloud
computing infrastructure. Future Generation Computer Systems, 28(2):371–378, Feb. 2012.

10. Piotr Jaranowski, Andrzej Królak, and Bernard F. Schutz. Data analysis of gravitational-wave
signals from spinning neutron stars: The signal and its detection. Physics Review D, 58(6),
Aug. 1998.

11. Hyunjoo Kim, Yaakoub el Khamra, Ivan Rodero, Shantenu Jha, and Manish Parashar. Auto-
nomic management of application workflows on hybrid computing infrastructure. Scientific
Programming, 19(2–3):75–89, Jun. 2011.

12. Sifei Lu, Reuben Mingguang Li, William Chandra Tjhi, Long Wang, Xiaorong Li, Terence
Hung, and Di Ma. A framework for cloud-based large-scale data analytics and visualization:
Case study on multiscale climate data. In Proceedings of the 3rd International Conference on
Cloud Computing Technology and Science (CloudCom’11), 2011.

13. Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew Jones,
Edward A. Lee, Jing Tao, and Yang Zhao. Scientific workflow management and the Kepler
system. Concurrency and Computation: Practice and Experience, 18(10):1039–1065, Aug.
2006.

14. M. Mao and M. Humphrey. Auto-scaling to minimize cost and meet application deadlines in
cloud workflows. In Proceedings of the 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’11), 2011.

15. Ming Mao and Marty Humphrey. Auto-scaling to minimize cost and meet application
deadlines in cloud workflows. In Proceedings of the 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’11), 2011.

16. A. Melatos and D. J. B. Payne. Gravitational radiation from an accreting millisecond pulsar
with a magnetically confined mountain. The Astrophysical Journal, 623(2):1044–1050, Apr.
2005.

17. C. Messenger and G. Woan. A fast search strategy for gravitational waves from low-mass x-ray
binaries. Classical and Quantum Gravity, 24(19):S469–S480, 2007.

18. Ashish Nagavaram, Gagan Agrawal, Michael A. Freitas, and Kelly H. Telu. A cloud-based
dynamic workflow for mass spectrometry data analysis. In Proceedings of the 7th IEEE
International Conference on eScience (eScience’11), 2011.

19. Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Greenwood,
Tim Carver, Kevin Glover, Matthew R. Pocock, Anil Wipat, and Peter Li. Taverna: a tool for the
composition and enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054,
Nov. 2004.

20. Simon Ostermann, Radu Prodan, and Thomas Fahringer. Extending grids with cloud resource
management for scientific computing. In Proceedings of the 10th IEEE/ACM International
Conference on Grid Computing (GRID’09), 2009.

Workflow Engine and Resource Provisioning Techniques 25

21. S. Pandey, D. Karunamoorthy, and R. Buyya. Workflow engine for clouds. In R. Buyya,
J. Broberg, and A.Goscinski, editors, Cloud Computing: Principles and Paradigms, chapter 12,
pages 321–344. Wiley, 2011.

22. Stuart L. Shapiro and Saul A. Teukolsky. Black holes, white dwarfs, and neutron stars: The
physics of compact objects. Wiley-Interscience, New York, USA, 1983.

23. Luis M. Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynamically scaling applica-
tions in the cloud. SIGCOMM Computer Communication Review, 41(1):45–52, Jan. 2011.

24. Anna L. Watts, Badri Krishnan, Lars Bildsten, and Bernard F. Schutz. Detecting gravitational
wave emission from the known accreting neutron stars. Monthly Notices of the Royal
Astronomical Society, 389(2):839–868, 2008.

25. Fan Zhang, Junwei Cao, Kai Hwang, and Cheng Wu. Ordinal optimized scheduling of scientific
workflows in elastic compute clouds. In Proceedings of the 3rd IEEE International Conference
on Cloud Computing Technology and Science (CloudCom’11), 2011.

The FutureGrid Testbed for Big Data

Gregor von Laszewski and Geoffrey C. Fox

Abstract In this chapter introduce you to FutureGrid, which provides a testbed
to conduct research for Cloud, Grid, and High Performance Computing. Although
FutureGrid has only a modest number of compute cores (about 4,500 regular
cores and 14,000 GPU cores) it provides an ideal playground to test out various
frameworks that may be useful for users to consider as part of their big data analysis
pipelines. We focus here on the use of FutureGrid for big data related testbed
research. The chapter is structured as follows. First we provide the reader with an
introduction to FutureGrid hardware (Sect. 2). Next we focus on a selected number
of services and tools that have been proven to be useful to conduct big data research
on FutureGrid (Sect. 3). We contrast frameworks such as MPI, virtual large memory
systems, Infrastructure as a Service and map/reduce frameworks. Next we present
reasoning by analyzing requests to use certain technologies and identify trends
within the user community to direct effort in FutureGrid (Sect. 4). The next section
reports on our experience with the integration of our software and systems teams via
DevOps (Sect. 5). Next we summarize Cloudmesh, which is a logical continuation
of the FutureGrid architecture. It provides abilities to federate cloud services and
to conduct cloudshifting; that is to assign servers on-demand to HPC and Cloud
services (Sect. 6). We conclude the chapter with a brief summary (Sect. 6).

1 Introduction

FutureGrid [11, 27] is a project led by Indiana University (IU) and funded by the
National Science Foundation (NSF) to develop a high performance grid test bed
that will allow scientists to collaboratively develop and test innovative approaches
to parallel, grid, and cloud computing. FutureGrid provides the infrastructure to
researchers that allows them to perform their own computational experiments using
distributed systems. The goal is to make it easier for scientists to conduct such
experiments in a transparent manner. FutureGrid users will be able to deploy
their own hardware and software configurations on a public/private cloud, and run

G. von Laszewski (�) • G.C. Fox
Indiana University, Bloomington, IN, USA
e-mail: laszewski@gmail.com; gcf@indiana.edu

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__2

27

mailto:laszewski@gmail.com
mailto:gcf@indiana.edu

28 G. von Laszewski and G.C. Fox

their experiments. They will be able to save their configurations and execute their
experiments using the provided tools. The FutureGrid test bed is composed of a
high speed network connecting distributed clusters of high performance computers.
FutureGrid employs virtualization technology that will allow the test bed to support
a wide range of operating systems.

2 Overview of FutureGrid

2.1 Hardware Overview

FutureGrid contains a number of clusters of different types and size that are
interconnected with up to a 10 GB Ethernet among its sites. The sites include
Indiana University, University of Chicago, San Diego Supercomputing Center,
Texas Advanced Computing Center, and University of Florida.

2.1.1 Overview of the Clusters

Table 1 provides a high level overview of the clusters currently available in
FutureGrid. The biggest cluster is located at IU. It is called India and contains 128
servers with 1,024 cores. In total, we currently have 481 compute servers with 1,126
CPUs and 4,496 Cores. In addition, we have 448 GPU cores. The total RAM is
about 21.5 TB. Secondary storage is about 1 PB. A more detailed table is provided
in Table 2. We found that India is one of the most popular resources on FutureGrid.

Table 1 FutureGrid compute resources

Name System type Nodes CPUS Cores TFLOPS RAM (GB) Storage (TB) Site

India IBM iDataplex 128 256 1;024 11 3;072 335 IU

Hotel IBM iDataplex 84 168 672 7 2;016 120 UC

Sierra IBM iDataplex 84 168 672 7 2;688 96 SDSC

Foxtrot IBM iDataplex 32 64 256 3 768 0 UF

Alamo Dell Poweredge 96 192 768 8 1;152 30 TACC

Xray Cray XT5m 1 166 664 6 1;328 5:4 IU

Bravo HP Proliant 16 32 128 1:7 3;072 128 IU

Delta SuperMicro
GPU Cluster

16 32 192 1;333 144 IU

Lima Aeon Eclipse64 8 16 128 1:3 512 3:8 SDSC

Echo SuperMicro
ScaleMP
Cluster

16 32 192 2 6;144 192 IU

481 1; 126 14696 47 22;085 1;054:2

1 GPU cores on machines not included

The FutureGrid Testbed for Big Data 29
Ta

bl
e

2
Fu

tu
re

G
ri

d
cl

us
te

r
de

ta
ils

N
am

e
E

ch
o

A
la

m
o

B
ra

vo
D

el
ta

Fo
xt

ro
t

H
ot

el
In

di
a

L
im

a
Si

er
ra

X
ra

y

O
rg

an
iz

at
io

n
IU

TA
C

C
IU

IU
U

F
U

C
IU

SD
SC

SD
SC

IU

M
ac

hi
ne

ty
pe

C
lu

st
er

Sc
la

eM
P

C
lu

st
er

C
lu

st
er

C
lu

st
er

C
lu

st
er

C
lu

st
er

C
lu

st
er

C
lu

st
er

C
lu

st
er

C
lu

st
er

Sy
st

em
ty

pe
Su

pe
rM

ic
ro

D
el

l
Po

w
er

E
dg

e
M

61
0

B
la

de

H
P

Pr
ol

ia
nt

IB
M

iD
at

aP
le

x
dx

36
0

M
2

IB
M

iD
at

aP
le

x
dx

36
0

M
2

IB
M

iD
at

aP
le

x
dx

36
0

M
2

A
eo

n
E

cl
ip

se
A

64
IB

M
iD

at
aP

le
x

dx
34

0

C
ra

y
X

T
5m

C
PU

ty
pe

X
eo

n
E

5-
26

40
X

eo
n

X
55

50
X

eo
n

E
56

20
X

eo
n

56
60

X
eo

n
X

55
20

X
eo

n
X

55
50

X
eo

n
X

55
50

O
pt

er
on

62
12

X
eo

n
L

54
20

O
pt

er
on

23
78

C
PU

sp
ee

d
2.

50
G

H
z

2.
66

G
H

z
2.

40
G

H
z

2.
80

G
H

z
2.

26
G

H
z

2.
66

G
H

z
2.

66
G

H
z

1.
4

G
H

z
2.

5
G

H
z

2.
4

G
H

z

C
PU

s
19

2
32

32
64

16
8

25
6

16
16

8
16

8

Se
rv

er
s

12
96

16
16

32
84

12
8

8
84

1

R
A

M
12

G
B

D
D

R
3

13
33

M
H

z

19
2

G
B

D
D

R
3

13
33

M
H

z

19
2

G
B

D
D

R
3

1,
33

3
M

H
z

24
G

B
D

D
R

3
1,

33
3

M
H

z

24
G

B
D

D
R

3
1,

33
3

M
H

z

24
G

B
D

D
R

3
1,

33
3

M
H

z

64
G

B
D

D
R

3
32

G
B

D
D

R
2-

66
7

8
G

B
D

D
R

2-
80

0

To
ta

lR
A

M
1,

15
2

G
B

3,
07

2
G

B
3,

07
2

G
B

76
8

G
B

2,
01

6
G

B
3,

07
2

G
B

64
G

B
D

D
R

3
2,

68
8

G
B

1,
34

4
G

B

N
um

be
r

of
co

re
s

14
4

76
8

12
8

25
6

67
2

1,
02

4
12

8
67

2
67

2

T
flo

ps
8

1.
7

3
7

11
7

6

D
is

k
si

ze
(T

B
)

2.
8

48
15

20
12

0
33

5
72

33
5

H
ar

d
dr

iv
es

50
0

G
B

7.
2

K
R

PM
SA

S

6x
2

T
B

7.
2

K
R

PM
SA

TA

92
G

B
7.

2
K

R
PM

SA
S2

50
0

G
B

7,
20

0
R

PM
SA

TA

1
T

B
7,

20
0

R
PM

SA
TA

3,
00

0
G

B
7,

20
0

R
PM

SA
TA

1
T

B
7,

20
0

R
PM

,4
80

G
B

SS
D

16
0

G
B

7,
20

0
R

PM
SA

TA
D

ri
ve

6
T

B
L

us
tr

e

Sh
ar

ed
st

or
ag

e
N

FS
N

FS
N

FS
N

FS
G

PF
S

N
FS

Z
FS

Z
FS

82
.2

T
B

N
FS

In
te

rc
on

ne
ct

M
el

la
no

x
4x

Q
D

R
IB

M
el

la
no

x
4x

D
D

R
IB

M
el

la
no

x
4x

D
D

R
IB

M
el

la
no

x
4x

D
D

R
IB

10
G

bE
M

el
la

no
x

C
on

ne
ct

X

M
el

la
no

x
4x

D
D

R
IB

C
ra

y
Se

aS
ta

r

IB
=

In
fin

iB
an

d,
X

en
on

=
IN

te
lX

en
on

,O
pt

er
on

=
A

M
D

O
pt

er
on

30 G. von Laszewski and G.C. Fox

Cloudmesh

Peers

Sites

FutureGrid
Core Router

Impairment
Simulator

UF

XSEDE Internet 2

SDSC UCTACC

CM User
Managed
Service

Azure
HP

Cloud KIT
User

Managed Others

Alamo FoxtrotSierra Hotel IndiaBravo EchoDeltaLima

CM

CM FG
Hosted
Service

Indiana GigaPOP

IU

Fig. 1 High level network diagram and conceptual integration of Cloudmesh resources

2.1.2 Overview of Networking

The significant number of distinct systems within FutureGrid provides a hetero-
geneous distributed architecture. They are connected by high-bandwidth network
links supporting distributed system research [11]. The FutureGrid network used to
have a dedicated network between sites [11]. However, the network infrastructure
has recently changed due to modifications related to the major network operator the
National Lambda Rail. Due to these changes the operation of the network between
the sites has switched from the National Lambda Rail to XSEDE and are no longer
exclusive. However, this is so far no major handicap for the projects conducted on
FutureGrid based on our project portfolio. The current high level network diagram
is depicted in Fig. 1. Hence, the core resources to FutureGrid at SDSC, IU, TACC,
and UF are now all connected via the XSEDE network and integrated via the FG
core router in Chicago. Within the IU network additional clusters are integrated and
are described in more detail in Sect. 2.1.1.

A Spirent H10 XGEM Network Impairment emulator [14] can be collocated with
resources at Indiana University, to enable experiments to include network latency,
jitter, loss, and errors to network traffic.

In addition we have added several components that are related to a special
software service called Cloudmesh, which we explain in more detail in Sect. 6.

The FutureGrid Testbed for Big Data 31

Table 3 Storage resources of
FutureGrid

System type Capacity (TB) File system Site

Xanadu 360 180 NFS IU

DDN 6620 120 GPFS UC

Sunfire x4170 96 ZFS SDSC

Dell MD3000 30 NFS TACC

IBM dx360 M3 24 NFS UF

2.1.3 Overview of Storage

FutureGrid does not provide capacity for long-term storage or long-term experi-
ments. FutureGrid has a limited amount of storage space and users are requested
to remove their storage after use. However, users with special needs may be
accommodated by special storage setups. The list of storage services is shown in
Table 3.

3 Services and Tools for Big Data

FutureGrid offers a very rich environment to its users. We can categorize them in
a stacked service architecture as depicted in Fig. 2. We distinguish the following
categories: Cloud PaaS, IaaS, GridaaS, HPCaaS, TestbedaaS, which we will explain
in more detail in the next sections. The services in these categories are integrated
in our general FutureGrid high-level architecture depicted in Fig. 3. More details
about the architecture can be found in [11, 27]. Within this paper we will focus
on describing services that have been explicitly used for big data research in
FutureGrid.

3.1 Testbed as a Service (TestbedaaS)

It is a well-accepted paradigm that today a lot of research is carried out by
interdisciplinary scientific teams. Thus, FutureGrid provides an advanced frame-
work to manage user and project affiliation and propagates this information to
a variety of subsystems constituting the FG service infrastructure. This includes
operational services (not explicitly mentioned in Fig. 2) to deal with authentication,
authorization and accounting. In particular, we have developed a unique metric
framework that allows us to create usage reports from our entire Infrastructure as
a Service (IaaS) frameworks. Repeatable experiments can be created with a number
of tools including Pegasus, Precip and Cloudmesh. VMs can be managed on high

32 G. von Laszewski and G.C. Fox

Cloud PaaS

Hadoop
Iterative MapReduce

HDFS
Hbase

Swift Object Store

IaaS

Nimbus
Eucalyptus

OpenStack
ViNE

GridaaS
Genesis
Unicore

SAGA
Globus

HPCaaS

MPI
OpenMP

CUDA

TestbedaaS

Infrastructure: Inca, Ganglia

Provisioning: RAIN, CloudMesh

VMs: Phantom, CloudMesh

Experiments: Pegasus, Precip,

 Cloudmesh

Accounting: FG, XSEDE

Fig. 2 FutureGrid high-level user services

level either via Cloudmesh (see Sect. 6). Provisioning of services and images can
be conducted by RAIN [9, 10]. Infrastructure monitoring is enabled via Nagios [7],
Ganglia [17], and Inca [22] and our own cloud metric system [29].

3.2 Traditional High Performance Computing as a Service
(HPCaaS)

Within the traditional High Performance Computing (HPC) services FG offers a
traditional MPI/batch queuing system and a virtual large memory system that are
beneficial for big data calculations.

3.2.1 MPI and Batch Queues

The traditional HPC environment provided by queuing systems and Message
Passing Interface (MPI) programs creates a suitable infrastructure not only for
simulations, but also for the analysis of large data. However, considerable amount
of work has to be conducted to optimize the available infrastructure to deal
with distributed domain decompositions. Optimized use via traditional HPC has
been successfully demonstrated for many biological applications. Additionally, the
existence of a queuing system can provide some advantages when the available
resources are over utilized while sharing the resources with other users. This has

The FutureGrid Testbed for Big Data 33

Base Software and Services
OS, Queuing Systems, XCAT, MPI, ...

Access Services

Management Services FutureGrid Operations
Services

Development
Services
Wiki, Task

Management,
Document
Repository

User and
Support
Services

Portal,
Tickets,
Backup,
Storage,

PaaS

Hadoop,
Dryad,
Twister,
Virtual

Clusters,

Additional
Tools &
Services
Unicore,

Genesis II,
gLite, ...

Image
Management

FG Image
Repository
FG Image
Creation

,

Experiment
Management

Registry
Repository
Harness,
Pegasus
Exper.

Workflows, ...

,

Dynamic Provisioning
RAIN: Provisioning of IaaS,

PaaS, HPC, ...

Monitoring
and

Information
Service

Inca,
Grid

Benchmark
Challange,
Netlogger,

PerfSONAR
Nagios, ...

FutureGrid Fabric
Compute, Storage & Network Resources

Development &
Support Resources

Portal Server, ...

IaaS

Nimbus,
Eucalyptus,
OpenStack,

OpenNebula,
ViNe, ...

Security &
Accounting

Services
Authentication
Authorization
Accounting

HPC User
Tools &
Services
Queuing
System,

MPI, Vampir,
PAPI, ...

...

Fig. 3 FutureGrid high-level architecture

been especially useful in FutureGrid to support educational activities for classes
with many users that, for example, want to test map reduce activities controlled by
a queuing system as described in Sect. 3.5.1.

3.2.2 Virtual Large-Memory System

One of the demands often posed in big data analysis it to place the data as much
as possible into memory to speed up calculations and in some cases to fit the entire
dataset into memory. However, this analysis may come at a cost as, for example, the
use of HPC computing via MPI adds additional programming complexity within
a cluster. Therefore, it is desirable to virtualize the memory from multiple servers
in a cluster to provide one big memory system that can be easily accessed by the

34 G. von Laszewski and G.C. Fox

underlying software. One such implementation, vSMP by ScaleMP [11, 21]. vSMP
is installed on the FutureGrid echo cluster that has 16 servers and can access up to
3 TB in shared virtual memory.

3.3 Grid as a Service (GridaaS)

Not surprisingly the demand for computational Grids on FutureGrid has been
relatively small. While we saw few requests for Globus we decided to focus on
the installation of more popular systems. The low use can be explained by the
availability of large Grid production infrastructure elsewhere such as in XSEDE
and based on the move of the community away from complex Grid solutions to
either cloud computing or even back to more traditional batch processing solutions.
Furthermore, toolkits such as the CoG Kit also known as jglobus [24, 26, 28] have
provided enough abstractions for users that experimenting with such technologies
has become less prominent and can be made on the client side while interfacing to
production Grid services instead of testbeds.

3.4 Infrastructure as a Service (IaaS)

One of the main features of FutureGrid is to offer its users a variety of infrastructure
as a service frameworks [25, 31]. These frameworks provide virtualized resources
to the users on top of existing cyberinfrastructure fabric. This includes but is
not limited to virtualized servers, storage, network, disk, and other IaaS related
services. In FutureGrid the most common hypervisor that runs the virtual machines
as guest on the underlying operating system is KVM. Some resources also run XEN,
however most recently the demand for KVM has increased and some services will
be switched from XEN to KVM. Through the ability to provide large numbers
of virtual machines to the users, the access mode to utilize resources, in contrast
to traditional HPC, has been changed from a reservation-based service to an on-
demand service. This comes with the benefit that if enough resources are available
they will be immediately allocated to the user. However, if not enough resources can
be offered, the system will define the request and return with an error. Based on our
experience with FutureGrid over the last couple of years, it is advantageous to offer
a mixed operation model. This includes a standard production cloud that operates
on-demand, but also a set of cloud instances that can be reserved for a particular
project. We have conducted this for several projects in FutureGrid, including those
that required dedicated access to resources as part of big data research such as
classes [18, 19] or research projects with extremely large virtual machines [20].

The IaaS services that are offered in FutureGrid contain the following:

OpenStack has become most recently, next to HPC, the most requested service
in FutureGrid based on newly started projects. OpenStack is an open source

The FutureGrid Testbed for Big Data 35

cloud infrastructure as a service framework to deliver public and private clouds.
It contains a number of components that together build a powerful and flexible
set to create a cloud service offering. Services include a compute service, and
object storage, an image service, a monitoring service, and an orchestration
service. OpenStack has received considerable momentum due to its openness
and the support of companies. Within FutureGrid OpenStack clouds are currently
deployed on India, Sierra, Hotel, and Alamo, while currently India provides the
most up to date services.

Nimbus is an open source service package allowing users to run virtual machines
on FutureGrid hardware. Just as in OpenStack users can upload their own virtual
machine images or customize existing ones. Nimbus, next to Eucalyptus is
one of the earlier frameworks that make managing virtual machines possible.
Nimbus provides a basic set of cloud services including services to orchestrate
the deployment of virtual machines. However, Eucalyptus and OpenStack now
also provide such services.
Nimbus provides a selected subset of AWS protocols such as EC2. Accounting
of Nimbus VMs does not currently provide features for project management.
Such group-based and role based user management is essential for proper
administrative resource and project management and is provided by other IaaS
frameworks. In Nimbus it is only conducted on a user-by-user basis. This
has significant implications on user management as in large-scale deployments
project management features are highly desired but are not offered in Nimbus.
Although, single users may not be interested in this feature, it is essential to
provide proper project management of groups of users.

Eucalyptus is an open source software IaaS framework for cloud computing.
Eucalyptus provides an Amazon Web Services (AWS) compliant EC2-based web
service interface to its users enabling the easy integration between a local cloud
managed with Eucalyptus and AWS. However, as other IaaS frameworks such
as OpenStack also provide EC2 interfaces for many application users OpenStack
has become a viable alternative.

Which of the IaaS frameworks to choose is a question that is not that easy to
answer. Many of our projects evaluate several of them in order to choose the one
best suited for their use case. At other times users chose a framework that they
had previously successfully used. Over time the quality of the IaaS framework has
significantly changed. Within the last year OpenStack has become the most popular
platform on FutureGrid.

3.5 Cloud Platform as a Service (PaaS)

3.5.1 Map Reduce

Map reduce models have been familiar to the programming and distributed com-
puting community for a long time and have been historically associated with the

36 G. von Laszewski and G.C. Fox

functional programming’s map and reduce. However the map and reduce framework
introduced recently [8] distinguishes itself from such efforts while applying it
repeatedly, with fault tolerance on a very large distributed data set [4].

Instead of bringing the data to the computer in map reduce application we often
use the concept of bringing the computing to the data. This makes a lot of sense
when we assume that a large number of data is distributed over many servers and
repeated search queries are cast to find results across them (as in the case of Google
motivating map/reduce).

In general, we can define a map step that takes the input problem and divides it
into smaller sub-problems distributing it among worker nodes. The map function is
then executed on the data distributed on the various servers. The reduce step collects
the answers of the subproblem and combines them in some fashion (Fig. 4).

Fig. 4 Bring the data to the computation vs. bring the computation to the data

Hadoop

Hadoop [1] is an Apache project delivering an opensource software that uses the
map/reduce framework in a distributed environment while focusing on scalability
and reliability. Its design includes the Hadoop File System (HDFS) which provides
an easy-to-use file system to distribute the data among the servers on which the
calculations will be executed. Hadoop is designed to deal with faults through
redundancy which is an important feature when conducting data analysis on very
large distributed databases [1]. Hadoop is written in Java and provides the essential
map reduce functionality and allows the system to be configured for existing
hardware.

The FutureGrid Testbed for Big Data 37

myHadoop

MyHadoop [15, 16], which is installed on many of the compute clusters in Future-
Grid, enables users to launch Hadoop clusters via traditional high-performance
compute clusters. For this, it utilizes the underlying batch scheduling system.

The reasons for managing Hadoop jobs via a batch system are manifold. First, the
available infrastructure is resource constrained, and utilization of disks and compute
resources must be specially accounted for to allow shared usage by many users. This
naturally happens in the educational research community quite frequently. Second,
to efficiently utilize the compute and data infrastructure researchers may not run
Hadoop or MPI jobs continuously. At times they may need a Hadoop environment.
At other times they may prefer a traditional message passing environment while at
the same time being under resource constraints.

The idea of myHadoop is to submit a job to the queuing system that sets up a
Hadoop cluster for the length of the reservation and the researcher can then use
it to conduct experiments either via predefined jobs or in interactive mode. This
is achieved by first identifying a number of resources via the scheduler, followed
by the deployment of the Hadoop software across the identified servers. The user
will then be presented with information on how to access this newly provisioned
Hadoop cluster. MyHadoop, in its new version [16] is supported for Oracle Grid
Engine (formerly known as Sun Grid Engine), PBS, and SLURM.

Once Hadoop has been initialized, it can be accessed through regular job scripts
as shown in Fig. 5. This example script uses eight nodes. It is important to set the
processor per node to 1 to assure the various Hadoop daemons are scheduled on
different servers. The rest of the script is not depicted as it contains the actual details
on setting up Hadoop via the script and is beyond the scope of this chapter. The user
should replace the text in < : : : > to customize the job. As Hadoop is a user level
program, it is also possible to run a usermodified version of Hadoop which helps in
adding new features or trying out newer versions of Hadoop than the default version
that is installed for my Hadoop. The FutureGrid manual provides more details on
how to practically use myHadoop on FutureGrid [13].

Fig. 5 PBS script to start
hadoop

#!/bin/bash
#PBS -q <queue_name>
#PBS -N <job_name>
#PBS -l nodes=8:ppn=1
#PBS -o <output file>
#PBS -e <error_file>
#PBS -A <allocation>
#PBS -V
#PBS -M <user email>
#PBS -m abe

...further details omitted

38 G. von Laszewski and G.C. Fox

Twister

Twister [6] is an extension to MapReduce to allow more easily the introduction
of iterative map reduce processes. In addition twister has introduced a number
of concepts including distinction between static and variable data, long running
tasks, publish/subscriber based communication, and various other enhancements.
Twister is developed at Indiana University, and is used as part of classes on
distributed systems and other educational activities; hence, it reaches popularity
within FutureGrid.

Virtual Clusters

In addition to the map/reduce platforms offered on FutureGrid, it is also possible to
deploy virtual clusters. One of the earliest such frameworks has been showcased by
von Laszewski [30] while deploying a SLURM cluster. Such a cluster can then
be used as a teaching tool or provides additional mechanisms to custom create
queues and reservations. However, the most advanced feature of FutureGrid will
be via Cloudmesh, which will allow the deployment of clusters not only in virtual
machines, but on baremetal.

4 FutureGrid Usage

When offering services such as FutureGrid to the community, we have to analyze
and predict which services may be useful for the users. We have therefore
established a number of activities that monitor external and internal data. Externally,
we look, for example, at information provided by Gartners technology hype curve
[2] or Google trend information as shown in Fig. 6. From Google Trend data we
observe that the popularity of Grid computing has been very low in the recent
years and much attention has shifted to cloud computing. Therefore we removed
this information from the figure and focus exemplary on cloud related terms such as
Cloud Computing, Big Data, OpenStack, and VMWare. From this information we
see that all but VMWare are rising, with Cloud Computing dominating the Google
trends in comparison to the others. This trend is important as it shows a shift in
the cloud computing community buzz away from a traditional commercial market
leader in virtualization technology. We believe that is correlated with a large number
of vendors offering alternative products and services while at the same time the
novelty from VMWare is reduced.

To give an informal overview of the more than 300 projects conducted on
FutureGrid, we have taken their titles and displayed them in a word cloud (see
Fig. 7). Additionally, we have taken keywords that are provided by the project leads
and also displayed them in a word cloud (see Fig. 8). Although the images do not
give quantitative perspective about the project it helps to identify some rough idea

The FutureGrid Testbed for Big Data 39

−20

0

20

40

60

80

100

120

20
04

-1
2

20
05

-1
2

20
06

-1
2

20
07

-1
2

20
08

-1
2

20
09

-1
2

20
10

-1
2

20
11

-1
2

20
12

-1
2

20
13

-1
2

G
oo

gl
e

T
re

nd

Cloud Computing Big Data
OpenStack VMWare

Fig. 6 Google trends

about the activities that are ongoing in FutureGrid. As expected the terms cloud
computing and terms such as mapreduce, OpenStack, Nimbus, and Eucalyptus
appear quite frequently. It is, therefore, worthwhile to analyze this data in a more
quantitative form.

FutureGrid supports a rich set of projects, of which many are principally related
directly or indirectly to big data systems. In Table 4 we list the areas of research
and the number of projects conducted in these areas over a time period identified
between November 2011 and December 2013. One of the focal observations is that
the majority of projects are related to computer science research which can be found
in the table in more detail. Domain Science and Education related projects take on
a large portion.

As part of our project management in FutureGrid, we have designed a simple
project application procedure that includes prior to a project being granted access,
gathers information about which technologies are anticipated to be used within
the project. The list of technologies is fairly extensive and includes Grid, HPC,
and Cloud computing systems, services, and software. However, for this paper we
will focus primarily on technologies that are dominantly requested and depicted
in Fig. 9. Clearly we can identify the trend that shows the increased popularity of
OpenStack within the services offered on FutureGrid. Nimbus and Eucalyptus are
on a significant downward trend. ObenNebula was also at one point more requested
than either Nimbus or Eucalyptus, but due to limited manpower an official version
of OpenNebula was not made available on FutureGrid. As we have not offered
it and pointed it out on our Web page, requests for OpenNebula have vanished.
However, we have internally used OpenNebula for projects such as our Cloudmesh
rain framework. All other sixteen technologies are relatively equally distributed over

40 G. von Laszewski and G.C. Fox

Fig. 7 Project title word cloud

Fig. 8 Project keyword word cloud

the monitoring period. The lesson that we took form this is that FutureGrid has put
recently more emphasis in offering OpenStack services.

From the overall project information we have also analyzed the frequency of the
number of project members within the project and show it in Fig. 10. Here we depict
on the abscissa, classes of projects with varying members. Assume we look at the
abscissa at the value of 10. This means that these are all projects that have project

The FutureGrid Testbed for Big Data 41

Table 4 FutureGrid supports
a rich set of projects, of
which many are importantly
related directly or indirectly
to big data systems

Discipline Count

Domain science 44

Educationa 42

Technology evaluation 19

Core virtualization 17

Programming models 12

Cyberinfrastructure 11

Security and privacy 10

Data systems 10

Resource management 9

Distributed clouds and systems 8

Artificial intelligence 7

Cyber-physical CPS and mobile systems 5

Fault-tolerance 5

Data analytics/machine learning 5

Networking 3

Network/web science 3

Interoperability 3

Storage 2

Streaming data 2

P2P 2

Software engineering 2

a 90 % of which on computer science

members between 10 and its previous category, in this case 5. Hence, it will be
all projects greater than 5 and smaller or equal to 10. With this classification we see
that the dominant unique number of members within all projects is either one, two or
three members. Then we have another class between four and ten members, and the
rest with more than ten members. One of the projects had 186 registered members
overall for an education class as part of a summer school. Looking at the distribution
of the members and associating them with research and education projects, we find
all projects with larger numbers of projects to be education projects.

When we look in more detail into the map/reduce related technology requests
over the entire period FutureGrid has been active, we identified the distributions as
depicted in Fig. 13. We can see that the requests for IaaS together with map/reduce
technology requests dominate. HPC requests are much fewer. The reason why the
other category in Fig. 13 is that high is because we have a significant number of
other choices, each with a very low total count. Also, we would like to remind
the reader that users can chose multiple categories for their projects. Within the
category of map/reduce, users had the choice of Hadoop, Map/Reduce, or Twister
as a technology. The breakdown of these choices is shown in the right part of Fig. 13
dominated by the choice for Map/Reduce and Hadoop representing 85 % of all
choices.

42 G. von Laszewski and G.C. Fox

0

5

10

15

20

25

10
Q

3

10
Q

4

11
Q

1

11
Q

2

11
Q

3

11
Q

4

12
Q

1

12
Q

2

12
Q

3

12
Q

4

13
Q

1

13
Q

2

13
Q

3

R
eq

ue
st

s

Time Period

HPC
Eucalyptus

Nimbus
OpenNebula

OpenStack
Avg of the rest 16

Fig. 9 Requested technologies by project

Next we have analyzed all projects that requested either mapreduce, hadoop,
twister, MPI and ScaleMP (147 of all 374 active projects, which is 39 % of all
projects) and categorized them by discipline as shown in Fig. 11. In contrast to
XSEDE, which provides a production HPC system to the scientific community,
the usage of FutureGrid for map reduce frameworks is dominated with 50 % by
computer science related projects followed by education with 19 %.

Looking further into this data, we present in Fig. 12 the number of projects in a
particular category as well as the Fraction of technologies within a discipline. As we
are focusing in this paper on the impact on big data, we have looked in particular
at requests for mapreduce, Hadoop, and twister, while also looking at requests
for MPI and ScaleMP. It is interesting to note that the perceptual distribution of
the technologies among these projects is about constant, if we exclude technology
evaluations and interoperability. As MPI is more popular with domain sciences,
we find a slight increase in projects requesting MPI (Fig. 13). However, with the
life sciences we see the opposite as map/reduce and associated technologies are
more popular here. MPI and ScaleMP are not much requested as part of technology
evaluations and interoperability experimentation as they either project a very stable
framework and do not require evaluation, or the question of interoperability is not
of concern for most of the projects.

5 System Management

The goal of FutureGrid is to offer a variety of services as part of its testbed features,
thereby going beyond services that are normally offered by data and supercomputing
centers for research. This provides a number of challenges that need to be overcome

The FutureGrid Testbed for Big Data 43

F
re

qu
en

cy

0

15

30

45

60

Members

1 2 3 5 10 20 30 40 50 60 70 80 90 10
0

12
0

14
0

16
0

18
0

20
0

Fig. 10 Project frequency

P
ro

je
ct

s

0

20

40

60

80

Discipline

C
om

pu
te

r
S

ci
en

ce

E
du

ca
tio

n

Li
fe

 S
ci

en
ce

D
om

ai
n

S
ci

en
ce

T
ec

hn
ol

og
y

E
va

lu
at

io
n

In
te

ro
pe

ra
bi

lit
y

2%6%

11%

11%

19%

50%

Computer Science
Education
Life Science
Domain Science
Technology Evaluation
Interoperability

Fig. 11 Distributon of project disciplines

in order to efficiently manage the system and provide services that have never been
offered to users as they exist on FutureGrid.

5.1 Integration of Systems and Development Team

FutureGrid started initially with a model where the systems team and the software
team were separated. An unnecessary wall between teams was erected that resulted
in multiple challenges:

44 G. von Laszewski and G.C. Fox

ScaleMP MPI

0

10

20

30

40

50

60

70

80

C
om

pu
te

r
S

ci
en

ce

E
du

ca
tio

n

Li
fe

 S
ci

en
ce

D
om

ai
n

S
ci

en
ce

T
ec

hn
ol

og
y

E
va

lu
at

io
n

In
te

ro
pe

ra
bi

lit
y

N
um

be
r

of
 P

ro
je

ct
s

Discipline

0

0.2

0.4

0.6

0.8

1

1.2

C
om

pu
te

r
S

ci
en

ce

E
du

ca
tio

n

Li
fe

 S
ci

en
ce

D
om

ai
n

S
ci

en
ce

T
ec

hn
ol

og
y

E
va

lu
at

io
n

In
te

ro
pe

ra
bi

lit
y

F
ra

ct
io

n
w

ith
in

 D
is

ci
pl

in
e

Discipline

Fig. 12 Requests by of technologies by discipline within a project. (Triangle) Map reduce,
Hadoop, or Twister, (square) MPI, (circle) ScaleMP

390
332

203

489

0

100

200

300

400

500

600

IaaS Map/Reduce HPC Other

N
um

be
r o

f R
eq

ue
st

s

Requested Technologies

146 136

50

0
20
40
60
80

100
120
140
160

Hadoop Map/Reduce Twister

N
um

be
r o

f R
eq

ue
st

s

Requested Technologies

Fig. 13 Map reduce related technology requests

1. The system setup and management were completely separated from the software
development team focusing mostly on the deployment of existing technologies.
However the technologies deployed were themselves under heavy development
and required intercorrelations between developers and system teams.

2. The deployed system was complex, but its deployment was documented to a
limited extent, which resulted in developers having insufficient information to
utilize the system properly or to know what had been deployed.

3. Lack of trust by the systems team did not allow the software team to have
a valid development environment as proper privileges were not issued to the
developers. As the development team needed to use privileged system services,
the development could not be carried out.

The FutureGrid Testbed for Big Data 45

4. The software developed needed a testbed within the testbed that was not
necessarily reflecting the actual system setup.

Together, these issues made it extremely difficult, if not impossible, to further
any development in regards to the design of a testbed infrastructure as proposed by
our original ambitious goals.

To overcome these difficulties it was decided early on in the project that the
systems team must be integrated in some fashion into the software team and become
part of the development process. This integration is not an isolated instance within
FutureGrid, but is also executed in many modern data centers and is now recognized
with its own term called DevOps.

5.2 DevOps

DevOps is not just a buzzword from industry and research communities. It provides
value added processes to the deployment and development cycles that are part
of modern data centers. It can today be understood as a software development
method that stresses collaboration and integration between software developers and
information technology professionals such as system administrators.

While using an infrastructure such as clouds we recognized early on that the
lifetime of a particular IaaS framework is about 3–6 months before a new version
is installed. This is a significant difference to a traditional High Performance
Computing Center that is comprised of many software tools experiencing much
longer life spans. This is not only based on security patches but significant changes,
for example, in the evolving security infrastructure and user services, as well as, the
deployment of new services that become available in rapid procession.

This rapid change of the complex infrastructure requires rethinking how systems
in general are managed and how they can be made available to the development
teams. While previously it may have been enough to install updates on the machines,
DevOps frameworks provide the developer and system administrators a way to
create and share environments that are used in production and development while at
the same time increasing quality assurance by leveraging each other’s experiences
(see Fig. 14).

5.2.1 DevOps Cycle

While combining the steps executed by the development and operational team from
planning to coding, building and testing, to the release, deployment and operation
and monitoring (see Fig. 15), each of the phases provides a direct feedback between
the DevOps team members, thus shortening the entire development phase. It also
allows testing out new services and technologies in a rapid progression. Hence, it

46 G. von Laszewski and G.C. Fox

is possible to roll out new developments into production much faster. This leads
to a much more rapidly integrated cycle than would not be possible without the
correlation between development and operation.

Fig. 14 DevOps intersection

Fig. 15 DevOps cycle
Release

Deploy

Operate

Monitor

Plan

Code

Build

Test

Dev Ops

5.2.2 DevOps Supporting Tools

A number of tools are available that make the introduction of DevOps strategies
more efficient. The first is the need for an simplified communication pathway to
manage tasks not only between developers but also between users. Thus the ideal
system would provide a complete integration of a project management system that
allows managing tasks for both developers and operators, but also to easily integrate
tickets and transform them into tasks. In XSEDE and other supercomputing centers
a system called RT [5] is typically used for user ticket management. Other systems
such as jira, mantis, and basecamp are often used to manage the software and
systems related tasks. Unfortunately, personal or organizational constraints often
prevent the integration of the two systems and additional overhead is needed to
move user tickets into tasks and the development cycle. Within FutureGrid, as part
of our opensource development, we experimented extensively with jira as systems

The FutureGrid Testbed for Big Data 47

and ticketing system [3] revealing that newest development in such areas motivated
by DevOps teams led to tools that support the overall cycle including user ticket
management in a single system (see Fig. 16). However, the integration of FutureGrid
within the overall much larger XSEDE effort made it not possible to switch from
RT to jira for user ticket management. To stress this user integration we term this
framework UseDevOps. Tools to integrate Development and Operation deployment
include puppet, chef, ansible, cfengine and bcfg2. While FutureGrid started out
with bcfg2 we have since switched to other tools due to their prevalence within
the community. Chef, puppet, and ansible have significant amount of traction. Due
to expertise within our group we currently explore chef and ansible.

Fig. 16 User Support
integrated into DevOps leads
to UseDevOps

5.3 Support for Education

To support the many educational and research projects on FutureGrid, we have
provided, through a portal, a significant amount of material on how to use the
discussed services. In addition, we realized that not every educational project has
users with advanced computer experience, therefore we provide for such projects a
streamlined user interface rather than having the users fight with complex command
line syntax and parameters. For example, we provided for a recent MOOC on big
data taught with resources on FutureGrid the basic functionality not only to start
VMs as part of the IaaS framework, but also to deploy sophisticated images that
contain preinstalled software and allow services to be hosted by the users such as
iPython, R and much more. This was implemented on top of OpenStack while
utilizing the newest OpenStack services such as Heat. The management of the
VMs and starting of the iPython server was controlled by a python application

48 G. von Laszewski and G.C. Fox

that provides the user with a menu system. Thus, the management of them became
literally as easy as pressing 1, 2, 3, . . . in the menu. For other classes, we have
also provided completely separate OpenStack deployments as the teachers were
afraid that students would not have enough resources due to the shared environment.
However, we learned from this that the teachers overestimated the actual utilization
of the project and many resources were not used. Based on this analysis we now have
a model to justify the creation of more relaxed access policies and can justify that
even classes should be utilizing the public region that are provided by FutureGrid.
If resource contention would become an issue, we could set aside a special region
for a limited amount of time. Reconfiguration needs have also arisen where one
day a class may want to explore traditional MPI, while the next they want to
experiment with Hadoop. Furthermore, we identified that several users wanted to
combine various cloud IaaS platforms in order to avoid resource over-provisioning
or were interested in combining all resources.

6 Cloudmesh

At [12] we find an extensive set of information about Cloudmesh that is cited within
this section.

From the experience with FutureGrid we identified the need for a more tightly
integrated software infrastructure addressing the need to deliver a software-defined
system encompassing virtualized and baremetal infrastructure, networks, appli-
cation, systems and platform software with a unifying goal of providing Cloud
Testbeds as a Service (CTaaS). This system is termed Cloudmesh to symbolize

(a) The creation of a tightly integrated mesh of services targeting multiple IaaS
frameworks.

(b) The ability to federate a number of resources from academia and industry. This
includes existing FutureGrid infrastructure, Amazon Web Services, Azure, HP
Cloud, Karlsruhe, using not only one IaaS framework, but many.

(c) The creation of an environment in which it becomes more easy to experiment
with platforms and software services while assisting to deploy them effortlessly.

In addition to virtual resources, FutureGrid exposes baremetal provisioning to
users, but also a subset of HPC monitoring infrastructure tools. Services will be
available through command line, API, and Web interfaces.

6.1 Functionality

Due to its integrated services Cloudmesh provides the ability to be an onramp for
other clouds. It also provides information services to various system level sensors
to give access to sensor and utilization data. They internally can be used to optimize

The FutureGrid Testbed for Big Data 49

the system usage. The provisioning experience from FutureGrid has taught us that
we need to provide the creation of new clouds, the repartitioning of resources
between services (cloud shifting), and the integration of external cloud resources
in case of over provisioning (cloud bursting). As we deal with many IaaS we
need an abstraction layer on top of the IaaS framework. Experiment management
is conducted with workflows controlled in shells [23], Python/iPython, as well as
systems such as OpenStack’s Heat, Accounting is supported through additional
services such as user management and charge rate management. Not all features
are yet implemented. Figure 17 shows the main functionality that we target at this
time to implement.

6.2 Architecture

The three layers of the Cloudmesh architecture include a Cloudmesh Management
Framework for monitoring and operations, user and project management, experi-
ment planning and deployment of services needed by an experiment, provisioning
and execution environments to be deployed on resources to (or interfaced with)
enable experiment management, and resources (Fig. 18).

6.2.1 System Monitoring and Operations

The management framework contains services to facilitate FutureGrid day-to-
day operation, including federated or selective monitoring of the infrastructure.
Cloudmesh leverages FutureGrid for the operational services and allows admin-
istrators to view ongoing system status and experiments, as well as interact with
users through ticket systems and messaging queues to inform subscribed users on
the status of the system.

The Cloudmesh management framework offers services that simplify integration
of resources in the FutureGrid nucleus or through federation. This includes, for
user management, access to predefined setup templates for services in enabling
resource and service provisioning as well as experiment execution. To integrate IaaS
frameworks Cloudmesh offers two distinct services:

(a) a federated IaaS frameworks hosted on FutureGrid, (b) the availability of a
service that is hosted on FutureGrid, allowing the integration of IaaS frameworks
through user credentials either registered by the users or automatically obtained
from our distributed user directory.

For (b) several toolkits exist to create user-based federations, including our own
abstraction level which supports interoperability via libcloud, but more importantly
it supports directly the native OpenStack protocol and overcomes limitations of
the EC2 protocol and the libcloud compatibility layer. Plugins that we currently
develop will enable access to clouds via firewall penetration, abstraction layers
for clouds with few public IP addresses and integration with new services such

50 G. von Laszewski and G.C. Fox

Fig. 17 CM functionality

as OpenStack Heat. We successfully federated resources from Azure, AWS, the
HP cloud, Karlsruhe Institute of Technology Cloud, and four FutureGrid clouds
using various versions of OpenStack and Eucalyptus. The same will be done for
OpenCirrus resources at GT and CMU through firewalls or proxy servers.

Additional management flexibility will be introduced through automatic cloud
bursting and shifting services. While cloud bursting will locate empty resources in
other clouds, cloud shifting will identify unused services and resources, shut them
down and provision them with services that are requested by the users. We have
demonstrated this concept in 2012 moving resources for more than 100 users to
services that were needed based on class schedules. A reservation system will be
used to allow for reserved creation of such environments, along with improvements
of automation of cloud shifting.

6.2.2 User and Project Services

FutureGrid user and project services simplify the application processes needed to
obtain user accounts and projects. We have demonstrated in FutureGrid the ability
to create accounts in a very short time, including vetting projects and users allowing
fast turn-around times for the majority of FutureGrid projects with an initial startup
allocation. Cloudmesh re-uses this infrastructure and also allows users to manage
proxy accounts to federate to other IaaS services to provide an easy interface to
integrate them.

6.2.3 Accounting and App Store

To lower the barrier of entry, Cloudmesh will be providing a shopping cart which
will allow checking out of predefined repeatable experiment templates. A cost is

The FutureGrid Testbed for Big Data 51

Fig. 18 CM architecture

associated with an experiment making it possible to engage in careful planning and
to save time by reusing previous experiments. Additionally, the Cloudmesh App
Store may function as a clearing-house of images, image templates, services offered
and provisioning templates. Users may package complex deployment descriptions
in an easy parameter/form-based interface and other users may be able to replicate
the specified setup.

Due to our advanced Cloudmesh Metrics framework, we are in the position to
further develop an integrated accounting framework allowing a usage cost model
for users and management to identify the real impact of an experiment on resources.
This will be useful to avoid over-provisioning and inefficient resource usage. The
cost model will be based not only on number of core hours used, but also the
capabilities of the resource, the time, and special support it takes to set up the
experiment. We will expand upon the metrics framework of FutureGrid that allows

52 G. von Laszewski and G.C. Fox

measuring of VM and HPC usage and associate this with cost models. Benchmarks
will be used to normalize the charge models.

6.2.4 Networking

We have a broad vision of resource integration in FutureGrid offering different levels
of control from baremetal to virtual machine and platform management. We also
offer the ability to utilize resources in a distributed environment. Likewise, we must
utilize networks offering various levels of control, from standard IP connectivity to
completely configurable SDNs, as novel cloud architectures will almost certainly
leverage NaaS and SDN alongside system software and middleware. FutureGrid
resources will make use of SDN using OpenFlow whenever possible, however, the
same level of networking control will not be available in every location.

6.2.5 Monitoring

To serve the purposes of CISE researchers, Cloudmesh must be able to access
empirical data about the properties and performance of the underlying infrastructure
beyond what is available from commercial cloud environments. To accommodate
this requirement, we have developed a uniform access interface to virtual machine
monitoring information available for OpenStack, Eucalyptus, and Nimbus. In the
future, we will be enhancing the access to historical user information. Right now
they are exposed through predefined reports that we create on a regular basis. To
achieve this we will also leverage the ongoing work while using the AMPQ protocol.
Furthermore, Cloudmesh will provide access to common monitoring infrastructure
as provided by Ganglia, Nagios, Inca, perfSonar, PAPI and others.

6.3 Cloud Shifting

We have already demonstrated via the RAIN tool in Cloudmesh that it is possible to
easily shift resources between services. We are currently expanding upon this idea
and developing more easy to use user interfaces that assist administrators and users
through role and project based authentication to move resources from one service to
another (see Fig. 19).

6.4 Graphical User Interface

Despite the fact that Cloudmesh was originally a quite sophisticated command
shell and command line tool, we have recently spent more time in exposing this

The FutureGrid Testbed for Big Data 53

Fig. 19 Shifting resources makes it possible to offer flexibility in the service distribution in case
of over or underprovisioning

functionality through a convenient Web interface (Fig. 20). Some more popular
views in this interface are depicted in Fig. 21 hinting at how easy it is with a single
button to create multiple VMs across a variety of IaaS. This not only includes
resources at IU but also at external locations, making it more practical for users.

Hence, this easy management provides a more sophisticated experience for
the user while associating one-click deployments. These deployments include
the ability to instantiate virtual clusters, Hadoop environments, and other more
elaborate setups. We provide an early prototype screenshot in Fig. 22.

6.5 Command Shell and Command Line Interface

Cloudmesh contains the ability to access much of its functionality through a
commandline interface. This is enabled through a command shell that can function
both as regular Linux command as well as command shell. The command shell
can be invoked with cm on the regular Linux shell, or by specifying a number of
parameters to call it without starting the interactive shell. The commands accessible
to the users allow the management of virtual machines, and bare metal provisioning.
To find out the detailed option of each command one can invoke a help command.
An important property of this shell is that it can be easily extended and plugins can
be distributed not only in a system wide plugin directory, but also in one provided
by the user. This makes it possible to customize the shell commands available

54 G. von Laszewski and G.C. Fox

Fig. 20 Monitoring the Service distribution of FutureGrid with Cloudmesh

based on user needs by either removing unnecessary commands or introducing new
ones. For example it would be possibly for users only interested in virtual machine
management to remove the commands related to baremetal provisioning. Figure 23
shows the startup of the command shell and the invocation of the help command
to list the available commands for this user. Please note that all commands are
yet implemented. We have categorized some of the commands as cloud commands
listed in a special section in the help. Figure 24 shows the use of the first command
in that list called cloud that lists the available clouds for the user. Important to note
is that Cloudmesh can be set up as a server so that the GUI and the command shell
share variables that are managed in a jointly used database. Thus, it is possible to

The FutureGrid Testbed for Big Data 55

Fig. 21 Screenshot demonstrating how easy it is to manage multiple VMs across various clouds

Fig. 22 One click deployment of platforms and sophisticated services that could even spawn
multiple resources

56 G. von Laszewski and G.C. Fox

register new clouds with the command shell, and have them show up also in the GUI
that is managed through a hosted web server. Through this combination Cloudmesh
can be seamlessly used as command shell or as GUI.

/ ___| | ___ _ _ __| |_ __ ___ ___ ___| |__

| | | |/ _ \| | | |/ _‘ | ’_ ‘ _ \ / _ \/ __| ’_ \
| |___| | (_) | |_| | (_| | | | | | | __/__ \ | | |
____|_|___/ __,_|__,_|_| |_| |_|___||___/_| |_|

==
Cloudmesh Shell

cm> help

Documented commands (type help <topic>):
==
EOF defaults graphviz keys metric py script var
banner dot2 help label open q storm verbose
clear edit info list pause quit timer version
cloud exec init login plugins rain use vm
count exp inventory man project register user

Cloud Commands
==============
cloud exp inventory list rain storm vm project
defaults init label metric register user keys

Fig. 23 The cloudmesh shell

Fig. 24 Listing the clouds cm> cloud list
+--------------------------+

|sduolC|
+--------------------------+

|omala|
|swa|
|eruza|

| devstack_icehouse |
|ph|
|tsae_ph|

| india_eucalyptus |
| india_openstack_havana |
| sierra_openstack_grizzly |
+--------------------------+

7 Summary

In this chapter, we have described FutureGrid and provided a general overview. In
addition, we have analyzed the many projects executed on FutureGrid while paying
attention on those requesting and using technologies relevant for big data analysis.
Based on the discussion, it is clear that systems such as FutureGrid is extremely
complex but provides to its users the benefit to offer multiple services within

The FutureGrid Testbed for Big Data 57

the same infrastructure. This includes bare metal provisioning. Thus, performance
experiments can not only be conducted on virtual machines, but on a variety of IaaS
and PaaS environments. Moreover, these experiments can directly be compared to
bare metal provisioned services. Hence, users can evaluate what impact such tech-
nologies have on their codes. Comparisons of different programming frameworks
can be achieved and future activities in regards to efficiency and usability can be
deducted. The lessons learned from FutureGrid are motivating a toolkit, Cloudmesh,
that currently allows managing virtual machines on a variety of infrastructure as
service frameworks. The easy deployment of sophisticated setups with one-click
has been validated as part of an infrastructure designed for a MOOC. Furthermore
the novel concept of shifting resources [29] between services to support services that
need more resources is a significant contribution by Cloudmesh. Image management
and creation under security restrictions [10] is furthermore an important aspect. We
will continue to develop the Cloudmesh environment and make it available to our
users.

Acknowledgements Some of the text published in this chapter is available form the FutureGrid
portal. The FutureGrid project is funded by the National Science Foundation (NSF) and is led by
Indiana University with University of Chicago, University of Florida, San Diego Supercomputing
Center, Texas Advanced Computing Center, University of Virginia, University of Tennessee,
University of Southern California, Dresden, Purdue University, and Grid 5000 as partner sites.
This material is based upon work supported in part by the National Science Foundation under
Grant No. 0910812 [11]. If you use FutureGrid and produce a paper or presentation, we ask you
to include the references [11, 27] as well as this chapter. We like to thank Fugang Wang for the
development of the framework that allowed us to produce the statistical data and Hyungro Lee for
assisting in the creation of the data tables that lead to the creation of Figs. 11 and 12. Furthermore
we like to thank Barbara O’Leary for proofreading this paper.

References

1. “Apache Hadoop Project.” [Online]. Available: http://hadoop.apache.org
2. “Gartner’s 2013 hype cycle for emerging technologies maps out evolving relationship between

humans and machines,” Press Release. [Online]. Available: http://www.gartner.com/newsroom/
id/2575515

3. “Jira ticket system,” Web Page. [Online]. Available: https://confluence.atlassian.com/display/
JIRAKB/Using+JIRA+for+Helpdesk+or+Support

4. “Map reduce,” Wikepedia. [Online]. Available: http://en.wikipedia.org/wiki/MapReduce
5. “Rt: Request tracker,” Web Page. [Online]. Available: http://www.bestpractical.com/rt/
6. “Twister: Iterative mapreduce,” Web Page. [Online]. Available: http://www.iterativemapreduce.

org
7. W. Barth, Nagios. System and Network Monitoring, u.s. ed ed. No Starch Press, 2006.

[Online]. Available: http://www.amazon.de/gp/redirect.html%3FASIN=1593270704%26tag=
ws%26lcode=xm2%26cID=2025%26ccmID=165953%26location=/o/ASIN/1593270704
%253FSubscriptionId=13CT5CVB80YFWJEPWS02

8. J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008. [Online]. Available: http://doi.acm.
org/10.1145/1327452.1327492

http://hadoop.apache.org
http://www.gartner.com/newsroom/id/2575515
http://www.gartner.com/newsroom/id/2575515
https://confluence.atlassian.com/display/JIRAKB/Using+JIRA+for+Helpdesk+or+Support
https://confluence.atlassian.com/display/JIRAKB/Using+JIRA+for+Helpdesk+or+Support
http://en.wikipedia.org/wiki/MapReduce
http://www.bestpractical.com/rt/
http://www.iterativemapreduce.org
http://www.iterativemapreduce.org
http://www.amazon.de/gp/redirect.html%3FASIN=1593270704%26tag=ws%26lcode=xm2%26cID=2025%26ccmID=165953%26location=/o/ASIN/1593270704%253FSubscriptionId=13CT5CVB80YFWJEPWS02
http://www.amazon.de/gp/redirect.html%3FASIN=1593270704%26tag=ws%26lcode=xm2%26cID=2025%26ccmID=165953%26location=/o/ASIN/1593270704%253FSubscriptionId=13CT5CVB80YFWJEPWS02
http://www.amazon.de/gp/redirect.html%3FASIN=1593270704%26tag=ws%26lcode=xm2%26cID=2025%26ccmID=165953%26location=/o/ASIN/1593270704%253FSubscriptionId=13CT5CVB80YFWJEPWS02
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492

58 G. von Laszewski and G.C. Fox

9. J. Diaz, G. von Laszewski, F. Wang, and G. C. Fox, “Abstract Image Management and
Universal Image Registration for Cloud and HPC Infrastructures,” in IEEE Cloud 2012,
Honolulu, Jun. 2012. [Online]. Available: http://cyberaide.googlecode.com/svn/trunk/papers/
12-cloud12-imagemanagement/vonLaszewski-12-IEEECloud2012.pdf

10. J. Diaz, G. von Laszewski, F. Wang, A. J. Younge, and G. C. Fox, “FutureGrid
Image Repository: A Generic Catalog and Storage System for Heterogeneous Vir-
tual Machine Images,” in Third IEEE International Conference on Coud Comput-
ing Technology and Science (CloudCom2011), Athens, Greece, 12/2011 2011, paper,
pp. 560–564. [Online]. Available: http://cyberaide.googlecode.com/svn/trunk/papers/11-
cloudcom11-imagerepo/vonLaszewski-draft-11-imagerepo.pdf

11. G. C. Fox, G. von Laszewski, J. Diaz, K. Keahey, J. Fortes, R. Figueiredo, S. Smallen,
W. Smith, and A. Grimshaw, Contemporary HPC Architectures, draft ed., 2012, ch. FutureGrid
- a reconfigurable testbed for Cloud, HPC and Grid Computing. [Online]. Available: http://
cyberaide.googlecode.com/svn/trunk/papers/pdf/vonLaszewski-12-fg-bookchapter.pdf

12. Gregor, “Cloudmesh on Github,” Web Page. [Online]. Available: http://cloudmesh.github.io/
cloudmesh/

13. S. Krishnan and G. von Laszewski, “Using hadoop on futuregrid,” Web Page, Manual, 2013.
[Online]. Available: http://futuregrid.github.io/manual/hadoop.html

14. “The Network Impairments device is Spirent XGEM,” 2012. [Online]. Available: http://www.
spirent.com/Solutions-Directory/ImpairmentsGEM.aspx?oldtab=0&oldpg0=2

15. S. Krishnan, M. Tatineni, and C. Baru, “myHadoop - Hadoop-on-Demand on Traditional HPC
Resources,” Tech. Rep., 2011. [Online]. Available: http://www.sdsc.edu/~allans/MyHadoop.
pdf

16. G. K. Lockwood, “myhadoop 2.” [Online]. Available: https://github.com/glennklockwood/
myhadoop

17. M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia Distributed Monitoring System:
Design, Implementation, and Experience,” in Journal of Parallel Computing, April 2004.

18. J. Qiu, “Course: Fall 2013 P434 Distributed Systems Undergraduate Course.” [Online].
Available: https://portal.futuregrid.org/projects/368

19. ——, “Spring 2014 CSCI-B649 Cloud Computing MOOC for residential and online students.”
[Online]. Available: https://portal.futuregrid.org/projects/405

20. L. Ramakrishnan, “FRIEDA: Flexible Robust Intelligent Elastic Data Management.” [Online].
Available: https://portal.futuregrid.org/projects/298

21. “ScaleMP,” 2012. [Online]. Available: http://www.scalemp.com/
22. S. Smallen, K. Ericson, J. Hayes, and C. Olschanowsky, “User-level grid monitoring with inca

2,” in Proceedings of the 2007 workshop on Grid monitoring, ser. GMW ’07. New York,
NY, USA: ACM, 2007, pp. 29–38. [Online]. Available: http://doi.acm.org/10.1145/1272680.
1272687

23. G. von Laszewski, “Cmd3,” Github Documentation and Code. [Online]. Available: http://
cloudmesh.futuregrid.org/cmd3/

24. ——, “Workflow Concepts of the Java CoG Kit,” Journal of Grid Computing, vol. 3, pp.
239–258, Jan. 2005. [Online]. Available: http://cyberaide.googlecode.com/svn/trunk/papers/
anl/vonLaszewski-workflow-taylor-anl.pdf

25. G. von Laszewski, J. Diaz, F. Wang, and G. C. Fox, “Comparison of Multiple
Cloud Frameworks,” in IEEE Cloud 2012, Honolulu, HI, Jun. 2012. [Online]. Avail-
able: http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-cloudcompare/laszewski-
IEEECloud2012_id-4803.pdf

26. G. von Laszewski, I. Foster, J. Gawor, and P. Lane, “A Java Commodity Grid
Kit,” Concurrency and Computation: Practice and Experience, vol. 13, no. 8–9, pp.
645–662, 2001. [Online]. Available: http://cyberaide.googlecode.com/svn/trunk/papers/anl/
vonLaszewski-cog-cpe-final.pdf

http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-imagemanagement/vonLaszewski-12-IEEECloud2012.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-imagemanagement/vonLaszewski-12-IEEECloud2012.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/11-cloudcom11-imagerepo/vonLaszewski-draft-11-imagerepo.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/11-cloudcom11-imagerepo/vonLaszewski-draft-11-imagerepo.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/pdf/vonLaszewski-12-fg-bookchapter.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/pdf/vonLaszewski-12-fg-bookchapter.pdf
http://cloudmesh.github.io/cloudmesh/
http://cloudmesh.github.io/cloudmesh/
http://futuregrid.github.io/manual/hadoop.html
http://www.spirent.com/Solutions-Directory/Impairments GEM. aspx?oldtab=0&oldpg0=2
http://www.spirent.com/Solutions-Directory/Impairments GEM. aspx?oldtab=0&oldpg0=2
http://www.sdsc.edu/~allans/MyHadoop.pdf
http://www.sdsc.edu/~allans/MyHadoop.pdf
https://github.com/glennklockwood/myhadoop
https://github.com/glennklockwood/myhadoop
https://portal.futuregrid.org/projects/368
https://portal.futuregrid.org/projects/405
https://portal.futuregrid.org/projects/298
http://www.scalemp.com/
http://doi.acm.org/10.1145/1272680.1272687
http://doi.acm.org/10.1145/1272680.1272687
http://cloudmesh.futuregrid.org/cmd3/
http://cloudmesh.futuregrid.org/cmd3/
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-workflow-taylor-anl.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-workflow-taylor-anl.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-cloudcompare/laszewski-IEEECloud2012_id-4803.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-cloudcompare/laszewski-IEEECloud2012_id-4803.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-cog-cpe-final.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-cog-cpe-final.pdf

The FutureGrid Testbed for Big Data 59

27. G. von Laszewski, G. C. Fox, F. Wang, A. J. Younge, Kulshrestha, G. G. Pike, W. Smith,
J. Voeckler, R. J. Figueiredo, J. Fortes, K. Keahey, and E. Deelman, “Design of the
FutureGrid Experiment Management Framework,” in Proceedings of Gateway Comput-
ing Environments 2010 (GCE2010) at SC10. New Orleans, LA: IEEE, Nov. 2010.
[Online]. Available: http://cyberaide.googlecode.com/svn/trunk/papers/10-FG-exp-GCE10/
vonLaszewski-10-FG-exp-GCE10.pdf

28. G. von Laszewski, M. Hategan, and D. Kodeboyina, Workflows for E-science: Scientific
Workflows for Grids. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007, ch. Grid
Workflow with the Java CoG Kit. [Online]. Available: http://cyberaide.googlecode.com/svn/
trunk/papers/anl/vonLaszewski-workflow-book.pdf

29. G. von Laszewski, H. Lee, J. Diaz, F. Wang, K. Tanaka, S. Karavinkoppa, G. C. Fox,
and T. Furlani, “Design of an Accounting and Metric-based Cloud-shifting and Cloud-
seeding Framework for Federated Clouds and Bare-metal Environments,” in Proceedings of
the 2012 Workshop on Cloud Services, Federation, and the 8th Open Cirrus Summit, ser.
FederatedClouds ’12. New York, NY, USA: ACM, 2012, pp. 25–32.

30. G. von Laszewski and X. Yang, “Virtual cluster with slurm,” Github repository. [Online].
Available: https://github.com/cloudmesh/cluster

31. A. J. Younge, R. Henschel, J. T. Brown, G. von Laszewski, J. Qiu, and G. C. Fox, “Analysis of
Virtualization Technologies for High Performance Computing Environments,” in Proceedings
of the 4th International Conference on Cloud Computing (CLOUD 2011). Washington, DC:
IEEE, July 2011, pp. 9–16. [Online]. Available: http://cyberaide.googlecode.com/svn/trunk/
papers/10-fg-hypervisor/10-fg-hypervisor.pdf

http://cyberaide.googlecode.com/svn/trunk/papers/10-FG-exp-GCE10/vonLaszewski-10-FG-exp-GCE10.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/10-FG-exp-GCE10/vonLaszewski-10-FG-exp-GCE10.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-workflow-book.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-workflow-book.pdf
https://github.com/cloudmesh/cluster
http://cyberaide.googlecode.com/svn/trunk/papers/10-fg-hypervisor/10-fg-hypervisor.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/10-fg-hypervisor/10-fg-hypervisor.pdf

Cloud Networking to Support Data Intensive
Applications

Maurício Tsugawa, Andréa Matsunaga, and José A.B. Fortes

Abstract Cloud computing requires a complex networking subsystem in order to
offer on-demand access to a pool of computing resources. Communication among
resources (physical or virtual servers, storage, network, instruments, services, and
applications) needs to be dynamically adapted to constantly changing cloud environ-
ments. This chapter looks into the available network infrastructure and technologies,
the use of public and private networks in clouds, methods to simplify management
of those networks to support data intensive applications, and employment of such
methods in practical use cases.

1 Introduction

In cloud environments where requirements change constantly, a complex net-
working subsystem needs to be managed to satisfy requests from multiple users.
From a cloud provider’s perspective, a large pool of shared resources needs to be
interconnected and appropriately partitioned so that activities among different users
are sufficiently isolated. From a users’ perspective, the appropriate set of resources
and services, potentially across multiple providers and geographical locations, needs
to be interconnected while balancing functionality, performance, and cost. A large
number of networking technologies and techniques are applied in cloud computing
to (a) interconnect resources within a datacenter, (b) enable scalable and shared
storage, (c) isolate the resources allocated for different users, (d) allow users to
scale-out (expand local capacity using cloud resources), and (e) establish multi-
cloud systems. This chapter discusses fundamental networking technologies and
application case studies for efficient intra-cloud networking and scale-out of virtual
clusters across multiple providers as needed to support data intensive applications
in multi-cloud environments.

M. Tsugawa (�) • A. Matsunaga • J.A.B. Fortes
Advanced Computing and Information Systems Laboratory, Department of Electrical and
Computer Engineering, University of Florida, LAR 339, Gainesville, FL 32611-6200, USA
e-mail: tsugawa@acis.ufl.edu; ammatsun@acis.ufl.edu; fortes@acis.ufl.edu

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__3

61

mailto:tsugawa@acis.ufl.edu
mailto:ammatsun@acis.ufl.edu
mailto:fortes@acis.ufl.edu

62 M. Tsugawa et al.

2 Building Blocks and Technologies for Cloud Networking

We start by reviewing network infrastructure building blocks and technologies that
are frequently found in cloud environments.

2.1 Datacenter Networking

Gigabit Ethernet (GbE) [1] and 10-Gigabit Ethernet (10 GbE) [2] technologies are
most commonly deployed in datacenters to connect servers, offering transmission
rates of 1 and 10 Gbps respectively. As of 2014, higher rate technologies (i.e., 40 and
100 GbE) are typically used in aggregation links and inter-switch communication
due to their high per-port cost. Ethernet is also popular in Infrastructure-as-a-Service
(IaaS) environments, since many Ethernet devices such as network interface cards
(NICs) are emulated in software by virtual machine monitors (VMMs) to offer
connectivity to virtual machines (VMs).

A popular low-latency and high-throughput technology for high-performance
computing is InfiniBand [3]. Infiniband can increase the performance of distributed
applications by offering low latency communication (on the order of microseconds)
and remote direct memory access (RDMA) capability. InfiniBand adoption in cloud
environments is lower compared to Ethernet due to (1) higher cost, (2) increased
difficulty in writing applications due to lack of “sockets” APIs—when IP over
InfiniBand is used, performance advantage of InfiniBand is lost with overheads,
and (3) limited virtualization support—VMMs are currently unable to efficiently
manage the sharing of InfiniBand devices among multiple VMs.

2.2 Storage Area Network (SAN)

Storage Area Networks typically consist of a large number of storage devices
(servers and disks) offering shared storage among multiple computers. A SAN
provides network access to data at disk-block level so that storage partitions appear
as directly attached storage devices to operating systems. Fibre Channel (FC) [4] is
the most common SAN technology currently deployed in data centers. However, in
order to reduce datacenter operation cost, the use of LAN technologies for storage
networking is also popular. To do so, many protocols that map storage operations
into regular network messages were developed, such as the Internet Small Computer
System Interface (iSCSI) [5] (SCSI commands over IP networks), Fibre Channel
over Ethernet (FCoE) [6] (FC frames over Ethernet), and iSCSI extensions for
RDMA (iSER) [7] (iSCSI over InfiniBand).

Cloud Networking to Support Data Intensive Applications 63

2.3 Network Protocol Stack

The design and implementation of computer network systems can be related to the
Open Systems Interconnection (OSI) conceptual model [8]. While not all seven
layers can be clearly identified in all embodiments, many technologies refer to lower
layers when explaining how they work. For example, layer-2 (L2) network refers to
a broadcast domain—all nodes within the domain can reach each other through
broadcasts, and to communicate with nodes outside the domain, layer-3 (L3) or
routing services are needed (Fig. 1 shows the most used OSI layers).

When a network message flows through a protocol stack, control information is
added in each layer of the stack, resulting in a final message that consists of multiple
envelopes. This process, known as encapsulation, is also used for protocol matching
(e.g., iSCSI, and FCoE) and network link virtualization (e.g., IP in IP tunneling [9],
and Generic Routing Encapsulation [10]).

Fig. 1 TCP/IP over Ethernet stack encapsulation

2.4 Local Area Network Partitioning

Ethernet LANs are, by concept, broadcast networks—i.e., every node connected
to an Ethernet LAN receives all transmitted network frames. The broadcast model
was broken when Ethernet switches were introduced. Switches avoid broadcasts
of every frame by learning about the devices connected in each switch port via
their Media Access Control (MAC) address identifications. Switches inspect the
Ethernet headers of transmitted frames, and based on the destination MAC address,
decide to which port(s) a frame should be forwarded. Broadcasts are still used
during learning process. The information about devices connected in each port
of a switch expires periodically in order to accommodate changes in the network
(e.g., a device being connected or being removed). To allow the coexistence of
multiple broadcast domains, a capability of restricting broadcast traffic to a group

64 M. Tsugawa et al.

of ports was developed, enabling what is known as Virtual Local Area Network
(VLAN) [11]. A VLAN is essentially an Ethernet broadcast domain restricted to a
group of switch ports. To support VLANs, the original Ethernet frame was extended
to include a 4-byte VLAN tag. A switch port can be configured in access mode
(connected to a single specific VLAN), or trunk mode (carries traffic of multiple
VLANs). Switches guarantee that VLANs are isolated from each other, and many
cloud systems use VLANs to offer isolation among VMs that belong to different
tenants (Fig. 2).

Fig. 2 VLAN-aware network. Only machines that belong to the same VLAN can communicate.
VLAN tags are inserted and removed automatically, as needed, by switches for ports configured in
access mode. Ports configured in trunk mode carry tagged frames of multiple VLANs allowing a
VLAN to span multiple switches

2.5 Virtual Private Network (VPN)

VPN [12] is a technology used to securely connect remote network sites (site-to-
site or LAN-to-LAN configuration) or a machine to a network site (user-to-LAN
configuration) using a public and shared network (e.g., the Internet) as transport.
VPN technology has been developed with the goal of connecting private networks
without the need for expensive dedicated connections. VPN is commonly used
for inter-cloud communication—i.e., establish connectivity among resources in
different clouds and tenant’s on-premise private networks.

The basic concepts behind the VPN technology are encapsulation, tunneling,
and encryption. VPN works at the IP layer and packets that need to cross LAN
boundaries are routed by VPN gateways or firewalls through encrypted tunnels. In
the case of a machine accessing a remote LAN, the VPN client software running on
the machine opens an encrypted tunnel to the target network VPN gateway. In site-
to-site operation, VPN gateways establish the necessary tunnels and transparently
handle VPN traffic for participating machines (Fig. 3).

Cloud Networking to Support Data Intensive Applications 65

Fig. 3 Site-to-site VPN and user-to-LAN VPN. In site-to-site configuration, VPN firewalls
establish an encrypted tunnel where packets between machines in different private networks will
flow. In user-to-LAN VPN, a machine establishes an encrypted tunnel to VPN firewall to gain
access to a private network

2.6 Virtual Networks and Overlay Networks

Virtual networking systems expose services that are compatible with known physi-
cal networks, typically at layers 2 and 3 of the protocol stack. For example, VLAN
exposes L2 broadcast domains, while VPN extends private networks through L3
encrypted links. An overlay network is a computer network that runs independently
on top of and supported by another network. Overlay networks use services of
the infrastructure they depend on, but can expose different interfaces and services.
Peer-to-peer (P2P) networks that run on top of IP networks are good examples of
overlays. Many virtual networking technologies are also overlays since they depend
on networking services offered by the Internet.

The application of virtual and overlay networking on clouds has been a frequent
topic of research and development. Representative systems developed in the context
of grid and cloud computing include VNET/P [13], VIOLIN [14], SoftUDC VNET
[15], ViNe [16,17], IPOP [18], and OCALA [19]. Overlay networks can also address
challenges of VM migration across wide-area networks, as described in [20–25].

2.7 High-Performance Backbones

Good inter-cloud communication is essential to run data intensive applications
using multiple resource providers. As of 2014, the state-of-the-art in backbone
transmission rate is 100 Gbps. In the USA, 100 Gbps infrastructures are being
built by initiatives such as the Internet2 Innovation Platform [26], and the Energy
Sciences Network (ESnet) [27].

On top of these backbones, advanced networking and testbed deployment
research are being carried out by projects such as Global Environment for Network
Innovations (GENI) [28], and FutureGrid [29].

66 M. Tsugawa et al.

2.8 Software-Defined Networking (SDN)

SDN refers to the emerging network architecture that allows flexible and vendor-
independent management and operation of networks. The needed standards and
open specifications are being developed by organizations and consortiums (e.g.,
Internet Engineering Task Force [30], and Open Networking Foundation [31]) with
participation of industry and research communities. The most popular specification,
adopted by many SDN developers, is OpenFlow [32, 33]. As illustrated by the
OpenFlow approach (Fig. 4), the basic idea is to let a control entity (software),
which is physically separated from the data plane, to define how the data flows.
In other words, it defines how network messages/packets are forwarded and routed,
instead of instructing and configuring multiple independent controllers (integrated
and running in each individual network component—e.g., switch, router, firewall,
and intrusion detection system) as in traditional networks.

Fig. 4 Control and data plane separation in SDN (B) when compared to a traditional all-in-one
switch (A)—control is performed external to the store-and-forward hardware as opposed to an
integrated solution in traditional switches. Both control and data planes export programming APIs
(northbound and southbound, respectively), which are being standardized

This clean and flexible architecture offered by SDN is extremely appealing
for managing networks in a cloud environment. For example, VLAN technology,
used in many cloud systems to keep multiple tenants isolated from each other,
requires reconfiguration of network components every time a VM is instantiated or
shutdown. Manual configuration by network administrators interacting with every
affected switch is impractical in a very dynamic cloud environment. Automation

Cloud Networking to Support Data Intensive Applications 67

is challenging, since it requires understanding of command-line/web interfaces
exposed by vendors. Writing programs/scripts to interact with such interfaces is
a complex and error prone process, especially because interfaces are different for
each vendor and can change after a firmware upgrade. An open and standardized
Northbound interface, as illustrated in Fig. 5, will significantly simplify the integra-
tion of network functions in cloud middleware: (1) the cloud middleware consults its
database to check which VMs (VM1, VM2, and VM3) belong to a particular tenant
(Tenant_A), and where those VMs are running (physical host and/or SDN switch
that each VM is connected); (2) the cloud middleware invokes a SDN Northbound
API to create a VLAN (VLAN_A) and connect the tenant’s VM on the new
VLAN; and (3) the SDN controller computes the necessary Southbound instructions
and contacts the affected SDN switches. Moreover, using SDN mechanisms it
would be possible to implement VLAN-like functionality without the 4096 VLAN
ID limit of IEEE 802.1Q standard. For example, isolation can be enabled by
allowing communication only among MAC addresses of a particular tenant (the
SDN controller would compute rules based on MAC addresses).

Fig. 5 Example of how cloud middleware uses SDN interfaces to control the network. The figure
illustrates that VLAN management can be achieved by simply invoking a Northbound API exposed
by a SDN controller. Southbound instructions to achieve the desired functionality are computed and
transmitted by the SDN controller

3 Intra-Cloud Networking

Cloud networking, or Network-as-a-Service (NaaS), refers to the delivery of
networking functions—e.g., connectivity, security, and management—as a service

68 M. Tsugawa et al.

through the use of cloud resources. This section describes how networking
technologies introduced previously are used in cloud management systems and/or
cloud middleware to deliver NaaS.

3.1 Commercial IaaS Clouds

The Amazon Elastic Compute Cloud (EC2) [34] pioneered the commercial offering
of public cloud services. EC2 IaaS offers scalable pay-as-you-go compute capacity
through Amazon Web-Service (AWS) APIs. Details of EC2 internals are not
publicly available, so most of technical details published in the literature have been
inferred through experiments run by users and researchers and may or may not
accurately reflect the actual EC2 practices.

EC2 uses the Xen hypervisor to host VMs that are connected through routed
Xen network setup, i.e., the first hop of VMs is the domain zero (Dom0) they are
connected to. Through address translations and filtering (L2 and L3), EC2 tries to
prevent some network attacks that can be initiated within VMs (e.g., ARP poisoning,
and IP spoofing).

EC2 instances are connected via Gigabit Ethernet as experiments in [35] and
[36] suggest. The throughput, as reported in [36], between the two EC2 regions in
the US is below 300 Mbps. Intra-cloud 10 GbE is available for large instances (e.g.,
“Cluster Compute 8 Extra Large”).

EC2 offers the following networking services:

• Elastic IP: as EC2 instances are assigned private IP addresses that are not
routed through the Internet, a mechanism is needed to map public IP addresses
to instances that should be visible on the Internet. An elastic IP is a static
and public IPv4 address leased by EC2 to a particular cloud user that can be
programmatically mapped to an instance.

• Security Groups: groups of EC2 instances (an instance can belong to one or more
security groups) to which users can assign firewall rules to control ingress traffic.

• Virtual Private Cloud (VPC): enables users to launch instances in an isolated
(private) section of EC2 cloud. Instances are connected in a user-defined IP
address range, and can be extended to user’s local networks through direct
connections using private lines, hardware VPN devices, and software VPN
[37,38]. On VPC (EC2) end, Amazon Virtual Private Gateways with two distinct
VPN endpoints is used, enabling users to implement redundant VPN tunnels.

Microsoft Windows Azure [39] IaaS offers similar networking services. VMs
are assigned private IP addresses, which are mapped to publicly addressable end
points through network address and port translations. Azure Virtual Network offers
mechanisms for users to have isolated partitions of Azure cloud using preferred
private IP ranges, and cross-premise connectivity through hardware and software
VPN.

Cloud Networking to Support Data Intensive Applications 69

3.2 Open Source IaaS Clouds

Many IaaS cloud software and products were developed, targeting research, private,
and public cloud deployments. Two of the most successful software stacks for IaaS
cloud management, considering project sizes and deployments, are OpenStack [40]
and CloudStack [41]. Both projects expose advanced networking features, services,
and interfaces, as discussed in the next subsections.

3.2.1 OpenStack Cloud Software

OpenStack is a project backed by a large community of developers and supported
by over 150 companies. The OpenStack architecture is modular, having components
with specific functions, each of which is identified by code names (in parenthe-
sis): compute (Nova), object storage (Swift), block storage (Cinder), VM image
service (Glance), dashboard (Horizon), identity service (Keystone), and networking
(Neutron).

OpenStack Neutron (formerly code-named Quantum) exposes networking ser-
vices and APIs to define network connectivity among devices from other OpenStack
components (e.g., compute). Through Neutron APIs, cloud administrators or tenants
can define networks as shown in Fig. 6, which illustrates an advanced scenario—
note that a simple flat shared network that is visible to all tenants can be easily
defined. Each tenant can have one or more private isolated networks that can also
be uplinked to routers. Routers enable communication across private networks and
to the external network. The “floating IP” (similar to EC2 elastic IP) functionality
is also implemented by routers.

Fig. 6 Example of networking using OpenStack Neutron [43]. In this example, Tenant A has a
single private network, while Tenant B operates two independent private networks

70 M. Tsugawa et al.

Neutron is also architected in a modular fashion, allowing different implementa-
tions of networking APIs using the concept of plugins: pluggable back-ends can use
a variety of technologies to deliver services defined by the APIs. Notable Neutron
plugins include support for basic Linux mechanisms (bridges, VLAN, and Netfilter),
OpenFlow (Open vSwitch, NEC OpenFlow), and Cisco physical switches. Plugins
for advanced services and APIs are currently under development to enable VPN-
aaS, load balancing-aaS, firewall-aaS, intrusion detection system-aaS, etc.

3.2.2 Apache CloudStack Project

CloudStack is a project currently backed by the Apache Software Foundation [42]
developers. CloudStack is architected in a nested infrastructure organization, where
a set of hosts forms a cluster; one or more clusters connected through a L2 switch
in a rack define a pod; a collection of pods in a datacenter becomes a zone; and one
or more zones define a region (Fig. 7).

CloudStack allocates and dynamically garbage collects VLANs to manage cloud
networks in response to requests through the administration web interface. VLANs
can be private or shared (i.e., visible to all users), with isolation within shared
VLANs achieved using security groups.

Supported networking services include remote access VPN, firewall, load balanc-
ing, elastic IP, virtual private cloud, and network address translations. To implement
these services, the CloudStack front-end needs to configure the so called network
service providers, which can be a virtual router (a CloudStack system VM, launched
and controlled by the CloudStack front-end), or a hardware device (e.g., Cisco or
Juniper device). Support for SDN providers are also under development.

3.3 Network Virtualization Through SDN

SDN moves from configuration of network devices to the notion of programming
the network, and the idea of a “network” instruction set can be conceptualized
(Fig. 8). SDN is a step forward to realize the vision of fully virtualized datacenters,
campus-based networking test beds and networked sandboxes offering network
virtualization mechanisms to implement NaaS.

Nicira Network Virtualization Platform (NVP) [45] is a software solution that
can create an abstraction layer between VM hosts and traditional networks in
cloud environments. Through this abstraction layer, it is possible to manage a
large number of isolated virtual networks, effectively enabling the implementation
of NaaS (isolation is achieved through SDN/OpenFlow mechanisms rather than
VLANs). As depicted in Fig. 9, NVP controls OpenFlow-enabled software switches
(Open vSwitch) that are available in modern hypervisors (VMware ESX, XenServer,
KVM, and Hyper-V), and Open vSwitches deployed in physical or virtual machines

Cloud Networking to Support Data Intensive Applications 71

Fig. 7 CloudStack nested infrastructure organization [44]

to work as a gateway to legacy VLAN-based networks. Open vSwitches receive
commands from NVP controller cluster, which exposes APIs to users and cloud
middleware to program the virtual networks.

4 Inter-Cloud Networking

Section 3 covers systems and tools to manage cloud networking from a single site,
with focus on isolation among tenants, and integration of cloud with user’s own
resources through VPN tunnels. This section introduces representative tools/projects
that support networking of cloud resources across multiple providers, cloud systems,
and geographical locations.

72 M. Tsugawa et al.

Fig. 8 SDN with a stand-alone controller

Fig. 9 Nicira Network Virtualization Platform. The NVP controller interacts with SDN-enabled
switches to program the network operation

4.1 CohesiveFT VNS-Cubed

VNS-cubed (VNS3) is a commercial VPN-based overlay networking product that
can be programmatically managed by end users to establish communication among
resources on public clouds, private clouds, and datacenters. A software-defined
network is formed by deploying VNS3 managers on locations of interest (public
and private clouds), which establish the necessary tunnels to deploy a secure overlay
network. Access to the overlay network from external devices can be enabled by
establishing IPsec tunnels to an available VNS3 manager Fig. 10. The technology is

Cloud Networking to Support Data Intensive Applications 73

provider, vendor, application, and operating system neutral, allowing users to fed-
erate on-premise and cloud resources with network configuration and management
using VNS3 web interfaces.

Fig. 10 CohesiveFT VNS3 overview [46] shows VNS3 managers connecting private data centers
and different public cloud technologies

4.2 Pertino Cloud Network Engine

Pertino cloud network engine [47] aims to connect users to IT resources indepen-
dently of the location where they are connected to the Internet. Pertino has built an
overlay network on top of the global cloud infrastructure, and the use of network
virtualization techniques and programmability of SDNs are translated into an easy-
to-use system. The user and network management is inspired in social networks
(e.g., Facebook): Pertino users need to create and register devices to a network, and
send invitations to other users that are authorized to access the network.

Devices need to have the cloud network engine software installed and running in
order to access Pertino networks. As illustrated in Fig. 11 the cloud network engine
establishes encrypted tunnels to Pertino servers (closest to the device’s Internet
connection point) deployed on the cloud. The Pertino data plane is responsible for

74 M. Tsugawa et al.

routing packets, while the Pertino control plane dictates how devices are connected
according to users’ requests, making the system a cloud-based software-defined
network across a WAN. Pertino enables users to create a network of devices
(physical or virtual) using a web-based graphical interface, requiring only Internet
connectivity, i.e., no need for network devices such as VPN servers or difficult-to-
configure VPN software.

Fig. 11 Pertino cloud network engine conceptual view [47]. An overlay network is deployed on
top of a multi-cloud infrastructure, enabling location-aware and social network-inspired SDN

4.3 ViNe Overlay Network Infrastructure

ViNe [16] is a virtual network approach that offers end-to-end connectivity among
nodes, even if they are in private networks or guarded by firewalls (firewall traversal
is performed transparently to users, applications, and devices). ViNe has been
architected to support multiple mutually isolated virtual networks, which can be
dynamically configured and managed, thus offering a well-defined security level to
users. In terms of construction, ViNe is based on user-level network routing, which
creates overlay networks using the Internet infrastructure. A machine running ViNe
software becomes a ViNe router (VR), working as a gateway to overlay networks
for the machines connected to the same LAN segment. When necessary (e.g., due
to network limitations imposed by cloud providers [17]), ViNe can be deployed on
all nodes to establish the communication (Fig. 12).

ViNe is flexible in terms of configuration and management, which can be
dynamically changed by modifying the VRs operating parameters. VR operating
parameters are dynamically changed by a ViNe Management Server, in response to
requests by end users or cloud middleware (Fig. 13).

Cloud Networking to Support Data Intensive Applications 75

Fig. 12 Virtual Network (ViNe) architecture. Multiple independent virtual networks are overlaid
on top of the Internet. ViNe routers (VRs) control virtual network traffic. Management of VNs is
accomplished by dynamically reconfiguring VRs

Fig. 13 ViNe Management
Architecture. The necessary
VR configuration operations
are controlled by a ViNe
Management Server, in
response to requests from
users and administrators (or
middleware action on behalf
of users and administrators)

5 Case Studies

5.1 Optimizing Intra- and Inter-Cloud Data Transfer

Intra-cloud data transfer performance depends on how well physical resources are
configured and allocated for users in cloud infrastructures. In large datacenters,
networks are typically organized as a fat tree of switches, with uplinks often
becoming bottlenecks. Keeping highly communicating VMs within a single switch
(or rack) is essential to deliver high quality intra-cloud network services. However,
network traffic is hard to predict making resource allocation for cloud middleware a

76 M. Tsugawa et al.

challenging task. Virtual Layer 2 (VL2) [48] proposed by Microsoft Research after
studying the network traffic of a 1,500-node datacenter, is a promising approach
to increase the overall network utilization and balance the load of switch uplinks.
While still not popular in cloud environments, the use of jumbo frames (Ethernet
frames that can carry up to 9,000 bytes of payload instead of the traditional 1,500
bytes) can increase the data transfer throughput with additional benefit of lower
CPU utilization due to fewer CPU interrupts and fragmentation processing.

In the case of inter-cloud data transfer, users need to keep in mind that achieving
good TCP performance (most applications do use TCP as transport) over high-
latency connections is challenging, especially as bandwidth of WAN links improve
to higher speeds. The main challenge is to tune OS and application buffers so that
TCP window is appropriate for the latency and available bandwidth. If the buffers
are too large, it is possible for the sender to overload the receiver. When the receiver
starts to drop packets, TCP congestion control will make applications experience
poor data transfer. If the buffers are too small, the data in transit will not be able to
completely “fill the pipe” and the communication link will be underutilized.

Alternatively, parallel TCP streams can be used to improve the overall data
transfer speed. The idea is to open multiple TCP connections simultaneously
and transmit the data concurrently through the connections. Disadvantages of this
approach include higher CPU demand for the data transfer, potentially cause unfair
sharing of bandwidth (a few applications using most of the network capacity), and
potentially cause unnecessary congestion (too many TCP streams).

5.2 VM Migration

Inter- and Intra-cloud VM migration is useful in many scenarios. For example, net-
work utilization of a datacenter can be optimized by migrating VMs within a cloud
so that the distribution of network switches uplink utilization becomes balanced;
maintenance of physical resources can be done without disrupting workload of users
by first migrating all VMs from servers to be serviced elsewhere; make VMs use
WAN links with higher available bandwidth by migrating VMs across clouds; and
maintaining availability of services by migrating VMs when impending disasters
are detected.

VM migration itself is a data intensive activity as the memory state (constantly
increasing) and potentially the storage state needs to be transferred through the net-
work. Since VM migration mechanisms were originally designed and implemented
for LAN environments, a good intra-cloud network configuration (as described
in the previous section) is important to achieve good VM migration performance
within a datacenter.

For inter-cloud migration, the ability for the VMs to keep their network
configurations intact (e.g., no changes in their IP addresses) is desirable. How-
ever, many challenges need to be addressed when VMs migrate over distinct IP
subnets. Research has been conducted on addressing these challenges, for example

Cloud Networking to Support Data Intensive Applications 77

in [20–25]. The use of overlay networks is an attractive solution: if an L2 overlay is
established across multiple clouds, VMs can move without network reconfiguration
within the L2 overlay; or alternatively, on L3 overlays, overlay routes can be
automatically adjusted according to the movement of VMs.

Table 1 summarizes the results obtained when live-migrating VMs of 512 MB
in size from Japan to East US (through regular Internet connection), and West US
to East US (using the Internet 2—while the backbone has a 10 Gbps capacity, hosts
were limited to their local 1 Gbps connections). Experiments migrating concurrently
a different number of VMs using the Linux Kernel-based Virtual Machine (KVM)
hypervisor were conducted.

Table 1 Number of VMs migrated per hour when migrating concurrently
multiple VMs with 512 MB of guest memory

Concurrently migrated VMs Japan to East US East US to West US

1 74 VMs/h 194 VMs/h

2 147 VMs/h 378 VMs/h

4 212 VMs/h 612 VMs/h

6 220 VMs/h 654 VMs/h

As the live-migration mechanism utilizes a single TCP connection, the results
indicate that the use of parallel TCP streams (indirectly achieved by starting multiple
migrations concurrently) is beneficial when moving a large number of VMs. More-
over, the optimal number of concurrent streams is dependent of network conditions.
The design, implementation, and evaluation of a feedback-based controller that
monitors network conditions and controls the number of VMs to be migrated
concurrently can be found in [49].

5.3 Scientific Applications on the Cloud

Scientific applications, in physics, chemistry, biology, astronomy, engineering, and
bioinformatics, tend to be mainly computationally or memory intensive, even
when making use of large volumes of data. Thus, it has become appealing to
use a combination of public and private clouds to quickly setup and run a one-
time experiment in a single or multiple clouds without upfront costs in acquiring
hardware or to scale-out from a private cloud to other private or public clouds.

To take advantage of the large number of resources available in clouds, scientific
applications are parallelized with the use of a supporting communication framework
(e.g., Message Passing Interface or MPI, MapReduce, and Grid middleware) that
requires all-to-all communication among resources. Technologies presented in the
previous sections (e.g., VPN, VLAN, and overlay networks) have been successfully
used to connect resources as needed by the applications. When applications are
parallelized in a manner that they also become network-intensive, another factor to

78 M. Tsugawa et al.

be considered is the performance of such connections. When comparing clouds to
high-performance computing (HPC), in regards to networking infrastructure, two
main sources of overhead in cloud systems are the increase of network latency
due to the use of virtualization and the increased likelihood that VMs are not
always co-located. For example, benchmarks from [50, 51] see increase in network
latency from 2 to 60 �s when comparing physical Infiniband with Amazon EC2.
Bandwidth measurements reflect the 32 and 10 Gbps capacity. In these studies,
network-intensive applications did not scale in the cloud compared to dedicated
HPC infrastructures, whereas non-network-intensive applications on EC2 scaled
close to the HPC counterpart.

The MapReduce paradigm is one that is proving to be effective in cloud systems
by forcing programmers to create idempotent tasks that can be re-executed upon
failure and without inter-dependency. Success stories include the CERN ATLAS
experiment running Monte Carlo simulations on Google Compute Engine cloud
[52], and CloudBLAST [53, 54] experiments running bioinformatics application on
FutureGrid and Grid5000 clouds [55]. ATLAS achieved good scalability with 500
workers while making use of PROOF to manage the cluster in a MapReduce fashion,
and XRootD to provide access to data in a federated and scalable manner, when
the transfer rate over the internet from Tier-2 to Tier-3 is 57 Mbps. CloudBLAST
simplified and automated the process of creating a virtual network across all
resources by combining the Nimbus contextualization service in IaaS clouds to
create ViNe overlay networks and form a Hadoop MapReduce Infrastructure [56].
Good scalability was achieved even across wide-area networks (North America
and Europe) as the BLAST [57] bioinformatics application essentially made use
of network to distribute the input data as tasks were executed, to transfer keep-alive
messages, and to collect the output. In fact, while BLAST efficiently uses cache to
deal with the random access to the local genetic database, its output can often be
larger than the inputs, requiring its transfer to the user, in case the next step of the
pipeline is not also executed on the cloud.

Summary/Conclusions
Networking is a core component of cloud computing that is underdeveloped
compared to compute and storage, but has received much attention in recent
years. With a Software-Defined Networking approach, many new networking
services are being developed and made available on clouds. Still, additional
research and development is needed to efficiently support data intensive
applications.

According to [58] the global Internet connection speed is 2.9 Mbps, and
US users experience, on average, 7.4 Mbps of Internet connection speed.
Even with the best Internet connectivity (14 Mbps, on average, in South
Korea), it takes over 150 h to transfer 1 TB of data. This means days of

(continued)

Cloud Networking to Support Data Intensive Applications 79

waiting time when applications and data need to be transferred to cloud
resources before processing, While it is possible to eliminate this waiting time
using inter-cloud networking and scale-out mechanisms (i.e., directly attach
storage resources of users to clouds), higher bandwidth in the core Internet is
essential to better support data intensive applications. Forty and 100 GbE are
promising technologies that are currently only available in research networks.
For data intensive applications high speed intra-cloud communication is also
important, but only available in special and expensive setups (e.g., 10 GbE on
Amazon EC2 HPC instances).

Data transfer out of commercial clouds currently cost about $0.10/GB, so
applications generating large amounts of data can contribute substantially to
the total cost of running applications on the cloud.

Not all data intensive applications are suited for cloud environments. More
specifically, those with (1) embarrassingly parallel profile, (2) low I/O data
rate, and (3) small output data size, can be efficiently (both in terms of
performance and financial cost) executed in cloud environments.

Acknowledgements This work is supported in part by National Science Foundation (NSF)
grants No. 0910812, 1234983, 1240171, and the AT&T Foundation. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF, and AT&T Foundation.

References

1. IEEE, “IEEE Std 802.3, 1998 Edition”, 1998
2. IEEE, “IEEE Std 802.3, 2005 Edition”, 2005
3. InfiniBand Trade Association, ŒOnline�, Available: http://www.infinibandta.org
4. Fibre Channel Industry Association, ŒOnline�, Available: http://www.fibrechannel.org
5. J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner. “Internet Small Computer

Systems Interface (iSCSI)”, RFC3720, April 2004
6. ANSI, “Information Technology - Fibre Channel - Backbone - 5 (FC-BB-5)”, May 2010
7. M. Chadalapaka, H. Shah, U. Elzur, P. Thaler, and M. Ko, “A study of iSCSI extensions

for RDMA (iSER)”, In Proceedings of the ACM SIGCOMM workshop on Network-I/O
convergence: experience, lessons, implications (NICELI ’03). ACM, New York, NY, USA,
pp. 209–219, 2003

8. J. D. Day and H. Zimmermann. The OSI reference model. Proceedings of the IEEE,
71(12):1334–1340, December 1983

9. W. Simpson, “IP in IP Tunneling,” IETF RFC 1853, Oct. 1995
10. D. Farinacci, T. Li, S. Hanks et al., “Generic Routing Encapsulation (GRE),” IETF RFC 2784,

Mar. 2000
11. IEEE, “IEEE Std 802.1Q-2005”, 2006
12. B. Gleeson, A. Lin, J. Heinanen et al., “A Framework for IP Based Virtual Private Networks,”

IETF RFC 2764, Feb. 2000

http://www.infinibandta.org
http://www.fibrechannel.org

80 M. Tsugawa et al.

13. L. Xia, Z. Cui, J. R. Lange, Y. Tang, P. A. Dinda, and P. G. Bridges., “VNET/P: bridging the
cloud and high performance computing through fast overlay networking”, In Proceedings of
the 21st international symposium on High-Performance Parallel and Distributed Computing
(HPDC ’12), ACM, New York, NY, USA, pp. 259–270, 2012

14. P. Ruth, X. Jiang, D. Xu et al., “Virtual distributed environments in a shared infrastructure,”
IEEE Computer, vol. 38, no. 5, pp. 63–69, 2005

15. M. Kallahalla, M. Uysal, R. Swaminathan, D. E. Lowell, M. Wray, T. Christian, N. Edwards,
C. I. Dalton, F. Gittler, “SoftUDC: A Software-Based Data Center for Utility Computing”,
Computer, v. 37 n. 11, p. 38–46, November 2004

16. M. Tsugawa and J. A. B. Fortes, “A virtual network (ViNe) architecture for grid computing”,
Proceedings of the 20th international conference on Parallel and distributed processing, p.
148–148, April 25–29, 2006, Rhodes Island, Greece

17. M. Tsugawa, A. Matsunaga, and J. A. B. Fortes, “User-level virtual network support for sky
computing”, In Procs. 5th IEEE e-Science, pages 72–79, 2009

18. A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo, “IP over P2P: enabling self-
configuring virtual IP networks for grid computing”, Proceedings of the 20th international
conference on Parallel and distributed processing, p. 49–49, April 25–29, 2006, Rhodes Island,
Greece

19. D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan, I. Stoica, and K. Wehrle, “OCALA:
an architecture for supporting legacy applications over overlays”, Proceedings of the 3rd
conference on Networked Systems Design & Implementation, p. 20–20, May 08–10, 2006,
San Jose, CA

20. H. Fang, T. V. Lakshman, M. Sarit et al., “Enhancing dynamic cloud-based services using
network virtualization,” SIGCOMM Compute. Commun. Rev., vol. 40, no. 1, pp. 67–74, 2010

21. E. Silvera, G. Sharaby, D. Lorenz et al., “IP mobility to support live migration of virtual
machines across subnets,” in Proc SYSTOR 2009: The Israeli Experimental Systems Con-
ference, Haifa, Israel, 2009

22. H. Watanabe, T. Ohigashi, T. Kondo et al., “A Performance Improvement Method for the
Global Live Migration of Virtual Machine with IP Mobility,” in Proc. 5th Int. Conf. on Mobile
Computing and Ubiquitous Networking, Seattle, 2010, pp. 194–199

23. Q. Li, J. Huai, J. Li et al., “HyperMIP: Hypervisor Controlled Mobile IP for Virtual Machine
Live Migration across Networks,” in Proc. 11th IEEE High Assurance Systems Engineering
Symp., 2008, pp. 80–88

24. V. Manetti, R. Canonico, G. Ventre et al., “System-Level Virtualization and Mobile IP to
Support Service Mobility,” in Proc. Int. Conf. on Parallel Processing Workshops, 2009,
pp. 243–248

25. M. Tsugawa, P. Riteau, A. Matsunaga, and J. Fortes, “User-level virtual networking mecha-
nisms to support virtual machine migration over multiple clouds,” In IEEE Intl Workshop on
Management of Emerging Networks and Services, Miami, Florida, 2010, pp. 588–592

26. Internet2 Network, ŒOnline�, Available: http://www.internet2.edu/network
27. Energy Sciences Network, ŒOnline�, Available: http://www.es.net
28. geni - Exploring Networks of the Future, ŒOnline�, Available: http://www.geni.net
29. FutureGrid Project, ŒOnline�, Available: http://www.futuregrid.org
30. Internet Engineering Task Force, ŒOnline�, Available: http://www.ietf.org
31. Open Networking Foundation, ŒOnline�, Available: http://www.opennetworking.org
32. N. McKewon, T. Anderson, H. Balakrishnan, et al., “OpenFlow: Enabling Innovation in

Campus Networks,” White Paper, March 2008
33. OpenFlow, ŒOnline�, Available: http://www.openflow.org
34. Amazon Elastic Compute Cloud, ŒOnline�, Available: http://aws.amazon.com/ec2
35. G. Wang and T. S. E. Ng, “The Impact of Virtualization on Network Performance of Amazon

EC2 Data Center”, in Proceedings of IEEE INFOCOM 2010, San Diego, CA, March 2010
36. Serhiy Topchiy, “Testing Amazon EC2 Network Speed”, ŒOnline�, Available: http://epamcloud.

blogspot.com/2013/03/testing-amazon-ec2-network-speed.html

http://www.internet2.edu/network
http://www.es.net
http://www.geni.net
http://www.futuregrid.org
http://www.ietf.org
http://www.opennetworking.org
http://www.openflow.org
http://aws.amazon.com/ec2
http://epamcloud.blogspot.com/2013/03/testing-amazon-ec2-network-speed.html
http://epamcloud.blogspot.com/2013/03/testing-amazon-ec2-network-speed.html

Cloud Networking to Support Data Intensive Applications 81

37. Steve Morad, “Amazon Virtual Private Cloud Connectivity Options”, White Paper, October
2012

38. Amazon AWS, “Extend Your IT Infrastructure with Amazon Virtual Private Cloud”, White
Paper, January 2010

39. Windows Azure, ŒOnline�, Available: http://www.windowsazure.com
40. OpenStack Cloud Software, ŒOnline�, Available: http://www.openstack.org
41. Apache CloudStack, ŒOnline�, Available: http://www.cloudstack.apache.org
42. Apache Software Foundation, ŒOnline�, Available: http://apache.org
43. OpenStack Foundation, “OpenStack Networking Administration Guide”, 2013
44. Apache CloudStack, “CloudStack Administrator’s Guide”, 2013
45. Nicira, “It’s Time to Virtualize the Network - Network Virtualization for Cloud Data Centers”,

White Paper, 2012
46. CohesiveFT, “Cloud Security Best Practices. Part I: Using VNS3 Overlay Network with

Private, Public, and Hybrid Clouds”, Technical White Paper, 2013
47. Timothy P. Morgan, “Pertino uncloaks, fires ‘cloud network engine’ at Cisco”, The Register,

February 2013
48. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and

S. Sengupta, “VL2: a scalable and flexible data center network”, In Proceedings of the ACM
SIGCOMM 2009 conference on Data communication (SIGCOMM ’09). ACM, New York, NY,
USA, pp. 51–62, 2009

49. T. S. Kang, M. Tsugawa, T. Hirofuchi, J. Fortes, “Reducing the Migration Times of Multiple
VMs on WANs using a Feedback Controller”, The 18th IEEE Workshop on Dependable
Parallel, Distributed and Network-Centric Systems, 2013

50. E. Walker, “Benchmarking Amazon EC2 for high-performance scientific computing”, Usenix
Login, 2008, v. 33(5), pp. 18–23

51. P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff, S. Saini, and R. Biswas,
“Performance evaluation of Amazon Elastic Compute Cloud for NASA high-performance
computing applications,” Concurrency Computat.: Pract. Exper.. 2013. doi: 10.1002/cpe.3029

52. S. Panitkin, and A. Hanushevsky, “ATLAS Experiment and GCE”, Google IO Conference,
May 15–17, 2013. http://www.youtube.com/watch?v=LRkLQw5rLy8

53. A. Matsunaga, M. Tsugawa, and J. Fortes, “CloudBLAST: Combining MapReduce and
Virtualization on Distributed Resources for Bioinformatics Applications”, IEEE eScience
2008, pp. 229, 222, 2008

54. K. Keahey, M. Tsugawa, A. Matsunaga, J.A.B. Fortes, “Sky Computing.” Internet Computing,
IEEE, vol. 13, no. 5, p. 43–51, Sept.-Oct. 2009

55. A. Matsunaga, P. Riteau, M. Tsugawa, J.A.B. Fortes, “Crosscloud Computing,” Advances
in Parallel Computing, High Performance Computing: From Grids and Clouds to Exascale,
volume 20, 2011, pp. 109–123

56. Apache Hadoop project. http://hadoop.apache.org
57. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman., “Basic Local Alignment

Search Tool”, Journal of Molecular Biology, 1990, v. 215(3), pp. 403–410
58. Akamai, “The State of Internet Report”, Fourth Quarter, 2012

http://www.windowsazure.com
http://www.openstack.org
http://www.cloudstack.apache.org
http://apache.org
http://www.youtube.com/watch?v=LRkLQw5rLy8
http://hadoop.apache.org

IaaS Cloud Benchmarking: Approaches,
Challenges, and Experience

Alexandru Iosup, Radu Prodan, and Dick Epema

Abstract Infrastructure-as-a-Service (IaaS) cloud computing is an emerging
commercial infrastructure paradigm under which clients (users) can lease resources
when and for how long needed, under a cost model that reflects the actual usage of
resources by the client. For IaaS clouds to become mainstream technology and for
current cost models to become more clientfriendly, benchmarking and comparing
the non-functional system properties of various IaaS clouds is important, especially
for the cloud users. In this article we focus on the IaaS cloud-specific elements of
benchmarking, from a user’s perspective. We propose a generic approach for IaaS
cloud benchmarking, discuss numerous challenges in developing this approach, and
summarize our experience towards benchmarking IaaS clouds. We argue for an
experimental approach that requires, among others, new techniques for experiment
compression, new benchmarking methods that go beyond blackbox and isolated-
user testing, new benchmark designs that are domain-specific, and new metrics for
elasticity and variability.

1 Introduction

Infrastructure-as-a-Service (IaaS) clouds are becoming a rich and active branch of
commercial ICT services. Users of IaaS clouds can provision “processing, storage,
networks, and other fundamental resources” [51] on-demand, that is, when needed,
for as long as needed, and paying only for what is actually consumed. For the past
five years, commercial IaaS clouds such as Amazon’s EC2 have gained an increasing
user base, from small and medium businesses [3] to scientific HPC users [14, 43].
However, the increased adoption of clouds and perhaps even the pricing models
depend on the ability of (prospective) cloud users to benchmark and compare

A. Iosup (�) • D. Epema
Delft University of Technology, EEMCS-Room HB07.050,
Mekelweg 4, 2628 CD Delft, The Netherlands
e-mail: A.Iosup@tudelft.nl; D.H.J.Epema@tudelft.nl

R. Prodan
Parallel and Distributed Systems, University of Innsbruck, Innsbruck, Austria
e-mail: Radu@dps.uibk.ac.at

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__4

83

mailto:A.Iosup@tudelft.nl
mailto:D.H.J.Epema@tudelft.nl
mailto:Radu@dps.uibk.ac.at

84 A. Iosup et al.

commercial cloud services. In this chapter, we investigate the IaaS cloud-specific
elements of benchmarking from the user perspective.

An important characteristic of IaaS clouds is good performance, which needs
to be ensured on-demand and sustained when needed over a long period of time.
However, as we have witnessed happening with several other new technologies
while still in their infancy, notably with grid computing in the 1990s, it is likely
that IaaS clouds will also undergo a period of changing performance management
practices. In particular, we foresee that the branch of performance management that
focuses on measuring the performance will evolve from traditional practices to meet
the requirements of cloud operators and customers.

Benchmarking is a traditional approach to verify that the performance of a
system meets the requirements. When benchmarking results are published, for
example through mixed consumer-provider organizations such as SPEC and TPC,
the consumers can easily compare products and put pressure on the providers
to use best-practices and perhaps lower costs. Currently, the use of clouds is
fragmented across many different application areas, including hosting applications,
media, games, and web sites, E-commerce, On-Demand Workforce and CRM,
high-performance computing, search, and raw resources for various usage. Each
application area has its own (de facto) performance standards that have to be met by
commercial clouds, and some have even developed benchmarks (e.g., BioBench [1]
for Bioinformatics and RUBiS [63] for online business).

For IaaS clouds, we conjecture that the probable characteristics of current and
near-future workloads can be derived from three major trends emerging from
the last decade of grid and large-scale computing. First, individual jobs are now
predominantly split into smaller compute or data-intensive tasks (many tasks [58]);
there are almost no tightly coupled parallel jobs. Second, the duration of individual
tasks is diminishing with every year; few tasks are still running for longer than 1 h
and a majority require only a few minutes to complete. Third, compute-intensive
jobs are split either into bags-of-tasks (BoTs) or DAG-based workflows, but data-
intensive jobs may use a variety of programming models, from MapReduce to
general dataflow.

Cloud benchmarking is not a straightforward application of older benchmarking
techniques. In the past, there have been several large-scale computing environments
that have similarities with clouds. Already decades ago, institutes such as CERN
and the IBM T.J. Watson Research Center had large numbers of mainframes
(using virtualization through the Virtual Machine operating system!) that also used
multi-tenancy across their departments. Similarly, some vendors had large-scale
installations for paid use by customers through Remote Job Entry facilities. In these
environments, benchmarking and capacity planning were performed in close col-
laboration between owners and customers. An important difference, and advantage,
for customers wishing to benchmark their prospective computing environments
is that they can simply use access by credit card to deploy and benchmark their
applications in the cloud: clouds do not only offer elasticity on demand, they also
offer (resources for) capacity planning and benchmarking on demand. The new
challenge is that customers will have to gain, through benchmarking, sufficient trust

IaaS Cloud Benchmarking 85

in the performance, the elasticity, the stability, and the resilience of clouds, to rely
on them for the operation of their businesses. As a matter of fact, cloud customers
may want to benchmark both when migrating to the cloud, and, after migration, to
assess continuously the operation of their applications in the cloud. Thus, of great
importance is the ability of cloud benchmarks to allow users to gain trust without
requiring long setups and costly operation.

We discuss in this chapter a focused, community-based approach to IaaS cloud
benchmarking in which the main challenges are jointly identified, and best-practice
and experiences can be easily shared. Although we have seen in the past few
years numerous approaches to benchmarking and performance evaluation of various
systems, there is no unified view of the main challenges facing researchers and
practitioners in the field of benchmarking. This chapter aims at providing this
unified view and should thus be useful in system procurement and performance
management. From traditional benchmarking, the unified view borrows from earlier
efforts on benchmarking middleware [8,9], on benchmarking databases [24], on the
performance evaluation of grid and parallel-system schedulers [10, 15, 20, 35], and
on benchmarking systems in general [2, 44].

The unified view includes a generic architecture for IaaS cloud benchmarking.
We have designed the architecture so that it can be familiar to existing practitioners,
yet provide new, cloud-specific functionality. For example, current IaaS cloud
operators lease to their customers resources, but leave the selection of resource
types and the selection of the lease/release moments as a customer task; because
such selection can impact significantly the performance of the system built to use
the leased resources, the generic benchmarking architecture must include policies
for provisioning and allocation of resources.

In additional to traditional benchmarking elements and the generic architecture,
the unified view introduced in this chapter focuses on ten important methodological,
system-, workload-, and metrics-related issues. For example, how should cloud-
bursting systems, that is, systems that lease resources to complement the customer’s
own resources, be benchmarked? What could be realistic models for the workloads
of IaaS clouds? For IaaS clouds that share resources between multiple customers,
how to benchmark their ability to isolate user-environments and thus to prevent
performance variability [39]? etc.

This chapter has evolved from a number of regular articles [19, 26, 27] and a
series invited talks given by the authors between 2012 and 2014, including talks at
MTAGS 2012 [41], HotTopiCS 2013 [32], etc.1 This work has also benefited from
valuable discussion in the SPEC Research Group’s Cloud Working Group (see also
Sect. 5.1).

1In inverse chronological order: Lecture at the Linked Data Benchmark Council’s Fourth TUC
Meeting 2014, Amsterdam, May 2014. Lecture at Intel, Haifa, Israel, June 2013. Lecture at IBM
Research Labs, Haifa, Israel, May 2013. Lecture at IBM T.J. Watson, Yorktown Heights, NY, USA,
May 2013. Lecture at Technion, Haifa, Israel, May 2013.

86 A. Iosup et al.

The remainder of this chapter is structured as follows. In Sect. 2, we present a
primer on benchmarking computer systems. Then, we introduce a generic approach
for IaaS cloud benchmarking, in Sect. 3. In Sect. 4, we discuss numerous challenges
in developing our and other approaches for cloud benchmarking, with focus on
methodological, system-, workload-, and metrics-related issues. We summarize our
experience towards benchmarking IaaS clouds in Sect. 5. Our summary focuses
on the initiatives of the SPEC Research Group and its Cloud Working Group, of
which the authors are members, and our own experience with building models and
tools that can become useful building blocks for IaaS cloud benchmarking. Last, we
conclude in “Conclusion” section.

2 A Primer on Benchmarking Computer Systems

We review in this section the main reasons for benchmarking and the main elements
of the typical benchmarking process, which are basically unchanged since the early
1990s. For more detail, we refer to canonical texts on benchmarking [24] and
performance evaluation [44] of computer systems.

2.1 Why Benchmarking?

Benchmarking computer systems is the process of evaluating their performance
and other non-functional characteristics with the purpose of comparing them with
other systems or with industry-agreed standards. Traditionally, the main use of
benchmarking has been to facilitate the informed procurement of computer systems
through the publication of verifiable results by system vendors and third-parties.
However, benchmarking has grown as a support process for several other situations,
which we review in the following.

Use in System Design, Tuning, and Operation Benchmarking has been shown to
increase pressure on vendors to design better systems, as has been for example the
experience of the TPC-D benchmark [24, Ch. 3, Sec. IV]. For this benchmark,
insisting on the use of SQL has driven the wide acceptance of the ANSI SQL-
92; furthermore, the complexity of a majority of the queries has lead to numerous
improvements in the design of aggregate functions and support for them. This
benchmark also led to a wide adoption of the geometric mean for aggregating
normalized results [2]. The tuning of the DAS multi-cluster system has benefited
from the benchmarking activity of some of the authors of this chapter, developed in
the mid-2000s [33]; then, our distributed computing benchmarks exposed various
(fixable) problems of the in-operation system.

Use in Training One of the important impediments in the adoption of a new
technology is the lack of expertise of potential users. Market shortages of qualified

IaaS Cloud Benchmarking 87

personnel in computer science are a major cause of concern for the European
Union and the US. Benchmarks, through their open-source nature and representation
of industry-accepted standards, can represent best-practices and thus be valuable
training material.

On Alternatives to Benchmarking Several alternative methods have been used for
the purposes described earlier in this section, among them empirical performance
evaluation, simulation, and even mathematical analysis. We view benchmarking as
an empirical evaluation of performance that follows a set of accepted procedures
and best-practices. Thus, the use of empirical performance evaluation is valuable,
but perhaps without the representativeness of a (de facto) standard benchmark. We
see a role for (statistical) simulation [17, 22, 55] and mathematical analysis when
the behavior of the system is well-understood and for long-running evaluations that
would be impractical otherwise. However, simulating new technology, such as cloud
computing, requires careful (and time-consuming) validation of assumptions and
models.

2.2 Elements of Benchmarking

Inspired by canonical texts [24, 44], we review here the main elements of a bench-
marking process. The main requirements of a benchmark—relevance, portability,
scalability, and simplicity—have been discussed extensively in related literature,
for example in [24, Ch. 1].

The System Under Test (SUT) is the system that is being evaluated. A white
box system exposes its full operation, whereas a black box system does not expose
operational details and is evaluated only through its outputs.

The workload is the operational load to which the SUT is subjected. Starting from
the empirical observation that “20 % of the code consumes 80 % of the resources”,
simple microbenchmarks (kernel benchmarks [24, Ch. 9]) are simplified or reduced-
size codes designed to stress potential system bottlenecks. Using the methodology
of Saavedra et al. [59] and later refinements such as Sharkawi et al. [61], the
results of microbenchmarks can be combined with application profiles to provide
credible performance predictions for any platform. Synthetic and even real-world
(complex) applications are also used for benchmarking purposes, as a response to
system improvements that make microbenchmarks run fast but do not affect the
performance of much larger codes. For distributed and large-scale systems such as
IaaS clouds, simple workloads comprised of a single application and a (realistic)
job arrival process represent better the typical system load and have been used for
benchmarking [33]. Complex workloads, that is, the combined simple workloads
of multiple users, possibly with different applications and job characteristics, have
started to be used in the evaluation of distributed systems [33, 65]; we see an
important role for them in benchmarking.

88 A. Iosup et al.

Benchmark
Description

Policy
Policy Policy

Policy

Policy

Feedback
LoopBenchmark

Results,
incl. long-term

database

Results
Analysis &
Modeling

Results
Database

Workload
Description

Monitoring &
Loggging

Workload
Generator &

Submitter
Allocation

Testing System System Under Test

Provisioning Self-Owned
Infrastructure

IaaS Cloud

IaaS Cloud

Virtual
Resource Pool

Domain-Specific
Component

1

11 9 8
4 3

10

12

2
5 6 7

Fig. 1 Overview of our generic architecture for IaaS cloud benchmarking

The Benchmarking Process consists of the set of rules, prior knowledge (invari-
ants), and procedures used to subject the SUT to the benchmark workload, and to
collect and report the results.

3 A Generic Architecture for IaaS Cloud Benchmarking

We propose in this section a generic architecture for IaaS cloud benchmarking. Our
architecture focuses on conducting benchmarks as sets of (real-world) experiments
that lead to results with high statistical confidence, on considering and evaluating
IaaS clouds as evolving black-box systems, on employing complex workloads
that represent multi-tenancy scenarios, on domain-specific scenarios, and on a
combination of traditional and cloud-specific metrics.

We introduce in Sect. 4 the main challenges that need to be addressed for our
architecture to be realizable. In Sect. 5.2, we discuss a partial implementation of
this architecture that has already achieved good results in practice [65].

3.1 Overview

Our main design principle is to adapt the proven designs for benchmarking to IaaS
clouds at scale. Thus, we design an architecture that builds on our GrenchMark
framework for grid benchmarking [33], as presented in Fig. 1.

The Benchmarking Process consists of the set of rules, prior knowledge (invari-
ants), and procedures used to subject the SUT to the benchmark workload, and to
collect and report the results. In our architecture, the process begins with the user
(e.g., a prospective IaaS cloud user) defining the benchmark configuration, that is,
the complex workloads that define the user’s preferred scenario (component 1 in
Fig. 1). The scenario may focus on processing as much of the workload as possible
during a fixed test period or on processing a fixed-size workload as quickly or

IaaS Cloud Benchmarking 89

cheaply as possible. The benchmarking system converts (component 2) the scenario
into a set of workload descriptions, one per (repeated) execution. The workload
may be defined before the benchmarking process, or change (in particular, increase)
during the benchmarking process. To increase the statistical confidence in obtained
results, subjecting the SUT to a workload may be repeated or the workload may be
long-running.

After the preparation of the workload, the SUT (component 3 in Fig. 1) is
subjected to the workload through the job and resource management services
provided by the testing system (component 4, which includes components 5–10).
In our benchmarking architecture, the SUT can be comprised of one or several
self-owned infrastructures, and public and private IaaS clouds. The SUT provides
resources for the execution of the workload; these resources are grouped into a
Virtual Resource Pool. The results produced during the operation of the system
may be used to provide a feedback loop from the Virtual Resource Pool back into
the Workload Generator and Submitter (component 5); thus, our architecture can
implement open and closed feedback loops [60].

As a last important sequence of process steps, per-experiment results are
combined into higher-level aggregates, first aggregates per workload execution
(component 11 in Fig. 1), then aggregates per benchmark (component 12). The
reporting of metrics should try to avoid the common pitfalls of performance evalu-
ation; see for example [2, 23]. For large-scale distributed systems, it is particularly
important to report not only the basic statistics, but also some of the outliers, and full
distributions or at least the higher percentiles of the distribution (95-th, 99-th, etc.).
We also envision the creation of a general database of results collected by the entire
community and shared freely. The organization and operation of such a database is
within the scope of future work.

3.2 Distinguishing Design Features

We present in the remainder of this section several of the distinguishing features of
this architecture.

In comparison with traditional grid environments, commercial IaaS clouds do
not provide services for managing the incoming stream of requests (components 5,
6, and 8 in Fig. 1) or the resources leased from the cloud (components 7 and 8). Our
architecture supports various policies for provisioning and allocation of resources
(components 6 and 7, respectively). In contrast to GrenchMark, our generic cloud-
benchmarking architecture also includes support for evolving black-box systems
(components 9, 11, and 12), complex workloads and multi-tenancy scenarios
(components 1, 2, and 5), domain-specific components (component 10), etc.

Experiments conducted on large-scale infrastructure should be designed to mini-
mize the time spent effectively using resources. The interplay between components
1, 2, and 5 in Fig. 1 can play a non-trivial role in resolving this challenge, through
automatic selection and refinement of complex test workloads that balance the

90 A. Iosup et al.

trade-off between accuracy of results and benchmark cost; the main element in a
dynamic tuning of this trade-off is the policy present in component 5. The same
interplay enables multi-tenancy benchmarks.

Several of the possible SUTs expose complete or partial operational information,
acting as white or partially white boxes. Our architecture allows exploiting this
information, combining results from black-box and white-box testing. Moreover,
the presence of the increasingly higher-level aggregations (components 11 and 12
in Fig. 1) permits both the long-term evaluation of the system, and the combination
of short-term and long-term results. The policy for monitoring and logging in
component 8 allows the user to customize what information is processed and stored
in the results database. We conclude that our architecture goes far beyond simple
black-box testing.

Supports domain-specific benchmarks is twofold in our architecture. First,
components 5–7 support complex workloads and feedback loops, and policy-
based resource and job management. Second, we include in our architecture a
domain-specific component (component 10) that can be useful in supporting cloud
programming models such as the compute-intensive workflows and bags-of-tasks,
and the data-intensive MapReduce and Pregel. The policy element in component
10 allows this component to play a dynamic, intelligent role in the benchmarking
process.

4 Open Challenges in IaaS Cloud Benchmarking

We introduce in this section an open list of surmountable challenges in IaaS cloud
benchmarking.

4.1 Methodological

Challenge 1. Experiment compression.

Long setup times, for example of over a day, and/or long periods of continuous
evaluation, for example of more than a day per result, reduce the usefulness of a
benchmark for the general user. This is a general problem with any experimental
approach, but for IaaS clouds it has the added disadvantage of greatly and visibly
increasing the cost of benchmarking. We argue that research is needed to reduce
the setup and operational time of benchmarks for IaaS clouds. This can be achieved
through reduced input and application sets, a clever setup of the experiments, and
sharing of results across the community. We also envision the use of combined

IaaS Cloud Benchmarking 91

experimental approaches, in which real-world experiments are combined with
emulation [64,66] or simulation. Our vision for experiment compression represents
an extension of the concept of statistical simulation [17,22,55], which has been used
for computer architecture studies, to real-world experimentation.

Reduced benchmark input and application sets can be obtained by refining input
workloads from real complex workloads, using theoretically sound methods (e.g.,
statistical models and goodness-of-fit tests). Such reduced benchmark inputs will
contrast with traditional synthetic benchmarks, which incorporate many human-
friendly parameter values (e.g., “10 % queries of type A, 90 % queries of type B”)
and thus may lack theoretical guarantees for representativeness.

Challenge 2. Beyond black-box testing through testing short-term dynamics
and long-term evolution.

Similarly to multi-cluster grids, which frequently added clusters or individual
nodes to the distributed infrastructure, clouds are continuously extended and
tuned by their operators. Moreover, commercial clouds such as Amazon EC2
add frequently new functionality to their systems. Thus, the benchmarking results
obtained at any given time may be unrepresentative for the future behavior of the
system. We argue that IaaS clouds should not be benchmarked only using traditional
black-box and even white-box testing, for which the system under test does not
change in size and functionality, but also through new benchmarking methods that
evaluate the impact of short-term dynamics and long-term evolution. Specifically,
short-term dynamics characterize system changes occurring over short periods (at
most hours), and long-term evolution characterizes system changes occurring over
long periods (months, years).

A straightforward approach to benchmark both short-term dynamics and long-
term evolution is to measure the system under test periodically, with judiciously
chosen frequencies [40]. However, this approach increases the pressure of the so-far
unresolved Challenge 1.

Challenge 3. Impact of middleware.

IaaS clouds are built on several layers of middleware, from the guest operating
system of the VM to the data-center resource manager. Each of these layers
adds new complexity to testing and possibly also visible or invisible performance
bottlenecks. One of the key issues in benchmarking IaaS clouds is to measure the
performance of each layer of the middleware in isolation. We argue that a solution
for this problem may not be possible under the current assumption of black-box
testing, and propose instead to focus on a new methodology that accounts for
imprecision in the isolation of root causes of performance.

92 A. Iosup et al.

We believe that good steps towards understanding the performance of various
middleware layers can be and have already been taken [8], for example in assessing
the impact of virtualization, but that more work is needed to reconcile the results
(the situation presented in Challenge 2, where IaaS clouds change over time, may
be a source of conflicting experimental results). We have surveyed in our previous
work [39, 40] over ten performance studies that use common benchmarks to assess
the virtualization overhead on computation (5–15 %), I/O (10–30 %), and HPC
kernels (results vary). We have shown in a recent study of four commercial IaaS
clouds [39] that virtualized resources obtained from public clouds can have a much
lower performance than the theoretical peak, possibly because of the performance
of the middleware layer.

4.2 System Properties

Challenge 4. Reliability, availability, and related system properties.

One of the factors affecting the behavior of large-scale systems is the presence of
failures, which are likely inevitable at scale. We have found endemic presence of
failures in many popular large-scale systems, from grids [36] to DNS and other
distributed services [47]. Benchmarking reliability and related systems properties is
difficult, not in the least because of Challenge 2.

Challenge 5. Massive scale, multi-site benchmarking.

One of the main product features of IaaS clouds is the promise of seemingly
infinite capacity. We argue that benchmarking this promise is difficult, very time-
consuming, and very costly. We have seen in our previous work that testing tools
can be built to test infrastructures of thousands of cores [33], but performance
evaluation tools that work at much larger scale in heterogeneous IaaS clouds have
yet to be proven in practice. An important challenge here may be the ability to
generate massive-scale workloads.

We have already had experience with companies building hybrid clouds [51]
out of their own infrastructure and resources leased from IaaS clouds (this process
is also referred to as cloud-bursting, for example by NIST and Microsoft). Other
cloud deployment models require the use of multiple sites, because the application
functionality requires it [12], to improve load balancing or performance [62], to
fulfill reliability targets, to avoid vendor lock-in [5], etc. We and others [53] expect
multi-site cloud use to increase, as more companies, with or without existing

IaaS Cloud Benchmarking 93

computational capacity, try out or even decide to use cloud services. We also
expect multi-site cloud use to reuse mechanisms of traditional co-allocation, that
is, simultaneous allocation of resources across several organizational components
with (wide) geographical spread. We argue that benchmarking across multiple sites
raises additional challenges, not in the least the combined availability for testing and
scalability of the infrastructure, and the increased cost.

Challenge 6. Performance isolation.

The negative effects of the interaction between running jobs in a complex
workload have been observed in distributed environments since at least the mid-
1990s [6]. Following early work [30, 49], we argue that quantifying the level of
isolation provided by an IaaS cloud is a new and important challenge.

Moreover, as IaaS clouds become more international, their ability to isolate
performance may suffer most during periods of peak activity [30]. Thus, studying
the time patterns of performance interference, and their impact on the targets of
performance isolation, is worthwhile.

4.3 Workload

Challenge 7. Realistic yet tunable models of workloads and of system
performance.

Statistical workload modeling is the general technique of producing synthetic
models from workload traces collected from real-world systems that are statistically
similar to the real-world traces, yet may be sufficiently easy to tune for a community
of non-expert users. We argue that building such statistical models raises important
challenges, from data collection to trace processing, from finding good models to
testing the validity of the models. We also see as an open challenge the derivation
of statistical performance models, perhaps through linear regression, from already
existing measurements.

We envision that IaaS clouds will also be built for specific, even niche appli-
cation domains, charging premium rates for the expertise required to run specific
classes of applications. This is similar to the appearance of domain-specific grids,
such as BioGrid, in the early 2000s; and of domain-specific database-related
technology, such as transaction-processing and data warehousing solutions, in the
early 1990s [24, Ch.1]. We argue that IaaS cloud benchmarking should begin with
domain-specific benchmarks, before transiting to general benchmarks.

94 A. Iosup et al.

Besides regular user workloads, most commercial IaaS clouds offer value-adding
features such as backup, upgrade, (live) migration, load-balancing, scheduling
and message queues, publish/subscribe-based communication services, etc. These
value-adding features generate additional, cloud-internal workloads.

Toward building domain-specific benchmarks, we argue for building statistical
models of domain-specific or at least programming model-specific workloads.
We have conducted in the past extensive research in grid workloads [34], with
results in modeling BoTs [38], and in characterizing scientific and engineering
workflows [34]. Several studies [11, 21, 46, 68, 69], including our own study of
four large MapReduce clusters [13], have focused on characterizing workloads
of MapReduce, which is one of the most popular programming models for data
processing in the loud. Open challenges in this context are the formulation of
realistic models for workflows, MapReduce, and other programming models for
data processing. We also find that the many-task programming model [58] is
worthwhile for investigation in this context. We also refer to a recent survey of
challenges associated with large-scale log analysis [54].

Challenge 8. Benchmarking performance isolation under different multi-
tenancy models.

Unlike traditional system benchmarking, where interference of different
elements that affect performance—multiple users competing for resources, stressing
multiple system resources at the same time—is generally avoided, the expected
cloud workload is complex. We argue that for IaaS clouds interference should
be expected and benchmarked. Specific focus for this challenge, as an extension
of Challenge 8, is to benchmark under a specific multi-tenancy model, from the
shared-nothing approach of multi-cluster grids, to shared-hardware and shared-
virtualized machine approaches prevalent in today’s commercial clouds [48, 52],
and possibly others.

4.4 Metrics

Challenge 9. Beyond traditional performance.

Traditional performance metrics—such as utilization, throughput, and makespan—
have been defined for statically-sized, homogeneous systems. We have raised in
our previous work [35] the challenge of adapting these metrics for distributed
on-demand systems, such as the contemporary multi-cluster grids and commercial

IaaS Cloud Benchmarking 95

IaaS clouds. IaaS clouds raise new challenges in defining cloud-related metrics, such
as elasticity [7, 29, 42]; they also require revisiting traditional metrics, including
dependability-related [31].

We also argue for revisiting the analysis of results and their refinement into
metrics. For example, due to their change over time and imperfect performance
isolation, IaaS clouds may require revisiting the concept of variability, beyond the
traditional mean (or median) and standard deviation. Our preliminary work [40]
on the variability of performance in IaaS and other types of clouds indicates that
variability can be high and may vary with time.

Traditionally, system warm-up is excluded from performance evaluation, leaving
only the steady-state period of the system for study. However, especially for hybrid
and other multi-site cloud architectures, we argue for the need to also measure the
transitional period that occurs when a significant fraction of the system resources
are in the process of being leased or released.

Challenge 10. The cost issue.

Although cost models were discussed in benchmarking and performance eval-
uation of both databases and grids, a variety of issues have not been addressed.
Specifically, the sub-leasing cost model used in today’s commercial IaaS clouds
(e.g., Amazon’s “spot” instances) provides a new focus. It is also unclear how to
define costs for a hybrid cloud infrastructure, especially when the performance of
the cloud—throughput, makespan, etc.—does not match the expectation [39, 67].
Last but not least, it is unclear how to define the source of budgets, for example either
infrastructural or operational funds, a situation which affects a variety of economic
metrics. Early approaches exist [14, 43].

5 Experience Towards IaaS Cloud Benchmarking

In this section, we present our experience in joining a community of experts working
on benchmarking IaaS clouds and in conducting independent research on the topic.

5.1 Methodology: The SPEC Cloud Working Group

The SPEC Research Group2 (RG) is a new group within the Standard Perfor-
mance Evaluation Corporation (SPEC). Among other activities, the SPEC RG
facilitates the interaction between academia and industry by co-organizing the Joint

2http://research.spec.org/.

http://research.spec.org/

96 A. Iosup et al.

ACM/SPEC International Conference on Performance Engineering (ICPE). The
Cloud Working Group3 (CWG) is a branch of the SPEC RG that aims to develop
the methodological aspects of cloud benchmarking (Challenges 1–3 in Sect. 4). In
this section we summarize two initiatives of the SPEC RG and CWG.

Beyond Traditional Performance Traditional performance metrics such as uti-
lization and normalized schedule length [50] have been defined for statically
sized systems. Redefining these metrics for dynamic systems, especially in the
context of black-box resources leased from clouds, is a topic of interest for the
CWG (Challenges 5 and 6). Beyond performance, the CWG is also interested in
other non-functional metrics, such as elasticity, utility, performance isolation, and
dependability (Challenges 4, 9, and 15).

Reproducibility of Experiments (Orthogonal to Our Challenges) Being able to
reproduce experimental results is critical for the validity and lifetime of obtained
results. However, this goal is difficult to achieve when the system under test
is complex, dynamic, or large-scale; IaaS clouds have all these characteristics.
A recent initiative of the RG is to build a repository4 that can be used to share
experimental results, setups, and other meta-data. Moreover, the call for papers
issued by ICPE 2013 includes a focus on reproducibility of experiments.

5.2 SkyMark: A Framework for IaaS Cloud Benchmarking

We have recently implemented a part of the architecture described in Sect. 3 as our
SkyMark tool for IaaS cloud benchmarking [4]. SkyMark already implements two
of the distinguishing features of our architecture (see Sect. 3.2). First, SkyMark
provide services for managing the incoming stream of requests (jobs) and the
resources leased from the cloud [65]. For the former, SkyMark provides single or
multiple job queues, depending on the configuration of the experiment, and each
queue supports a variety of simple scheduling policies (e.g., FCFS). For the latter,
SkyMark supports several static and dynamic resource provisioning policies.

Second, SkyMark supports complex workloads (Challenge 7). Workloads are
split into units. Each unit is defined by the characteristic resource to be stressed (e.g.,
through CPU-intensive jobs), the job arrival pattern (one of uniform, increasing, and
bursty), and the job durations. SkyMark is able, for a given target configuration, to
generate workloads that lead to a user-specified average utilization in the absence of
system overheads.

Using SkyMark, we were able [65] to benchmark three IaaS clouds, including
Amazon EC2. We have used in out benchmarks six provisioning policies and

3http://research.spec.org/working-groups/rg-cloud-working-group.html.
4ICPE Organizers, Reproducibility repository approved, http://icpe2013.ipd.kit.edu/news/
single_view/article/reproducibility-repository-approved/.

http://research.spec.org/working-groups/rg-cloud-working-group.html
http://icpe2013.ipd.kit.edu/news/single_view/article/reproducibility-repository-approved/
http://icpe2013.ipd.kit.edu/news/single_view/article/reproducibility-repository-approved/

IaaS Cloud Benchmarking 97

three allocation policies, with provisioning and allocation policies considered
either independently or together. We were also able [4] to evaluate, for our
OpenNebula private clouds, the interference occurring in various multi-tenancy
scenarios (Challenge 8).

5.3 Real-World Evaluation of IaaS Cloud Performance

Several of the challenges we formulated in Sect. 4 are the outcome of our previous
research conducted from the past three years in benchmarking and understanding
the performance of several cloud infrastructures. We summarize in the following
some of our main results that motivated this classification.

Challenge 2 We have observed the long-term evolution in performance of clouds
since 2007. Then, the acquisition of one EC2 cloud resource took an average time
of 50 s, and constantly increased to 64 s in 2008 and 78 s in 2009. The EU S3
service shows pronounced daily patterns with lower transfer rates during night hours
(7 PM to 2 AM), while the US S3 service exhibits a yearly pattern with lowest mean
performance during the months January, September, and October. Other services
have occasional decreases in performance, such as SDB in March 2009, which later
steadily recovered until December [40]. Finally, EC2 spot prices typically follow a
long-term step function [56].

Challenge 3 Depending on the provider and its middleware abstraction, several
cloud overheads and performance metrics can have different interpretation and
meaning. In IaaS clouds, resource acquisition is typically the sum of the installation
time and boot times, and for Amazon EC2 has a stable value in the order of
minutes [39]. Other IaaS providers, such as GoGrid, behave similarly to grids and
offer highly variable resource acquisition times, i.e., one order magnitude higher
than EC2. In contrast, the Google App Engine (GAE), which offers a higher-level
PaaS abstraction, defines the acquisition overhead as the time between the issue of
a HTTP request until the HTTP response is returned; the overhead of GAE is in the
order of seconds [57], an order of magnitude lower than for EC2. The performance
interpretations and differences can have similarly high variations depending on
the middleware. The black-box execution approach in IaaS clouds of externally-
compiled software encapsulated in VMs generates high degradations from the
expected peak performance, up to six to eight times lower than the theoretical
maximum of Amazon’s “Elastic Compute Unit” (ECU, 4.4 GOPS) [39]. Parallel
computing-wise, the performance of today’s IaaS is below the theoretical peak of
today’s dedicated parallel supercomputers even for demanding conveniently parallel
applications by 60–70 %. Furthermore, benchmarking the sustained performance
of other infrastructures such as GAE is almost prohibited by the sandboxed
environment that completely hides the underlying hardware on which the instance
is started with no user control, raising the need for Challenge 6 [57].

98 A. Iosup et al.

The IaaS middleware has a significant impact on the PaaS environments
researched on top. An interesting example is Amazon Simple Workflow (SWF)5

that enables programming and executing workflow applications on the EC2 cloud.
Our previous analysis[45] indicates that SWF represents an attractive environment
for running traditional workflow applications, especially those consisting of
numerous relatively short activities affected by the large grid middleware overheads.
In contrast, porting existing grid workflow middleware environments such as
ASKALON to the cloud, although effective, exhibit performance losses due to
their high middleware stacks required for portability in supporting a wider range of
distributed and heterogeneous cluster, grid, and cloud computing infrastructures, as
opposed to the SWF restricted, but highly optimized for the EC2 infrastructure.

Challenge 4 With respect to reliability, the payment models and compensations in
case of resource failures make clouds a more promising platform than traditional
distributed systems, especially grids. Interesting from the reliability point of view
are the EC2 spot instances that allow customers to bid on unused capacity and run
those instances for as long as their bid exceeds the current spot price. Our analysis
on this risk-reward problem between January 2011 and February 2012 demonstrates
that spot instances may represent a cheaper but still reliable solution offering up to
99 % availability provided that users make slightly generous bids, such as $0.35 for
m1.large instances [56].

Challenge 5 Although multi-cloud environments promise seemingly infinite scal-
ability and performance, our experience revealed that this is not always the case for
communicating non-embarrassingly parallel applications. For example, our study
on using Amazon EC2 and GoGrid as independent providers[16] illustrated that
multi-clouds can help in shortening the makespan for workflow applications which
do not require transferring large amounts of data among activities. In situations
when data transfers dominate the computation time, the workflow does not benefit
from a federation of Clouds and performs better in a single provider configuration.
A deeper analysis of the results also reveals that cheap schedules targeting cost
minimisation rarely consider federated resources and rather use resources from a
single provider. An explanation for this behavior is the hourly based price model
offered by the providers, cheap solutions trying to increase resource utilisation
instead of launching simultaneous instances.

Challenge 9 Regarding the importance of system warmup, an interesting case is
the modern just-in-time (JIT) compilations of Java application running on GAE
infrastructure which can boost the performance of interpreted Java byte code by
a factor of four in a predictable manner (from the third request onwards in case of
GAE) [57].

Challenge 10 The variety of cost models combined with performance variability
makes the cloud provider selection a difficult problem for the cloud user. For

5https://aws.amazon.com/de/swf/.

https://aws.amazon.com/de/swf/

IaaS Cloud Benchmarking 99

example, our analysis in [57] shows that computing costs are lower on GAE than
in EC2 for very short jobs, mostly due to the cycle-based payment granularity,
as opposed to the hourly billing intervals of EC2. The cost model may also vary
within one provider. For example, the EC2 reserved instances are cheaper than
standard instances if their usage is of about 50 % for for one year reservations, and
of about 30 % for three year reservations [56]. In contrast, spot instances on EC2
may represent a 60 % cheaper but equally reliable alternative to standard instances
provided that a correct user bet is made [56].

5.4 Statistical Workload Models

Challenge 7 In our previous work, starting from multi-cluster grid traces, we
have proposed statistical models of BoTs [38], and characterized BoTs [34, 38]
and workflows [34]. We found, notably, that BoTs are the dominant programming
model for compute-intensive workloads in grids—they account for 80–90 % of both
number of tasks and resource consumption. We have characterized and modeled
statistically MapReduce workloads, starting from four traces of large clusters,
including Google’s [13].

A recent trend in data-intensive processing is the increasing automation of work,
as workflows of inter-dependent tasks. We have modeled conceptually and charac-
terized empirically [28] the workflow of a class of MapReduce applications, where
time-stamped data collected from super-nodes in a global-scale deployment of a
hundred-million-node distributed computing system are analyzed. This MapReduce
use case has challenging features for MapReduce systems such as Hadoop and its
successor YARN: small (kilobytes) to large (hundreds of megabytes) data sizes
per observed item, very poor (100:1) to excellent (1:1 million) output:input ratio,
and short (seconds) to long (hours) individual-job duration. Our findings indicate
that traditional benchmarks for MapReduce that rely on single applications, such
as PUMA, HiBench, ClueWeb09, and Grid/PigMix, are well complemented by
workflow-based benchmarking.

5.5 Open Data: Several Useful Archives

Challenge 7 Workload and operational trace archives are an important tool in
developing benchmarks. Although IaaS clouds are new, several online archives
could already provide interesting data.

General workload traces for parallel systems and multi-cluster grid are provided
by the Parallel Workloads Archive [18] and the Grid Workloads Archive [37],
respectively. For an example of domain-specific workload traces, the Game Trace
Archive [25] publishes data representative for online gaming.

100 A. Iosup et al.

For operational traces, the Failure Trace Archive [47] and the P2P Trace
Archive [70] provide operational information about general and domain-specific
(peer-to-peer) distributed systems.

Conclusion
The importance of IaaS cloud benchmarking has grown proportionally to the
increased adoption of this technology, from small and medium businesses
to scientific HPC users. In contrast to the fragmented field of today, we
discuss in this work a more focused, unified approach to IaaS benchmarking,
in which the community can join into identifying the main challenges,
and then share best-practices and experiences. This approach could greatly
benefit (prospective) cloud users with system procurement and performance
management.

The unified view includes a generic architecture for IaaS cloud bench-
marking, and focuses on ten important methodological, system-, workload-,
and metrics-related issues. In our generic architecture, resource and job
management can be provided by the testing infrastructure, there is support
for black-box systems that change rapidly and can evolve over time, tests are
conducted with complex workloads, and various multi-tenancy scenarios can
be investigated.

We also discuss four classes of challenges in developing this approach:
methodological, system property-related, workload-related, and metric-
related. We identify ten main challenges to benchmarking IaaS clouds:

1. Experiment compression. (Methodological)
2. Beyond black-box testing through testing short-term dynamics and long-

term evolution. (Methodological)
3. Impact of middleware. (Methodological)
4. Reliability, availability, and related system properties. (System)
5. Massive scale, multi-site benchmarking. Cloud-bursting. Co-allocation.

(System)
6. Performance isolation. (System)
7. Realistic yet tunable models of workloads and of system performance.

(Workload)
8. Benchmarking performance isolation under different multi-tenancy mod-

els. (Workload)
9. Beyond traditional performance. Elasticity and variability. (Metric)

10. The cost issue. Relate with metrics such as utilization, throughput, and
makespan. (Metric)

Last, we summarize our experience towards benchmarking IaaS clouds.
We have initiated various community-wide efforts via our work in the SPEC
Research Group and its Cloud Working Group. We also present here a sum-
mary of our work in building models and tools for IaaS cloud benchmarking.

IaaS Cloud Benchmarking 101

Acknowledgements This work was partially supported by the STW/NWO Veni grant @larGe
(11881), EU projects PEDCA and EYE, Austrian Science Fund (FWF) project TRP 237-N23, and
the ENIAC Joint Undertaking (project eRAMP).

References

1. Albayraktaroglu K, Jaleel A, Wu X, Franklin M, Jacob B, Tseng CW, Yeung D (2005)
Biobench: A benchmark suite of bioinformatics applications. In: ISPASS, IEEE Computer
Society, pp 2–9

2. Amaral JN (2012) How did this get published? Pitfalls in experimental evaluation of com-
puting systems. LTES talk, [Online] Available: http://webdocs.cs.ualberta.ca/~amaral/Amaral-
LCTES2012.pptx. Last accessed Oct 2012.

3. Amazon Web Services (2012) Case studies. Amazon web site, [Online] Available: http://aws.
amazon.com/solutions/case-studies/. Last accessed Oct 2012.

4. Antoniou A, Iosup A (2012) Performance evaluation of cloud infrastructure using complex
workloads. TU Delft MSc thesis, [Online] Available: http://repository.tudelft.nl/view/ir/uuid:
d8eda846-7e93-4340-834a-de3e4aa93f8b/. Last accessed Oct 2012.

5. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA,
Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58

6. Arpaci-Dusseau RH, Arpaci-Dusseau AC, Vahdat A, Liu LT, Anderson TE, Patterson DA
(1995) The interaction of parallel and sequential workloads on a network of workstations. In:
SIGMETRICS, pp 267–278

7. Brebner P (2012) Is your cloud elastic enough?: performance modelling the elasticity of
infrastructure as a service (iaas) cloud applications. In: ICPE, pp 263–266

8. Brebner P, Cecchet E, Marguerite J, Tuma P, Ciuhandu O, Dufour B, Eeckhout L, Frénot S,
Krishna AS, Murphy J, Verbrugge C (2005) Middleware benchmarking: approaches, results,
experiences. Concurrency and Computation: Practice and Experience 17(15):1799–1805

9. Buble A, Bulej L, Tuma P (2003) Corba benchmarking: A course with hidden obstacles. In:
IPDPS, p 279

10. Chapin SJ, Cirne W, Feitelson DG, Jones JP, Leutenegger ST, Schwiegelshohn U, Smith W,
Talby D (1999) Benchmarks and standards for the evaluation of parallel job schedulers. In:
JSSPP, pp 67–90

11. Chen Y, Ganapathi A, Griffith R, Katz RH (2011) The case for evaluating mapreduce
performance using workload suites. In: MASCOTS, pp 390–399

12. Czajkowski K, Foster IT, Kesselman C (1999) Resource co-allocation in computational grids.
In: HPDC

13. De Ruiter TA, Iosup A (2012) A workload model for MapReduce. TU Delft MSc
thesis, [Online] Available: http://repository.tudelft.nl/view/ir/uuid:1647e1cb-84fd-46ca-b1e1-
21aaf38ef30b/. Last accessed Oct 2012.

14. Deelman E, Singh G, Livny M, Berriman JB, Good J (2008) The cost of doing science on the
cloud: the Montage example. In: SC, IEEE/ACM, p 50

15. Downey AB, Feitelson DG (1999) The elusive goal of workload characterization. SIGMET-
RICS Performance Evaluation Review 26(4):14–29

16. Durillo JJ, Prodan R (2014) Workflow scheduling on federated clouds. In: Euro-Par, Springer,
LNCS

17. Eeckhout L, Nussbaum S, Smith JE, Bosschere KD (2003) Statistical simulation: Adding
efficiency to the computer designer’s toolbox. IEEE Micro 23(5):26–38

18. Feitelson D (2013) Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/
workload/

19. Folkerts E, Alexandrov A, Sachs K, Iosup A, Markl V, Tosun C (2012) Benchmarking in the
cloud: What it should, can, and cannot be. In: TPCTC, pp 173–188

http://webdocs.cs.ualberta.ca/~amaral/Amaral-LCTES2012.pptx
http://webdocs.cs.ualberta.ca/~amaral/Amaral-LCTES2012.pptx
http://aws.amazon.com/solutions/case-studies/
http://aws.amazon.com/solutions/case-studies/
http://repository.tudelft.nl/view/ir/uuid:d8eda846-7e93-4340-834a-de3e4aa93f8b/
http://repository.tudelft.nl/view/ir/uuid:d8eda846-7e93-4340-834a-de3e4aa93f8b/
http://repository.tudelft.nl/view/ir/uuid:1647e1cb-84fd-46ca-b1e1-21aaf38ef30b/
http://repository.tudelft.nl/view/ir/uuid:1647e1cb-84fd-46ca-b1e1-21aaf38ef30b/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/

102 A. Iosup et al.

20. Frachtenberg E, Feitelson DG (2005) Pitfalls in parallel job scheduling evaluation. In: JSSPP,
pp 257–282

21. Ganapathi A, Chen Y, Fox A, Katz RH, Patterson DA (2010) Statistics-driven workload
modeling for the cloud. In: ICDE Workshops, pp 87–92

22. Genbrugge D, Eeckhout L (2009) Chip multiprocessor design space exploration through
statistical simulation. IEEE Trans Computers 58(12):1668–1681

23. Georges A, Buytaert D, Eeckhout L (2007) Statistically rigorous java performance evaluation.
In: OOPSLA, pp 57–76

24. Gray J (ed) (1993) The Benchmark Handbook for Database and Transaction Systems, 2nd edn.
Mergan Kaufmann

25. Guo Y, Iosup A (2012) The Game Trace Archive. In: NETGAMES, pp 1–6
26. Guo Y, Biczak M, Varbanescu AL, Iosup A, Martella C, Willke TL (2014) How well do graph-

processing platforms perform? an empirical performance evaluation and analysis. In: IPDPS
27. Guo Y, Varbanescu AL, Iosup A, Martella C, Willke TL (2014) Benchmarking graph-

processing platforms: a vision. In: ICPE, pp 289–292
28. Hegeman T, Ghit B, Capota M, Hidders J, Epema DHJ, Iosup A (2013) The btworld use case

for big data analytics: Description, mapreduce logical workflow, and empirical evaluation. In:
BigData Conference, pp 622–630

29. Herbst NR, Kounev S, Reussner R (2013) Elasticity in Cloud Computing: What it is, and
What it is Not. In: Proceedings of the 10th International Conference on Autonomic Computing
(ICAC 2013), San Jose, CA, June 24–28, USENIX, preliminary Version

30. Huber N, von Quast M, Hauck M, Kounev S (2011) Evaluating and modeling virtualization
performance overhead for cloud environments. In: CLOSER, pp 563–573

31. Huber N, Brosig F, Dingle N, Joshi K, Kounev S (2012) Providing Dependability and
Performance in the Cloud: Case Studies. In: Wolter K, Avritzer A, Vieira M, van Moorsel A
(eds) Resilience Assessment and Evaluation of Computing Systems, XVIII, Springer-Verlag,
Berlin, Heidelberg, URL http://www.springer.com/computer/communication+networks/book/
978-3-642-29031-2, iSBN: 978-3-642-29031-2

32. Iosup A (2013) Iaas cloud benchmarking: approaches, challenges, and experience. In: Hot-
TopiCS, pp 1–2

33. Iosup A, Epema DHJ (2006) GrenchMark: A framework for analyzing, testing, and comparing
grids. In: CCGrid, pp 313–320

34. Iosup A, Epema DHJ (2011) Grid computing workloads. IEEE Internet Computing
15(2):19–26

35. Iosup A, Epema DHJ, Franke C, Papaspyrou A, Schley L, Song B, Yahyapour R (2006) On
grid performance evaluation using synthetic workloads. In: JSSPP, pp 232–255

36. Iosup A, Jan M, Sonmez OO, Epema DHJ (2007) On the dynamic resource availability in grids.
In: GRID, IEEE, pp 26–33

37. Iosup A, Li H, Jan M, Anoep S, Dumitrescu C, Wolters L, Epema DHJ (2008) The grid
workloads archive. Future Gener Comput Syst 24(7):672–686

38. Iosup A, Sonmez OO, Anoep S, Epema DHJ (2008) The performance of bags-of-tasks in large-
scale distributed systems. In: HPDC, ACM, pp 97–108

39. Iosup A, Ostermann S, Yigitbasi N, Prodan R, Fahringer T, Epema DHJ (2011) Performance
analysis of cloud computing services for many-tasks scientific computing. IEEE Trans Par Dist
Syst 22(6):931–945

40. Iosup A, Yigitbasi N, Epema DHJ (2011) On the performance variability of production cloud
services. In: CCGRID, pp 104–113

41. Iosup A, Prodan R, Epema DHJ (2012) Iaas cloud benchmarking: approaches, challenges, and
experience. In: SC Companion/MTAGS

42. Islam S, Lee K, Fekete A, Liu A (2012) How a consumer can measure elasticity for cloud
platforms. In: ICPE, pp 85–96

43. Jackson KR, Muriki K, Ramakrishnan L, Runge KJ, Thomas RC (2011) Performance and
cost analysis of the supernova factory on the amazon aws cloud. Scientific Programming
19(2–3):107–119

http://www.springer.com/computer/communication+networks/book/978-3-642-29031-2
http://www.springer.com/computer/communication+networks/book/978-3-642-29031-2

IaaS Cloud Benchmarking 103

44. Jain R (ed) (1991) The Art of Computer Systems Performance Analysis. John Wiley and Sons
Inc.

45. Janetschek M, Prodan R, Ostermann S (2013) Bringing scientific workflows to amazon swf. In:
2013 39th Euromicro Conference Series on Software Engineering and Advanced Applications,
IEEE, pp 389–396, DOI 10.1109/SEAA.2013.13

46. Kim K, Jeon K, Han H, Kim SG, Jung H, Yeom HY (2008) Mrbench: A benchmark for
mapreduce framework. In: ICPADS, pp 11–18

47. Kondo D, Javadi B, Iosup A, Epema DHJ (2010) The failure trace archive: Enabling
comparative analysis of failures in diverse distributed systems. In: CCGrid, pp 398–407

48. Krebs R, Momm C, Kounev S (2012) Architectural concerns in multi-tenant saas applications.
In: CLOSER, pp 426–431

49. Krebs R, Momm C, Kounev S (2012) Metrics and techniques for quantifying performance
isolation in cloud environments. In: Int’l. ACM SIGSOFT conference Quality of Software
Architectures (QoSA), pp 91–100

50. Kwok YK, Ahmad I (1999) Benchmarking and comparison of the task graph scheduling
algorithms. J Parallel Distrib Comput 59(3):381–422

51. Mell P, Grance T (2011) The NIST definition of cloud computing. National Institute of
Standards and Technology (NIST) Special Publication 800-145, [Online] Available: http://csrc.
nist.gov/publications/nistpubs/800-145/SP800-145.pdf. Last accessed Oct 2012.

52. Momm C, Krebs R (2011) A qualitative discussion of different approaches for implementing
multi-tenant saas offerings. In: Software Engineering (Workshops), pp 139–150

53. Moreno-Vozmediano R, Montero RS, Llorente IM (2011) Multicloud deployment of com-
puting clusters for loosely coupled mtc applications. IEEE Trans Parallel Distrib Syst
22(6):924–930

54. Oliner AJ, Ganapathi A, Xu W (2012) Advances and challenges in log analysis. Commun ACM
55(2):55–61

55. Oskin M, Chong FT, Farrens MK (2000) Hls: combining statistical and symbolic simulation to
guide microprocessor designs. In: ISCA, pp 71–82

56. Ostermann S, Prodan R (2012) Impact of variable priced cloud resources on scientific workflow
scheduling. In: Euro-Par 2012 – Parallel Processing, Springer, Lecture Notes in Computer
Science, vol 7484, pp 350–362

57. Prodan R, Sperk M, Ostermann S (2012) Evaluating high-performance computing on google
app engine. IEEE Software 29(2):52–58

58. Raicu I, Zhang Z, Wilde M, Foster IT, Beckman PH, Iskra K, Clifford B (2008) Toward loosely
coupled programming on petascale systems. In: SC, ACM, p 22

59. Saavedra RH, Smith AJ (1996) Analysis of benchmark characteristics and benchmark perfor-
mance prediction. ACM Trans Comput Syst 14(4):344–384

60. Schroeder B, Wierman A, Harchol-Balter M (2006) Open versus closed: A cautionary tale. In:
NSDI

61. Sharkawi S, DeSota D, Panda R, Indukuru R, Stevens S, Taylor VE, Wu X (2009) Performance
projection of hpc applications using spec cfp2006 benchmarks. In: IPDPS, pp 1–12

62. Sonmez OO, Mohamed HH, Epema DHJ (2010) On the benefit of processor coallocation in
multicluster grid systems. IEEE Trans Parallel Distrib Syst 21(6):778–789

63. Spacco J, Pugh W (2005) Rubis revisited: Why j2ee benchmarking is hard. Stud Inform Univ
4(1):25–30

64. Vahdat A, Yocum K, Walsh K, Mahadevan P, Kostic D, Chase JS, Becker D (2002) Scalability
and accuracy in a large-scale network emulator. In: OSDI

65. Villegas D, Antoniou A, Sadjadi SM, Iosup A (2012) An analysis of provisioning and allocation
policies for infrastructure-as-a-service clouds. In: CCGrid, pp 612–619

66. Vishwanath KV, Vahdat A, Yocum K, Gupta D (2009) Modelnet: Towards a datacenter
emulation environment. In: Peer-to-Peer Computing, pp 81–82

67. Walker E (2009) The real cost of a cpu hour. IEEE Computer 42(4):35–41
68. Wang G, Butt AR, Pandey P, Gupta K (2009) Using realistic simulation for performance

analysis of MapReduce setups. In: HPDC Workshops, pp 19–26

http://dx.doi.org/10.1109/SEAA.2013.13
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

104 A. Iosup et al.

69. Zaharia M, Borthakur D, Sarma JS, Elmeleegy K, Shenker S, Stoica I (2010) Delay scheduling:
a simple technique for achieving locality and fairness in cluster scheduling. In: EuroSys,
pp 265–278

70. Zhang B, Iosup A, Pouwelse J, Epema D (2010) The Peer-to-Peer Trace Archive: design
and comparative trace analysis. In: Proceedings of the ACM CoNEXT Student Workshop,
CoNEXT ’10 Student Workshop, pp 21:1–21:2

GPU-Accelerated Cloud Computing
for Data-Intensive Applications

Baoxue Zhao, Jianlong Zhong, Bingsheng He, Qiong Luo, Wenbin Fang,
and Naga K. Govindaraju

Abstract Recently, many large-scale data-intensive applications have emerged
from the Internet and science domains. They pose significant challenges on the
performance, scalability and programmability of existing data management systems.
The challenges are even greater when these data management systems run on
emerging parallel and distributed hardware and software platforms. In this chapter,
we study the use of the GPU (Graphics Processing Units) in MapReduce and general
graph processing in the Cloud for these data-intensive applications. In particular,
we report our experiences in developing system prototypes, and discuss the open
problems in the interplay between data-intensive applications and system platforms.

1 Introduction

In recent years, Big Data has become a buzz word in both industry and academia,
due to the emergence of many large-scale data-intensive applications. These data-
intensive applications not only have very large data volume, but may also have
complex data structures and high update rates. All these factors pose significant
challenges on the performance, scalability and programmability of existing data
management systems. We elaborate more details about these challenges in the
following.

B. Zhao • Q. Luo (�)
Department of Computer Science and Engineering, HKUST, Hong Kong
e-mail: bzhaoad@cse.ust.hk; luo@cse.ust.hk

J. Zhong • B. He
School of Computer Engineering, Nanyang Technological University, Nanyang, Singapore
e-mail: jzhong2@ntu.edu.sg; bshe@ntu.edu.sg

W. Fang
San Francisco, CA, USA
e-mail: wenbin@cs.wisc.edu

N.K. Govindaraju
Microsoft Redmond, Redmond, WA, USA
e-mail: nagag@microsoft.com

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__5

105

mailto:bzhaoad@cse.ust.hk
mailto:luo@cse.ust.hk
mailto:jzhong2@ntu.edu.sg
mailto:bshe@ntu.edu.sg
mailto:wenbin@cs.wisc.edu
mailto:nagag@microsoft.com

106 B. Zhao et al.

Performance Many processing tasks are driven by data updates, which require
on-line response. Examples include traffic control and video surveillance. The
performance issue is crucial for these on-line applications over large amounts of
data.

Scalability Also due to the increasing data volume, it is essential for systems to
scale with data growth.

Programmability To meet performance and scalability requirement of big data, data
management systems are run on parallel and/or distributed platforms. Programming
on such systems is much more challenging than sequential programming.

Many data processing algorithms and systems have been developed, including
MapReduce [20] and general graph processing. MapReduce was originally pro-
posed by Google for the ease of development of web document processing on
a large number of machines. This framework provides two primitive operations
(1) a map function to process input key/value pairs and to generate intermediate
key/value pairs, and (2) a reduce function to merge all intermediate pairs associated
with the same key. With a MapReduce framework, developers can implement
their application logic using the two primitives. The MapReduce runtime will
automatically distribute and execute the task on a number of computers. MapReduce
is mainly for flat-structured data, and can be inefficient for unstructured data [54].
Thus, general graph processing systems are proposed for processing unstructured
data such as social networks and graphs. Representative systems include Google’s
Pregel [54] and Microsoft’s Trinity [63].

Both MapReduce and general graph processing platforms have been developed
and run on various kinds of distributed and parallel systems. This chapter focuses
on two emerging platforms: GPUs (Graphics Processing Units) and the Cloud, as
the representatives for many-core and distributed computing platforms, respectively.
Specifically, we review the related work for MapReduce and general graph pro-
cessing on GPUs and Cloud platforms. Moreover, we report our experiences in
developing system prototypes: Mars [32] and MarsHadoop [25] for GPU-based
MapReduce; Medusa [74,76] and Surfer [16] for GPU-based and Cloud-based graph
processing, respectively. Finally, we discuss the open problems in the interplay
between data processing systems and system platforms.

Organization The remainder of this chapter is organized as follows. Section 2
reviews the background on GPUs and Cloud Computing, and related work on
MapReduce and general graph processing frameworks on GPUs and in the Cloud.
Section 3 introduces the MapReduce work on GPU Clusters. Section 4 presents
the parallel graph processing techniques on GPUs and the Cloud. We conclude our
chapter and discuss the open problems in Sect. 5.

GPU-Accelerated Cloud Computing for Data-Intensive Applications 107

2 Background and Related Work

2.1 Cloud Computing

With the rapid growth of the Internet and other application areas such as finance,
biology and astronomy, great amounts of data are produced continuously and need
to be processed with high time constraints. To handle data-intensive problems,
the concept of Cloud Computing has been proposed. A few Internet corporations
implemented their own Cloud Computing platforms to provide elastic computing
services for their customers. Such as Google Compute Engine, Amazon EC2 and
Microsoft Azure. The Cloud Computing services are provided at different levels:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a
Service (SaaS). Customers who use services at a higher level do not need to know
the lower level details of the Cloud, e.g., network topology or resource allocation.
In view of these features, Cloud Computing poses new challenges for computing
tasks compared with traditional computation platforms such as HPC clusters. In
Sect. 4.2 we will discuss the challenges in detail and introduce the solutions for
graph processing in the Cloud.

2.2 The GPU

In recent years, GPUs (Graphics Processing Units) have shifted from pure graphics
processors to general-purpose parallel processors. A modern GPU can run a massive
number of lightweight threads simultaneously to process data in the SIMD (Single
Instruction, Multiple Data) style and can provide an order of magnitude speedup
over traditional CPU with higher cost-efficiency. GPUs are widely used in desktops,
servers and clusters as parallel computing platforms to accelerate various kinds of
applications. However, writing a correct and efficient GPU program is challenging
in general, and even more difficult for higher level applications. First, the GPU is
a many-core processor with massive thread parallelism. To fully exploit the GPU
parallelism, developers need to write parallel programs that scale to hundreds of
cores. Moreover, compared with CPU threads, the GPU threads are lightweight,
and the tasks in the parallel algorithms should be fine-grained. Second, the GPU
has a memory hierarchy that is different from the CPU’s, and is exposed to the
programmer for explicit use. Since applications usually involve irregular accesses
to the memory, careful designs of data layouts and memory accesses are key factors
to the efficiency of GPU acceleration. Finally, since the GPU is designed as a co-
processor, developers have to explicitly perform memory management on the GPU,
and deal with GPU specific programming details such as kernel configuration and
invocation. All these factors make the GPU programming a difficult task. In this
chapter, we will introduce the GPU-accelerated MapReduce system (Sect. 3) and
GPU-accelerated graph processing library (Sect. 4.1), both of which ease the effort
of developing higher level applications using GPUs.

108 B. Zhao et al.

2.3 MapReduce

MapReduce [20] is a programming model proposed by Google, and has been
widely used for large scale data processing. Many researchers and engineers have
tried to implement their own MapReduce systems since the publication of the
MapReduce paper. Hadoop [3] is the most successful and widely-used open source
implementation of MapReduce on the distributed computing platform. There are
also some implementations on other platforms, such as multi-core shared-memory
systems and GPUs.

Phoenix [62,67,72] is a MapReduce library that runs on shared memory systems
leveraging the power of multi-core CPUs. Our previous work Mars [25, 32] is
among the first GPU-accelerated MapReduce frameworks. Mars provides a set
of higher level programming interfaces, and hides the vendor-specific lower-level
details such as thread configurations. The design goal of Mars is to ease the GPU
programming effort for MapReduce applications. Since Mars, there has been a
number of improvements [11,14,36,40] as well as extended GPU-based MapReduce
implementations to support multi-GPUs on a single-machine [17,18,41], integrated
architectures [15] and clusters [8, 64, 65, 68].

MapCG [36] is a single-machine MapReduce framework that provides source
code portability between CPU and GPU. The users only need to write one version of
the code, and the MapCG runtime is responsible for generating both CPU and GPU
specific codes and executes them on the corresponding platforms: multi-core CPUs
and GPUs. Different from Mars, MapCG does not need the counting step to compute
the required memory space on GPUs. Instead, it allocates a large block of GPU
memory space, and uses the atomicAdd operation to manage and record the memory
space required by each thread. Another improvement of MapCG is that it avoids the
sorting of intermediate key/value pairs by using a memory efficient hash table. Ji
et al. [40] proposed to use the GPU shared memory to buffer the input and output
data of the Map and Reduce stages. Chen et al. [14] proposed to use shared memory
in a more efficient way by carrying out reductions in shared memory. Grex [11] is
a recent GPU-based MapReduce framework. It provides some new features over
Mars and MapCG, including parallel input data splitting, even data distribution
to Map/Reduce tasks to avoid partitioning skew, and a new memory management
scheme. Experiments show that Grex achieves 12.4� and 4.1� speedup over Mars
and MapCG, respectively.

Chen et al. [15] designed a MapReduce framework for integrated architectures,
i.e. AMD Fusion chip as a representative in their implementation. In their frame-
work, the workload can be partitioned across the CPU cores and GPU cores by two
different schemes: the map-dividing scheme and the pipelining scheme. In the first
scheme, each of the Map/Reduce stage is executed by both CPU cores and GPU
cores simultaneously, whereas in the second scheme, each stage is executed by only
one type of cores. To leverage the memory overhead, a continuous reduction strategy
based on reduction object is used in the framework. The strategy is very similar to
the optimization work in [14]. Their experiment results show 1.2–2.1� speedup over
the best multi-core or discrete GPU-based implementation.

GPU-Accelerated Cloud Computing for Data-Intensive Applications 109

While previous implementations use a single GPU, MGMR [18, 41] is a
single-machine MapReduce system supporting multiple GPUs. With the support
of host memory, MGMR can handle large-scale data exceeding GPU memory
capacity. In addition, MGMR uses the GPUDirect technology to accelerate inter-
GPU data transmission. The Pipelined MGMR (PMGPR) [17] is an upgraded
version of MGMR. PMGMR takes advantage of the CUDA stream feature on Fermi
and Kepler GPUs to achieve the overlap of computation and memory copy. For
Fermi GPUs, PMGMR uses a runtime scheduler to resolve the dependency among
different CUDA streams to achieve the highest concurrency, whereas for Kepler
GPUs, PMGMR exploits Kepler’s Hyper-Q feature to automatically reach the best
performance. PMGMR achieves 2.5� speedup over MGMR.

To support MapReduce on GPU clusters, MarsHadoop [25] makes a simple
extension by integrating single-node Mars into Hadoop using the Hadoop streaming
technology [5]. Most of the work on MapReduce on GPU clusters integrates GPU
workers into Hadoop [8,27,29,64,68,73], and there is also an implementation using
MPI (Message Passing Interface) [65].

MITHRA [27] is a Hadoop-based MapReduce framework for Monte-Carlo
simulations. It leverages GPUs for the Map/Reduce stage computation. Like
MarsHadoop, MITHRA uses Hadoop streaming technology to invoke the GPU
kernels written in CUDA. Pamar [68] integrates GPUs into the Hadoop framework
using JCUDA API. The main focus of Pamar is to provide a framework that can
utilize different types of resources (CPU and GPU) transparently and automatically.
Surena [8], on the other hand, uses Java Native Interface (JNI) to invoke CUDA code
from the Java-based Hadoop framework. Shirahata et al. [64] proposed a hybrid map
task scheduling techniques for MapReduce on GPU clusters by dynamic profiling
of the map task running on CPUs and GPUs, and demonstrated a speedup of nearly
two times over the original scheduler of Hadoop. Lit [73] and HadoopCL [29]
improves previous Hadoop-based works by automatically generating kernel codes
for GPU devices, so that they hide the GPU programming complexity from users.
Specifically, Lit uses an annotation based approach to generate CUDA kernel code
from Java code, whereas HadoopCL generates OpenCL kernel code from Java code
using an open source tool called Aparapi [2]. In these Hadoop-based extensions,
various features of Hadoop such as reliability, scalability and simplified input/output
management through HDFS are inherited while the Map and Reduce stages are
parallelized on the GPUs.

GPMR [65] is a MapReduce library on GPU clusters. It is not based on
Hadoop; instead it implements the MapReduce model using MPI. GPMR supports
multiple GPUs on each node. Compared with the Hadoop-based GPU MapReduce
implementation, GPMR is more flexible and more efficient since it exposes more
GPU programming details to the application level. Therefore, users can apply
application-specific optimizations. Moreover, GPMR also parallelizes the sort and
partitioning modules of MapReduce. The scalability of GPMR to the number of
GPUs is limited, as the speedup of most applications decreases dramatically when
there are more than 16 GPUs [71].

110 B. Zhao et al.

In addition to the MapReduce frameworks supporting NVIDIA GPUs, there are
some efforts using other types of CPUs and GPUs. Among them, StreamMR [23]
is a MapReduce framework for AMD GPUs, and CellMR [61] is a MapReduce
framework supporting asymmetric Cell-Based Clusters. Our enhanced Mars imple-
mentation [25] also supports AMD GPUs and co-processing of different types of
processors (Multi-core CPU, NVIDIA GPU and AMD GPU).

2.4 General Graph Processing

Graphs are common data structures in various applications such as social networks,
computational chemistry and web link analysis. Graph processing algorithms have
been the fundamental tool in such fields. Developers usually apply a series of
operations on the graph edges and vertices to obtain the final result. Example
operations are breadth first search (BFS), PageRank [58], shortest paths and
customized variants (for example, developers may apply different application logics
on top of BFS). The efficiency of graph processing is essential for the performance
of the entire system. On the other hand, writing every graph processing algorithm
from scratch is inefficient and involves repetitive work, since different algorithms
may share the same operation patterns, optimization techniques and common
software components. A programming framework supporting high programmability
for various graph processing applications and providing high efficiency can greatly
improve productivity.

Recently, we have witnessed many research efforts in offering parallel graph
processing frameworks on multi-core/many-core processors and cloud computing
platforms. Those frameworks embrace architecture-aware optimization techniques
as well as novel data structure designs to improve the parallel graph processing
on the target platform. The most popular paradigm so far is vertex-oriented
programming. The introduction of vertex-oriented programming is based on the
observations in previous studies [21, 51, 52] that many common graph algorithms
can be formulated using a form of the bulk synchronous parallel (BSP) model (we
call it GBSP). In GBSP, local computations are performed on individual vertices,
and vertices are able to exchange data with each other. These computation and
communication procedures are executed iteratively with barrier synchronization at
the end of each iteration. This common algorithmic pattern is adopted by common
parallel graph processing frameworks such as Pregel [54], GraphLab [53] and
Medusa [76]. For example, Pregel applies a user-defined function Compute() on
each vertex in parallel in each iteration of the GBSP execution. The communications
between vertices are performed with message passing interfaces.

GPU-Accelerated Cloud Computing for Data-Intensive Applications 111

3 MapReduce on GPU Clusters

In this section, we introduce the MapReduce implementation on GPU clusters. We
first give an overview of the previous work: Mars single-machine and MarsHadoop.
We also give an alternative of multi-machine implementation of Mars, called Mars-
MR-MPI. Finally we study the performance of different implementations.

3.1 Mars Overview

Mars [25, 32] is a GPU-based MapReduce implementation. It hides the program-
ming details of vendor-specific GPU devices, and provides a set of user-friendly
higher level programming interfaces. The design of Mars is guided by three goals:

1. Programmability. Ease of programming releases programmers’ efforts on GPU
programming details and makes them more focused on higher-level algorithm
design and implementation.

2. Flexibility. The design of Mars should be applicable to various kinds of devices
including multi-core CPUs, NVIDIA GPUs and AMD GPUs. Moreover, it
should be easy for users to customize their workflows.

3. Performance. The overall performance of GPU-based MapReduce should be
comparable to or better than that of the state-of-the-art CPU-based counterparts.

Mars provides a set of APIs, which are listed in Table 1. These APIs are of two
types: user-implemented APIs, which the users should implement, and the system-
provided APIs, which is a part of the Mars library implementation and can be called
by the users directly. The APIs of Mars are similar to those of other MapReduce
frameworks, except that Mars uses two steps for both the Map and Reduce stages.
Firstly, the count functions (MAP_COUNT or REDUCE_COUNT) are invoked to
compute the sizes of the key/value pairs and then the MAP or REDUCE is invoked
to emit the actual key/value pairs.

Figure 1 shows the workflow of Mars. The Mars workflow contains three stages
for a MapReduce job—Map, Group and Reduce. Before the Map stage, the input
data on the disk is transformed into input records using the CPU and those records
are copied from the main memory into the GPU device memory. Both the Map
and Reduce stages use a two-step lock-free scheme, which avoids costly atomic
operations and dynamic memory allocation on GPU devices. Take the Map stage
as an example. In the first step MapCount invokes the user-defined MAP_COUNT
function to compute the sizes of the intermediate key/value pairs for each thread.
Then a prefix sum operation is performed to compute the writing locations for each
thread as well as the total sizes of the output. Finally Mars allocates device memory
space for the output. In the second step, the user-defined MAP function is invoked
on each thread to map the input records to intermediate records and output them to
the device memory according to the pre-computed writing locations. The lock-free
scheme of the Reduce stage is similar to that of the Map stage. The Group stage sorts

112 B. Zhao et al.

Table 1 Mars APIs [25, 32]

Function name Description Type

MAP_COUNT Calculates the output
buffer size of MAP

User

MAP The map function User

REDUCE_COUNT Calculates the output
buffer size of REDUCE

User

REDUCE The reduce function User

EMIT_INTERMEDIATE_COUNT Emits the key size and the
value size in
MAP_COUNT

System

EMIT_INTERMEDIATE Emits the key and the
value in MAP

System

EMIT_COUNT Emits the key size and the
value size in
REDUCE_COUNT

System

EMIT Emits the key and the
value in REDUCE

System

the intermediate key/value pairs according to the key field, so that the intermediate
key/value pairs with the same key are stored consecutively as a group.

Since the three stages are loosely coupled modules, the Mars framework can
fit three kinds of user-customized workflows, according to whether the Group and
Reduce stages are required:

• MAP_ONLY. Only the Map stage is required and executed.
• MAP_GROUP. Only the Map and Group stages are executed.
• MAP_GROUP_REDUCE. All three stages—Map, Group, and Reduce are

executed.

The GPU-based Mars single-machine implementation was evaluated in com-
parison with the CPU-based MapReduce framework Phoenix [62] as well as the
native implementation without MapReduce using a set of representative MapReduce
applications. The results show that the GPU-based Mars was up to 22 times faster
than Phoenix, and Mars applications had a code size reduction of up to 7 times
compared with the native implementation. In summary, Mars greatly simplifies the
MapReduce programming on CUDA-based GPU and achieves great efficiency.

3.2 MarsHadoop

While the single-GPU Mars makes a showcase of implementing MapReduce using
GPU, it cannot handle very large data set due to the limited memory capacity of a
single GPU. In many data-intensive applications, the data scale exceeds far beyond
the memory capacity of a single computer, let alone the GPU memory, which usually
has a much smaller capacity than main memory.

GPU-Accelerated Cloud Computing for Data-Intensive Applications 113

Preprocess
Map
Split

PrefixSum

Reduce
Split

PrefixSumGroup

Notation: GPU Processing Mars Scheduler

Map Stage

Reduce StageGroup Stage

Reduce
Count

Reduce
Count

MapCount

MapCount

Map

Map

Reduce

Reduce

Fig. 1 The workflow of Mars on the GPU [25, 32]

We briefly introduce the previous multi-machine implementation of Mars—
MarsHadoop [25]. MarsHadoop is implemented by integrating Mars into the widely
used Hadoop MapReduce framework. This integration provides an easy way of
exploiting computation power of multiple GPUs for MapReduce, while it also
inherits the scalability and fault-tolerance features of Hadoop, as well as the
distributed file system support.

Figure 2 shows the workflow of MarsHadoop. A Mapper/Reducer in Mar-
sHadoop is executed on either CPU or GPU, depending on the underlying proces-
sors. MarsHadoop Mappers and Reducers are integrated using Hadoop streaming
technology [5], which enables the developers to use their customized Mapper/Re-
ducer implementation with any programming language in Hadoop. The Mapper/Re-
ducer executable reads data from stdin and emit record to the stdout, while the actual
task execution is the same as on single machine. The preliminary experiments using
Matrix Multiplication on three nodes (one master node and two slave nodes) showed
that MarsHadoop was up to 2.8 times faster than the Hadoop without GPU.

3.3 Mars-MR-MPI

In the following we present an alternative to MarsHadoop, which we call Mars-MR-
MPI.

MapReduce-MPI (MR-MPI) [59, 60] is an open source, lightweight imple-
mentation of the MapReduce model using MPI and C/C++. It is designed for

114 B. Zhao et al.

Fig. 2 MarsHadoop workflow [25]. The Map and Reduce tasks are executed on GPUs or CPUs

distributed-memory clusters. MR-MPI has well organized APIs and complete
document support. It has been successfully used for SOM [66] and shows good
scalability on hundreds of cores. It can process large data sets far exceeding the
accumulated memory size of the cluster by using on-disk virtual pages. Moreover,
since MR-MPI is implemented using C/C++, the GPU code can be invoked
seamlessly with no or little extra runtime cost. We choose MR-MPI as an alternative
for extending Mars to multiple machines in view of these features.

The Mars-MR-MPI is implemented as follows.

1. Initial Data Loading. Since the MR-MPI framework has no distributed file
system support, to avoid the overhead of remote reading, we partition the input
data into chunks of equal size and distribute them evenly to the local file system
of each node. This approach is comparable with Hadoop since most Hadoop map
tasks will read HDFS blocks stored in local node.

2. The Map Stage. Instead of assigning only one block of data (i.e. 64 MB, which
is the default block size of Hadoop) to each map task, we use persistent map tasks
for Mars-MR-MPI. In other words, we launch only a small number of map tasks
for a job, with each task processing many blocks of input data iteratively. The
processing of each data block is the same as the Map stage of single-machine
Mars, followed by an additional step of organizing the intermediate key/value

GPU-Accelerated Cloud Computing for Data-Intensive Applications 115

pairs generated from this block into an MR-MPI KeyValue object and add this
object to the MR-MPI runtime framework. The GPU device for each map task
is chosen according to the MPI rank of the current process. Using this approach,
the number of GPU context switches is reduced with more work done in each
context.

3. The Reduce Stage. In MR-MPI, each time the reduce callback function [6] is
called, it will process only one Key-MultiValues tuple, which contains a unique
key and a list of values. A parallel reduce for one tuple is inefficient if the tuple
contains only a small number of values. Therefore, we allocate a global fixed-
size memory buffer and pass it to the reduce callback function to accumulate the
tuples. Once the size of the accumulated tuples exceeds a threshold ratio of the
buffer size, we will perform a parallel reduction on the GPU for all tuples and
empty the buffer for accumulating new tuples. In addition to the global buffer, a
boolean flag is passed to the callback function, to indicate whether this is the first
call on the GPU device. If so, we initialize the GPU device context.

Both the MarsHadoop and the Mars-MR-MPI are based on existing MapReduce
frameworks, namely Hadoop and MR-MPI. Compared with Hadoop, MR-MPI
provides an interface that is more flexible for integrating the GPU into MapReduce,
and the persistent tasks can be used to reduce overhead and better utilize device
resources.

3.4 Experiments

We study the performance of the two alternatives of MapReduce on a GPU cluster
experimentally.

The experiments are conducted on a 20-node GPU cluster on Amazon EC2.
Each node is a Hardware Virtual Machine(HVM)-based instance equipped with 8
Intel Xeon E5-2670 Processors, 15 GB memory, 60 GB local storage and a single
NVIDIA Kepler GK104 GPU card (with 1536 CUDA cores and 4 GB memory).
The Operating System is Ubuntu 12.04 with CUDA SDK v5.0 installed.

We first study the performance of MarsHadoop using a classic data-intensive
MapReduce workload—Inverted Index, which extracts the URL links from a set of
HTML files. Each map task takes a block of data as input and emit hurl; filenamei for
each URL extracted from the input, whereas each reduce task simply outputs the list
of file names for each unique URL. For MarsHadoop streaming job, we parallelize
the map tasks on the GPU, whereas the reduce tasks are sequentially executed as
they only perform outputting (this kind of reduce task is called IdentityReducer in
Hadoop). We implemented the sequential Inverted Index using Hadoop Java API
and ran it as Hadoop sequential job as the baseline. We set the number of map slots
on each node to 4 in Hadoop configuration. For the sequential job, each map uses
one CPU core whereas for the MarsHadoop streaming job, the four map slots on
each node share the single GPU to make full use of the GPU computation resources.

116 B. Zhao et al.

We use two Wikipedia web page data sets of different sizes from the Purdue
MapReduce Benchmarks Suite [9], one 50 GB and the other 150 GB. Figure 3
shows the execution time of the map tasks in MarsHadoop streaming jobs and
Hadoop sequential jobs. For both data sets, the MarsHadoop streaming jobs are
more efficient than Hadoop sequential jobs.

50 GB 150 GB
0

20

40

60

80

100

120

140

160

180

T
im

e
(s

ec
o

n
d

s)

Data Size

Hadoop
Mars Hadoop Streaming
Mars MR-MPI

Fig. 3 The execution time of Inverted Index map tasks in MarsHadoop streaming jobs, Hadoop
sequential jobs and Mars-MR-MPI jobs using 50 and 150 GB data sets

Next we study the performance of Mars-MR-MPI, in comparison with Mar-
sHadoop. Figure 3 shows the execution time of map tasks in Mars-MR-MPI and
MarsHadoop for Inverted Index respectively. We observed that for both 50 GB and
150 GB data sets, the map time of Mars-MR-MPI is 3–5� faster than MarsHadoop
streaming. Compared with Mars-MR-MPI, the inefficiency of MarsHadoop stream-
ing is due to the following two factors:

1. Inter-process data communication overhead with Hadoop streaming, since the
input data are passed into the Mars map executable by stdin and the output passed
out by stdout.

2. The latencies from Hadoop internal, such as the latency of a TaskTracker
requesting new tasks from JobTracker. The GPUs will be idle during the latency
intervals, leading to under-utilization.

As the Mars-MR-MPI is more efficient, we further study its scalability and
performance bottlenecks. We configure Mars-MR-MPI to process 2.5 GB data on
each node. Figure 4 shows the time consumption of each MR-MPI stage with
the cluster size varied from 2 to 20 nodes. We observe that when the number of
nodes increases, for the stages involving only local operations, including Map stage,
Sort/Hash stage and Reduce stage, the time nearly keeps stable. The reason is that
the local operations are performed independently on each node and the workload on
each node is even. However, for the Network I/O stage which involves large amount
of inter-node communication, the time increases with the cluster size.

GPU-Accelerated Cloud Computing for Data-Intensive Applications 117

We further give the time breakdown of Mars-MR-MPI running Inverted Index
with two data sets on the entire cluster (Fig. 5). The result shows that the Network
I/O takes 30 and 36 % of the total time on 50 and 150 GB data sets, respectively. We
conclude that the network I/O is the performance bottleneck when the cluster size
or data size becomes larger.

0 2 4 6 8 10 12 14 16 18 20 22

4
6
8

10
12
14
16
18
20
22
24
26
28
30

T
im

e
(s

ec
o

n
d

s)

Cluster Size

Map
Network I/O
Sort/Hash
Reduce

Fig. 4 The time consumption of each MR-MPI stage for Mars-MR-MPI with cluster size varied,
running Inverted Index on 50 GB data set

Fig. 5 The time breakdown
of Mars-MR-MPI running
Inverted Index on the entire
cluster

50GB 150GB
0

20
40
60
80

100
120
140
160
180
200

T
im

e
(s

ec
o

n
d

s)

Data Size

Reduce
Sort/Hash
Network I/O
Map

Both MarsHadoop and Mars-MR-MPI are built on top of existing MapReduce
frameworks and do not parallelize the internals of the frameworks, such as sort or
hash partition. The performance of this type of extension is closely dependent on the
performance of the frameworks themselves. We now study the performance of the
GPMR, a recent stand-alone MapReduce library based on the GPU. We select two
examples enclosed with the GPMR source code: K-means Clustering and Integer
Counting. The former example is map-computation-bound, whereas the latter is
communication-bound.

118 B. Zhao et al.

To test the GPMR scalability on various number of nodes, we launch one MPI
process for each GPU. Due to the limitation of the GPU-based radix sort used
in GPMR, we let each process consume 32 million randomly generated integers
for Integer Counting, and 32 million randomly generated two-dimensional floating
point data for K-means Clustering. The results are shown in Fig. 6. In the K-mean
Clustering results in Fig. 6a, we notice that (1) The Map time keeps nearly stable for
various number of nodes and it dominates the total running time; (2) The Network
I/O, Sort and Reduce stages consume very little time. The reason is that the K-means
Clustering needs a lot of computation in the map stage and produces very small size
intermediate data. In contrast, in Fig. 6b, since Integer Counting produces a large
amount of intermediate result, both the Map and Network I/O stages dominate the
total running time. It also requires a moderate amount of Sort and Reduce time
to handle the intermediate data, but the time of these operations does not change
much with the variation of number of nodes, as these are local operations. We
conclude that the GPMR framework scales well to cluster size for compute-bound
applications, but suffers from the network I/O bottleneck for communication-bound
ones.

0 2 4 6 8 10 12 14 16 18 20 22

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e
(s

ec
o

n
d

s)

T
im

e
(s

ec
o

n
d

s)

Cluster Size

a b

Cluster Size

Map
Network I/O
Sort
Reduce

0 2 4 6 8 10 12 14 16 18 20 22
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Map
Network I/O
Sort
Reduce

Fig. 6 The time consumption of each MapReduce stage in GPMR with number of nodes
varied. (a) K-means Clustering with each GPU processing 32 million randomly generated two-
dimensional floating points. (b) Integer Counting with each GPU processing 32 million randomly
generated integers

Finally, we study the GPMR scalability to data size. Due to the limitation of
the GPU-based radix sort, GPMR cannot handle more than 32 million integers on
each process unless it uses CPU-based sort algorithms. The scalability test is only
conducted for K-means Clustering. We use 20 nodes with one process on each node
and let each process consume various numbers of points ranging from 32 million to
160 million. The result is shown in Fig. 7. The map time grows linearly to the data
size, whereas the Network I/O, Sort and Reduce consumes very little time.

GPU-Accelerated Cloud Computing for Data-Intensive Applications 119

Fig. 7 The time consumption
of each MapReduce stage in
GPMR with data size varied,
running K-means Clustering
on 20 nodes

32 64 96 128 160
−1

0

1

2

3

4

5

6

7

8

T
im

e
(s

ec
o

n
d

s)
Num. of Points (million)

Map
Network I/O
Sort
Reduce

4 Graph Processing on GPUs and the Cloud

In this section, we introduce two representative vertex-oriented programming
frameworks on GPUs and in the Cloud—Medusa and Surfer. Particularly, Medusa
is a parallel graph processing library running on multi-GPUs on a single machine.
It uses a novel graph programming model called “Edge-Message-Vertex” and
simplifies the graph processing using GPUs. Surfer uses a network performance
aware graph partitioning framework to improve the performance of large graph
processing on the Cloud.

4.1 Parallel Graph Processing on GPUs

Recent years have witnessed the increasing adoption of GPGPU (General-Purpose
computation on Graphics Processing Units) in many applications [57], such as
databases [33, 34] and data mining [26]. The GPU has been used as an accel-
erator for various graph processing applications [31, 35, 48, 70]. While existing
GPU-based solutions have demonstrated significant performance improvement
over CPU-based implementations, they are limited to specific graph operations.
Developers usually need to implement and optimize GPU programs from scratch
for different graph processing tasks.

Medusa is the state-of-the-art vertex-oriented graph processing framework on
multiple GPUs in the same machine [76]. Medusa is designed to ease the pain
of leveraging the GPU in common graph computation tasks. Extending the sin-
gle vertex API of Pregel, Medusa develops a novel graph programming model
called “Edge-Message-Vertex” (EMV) for fine-grained processing on vertices and
edges. EMV is specifically tailored for parallel graph processing on the GPU.
Medusa provides a set of APIs for developers to implement their applications.
The APIs are based on the EMV programming model for fine-grained parallelism.

120 B. Zhao et al.

Medusa embraces an efficient message passing based runtime. It automatically
executes user-defined APIs in parallel on all the processor cores within the GPU and
on multiple GPUs, and hides the complexity of GPU programming from developers.
Thus, developers can write the same APIs, which automatically run on multiple
GPUs.

Memory efficiency is often an important factor for the overall performance of
graph applications [31, 35, 48, 70]. Medusa has a series of memory optimizations
to improve the locality of graph accesses. A novel graph layout is developed to
exploit the coalesced memory feature of the GPU. A graph aware message passing
mechanism is specifically designed for message passing in Medusa. Additionally,
Medusa has two multi-GPU-specific optimization techniques, including the cost
model guided replication for reducing data transfer across the GPUs and overlapping
between computation and data transfer.

Medusa has been evaluated on the efficiency and programmability. Medusa
simplifies programming GPU graph processing algorithms in terms of a significant
reduction in the number of source code lines. Medusa achieves comparable or better
performance than the manually tuned GPU graph operations.

The experiments were conducted on a workstation equipped with four NVIDIA
Tesla C2050 GPUs, two Intel Xeon E5645 CPUs (totally 12 CPU cores at 2.4
GHz) and 24 GB RAM. The workloads include a set of common graph processing
operations for manipulating and visualizing a graph on top of Medusa. The graph
processing operations include PageRank, breadth first search (BFS), maximal
bipartite matching (MBM), and single source shortest paths (SSSP). In order to
assess the queue-based design in Medusa, we have implemented two versions of
BFS: BFS-N and BFS-Q for the implementations without and with the usage of
queue-based APIs, respectively. Thus, BFS-Q is work optimal whereas BFS-N is
not. Similarly, two versions of SSSP are implemented: SSSP-N and SSSP-Q without
and with the usage of queue-based APIs, respectively.

The experimental dataset includes two categories of sparse graphs: real-world
and synthetic graphs. Table 2 shows their basic characteristics. We use the GTgraph
graph generator [4] to generate power-law and random graphs. To evaluate MBM,
we generate a synthetic bipartite graph (denoted as BIP), where vertex sets of two
sides have one half of the vertices and the edges are randomly generated. The real
world graphs are publicly available [1, 7].

MTGL [13] is used as the baseline for graph processing on multi-core CPUs.
The BFS and PageRank implementations are offered by MTGL. We implement the
Bellman-Ford SSSP algorithm and a randomized maximal matching algorithm [10]
using MTGL. The best result was obtained when the number of threads was 12
on the experiment machine. MTGL running on 12 cores is on average 3.4 times
faster than that running on one core. Due to the memory intensive nature of graph
algorithms, the scalability of MTGL is limited by the memory bandwidth.

Figure 8 shows the speedup for Medusa over MTGL running on 12 cores. The
speedup is defined as the ratio between the elapsed time of the CPU-based execution
and that of Medusa-based execution. PageRank is executed with 100 iterations.
Medusa is significantly faster than MTGL on most comparisons and delivers a

GPU-Accelerated Cloud Computing for Data-Intensive Applications 121

Table 2 Characteristics of graphs used in the experiments

Graph Vertices (106) Edges (106) Max d Avg d �

RMAT 1:0 16:0 1;742 16 32:9

Random (Rand) 1:0 16:0 38 16 4:0

BIP 4:0 16:0 40 4 5:1

WikiTalk (Wiki) 2:4 5:0 100;022 2:1 99:9

RoadNet-CA (Road) 2:0 5:5 12 2:8 1:0

kkt_power (KKT) 2:1 13:0 95 6:3 7:5

coPapersCiteseer (Cite) 0:4 32:1 1;188 73:9 101:3

hugebubbles-00020 (Huge) 21:2 63:6 3 3:0 0:03

0

2

4

6

8

10

12

14

16

18

20

RMAT Rand Wiki Road Huge KKT Cite BIP

M
ed

u
sa

o
ve

r
M

T
G

L
 S

p
ee

d
u

p

BFS-N

BFS-Q

SSSP-N

SSSP-Q

PageRank

BM

Fig. 8 Performance speedup of Medusa running on the GPU over MTGL [13] running on 12 cores

performance speedup of 1.0–19.6 with an average of 5.5. On some graphs such
as Road, BFS-N is notably slower than MTGL-based BFS, because the work-
inefficient issue of BFS-N is exaggerated on the graphs with large diameter.

The work-efficient BFS and SSSP algorithms (BFS-Q and SSSP-Q) achieve
better performance on the graphs with large diameters, and can degrade the
performance in some cases (e.g., Rand, Wiki and KKT) due to the computation
and memory overhead in maintaining the queue structure. This is consistent with
the previous studies [37].

4.2 Parallel Graph Processing on the Cloud

Large graph processing has become popular for various data-intensive applications
on increasingly large web and social networks [43, 44]. Due to the ever increasing
size of graphs, application deployments are moving from a small number of HPC

122 B. Zhao et al.

servers or supercomputers [28, 46] towards the Cloud with a large number of
commodity servers [44, 54]. Early studies on parallel graph processing in the
Cloud are to adopt existing distributed data-intensive computing techniques in the
Cloud [19,39]. Most of these studies [43,44,77] are built on top of MapReduce [19],
which is suitable for processing flat data structure, not particularly for graph
structured data. More recently, systems such as Pregel [54], Trinity [63] and
Surfer [16] have been developed specifically for large graph processing. These
systems support a vertex-oriented execution model and allow users to develop
custom logics on vertices. The Medusa system [76] has been extended to support
the GPU-enabled cloud environment [75]. In those Cloud-based graph processing
systems, network performance optimizations are the key for improving the overall
performance.

Most vertex-oriented graph processing systems share the same network perfor-
mance issue. Take Pregel as an example. Pregel executes user-defined function
Compute./ per vertex in parallel, based on the general bulk synchronous parallel
(BSP) model. By default, the vertices can be stored in different machines according
to a simple hash function. However, the simple partitioning function leads to heavy
network traffic in graph processing tasks. For example, if we want to compute
the two-hop friend list for each account in a social network, every friend (vertex)
must first send its friends to each of its neighbors, and then each vertex combines
the friend lists of its neighbors. Implemented with the simple partitioning scheme,
this operation results in a great amount of network traffic because of shuffling the
vertices.

A traditional way of reducing data shuffling in distributed graph processing
is graph partitioning [22, 45, 49]. Graph partitioning minimizes the total number
of cross-partition edges among partitions in order to minimize data transfer.
The commonly used distributed graph processing algorithms are multi-level algo-
rithms [46, 47, 69]. These algorithms recursively divide the graph into multiple
partitions with bisections according to different heuristics.

It is well understood that large graphs should be partitioned; however, little
attention is given to how graph partitioning can be effectively integrated into the
processing in the Cloud environment. There are a number of challenging issues
in the integration. First, graph partitioning itself is a very costly task, generating
lots of network traffic. Moreover, partitioned graph storage and vertex-oriented
graph processing need a careful revisit in the context of Cloud. The Cloud network
environment is significantly different from those in previous studies [46, 47, 49],
e.g., Cray supercomputers or a small cluster. The network bandwidth is often the
same for every machine pair in a small cluster. However, the network bandwidth of
the Cloud environment is uneven among different machine pairs. Current Cloud
infrastructures are often based on tree topology [12, 30, 42]. Machines are first
grouped into pods, and then pods are connected to higher-level switches. The intra-
pod bandwidth is much higher than the cross-pod bandwidth. Even worse, the
topology information is usually unavailable to users due to virtualization techniques
in the Cloud. In practice, such network bandwidth unevenness has been confirmed
by both Cloud providers and users [12,42]. It requires careful network optimizations
and tuning on graph partitioning and processing.

GPU-Accelerated Cloud Computing for Data-Intensive Applications 123

We briefly describe the approach adopted by Surfer [16]. Surfer uses a net-
work performance aware graph partitioning framework to improve the network
performance of large graph processing on partitioned graphs. Specifically, the graph
partitions generated from the framework improve the network performance of graph
processing tasks. To capture the network bandwidth unevenness, Surfer models the
machines chosen for graph processing as a complete undirected graph (namely
machine graph): each machine as a vertex, and the bandwidth between any two
machines as the weight of an edge. The network performance aware framework
recursively partitions the data graph, as well as the machine graph, with bisection
correspondingly. That is, the bisection on the data graph is performed with the
corresponding set of machines selected from the bisection on the machine graph.
The recursion terminates when the data graph partition can fit into main memory. By
partitioning the data graph and machine graph simultaneously, the number of cross-
partition edges among data graph partitions is gracefully adapted to the aggregated
amount of bandwidth among machine graph partitions. To exploit the data locality
of graph partitions, Surfer develops hierarchical combination to exploit network
bandwidth unevenness in order to improve the network performance.

Fig. 9 Network performance aware graph partitioning (a) and NR (b) on Amazon EC2 with the
number of medium instances varied

Surfer has been evaluated on a real-world social network and synthetic graphs
of over 100 GB each in a 32-node cluster as well as on Amazon EC2. We briefly
discuss the experimental results on network performance aware graph partitioning
and graph processing on Amazon EC2.

We compare Surfer with two baselines: “Baseline 1” is the baseline Surfer
with local combination, but with graph partition storage distribution generated
from ParMetis, and “Baseline 2” is “Baseline 1” with the bandwidth aware graph
partitioning, without hierarchical combination. Figure 9a shows the performance
improvement of the network bandwidth-aware optimization on graph partitioning,
and Fig. 9b compares the response time of Network ranking (NR) with different
approaches. NR is to generate a ranking on the vertices in the graph using
PageRank [58] or its variants. In the experiment, the number of medium instances
is increased from 32 to 128 and the size of synthetic graphs is increased from
25 to 100 GB. We measure 100 times of each experiment on the same set of

124 B. Zhao et al.

instances, and report the average and the range for the elapsed time of graph
partitioning and processing. The variation is acceptable in Amazon EC2. Due to
the network bandwidth unevenness in Amazon EC2, the network performance
aware optimizations improve both graph partitioning and processing, with 20–25 %
performance improvement for graph partitioning and with 49 and 18 % performance
improvement for NR over Baseline 1 and 2 respectively. This demonstrates the
effectiveness of the network performance aware optimizations of Surfer on the
public Cloud environment.

5 Summary and Open Problems

In this chapter, we have introduced the MapReduce implementations on GPU
clusters, as well as two state-of-the-art graph processing frameworks running on
GPUs and the Cloud.

The MapReduce model is designed originally for big data processing on
large clusters, thus scalability is a very important feature. The approaches of
integrating GPU parallelism into Hadoop [3] using various technologies such as
Hadoop streaming, Hadoop pipes, JCUDA and Java Native Interface can inherit
the outstanding scalability and fault-tolerance features of the Hadoop framework.
However they usually incur low efficiency due to inter-process communication cost
and under-utilization of GPU resources. Moreover, only the map and reduce stages
are parallelized whereas the time-consuming sort process remains sequential.

Similar to Hadoop-based work, the Mars-MR-MPI can also process out-of-
memory data sets with the support of the MR-MPI framework. Moreover, it is more
efficient than the Hadoop-based work using streaming. However, its performance
is still limited by the network I/O cost. The stand-alone GPMR framework [65]
exposes the GPU programming details to the users, which makes the programming
more complex, but can achieve a better performance if the program is well-tuned.
GPMR processes input data in chunks. However, due to the lack of a buffer
mechanism during the MapReduce pipeline, it cannot handle data sets exceeding the
main memory capacity. The scalability of GPMR is still limited, though it involves
less overhead and is more optimized than the Hadoop-based GPU MapReduce work.

Graph are very common in data-intensive applications. Compared with other
data-intensive applications such as text processing, graph applications are usually
more complex and need more computation and communication. To cope with
challenges in processing large graphs, several general graph frameworks have been
proposed in recent years. Medusa is a representative vertex-oriented graph process-
ing framework on GPUs. It simplifies the graph processing on GPUs and achieves
comparable or better performance than the manually tuned GPU graph operations.
Surfer focuses on improving the network performance of graph processing on the
Cloud by employing network performance-aware graph partitioning strategies. As
such, both the graph partitioning and processing efficiency can be improved in a
public Cloud environment.

GPU-Accelerated Cloud Computing for Data-Intensive Applications 125

We conclude the chapter with a few open problems as the future research
directions.

1. For both MapReduce and general graph processing, data communication i.e.,
network I/O is the performance bottleneck, which limits the scalability of
MapReduce and graph processing algorithms on multi-GPUs and clusters.
The experiment results of GPMR show that the speedup of most applications
decreases dramatically when there are tens of GPUs. Zhong et al. [76] used up to
four GPUs in one machine to accelerate a set of common graph algorithms such
as BFS and PageRank. Their study shows that scalability for graph algorithms
with light weight computation is poor since the inter-GPU communication cost
can easily become the bottleneck, and the scalability issue can be magnified
in a distributed environment. To reduce network I/O, we may consider using
more advanced communication techniques provided by hardware vendors such
as GPUDirect. We can also apply GPU or CPU based data compression
algorithms [24] to reduce the amount of data transfer at the cost of increased
computation.

2. Out-of-core support is missing in most GPU-based systems. In recent years we
have witnessed significant improvement in the computation capability of the
GPU, however, the capacity of the GPU memory rarely increases. Yet most data-
intensive applications involve data that exceeds the aggregated main memory
size. Currently single-GPU MapReduce implementations [14, 25, 32, 36, 40] can
only process in-memory data. GPMR processes data in chunks, however, it
cannot provide full out-of-core support when data size exceeds main memory
capacity. Existing studies on GPU graph processing also mainly deal with in-
memory processing of graphs [31, 37, 38, 55, 56, 76]. With several Gigabytes of
GPU memory, the size of the maximum input graph is limited to millions of
vertices and edges. External memory CPU algorithms have been widely adopted
by many applications, including Hadoop shuffle and graph processing [50], for
processing data larger than main memory. However, adopting external memory
algorithms for GPU is challenging due to the larger gap between GPU memory
bandwidth and disk bandwidth, as well as the overhead of PCIe data transfer.

3. For GPU-based MapReduce, variable-length data (keys and values) processing
is challenging. To handle variable-length data, Mars uses a lock-free method
by pre-computing the key and value length before emitting the actual key/value
pair, and some other works use atomic operations. Both approaches bring extra
overheads, and the performance of each approach is application dependent.
Moreover, variable-length data leads to un-coalesced memory access on GPU.

4. Dynamic Graph Processing. Real world graphs, such as the social networks,
are usually evolving. Also, some graph algorithms require changing the graph
structure during runtime. However, currently there is little work on GPU-based
dynamic graph processing. Narse et al. [56] presented implementations of five
graph algorithms which morph structure of the input graph in different ways.
They provide a set of basic methods for adding and deleting subgraphs and

126 B. Zhao et al.

require users to make their choices based on the application characteristics and
the scale of the problem. The applicability of their methods are application
dependent and requires non-trivial programming efforts to implement.

References

1. 10th DIMACS implementation challenge. http://www.cc.gatech.edu/dimacs10/index.shtml
2. AMD Aparapi. http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-libraries/

aparapi
3. Apache Hadoop. http://hadoop.apache.org
4. GTGraph generator. http://www.cse.psu.edu/~madduri/software/GTgraph/index.html
5. Hadoop Streaming. http://hadoop.apache.org/docs/stable/streaming.html
6. MapReduce-MPI Documentation. http://mapreduce.sandia.gov/doc/Technical.html/Manual.

html
7. Stanford large network dataset collections. http://snap.stanford.edu/data/index.htm
8. Abbasi, A., Khunjush, F., Azimi, R.: A preliminary study of incorporating GPUs in the Hadoop

framework. In: 2012 16th CSI International Symposium on Computer Architecture and Digital
Systems (CADS’12), pp. 178–185. IEEE (2012)

9. Ahmad, F., Lee, S., Thottethodi, M., Vijaykumar, T.: PUMA: Purdue MapReduce Benchmarks
Suite. http://web.ics.purdue.edu/~fahmad/papers/puma.pdf

10. Anderson, T.E., Owicki, S.S., Saxe, J.B., Thacker, C.P.: High-speed switch scheduling for
local-area networks. ACM Transactions on Computer Systems (TOCS) 11, 319–352 (1993)

11. Basaran, C., Kang, K.D.: Grex: An efficient MapReduce framework for graphics processing
units. Journal of Parallel and Distributed Computing 73(4), 522–533 (2013)

12. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers in the
wild. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement,
pp. 267–280. ACM (2010)

13. Berry, J., Hendrickson, B., Kahan, S., Konecny, P.: Software and Algorithms for Graph Queries
on Multithreaded Architectures. In: IEEE International Parallel and Distributed Processing
Symposium (IPDPS’07), pp. 1–14. IEEE (2007)

14. Chen, L., Agrawal, G.: Optimizing MapReduce for GPUs with effective shared memory
usage. In: Proceedings of the 21st international symposium on High-Performance Parallel
and Distributed Computing, pp. 199–210. ACM (2012)

15. Chen, L., Huo, X., Agrawal, G.: Accelerating MapReduce on a coupled CPU-GPU archi-
tecture. In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, p. 25. IEEE Computer Society Press (2012)

16. Chen, R., Yang, M., Weng, X., Choi, B., He, B., Li, X.: Improving Large Graph Processing
on Partitioned Graphs in the Cloud. In: Proceedings of the Third ACM Symposium on Cloud
Computing (SoCC’12), pp. 3:1–3:13 (2012)

17. Chen, Y., Qiao, Z., Davis, S., Jiang, H., Li, K.C.: Pipelined Multi-GPU MapReduce for Big-
Data Processing. In: Computer and Information Science, pp. 231–246. Springer (2013)

18. Chen, Y., Qiao, Z., Jiang, H., Li, K.C., Ro, W.W.: MGMR: Multi-GPU based MapReduce. In:
Grid and Pervasive Computing, pp. 433–442. Springer (2013)

19. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Proceed-
ings of the 6th Conference on Symposium on Opearting Systems Design and Implementation
(OSDI’04) (2004)

20. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. Communi-
cations of the ACM 51(1), 107–113 (2008)

http://www.cc.gatech.edu/dimacs10/index.shtml
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-libraries/aparapi
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-libraries/aparapi
http://hadoop.apache.org
http://www.cse.psu.edu/~madduri/software/GTgraph/index.html
http://hadoop.apache.org/docs/stable/streaming.html
http://mapreduce.sandia.gov/doc/Technical.html/Manual.html
http://mapreduce.sandia.gov/doc/Technical.html/Manual.html
http://snap.stanford.edu/data/index.htm
http://web.ics.purdue.edu/~fahmad/papers/puma.pdf

GPU-Accelerated Cloud Computing for Data-Intensive Applications 127

21. Delorimier, M., Kapre, N., Mehta, N., Rizzo, D., Eslick, I., Rubin, R., Uribe, T.E., Knight, T.F.,
Dehon, A.: GraphStep: A System Architecture for Sparse-Graph Algorithms. In: 2006 14th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’06),
pp. 143–151. IEEE (2006)

22. Derbel, B., Mosbah, M., Zemmari, A.: Fast distributed graph partition and application. In:
IPDPS (2006)

23. Elteir, M., Lin, H., Feng, W.c., Scogland, T.: StreamMR: an optimized MapReduce framework
for AMD GPUs. In: 2011 IEEE 17th International Conference on Parallel and Distributed
Systems (ICPADS’11), pp. 364–371. IEEE (2011)

24. Fang, W., He, B., Luo, Q.: Database compression on graphics processors. Proceedings of the
VLDB Endowment 3(1–2), 670–680 (2010)

25. Fang, W., He, B., Luo, Q., Govindaraju, N.K.: Mars: Accelerating MapReduce with graphics
processors. IEEE Transactions on Parallel and Distributed Systems (TPDS) 22(4), 608–620
(2011)

26. Fang, W., Lu, M., Xiao, X., He, B., Luo, Q.: Frequent itemset mining on graphics processors.
In: Proceedings of the 5th International Workshop on Data Management on New Hardware
(DaMoN’09), pp. 34–42 (2009)

27. Farivar, R., Verma, A., Chan, E.M., Campbell, R.H.: MITHRA: Multiple data independent
tasks on a heterogeneous resource architecture. In: 2009 IEEE International Conference on
Cluster Computing and Workshops (CLUSTER’09), pp. 1–10. IEEE (2009)

28. Gregor, D., Lumsdaine, A.: The Parallel BGL: A generic library for distributed graph
computations. In: Parallel Object-Oriented Scientific Computing (POOSC) (2005)

29. Grossman, M., Breternitz, M., Sarkar, V.: HadoopCL: MapReduce on Distributed Heteroge-
neous Platforms Through Seamless Integration of Hadoop and OpenCL. In: Proceedings of the
2013 IEEE 27th International Symposium on Parallel and Distributed Processing Workshops
and PhD Forum, pp. 1918–1927. IEEE Computer Society (2013)

30. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: Dcell: a scalable and fault-tolerant network
structure for data centers. In: ACM SIGCOMM Computer Communication Review, vol. 38,
pp. 75–86. ACM (2008)

31. Harish, P., Narayanan, P.: Accelerating large graph algorithms on the GPU using CUDA. In:
High performance computing (HiPC’07), pp. 197–208. Springer (2007)

32. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a MapReduce framework
on graphics processors. In: Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques (PACT’08), pp. 260–269. ACM (2008)

33. He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander, P.V.: Relational query
coprocessing on graphics processors. ACM Transactions on Database Systems (TODS) 34(4),
21:1–21:39 (2009)

34. He, B., Yu, J.X.: High-throughput transaction executions on graphics processors. Proceedings
of the VLDB Endowment 4(5), 314–325 (2011)

35. He, G., Feng, H., Li, C., Chen, H.: Parallel SimRank computation on large graphs with
iterative aggregation. In: Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 543–552. ACM (2010)

36. Hong, C., Chen, D., Chen, W., Zheng, W., Lin, H.: MapCG: writing parallel program portable
between CPU and GPU. In: Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques (PACT’10), pp. 217–226. ACM (2010)

37. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating CUDA graph algorithms at
maximum warp. In: Proceedings of the 16th ACM symposium on Principles and Practice of
Parallel Programming (PPoPP’11), pp. 267–276 (2011)

38. Hong, S., Oguntebi, T., Olukotun, K.: Efficient parallel graph exploration on multi-core CPU
and GPU. In: 2011 International Conference on Parallel Architectures and Compilation
Techniques (PACT’11), pp. 78–88. IEEE (2011)

39. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs
from sequential building blocks. ACM SIGOPS Operating Systems Review 41(3), 59–72
(2007)

128 B. Zhao et al.

40. Ji, F., Ma, X.: Using shared memory to accelerate MapReduce on graphics processing units.
In: 2011 IEEE International Parallel and Distributed Processing Symposium (IPDPS’11),
pp. 805–816. IEEE (2011)

41. Jiang, H., Chen, Y., Qiao, Z., Li, K.C., Ro, W., Gaudiot, J.L.: Accelerating MapReduce
framework on multi-GPU systems. Cluster Computing pp. 1–9 (2013)

42. Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R.: The nature of data center
traffic: measurements & analysis. In: Proceedings of the 9th ACM SIGCOMM conference on
Internet Measurement Conference (IMC’09), pp. 202–208. ACM (2009)

43. Kang, U., Tsourakakis, C., Appel, A.P., Faloutsos, C., Leskovec, J.: HADI: Fast diameter
estimation and mining in massive graphs with Hadoop. Tech. Rep. CMU-ML-08-117, Carnegie
Mellon University (2008)

44. Kang, U., Tsourakakis, C.E., Faloutsos, C.: Pegasus: A peta-scale graph mining system -
implementation and observations. In: 2009 9th IEEE International Conference on Data Mining
(ICDM’09), pp. 229–238. IEEE (2009)

45. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1998)

46. Karypis, G., Kumar, V.: A parallel algorithm for multilevel graph partitioning and sparse matrix
ordering. Journal of Parallel and Distributed Computing 48(1), 71–95 (1998)

47. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed computing 48(1), 96–129 (1998)

48. Katz, G.J., Kider Jr, J.T.: All-pairs shortest-paths for large graphs on the GPU. In: Proceed-
ings of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics Hardware,
pp. 47–55. Eurographics Association (2008)

49. Koranne, S.: A distributed algorithm for k-way graph partitioning. In: Proceedings of the 25th
Conference of EUROMICRO (EUROMICRO’99), vol. 2, pp. 446–448. IEEE (1999)

50. Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: Large-scale graph computation on just a
PC. In: Proceedings of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’12), pp. 31–46 (2012)

51. Lin, J., Schatz, M.: Design patterns for efficient graph algorithms in MapReduce. In:
Proceedings of the Eighth Workshop on Mining and Learning with Graphs (MLG’10),
pp. 78–85. ACM (2010)

52. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: GraphLab:
A new parallel framework for machine learning. In: The 26th Conference on Uncertainty in
Artificial Intelligence (UAI’10) (2010)

53. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Distributed
GraphLab: A framework for machine learning and data mining in the cloud. Proceedings of
the VLDB Endowment 5(8), 716–727 (2012)

54. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:
Pregel: A System for Large-Scale Graph Processing. In: Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data (SIGMOD’10), pp. 135–146.
ACM (2010)

55. Merrill, D., Garland, M., Grimshaw, A.: Scalable GPU graph traversal. In: Proceedings of
the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming
(PPoPP’12), pp. 117–128 (2012)

56. Nasre, R., Burtscher, M., Pingali, K.: Morph algorithms on GPUs. In: Proceedings of the 18th
ACM SIGPLAN symposium on Principles and Practice of Parallel Programming (PPoPP’13),
pp. 147–156 (2013)

57. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.:
A Survey of General-Purpose Computation on Graphics Hardware. In: Computer Graphics
Forum, vol. 26, pp. 80–113. Wiley Online Library (2007)

58. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order
to the Web. Stanford InfoLab. Technical report (1999)

59. Plimpton, S.J., Devine, K.D.: MapReduce in MPI for large-scale graph algorithms. Parallel
Computing 37(9), 610–632 (2011)

GPU-Accelerated Cloud Computing for Data-Intensive Applications 129

60. Plimpton, S and Devine, K: MapReduce-MPI Library. http://mapreduce.sandia.gov
61. Rafique, M.M., Rose, B., Butt, A.R., Nikolopoulos, D.S.: CellMR: A framework for supporting

MapReduce on asymmetric cell-based clusters. In: 2009 IEEE International Parallel and
Distributed Processing Symposium (IPDPS’09), pp. 1–12. IEEE (2009)

62. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating MapReduce
for multi-core and multiprocessor systems. In: IEEE 13th International Symposium on High
Performance Computer Architecture (HPCA’07), pp. 13–24. IEEE (2007)

63. Shao, B., Wang, H., Li, Y.: Trinity: A distributed graph engine on a memory cloud. In: Pro-
ceedings of the 2013 ACM International Conference on Management of Data (SIGMOD’13),
New York, New York, USA (2013)

64. Shirahata, K., Sato, H., Matsuoka, S.: Hybrid Map task scheduling for GPU-based hetero-
geneous clusters. In: 2010 IEEE Second International Conference on Cloud Computing
Technology and Science (CloudCom’10), pp. 733–740. IEEE (2010)

65. Stuart, J.A., Owens, J.D.: Multi-GPU MapReduce on GPU clusters. In: 2011 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS’11), pp. 1068–1079. IEEE
(2011)

66. Sul, S.J., Tovchigrechko, A.: Parallelizing BLAST and SOM algorithms with MapReduce-MPI
library. In: IEEE International Symposium on Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW’11), pp. 481–489. IEEE (2011)

67. Talbot, J., Yoo, R.M., Kozyrakis, C.: Phoenix++: Modular MapReduce for Shared-Memory
Systems. In: Proceedings of the 2nd International Workshop on MapReduce and its
Applications, pp. 9–16. ACM (2011)

68. Tan, Y.S., Lee, B.S., He, B., Campbell, R.H.: A Map-Reduce based Framework for Het-
erogeneous Processing Element Cluster Environments. In: IEEE/ACM 12th International
Symposium on Cluster, Cloud and Grid Computing (CCGrid’12), pp. 57–64. IEEE (2012)

69. Trifunović, A., Knottenbelt, W.J.: Parallel Multilevel Algorithms for Hypergraph Partitioning.
Journal of Parallel and Distributed Computing 68, 563–581 (2008)

70. Vineet, V., Narayanan, P.J.: CUDA cuts: Fast graph cuts on the GPU. In: IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’08),
pp. 1–8. IEEE (2008)

71. Wittek, P., Darányi, S.: Leveraging on High-Performance Computing and Cloud Technologies
in Digital Libraries: A Case Study. In: IEEE Third International Conference on Cloud
Computing Technology and Science (CloudCom’11), pp. 606–611. IEEE (2011)

72. Yoo, R.M., Romano, A., Kozyrakis, C.: Phoenix rebirth: Scalable MapReduce on a large-scale
shared-memory system. In: IEEE International Symposium on Workload Characterization
(IISWC’09), pp. 198–207. IEEE (2009)

73. Zhai, Y., Mbarushimana, E., Li, W., Zhang, J., Guo, Y.: Lit: A high performance massive
data computing framework based on CPU/GPU cluster. In: IEEE International Conference
on Cluster Computing (CLUSTER’13), pp. 1–8. IEEE (2013)

74. Zhong, J., He, B.: Parallel Graph Processing on Graphics Processors Made Easy. Proceedings
of the VLDB Endowment 6(12), 1270–1273 (2013)

75. Zhong, J., He, B.: Towards GPU-Accelerated Large-Scale Graph Processing in the Cloud.
In: IEEE Third International Conference on Cloud Computing Technology and Science
(CloudCom’13), pp. 9–16. IEEE (2013)

76. Zhong, J., He, B.: Medusa: Simplified Graph Processing on GPUs. IEEE Transactions on
Parallel and Distributed Systems (TPDS) 25(6), 1543–1552 (2014)

77. Zhou, A., Qian, W., Tao, D., Ma, Q.: DISG: A DIStributed Graph Repository for Web
Infrastructure (Invited Paper). Proceedings of the 2008 Second International Symposium on
Universal Communication 0, 141–145 (2008)

http://mapreduce.sandia.gov

Adaptive Workload Partitioning and Allocation
for Data Intensive Scientific Applications

Xin Yang and Xiaolin Li

Abstract Scientific applications are becoming data intensive, and traditional
load-balance solutions require reconsideration for scaling data and computation in
various parallel systems. This chapter examines state-transition applications, which
is a representative scientific application that handles grand-challenging problems
(e.g., weather forecasting and ocean prediction) and relates to intensive data. We
propose an adaptive workload partitioning and allocation scheme for parallelizing
state-transition applications in various parallel systems. Existing schemes
insufficiently balance both computation of complicated scientific algorithms and
increasing volumes of scientific data simultaneously. Our solution addresses this
problem by introducing a time metric to unify the workloads of computation and
data. System profiles in terms of CPU and I/O speeds are considered for embracing
system diversity, suggesting accurate estimation of workload. The solution consists
of two major components: (1) an adaptive decomposition scheme that uses the
quad-tree structure to break up workload and manage data dependency; and (2)
a decentralized scheme for distributing workload across processors. Experimental
results from real-world weather data demonstrate that the solution outperforms other
partitioning schemes, and can be readily ported to diverse systems with satisfactory
performance.

1 Introduction

Modern scientific applications are becoming data intensive and increasingly rely
on various computing systems to analyze data and discover insights quickly. Low-
cost sensors and other scientific technologies (e.g., fine-granularity computing
models) drive the increase of scale of scientific data. Scientists start to explore new
computing systems such as clouds to scale data and computation in an extended
deployment while spending reduced cost. As a consequence, solutions effective
in traditional computing settings require reconsideration for performance purpose.
In this chapter, we use state-transition scientific application as an example to

X. Yang (�) • X. Li
Department of CISE, University of Florida, Gainesville, FL, USA
e-mail: xin@cise.ufl.edu; andyli@ece.ufl.edu

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__6

131

mailto:xin@cise.ufl.edu
mailto:andyli@ece.ufl.edu

132 X. Yang and X. Li

discuss modifications when porting traditional solutions to new computing settings.
Specifically, the adaptive partitioning and allocation methods for processing state-
transition applications in a load-balance manner are examined.

State-transition applications tackle grand-challenge scientific problems (e.g.,
weather forecasting [1] and ocean prediction [2]). They simulate the evolvement of
environments, named states, such as atmosphere, ocean, and so on. Sensors or other
scientific instruments are deployed in environments for collecting observations.
Ideally, these observations can be used to predict the changes of environments
directly. But in reality, errors are generally common in them. For example,
measurements from scientific instruments might not be accurate, fluctuations exist
in environments, or the underlying mathematical models may be inaccurate. As a
result, observations need to be calibrated before describing environmental states.
State-transition algorithms are applied here for calibrating observations using
previous states.

Most applications of interest in this domain are modeled in a 2D or 3D coordinate
space, and need to handle two independent datasets (represented as logic arrays) for
observations and states. These two arrays need to follow a same decomposition
pattern and distribute partitioned blocks across a parallel system (e.g., a cluster, a
virtual organization in a grid, or a virtual cluster in clouds). Observations typically
reflect fluctuations of the environment and exist in a few local regions where
significant phenomena occur, resulting in a sparse array. To address such dynamism,
adaptive partitioning solutions [3–7] are typically used to balance the distribution
of computation of observations, generating blocks of different sizes for the data
of states. While many state-transition applications increasingly use a growing
volume of scientific data for high-resolution, extended-coverage and timely results,
solutions that balance the computation of observations need to balance the data of
states as well.

In addition, to make solutions portable across various parallel computing sys-
tems, performance profiles of systems need to be considered. Modern HPC clusters
are often built with different hardware configurations, indicating different CPU and
I/O speeds [8]. Newly emerging virtual clusters are built using various types of
virtual machines to meet various computing needs. New issues due to virtualization,
such as network jitters [9] and processor sharing [10] on Amazon EC2, affect the
performance as well. As profiles reflect CPU and I/O speeds, we should adjust
workload partitioning and allocation schemes accordingly to match different system
profiles.

1.1 Summary of Contributions

In this chapter, we present an adaptive partitioning and load-balancing scheme,
called Apala, for balancing state-transition applications in a computer cluster
system. Apala consists of an adaptive decomposition scheme for decompos-
ing arrays into blocks to maximize parallelism and a decentralized scheme for

Adaptive Workload Partitioning and Allocation for Data Intensive Scientific Apps 133

distributing blocks across processors. Based on the quad-tree [11] structure, blocks
are decomposed adaptively and recursively. The distributing scheme distributes
the blocks across processors by leveraging the linear representation of the quad-
tree structure. Techniques of virtual decomposition and finding-side-neighbor are
proposed for organizing data dependencies of updating “halos” (i.e., accessing non-
local distributed arrays [12, 13]) between adjacent blocks.

An important feature of Apala is that the decomposition decision is based on
both computation and data. Balancing either one independently suggests different
decomposition patterns. To consider both jointly, Apala introduces a time metric
to unify the workloads of computation and data. More specifically, the workload
in terms of time is calculated by adding the time of computing observations (i.e.,
computation amount/system’s CPU speed) and that of loading the data of states
(i.e., data amount/system’s I/O speed).

1.2 Organization

The rest of this chapter is organized as follows. We discuss related work in Sect. 2.
The partitioning problems in parallelizing state-transition applications are described
in Sect. 3. Section 4 presents Apala, including unifying the workloads of com-
putation and data with the consideration of system profiles, decomposing unified
workloads adaptively, and distributing workloads across processors. Experimental
results are given for comparing Apala with other partitioning schemes and showing
Apala’s portability in Sect. 5. We conclude our work in “Conclusion” section.

2 Related Work

Efficient partitioning and balancing of workloads in parallel systems are both
needed to achieve good performance and scalability. The scientific computing
community has made significant efforts in partitioning computations using a number
of non-overlapping regular blocks while minimizing the maximally loaded block.
Adaptive partitioning methods are widely used in the presence of computation
skews [3–5, 7, 15].

The GBD [5, 15] partitioning, also called rectilinear partitioning, uses
(M�1)*(N�1) lines to decompose a 2D domain into M*N blocks. In case
computations distribute non-uniformly in the domain, these blocks are of different
sizes but contain the same amount of computations. The GBD partitioning is widely
applied [19] due to its approved load-balance effectiveness and easy-to-organize
communications of block boundaries. [5] also proposes a semi-GBD partitioning.
The semi-GBD first uses M�1 lines to divide a 2D domain into M stripes. Then,
it either divides every stripe into N blocks (called M�N-way jagged partitioning),
or divides each stripe according to the amount of computations the stripe contains

134 X. Yang and X. Li

(called M-way jagged partitioning) that stripes need not to have the same number
of blocks. According to [7], the semi-GBD partitioning has a better load-balance
effectiveness in some cases. However, synchronization complexity increases. The
HB [3] partitioning is an adaptive and recursive partitioning method similar to the
quad-tree structure we use. Different from the quad-tree manner, HB uses a split to
divide a block into two sub-blocks every time.

These adaptive partitioning methods require a global view of computations to
determine the placement of lines or splits. They also imply a significant overhead
of finalizing a decomposition pattern for a domain, i.e., the domain is scanned
again and again to determine every partitioning decision. In parallel environments,
maintaining a global view for intensive computations and data is hardly feasible,
and frequent workload scans incur substantial overheads. Apala overcomes these by
presenting a distributed partitioning method that every processor partitions a local
block independently. There is no need to maintain a global view of workloads in
Apala, and the scan is for the local block only.

Although finding an optimal decomposition plan is NP-hard [20], many parallel
frameworks use heuristics to integrate these adaptive partitioning methods for
handling computation skews at runtime, such as [21, 22] for the adaptive mesh
refinement problem. Apala resembles them but uses a decentralized strategy to par-
tition the workload instead of the centralized mechanisms used in these frameworks.

Data is playing a more important role in state-transition applications. Apala
explicitly considers data in its partitioning decisions and uses a time metric to
unify computation and data according to system profiles. A related work to Apala
is Mammoth [13] that processes state-transition applications using a MapReduce
system. For the load imbalance issue, Mammoth relies on a runtime management
by launching shadow tasks for heavy blocks. SkewReduce [23] is a specially
designed system for feature-extracting scientific applications. SkewReduce defines
two cost functions to estimate the costs of the partitioning and merging operations.
A block will be bi-partitioned if the performance gain of parallelizing the two parts
outweighs the partitioning and merging costs. SkewReduce samples the data to
estimate the workload and guide the partitioning. Its MapReduce programming
model and runtime make it easy-to-use and efficient. In contrast, Apala still
addresses the partitioning and load-balance problem in the conventional MPI
programming model.

workload workload

P1

P2

P3

P4

P1

P2

P3

P4

Fig. 1 Example of parallelizing a state-transition application by equally partitioning
the computation (dark blue) or by equally partitioning the data (light blue). For both scenarios,
the computation and the data cannot be equally partitioned simultaneously, and consequently the
workloads allocated to processors P1, P2, P3, and P4, are not equal (Color figure online)

Adaptive Workload Partitioning and Allocation for Data Intensive Scientific Apps 135

3 Problem Description

For state-transition applications, the workloads of computation and data are deter-
mined by observations and states, respectively. The data of observations is generally
of small size and does not bring in data workloads in terms of I/Os. An efficient
parallelization scheme needs to partition and balance both workloads. However, the
inconsistent distributions of the two workloads complicate the parallelization work.
Consider the example in Fig. 1. The state-transition application of the weather data
assimilation is modeled in a 2D coordinate space with a bounding domain, and
changes of states (e.g., severe regional weather phenomena) are observed in a small
region. Balancing the parallelization of this application’s computation may result in
the partitioning illustrated by the dash lines. We can see that, although the workload
of computation is balanced, the workload of data corresponding to block size is not.
Likewise, partitioning with the consideration of balancing data (illustrated by lines)
suffers from the imbalanced partitioning of computation.

The partitioning problem becomes more complex if porting the parallelization
work across different systems. Although the application’s computation scale and
data volume are constant, the CPU and I/O times spent on computing and loading
data vary as systems have different CPU and I/O speeds. The length of the bars
indicating the workloads of computation and data in Fig. 1 will change when porting
to different systems due to their different profiles. Consequently, the partitioning
strategies should be adjusted accordingly.

4 Apala

Apala features three key design merits: (1) it unifies and balances computation and
data requirements; (2) it leverages the quad-tree structure to conduct the adaptive
and recursive decomposition; (3) it utilizes a decentralized mechanism to distribute
workloads across processors for load balance.

4.1 Unifying Workloads

Apala unifies the workloads of computation and data by quantifying the two in
terms of time. Specifically, Apala first estimates the time needed for computing
the observations as well as for loading the data of states. The combined time is then
considered for partitioning. Ideally, every processor spends an equal amount of time
on loading and computing its assigned workload.

Two factors affect the time estimation: the speed of loading the states and the
speed of computing the observations. In our work, we mainly consider the system’s
CPU and I/O speeds. Consider a simple example of processing a block on two

136 X. Yang and X. Li

2 2 2 2 2 2 2

3 3 3 3

4

1 2 2

2 3

P1

P2

P3

P4

P1 P2

P3 P4

Decomposing Distributing

P2
G1

B C

A D

P3

P1 P2

P3 P4

G2

Virtual
Decomposition

G

Fig. 2 Apala consists of two major steps: decomposing and partitioning. The decomposing step
generates a decomposition plan for the application, and the partitioning step adjusts workload
allocations among processors for load balance. The decomposing step involves three detailed sub-
steps. (1) The entire application is uniformly decomposed, and each processor takes one equal-
sized block. (2) Each processor independently generates an adaptive decomposition using the quad-
tree structure. This decomposition is for the local block only. (3) Some blocks are “virtually”
decomposed for finding side neighbors to set up data dependencies across processors

clusters, cluster1 and cluster2. cluster1 features 2,000 average MOPS
(Million Operations Per Second) CPU speed and 100 average MBPS (Megabytes
Per Second) I/O speed, while cluster2 has 1,500 average MOPS CPU speed
and 1,000 average MBPS I/O speed. If the block associates with 100 MB data of
states and needs 100 million CPU operations to compute observations using state-
transition algorithms, its unified workload on cluster1 is 100

100
C 100

2;000
D 1:05 s,

while that on cluster2 is 100
1;000
C 100

1;500
D 0:17 s.

4.2 Decomposing the Unified Workload

Apala decomposes the unified workload into blocks for exposing parallelism as
much as possible. In addition, the decomposition should be well structured so
that synchronizations among blocks are organizable. Apala exploits the quad-tree
structure in its decomposition scheme. A block with an intensive workload will
be decomposed into four equal-sized sub-blocks. Each sub-block is checked to
determine if further decomposition is needed. The decomposition continues until
every block has a bounded workload.

There are two advantages for the quad-tree structure. First, blocks are regularly
decomposed in which every decomposition operation generates four equal-sized
sub-blocks. The decomposition shape is critical to simplify synchronization com-
plexity and consequently reduce synchronization overhead. Rectangles are the most
preferred shape to decompose 2D workloads for such purpose [7, 14], and quad-
decomposing blocks can guarantee this. Second, it is easy to follow the quad-tree
manner and decompose blocks adaptively and recursively.

Adaptive Workload Partitioning and Allocation for Data Intensive Scientific Apps 137

Algorithm 1: Local decomposition
Require: L: single-layer workload (2D) of the state-transition application

N : number of processors
i : processor id

Ensure: Pi : local decomposition at processor i

1: Threshold T L
N

2: Decomposition Qi ¿; Pi ¿
3: block p uniform_decompose(L, i , N)
4: Qi Qi [fpg
5: repeat
6: block p choose the first block from Qi

7: if p:wl > T then
8: blocks subs quad_decompose(p)
9: for all block p0 in subs do

10: if p0:wl > T then
11: Qi Qi [p0

12: else
13: Pi Pi [p0

14: end if
15: end for
16: else
17: Pi Pi [p

18: end if
19: until Qi ¤ ¿
20: return Pi

Although state-transition applications are typically modeled in a 3D coordinate
space, the workload decomposing is conducted layer by layer along the vertical
direction (z-axis). All layers apply the same 2D decomposition. So we describe the
decomposition scheme based on the 2D array of a single layer in the following.

The decomposition is summarized in Algorithm 1. At the beginning, the 2D
array is uniformly decomposed into blocks, one for each processor. Every processor
independently decomposes its local block in the adaptive and recursive manner.
The block’s workload is computed, and the block will be decomposed into four
equal-sized sub-blocks if it exceeds the threshold. We define the threshold as the
average workload across the system, i.e., the number of processors divides the
amount of workloads. This recursive decomposing operation continues for every
sub-block until each of them meets the threshold. This procedure is analogous to
the construction of a quad-tree: the initial local block corresponds to the root; the
sub-blocks that contain heavy workloads and are further decomposed correspond to
internal nodes; and the final sub-blocks correspond to the leaves.

Synchronizations between adjacent blocks for swapping “halo” updates also
benefit from the quad-tree structure. Data dependencies among blocks can be set
up by finding side neighbors for the leaves in the quad-tree, and synchronizations
occur when adjacent blocks are distributed to different processors. The algorithm
introduced in [11] can be used for side-neighbor-finding, but it is restricted to
find side neighbors with equal or larger size. As illustrated in Fig. 2, block G’s

138 X. Yang and X. Li

Algorithm 2: Building block dependencies
Require: P : “virtually decomposed” blocks

r : node (block that finds neighbors)
d : direction where to find neighbors

Ensure: S : set of neighbor nodes
1: set vdnodes nodes in P decomposed from r

2: for node sub_r in vdnodes do
3: node p ancestor node of both r and its neighbor
4: addr address of sub_r to p

5: addr mirror operation
6: node dest tree traversal from p using addr
7: S S [fdestg
8: end for
9: return S

left-side neighbor will be ambiguous when using this algorithm as there are two such
neighbors. We circumvent this restriction by introducing the virtual decomposition
technique: large blocks are virtually decomposed as finely as the smallest one.
As a result, finding a side neighbor for a large block is split into finding a set of
side neighbors for its virtual sub-blocks. The decomposition is virtual because the
original block is the minimum unit of distributing workloads. The virtual blocks
will not be distributed separately to different processors, nor will there be data
dependencies among these virtual blocks.

Building data dependencies for blocks is conducted via the quad-tree traversal.
We use node and block interchangeably to ease the understanding of operations
related to the quad-tree structure. The concept of address is used: except the root,
the address of a quad-tree node is defined as its corresponding block’s position in
its super-block (i.e., LT as lefttop, LB as leftbottom, RB as rightbottom, and RT as
righttop). Two nodes can concatenate the addresses between them as path to refer
to each other. The node (or sub-node from the virtual decomposition) locates its
side neighbor in three steps: first, finds the path to the common ancestor of the
neighbor; second, executes a mirror operation on the path; finally, search down
from the ancestor along the mirrored path. The mirror operation replaces every L/R
with R/L if the direction is left or right, or every T/B with B/T if the direction is
top or bottom, along the path. Algorithm 2 summarizes the procedure of building
dependency. An example is given in Fig. 2 that block G is virtually decomposed for
finding its two left side neighbors, i.e., C and D.

4.3 Distributing the Unified Workload

Apala’s distributing scheme is responsible for mapping blocks to processors with
the consideration of load balance. It is based on the linear representation of the
quad-tree at every processor and a decentralized scheme for re-mapping blocks from
overloaded processors to underloaded ones.

Adaptive Workload Partitioning and Allocation for Data Intensive Scientific Apps 139

The linear representation is generated using the in-order traversal of quad-tree
leaves. A block’s four sub-blocks are mapped in the order of “TL, BL, BR, TR”
(counterclockwise order from topleft). Further decomposition of any sub-block
is represented by replacing it with an expanded mapping of its sub-blocks (e.g.,
decomposing the topleft in “TL, BL, BR, TR” will generate the mapping of “[TL,
BL, BR, TR], BL, BR, TR”). This linear representation eases the distributing work
of mapping blocks to processors. The first a few blocks with the total workload
approximating the threshold will be reserved for the local processor. The rest will
be distributed to underloaded processors. Recall that the quad-tree structure is used
for building dependencies for blocks. The block distributed to other processors
can explore its neighbor blocks quickly, and subsequently processors can set up
communication for swapping “halo” updates.

Overloaded processors distribute their extra workloads to underloaded ones
in a decentralized manner. Every processor independently checks the available
capacity of every underloaded processor, sorts the blocks to be distributed in the
ascending order according to their workloads, and maps every such block to the first
underloaded processor that is available.

This decentralized mechanism allows an overloaded processor to complete its
distributing action quickly. However, it might also lead to a situation that too
many overloaded processors push workloads to the same underloaded processor
simultaneously, resulting in a new overloaded processor. To overcome this, we
introduce a throttle factor � to control the amount of workload an overloaded
processor can push to an underloaded one. Algorithm 3 outlines this decentralized
distributing scheme.

Algorithm 3: Decentralized distributing scheme
Require: Pi : the blocks at processor i

L: workload amount
N : number of processors

1: blocks to be distributed O ¿
2: P l

i ; P r
i divides Pi that P l

i are blocks reserved locally and P r
i are to be distributed.

3: O O [P r
i

4: sort(O)
5: Ta L

N

6: for all underloaded processors j do
7: j:f ree � � .Ta � j:wl/

8: end for
9: for block p in O do

10: for all underloaded processors j do
11: if p:wl � j:f ree then
12: p:owner j ;
13: j:wl j:wl C p:wl

14: j:f ree j:f ree � p:wl

15: end if
16: end for
17: end for

140 X. Yang and X. Li

5 Evaluation

In this section, we present the experimental evaluation. It includes two parts: (1)
comparing Apala with other partitioning schemes (i.e., uniform partitioning, Gen-
eralized Block Distribution (GBD) [5, 15], and Hierarchical Bipartition (HB) [3])
in terms of the effectiveness of load balance; (2) evaluating Apala’s portability of
adjusting its partitioning and load-balance scheme according to system profiles; (3)
evaluating Apala’s overhead of partitioning.

5.1 Setup

Applications and Datasets The state-transition application of weather data assim-
ilation [16] is used. It models states of the environment and observations of the
atmosphere in a 3D bounding box. The data assimilation algorithm is performed
layer-by-layer along the z-axis and point-by-point within each layer. At every point,
the states and the observations are assimilated for new states. These states will not
only update the point itself but also the neighbor points in a 4 � 4 “halo”.

We use two datasets (Fig. 3) in the evaluation. The first contains 75 GB data of
states and 25 MB data of observations, while the second contains 19 GB data of

Fig. 3 The datasets we use in the experimental evaluation. The first dataset is from the Center for
Analysis and Prediction of Storms at the University of Oklahoma, which described the observations
covering the Oklahama state on May 20, 2010. The second one was captured from weather.com,
which described the observations covering Gainesville, Florida on January 1, 2012. Both are
modeled in the 3D coordinate space but showed with the 2D view. The first is bounded in a
1;323 � 963 � 10 box, while the second is bounded in a 400 � 400 � 20 box. The decomposition
patterns with different schemes for both datasets are illustrated as well

Adaptive Workload Partitioning and Allocation for Data Intensive Scientific Apps 141

states and 3 MB data of observations. Both states and observations are stored in
the key-value format in plain text files, i.e., “x,y,z,var1,var2,. . . ,varN” for states
and “x,y,z,ob” for observations, where “x,y,z” represents the coordinate, “varI”
represents the environmental variable, and “ob” represents the observation.

Computer Clusters We use four clusters for the evaluation: two HPC clusters
of Alamo and Sierra at FutureGrid, and two virtual clusters, EC2.Small and
EC2.Large, consisting of Amazon EC2 small and large instances, respectively.

Each node at Alamo contains two 2.66 GHz Intel Xeon X5550 processors (four
cores per processor) and 12 GB memory and is interconnected via InfiniBand.
Alamo uses a NFS-based parallel file system for the shared data storage. Each
node at Sierra contains two 2.5 GHz Intel Xeon L5420 processors (four cores per
processor) and 32 GB memory and is also interconnected via InfiniBand. Sierra uses
a ZFS file system for the shared data storage.

Each small instance in EC2.Small has 1 EC2 compute unit, 1.7 GB memory, and
moderate I/O speed, while each large instance in EC2.Large has four EC2 compute
units, 7.5 GB memory, and high I/O speed. Due to the virtualization overhead, the
two virtual clusters perform much more moderately (particularly the EC2.Small
cluster) than the physical HPC clusters. For their data storage, we create an Amazon
EBS (Elastic Block Service) volume, attach it to a dedicated instance, and mount it
to the cluster using the NFS file system.

Benchmark Tools We use the NAS Parallel Benchmark (NPB) [17] and the IOR
HPC benchmark [18] to measure the CPU and I/O speeds for every cluster. The
NPB consists of several benchmarks that simulate the computational fluid dynamics
applications, and these applications cover various computing patterns. The CPU
speeds of these benchmarks are averaged, and the average value is used to represent
the CPU speed of the cluster. To measure the I/O speed, the IOR HPC benchmark
is used to reproduce the I/O patterns of our data assimilation application, i.e.,
concurrently and randomly accessing a continuous block of a single file. Table 1
lists the profiles of the CPU and I/O speeds of the four clusters.

Table 1 Profiles of the
clusters

Alamo Sierra EC2.Large EC2.Small

I/O (Read, MB/s) 1233 1099 938 478

I/O (Write, MB/s) 391 70 15 16

CPU (MOPS) 824 351 128 33

Implementation Apala is implemented using C++ with the standard MPI-2 library.
It reads the benchmark results describing system profiles (i.e., the CPU speed and
the I/O speed) from a configure file. The paths to the data of states and observations
are contained in this file as well. Apala generates a quad-tree-based decomposition
plan using a partition method, and allocates the workload to processors using a
distribute method. For each processor, its workload allocation is organized as a list
of rectangular blocks. These blocks are represented using indexes of arrays (i.e., the

142 X. Yang and X. Li

bottom-left coordinate and the top-right coordinate). State-transition algorithms are
programmed from the perspective of an individual point. For updates in “halos”
that are out of original blocks, Apala has a synchronize method for users to
manage synchronizations. Indexes of points and data dependencies are built when
generating decomposition plans, and they are used to drive the synchronize method.
An aggregate method is opened for users to define how to finalize the result of a
point covered by multiple “halos”.

We set the throttle factor � to 0.5, implying at most half of the processors can
push their workloads to an underloaded one. Note that every result in the following
figures is the average value of five runs. The error bars are small, indicating
performance fluctuations are marginal, even on virtual clusters.

5.2 Decomposition Patterns

Two static partitioning strategies, “DataPart” and “CompPart”, are used for the
comparison purpose. The “DataPart” partitions the workload according to the data
of states only, while the “CompPart” accords to that of observations only. Figure 3
illustrates the decomposition patterns of using “DataPart”, “CompPart”, and Apala
to decompose both datasets for eight processors. We can see that, “DataPart”
generates a uniform decomposition as the data of states indicating I/Os distributes
evenly, “CompPart” generates a much finer decomposition for the regions with
dense observations. In comparison, the decomposition from Apala is in between
due to its comprehensive consideration of computation and data.

Fig. 4 Comparison of the
load balance effectiveness
among Uniform, GBD, HB,
and Apala, with the first
dataset

8 16 32 64 128
0

2

4

6

8

10

12

Number of Processors

Lo
ad

 B
al

an
ce

Uniform
GBD
HB
Apala

Adaptive Workload Partitioning and Allocation for Data Intensive Scientific Apps 143

Fig. 5 Comparison of the
load balance effectiveness
among Uniform, GBD, HB,
and Apala, with the second
dataset

8 16 32 64 128
0

1

2

3

4

5

Number of Processors
Lo

ad
 B

al
an

ce

Uniform
GBD
HB
Apala

5.3 Effectiveness of Load Balance

The effectiveness of load balance is measured according to .Max � Avg/=Avg,
where Max is the execution time of the longest processor, and Avg represents the
average execution time of all the processors. Smaller values indicate better load
balance.

The results comparing Apala with other partitioning schemes are presented in
Figs. 4 and 5 for the two datasets, respectively. We can see that, Apala outperforms
the partitioning schemes of uniform, GBD, and HB for both datasets by at most ten
times. Uniform, GBD, and HB partition the workload according to the computation
only. Ignoring the workload of loading the large volume of states results in load
imbalance. The first dataset shows more significant imbalance. That is because the
observations in the first dataset mainly concentrate on hot spots, and the block sizes
are more diverse after decomposition. However, Apala performs stably because it
accounts for both computation and data.

5.4 Portability

When porting to a new computer cluster, the CPU and I/O speeds of the system
change, and Apala will adjust its workload estimation and the subsequent partition-
ing and load-balance scheme. To evaluate Apala’s portability, we deploy Apala to
the four clusters and compare its performance to static (not portable) partitioning
strategies. Due to space limit, only results about the first dataset is presented in this
paper.

According to the CPU and I/O speeds listed in Table 1, Alamo and Sierra show
excellent CPU and I/O speeds. EC2.Large and EC2.Small are expected to present
poor I/O speeds due to using the shared EBS volume. All the I/Os for the data of

144 X. Yang and X. Li

Fig. 6 Comparison of the
execution time of “DataPart”,
“CompPart”, and Apala on
the Alamo cluster, with the
first dataset

8 16 32 64 128
600

700

800

900

1000

1100

Number of Processors
E

xe
c

T
im

e
(S

ec
on

ds
)

DataPart
CompPart
Apala

Fig. 7 Comparison of the
execution time of “DataPart”,
“CompPart”, and Apala on
the Sierra cluster, with the
first dataset

8 16 32 64 128
600

800

1000

1200

1400

1600

1800

Number of Processors

E
xe

c
T

im
es

 (
S

ec
on

ds
)

DataPart
CompPart
Apala

Fig. 8 Comparison of the
execution time of “DataPart”,
“CompPart”, and Apala on
the EC2.Large cluster, with
the first dataset

8 16 32 64 128
2500

3000

3500

4000

4500

Number of Processors

E
xe

c
T

im
e

(S
ec

on
ds

)

DataPart
CompPart
Apala

states will be directed to the shared EBS storage. EC2.Small also shows a poor CPU
speed due to the shared use of physical processors [10].

Intuitively, for the system that has a fast I/O speed, the time spent on loading the
data of states is relatively short in the workload estimation, and partitioning using
“CompPart” that depends on observations is preferred (and vice versa for the system
with a fast CPU speed).

Adaptive Workload Partitioning and Allocation for Data Intensive Scientific Apps 145

Fig. 9 Comparison of the
execution time of “DataPart”,
“CompPart”, and Apala on
the EC2.Small cluster, with
the first dataset

8 16 32 64 128
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 x 104

Number of Processors
E

xe
c

T
im

e
(S

ec
on

ds
)

DataPart
CompPart
Apala

We use “DataPart”, “CompPart” and Apala to partition the first dataset for the
evaluation of portability. Results are presented in Figs. 6, 7, 8, and 9. As “DataPart”
and “CompPart” are static, their partitioning and load-balance schemes are constant
across systems. We can observe that, partitioning according to observations out-
performs that based on states for Alamo, Sierra and EC2.Small, while partitioning
according to states performs better on EC2.Large. This matches our expectation that
partitioning according to the weak factor yields a better load balance. In contrast,
Apala always shows excellent performance on all systems. It outperforms both static
schemes significantly on the HPC clusters and almost performs best on the virtual
clusters (ties with “DataPart” on EC2.Large and “CompPart” on EC2.Small). The
reason is straightforward, jointly considering computation and data always benefits
the partitioning and load-balance scheme.

5.5 Overhead of Partitioning

We measure the partitioning overhead for Apala with the two datasets and show
the results in Figs. 10 and 11. Since the results cover all the four clusters, they are
normalized to be plotted in the same figure. For each cluster, the execution time
with 8 processors is set to 1, and the values with 16, 32, 64, and 128 processors
are adjusted proportionally. The “CPU+I/O” parts for Apala include scientific
computations and data loads. The “Synchronization” parts represent the time Apala
spends on MPI_Isend, MPI_Irecv, and MPI_Barrier. The “Partitioning Overhead”
means processors are decomposing their local blocks and distributing the workload
to (or receiving from) others for load balance. At each tick, the four bars from the
left to the right represent Alamo, Sierra, EC2.Large, and EC2.Small, respectively.

We can see that the partitioning overhead in Apala is minimal for both datasets
on all the clusters. This is reasonable as each processor only estimates its local
workload, and such estimation is merely based on the data size, the computation

146 X. Yang and X. Li

Fig. 10 Comparison of the
CPU+I/O, the
synchronization, and the
partitioning overhead in terms
of time on the four clusters,
the first dataset

8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

Number of Processors
N

or
m

al
iz

ed
 E

xe
cu

tio
n

T
im

e

CPU+I/O
Synchronization
Partitioning Overhead

Fig. 11 Comparison of the
CPU+I/O, the
synchronization, and the
partitioning overhead in terms
of time on the four clusters,
the second dataset

8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

Number of Processors

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

CPU+I/O
Synchronization
Partitioning Overhead

scale, and system profiles. The partitioning overhead increases with respect to the
number of processors, as distributing the workloads involves more processors, and
the communication complexity increases accordingly.

Conclusion
In this chapter, we presented Apala, an adaptive workload partitioning and
allocation scheme for parallelizing data intensive state-transition applications
in various parallel systems. State-transition applications are representative
data-intensive scientific applications. They generally tackle grand-challenge
problems (e.g., weather forecasting, ocean prediction) and involve extremely
complex algorithms. Apala considers both computation and data in its
workload partitioning and allocation scheme. It introduces a time metric for
unifying the workloads of computation and data and profiles systems for
accurate workload estimation. The quad-tree structure is used to represent

(continued)

Adaptive Workload Partitioning and Allocation for Data Intensive Scientific Apps 147

the procedure of breaking up arrays into blocks, and techniques of virtual
decomposition and finding-side-neighbors are introduced to organize data
dependency. A decentralized distributing strategy is applied for distributing
blocks across processors. Experimental results from the real-world data
show that, Apala outperforms other partitioning schemes in terms of the
effectiveness of load balance by at most ten times. Moreover, it shows
excellent portability on diverse systems from HPC clusters to virtual clusters
in clouds and incurs marginal overhead of partitioning.

References

1. M. Fisher, J. Nocedal, Y. Trémolet, and S. Wright, “Data assimilation in weather forecasting: a
case study in pde-constrained optimization,” Optimization and Engineering, vol. 10, no. 3, pp.
409–426, 2009.

2. A. Robinson and P. Lermusiaux, “Overview of data assimilation,” Harvard reports in physi-
cal/interdisciplinary ocean science, vol. 62, 2000.

3. M. Berger and S. Bokhari, “A partitioning strategy for nonuniform problems on multiproces-
sors,” ToC, vol. 100, no. 5, pp. 570–580, 1987.

4. D. Nicol, “Rectilinear partitioning of irregular data parallel computations,” DTIC Document,
Tech. Rep., 1991.

5. F. Manne and T. Sørevik, “Partitioning an array onto a mesh of processors,” Applied Parallel
Computing Industrial Computation and Optimization, pp. 467–477, 1996.

6. O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Matrix multiplication on heterogeneous
platforms,” TPDS, vol. 12, no. 10, pp. 1033–1051, 2001.

7. E. Saule, E. O. Bas, and U. V. Catalyurek, “Partitioning spatially located computations using
rectangles,” in IPDPS. IEEE, 2011.

8. N. Wright, S. Smallen, C. Olschanowsky, J. Hayes, and A. Snavely, “Measuring and
understanding variation in benchmark performance,” in DoD High Performance Computing
Modernization Program Users Group Conference (HPCMP-UGC), 2009. IEEE, 2009, pp.
438–443.

9. T. Zou, G. Wang, M. Salles, D. Bindel, A. Demers, J. Gehrke, and W. White, “Making time-
stepped applications tick in the cloud,” in SoCC. ACM, 2011, p. 20.

10. G. Wang and T. Ng, “The impact of virtualization on network performance of amazon ec2 data
center,” in INFOCOM. IEEE, 2010, pp. 1–9.

11. H. Samet, “The quadtree and related hierarchical data structures,” ACM Computing Surveys
(CSUR), vol. 16, no. 2, pp. 187–260, 1984.

12. B. H. A. Hoekstra and R. Williams, “High-performance computing and networking.”
13. X. Yang, Z. Yu, M. Li, and X. Li, “Mammoth: autonomic data processing framework for

scientific state-transition applications,” in Proceedings of the 2013 ACM Cloud and Autonomic
Computing Conference. ACM, 2013, p. 13.

14. J.-R. Sack and J. Urrutia, Handbook of computational geometry. North Holland, 1999.
15. B. Aspvall, M. M Halldórsson, and F. Manne, “Approximations for the general block

distribution of a matrix,” Theoretical computer science, vol. 262, no. 1, pp. 145–160, 2001.
16. M. Xue, D. Wang, J. Gao, K. Brewster, and K. Droegemeier, “The Advanced Regional

Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation,”
Meteorology and Atmospheric Physics, vol. 82, no. 1, pp. 139–170, 2003.

148 X. Yang and X. Li

17. R. Van der Wijngaart and P. Wong, “Nas parallel benchmarks version 2.4,” NAS technical
report, NAS-02-007, Tech. Rep., 2002.

18. “IOR HPC Benchmark,” http://sourceforge.net/projects/ior-sio/.
19. H. P. F. Form, “High performance fortran language specification,” 1993.
20. M. Grigni and F. Manne, “On the complexity of the generalized block distribution,” Parallel

Algorithms for Irregularly Structured Problems, pp. 319–326, 1996.
21. M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential

equations,” Journal of computational Physics, vol. 53, no. 3, pp. 484–512, 1984.
22. X. Li and M. Parashar, “Hybrid runtime management of space-time heterogeneity for parallel

structured adaptive applications,” TPDS, pp. 1202–1214, 2007.
23. Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skew-resistant parallel processing of feature-

extracting scientific user-defined functions,” in SoCC. ACM, 2010, pp. 75–86.

http://sourceforge.net/projects/ior-sio/

DRAW: A New Data-gRouping-AWare Data
Placement Scheme for Data Intensive
Applications with Interest Locality

Jun Wang, Pengju Shang, and Jiangling Yin

Abstract Recent years have seen an increasing number of scientists employ
data parallel computing frameworks such as MapReduce and Hadoop to run
data intensive applications and conduct analysis. In these co-located compute and
storage frameworks, a wise data placement scheme can significantly improve the
performance. Existing data parallel frameworks, e.g. Hadoop, or Hadoop-based
clouds, distribute the data using a random placement method for simplicity and
load balance. However, we observe that many data intensive applications exhibit
interest locality which only sweep part of a big data set. The data often accessed
together results from their grouping semantics. Without taking data grouping into
consideration, the random placement does not perform well and is way below
the efficiency of optimal data distribution. In this paper, we develop a new Data-
gRouping-Aware (DRAW) data placement scheme to address the above-mentioned
problem. DRAW dynamically scrutinizes data access from system log files. It
extracts optimal data groupings and re-organizes data layouts to achieve the
maximum parallelism per group subjective to load balance. By experimenting two
real-world MapReduce applications with different data placement schemes on a 40-
node test bed, we conclude that DRAW increases the total number of local map
tasks executed up to 59.8 %, reduces the completion latency of the map phase up
to 41.7 %, and improves the overall performance by 36.4 %, in comparison with
Hadoop’s default random placement.

1 Introduction

The emerging myriad data intensive applications place a demand on high-
performance computing resources with massive storage. Academic and industrial
pioneers have been developing big data parallel computing frameworks and
large-scale distributed file systems to facilitate the high-performance runs of
data-intensive applications, such as bio-informatics [26], astronomy [25], and

J. Wang (�) • P. Shang • J. Yin
EECS, University of Central Florida, Orlando, FL 32826, USA
e-mail: jwang@eecs.ucf.edu; shang@eecs.ucf.edu; jyin@eecs.ucf.edu

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__7

149

mailto:jwang@eecs.ucf.edu
mailto:shang@eecs.ucf.edu
mailto:jyin@eecs.ucf.edu

150 J. Wang et al.

high-energy physics [23]. Our recent work [27] reported that data distribution in
distributed file systems could significantly affect the efficiency of data processing
and hence the overall application performance. This is especially true for those with
sophisticated access patterns.

In practice, many scientific and engineering applications have interest locality:
(1) domain scientists are only interested in a subset of the whole data set, and (2)
scientists are likely to access one subset more frequently than others. For example,
in the bioinformatics domain, X and Y chromosomes are related to the offspring’s
gender. Both chromosomes are often analyzed together in generic research rather
than all the 24 human chromosomes [15]. Regarding other mammal’s genome data
pools, the chimpanzee is usually compared with human [18,28]. Another example is,
in the climate modeling and forecasting domain, some scientists are only interested
in some specific time periods [29]. In summary, these co-related data have high
possibility to be processed as a group by specific domain applications. Here, we
formally define the “data grouping” to represent the possibility of two or more
data (e.g., blocks in Hadoop) to be accessed as a group. Such data grouping can
be quantified by a weight: a count that these data have already been accessed as
a group. The potential assumption is that if two pieces of data have been already
accessed together for many times, it is highly possible for them to be accessed as a
group in the future [11].

There are two different ways to distribute the grouped data: clustering, or
declustering. Each way is optimal for specific type of data intensive applications.
In the former case, some applications access binary files [10,14] or other structured
data that have data dependency. Data from the same group must be physically stored
together to form a valid input data. Hence, they should be clustered as much as
possible so as to reduce the data migration cost [31]. For the latter one, accessed
data does not have dependency [2] such as genome indexing [1] and word count [2].
Grouped data could be distributed as evenly as possible to maximize parallelism and
performance. In this paper, we focus on the MapReduce framework which splits the
input data-set into independent chunks. As one of the most popular MapReduce
implementations, Yahoo’s Hadoop [2] employs a random data placement scheme in
light of load balance and simplicity [4]. This allows the MapReduce [13] programs
to access the whole data set at full parallelism. Unfortunately, current random
placement schemes are inefficient when used on applications with high interest
locality—when only a subset of the data is processed—because the grouped data
could be clustered into a small number of nodes rather than being evenly distributed.

In this paper, we develop a new Data-gRouping-AWare data placement scheme
(DRAW) that takes into account the data grouping effects to significantly improve
the performance for data-intensive applications with interest locality. Without loss
of generality, DRAW is designed and implemented as a Hadoop-version prototype.
For a multi-rack Hadoop cluster, DRAW is launched at rack level (inter-rack) to
manage the data distribution. DRAW consists of three components: (1) a data access
history graph (HDAG) to scrutinize data access history patterns, (2) a data grouping
matrix (DGM) derived from HDAG to group related data, and (3) an optimal data
placement algorithm (ODPA) generating final data layout. By experimenting with

DRAW 151

real world genome indexing [1] and astrophysics applications [9], DRAW is able to
execute up to 59.8 % more local map tasks in comparison with random placement.
In addition, DRAW reduces the completion time of map phase by up to 41.7 %, and
the MapReduce task execution time by up to 36.4 %.1

The rest of this paper is organized as follow: Sect. 2 explains our motivation.
Section 3 describes the design of DRAW. Section 4 theoretically proves the ineffi-
ciency of Hadoop’s default random placement method. Sections 5 and 6 present
experimental methodology and our results and analysis respectively. Section 7
presents related works. Finally, “Conclusion” section concludes the paper.

2 Motivation

The raw data obtained from the scientific simulations/sensors needs to be uploaded
to the Hadoop cluster for subsequent MapReduce programs [27]. In these large scale
data sets, the accessing frequency and pattern of each data varies because of the
applications’interest locality. For example, UCSC Genome Browser [3] hosts the
reference sequences and working draft assemblies for a large collection of genomes.
It is obvious this different groups will access different subsets of these genome data:
mammal [12], insect [19], or vertebrate [33]. Even when in the same category, e.g.
mammal, different groups may focus on different species [18, 28].

By using Hadoop’s default random data placement strategy, the overall data
distribution may be balanced,2 but there is no guarantee that the data accessed as
a group is evenly distributed. To further explore why such clustered data grouping
creates performance barriers for the MapReduce program, we need to know how
a MapReduce program works. A MapReduce job is split into many map tasks to
process in parallel. Map tasks intend to be allocated to the nodes with the needed
data locally being stored to achieve “compute-storage co-localit”. Without evenly
distributed grouping data, some map tasks are either scheduled on other nodes
which remotely access the needed data, or they are scheduled on these data holding
nodes but have to wait in the queue. These map tasks violate the data locality and
could severely drag down the MapReduce program performance [2]. We show an
example in Fig. 1: if the grouping data are distributed by Hadoop’s random strategy,
the shaded map tasks with either remote data access or queueing delay are the
performance barriers; whereas if these data are evenly distributed, the MapReduce
program can avoid these barriers.

1These numbers can be affected by the number of launched reduce tasks, the required data size,
etc.
2If the initial data distribution is not balanced, Hadoop users can start a balancer (an utility in
Hadoop), to re-balance the data among the nodes.

152 J. Wang et al.

map map

map map

map map

map map

map map

map map

map map

map map

Node1 Node2 Node3 Node4

Node1 Node2 Node3 Node4

map

map

Blocks of interest

Other/empty blocks

Map with data
locality

Map without
data locality

Hadoop's random
data placement
may cluster the
blocks of interest

Ideal data
placement
evenly distributing
the grouping data

T
he

 m
ax

im
um

 o
f s

im
ul

ta
ne

ou
s

m
ap

s
on

 e
ac

h
no

de
 is

 2
.

map

map map

map

map
Map waiting
in the queue

Fig. 1 A simple case showing the efficiency of data placement for MapReduce programs

Therefore, the reason for the inefficiency of Hadoop’s random data placement
is because the data semantics, e.g. grouping access patterns (caused by applica-
tions’interest locality), are lost during the data distribution. On the other hand,
dynamic data grouping is an effective mechanism for exploiting the predictability
of data access patterns and improving the performance of distributed file systems
[11, 16, 22]. In this work, we incorporate data grouping semantics into Hadoop’s
data distribution policy to improve the MapReduce programs’performance

3 Data-gRouping-AWare Data Placement

In this section, we design DRAW at rack-level, which optimizes the grouping data
distribution inside a rack. There are three parts in our design: a data access history
graph (HDAG) to exploit system log files learning the data grouping information;
a data grouping matrix (DGM) to quantify the grouping weights among the data
and generate the optimized data groupings; an optimal data placement algorithm
(ODPA) to form the optimal data placement.

DRAW 153

3.1 History Data Access Graph (HDAG)

HDAG is a graph describing the access patterns among the files, which can
be learned from the history of data accesses. In each Hadoop cluster rack, the
NameNode maintains system logs recording every system operation, including the
files which have been accessed. A naive solution can be: monitor the files which
are being accessed; every two continuously accessed files will be categorized in the
same DRAW 5 group. This solution is simple for implementation because it only
needs a traversal of the NameNode log files. However in practical situations there
are two problems: first, the log files could be huge which may result in unacceptable
traversal latency; second, the continuously accessed files are not necessarily related,
e.g. the last file accessed by task x and the first file accessed by task x+1. Therefore,
we need to define checkpoint to indicate how far the HDAG will traverse back in the
NameNode logs; and we also need to exploit the mappings between tasks and files
to accurately learn the file access patterns. Note that in Hadoop clusters, files are
split into blocks which is the basic data distribution unit; hence we need to translate
the grouping information at file level into block level. Fortunately, the mapping
information between files and blocks can be found in the NameNode. Figure 2 shows
an example of HDAG: given three MapReduce tasks, t1 accesses d1, d2, d3, d6,
d7, d8, here d is block; t2 accesses d2, d3, d4, d7, d9; and t3 accesses d1, d2,
d5, d6, d7, d10. The accessing information initially generated from the log files is
shown as Fig. 2a. Thereafter we can easily translate the table into the HDAG shown
as Fig. 2b. This translation step makes it easier to generate the grouping Matrix for
the next step.

d1

Data: d1 -- d10
Task: t1--t3

d8

d2 d3

d7
d6

d10

d4

d5

d9

t1

t1
t1

t1

t2

t2
t2

t2

t3

t3
t3

t3

t3

Tasks Data of interest
t1 {d1,d2,d3,d6,d7,d8}
t2 {d2,d3,d4,d7,d9}
t3 {d1,d2,d5,d6,d7,d10}

HDAGa b

Fig. 2 An example showing the History Data Access Graph (HDAG)

3.2 Data Grouping Matrix (DGM)

Based on HDAG, we can generate a data grouping matrix (DGM) showing the
relation between every two data blocks. Given the same example as shown in Fig. 2,
we can build the DGM as shown in Fig. 3 (step 1 and step 2), where each element

154 J. Wang et al.

d1
t1

,t3

d2
t1

,t2
,t3

d3
t1

,t2

d4
t2

d5
t3

d6
t1

,t3

d7
t1

,t2
,t3

d8
t1

d9
t2

d1
0

t3

d1
d2

d3
d4

d5
d6

d7
d8

d9
d1

0

d1
2

2
1

0
0

2
2

1
0

1

d2
2

2
2

1
0

2
3

1
1

1

d3
1

2
2

1
0

1
2

1
1

0

d4
0

1
1

1
0

0
1

0
1

0

d5
0

0
0

0
1

1
1

0
0

1

d6
2

2
1

0
1

2
2

1
0

1

d7
2

3
2

1
1

2
3

1
1

1

d8
1

1
1

0
0

1
1

1
0

0

d9
0

1
1

1
0

0
1

0
1

0

d1
0

1
1

0
0

1
1

1
0

0
1

t1
{d

1,
d2

,d
3,

d6
,d

7,
d8

}

t2
{d

2,
 d

3,
d4

,d
7,

d9
}

t3
{d

1,
d2

,d
5,

d6
,d

7,
d1

0}

6
7

1
2

3
10

5
9

8
4

6
3

2
2

2
2

1
1

0
1

1

7
2

3
2

2
2

1
1

1
1

1

1
2

2
2

2
1

1
0

0
1

0

2
2

2
2

2
2

1
0

0
1

0

3
2

2
1

2
2

0
0

1
1

1

10
1

1
1

1
0

1
1

0
0

0

5
1

1
0

0
0

1
1

0
0

0

9
0

1
0

0
1

0
0

1
0

1

8
1

1
1

1
1

0
0

0
1

0

4
1

1
0

0
1

0
0

1
0

1

10
5

9
8

4

10
1

1
0

0
0

5
1

1
0

0
0

9
0

0
1

0
1

8
0

0
0

1
0

4
0

0
1

0
1

4
9

5
10

8

4
1

1
0

0
0

9
1

1
0

0
0

5
0

0
1

1
0

10
0

0
1

1
0

8
0

0
0

0
1

st
ep

1

st
ep

2

st
ep

3

D
at

a
G

ro
up

in
g

M
at

rix
 (

D
G

M
)

Clustered DGM (CDGM)

A
ss

um
e

th
er

e
ar

e
5

da
ta

no
de

s

st
ep

4

st
ep

5

S
ub

-m
at

rix
fo

r
O

D
P

A
(O

S
M

)

G
ro

up
 1

T
as

ks
et

s(
ts

)

Group 2

F
ig

.3
A

n
ex

am
pl

e
sh

ow
in

g
th

e
gr

ou
pi

ng
m

at
ri

x
an

d
th

e
ov

er
al

lfl
ow

to
cl

us
te

r
da

ta
ba

se
d

on
th

ei
r

gr
ou

pi
ng

w
ei

gh
ts

DRAW 155

DGMi;j = groupingi;j is the grouping weight between data i and j . Every DGMi;j

can be calculated by counting the tasks in common between task sets of tsi and tsj .
The elements in the diagonal of the DGM show the number of jobs that have used
this data. In DRAW, DGM is a n by n matrix, where n is the number of existing
blocks. As we stated before, one data belonging to group A may belong to group B
at the same time; the grouping weight in the DGM denotes “how likely” one data
should be grouped with another data.

After knowing the DGM in Fig. 3, we use a matrix clustering algorithm to group
the highly related data in step 3. Specifically, Bond Energy Algorithm (BEA) is
used to transform the DGM to the clustered data grouping matrix (CDGM). Since
a weighted matrix clustering problem is N–P hard, the time complexity to obtain
the optimized solution is O(nn), where n is the dimension. The BEA algorithm
saves the computing cost by finding the sub-optimal solution in time O(n2) [17];
it has been widely utilized in distributed database systems for the vertical partition
of large tables [24] and matrix clustering work [17]. The BEA algorithm clusters the
highly associated data together indicating which data should be evenly distributed.
Assuming there are 5 DataNodes in the Hadoop cluster, the CDGM in Fig. 3
indicates data f6; 7; 1; 2; 3g (group 1) and f4; 9; 5; 10; 8g (group 2) should be evenly
distributed when placed on the 5 nodes. Note that we have only 10 pieces of
data in our example, after knowing that f6; 7; 1; 2; 3g should be placed as a group
(horizontally), it is natural to treat the left data f4; 9; 5; 10; 8g as another group.
Hence step 4 and step 5 in Fig. 3 are not necessary for our case, but when the number
of remaining data (after recognizing the first group) is larger than the number of
nodes, more clustering steps are needed.

3.3 Optimal Data Placement Algorithm (ODPA)

Knowing the data groups alone is not enough to achieve the optimal data placement.
Given the same example from Fig. 3 , random placing of each group, as shown in
Fig. 4(1), task 2 and task 3 can only run on 4 nodes rather than 5, which is not
optimal.

This is because the above data grouping only considers the horizontal rela-
tionships among the data in DGM, and so it is also necessary to make sure the
blocks on the same node have minimal chance to be in the same group (vertical
relationships). In order to obtain this information, we propose an algorithm named
Optimal Data Placement Algorithm (ODPA) to complete our DRAW design, as
described in Algorithm 1. ODPA is based on sub-matrix for ODPA (OSM) from
CDGM. OSM indicates the dependencies among the data already placed and the
ones being placed. For example, the OSM in Fig. 3 denotes the vertical relations
between two different groups (group 1: 6, 7, 1, 2, 3 and group 2: 4, 9, 5, 10, 8).

Take the OSM from Fig. 3 as an example, The ODPA algorithm starts from the
first row in OSM, whose row index is 6. Because there is only one minimum value 0
in column 9, we assign DP[6] = f6; 9g, which means data 6 and 9 should be placed

156 J. Wang et al.

node1 node2 node3 node4 node5
d6 d7 d1 d2 d3
d4 d9 d5 d10 d8

Tasks requried data Involved nodes
t1 d1,d2,d3,d6,d7,d8 1,2,3,4,5
t2 d2,d3,d4,d7,d9 1,2,4,5
t3 d1,d2,d5,d6,d7,d10 1,2,3,4

node1 node2 node3 node4 node5
d6 d7 d1 d2 d3
d9 d8 d4 d10 d5

Tasks requried data Involved nodes
t1 d1,d2,d3,d6,d7,d8 1,2,3,4,5
t2 d2,d3,d4,d7,d9 1,2,3,4,5
t3 d1,d2,d5,d6,d7,d10 1,2,3,4,5

Without ODPA, the parrallelism
may be not maximized

Optimized data layout
maximizes the parallelism

Not optimal Optimal
(1) (2)

Fig. 4 Without ODPA, the layout generated from CDGM (Clustered Data-Grouping Matrix) may
be still non-optimal

Algorithm 1: ODPA algorithm
Input: The sub-matrix (OSM) as shown in Fig. 3 : M Œn�Œn�; where n is the number of data
nodes;
Output: A matrix indicating the optimal data placement: DPŒ2�Œn�;
Steps:
for each row from M Œn�Œn� do

R= the index of current row;
Find the minimum value V in this row;
Put this value and its corresponding column index C into a set MinSet;
MinSet = C1, V 1, C 2, V 2, ; // there may be more than one minimum value
if there is only one tuple (C1, V 1) in MinSet then

//The data referred by C1 should be placed with the data referred by R on the same
node;

DPŒ0�ŒR� D R;
DPŒ1�ŒR� D C1;
Mark column C1 is invalid (already assigned);
Continue;

end if
for each column Ci from MinSet do

Calculate SumŒi � D sum.M Œ?�ŒC i�/; // all the items in Ci column
end for
Choose the largest value from Sum array;
C = the index of the chosen Sum item;
DPŒ0�ŒR� D RI
DPŒ1�ŒR� D C I
Mark column C is invalid (already assigned);

end for

on the same data node because 9 is the least relevant data to 6. When checking row 7,
there are five equal minimum values, which means any of these five data are equally
related on data 7. To choose the optimal candidate among these five candidates, we
need to examine their dependencies to other already placed data, which is performed
by the FOR loop calculating the Sum for these five columns. In our case, Sum[8] = 5

DRAW 157

is the largest value; by placing 8 with 7 on the same node, we can, to the maximum
extent, reduce the possibility of assigning it onto another related data block. Hence,
a new tuple f7; 8g is added to DP. After doing the same processes to the rows with
index 1, 2, 3, we have a DP = ff6; 9g ; f7; 8g ; f1; 4g ; f2; 10g ; f3; 5gg, indicating the
data should be placed as shown in Fig. 4(2). Clearly, all the tasks can achieve the
optimal parallelism (5) when running on the optimal data layout. With the help of
ODPA, DRAW can achieve the two goals: maximize the parallel distribution of the
grouping data, and balance the overall storage loads.

3.4 Other Considerations

3.4.1 The Cases Without Interest Locality

DRAW is designed for the applications showing interest locality. However there
are some real world applications do not have interest locality. In this case, all the
data on the cluster belongs to the same group; or the access is not following any
specific pattern. Therefore the data grouping matrix contains the same grouping
weight for each pair of data (except for the diagonal numbers); the BEA algorithm
will not cluster the matrix, all the data blocks will stay on the nodes and distributed
as the default random data distribution. Because all the data are equally popular,
theoretically random data distribution can evenly balance them onto the nodes.
In this case, DRAW has the same performance as Hadoop’s random data distribution
strategy.

3.4.2 The Cases with Special Interest Locality

The purpose of DRAW is to optimize the performance for the common applications
which follow or do not totally deviate from the previous interest locality. However
in practice, some applications may have unpredicted access patterns that DRAW
did not study yet. These uncommon queries may suffer from bad performance
because DRAW cannot guarantee these accessing data are well distributed, but
these patterns will be considered into DRAW’s future data organization to deal with
future occurrences.

3.4.3 Multiple Jobs with Multiple Data Sets

For simplicity, the above design is for the cases when multiple jobs are accessing
a single data set on the cluster. It can be easily scaled up to multiple jobs with
multiple data sets. Given multiple jobs with special interest on different data sets,
there will be NO data affinity among these sets; therefore in these cases, there will be
multiple HDAGs, each of which is corresponding to a special data set and processed
separately.

158 J. Wang et al.

3.4.4 Cluster/Datacenter Using Virtualization

Some clusters and data centers may use virtualization to increase utilization
efficiency and dramatically lower capital and operating costs. The virtualization
layer always make the data locality fuzzy because the relationship between virtual
machines and physical machines is not transparent for users and not static. DRAW
makes an potential assumption that the distribution of virtual machines among the
physical machines is balanced and managed by the virtualization layer [5]. On top
of VMs load balancing, DRAW is able to provide optimized data distribution to
improve the applications performance. In another word, DRAW is a complimentary
benefit no mater whether the cluster/datacenter is virtualized or not.

4 Analysis

In order to reveal the importance and necessity of DRAW, we need to show how
inefficient the default random data distribution strategy is. Specifically, we quantify
four factors in this section: the possibility for a random data distribution to be
an optimal solution, the optimal degree of a given data distribution, how optimal
the random data distribution can achieve, and how much improvement the random
solution can achieve by using multi-replica in the same rack.

We make two assumptions: (1) uniform block size (64 M) is used; (2) the
default InputSplit is used, so the Hadoop block size is treated as the size for each
input split [2]. The Hadoop Map/Reduce framework spawns one map task for each
InputSplit, hence we assume that the number of map tasks is the same as the number
required blocks.

4.1 The Chance That “Random = Optimal”

Given a cluster with N nodes, and a running application accessing M blocks that are
distributed on these nodes, the “optimal data placement” should be able to distribute
the M data as evenly as possible so that the corresponding M map tasks can also
benefit from the maximum parallelism and data locality. However the practical
Hadoop cluster’s configuration may result in another “optima” case: if the maximum
number of simultaneous map tasks on each node is 2, and each node is equipped
with a dual-core processor, then the performance of running 2 maps on a single
node is the same as running 1 map. Hence we define the “optimal data placemen”
as: given a TaskTracker running l maps, l ¤ 0, any other TaskTracker running
j ¤ 0 maps has to obey jl � j j < 2; any other TaskTracker running j D 0 map has
to obey jl � j j � 2. As shown in Fig. 5, both data placements are optimal for the
corresponding MapReduce programs.

DRAW 159

d1

d2

d3d1 d2 d3

map1

map2

map3map1 map2 map3

Can run simultaneously
data: d1, d2, d3
The MapReduce job launches 3 maps to access these data

Fig. 5 Two map tasks are allowed run simultaneously; both data layouts are optimal for the
MapReduce programs accessing d1 � d3

We have two cases to analyze: the number of data (M) is less than or equal to the
number of nodes (N); and the M is larger than N.

Case 1 M � N In this case, all the M blocks can be fit into one stripe on the data
nodes, after which there are two ways to achieve the “optimal data placement”:

1. M blocks are evenly distributed on M nodes. The possibility for Hadoop’s
random data placement to achieve this distribution is: C M

N =N M , where C M
N

means choosing M nodes from N nodes to hold the M data, N M means the
number of all possible data layouts (each block of M has N possible locations);

2. i nodes hold 1 block each, and other M�i
2

nodes are allowed to hold 2 blocks

each. The possibility of this case is:
†

M
2

iD1ŒC i
N :C i

M :C
M�i

2
N �i :…

M�i
2

j D0 C 2
M�i�2:j �

N M , where
C i

N :C i
M means the nodes holding one block each, the rest of the items are for

the nodes holding two blocks each.

Hence, when M � N , the possibility of achieving “optimal data placement” for
Hadoop’s random data placement is the combination of above two equations:

C M
N C†

M
2

iD1ŒC i
N :C i

M :C
M�i

2

N�i :…
M�i

2

jD0 C 2
M�i�2:j �

N M
(1)

Case 2 M > N In this case, M D kN C d D .k C 1/:d C k:.N � d/, where
k � 1, d � 0. The “optimal data placement” can be achieved by distributing the
blocks in two groups: the first group has d nodes, each of which host k C 1 blocks;
the second group has N � d nodes, each of which hosts k blocks. In this way, each
node will be assigned the same number of map tasks. For random data placement,
the possibility of achieving this is shown in Eq. (2). The number of all possible data
layout is still N M .

C d
N …d�1

jD0C kC1
M�.kC1/j :C N�d

N�d …N�d�1
jD0 C k

M�.kC1/d�k:j

N M
(2)

160 J. Wang et al.

Fig. 6 The Possibility of
achieving “OPtimal data
placement” (POP) for
Hadoop’s default data
placement algorithm

Hence, the Possibility of achieving the “OPtimal data placement” (POP) for
Hadoop’s default data placement algorithm is the combination of Eqs. (1) and
(2). It is clear that POP is related to three factors: the number of data(blocks) of
interest, the number of nodes in the Hadoop cluster, and the maximum number of
simultaneous map tasks on a single node. We already assume the last factor as 2
in this paper. We plot the trajectory of POP in Fig. 6. Note that in the z axis, we
show the log value of the POPs for clarity: when z D 0, it means the random data
placement is the “optimal data placement”; when z < 0, it means the possibility
is 10z. As Fig. 6 shows, for a specific number of data of interest (>2), along with
the increasing number of nodes in the Hadoop cluster, POP is decreasing; given a
cluster with a specific number of nodes, the increasing number of data of interest
leads to a lower POP as well. Based on our analysis, for a small scale cluster as our
test bed which only has 40 nodes, when the number of data of interest is larger than
5 (320 M), it is highly unlikely that (POP D 10�100) the random data placement
will achieve optimal data layout. Unfortunately, most of data-intensive applications
work on large-scale (GB or even PB) data [13].

4.2 The Optimal Degree of a Given Data Distribution

As we already proposed the definition of the optimal data distribution, the ones
which do not satisfy the requirement are not optimal, but it is still interesting to
know “how optimal” they are. Therefore, we propose a concept “optimal degree
of data distribution” , denoted as Degree. Degree is between Œ0; 1�: Degree for the
“optimal data placement” in Sect. 3.3 is 1; in the cases when all the interested data
are clustered in one node, Degree is 0.

To calculate Degree, we assume there are N nodes, M data of interest, the
maximum number of simultaneous map tasks on a single node is k, the number
of data of interest on ith node is Bi , so M D †n

iD1Bi . As a result, the Degree can
be defined as Eq. (3). The max.Bi / � Bopt means the difference between the node
storing the max number of (interest) data in a random distribution and any node

DRAW 161

in optimal data distribution; the less this number is, the more efficient the random
solution is; Bopt can be denoted as

˙
M

N�K

�
:k. Symbol “de” is used because of

simultaneous running map tasks (x � x C k � 1 blocks result in the same number
of map cycles to run the maps simultaneously); note that the ks cannot be canceled
because of the existence of “de”.

Degree D 1 �
˙
.max.Bi / � Bopt/=k

�

˙
.M � Bopt/=k

�

D 1 �
˙
.max.Bi / �

˙
M

N:K

�
:k/=k

�

˙
.M � ˙

M
N:K

�
:k/=k

�

(3)

We use an example in Fig. 7 to show how to use Eq. (3). Assume we have N D 3

nodes, M D 5 data of interest, and k D 2 as in previous analysis, Fig. 7 shows four
different data distribution. Bopt D

˙
M

N:K

�
k D 2, hence in optimal data distribution,

the maximum number of blocks on a single node is 2. In practical MapReduce

Fig. 7 An example to show
how to use Eq. (4) to calculate
the optimal degree of data
distribution: Degree.A/ D 0

(clustered), Degree.B/ D
Degree.C / D 0:5

(suboptimal),
Degree.D/ D 1 (optimal)

map cycle
a b

c d

1

2

3

1

2

1

2

1

map cycle

running, (A) can finish the five maps on the five blocks in three mapping cycles
(because k D 2), while (B) and (C) need two cycles, D needs only one cycle.
We can calculate the Degrees for these four cases to quantify their efficiency: (A),
max.Bi / D M D 5, hence the Degree.A/ D 0, which means .A/ is the least
optimal distribution; similarly we also get Degree.B/ D 0:5, Degree.C / D 0:5

(suboptimal) and Degree.D/ D 1 (optimal).

4.3 The “Optimal-Degree” of the Random Distribution

We already proved random distribution can hardly achieve optimal solution in
Sect. 4.1, but it is also necessary to show how close the random and optimal data

162 J. Wang et al.

distributions are. Therefore we quantify the level of approximation (LoA) between
random and optimal solutions as shown in Eq. (4)3; where P.Degree/ means the
possibility of a random solution achieving the distributions with the Degree of
optimal data distribution, e.g. P.0/ is the possibility for random data distribution
to cluster all the data of interest onto the same node (Degree D 0).

LoA D
Z 1

DegreeD0

Degree:P.Degree/

D
Z d M

N:K e:k
max.Bi /DM

Degree:P.Degree/

(4)

It is observed that LoA is a function related to three factors: M (number of
blocks of interest), N (number of nodes in the cluster), and k (number of allowed
simultaneous map tasks on a single node). We use sampling technique to obtain
the trajectories of LoA to learn how the factors affect the efficiency of random data
distribution. We set N D 40 in the simulation according to the cluster size of our test
bed; M D10, 30, 60, 80, k D1, 2. The results are shown in Fig. 8. Larger k always
increases LoA because the more simultaneously running map tasks will hide the
unbalanced data distribution better; M , the number of data of interest, affects LoA
in an uncertain way: when M � N (MD10, ND40), increasing M may decrease
LoA but when M is close the N or M > N, increasing M leads to a larger LoA.
However, the average LoA for k � 2 is less than 45 %, which means the random data
distribution can only achieve “less-than-half-optimal” data distribution, on average.

Fig. 8 Level of approximation between random data distributions and the optimal solution, the
number of nodes N is set to 40

3In other words, LoA denotes how sub-optimal the random distribution is, on average. The more
LoA is close to 1, the closer the random and optimal approaches are.

DRAW 163

4.4 Multi-Replica Per Rack

In previous analysis, we assume that there is only one copy of each data existing
in each rack. This assumption is derived from the practical Hadoop configurations,
e.g. Hadoop with single-replica for each data [7, 32], Hadoop with three replica for
each data but put into three different racks [8], etc. However, there are some Hadoop
clusters that keep two or even three copies of the same data in the same rack [2] to
provide better write performance. As we stated in Sect. 2, the more replica for each
data in the same rack, the more optimal data distribution the random strategy can
achieve (given that any two replica cannot stay in the same node). In order to prove
our DRAW is still necessary for multiple replica Hadoops, we launch intensive
experiments as sensitivity study in Sect. 6.3.

5 Methodology

5.1 Test Bed

Our test bed consists of 40 heterogenous nodes in total with Hadoop 0.20.1 installed
on it. All these nodes are in a single rack. The cluster and node configurations are
shown in the Table 1. In our setup, the cluster’s master node is used as the NameNode
and JobTracker, whereas the 39 worker nodes are configured to be DataNodes and
TaskTrackers.

Table 1 CASS cluster configuration

Fourteen compute/data nodes and one head node

Make & model Dell PowerEdge 1950

CPU 2 Intel Xeon 5140, Dual Core, 2.33 GHz

RAM 4.0 GB DDR2, PC2-5300, 667 MHz

Internal HD 2 SATA 500 GB (7,200 RPM) or 2 SAS 147 GB (15 K RPM)

Network connection Intel Pro/1000 NIC

Operating system Rocks 5.0 (Cent OS 5.1), Kernel: 2.6.18-53.1.14.e15

Twenty-five compute/data nodes

Make & model Sun V20z

CPU 2x AMD Opteron 242 @ 1.6 GHz

RAM 2 GB—registered DDR1/333 SDRAM

Internal HD 1x 146 GB Ultra320 SCSI HD

Network connection c1x 10/100/1000 Ethernet connection

Operating system Rocks 5.0 (Cent OS 5.1), Kernel: 2.6.18-53.1.14.e15

Cluster network

Switch make & model Nortel BayStack 5510-48T Gigabit Switch

164 J. Wang et al.

5.2 Applications

We launched two applications on the real scientific data in our experiments: one
from bio-informatics area, and one from astrophysics research.

Bowtie [1], is a real application from genome research. This application indexes
the chromosomes with a Burrows-Wheeler indexing [6] algorithm to keep their
memory footprint small. The genome’s indexing is a strategy for rapid gene search
or alignment. In our experiments, Bowtie’s indexing algorithm is implemented
in MapReduce framework. The data is about 40 GB of genome data that is
downloaded from [3], including human, horse, chimpanzee, etc. 32 species in total.
The application is performed on specific species, or random combinations of species
(interest locality).

The second application is a mass analyzer working with astrophysics data sets
for halo finding [9]. The data sets are comprised of particle positions and velocities.
Specifically, each particle has one corresponding file, which has the following
content: position.x; y; z/, velocity.Vx; Vy; Vz/, particlemass, and particletag. The
total size of the download is about 10 GB of particle data in total, and each particle
file is exactly 512 MB. The mass analyzer reads the mass data for specific particles,
or combinations of particles, and calculates the average mass in each area (interest
locality); the area size is pre-defined.

We first run the application 20 times on randomly chosen data sets to build the
grouping history. Then DRAW is used to re-organize the data. Finally we re-run
the application (which also randomly selects species to do indexing) on the newly
distributed data for ten times and record the average performance, which is used to
compare with the programs performance on random data distribution.

5.3 Implementation

Data Grouping Learning Data grouping information can be derived from the
NameNode log file, which maintains all the system operations. We filter out the file
accessing information from the log file first, and the files accessed by the same task
(denoted by the same “JobID”) are considered as grouping files in HDAG, as shown
in Fig. 2. After the log traversal, a matrix showing the data grouping at file-level
(file-grouping) can be generated. The mapping between filenames and blocks is
exploited4 to generate the “Data Grouping Matrix (DGM)” at block level (as shown
in Fig. 3). In order to improve the log learning efficiency, we set a check point using
the time stamp when we used DRAW last time, thus the current log learning starts
from the most recent operations back to the check point.

4By using Hadoop system call “fsck” with parameters “-files -blocks -location” for each file.

DRAW 165

Data Grouping Clustering Given the data grouping matrix, Bond Energy Algo-
rithm is used to perform matrix clustering. The size of each group is same as the
number of nodes in the cluster. In this way, all the data groups should be placed
one after another from right-top to the left-bottom in the clustered DGM(CDGM)
(Fig. 3). As we explained in Sect. 3.3, in order to achieve the optimal data placement,
we also need ODPA algorithm to generate the final DRAW matrix showing the target
data layout.

Data Placement The most challenging part of this work is how to implement the
data re-organization according to the “optimal data layout” generated by DRAW.
In a Hadoop cluster, all the information about the block locations, and mappings
between the files and blocks, are located in the NameNode. If we want to re-
organize the data in the cluster, we need to, accordingly, modify the information
in the NameNode. However, the NameNode does not provide any functionality that
allows the users to modify this information; it just passively updates them based on
the periodical reports from the living DataNodes. On the other hand, the DataNodes
only support read, write, and delete operations, but there is no available function to
migrate the data among the DataNodes. We solve this problem by modifying the
Hadoop storage system. Our observations show that each block and its metadata
on the DataNode are registered in a log file, which reports to the NameNode
for updating. By logging in each DataNode which requires data re-organization,
we migrate the data, metadata, and its registration information as a group. After
the migration, we extend HDFS to push the DataNodes’updated layout back to the
NameNode.

Launching Frequency Obviously, the lower launching frequency of DRAW may
slowly respond to the data semantics changes, while higher frequency may cause
high data mining and calculating overhead. In practical situations, the value of the
time interval should be determined by the workload characteristics. Our current
design adopts self-learning launching frequency to achieve the best performance
and accuracy as follows: (1) the initial launching frequency is given by a pre-
defined number, e.g. 24 h in our experiments; (2) we monitor the data migration and
evaluate the access-pattern changing ratio based on the amount of data relocated; (3)
if the changing ratio is high enough to meet our predefined jumping threshold,5 we
increase the frequency by two times (twice more frequently), e.g. 24 h initial value
now is 12 h; (4) if the changing ratio is lower than our diving threshold,6 we will
adopt a two times lower frequency, e.g., 48 h in our case; (5) otherwise, we keep the
current DRAW launching frequency.

If the launching frequency becomes higher than our pre-defined shutdown
threshold, then it means the data has little interest locality (or the data access is not

5In current version, we define the jumping threshold as 30 %, which means if 30 % or more data
are being relocated, a new higher DRAW launching frequency will be generated.
6Similar to jumping threshold, we define this diving threshold as 10 %, which means if 10 % or
less data are being relocated, we will lower the frequency.

166 J. Wang et al.

following any specific pattern). In this case, DRAW will be shut down because this
application cannot be optimized by data re-organization. This DRAW -shutdown
threshold currently is defined as: if the data changing ratio keeps triggering the
jump-threshold continuously for five times, we will shut down DRAW until the user
manually enable it again.

6 Experimental Results and Analysis

In this section, we present four sets of results: the unbalanced data distribution
caused by Hadoop’s default random data placement; comparison of the traces of the
MapReduce programs on the randomly placed data, and the DRAW’s re-organized
data; the sensitivity study used to measure the impact of the NR (number of replica
for each data block in Hadoop) on DRAW; and the overhead of performing DRAW
data re-organization.

6.1 Experiment Results

Intuitively, the data distribution may be related to the way the data is uploaded.
There are two ways for the users to upload data: bulkily upload all the data at once;
or upload the data based on their categories, e.g. species or particles in our cases. The
second way considers the human-readable data grouping information (in our case,
data belonging to the same species or particles are assumed to be highly related)
rather than the blindly uploading as in the first method. We upload the data to our
test bed by using these two data uploading methods, 20 times for each. The overall
data distributions are similar in these runs.

First, after bulk uploading the genome data of six species (a subset of our 40
GB genome data), the data distribution (from a randomly picked run) is shown in
Fig. 9(1). Given a research group only interested in human [18, 28], the requiring
data is clustered as shown in Fig. 9(2). The human data is distributed on only half
(51.3 %) of the cluster, which means the parallelism for the future MapReduce job
is not optimal.

When using the category-based uploading method, we surprisingly find that the
overall data distribution is similar to what is shown in Fig. 9. To highlight the
unbalanced distribution of the related data, we quantify the degree of unbalance
with 1 � # of nodes having the data

of nodes . With 20 runs using the species-based data uploading
method, on average, the data of a specific species is distributed over only 53.2 %
nodes of the cluster. The conclusion shows that even when the data is uploaded
based on the initial data grouping information, the Hadoop’s random data placement
is not able to achieve the maximal parallelism for the associate data.

In order to show the efficiency of the DRAW data placement strategy, Fig. 10
plots the balanced data distribution (human) after using DRAW on our Hadoop
test bed. The grouping information to generate HDAG is artificially defined as: all

DRAW 167

Fig. 9 The data layout after bulk uploading six species’genome data, and the human’s genome
data layout

Fig. 10 The layout of human genome data after DRAW placement

human data is accessed as a group. Note that we assume the human data is the single
grouping data only for Fig. 10, so that to avoid the noise from other data groups. This
will be released in the following sections.

6.2 Performance Improvement of MapReduce Programs

6.2.1 Genome Indexing

Based on the DRAW re-organized 40 GB genome data, we run the Bowtie indexing
MapReduce program to index the human’s chromosomes. Figure 11 shows the
traces of two runs on DRAW’s re-organized data and Hadoop’s randomly placed

168 J. Wang et al.

Fig. 11 The running of Genome indexing MapReduce program on human genome data

Table 2 Comparison of two
runs of Genome Indexing
application

Total maps Local maps Ratio

On DRAW 399 302 76.1 %

On random 399 189 47.1 %

data, respectively. We configure the MapReduce job according to the assumptions
described in Sect. 4. The number of reducers is set as large as possible so that
the reduce phase will not be the performance bottleneck. In our case, we use 39
reducers. The map phase running on DRAW’s data is finished 41.7 % earlier than
the one running on randomly placed data, and the job’s overall execution time is also
improved by 36.4 % when using DRAW’s data. The reason is shown in Table 2. The
MapReduce job running on the DRAW’s re-organized data has 76.1 % maps which
benefit from having data locality, compared with 47.1 % from the randomly placed
data; the number of local map tasks is increased by .320 � 189/=189 D 59:8 %.

Note that there are still 23.9 % maps which are working without having data
locality even after the DATA’s data re-organization. There are two reasons: first, the
data grouping information the BEA algorithm used is generated from all previous.

MapReduce programs rather any specific one, and the ODPA follows High-
WeightFirst-Placed strategy, which means the data with higher (accumulative)
grouping weights will be granted higher priority to be evenly distributed. In other
words, the distribution of the non-hottest data is only optimized but may be not
100 % perfect for the corresponding MapReduce programs. Second, the matrix
clustering is an N–P hard problem, hence the clustered grouping matrix generated
from BEA algorithm, whose time complexity is O.n2/ rather than O.nn/, is a
pseudo-optimal solution. Adoption of BEA algorithm is a reasonable tradeoff
between efficiency and accuracy. However, since the hottest data will be granted the
highest priority to be clustered, the applications interested in these data can achieve
the ideal parallelism. Apparently, before we run the human genome indexing
application, the human data is not the hottest based on the history information; its
data distribution is changed and different from what Fig. 10 shows.

DRAW 169

6.2.2 Mass Analyzer on Astrophysics Data

In the above bio-informatics applications, the data size of each species, especially
for the mammals, is about 3 GB after decompression. When using Hadoop’s default
64 MB block size, about 48 blocks are required to represent one species, which
is greater than the 40 nodes in our test bed. In this section, we do experiments on
smaller data sets: each particle’s data is exactly 512 M, which will be split into only
8 blocks.

Our Mass Analyzer on the astrophysics data tries to calculate the average mass
of each area. The results are shown in Fig. 12. DRAW reduces the map phase by
18.2 %, and the overall performance of the MapReduce program is improved by
only 11.2 %. It is obvious that the impact of DRAW is linearly related to the size of
the required data by the MapReduce program. The less data is being accessed, the
more close that random data placement can achieve maximized parallelism (which
is already proved in Sect. 4). For example, given 40 nodes in the cluster and 2
maximum simultaneous map tasks on each node, the 8 blocks of each astrophysics
data file are more likely to be balanced when compared to the 48 blocks of an
mammal’s genome data. Hence the conclusion is DRAW works better for the
MapReduce programs accessing large-scale data (larger than 3 GB for our hardware
configuration).

6.3 Sensitivity Study: The Number of Replica (NR)

The number of replica (NR) for each data block in Hadoop cluster is configurable.
For data distribution, the more replica that exist for each block, the higher possibility
that the grouping data can be evenly distributed. Hence, the efficiency of DRAW on
the MapReduce programs is inverse proportional to NR in the Hadoop.

Fig. 12 The running of Mass Analyzer on astrophysics data; the size of interested data for each
run is relative small (eight blocks on average)

170 J. Wang et al.

Table 3 Comparison of the experimental NHD (% of nodes holding the data) and DRAW’s
ideal NHD

NR=1 NR=2 NR=3

Blks
Experimental DRAW

Blks E_NHD D_NHD Blks E_NHD D_NHD_NHD _NHD

Stickleback 44 44:7 % 100 % 82 63:2 % 100 % 122 81:6 % 100 %

Opossum 48 47:4 % 100 % 100 73:7 % 100 % 150 86:8 % 100 %

Chicken 61 73:7 % 100 % 122 97:4 % 100 % 174 89:5 % 100 %

C. briggsae 13 26:3 % 34.2 % 23 42:1 % 60.5 % 34 68:4 % 89.5 %

In order to quantify the impact of NR on our design, we bulkily upload the
40G genome data to our test bed configured with NR D 1, NR D 2 and NR D 3,
respectively. Figure 13 shows the data distributions for four species: Stickleback,
Opossum, Chicken from vertebrates, and C. briggsae from nematodes. The “% of
nodes holding the data (NHD)” is directly related to the parallelism that the program
accessing corresponding species can use. The results prove that, in most cases,7

NR is linearly related to the parallelism of data distribution; which means a higher
degree of replica in Hadoop can mitigate the problem of unbalanced grouping-data
distribution. For example, the Stickleback data is only distributed on 44.7 % of the
nodes in 1-replica Hadoop; when using 3-replica Hadoop, 81.5 % of the nodes can
provide Stickleback data.

Now we study the efficiency of DRAW for multiple replica Hadoop systems.
We still use the above data. Table 3 shows the comparison of the experimental NHD
and DRAW’s ideal NHD. The NHD difference indicates the possible improvement
DRAW can achieve. Note that for the three vertebrates, the number of blocks for
each species is larger than the number of nodes in our test bed, hence ideally,
DRAW can distributes the grouping data on all the nodes, with 100 % NHD; for
the C. briggsae whose number of blocks is smaller than 40, the ideal DRAW’s
NHD is calculated as # of Blks

of nodes , which is shown in bold font in Table 3. Our
experimental results show that, for the 2-replica Hadoop, DRAW may improve the
data distribution parallelism by 27.2 % on average; for the 3-replica Hadoop, DRAW
is expected to improve the parallelism by 17.6 % (without considering the exception
of Chicken data) on average.

6.4 Overhead of DRAW

In this section, we quantify the overhead of running DRAW (a complete run until it
is finished) on the 40 GB genome data after 20 initial runs on our test bed cluster

7There is one exception for Chicken: the data is more evenly distributed in 2-replica case than
3-replica.

DRAW 171

Fig. 13 The data distributions (NHD) of four species, on 1-replica, 2-replica and 3-replica Hadoop

The three parts of DRAW: building HDAG, building and clustering DGM, and re-
organizing the data based on ODPA, have different overheads.

Building HDAG The first step is negligible because it only scans the customized
log files (only several kilobytes for 20 runs of the genome indexing program) once
and records pertinent information in HDAG table.

Building and Clustering DGM Forty GB data will be split into about 640 blocks,
and based on our algorithm the memory requirement is 6.7 MB. The BEA algorithm
takes 37 s to cluster the 640 � 640 matrix.

Data Re-organization This is the most time-consuming step in DRAW algorithm,
because we have to login every DataNode to migrate the data/metadata/registration
information. The data migration time is linearly related to the data size and the
network bandwidth among the nodes. In our specific case, after 20 warm-up runs,
497 out of the 640 blocks need to be re-organized. The overall run time of the
DRAW tool is 4.7 min.

The overall execution times of our genome indexing program on randomly placed
data and DRAW re-organized data are 33 min 43 s and 20 min 37 s, respectively.
Hence the above time costs (about 5 min 25 s) are worthy compared to the overall
performance improvements, about 13 min. This improvement can be expected for
all the subsequent genome indexing programs which follow the previous access
patterns.

7 Related Work

Several previous works exploited the grouping-like data semantics and organized
data layout in some specific ways to support high-performance data accesses.
Ahmed et. al. [11] exploited the file-grouping relation to better manage the
distributed file caches. The groupings of files are based on file access history
patterns. They fetch these groups of files to improve cache performance rather than
single files. The rationale is that group accessed files are likely to be group accessed
again. This idea works well in cache management. In our data intensive computing,

172 J. Wang et al.

such grouping behavior is at chunk level rather than file level. It mainly takes place
between high-level applications or processes rather than low-level file blocks.

Yuan [31] develops a data dependency-based data placement for the scientific
cloud work flows, which clusters the relative data as intensively as possible to effec-
tively reduce data movement during the workflow’s execution. However, data access
patterns exhibit differently from data parallel frameworks, such as MapReduce.
The MapReduce job performance is directly determined by the co-located compute
and data locality of each map task [2]. This results in the parallelism degree of
data distribution in a Hadoop cluster. In other words, the relevant data needs to
be distributed as evenly as possible to favor high-performance runs of MapReduce
programs.

Xie et al. [20] takes data locality into account for launching speculative MapRe-
duce tasks in heterogeneous environments. They focus on balancing data processing
load based on network topology and disk space utilization of a cluster. In contrast,
DRAW focuses on data redistribution based on data semantics; they are two
complimentary works.

Our previous work MRAP [27] develops a set of MapReduce APIs for data
providers who may be aware of the subsequent access patterns of the data after
being uploaded. By specifying the access patterns, the data are distributed in a
cor responding way such that the best data access performance can be achieved.
However, it requires application developers to specify the data access patterns
beforehand. Our DRAW captures grouping patterns by runtime tools.

Ko [21] and Yuan [30] exploit the data provenance of intermediate data in
MapReduce framework. This type of data semantics can be used in two ways: (1)
to provide better data fault-tolerance [21]: the intermediate data may have different
importance, which are quantified as the cost of reproducing them, hence they should
be granted different fault-tolerant strategies; (2) to save storage capacity [30]:
some times storing of the intermediate data is more expensive than reproducing
them, therefore it is better to trade the computation cost with the storage capacity.
How ever, the way of storing or reproducing the intermediate data will not affect
the application overall performance except when a node failure happens. DRAW
exploits data grouping patterns in MapReduce framework for high-performance.

Conclusion
The default random data placement in a MapReduce/Hadoop cluster does
not take into account data grouping semantics. This could cluster many
grouped data into a small number of nodes, which limits the data parallelism
degree and results in performance bottleneck. In order to solve the problem,
a new data-grouping-aware data placement (DRAW) scheme is developed.
DRAW captures runtime data grouping patterns and distributes the grouped
data as evenly as possible. There are three phases in DRAW: learning data
grouping information from system logs, clustering the data-grouping matrix,

(continued)

DRAW 173

and re-organizing the grouping data. We also theoretically prove that the
inefficiency of Hadoop’s random placement method. Our experimental results
show that for two representative MapReduce applications Genome Indexing
and Astrophysics, DRAW can significantly improve the throughput of local
map task execution by up to 59.8 %, and reduce the execution time of map
phase by up to 41.7 %. The overall MapReduce job response time is reduced
by 36.4 %.

Acknowledgements This work is supported in part by the US National Science Foundation Grant
CNS-1115665, CCF-1337244 and National Science Foundation Early Career Award 0953946.

References

1. http://bowtie-bio.sourceforge.net/index.shtml.
2. http://developer.yahoo.com/hadoop/tutorial/module1.html.
3. http://genome.ucsc.edu/.
4. http://hadoop.apache.org/common/docs/r0.18.3/hdfs_design.html.
5. http://lbvm.sourceforge.net/.
6. http://michael.dipperstein.com/bwt/.
7. http://sector.sourceforge.net/benchmark.html.
8. https://issues.apache.org/jira/browse/hadoop-2559.
9. http://t8web.lanl.gov/people/heitmann/arxiv/.

10. http://www.unidata.ucar.edu/software/netcdf/docs/.
11. Ahmed Amer, Darrell D. E. Long, and Randal C. Burns. Group-based management of

distributed file caches. In Proceedings of the 22 nd International Conference on Distributed
Computing Systems (ICDCS ’02), ICDCS ’02, pages 525-, Washington, DC, USA, 2002. IEEE
Computer Society.

12. Anup Bhatkar and J. L. Rana. Estimating neutral divergence amongst mammals for
comparative genomics with mammalian scope. In Proceedings of the 9th International Con-
ference on Information Technology, pages 3–6, Washington, DC, USA, 2006. IEEE Computer
Society.

13. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51:107–113, January 2008.

14. Matthew T. Dougherty, Michael J. Folk, Erez Zadok, Herbert J. Bernstein, Frances C.
Bernstein, Kevin W. Eliceiri, Werner Benger, and Christoph Best. Unifying biological image
formats with hdf5. Commun. ACM, 52:42–47, October 2009.

15. Anna Dumitriu. X and y (number 5). In ACM SIGGRAPH 2004 Art gallery, SIGGRAPH ’04,
pages 28-, New York, NY, USA, 2004. ACM.

16. Gregory Ganger and M. Frans Kaashoek. Embedded inodes and explicit grouping: Exploiting
disk bandwidth for small files. In Proceedings of the 1997 USENIX Technical Conference,
pages 1–17, 1997.

17. Narasimhaiah Gorla and Kang Zhang. Deriving program physical structures using bond
energy algorithm. In Proceedings of the Sixth Asia Pacific Software Engineering Conference,
APSEC ’99, pages 359-, Washington, DC, USA, 1999. IEEE Computer Society.

18. Yoonsoo Hahn and Byungkook Lee. Identification of nine human-specific frameshift mutations
by comparative analysis of the human and the chimpanzee genome sequences. Bioinformatics,
21:186–194, January 2005.

http://bowtie-bio.sourceforge.net/index.shtml
http://developer.yahoo.com/hadoop/tutorial/module1.html
http://genome.ucsc.edu/
http://hadoop.apache.org/common/docs/r0.18.3/hdfs_design.html
http://lbvm.sourceforge.net/
http://michael.dipperstein.com/bwt/
http://sector.sourceforge.net/benchmark.html
https://issues.apache.org/jira/browse/hadoop-2559
http://t8web.lanl.gov/people/heitmann/arxiv/
http://www.unidata.ucar.edu/software/netcdf/docs/

174 J. Wang et al.

19. Roger S. Holmes and Erwin Goldberg. Brief communication: Computational analyses of
mammalian lactate dehydrogenases: Human, mouse, opossum and platypus ldhs.Comput. Biol.
Chem., 33:379–385, October 2009.

20. Xie Jiong, Yin Shu, Ruan Xiaojun, Ding Zhiyang, Tian Yun, J. Majors, A. Manzanares, and
Qin Xiao. Improving mapreduce performance through data placement in heterogeneous hadoop
clusters. April 2010.

21. Steven Y. Ko, Imranul Hoque, Brian Cho, and Indranil Gupta. Making cloud intermediate data
fault-tolerant. In Proceedings of the 1st ACM symposium on Cloud computing, SoCC ’10, pages
181–192, New York, NY, USA, 2010. ACM.

22. Geoffrey H. Kuenning and Gerald J. Popek. Automated hoarding for mobile computers. In
Proceedings of the sixteenth ACM symposium on Operating systems principles, SOSP ’97,
pages 264–275, New York, NY, USA, 1997. ACM.

23. Jian Guo Liu, Moustafa Ghanem, Vasa Curcin, Christian Haselwimmer, Yike Guo, Gareth
Morgan, and Kyran Mish. Achievements and experiences from a grid-based earthquake
analysis and modelling study. In Proceedings of the Second IEEE International Conference
on e-Science and Grid Computing, E-SCIENCE ’06, pages 35-, Washington, DC, USA, 2006.
IEEE Computer Society.

24. M. Tamer Özsu and Patrick Valduriez. Principles of distributed database systems (2nd ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

25. Manuel Rodriguez-Martinez, Jaime Seguel, and Melvin Greer. Open source cloud computing
tools: A case study with a weather application. In Proceedings of the 2010 IEEE 3rd
International Conference on Cloud Computing, CLOUD ’10, pages 443–449, Washington, DC,
USA, 2010. IEEE Computer Society.

26. Michael C. Schatz. Cloudburst. Bioinformatics, 25:1363–1369, June 2009.
27. Saba Sehrish, Grant Mackey, Jun Wang, and John Bent. Mrap: a novel mapreduce-based

framework to support hpc analytics applications with access patterns. In Proceedings of the
19th ACM International Symposium on High Performance Distributed Computing, HPDC ’10,
pages 107–118, New York, NY, USA, 2010. ACM.

28. Matthias Specht, Renaud Lebrun, and Christoph P. E. Zollikofer. Visualizing shape transfor-
mation between chimpanzee and human braincases. Vis. Comput., 23:743–751, August 2007.

29. Shivam Tripathi and Rao S. Govindaraju. Change detection in rainfall and temperature patterns
over India. In Proceedings of the Third International Workshop on Knowledge Discovery from
Sensor Data, SensorKDD ’09, pages 133–141, New York, NY, USA, 2009. ACM.

30. Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. A cost-effective strategy for intermediate
data storage in scientific cloud workflow systems. pages 1–12, May 2010.

31. Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. A data placement strategy in scientific cloud
workflows. Future Gener. Comput. Syst., 26:1200–1214, October 2010.

32. Baopeng Zhang, Ning Zhang, Honghui Li, Feng Liu, and Kai Miao. An efficient cloud
computing-based architecture for freight system application in china railway. In Proceedings of
the 1st International Conference on Cloud Computing, CloudCom ’09, pages 359–368, Berlin,
Heidelberg, 2009. Springer-Verlag.

33. L. Q. Zhou, Z. G. Yu, P. R. Nie, F. F. Liao, V. V. Anh, and Y. J. Chen. Log-correlation distance
and fourier transform with Kullback-Leibler divergence distance for construction of vertebrate
phylogeny using complete mitochondrial genomes. In Proceedings of the Third International
Conference on Natural Computation - Volume 02, ICNC ’07, pages 304–308, Washington, DC,
USA, 2007. IEEE Computer Society

Part II
Resource Management

Auction-based scheduling approach to allocating computational tasks to computing
resources. Federation model for cloud systems. Transferring traditional workflow
management systems to cloud computing models.

Efficient Task-Resource Matchmaking Using
Self-adaptive Combinatorial Auction

Han Zhao and Xiaolin Li

Abstract In loosely coupled distributed computing systems, one of the major
duties performed by the scheduler is to efficiently manage the allocation of
computational tasks to computing resources. Such matchmaking services become
difficult to implement when resources belong to different administrative domains,
each of which has unique and diverse valuation for task bundles. In order to cope
with the heterogeneity, we introduce a novel combinatorial auction approach that
solves the task-resource matchmaking problem in a utility computing environment.
This auction based approach is characterized as “self-adaptive” in two senses.
First, efficient allocation is achieved through adaptive adjustment of task pricing
towards the market equilibrium point. Second, payment accounting is adaptive to
the changing auction states at various stages that discourages strategic bidding
from egocentric bidders. The objective of the research presented in this chapter
is to examine the applicability of the combinatorial auction based approaches in
utility computing, and to develop efficient task allocation schemes using the self-
adaptive auction. Through simulations, we show that the proposed combinatorial
auction approach optimizes allocative efficiency for task-resource matchmaking
when valuation functions are concave, and achieves incentive compatibility once
the auction process finalizes.

1 Introduction

In loosely coupled distributed computing systems, the goal of task scheduling is to
map tasks to resources that are optimal with respect to some performance criteria
while subject to certain allocation constraints. Substantial research efforts have been

H. Zhao (�)
Department of CISE, University of Florida, Gainesville, FL, USA
e-mail: han@cise.ufl.edu;

X. Li
Department of ECE, University of Florida, Gainesville, FL, USA
e-mail: andyli@ece.ufl.edu

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__8

177

mailto:han@cise.ufl.edu
mailto:andyli@ece.ufl.edu

178 H. Zhao and X. Li

directed towards developing efficient task-resource matchmaking algorithms over
years. However, the rapid advancing of hardware, software as well as computing
paradigms have posed new challenges to the design of efficient task allocation
strategies. The first challenge arises from the growing scale of resource deployment.
Due to the funding limitation of a single institution, many distributed platforms
today involve resource contributions from multiple institutions to tackle com-
putationally demanding scientific problems (e.g., PlanetLab [31], TeraGrid [13],
FutureGrid [19], etc.). As the scale expands, task allocation needs to be allocated in a
way that maximizes the aggregate utilities of participating resource owners. Second,
highly autonomous resource contributors often pursue task allocation results for
their own goods. Therefore, an effective design of the allocation strategy should
prevent participants from engineering the allocation process at the expense of others.
Finally, new computing paradigms such as cloud computing emerge, allowing
computing resources to be packaged as services and charged on demand. This
paradigm shift associates concern for monetary cost with allocation mechanism
design, and highlights cost–benefit analysis for scheduling.

To better address these challenges, applying the so called socioeconomic
approaches to the task and resource scheduling problems becomes popular in
computer science study. These are established approaches in economic analysis
and production management that make dynamic allocation decisions based on the
fluctuating demand of self-interested individuals. The socioeconomic approaches
are suitable for task and resource scheduling in utility computing due to the
following observations: (1) design similarity between market pricing principles and
grid/cloud scheduling mechanisms; (2) role similarity between rational economic
individuals and resource providers/users seeking for utility maximization. One form
of the socioeconomic approaches is to use auction, which introduces competitions
for optimal allocation outcomes. There are many variations for auction mechanism
design. In this chapter, we are particularly interested in Combinatorial Auction [15],
which allows bidders to bid for item bundles. Especially, we exploit effective
combinatorial auction forms for the task-resource matchmaking problem in the
following aspects: (1) defining suitable valuation functions to express preference
for task bundle; (2) exposing sufficient information to bidders during the auction
process for transparent auction design; (3) providing incentives for bidders to reveal
truthful valuations.

In this study, these issues are jointly highlighted. We describe an efficient task-
resource matchmaking strategy based on a novel self-adaptive auction form. We
observe that valuations for task bundles are likely to be concave due to the effect
of diminishing returns. For example, when tasks are interdependent, processing
them imposes extra coordination overhead that results in increased cost-to-benefit
ratio. Therefore, the marginal valuation is expected to be decreasing. According to
this observation, we develop our proposed approach based on a dynamic auction
form that iteratively provides feedbacks to both auctioneer and bidders for strategy
update. Through multi-round communications, the auction maximizes information
that allows bidders to adaptively respond to market prices set by the auctioneer. In
addition, the auction achieves incentive compatibility using a non-linear payment

Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction 179

calculation strategy originally proposed by Ausubel [4]. This iterative approach
presents a departure from existing static auction models which suffer from loss of
allocative efficiency and untruthful bidding. For example, in Amazon’s spot instance
auction model [38], bids collected from resource users are sorted from high to
low until the aggregate demand meets supply. Winner determination is statically
calculated based on one-shot bid placement. Such one-shot auctions are effective
approaches to allocate resources. However, in fear of losing the auction, the bidders
are subject to overbid, resulting in overpaying market clearing price. As a result,
such a static uniform price auction model greatly impairs the utility of end users as
they pay higher price for resource acquisition.

In spite of its appealing advantages, a few hurdles need to be overcome before
applying the self-adaptive auction approach. First, due to the iterative nature, the
self-adaptive auction features a communication intensive process. The negotiation
cost might be too high before a market clearing state is reached. Second, the conver-
gence process to the market equilibrium state might take too long to complete. Both
of them are in general undesirable when we wish to simplify the bidding process
and make prompt allocation decision whenever possible. In this chapter, we identify
appropriate scenarios suitable for the self-adaptive auction. In addition, we refactor
the original auction form described in [4] to reduce the communication overhead as
well as to speed up the convergence of the auction process. The efficiency of the
approach is examined in simulations, and results show that our solution is efficient
and amenable to practical implementations in distributed systems.

1.1 Summary of Contributions

We summarize the contributions of the study presented in this chapter as follows:
(1) we map the task-resource matchmaking problem in a utility computing envi-
ronment into an auction based scheduling problem in a competitive economic
market, and exploit the solution space for auction based scheduling strategy design;
(2) we develop a self-adaptive auction based matchmaking strategy that optimizes
allocation efficiency as well as achieves incentive compatibility; (3) with both
theoretical and simulation analysis, we validate the properties of our approach, and
demonstrate its advantage over other design options.

1.2 Organization

The rest of the chapter is organized as follows. In Sect. 2, we present an overview
of the related work. Section 3 introduces the problem background and presents a
summary of the auction scheduling design. Section 4 illustrate the design details
of the auction approach for the task-resource matchmaking problem and justify
the design choices. Section 5 presents the evaluation results. Finally, “Conclusion”
section concludes the chapter.

180 H. Zhao and X. Li

2 Related Work

Game theory and the related economic theories are useful tools to model the behav-
iors of egocentric agents in a distributed environment, presenting theoretical appeal-
ing values to task and resource allocation in loosely coupled distributed systems
[1, 10, 23, 27, 33, 35]. In addition to the theoretical development, market-oriented
scheduling has been applied to practical distributed system design. Example projects
include Spawn [41], POPCORN [32], G-Commerce [43], and Tacoon [25]. In
Faucets [24], auction was conducted to determine the optimal placement of tasks
on the servers. Another early work was Nimrod/G [9], where grid resources were
allocated based on user-negotiated contracts with the resource sellers. The core idea
behind these works is to allocate under-utilized resources in a symbolic marketplace
coordinated by some management entity in the distributed system. One critical
issue in designing such a resource market is resource pricing, and resolving it
typically involves searching for game/market equilibrium state. In [21], the authors
investigated this issue and derived a Nash bargaining solution to discover resource
prices in mobile grids. Another approach is to inspect the supply-to-demand state
on the market, and determine the price at Walrasian equilibrium point (when supply
equals to demand). For example, Danak and Mannor [16] studied effect of supply
adjustment to resource allocation from the seller’s perspective. Our self-adaptive
auction based algorithm adopts the latter approach in a way that resource prices on
the market are dynamically adjusted based on matching of supply and demand.

When translating economic paradigms to task-resource matchmaking mecha-
nism design, auction is of particular interests to researchers as it explicitly defines
interactive negotiation rules that are suitable to implement in distributed systems.
Due to this reason, various auction models have been examined and applied to
task and resource scheduling. One popular model to use is the double auction
model. In a double auction, a third-party auctioneer is created to match offers
and bids from multiple sellers and bidders simultaneously. Grosu and Das [22]
compared the first-price auction, the Vickrey auction, and the double auction from
both perspectives of customers and resource owners in grids. They concluded
that double auction mostly benefits utilities for both sellers and bidders. The
model was further developed by Garg et al. [20] who presented a meta-scheduler
implementing continuous double auction for resource mapping in global grids.
In this study, we target at a different problem setting. In addition, our auction
model addresses the combinatorial valuation of task bundles such that V.X1/ C
V.X2/ ¤ V.X1 [X2/. A single-item auction model is clearly not applicable
to such a task-bundle allocation scenario. The combinatorial auction model has
received significant attentions [17, 18, 26]. However, existing works either use a
static auction that entraps in the complexity of solving winner determination, or use
a uniform pricing policy that overlooks the issue of incentive compatibility. Our
study addresses both problems and realizes adaptivity in two senses: (1) market
price is adaptively adjusted towards maximum market efficiency; and (2) payment
is adaptively calculated to ensure incentive compatibility. Therefore, the analysis

Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction 181

conducted in this chapter will help to expand the scope of current research on
auction based task-resource matchmaking mechanisms.

Finally, the emerging cloud computing platform opens enormous opportunities
to market-oriented task and resource scheduling [8]. In cloud computing, resource
management is utility oriented. By commoditizing resources, resource owners are
now capable of offering computing services in return of revenues. In a cloud
environment, auction models offer a promising solution for task dispatching and
resource provisioning. However, existing research [18,28,34,37] leveraging auction
models are categorized as “one-shot” auction models that provide no feedback to
auction participants, preventing auction participants from changing their strategies
towards optimal outcomes. Incentive-compatible auctions were also applied to
determine pricing in allocating cloud computing resources [30, 42]. Similar to our
work, Zaman et al. [44] proposed to use combinatorial auctions to allocate VM
instances in cloud. In their study, allocation was determined by solving a linear
program while we take advantage of iterative bid feedback. In this chapter, we
examined the application of a dynamic iterative auction model that overcomes the
problems of one-shot auction models. In [39], the authors adopted a similar auction
model by building an experimental resource market inside Google Inc. The auction
was intended to improve the long-term resource utilization within the company. We
believe that the research proposed here is greatly beneficial to identify the solution
space, and to extend the horizon of auction based task-resource matchmaking in
utility and cloud computing.

3 Problem Formulation

In this section, we formulate the task-resource matchmaking problem to be studied
in this chapter, clarify assumptions, problem constraints as well as the design goals
for the auction based solution. Since our approach builds on a dynamic iterative
auction form, a brief introduction to this auction form is presented afterwards to
ease the understanding of the solution elaborated in subsequent sections.

3.1 Preliminaries

We aim to design an efficient matchmaking strategy for computational task alloca-
tion in a distributed environment. The basic form of the problem is fairly simple:
to allocate m tasks to n independent sites such that each site obtains a subset of
tasks xi . The final allocation is expected to be exhaustive and non-overlapping, i.e.,Pn

iD1 jxi j D m and xi \ xj D ; for i ¤ j . Note that the requirement of non-
overlapping does not prevent typical reliability measures. In case of task replication,
replicated tasks are treated as distinctive tasks to be allocated in the m task set.

182 H. Zhao and X. Li

Before we proceed, several assumptions and constraints need to be clarified.
First, tasks to be allocated are discrete and indivisible. We consider a data-parallel
model categorized as SPMD (Single Program, Multiple Data), where a job is split up
to create tasks running on multiple sites with different input. Tasks are considered to
be homogeneous when they have similar input size, and heterogeneous otherwise.
We will discuss both cases in later analysis. Second, autonomous sites (sites for short
hereafter) are those organizations with resources to process computational tasks
contained in the assigned task bundle. Each site values the allocated task bundle
independently. Let site i ’s valuation function of bundle x be Vi .x/, following the
constraints of Vi .;/ D 0 and Vi .xp/ � Vi .xq/ for all xp 	 xq . The valuation
function Vi .xi / defines the perceived benefits of processing task bundle xi for
site i (e.g., service reward in the form of monetary compensation in commercial
platforms, or resource access privilege in volunteer computing). In addition, site i

needs to pay certain cost Pi .xi / for task bundle processing. In the context of task
scheduling, such cost typically refers to the cost of dedicated resources allocated by
site i for processing task bundle xi . The utility function Ui .xi / D Vi .xi / � Pi .xi /

represents site i ’s cost–benefit summary of provisioning task processing service.
Finally, each site is associated with a budget which limits its maximum bid
amount, e.g., �i defines site i ’s total available resource. The notations used in our
matchmaking strategy design are summarized in Table 1.

Table 1 Notation summary

Notation Elements in task allocation Corresponding economic term

J D f1; 2; : : :; mg Tasks Items

S D f1; 2; : : :; ng Sites Bidders

xi Task allocation for site i Item bundle for bidder i

V .x/ Task bundle value Item value

P.x/ Site cost Bidder payment

U.x/ Site utility Bidder utility

A D .x1; : : :; xn/ Task allocation Item assignment

Q.A/ Aggregate resource contribution Seller revenue

� D f1; 2; : : :; rg Epoch Round

di Site i ’s demand Bidder i ’s demand

�i Resource capacity of site i Budget of bidder i

p� Task price at equilibrium state Market clearing price

We define social welfare W as the aggregate valuations of all sites. An allocation
is considered Pareto-efficient (or simply efficient) if it maximizes the social welfare
associated with that allocation.

Definition 1 (Efficient Allocation for Task-Resource Matchmaking). Let A

denote the set of all possible allocations for the general task-resource matchmaking
problem. An efficient allocation is an allocation A D .x1; x2; : : :; xn/ of m tasks
that maximizes the overall social welfare, i.e., W D maxA2A

Pn
iD1 Vi .xi /.

Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction 183

Definition 1 corresponds to Pareto optimality, which states that no agent is able
to get better off without disadvantaging others. In the context of task scheduling,
since resource owners receive higher reward if they provide better service quality
(note that this statement simplifies the problem formulation because it is difficult
to quantify the quality of service in general), this state optimizes the service
efficiency by allocating the task bundle to the most suitable sites. We establish
a market for trading computational tasks, and attempt to identify an equilibrium
state on the market where neither shortage nor surplus of the computational tasks
exist. If such an equilibrium state is found, we obtain an exhaustive allocation
of the computational tasks while the supply and the demand is balanced on the
market. In economic analysis, an important concept called competitive equilibrium
characterizes our desired market equilibrium state.

Definition 2 (Competitive Equilibrium). A competitive equilibrium is a state of
a price vector p D ŒP1.x1/; : : :; Pi .xi /; : : :; Pn.xn/� and an allocation A such
that (1) Ui .p; A/ D maxA2AŒVi .A/ � Pi .A/� for every i ; and (2) � .p; A/ D
maxA2A

Pn
iD1 Pi .A/.

The following theorem reveals that the competitive equilibrium state implies the
absence of Pareto improvements, leading to allocative efficiency.

Theorem 1 ([15]). Allocation A is said to be supported in competitive equilibrium
if and only if A is a socially efficient allocation as defined in Definition 1.

Our objective is to design a task-resource matchmaking strategy that achieves
allocative efficiency. One challenge immediately presents itself, however, when
self-autonomous sites are unwilling to reveal their true valuations to the task
scheduler. As a result, we also target at designing an effective matchmaking strategy
that discourages self-interested organizations participating in task allocation from
playing strategic maneuvers. In this chapter, we leverage a self-adaptive auction to
fulfill these objectives.

3.2 Task-Resource Matchmaking: A Game Theoretic
Perspective

To this end, we have delineated the matchmaking problem as an optimization
problem. In this section, we rephrase it from the realm of the game theory.
Specifically, the task-resource matchmaking problem is abstracted as a dynamic
non-cooperative game played by n bidders (autonomous sites). We assign the role of
auctioneer to a task scheduler who will coordinate the auction process. Besides the
task scheduler, no single site has information of other sites’ information. The auction
is conducted in discrete rounds (referred to as epochs hereafter): � D f1; 2; : : :; rg.

184 H. Zhao and X. Li

The auction strategy 	
j
i played by site i at epoch j is defined as any function

mapping the self-observable bidding history h
j
i (the observable bid of i ’s opponents

from the start of the auction till round j) to the current demand quantities d
j
i

conforming to the auction rules, i.e., 	
j
i W h

j
i ! d

j
i . Accordingly, we define the

complete strategy profile
i as the set of all possible 	i site i adopts during the
auction process.

One common assumption in game theory is that agents are rational, i.e., they
always choose to perform the actions that lead to optimal outcome for themselves
amongst all feasible strategies. We follow this assumption in our problem formu-
lation. In particular, each site determines the desired task quantities d

j
i at epoch

j according to its utility function (a positive result indicates that the acquisition is
beneficial). Hence, we design our auction based matchmaking strategy by respecting
individual rationality of each site.

3.3 Task-Resource Matchmaking: An Illustrative Scenario

Figure 1 describes an illustrative scenario for the task-resource matchmaking
problem. In this example, a task scheduling service deployed on a public gateway
node accepts task submission from geographically dispersed users, discovers a set
of qualified worker sites, and dispatches the tasks to these sites periodically. Users
are unaware of the task placement determined by the matchmaking policy. Each
worker site is composed of a collection of computational, storage, and networking
resources that can be used to process the assigned tasks. The same task bundle might
present different values to different sites. For example, in Fig. 1, suppose the input
data for task bundle x is locally cached at site A, processing the same task bundle
x will consume more networking resources in B, and returns less service reward to
B due to the relatively slow processing speed. As a result, task bundle x is valued
more by site A than by site B. Based on the reported value information, the task of
the scheduler is to periodically allocate tasks to participating sites in an efficient and
incentive compatible manner.

3.4 Introduction to Dynamic Iterative Auction

Auction is a useful mechanism to discover the true market value of a set of
commodities, and to efficiently allocate them to a set of competitive buyers. In
a static auction such as the first-price sealed-bid auction, winner determination is
completed in a closed fashion that discourages market competition and ultimately
leads to reduced revenues. Therefore, a Dynamic Iterative Auction (DIA) [7] gains
favors from researchers because it allows auctioneer to take the most advantage of

Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction 185

Site A

Site B

Task Scheduler
Matchmaking

Policy

Task Queue New
Tasks

Site Pool

Assign

Assign

Assign

ValueValue

Task Bundle x

Fig. 1 An illustrate scenario for task-resource matchmaking

market information collected from bidders. By introducing an iterative valuation
elicitation process, bidders are able to adjust bidding strategies based on signals
from his/her opponents. A DIA has many varying forms. Figure 2 depicts a typical
execution cycle for a general DIA process. During the cycle, each bidder responds
to auctioneer’s outcry of the price with a quantity of the desired commodity
bundle. Based on the collected demand from all bidders, the auctioneer adjusts
the market price to adapt to the demand changes. This process continues until
the terminating condition of the auction is met. In summary, the dynamism brings
bidding transparency to bidders, and the iterative process boosts pricing adaptivity
for the auctioneer.

Va
lu

at
io

n
El

ici
ta

tio
n

Demand
Query

Price Adjustment

Auction Setup

Winner
Determintation

Dyanmic Iterative
Auction

Payment
Accounting

Fig. 2 Flow of a dynamic iterative auction

186 H. Zhao and X. Li

Although a DIA bears a number of appealing features, the implementation
complexity hinders its adoption in task and resource allocation. First, DIA is
communication-intensive that requires significant message exchange between auc-
tioneer and bidders. Second, the convergence process of DIA might be too long to be
practically acceptable. This is due to the fact that auctioneer is unaware of bidders’
demand curves which will otherwise guide the price adjustment. In this chapter, we
propose a refined self-adaptive auction approach that allows sites to directly report
the valuation functions to the auctioneer. Such a strategy eliminates auction-bidder
communications in normal DIA and expedites the convergence.

4 Auction Based Design for Efficient Task-resource
Matchmaking Strategy

In this section, we present our strategy design for the task-resource matchmaking
problem. We start with the simplest case where all tasks are homogeneous. Next, we
expand our analysis to the K-type heterogeneous case where tasks are homogeneous
within each category. Finally, we investigate the general heterogeneous case and
discuss a potential solution.

4.1 The Homogeneous Case

We start from allocating m equal-size tasks to n sites. Many examples of such
tasks exist in distributed computing that involves the same executable to be
run with almost equivalent input size. It represents a common pattern in data
parallelism computation, and typically involves static chunking of a loop (e.g.,
image processing, text analysis, etc.). However, although all tasks share similar input
size and kernel function, they are dispatched to machines with different processing
speeds. This leads to the load balancing problem we are trying to tackle. A bundle
of such tasks is often referred to as Bag-of-Tasks (BoT) as tasks within the bundle
are communication free.

4.1.1 Selection of the Valuation Function

We assume a private value model that sites do not exchange valuation information
when it learns others’ bid information. Moreover, in order to guarantee the existence
of market clearing price, the marginal valuations of tasks are assumed to be
monotonic and strictly concave, i.e., computational tasks exhibit diminishing returns
(or marginal values) to sites. This is justified by the following considerations. For
tasks with interdependencies, processing more tasks requires excessive resource

Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction 187

consumption to deal with the task dependency. As task number grows, the amount
of excessive resource consumption increases. Thus the valuation curve grows
sublinearly, as shown in Fig. 3. In fact, the phenomena of diminishing returns
appears not only in task valuation, but also in resource valuation [29]. For example,
for a cloud resource customer who has a flexible resource demand, the valuation
for an additional allocated Virtual Machine (VM) instance is decreasing because of
the increasing coordination overhead. We argue that the assumption of concavity
in valuation function is more common encountered and more flexible than the step
valuation functions used in many auction models. This is because the continuous
concave valuation function allows bidders to express partial preference over a
commodity bundle.

Fig. 3 Tasks with
interdependencies present
diminishing return to sites
due to excessive consumed
resources

Value loss due to
excessive resource

consumed

Task Number

Value

For tasks without interdependencies, any valuation function exhibiting dimin-
ishing return would fit our design of task-resource matchmaking strategy. As an
example, we propose a simple valuation function for workload balancing while
allocating computational tasks. In particular, let �i be site i ’s available qualitative
computational power (represents the budget of site i), i ’s valuation for a k-size
homogeneous task bundle is given by Vi .k/ D �i =k. Its meaning can be explained
as follows. If site i obtains a k-size task bundle, it will equally distribute its
computational resource to the k tasks. Assume that site i acquires one more task
assigned from the task queue, it will further divide its resources to meet the
computational need. Therefore, the additional .k C 1/-th task has a marginal value
of Vi .k C 1/ D �i =.k C 1/. We will show that this setting will lead to optimal
workload balance among n sites in Sect. 4.1.4.

4.1.2 Pricing Strategy

In our matchmaking strategy design, we assume that there are always sufficient
number of sites to compete for a limited set of tasks. When a new batch of tasks
arrive, the task scheduler launches an auction by first pinging a set of qualified sites,
and collect qualitative resource capacity information from all sites. We denote these
feedbacks as “v-messages” because they encapsulate necessary information for the

188 H. Zhao and X. Li

task scheduler to calculate valuations. Note that it is possible for a site to report
dishonest information for its own good. However, we will show that sites have no
incentives to do so, because of the risk of reduced utility if the payment policy
presented in Sect. 4.1.3 is adopted.

Upon receiving v-messages from all sites, the scheduler calculates a valuation
matrix. The i -th row of the matrix is given as vi D fv1

i ; : : :; vm
i g, where vk

i D �i =k

as explained in Sect. 4.1.1. Next, all n � m elements in the valuation matrix are
aggregated, forming a vector V in a non-decreasing sorted order. V represents the
complete pricing space where a market clearing price might reside. We use the
word “might” simply because a market clearing price may not exist at all if there
are duplicate elements in V. Therefore, the scheduler runs a simple randomized
algorithm to break ties. In particular, if n > 1 elements are identical, then the i -th
element is added by the amount of �=i where � is a small random integer. Once
all ties break, V consists of elements listed in a strictly increasing order. A binary
search procedure is then applied to V for locating the market clearing price. Starting
with the medium valuation v1; v1 2 V, the scheduler shrink its search space by half
at each epoch. Suppose at epoch j , vj is the medium valuation of the current search
space, the scheduler calculates a demand quantity for site i based on the following
equation:

d
j
i D arg max

x2J Ui .x/

D arg max
k
j
X

k

vk
i � k � vj > 0

(1)

If the aggregate demand
Pn

iD1 d
j
i equals to the allocated task number m, the

auction terminates and we obtain a market clearing price as well as a feasible
allocation. Otherwise, vj is adjusted according to the relationship of demand and
supply, i.e., increase when demand exceeds supply, and decrease otherwise, until
the market stabilizes. The final valuation resulting in market equilibrium state is
identified as the market clearing price p�. Note that sites only submit v-messages at
the beginning. The price discovery is solely performed by the scheduler based on the
collected v-messages. This design effectively eliminates communications between
auctioneer and bidders in a conventional DIA design. The complete pricing strategy
is summarized in Algorithm 1.

4.1.3 Payment Policy

The pricing strategy presented in Sect. 4.1.2 achieves allocative efficiency in
computational task allocation. In this section, we describe a payment policy
design helpful for achieving incentive compatibility, an important property for
matchmaking mechanism design in the context of utility computing. A common
practice in resource and task auction is to let each bidder pay the market clearing

Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction 189

Algorithm 1: Task-resource matchmaking: pricing discovery strategy for
homogeneous case

=� Initialization �=

1: j 0

2: for all i 2 S do
3: d

j
i 0

4: Sends �i to scheduler
5: end for
6: Calculates sorted acceptable price list V
7: Breaks ties in V when necessary

{Iterative Procedure}
8: while

Pn
iD1 d

j
i ¤ m do

9: j j C 1

10: Obtains medium price in V as vj

11: Calculates d
j
i D arg maxk jPk vk

i � k � vj > 0 for site i

12: if
Pn

iD1 d
j
i > m then

13: Discards elements v � vj in V
14: else if

Pn
iD1 d �

i < m then
15: Discards elements v � vj in V
16: end if
17: end while

{Allocation}
18: Allocates d

j
i to site i

price p�. However, if such a uniform payment policy is employed, rational bidders
will have incentives to disclose untruthful demand, which will eventually lead to
market inefficiency [4]. To overcome this problem, we use a non-linear payment
approach proposed by Ausubel [2]. In a homogeneous task allocation, the payment
for site i is calculated periodically. At each epoch, the market supply is compared
against the aggregate demand from site i ’s opponents. If the supply is greater than
the aggregate demand, the quantity difference is credited to i at current epoch price
vj . On the other hand, suppose at epoch j , the aggregate demand from i ’s opponent
increases compared with that of epoch j �1, the quantity difference is debited back
at vj . We define two variables, namely aggregate reserved bundle (e) and epoch
reserved bundle (�) to facilitate the payment calculation process. Their definitions
are given out as below.

Definition 3 (Aggregate Reserved Bundle). The aggregate reserved bundle for
site i at epoch j is given by:

e
j
i D maxf0; m �

X

x¤i

d j
x g (2)

Definition 4 (Epoch Reserved Bundle). The epoch reserved bundle �
j
i is defined

as the difference of the aggregate reserved bundle at adjacent epochs:

190 H. Zhao and X. Li

�1
i D e1

i

�
j
i D e

j
i � e

j�1
i .j > 1/

(3)

When �
j
i > 0, there are �

j
i tasks “credited” to i at price vj , and when �

j
i < 0,

�
j
i tasks are “debited” back to i at vj . Based on this process, the total payment of i

at final epoch r is calculated as follow.

Pi .d
r
i / D

rX

jD1

vj �
j
i (4)

Accordingly, the revenue is given by the following equation.

Q.A/ D
nX

iD1

Pi .d
r
i / (5)

Now, we can incorporate the payment calculation procedure into Algorithm 1
as follows. For each site i , the scheduler will use two vectors Nei and N—i to save
the historical bundle reservation. After line 16 in Algorithm 1, the scheduler will
calculate e

j
i and �

j
i for every site i . In addition, after the auction procedure is done,

the scheduler can calculate a payment amount for every i based on Eq. (4), before
line 18 in Algorithm 1. The payment is realized by enforcing committed resources
for task processing at all sites.

4.1.4 Strategy Analysis

The auction procedure is self-adaptive, and reaches a market equilibrium state
when complete. In this section, we will theoretically analyze the properties of our
proposed self-adaptive auction based approach.

Proof of Convergence

Theorem 2. If the auction proceeds with the iterative updates of demand vector
query, as in Algorithm 1: lines 8–17, then the final allocation A converges to a
feasible allocation at market clearing price p� D vr .

Proof (Proof). The key point to prove the convergence is to ensure the existence
of the market equilibrium point. Once we prove its existence, the binary search
procedure in lines 8–17 is guaranteed to locate it in V. The existence of the market
equilibrium point is illustrated in Fig. 4, where the x-axis stands for the sorted
valuations in V, and the y-axis stands for the corresponding aggregate demands
given the points lined up on x-axis. Now, suppose the scheduler acting as a virtual
auctioneer starts crying out an open price of value 0, and gradually raises the price

Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction 191

by following every point on x-axis from left to right. The aggregate demand from all
sites decreases, forming a piecewise integer-valued linear function. Each step-wise
increase of the cried price will result in exactly one bidder to drop one demanded
task, given no tie presents. Therefore, the virtual auction process traverses every
possible point in the pricing space. There must exist a market equilibrium point p�
whose corresponding demand intersects with the function y D m, where m is the
number of total tasks to be allocated.

Market equilibrium
point

Aggregate
Demand

Sorted Pricing
Vector V

d1

d2

d3

di

m

dn

0 v1 v2 v3 p* vnvi . . .

Fig. 4 Convergence proof for the self-adaptive auction based strategy

Proof of Efficiency and Optimal Makespan

Since the self-adaptive auction converges to the market clearing price when supply
and demand meets, the resulting market is in the competitive equilibrium state
(Definition 2) that renders the final allocation Pareto-efficient. The final alloca-
tion would achieve maximum allocative efficiency if elements in the valuation
space are distinct.1 Therefore, tasks are allocated to sites who value them most.
In task scheduling, we expect that the auction based matchmaking mechanism
could achieve optimal performance with respect to certain system-wide metric. In
particular, we are interested in minimizing the processing makespan of the allocated
task bundle through efficient allocation, i.e., to minimize the completion time of
all tasks. We will show that, using the valuation function defined in Sect. 4.1.1, the
self-adaptive auction achieves this by minimizing the maximum task processing
time among all sites.

1However, the task allocation result might incur certain efficiency loss due to possible tie breaks in
our strategy design. Compare to the overall efficiency, such efficiency loss is in general negligible.

192 H. Zhao and X. Li

For the homogeneous case, the allocation corresponding to optimal makespan
of task execution can be easily calculated. We show that the self-adaptive auction
achieves the same optimal allocation with the valuation function described in
Sect. 4.1.1.

Theorem 3. Let Aopt be the optimal makespan allocation of m homogeneous tasks
on n sites. Using the auction procedure presented in Algorithm 1, the final allocation
A achieves optimal makespan, i.e., A D Aopt.

Proof (Proof). If site i (1 � i � n) acquires d r
i tasks (d r

i > 0) at the end of the
matchmaking procedure, we have: Vi .d

r
i / � p� > Vi .d

r
i C1/ (according to Eq. (1)).

Suppose each task has a fixed workload � . Since Vi .k/ D �i =k, the processing time
ti is ti D k � �=�i D �=Vi .k/. At the final allocation, we assume some site q has
the longest processing time tmax for its allocated bundle d r

q , then d r
q must equal to

p� because Vi .d
r
i / � p� > Vi .d

r
i C 1/ holds for every i .

We show that A D Aopt by contradiction. If there is some other allocation A0 ¤ A

which achieves shorter task processing makespan than A. This must be achieved by
migrating x (0 < x < d r

q) tasks on site q to some other site, for example, j . The task
processing time on j becomes �=Vj .d r

j C k/. Since only two sites swap tasks, the
new t 0max occurs at j and t 0max < tmax. However, since Vj .d r

j Ck/ < p� D Vq.d r
q / <

Vj .d r
j /, the new makespan t 0max is greater than tmax. Hence, we prove A D Aopt.

Proof of Incentive Compatibility

With the payment policy presented in Sect. 4.1.3, site i does not pay the unit price
of p� at the market equilibrium point, but the prices when i is absent from the
market. In that sense, the involved payment for i is equivalent to the opportunity
cost of assigning the allocated bundle to the winning site. Such a non-linear payment
policy has the same effect of multi-unit Vickrey auction which decouples a user’s
payment with bids. It effectively encourages truthful bidding in a much simpler
implementation. Since all sites submit their v-messages to the task scheduler before
the auction launches, the task scheduler has the full knowledge of all valuations as
well as the full bid information (the complete history of all bids by all bidders).
We define truthful bidding as the practice of reporting the actual valuation. For the
homogeneous case, truthful bidding means to report �i sincerely. The following
theorem states that the self-adaptive auction achieves incentive compatible.

Theorem 4 (See [2] for Details). With the aggregate bidding history and the
assumption of diminishing marginal valuations, truthful bidding for every site i is a
weakly dominant strategy after every epoch, given that payment policy presented in
Sect. 4.1.3 is adopted.

In fact, truthful bidding by every site is a subgame perfect equilibrium, as the
strategy profile represents Nash equilibrium of every subgame of the dynamic
auction. One thing to notice is that the proposed auction based approach has no

Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction 193

guarantee for fairness, because some site reporting high valuations could take over
all tasks and starve other sites. A possible solution for this problem is to enforce
some allocation cap that limits the maximum task number one could obtain.

4.2 The K-Category Heterogeneous Case

In this section, we present the case when task scheduler wishes to allocate K

heterogeneous types of tasks among a set of autonomous sets. Tasks within each
type are homogeneous. This scenario is also encountered in cloud resource auction
(viewed as the reverse of the task auction) where K types of virtual machine
(VM) instances are allocated to n cloud customers. We have developed a prototype
middleware platform called CloudBay, which uses a modified Ausubel auction for
efficient VM allocation. Readers who are interested to this topic can refer to our
work [45] for more details. In general, for the K-category heterogeneous case, we
follow the same private value models as in the homogeneous case. The valuation
functions are assumed to be monotonic and strictly concave. We need to make
a few modifications for Algorithm 1 to work. The task scheduler now runs K

parallel auctions, each of which is based on Algorithm 1. A vector of prices is
calculated at each epoch and the demand quantities becomes a K-element vector
too. This strategy works when the allocated workload is divisible [5]. However,
when allocated tasks are discrete, we must enforce the property of substitutes
preference, i.e., for any site, increasing the price for one type of task will not
decrease the demand for any other task types, to guarantee the existence of market
equilibrium state [3].

4.3 The General Heterogeneous Case

Finally, we investigate the general combinatorial case where all tasks are discrete
and heterogeneous. The first challenge to deal with is that it is difficult to value and
express the exponential number of task bundles at each site. Although a bidding
language such as OR or XOR is possible to be employed, it still places significant
overheads on both computation and communication. Second, from the perspective
of winner determination, an efficient task-resource matchmaking design can be
formulated as the following linear programming optimization problem [6].

max
X

i2S

X

xi�A

Vi .xi /i .xi / (6)

194 H. Zhao and X. Li

s.t.

i .xi / �
X

AWxi�A

ıA D 0; 8i 2 S;8xi
 J (7)

X

xi�J
i .xi / D 1; 8i 2 S (8)

X

A2A
ıA D 1 (9)

i .xi / � 0; 8i 2 S;8xi
 J (10)

ıA � 0; 8A 2 A (11)

In the formulation, i .xi / D 1 means assigning bundle xi to site i , and ıi .A/ D 1

is interpreted as selecting allocation A. The objective is to maximize the social
welfare subject to bundle and allocation constraints (7)–(11). In [40], the authors
proposed a primal-dual algorithm which can be interpreted as an auction process.
We will not go further and leave the investigation of the solution space for the
general heterogeneous case as a future research direction.

5 Evaluation Results

To validate the properties of the self-adaptive auction based matchmaking strategy,
we developed a discrete-event simulator using SimGrid [11], a powerful simulation
toolkit for large-scale distributed experiments. The self-adaptive auction was built
based on the MSG interfaces that are suitable for simulating a heterogeneous
computing environment [36]. We only evaluated the homogeneous case in the
simulations.

5.1 Performance of Task Scheduling

In the first set of simulations, we created a distributed platform with 20 sites
equipped with different resource capacities, and measured task processing
makespan and Jain’s fairness index2 under varying input task number from 10

to 200, with a fixed increasing step of 10. Resource capacity � for all sites were
randomly generated following a normal distribution N .1; 0:25/. Each measurement
was calculated by averaging ten different runs due to the randomness of the input

2Jain’s fairness index: fi D .
Pn

iD1 ti /
2=n

Pn
iD1 t2

i , where ti is i ’s task processing time. The more
fi is close to 1, the better of fairness.

Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction 195

parameters. The task-resource matchmaking process was implemented according
to the strategies described in the homogeneous case (Sect. 4.1). We compare
the self-adaptive auction based scheduling with two commonly-used scheduling
algorithms.

• Earliest Completion Time (ECT): ECT allocates each task to the site that
completes task processing in the quickest time. It represents a set of Gantt chart
algorithms (e.g., MaxMin, Sufferage) widely used to schedule BoT tasks [12].

• Round Robin (RR): RR maintains an eligible set of idle sites and matches each
task to one site in the set in a round robin manner. A site is removed from the set
when it is currently busy, and is inserted back to the set when its current allocated
task is completed.

The comparison result is depicted in Figs. 5 and 6. From Fig. 5, we observe that
the self-adaptive auction always generate the shortest task makespan, with ECT
performs as runner-up. Since RR does not assign high priority to computationally
powerful sites, its makespan is constantly bounded by the task processing time on
the least powerful site, resulting in the worst makespan performance. On the other
hand, RR scores highest in fairness at most sampling points, as shown in Fig. 6,
although the advantage is little compared to the other two algorithms. Another
observation is that as the number of input task increases, all three algorithms
converge to near-optimal fi value. For ECT and RR, this effect is expected due
to their ways of allocation. For the self-adaptive auction, it is because the task
processing time on each site is proportional to the valuation closest to the market
clearing price p�. Since we adopt the valuation function defining i ’s marginal
valuation of m tasks to be �i =m, when m is large, the difference between two
consecutive values in vi becomes smaller. Therefore, variation of fairness becomes
less and less as the number of input task increases.

0

1

2

3

4

5

6

7

20 40 60 80 100 120 140 160 180 200

M
ak

es
pa

n

Input Task Number

Self-adaptive Auction
ECT

RR

Fig. 5 Performance comparison: makespan

196 H. Zhao and X. Li

5.2 Validation of Incentive Compatibility

We validate incentive compatibility in Figs. 7 and 8. In this set of simulation,
we used a new increasing and concave valuation other than the one described in
Sect. 4.1.1. In particular, let the estimated execution time for one task at site i be ti ,
we denote the total valuation of j tasks as:

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120 140 160 180 200

F
ai

rn
es

s
In

de
x

Input Task Number

Self-adaptive Auction
ECT
RR

Fig. 6 Performance comparison: fairness index

Vi .k/ D
X

k

..1 � ˛/k�1 � 1=ti /; (12)

where ˛ is a parameter to quantify the rate of marginal valuation loss. The reason we
used 1=ti is because faster task turnaround time implies higher reward in general.
Accordingly, the marginal valuation for the j -th task is formulated as follows.

vj
i D Vi .j / �

j�1X

kD1

Vi .j � 1/ (13)

We gradually increased the input task number and set ˛ D 0:05. In addition, we
randomly selected one site at each run and let it deliberately overbid or underbid.
Figure 7 depicts the measured social welfare in all simulations. For comparison
we also implemented a random task allocation scheme. We observe that maximum
social welfare is achieved when all sites choose to report valuations truthfully. As
one site bid strategically with untruthful reported valuations, the social welfare
decreases slightly in each round. This result shows that the self-adaptive auction
achieves the maximum socially efficient outcome when truthful bidding is used.
Next, in Fig. 8, we compare the utility gain of a randomly chosen site using different

Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction 197

strategies in the self-adaptive auction. Results show that a site adopting strategic
strategies other than truthful bidding experiences utility decrease. Hence, there is
no incentive for a single player to not truthfully bid. The conclusion is well aligned
with our analysis in Sect. 4.1.4.

5.3 Performance Comparison with Uniform Price Auction

To demonstrate the advantage of the self-adaptive auction proposed for task-
resource matchmaking, we implemented a uniform price auction algorithm [14]
for performance comparison. In a uniform price auction, each bidder submits a
demand schedule with an acceptable unit price. The auctioneer decides the market
clearing price based on the collected bid information, and reserves resources for
winners. An example application of the uniform price auction is Amazon’s spot
instance auction, where the auctioneer picks user’s bid for a VM instance unit from
high to low, until supply is depleted. Unlike the self-adaptive auction, the uniform
price auction is static in nature, and all bidders are asked to pay the same market
clearing price for each winning unit. Figure 9 shows the performance comparison
result for allocating 1;000 tasks to 100 sites. All results were normalized with
respect to the performance of the self-adaptive auction. The result of individual
utility was measure by comparing the achieved utility of a randomly selected site.
We observe that the self-adaptive auction approach consistently outperforms the
uniform price auction approach in all metrics, demonstrating the advantage of
introducing dynamism into auction based strategy design. On the one hand, the self-
adaptive auction results in better allocative efficiency and higher utility from the
perspective of the auctioneer. On the other hand, the self-adaptive auction exhibits
advantage to uniform price auction from the perspective of the bidders. In summary,
the proposed self-adaptive auction overcomes allocative inefficiency encountered in
the commonly adopted uniform price auction.

Fig. 7 Validation of
incentive compatibility: social
welfare

1000

1500

2000

2500

3000

3500

4000

30 35 40 45 50 55 60 65

S
oc

ia
l W

el
fa

re

Input Task Number

Random
Overbid

Underbid
Truthful

198 H. Zhao and X. Li

Fig. 8 Validation of
incentive compatibility:
utility for strategic player

 20

 40

 60

 80

 100

 120

30 35 40 45 50 55 60 65
In

di
vi

du
al

 U
til

ity
 fo

r
S

tr
at

eg
ic

 P
la

ye
r

Input Task Number

Overbid
Underbid

Truthful

0

0.2

0.4

0.6

0.8

1

1.2

social
welfare

auctioneer
utility

avg bidder
utility

individual
utility

N
or

m
al

iz
ed

 V
al

ue

self-adaptive
uniform-price

Fig. 9 Performance comparison with uniform price auction

Conclusion
In this chapter, we presented an efficient task-resource matchmaking strategy
design that leverages a self-adaptive auction model, and investigated its
properties in terms of allocative efficiency and incentive compatibility. The
auction based strategy is novel in various respects. First, it enables efficient
task pricing through an adaptive price discovery process, without burden-
ing bidders with excessive communications. Second, a non-linear payment
accounting approach was introduced to eliminate the incentives of strategic
bidding. Finally, we examined the applicability of the proposed auction based
approach to K-heterogeneous case, and further, to the general heterogeneous
case. The auction based strategy achieves market equilibrium that maximizes
allocative efficiency, and provides incentive compatible bidding regulations.

(continued)

Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction 199

To evaluate the performance of the self-adaptive auction approach, we
also provided simulation results that reveal new insights to the design of
efficient task-resource matchmaking in utility oriented distributed computing
platforms.

References

1. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for scheduling selfish
related machines. Theor. Comp. Sys. 40, 423–436 (2007)

2. Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. American Economic
Review 94(5), 1452–1475 (2004)

3. Ausubel, L.M.: An efficient dynamic auction for heterogeneous commodities. American
Economic Review 96(3), 602–629 (2006)

4. Ausubel, L.M., Cramton, P.: Demand reduction and inefficiency in multi-unit auctions. Tech.
rep., University of Maryland, Department of Economics (2002)

5. Bharadwaj, V., Ghose, D., Robertazzi, T.G.: Divisible load theory: A new paradigm for load
scheduling in distributed systems. Cluster Computing 6(1), 7–17 (2003)

6. Bikhchandani, S., Ostroy, J.M.: The package assignment model. Journal of Economic Theory
107(2), 377–406 (2002)

7. Blumrosen, L., Nisan, N.: On the computational power of iterative auctions. In: ACM EC’05,
pp. 29–43 (2005)

8. Buyya, R.: Market-Oriented cloud computing: Vision, hype, and reality of delivering comput-
ing as the 5th utility. In: IEEE CCGrid’09, p. 1 (2009)

9. Buyya, R., Abramson, D., Giddy, J.: Nimrod/g: an architecture for a resource management and
scheduling system in a global computational grid. In: Proceedings of the fourth International
Conference/Exhibition on High Performance Computing in the Asia-Pacific Region, pp. 283–
289 (2000)

10. Buyya, R., Ranjan, R., Calheiros, R.N.: Intercloud: Utility-oriented federation of cloud
computing environments for scaling of application services. In: Proceedings of the 10th
International Conference on Algorithms and Architectures for Parallel Processing - Volume
Part I (ICA3PP’10), pp. 13–31 (2010)

11. Casanova, H., Legrand, A., Quinson, M.: Simgrid: A generic framework for large-scale
distributed experiments. In: UKSIM ’08, pp. 126–131 (2008)

12. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for scheduling parameter
sweep applications in grid environments. In: HCW’00, pp. 349–363 (2000)

13. Catlett, C.: The philosophy of teragrid: Building an open, extensible, distributed terascale facil-
ity. In: Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGRID ’02) (2002)

14. Cramton, P.: Competitive bidding behavior in uniform-price auction markets. In: HICSS’04
(2004)

15. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press (2006)
16. Danak, A., Mannor, S.: Resource allocation with supply adjustment in distributed computing

systems. In: IEEE ICDCS’10, pp. 498–506 (2010)
17. Das, A., Grosu, D.: Combinatorial auction-based protocols for resource allocation in grids. In:

IEEE IPDPS workshop, PDSEC’05, p. 251a (2005)
18. Fujiwara, I., Aida, K., Ono, I.: Applying double-sided combinational auctions to resource

allocation in cloud computing. In: IEEE/IPSJ SAINT’10, pp. 7–14 (2010)
19. FutureGrid. https://portal.futuregrid.org/

https://portal.futuregrid.org/

200 H. Zhao and X. Li

20. Garg, S.K., Venugopal, S., Buyya, R.: A meta-scheduler with auction based resource allocation
for global grids. 14th IEEE International Conference on Parallel and Distributed Systems
(ICPADS ’08). pp. 187–194 (2008)

21. Ghosh, P., Roy, N., Das, S.K., Basu, K.: A pricing strategy for job allocation in mobile
grids using a non-cooperative bargaining theory framework. J. Parallel Distrib. Comput. 65,
1366–1383 (2005)

22. Grosu, D., Das, A.: Auction-based resource allocation protocols in grids. In: PDCS’04,
pp. 20–27 (2004)

23. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.: On profit-
maximizing envy-free pricing. In: ACM SODA’05, pp. 1164–1173 (2005)

24. Kale, L., Kumar, S., Potnuru, M., DeSouza, J., Bandhakavi, S.: Faucets: efficient resource
allocation on the computational grid. In: Proceedings of the 2004 International Conference on
Parallel Processing (ICPP’04), pp. 396–405 (2004)

25. Lai, K., Rasmusson, L., Adar, E., Zhang, L., Huberman, B.A.: Tycoon: An implementation of a
distributed, market-based resource allocation system. Multiagent Grid Syst. 1, 169–182 (2005)

26. Lau, H.C., Cheng, S.F., Leong, T.Y., Park, J.H., Zhao, Z.: Multi-period combinatorial auction
mechanism for distributed resource allocation and scheduling. In: IAT’07, pp. 407–411 (2007)

27. Leme, R.P., Tardos, E.: Pure and Bayes-Nash price of anarchy for generalized second price
auction. In: IEEE FOCS’10, vol. 0, pp. 735–744 (2010)

28. Lin, W.Y., Lin, G.Y., Wei, H.Y.: Dynamic auction mechanism for cloud resource allocation. In:
IEEE CCGrid’10, pp. 591–592 (2010)

29. Ma, R.T., Chiu, D.M., Lui, J.C., Misra, V., Rubenstein, D.: On resource management for cloud
users: A generalized kelly mechanism approach. Tech. rep., Electrical Engineering (2010)

30. Mihailescu, M., Teo, Y.M.: Dynamic resource pricing on federated clouds. In: 2010-10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid),
pp. 513–517 (2010)

31. PlanetLab. http://www.planet-lab.org/
32. Regev, O., Nisan, N.: The POPCORN market. online markets for computational resources.

Decision Support Systems 28(1–2), 177–189 (2000)
33. Rzadca, K., Trystram, D., Wierzbicki, A.: Fair game-theoretic resource management in

dedicated grids. In: IEEE CCGrid’07, pp. 343–350 (2007)
34. Shang, S., Jiang, J., Wu, Y., Yang, G., Zheng, W.: A knowledge-based continuous double

auction model for cloud market. In: SKG’10, pp. 129–134 (2010)
35. Sherwani, J., Ali, N., Lotia, N., Hayat, Z., Buyya, R.: Libra: A computational economy-based

job scheduling system for clusters. Softw. Pract. Exper. 34(6), 573–590 (2004)
36. SimBoinc. http://simboinc.gforge.inria.fr/
37. Song, B., Hassan, M., Huh, E.N.: A novel cloud market infrastructure for trading service. In:

ICCSA’09, pp. 44–50 (2009)
38. Amazon Spot Instance. http://aws.amazon.com/ec2/spot-instances/
39. Stokely, M., Winget, J., Keyes, E., Grimes, C., Yolken, B.: Using a market economy to

provision compute resources across planet-wide clusters. In: Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Processing (IPDPS 2009), pp. 1–8 (2009)

40. de Vries, S., Schummer, J., Vohra, R.V.: On ascending Vickrey auctions for heterogeneous
objects. Journal of Economic Theory 132(1), 95–118 (2007)

41. Waldspurger, C., Hogg, T., Huberman, B., Kephart, J., Stornetta, W.: Spawn: a distributed
computational economy. IEEE Transactions on Software Engineering 18(2), 103–117 (1992)

42. Wang, Q., Ren, K., Meng, X.: When cloud meets ebay: Towards effective pricing for cloud
computing. In: 2012 Proceedings IEEE INFOCOM, pp. 936–944 (2012)

43. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: G-commerce: Market formulations controlling
resource allocation on the computational grid. In: IEEE IPDPS’01, pp. 46–53 (2001)

44. Zaman, S., Grosu, D.: Combinatorial auction-based allocation of virtual machine instances in
clouds. J. Parallel Distrib. Comput. 73(4), 495–508 (2013)

45. Zhao, H., Yu, Z., Tiwari, S., Mao, X., Lee, K., Wolinsky, D., Li, X., Figueiredo, R.: Cloudbay:
Enabling an online resource market place for open clouds. In: IEEE Fifth International
Conference on Utility and Cloud Computing (UCC’12), pp. 135 –142 (2012)

http://www.planet-lab.org/
http://simboinc.gforge.inria.fr/
http://aws.amazon.com/ec2/spot-instances/

Federating Advanced Cyberinfrastructures
with Autonomic Capabilities

Javier Diaz-Montes, Ivan Rodero, Mengsong Zou, and Manish Parashar

Abstract Cloud computing has emerged as a dominant paradigm that has been
widely adopted by enterprises. Clouds provide on-demand access to computing
utilities, an abstraction of unlimited computing resources, and support for on-
demand scale up, scale down and scale out. Clouds are also rapidly joining
high performance computing system, clusters and grids as viable platforms for
scientific exploration and discovery. Furthermore, dynamically federated Cloud-of-
Clouds infrastructure can support heterogeneous and highly dynamic applications
requirements by composing appropriate (public and/or private) cloud services and
capabilities. As a result, providing scalable and robust mechanisms to federate
distributed infrastructures and handle application workflows, that can effectively
utilize them, is critical. In this chapter, we present a federation model to support
the dynamic federation of resources and autonomic management mechanisms that
coordinate multiple workflows to use resources based on objectives. We demonstrate
the effectiveness of the proposed framework and autonomic mechanisms through
the discussion of an experimental evaluation of illustrative use case application
scenarios, and from these experiences, we discuss that such a federation model can
support new types of application formulations.

1 Introduction

Cloud computing is revolutionizing the enterprise world, much as the Internet
did not so long ago. Clouds are fundamentally changing how enterprises think
about IT infrastructure, both internally and externally, by providing on-demand
access to always-on computing utilities, an abstraction of unlimited resources, a
potential for scale-up, scale-down and scale-out as needed, and for IT outsourcing
and automation. Clouds also provide a usage-based payment model where users

J. Diaz-Montes (�) • I. Rodero • M. Zou • M. Parashar
Rutgers Discovery Informatics Institute, NSF Cloud and Autonomic Computing Center,
Department of Electrical and Computer Engineering, Rutgers University, 96 Frelinghuysen Road,
Piscataway, NJ 08854, USA
e-mail: javidiaz@rdi2.rutgers.edu; irodero@rutgers.edu; mengsong.zou@rutgers.edu;
parashar@rutgers.edu

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__9

201

mailto:javidiaz@rdi2.rutgers.edu
mailto:irodero@rutgers.edu
mailto:mengsong.zou@rutgers.edu
mailto:parashar@rutgers.edu

202 J. Diaz-Montes et al.

essentially “rent” virtual resources and pay for what they use. Underlying these
cloud services are typically consolidated and virtualized data centers that exploit
economies of scale to provide attractive cost–benefit ratios. In spite of being in its
early stages, cloud computing is already reshaping IT world. In fact, according to
The Wall Street Journal, four out of five businesses are moving or planning to move
some of their business functions to cloud services.

At the same time that cloud computing is redefining IT, extreme data and
compute scales are transforming science and engineering research by enabling
new paradigms and practices—those that are fundamentally information/data-driven
and collaborative. Cloud abstractions and infrastructures are rapidly becoming
part of the overall research cyberinfrastructure, providing viable platforms for
scientific exploration and discovery. It is expected that cloud services will join more
traditional research cyberinfrastructure components—such as high performance
computing (HPC) system, clusters and grids, as part of Cyberinfrastructure Frame-
work for Twenty-First Century Science and Engineering (CIF21) in supporting
scientific exploration and discovery. Analogous to their role in enterprise IT, clouds
can enable the outsourcing of many of the mundane and tedious aspects research
and education, such as deploying, configuring and managing infrastructure, and
enable scientists to focus on the science. Computational and Data-enabled Science
and Engineering (CDS&E) applications enabled by an advanced cyberinfrastructure
(ACI) are providing unprecedented opportunities for understanding and managing
natural and engineered systems, and offering unique insights into complex problems
and, in addition to support traditional enterprise data analytics services (e.g., those
based on MapReduce). For example, clouds can provide a platform for applications
when local infrastructure is not available or supplement existing platforms to
provide additional capacity or complementary capabilities to meet heterogeneous
or dynamic needs [20, 42, 66]. Clouds can also serve as accelerators, or provide
resilience to scientific workflows by moving the execution of the workflow on
alternative or fewer resources when a failure occurs. The simplicity of the cloud
abstraction can alleviate some of the problems scientific applications face in current
HPC environments. The analysis of high-dimensional parameter spaces, uncertainty
quantification by stochastic sampling, or statistical significance assessment through
resampling, are just few examples of a broad class of problems that are becoming
increasingly important in a wide range of application domains. These applications
can be generally described as many task computing applications [48] and can benefit
from the easy access to on-demand elastic customizable resources and the ability
to easily scale up, down or out [49]. Clearly, realizing these benefits requires the
development of appropriate application platforms and software stacks.

In this chapter, we present a model to support the dynamic federation of
resources and the coordinated execution of application workflows on such federated
environments. These resources can be of different types of infrastructure including
traditional HPC clusters, supercomputers, grids, and clouds. Additionally, the
federation provides autonomic scheduling mechanisms that create an abstraction
with cloud-like capabilities to elastically provision the resources based on user
and application policies and requirements. We discuss the requirements to enable

Federating Advanced Cyberinfrastructures with Autonomic Capabilities 203

our federation model followed by the description of our federation model and
mechanisms. In contrast to previous work such as [52] or [10], which propose
models to federate and combine clouds with local resources for cloudbursting, this
chapter focuses on providing abstractions to seamlessly federate and provision on-
demand a wider range of resources such as high-end systems that are not typically
exposed in federated systems or grids. A key aspect of our federation model is the
autonomic management and optimization of application execution through cross-
layer application/infrastructure adaptation. To demonstrate the effectiveness of the
federation model, mechanisms and autonomic management policies we present
an experimental evaluation with relevant usage scenarios of the proposed frame-
work, including: (1) medical image research, which aims at achieving extended
capacity, (2) molecular dynamics simulations using asynchronous replica exchange,
which provides adaptivity and elasticity at the application-level, and (3) data
analytics workflow based on clustering, which focuses on adaptation to achieve
user objectives and requirements. From these use case applications, we discuss
ongoing work towards enabling such a federation model to support new types of
application formulations such as adaptive workflows where dynamic provisioning
and federation is essential to respond to non-deterministic behaviors.

2 State of the Art

This section collects different research efforts aimed to federate resources in the
context of grid and cloud computing as well as standards to ease the interoperability
among infrastructures. These efforts are mainly focused on providing an infrastruc-
ture to compute large scale scientific applications.

2.1 Federating Computational Grids

In the late 1990s, grid computing [16] emerged as the model to support large sci-
entific collaborations by providing their computational resources and the structure
behind them. The core concept of grid computing defines an architecture to support
shared access to resources provided by members of virtual organizations (VO) [17]
that are formed by collaborative data centers and institutions. Some examples of
grids are Open Science Grid (OSG) [88] in US, GridX1 in Canada [1], Naregi
in Japan [83], APACGrid in Australia [12], Garuda in India [50], Grid’5000 in
France [6,78], DAS-3 in the Netherlands [73], D-Grid in Germany [75], e-Science in
UK [21], and EGI (following EGEE and DataGrid research efforts) in Europe [76].
Note that the majority of grids result from regional initiatives. However, large
dedicated grids have been also built to serve as scientific instruments, such as
XSEDE [91] in the US, DEISA [74], HPC-Europa [41] and PRACE [89] in the
EU, OSG in US, EGI in Europe, and Grid’5000 in France.

204 J. Diaz-Montes et al.

As science was pushing new limits in terms of levels of computation and data and
collaboration between scientists from multiple scientific domains across the globe,
there was a need for interoperability among different grid systems to create large
grid environments that would allow users to access resources of various VOs trans-
parently [54]. Among the grid federation efforts we can find InterGrid [9] along with
the work by Assuncao et al. [3] that promotes interlinking different grid systems
through economic-based peering agreements to enable inter-grid resource sharing,
Gridway [67] through its grid gateways [22] along the work by Leal et al. [35]
that proposed a decentralized model for scheduling on federated grids to improve
makespan and resource performance, LAGrid meta-scheduling [5, 55, 59] that
promotes interlinking different grid systems through peering agreements to enable
inter-Grid resource sharing, Koala [39] with the use of delegated matchmaking [24]
to obtain the matched resources from one of the peer Koala instances, VIOLA [61]
that implements grid interoperability via WS-Agreement [2] and provides co-
allocation of multiple resources based on reservations, Grid Meta-Brokering Service
(GMBS) [28, 29] proposes an architecture for grid interoperability based on high
level abstractions to describe the broker’s capabilities and properties using a specific
language [30–32, 57], the work by Elmroth et al. [13] that presents a grid resource
brokering service based on grid standards, Guim et al. [56] studied scheduling
techniques for multi-site grid environments, and within EGEE, efforts to enable
interoperability between gLite and UNICORE [14] systems [38, 51].

2.2 Federation in Cloud Computing

Cloud computing has emerged as a dominant paradigm that has been widely
adopted by enterprises. Clouds provide on-demand access to computing utilities,
an abstraction of unlimited computing resources, and support for on-demand scale
up, scale down and scale out. Furthermore, dynamically federated “cloud-of-
clouds” infrastructure can support heterogeneous and highly dynamic applications
requirements by composing appropriate (public and/or private) cloud services and
capabilities. At the same time that cloud computing is redefining IT, it is rapidly
joining high-performance computing system, clusters and grids as viable platforms
for scientific exploration and discovery. Current cloud platforms can provide
effective platforms for certain classes of applications, for example high-throughput
computing (HTC) applications. There have been several early projects that have
reported successful deployments of applications on existing clouds [11, 18, 27, 68].
Additionally, there are efforts exploring other usage modes [43] and to combine
clouds, such as Amazon EC2 [71], with integrated computing infrastructures.
Villegas et al. [69] proposed a composition of cloud providers as an integrated
(or federated) cloud environment in a layered service model. Assuncao et al. [10]
described an approach of extending a local cluster to cloud resources using different
scheduling strategies. Along the same lines, Ostermann et al. [42] extended a grid
workflow application development and computing infrastructure to include cloud

Federating Advanced Cyberinfrastructures with Autonomic Capabilities 205

resources, and experimented with Austrian Grid and an academic cloud installation
of Eucalyptus using a scientific workflow application. Similarly, Vazquez et al. [66]
proposed architecture for an elastic grid infrastructure using the GridWay meta-
scheduler, and extended grid resources to Globus Nimbus; Vockler et al. [70] used
Pegasus and Condor to execute an astronomy workflow on virtual machine resources
drawn from multiple cloud infrastructures based on FutureGrid, NERSC’s Magellan
cloud and Amazon EC2; Gorton et al. [20] designed a workflow infrastructure for
Systems Biology Knowledgebase (Kbase) and built a prototype using Amazon EC2
and NERSC’s Magellan cloud; and Bittencourt et al. [4] proposed an infrastructure
to manage the execution of service workflows in the hybrid system, composed of
the union of a grid and a cloud.

Given the growing popularity of virtualization, many commercial products and
research projects, such as OpenNebula [62, 86], OpenStack [87], Nimbus [84],
Eucalyptus [40, 77], IBM Smart Cloud [80], Amazon EC2, and VMware vCloud
Connector are being developed to dynamically overlay physical resources with
virtual machines. Analogously, Riteau et al. [52] proposed a computing model
where resources from multiple cloud providers are leveraged to create large-
scale distributed virtual clusters. They used resources from two experimental
testbeds, FutureGrid in the United States and Grid’5000 in France. In [8], Celesti
et al. proposed a cross-federation model based on using a customized cloud
manager component placeable inside the cloud architectures. Other example is
the Resevoir [53] that aims at contributing to best practices with a cloud and
federation architecture. In general, these efforts are intended to extend the benefits
of virtualization from a single resource to a pool of resources, decoupling the VM
not only from the physical infrastructure but also from the physical location.

2.3 Interoperability Standardization Activities

There are several projects with the goal enabling the interoperability of federated
infrastructures. The Open Middleware Infrastructure Institute for Europe (OMII-
Europe) aims to significantly influence the adoption and development of open
standards that facilitate interoperability between gLite and UNICORE such as
OGSA Basic Execution Service (BES) or Job Submission Description Language
(JSDL). The Grid Scheduling Architecture Research Group (GSA-RG) of Open
Grid Forum (OGF) is currently working on enabling grid scheduler interaction.
They are working to define a common protocol and interface among schedulers
enabling inter-grid resource usage, using standard tools (e.g., JSDL, OGSA,
WS-Agreement). However, the group is paying more attention to agreements.
They proposed the Scheduling Description Language (SDL) to allow specification
of scheduling policies based on broker scheduling objectives/capabilities (e.g.,
time constraints, job dependencies, scheduling objectives, preferences). The Grid
Interoperation Now Community Group (GIN-CG) of the OGF also addresses the
problem of grid interoperability driving and verifying interoperation strategies. They

206 J. Diaz-Montes et al.

are more focused on infrastructure with five sub-groups: information services, job
submission, data movement, authorization, and applications. Aligned with GIN-
CG, the OGF Production Grid Infrastructure Working Group (PGI-WG) aims
to formulate a well-defined set of profiles and additional specifications. Some
recommendations of these initiatives have been considered in existing work which
has identified standardization as a key element towards interoperability [15].

There are also two main activities of the OGF for job management: SAGA
[19] and DRMAA (Distributed Resource Management Application API) [65].
SAGA provides a set of interfaces used as the application programming model for
developing applications for execution in grid environments. DRMAA defines a set
of generalized interfaces that applications used to interact with distributed resource
management middleware. Both SAGA and DRMAA focus on applications.

Finally, there are other interoperability activities focused in the context of the
cloud. We have Siena [90], Open Cloud Computing Interface (OCCI) [85], under
the OGF umbrella, that aim at defining standards for cloud interoperability. There
is an IEEE Intercloud WG Working Group [81] that is working in standards such as
Standard for Intercloud Interoperability and Federation (SIIF) [82].

3 Federation Model to Aggregate Distributed Resources

The federation model that we propose is aimed to orchestrate geographically
distributed resources using cloud-like capabilities and abstractions. Our proposed
federation model is different from the existing ones, presented in Sects. 2.1 and 2.2,
in the sense that we provide a platform to access federated resources using cloud-like
capabilities such as on-demand provisioning, dynamic aggregation or cloudbursting.
Moreover, we are able to federate various kind of resources (HPC, cloud, and
grid) and enable autonomic computing features such as objective-driven workflow
execution to efficiently compute large scale problems.

3.1 Requirements

In order to design a federation model to support large scientific and engineering
problems, it is imperative to clearly define the characteristics that the resulting
system should provide. Having a well determined set of necessary and sufficient
requirements simplifies the design process by focusing on the essential functionality.
Thus, we used our past and present collaborations with domain scientists to identify
key requirements our solution should offer in order to be easy to use and flexible.
Next, we describe each one of these requirements.

• Scalability and Extended Capacity: Due to the computational requirements
of modern scientific applications, it becomes necessary to scale across

Federating Advanced Cyberinfrastructures with Autonomic Capabilities 207

geographicallydistributed resources. This is because oftentimes a single resource
is not sufficient to execute a given scientific workload (e.g. because the resource
is of limited scale, or it mismatches application requirements).

• Interoperability: While the scalability and extended capacity requirement
ensures that diverse resources can be incorporated into the federation, the
interoperability requirement guarantees that the federation will be able to interact
with these resources. Specifically, the federation must offer mechanisms to
interface with common platforms such as personal supercomputers, MPI and
MapReduce clusters, massively parallel and shared memory supercomputers, and
clouds. At the same time, it must be open such that new platforms can be added
in the future.

• Capability: By having heterogeneous resources as part of the federation, we
can take advantage of their particular characteristics and optimize the resource
allocation. In our model tasks and resource allocation can be achieved via a push
model with central scheduler, or a pull model where resources obtain tasks via
attribute-based queries. Thus, the federation must be aware of the capabilities of
each resource to allow optimal usage.

• Elasticity and On-Demand Access: The important factor affecting applicability
of the federation is its ability to scale up/down or out as needed. For many prac-
tical workloads it is difficult to predict computational and storage requirements.
Moreover, many applications are dynamic in the sense of convergence, and hence
provide no guarantees on the cost of execution. Consequently, the federation
must be able to aggregate or drop resources seamlessly. What is important,
the resulting elasticity makes the infrastructure resilient and hence improves its
ability to sustain computational throughput.

• Self-discovery: Having the right monitoring mechanisms in place is important
to ensure that the federation provides a realistic view of resources, taking into
account their variability over time. Here multiple factors should be taken into
account including availability, load, failure-rate, etc. The ability to self-discover
strongly affects how the federation manages the offered services and optimizes
resources allocation.

• Democratization: Users of the federation may have access to a larger number of
resources or to specific resources, which enables them to tackle more important
scientific challenges. This requires the capability of sharing resources and more
importantly controlling their usage to ensure a fair use among all users.

3.2 Federation Architecture

The federation is designed to be dynamically shaped as it is created in a collaborative
way, where each site talk with each other to identify themselves, negotiate the terms
of adhesion, discover available resources, and advertise their own resources and
capabilities. In this way, a federated management space is created on runtime and
sites can join and leave at any point. Users can access the federation from any site,
see Fig. 1.

208 J. Diaz-Montes et al.

Fig. 1 Federation architecture. Here (M) denotes a master, (W) is a worker, (IW) an isolated
worker, (P) a proxy, and (R) is a request handler

The federation model is based on the Comet [36] coordination spaces concept.
These Comet spaces are used to coordinate the different aspects of the federation.
In particular, we have decided to use two kind of spaces in the federation. First, we
have a single federated management space used to create the actual federation and
orchestrate the different resources. This space is used to interchange any operational
message for discovering resources, announcing changes in a site, routing users’
request to the appropriate sites, or initiating negotiations to create ad-hoc execution
spaces. On the other hand, we can have multiple shared execution spaces that are
created on demand to satisfy computing needs of the users. Execution spaces can
be created in the context of a single site to provision local resources and cloudburst
to public clouds or external HPC systems. Moreover, they can be used to create a
private sub-federation across several sites. This case can be useful when several sites
have some common interest and they decide to jointly target certain type of tasks as
a specialized community.

As shown in Fig. 1, each shared execution space is controlled by an agent that
creates such space and coordinates the resources for the execution of a particular

Federating Advanced Cyberinfrastructures with Autonomic Capabilities 209

set of tasks. Agents can act as master of the execution or delegate this duty to
a dedicated master (M) when some specific functionality is required. Moreover,
agents deploy workers to actually compute the tasks. These workers can be in a
trusted network and be part of the shared execution space, or they can be part of
external resources such as a public cloud and therefore in a non-trusted network.
The first type of workers are called secure workers (W) and can pull tasks directly
from the space. Meanwhile, the second type of workers are called isolated workers
(IW) and cannot interact directly with the shared space. Instead, they have to interact
with a proxy (P) and a request handler (R) to be able to pull tasks from the space.

A key aspect of this federation is the autonomic management and optimization
(of multiple objectives, including performance, energy, cost, and reliability) of
application execution through cross-layer application/infrastructure adaptations. It
is essential to be able to adapt to the application’s behavior as well as system
configuration, which can change at run time, using the notion of elasticity at the
application and workflow levels. Hence, the federated infrastructure increases the
opportunities to provision appropriate resources for given workflows based on user
objectives or policies and different resource classes can be mixed to achieve the
user objectives. Resources scale up/down/out based on the dynamic workflow and
the given policies. A user objective can be to accelerate application runtime within a
given budget constraint, to complete the application in a time constraint, or to select
better resources matching to the application type, such as computation-intensive
and data-intensive. Furthermore, application requirements and resource status may
change, for example, due to workload surges, system failures or emergency system
maintenance, and as a result, it is necessary to adapt the provisioning to match these
changes in resource and application workload.

3.3 CometCloud

Our federation model is built on top of CometCloud [33, 72] and the concepts that
CometCloud is based on. CometCloud is an autonomic computing engine based on
the Comet [36] decentralized coordination substrate, and supports highly hetero-
geneous and dynamic cloud/grid/HPC infrastructures, enabling the integration of
public/private clouds and autonomic cloudbursts, i.e., dynamic scale-out to clouds
to address extreme requirements such as heterogeneous and dynamics workloads,
and spikes in demands.

Conceptually, CometCloud is composed of a programming layer, service layer,
and infrastructure layer. The infrastructure layer uses the Chord self-organizing
overlay [63] and the Squid [60] information discovery to create a scalable content-
based coordination space for wide-area and a content-based routing substrate,
respectively. The routing engine supports flexible content-based routing and com-
plex querying using partial keywords, wildcards, or ranges. It also guarantees that
all peer nodes with data elements that match a query/message will be located. The
service layer provides a range of services to support autonomics at the programming

210 J. Diaz-Montes et al.

and application level. This layer supports a Linda-like [7] tuple space coordination
model, and provides a virtual shared-space abstraction as well as associative access
primitives. Dynamically constructed transient spaces are also supported to allow
applications to explicitly exploit context locality to improve system performance.
Asynchronous (publish/subscribe) messaging and event services are also provided
by this layer. The programming layer provides the basic functionality for application
development and management. It supports a range of paradigms including the
master/worker/BOT. Masters generate tasks and workers consume them. Masters
and workers can communicate via virtual shared space or using a direct connection.
Scheduling and monitoring of tasks are supported by the application framework.
The task consistency service handles lost/failed tasks.

3.4 Autonomic Management

The autonomic management capabilities are provided by the autonomic manager,
which is responsible for managing workflows, estimating runtime and scheduling
tasks at the beginning of every stage based on the resource view provided by the
agents. At each stage, the adaptivity manager monitors tasks runtimes through
results, handles the changes of application workloads and resource availability,
and adapts resource provisioning if required. Figure 2 shows the architecture of
the autonomic management framework. We detail the different components of the
autonomic manager below.

Workflow Manager The workflow manager is responsible for coordinating the
execution of the overall application workflow, based on user’s objectives and status
of the infrastructure.

Runtime Estimator The runtime estimator estimates computational runtime and
cost of each task. This estimate can be obtained through a computational complexity
model or through quick, representative benchmarks. Since performance is strongly
affected by the underlying infrastructure (clouds, HPC, or grids) it is more effective
to use benchmarks to obtain runtime and cost estimates.

Autonomic Scheduler It uses the information provided by the estimator modules
to determine the initial hybrid mix HPC/grids/cloud resources based on user/sys-
tem-defined objectives, policies and constraints. The autonomic scheduler also
profiles the tasks to allow agents to get the most suitable ones for their resources.
The scheduler is dynamic and it can update both the allocations and the scheduling
policy at runtime.

Elasticity Manager The status of the resources or the performance of the applica-
tion can change over time and differ from the initial estimation. Thus, the elasticity
manager is responsible for preventing the violation of the objectives and policies by
elastically adapting the resources allocated to each workflow.

Federating Advanced Cyberinfrastructures with Autonomic Capabilities 211

Fig. 2 Architectural
overview of the autonomic
manager framework.
CometCloud creates a cloud
abstraction where all types of
infrastructures are viewed as
elastic clouds that can
provision resources on
demand

Autonomic Manager

CometCloud

Objectives and PoliciesApplication Data

HPC Grid Cloud

Cluster

Application

Workflow
Manager

Runtime
Estimator

Autonomic
Scheduler

Elasticity
Manager

The autonomic manager takes advantage of the cloud abstraction provided by
CometCloud to seamlessly interact with any kind of infrastructures. Each infras-
tructure has specific properties that define the characteristics of its resources. This
information is essential to allow the autonomic manager to dynamically federate
resources. Since it uses CometCloud, it inherits the support for the master/worker,
MapReduce and workflow programming models. Nevertheless, applications are
usually described as workflows. Typically, the workflow programming model
considers a workflow with multiple stages, where stages should be executed in
an order, each stage can run a different application or the same application with
different length of tasks, computational requirements, and data.

3.5 Enabling Autonomics

The essence of the autonomic manager resides in the user objectives and policies.
They are used to drive the execution of the workflow by provisioning the appropri-
ated number and type of resources. The allocated resources can vary over time,
to make sure the application requirements are respected, if a deviation over the
estimate execution plan is detected. Deviations on the plan occur due to unexpected
failures, performance fluctuation, queue wait time variation, etc. In this Section we
present several use cases that represent typical scenarios from the user’s perspective
and how to achieve them using autonomic techniques.

212 J. Diaz-Montes et al.

User Objectives Currently, the autonomic manager supports three main objectives
namely acceleration, conservation, and resilience. Nonetheless, new objectives such
as energy-efficiency can be easily integrated.

Acceleration Cloud infrastructures provide large amount of resources that can
perfectly be used to execute certain scientific applications. Thus, they can be used
to boost the execution of the applications by dramatically increasing the number of
allocated resources and hence reducing the overall computational time.

Conservation HPC resources are essential to compute many scientific applications.
However, the access to this type of resources is very limited and their use is typically
controlled by awards. Therefore, optimizing the use of those resources is very
important. The idea of this use case is to use clouds to conserve HPC allocations.
For example, we could use the cloud to do an initial exploration of the application
domain and migrate to the HPC resources only those tasks that progress as expected.
This could be done considering runtime and budget constraints.

Resilience This use case investigates how clouds can be used to handle unexpected
situations such as an unanticipated HPC/grid downtime, inadequate allocations,
unanticipated queue delays or failures of working nodes. Additional cloud resources
can be requested to alleviate the impact of the unexpected situations and meet user
objectives.

Scheduling Policies To achieve the above user objectives, several policies can be
defined. Two of the most representative policies are described as follows.

Deadline The scheduling decision is to select the fastest resource class for each task
and to decide the number of nodes per resource class based on the deadline. If the
deadline can be achieved with a single node, then only one node will be allocated.
When an application needs to be completed as soon as possible, regardless of cost
and budget, the largest useful number of nodes is allocated.

Budget When a budget is enforced on the application, the number of allocatable
nodes is restricted by the budget. If the budget is violated with the fastest resource
class, then the next fastest and cheaper resource class is selected until the expected
cost falls within the budget limit.

4 Application Scenarios

This section provides a comprehensive discussion of different representative use
case applications and experiences to illustrate the effectiveness of our proposed
federation architecture, mechanisms and autonomic strategies. Specifically we dis-
cuss different Computational and Data-Enabled Science and Engineering (CDS&E)
applications and an enterprise business data analytics workflow. Although the result
of these applications is not the goal of this chapter, we believe the discussion of these
experiences are useful to define next steps towards advanced cyberinfrastructure and
clouds federation for different usage modes [43].

Federating Advanced Cyberinfrastructures with Autonomic Capabilities 213

4.1 CDS&E Applications

Two different CDS&E applications are discussed below, namely medical image
research and molecular dynamics simulations using asynchronous replica exchange.
Both application use cases use federated advanced cyberinfrastructure in combina-
tion with clouds, however, they represent different usage modes.

Medical Image Research includes both medical image registration and content-
based image retrieval. In the former, we focused on autonomically balancing
completion time and cost using federated resources including private data centers,
grids and private clouds [34]. In the latter, we use the proposed federation
mechanisms to achieve extended capacity to respond to its large computational
power requirements, which is described as follows.

Content-based image retrieval (CBIR) has been one of the most active research
areas in a wide spectrum of image-related fields over the last few decades. In
pathology, hematology already contains a large number of tools to automatically
count blood cells. To classify abnormal white blood cells and compare diagnosis
between a new case and cases with similar abnormalities is an interesting appli-
cation. In this application use case we focus on CBIR on digitized peripheral
blood smear specimens using low-level morphological features. Specifically, we
use CometCloud to execute CBIR in federated heterogenous advanced cyberinfras-
tructure and cloud resources with the goal of reducing the completion time (i.e.,
provide answers within minutes or hours rather than weeks). The CBIR code was
ported from Matlab to Java as a native CometCloud application to avoid licensing
constrains in non-proprietary resources and to enable future implementations of the
application on specialized hardware (e.g., accelerators). Since the most computation
expensive part is searching query patches within each database image, we chose to
use master/worker programming model, thus each image within the database was
assigned to a worker. The implementation using the master/worker programming
model is shown as Fig. 3. A master and a number of workers (one per physical
core) form an overlay at runtime and synchronize using a tuple space (execution
space). The master generates tasks (one for each image or subset of images to be
processed) and then the workers pull the tasks and process the associated images
simultaneously. In order to improve scalability and fault tolerance, workers store
intermediate results on disk rather than returning the results back to the master using
the comet space. When the workers finish, the intermediate results are consolidated
(which represents a small part of the overall execution).

In order to obtain extended capacity, we federated a cluster at Rutgers (a Dell
Power Edge system with 256 cores in 8-core nodes) with distributed cyberin-
frastructure from NSF Extreme Science and Engineering Discovery Environment
(XSEDE), NSF FutureGrid, the National Energy Research Scientific Computing
Center (NERSC) and public clouds (Amazon EC2). Specifically, we used Ranger
(Sun constellation with 62,976 cores in 16-core nodes) and Lonestar (with 22,656
cores in 12-core nodes) from XSEDE, Hotel (an IBM iDataPlex system with
672 cores in 8-core nodes) from FutureGrid, Hopper (a Cray XE6 system with

214 J. Diaz-Montes et al.

Master

Worker

Worker

intermediate
results

intermediate
results

intermediate
results

Worker

(task tuples)
t2

t1 t3
t5 t4

Comet Space

3. Master
 Consolidate results

2. Workers
 Pull task & img. process

1. Master
 Insert tasks

Fig. 3 Master/worker framework implementation in CometCloud

153,216 cores in 24-core nodes) from NERSC, and medium instances from Amazon
EC2. The former resources were used through startup awards and the later in pay-
as-you-go basis. We used advanced cyberinfrastructure systems “opportunistically”
by using short waiting time queues, i.e., queues with limitations such as reduced
runtime and number of queued/running jobs. Data transfer was overlapped with
computation.

Figure 4 shows the completion time of CBIR algorithm over the database of
925 images for the 50 different configurations (in minutes, using logarithmic scale)
and Fig. 5 shows the average throughput (i.e., processed images per minute) that a
single node of each of the different platforms can achieve. Completion time for the
federated scenario was obtained with real executions while for sequential and local
cluster scenarios completion time is an estimation based on the actual execution of
the subset of configurations, due to the limitations of very long executions.

The results show that CBIR is dramatically speeded up when using the (dedi-
cated) dell cluster at Rutgers with respect to using a single node (from around two
weeks of computation to 12 h). However, using federated infrastructure (i.e., much

105

104

103

102

101

C
om

pl
et

io
n

T
im

e
(m

in
ut

es
)

Seq
ue

nt
ial

Lo
ca

l c
lus

te
r

Fed
er

at
ed

Fig. 4 Completion time using different configurations

Federating Advanced Cyberinfrastructures with Autonomic Capabilities 215

0

1

2

3

4

5
N

od
e

T
hr

ou
gh

pu
t (

im
g/

m
in

)

Fut
ur

eG
rid

Lo
ne

sta
r

Ran
ge

r

Hop
pe

r
Dell

Am
az

on
EC2

Fig. 5 Average node throughput for different platforms

more resources but not under own control) provides much shorter completion time
(about 170 min). In our experiments the jobs used a single node (i.e., up to 24 cores)
to run a set of 100 images, however, if we used a smaller set of images per job
the penalty due to the queuing times would be higher. In case of Amazon EC2 a
job processes a smaller set of images because the nodes have smaller core count.
Figure 5 also shows the impact of queuing time on the average throughput in the
HPC systems (i.e., Lonestar, Ranger and Hopper). Furthermore, Fig. 6 shows the
throughput (i.e., number of processed images per minute) during a time interval
of 3 h of the Dell cluster at Rutgers and Hopper, respectively. The Dell cluster
shows more stable throughput behavior than Hopper, whose throughput presents
spikes over time. Although Hopper nodes are more powerful, the queuing times and
the limitation of the number of concurrent running jobs penalizes significantly the
throughput.

The proposed federated system presents many opportunities and challenges in
the context of medical image research such as exploiting heterogeneous federated
resources from the point of view of their capabilities. For example, the Matlab
incarnation of CBIR can be run when licenses are available or an incarnation for
accelerators (e.g., GPU or Intel MIC) can be run when resources with accelerators
are available.

Molecular Dynamics Simulations Using Asynchronous Replica Exchange
Replica exchange [23,64] is a powerful sampling algorithm that preserves canonical
distributions and allows for efficient crossing of high-energy barriers that separate
thermodynamically stable states. In this algorithm, several copies or replicas, of
the system of interest are simulated in parallel at different temperatures using
“walkers”. These walkers occasionally swap temperatures and other parameters
to allow them to bypass enthalpies barriers by moving to a higher temperature.
The replica exchange algorithm has several advantages over formulations based on
constant temperature, and has the potential for significantly impacting the fields of
structural biology and drug design—specifically, the problems of structure based
drug design and the study of the molecular basis of human diseases associated

216 J. Diaz-Montes et al.

0
20
40
60
80

100
120
140
160

0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t

Execution time (min)

Execution time (min)

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t

Fig. 6 Throughput (images/minute) for the Dell cluster on top and the Hopper supercomputer at
the bottom

with protein misfolding. Traditional parallel implementations of replica exchange
target either tightly coupled parallel systems or relatively small clusters. However,
an asynchronous formulation of the replica exchange algorithm was designed and
implemented [37, 79], which was proven to be effective, efficient and suitable for
grid- based systems. Additionally, it is possible to reformulate the workflow to
better utilize the ACI as described below.

Typically molecular dynamics simulations are very static in terms of execution
models—the simulations go from start to finish irrespective of whether replicas are
progressing towards correct folding. The ability to bias a trajectory by identifying
pathways that are progressing towards a fully folded structure and those that are
diverging away is an exciting direction for replica exchange formulations. The
quality of the protein structure can be monitored by comparing the progress of each
replica using secondary structure prediction methods and the radius of gyration.
For example, in ubiquitin folding simulation replicas with large radius of gyration
would be considered for termination because ubiquitin is a globular protein with a
small radius of gyration. However, replicas exhibiting short radius of gyration would
remain in the simulation due to the close resemblance to the completely folded
ubiquitin protein. In addition to killing diverging replicas, the described application
formulation can also spawn new replicas if they are making progress towards correct
folding. As a result, the entire simulation would follow a sequence where radius of
gyration and secondary structure prediction information will be used to terminate

Federating Advanced Cyberinfrastructures with Autonomic Capabilities 217

Fig. 7 NAMD scaling in
different environments

0.01

0.1

1

10

1 10 100 1000 10000

da
ys

/n
s

Number of cores

Hopper
Lonestar

Ranger
Dell

some replicas, cause a conformation to spawn new replicas across a temperature
range, and modulate the probability of exchanging to nearby temperatures. By
utilizing such a formulation we can dynamically adapt the molecular dynamics
simulations, bias trajectories to find pathways towards correct folding and, in doing
so, accelerate scientific discovery.

The use of CometCloud provides the opportunity to run simulations on dynami-
cally federated large-scale distributed resources. Thus, what we see is a hierarchical
formulation that provides adaptivity and elasticity at the application-level, through
asynchronous replica exchange, and at the infrastructure-level, through Comet-
Cloud. By utilizing CometCloud’s capabilities and its cloud computing abstractions,
we can run asynchronous NAMD [44] replica exchange on a federated, distributed
environment. From an application perspective, the amount of time a simulation
takes is proportional to the size of the protein or system and the desired length of
the trajectory. However, by using CometCloud and asynchronous replica exchange
scientists can explore the folding of very large proteins and run trajectories at
microsecond or potentially even millisecond scale. This larger scale of science
also gives rise to interesting scenarios at the CometCloud layer. For example, if
we find that the initial allocation of resources is not enough then CometCloud
can dynamically federate other distributed sites in order to obtain more resources.
Conversely, in the context of protein folding, CometCloud can dynamically kill
replicas if it finds that the protein structures being generated by the replicas do
not progress towards the known structure or show predicted secondary structure
features. By eliminating non-converging replicas we can ensure that CPU cycles are
not wasted and speed-up the application.

In order for large-scale simulations to be effective the asynchronous formulation
must show good scaling on this heterogeneous distributed environment. Perfor-
mance evaluation is a necessary tool for understanding the limitations of the various
environments provided by CometCloud. This is especially true for commodity and
virtualized resources—such as those provided by FutureGrid and Amazon EC2.
Thus, the performance of the entire ensemble of simulations depends on the slowest
platform. In this case, the slowest platforms correspond to FutureGrid and Amazon
EC2 where NAMD replica exchange is deployed on virtual machines. In terms of
the simulation, the downward slope shows that the simulation time (in days) for a

218 J. Diaz-Montes et al.

nanosecond trajectory is decreasing—meaning faster simulations. From Fig. 7 we
can conclude that all environments tested exhibit good scalability and consistently
report faster simulation times each time the processor count is doubled. More
importantly, these results provide justification for a federated architecture where
all machines can run simulations in parallel. The close grouping of simulations on
large-scale HPC sites (i.e., Ranger, Hopper, Lonestar) also show that distributing
replicas across these environments might also be feasible. Combining the fact of
the low performance of virtualized environments to run tightly couple simulations
[18, 25] and NAMD scaling on HPC infrastructure, we find that there is sufficient
motivation for the formulation described above.

4.2 Enterprise Business Data Analytics

Current enterprise business data analytics workflows combine different techniques
in their stages such as MapReduce-like applications that aggregate large amounts of
data from different sources for business intelligence with clustering techniques. For
example, the output of a topic-based text analysis approach such as Latent Dirichlet
Allocation (LDA) is represented in a multi-dimensional information space, which
includes different topics, information categories, etc. These data points in the multi-
dimensional information space can be clustered using Distributed Online Clustering
(DOC) to search results and correlate them with known data sources, and allow
visualizing and interpreting the results interactively through a GUI. The specific
solution in this application use case is a federated hybrid cloud for handling “big
data” through DOC.

DOC is a clustering algorithm that targets networked systems in which individual
components can monitor their operational status or actions, represent them using
sets of globally known attributes, and periodically publish this status or interactions
as semantic events that contain a sequence of attribute-value pairs. The algorithm
specification, along with details about its implementation and robustness to failures,
were the subject of previous publications [47]. Other applications of DOC have
been also studied in the context of autonomic resource provisioning [45, 58] and
autonomic policy adaptation [46] Here, we explain the main characteristics of the
algorithm, and refer the reader to the cited publications for further details.

In DOC, each of the events to be clustered is represented as a point in a
multidimensional space, each dimension in this space, referred to as an information
space, corresponds to one of the event attributes, and the location of a point within
the space is determined by the values for each of its attributes. It is assumed that
the range of values of each attribute is an ordered set. For each set, a distance
function can be defined in order to measure the similarity between points (i.e.,
similarity is inversely proportional to distance). This definition is straightforward
for quantitative attributes, and can be applied to non-quantitative attributes as
well with an appropriate encoding. The notion of similarity based on distance in
each dimension extends to the multidimensional information space, for which a

Federating Advanced Cyberinfrastructures with Autonomic Capabilities 219

0
0 10 20 30 40 50 60 70

200
400
600
800

1000
1200

Ti
m

e
(s

ec
on

ds
)

Workflow ID

a b

c d

Deadline
Completion

0
0 10 20 30 40 50 60 70

200
400
600
800

1000
1200

Ti
m

e
(s

ec
on

ds
)

Workflow ID

Deadline
Completion

0
0 10 20 30 40 50 60 70

200
400
600
800

1000
1200

Ti
m

e
(s

ec
on

ds
)

Workflow ID

Deadline
Completion

Deadline
Completion

0
0 10 20 30 40 50 60 70

200
400
600
800

1000
1200

Ti
m

e
(s

ec
on

ds
)

Workflow ID

Fig. 8 Deadline and completion time of each workflow with and without cloudburst. (a) Only
Rutgers (No Cloudburst), deadline 300 s. (b) Rutgers+EC2 (CloudBurst), deadline 300 s. (c) Only
Rutgers (No Cloudburst), deadline 420 s. (d) Rutgers+EC2 (CloudBurst), deadline 420 s

distance function can also be defined in terms of the uni-dimensional distances.
Conceptually, a cluster is a set of points for which mutual distances are relatively
smaller than the distances to other points in the space [26]. However, the approach
for cluster detection described in this chapter is not based primarily on evaluating
distances between points, but rather on evaluating the relative density of points
within the information space. In this case, point similarity is directly proportional to
point density.

The approach used for the evaluation of point density, and thus for the detection
of clusters and outliers, is dividing the information space into regions and to observe
the number of points within each region. If the total number of points in the
information space is known, then a baseline density for a uniform distribution
of points can be calculated and used to estimate an expected number of points
per region. Clusters are recognized within a region if the region has a relatively
larger point count than this expected value. Conversely, if the point count is
smaller than expected, then these points are potential outliers. However, clusters
may cross region boundaries and this must be taken into account when verifying
potential outliers. The approach described above lends itself to a decentralized
implementation because each region can be assigned to a particular processing node.
Nodes can then analyze the points within their region and communicate with nodes
responsible for adjoining regions in order to deal with boundary conditions.

As part of this application scenario, we evaluated the autonomic manager by
showing how to achieve user objectives such as time constraint and deadline using

220 J. Diaz-Montes et al.

0
0 200 400 600 800 1000 1200

5
10
15
20
25
30
35
40
45

N
um

be
r o

f s
ta

ge
s

Time (seconds)

a b

c d

0 200 400 600 800 1000 1200
Time (seconds)

Waiting stages
Deadline-urgent stages
Running agents

Waiting stages
Deadline-urgent stages
Running agents

Waiting stages
Deadline-urgent stages
Running agents

Waiting stages
Deadline-urgent stages
Running agents

0

10

20

30

40

50

N
um

be
r o

f s
ta

ge
s

0
0 200 400 600 800 1000 1200

5
10
15
20
25
30
35
40
45

N
um

be
r o

f s
ta

ge
s

Time (seconds)

0 200 400 600 800 1000 1200
Time (seconds)

0

10

20

30

40

50

N
um

be
r o

f s
ta

ge
s

Fig. 9 Number of stages waiting to be executed and number of allocated agents. The required
agents are provisioned on-demand by cloudburst regardless of the local resources limitations.
(a) Only Rutgers (No Cloudburst), deadline 300 s. (b) Rutgers+EC2 (CloudBurst), deadline 300 s.
(c) Only Rutgers (No Cloudburst), deadline 420 s. (d) Rutgers+EC2 (CloudBurst), deadline 420 s

cloudbursts to a public cloud when the local resources are limited. We have used
Rutgers cluster as a local resource class with 27 nodes where each node has 8 cores,
6 GB memory, 146 GB storage and 1 GB Ethernet connection. For a public cloud,
we used Amazon EC2, c1.medium instance type. We are going to use workflows
of the DOC application with three different stages each, with different parameters
and input files. Therefore, each stage of the workflow has a different execution
time. From the point of view of the autonomic manager, each stage is a task and
is executed by a single agent. We decided that each agent uses two workers to
execute a stage. Hence, the maximum number of agents that can be allocated in
the Rutgers cluster is nine because each agent involves three machines (one for the
agent and two for the workers). Moreover, each agent can only execute one stage
at a time, which means that if there are multiple workflows submitted in a short
time, then their stages should wait in the space for some time until they are selected.
Therefore, the autonomic manager has to autonomically scale-up/down agents to
adapt the provisioned resources to the workload.

User objectives can be set for each stage of the workflow separately as each
stage can run a different application with different constraints and the length of
computation or the amount of required resources can vary among stages even for
the same application. In this experiment, we set a deadline for each stage and we
have used shortest deadline first serve (SDFS) policy for task selection. Hence,

Federating Advanced Cyberinfrastructures with Autonomic Capabilities 221

agents sequentially select stages which have the shortest remaining time to deadline.
The number of agents is related to the number of stages which should immediately
start to meet the deadline constraint. Thus, the autonomic scheduler starts agents
to execute urgent stages. The scheduler tries to allocate resources from the cluster
at Rutgers and only if the local cluster does not have enough resources it allocates
resources from Amazon EC2 (cloud burst).

The average interval of workflow submission has been set to 10 s during the first
600 s of execution. We show two set of experiments, fixing the deadline for each
stage of the workflow to 100 and 140 s, respectively. Since each workflow has a
three stages, the deadline for each workflow is 300 and 420 s, respectively. Results
are shown in Figs. 8 and 9. Specifically, Fig. 8 shows the deadline and completion
time of each workflow for 300 and 420 s. Note that the deadline and completion
times of each workflow are relative to the time it was submitted. We can observe that
when we executed the workflows using Rutgers resources only (without cloudburst),
around a 90 % of the workflow violated deadline constraints, even for a large
deadline. However, when we enabled cloudburst to EC2, all workflow were able
to meet the deadline constraints by allocating as many EC2 instances as required
on-demand.

On the other hand, Fig. 9 shows the number of waiting stages and the number
of allocated agents over time. It also shows the deadline-urgent stages, which are
those waiting stages that need to be executed immediately to have a chance to meet
their deadlines. We can observe in Fig. 9a, c, that local resources were not able
to provide the computational power needed to guarantee the deadline constrains.
It caused that the waiting time of each stage and the number of deadline-urgent
stages to be increased, and therefore deadlines were eventually violated. However,
Fig. 9b, d shows that when we enabled cloudburst, the autonomic manager was able
to dynamically scale up and down the number of allocated agents to satisfy the
demand of deadline-urgent stages. Scaling up the number of allocated agents was
immediately done when needed. However, we delayed the deallocation of agents
to avoid too much fluctuation. Therefore, by using the autonomic manager, all the
workflow stages were able to meet the deadline constraints.

5 Lessons Learned

The different use cases presented in previous sections clearly demonstrate feasibility
and capability of an elastic, dynamically federated infrastructure. These use cases
have shown how it is possible to use the autonomic capabilities of our framework
for different objectives, including acceleration and conservation.

Oftentimes, a single resource is not sufficient to execute a given scientific work-
load (e.g. because it is of limited scale, or it mismatches application requirements).
Although the majority of researchers with large computational demands have access
to multiple infrastructures, such as HPC, computational grids, and clouds, taking
advantage of the collective power of these systems is not trivial. Our results

222 J. Diaz-Montes et al.

show how a federated framework can help to aggregate the computational power
(i.e. capacity) of geographically distributed resources and offer them in an elastic
way to the users. In the CBIR use case (Sect. 4.1), we shown how the execution
can be dramatically sped up, from weeks to minutes. One important element that
contributed to the success of this experiment, was the ability of the federation to
scale across institutional and geographic boundaries.

As discussed above, it is clear from the state of the art that cloud platforms can
effectively support certain classes for CDS&E applications, such as for example,
high throughput computing (HTC) applications. However, many other existing
CDS&E application formulations are not directly suited for cloud platforms. As
a result, it is essential to explore alternate formulations of these applications that
could potentially benefit from cloud services. This idea has been demonstrated in
the replica exchange use case (Sect. 4.1) where an asynchronous implementation
allowed us to take advantage of the capabilities offered by different resources.
Therefore, having highly heterogeneous resources as a part of the federation,
it is crucial to take advantage of their particular characteristics and optimize
resources allocation. This is synergistic with the concept of autonomic computing.
In particular, in the replica exchange case we used clouds to complement HPC
resources, which allowed us to save HPC allocations.

Finally, one important aspect of clouds is the ability of adapting the resources
to the demands of applications and users. In the majority of cases predicting
computational and storage requirements is extremely difficult. Therefore, scaling
up/down or out as needed becomes essential for dynamic workloads. Our results
show that elasticity allows to adapt the number of provisioned resources to the
demands. In this way, it is possible to meet the deadline for different applications
while utilizing just the appropriated number of resources. This concept is shown
in the business data analytics application, Sect. 4.2. Additionally, the elasticity
can also be used to make the infrastructure resilient to changes in the federation.
Consequently, the federation is able to better sustain computational throughput.

Conclusions
We have presented a federation model that enables the orchestration of
hybrid distributed infrastructures and the coordinated execution of application
workflows on such federated environments. We experimentally investigated,
from an application’s perspective, possible usage modes for integrating HPC
and clouds as well as how autonomic computing can support these modes.
In particular, we used three use case scenarios to highlight different aspects
of the federation. First, we showed how medical image research applications
can benefit from the federation of distributed resources and their aggregated
computational power. Then, we exploited the principles of adaptivity and
elasticity at the application level, through asynchronous replica exchange,

(continued)

Federating Advanced Cyberinfrastructures with Autonomic Capabilities 223

and at the infrastructure level, through CometCloud, in the context of a
molecular dynamics application. We specifically argue how clouds can be
beneficial to quickly explore the application domain space saving the HPC
allocations to compute only those replicas that were identified as relevant
during the exploration. Finally, we performed a deadline objective-driven
workflow execution to further study the behavior of the autonomic manager.
The workflow was based on a decentralized online clustering application and
the results showed autonomic manager is able to achieve deadline constraint
by provisioning resources on demand (cloudburst).

Our ongoing work includes the exploration of new scientific application
scenarios that require the coordinated used of distributed hybrid infrastruc-
tures and supporting new types of application formulations such as adaptive
workflows where dynamic provisioning and federation is essential to respond
to non-deterministic behaviors. Moreover, we are also working in enabling
new cloud-like paradigms to provide a platform where scientist only need
to change the application driver to benefit from an existing federation
infrastructure. Finally, we would also like to evaluate new ways to manage
the different sites of the federation. Currently, it is based on a pull mode and
we believe that other mechanisms such as publish/subscribe would bring us
many more interesting use cases.

Acknowledgements The research presented in this work is supported in part by US National
Science Foundation (NSF) via grants numbers OCI 1310283, OCI 1339036, DMS 1228203 and
IIP 0758566, by the Director, Office of Advanced Scientific Computing Research, Office of
Science, of the U.S. Department of Energy through the Scientific Discovery through Advanced
Computing (SciDAC) Institute of Scalable Data Management, Analysis and Visualization (SDAV)
under award number DE-SC0007455, the Advanced Scientific Computing Research and Fusion
Energy Sciences Partnership for Edge Physics Simulations (EPSI) under award number DE-FG02-
06ER54857, the ExaCT Combustion Co-Design Center via subcontract number 4000110839 from
UT Battelle, and by an IBM Faculty Award. We used resources provided by: XSEDE NSF OCI-
1053575, FutureGrid NSF OCI-0910812, and NERSC Center DOE DE-AC02-05CH11231. The
research and was conducted as part of the NSF Cloud and Autonomic Computing (CAC) Center at
Rutgers University and the Rutgers Discovery Informatics Institute (RDI2). We would also like to
acknowledge Hyunjoo Kim, Moustafa AbdelBaky, and Aditya Devarakonda for their contributions
to the CometCloud project.

References

1. A. Agarwal, M. Ahmed, A. Berman, B. L. Caron, et al. GridX1: A Canadian computational
grid. Future Gener. Comput. Syst., 23:680–687, June 2007.

2. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-Agreement), GFD-R-
P.107. Technical report, GRAAP WG, Open Grid Forum, March 2007.

224 J. Diaz-Montes et al.

3. M. D. Assuncao and R. Buyya. Performance analysis of allocation policies for interGrid
resource provisioning. Information and Software Technology, 51:42–55, January 2009.

4. L. F. Bittencourt, C. R. Senna, and E. R. M. Madeira. Enabling execution of service workflows
in grid/cloud hybrid systems. In Network Operations and Management Symp. Workshop,
pages 343–349, 2010.

5. N. Bobroff, L. Fong, S. Kalayci, Y. Liu, J. C. Martinez, I. Rodero, S. M. Sadjadi, and D. Vil-
legas. Enabling interoperability among meta-schedulers. In IEEE CCGrid, pages 306–315,
2008.

6. R. Bolze, F. Cappello, E. Caron, M. Dayde, et al. Grid’5000: a large scale and highly recon-
figurable experimental Grid testbed. International Journal of High Performance Computing
Applications, 20:481–494, November 2006.

7. N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444–458, 1989.
8. A. Celesti, F. Tusa, M. Villari, and A. Puliafito. How to enhance cloud architectures to enable

cross-federation. In IEEE CLOUD, pages 337–34, 2010.
9. M. D. de Assuncao, R. Buyya, and S. Venugopal. Intergrid: a case for internetworking islands

of grids. Concurrency Computat. Pract. and Exper., 20(8):997–1024, 2008.
10. M. D. de Assuncao, A. di Costanzo, and R. Buyya. Evaluating the cost-benefit of using cloud

computing to extend the capacity of clusters. In ACM HPDC, pages 141–150, 2009.
11. E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing science

on the cloud: the montage example. In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC ‘08, pages 50:1–50:12, Piscataway, NJ, USA, 2008. IEEE Press.

12. T. Dunning and R. Nandkumar. International cyberinfrastructure: activities around the globe.
Cyberinfrastructure Technology Watch Quarterly, 2:2–4, February 2006.

13. E. Elmroth and J. Tordsson. A standards-based grid resource brokering service supporting
advance reservations, coallocation, and cross-grid interoperability. Concurr. Comput. : Pract.
Exper., 21(18):2298–2335, Dec. 2009.

14. D. Erwin and D. Snelling. UNICORE: A Grid Computing Environment. In International
Euro-Par Conference on Parallel Processing, pages 825–834, Manchester, UK, August 2001.

15. L. Field, E. Laure, and M. W. Schulz. Grid deployment experiences: Grid interoperation.
J. Grid Comput., 7(3):287–296, 2009.

16. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Morgan-
Kauffman, 1999.

17. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of High Perfomance Computing Applications,
15(3):200–222, 2001.

18. G. Fox and D. Gannon. Cloud Programming Paradigms for Technical Computing Applications.
Technical report, Indiana University, 2012.

19. T. Goodale, S. Jha, T. Kielmann, A. Merzky, J. Shalf, and C. Smith. A Simple API for Grid
Applications (SAGA), GWD-R.72. Technical report, SAGA-CORE Working Group, Open
Grid Forum, September 2006.

20. I. Gorton, Y. Liu, and J. Yin. Exploring architecture options for a federated, cloud-based system
biology knowledgebase. In IEEE Intl. Conf. on Cloud Computing Technology and Science,
pages 218–225, 2010.

21. T. Hey and A. Trefethen. The UK e-Science Core Programme and the Grid. Future Gener.
Comput. Syst., 18:1017–1031, 2002.

22. E. Huedo, R. Montero, and I. Llorente. A recursive architecture for hierarchical grid resource
management. Future Gener. Comput. Syst., 25:401–405, April 2009.

23. K. Hukushima and K. Nemoto. Exchange Monte Carlo method and application to spin glass
simulations. J. Phys. Soc. Jpn., 65:1604–1608, 1996.

24. A. Iosup, D. Epema, T. Tannenbaum, M. Farrelle, and M. Livny. Inter-Operable Grids through
Delegated MatchMaking. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC07), pages 13:1–13:12, Reno, Nevada, November 2007.

Federating Advanced Cyberinfrastructures with Autonomic Capabilities 225

25. A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema. Performance
analysis of cloud computing services for many-tasks scientific computing. IEEE Trans. Parallel
Distrib. Syst., 22(6):931–945, 2011.

26. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1998.
27. K. Keahey and T. Freeman. Science clouds: Early experiences in cloud computing for scientific

applications. In Cloud Computing and Its Applications (CCA-08), October 2008.
28. A. Kertesz and P. Kacsuk. Grid Meta-Broker Architecture: Towards an Interoperable Grid

Resource Brokering Service. In CoreGRID Workshop on Grid Middleware in conjunction with
Euro-Par, LNCS 4375, pages 112–116, Desden, Germany, 2008.

29. A. Kertész and P. Kacsuk. Gmbs: A new middleware service for making grids interoperable.
Future Gener. Comput. Syst., 26(4):542–553, Apr. 2010.

30. A. Kertesz, I. Rodero, and F. Guim. Bpdl: A data model for grid resource broker capabilities.
Technical Report TR-0074, Institute on Resource Management and Scheduling, CoreGRID -
Network of Excellence, March 2007.

31. A. Kertesz, I. Rodero, and F. Guim. Meta-Brokering Solutions for Expanding Grid Middleware
Limitations. In Workshop on Secure, Trusted, Manageable and Controllable Grid Services
(SGS) in conjunction with International Euro-Par Conference on Parallel Processing, Gran
Canaria, Spain, July 2008.

32. A. Kertžsz, I. Rodero, F. Guim, A. Kertžsz, I. Rodero, and F. Guim. A data model for grid
resource broker capabilities. In Grid Middleware and Services, pages 39–52, 2008.

33. H. Kim, Y. E. Khamra, I. Rodero, S. Jha, and M. Parashar. Autonomic management of
application workflows on hybrid computing infrastructure. Sci. Program., 19(2–3):75–89,
2011.

34. H. Kim, M. Parashar, D. J. Foran, and L. Yang. Investigating the use of autonomic cloudbursts
for high-throughput medical image registration. In IEEE/ACM GRID, pages 34–41, 2009.

35. K. Leal, E. Huedo, and I. M. Llorente. A decentralized model for scheduling independent tasks
in federated grids. Future Gener. Comput. Syst., 25(8):840–852, 2009.

36. Z. Li and M. Parashar. A computational infrastructure for grid-based asynchronous parallel
applications. In HPDC, pages 229–230, 2007.

37. Z. Li and M. Parashar. Grid-based asynchronous replica exchange. In IEEE/ACM GRID,
pages 201–208, 2007.

38. M. Marzolla, P. Andreetto, V. Venturi, A. Ferraro, et al. Open Standards-Based Interoper-
ability of Job Submission and Management Interfaces across the Grid Middleware Platforms
gLite and UNICORE. In IEEE International Conference on e-Science and Grid Computing,
pages 592–601, Bangalore, India, December 2007.

39. H. Mohamed and D. Epema. KOALA: a Co-allocating Grid Scheduler. Concurrency and
Computation: Practice & Experience, 20:1851–1876, November 2008.

40. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov.
The eucalyptus open-source cloud-computing system. In IEEE/ACM CCGRID, pages 124–131,
2009.

41. A. Oleksiak, A. Tullo, P. Graham, T. Kuczynski, J. Nabrzyski, D. Szejnfeld, and T. Sloan.
HPC-Europa: Towards Uniform Access to European HPC Infrastructures. In IEEE/ACM
International Workshop on Grid Computing, pages 308–311, November 2005.

42. S. Ostermann, R. Prodan, and T. Fahringer. Extending grids with cloud resource management
for scientific computing. In IEEE/ACM Grid, pages 42–49, 2009.

43. M. Parashar, M. AbdelBaky, I. Rodero, and A. Devarakonda. Cloud Paradigm and Practices
for CDS&E. Technical report, Cloud and Autonomic Computing Center, Rutgers Univ., 2012.

44. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel,
L. V. Kal, and K. Schulten. Scalable molecular dynamics with NAMD. J. of Computational
Chem., pages 1781–1802, 2005.

45. A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N. Sharma. Towards autonomic
workload provisioning for enterprise grids and clouds. In IEEE/ACM GRID, 2009.

46. A. Quiroz, M. Parashar, N. Gnanasambandam, and N. Sharma. Autonomic policy adaptation
using decentralized online clustering. In ICAC, pages 151–160, 2010.

226 J. Diaz-Montes et al.

47. A. Quiroz, M. Parashar, N. Gnanasambandam, and N. Sharma. Design and evaluation of
decentralized online clustering. TAAS, 7(3):34, 2012.

48. I. Raicu, I. Foster, and Y. Zhao. Many-task computing for grids and supercomputers. In Proc.
Workshop on Many-Task Computing on Grids and Supercomputers, pages 1–11, 2008.

49. I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, and B. Clifford. Towards loosely.
coupled programming on petascale systems. In IEEE/ACM Supercomputing, 2008.

50. N. Ram and S. Ramakrishran. International cyberinfrastructure: activities around the globe.
Cyberinfrastructure Technology Watch Quarterly, 2:15–19, February 2006.

51. M. Riedel, A. Memon, M. Memon, D. Mallmann, et al. Improving e-Science with Interoper-
ability of the e-Infrastructures EGEE and DEISA. In International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO), pages 225–231,
Opatija, Croatia, May 2008.

52. P. Riteau, M. Tsugawa, A. Matsunaga, J. Fortes, and K. Keahey. Large-scale cloud computing
research: Sky computing on futuregrid and grid’5000. In ERCIM News, 2010.

53. B. Rochwerger, D. Breitgand, E. Levy, A. Galis, et al. The reservoir model and architecture for
open federated cloud computing. IBM Journal of Research and Development, 53, 2009.

54. I. Rodero, F. Guim, J. Corbalan, L. Fong, Y. Liu, and S. Sadjadi. Looking for an Evolution of
Grid Scheduling: Meta-brokering. Grid Middleware and Services: Challenges and Solutions,
pages 105–119, August 2008.

55. I. Rodero, F. Guim, J. Corbalan, L. Fong, and S. Sadjadi. Broker Selection Strategies in
Interoperable Grid Systems. Future Gener. Comput. Syst., 26(1):72–86, January 2010.

56. I. Rodero, F. Guim, J. Corbalan, and A. Goyeneche. The grid backfilling: a multi-site
scheduling architecture with data mining prediction techniques. In Grid Middleware and
Services, pages 137–152, 2008.

57. I. Rodero, F. Guim, J. Corbalan, and J. Labarta. How the JSDL can Exploit the Parallelism? In
IEEE International Symposium on Cluster Computing and the Grid (CCGrid), pages 275–282,
Singapore, May 2006.

58. I. Rodero, J. Jaramillo, A. Quiroz, M. Parashar, F. Guim, and S. Poole. Energy-efficient
application-aware online provisioning for virtualized clouds and data centers. In Green
Computing Conf., pages 31–45, 2010.

59. I. Rodero, D. Villegas, N. Bobroff, Y. Liu, L. Fong, and S. M. Sadjadi. Enabling interoperability
among grid meta-schedulers. J. Grid Comput., 11(2):311–336, 2013.

60. C. Schmidt and M. Parashar. Squid: Enabling search in dht-based systems. J. Parallel Distrib.
Comput., 68(7):962–975, 2008.

61. J. Seidel, O. Waldrich, W. Ziegler, P. Wieder, and R. Yahyapour. Using SLA for Resource
Management and Scheduling - a Survey, TR-0096. Technical report, Institute on Resource
Management and Scheduling, 2007.

62. B. Sotomayor, R. Montero, I. Llorente, and I. Foster. Virtual infrastructure management in
private and hybrid clouds. IEEE Internet Computing, 13:14–22, 2009.

63. I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for internet applications.
In ACM SIGCOMM, pages 149–160, 2001.

64. R. Swendsen and J. Wang. Replica Monte Carlo simulation of spin-glasses. Physical Review
Letters, 57:2607–2609, 1986.

65. P. Troger, H. Rajic, A. Haas, and P. Domagalski. Standardization of an API for Distributed
Resource Management Systems. In Proceedings of the Seventh IEEE International Symposium
on Cluster Computing and the Grid, pages 619–626, Washington, DC, USA, 2007.

66. C. Vazquez, E. Huedo, R. Montero, and I. Llorente. Dynamic provision of computing resources
from grid infrastructures and cloud providers. In Grid and Pervasive Computing Conf.,
pages 113–120, 2009.

67. T. Vazquez, E. Huedo, R. Montero, and I. Lorente. Evaluation of a Utility Computing Model
Based on the Federation of Grid Infrastructures. In International Euro-Par Conference on
Parallel Processing, pages 372–381, Rennes, France, August 2007.

Federating Advanced Cyberinfrastructures with Autonomic Capabilities 227

68. C. Vecchiola, S. Pandey, and R. Buyya. High-performance cloud computing: A view of
scientific applications. In Proceedings of the 2009 10th International Symposium on Pervasive
Systems, Algorithms, and Networks, ISPAN ‘09, pages 4–16, Washington, DC, USA, 2009.
IEEE Computer Society.

69. D. Villegas, N. Bobroff, I. Rodero, J. Delgado, et al. Cloud federation in a layered service
model. J. Comput. Syst. Sci., 78(5):1330–1344, 2012.

70. J.-S. Vockler, G. Juve, and M. R. Ewa Deelman and. Experiences using cloud computing for a
scientific workflow application. In 2nd Workshop on Scientific Cloud Computing in conjunction
with ACM HPDC, pages 402–412, 2011.

71. Amazon EC2. http://aws.amazon.com/ec2/.
72. CometCloud Project. http://www.cometcloud.org.
73. DAS-3 Project. http://www.cs.vu.nl/das.
74. DEISA Project. http://www.deisa.eu.
75. D-Grid Project. http://www.d-grid.de.
76. EGI Europe. http://www.egi.eu.
77. Eucalyptus. http://open.eucalyptus.com/.
78. Grid’ 5000 Project. https://www.grid5000.fr.
79. R. Zhang, M. Parashar, and E. Gallichio. Salsa: Scalable asynchronous replica exchange for

parallel molecular dynamics applications. In ICPP, pages 127–134, 2006.
80. IBM Smart Cloud. http://www.ibm.com/cloud-computing/us/en/.
81. IEEE Intercloud WG (ICWG) Working Group. http://standards.ieee.org/develop/wg/ICWG-

2302_WG.html.
82. IEEE Standard for Intercloud Interoperability and Federation. http://standards.ieee.org/

develop/project/2302.html.
83. Naregi Project, http://www.naregi.org.
84. Nimbus Project. http://www.nimbusproject.org.
85. Open Cloud Computing Interface (OCCI). http://occi-wg.org/.
86. OpenNebula. http://www.opennebula.org/.
87. OpenStack. http://openstack.org/.
88. Open Science Grid. https://www.opensciencegrid.org/.
89. PRACE Project. http://www.prace-ri.eu.
90. Siena Initiative. http://www.sienainitiative.eu.
91. XSEDE Project. https://www.xsede.org/.

http://aws.amazon.com/ec2/
http://www.cometcloud.org
http://www.cs.vu.nl/das
http://www.deisa.eu
http://www.d-grid.de
http://www.egi.eu
http://open.eucalyptus.com/
https://www.grid5000.fr
http://www.ibm.com/cloud-computing/us/en/
http://standards.ieee.org/develop/wg/ICWG-2302_WG.html
http://standards.ieee.org/develop/wg/ICWG-2302_WG.html
http://standards.ieee.org/develop/project/2302.html
http://standards.ieee.org/develop/project/2302.html
http://www.naregi.org
http://www.nimbusproject.org
http://occi-wg.org/
http://www.opennebula.org/
http://openstack.org/
https://www.opensciencegrid.org/
http://www.prace-ri.eu
http://www.sienainitiative.eu
https://www.xsede.org/

Part III
Programming Models

Comparing high throughput and MapReduce frameworks to handle cloud
computing at PaaS levels. Studies of MapReduce as it applies to distributed data
centers and datasets; suggests ‘push’ method to allow separate MapReduce versions
to cooperate better. Iterative asynchronous computing algorithm model Maiter
performs in distributed data environments.

Migrating Scientific Workflow Management
Systems from the Grid to the Cloud

Yong Zhao, Youfu Li, Ioan Raicu, Cui Lin, Wenhong Tian, and Ruini Xue

Abstract Cloud computing is an emerging computing paradigm that can offer
unprecedented scalability and resources on demand, and is gaining significant
adoption in the science community. At the same time, scientific workflow manage-
ment systems provide essential support and functionality to scientific computing,
such as management of data and task dependencies, job scheduling and execution,
provenance tracking, fault tolerance. Migrating scientific workflow management
systems from traditional Grid computing environments into the Cloud would enable
a much broader user base to conduct their scientific research with ever increasing
data scale and analysis complexity. This paper presents our experience in integrating
the Swift scientific workflow management system with the OpenNebula Cloud
platform, which supports workflow specification and submission, on-demand virtual
cluster provisioning, high-throughput task scheduling and execution, and efficient
and scalable resource management in the Cloud. We set up a series of experiments
to demonstrate the capability of our integration and use a MODIS image processing
workflow as a showcase of the implementation.

1 Introduction

Scientific workflow management systems (SWFMS) have been proven essential to
scientific computing as they provide functionalities such as workflow specification,
process coordination, job scheduling and execution, provenance tracking [61], fault

Y. Zhao • Y. Li • W. Tian • R. Xue
School of Computer Science and Engineering, University of Electronic
Science and Technology of China, Chengdu, China
e-mail: yongzh04@gmail.com; youfuli.fly@gmail.com; tian_wenhong@uestc.edu.cn;
xueruini@gmail.com

I. Raicu (�)
Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
e-mail: iraicu@cs.iit.edu

C. Lin
Department of Computer Science, California State University, Fresno, CA, USA
e-mail: clin@csufresno.edu

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__10

231

mailto:yongzh04@gmail.com
mailto:youfuli.fly@gmail.com
mailto:tian_wenhong@uestc.edu.cn
mailto:xueruini@gmail.com
mailto:iraicu@cs.iit.edu
mailto:clin@csufresno.edu

232 Y. Zhao et al.

tolerance etc. SWFMS in fact represent a subset of Many-Task Computing (MTC)
[58] workloads. MTC is reminiscent of High-Throughput Computing, but it differs
in the emphasis of using many computing resources over short periods of time
to accomplish many computational tasks (i.e. including both dependent and inde-
pendent tasks), where the primary metrics are measured in seconds (e.g. FLOPS,
tasks/s, MB/s I/O rates), as opposed to operations (e.g. jobs) per month. MTC
denotes high-performance computations comprising multiple distinct activities,
coupled via file system or memory-to-memory transfer operations. Tasks may be
small or large, uniprocessor or multiprocessor, compute-intensive or data-intensive.
The set of tasks may be static or dynamic, homogeneous or heterogeneous,
loosely coupled or tightly coupled. The aggregate number of tasks, quantity of
computing, and volumes of data may be extremely large [59]. MTC includes
loosely coupled applications that are generally communication-intensive but not
naturally expressed using standard message passing interface commonly found in
HPC, drawing attention to the many computations that are heterogeneous but not
“happily” parallel. [60] There are unprecedented challenges raised for traditional
scientific workflows, as the data scale and computation complexity are growing
exponentially. The ETL (Extraction-Transformation-Loading), storage, retrieval,
analysis and application upon the huge amounts of data are beyond the capability
of traditional data processing infrastructures. The community has coined this as Big
Data, and it is often associated with the Cloud Computing paradigm.

As an emerging computing paradigm, Cloud computing [6] is gaining tremen-
dous momentum in both academia and industry: not long after Amazon opened
its Elastic Computing Cloud (EC2) to the public, Google, IBM, and Microsoft
all released their Cloud platforms one after another. Meanwhile, several open
source Cloud platforms, such as Hadoop [31], OpenNebula [1], Eucalyptus [32],
Nimbus [20], and OpenStack [2], become available with fast growth of their own
communities. There are a couple of major benefits and advantages that are driving
the widespread adoption of the Cloud computing paradigm: (1) Easy access to
resources: resources are offered as services and can be accessed over Internet. For
instance, with a credit card, you can get access to Amazon EC2 virtual machines
immediately; (2) Scalability on demand: once an application is deployed onto the
Cloud, the application can be automatically made scalable by provisioning the
resources in the Cloud on demand, and the Cloud takes care of scaling out and in,
and load balancing; (3) Better resource utilization: Cloud platforms can coordinate
resource utilization according to resource demand of the applications hosted in the
Cloud; and (4) Cost saving: Cloud users are charged based on their resource usage
in the Cloud, they only pay for what they use, and if their applications get optimized,
that will be reflected into a lowered cost immediately.

Theoretically, to address the big data problems in the above scientific com-
puting areas, scientists and application developers may simply refactor all the
existing workflow applications into the Cloud computing paradigm, which sounds
straightforward but in reality is impractical. As traditional scientific workflow
applications have been mature during many years’ development and always involve
complicated application logic and consist of massive computing processes such as

Migrating Scientific Workflow Management Systems from the Grid to the Cloud 233

organization, distribution, coordination and parallel processing. Transforming these
scientific workflows will not only cost scientists and developers much time, but also
require manual handling of all the integration details with various underlying Cloud
platforms.

An alternative for researchers is to integrate scientific workflow management
systems with Clouds, leveraging the functionalities of both Cloud computing and
SWFMSs to provide a Cloud workflow platform as a service for big data processing.
In this solution, not only the challenges for traditional scientific workflows can
be dealt with, the researchers can also concentrate on applications and utilize the
integration platform to process massive data in Clouds. As workflow management
systems are diverse in many aspects, such as workflow models, workflow languages,
workflow engines, and so on, and each workflow system engine may depend on
one specific Distributed Computing Infrastructures (DCIs), porting a workflow
management system to run on another DCI may cost a large quantity of extra effort.
We would like to free researchers from complicated integration details, such as
Cloud resource provisioning, task scheduling and so on, and provide them with the
convenience and transparency to a scalable big data processing platform, therefore
we propose a service framework to standardize the integration between SWFMSs
and Cloud platforms, breaking the limitations that a specific SWFMS is bound
to a particular DCI or Cloud environment. We define a series of components and
interfaces to normalize the interactions between different workflow management
subsystems.

This paper extends earlier work [12] in which we identified various challenges
associated with migrating and adapting an SWFMS in the Cloud. In this paper, we
present an end-to-end approach that addresses the integration of Swift, an SWFMS
that has broad application in Grids and supercomputers, with the OpenNebula
Cloud platform. The integration covers all the major aspects involved in workflow
management in the Cloud, from client-side workflow submission to the underlying
Cloud resource management.

This paper’s major contributions are:

1. We analyze the challenges for traditional scientific workflows in the Grid
environment, and proposed a structured approach to migrating a SWFMS into
the Cloud.

2. We integrate Swift with OpenNebula, in order to coordinate and automate
scientific analysis and discovery.

3. We propose a virtual cluster provisioning mechanism that could recycle Cloud
virtual machine instances.

4. We present a use case as a showcase of the implementation.

The rest of the paper is organized as follows: In the next section, we discuss the
challenges of traditional scientific workflows and analyze the available solutions to
the challenges. In the integration section, we introduce a service framework for the
integration of SWFMSs and Cloud platforms and present our end-to-end integration
of Swift and OpenNebula. In the performance evaluation section, we set up a
series of experiments to analyze the integration and demonstrate the implementation

234 Y. Zhao et al.

using a NASA MODIS image processing workflow. In the related work section,
we discuss related work in migrating scientific workflow management systems from
the Grid to the Cloud. In the last section, we draw our conclusions and discuss future
work.

2 Challenges and Available Solutions

In this section, we discuss the challenges of utilizing traditional scientific workflows
to deal with big data problems and analyze the available solutions to the challenges.

2.1 Challenges for Traditional Scientific Workflows

Scientific workflow systems have been formerly applied over a number of execution
environments such as workstations, clusters/Grids, and supercomputers. In contrast
to Cloud environment, running workflows in these environments are facing a
series of obstacles when dealing with big data problems [43], including data scale
and computation complexity, resource provisioning, collaboration in heterogeneous
environments, etc.

2.1.1 Data Scale and Computation Complexity

The execution of scientific workflows often consumes and produces huge amounts
of distributed data objects. These data objects can be of primitive or complex
types, files in different sizes and formats, database tables, or data objects in other
forms. At present, the scientific community is facing a “data deluge” [7] coming
from experiments, simulations, networks, sensors, and satellites, and the data that
needs to be processed generally grows faster than computational resources and their
speed. The data scale and management in big data era are beyond the capability
of traditional workflows as they depend on traditional infrastructure for resource
provisioning, scheduling and computing. For example, in high energy physics,
the Large Hadron Collider [4] at CERN can generate more than 100 TB of
collision data per second; In bioinformatics, GenBank [3], one of the largest DNA
databases, already hosts over 120 billion bases, the European Molecular Biology and
Bioinformatics Institute Laboratory (EMBL) hosts 14 PB of data, and the numbers
are expected to double every 9–12 months.

In addition to data scale, science analysis and processing complexity is also
growing exponentially. Scientists are now attempting calculations requiring orders
of magnitude more computing and communication than was possible only a few
years ago. For instance, in bioinformatics a protein simulation problem [27] involves
running many instances of a structure prediction simulation, each with different

Migrating Scientific Workflow Management Systems from the Grid to the Cloud 235

random initial conditions and performs multiple rounds. Given a couple of proteins
and parameter options, the simulation can easily scale up to 100,000 rounds. In
cancer drug design, protein docking can involve millions of 3D structures and have
a runtime up to tens of CPU years. To enable the storage and analysis of such large
quantities of data and to achieve rapid turnaround, data and computation may need
to be distributed over thousands or even tens of thousands of computation nodes.

2.1.2 Resource Provisioning

Resource provisioning represents the functionality and mechanism of allocating
computing resource, storage space, network bandwidth, etc., to scientific workflows.
As cluster/Grid environments are not adept at providing the workflows with
smoothly dynamic resource allocation, the resource provisioned to a scientific
workflow is fixed once the workflow has been deployed to execute, which may
in return restrict the scale of science problems that can be handled by workflows.
Moreover, the scale of resource is upbounded by the size of a dedicated resource
pool with limited resource sharing extension in the form of virtual organizations.
Meanwhile, the representation of resources in the context of scientific workflows is
also bothering the scientists [44], as they must be able to recognize the supported
types of resources and tools. For instance, the resource in Taverna is a web service
which usually limits the use of many scientific resources that are not represented as
web services.

To break through the limitations introduced by traditional resource provisioning
strategy, some works have been focused on the approaches for automated provision-
ing, including the Context Broker [20] from the Nimbus project, which supported
the concept of “one-click virtual cluster” that allowed clients to coordinate large
virtual cluster launches in simple steps. The Wrangler system [21] was a similar
implementation that allowed users to describe a desired virtual cluster in XML
format, and send it to a web service, which managed the provisioning of virtual
machines and the deployment of software and services. It was also capable of
interfacing with many different Cloud resource providers.

2.1.3 Collaboration in Heterogeneous Environments

Collaboration refers to the interactions between a workflow management system and
the execution environment, such as resource access, resource status perception, load
balance and so on. As more and more scientific research projects become collabora-
tive in nature and involve multiple geographically distributed organizations, which
bring a variety of challenges to scientists and application developers to handle the
collaboration in heterogeneous environments.

The management of resource, authority authentication, security, etc., can be
very complicated, as scientific workflow applications are normally executed in
cluster/Grid environments, where accessible computing resources and storage space

236 Y. Zhao et al.

are located in various management domains. The execution of traditional workflows
is also influenced by the heterogeneous performance of computing resource due to
the varied configuration of physical machines. In addition, in Grid environment, the
status of physical machines is uncontrollable, switching among online (the machine
is started up and connected to the Grid), offline (the machine is powered off or
disconnected), busy (the machine is executing other tasks), etc., making it extremely
difficult to maintain load balance.

2.2 Moving Workflow Applications to the Cloud

Cloud computing has been widely adopted to solve the ever-increasing computing
and storage problems arising in the Internet age. To address the challenges of dealing
with peta-scale scientific problems in scientific workflow solutions, we can move
workflow applications into Cloud, using for instance the MapReduce computing
model to reconstruct the formerly applied workflow specifications. MapReduce
provides a very simple programming model and powerful runtime system for the
processing of large datasets. The programming model is based on just two key
functions: “map” and “reduce”, borrowed from functional languages. The runtime
system automatically partitions input data and schedules the execution of programs
in a large cluster of commodity machines. Modified applications to fully leverage
the unprecedented scalability and resources on demand offered by the Cloud without
introducing extra management overheads.

Despite all the advantages of transforming traditional workflow applications into
Cloud-based applications, there are still many drawbacks and unsolved obstacles:

1. Cloud computing cannot benefit from the distinguished features provided by
SWFMSs, including management of data and task dependencies, job scheduling
and execution, provenance tracking, etc.. The challenges for big data processing
in Cloud remain unsolved and are still bothering developers and researchers.

2. Utilizing the certain data flow support offered by MapReduce to refactor
traditional workflow applications requires application logic to be rewritten to
follow the map-reduce-merge programming model. Scientists and application
developers need to fully understand the applications and port the applications
before they can leverage the parallel computing infrastructure.

3. Large-scale workflows, especially data-intensive scientific workflows may
require far more functionality and flexibility than MapReduce can provide,
and the implicit semantics incurred by a workflow specification goes far more
than just the “map” and “reduce” operations, for instance, the mapping of
computation to compute node and data partitions, runtime optimization, retry on
error, smart re-run, etc.

4. Once we decide to migrate workflow applications to Cloud computing, we need
to reconstruct the data being processed to be able to be stored in partitioned
fashion, such as in GFS, or HDFS, so that the partitions can be operated in
parallel, which may introduce a tremendous amount of work to scientists and
application developers.

Migrating Scientific Workflow Management Systems from the Grid to the Cloud 237

5. Revising workflow applications to be capable of executing in Cloud platforms
makes new requests to scientists and application developers, as they need to
grasp new programing model and techniques instead of using already-familiar
workflow pattern, which may cost large amount of time beyond the research
topics. Moreover, the risks associated with vendor lock-in cannot be ignored.

2.3 Migrating Workflow Management into the Cloud

To avoid the disadvantages brought by moving workflow applications directly to
the Cloud, we may try to integrate workflow management systems with the Cloud
to provide a Cloud workflow platform as a service for big data processing. Once
we decide to integrate SWFMS with Cloud computing, we may deploy the whole
SWFMS inside the Cloud and access the scientific workflow computation via a Web
browser. A distinct feature of this solution is that no software installation is needed
for a scientist and the SWFMS can fully take advantage of all the services provided
in a Cloud infrastructure. Moreover, the Cloud-based SWFMS can provide highly
scalable scientific workflows and task management as services, providing one kind
of Software-as-a-Service (SaaS). One concern the user might have is the economic
cost associated with the necessity of using Cloud on a daily basis, the dependency
on the availability and reliability of the Cloud, as well as the risk associated with
vendor lock-in.

To provide a good balance between system performance and usability, an
alternative for researchers is to encapsulate the management of computation, data,
and storage and other resources into the Cloud, while the workflow specification,
submission, presentation and visualization remain outside the Cloud to support the
key architectural requirement of user interface customizability and user interaction
support. The benefit of adopting the solution to manage and run scientific workflows
on top of the Cloud can be multifold:

1. The scale of scientific problems that can be addressed by scientific workflows
can be greatly increased compared to cluster/Grid environments, which was
previously upbounded by the size of a dedicated resource pool with limited
resource sharing extension in the form of virtual organizations. Cloud platforms
can offer vast amount of computing resources as well as storage space for such
applications, allowing scientific discoveries to be carried out in a much larger
scale.

2. Application deployment can be made flexible and convenient. With bare-metal
physical servers, it is not easy to change the application deployment and the
underlying supporting platform. However with virtualization technology in a
Cloud platform, different application environments can be either pre-loaded in
virtual machine (VM) images, or deployed dynamically onto VM instances.

238 Y. Zhao et al.

3. The on-demand resource allocation mechanism in the Cloud can improve
resource utilization and change the experience of end users for improved
responsiveness. Cloud-based workflow applications can get resources allocated
according to the number of nodes at each workflow stage, instead of reserving
a fixed number of resources upfront. Cloud workflows can scale out and in
dynamically, resulting in fast turnaround time for end users.

4. Cloud computing provides much larger room for the trade-off between per-
formance and cost. The spectrum of resource investment now ranges from
dedicated private resources, a hybrid resource pool combining local resource and
remote Clouds, and full outsourcing of computing and storage to public Clouds.
Cloud computing not only provides the potential of solving larger-scale scientific
problems, but also brings the opportunity to improve the performance/cost ratio.

5. Although migrating scientific workflow management to Cloud may introduce
extra management overheads, Cloud computing now can leverage the advan-
tages carried about with SWFMSs (e.g. workflow management, provenance
tracking, etc.).

3 Integration of Swift and OpenNebula

In this section, we talk about our end-to-end approach in integrating Swift with the
OpenNebula Cloud platform. Before we go into further details of the integration,
we will first introduce the reference service framework that we propose to migrate
scientific workflows to various Cloud platforms.

3.1 The Service Framework

We propose a reference service framework that addresses the above mentioned
challenges and covers all the major aspects involved in the migration and integration
of SWFMS into the Cloud, from client-side workflow specification, service-based
workflow submission and management, task scheduling and execution, to Cloud
resource management and provisioning. As illustrated in Fig. 1, the service frame-
work includes four layers, seven components and six interfaces. Detailed description
of the service framework is made public at our website.1

The first layer is the Infrastructure Layer, which consists of multiple Cloud
platforms with the underlying server, storage and network resources. The second
layer is called the Middleware Layer. This layer consists of three subsystems:
Cloud Resource Manager, Scheduling Management Service and Task Scheduling
Frameworks. The third layer, called the Service Layer, consists of Cloud Workflow

1http://www.cloud-uestc.cn/projects/serviceframework/index.html.

http://www.cloud-uestc.cn/projects/serviceframework/index.html

Migrating Scientific Workflow Management Systems from the Grid to the Cloud 239

Management Service and Workflow Engines. Finally, the fourth layer—the Client
Layer, consists of the Workflow Specification & Submission and the Workflow
Presentation & Visualization subsystem. The service framework would help to break
through workflows’ dependence on the underlying resource environment, and take
advantage of the scalability and on-demand resource allocation of the Cloud.

We present a layered service framework for the implementation and application
of integrating SWFMS into manifold Cloud platforms, which can also be applicable
when deploying a workflow system in Grid environments. The separation of each
layer enables abstractions and different independent implementations for each layer,
and provides the opportunity for scientists to develop a stable and familiar problem
solving environment where rapid technologies can be leveraged but the details of
which are shielded transparently from the scientists who need to focus on science
itself. The Interfaces defined in the framework is flexible and customizable for
scientists to expand or modify according to their own specified requirements and
environments.

3.2 Integration Architecture and Implementation

Based on the service framework, we devise an end-to-end integration approach
that addresses the aforementioned challenges. We call it end-to-end because it
covers all the major aspects involved in the integration, including a client side
workflow submission tool, a Cloud workflow management service that accepts the
submissions, a Cloud Resource Manager (CRM) that accepts resource requests from
the workflow service and dynamically instantiates a Falkon virtual cluster, and a
cluster monitoring service that monitors the health of the acquired Cloud resources.

As illustrated in Fig. 2, the integration architecture consists of four layers. At
the client layer, we provide a client-side development and submission tool for
application specification and submission. At the service layer, a Cloud workflow
service based on the Swift workflow management system [30] is presented as
a gateway to the Cloud platform underneath. At the middleware layer, a few
components are integrated seamlessly to bridge the gap between the service layer
and the underlying infrastructure layer. The components include a Cloud resource
manager, a virtual cluster provisioner, and a task execution service. The Cloud
workflow service accepts workflowsubmissions from the client tool, and makes
resource requests to the Cloud resource manager, which in turn provisions a virtual
cluster on-demand and also deploys the Falkon [25] execution service into the
cluster. Individual jobs from the workflow service are then passed onto the Falkon
service for parallel execution within the virtual cluster, and results delivered back
to the workflow service. At the infrastructure layer, we choose the OpenNebula
Cloud platform to manage Cloud datacenter resources such as servers, network and
storage.

240 Y. Zhao et al.

Fig. 1 The service framework

3.2.1 The Swift Workflow Management System

Swift is a system that bridges scientific workflows with parallel computing. It is
a parallel programming tool for rapid and reliable specification, execution, and
management of large-scale science and engineering workflows. Swift takes a struc-
tured approach to workflow specification, scheduling, and execution. It consists of a
simple scripting language called SwiftScript for concise specification of complex
parallel computations based on dataset typing and iterations [29], and dynamic
dataset mappings for accessing large-scale datasets represented in diverse data
formats. The runtime system provides an efficient workflow engine for scheduling
and load balancing, and it can interact with various resource management systems
such as PBS and Condor for task execution.

The Swift system architecture consists of four major components: Program
Specification, Scheduling, Execution, and Provisioning, as illustrated in Fig. 3.
Computations are specified in SwiftScript, which has been shown to be simple
yet powerful. SwiftScript programs are compiled into abstract computation plans,
which are then scheduled for execution by the workflow engine onto provisioned
resources. Resource provisioning in Swift is very flexible, tasks can be scheduled
to execute on various resource providers, where the provider interface can be
implemented as a local host, a cluster, a multi-site Grid, or the Amazon EC2 service.

The four major components of the Swift system can be easily mapped into the
four layers in the reference architecture: the specification falls into the Presentation
Layer, although SwiftScript focuses more on the parallel scripting aspect for user

Migrating Scientific Workflow Management Systems from the Grid to the Cloud 241

interaction than on Graphical representation; the scheduling components correspond
to the Workflow Management Layer; the execution components maps to the Task
Management layer; and the provisioning layer can be thought as mostly in the
Operational Layer.

Fig. 2 The integration
architecture

3.2.2 The OpenNebula Cloud Platform

We integrate Swift with the OpenNebula Cloud platform. We choose OpenNebula
for our implementation because it has a flexible architecture and is easy to
customize, and also because it provides a set of tools and service interfaces that
are handy for the integration. We have also integrated with other Cloud platforms
such as Amazon EC2 and Eucalyptus in similar means.

Fig. 3 Swift system architecture

242 Y. Zhao et al.

OpenNebula is a fully open-source toolkit to build IaaS private, public and
hybrid Clouds, and a modular system that can implement a variety of Cloud
architectures and can interface with multiple datacenter services. OpenNebula
orchestrates storage, network, virtualization, monitoring, and security technologies
to deploy multi-tier services [36, 37] as virtual machines on distributed infrastruc-
tures, combining both datacenter resources and remote Cloud resources, according
to allocation policies.

The OpenNebula internal architecture (as shown in Fig. 4) can be divided into
three layers: Drivers, Core and Tools [38]:

1. Tools: This layer contains tools distributed with OpenNebula, such as the CLI,
the scheduler, the libvirt API implementation or the Cloud RESTful interfaces,
and also third party tools that can be easily created using the XML-RPC interface
or the OpenNebula client API.

2. Core: The core consists of a set of components to control and monitor virtual
machines, virtual networks, storage and hosts. The management of VMs, storage
devices and virtual network is implemented in this layer by invoking a suitable
driver.

3. Drivers: This layer is responsible for directly interacting with specific mid-
dleware (e.g. virtualization hypervisor, file transfer mechanisms or information
services). It is designed to plug-in different virtualization, storage and monitoring
technologies and Cloud services into the core.

3.2.3 Key Components

The Client Submission Tool The client submission tool is a standalone java
application that provides an IDE for workflow development, and allows users to
edit, compile, run and submit SwiftScripts. Scientists and application developers
can write their scripts in this environment and also test run their workflows on
local host, before they make final submissions to the Swift Cloud service to run
in the Cloud. For submission, it provides multiple submission options: execute

Fig. 4 The OpenNebula
architecture

Migrating Scientific Workflow Management Systems from the Grid to the Cloud 243

immediately, execute at a fixed time point, or execute recurrently (per day, per week
etc.). We give a screenshot of the tool in Fig. 5, which shows the current status of
workflows submitted to the Cloud service.

Fig. 5 The client tool

One of the key components of the system is the Swift Cloud workflow man-
agement service that acts as an intermediary between the workflow client and the
backend Cloud Resource Manager. The service has a Web interface for configuration
of the service, the resource manager and application environments. It supports
the following functionalities: SwiftScript programming, SwiftScript compilation,
workflow scheduling, resource acquisition, and status monitoring. In addition, the
service also implements fault-tolerance mechanism. A screenshot of the service that
visualizes workflow execution progress is shown in Fig. 6.

The Cloud Resource Manager (CRM) accepts resource requests from the Cloud
workflow management service, and is in charge of interfacing with OpenNebula
and provisioning Falkon virtual clusters dynamically to the workflow service. The
process is illustrated in Fig. 7. In addition, it also monitors the virtual clusters. The
process to start a Falkon virtual cluster is as follows:

1. CRM provides a service interface to the workflow service, the latter makes a
resource request to CRM.

2. CRM initializes and maintains a pool of virtual machines, the number of virtual
machines in the pool can be set via a config file, Ganglia is started on each virtual
machine to monitor CPU, memory and IO.

3. Upon a resource request from the workflow service:

(a) CRM fetches a VM from the VM pool and starts the Falkon service in
that VM.

244 Y. Zhao et al.

Fig. 6 The cloud Workflow management service

(b) CRM fetches another VM and starts the Falkon worker in that VM, and also
makes that worker register to the Falkon service.

(c) CRM repeats step (b) until all the Falkon workers are started and registered.
(d) If the VMs in the pool are not enough, then CRM will make resource request

to the underlying OpenNebula platform to create more VM instances.

4. CRM returns the end point reference of the Falkon server to the workflow service,
and the workflow service can now dispatch tasks to the Falkon execution service.

5. CRM starts the Cluster Monitoring Service to monitor the health of the Falkon
virtual cluster. The monitoring service checks heartbeat from all the VMs in the
virtual cluster, and will restart a VM if it goes down. If the restart fails, then for
a Falkon service VM, it will get a new VM and start Falkon service on it, and
have all the workers register to the new service. For a Falkon worker VM, it will
replace the worker, and also delete the failed VM.

6. Note that we also implement an optimization technique to speed up the Falkon
virtual cluster creation. When a Falkon virtual cluster is decommissioned, we
change its status to “standby”, and it can be re-activated.

7. When CRM receives resource request from the workflow service, it checks if
there is a “standby” Falkon cluster, if so, it will return the information of the
Falkon service directly to the workflow service, and also checks the number of
the Falkon workers already in the cluster.

(a) If the number is more than requested, then the surplus workers are deregis-
tered and put into the VM pool.

(b) If the number is less than required, then VMs will be pulled from the VM
pool to create more workers.

Migrating Scientific Workflow Management Systems from the Grid to the Cloud 245

As for the management of VM images, VM instances, and VM network,
CRM interacts with and relies on the underlying OpenNebula Cloud platform.
Our resource provisioning approach takes into consideration not only the dynamic
creation and deployment of a virtual cluster with a ready-to-use execution service,
but also efficient instantiation and re-use of the virtual cluster, as well as the
monitoring and recovery of the virtual cluster. We demonstrate the capability and
efficiency of our integration using a small scale experiment setup.

4 Performance Evaluation

In this section, we demonstrate and analyze our integration approach using a NASA
MODIS image processing workflow. The NASA MODIS dataset [28] we use is a
set of satellite aerial data blocks, each block is of size around 5.5 MB, with digits
indicating the geological feature of each point in that block, such as water, sand,
green land, urban area, etc.

Fig. 7 The cloud resource manager

4.1 The MODIS Image Processing Workflow

The workflow (illustrated in Fig. 8) takes a set of such blocks, gets the size of the
urban area in each of the blocks, analyzes and picks the top 12 of the blocks that
have the largest urban area, converts them into displayable format, and assembles
them into a single PNG file.

246 Y. Zhao et al.

Fig. 8 MODIS image
processing workflow

4.2 Experiment Configuration

We use a small cluster setting for the experiments, which includes 6 machines, each
configured with Intel Core i5 760 with 4 cores at 2.8 GHZ, 4 GB memory, 500 GB
HDD, and connected with Gigabit Ethernet LAN. The operating system is Ubuntu
10.04.1, with OpenNebula 2.2 installed. The configuration for each VM is 1 core,
1.5 GB memory, 20 GB HDD, and we use KVM as the hypervisor. One of the
machines is used as the frontend which hosts the workflow service, the CRM, and
the monitoring service. The other five machines are used to instantiate VMs, and
each physical machine can host up to 2 VMs, so at most 10 VMs can be instantiated
in the environment. The configuration of the experiment is illustrated in Fig. 9.
Although the cluster size is not significant, we believe it demonstrates the essence
of our cluster recycling mechanism.

Fig. 9 Experiment configuration

Migrating Scientific Workflow Management Systems from the Grid to the Cloud 247

4.3 Experiment Results

In our experiment, we control the workload by changing the number of input data
blocks, the resource required, and the submission type (serial submission or parallel
submission). So there are three dependent variables. We design the experiment by
making two of the dependent variables constant, and changing the other. We run
three types of experiments:

1. The serial submission experiment
2. The parallel submission experiment
3. The different number of data blocks experiment

In all the experiments, VMs are pre-instantiated and put in the VM pool. The
time to instantiate a VM is around 42 s and this doesn’t change much for all the
VMs created.

4.3.1 The Serial Submission Experiment

In the serial submission experiment, we first measure the base line for server
creation time, worker creation time and worker registration time. We create a Falkon
virtual cluster with one server, and varying number of workers, and we don’t reuse
the virtual cluster.

In Fig. 10, we can observe that the server creation time is quite stable, around 4.7
s every time. Worker creation time is also stable, around 0.6 s each, and for worker
registration, the first one takes about 10 s, and for the rest, about 1 s each.

Fig. 10 The base line for cluster creation

For the rest of the serial submission, we submit a workflow after the previous
one has finished to test virtual cluster recycling, where the input data blocks remain
fixed.

248 Y. Zhao et al.

In Fig. 11, the resources required are one Falkon server with five workers, one
server with three workers and one server with one worker. We can see that for the
second and third submissions, the worker creation and server creation time are zero,
only the surplus workers need to de-register themselves.

Fig. 11 Serial submission, decreasing resource required

In Fig. 12, the resources required are in the reverse order of those in Fig. 11. Each
time two extra Falkon workers need to be created and registered, and the time taken
are roughly the same. These experiments show that the Falkon virtual cluster can be
re-used after it is being created, and worker resources can be dynamically removed
or added.

Fig. 12 Serial submission, increasing resource required

In Fig. 13, we first request a virtual cluster with one server and nine workers, we
then make five parallel requests for virtual clusters with one server and one worker.
We can observe that one of these requests is satisfied using the existing virtual

Migrating Scientific Workflow Management Systems from the Grid to the Cloud 249

cluster, where the other 4 are created on-demand. In this case, it takes some time
to de-register all the eight surplus workers, which makes the total time comparable
to on-demand creation of the cluster.

Fig. 13 Serial submission, mixed resource required

4.3.2 The Parallel Submission Experiment

In the parallel submission experiment, we submit multiple workflows at the same
time in order to measure the maximum parallelism (the number of concurrent
workflows that can be hosted in the Cloud platform) in the environment.

First, we submit resource requests with one server and two workers, and the
maximum parallelism is up to three. In Table 1, we show the results for the
experiment, in which we make resource requests for one virtual cluster, two virtual
clusters, three virtual clusters and four virtual clusters.

For the request of two virtual clusters, it can re-use the one released by the
early request, and the time to initialize the cluster is significantly less than fresh
creation (445 ms vs. 4,696 ms). It has to create the second cluster on-demand. For
the four-virtual-cluster request, since all the VM resources are used up by the first
three clusters, the fourth cluster creation would fail as expected. When we change
resource requests to one server and four workers, the maximum parallelism is two,
and the request to create a third virtual cluster also fails. Since our VM pool has a
maximum of ten virtual machines, it’s easy to explain why this has happened. This
experiment shows that our integrated system can maximize the cluster resources
assigned to workflows to achieve efficient utilization of resources.

250 Y. Zhao et al.

Table 1 Parallel submission, one server and two workers

of clusters Server creation Worker creation Worker registration

1 4,624 ms 1,584 ms 11,305 ms

2
4,696 ms 2,367 ms 11,227 ms

445 ms 0 0

3
4,454 ms 1,457 ms 11,329 ms

488 ms 0 0

548 ms 0 0

4

521 ms 0 0

585 ms 0 0

686 ms 0 0

Submission failed

4.3.3 Different Number of Data Blocks Experiment

In this experiment, we change the number of input data blocks from 50 blocks to 25
blocks, and measure the total execution time with varying number of workers in the
virtual cluster.

In Fig. 14, we can observe that with the increase of the number of workers,
the execution time decreases accordingly (i.e. execution efficiency improves),
however at five workers to process the workflow, the system reaches efficiency
peak. After that, the execution time goes up with more workers. This means that
the improvement can’t subsidize the management and registration overhead of the
added worker. The time for server and worker creation, and worker registration
remain unchanged when we change the input size (as have been shown in Fig. 10).
The experiment indicates that while our virtual resource provisioning overhead is
well controlled, we do need to carefully determine the number of workers used in
the virtual cluster to achieve resource utilization efficiency.

5 Related Work

Systems such as Taverna [11], Kepler [9], Vistrails [10], Pegasus [8], Swift [30],
and VIEW [24] have seen wide adoption in various disciplines such as Physics,
Astronomy, Bioinformatics, Neuroscience, Earth Science, and Social Science.
In Table 2, we list some use cases that focused on applying SWFMSs to execute
data-intensive applications.

There are some early explorers that try to evaluate the feasibility, performance,
and adaptation of running data intensive and HPC applications on Clouds or hybrid
Grid/Cloud environments. Palankar et al. [17] evaluated the feasibility, cost, avail-
ability and performance of using Amazon’s S3 service to provide storage support
to data intensive applications, and also identified a set of additional functionalities
that storage services targeting data-intensive science applications should support.

Migrating Scientific Workflow Management Systems from the Grid to the Cloud 251

Fig. 14 Different input sizes

Table 2 Use cases of SWFMSs

SWFMSs Application fields Use cases

Swift Climate science Climate data analysis [13]

Taverna Bioinformatics Single nucleotide polymorphisms analysis [14]

Vistrails Earth science NASA Earth Exchange [15]

Kepler Physics Hyperspectral image processing [35]

VIEW Medical science Neurological disorder diagnosis [45]

Oliveira et al. [33] evaluated the performance of X-Ray Crystallography workflow
using SciCumulus middleware with Amazon EC2. Wang et al. [34] presented their
early definition and experience of scientific Cloud computing in the Cumulus project
by merging existing Grid infrastructures with new Cloud technologies. These stud-
ies provide good source of information about Cloud platform support for science
applications. Other studies investigated the execution of real science applications
on commercial Clouds [18, 19], mostly being HPC applications, and compared the
performance and cost against Grid environments. While such applications indeed
can be ported to a Cloud environment, Cloud execution doesn’t show significant
benefit due to the applications’ tightly coupled nature.

There have been a couple of researcher that have been investigating techniques
for deploying data-intensive workflows in the cloud using unique architectures that
are difficult to deploy on traditional platforms, such as grids [52–54]. Meanwhile,
some other researches focused on developing new algorithms for workflows to
take advantage of the unique pricing model and elasticity of infrastructure clouds
[46–50],and investigating new cloud workflow-scheduling algorithms that optimize
for cost, performance, and other quality-of-service metrics [55–57].

Gideon Juve et al. have studied the cost and performance of workflows in the
cloud via simulation [22], using an experimental Nimbus cloud [23], individual
Elastic Compute Cloud (EC2) nodes [26], and a variety of different intermediate
storage systems on EC2 [41]. Christian Vecchiola et al. have done similar investiga-
tions on EC2 and Grid5000 [51]. These studies primarily analyzed the performance

252 Y. Zhao et al.

and cost of workflows in the cloud, rather than the practical experience of deploying
workflows in the cloud. To address the shortages, Gideon Juve et al [39] also related
the practical experience of trying to run a nontrivial scientific workflow application
on three different infrastructures and compare the benefits and challenges of each
platform.

Kozlovszky et al. [40] introduced a convenient way for sharing, integrating
and executing different workflows in heterogeneous infrastructure environments.
The paper explained in detail how to enable generic DCI compatibility for grid
workflow management systems (such as ASKALON, MOTEUR, gUSE/WS-
PGRADE, etc.) on job level and indirectly on workflow level. The generic DCI
Bridge service enables the execution of jobs onto existing major DCI platforms
(such as Service Grids, Desktop Grids, Web services, or even Cloud based DCIs).
The CODA framework [16] was designed and implemented to support big data
analytics in Cloud computing. Important functions, such as workflow scheduling,
data locality, resource provisioning, and monitoring functions, had been integrated
into the framework. Through the CODA framework, the workflows could be easily
composed and efficiently executed in Amazon EC2. In order to address performance
and cost issues of big data processing on Clouds, Long Wang et al. [5] presented
a novel design of adaptive workflow management system which included a data
mining based prediction model, workflow scheduler, and iteration controls to
optimize the data processing via iterative workflow tasks.

Those works mentioned above are important as they provide valuable experience
on migrating traditional scientific workflows to various Cloud platforms. However, a
normalized, end-to-end integration approach is still missing. We present an end-to-
end approach that addresses the integration of Swift, an SWFMS that has broad
application in Grids and supercomputers, with the OpenNebula Cloud platform.
The integration covers all the major aspects involved in workflow management
in the Cloud, including a client side workflow submission tool, a Cloud workflow
management service, a Cloud Resource Manager (CRM), and a cluster monitoring
service.

Conclusion and Future Work
As more and more scientific applications are migrating into Cloud, it is
imperative to also migrate SWFMSs into Cloud to take advantage of Cloud
scalability, and also to handle the ever increasing data scale and analysis
complexity of such applications. Cloud offers unprecedented scalability to
workflow systems, and could potentially change the way we perceive and
conduct scientific experiments. The scale and complexity of the science
problems that can be handled can be greatly increased on the Cloud, and the
on-demand nature of resource allocation on the Cloud will also help improve
resource utilization and user experience.

(continued)

Migrating Scientific Workflow Management Systems from the Grid to the Cloud 253

We first introduce our service framework for integrating SWFMSs into
Cloud computing platforms. Then we present our early effort in integrating
the Swift workflow management system with the OpenNebula Cloud plat-
form, in which a Cloud workflow management service, a Cloud resource
manager, and a cluster monitoring service are developed. We also demonstrate
the functionality and efficiency of our approach using a set of experiments and
a real-world scientific workflow.

For future work, we are working on a common interface that will facilitate
the integration of Swift with other Cloud platforms such as Amazon EC2
and Open-stack. We will also investigate commonality in migrating other
SWFMSs into Cloud, i.e. ways to offer SWFMSs as a service and to enable
them to interact with the underlying Cloud resources. We will also leverage
distributed storage for VM images for more efficient access, and conduct large
scale experiments to look at ways to improve VM instantiation, virtual cluster
creation and workflow execution. We are also exploring redesigning workflow
systems from the ground up using Cloud Computing building blocks, such as
EC2 [65], SQS [63], DynamoDB [64], S3 [62], and CloudWatch [65], in order
to deliver a light-weight, fast, and distributed workflow system that should
scale along with the largest cloud infra-structures [42].

Acknowledgements This paper is supported by the key project of National Science Foundation
of China No. 61034005 and No. 61272528.

References

1. OpenNebula, [Online]. Available: http://www.OpenNebula.org, 2014
2. Openstack, [Online]. Available: http://www.openstack.org, 2014
3. GenBank, [Online]. Available: http://www.ncbi.nlm.nih.gov/genbank, 2014
4. Large Hadron Collider, [Online]. Available: http://lhc.web.cern.ch, 2014
5. Wang L, Duan R, Li X, et al. An Iterative Optimization Framework for Adaptive Workflow

Management in Computational Clouds[C]//Trust, Security and Privacy in Computing and
Communications (TrustCom), 2013 12th IEEE International Conference on. IEEE, 2013:
1049–1056.

6. I. Foster, Y. Zhao, I. Raicu, S. Lu. Cloud Computing and Grid Computing 360-Degree
Compared, IEEE Grid Computing Environments (GCE08) 2008, co-located with IEEE/ACM
Supercomputing 2008. Austin, TX. pp. 1–10

7. G. Bell, T. Hey, A. Szalay, Beyond the Data Deluge, Science, Vol. 323, no. 5919, pp.
1297–1298, 2009.

8. E. Deelman et al. Pegasus: A framework for mapping complex scientific workflows onto
distributed systems, Scientific Programming, vol. 13, iss. 3, pp. 219–237. July 2005.

9. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, Y.
Zhao, Scientific workflow management and the Kepler system, Concurrency and Computation:
Practice and Experience, Special Issue: Workflow in Grid Systems, vol. 18, iss. 10, pp. 1039–
1065, 25 August 2006.

http://www.OpenNebula.org
http://www.openstack.org
http://www.ncbi.nlm.nih.gov/genbank
http://lhc.web.cern.ch

254 Y. Zhao et al.

10. J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger and H. T. Vo, Managing
Rapidly-Evolving Scientific Workflows, Provenance and Annotation of Data, Lecture Notes in
Computer Science, 2006, vol. 4145/2006, 10–18, DOI: 10.1007/11890850_2

11. D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T. Oinn, Taverna: a
tool for building and running workflows of services, Nucleic Acids Research, vol. 34, iss. Web
Server issue, pp. 729–732, 2006.

12. Y. Zhao, X. Fei, I. Raicu, S. Lu, Opportunities and Challenges in Running Scientific Workflows
on the Cloud, IEEE International Conference on Cyber-enabled distributed computing and
knowledge discovery (CyberC), pp. 455–462, 2011.

13. Woitaszek, M., Dennis, J., Sines, T. Parallel High-resolution Climate Data Analysis using
Swift. 4th Workshop on Many-Task Computing on Grids and Supercomputers 2011.

14. Damkliang K, Tandayya P, Phusantisampan T, et al. Taverna Workflow and Supporting
Service for Single Nucleotide Polymorphisms Analysis[C]//Information Management and
Engineering, 2009. ICIME’09. International Conference on. IEEE, 2009: 27–31.

15. Zhang J, Votava P, Lee T J, et al. Bridging VisTrails Scientific Workflow Management System
to High Performance Computing[C]//Services (SERVICES), 203 IEEE Ninth World Congress
on. IEEE, 2013: 29–36.

16. Chaisiri S, Bong Z, Lee C, et al. Workflow framework to support data analytics in cloud
computing[C]//Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th
International Conference on. IEEE, 2012: 610–613.

17. M. Palankar, A. Iamnitchi, M. Ripeanu, S. Garfinkel. Amazon S3 for science grids: a
viable solution? In Proceedings of the 2008 international workshop on Data-aware distributed
computing (DADC ‘08), pp. 55–64, 2008.

18. E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing science on
the Cloud: the Montage example. In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, pp. 50:1–50:12, Piscataway, NJ, USA, 2008.

19. C. Vecchiola, S. Pandey, and R. Buyya. High-Performance Cloud Computing: A View of
Scientific Applications. In International Symposium onParallel Architectures, Algorithms, and
Networks, pp. 4–16, 2009.

20. Keahey, K., and T. Freeman. Contextualization: Providing One-click Virtual Clusters. in
eScience. 2008, pp. 301–308. Indianapolis, IN, 2008.

21. G. Juve and E. Deelman. Wrangler: Virtual Cluster Provisioning for the Cloud. In HPDC,
pp. 277–278, 2011.

22. Deelman E, Singh G, Livny M, et al. The cost of doing science on the cloud: the montage
example[C]//Proceedings of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press,
2008: 50.

23. Hoffa C, Mehta G, Freeman T, et al. On the use of cloud computing for scientific work-
flows[C]//eScience, 2008. eScience’08. IEEE Fourth International Conference on. IEEE, 2008:
640–645.

24. C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, F. Fotouhi, Service-Oriented Architecture
for VIEW: a Visual Scientific Workflow Management System, In Proc. of the IEEE 2008
International Conference on Services Computing (SCC), pp. 335–342, Honolulu, Hawaii,
USA, July 2008.

25. I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde. Falkon: a Fast and Light-weight tasK
executiON framework, IEEE/ACM SuperComputing 2007, pp. 1–12.

26. Juve G, Deelman E, Vahi K, et al. Scientific workflow applications on Amazon EC2[C]//
E-Science Workshops, 2009 5th IEEE International Conference on. IEEE, 2009: 59–66.

27. M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, Allan Espinosa, Mihael Hategan, Ben
Clifford, Ioan Raicu, Parallel Scripting for Applications at the Petascale and Beyond, IEEE
Computer Nov. 2009 Special Issue on Extreme Scale Computing, vol. 42, iss. 11, pp. 50–60,
2009.

28. NASA MODIS dataset, [Online]. Available: http://modis.gsfc.nasa.gov/, 2013.
29. Y. Zhao, J. Dobson, I. Foster, L. Moreau, M. Wilde, A Notation and System for Expressing and

Executing Cleanly Typed Workflows on Messy Scientific Data, SIGMOD Record, vol. 34, iss.
3, pp. 37–43, September 2005.

http://modis.gsfc.nasa. gov/

Migrating Scientific Workflow Management Systems from the Grid to the Cloud 255

30. Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. v. Laszewski, I. Raicu, T. Stef-Praun, M. Wilde.
Swift: Fast, Reliable, Loosely Coupled Parallel Computation, IEEE Workshop on Scientific
Workflows 2007, pp. 199–206.

31. Hadoop, [Online]. Available: http://hadoop.apache.org/, 2012
32. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov. The

Eucalyptus Open-Source Cloud-Computing System, 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid, CCGRID ‘09, pp. 124–131, 2009.

33. Oliveira, D. Ocaña, K., Ogasawara, E., Dias, J., Baião, F., Mattoso, M., A Performance
Evaluation of X-Ray Crystallography Scientific Workflow Using SciCumulus. IEEE CLOUD
2011, pp. 708–715.

34. L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl. Scientific Cloud
Computing: Early Definition and Experience, in 10th IEEE International Conference on High
Performance Computing and Communications, HPCC ‘08. , pp. 825–830, 2008.

35. Zhang J. Ontology-driven composition and validation of scientific grid workflows in Kepler:
a case study of hyperspectral image processing[C]//Grid and Cooperative Computing Work-
shops, 2006. GCCW’06. Fifth International Conference on. IEEE, 2006: 282–289.

36. R. Moreno-Vozmediano, R.S. Montero, I.M. Llorente. Multi-Cloud Deployment of Computing
Clusters for Loosely-Coupled MTC Applications, IEEE Transactions on Parallel and Dis-
tributed Systems. 22(6), pp. 924–930, 2011.

37. R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente. An Elasticity Model for High
Throughput Computing Clusters, J. Parallel and Distributed Computing. 71(6), pp. 750–757,
2011.

38. OpenNebula Architecture, http://www.opennebula.org/documentation:archives:rel2.2:
architecture, 2013.

39. Juve G, Rynge M, Deelman E, et al. Comparing FutureGrid, Amazon EC2, and Open Science
Grid for Scientific Workflows[J]. Computing in Science & Engineering, 2013, 15(4): 20–29.

40. M. Kozlovszky, K. Karóczkai, I. Márton, A. Balasko, A. C. Marosi, and P. Kacsuk, Enabling
Generic Distributed Computing Infrastructure Compatibility for Workflow Management Sys-
tems, Computer Science, vol. 13, no. 3, p. 61, 2012.

41. Juve G, Deelman E, Vahi K, et al. Data sharing options for scientific workflows on amazon
ec2[C]//Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society, 2010: 1–9.

42. I. Sadooghi, I. Raicu. CloudKon: a Cloud enabled Distributed tasK executiON framework,
Illinois Institute of Technology, Department of Computer Science, PhD Oral Qualifier, 2013

43. Juve G, Deelman E. Scientific workflows in the cloud[M]//Grids, Clouds and Virtualization.
Springer London, 2011: 71–91.

44. Lacroix Z, Aziz M. Resource descriptions, ontology, and resource discovery[J]. International
Journal of Metadata, Semantics and Ontologies, 2010, 5(3): 194–207.

45. Lin C, Lu S, Lai Z, et al. Service-oriented architecture for VIEW: a visual scientific workflow
management system[C]//Services Computing, 2008. SCC’08. IEEE International Conference
on. IEEE, 2008, 1: 335–342.

46. Lin C, Lu S. Scheduling scientific workflows elastically for cloud computing[C]//Cloud
Computing (CLOUD), 2011 IEEE International Conference on. IEEE, 2011: 746–747.

47. Mao M, Humphrey M. Auto-scaling to minimize cost and meet application deadlines in
cloud workflows[C]//Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2011: 49.

48. Oliveira D, Ogasawara E, Ocaña K, et al. An adaptive parallel execution strategy for cloud-
based scientific workflows[J]. Concurrency and Computation: Practice and Experience, 2012,
24(13): 1531–1550.

49. Papuzzo G, Spezzano G. Autonomic management of workflows on hybrid grid-cloud
infrastructure[C]//Proceedings of the 7th International Conference on Network and Services
Management. International Federation for Information Processing, 2011: 230–233.

http://hadoop.apache.org/
http://www.opennebula.org/documentation:archives:rel2.2:architecture
http://www.opennebula.org/documentation:archives:rel2.2:architecture

256 Y. Zhao et al.

50. Reynolds C J, Winter S, Terstyanszky G Z, et al. Scientific workflow makespan reduc-
tion through cloud augmented desktop grids[C]//Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference on. IEEE, 2011: 18–23.

51. Vecchiola C, Pandey S, Buyya R. High-performance cloud computing: A view of scientific
applications[C]//Pervasive Systems, Algorithms, and Networks (ISPAN), 2009 10th Interna-
tional Symposium on. IEEE, 2009: 4–16.

52. Yuan D, Yang Y, Liu X, et al. On-demand minimum cost benchmarking for intermediate dataset
storage in scientific cloud workflow systems[J]. Journal of Parallel and Distributed Computing,
2011, 71(2): 316–332.

53. Çatalyürek Ü V, Kaya K, Uçar B. Integrated data placement and task assignment for scientific
workflows in clouds[C]//Proceedings of the fourth international workshop on Data-intensive
distributed computing. ACM, 2011: 45–54.

54. Wang J, Korambath P, Altintas I. A physical and virtual compute cluster resource load
balancing approach to data-parallel scientific workflow scheduling[C]//Services (SERVICES),
2011 IEEE World Congress on. IEEE, 2011: 212–215.

55. Tolosana-Calasanz R, BañAres J Á N, Pham C, et al. Enforcing QoS in scientific workflow
systems enacted over Cloud infrastructures[J]. Journal of Computer and System Sciences,
2012, 78(5): 1300–1315.

56. Bessai K, Youcef S, Oulamara A, et al. Bi-criteria workflow tasks allocation and scheduling in
Cloud computing environments[C]//Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on. IEEE, 2012: 638–645.

57. Ostermann S, Prodan R. Impact of variable priced cloud resources on scientific work-
flow scheduling[M]//Euro-Par 2012 Parallel Processing. Springer Berlin Heidelberg, 2012:
350–362.

58. Ioan Raicu. Many-Task Computing: Bridging the Gap between High Throughput Computing
and High Performance Computing, Computer Science Department, University of Chicago,
Doctorate Dissertation, March 2009

59. Ioan Raicu, Ian Foster, Yong Zhao, Alex Szalay, Philip Little, Christopher M. Moretti, Amitabh
Chaudhary, Douglas Thain. Towards Data Intensive Many-Task Computing, book chapter in
Data Intensive Distributed Computing: Challenges and Solutions for Large-Scale Information
Management, IGI Global Publishers, 2009

60. Michael Wilde, Ioan Raicu, Allan Espinosa, Zhao Zhang, Ben Clifford, Mihael Hategan,
Kamil Iskra, Pete Beckman, Ian Foster. Extreme-scale scripting: Opportunities for large
task-parallel applications on petascale computers, Scientific Discovery through Advanced
Computing Conference (SciDAC09) 2009

61. Dongfang Zhao, Chen Shou, Tanu Malik, Ioan Raicu. Distributed Data Provenance for Large-
Scale Data-Intensive Computing, IEEE Cluster 2013

62. Ioan Raicu, Pete Beckman, Ian Foster. Making a Case for Distributed File Systems at Exascale,
ACM Workshop on Large-scale System and Application Performance (LSAP), 2011

63. Dharmit Patel, Faraj Khasib, Iman Sadooghi, Ioan Raicu. Towards In-Order and Exactly-
Once Delivery using Hierarchical Distributed Message Queues, 1st International Workshop
on Scalable Computing For Real-Time Big Data Applications (SCRAMBL’14) 2014

64. Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao, Ke Wang, Anupam
Rajendran, Zhao Zhang, Ioan Raicu. ZHT: A Light-weight Reliable Persistent Dynamic Scal-
able Zero-hop Distributed Hash Table, IEEE International Parallel & Distributed Processing
Symposium (IPDPS) 2013

65. Iman Sadooghi, Sandeep Palur, Ajay Anthony, Isha Kapur, Karthik Belagodu, Pankaj Puran-
dare, Kiran Ramamurty, Ke Wang, Ioan Raicu. Achieving Efficient Distributed Scheduling
with Message Queues in the Cloud for Many-Task Computing and High-Performance Com-
puting, 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid) 2014

Executing Storm Surge Ensembles on PAAS
Cloud

Abhirup Chakraborty, Milinda Pathirage, Isuru Suriarachchi, Kavitha
Chandrasekar, Craig Mattocks, and Beth Plale

Abstract Cloud computing services are becoming increasingly viable for scientific
model execution. As a leased computational resource, cloud computing enables
a computational modeler at a smaller university to carry out sporadic large-scale
experiments, and allows others to pay for CPU cycles as needed, without incurring
high maintenance costs of a large compute system. In this chapter, we discuss the
issues involved in running high throughput ensemble applications on a Platform-
as-a-Service cloud. We compare two frameworks deploying and running these
applications, namely Sigiri and MapReduce. We motivate the need for a pipelined
architecture to application deployment, and discus a couple of methodologies to
balance the loads, minimize storage overhead, and reduce overall execution time.

1 Introduction

Cloud computing brings immense opportunity to democratize research by rendering
computing power available to a vast majority of researchers and scientists who
cannot afford to buy or run a large cluster or HPC resource. By providing a flexible
framework to rapidly deploy computational resources, cloud computing makes it
feasible for a researcher to lease (from a data center) the resources based on their
need. With the emergence of several cloud computing vendors (e.g., Amazon EC2,
Microsoft Windows Azure, etc.), researchers and scientists from different domains
have recently started to explore the cloud environments for supporting their scien-
tific endeavors or research computing. However, the applicability of cloud platforms
for various applications across the scientific computing landscape is not readily
realizable due to diverse bandwidth and latency sensitivities (i.e., performance

A. Chakraborty (�) • M. Pathirage • I. Suriarachchi • K. Chandrasekar • B. Plale
School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA
e-mail: achakrab@indiana.edu; mpathira@indiana.edu; isuruara@indiana.edu;
kavchand@indiana.edu; plale@indiana.edu

C. Mattocks
Rosenstiel School of Marine and Atmospheric Science,
Miami University, Miami, FL 33149, USA
e-mail: cmattock@rsmas.miami.edu

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__11

257

mailto:achakrab@indiana.edu
mailto:mpathira@indiana.edu
mailto:isuruara@indiana.edu
mailto:kavchand@indiana.edu
mailto:plale@indiana.edu
mailto:cmattock@rsmas.miami.edu

258 A. Chakraborty et al.

requirements) of the applications [8, 10]. In this chapter, we study the execution
of a particular class of computational science application, namely ensemble model
runs, which are part of the larger class of high throughput applications.

Accurate and timely prediction of the impact of a hurricane’s storm surge is
a computational and scientific grand challenge problem. Accurate predictions can
prevent substantial loss of life and to a lesser extent property. However, this requires
a computational model that accurately captures the physical systems (i.e., oceanic
systems, atmospheric systems, geographic terrains). The National Oceanographic
and Atmospheric Association (NOAA) developed a hydrodynamic coastal ocean
model called Sea, Lake and Overland Surges from Hurricanes (SLOSH) [5]. The
SLOSH model estimates storm surge height and coastal inundation. The model
takes as input a basin, which is a geographical region with known values of
topography and bathymetry, topography/bathymetry data that can represent barriers,
gaps, passes, and other local features [1]. A second input to the storm surge model
is a hurricane track (through a “track file”). The hurricane track is identified by
several parameters (i.e., air pressure, radius of maximum winds, location, direction
and forward speed).

As a hurricane approaches a coast, the National Hurricane Center (NHC) will
hand off the general parameters of the storm to a storm surge unit who will then
create an ensemble of several hundred instances of SLOSH varying the model’s
input parameters. Storm surge results can additionally be integrated with road
networks and traffic flow information, precipitation models and river-flow models
to aid emergency response.

More specifically, hurricane forecasts that are made even in the final 12–
24 h before a storm reaches landfall are usually not very accurate given the
unpredictability of the storm. Thus storm surge forecasters run ensembles of SLOSH
runs (e.g., several hundred model instances) with varying storm track parameters
based on both the forecast storm track parameters and knowledge of the past errors.
From the ensemble of runs, an aggregate of the resulting data is produced, capturing
the Maximum Envelope of Water (MEOW) and Maximum of the MEOWs (MOM)
for each of output groups (an output group is specified by storm direction, storm
category and forward motion). Off season, modelers will run SLOSH ensembles
whenever there is a change in a basin definition (i.e., topography or bathymetry).
A single instance of the SLOSH model takes on average a few minutes to complete
for unoptimized code. An average ensemble run is either 300–400 in-season or
during off season the ensemble can grow as large as 15,000 instances. Such an
application can be characterized as a high throughput parallel computing (HPTC)
task with modest (<10 GB) volume of data input and data output. HPTC jobs have
an inherently high level of parallelism, in other words, there is low task-to-task
communication. This makes the use of cloud resources for in-season and off-season
a question that storm surge forecasters are evaluating.

In this chapter, we present the techniques to deploy, run, and monitor a large
SLOSH ensemble within a Platform-as-a-Service (PAAS) cloud environment.
A SLOSH instance forms an indivisible task while deployed in virtual machines.
Executing a large number of such small tasks needs mechanisms to pipeline the

Executing Storm Surge Ensembles on PAAS Cloud 259

tasks in a number of virtual machines, and to balance the loads across the virtual
machines. We present two approaches to deploying and running the SLOSH ensem-
ble in the Azure Cloud, using a MapReduce framework Twister4Azure [7] and the
Sigiri middleware [17], the latter an abstraction for managing jobs in grid and cloud
environments. We discuss a framework for balancing computational loads across
the different nodes to reduce the total makespan (i.e., maximum node usage) and to
effectively utilize the cloud resources.

The remainder of the chapter is organized as follows. Section 2 gives an
overview of the cloud environments and the middleware tools used in the paper.
Section 3 describes the detailed execution model of the SLOSH application
workflow considered in this paper. Section 4 outlines the execution technique and
associated optimizations while processing the SLOSH ensemble. Section 5 presents
a technique to minimize storage overheads with large-scale ensemble deployment
by distributing the loads across the VMs based on the output groups of each of
the SLOSH instances. Section 6 discusses the computation model to estimate the
execution time of a SLOSH ensemble within the Azure cloud. Section 7 presents
experimental studies. Section 8 presents the related work and “Conclusion” section
concludes the paper.

2 Architecture/System Overview

The logical architecture model has three layers: a workflow client, the middleware
services layer, and a cloud platform. The workflow client may be located either
in the cloud or at a researcher’s desktop. The middleware services layer is a web-
service layer hosted at the researcher’s institution or on the cloud. For the cloud
platform, we use Windows Azure. We provide an overview of the cloud platform,
middleware framework and processing models used in this paper.

2.1 Windows Azure

Azure is used in our study as a Platform-as-a-Service (PAAS) in that we utilize its
computation model (e.g., worker nodes) and other higher level services. A PAAS
also supports development and access to these services through a number of
languages. For instance, Azure supports C#, .NET, C++, and Java. Through its
.NET-based hosting platform, developers develop applications for Azure using
Visual Studio.

Windows Azure is made up of three parts: a server instance that supports
application processes, a storage service, and a fabric integrating both the compute
and storage services. Developers deploy Windows applications by allocating a
number of server instances that can be classified as two different roles: the web
service hosting instances called web roles and the computational instances called

260 A. Chakraborty et al.

compute roles. There are two types of compute role instances: Worker roles and VM
roles. In case of the Worker roles, Azure supplies and configures Virtual Hard Disks
(VHDs) and Virtual Machines (VMs) behind the scene. Developers interact with the
Azure cloud by supplying application packages to the Azure administrative portal.
Whereas, in case of the VM roles, the developers need to manage explicitly the
VM images by creating necessary OS and application packages for applications.
Developers can specify the number of instances with various roles during the
application deployment, and also can dynamically adjusts the number of instances
during run time.

As persistent storage, Windows Azure provides three types of storage services:

• Blob: highly available and scalable storage service for large data.
• Azure Queue: reliable, asynchronous message delivery across the worker roles.
• Table: scalable, structured, table-like storage and supports simple queries on

partitions, row keys, and attributes.

In this study, we use the Azure Worker Role instead of the VM role because the
former does not need explicit user efforts in managing the machine instances. Too,
worker roles support communication amongst each other and with other middleware
services through Azure Queues [10]. VM roles support neither.

Fig. 1 Pipeline framework using Sigiri middleware and Azure worker role

Executing Storm Surge Ensembles on PAAS Cloud 261

2.2 Sigiri Middleware

Sigiri is resource abstraction middleware that communicates with and integrates
multiple computational resources (e.g., cloud and grid resources) through a unified
job management service [17]. A new computational platform is added to Sigiri by a
system administrator who adds a daemon for each computational resource and runs
the daemon in the system or inside the newly integrated computational resource. A
workflow client can submit a job via a Sigiri web service. The jobs are stored in a
queue and are executed on the computational resources using the daemon process
that manages job execution on the computational resource or interacts with a local
scheduler to manage the jobs. Sigiri provides data movement facilities to stage-in
and stage-out data from the computational platform.

Figure 1 shows the components of the Sigiri middleware when integrated
with only one computational resource, Windows Azure. The Sigiri’s daemon for
Windows Azure supports both the Azure VM role and the worker role. We use the
worker role as described earlier in this section. To run an executable with the worker
role, the user simply packages their application as a zipped file (which includes the
configuration file describing the application) and registers the application to Sigiri
using its web service API. The Sigiri daemon takes care of moving executables and
the data to the Worker roles that carry out the actual execution.

2.3 MapReduce: Twister4Azure

Twister4Azure [7] is a distributed MapReduce runtime for executing MapReduce
jobs within Windows Azure platform. It copes with the eventual data availability
within cloud storage by re-trying the map/reduce task execution and by incorpo-
rating a design that does not assume the immediate data availability across all
the distributed workers. Twister4Azure uses Azure Queues in scheduling Map and
Reduce tasks, Azure Tables for storing metadata and monitoring data usages, and
Azure Blobs for storing input, output and intermediate data. To support compu-
tations, it uses Worker-Role instances within the Azure Cloud. The MapReduce
runtime schedules the tasks stored in the global Queue by periodically pulling the
tasks from the Queue and assigning them to a map task. Once all the queued tasks
for a job are processed by the map tasks, the reduce tasks start to execute taking
the intermediate results of the map tasks. Using the MapReduce runtime, users can
dynamically vary (increase or decrease) the number of worker roles in the system.

262 A. Chakraborty et al.

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000

T
im

e(
hr

)

SLOSH instance

Water (pre-NAP)
Land (post-NAP)

Fig. 2 Logical run time (i.e., “simulation interval”) with the amount of time (logical) spent over
water as shown for 14,700 parameterized instances

3 The SLOSH Ensemble

SLOSH model, developed by NOAA and evolved from earlier models in 1960s, is in
use by the National Hurricane Center (NHC) for forecasting storm surge in real time
and for assessing the level of flooding by the storm surge. By running in ensemble
mode, this can be done accurately even when the storm’s track is in doubt. Also,
the SLOSH model is used in several other ways, for example, to assist in “hazard
analysis” portion of evacuation planning, to develop structural design criteria based
on hurricane winds and surge etc. The SLOSH model is applied to around 38 specific
coastal areas, called basins, along the Atlantic and Gulf of Mexico coasts of the
US, Oahu (Hawai), Puerto Rico and the Virgin Islands. Each of the basins is a
geographical region with known values of topography and bathymetry, and it covers,
on the average, a few hundred miles of the coastline. The SLOSH model divides a
basin into a number of grid cells and estimates the water elevations caused by the
storm surge at each of the grid cells.

A SLOSH instance over a basin is represented by a track file with 100 data
points along a storm track and each of the points provides a number of parameters
associated with the storm (e.g., latitude, longitude, wind-speed, storm direction,
pressure drop, radius of maximum winds, etc.); the distance between two successive
points is one logical hour. The track file also records the range of the points
within the track files over which the SLOSH model would run. So, for a SLOSH
instance, the SLOSH model simulates the storm for a duration that is denoted as the
simulation interval.

To overcome the huge potential for serious errors that could occur if a storm
surge forecaster were to issue a warning based on a single, deterministic SLOSH
instance, the forecaster will instead run SLOSH as an ensemble that consists of

Executing Storm Surge Ensembles on PAAS Cloud 263

model instances that are configured from different storm track parameters (e.g.,
forward speed, direction and category). We observe that the execution time for
each SLOSH instance within the ensemble varies from a few seconds to more than
10 min when run unoptimized on an Intel Xeon Processor with 2 GHz and 16 GB
of memory. We compile the SLOSH code with gcc 4.1.2 compiler using the
default optimization option (-O). Figure 2 shows the significant variations of the
simulation intervals within a SLOSH ensemble.

To better understand the performance optimization potential of the SLOSH
ensemble, we study the parameters contained in the storm track files for their impact
on model instance execution time. Through examination of the storm track files for
14,700 SLOSH instances, we identify two potential parameters. The first one is
the total logical execution time of the instance. As can be seen from Fig. 2, this
parameter varies from 10 to 100 h. We call this parameter as “simulation interval”.
The second parameter is the point in (logical) time at which the hurricane hits land;
this is called the Nearest Approach Point (NAP), and we refer to it as the “NAP
event”. The portions of a simulation interval spanned in the water (pre-NAP) and on
the land (post-NAP) are shown separately in the figure.

We do experiments to determine the effect of the NAP event, if any, on total
model instance execution time for a SLOSH instance. The storm surge model is
purported to run faster after the storm reaches the NAP event. Therefore, we study
whether the model execution time is uniform or not across the water and the land.
If model execution time is uniform, we can ignore the NAP event and use only the
simulation interval in estimating the total execution time for a slosh instance. For
this measurement, we profile the execution time for 20 SLOSH instances. We select
SLOSH instances with a significant time interval spent both over the land and the
water. The SLOSH instances are run on an Intel Xeon E7540, 2 GHz processor
with 16 GB memory. We look at the actual execution time for SLOSH for different
logical hour intervals before and after the NAP event. It the NAP event does not have
any impact of the run time, the average execution time (per hour) will be uniform
across different SLOSH instances.

As shown in Fig. 3, out of 20 SLOSH instances, there are only 3 outliers that
deviate by 4 % from the horizontal line that fits into the rest of the points. Therefore,
the model execution time per unit length of simulation interval remains almost
uniform among the SLOSH instances. Such an uniform per-unit execution time
implies that we can use the simulation interval as the only parameter to estimate
(with high accuracy) the total physical execution time for any given SLOSH
instance.

The workflow, after execution of the SLOSH ensemble, merges the output
files for each SLOSH instance to create aggregate Maximum Envelope of Winds
(MEOWs) and Maximum of MEOWs (MOMs) results. MEOWs record the max-
imum water level recorded at each grid cell; to facilitate interactive visualization
and analysis, scientists generate output files (recording MEOWs and MOMs) for
a number of groups, which are identified by three parameters: storm direction,
forward motion/speed, storm category (on Saffir-Simpson scale [16]).

264 A. Chakraborty et al.

Fig. 3 Analysis of the
impact of NAP event on
SLOSH model execution.
Each point in the graph
corresponds to one SLOSH
instance. The average per-unit
execution time is nearly
uniform among the different
SLOSH instances

5000

5200

5400

5600

5800

6000

0 5 10 15 20

 p
er

-u
ni

t E
xe

cu
tio

n
T

im
e

(m
s)

SLOSH instance#

The SLOSH model is run as a command-line program that can be executed in
any OS environment. The program is a standalone executable that takes, as input
parameters, a basin definition (a geographic area to be modeled) and a set of track
files with various storm parameters, i.e., location, storm speed, wind speed, air
pressure drop, etc.; each track file defines a SLOSH instance.

Typical execution of the SLOSH model in a parallel or distributed environment
is shown in Fig. 4. Here, the SLOSH instances or track files are distributed among
a number of instance sets, and each of the instance sets is fed into a replica
of the SLOSH program that carries out the computation over the basin. The
SLOSH program generates intermediate output files and identifies the output files
into groups based on three parameters of the SLOSH instance (or, track file):
forward speed, storm direction and storm category. The intermediate output files
are envelope files (that records the water level elevation in each of the grid files
in the basin) and track files (that are constructed from the input track file). After
processing all the instance sets, the output files are merged together to form one pair
of output files (i.e., an envelope file and a track file) for each group. The output can
be visualized using the SLOSH display program [2].

4 Ensemble Deployment and Execution

Forecasters build an ensemble workflow by defining the track file suite and the
basin to run the SLOSH model on. To balance loads across the nodes, we divide
the SLOSH instances with the ensemble in a number of instance sets or partitions.
A partition is specified as a list of track files. To achieve fine-grained load balancing,
we ensure that the number of partitions is a few times larger than the total nodes in
the system. In this section, we describe the basic techniques to schedule jobs in the
Azure cloud using both the Sigiri middleware and the Twister4Azure MapReduce
runtime. In the our scheduling technique, we partition the SLOSH ensemble using
the simulation intervals of the instances. The number of partitions is chosen such

Executing Storm Surge Ensembles on PAAS Cloud 265

Final Results

SLOSH
Program

SLOSH
Program

SLOSH
Program

1 2 N

Distribute
B

as
in

e

t

e

t

e

t

1 2 k

(1 envelope and 1 track file per group)

Instance set p Instance set 2 Instance set 1

Intermediate
output files

Intermediate
output files

Intermediate
output files

SLOSH instances
(track files)

Merge/Aggregate

Fig. 4 Slosh ensemble execution workflow

that the total loads for a partition is small enough to allow fine-grained load-
balancing across the worker nodes. A user submits a job by providing the SLOSH
ensemble and the basin definition as the inputs. The middleware takes the job from
the job queue and applies a partitioning algorithm using the simulation intervals as
the partitioning metric; each of the partitions forms a task that should be executed
the worker nodes. We now describe the detailed systems for processing the SLOSH
ensemble using Sigiri middleware and MapReduce runtime.

4.1 Sigiri Middleware

As mentioned earlier, the workflow client, located at the scientist’s desktop, submits
a job to the cloud via the web service portal. The SLOSH job specifies the directories
that contains the SLOSH instances (track files) and the associated basin definitions.

266 A. Chakraborty et al.

Fig. 5 Scheduling tasks with Sigiri Middleware

Figure 5 shows the details of the job execution with Sigiri middleware. The web
service, located in Sigiri Middleware, pulls the required data (track file directory
and the basin directory) and stores the data in Azure Blobs. The jobs submitted at
the web service are pushed into a global queue. The Azure daemon receives the jobs
from the queue and execute the jobs in the worker VMs within the Azure cloud.
After receiving a job from the queue, the Azure daemon partitions the SLOSH
instances based on the metric simulation intervals of the track files. The number
of partitions is determined based on the total worker roles that are going to be used
for executing the job. Each partition in the partition definition file contains a list of
SLOSH instances or track files, and each partition corresponds to a task. The Azure
daemon submits the tasks to an Azure queue. The worker roles pull tasks from the
Azure queue and execute the tasks by reading the required data (track files/basins)
from the Azure Blobs. Each of the SLOSH instances executed within a worker
generates an envelop file and a track file. After processing a SLOSH instance, a
worker node locally merges the output files with the previous output files from
the same group. Therefore, each worker role maintains only two output files (one
envelope and one track file) for each of the groups.

Each of the worker nodes might maintain overlapping groups; therefore, the
output files within each of the worker roles should be merged at the end. Instead
of waiting for all the worker nodes to finish processing all the tasks in the Azure
queue, we pipeline the merge process with the task execution within the worker

Executing Storm Surge Ensembles on PAAS Cloud 267

Fig. 6 Scheduling tasks with MapReduce

nodes. When a certain fraction of the worker nodes become idle, the Azure daemon
pushes a merge task on the Azure queue, which are grabbed by an idle worker node
in the cloud. Such pipelining of the merge process reduces the total makespan while
executing a job. Once a job is executed, the Azure daemon notifies the client, and
the client downloads the resulting output files from the Azure Blobs.

4.2 MapReduce Runtime

With the MapReduce runtime, similar to the Sigiri Middleware, the workflow client
submits jobs via a web service that stores the jobs in a global queue. Figure 6
outlines the job deployment process with MapReduce runtime. A Job Manager
(Twister4Azure Client) partitions the SLOSH instances in a job and creates tasks,

268 A. Chakraborty et al.

one for each of the partitions. The Twister4Azure client pushes the tasks in a
Map-task-queue which is maintained within a Azure queue. The mappers fetch
jobs from the map-task-queue and process the tasks. The mappers locally merge
the output files belonging to the same group and generate data as the triple
hgroup-key; output filesi. Here, group-key is denoted as the concatenation of the
attributes in the triple hdirection; category; forward speedi. Once all tasks in the
queue are executed, the mappers shuffle the intermediate output data across the
reducers using the group-key as the key of the map output.

After shuffling the intermediate output data, all the intermediate output data
for the same group is mapped to a single reducer. Therefore, after executing the
reducers, we get the final merged output files for each group. Here, we assume
that the number of distinct groups is at least equal to the number of reducers.
Otherwise, some reducers might not receive any intermediate output files. In a
SLOSH ensemble, with current resolution across each of the grouping parameters,
the number of groups varies from 150 to 300; the total number of groups even
increases as we increase the resolution across the grouping parameters. As the
merging of output files is a very lightweight process, we can achieve high merge
throughput using only a few reducers.

The Merge process of the MapReduce runtime collects the final output files for
all the groups and writes them to the Blobs. Once the job is done, the service agent
notifies the client. Then output data is then downloaded from the Cloud to the user’s
desktop.

5 Output-Aware Job Deployment

In case of the a large-scale SLOSH ensemble with large output files, both the storage
overheads at each of the worker nodes and the loads for merge/aggregation process
increase significantly. We present a load distribution technique that is aware of
the output groupings and minimizes the number of intermediate output files to be
maintained (at the worker nodes) and be merged (at the aggregator).

While executing the tasks, each worker node generates a number of intermediate
output files depending on the groups of the SLOSH instances assigned to the worker
node. Within each worker node, all the output files belonging to the same group
are merged together and a pair of intermediate output files (an envelop file and a
track file) is generated for each group. Therefore, total number of intermediate files
generated by the worker nodes depends on the distribution of the SLOSH instances
across the worker nodes. In the best case, where all the worker nodes are assigned
with SLOSH instances from disjoint groups, the total intermediate files is 2k, where
k is the total groups within the SLOSH ensemble. In this scenario, the merge process
simply accumulates the files by storing in Azure Blobs; and the process does not
require any computation. However, distributing the SLOSH instances based only on
the group might lead to high load imbalances across the worker nodes, increasing
the makespan. On the other hand, partitioning and distributing the SLOSH instances
based on the simulation intervals might lead to a scenario where each worker node

Executing Storm Surge Ensembles on PAAS Cloud 269

receives at least one SLOSH instance from each of the groups; and in such a case,
each worker node needs to maintain 2k intermediate files. So, the total intermediate
files maintained across all the worker nodes is 2pk, where p is the total workers.
Also, in such a scenario, the merge process should merge p pairs of files from each
group, generating a total of 2k final output files.

5.1 Load Partitioning

In output-aware job deployment, we consider both the simulation intervals and
output groups when partitioning the SLOSH instances and distributing the partitions
across the worker nodes. We first determine the average partition load by dividing
the total loads (i.e., sum of the simulation intervals of all the SLOSH instances)
by the number of partitions. We arrange the SLOSH instances according to their
groups. We start forming partitions by considering the SLOSH instances in the order
of their groups, and we assign a SLOSH instance to the current (open) partition
until the total load of the partition closely matches with the average partition load;
at this point, we commit (or, close) the partition and start to form a another partition
in the same way by assigning subsequent SLOSH instances on it. We repeat the
process until we create all partitions (T). If we arrange the partitions according
to the order they are formed, adjacent partitions may have SLOSH instances from
similar groups. So, while assigning the partitions (or tasks) across the worker nodes,
the locality (or the order) of the partitions should be considered. Such a deployment
scheme needs a fine-grained, load diffusion (through work-stealing) mechanism;
hence, such a scheme is not feasible with Twister4Azure, but can be deployed in a
Cloud using a Sigiri middleware.

5.2 Work-Stealing with Sigiri

To deploy the tasks (T) across the worker nodes(p), we maintain a total of p Azure
queues, one for each worker node. Each queue i.1 � i < p/ is filled with the tasks

in the range
h
.i � 1/ � T

p
; i � T

p

i
, and the queue p is assigned with the remnant

tasks
h
.p � 1/ � T

p
; T

i
. Each worker node then fetch the tasks from its queue and

executes them. If the queue of a worker node i is empty, the worker node tries to
steal tasks from another worker’s queue.

While a worker node attempts to steal job, the worker node with the largest
number of pending tasks might be the candidate to steal tasks from. However,
such an approach of stealing tasks from the most-loaded queue, might lead to
a large number of overlapping groups within each worker nodes: when several
worker nodes try to steal tasks from other queues, the worker nodes might end
up selecting the same most-loaded queue, and a batch of worker nodes might be

270 A. Chakraborty et al.

hopping around the queues until all the queues are empty. To reduce such traversals
across multiple queues, we use the notion of normalized load while selecting the
victim queue to seal the tasks from. The normalized load within a queue indicates
the current pending tasks in the queue divided by the number of worker nodes
currently assigned to the queue. An worker node assigned to the queue with the
maximum normalized loads; the worker node consumes tasks from that selected
queue until the queue is empty; the worker node select another victim queue and the
process repeats until all the queues are empty.

6 Modeling the Execution Time

We develop a computational model to measure the execution time of a SLOSH
ensemble within a cloud environment. Such a model can predict the execution time
of a large SLOSH ensemble within a cloud with a given number of VMs. Such a
prediction before deploying the SLOSH ensemble within the cloud is necessary to
provision computational resources within the cloud to meet a user-defined deadline.
Also, the computational model can be used to estimate the cost of executing a
SLOSH ensemble within the cloud.

Dissecting the execution time of a SLOSH ensemble, we find that the compu-
tational (processing) time within each VM is the major component of the total
execution, with the time to merge the intermediate output files (Fig. 4) being
insignificant. We use a few input parameters to model the execution time of a
SLOSH ensemble. We use the parameter per-unit execution time (Fig. 3) to model
the computation time for a SLOSH instance. We use the parameters of a storage
device (e.g., access time, bandwidth) to model the fetch time from input buffer and
total time in a merge process. To get the value for the parameter per-unit execution
time, we observe the execution time per a unit of simulation interval for a number
of SLOSH instances and take the average value for the parameter. The span of the
execution or the total execution time is measured by the latest completion of the VM
with the highest loads.

7 Performance Evaluation

We implement two systems to run the SLOSH ensembles using the Twister4Azure
MapReduce runtime and the Sigiri middleware. In our experimental setup, the web
service interface, Sigiri Daemon and MapReduce clients are hosted on an Intel
Xeon E7540 with 2 GHz processor, 16 GB memory, and 1 Gbps connection to an
Ethernet switch. Each Azure worker role is created from small compute instances
in Azure Cloud. Each of the small compute instances (or worker role VMs) has the

Executing Storm Surge Ensembles on PAAS Cloud 271

Table 1 Windows Azure
compute instance

Parameters Azure instance

CPU 1.6 GHz X64 Equivalent Processor

Memory 1.75 GB

Disk space 225 GB

Network 100 Mbps

OS Windows Azure Guest OS 3.1

Fig. 7 Total execution time
using 20 worker VMs,
varying number of track files,
for Twister4Azure

3000

4000

5000

6000

7000

8000

150 200 250 300 350 400

E
xe

cu
tio

n
T

im
e

(s
ec

)

Track files

configuration as given in Table 1. We use Azure Queues to communicate among
the Sigiri Daemon (or the MapReduce client) and the worker VMs that execute the
SLOSH tasks.

We submit jobs to the Cloud through the web Service Interface. The Sigiri
daemon (for Sigiri middleware) and the MapReduce client (for Twister4Azure) fetch
the submitted jobs, form tasks for each of the jobs, and place the tasks in an Azure
Queue. In case of the Sigiri, the Worker role VMs fetch the tasks from the Queue and
execute them within the worker. For Twister4Azure, a MapReducer adapter retrieves
the tasks from the Queue and sends them to the mappers that execute the tasks. In
our experiments, we run up to 400 SLOSH instances. We evaluate the performance
of the system by observing the execution time for each of the worker (or mappers)
and skewness in the execution. The skewness is measured by the deviation between
the maximum and minimum execution time across all the participating VMs. We
show in each graph the default parameters for each of the experiments.

7.1 Vary Workloads

Figures 7 and 8 show execution time with varying SLOSH instances for the
Twister4Azure and Sigiri Middleware frameworks, respectively. As we increase
the number of track files, the average execution time (shown over the line) also
increases linearly. The sharp increase in execution time at the end of the line
(after 350 SLOSH instances) is due to the large simulation intervals of the track

272 A. Chakraborty et al.

Fig. 8 Total execution time
using 20 worker VMs,
varying number of track files,
for Sigiri

3000

4000

5000

6000

7000

8000

150 200 250 300 350 400

E
xe

cu
tio

n
T

im
e

(s
ec

)
Track files

files; hence, a fewer track files contribute to a larger workload. The vertical bar
at the point indicates the minimum and maximum execution time across all the
VM used the system. If you look the maximum execution time points, we note
that the upper bound of the execution time increase only linearly; this is a normal
phenomenon as increasing the total workloads linearly would also result in linear
increment of the per-worker loads in the system. Also, the skew parameter or the
length of the vertical bar increases only a little, which suggests that the skewness
remains within a bound. The execution times for both Sigiri Middleware and the
MapReduce framework are almost similar. For the experiments, we set the number
of total worker VMs to 20. The number of SLOSH instances is varied from 141
to 385, and each point in the graph the track files are partitioned into 60, 80, 100
and 120 partitions, respectively. Each of the partitions form a task for the worker
VMs (mappers) in Sigiri Middleware (Twister4Azure). Execution times in both
Figs. 7 and 8 are identical, because the application is compute intensive, and the
overhead in merging the intermediate results and fetching tasks from the task queue
is insignificant compared to the total job execution time.

7.2 Vary Parallelism

We do experiments with varying the number of VMs allocated to the system.
Figures 9 and 10 show the effects of varying the number of the worker VMs in
Twister4Azure and Sigiri Middleware. Here, as we increase the number of VMs in
the cloud, the average execution time (as shown by the line in the graph) decreases
linearly. This shows the scalability of the system. The vertical error bar shows the
minimum and maximum execution time across the participating VMs. Here, we note
that the difference between the maximum and the minimum execution times remain
almost similar as we increase the number of VMs. This shows that the total loads of
the system in balanced almost uniformly across the worker roles. In the experiment,
we use 141 track files which are divided into 60 partitions.

Executing Storm Surge Ensembles on PAAS Cloud 273

Fig. 9 Total execution time
using 141 track files, varying
number of Worker Roles, for
Twister4Azure

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

(s
ec

)
 Worker Roles

Fig. 10 Total execution time
with using 141 track files,
varying number of Worker
Roles, for Sigiri

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

(s
ec

)

Worker Roles

Fig. 11 Execution time of
Twister4Azure compared to
theoretical computed results

1000

2000

3000

4000

5000

6000

7000

8000

150 200 250 300 350 400

E
xe

cu
tio

n
T

im
e

(s
ec

)

 Track files

Twister4Azure
Model

7.3 Evaluating the Model

Figure 11 presents comparative results of execution time using the Twister4Azure
framework and the theoretical model as presented in Sect. 6. We show the execution
time for varying number of track files. As shown in the figure, the gap between the
two lines increases after a certain load (150 track files); however, the deviation is
stable beyond 250 track files. For 385 track files, the inaccuracy of the model is
near 15 %.

274 A. Chakraborty et al.

8 Related Work

There are several existing frameworks for executing scientific applications on
cloud. SciCumulus [14] is workflow middleware for executing pleasingly parallel
tasks with CloudSim, a cloud simulator. The study evaluates the performance in a
cloud simulation environment for parametric sweep and data parallel applications.
The middleware requires replacement of workflow components by SciCumulus
components at the Desktop level, in order to use SciCumulus to run parallel
processes using the workflow system. Sigiri, HPC Scheduler and Daytona on the
other hand provide a decoupled architecture for execution of parallel jobs by
providing a web service interface.

Thilina et al. [6] analyze the performance of two pleasingly parallel bio-medical
applications (i.e., assembling genome sequence and dimensionality reduction chem-
ical analysis) in a few cloud frameworks: MapReduce, Apache Hadoop and
Microsoft DryadLINQ frameworks. AzureBlast [10] implements a computationally
intensive algorithm called BLAST within Azure cloud. Li et al. [9] present the
design and implementation of a data processing (i.e., data reprojection, and data
reduction) application that integrates ground-based sensor data with the data
from a satellite instrumented with a MODIS (or, Moderate Resolution Imaging
Spectroradiometer).

Moretti et al. [13] consider a genome assembly application that processes a
large collection of sequence data. The authors present a framework to parallelize
the genome assembly application over a large number of commodity machines
that are harnessed from clusters, clouds and grids. In [12], the authors study the
suitability of using a cloud environment (Amazon EC2) to support NASA’s HPC
workloads. The authors select a representative set of applications from science and
engineering domains, and compare the performance of Amazon EC2 to NASA’s
Pleiades supercomputer. The paper observes that the Cloud system cannot compete
with the HPC supercomputer system for tightly-coupled applications with high
communication requirements among the code modules.

The Cloudbus toolkit [15] proposes a middleware solution for using Amazon
Cloud infrastructure from the Cloudbus workflow engine. This architecture uses
different plugins in the workflow system to execute jobs on different cloud resour-
ces. These resource plugins are tightly coupled with the workflow system. In this
paper, we analyze middleware solutions that are loosely coupled from the workflow
system, allowing different workflow systems to execute on cloud resources, with
minimum effort.

Wei et al. [11] discuss executing AzureBlast on Azure by evaluating Cirrus, a
general parametric sweep service on Azure. The paper addresses issues like fault-
handling by reconfiguring and resuming jobs, and dynamic scaling. Our previous
workshop paper [4] analyzes the feasibility of cloud environments in supporting the
SLOSH applications. Reference [3] addresses load balancing issues to minimize the
skewness of the execution times across the worker nodes, considering a batch-mode
framework of task execution.

Executing Storm Surge Ensembles on PAAS Cloud 275

Conclusion
In this chapter, we present the issues in deploying and parallelizing a scientific
application (simulating a SLOSH ensemble) in Windows Azure. We present
the methodology to balance loads across the worker nodes by partitioning
the SLOSH instances. We present the implementation using both a Sigiri
Middleware and a Twister4Azure MapReduce runtime. Our experimentations
with the two alternate systems show the scalability of the techniques with the
number of VMs. Below we outline a few interesting areas of further research.
Fault Tolerant, Elastic Execution with Spot Instances A number of cloud
environments provide spot instances that are activated automatically when
instantaneous prices of compute instances fall below a user-specified price.
To execute a SLOSH ensemble with spot instances, the execution framework
should proactively replicate the computation state to safeguard against the
sudden unavailability of the spot instances. To ensure the fault tolerance, the
framework should create checkpoints for the SLOSH execution and use the
checkpoints to recover from virtual machine failures.
Provenance Collection An important dimension of science is reproducibil-
ity and provenance of results. For a middleware framework to be optimally
useful in a world of big data, it must also aid in the capture of provenance and
metadata in non-obtrusive yet useful ways. Metadata and provenance capture
for this application class, its completeness and quality, are the open issues for
future research.

Acknowledgements This work is funded by the National Science Foundation under grant OCI
1148359. We are grateful to Microsoft for sponsored access to Azure compute resources.

References

1. National Hurricane Center. http://www.nhc.noaa.gov/surge/faq.php#4x
2. NOAA SLOSH display program. http://slosh.nws.noaa.gov/sloshPub/#sloshDsp
3. Chakraborty, A., Pathirage, M., Suriarachchi, I., Chandrasekar, K., Mattocks, C., Plale, B.:

Storm surge simulation and load balancing in azure cloud. In: Proc. 21st High Performance
Computing Symposium (HPC’13), HPC’13, pp. 1–9. SCS and ACM (2013)

4. Chandrasekar, K., Pathirage, M., Wijeratne, S., Mattocks, C., Plale, B.: Middleware alternatives
for storm surge predictions in windows azure. In: Proc. 3rd workshop on Scientific Cloud
Computing Date, ScienceCloud ‘12, pp. 3–12 (2012)

5. Glahn, B., Taylor, A., Kurkowski, N., Shaffer, W.: The role of the slosh model in national
weather service storm surge forecasting. National Weather Digest 33(1), 3–14 (2009)

6. Gunarathne, T., Wu, T.L., Qiu, J., Fox, G.: Cloud computing paradigms for pleasingly parallel
biomedical applications. In: Proc. 19th ACM Int. Symposium on High Performance Distributed
Computing, HPDC ‘10, pp. 460–469. ACM, New York, NY, USA (2010)

7. Gunarathnea, T., Qiu, J., Fox, G.: Iterative mapreduce for azure cloud. In: Proc. Cloud
Computing and Its Applications, CCA, CCA ‘11 (2011)

http://www.nhc.noaa.gov/surge/faq.php#4x
http://slosh.nws.noaa.gov/sloshPub/#sloshDsp

276 A. Chakraborty et al.

8. Lee, C.A.: A perspective on scientific cloud computing. In: Proc. 19th ACM Int. Symposium
on High Performance Distributed Computing, HPDC ‘10, pp. 451–459 (2010)

9. Li, J., Humphrey, M., Agarwal, D.A., Jackson, K.R., van Ingen, C., Ryu, Y.: eScience in the
cloud: A modis satellite data reprojection and reduction pipeline in the windows azure platform.
In: IPDPS, pp. 1–10 (2010)

10. Lu, W., Jackson, J., Barga, R.: AzureBlast: a case study of developing science applications on
the cloud. In: Proc. 19th ACM Int. Symposium on High Performance Distributed Computing,
HPDC ‘10, pp. 413–420 (2010)

11. Lu, W., Jackson, J., Ekanayake, J., Barga, R.S., Araujo, N.: Performing large science
experiments on azure: Pitfalls and solutions. In: CloudCom, pp. 209–217 (2010)

12. Mehrotra, P., Djomehri, J., Heistand, S., Hood, R., Jin, H., Lazanoff, A., Saini, S., Biswas, R.:
Performance evaluation of amazon EC2 for NASA HPC applications. In: Proceedings of the
3rd workshop on Scientific Cloud Computing Date, pp. 41–50. New York, NY, USA (2012)

13. Moretti, C., Thrasher, A., Yu, L., Olson, M., Emrich, S.J., Thain, D.: A framework for scalable
genome assembly on clusters, clouds, and grids. IEEE Trans. Parallel Distributed Systems
23(12), 2189–2197 (2012)

14. de Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M.: Scicumulus: A lightweight cloud
middleware to explore many task computing paradigm in scientific workflows. In: Proc.
IEEE 3rd Int. Conf. on Cloud Computing, CLOUD ‘10, pp. 378–385. IEEE Computer Society,
Washington, DC, USA (2010)

15. Pandey, S., Karunamoorthy, D., Buyya, R.: Workflow engine for clouds. In: Cloud Computing,
Principles and Paradigms, Wiley Series on Parallel and Distributed Computing, pp. 321–344
(2011)

16. Simpson, R., Saffir, H.: Tropical cyclone destructive potential by integrated kinetic energy.
Bull. Amer. Meteor. Soc. 88, 1799–1800 (2007)

17. Withana, E.C., Plale, B.: Sigiri: uniform resource abstraction for grids and clouds. Concurrency
and Computation: Practice and Experience 24(18), 1532–0626 (2012)

Cross-Phase Optimization in MapReduce

Benjamin Heintz, Abhishek Chandra, and Jon Weissman

Abstract MapReduce has proven remarkably effective for a wide variety of data-
intensive applications, but it was designed to run on large single-site homogeneous
clusters. Researchers have begun to explore the extent to which the original MapRe-
duce assumptions can be relaxed including skewed workloads, iterative applications,
and heterogeneous computing environments. This chapter continues this exploration
by applying MapReduce across widely distributed data over distributed computation
resources. This problem arises when datasets are generated and stored at multiple
sites as is common in many scientific domains and increasingly e-commerce
applications. It also occurs when multi-site resources such as geographically
separated data centers are applied to the same application. Using Hadoop, we
show that the absence of network and node homogeneity and locality of data
lead to poor performance. The problem is that interaction of MapReduce phases
becomes pronounced in the presence of heterogeneous network behavior. In this
paper, we propose new cross-phase optimization techniques that enable independent
MapReduce phases to influence one another. We propose techniques that optimize
the push and map phases to enable push-map overlap and to allow map behavior
to feed back into push dynamics. Similarly, we propose techniques that optimize
the map and reduce phases to enable shuffle cost to feed back and affect map
scheduling decisions. We evaluate the benefits of our techniques in both Amazon
EC2 and PlanetLab. The experimental results show the potential of these techniques
as performance is improved from 7 to 18 % depending on the execution environment
and application.

1 Introduction

Recent years have seen increasing amounts of data being generated and stored in
a geographically distributed manner for a large variety of application domains.
Examples include social networking, Web and Internet service providers, as well

B. Heintz (�) • A. Chandra • J. Weissman
University of Minnesota, Keller Hall 4-192, 200 Union Street SE,
Minneapolis, MN 55455, USA
e-mail: heintz@cs.umn.edu; chandra@cs.umn.edu; jon@cs.umn.edu

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__12

277

mailto:heintz@cs.umn.edu
mailto:chandra@cs.umn.edu
mailto:jon@cs.umn.edu

278 B. Heintz et al.

as large content distribution networks (CDNs) that serve the content for many of
these services. For instance, Facebook has more than one billion users, more than
80 % of whom are outside the US or Canada,1 while Google has developed storage
systems [9,14] that manage data partitioned across globally distributed data centers.
A large CDN such as Akamai [30] that currently serves 15–30 % of the global web
traffic uses over 100,000 servers deployed in over 1,000 locations in 75 countries
around the world.

This trend toward distributed generation and storage is unlikely to stop in the
foreseeable future. Wide-area network latency can have a pronounced adverse
effect on user experience for Web applications, so there is pressure to distribute
infrastructure closer to clients at the edge of the Internet [34]. As a result, many
applications collect data from their users—for example in the form of photo
uploads or edits to a cloud-hosted document—in an inherently distributed manner.
Additionally, wide-area network costs have decreased over time, but not at the
same rate as storage and compute costs [7]. At the global scale, wide-area network
bandwidth is fundamentally limited by transoceanic cable bandwidth, which has
historically grown much more slowly than storage and compute capability [32].
These trends suggest that data will continue to be generated in a distributed manner,
and will increasingly be stored close to the distributed data sources rather than
transferred across costly wide-area links to a centralized location.

Many modern applications relying on such data need to process large amounts
of highly distributed data on a highly distributed platform with low latency. As a
motivating example, consider a CDN such as Akamai. Content providers use CDNs
to deliver web content, live and on-demand videos, downloads, and web applications
to users around the world. The servers of a CDN are deployed in clusters in hundreds
or even thousands of data centers around the world. Each server of a CDN records
detailed data about each user that it interacts with: every web object that is served,
each stream that is played, each application that is accessed, as well as each user
action such as playing or pausing a stream. Besides user access information, each
server also records network-level and system-level data such as TCP connection
statistics [30]. In aggregate, the servers produce tens of billions of lines of log data
originating from over a thousand locations each day.

A number of applications must process voluminous distributed data to extract
useful information. For instance, an analytics application must extract detailed
information about who is accessing the content, from which networks and from
which geographies. It must also combine access data with network performance data
to depict the quality of experience for users, including page download speeds, video
startup times, and application transaction times. At the same time, the processing
must be done with minimum latency. The analytics application must complete
processing with a delay of no more than several minutes so that content providers
can understand and act upon the key indicators that relate to their users and their
business.

1http://newsroom.fb.com.

http://newsroom.fb.com

Cross-Phase Optimization in MapReduce 279

A key question for efficient processing of such distributed data is where to carry
out the computation. As Jim Gray noted, “you can either move your questions or
the data” [25]. These two options, however, represent two extreme possibilities. At
one extreme, sending massive data from its diverse origin locations to a centralized
location may be too slow to meet the requirements of low latency [3, 32]. Further,
the cost may be prohibitive, in terms of both data transfer costs and the need to build
a single large dedicated data center for application processing. Finally, a centralized
solution is intrinsically less fault-tolerant than a distributed one, since failure of the
single centralized data center can cause a complete outage that is unacceptable for
critical applications such as analytics and monitoring.

At the other extreme, if we map computation onto each input datum in situ, the
results of these subcomputations comprise intermediate data that must be aggregated
to generate the final analysis results. If such intermediate data are large, then
aggregating them may be more costly than moving input data to a centralized
location. Further, the various locations may differ in their compute capacities,
resulting in imbalanced resource utilization.

Between the two extremes of moving all the data to a centralized location for
processing and moving all the computation to the sources of data, there is a rich
spectrum of possibilities that may in fact be more efficient. Systems for highly
distributed data-intensive computing must intelligently decide where along this
spectrum leads to the best performance.

In this chapter, we explore how MapReduce systems in particular can make
such intelligent decisions. Because MapReduce was originally designed [16] for
the relatively homogeneous single-datacenter setting, it is natural to ask whether
MapReduce is well suited for data analysis in environments where both data and
compute resources are highly distributed. Indeed, as we show through experiments
in Sect. 1.1, under a widely distributed environment with high network heterogene-
ity, Hadoop does not always perform well. We find that the main reason for this
performance degradation is the interaction and heavy dependency across different
MapReduce phases. This happens because the data placement and task execution
are highly coupled in the MapReduce paradigm (because MapReduce attempts
to assign tasks to nodes that already host input data for those tasks2). Thus, the
decisions on where to place data severely impact the scheduling decision on where
map and reduce tasks are executed, and vice versa. In a heterogeneous environment,
particularly one with slow wide-area links, such coupling can severely impact the
end-to-end performance by creating bottleneck links and nodes in the execution.
We show that Hadoop’s default data placement and scheduling mechanisms do not
take such cross-phase interactions into account, and while they may try to optimize
individual phases, they could result in globally bad decisions, resulting in poor
overall performance. The problem is not that a given phase cannot take into account

2When this is not possible, tasks must read their inputs remotely, and scarce network bandwidth
becomes a limiting factor.

280 B. Heintz et al.

decisions made by a prior phase, but rather the opposite. Upstream decisions may
limit the flexibility of later phases, and thus, earlier phase decisions must account
for their impact later on.

In spite of these weaknesses of popular MapReduce implementations, the
MapReduce abstraction itself is remarkably powerful, and implementing the
abstraction in highly distributed settings is a worthy objective. MapReduce, in
particular the open-source Hadoop [21] implementation, has been applied to
a surprising variety of data-intensive computing applications, and many data
scientists have gained MapReduce application development expertise. Further, a
rich ecosystem has been built on top of Hadoop, including for example Pig [18],
Hive [35], Impala [1], Scalding [2], Mahout [29] and many more. There is
tremendous value in bringing this expertise and infrastructure to highly distributed
environments.

From a higher level, relaxing the assumptions of the original MapReduce in terms
of execution domain and suitable applications is an active area of pursuit by many
researchers. Our line of inquiry continues along this path.

1.1 MapReduce Performance in Widely Distributed
Environments

In this section, we empirically demonstrate the challenge of efficiently executing
MapReduce over a widely distributed environment through experiments conducted
on the PlanetLab and Amazon EC2 platforms. We present only a subset of results
from our experiments here due to space constraints; more details are available in
another paper [11].

A typical MapReduce job executed in a cluster environment consists of three
main phases: (a) Map, where map tasks execute on their input data; (b) Shuffle,
where the output of map tasks (intermediate key-value pairs) are disseminated to
reduce tasks; and (c) Reduce, where reduce tasks are executed on the intermediate
data to produce the final outputs. It is typically assumed that the input data are
already available on the compute nodes before the job execution is started. Such data
push is usually achieved through file system mechanisms such as those provided by
HDFS. However, when data sources are geographically distributed, such as across
multiple data centers, the process of pushing data to the compute nodes may itself be
costly, and hence, must be considered as a separate phase of the overall computation.

To illustrate this problem, we compare three possible architectures for MapRe-
duce execution: (a) Local MapReduce (LMR), where all data are first moved into a
centralized cluster followed by the execution of a local MapReduce job within that
cluster; (b) Global MapReduce, where all the widely distributed compute resources
are considered as a single MapReduce cluster without considering the network
heterogeneity; and (c) Distributed MapReduce (DMR), where multiple MapReduce
jobs are first executed close to the data sources, followed by a final centralized

Cross-Phase Optimization in MapReduce 281

combination of their outputs. Note that LMR is the typical way in which MapReduce
computation is done today.

In our experimental setup, we used a total of eight PlanetLab nodes in two widely
separated clusters—four nodes in the US, and four nodes in Europe. In addition, we
used one node in each cluster as a data source. For each cluster, we chose tightly
coupled machines with high inter-node bandwidth (i.e., they were either co-located
at the same site or share some network infrastructure). The intra-cluster bandwidth
was between 1.5 and 2.5 MB=s, while the inter-cluster bandwidth between any pair
of nodes (between US and EU) was around 300–500 KB=s.

 0

200

400

600

800

1000

1200

1400

Push
US

Push
EU

Map Reduce Result
Combine

Total

T
im

e
(s

)

LMR
GMR
DMR

Fig. 1 WordCount on 800 MB plain-text data on PlanetLab. DMR finishes the fastest by avoiding
the transfer of large input data over slow links

Figures 1 and 2 (reproduced from [11]) show the results of executing WordCount
on plain-text and random input data respectively in this environment. These two
scenarios correspond to different application/data characteristics: one—WordCount
with plain-text—where input data are aggregated into much smaller intermediate
data, and the other—WordCount with random data—where input data expand into
larger intermediate data, increasing the shuffle costs. Within each graph, we show
the time of individual phases: Push US/EU corresponding to data push from the
US and EU data sources respectively, followed by the map and reduce phases.
The Result Combine phase is the combine phase for the DMR architecture only,
comprising the data transmission plus combination costs, and this phase corresponds
to a logical shuffle/reduce of the intermediate results.

282 B. Heintz et al.

0

100

200

300

400

500

600

700

800

Push
US

Push
EU

Map Reduce Result
Combine

Total

T
im

e
(s

)

LMR
GMR
DMR

Fig. 2 WordCount on 250 MB random data on PlanetLab. LMR finishes faster since it minimizes
the larger intermediate and output data transfer costs

From the results, we make the following observations. From Fig. 1, we see that
in a wide-area environment, the cost of moving input data to the compute nodes (the
data push phase) for LMR can be significant, which impacts the overall execution
time of the job despite the map and reduce phases being relatively efficient. In
fact, these datasets are small by MapReduce standards, but the size of data and its
distributed nature present orthogonal challenges; here we focus on the challenges
arising from widely distributed data.

Since the choice of mapper nodes depends on where data are pushed, pushing
data to nearby nodes (as for DMR) is much more efficient when the volume of
intermediate data is small relative to that of the input data. On the other hand, from
Fig. 2, we see that when the volume of intermediate data is much larger than that of
the input data, the cost of combining intermediate results can be the dominant factor.
In particular, in this case, shuffling and merging the intermediate results close to the
mappers (as for LMR) is much more efficient. GMR performs poorly in both cases,
as it does not use network locality either in the push or the result combine phases.
Our experiments on the Amazon EC2 environment showed similar results [11].

Overall, these results illustrate the close interdependency between the different
stages of a MapReduce execution. In particular, the choice of mapper nodes to
which inputs are pushed impacts both how long the data push takes, as well as
where the intermediate data are generated. This in turn impacts the performance of
the data shuffle to the reducers. This problem is particularly severe for wide-area

Cross-Phase Optimization in MapReduce 283

environments, since they are typically heterogeneous in terms of node and link
capacities. Therefore, it is important to optimize the overall end-to-end computation
as a whole while taking into account the network and platform characteristics.

1.2 Cross-Phase Optimization

In order to overcome these limitations, we first present a modeling and optimiza-
tion framework that allows us to explore the spectrum between centralized and
distributed computation, and derive an optimal execution plan describing the best
placement of computation (Sect. 2). This framework serves as an oracle, showing
us how we could solve this problem if we had complete information. We apply
several high-level insights from this oracle toward a practical implementation in a
real MapReduce system where information is more limited. The key idea behind
our proposed implementation techniques is to consider not only the execution cost
of an individual task or computational phase, but also its impact on the performance
of subsequent phases. Specifically we propose two sets of techniques:

Map-Aware Push (Sect. 3) Traditional MapReduce assumes that the input data
are pushed to compute nodes before execution starts. We instead propose making
the input data push aware of the cost of map execution, based on the source-to-
mapper link capacities as well as mapper node computation speeds. We achieve
this by overlapping the data push with map execution, which provides us with
two benefits. The first benefit is a pipelining effect which hides the latency of
data push with the map execution. The second benefit is a dynamic feedback
between the map and push that enables nodes with higher speeds and faster links
to process more data at runtime.

Shuffle-Aware Map (Sect. 4) In traditional MapReduce, the typical shuffling of
intermediate data from mappers to reducers is an all-to-all operation. However,
in a heterogeneous environment, a mapper with a slow outgoing link can become
a bottleneck in the shuffle phase, slowing down the downstream reducers. We
propose map task scheduling based on the estimated shuffle cost from each
mapper to enable faster shuffle and reduce execution.

We have implemented these techniques in the Hadoop framework, and evaluated
their benefits in both Amazon EC2 and PlanetLab (Sect. 5). The experimental results
show the potential of these techniques as performance is improved from 7 to 18 %
depending on the execution environment and application.

2 Oracle: Model-Driven Optimization

We now consider a model-driven optimization framework that allows us to explore
the spectrum between purely distributed and purely centralized computation.
The core of this framework is a model of MapReduce job execution time in a

284 B. Heintz et al.

highly distributed setting. This model takes a number of inputs describing the
distributed data, distributed compute resources and their interconnections, as well
as application characteristics. In particular, the model takes as input the set of
distributed data sources as well as the amount of input data stored at each of these
sources. To predict computation time, it also takes the set of mappers and reducers
along with the rates at which they can perform map and reduce computation.
In order to predict time spent in wide-area communication, the model requires
knowledge of network bandwidth between all pairs of sources and mappers, and
between all pairs of mappers and reducers. Application characteristics are described
by a parameter ˛, which defines the ratio of intermediate data size to input data size.

In a real-world MapReduce implementation, the applicability of such a model
may be limited by the need to gather all of these inputs ahead of time. For example,
the number of network links to measure may be large, and conditions may vary over
time. Alternatively, the computation time required by a new application may not be
known without prior profiling. In spite of these practical limitations, such a model is
still very valuable, as it can provide insights to guide the design of more lightweight
optimization mechanisms, as it does in this section.

2.1 Model and Optimization

We model the distributed platform available for executing the MapReduce applica-
tion as a tripartite graph with a vertex set of V D S [M [R, where S is the set of
data sources, M is the set of mappers, and R is the set of reducers (see Fig. 3). The
edge set E of the tripartite graph is the complete set of edges, .S �M/[.M �R/.

Fig. 3 A tripartite graph
model for distributed
MapReduce with three data
sources, two mappers and two
reducers

Each node represents a physical resource; either a data source providing inputs,
or a computation resource available for executing map or reduce computational
processes. A node can therefore represent a single physical machine or even a
single map or reduce slot in a small Hadoop cluster, or it can represent an entire
rack, cluster, or data center of machines in a much larger deployment. Each edge
represents the communication path connecting a pair of such nodes. The capacity

Cross-Phase Optimization in MapReduce 285

of a node i 2 M [R is denoted by Ci , and captures the computational resources
available at that node in units of bits of incoming data that it can process per second.
Note that Ci is also application-dependent as different MapReduce applications
are likely to require different amounts of computing resources to process the
same amount of data. Likewise, the capacity of an edge .i; j / 2 E is denoted
by Bij, representing the bandwidth (in bits/second) that can be sustained on the
communication link that the edge represents.

Application characteristics are captured by two key parameters: the amount of
data Di (in bits) that originates at data source i , for each i 2 S ; and the expansion
factor ˛ that represents the ratio of the size of the output of the map phase to the
size of its input. Note that ˛ can take values less than, greater than, or equal to
1, depending on whether the output of the map operation is smaller than, larger
than, or equal in size to the input, respectively. Many applications perform extensive
aggregation in the map phase, for example by filtering records according to a
predicate, or by projecting only a subset of fields from complex records. These
applications have ˛ much less than 1. On the other hand, some applications augment
the input data in the map phase (e.g., relational join), or they emit multiple copies
of intermediate records (e.g., to compute an aggregate at city, state, and national
levels), yielding ˛ > 1. This parameter has a strong impact on optimal placement
decisions, as shown earlier in the experimental results in Sect. 1.1.

In addition to a description of the platform and application, the model also
requires a description of the execution plan describing where each data source
pushes its inputs as well as how the intermediate keys are partitioned across
reducers. Given the platform, application, and execution plan, the amount of data
flowing through each mapper and reducer and across each network link is known.
Combined with knowledge of link bandwidths and compute rates, it is therefore
possible to estimate completion time for the full MapReduce job.

Using this model, we formulate a mixed integer program to find an execution plan
that minimizes end-to-end job execution time. For more details, see our technical
report [22].

2.2 Key Insights

We use this model-driven optimization to derive a number of insights that inform the
development of optimization mechanisms in a real-world MapReduce implementa-
tion. Using measurements of compute speeds and network links from PlanetLab
nodes distributed around the world, we generate optimization inputs corresponding
to a globally distributed environment spanning eight nodes in the US, Europe,
and Asia. Computing optimal execution plans in this environment shows that it is
essential to optimize with the objective of minimizing end-to-end execution time.
Specifically, we find that tolerating suboptimality within individual phases (e.g.,
push, map, shuffle, or reduce) may be necessary to achieve end-to-end optimality. As
an example, an optimization that aims to minimize end-to-end execution time leads

286 B. Heintz et al.

to execution times 54–81 % lower than an optimization that aims to minimize push
and shuffle time. In other words, our model-driven optimization framework shows
that optimizing across phases with an end-to-end objective is more effective than
optimizing with the more local—even myopic—objective of shortening specific
phases.

We also use our model-driven optimization to compare the benefit from con-
trolling a single phase (e.g., push or shuffle) of the execution plan to that from
controlling both the push and shuffle phases. Our results show that, while controlling
only the bottleneck phase is better than controlling only the non-bottleneck phase,
controlling (i.e., optimizing) both phases is much better. In particular, optimizing
both phases leads to execution times 37–52 % lower than optimizing only a single
phase. In other words, it is important that we control both phases, answering both
where each data source should push its data, as well as how the intermediate data
should be partitioned across reducers.

In the following sections, we apply these insights to mechanisms that are more
suitable to a real-world MapReduce implementation where the dynamic nature of
network, compute, and application characteristics might render a static optimization
approach infeasible.

3 Map-Aware Push

The first opportunity for cross-phase optimization in MapReduce lies at the
boundary between the push and map phases. A typical practice is what we call a
push-then-map approach, where input data are imported in one step, and compu-
tation begins only after the data import completes. This approach has two major
problems. First, by forcing all computation to wait for the slowest communication
link, it introduces waste. Second, separating the push and map phases deprives
mappers of a way to demand more or less work based on their compute capacity.
This makes scheduling the push in a map-aware manner more difficult. To overcome
these challenges, we propose two changes: first, overlapping—or pipelining—the
push and map phases; and second, inferring locality information at runtime and
driving scheduling decisions based on this knowledge.

Before discussing how we implement our proposed approach in Hadoop and
showing experimental results, we describe in more detail the problems of a push-
then-map approach and how our proposed Map-aware Push technique addresses
them. To begin, consider the simple example environment shown in Fig. 4, compris-
ing two data sources S1 and S2 and two mappers M1 and M2.3 Assume that each
data source initially hosts 15 GB of data and that the link bandwidths and mapper
computation rates are as shown in the figure.

3This and the remaining figures and tables from this chapter are reproduced from [23].

Cross-Phase Optimization in MapReduce 287

3.1 Overlapping Push and Map to Hide Latency

With these network links, the following push distribution would optimize the push
(i.e., minimize push time): S1 pushes 10 GB to M1 and 5 GB to M2, and S2 pushes
3 GB to M1 and 12 GB to M2. If we were to use this distribution with a push-then-
map approach, then the entire push would finish after 500 s even though source S2

would finish its part after only 300 s. Map computation would begin after 500 s and
continue until 1,350 s.

S1 (15 GB) M1 (50 MB/s)20 MB/s

S2 (15 GB) M2 (20 MB/s)40 MB/s

10 MB/s

10 MB/s

Fig. 4 A simple example network with two data sources and two mappers

If we instead were to overlap the push and map, allowing map computation
to begin at each mapper as soon as data begin to arrive, then we could avoid
this unnecessary waiting. For example, assuming that we used this same optimal
push distribution, then mapper M2, with slower compute capacity than its incoming
network links, would be the bottleneck, finishing after 850 s. By simply overlapping
the map and push phases, we could reduce the total push and map runtime by about
37 % in this example.

3.2 Overlapping Push and Map to Improve Scheduling

The second problem arises due to the lack of feedback from the map phase to
the push phase. Without this feedback, and absent any a priori knowledge of the
map phase performance, we are left with few options other than simply optimizing
the push phase in isolation. Such a single-phase optimization favors pushing more
data to mappers with faster incoming network links. In our example, however, it is
the mapper with slower network links (M1) that is actually better suited for map
computation. Unfortunately, by pursuing an optimal push phase, we end up with
more data at M2 and in turn roughly 3.3� longer map computation there than at

288 B. Heintz et al.

M1. For better overall performance, we need to weigh the two factors of network
bandwidth and computation capacity and trade off between faster push and faster
map. Continuing with our simple example, we should tolerate a slightly slower push
in order to achieve a significantly faster map by sending more data to mapper M1.
In fact, in an optimal case, we would send 60 % of all input data there, yielding a
total push-map runtime of only 600 s, or a 55 % reduction over the original push-
then-map approach.

3.3 Map-Aware Push Scheduling

Of course, this raises the question of how we can schedule push and map jointly,
respecting the interaction between the two phases. As we have argued, this is
difficult to do when the push and map phases are separated. With overlapped push
and map, however, the distribution of computation across mapper nodes can be
demand-driven. Specifically, whereas push-then-map first pushes data from sources,
our approach logically pulls data from sources on-demand. Using existing Hadoop
mechanisms, this on-demand pull is initiated when a mapper becomes idle and
requests more work, so faster mappers can perform more work. This is how our
proposed approach respects map computation heterogeneity.

To respect network heterogeneity, our Map-aware Push technique departs from
the traditional Hadoop approach of explicitly modeling network topology as a set of
racks and switches, and instead infers locality information at runtime. It does this by
monitoring source-mapper link bandwidth at runtime and estimating the push time
for each source-mapper pair. Specifically, let d be the size of a task in bytes (assume
for ease of presentation that all task sizes are equal) and let Ls;m be the link speed
between source node s and mapper node m in bytes per second. Then we estimate
the push time Ts;m in seconds from source s to mapper m as

Ts;m D d

Ls;m

: (1)

Let S denote the set of all sources that have not yet completed their push.
Then when mapper node m requests work, we grant it a task from source s� D
arg mins2S Ts;m. Intuitively, this is equivalent to selecting the closest task in terms
of network bandwidth. This is a similar policy to Hadoop’s default approach of
preferring data-local tasks, but our overall approach is distinguished in two ways.
First, rather than reacting to data movement decisions that have already been made
in a separate push phase, it proactively optimizes data movement and task placement
in concert. Second, it discovers locality information dynamically and automatically
rather than relying on an explicit user-specified model.

Cross-Phase Optimization in MapReduce 289

3.4 Implementation in Hadoop

Now we can discuss how we have implemented our approach in Hadoop 1.0.1.
First, the overlapping itself is possible using existing Hadoop mechanisms, but
a more creative deployment. Specifically, we set up a Hadoop Distributed File
System (HDFS) instance comprising the data source nodes, which we refer to as
the “remote” HDFS instance and use directly as the input to a Hadoop MapReduce
job. Map tasks in Hadoop typically read their inputs from HDFS, so this allows us
to directly employ existing Hadoop mechanisms.4

Our scheduling enhancements, on the other hand, require modification to the
Hadoop task scheduler. To gather the bandwidth information mentioned earlier, we
add a simple network monitoring module which records actual source-to-mapper
link performance and makes this information accessible to the task scheduler. For
Hadoop MapReduce jobs that read HDFS files as input, each map task corresponds
to an InputSplit which in turn corresponds to an HDFS file block. HDFS provides an
interface to determine physical block locations, so the task scheduler can determine
the source associated with a particular task and compute its Ts;m based on bandwidth
information from the monitoring module. If there are multiple replicas of the file
block, then Ts;m can be computed for each replica, and the system can use the replica
that minimizes this value. The task scheduler then assigns tasks from the closest
source s� as described earlier.

3.5 Experimental Results

We are interested in the performance of our approach, which overlaps push and map
and infers locality at runtime, compared to a baseline push-then-map approach. To
implement the push-then-map approach, we also run an HDFS instance comprising
the compute nodes (call this the “local” HDFS instance). We first run a Hadoop
DistCP job to copy from the remote HDFS to this local HDFS, and then run a
MapReduce job directly from the local HDFS. We compare application execution
time using these two approaches. Because we are concerned primarily with push
and map performance at this point, we run the Hadoop example WordCount job
on text data generated by the Hadoop example randomtextwriter generator, as this
represents a map-heavy application.

We run this experiment in two different environments: Amazon EC2 and
PlanetLab. Our EC2 setup uses eight EC2 nodes in total, all of the m1.small instance
type. These nodes are distributed evenly across two EC2 regions: four in the US
and the other four in Europe. Each node hosts one map slot and one reduce slot.

4To improve fault tolerance, we have also added an option to cache and replicate inputs at the
compute nodes. This reduces the need to re-fetch remote data after task failures or for speculative
execution.

290 B. Heintz et al.

Two PlanetLab nodes, one in the US and one in Europe, serve as distributed data
sources. Table 1 shows the bandwidths measured between the multiple nodes in this
setup.

Figure 5 shows the execution time5 of the WordCount job on 2 GB of input
data, and it shows that our approach to overlapping push and map reduces the total
runtime of the push and map phases by 17.7 %, and the total end-to-end runtime by
15.2 % on our EC2 testbed.

Next, we run the same experiment on PlanetLab. We continue to use two nodes as
distributed data sources, and we use four other globally distributed nodes as compute
nodes, each hosting one map slot and one reduce slot. Table 2 shows the bandwidths
measured between the multiple nodes in this setup. Due to the smaller cluster size
in this experiment, we use only 1 GB of text input data.

Table 1 Measured
bandwidths in the EC2
experimental setup

From To Bandwidth (MB=s)

Source EU Worker EU 8

Source EU Worker US 3

Source US Worker EU 3

Source US Worker US 4

Worker EU Worker EU 16

Worker EU Worker US 2

Worker US Worker EU 5

Worker US Worker US 2

Push
Map

Overlapped Push/Map
Reduce

0

200

400

600

800

1000

1200

Hadoop Default Map-aware Push

E
xe

cu
tio

n
T

im
e

(s
)

Push/Map Approach

Fig. 5 Runtime of a Hadoop WordCount job on 2 GB text data on a globally distributed Amazon
EC2 environment for the push-then-map and Map-aware Push approaches

5Throughout this chapter, error bars indicate 95 % confidence intervals.

Cross-Phase Optimization in MapReduce 291

Table 2 Measured
bandwidths in the PlanetLab
experimental setup

From To Bandwidth (MB/s)

All sources All workers 1–3

Workers A–C Workers A–C 4–9

Workers A–C Worker D 2

Worker D Workers A–C 0.2–0.4

Figure 6 shows that push-map overlap can reduce runtime of the push and map
phases by 21.3 % and the whole job by 17.5 % in this environment. We see a
slightly greater benefit from push-map overlap on PlanetLab than on EC2 due to
the increased heterogeneity of the PlanetLab environment.

Push
Map

Overlapped Push/Map
Reduce

 0

 200

 400

 600

 800

 1000

Hadoop Default Map-aware Push

E
xe

cu
tio

n
T

im
e

(s
)

Push/Map Approach

Fig. 6 Runtime of a Hadoop WordCount job on 1 GB text data on a PlanetLab environment for
the push-then-map and Map-aware Push approaches

4 Shuffle-Aware Map

In the previous section, we showed how the map phase can influence the push
phase, in terms of both the volume of data each mapper receives as well as the
sources from which each mapper receives its data. In turn, the push determines, in
part, when a map slot becomes available for a mapper. Thus, from the perspective
of the push and map phases, a set of mappers and their data sources are decided.
This decision, however, ignores the downstream cost of the shuffle and reduce as
we will show. In this section, we show how the set of mappers can be adjusted to
account for the downstream shuffle cost. This was also motivated in Sect. 1.1 as
we illustrated the importance of shuffling and merging intermediate results close to
mappers, particularly for shuffle-heavy jobs.

In traditional MapReduce, intermediate map outputs are shuffled to reducers in
an all-to-all communication. In Hadoop, one can control the granularity of reduce

292 B. Heintz et al.

tasks and the amount of work each reducer will obtain. However, these decisions
ignore the possibility that a mapper–reducer link may be very poor. For example, in
Fig. 7, the links between mapper C and reducers D and E are poor, thus raising the
cost of shuffle. For applications in which shuffle is dominant, this phenomenon can
greatly impact performance, particularly in heterogeneous networks.

Two solutions are possible: changing the reducer nodes, or reducing the amount
of work done by mapper C and in turn reducing the volume of data traversing the
bottleneck links. We present an algorithm that takes the latter approach. In this way,
the downstream shuffle (or reduce) can impact the map. This is similar to the Map-
aware Push technique where the map influenced the push.

As in typical MapReduce, we assume the reducer nodes are known a priori.
We also assume that we know the approximate distribution of reducer tasks: i.e., we
know the fraction of intermediate data allocated to each reducer node. This allows us
to know how much data must travel on the link from a mapper node to each reducer,
which our algorithm utilizes. The distribution can be estimated using a combination
of reducer node execution power and mapper–reduce link speed, pre-profiled. This
estimate can be updated during the map phase if shuffle and reduce are overlapped.

Fig. 7 An example network
where links from mapper C to
reducers D and E are shuffle
bottlenecks

mappers

reducers

A B C

D E

4.1 Shuffle-Aware Map Scheduling

To estimate the impact of a mapper node upon the reduce phase, we first estimate
the time taken by the mapper to obtain a task, execute it, and deliver intermediate
data to all reducers (assuming parallel transport). The intuition is that if the shuffle
cost is high then the mapper node should be throttled to allow the map task to be
allocated to a mapper with better shuffle performance. We estimate the finish time
Tm for a mapper m to execute a map task as follows: Tm = T

map
m + T

shuffle
m , where

T
map
m is the estimated time for the mapper m to execute the map task, including the

time to read the task input from a source (using the Map-aware Push approach), and
T

shuffle
m is the estimated time to shuffle the accumulated intermediate data Dm up to

the current task, from mapper m to all reducer nodes r 2 R, where R is the set of all
reducer nodes. Let Dm;r be the portion of Dm destined for reducer r , and Lm;r be
the link speed between mapper node m and reducer node r . Then, we can compute

T shuffle
m D max

r2R

�
Dm;r

Lm;r

�
: (2)

Cross-Phase Optimization in MapReduce 293

The Shuffle-aware Map scheduling algorithm uses these Tm estimates to deter-
mine a set of eligible mappers to which to assign tasks. The intuition is to throttle
those mappers that would have an adverse impact on the performance of the
downstream reducers. The set of eligible mappers MElig is based on the most recent
Tm values and a tolerance parameter ˇ:

MElig D fm 2M jTm � min
m2M

Tm C ˇg; (3)

where M is the set of all mapper nodes.
The intuition is that if the execution time for a mapper (including its shuffle

time) is too high, then it should not be assigned more work at present. The value of
the tolerance parameter ˇ controls the aggressiveness of the algorithm in excluding
slower mappers (in terms of their shuffle performance) from being assigned work.
At one extreme, ˇ D 0 would enforce assigning work only to the mapper with
the earliest estimated finish time, intuitively achieving good load balancing, but
leaving all other mappers idle for long periods of time. At the other extreme, a
high value of ˇ > .maxm2M Tm � minm2M Tm/ would allow all mapper nodes to
be eligible irrespective of their shuffle performance, and would thus reduce to the
default MapReduce map scheduling. We select an intermediate value:

ˇ D .maxm2M Tm �minm2M Tm/

2
: (4)

The intuition behind this value is that it biases towards mappers with better shuffle
performance. This is but one possible threshold; future research will explore other
possibilities.

We note that the algorithm makes its decisions dynamically, so that over time,
a mapper may become eligible or ineligible depending on the relation between its
Tm value and the current value of minm2M Tm. As a result, this algorithm allows
a discarded mapper node to be re-included later should other nodes begin to offer
worse performance. Similarly, a mapper may be throttled if its performance starts
degrading over time.

4.2 Implementation in Hadoop

We have implemented this Shuffle-aware Map scheduling algorithm by modifying
the task scheduler in Hadoop. The task scheduler now maintains a list of estimates
Tm for all mapper nodes m, and updates these estimates as map tasks finish. It
also uses the mapper-to-reducer node pair bandwidth information obtained by the
network monitoring module to update the estimates of shuffle times from each
mapper node. Every time a map task finishes, the task tracker on that node asks the
task scheduler for a new map task. At that point, the scheduler uses (3) to determine
the eligibility of the node to receive a new task. If the node is eligible, then it is

294 B. Heintz et al.

assigned a task from the best source determined by the Map-aware Push algorithm
described in Sect. 3. On the other hand, if the node is not eligible, then it is not
assigned a task. However, it can request for work again periodically by piggybacking
on heartbeat messages, when its eligibility will be checked again.

4.3 Experimental Results

We now present some results that show the benefit of Shuffle-aware Map. Here
we run our InvertedIndex application, which takes as input a set of eBooks from
Project Gutenberg [20] and produces, for each word in its input, the complete list of
positions where that word can be found. This application shuffles a large volume of
intermediate data, so it is an interesting application for evaluating our Shuffle-aware
Map scheduling technique.

First, we run this application on our EC2 multi-region cloud as described in
Table 1. In this environment, we use 1.8 GB of eBook data as input, and this
produces about 4 GB of intermediate data to be shuffled to reducers. Figure 8 shows
the runtime for a Hadoop baseline with push and map overlapped, as well as the
runtime of our Shuffle-aware Map scheduling technique, also with push and map
overlapped.

Map
Reduce

0
200
400
600
800

1000
1200
1400
1600
1800

Hadoop Default Shuffle-aware Map

E
xe

cu
tio

n
T

im
e

(s
)

Scheduling Approach

Fig. 8 Runtime of the InvertedIndex job on 1.8 GB eBook data for the default Hadoop scheduler
and our Shuffle-aware Map scheduler—both with overlapped push and map—on EC2

The reduce time shown includes shuffle cost. Note that in Shuffle-aware Map the
shuffle and reduce time (labeled “reduce” in the figure) are smaller than in stock
Hadoop. Also observe that in Shuffle-aware Map the map times go up slightly—this
algorithm has decided to make this tradeoff resulting in overall better performance.

On our wider-area PlanetLab setup (see Table 2) we use 800 MB of eBook data
and see a similar pattern, as Fig. 9 shows. Again, an increase in map time is tolerated
to reduce shuffle cost later on. This may mean that a slower mapper is given more

Cross-Phase Optimization in MapReduce 295

work since it has faster links to downstream reducers. For this application, we see
performance improvements of 6.8 and 9.6 % on EC2 and PlanetLab, respectively.

Map
Reduce

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

Hadoop Default Shuffle-aware Map

E
xe

cu
tio

n
T

im
e

(s
)

Scheduling Approach

Fig. 9 Runtime of the InvertedIndex job on 800 MB eBook data for the default Hadoop scheduler
and our Shuffle-aware Map scheduler—both with overlapped push and map—on PlanetLab

5 Putting It All Together

To determine the complete end-to-end benefit of our proposed techniques, we run
experiments comparing a traditional Hadoop baseline, which uses a push-then-map
approach, to an alternative that uses our proposed Map-aware Push and Shuffle-
aware Map techniques. Taken together, we will refer to our techniques as the
End-to-end approach. We carry out these experiments on the same PlanetLab and
EC2 test environments introduced in Tables 1 and 2, respectively. We focus here
on the InvertedIndex application from Sect. 4 as well as a new Sessionization
application. This Sessionization application takes as input a set of Web server
logs from the WorldCup98 trace [6], and sorts these records first by client and
then by time. The sorted records for each client are then grouped into a set of
“sessions” based on the gap between subsequent records. Both the InvertedIndex
and Sessionization applications are relatively shuffle-heavy, representing a class of
applications that can benefit from our Shuffle-aware Map technique.

5.1 Amazon EC2

First, we explore the combined benefit of our techniques on our EC2 test envi-
ronment (see Sect. 3 for details), comprising two distributed data sources and
eight worker nodes spanning two EC2 regions. Figure 10 shows results for the
InvertedIndex application, where we see that our approaches reduce the total

296 B. Heintz et al.

execution time by about 9.7 % over the traditional Hadoop approach. There is little
difference in total push and map time, so most of this reduction in runtime comes
from a faster shuffle and reduce (labeled “reduce” in the figure). This demonstrates
the effectiveness of our Shuffle-aware Map scheduling approach, as well as the
ability of our techniques to automatically determine how to tradeoff between faster
push and map phases or faster shuffle and reduce phases.

Push
Map

Overlapped Push/Map
Reduce

 0

 500

 1000

 1500

 2000

Hadoop Default End-to-end

E
xe

cu
tio

n
T

im
e

(s
)

Approach

Fig. 10 Runtime of the InvertedIndex job on 1.8 GB eBook data for traditional Hadoop compared
with our proposed Map-aware Push and Shuffle-aware Map techniques (together, End-to-end) on
EC2

Now consider the Sessionization application, which has a slightly lighter shuffle
and slightly heavier reduce than does the InvertedIndex application. Figure 11
shows that for this application on our EC2 environment, our approaches can reduce
execution time by 8.8 %. Again most of the reduction in execution time comes from
more efficient shuffle and reduce phases. Because this application has a slightly
lighter shuffle than does the InvertedIndex application, we would expect a slightly
smaller performance improvement, and our experiments confirm this.

5.2 PlanetLab

Now we move to the PlanetLab environment, which exhibits more extreme het-
erogeneity than the EC2 environment. For this environment, we consider only
the InvertedIndex application, and Fig. 12 shows that our approaches can reduce
execution time by about 16.4 %. Although we see a slight improvement in total
push and map time using our approach, we can again attribute the majority of the
performance improvement to a more efficient shuffle and reduce.

To more deeply understand how our techniques achieve this improvement, we
record the number of map tasks assigned to each mapper node, as shown in Table 3.
We see that both Hadoop and our techniques assign fewer map tasks to Mapper D,
but that our techniques do so in a much more pronounced manner.

Cross-Phase Optimization in MapReduce 297

Push
Map

Overlapped Push/Map
Reduce

0

500

1000

1500

2000

2500

Hadoop Default End-to-end

E
xe

cu
tio

n
T

im
e

(s
)

Approach

Fig. 11 Runtime of the Sessionization job on 2 GB text log data for traditional Hadoop compared
with our proposed Map-aware Push and Shuffle-aware Map techniques (together, End-to-end) on
EC2

Push
Map

Overlapped Push/Map
Reduce

 0

 500

 1000

 1500

 2000

Hadoop Default End-to-end

E
xe

cu
tio

n
T

im
e

(s
)

Approach

Fig. 12 Execution time for traditional Hadoop compared with our proposed Map-aware Push and
Shuffle-aware Map techniques (together, End-to-end) for for the InvertedIndex application with
800 MB eBook data on our PlanetLab test environment

Table 3 Number of map tasks assigned to each mapper node in our
PlanetLab test environment

Scheduler Mapper A Mapper B Mapper C Mapper D

Hadoop default 5 4 5 3

End-to-end 5 5 6 1

Network bandwidth measurements reveal that this node has much slower out-
going network links than do the other mapper nodes; only about 200–400 KB=s
compared to about 4–9 MB=s for the other nodes (see Table 2). By scheduling
three map tasks at that node, Hadoop has effectively “trapped” intermediate data
there, resulting in a prolonged shuffle phase. Our Shuffle-aware Map technique, on
the other hand, has the foresight to avoid this problem, and it does so by refusing
to grant Mapper D additional tasks even when it becomes idle and requests more
work.

298 B. Heintz et al.

6 Related Work

Traditionally, the MapReduce [16] programming paradigm assumes a tightly cou-
pled homogeneous cluster applied to a uniform data-intensive application. Previous
work has shown that if this assumption is relaxed, then performance suffers. Zaharia
et al. [37] show that, under computational heterogeneity, the mechanisms built into
Hadoop for identifying straggler tasks break down. Their LATE scheduler provides
better techniques for identifying, prioritizing, and scheduling backup copies of slow
tasks. In our work, we also assume that nodes can be heterogeneous since they
belong to different data centers or locales. Chen et al. [12] report techniques for
improving the accuracy of progress estimation for tasks in MapReduce. Ahmad
et al. [4] demonstrate that despite straggler optimizations, the performance of
MapReduce frameworks on clusters with computational heterogeneity remains poor
as the load balancing used in MapReduce causes excessive and bursty network
communication and the heterogeneity further amplifies the load imbalance of
reducers. Their Tarazu system uses a communication-aware balancing mechanism
and predictive load-balancing across reducers to address these problems. Mantri [5]
explores various causes of outlier tasks in further depth, and develops cause- and
resource-aware techniques to identify and act on outliers earlier, and to greater
benefit, than in traditional MapReduce. Such improvements are complementary
to our techniques. Previous work mainly focuses on computational heterogeneity
within a single cluster. Our work, however, targets more loosely coupled and
dispersed collections of resources with bandwidth heterogeneity and constraints.

Several works have targeted MapReduce deployments in loosely coupled envi-
ronments. MOON [27] explores MapReduce performance in volatile, volunteer
computing environments and extends Hadoop to improve performance under
loosely coupled networks with unreliable slave nodes. In our work, we do not focus
on solving reliability issues; instead we are concerned with performance issues of
allocating compute resources to MapReduce jobs and relocating source data. Costa
et al. [15] propose MapReduce in a global wide-area volunteer setting. However,
this system is implemented in the BOINC framework with all input data held by the
central scheduler. In our system, we have no such restrictions. Luo et al. [28] propose
a multi-cluster MapReduce deployment, but they focus on more compute-intensive
jobs that may require resources in multiple clusters for greater compute power. In
contrast, we consider multi-site resources not only for their compute power, but also
for their locality to data sources.

Other papers have addressed MapReduce data flow optimization and locality.
Gadre et al. [17] optimize the reduce data placement according to map output
locations, which might still end up trapping data in nodes with slow outward links.
Kim et al. [26] present a similar idea of shuffle-aware scheduling, but do not
consider widely distributed data sources that are not co-located with computation
clusters. Their ICMR algorithm could make use of our mechanisms to improve
the performance of MapReduce under such environments. Pipelining MapReduce
has been proposed in MapReduce Online [13] to modify the Hadoop workflow

Cross-Phase Optimization in MapReduce 299

for improved responsiveness and performance. It assumes, however, that input
data are located with the computation resources, and it does not address the
issue of pipelining push and map. MapReduce Online would be a complementary
optimization to our techniques since it enables the shuffling of intermediate data
without storing it to disk. Our mechanisms could be used to decide where data
should flow and their technique could be used to optimize the transfer. Similarly,
Verma et al. [36] discuss the specific challenges associated with pipelining the
shuffle and reduce stages. Our Map-aware Push technique could also be applied
to pipeline shuffle and reduce, though we have not yet done so. The Purlieus
system [31] considers MapReduce in a single cloud, but is unique in that it focuses
on locality in the shuffle phase. It emphasizes the coupling between the placement of
tasks (in their case virtual machines) and data. However, these works do not provide
an end-to-end overall improvement of the MapReduce data flow.

Other work has focused on fine-tuning MapReduce parameters or offering
scheduling optimizations to provide better performance. Sandholm et al. [33]
present a dynamic prioritization system for improved MapReduce runtime in
the context of multiple jobs. Our work is concerned with optimizing a single
job relative to data source and compute resource locations. Babu [8] proposes
algorithms for automatically fine-tuning MapReduce parameters to optimize job
performance. Starfish [24] proposes a self-tuning architecture which monitors
runtime performance of Hadoop and tunes the configuration parameters accordingly.
Such work is complementary to ours, however, as we focus on mechanisms to
directly change task and data placement rather than tune configuration parameters.

Finally, work in wide-area data transfer and dissemination includes GridFTP [19]
and BitTorrent [10]. GridFTP is a protocol for high-performance data transfer
over high-bandwidth wide-area networks, and BitTorrent is a peer-to-peer file
sharing protocol for wide-area distributed systems. These protocols could act as
middleware services to further reduce data transfer costs and make wide-area data
more accessible to wide-area compute resources.

Conclusion and Future Work
Many emerging data-intensive applications are widely distributed, either due
to the distribution and collection of datasets, or by the provision of multi-site
resources such as multiple geographically separated data centers. We show
that in such heterogeneous environments, MapReduce/Hadoop performance
suffers, as the impact of one phase upon another can severely impact perfor-
mance along bottleneck links. We show that Hadoop’s default data placement
and scheduling mechanisms do not take such cross-phase interactions into
account, and while they may try to optimize individual phases, they can
result in globally bad decisions, resulting in poor overall performance. To
overcome these limitations, we first use an oracle—a model-driven optimiza-

(continued)

300 B. Heintz et al.

tion framework—to derive high-level insights. For example, we show that
application characteristics can significantly influence the optimal data and
computation placement, and that optimizing across both the push and shuffle
phases yields the best performance. Applying these insights, we propose
techniques to implement cross-phase optimization in a real-world MapReduce
system. The key idea behind our proposed techniques is to consider not only
the execution cost of an individual task or computational phase, but also its
impact on the performance of subsequent phases. We propose two sets of
techniques. Map-aware Push enables push-map overlap to hide latency and
enable dynamic feedback between the map and push phases. Such feedback
enables nodes with higher speeds and faster links to process more data at
runtime. Shuffle-aware Map enables a shuffle-aware scheduler to feed back
the cost of a downstream shuffle into the map process and affect the map
phase. Mappers with poor outgoing links to reducers are throttled, eliminating
the impact of mapper–reducer bottleneck links. For a range of heterogeneous
environments (multi-region Amazon EC2 and PlanetLab) and diverse data-
intensive applications (WordCount, InvertedIndex, and Sessionization) we
show the performance potential of our techniques, as runtime is reduced by
7–18 % depending on the execution environment and application.

Acknowledgements The authors would like to acknowledge Professor Ramesh Sitaraman
(ramesh@cs.umass.edu) for his contributions to our model-driven optimization approach
(Sect. 2), as well as Chenyu Wang (chwang@cs.umn.edu) for his contributions to the cross-
phase optimization techniques. They would further like to acknowledge NSF Grants IIS-0916425
and CNS-0643505, which supported this research.

References

1. Cloudera impala. Http://www.cloudera.com/impala
2. Scalding. Http://github.com/twitter/scalding
3. A conversation with Jim Gray. Queue 1(4), 8–17 (2003). DOI 10.1145/864056.864078. URL

http://doi.acm.org/10.1145/864056.864078
4. Ahmad, F., Chakradhar, S., Raghunathan, A., Vijaykumar, T.N.: Tarazu: Optimizing MapRe-

duce on heterogeneous clusters. In: Proceedings of ASPLOS, pp. 61–74 (2012)
5. Ananthanarayanan, G., Kandula, S., Greenberg, A., Stoica, I., Lu, Y., Saha, B.: Reining in the

outliers in map-reduce clusters using mantri. In: Proceedings of OSDI, pp. 265–278 (2010)
6. Arlitt, M., Jin, T.: Workload characterization of the 1998 World Cup Web Site. Tech. Rep.

HPL-1999-35R1, HP Labs (1999)
7. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinsky, A., Lee, G.,

Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A Berkeley view of
cloud computing. Tech. Rep. UCB/EECS-2009-28, Electrical Engineering and Computer
Sciences, University of California at Berkeley (2009)

8. Babu, S.: Towards automatic optimization of MapReduce programs. In: Proceedings of ACM
SoCC, pp. 137–142 (2010)

Http://www.cloudera.com/impala
Http://github.com/twitter/scalding
http://doi.acm.org/10.1145/864056.864078

Cross-Phase Optimization in MapReduce 301

9. Baker, J., et al.: Megastore: Providing scalable, highly available storage for interactive services.
In: Proceedings of CIDR, pp. 223–234 (2011)

10. BitTorrent. Http://www.bittorrent.com
11. Cardosa, M., Wang, C., Nangia, A., Chandra, A., Weissman, J.: Exploring MapReduce

efficiency with highly-distributed data. In: Proceedings of MapReduce, pp. 27–33 (2011)
12. Chen, Q., Zhang, D., Guo, M., Deng, Q., Guo, S., Guo, S.: SAMR: A self-adaptive

MapReduce scheduling algorithm in heterogeneous environment. In: Proceedings of IEEE
CIT, pp. 2736–2743 (2010)

13. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.: MapReduce
online. In: Proceedings of NSDI, pp. 313–327 (2010)

14. Corbett, J.C., et al.: Spanner: Google’s globally-distributed database. In: Proceedings of OSDI,
pp. 251–264 (2012)

15. Costa, F., Silva, L., Dahlin, M.: Volunteer cloud computing: MapReduce over the internet. In:
Proceedings of IEEE IPDPSW, pp. 1855–1862 (2011)

16. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In:
Proceedings of OSDI, pp. 137–150 (2004)

17. Gadre, H., Rodero, I., Parashar, M.: Investigating MapReduce framework extensions for effi-
cient processing of geographically scattered datasets. In: Proceedings of ACM SIGMETRICS,
pp. 116–118 (2011)

18. Gates, A.F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S.M., Olston, C., Reed,
B., Srinivasan, S., Srivastava, U.: Building a high-level dataflow system on top of map-reduce:
the pig experience. Proceedings of the VLDB Endowment 2(2), 1414–1425 (2009). URL
http://dl.acm.org/citation.cfm?id=1687553.1687568

19. GridFTP. Http://globus.org/toolkit/docs/3.2/gridftp/
20. Free eBooks by Project Gutenberg. http://www.gutenberg.org/
21. Hadoop. http://hadoop.apache.org
22. Heintz, B., Chandra, A., Sitaraman, R.K.: Optimizing MapReduce for highly distributed

environments. Tech. Rep. TR 12-003, Department of Computer Science and Engineering,
University of Minnesota (2012)

23. Heintz, B., Wang, C., Chandra, A., Weissman, J.: Cross-phase optimization in MapReduce. In:
IEEE International Conference on Cloud Engineering (IC2E), pp. 338–347 (2013)

24. Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F.B., Babu, S.: Starfish: A self-
tuning system for big data analytics. In: Proceedings of CIDR, pp. 261–272 (2011)

25. Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific Discovery.
Microsoft Research, Redmond, Washington (2009). URL http://research.microsoft.com/en-us/
collaboration/fourthparadigm/

26. Kim, S., Won, J., Han, H., Eom, H., Yeom, H.Y.: Improving Hadoop performance in intercloud
environments. Proceedings of ACM SIGMETRICS 39(3), 107–109 (2011)

27. Lin, H., Ma, X., Archuleta, J., Feng, W.c., Gardner, M., Zhang, Z.: MOON: MapReduce on
opportunistic environments. In: Proceedings of ACM HPDC, pp. 95–106 (2010)

28. Luo, Y., Guo, Z., Sun, Y., Plale, B., Qiu, J., Li, W.W.: A hierarchical framework for cross-
domain MapReduce execution. In: Proceedings of ECMLS, pp. 15–22 (2011)

29. Hadoop. http://mahout.apache.org
30. Nygren, E., Sitaraman, R., Sun, J.: The Akamai network: A platform for high-performance

internet applications. ACM SIGOPS Oper. Syst. Rev. 44(3), 2–19 (2010)
31. Palanisamy, B., Singh, A., Liu, L., Jain, B.: Purlieus: locality-aware resource allocation for

MapReduce in a cloud. In: Proceedings of SC, pp. 58:1–58:11 (2011)
32. Rabkin, A., Arye, M., Sen, S., Pai, V., Freedman, M.J.: Making every bit count in wide-area

analytics. In: Proceedings of the 14th Workshop on Hot Topics in Operating Systems (2013)
33. Sandholm, T., Lai, K.: MapReduce optimization using dynamic regulated prioritization. In:

Proceedings of ACM SIGMETRICS, pp. 299–310 (2009)
34. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets in

mobile computing. IEEE Pervasive Computing 8, 14–23 (2009)

Http://www.bittorrent.com
http://dl.acm.org/citation.cfm?id=1687553.1687568
Http://globus.org/toolkit/docs/3.2/gridftp/
http://www.gutenberg.org/
http://hadoop.apache.org
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://mahout.apache.org

302 B. Heintz et al.

35. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P.,
Murthy, R.: Hive: a warehousing solution over a map-reduce framework. Proceedings of the
VLDB Endowment 2, 1626–1629 (2009)

36. Verma, A., Zea, N., Cho, B., Gupta, I., Campbell, R.H.: Breaking the MapReduce stage barrier.
In: Proceedings of IEEE Cluster, pp. 235–244 (2010)

37. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R.H., Stoica, I.: Improving MapReduce
performance in heterogeneous environments. In: Proceedings of OSDI, pp. 29–42 (2008)

Asynchronous Computation Model
for Large-Scale Iterative Computations

Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang

Abstract Iterative algorithms are widely existed in machine learning and data
mining applications. These algorithms have to be implemented in a large-scale
distributed environment in order to scale to massive data sets. While synchronous
iterations might result in unexpected poor performance due to some particular
stragglers in a heterogeneous distributed environment, especially in a cloud envi-
ronment. To bypass the synchronization barriers in iterative computations, this
chapter introduces an asynchronous iteration model, delta-based accumulative
iterative computation (DAIC). Different from traditional iterative computations,
which iteratively update the result based on the result from the previous iteration,
DAIC asynchronously updates the result by accumulating the “changes” between
iterations. This chapter presents a general asynchronous computation model to
describe DAIC and introduces a distributed framework for asynchronous iteration,
Maiter. The experimental results show that Maiter outperforms many other state-of-
the-art frameworks.

1 Asynchronous Iteration

The advances in data acquisition, storage, and networking technology have created
huge collections of high-volume, high-dimensional data. Making sense of these data
is critical for companies and organizations to make better business decisions and
even bring convenience to our daily life. Recent advances in data mining, machine
learning, and applied statistics have led to a flurry of data analytic techniques that

Y. Zhang (�)
Northeastern University, Lane 3, No. 11, Wenhua Road, Shenyang, Liaoning 110819, China
e-mail: zhangyf@cc.neu.edu.cn

Q. Gao • C. Wang
Northeastern University at Qinhuangdao, 143 Taishan Road, Qinhuangdao,
Hebei 066004, China
e-mail: gaoqx@mail.neuq.edu.cn; wangcr@mail.neuq.edu.cn

L. Gao
University of Massachusetts Amherst, 151 Holdsworth Way, Amherst, MA 01003, USA
e-mail: lgao@ecs.umass.edu

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__13

303

mailto:zhangyf@cc.neu.edu.cn
mailto:gaoqx@mail.neuq.edu.cn
mailto:wangcr@mail.neuq.edu.cn
mailto:lgao@ecs.umass.edu

304 Y. Zhang et al.

typically require an iterative refinement process [1, 4, 17, 26]. These algorithms are
referred to as iterative algorithms.

Iterative algorithms typically perform the same operations on a data set for
several iterations. In iteration k, an update function F k is utilized to update the
data set v.

vk D F k.vk�1/; (1)

where the data set v contains n elements, i.e., v D fv1; v2; : : : ; vng, where vk

represents the kth iteration’s result.
The update function F k could be consistent across all iterations or be different

in different iterations. For example, in the PageRank computation [5], the update
function is shown as follows:

R D dWRC .1 � d/E; (2)

where R is the ranking score vector, d is a damping factor, W is a square matrix
that represents the web linkage graph, E is a vector denoting the page preference.
The update function in PageRank is the same for all iterations. On the other hand,
the update function F k could be different in different iterations. For example, Non-
Negative Matrix Factorization (NMF) [16] aims to find an approximate factorization
V � WH, where V is the given non-negative matrix, W and H are two resulted
non-negative matrices. NMF iteratively updates H and W as follows:

8
<̂

:̂

H k D H k�1 � .W k�1/T V

.W k�1/T W k�1H k�1

W k D W k�1

k D 1; 3; 5; : : :

8
<̂

:̂

H k D H k�1

W k D W k�1 � V.H k/T

W k�1H k.H k/T

k D 2; 4; 6; : : :

(3)

H combining with W can be seen as a unique iterated data set v. Therefore, the
update function in odd iterations and the update function in even iterations are
different.

Based on Eq. (1), we can further represent F.vk/ by a set of functions of the form
f k

j .v1; v2; : : : ; vn/, each of which performs the update on an element j . That is,

vk
j D f k

j .vk�1
1 ; vk�1

2 ; : : : ; vk�1
n /: (4)

In distributed computing, multiple processers perform the updates in parallel.
For simplicity of exposition, we assume that there are n processors and processor j

performs an update for data element j (we will generalize this model in Sect. 2.5).
Synchronous iteration requires that all processors perform the update in lock steps.

Asynchronous Computation Model for Large-Scale Iterative Computations 305

Inputa b

Output

Local
computation

Communication

Barrier
synchronization

Supersteps:
A sequence of

iterations
Output

Input

Synchronous iteration Asynchronous iteration

Fig. 1 Synchronous iteration vs. asynchronous iteration

At step k, processor j first collects vk�1
i from all processors, followed by performing

the update function fj based on vk�1
i , i D 1; 2; : : : ; n. The main drawback of

implementing synchronous iteration in a distributed fashion is that all the update
operations in the .k � 1/th iteration have to be completed before any of the
update operations in the kth iteration starts. Clearly, synchronization is required
in each step. These synchronizations might degrade performance, especially in
heterogeneous distributed environments.

To avoid the synchronization barriers, asynchronous iteration was proposed [8].
Performing update operations asynchronously means that processor j performs the
update

vj D fj .v1; v2; : : : ; vn/ (5)

at any time based on the most recent values of all data elements, fv1; v2; : : : ; vng.
The convergence properties of asynchronous iterations have been studied in [2,3,8].

Figure 1 shows the intuitive difference between synchronous iteration and
asynchronous iteration in distributed computing. The computation workload is
distributed to processors. The length of the vertical bars denotes the computation
time. Since different processors might have different performance and the workload
might be distributed unevenly, the processors might have different computation
time on their assigned data. Each processor completes its local computation and
then starts communication with other processors. In synchronous iteration, there is

306 Y. Zhang et al.

a synchronization barrier in each iteration. While in asynchronous iteration, each
processor does not wait for the other processors and performs computation on its
assigned data as much as it can. No idle time exists in asynchronous iteration. The
faster processors perform more computations, and the slower processors perform
less computations.

By asynchronous iteration, as processor j is activated to perform an update, it
“pulls” the values of data elements from the other processors, and uses these values
to perform an update on vj . This scheme does not require any synchronization.
However, asynchronous iteration intuitively requires more communications and
more useless computations than synchronous iteration. An activated processor needs
to pull the values from all the other processors, but not all of them have been
updated, or even worse none of them is updated. In that case, asynchronous iteration
performs a meaningless computation and results in significant communication
overhead. Accordingly, “pull-based” asynchronous iteration is only applicable in an
environment where the communication overhead is negligible, such as shared mem-
ory systems. In a distributed environment or in a cloud, “pull-based” asynchronous
model cannot be efficiently utilized.

As an alternative, after processor i updates vi , it “pushes” vi to every other
processor j , and vi is buffered as Bi;j on processor j . When processor j is
activated, it uses the buffered values Bi;j , i D 1; 2; : : : ; n, to update vj . In this
way, the redundant communications can be avoided. However, the “push-based”
asynchronous iteration results in considerable memory overhead. Each processor
has to buffer n values, and the system totally needs O.n2/ space.

This chapter will introduce a novel iterative computation model, which can be
executed asynchronously while reducing memory consumption.

2 Delta-Based Accumulative Iterative Computation (DAIC)

In this section, we present delta-based accumulative iterative computation, DAIC.
By DAIC, the iterative algorithms can be executed asynchronously and more
efficiently.

2.1 DAIC Introduction

We first give the following 2-step update function of DAIC:

8
ˆ̂<

ˆ̂:

vk
j D vk�1

j ˚�vk
j ;

�vkC1
j D

nX

iD1

˚gfi;j g.�vk
i /:

(6)

Asynchronous Computation Model for Large-Scale Iterative Computations 307

k D 1; 2; : : : is the iteration number. vk
j is the state of vertex j after k iterations.

�vk
j denotes the change from vk�1

j to vk
j in the ‘˚’ operation manner, where ‘˚’ is

an abstract operator.
nX

iD1

˚xi D x1 ˚ x2 ˚ : : :˚ xn represents the accumulation of

the “changes”.
The first update function says that a vertex state vk

j is updated from vk�1
j

by accumulating the change (i.e., �vk
j). The second update function says that

the change �vkC1
j , which will be used in the next iteration, is the accumulation

of the received values gfi;j g.�vk
i / from j ’s various in-neighbors i . The propagated

value from i to j , gfi;j g.�vk
i /), is generated in terms of vertex i ’s state change �vk

i .
Note that, all the accumulative operation is in the ‘˚’ operation manner.

However, not all iterative computation can be converted to the DAIC form. To
write a DAIC, the update function should satisfy four sufficient conditions.

The first condition is that,

• update function vk
j D f .vk�1

1 ; vk�1
2 ; : : : ; vk�1

n / can be written in the form:

vk
j D gf1;j g.vk�1

1 /˚ gf2;j g.vk�1
2 /˚ : : :˚ gfn;j g.vk�1

n /˚ cj (7)

where k D 1; 2; : : : is the iteration number, cj is a constant, ‘˚’ is an abstract
operator, and gfi;j g.vi / is a function applied on vertex j ’s in-neighbor i , which
denotes the value passed from vertex i to vertex j . In other words, vertex i passes
value gfi;j g.vi / (instead of vi) to vertex j . On vertex j , these gfi;j g.vi / from various
vertices i and cj are aggregated (by ‘˚’ operation) to update vj .

For example, the well-known PageRank algorithm satisfies this condition.
It iteratively updates the PageRank scores of all pages. In each iteration, the ranking
score of page j , Rj , is updated as follows:

Rk
j D d �

X

fi j.i!j /2Eg

Rk�1
i

jN.i/j C .1 � d/; (8)

where d is a damping factor, jN.i/j is the number of outbound links of page i ,
.i ! j / is a link from page i to page j , and E is the set of directed links. The update
function of PageRank is in the form of Eq. (7), where cj D 1 � d , ‘˚’ is ‘C’, and

for any page i that has a link to page j , gfi;j g.vk�1
i / D d � vk�1

ijN.i/j .
Next, since �vk

j is defined to denote the “change” from vk�1
j to vk

j in the ‘˚’
operation manner. That is,

vk
j D vk�1

j ˚�vk
j ; (9)

308 Y. Zhang et al.

In order to derive �vk
j we pose the second condition:

• function gfi;j g.x/ should have the distributive property over ‘˚’, i.e., gfi;j g.x ˚
y/ D gfi;j g.x/˚ gfi;j g.y/.

By replacing vk�1
i in Eq. (7) with vk�2

i ˚�vk�1
i , we have

vk
j Dgf1;j g.vk�2

1 /˚ gf1;j g.�vk�1
1 /˚ : : :˚

gfn;j g.vk�2
n /˚ gfn;j g.�vk�1

n /˚ cj :
(10)

Further, let us pose the third condition:

• operator ‘˚’ should have the commutative property, i.e., x ˚ y D y ˚ x;
• operator ‘˚’ should have the associative property, i.e., .x˚y/˚z D x˚.y˚z/;

Then we can combine these gfi;j g.vk�2
i /, i D 1; 2; : : : ; n, and cj in Eq. (10) to

obtain vk�1
j . Considering Eq. (9), the combination of the remaining gfi;j g.�vk�1

i /,

i D 1; 2; : : : ; n in Eq. (10), which is
Pn

iD1˚gfi;j g.�vk�1
i /, will result in �vk

i . Then,
we have the 2-step DAIC as shown in (6).

To initialize a DAIC, we should set the start values of v0
j and �v1

j . v0
j and �v1

j

can be initialized to be any value, but the initialization should satisfy v1
j D v0

j˚�v1
j ,

which is the fourth condition.
The PageRank’s update function as shown in Eq. (8) satisfies all the conditions.

gfi;j g.vk�1
i / D d � vk�1

ijN.i/j , which has distributive property and satisfies the second
condition. ‘˚’ is ‘C’, which satisfies the third condition. In order to satisfy the
fourth condition, v0

j can be initialized to 0, and �v1
j can be initialized to cj D 1�d .

To sum up, DAIC can be described as follows. Vertex j first updates vk
j by accu-

mulating �vk
j (by ‘˚’ operation) and then updates �vkC1

j with
Pn

iD1˚gfi;j g.�vk
i /.

We refer to �vj as the delta value of vertex j and gfi;j g.�vk
i / as the delta message

sent from i to j .
Pn

iD1˚gfi;j g.�vk
i / is the accumulation of the received delta

messages on vertex j since the kth update. Then, the delta value �vkC1
j will be

used for the .k C 1/th update. Apparently, this still requires all vertices to start
the update synchronously when all the vertices have received these delta messages.
That is, �vkC1

j has to accumulate all the delta messages gfi;j g.�vk
i / sent from j ’s

in-neighbors, at which time it is ready to be used in the .kC1/th iteration. Therefore,
we refer to the 2-step iterative computation in (6) as synchronous DAIC.

2.2 Asynchronous DAIC

DAIC can be performed asynchronously. That is, a vertex can start update at any
time based on whatever it has already received. We can describe asynchronous
DAIC as follows, on each vertex j , there are two operations:

Asynchronous Computation Model for Large-Scale Iterative Computations 309

receive:

(
Whenever receiving mj,

�Lvj �Lvj ˚mj :

update:

8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:

Lvj Lvj ˚�Lvj I
For any h, if gfj;hg.�Lvj / ¤ 0;

send value gfj;hg.�Lvj / to hI
�Lvj 0;

(11)

where mj is the received delta message gfi;j g.�Lvi / sent from any in-neighbor i .
The receive operation accumulates the received delta message mj to �Lvj . �Lvj accu-
mulates the received delta messages between two consecutive update operations.
The update operation updates Lvj by accumulating �Lvj , sends the delta message
gfj;hg.�Lvj / to any of j ’s out-neighbors h, and resets �Lvj to 0. Here, operator
‘˚’ should have the identity property of abstract value 0, i.e., x ˚ 0 D x, so that
resetting �Lvj to 0 means that the received value is cleared. Additionally, to avoid
useless communication, it is also necessary to check that the sent delta message
gfj;hg.�Lvj / ¤ 0 before sending.

For example, in PageRank, each page j has a buffer �Rj to accumulate the
received delta PageRank scores. When page j performs an update, Rj is updated

by accumulating �Rj . Then, the delta message d
�Rj

jN.j /j is sent to page j ’s linked
pages, and �Rj is reset to 0.

By asynchronous DAIC, the two operations on a vertex, receive and update,
are completely independent from those on other vertices. Any vertex is allowed
to perform the operations at any time. There is no lock step to synchronize any
operation between vertices.

2.3 Convergence

To study the convergence property, we first give the following definition of the
convergence of asynchronous DAIC.

Convergence Asynchronous DAIC as shown in (11) converges as long as that
after each element has performed the receive and update operations
an infinite number of times, Lv1j converges to a fixed value Lv�j .

Then, we have the following theorem to guarantee that asynchronous DAIC will
converge to the same fixed point as synchronous DAIC. Further, since synchronous
DAIC is derived from the traditional form of iterative computation, i.e., Eq. (4), the
asynchronous DAIC will converge to the same fixed point as traditional iterative
computation.

310 Y. Zhang et al.

Theorem 1. If vj in (4) converges, Lvj in (11) converges. Further, they converge to
the same value, i.e., v1j D Lv1j D Lv�j .

The formal proof of Theorem 1 can be found in [33]. We explain the intuition
behind Theorem 1 as follows. Consider the process of DAIC as information
propagation in a graph. Element i with an initial value ci propagates delta message
gfi;j g.ci / to its out-neighbor j , where gfi;j g.ci / is accumulated to vj and a new delta
message gfj;hg.gfi;j g.ci // is produced and propagated to any of j ’s out-neighbors h.
By synchronous DAIC, the delta messages propagated from all vertices should be
received by all their neighbors before starting the next round propagation. That
is, the delta messages originated from an element are propagated strictly hop by
hop. In contrast, by asynchronous DAIC, whenever some delta messages arrive, an
element accumulates them to Lvj and propagates the newly produced delta messages
to its neighbors. No matter synchronously or asynchronously, the spread delta
messages are never lost, and the delta messages originated from each element will
be eventually spread along all paths. For a destination node, it will eventually collect
the delta messages originated from all vertices along various propagating paths. All
these delta messages are eventually received and contributed to any vj . Therefore,
synchronous DAIC and asynchronous DAIC will converge to the same result.

2.4 Effectiveness

As illustrated above, vj and Lvj both converge to the same fixed point. By accu-
mulating �vj (or �Lvj), vj (or Lvj) either monotonically increases or monotonically
decreases to a fixed value v�j D v1j D Lv1j . In this section, we show that Lvj converges
faster than vj .

To simplify the analysis, we first assume that the DAIC is performed in a
single processor environment. That is, we perform the element update serially, and
the transmission delay is ignored. The delta message sent from element i , i.e.,
gfi;j g.�vi / (or gfi;j g.�Lvi /), is directly accumulated to �vj (or �Lvj). Then, the
workload can be seen as the number of performed updates. Let update sequence
represent the update order of the vertices. By synchronous DAIC, all the vertices
have to perform the update once and only once before starting the next round
of updates. Hence, the update sequence is composed of a series of subsequences.
The length of each subsequence is jV j, i.e., the number of vertices. Each element
occurs in a subsequence once and only once. We call this particular update
sequence as synchronous update sequence. While in asynchronous DAIC, the
update sequence can follow any update order. For comparison, we will use the same
synchronous update sequence for asynchronous DAIC.

By DAIC, no matter synchronously and asynchronously, the propagated delta
messages of an update on element i in subsequence k, i.e., gfi;j g.�vk

i / (or
gfi;j g.�Lvi /), are directly accumulated to �vkC1

j (or �Lvj), j D 1; 2; : : : ; n.

By synchronous DAIC, �vkC1
j cannot be accumulated to vj until the update of

Asynchronous Computation Model for Large-Scale Iterative Computations 311

element j in subsequence k C 1. In contrast, by asynchronous DAIC, �Lvj is
accumulated to Lvj immediately whenever element j is updated after the update of
element i in subsequence k. The update of element j might occur in subsequence
k or in subsequence k C 1. If the update of element j occurs in subsequence k, Lvj

will accumulate more delta messages than vj after k subsequences, which means
that Lvj is closer to v�j than vj . Otherwise, Lvj D vj . Therefore, we have Theorem 2.
The formal proof of Theorem 2 can be found in [33].

Theorem 2. Based on the same update sequence, after k subsequences, we have Lvj

by synchronous DAIC and vj by asynchronous DAIC. Lvj is closer to the fixed point
v�j than vj is, i.e., jv�j � Lvj j � jv�j � vj j.

In a distributed environment, the data elements are distributed to multiple
processors. Each processor performs the update for a subset of elements. (The
single processor environment is an extreme case, which requires processing all the
elements). By synchronous DAIC, the high-cost synchronization barriers in dis-
tributed environment will even degrade the performance. Therefore, in a distributed
environment, asynchronous DAIC should perform even better than synchronous
DAIC.

2.5 Scheduling in Asynchronous DAIC

By asynchronous DAIC, we should control the update order of the elements, i.e.,
specifying the scheduling policies. In reality, a subset of elements are assigned
to a processor, and multiple processors are running in parallel. The processor can
perform the update for the assigned elements in a round-robin manner, which is
referred to as round-robin scheduling. Moreover, it is possible to schedule the
update of these local elements dynamically by identifying their importance, which
is referred to as priority scheduling. It has been found that selectively processing a
subset of the elements has the potential of accelerating iterative computation [31].
Some of the elements can play an important decisive role in determining the final
converged outcome. Giving an update execution priority to these elements can
accelerate the convergence.

In order to show the progress of the iterative computation, we quantify the
iteration progress with L1 norm of Lv, i.e., jjLvjj1 D P

i Lvi . Asynchronous DAIC
either monotonically increases or monotonically decreases jjLvjj1 to a fixed point
jjv�jj1. According to (11), an update of element j , i.e., Lvj D Lvj ˚ �Lvj , either
increases jjLvjj1 by .Lvj ˚�Lvj �Lvj / or decreases jjLvjj1 by .Lvj �Lvj ˚�Lvj /. Therefore,
by priority scheduling, element j D arg maxj jLvj ˚�Lvj � Lvj j is scheduled first.
In other words, The bigger jLvj ˚�Lvj � Lvj j is, the higher update priority element j

has. For example, in PageRank, we set each page j ’s scheduling priority based on
jRjC�Rj�Rj j D �Rj . Then, we will schedule page j with the largest �Rj first.
To sum up, by priority scheduling, the element j D arg maxj jLvj ˚�Lvj � Lvj j is
scheduled for update first.

312 Y. Zhang et al.

Theorem 3 guarantees the convergence of asynchronous DAIC under the priority
scheduling. The proof of Theorem 3 can be found in [33]. Furthermore, according
to the analysis presented above, we have Theorem 4 to support the effectiveness of
priority scheduling.

Theorem 3. By priority scheduling, Lv0j in (11) converges to the same fixed point v�j
as vj in (6) converges to, i.e., Lv01j D v1j D v�j .

Theorem 4. Based on asynchronous DAIC, after the same number of updates, we
have Lv0j by priority scheduling and Lvj by round-robin scheduling. Lv0j is closer to the
fixed point v�j than Lvj is, i.e., jv�j � Lv0j j � jv�j � vj j.

3 Write Asynchronous DAIC Algorithms

In this section, we provide the guidelines of writing DAIC algorithms and show
a series of examples. For those algorithms that cannot be directly converted to
DAIC form, we also give examples on how to convert the algorithm to satisfy DAIC
conditions.

3.1 Guidelines

Given an iterative algorithm, the following steps are recommended for converting it
to a DAIC algorithm.

• Step 1: Formation Check. Check whether f is in the form of Eq. (7)? If not, the
algorithm cannot be converted to a DAIC algorithm. If yes, identify the sender-
based function gfi;j g.vi / applied on sender vertex i , the abstract operator ‘˚’ for
accumulating the received delta messages on receiver vertex j , and the constant
cj on each vertex j .

• Step 2: Properties Check. Check whether gfi;j g.vi / has the distributive property
and whether operator ‘˚’ has the commutative property, the associative property?
If not, the algorithm cannot be converted to a DAIC algorithm.

• Step 3: Initialization. According to (6), initialize v0
j and �v1

j to satisfy v1
j D

v0
j ˚�v1

j , and write the iterative computation in the 2-step DAIC form.
• Step 4: Priority Assignment (Optional). Specify the scheduling priority of each

vertex j as jLvj ˚�Lvj � Lvj j for scheduling the asynchronous updates.

To support implementing a DAIC algorithm in a large-scale distributed manner
and in a highly efficient asynchronous manner, we propose a distributed framework.
Users only need to follow the guidelines to specify the function gfi;j g.vi /, the
abstract operator ‘˚’, and the initial values v0

j and �v1
j . The framework will

automatically deploy the DAIC application in a distributed environment and perform
asynchronous iteration efficiently. Before presenting the framework, we first show
a broad class of DAIC algorithms.

Asynchronous Computation Model for Large-Scale Iterative Computations 313

3.2 Examples

Besides the PageRank algorithm, there are many graph algorithms can be written in
DAIC model.

3.2.1 Single Source Shortest Path

The single source shortest path algorithm (SSSP) has been widely used in online
social networks and web mapping. Given a source node s, the algorithm derives the
shortest distance from s to all the other nodes on a directed weighted graph. Initially,
each node j ’s distance d 0

j is initialized to be1 except that the source s’s distance
d 0

s is initialized to be 0. In each iteration, the shortest distance from s to j , dj , is
updated with the following update function:

d k
j D minfd k�1

1 C w.1; j /; d k�1
2 C w.2; j /; : : : ; d k�1

n C w.n; j /; d 0
j g; (12)

where w.i; j / is the weight of an edge from node i to node j , and w.i; j / D 1 if
there is no edge between i and j . The update process is performed iteratively until
convergence, where the distance values of all nodes no longer change.

Following the guidelines, we identify that operator ‘˚’ is ‘min’, function
gfi;j g.di / D diCw.i; j /. Apparently, the function gfi;j g.di / D diCw.i; j / has the
distributive property, and the operator ‘min’ has the commutative and associative
properties and the identity property of 1. The initialization can be d 0

j D 1 and
�d 1

j D 0 if j D s, or else �dj D1. Therefore, SSSP can be performed by DAIC.
Further, suppose �dj is used to accumulate the received distance values by ‘min’
operation, the scheduling priority of node j would be dj �minfdj ; �dj g.

3.2.2 Linear Equation Solvers

Generally, DAIC can be used to solve systems of linear equations of the form

A � � D b; (13)

where A is a sparse n�n matrix with each entry aij, and �; b are size-n vectors with
each entry �j , bj respectively.

One of the linear equation solvers, Jacobi method, iterates each entry of � as
follows:

�k
j D �

1

ajj
�
X

i¤j

aji � �k�1
i C bj

ajj
: (14)

314 Y. Zhang et al.

The method is guaranteed to converge if the spectral radius of the iteration matrix is
less than 1. That is, for any matrix norm jj � jj, limk!1 jjBkjj 1k < 1, where B is the
matrix with Bij D � aij

aii
for i ¤ j and Bij D 0 for i D j .

Following the guidelines, we identify that operator ‘˚’ is ‘C’, function
gfi;j g.�i / D � aji

ajj
� �i . Apparently, the function gfi;j g.�i / D � aji

ajj
� �i has the

distributive property, and the operator ‘C’ has the commutative and associative
properties and the identity property of 0. The initialization can be �0

j D 0 and

��1
j D bj

ajj
. Therefore, the Jacobi method can be performed by DAIC. Further,

suppose ��j is used to accumulate the received delta message, the scheduling
priority of node j would be ��j .

3.2.3 Adsorption

Adsorption [1] is a graph-based label propagation algorithm that provides person-
alized recommendation for contents (e.g., video, music, document, product). The
concept of label indicates a certain common feature of the entities. Given a weighted
graph G D .V; E; W /, where V is the set of nodes, E is the set of edges, and W is a
column normalized matrix (i.e.,

P
i W.i; j / D 1) indicating that the sum of a node’s

inbound links’ weight is equal to 1. Node j carries a probability distribution Lj on
label set L, and each node j is initially assigned with an initial distribution Ij .
The algorithm proceeds as follows. For each node j , it iteratively computes the
weighted average of the label distributions from its neighboring nodes, and then
uses the random walk probabilities to estimate a new label distribution as follows:

Lk
j D pcont

j �
X

fi j.i!j /2Eg
W.i; j / � Lk�1

i C p
inj
j � Ij ; (15)

where pcont
j and p

inj
j are constants associated with node j . If Adsorption converges,

it will converge to a unique set of label distributions.
Following the guidelines, we identify that operator ‘˚’ is ‘C’, gfi;j g.x/ D pcont

j �
W.i; j /�x. Apparently, the function gfi;j g.x/ D pcont

j �W.i; j /�x has the distributive
property, and the operator ‘C’ has the commutative and associative properties. The
initialization can be L0

j D 0 and �L1
j D p

inj
j � Ij . Therefore, Adsorption can be

performed by accumulative updates. Further, suppose �Lj is used to accumulate
the received distance values, the scheduling priority of node j would be �Lj .

3.2.4 Other Algorithms

We have shown several typical DAIC algorithms. Following the guidelines, we can
rewrite them in DAIC form. In addition, there are many other DAIC algorithms.

Asynchronous Computation Model for Large-Scale Iterative Computations 315

Table 1 A list of DAIC algorithms

Algorithm gfi;j g.x/ ˚ v0
j �v1

j

SSSP xC w.i; j / min 1 0 (j D s) or1 (j ¤ s)

Connected components x max �1 j

PageRank d 	 x
jN.j /j

C 0 1� d

Adsorption pcont
i 	W.i; j / 	 x C 0 p

inj
j 	 Ij

HITS (authority) d 	 AT A.i; j / 	 x C 0 1

Katz metric ˇ 	 x C 0 1 (j D s) or 0 (j ¤ s)

Jacobi method � aji

ajj
	 x C 0

bj

ajj

Rooted PageRank P.j; i/ 	 x C 0 1 (j D s) or 0 (j ¤ s)

Table 1 shows a list of such algorithms. Each of their update functions is represented
with a tuple (gfi;j g.x/,˚, v0

j , �v1
j).

The Connected Components algorithm [12] finds connected components in
a graph. Each node updates its component id with the largest received id and
propagates its component id to its neighbors, so that the algorithm converges when
all the nodes belonging to the same connected component have the same component
id. Hyperlink-Induced Topic Search (HITS) [14] ranks web pages in a web linkage
graph A by a 2-phase iterative update, the authority update and the hub update.
Similar to Adsorption, the authority update requires each node i to generate the
output values damped by d and scaled by AT A.i; j /, while the hub update scales
a node’s output values by AAT .i; j /. The Katz metric [13] is a proximity measure
between two nodes in a graph. It is computed as the sum over the collection of
paths between two nodes, exponentially damped by the path length with a damping
factor ˇ. Rooted PageRank [26] captures the probability for any node j running into
node s, based on the node-to-node proximity, P.j; i/, indicating the probability of
jumping from node j to node i .

4 Maiter: A Framework Supporting Asynchronous DAIC

This section presents Maiter. Maiter is an asynchronous graph processing frame-
work that supports DAIC. It is implemented by modifying Piccolo [24] and relies
on message passing for communication. Piccolo is designed with a distributed table
structure, which can be easily utilized to implement distributed state table in Maiter.
Maiter framework is also open-source on Google Code.1

1http://code.google.com/p/maiter/.

http://code.google.com/p/maiter/

316 Y. Zhang et al.

4.1 System Design

Maiter system is composed of a master and multiple workers. The master
coordinates the workers and monitors the status of workers. The workers run in
parallel and communicate with each other through MPI. Each worker performs the
update for a subset of local elements.

4.1.1 Local State Table

Each worker loads a subset of data elements in memory for processing. Each vertex
is indexed by a global unique key. The assignment of a data element to a worker
depends solely on the key. A data element with key j is assigned to worker h.j /,
where h./ is a hash function applied on the key. Besides, preprocessing for smart
graph partition can be useful. For example, one can use a lightweight clustering
algorithm to preprocess the input data, assigning the strongly related data elements
to the same worker, which can reduce communication.

Fig. 2 Worker overview

vid data

Receive

worker

network

message

Update

state table

network

message

priΔvv

The data elements in a worker are maintained in a local in-memory key-value
store, state table. Each state table entry corresponds to a data element indexed by its
key. As depicted in Fig. 2, each table entry contains five fields. The 1st field stores
the key j of a data element; the 2nd field stores vj ; the 3rd field stores �vj ; the 4th
field stores the priority value of data element j for priority scheduling; the 5th field
stores the input data associated with data element j , such as the adjacency list.

Before iterative computation starts, the input graph is partitioned into multiple
shards, and each of them is assigned to a worker. Several workers parse the input

Asynchronous Computation Model for Large-Scale Iterative Computations 317

graph in parallel. The input data associated with data element j is sent to worker
h.j /. Then worker h.j / fills entry j ’s data field (i.e. with data element j ’s input
data. Users are responsible for initializing the v fields and the �v fields through the
provided API (will be described in Sect. 4.2). The priority fields are automatically
initialized based on the values of the v fields and �v fields.

4.1.2 Receive Thread and Update Thread

As described in Eq. (11), DAIC is accomplished by two key operations, the receive
operation and the update operation. In each worker, these two operations are
implemented in two threads, the receive thread and the update thread. The receive
thread performs the receive operation for all local data elements. Each worker
receives the delta messages from other workers and updates the �v fields by
accumulating the received delta messages. The update thread performs the update
operation for all local data elements. When operating on a data element, it updates
the corresponding entry’s v field and �v field, and sends messages to other data
elements. The update of the priority field will be discussed in Sect. 4.1.3. The data
field is never changed during the iterative computation.

The receive thread writes the �v field, while the update thread both reads and
writes the �v field. In order to avoid the read-write and write-write conflict risks on
a table entry’s �v field, the update operation on a table entry has to be atomic, where
the read and write on the �v field are implemented in critical section. The update
thread selects the table entries to perform the update according to a scheduling
policy. We will describe the scheduling policies and their implementations in
Sect. 4.1.3.

4.1.3 Scheduling Within Update Thread

The simplest scheduling policy is to schedule the local data elements for update
operation in a round robin fashion. The update thread performs the update operation
on the table entries in the order that they are listed in the local state table and round-
by-round. The static scheduling is simple and can prevent starvation.

However, as discussed in Sect. 2.5, it is beneficial to provide priority scheduling.
In addition to the static round-robin scheduling, Maiter supports dynamic priority
scheduling. A priority queue in each worker contains a subset of local keys that have
larger priority values. The update thread dequeues the key from the priority queue,
in terms of which it can position the entry in the local state table and performs an
update operation on the entry. Once all the data elements in the priority queue have
been processed, the update thread extracts a new subset of high-priority keys for
next round update. The extraction of keys is based on the priority field of each table
entry. Each entry’s priority field is initially calculated based on its initial v value and
�v value. During the iterative computation, the priority field is updated whenever
the �v field is changed (i.e., whenever some delta messages are received).

318 Y. Zhang et al.

The number of extracted keys in each round, i.e., the priority queue size, balances
the tradeoff between the gain from accurate priority scheduling and the cost of
frequent queue extractions. We have provided an optimal queue size analysis in [31].
The priority queue size is set as a portion of the state table size. For example, if
the queue size is set as 1 % of the state table size, we will extract the top 1 % high
priority entries in the state table for processing. In addition, we also use the sampling
technique proposed in [31] for efficient queue extraction, which only needs O.N /

time, where N is the number of entries in local state table.

4.1.4 Message Passing

Maiter implements message passing based on OpenMPI.2 A message contains a
key indicating the message’s destination data element and a value. Suppose that a
message’s destination key is k. The message will be sent to worker h.k/, where
h./ is the partition function for data partition (Sect. 4.1.1), so the message will be
received by the worker where the destination data element resides.

A naive implementation of message passing is to send the output messages as
soon as they are produced. This will reach the asynchronous iteration’s full potential.
However, initializing message passing leads to system overhead. To reduce this
overhead, Maiter buffers the output messages and flushes them to remote workers
after a timeout. If a message’s destination worker is the host worker, the output
message is directly applied to the local state table. The time interval to flush the
buffered messages, i.e., flush interval or Tf , balances the gains of asynchrony and
the cost of frequent message passing. There is an optimal Tf that minimizes the
running time. It depends on applications and data sets. We will set Tf empirically
in the experiment section.

The output messages are buffered in multiple msg tables, each of which
corresponds to a remote destination worker. The reason why Maiter exploits this
table buffer design is that we can leverage early aggregation to reduce network
communications. Each msg table entry consists of a destination key field and a
value field. As mentioned in Sect. 2, the associative property of operator ‘˚’, i.e.,
.x˚y/˚z D x˚.y˚z/, indicates that multiple messages with the same destination
can be aggregated at the sender side or at the receiver side. Therefore, by using the
msg table, Maiter worker combines the output messages with the same key by ‘˚’
operation before sending them.

4.1.5 Master Design

The master maintains a list of alive workers and is responsible for coordinating
these workers. The master accepts the user-submitted jobs and responds to user’s

2Open MPI. http://www.open-mpi.org/.

http://www.open-mpi.org/

Asynchronous Computation Model for Large-Scale Iterative Computations 319

requests such as job status query or job interruption. The master is also responsible
for terminating an iterative computation. The master collects the local progress
reports from all workers and makes a global termination decision based on these
progress reports. The detail will be described in Sect. 4.1.6. In addition, in order to
support fault tolerance, the master globally controls the checkpointing, including the
saving of checkpoints and the resuming from checkpoints, which will be described
in Sect. 3 of the supplementary file.

4.1.6 Iteration Termination

To terminate iteration, Maiter exploits progress estimator in each worker and a
global terminator in the master. The master periodically broadcasts a progress
request signal to all workers. Upon receipt of the termination check signal, the
progress estimator in each worker measures the iteration progress locally and reports
it to the master. The users are responsible for specifying the progress estimator to
retrieve the iteration progress by parsing the local state table.

After the master receives the local iteration progress reports from all workers,
the terminator makes a global termination decision in respect of the global iteration
progress, which is calculated based on the received local progress reports. If the
terminator determines to terminate the iteration, the master broadcasts a terminate
signal to all workers. Upon receipt of the terminate signal, each worker stops
updating the state table and dumps the local table entries to HDFS, which contain
the converged results. Note that, even though we exploit a synchronous termination
check periodically, it will not impact the asynchronous computation. The workers
proceed the iterative computation after producing the local progress reports without
waiting for the master’s feedback.

A commonly used termination check approach compares the two consecutive
global iteration progresses. If the difference between them is minor enough, the
iteration is terminated. For example, to terminate the SSSP computation, the
progress estimator in each worker calculates the sum of the v field values (the sum
of the shortest distance values of all the local nodes) and sends a report with the
summed value to the master. Based on these local sums, the terminator in the master
calculates a global sum, which indicates the iteration progress. If there is no change
between the two global sums collected during a termination check period (i.e., no
node’s distance is changed during that period), the SSSP computation is considered
converged and is terminated.

4.1.7 Fault Tolerance

The fault tolerance support for synchronous computation models can be performed
through checkpointing, where the state data is checkpointed on the reliable HDFS
every several iterations. If some workers fail, the computation rolls back to the most
recent iteration checkpoint and resumes from that iteration. Unfortunately, this fault
tolerance mechanism cannot be utilized in asynchronous framework.

320 Y. Zhang et al.

Maiter can exploit Chandy-Lamport [7] algorithm to design asynchronous
iteration’s fault tolerance mechanism. The checkpointing in Maiter is performed
at regular time intervals rather than at iteration intervals. The state table in each
worker is dumped to HDFS every period of time. However, during the asynchronous
computation, the information in the state table might not be intact, in respect that the
messages may be on their way to act on the state table. To avoid missing messages,
not only the state table is dumped to HDFS, but also the msg tables in each worker
are saved. Upon detecting any worker failure (through probing by the master), the
master restores computation from the last checkpoint, migrates the failed worker’s
state table and msg tables to an available worker, and notifies all the workers to
load the data from the most recent checkpoint to recover from worker failure. For
detecting master failure, Maiter can rely on a secondary master, which restores the
recent checkpointed state to recover from master failure.

4.2 Maiter API

Users can implement a Maiter program using Maiter API, which is written in
C++ style. A DAIC algorithm is specified by implementing three components,
Partitioner, IterateKernel, and TermChecker as shown in Fig. 3.

Fig. 3 Maiter API summary

K, V, and D are the template types of data element keys, data element values
(v and �v), and associate data respectively. Particularly, for each entry in the state
table, K is the type of the key field, V is the type of the v field/�v field/priority field,
and D is the type of the data field. The Partitioner reads an input partition

Asynchronous Computation Model for Large-Scale Iterative Computations 321

line by line. The parse_line function extracts data element id and the associate
data by parsing the given line string. Then the partition function applied on
the key (e.g., a MOD operation on integer key) determines the host worker of the
data element (considering the number of workers/shards). Based on this function,
the framework will assign each data element to a host worker and determines a
message’s destination worker. In the IterateKernel component, users describe
a DAIC algorithm by specifying a tuple (gfi;j g.x/,˚, v0

j , �v1
j). We initialize v0

j and
�v1

j by implementing the init interface; specify the ‘˚’ operation by implement-
ing the accumulate interface; and specify the function gfi;j g.x/ by implementing
the send interface with the given �vi and data element i ’s associate data, which
generates the output pairs hj; gfi;j g.�vi /i to data element i ’s out-neighbors. To stop
an iterative computation, users specify the TermChecker component. The local
iteration progress is estimated by specifying the estimate_prog interface given
the local state table iterator. The global terminator collects these local progress
reports. In terms of these local progress reports, users specify the terminate
interface to decide whether to terminate.

4.3 Maiter Program Example

For better understanding, we walk through how the PageRank algorithm is imple-
mented in Maiter.3 Suppose the input graph file of PageRank is line by line. Each
line includes a node id and its adjacency list. The input graph file is split into
multiple slices. Each slice is assigned to a Maiter worker. In order to implement
PageRank application in Maiter, users should implement three functionality compo-
nents, PRPartitioner, PRIterateKernel, and PRTermChecker.

In PRPartitioner, users specify the parse_line interface and the
partition interface. The implementation code is shown in Fig. 4. In

Fig. 4 PageRankPartitioner
implementation

3More implementation example codes are provided on Maiter’s Google Code website http://code.
google.com/p/maiter/.

http://code.google.com/p/maiter/
http://code.google.com/p/maiter/

322 Y. Zhang et al.

Fig. 5 PRIterateKernel implementation

Fig. 6 PRTermChecker
implementation

parse_line, users parse an input line to extract the node id as well as its
adjacency list and use them to initialize the state table’s key field (key) and data
field (data). In partition, users specify the partition function by a simple
mod operation applied on the key field (key) and the total number of workers
(shards).

In PRIterateKernel, users specify the asynchronous DAIC process by
implementing the init interface, the accumulate interface, and the send
interface. The implementation code is shown in Fig. 5. In init, users initialize
node k’s v field (value) as 0 and �v field (delta) as 0.2. Users specify the
accumulate interface by implementing the ‘˚’ operator as ‘C’ (i.e., a D aCb).
The send operation is invoked after each update of a node. In send, users generate

Asynchronous Computation Model for Large-Scale Iterative Computations 323

the output messages (contained in output) based on the node’s �v value (delta)
and data value (data).

In PRTermChecker, users specify the estimate_prog interface and the
terminate interface. The implementation code is shown in Fig. 6. In
estimate_prog, users compute the summation of v value in local state table.
The estimate_prog function is invoked after each period of time. The resulted
local sums from various workers are sent to the global termination checker, and
then the terminate operation in the global termination checker is invoked. In
terminate, based on these received local sums, users compute a global sum,
which is considered as the iteration progress. It is compared with the previous
iteration’s progress to calculate a progress difference. The asynchronous DAIC is
terminated when the progress difference is smaller than a pre-defined threshold.

5 Performance

In this section, we show Maiter’s performance to illustrate asynchronous DAIC’s
benefit. The experiments are performed on a 4-node local cluster as well as
on Amazon EC2 Cloud. The Amazon EC2 cluster includes 100 m1.medium
instances. The experiment is performed in the context of four applications, including
PageRank, SSSP, Adsorption, and Katz metric. We use Google Webgraph4 for
PageRank computation. Besides this small real data set, we also generate massive
synthetic data sets for PageRank and other applications.5

Figure 7 shows the running time of different frameworks for PageRank
computation on our local cluster. By using Hadoop, we need 27 iterations and
more than 800 s to converge.

iMapReduce [32] (iMR-file) separates the iteration-variant state data from the
static data, which can reduce the running time of Hadoop by around 50 %.
iMapReduce’s memory-based version (iMR-mem) further reduces it by providing
faster memory access.

Spark [30], with efficient data partition and memory caching techniques, can
reduce Hadoop time to less than 100 s.

PrIter [31] identifies the more important nodes to perform the update and
ignores the useless updates, by which the running time is reduced. As expected,
PrIter’s memory-based version (PrIter-mem) converges faster than PrIter’s file-
based version (PrIter-file).

Piccolo [24] utilizes MPI for message passing to realize fine-grained updates,
which improves the performance.

GraphLab [18] provides both synchronous execution engine (GraphLab-Sync)
and asynchronous execution engine (GraphLab-AS). Moreover, under the

4http://snap.stanford.edu/data/.
5The details of synthetic data sets can be found in [33].

http://snap.stanford.edu/data/

324 Y. Zhang et al.

800

1000

1200 Hadoop

iMR-file

iMR-mem

Spark

PrIter-file

PrIter-mem

0

200

400

600

Ti
m

e
(s

)

Piccolo

GraphLab-Sync

GraphLab-AS-fifo

GraphLab-AS-pri

Maiter-Sync

Maiter-RR

Maiter-Pri

Fig. 7 Running time of PageRank on Google Webgraph on local cluster

asynchronous execution engine, GraphLab supports both fifo scheduling
(GraphLab-AS-fifo) and priority scheduling (GraphLab-AS-pri). GraphLab-Sync
uses a synchronous engine and completes the iterative computation with less
than 100 s. GraphLab-AS-fifo uses an asynchronous engine and schedules the
asynchronous updates in a FIFO queue, which consumes much more time.
The reason is that the cost of managing the scheduler (through locks) tends to
exceed the cost of the main PageRank computation itself. Even worse, the cost
of maintaining the priority queue under asynchronous engine seems much larger.
Retrieving the global highest priority item requires to synchronize the global state.
Therefore, GraphLab-AS-pri takes longer time to converge.

6000 Hadoop

iMR-file

4000

5000
iMR-mem

Spark

2000

3000

Ti
m

e
(s

) PrIter-file

PrIter-mem

1000

Piccolo

Maiter-Sync

0

Maiter-RR

Maiter-Pri

Fig. 8 Running time of PageRank on 100-million-node synthetic graph on EC2 cluster

Asynchronous Computation Model for Large-Scale Iterative Computations 325

Fig. 9 Running time of other
applications (SSSP,
adsorption, and Katz metric)
on EC2 cluster

800

900
Maiter-Sync

500

600

700

Ti
m

e
(s

)

Maiter-RR

300

400

Maiter-Pri

100

200

0
SSSP Adsorption Katz metric

Our synchronous DAIC framework, Maiter-Sync, filters the neglectable updates
(�R is 0) and performs accumulative updates without concurrency control, which
can reduce the running time to about 60 s. Further, the asynchronous DAIC frame-
works, Maiter-RR (Maiter with round-robin scheduling) and Maiter-Pri (Maiter
with priority scheduling), can even converge faster by avoiding the synchronous
barriers. Note that, our priority scheduling mechanism does not result in high cost
thanks to the approximate sampling technique [31].

To show the performance under large-scale distributed environment, we run
PageRank on the 100-million-node synthetic graph on EC2 cluster. Figure 8 shows
the running time result. We can see the similar results as that of local cluster. One
thing that should be noticed is that the asynchronous frameworks (Maiter-RR and
Maiter-Pri) in large-scale cluster performs much better than that in small cluster.
The result is under expectation. As the cluster size increases and the heterogeneity in
cloud environment becomes apparent, the problem of synchronous barriers is more
and more serious. With the asynchronous execution engine, Maiter-RR and Maiter-
Pri can bypass the high-cost synchronous barriers. As a result, Maiter-RR and
Maiter-Pri significantly reduce the running time comparing with other synchronous
frameworks. Specifically, Maiter-Pri can achieve 60� speedup over Hadoop.

To show that Maiter can support more applications, we also run other applications
on EC2 cluster. We perform SSSP, Adsorption, and Katz metric computations with
Maiter-Sync, Maiter-RR, and Maiter-Pri. We generate weighted/unweighted 100-
million-node synthetic graphs for these applications respectively. Figure 9 shows
the running time of these applications. For SSSP, the asynchronous DAIC SSSP
(Maiter-RR and Maiter-Pri) reduces the running time of synchronous DAIC SSSP
(Maiter-Sync) by half. For Adsorption, the asynchronous DAIC Adsorption is 5�
faster than the synchronous DAIC Adsorption. Further, by priority scheduling,
Maiter-Pri further reduces the running time of Maiter-RR by around 1/3. For Katz
metric, we can see that Maiter-RR and Maiter-Pri also outperform Maiter-Sync.

326 Y. Zhang et al.

6 Related Work

The original idea of asynchronous iteration, chaotic iteration, was introduced
by Chazan and Miranker in 1969 [8]. Motivated by that, Baudet proposed an
asynchronous iterative scheme for multicore systems [2], and Bertsekas presented
a distributed asynchronous iteration model [3]. These early stage studies laid
the foundation of asynchronous iteration and have proved its effectiveness and
convergence. Asynchronous methods are being increasingly used and studied since
then, particularly so in connection with the use of heterogeneous workstation
clusters. A broad class of applications with asynchronous iterations have been
correspondingly raised [10, 22], such as PageRank [15, 20] and pairwise clustering
[28]. Our work differs from these previous works and provides a novel asynchronous
iteration scheme, DAIC, which exploits accumulative property.

On the other hand, to support iterative computation, a series of distributed
frameworks have emerged. In addition to the frameworks we compared in Sect. 5,
many other synchronous frameworks are proposed recently. HaLoop [6], a modified
version of Hadoop, improves the efficiency of iterative computations by making
the task scheduler loop-aware and employing caching mechanisms. CIEL [23]
supports data-dependent iterative algorithms by building an abstract dynamic task
graph. Pregel [19] aims at supporting graph-based iterative algorithms by using
BSP model. REX [25] focuses on supporting iterative computations in which
changes, in the form of deltas, are propagated from iteration to iteration, and state is
efficiently updated in an extensible way. Twister [9] employs a lightweight iterative
MapReduce runtime system by logically constructing a reduce-to-map loop. Naiad
[21] is recently proposed to support incremental iterative computations.

All of the above described works build on the basic assumption that the
synchronization between iterations is essential. A few proposed frameworks also
support asynchronous iteration. The partial asynchronous approach proposed in
[11] investigates the notion of partial synchronizations in iterative MapReduce
applications to overcome global synchronization overheads.GraphLab [29] supports
asynchronous iterative computation with sparse computational dependencies while
ensuring data consistency and achieving a high degree of parallel performance.
GRACE [27] executes iterative computation with asynchronous engine while letting
users implement their algorithms with the synchronous BSP programming model.
Our work is the first that proposes to perform DAIC for iterative algorithms. We
also identify a broad class of iterative algorithms that can perform DAIC.

7 Summary

This chapter introduces a novel computation model under large-scale distributed
environment, DAIC. The DAIC algorithms can be performed asynchronously and
converge with much less workload. To support DAIC model, Maiter is designed,

Asynchronous Computation Model for Large-Scale Iterative Computations 327

which is running on top of hundreds of commodity machines and relies on
message passing to communicate between distributed machines. By asynchronous
DAIC, Maiter is shown to have better performance than many of state-of-the-art
frameworks.

Acknowledgements This work was partially supported by U.S. NSF grants (CNS-1217284, CCF-
1018114), National Natural Science Foundation of China (61300023), Fundamental Research
Funds for the Central Universities (N120416001, N120416001).

References

1. S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D. Ravichandran, and M. Aly.
Video suggestion and discovery for youtube: taking random walks through the view graph. In
Proc. Int’l Conf. World Wide Web (WWW ‘08), pages 895–904, 2008.

2. G. M. Baudet. Asynchronous iterative methods for multiprocessors. J. ACM, 25:226–244,
April 1978.

3. D. P. Bertsekas. Distributed asynchronous computation of fixed points. Math. Programming,
27:107–120, 1983.

4. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Comput.
Netw. ISDN Syst., 30:107–117, April 1998.

5. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In Proc.
Seventh Int’l Conf. World Wide Web (WWW ‘98), pages 107–117, 1998.

6. Y. Bu, B. Howe, M. Balazinska, and D. M. Ernst. Haloop: Efficient iterative data processing
on large clusters. Proc. VLDB Endow., 3(1), 2010.

7. K. M. Chandy and L. Lamport. Distributed snapshots: determining global states of distributed
systems. ACM Trans. Comput. Syst., 3(1):63–75, Feb. 1985.

8. D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and its Applications,
2(2):199–222, 1969.

9. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox. Twister: a
runtime for iterative mapreduce. In Proc. IEEE Int’l Workshop MapReduce (MapReduce ‘10),
pages 810–818, 2010.

10. A. Frommer and D. B. Szyld. On asynchronous iterations. J. Comput. Appl. Math.,
123:201–216, November 2000.

11. K. Kambatla, N. Rapolu, S. Jagannathan, and A. Grama. Asynchronous algorithms in
mapreduce. In Proc. IEEE Conf. Cluster (Cluster’ 10), pages 245 –254, 2010.

12. U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining system
implementation and observations. In Proc. IEEE Int’l Conf. Data Mining (ICDM ‘09),
pages 229 –238, 2009.

13. L. Katz. A new status index derived from sociometric analysis. Psychometrika, 1953.
14. J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46:604–632,

1999.
15. G. Kollias, E. Gallopoulos, and D. B. Szyld. Asynchronous iterative computations with web

information retrieval structures: The pagerank case. In PARCO, volume 33 of John von
Neumann Institute for Computing Series, pages 309–316, 2005.

16. D. Lee and S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401:788–791, 1999.

17. D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. J. Am.
Soc. Inf. Sci. Technol., 58:1019–1031, May 2007.

328 Y. Zhang et al.

18. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Distributed
graphlab: A framework for machine learning and data mining in the cloud. Proc. VLDB Endow.,
5(8), 2012.

19. G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing. In Proc. ACM SIGMOD, pages 135–146,
2010.

20. F. McSherry. A uniform approach to accelerated pagerank computation. In Proc. Int’l Conf.
World Wide Web (WWW ‘05), pages 575–582, 2005.

21. F. McSherry, D. Murray, R. Isaacs, and M. Isard. Differential dataflow. In Proc. Biennial Conf.
Innovative Data Systems Research (CIDR ‘13), 2013.

22. J. C. Miellou, D. El Baz, and P. Spiteri. A new class of asynchronous iterative algorithms with
order intervals. Math. Comput., 67:237–255, January 1998.

23. D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, and S. Hand. Ciel:
A universal execution engine for distributed data-flow computing. In Proc. USEINX Symp.
Networked Systems Design and Implementation (NSDI ‘11), 2011.

24. R. Power and J. Li. Piccolo: Building fast, distributed programs with partitioned tables. In Proc.
USENIX Symp. Opearting Systems Design and Implementation (OSDI ‘10), 2010.

25. M. S. R., I. G. Ives, and G. Sudipto. Rex: Recursive, deltabased datacentric computation. Proc.
VLDB Endow., 5(8), 2012.

26. H. H. Song, T. W. Cho, V. Dave, Y. Zhang, and L. Qiu. Scalable proximity estimation and
link prediction in online social networks. In Proc. Int’l Conf. Internet Measurement (IMC ‘09),
pages 322–335, 2009.

27. G. Wang, W. Xie, A. Demers, and J. Gehrke. Asynchronous large-scale graph processing made
easy. In Proc. Biennial Conf. Innovative Data Systems Research (CIDR ‘13), 2013.

28. E. Yom-Tov and N. Slonim. Parallel pairwise clustering. In Proc. SIAM Intl. Conf. Data Mining
(SDM ‘09), pages 745–755, 2009.

29. L. Yucheng, G. Joseph, K. Aapo, B. Danny, G. Carlos, and M. H. Joseph. Graphlab:
A new framework for parallel machine learning. In Proc. Int’l Conf. Uncertainty in Artificial
Intelligence (UAI ‘10), 2010.

30. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for. in-memory
cluster computing. In Proc. USEINX Symp. Networked Systems Design and Implementation
(NSDI’12), 2012.

31. Y. Zhang, Q. Gao, L. Gao, and C. Wang. Priter: a distributed framework for prioritized iterative
computations. In Proc. ACM Symp. Cloud Computing (SOCC ‘11), 2011.

32. Y. Zhang, Q. Gao, L. Gao, and C. Wang. imapreduce: A distributed computing framework for
iterative computation. J. Grid Comput., 10(1):47–68, 2012.

33. Y. Zhang, Q. Gao, L. Gao, and C. Wang. Maiter: A message-passing distributed framework
for accumulative iterative computation, http://faculty.neu.edu.cn/cc/zhangyf/papers/maiter-
full.pdf. Northeastern university techical report, 2012.

http://faculty.neu.edu.cn/cc/zhangyf/papers/maiter-full.pdf
http://faculty.neu.edu.cn/cc/zhangyf/papers/maiter-full.pdf

Part IV
Cloud Storage

Challenges and solutions to cloud-related Big Data. FRIEDA: storage and data
management framework for IaaS. Data transfer issues addressed using managed
file transfer system StorkCloud. Analyzing and storing social media data with
IndexedHBase indexing framework.

Big Data Storage and Processing on Azure
Clouds: Experiments at Scale
and Lessons Learned

Radu Tudoran, Alexandru Costan, Gabriel Antoniu, and Brasche Goetz

Abstract Data-intensive computing is now starting to be considered as the basis for
a new, fourth paradigm for science. Two factors are encouraging this trend. First,
vast amounts of data are becoming available in more and more application areas.
Second, the infrastructures allowing to persistently store these data for sharing and
processing are becoming a reality. This allows to unify knowledge acquired through
the previous three paradigms for scientific research (theory, experiments and sim-
ulations) with vast amounts of multidisciplinary data. The technical and scientific
issues related to this context have been designated as the “Big Data” challenges. In
this landscape, building a functional infrastructure for the requirements of Big Data
applications is critical and is still a challenge. An important step has been made
thanks to the emergence of cloud infrastructures, which are bringing the first bricks
to cope with the challenging scale of the Big Data vision. Clouds bring to life the
illusion of a (more-or-less) infinitely scalable infrastructure managed through a fully
outsourced ICT service. Instead of having to buy and manage hardware, users “rent”
outsourced resources as needed. However, cloud technologies have not reached yet
their full potential. In particular, the capabilities available now for data storage and
processing are still far from meeting the application requirements. In this work
we investigate several hot challenges related to Big Data management on clouds.
We discuss current state-of-the-art solutions, their limitations and some ways to
overcome them. We illustrate our study with a concrete application study from the
area of joint genetic and neuroimaging data analysis. The goal of this chapter is to
present the conclusions of this study performed through a large-scale experiment
carried out across three data centers of Microsoft’s Azure cloud platform during 2
weeks, which consumed approximately 200.000 compute hours.

R. Tudoran • A. Costan (�) • G. Antoniu
INRIA Rennes, Campus de Beaulieu, 35042 Rennes, France
e-mail: Radu.Tudoran@irisa.fr; alexandru.costan@inria.fr; Gabriel.Antoniu@inria.fr

B. Goetz
Huawei Technologies, Duesseldorf GmbH, Düsseldorf, Germany, WA, USA
e-mail: goetz.brasche@huawei.com

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__14

331

mailto:Radu.Tudoran@irisa.fr
mailto:alexandru.costan@inria.fr
mailto:Gabriel.Antoniu@inria.fr
mailto:goetz.brasche@huawei.com

332 R. Tudoran et al.

1 Introduction

Data-intensive computing is now starting to be considered as the basis for a new,
fourth paradigm for science. Two factors are encouraging this trend. First, vast
amounts of data are becoming available in more and more application areas.
Second, the infrastructures allowing to persistently store these data for sharing
and processing are becoming a reality. This allows unifying knowledge acquired
through the previous three paradigms for scientific research (theory, experiments
and simulations) with vast amounts of multidisciplinary data. The technical and
scientific issues related to this context have been designated as the Big Data
challenges and have been identified as highly strategic by major research agencies.

In this landscape, building a functional infrastructure for the requirements of Big
Data applications is critical and is still a challenge. An important step has been made
thanks to the emergence of cloud infrastructures, which are bringing the first bricks
to cope with the challenging scale of the Big Data vision. Clouds bring to life the
illusion of a (more-or-less) infinitely scalable infrastructure managed through a fully
outsourced ICT service. Instead of having to buy and manage hardware, users rent
outsourced resources as needed. However, cloud technologies have not yet reached
their full potential. In particular, the capabilities available now for data storage and
processing are still rudimentary and rather far from meeting the more and more
demanding application requirements.

In this chapter we investigate several hot challenges related to Big Data manage-
ment on clouds. We focus on the specific needs of data-intensive applications, where
huge amounts of data are concurrently shared and processed by a large number of
processes. We introduce state-of-the-art solutions for data storage and processing
on clouds as they are made available by major cloud storage providers, we discuss
their limitations and some ways to overcome them. We illustrate our study with
a concrete application study from the area of joint genetic and neuroimaging data
analysis, performed through a large-scale experiment carried out across three data
centers of Microsoft’s Azure cloud platform during 2 weeks, for an overall usage of
approximatively 200.000 compute hours.

2 Cloud Storage for Data-Intensive Applications: Challenges

The overwhelming data volumes to be handled by today’s data-intensive applica-
tions generate several requirements which translate into real challenges for cloud
storage systems. Several of these major challenges are discussed below.

Support for Massive Unstructured Data Most data available nowadays is
unstructured: pictures, sound, movies, documents, experimental measurements
are often represented as raw unstructured blobs (Binary Large Objects) in the
first stage, as they are captured by sensors or synthetically generated. According
to a 2011 study, unstructured data will account for 90 % of all data generated in

Big Data Storage and Processing on Azure Clouds: Experiments at Scale and. . . 333

the upcoming decade [3]. They serve as input to data-analysis applications and
their size tends to grow fast in time (in the order of PB/year) in more and more
scenarios. Such data are typically stored as huge objects which are continuously
updated by running applications. Traditional databases or file systems can hardly
cope with objects that grow to huge sizes efficiently. Emerging cloud storage
technologies have not solved this issue yet: the maximum data size supported
by object-based cloud data stores is much smaller than required by applications
(typically in the order of Gigabytes, less frequently up to 1 Terabyte for some
providers). When applications need to handle larger blobs, an extra-level of
complexity is generated in order to split data and manage the corresponding set
of smaller objects.

Support for Operations on Multiple Files In the context of data collection for
science experiments, the number of generated data objects by experiment
(usually stored as files) may be high (e.g. monitor files, log files, temporary
files, experimental results etc.). Current cloud storage systems do not support
even simple operations on multiple such files/blobs (e.g. grep, select/filter,
compress, aggregate). To perform such operations, one needs to implement its
own procedures that will download the files (individually) and go through them
(at client side), which leads to long and expensive data movements. This current
approach is clearly inefficient: a better approach where the operations could be
sent for execution in-place where data are stored (i.e. on the server side), on
multiple files at once would clearly be more appealing.

High Throughput Under Heavy Access Concurrency Most cloud storage sys-
tems available today have been designed to be accessed by a single client
at a time and do not favor efficient sharing. However, Big Data processing
naturally requires a high degree of parallelism for data analysis (i.e. many
compute nodes concurrently process subsets of the input data). This leads to
many clients accessing the cloud storage system to read the input data, to write
the results, to report their state for monitoring and fault tolerance purposes and to
write the log files of their computation. Since data-intensive applications spend
considerable time to perform I/O, achieving a high data throughput in spite of
heavy access concurrency is an important property that impacts on the total
application execution time. Typically, the data storage system must efficiently
deal with thousands of concurrent processes to data, both for reading and writing.

Fine Grain Access to Data Subsets Even if many applications use huge blobs
as input data, data-intensive applications typically consist of many parallel
processes which concurrently access small parts of that input data. Typically,
this pattern arises when splitting the initial workload among multiple workers
which process small input data sets. Another example regards status checking
for compute processes in the log/monitor files. In such cases, the cloud storage
system must enable an efficient access to data at a fine grain. The goal is
to improve the overall data access performance by avoiding useless locking
or unnecessary data transfers and sparing the expensive and limited network
bandwidth.

334 R. Tudoran et al.

Monitoring and Logging Services Large-scale experiments require constant
monitoring of their progress. Monitoring functionalities are rather limited on
clouds and usually only focus on general parameters such as CPU load, disk
accesses or network activity. Such parameters, although useful, do not offer a
complete vision on how the simulation or experiment progresses. To meet such
a goal, a dedicated system able to support more specific monitoring functions is
required in order to identify and qualify shared file accesses, concurrent appends
to shared blobs, job reporting, log aggregation, filtering mechanisms etc.

Support for Highly Parallel Data Workflows More and more data-intensive
applications consist of multiple phases including data acquisition, data curation,
data pre-processing, data storage, offline data-analysis, data visualization, etc.
This can generically be expressed as highly parallel data workflows. Moreover,
such workflows may be geographically distributed across multiple data centers
with specific facilities for certain parts of the global workflows. Synchronizing
concurrent accesses to data under these circumstances is difficult, hence scalable
mechanisms addressing this issue at the level of the cloud storage service are
needed.

Memory

Azure
Blob

Azure Tables

Azure Queues

SQL Azure
Azure
Caching

Azure
Drive

Local
Disk

Azure VM,
Web or

Worker Role

Fig. 1 An overview of the Azure storage services

3 A Case Study: Data Storage and Management
on Azure Clouds

Currently, the options for sharing data are the cloud object stores, the local resources
of the compute nodes (e.g. memory, disks) or some hybrid approaches between
these two. Each one is geared for various types of data and maximizes a different
(typically conflicting) set of constraints. For instance, storing data within the

Big Data Storage and Processing on Azure Clouds: Experiments at Scale and. . . 335

deployment increases the throughput but has an ephemeral lifetime, while using
the cloud storage provides persistence at the price of high latencies.

In the Microsoft Azure Cloud [2, 4, 5] the data handling solutions range from
the classical SQL data bases to blob storage. Figure 1 presents an overview of the
data-handling services offered by the Azure cloud. Most of these are designed to
support both cloud and on-premises applications (e.g. Blobs, Tables, Queues, SQL),
while others only support the cloud compute nodes (e.g. ephemeral disk, drives and
caching). Next, we detail all these services.

3.1 Storing Unstructured Data: Azure Blobs

The standard cloud offering for sharing application data consists of storage services
accessed by compute nodes via simple, data-centric interfaces. Under the hood,
these are distributed storage systems running complex protocols to ensure that data
is always available and durable, even when machines, disks and networks fail. This
makes them good candidates for persistently storing input/output data.

Azure Blobs is the main storage service of the Azure cloud, able to hold massive
amounts of data from many different applications [4, 7]. Users can create multiple
storage accounts, which are accessed and protected using a SHA256 authentication
system. A user storage account is bounded to a geographical location (i.e. a data
center), but for fault tolerance reasons, its data is replicated across multiple data
centers.

At its core, Azure Blobs is a distributed storage system, organized as a two
layer namespace consisting of containers and blobs. The system is built on top of
specialized data clusters, each cluster having a capacity of tens of petabytes of data.
These storage nodes are different than the ones used for the computation service.
A REST API provides basic PUT and GET operations, implemented on top of
HTTP/HTTPS. There are two types of blobs based on the elementary working unit:
page and block. The block has a size limit of 4 MB and the total data size of a block
blob cannot exceed 400 GB. The page has a fixed size of 512 KB with a maximum
per blob capacity of 1 TB. The blocks and pages are replicated across different
disks and racks, with a default replica count of 3. A strong consistency protocol
is used for the local replicas. The consistency of concurrent updates is managed
either explicitly through the use of timestamps or by applying a “first commit wins”
strategy.

As its counterparts from other cloud providers (Amazon S3, etc.), Azure Blobs
focus on data storage primarily and support other functionalities essentially as
a side effect of their storage capability. The high-latency REST interfaces make
them inadequate for data with high update rates. Typically, they are not concerned
by achieving high throughput, nor by potential optimizations, let alone offer the
ability to support different data services (e.g. geographically distributed transfers,
placement etc.)

336 R. Tudoran et al.

3.2 Storing NoSQL-Structured Data: Azure Tables

The Azure Tables store type-value pairs, through a no SQL interface. A Table
contains entities (similar to rows in classical relational databases), which store
multiple properties. While in many senses the Azure Table concept is similar to
the tables found in relational databases, a key difference is that it does not enforce a
fixed schema. Each entity can contain a different number of properties or different
types of properties. This service mainly targets web-based applications, which
require fast and flexible data schemas.

Each entity holds at least three properties: RowKey, PartitionKey and Timestamp.
The PartitionKey is used by the Table service to balance the load across multiple
storage nodes. The access to consecutive entities within a partition is optimized for
performance. The distinction between entities of the same partition is made based on
the RowKey, which in conjunction with the PartitionKey uniquely identify each row
within a Table. An entity can hold at most 255 properties (including the 3 system
properties), and the size of data stored by each entity cannot exceed 1 MB. The total
data size per table is limited to 100 TB (the storage limit per account).

3.3 Synchronizing Processes for Concurrent Data Processing:
Azure Queues

The Azure Queues provide short term storage for small messages. The service is
designed as a communication mechanism for passing job descriptions between the
compute nodes. The Queues are optimized to support a high number of concurrent
operations from many clients and allow thousands of message transactions per
second. Both cloud nodes and on-premises applications can access the Queue
service via a REST API. A typical usage scenario consists of cloud web roles
enqueueing jobs for the workers roles, as in a master–workers model.

A Queue message contains data, with a maximum size of 64 KB, and meta-data
(e.g. timestamp, time to live, visibility etc.). As the service is designed for small
transient data, the time to live field marks the time to deletion, with a maximum
value of 1 week. Although this value seems fair, it can represent a limitation
for some Big Data experiments which usually have a larger timespan. There is
no guarantee about the order in which messages become visible in the queue.
A message that is dequeued is not deleted from the system, but becomes hidden for
a certain time period (i.e. the visibility field becomes false). The message is either
explicitly deleted after it was processed or becomes visible again after the hide time
period expires. This hiding period is limited to hours, which creates a management
overhead for long running tasks, as users need to provide mechanisms that would
allow longer compute intervals.

Big Data Storage and Processing on Azure Clouds: Experiments at Scale and. . . 337

3.4 Others

Azure SQL. The Azure SQL service provides applications a classical relational
data base management system. The service is built by porting the Microsoft
SQL engine in the Azure cloud and offers a maximum storage space of 150
GBs. Cloud applications can access the database through the same API used by
desktop or on-premises applications. Such an option, along with indexes, stored
procedures or views ease the porting of native applications to the cloud. Azure
SQL offers all the ACID guarantees of a traditional database, but additionally
provides users the possibility to specify policies on how conflicts or updates
should be handled.

Azure Drive. User can mount regular blobs from the Azure Blob service as virtual
local disks within their VMs. The Azure Drives represent just a middleware to
access the persistent storage. It offers the native applications the possibility to
run in the cloud and use the cloud storage without any modifications (relying on
the same NTFS API as for the local storage). A blob can be mounted as a virtual
drive only to a single compute instance (i.e. worker or web role) at a certain
moment. However, a VM can have multiple drives mounted at the same time.

Azure Disks. Similarly to Drives, the Disks use the cloud storage within the
virtual machines. The difference is that doing I/O on the Disks does not use
the bandwidth capacity of the virtual machine, only that of the physical node.
A typical usage scenario is for web services that manage large datasets as local
files with persistence guarantees.

Azure Caching. The Azure Caching service offers fast, in-memory storage for key-
value pairs (with a maximum size of 4 MB for each such record), useful for
memory intensive applications. There are two options for using it: dedicating full
web/worker roles or dedicating part of the VM resources. With the first option,
at least one node will be entirely dedicated to the Azure Caching service; this is
more appropriate when one deploys a large number of nodes. The second option
deploys the Azure Caching service across all the leased compute nodes. This is
achieved by dedicating parts of the resources from each VM (mainly, its memory)
to the service. Besides this low-latency storage facility, the service performs the
caching between the node memories and the Azure Blob persistent storage. Each
Azure Caching service is associated with a user storage blob account, where
data is backed-up. This allows storing data with sizes superior to the capacity of
the aggregated nodes memory. While performance is high due to data locality,
the cache misses can be quite frequent, especially when the memory capacity
is reached. This impacts on the response times, as it requires swapping data
between the caching service and the Azure Blobs.

338 R. Tudoran et al.

4 Getting Further: Dealing with Storage Latency under
Heavy Concurrency

In order to address the previous limitations at the level of the cloud storage we
introduce in this section a set of contributions. We present a concurrency-optimized
data storage system which federates the virtual disks associated to VMs. Next, we
propose an extension that provides a higher degree of reliability while remaining
non-intrusive through the use of dedicated compute nodes. We demonstrate the
performance of these solutions for efficient data-intensive processing on commercial
clouds by building an optimized prototype MapReduce framework for Azure that
leverages the benefits of our storage solutions. We further extend the MapReduce
programming model to better support reduce-intensive applications and substan-
tially improve their efficiency by eliminating the implicit barrier between the Map
and the Reduce phase.

Fig. 2 The TomusBlobs architectural overview

4.1 Aggregating the Virtual Disks
for Communication-Efficient Storage

In many cloud deployments, the disks locally attached to the VMs (with storage
capacities of hundreds of GBs available at no extra cost) are not exploited at
their full potential. Therefore, we propose to aggregate parts of the storage space
from the virtual disks in a shared common pool that is managed in a distributed
fashion. This pool is used to store the application level data. For scalability reasons,
they are stored in a striped fashion, i.e. split into small chunks that are evenly
distributed among the local disks of the storage. Each chunk is replicated on multiple
local disks in order to survive failures. With this approach, read and write access
performance under concurrency is greatly enhanced, as the global I/O workload is
evenly distributed among the local disks. Furthermore, this scheme reduces latencies

Big Data Storage and Processing on Azure Clouds: Experiments at Scale and. . . 339

and has a potential for high scalability, as a growing number of VMs automatically
leads to a larger storage system, which is not the case with the default cloud storage
service.

Building on these design principles that exploit data locality, we introduce
TomusBlobs [12], a system for concurrency-optimized PaaS-level cloud storage.
We rely on the local disk of the VM instance directly in order to share input files
and save the output files or intermediate data. This approach requires no changes
to the application nor to the cloud middleware. Furthermore, it does not use any
additional resources from the cloud, as the virtual disk is implicitly available to the
user for storage, without any additional costs. We implemented this approach in the
Microsoft Azure cloud platform.

The architecture of TomusBlobs consists of three loosely-coupled components
presented in Fig. 2:

• The Initiator component is particular for each cloud. It has the role to deploy,
setup and launch the data management system and to customize the scientific
environment. It exposes a generic stub that can be easily implemented and
customized for any cloud. The Initiator supports the system’s elasticity, being
able to scale up and down the computing platform at runtime, by integrating the
new added nodes in the system or by seamlessly discarding the deleted ones.

• The Distributed Storage has the role of aggregating the virtual disks into a
uniform shared storage, which is exposed to applications. It is generic as it does
not depend on a specific storage solution. Any distributed file system capable to
be deployed and executed in a cloud environment (and not changing the cloud
middleware) can be used as a Distributed Storage.

• The Client consists of the API layer through which the storage is accessed by
the applications. Data manipulation is supported transparently through a set of
primitives. The interface is similar to the ones of commercial public clouds
(Azure Blobs, Amazon S3).

The local storage of VMs on which we rely consists of virtual block-based
storage devices that provide access to the physical storage. The virtual disks appear
as devices to the virtual machine and can be formatted and accessed as if they were
physical devices. However, they can hold data only for the lifetime of the VM. After
the VM is terminated they are cleared. Hence, it is not possible to use them for
long-term storage since this would mean leasing the computation nodes for long
periods. Instead, we have designed a simple checkpoint mechanism that backups all
the data from the TomusBlobs ephemeral storage to the persistent Azure Blobs,
at configurable time intervals (the default being 1 h). This backup is done as
a background job, privileging the periods with little/no network transfers of the
application and remaining non-intrusive (it adds a 4 % computational overhead).
Data is restored manually from Azure Blobs in case of failures at the beginning of
new experiments.

Data striping and replication is performed transparently on blobs, therefore
eliminating the need to explicitly manage chunks in the Distributed Storage. The
default data management system which we integrated within the Storage uses

340 R. Tudoran et al.

an efficient version-oriented design that enables lock-free access to data, and
thereby favors scalability under heavy concurrency (multiple readers and writers
or multiple writers concurrently) [9]. Rather than updating the current pages, each
write generates a new set of pages corresponding to a new version. Metadata is then
generated and “weaved” together with the old metadata in such way as to create
the illusion of a new incremental snapshot; this actually shares the unmodified
pages of the blob with the older versions. Thanks to the decentralized data and
metadata management, this provides high throughput and deals transparently with
node failures.

4.2 Using Dedicated Compute Nodes for Scalable
Data Management

Despite its evident advantages for some applications (especially the ones leveraging
the data locality, e.g. MapReduce), the collocated storage schema introduced in
the previous section has some important issues. First, it relies on commodity
hardware that is prone to failures. An outage of the local storage system would
make its host compute node inaccessible, effectively leading to loss of data and
application failure. Second, the software stack that enables the aggregation of the
local storage can become rather intrusive and impact on the application’s perceived
performance. Indeed, there is a direct correlation between the CPU usage and the
data throughput [13], as over-tasked CPUs may introduce bottlenecks that slow
down the computation. As a consequence, we need to deal with the reliability and
the overhead of local storage in order to be able to leverage it for a larger set of data
intensive applications. We propose to decouple storage and computation through the
use of dedicated compute nodes for storage. This separation allows applications to
efficiently access data without interfering with the underlying compute resources
while the data locality is preserved as the storage nodes are selected within the same
cloud deployment.

Our proposal in this context, DataSteward [11], harnesses the storage space of
a set of dedicated VMs into a globally-shared data store in a scalable and efficient
fashion. The dedicated nodes are chosen using a clustering-based algorithm that
enables a topology-aware selection. With DataSteward, applications can sustain a
high I/O data access throughput, as with collocated storage, but with less overhead
and higher reliability through isolation. This approach allows to extensively use
in-memory storage, as opposed to collocated solutions which only rely on virtual
disks. To capitalize on this separation, we provide a set of higher-level data-centric
services, that can overlap with the computation and reduce the application runtime.
Compression, encryption, anonymization, geographical replication or broadcast are
examples of data processing-as-a-service features that could exploit a dedicated
infrastructure and serve cloud applications as a “data steward”.

Big Data Storage and Processing on Azure Clouds: Experiments at Scale and. . . 341

Fig. 3 DataSteward
architecture with dedicated
compute nodes for data
storage and a set of additional
data processing functions

Our proposal relies on a layered architecture, built around three components,
presented in Fig. 3.

• The Cloud Tracker has the role of selecting the dedicated nodes through a
four steps process executed at the VM’s booting time. First, a leader election
algorithm is run, using the VM IDs. Second, each VM makes an evaluation
of the network links and reports the results back to the leader, using a queue
based communication system. Third, the leader runs a clustering algorithm to
select the most fitted nodes for storage (throughput wise). Finally, these nodes
are broadcasted within the deployment.

• The Distributed Storage is the data management system deployed in the ded-
icated nodes, that federates the local disks of the VMs. Users can select the
distributed storage system of their choice. Additionally, the local memory is
aggregated into an in-memory storage, used for storing, caching and buffering
data. The Distributed Storage can dynamically scale up/down, dedicating new
nodes when faced with data usage bursts or releasing some of them.

• The Data Processing Services are a set of data handling operations on top of the
storage layer, that can overlap with the executing applications that they support.
Examples include: compression, geographical replication, anonymization, etc.

As the selection of the storage VMs can significantly impact application perfor-
mance, we believe that the topology and utilization of the cloud need to be carefully
considered to come up with an optimized allocation policy. Since cloud users do not
have fine-grained visibility into or control over the underlying infrastructure, they
can only rely on some application-level optimization. In our case, the storage nodes
are selected based on the (discovered) topology, such that the aggregated throughput
from the application nodes to the dedicated storage nodes is maximized. To get an
intuition of the cloud topology, we opted for a clustering algorithm, observing that
the cloud providers tend to distribute the compute nodes in different fault domains
(i.e. behind multiple switches). Hence, we aim to discover these clusters based on
the proximity that exists between the nodes in a fault domain. To this end, we
fitted the clustering algorithm with adequate hypotheses for centroid selection and
nodes assignment to clusters, in order to maximize the data throughput. Finally, the
selection of the dedicated nodes is done based on the discovered clusters.

342 R. Tudoran et al.

In our scenario, the clusters are formed from compute nodes, and a cluster
is represented by the node to be dedicated for storage (the centroid), with one
dedicated node per cluster. The assignment of a node to a cluster is done based
on the throughput to the data node that represents a cluster and by balancing the
nodes between the data nodes:

cluster D arg max
i2Servers

Max throughputŒ i; j
„ƒ‚…

jC lientŒi �j<clients_per_server

� (1)

After creating the clusters, we update the centroids. With our hypothesis, we
select the node that maximizes the throughput to all VMs in the cluster:

maxserver D arg max
j2C lientŒi �

X

k2C lientŒi �

throughput Œj; k� (2)

The motivation to use a dedicated infrastructure inside the deployment was to
enable a set of data services that deliver the power and versatility of the cloud to
users. The idea is to exploit the compute capabilities of the storage nodes to deploy
data specific services, that otherwise couldn’t be run on the application nodes. These
services are loaded dynamically, from the default modules or from libraries provided
by the users. We list bellow a set of data processing services that could leverage such
a dedicated storage infrastructure:

• Geographically-Distributed Data Management. Being able to effectively harness
multiple geographically distributed data centers and the high speed networks
interconnecting them has become critical for wide-area data replication as well
as for federated clouds (“sky computing” [8]). It is inefficient for applications to
stall their execution in order to perform data movements across these data centers.
DataSteward provides an alternative, as the applications can simply check-out
their results to the dedicated nodes (through a low latency data transfer, within
the deployment). Then, DataSteward performs the time consuming geographical
data movement, while the application continues uninterrupted.

• Scientific Big Data Processing Toolkit. Scientific applications typically require
additional processing of their input/output data, in order to make the results
exploitable. Examples include: compression, filtering, aggregation, parallel
transfers, etc. For large datasets, these manipulations are time and resource
consuming; using dedicated nodes, such processing can overlap with the
main computation and significantly decrease the time to solution. Let’s take
the example of data compression. Typically, the parallelization of scientific
applications in multiple tasks leads to the output of multiple results. Before
storing them persistently, one can decrease the incurred costs through
compression. Grouping together these results on the dedicated nodes, we are able
to achieve higher compression rates, than with results compressed independently
on source nodes (by exploiting the data similarities and minimizing the
compression overhead of multiple files/objects).

Big Data Storage and Processing on Azure Clouds: Experiments at Scale and. . . 343

• Cache for the Persistent Storage. Its role would be to periodically backup into
the cloud store service the data from the dedicated storage nodes. This approach
complements DataSteward with persistency capabilities, following closely the
structure of the physical storage hierarchy: machine memory, local and network
disks, persistent storage.

• Cloud Introspection as a Service. Building on the previous clustering scheme and
the measurements done in Sect. 5.1, we can design an introspection service that
could reveal information about the cloud internals to the interested applications.
The ability to collect large numbers of latency, bandwidth and throughput
estimates without actively transferring data provides applications an inexpensive
way to infer the cloud’s internal details. These hints could be further used for
topology-aware scheduling or for optimizing large data transfers.

Clearly this list is not exhaustive: the goal is rather to provide a software stack on
top of the storage nodes, following a data processing-as-a-service paradigm. This
“data steward” will be able, on one hand, to optimize the storage management and
the end-to-end performance for a diverse set of data-intensive applications, and on
the other hand, to prepare raw data issued/needed by experiments into a science-
ready form used by scientists.

4.3 Leveraging Low Latency Storage for Reduction-Intensive
Data Processing on Azure Clouds

Besides the efficient storage, data-intensive applications also need appropriate
distributed computing frameworks to harness the power of clouds easily and
effectively. In this respect, we devised a prototype MapReduce framework—
TomusMapReduce—which specifically leverages the benefits of the TomusBlobs
storage system to store input, intermediate and final results, by collocating data
with computation (mappers and reducers). The framework uses a simple scheduling
mechanism based on the Azure Queues to ensure coordination between its entities.
With the storage and computation in the same virtualized environment, high
throughout, protection and confidentiality are enhanced, as opposed to the remote
Azure Blobs.

While this default MapReduce model can be used in numerous scenarios, when
it comes to data processing flows that require a unique result, the model reaches
its limitations. Many data intensive applications require reduction operations for
aggregation, filtering, numerical integration, Monte Carlo simulations, etc. These
algorithms have a common pattern: data are processed iteratively and aggregated
into a single final result. While in the initial MapReduce proposal the reduce phase
was a simple aggregation function, recently an increasing number of applications
relying on MapReduce exhibit a reduce-intensive pattern, that is, an important part
of the computations are done during the reduce phase. The existing distributed
processing runtime engines lack explicit support for reduction or implement it in

344 R. Tudoran et al.

an inadequate way for clouds: they typically do not directly support full reduction
into a single file. One can either use a single reducer and so the reduce step will
loose its parallelism or can create an additional aggregator that will collect all the
results from the reducers and combine them into a single result. For reduce-intensive
workloads this final operation can become a bottleneck.

We propose MapIterativeReduce [10], a new execution model for reduce-
intensive workloads that extends TomusMapReduce and exploits the inherent
parallelism of the reduce tasks. In MapIterativeReduce, no barriers are needed
between the map and the reduce phases: the reducers start the computation as
soon as some data is available, reducing the total execution time. Our approach
builds on the observation that a large class of scientific applications require the
same operator to be applied to combine data from all nodes. In order to exploit
any inherent parallelism in reduction, this operator has to be at least associative
and/or commutative. Most operators that are used in scientific computing (e.g. max,
min, sum, select) are both associative and commutative. Reduction may be also
used with non-associative and non-commutative operations but offers less potential
parallelism.

With the proposed execution model, the typical data flow is presented in Fig. 4.
This consists of a classical map phase followed by an iterative reduce phase. The
reducers apply the associative operator to a subset of intermediate data, issued either
by the mappers or by other reducers from previous iterations. After the computation,
the (partial) resultis fed back as input to other reducers. These iterations continue

Map Phase

M

R
R

Reduce
Phase

Jo
b

St
ar

t

last
iteration

NO

YES

F
in

al
 R

es
ul

t

M
M

M

Fig. 4 The MapIterativeReduce conceptual model

until a reducer combines all the intermediate data into a unique result. All reducers
check in a distributed fashion whether their output is the final result, using several
parameters attached to the reduce tasks and thus avoiding the single point of failure
represented by a centralised control entity.

We can now define the reduction as a scheduling problem: mapping the tasks to
the reducers using a reduction tree. The iterative reduce phase can be viewed as a
reduction tree, each iteration corresponding to a tree level. A clarifying example of
an unfolding of the iterative process is given in Fig. 5. Each reducer processes three

Big Data Storage and Processing on Azure Clouds: Experiments at Scale and. . . 345

Fig. 5 An example of a
reduction tree for five
mappers and a reduction ratio
of 3

Map

RF=1

Reducer

Map

RF=1

Map

RF=1

Map

RF=1

Map

RF=1

RF=3

Reducer

RF=5

sets of data at a time and the initial number of mappers is 5. During the first iteration,
only one reducer has all the input available, while in the second iteration the bottom
reducer can process the two remaining data sets and the data issued from the first
iteration to produce the final result. With the associative operator, it is possible to
interleave the computation from different iterations to better exploit parallelism.

One of the key reasons for MapReduce framework’s success is its runtime
support for fault tolerance. Our approach for dependability is two folded: on one
hand, we rely on the implicit fault tolerance support of the underlying platforms
(Azure, TomusBlobs), on the other hand, we implemented specific techniques for
dealing with failures in MapIterativeReduce. We use the visibility timeout of the
Azure Queues to guarantee that a submitted message will not be lost and will be
eventually executed by a Worker, as in TomusMapReduce. For the iterative reduce
phase, however, this mechanism is not enough. Since a Reducer has to process
several messages from different queues, a more complex technique for recovering
the jobs in case of failures is needed. We developed a distributed watchdog that
monitors the progress of the Reducers. It implements a light checkpointing scheme
by saving the state of the jobs to the file system, in parallel with the reduce
processing. In case of a failure of some Reducer, the system will rollback the
descriptions of the intermediate data and the reduce job, which will be assigned to
another Reducer from the pool. This allows MapIterativeReduce to restart a failed
task from the previous iteration, instead of starting the reduction from the beginning.

346 R. Tudoran et al.

5 Executing a Large Scale Big Data Experiment on the Cloud

5.1 The Search for the Brain–Gene Correlations

Joint genetic and neuro-imaging data analysis may help identifying risk factors
in target populations. Performing such studies on a large number of subjects is
challenging as genotyping DNA chips can record several hundred thousands values
per subject, while the fMRI images may contain 100 k to 1 M volumetric picture
elements. Determining statistically the significant links between the two sets of data
entails a massive amount of computation as one needs not only to compare all pair-
wise relations but also to correct for family-wise multiple comparisons. These false
positives are controlled by generating permutations of the input data set. A-Brain
[1,6] is such a data analysis application involving large cohorts of subjects and used
to study and understand the variability that exists between individuals.

5.2 The Computation and Storage Problems

Supposing that such an application could be executed on single machine, the
computation would take years. Cloud infrastructures have the potential to decrease
this computation time to days, by parallelizing and scaling out the application. After
a preliminary analysis of the whole spectrum of genes and brain positions, a subset
was chosen in which the potential correlations would have biological meaning. This
subset consists of �21 1010 associations that need to be evaluated. In order to
execute this computation in parallel at a large scale, we noticed that the A-Brain
application can be easily described as a MapReduce processing. The problem was
further divided into 28,000 computation tasks, which were executed as map jobs.

5.3 Experimental Setup

The MapReduce-based processing was performed using 1,000 CPUs in three
deployments running in two US Azure data centers—North and West. In addition,
a fourth deployment was used both for the initial data partition (i.e. using a Splitter)
and for the global result computation using the MapIterativeReduce technique; the
latter consisted of 563 reduce jobs, each having a reduction ratio of 50. For the
computation, the Large Size VM Worker Roles were used, each having four CPUs,
7 GB of memory and 400 Mbps bandwidth and a local storage of 1 TB.

Big Data Storage and Processing on Azure Clouds: Experiments at Scale and. . . 347

0
467 1401 2335 3269 4203 5137 6071 7005 7939 8873

467 1401 2335 3269 4203 5137 6071 7005 7939 8873

467 1401 2335 3269 4203 5137 6071 7005 7939 8873

100
200
300

500
400

600

0
100
200
300

500
400

600

Ti
m

e
(m

in
)

Ti
m

e
(m

in
)

Mapper ID

0

200

400

600

Ti
m

e
(m

in
)

Fig. 6 The execution of the compute tasks in the three deployments: 28,000 tasks are executed as
map jobs,
9,000 in each data center. The spike in the last part of each chart corresponds to the
cloud services becoming temporary unavailable

5.4 Results

In Fig. 6 we present the execution time of the map jobs for each of the three deploy-
ments. The values are similar for all deployments, even though the computation is
performed across two different data centers. This is due to the initial partitioning
and the local buffering of the data that prevent mappers from remote accesses. The
outage times shown towards the end of the experiment are due to a temporary failure
in the cloud which made the cloud services inaccessible. During this period, the
mappers became idle until the cloud became available again and the computation
could be resumed. In addition to the map times, we present in Fig. 7 an analysis of
the reduction times with respect to the number of reducers and the corresponding
reduction ratio (i.e. the workload of a reducer–number of inputs to process). A
parallel reduction process brings significant improvements up to the point where
the communication overhead becomes important and the number of reducers is too
big compared to the available resources. Hence, they will be executed in waves,
increasing the timespan of the reduction process. Making such an analysis before
the experiment allows the selection of a proper reduction ratio (i.e. 50 for our
experiment) in order to reduce the overall execution time.

348 R. Tudoran et al.

1400 66000

64000

62000

60000

58000

56000

54000

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

Reduction Ratio/Number Of Reducers
15

/2
00

0

25
/1

12
4

50
/5

63

75
/3

79

10
0/

28
3

20
0/

14
1

Reduction Ratio/Number Of Reducers
15

/2
00

0

25
/1

12
4

50
/5

63

75
/3

79

10
0/

28
3

20
0/

14
1

T
im

e
(s

ec
o
n
d
s)

T
im

e
(s

ec
o
n
d
s)

Fig. 7 Overview of the IterativeReduce processing times with respect to the reduction ratio and
the number of reducers. On the left chart, the timespan of the overall reduction process with 250
nodes; on the right chart, the cumulative transfer times

A data analysis of the experiment is presented in Fig. 8, aiming to quantify the
gains brought in terms of data transfers by our proposals. We start with a naive
estimation of the overall data size per job by considering the amount of data that
is needed to execute a job; this considers the input data size, the results size, the
environment setup, the log file sizes, etc.—all multiplied with the total number of
jobs. Considering the big number of jobs, this value easily reaches tens of terabytes,
but such a situation is not realistic as it would imply that all jobs are executed in
parallel on different nodes. The cost of transferring such amounts of data would be
enormous, both in time and money, which shows that a tradeoff should be set for
the parallelism of the system. In addition to restricting the number of independent
processing nodes, different techniques can be used to avoid transferring data to and
from them. Buffering data, both at compute node level and at deployment level
is straightforward and brings important benefits as many transfers can be avoided.
Additional techniques range from compression, which can be provided by the data
management system, to application specific solutions like reordering the tasks. The
parallelization order of the computation is also a key factor when analyzing the data,
as a higher number of nodes require higher amounts of data to be transferred and
generate more data within the deployment (e.g. the size difference between task
based and compute node based estimation).

Big Data experiments generate and deal with a large number of files, holding
input, output, intermediate, log or monitoring data. Dealing with many files, either
directly by the user or autonomously by the system can be complex and takes time if
the proper tools are missing. Figure 9 presents the performance analysis for different
operations on the 28,000 monitoring files of the map jobs that result after running

Big Data Storage and Processing on Azure Clouds: Experiments at Scale and. . . 349

0

Data Size Estimation Size (TB)
10 20 25155

Es
tim

at
ion

 o
f D

at
a

fo
r a

ll j
ob

s

Dat
a

in
Com

pu
te

 N
od

es

Unt
ra

ns
fe

rre
d

da
ta

 d
ue

 to
 B

uf
fe

rin
g

Unt
ra

ns
fe

rre
d

da
ta

 d
ue

 to
 C

om
pr

es
sio

n

Unt
ra

ns
fe

rre
d

da
ta

 d
ue

 to
 Jo

b
Ord

er
ing

Tr
an

sfe
rre

d
Dat

a

Fig. 8 Estimation of the managed data sizes

the A-Brain experiment. On the one hand, the cloud storage system provides a basic
API, which leads to all basic functions like selection; filtering, aggregation, zipping
etc., being implemented and executed at the client side (i.e. in the worker role). On
the other hand, a storage system like DataSteward, which extends the cloud data API
and provides data functions at server side (i.e. in the cloud nodes that hold the data)
is able to reduce the time to manage the files and ease the job of the scientists who
needs to prepare, deploy and manage their experimental environment in the cloud.

As discussed previously, the location of the data is critical for the read and
write storage access performance. Figure 10 shows the cumulative throughput that
multiple clients achieve when accessing data from different storage solutions. On
the one hand, the performance of the remote cloud storage (within the same data
center or from another geographically remote data center) is subject to high latency
but has availability and durability guarantees. The local solutions (i.e. within the
deployment) provide superior throughput at the expense of ephemerality. It is
interesting to observe that when the overall amount of data accessed within the
deployment increases, dedicating compute nodes to manage it brings the highest
benefits. This is due to the fact that the throughput depends both on the bandwidth,
which is no longer shared by the storage and the application, as well as on the CPU,
which, in the case of the compute nodes used by DataSteward, is entirely dedicated
to data handling.

350 R. Tudoran et al.

600 10

8

6

4

2

0

0.025

0.015

0.005

0.01

0

0.02

500

400

Download Select

Check Exist Grep

300

200

100

0
Aggregate AzureBlob-List&SelectSelect

Check Exist AzureBlob-Download AzureBlob-Download&GrepGrep

AzureBlob-File by File

T
im

e
(s

ec
)

600

500

400

300

200

100

0

T
im

e
(s

ec
)

T
im

e
(s

ec
)

T
im

e
(s

ec
)

Fig. 9 The timespan of executing basic operations on 28,000 monitor files, when the operation is
supported and executed on server side compared to client side

4000 3000

2500

2000

1500

1000

500

0

3000

2000

1000T
h
ro

u
g
h
p
u
t

(M
B
/s

ec
)

T
h
ro

u
g
h
p
u
t

(M
B
/s

ec
)

Size of Data (MB)

0
16 32 64

Collocated Storage (TomusBlobs)
Dedicated Nodes (DataSteward)
Local AzureBlobs
Geo AzureBlobs

128 256 512

Size of Data (MB)
16 32 64

Collocated Storage (TomusBlobs)
Dedicated Nodes (DataSteward)
Local AzureBlobs
Geo AzureBlobs

128 256 512

Fig. 10 The cumulative read and write throughput reached by 50 nodes for different locations of
the storage system

Big Data Storage and Processing on Azure Clouds: Experiments at Scale and. . . 351

5.5 Big Data Processing on Clouds: Lessons Learned

In the process of designing, implementing, supporting and validating our cloud
storage solutions through large scale experiments, we had the opportunity to gain
useful experience and learn several interesting lessons. This section details these
issues and suggests our solutions to provide a roadmap for readers interested
in leveraging public clouds storage for their applications. We believe that this
discussion will help readers make informed design choices for their respective
cloud-based data-intensive applications. While some of these lessons specifically
relate to the Azure cloud platform, other could be considered from a more general
perspective and could be relevant for any cloud storage platform.

5.5.1 Lessons Learned on How to Best Benefit from the Azure Cloud

Message Visibility Timeouts Within Azure Queues We have experimented
Azure Queues as a mechanism for scheduling and for communication between the
running processes. They differ from the traditional queue data structures as they
lack the ability to guarantee a FIFO operation, due to their inner support for fault
tolerance: messages read from the queues are not deleted, but instead hidden until
an explicit delete is received after a successful processing. If no such confirmation
arrives, the message will become visible again in the queue, after a predefined
visibility timeout. We rely on the visibility timeout of the queues to guarantee
that a submitted message will not be lost and will be eventually executed by a
worker. Initially set to 2 h, the visibility timeout was increased to a week at the
latest Azure API update. The reason why the visibility timeout matters is that for
larger workloads, it might take roles longer than the timeout period to process the
jobs, making the synchronization messages disappear from the queue and hence
leading to incorrect results. We faced this issue during long running executions
(about 2 weeks) of our A-Brain application with large input data or fewer nodes.
A solution to this problem can be an application level tracking mechanism for the
submitted jobs, that automatically resubmits the failed jobs. We have implemented
this in our design of TomusMapReduce for geographically distributed datacenters,
but obviously this generated an additional overhead and requires deep knowledge of
Azure’s internals, which is generally not possessed by the average scientific user.

Application Deployment Times While working with the Azure cloud storage
platform we have observed that the resource allocation process plays a crucial role
in the overall application performance. For each new or updated deployment on
Azure, the fabric controller prepares the role instances requested by the application.
This process is time-consuming and varies with the number of instances requested
by the application as well as with the deployment size (application executables,
related libraries, data dependencies etc.). The deployment time has reduced after
the latest API release known at the time of writing this chapter, but can still be a
major bottleneck. To minimize this time, we suggest building the environment setup
at runtime, when possible.

352 R. Tudoran et al.

Handling VM Failures An interesting observation relates to the Azure fault
tolerance support. Built on top of clusters of commodity services and disk drives,
the cloud hosts an abundance of failure sources that include hardware, software,
network connectivity and power issues. To achieve high performance in such
conditions, in our initial estimations and designs we had the provision for failures
at the application level. However, we discovered that only a very small fraction of
the machines failed even during the course of very long running executions: during
the 2 weeks experiments on several hundred nodes, only three machines failed (fail-
stop-restart). This high availability is due to the complex, multi-tiered distributed
systems that transparently implement in Azure sophisticated data management, load
balancing and recovery techniques. We note from our experience that though disk
failures can result in permanent data loss, the multitude of transitory node failures
account for most unavailability. To enhance robustness, one can further use the
Azure Queues: their visibility timeout can be exploited to make an application both
failsafe and efficient, as explained in the previous paragraph.

5.5.2 Beyond Azure: Lessons Learned on Big Data Processing on Clouds

Wave- Versus Pipelined-MapReduce Processing One lesson we learned while
running complex MapReduce workloads is that starting all the jobs (e.g. maps) at
once is inefficient as it leads to massively-concurrent accesses to data. For example,
this happens in the following cases: concurrent access to the initial data or high
pressure on the cloud storage system when the processing reaches its end. The
network bandwidth is then basically in two states: either saturated or idle. As we
have gained more experience with these problems, we have addressed them by
improving the MapReduce model. For example, starting jobs in a pipeline manner
proves to be a better approach. Map tasks are created along the pipeline, as soon as
their input data becomes available, in order to speed up the execution. This approach
allows successive jobs in the pipeline to overlap the execution of reduce tasks with
that of map tasks. In this manner, by dynamically creating and scheduling tasks, the
framework is able to complete the execution of the pipeline faster.

Data Buffering and Caching Another lesson we learned is that, during long
running experiments, many data blocks are likely to be reused. It then becomes
useful to buffer them locally and to avoid further costly transfers. The idea is to
receive hints on the potential reuse of a file, before taking the decision of deleting it.
These hints could be given by the components which deploy the workload into the
system. To take the example of TomusMapReduce, this would be the responsibility
of the Data Splitter, in charge of data sharding across the nodes.

Scheduling Mechanisms for Efficient Data Access In a cross-datacenter deploy-
ment, a high number of geographical distributed concurrent access are likely to
lead to operation failures. For instance, if 100 nodes try to download the same
file from a different geographical region, 70 % of the read attempts will fail. This
situation typically occurs when some libraries or data sets are needed to setup the

Big Data Storage and Processing on Azure Clouds: Experiments at Scale and. . . 353

environment within the VMs. A naive solution in order to avoid re-scheduling is to
retry the operation in a loop. Besides being inefficient and generating additional
failures this approach might lead to starvation for some nodes. Adding random
sleeps between retries (as in the network decongestion algorithms) works in some
cases, but in general converges very slowly if there are many concurrent clients.
Moreover, if the download operation is long, other ongoing downloads can fail due
to the attempts made by the other nodes which will lead to deadlocks as in the
previous point. We opted for a token-based scheduling approach, by allowing a
predefined maximum number of nodes to concurrently access a shared resource.
The use of dedicated data nodes can further improve the data access: by acting as
proxies, they are used to disseminate data locally, close to the interested computation
nodes.

Monitoring Services to Track the Real-Time Status of the Application A
practical lesson that we learned is the importance of proper system-level monitoring
and further estimating the I/O and storage performance accurately and robustly in
a dynamic environment. It is essential to be able to predict the behavior of the
underlying network and endsystems, in order to judiciouslycommit to decisions

Fig. 11 A typical cloud
deployment containing a
workflow engine and a data
management system

related to storage and transfer optimizations over federated datacenters. Estimates
must be updated to reflect changing workloads, varying network-device conditions
and configurations due to multi-tenancy. Building on this monitoring phase we
were able to design performance models of cloud resources automatically. They are
further leveraged to predict the best combination of protocol and transfer parameters
(e.g. flow count, multicast enhancement, replication degree) in order to maximize
throughput or minimize costs, according to users needs.

Going Beyond MapReduce: Cloud-Based Scientific Workflows The most
important lesson we learned is that although MapReduce is the “de-facto” standard
for cloud data processing, most scientific applications don’t fit this model and
require a more general data orchestration, independent of any programming model.

354 R. Tudoran et al.

Executing a scientific workflow in the cloud involves moving its tasks and files
to the execution nodes. This data movement is critical for performance and costs
since when a task is assigned to an execution node, some of its required files may
not be available locally. Currently, on public clouds, this is achieved by using the
cloud storage services (e.g. Azure Blobs), which are unable to exploit the workflow
semantics and are subject to low throughput and high latencies. Thus, properly
scheduling the tasks according to the data layout within the compute VMs or
placing the data according to the computation pattern becomes a necessity. In order
to achieve this, we are advocating a two-way communication between the workflow
engine deployed on the cloud and the data management system, as illustrated
in Fig. 11. They should collaborate in order to optimize the data processing by
migrating and scheduling the data or the tasks. We are currently investigating and
experimenting this approach.

Conclusions
Porting data intensive applications to the clouds brings forward many issues
in exploiting the benefits of current and upcoming cloud infrastructures. In
this landscape, building a functional infrastructure for the requirements of
Big Data applications is critical and is still a challenge. Efficient storage
and scalable parallel programming paradigms are some critical examples.
In this chapter, we investigated several hot challenges related to Big Data
management on clouds. We discussed current state-of-the-art solutions, their
limitations and some ways to overcome them.

We introduced TomusBlobs, a cloud storage solution aggregating the
virtual disks on the compute nodes, and DataSteward, a storage system
leveraging dedicated compute nodes. We then proposed TomusMapRe-
duce, a prototype MapReduce framework relying on our storage solutions
and MapIterativeReduce—its iterative reduction counterpart, specifically
designed to address the challenges we identified. We demonstrated the
benefits of our approach through multi-sites experiments on a thousand cores
across three Azure data centres and consuming more than 200.000 compute
hours—the largest scientific experimental setup on Azure up to date—using a
real-life application.

The evaluation shows that it is clearly possible to sustain a high data
throughput in the Azure cloud thanks to our low-latency storage. Neverthe-
less, several problems like task and data scheduling, application monitoring
and workflow execution raise important challenges and open the avenue for
future research.

Big Data Storage and Processing on Azure Clouds: Experiments at Scale and. . . 355

References

1. A-Brain. http://www.irisa.fr/kerdata/doku.php?id=abrain.
2. Azure. http://www.windowsazure.com/.
3. Extracting Value from Chaos. EMC Corporation, June 2011. http://www.emc.com/collateral/

analyst-reports/idc-extracting-value-from-chaos-ar.pdf.
4. B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,

J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali,
R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli,
M. McNett, S. Sankaran, K. Manivannan, and L. Rigas. Windows azure storage: a highly
available cloud storage service with strong consistency. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP ‘11, pages 143–157, New York, NY,
USA, 2011. ACM.

5. D. Chappell. Introducing the Windows Azure Platform. Technical report, Microsoft. http://
www.microsoft.com/windowsazure/whitepapers/.

6. A. Costan, R. Tudoran, G. Antoniu, and G. Brasche. TomusBlobs: Scalable Data-intensive
Processing on Azure Clouds. Journal of Concurrency and computation: practice and
experience, 2013.

7. A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: research problems
in data center networks. SIGCOMM Comput. Commun. Rev., 39(1):68–73, Dec. 2008.

8. K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes. Sky computing. IEEE Internet
Computing, 13(5):43–51, Sept. 2009.

9. B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A. Carpen-Amarie. BlobSeer: Next
Generation Data Management for Large Scale Infrastructures. Journal of Parallel and
Distributed Computing, 71(2):168–184, Feb. 2011.

10. R. Tudoran, A. Costan, and G. Antoniu. Mapiterativereduce: a framework for reduction-
intensive data processing on azure clouds. In Proceedings of third international workshop
on MapReduce and its Applications Date, MapReduce ‘12, pages 9–16, New York, NY, USA,
2012. ACM.

11. R. Tudoran, A. Costan, and G. Antoniu. Datasteward: Using dedicated compute nodes for
scalable data management on public clouds. In Proceedings of the 11th IEEE International
Symposium on Parallel and Distributed Processing with Applications, ISPA ‘13, Washington,
DC, USA, 2013. IEEE Computer Society.

12. R. Tudoran, A. Costan, G. Antoniu, and H. Soncu. Tomusblobs: Towards communication-
efficient storage for mapreduce applications in azure. In Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012),
CCGRID ‘12, pages 427–434, Washington, DC, USA, 2012. IEEE Computer Society.

13. E. Yildirim and T. Kosar. Network-aware end-to-end data throughput optimization. In
Proceedings of the first international workshop on Network-aware data management, NDM
‘11, pages 21–30, New York, NY, USA, 2011. ACM.

http://www.irisa.fr/kerdata/doku.php?id=abrain
http://www.windowsazure.com/
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.microsoft.com/windowsazure/whitepapers/
http://www.microsoft.com/windowsazure/whitepapers/

Storage and Data Life Cycle Management
in Cloud Environments with FRIEDA

Lavanya Ramakrishnan, Devarshi Ghoshal, Valerie Hendrix, Eugen Feller,
Pradeep Mantha, and Christine Morin

Abstract Infrastructure as a Service (IaaS) clouds provide a composable
environment that is attractive for mid-range, high-throughput and data-intensive
scientific workloads. However, the flexibility of IaaS clouds presents unique
challenges for storage and data management in these environments. Users use
manual and/or ad-hoc methods to manage storage selection, storage configuration
and data management in these environments. We address these challenges via a
novel storage and data life cycle management through FRIEDA (Flexible Robust
Intelligent Elastic Data Management), an application specific storage and data
management framework for composable infrastructure environments.

1 Introduction

In the last few years there has been a rapid growth in data-intensive scientific
workloads. Data growth challenges have been considered to be multi-dimensional,
i.e. increasing volume (size of data), velocity (data arrival rates), variety (multiple
data types and sources), veracity (trust in the data source) and value (perceived value
by the user). The data growth challenges have resulted in the increased use of cloud
computing environments to serve the needs of data-intensive workloads.

The Infrastructure-as-a-Service (IaaS) cloud model provides a flexible environ-
ment where users get on-demand access to compute and storage hardware. In public
clouds, the client typically pays on a per-use basis for use of the equipment. IaaS
provides a “building block” approach to infrastructure where users can compose
their infrastructure as it is best suited for their applications. However, the flexibility

L. Ramakrishnan (�) • V. Hendrix • E. Feller • P. Mantha
Lawrence Berkeley National Lab, Berkeley, CA, USA
e-mail: LRamakrishnan@lbl.gov; vchendrix@lbl.gov; EFeller@lbl.gov; pkmantha@lbl.gov

D. Ghoshal
Indiana University, Bloomington, IN, USA
e-mail: dghoshal@cs.indiana.edu

C. Morin
Inria, Rennes, France
e-mail: Christine.Morin@inria.fr

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__15

357

mailto:LRamakrishnan@lbl.gov
mailto:vchendrix@lbl.gov
mailto:EFeller@lbl.gov
mailto:pkmantha@lbl.gov
mailto:dghoshal@cs.indiana.edu
mailto:Christine.Morin@inria.fr

358 L. Ramakrishnan et al.

of the IaaS model adds management complexity for the end user. For instance,
the user needs to manage the operating system, system software, and the storage.
Previous work has investigated various aspects of managing the compute resources
and associated software stack for scientific applications in IaaS environments
[15, 22]. However, the work in storage and data management has been largely
focused on storage services that provides an interface to storage resources [9,18,25],
which is by itself insufficient to manage complex data-intensive workloads.

Traditional supercomputing centers have served the needs of scientists that have
large simulation codes with high communication needs and have limited support for
other workloads. Supercomputing centers also provide access to high performance
file systems and archival storage. Scientific applications and their users are used
to the pre-configured storage models in clusters and HPC systems (e.g., shared file
system, archive systems). The storage and data management challenges introduced
by the IaaS model arise from the inherent transient model of resources. First, such
an environment provides a myriad of temporary and permanent storage resources.
Each virtual machine has transient local disks and can access more permanent
storage such as block store volumes and object stores. Each of these resources
has various performance, price and size trade-offs [17, 21]. Second, applications
need to explicitly manage the data on the servers and/or virtual machines (VMs).
It is the application’s responsibility to move the input data and store the output
data for archival either in the cloud or outside the cloud. Thus, users need to pick
and compose their storage choices, layer it with appropriate system software and
coordinate the management of data on these resources. Much of this work is time
consuming and is currently performed manually or through ad-hoc scripts.

In this chapter, we describe a framework, FRIEDA (Flexible Robust Intelligent
Elastic Data Management), for storage and data life cycle management in cloud.
FRIEDA is a framework that provides application-specific customized storage
planning, data placement and execution for scientific applications. We discuss
related work, scientific applications and cloud and HPC resource models in Sects. 2
and 3. We describe the storage and data management life cycle as managed by
FRIEDA in Sect. 4. We describe storage planning in Sect. 5, storage provisioning in
Sect. 6 and data placement in Sect. 7. We describe FRIEDA’s execution framework
in Sect. 8. Finally, we summarize in Sect. 9.

2 Related Work

In this section, we summarize related work.

Data Management in Programming Models The requirement for data-intensive
applications to distribute and process data in parallel has given rise to many
frameworks and programming models. MapReduce and its open source implemen-
tation Hadoop have been used for distributed data processing [13]. MapReduce
and Hadoop use a specialized file system (i.e., Google File System [16] and

Storage and Data Life Cycle Management in Cloud Environments with FRIEDA 359

Hadoop Distributed File System [8]) that provides data locality and replication.
MPI [2] is used for writing portable and scalable large-scale parallel applications.
Hadoop provides minimal control over data distribution among the nodes. MPI,
on the other hand requires the user to completely control data management and
communication across different compute nodes. But, none of these techniques
provide a generic solution to distribute data and execute applications without
instrumentation or rewriting them. Hadoop streaming provides solutions to execute
any existing script or program. There have been proposals to improve the existing
MapReduce framework for adaptive data placement on heterogeneous Hadoop
clusters [31]. Dryad [20] is a general-purpose distributed execution engine for
coarse-grain data-parallel applications. However, these frameworks do not provide
a generic framework that allows users to control data movement, data management
and execution in cloud environments. FRIEDA is a generic framework to execute
any script or program by combining data parallelization, data grouping, and data
distribution without any instrumentation at the application-level.

Distributed Data Management Various aspects of distributed data management
have been considered in the context of distributed and grid environments including
tools for optimized wide area data transfer [4, 26], replica management [10],
metadata catalog and data discovery systems [24, 27]. However, the characteristics
of cloud environment (e.g., elasticity, transient nature of storage) present unique
challenges which necessitate the need to revisit the data management framework
design. Data parallelization and task farming approaches have been shown to
significantly reduce execution times for embarrassingly parallel applications like
BLAST [7, 23]. FRIEDA provides similar benefits to scientific applications but its
approach is applicable to a large number of applications.

Workflow Tools Scientific workflow management systems [28] manage data-
intensive workflows and associated volumes of data. Deelman et al. [14] highlight
several challenges in data management for data-intensive scientific workflows. But,
none of the workflow tools provide flexible mechanisms to partition the data.
Moreover, workflow tools rely on existing locations of data and/or move data
where there are dependencies. FRIEDA supports only data-parallel tasks. However,
FRIEDA provides a flexible interface that can be used by workflow tools to control
parts or all of its workflow execution.

Storage Planning Pesto [18] automates storage performance management for
virtualized data centers using black-box performance models, providing IO load
balancing, per-device congestion management and initial placement of workloads.
Minerva [6] uses declarative specifications of application requirements and device
capabilities along with constraint-based formulations for designing storage systems.
FRIEDA’s storage planner also has specifications for storage resources and appli-
cation descriptions. However, they target storage management during execution
and not the design of storage systems. Walker et al. [30] propose a modeling tool
developed from empirical data to evaluate the benefits of using storage clouds versus
purchasing disk drives. Thereska et al. [29] provides support for self-prediction in a

360 L. Ramakrishnan et al.

storage system designed for clusters. FRIEDA provides a generic framework which
has the ability to plug-in various models for automated storage models.

Elasticizer [19] allows users to express cluster sizing problems as queries and
uses job profiling, estimation and simulation to answer the queries. However, its
focus is on elastic compute planning and it does not support storage planning based
on data characteristics.

Distributed storage systems (e.g., MosaStore [11,12]) provide automated config-
uration for application needs. Currently, FRIEDA framework is designed to operate
in cloud systems where the storage services cannot be configured dynamically at
this time.

3 Background

Scientific applications have heterogeneous storage and data requirements based on
their application characteristics. For example, BLAST, a bioinformatics application,
compares sequences with a reference database. In contrast a tomography image
comparison and normalization application operates on a set of images. Thus, the
choice of storage components and data management strategies depends on the data
source location, volume of data, scale of analysis and the access patterns (and cost,
in the case of public clouds). In this section, we provide a brief overview of storage
models and application characteristics that affect FRIEDA design.

3.1 Storage Models

Scientific users are accustomed to the storage model on local clusters and HPC
systems that provides scratch, project workspaces and/or archival systems. Users
typically have access to shared and high-performance file systems. The file systems
maybe transient but might have lifetime of weeks or months associated with
them (e.g., scratch) or more permanent (e.g., project or user home directories).
Additionally, most HPC systems provide long-term archival storage. Users typically
run their application codes on the system using scratch space and then move their
data to either project space and/or archival storage as appropriate.

Cloud providers such as Amazon and other private cloud software solutions
such as Eucalyptus provide multiple storage options. Users have access to non-
persistent local disk on the instance. In addition, a user can mount a block level
storage volume that persists independently from the life of an instance. These
block stores are expected to be highly available, highly reliable storage volumes
suitable for applications requiring a database, file system, or access to raw block
level storage. Additionally, Amazon S3 is an object storage service that offers a
highly-scalable, reliable, and low-latency data storage infrastructure through a web
service interface. Each of the instances provided also have different advertised I/O

Storage and Data Life Cycle Management in Cloud Environments with FRIEDA 361

performance. For example, the small instances provide moderate I/O performance
while the high I/O instances provide high, low latency disk I/O performance using
SSD-based local instance storage.

Different application use cases can also impact how cloud storage is utilized. For
example, if data is going to be reused multiple times, using block store volumes can
save data movement and placement costs. This makes it important to carefully select
storage in cloud environments. Thus, we need a framework that provides a more
systematic and coordinated, yet flexible, approach to storage and data management
in IaaS environments.

3.2 I/O Performance in Cloud Environments

In previous work [17], we performed an extensive I/O benchmarking study com-
paring various cloud platforms and service offerings. The I/O performance on
virtual hosts tends to show a fair amount of overhead and variability due to the
contention and sharing of underlying resources. However, as hypervisor and storage
technologies improve, we are seeing better I/O performance available in virtualized
environments.

The performance of the local disk tends to be slightly higher than the block store
volumes. This is especially true in the Amazon small instances that are bandwidth
limited. The advertised I/O performance on the instance type is expected to get
better with larger instances. In some cases better I/O performance has been reported
on the small instance local disk than the large instance. However, small instances do
tend to show a fair amount of variability. The EBS performance is definitely known
to improve with the instance types possibly due to the better network bandwidth
available to the larger instances.

Thus, an application will need to consider various factors—size, reliability, per-
formance, cost, persistence needs, I/O access patterns while picking the appropriate
storage options.

3.3 Resource Model

The storage devices most commonly used by scientific applications today are (a)
local disks on virtual machines which are pre-mounted at boot-up time, (b) block
store devices exposed as a physical device that end-user has to prepare (i.e., create
partitions and format) and, (c) object stores. The first two classes might have size
limits associated with them as configured by a site administrator.

The user can use the storage devices with different distributed and parallel file
systems (e.g., NFS, GlusterFS, HDFS). Figure 1 shows the various configurations
that are possible with the different storage options, file systems and provisioning
models. We use the term “virtual cluster” to refer to a provisioned cluster (either

362 L. Ramakrishnan et al.

M W W

M: Master
W: Worker

Shared
Storage

Virtual layer

Physical layer

CN CN CN

CN: Compute Node
(with OS & hypervisor)

CN CN CN

Local
disk

Local
disk

Local
disk

Local
disk

Local
disk

FS
server

FS
server

FS
server

FS
serverFS

Client

FS
Client

FS
Client

FS
ClientFS

Client

On VM

(Shared)
BS + FS Local + FS
On VM

FS
On Phy

Bare-metal
Provisioning

Shared
FS

On Phy

Virtual machine
Provisioning

Storage
Options

Input Data flow
for execution

Output data
flows for storage

Shared
Block

Storage

Transient Permanent

BS: Block Storage
FS: File System

CN

Fig. 1 The figure shows the various storage options coupled with different provisioning models.
Compute provisioning models allow bare-metal and virtual machine provisioning where the nodes
might be configured with different CPU, memory and disk options. The storage and file system
can result in a variety of different configurations of virtual clusters

bare-metal or virtual machines) that is configured for a particular user or instance of
application execution. Compute provisioning models allow bare-metal and virtual
machine provisioning. Each node allocated is configured with different CPU,
memory and disk options. In bare-metal provisioning, storage might be available
through shared storage pools or through local disks available on each compute node.
Similarly, in virtual machines, applications can use local disk accessible within each
instance. Virtual machines might also act as clients to a file server running on a
virtual server. In addition, it is possible to run hybrid modes where the physical file
servers might be used in virtual machines. It is important to note here that input data
flows from physical servers into virtual space for execution and output data when
generated moves out from the virtual space to physical space for permanent storage.

3.4 Application Execution modes

Our focus is on data-intensive and high-throughput applications with negligible
communication and hence FRIEDA is based on the master-worker (also known

Storage and Data Life Cycle Management in Cloud Environments with FRIEDA 363

as task-farmer) programming paradigm. The master decomposes the problem
into small tasks and distributes these tasks for execution on the workers. The
communication is between the master and the workers and the master is responsible
for aggregating the partial results to produce the final result.

We assume that there is no specific task affinity to a certain machine i.e., task
placement considers all available virtual machines as viable for task scheduling.
Each task might execute for different lengths of time depending on the task at hand
but we have no pre-existing knowledge of the execution time of individual tasks.

Our framework is designed to work with both physical machines, virtual
machines, or both.

3.5 Scientific Application Data Classes

Scientific applications have a variety of application data that needs to be available
in the execution environments. We use the term “data” loosely to capture all
execution variables including application sources and libraries. FRIEDA considers
the following data classes for applications:

Application Executables Scientific application executable and dependent libraries
need to be available on all execution nodes. Users have the option to include this
in the image that they create. However, any version changes to the application or
dependent libraries would require users to recreate the image. Thus, users often
prefer to manage placement of these executables on the resource at run-time.

Input Data We consider input data to be the total non-shared data required by the
tasks in the execution. In real-time mode, this data would be managed by the master
and the data moved during execution to the workers. We assume that input data
is either available on an existing device in the cloud or can be obtained from an
external source over the internet.

Shared Data Scientific applications often rely on shared databases and/or data that
needs to be accessed by all the workers. We consider shared data to be read-only for
our applications.

Intermediate Data The intermediate data is generated by the tasks but does not
need to be persisted beyond the lifetime of the execution. In this case, storage
resources need to be allocated during the lifetime of the execution but need not
be managed beyond that.

Output Data The output data is generated by the application during execution. We
consider output data to be data that the user would like to persist beyond the lifetime
of the execution. If there is intermediate data that needs to be persisted, we classify
that as output data. Since output data needs to be persisted we consider only two
storage options for the same, i.e., block-device type stores and/or object stores.

Log Data We need to provision storage space on all workers for log files.

364 L. Ramakrishnan et al.

4 FRIEDA Life Cycle

Storage Planning

Data Placement

Real-time
Management and

Adaptation

Storage
Provisioning and

Preparation
Execution

Fig. 2 The figure shows the life cycle of storage and data management in cloud environments.
The storage planning component plans for the storage requirements for the particular application
that triggers provisioning, preparation and data placement

FRIEDA (Flexible Robust Intelligent Elastic Data Management) manages the life
cycle of storage and data management in IaaS environments. Figure 2 shows the life
cycle of storage and data management as managed by FRIEDA. The first step in
the life cycle is storage planning. The storage planning determines the best storage
option as well as the appropriate data placement on the machines.

The storage planning drives the provisioning and preparation phase where the
resources are procured from the site. The planning phase provides a recipe of the
storage resources that need to be procured and setup (e.g., appropriate filesystem).
Once the storage is setup, data placement occurs where data is placed on the
resources as per the pre-determined plan.

In the next phase, the workload is executed on the resources using the guidelines
from the storage planning and data placement phase. The execution framework
uses the storage model setup by the previous phases and provides elastic data
management of the intermediate and output data as appropriate.

Our architecture is designed such that the monitoring and state management can
be used to drive the life cycle with changes (e.g., more data, resources failing)
during the life cycle. FRIEDA gives users the control over the data partitioning and
distribution across the nodes within a virtual cluster. Next, we describe the strategies
currently supported in FRIEDA for data partitioning and data management.

Storage and Data Life Cycle Management in Cloud Environments with FRIEDA 365

4.1 Data Partitioning

Cloud computing has various resource options with different performance, relia-
bility, scalability and cost trade-offs [17, 21]. Data management strategy needs to
account for the storage options that might be available to an application at a given
resource provider site and the application characteristics.

Every virtual machine has a local disk that provides the fastest I/O. However local
disk space is very limited typically in the order of a few gigabytes. Thus, typically
local disks are best used for application codes, checkpoint data and intermediate
stage data. Additionally, various cloud providers provide a way to use block store
volumes and/or external storage volumes within the virtual machines. Applications
that need to operate on shared data might mount shared file systems. External
storage, like iSCSI disks or any other network storage, provides a means to handle
and store large amounts of data which can be shared across the network as well.
FRIEDA’s storage planning takes these characteristics into account when planning
for storage and data placement.

There are trade-offs between locally placing the data versus dynamically fetching
the data from remote sources. It is important to consider eliminating the network
bottleneck and making best use of computation resources available. Thus, the
resource configuration and the execution behavior of the analysis workflow can
result in various data partitioning strategies:

No Partitioning The naive approach to data management would be to make
the complete dataset available on every compute node. In this mode, we do not
partition the data. The entire data is moved to each node and/or made available
through a shared file system. This model is well suited for applications where every
computation relies on a common data set (e.g., a database).

Pre-determined In pre-determined and homogeneous workloads, optimal solu-
tions can be found by pre-partitioning the data before the computation starts. Thus,
every node only has the data it needs for its computation thus saving on data
movement costs and possible synchronization overheads. This method works best if
every computation is more or less identical.

Real-Time The real-time partitioning of data is designed to suit experiments where
each computation is not identical or the compute resources are heterogeneous or
in elastic environments where additional resources might become available during
the execution. This partitioning strategy inherently load-balances since overloaded
nodes get less data to process.

366 L. Ramakrishnan et al.

4.2 Data Management

Figure 8 shows the data management strategies in FRIEDA. FRIEDA supports pre-
partitioning of data where data is available locally and/or on a networked storage.
Additionally, FRIEDA supports real-time data partitioning and distribution.

Pre-partitioned Task and Common Data In this mode, tasks are pre-partitioned
but the entire data-set is pre-distributed to all the nodes. Although processing the
data locally is more efficient compared to over the network, transferring all the data
to every node is expensive and not a practical solution for most applications.

Pre-partitioned Task and Data In this strategy, partitioning happens before com-
putation begins. Each computation unit processes the data-set assigned to it. This
strategy helps applications where processing the data at the source is impossible due
to resource constraints. Every partition is transferred to the respective compute node
before the computation begins. In this case, the total execution cost is the transfer
time of the data to the nodes plus the execution time of each computation.

Real-Time Task and Data Partitioning A real-time task and data partitioning
handles data partitioning and distribution dynamically when the computation unit
asks for it. It is inherently load-balanced, specifically if every computation task
does not consume same amount of resources or if computation happens in a
heterogeneous environment. This type of partitioning is also capable of utilizing
the network in an efficient manner since data transfer can be overlapped with
computation over a shared network.

5 Storage Planning

Figure 3 shows our storage planning process. The storage planning takes as input
information about the resources and the application data classes. The resource
information includes an ordered storage list that includes size and scalability fea-
tures of the storage option. It also takes compute description (e.g., virtual machine
type, count, etc). The storage planning applies it to the application data classes
in sequence. It generates three outputs (a) master storage description, (b) worker
storage description and (c) data placement semantics. The master storage descrip-
tion and worker storage descriptions are used by FRIEDA’s storage provisioning
and preparation component. The data placement semantics are used to define the
location where the application input data should be moved to on the virtual cluster.

The current implementation of FRIEDA planning assumes that the compute
planning (i.e., determining the number of VMs) has either occurred previously
through a compute provisioning system and/or the estimate is provided by the user.
Thus, the storage planning comes up with the best storage plan for a given compute
plan. Eventually, we envision that the compute and storage provisioning will be able
to negotiate to come up with the best plan.

Storage and Data Life Cycle Management in Cloud Environments with FRIEDA 367

Fig. 3 The storage planning iterates over the different data classes for the application trying
to determine the best storage fit given the ordered storage description and application or user
preference for each data class

Planning Sequence Figure 3 shows the planning sequence that we currently
implement. The planner first allocates storage for application sources on the first
storage option on the storage description list. If the application sources will not fit on
the storage device then the planner moves down the list of storage choices provided.
Second, it allocates storage for application shared data on the next available item
on the storage. We first allocate storage for these two data classes since they are
applicable for all tasks in the workflow. Next, we allocate resources for input, output
and log data. In the final step we verify that there is enough space available for
execution time data per task.

368 L. Ramakrishnan et al.

Table 1 Description of aggregate data required for application execution (Applica-
tion Input Model)

Application source Size of the application binary and libraries

Input data Size of the non-shared input data

Shared data Size of the shared data that is required on all tasks

Output data Expected total output data that will be generated

Intermediate data Expected total intermediate data that will be
generated

Output data destination User specified destination for output data for
persistence. Options are object or block store

Table 2 Per task data for application execution (Application Input Model)

Task input data Input data required by a single task

Task intermediate data Intermediate data generated by a single task

Task output data Output data generated by a single task

Number of tasks The total number of tasks that need to execute for
this application

Number of concurrent tasks The number of tasks that can run concurrently

Application Input Model The storage planning takes five classes of inputs. It
takes aggregate information about the application, task-level information about the
application, execution semantics, resource information and system-level parameters.

Table 1 shows the inputs that are aggregate information of the application data.
It consists of the sizes of the binaries, input data, output data, intermediate data,
shared data and the destination of where the user might like to save the final output.
We anticipate that these inputs will be directly provided by the application user.

The next set of inputs gets information at the task level (i.e., a single execution)
(see Table 2). These inputs are used to make sure that there are enough local
resources available during execution. Task level data includes the data required
by a single task (input, intermediate and output) and the number of tasks (total
and concurrent). The concurrent tasks are used to understand the difference in the
concurrency possible with given VMs to (e.g., given five VMs with a single core
each, ten total tasks will get scheduled as five tasks followed by five more tasks).
We anticipate that these user inputs might be provided by the user in the beginning
but long term compute provisioning and application profiling tools might be used to
come up with accurate estimates.

In the execution semantics, the user or an application component acting on behalf
of the user specifies the FRIEDA data management mode (i.e., pre-determined
or real-time) and the execution setup (currently master-worker applications are
supported).

Resource Model We expect that either the user or the compute provisioning
component will specify the number of provisioned resources and type and any
existing storage components that need to be used (see Table 3). In addition, the

Storage and Data Life Cycle Management in Cloud Environments with FRIEDA 369

Table 3 Resource information (Resource Input Model)

Resource count Count of virtual machines expected to be provi-
sioned for the computation

Resource type Corresponds to the instance type allocated by the
compute provisioning

Existing stores Ids of existing stores that might already contain
the data

Instance description Description of local storage available by instance
type

Preferred ordered storage
available on site

A list of storage options available to the applica-
tion ordered by preference

algorithm takes a description of the instance types and the storage tiers available
to the application. The system also accounts for storage for logs that might be
generated during execution.

Storage Description Our storage planning component takes a storage description
as input. The storage description is ordered (based on either performance and/or
preference). The storage description might be provided either by a user or be
configured to be site-wide. The storage description has storage size limits associated
with each level. Currently, we consider the storage size limit and the scalability
i.e., the maximum number of virtual machines the storage and filesystem are
capable of scaling to (when applicable). These storage descriptions might include a
combination of site-specific information combined with application information.

Output Model The output from the storage planning system is a recipe that can be
then used for provisioning. The output describes the storage type for each class of
data for each machine role (i.e., master and worker).

Additionally, for each data class storage choice is annotated with the appropriate
information required for data placement. For example, existing volumes might be
the source of data and the storage volume id will be included in the planner output.
Similarly, the data source can be mentioned, which might be the local desktop or a
remote url and/or also specific protocols to use for data transfer.

Additionally the storage planning component also outputs details of FRIEDA’s
execution mode and compute provisioning details (e.g., type of resource, count of
resources, tasks per resource) that will be used during provisioning. The syntax of
our output is shown in Fig. 4.

The plan has description of the storage type and data placement for each of the
roles (i.e., master and workers). The storage type declares the type of storage and the
size. The data placement specifies the storage choice where a particular data class
must be placed. The vm and frieda roles specify provisioning and execution level
semantics that will be used by frieda.

370 L. Ramakrishnan et al.

Fig. 4 An example showing the output generated from a FRIEDA storage planner

6 Storage Provisioning and Preparation

Figure 5 shows the architecture of FRIEDA Monkey1 that takes care of storage
provisioning and preparation and, data placement. FRIEDA Monkey uses the recipe
from the storage planning.

The storage planning component drives the storage provisioning. The appropriate
storage resources are provisioned as specified by the recipe storage type in the
output. For each role, the list of storage definitions is processed and appropriate
storage procured from the site.

The current implementation provides device/block store provisioning. It is
possible to create a new block store or using an existing one. During storage
provisioning the storage resource (block storage) is created (if new) or found (if
it exists) and then attached to the provisioned compute resource.

1Monkey is a play on words. It plays on FRIEDA by referencing Frieda Kahlo’s use of Monkeys
in her paintings. Additionally, the flexible nature of Monkey is highlighted which allows the user
to “monkey-around” with different infrastructure deployments.

Storage and Data Life Cycle Management in Cloud Environments with FRIEDA 371

Fig. 5 The diagram shows
the architecture of FRIEDA’s
Monkey that manages the
storage provisioning,
preparation and data
placement phases. Monkey
uses the output from the
storage planning to drive the
stages. FRIEDA’s execution
framework operates within
the virtual cluster

FRIEDA Monkey

Compute

Storage
Provisioning

Data
Placement

Third Party
Data Source

Storage
Preparation

FRIEDA
Execution

Monkey’s focus is on storage provisioning but as a proof-of-concept it does basic
compute provisioning, i.e., procures the compute resources that are part of the output
from the planning phase. Monkey’s compute provisioning allows the user to specify
a single VM image which is used to provision each node irregardless of it’s role.

Once the storage is provisioned, it needs to be prepared for use. Preparation can
include mounting existing devices, creating the file system, creating directories, etc.
Storage preparation in Monkey is handled through pre-defined actions. Our current
implementation supports the preparation of the local or block device with a parallel
or distributed file system (e.g., NFS, HDFS, etc).

Monkey is implemented as a flexible Python module based on Apache
Libcloud [1]. Apache Libcloud provides a way to realize our storage planning
with both compute and storage resource provisioning and preparation in the cloud
environment. Monkey uses Apache Libcloud to support OpenStack and Amazon
EC2 compatible APIs. Monkey is capable of supporting other stacks that Apache
Libcloud expands to support in the future. Monkey’s flexibility is inherent in its
ability to support the many stages of the cluster development cycle and to define
compute clusters with a complex set of services and data needs.

Monkey enables custom cluster deployment with a single YAML file. YAML
is a serialization format that easily maps data types common to most high-level
languages. The output from the storage planner is used to generate this YAML
file. The Monkey YAML configuration contains cloud information (authentication
values, image ids), node roles (master, worker) and orchestration required for the
node preparation (software configuration and/or data placement). The YAML file
has roles that define the type of resources to be procured and the quantity. Currently,
we have two roles—master (unique) and workers. The compute and storage resource
characteristics are specified in the YAML file. The YAML file also contains a list of
actions that are used for resource preparation and data placement. These actions are
executed on the resources after they are provisioned. Monkey allows applications
to apply an existing Puppet manifest [3], deploy credentials, run shell commands

372 L. Ramakrishnan et al.

and/or upload files. In summary, the YAML file defines a cluster with semantics
for resource provisioning, resource preparation, data placement and semantics for
application run-time.

7 Data Placement

In the data placement phase, the input data is moved to the appropriate storage that
was provisioned and prepared. The semantics for data placement changes depending
on where the input data resides and the data partitioning strategy (pre-determined
and real-time) being used.

We support two types of data placement, from outside the virtual cluster and
within the virtual cluster. Data placement can be defined as an ‘action’ in Cloud
Monkey, which supports several file transfer protocols and data sources (launch
node, third-party URL, etc.). This results in data placement right after the storage
preparation phase. Placement can also be initiated by the execution system before
or during the execution phase.

Specifically, we support use of scp and Globus Online [5] to transfer data from
and to third-party sources.

8 FRIEDA Execution

Figure 6 shows the system architecture of FRIEDA execution. FRIEDA execution
has a two plane architecture: a) control plane and b) execution plane. The control
plane separates out the flexible data management strategies required for different
applications from actual execution. The separation of the controller from the
execution allows implementation of many of the cloud specific policies and decision
processes (e.g., storage selection, elasticity) in the control plane.

The data management and application execution in FRIEDA is handled by
three components—controller, master and workers. The controller and the partition
generation algorithm, in the control plane, are responsible for setting up the
environment for data management and program execution. The master and the
workers operate in the execution plane and manage the execution of the program.

The control plane sets up the configurations for data transfer and process
execution. The configuration setup generates the partitioned data-set for the workers.
The ‘controller’ is the primary actor in the control phase and manages the master and
the workers. The controller encapsulates the policies in our system. It communicates
with the data partitioning algorithm and sets up the partition and distribution logic
between the master and the workers.

FRIEDA supports two modes of partitioning and distribution. In case of pre-
determined mode, the groups of files that will be processed by every worker is
determined by the master at the beginning. Based on the partitioning algorithm,

Storage and Data Life Cycle Management in Cloud Environments with FRIEDA 373

Partition Generator Controller

Master Workers

Control Plane

Execution Plane

Data Partitions

Distribute and
Transfer Data

Clone and Setup Program

Setup W
orker C

onnections and

Partiti
oning Metadata

Fig. 6 FRIEDA System Architecture: the figure shows the two plane architecture of FRIEDA.
The control plane is responsible for the setup of the system components and the execution plane
handles the mechanics of data-management in real-time. The partition generator partitions the list
of input files to be distributed to the tasks. The controller is responsible for controlling the setup
for data transfer and program execution. The master is responsible for distributing and transferring
data to respective workers. The workers, upon receiving the required data, do the computation and
return the results

the files are transferred to the workers. In real-time mode, the transfer is ‘lazy’—the
master does not transfer a file until a worker asks for work units. The real-time mode
inherently handles load balancing and process skew. Worker nodes that are heavily
loaded, process less compared to the nodes which are lightly loaded. The controller
can set up the workers to create as many instances of the program as there are cores.

8.1 Communication Protocol

Figure 7 captures the sequence of communication between the three system
components—controller, master and worker. First, the controller starts the master.
The master is initialized with the partition strategy to be used for execution. The
controller and master retain an open channel that allows the controller to change
the execution configuration of the master at run-time without requiring a master
restart. Additionally, dynamic decisions such as elasticity can be relayed to the
master through this channel.

The controller forks the remote workers on the nodes. The ‘master’ uses the
controller’s directive and partitions and transfers the data to the target nodes. The
master process might also fetch data from an external resource if that was specified
in the data placement plan.

The workers are initialized with the execution syntax of the program. For
example, if ‘app’ is the program that needs to be executed and takes arg1 and arg2 as

374 L. Ramakrishnan et al.

Controller

Execute program
instance

Master Worker(s)

Establish connection

Initialize and register
Initialize and setupexecution syntax

Connection acknowledgement

Request data

Send data

Send execution status and data

Time

Fig. 7 Component Interaction and Event Sequence: the diagram shows the sequence of events and
the interactions between the controller, master and workers in the FRIEDA system

parameters and inp1 as input, then the execution command is sent to the workers as
app arg1 arg2 $inp1, where $inp1 is replaced by the location of the file at run-time.

In the next step, the workers connect to the master and receive the assigned data
to be processed. Once the workers complete the execution of the application, both
the execution results and the status can be transferred to the master or left behind
on the workers as the application might desire. Every worker continues to receive
data and execute programs until all the inputs are processed. The workers are all
symmetrical i.e., all workers perform identical work on different data.

Information on any failed worker gets reported to the controller allowing the
controller to initiate remediation measures.

8.2 Execution Stages

FRIEDA’s execution framework has two stages (a) data transfer, and (b) process
execution to manage the interaction with the workers. For pre-partitioned data, the
phases are sequential, i.e., process execution starts only when the transfer of data is
completed. For real-time data partitioning strategies, the phases are interleaved.

The master sends the data and asks the workers to execute the tasks. The number
of workers running on each node depends on the multi-core setting specified in the
control phase. If multi-core computation is enabled, then every node will have as
many workers as there are cores. FRIEDA’s current implementation assumes that
the worker nodes are homogeneous.

Storage and Data Life Cycle Management in Cloud Environments with FRIEDA 375

It is important to note that the ‘process execution’ phase is similar to a task-
farmer. The process execution phase is responsible for executing a sequential
program in parallel by distributing the data and parallelizing the program execution.
FRIEDA does not modify any program code nor does it mandate a specific
programming model for the applications. FRIEDA provides more flexible control
on data partitioning, distribution, and computation while executing in a distributed
cloud environment.

8.3 Data Grouping

Scientific applications have different input specifications and execution parameters.
Data grouping divides the set of files within the directories into groups and sends
the information to the controller (Fig. 8).

The ‘partition generator’ module at the control level generates file groupings
based on the syntax of the program execution. The partitioning scheme determines
the number of input files that will be used for every program instance. The module
creates a list of files for each instance of the program. If a specific partitioning and
grouping mechanism is not selected, every instance of the program execution takes
one input as a file. We support three basic schemes (described below) but the design
allows other schemes to be easily added.

W0 W1

Pre-partitioning Remote Real-time partitioningPre-partitioning Local

W0 W1 W0 W1

Fig. 8 Data Management Classes in FRIEDA. There are three major classes of how data is
partitioned and managed (a) data is read from remote disks based on some pre-defined partitioning,
(b) data is local to computation, and, (c) real time partitioning and distribution strategy where every
worker receives the data as it requests for it

376 L. Ramakrishnan et al.

The three basic pairwise groupings that can be generated using the partition
generator are listed below.

• One to all: one file in the input directory is paired with the rest of the files to
be passed as arguments to the program. An example of such an application is
an image comparison application where each image is compared with a control
image.

• Pairwise adjacent: two adjacent files from the list are paired together and passed
as arguments to the program. An example of such an application is when one
studies the change between two adjacent experiment setups.

• All to all: every file is paired with all other files to be used as arguments to the
program. An example of such an application is an image comparison application
where each image is compared with other images in the set.

The partition file is used by the master to process the files from the input
directories and build the actual run-time execution command for the program to
be executed. The actual execution command is built by filling in the variables with
appropriate file names in real-time the workers receive the data from the master

9 Summary

Infrastructure-as-a-Service (IaaS) cloud model provides a flexible and composable
model to manage resources for scientific applications. However, the storage options
with different characteristics and the transient nature of the environment result in
unique storage and data management challenges. Currently, it is up to the user to
manually manage storage selection, storage configuration and data management
in these environments. To tackle these limitations, we have proposed FRIEDA,
a novel composable application-specific approach to storage and data life cycle
management.

Acknowledgements This material is based upon work supported by the Director, Office of
Science, office of Advanced Scientific Computing Research (ASCR) of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

References

1. Apache Libcloud. http://libcloud.apache.org/, 2013.
2. Open mpi. http://www.open-mpi.org/, 2013.
3. Puppet Labs Puppet Open Source. http://puppetlabs.com/puppet/puppet-open-source/, 2013.
4. W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, and I. Foster. The

globus striped gridftp framework and server. In Proceedings of the 2005 ACM/IEEE conference
on Supercomputing, SC ’05, pages 54–, Washington, DC, USA, 2005. IEEE Computer Society.

http://libcloud.apache.org/
http://www.open-mpi.org/
http://puppetlabs.com/puppet/puppet-open-source/

Storage and Data Life Cycle Management in Cloud Environments with FRIEDA 377

5. B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy, R. Kettimuthu, J. Kordas,
M. Link, S. Martin, K. Pickett, et al. Globus online: Radical simplification of data movement
via saas. Preprint CI-PP-5-0611, Computation Institute, The University of Chicago, 2011.

6. G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-Szendy, R. Golding, A. Merchant,
M. Spasojevic, A. Veitch, and J. Wilkes. Minerva: An automated resource provisioning tool
for large-scale storage systems. ACM Trans. Comput. Syst., 19(4):483–518, Nov. 2001.

7. R. D. Bjornson, A. H. Sherman, S. B. Weston, N. Willard, and J. Wing. Turboblast(r): A
parallel implementation of blast built on the turbohub. In Proceedings of the 16th International
Parallel and Distributed Processing Symposium, IPDPS ’02, pages 325–, Washington, DC,
USA, 2002. IEEE Computer Society.

8. D. Borthakur. The Hadoop Distributed File System: Architecture and Design. The Apache
Software Foundation, 2007.

9. J. Bresnahan, K. Keahey, D. LaBissoniere, and T. Freeman. Cumulus: an open source storage
cloud for science. In Proceedings of the 2nd international workshop on Scientific cloud
computing, ScienceCloud ’11, pages 25–32, New York, NY, USA, 2011. ACM.

10. A. Chervenak, R. Schuler, M. Ripeanu, M. Ali Amer, S. Bharathi, I. Foster, A. Iamnitchi,
and C. Kesselman. The globus replica location service: Design and experience. Parallel and
Distributed Systems, IEEE Transactions on, 20(9):1260 –1272, sept. 2009.

11. L. Costa and M. Ripeanu. Towards automating the configuration of a distributed storage
system. In Grid Computing (GRID), 2010 11th IEEE/ACM International Conference on, pages
201–208, 2010.

12. L.B. Costa, S. Al-Kiswany, A. Barros, H. Yang, M. Ripeanu, Predicting intermediate storage
performance for workflow applications. CoRR, abs/1302.4760, 2013.

13. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, Jan. 2008.

14. E. Deelman and A. Chervenak. Data management challenges of data-intensive scientific
workflows. In Cluster Computing and the Grid, 2008. CCGRID’08. 8th IEEE International
Symposium on, pages 687–692. IEEE, 2008.

15. E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing science
on the cloud: the montage example. In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, pages 50:1–50:12, 2008.

16. S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In Proceedings of the
nineteenth ACM symposium on Operating systems principles, SOSP ’03, pages 29–43, New
York, NY, USA, 2003. ACM.

17. D. Ghoshal, R. S. Canon, and L. Ramakrishnan. I/o performance of virtualized cloud
environments. In Proceedings of the second international workshop on Data intensive
computing in the clouds, DataCloud-SC ’11, pages 71–80, 2011.

18. A. Gulati, G. Shanmuganathan, I. Ahmad, C. Waldspurger, and M. Uysal. Pesto: online
storage performance management in virtualized datacenters. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, SOCC ’11, pages 19:1–19:14, New York, NY, USA, 2011.
ACM.

19. H. Herodotou, F. Dong, and S. Babu. No one (cluster) size fits all: automatic cluster sizing
for data-intensive analytics. In Proceedings of the 2nd ACM Symposium on Cloud Computing,
SOCC ’11, pages 18:1–18:14, New York, NY, USA, 2011. ACM.

20. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel programs
from sequential building blocks. In Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, EuroSys ’07, pages 59–72, New York, NY, USA, 2007.
ACM.

21. K. R. Jackson, L. Ramakrishnan, K. J. Runge, and R. C. Thomas. Seeking supernovae in the
clouds: a performance study. In Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, HPDC ’10, 2010.

378 L. Ramakrishnan et al.

22. K. Keahey, P. Armstrong, J. Bresnahan, D. LaBissoniere, and P. Riteau. Infrastructure
outsourcing in multi-cloud environment. In Proceedings of the 2012 workshop on Cloud
services, federation, and the 8th open cirrus summit, FederatedClouds ’12, pages 33–38, New
York, NY, USA, 2012. ACM.

23. A. Krishnan. Gridblast: a globus-based high-throughput implementation of blast in a grid
computing framework. Concurrency Computat.: Pract. Exper., 43(2):1607ÂŰ1623, Apr. 2005.

24. A. Rajasekar, R. Moore, C.-Y. Hou, C. A. Lee, R. Marciano, A. de Torcy, M. Wan,
W. Schroeder, S.-Y. Chen, L. Gilbert, P. Tooby, and B. Zhu. irods primer: Integrated rule-
oriented data system. Synthesis Lectures on Information Concepts, Retrieval, and Services,
2(1):1–143, 2010.

25. S. Sakr, A. Liu, D. Batista, and M. Alomari. A survey of large scale data management
approaches in cloud environments. Communications Surveys Tutorials, IEEE, 13(3):311–336,
2011.

26. A. Shoshani, A. Sim, and J. Gu. Storage resource managers: Middleware components for grid
storage. NASA Conference Publication. NASA, 2002.

27. G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Manohar, S. Patil, and
L. Pearlman. A metadata catalog service for data intensive applications. In Proceedings of
the 2003 ACM/IEEE conference on Supercomputing, SC ’03, pages 33–, New York, NY, USA,
2003. ACM.

28. I. J. Taylor, E. Deelman, and D. B. Gannon. Workflows for e-Science: Scientific Workflows for
Grids. Springer, Dec. 2006.

29. E. Thereska, M. Abd-El-Malek, J. J. Wylie, D. Narayanan, and G. R. Ganger. Informed data
distribution selection in a self-predicting storage system. In Proceedings of the 2006 IEEE
International Conference on Autonomic Computing, ICAC ’06, pages 187–198, Washington,
DC, USA, 2006. IEEE Computer Society.

30. E. Walker, W. Brisken, and J. Romney. To lease or not to lease from storage clouds. Computer,
43(4):44–50, 2010.

31. J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares, and X. Qin. Improving
mapreduce performance through data placement in heterogeneous hadoop clusters. In Parallel
and Distributed Processing, Workshops and Phd Forum (IPDPSW), pages 1–9, Atlanta,
Georgia, April 2010.

Managed File Transfer as a Cloud Service

Brandon Ross, Engin Arslan, Bing Zhang, and Tevfik Kosar

Abstract Applications in science and industry have become increasingly complex
and more demanding in terms of their computational and data requirements. Sharing
and disseminating large datasets has become a big challenge despite the deployment
of petascale computing systems and optical networking speeds reaching into the
hundreds of gigabits per second. Having high-speed networks in place is necessary
but not sufficient for achieving high data transfer rates. Being able to effectively
use high-speed networks is becoming increasingly important for cloud computing.
Cloud-hosted managed file transfer (MFT) applications simplify high-performance
data transfer in the cloud by efficiently utilizing underlying networks and effectively
coscheduling concurrent data transfer tasks. This chapter explores the concept of
MFT in the cloud and looks at the design and implementation of one such MFT
system—StorkCloud—as a case study.

1 Introduction

Data analysis is now more important to industrial and scientific research than
ever before. As its importance has grown, so too has the need to share and
analyze the very large datasets that are now commonplace in research. Large
scientific experiments, including environmental and coastal hazard prediction [15],
climate modeling [13], high-energy physics simulations, and genome mapping [7]
generate petascale data volumes on a yearly basis [11]. Data collected from remote
sensors and satellites, dynamic data-driven applications, and digital libraries and
preservations also produce large datasets [9, 20].

Today, a large portion of big-data processing and analysis is performed with the
help of cloud services. Economies of scale have made outsourcing the processing
of this data to distributed cloud services a popular alternative to deploying and
maintaining similar services on-site. However, this change in system architecture
from local to distributed has not come without its complications. The importance

B. Ross • E. Arslan • B. Zhang • T. Kosar (�)
Department of Computer Science & Engineering, University at Buffalo,
The State University of New York, 338J Davis Hall, Buffalo, NY 14260, USA
e-mail: bwross@buffalo.edu; earslan@buffalo.edu; bingzhan@buffalo.edu; tkosar@buffalo.edu

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__16

379

mailto:bwross@buffalo.edu
mailto:earslan@buffalo.edu
mailto:bingzhan@buffalo.edu
mailto:tkosar@buffalo.edu

380 B. Ross et al.

of data analysis to modern research and industry necessitates global collaboration
and sharing among many organizations, which results in frequent large-scale data
movements across widely distributed sites.

Several national and regional optical networking initiatives such as Internet2 [4],
ESnet [3], XSEDE/TeraGrid [21], and LONI [18] provide high-speed network
infrastructure for sharing this data, and recent developments in networking technol-
ogy make high-speed optical links reaching up to and beyond 100 Gbps in capacity
available [1] for members of the scientific community. Yet despite the availability of
these high-speed wide-area networks and the use of modern data transfer protocols
designed for high performance, data transfers in practice often only attain fractions
of their theoretical maximum throughput. Indeed, many organizations even resort
to sending their data through shipment services such as UPS or FedEx rather
than moving data through the Internet [10]. This inability to fully utilize network
infrastructure and easily move data is a contributing factor to the “data deluge” we
are now in the midst of.

From this, it is apparent that having high-speed networking infrastructure in place
is a necessary but not sufficient condition for performing high-speed data transfers.
Being able to effectively use these high-speed networks is increasingly important
for wide-area data replication and federated cloud computing in a distributed
setting. Doing so requires effectively coscheduling and dynamically optimizing data
replication tasks in a way that maximizes transfer efficiency and minimizes resource
contention.

A number of cloud services have been established that aim to do just this.
These cloud-based managed file transfer (MFT) applications offer a solution to the
problem of making effective use of networking infrastructure for cloud data transfer
by providing a service-based approach to the planning, scheduling, monitoring,
and management of data placement tasks. Their position as a centralized and
dedicated data transfer coordination system allows these services to offer increased
data transfer reliability and security, effectively coschedule concurrent data transfer
operations, and deliver performance improvements through capabilities such as
connection caching, scheduled storage management, and end-to-end throughput
optimization for broad ranges of data-intensive cloud computing applications and
storage systems. This chapter will introduce the concept of MFT and describe its
role in today’s widely distributed cloud computing ecosystem.

StorkCloud, developed by the Data Intensive Distributed Computing Lab at the
University at Buffalo, is one example of an MFT system, and will be used as a case
study of such systems in this chapter.

This chapter will also discuss various data transfer optimization techniques that
can be employed by MFT applications. Techniques such as command pipelining,
data channel parallelism, concurrent file transfers, and other techniques which can
mitigate the factors which lead to poor network utilization will be discussed, along
with algorithms and heuristics which can be used in centralized scheduling to
increase long-term transfer throughput.

Managed File Transfer as a Cloud Service 381

2 The Problem of Data Insolubility

The complementary roles of processing and storage have a long history in the field
of computing. The flow of data from storage medium to locus of processing and
back again could be said to be computation’s defining feature. Given the importance
of computation to all modern technology, it’s no surprise that bigger data storage
and faster processing systems are always in demand.

With the advent of cloud computing and the benefits it brings, outsourcing
data storage and processing to the cloud is a very compelling option for many
organizations versus providing such services on-site. However, the transition to
the cloud has not been without its difficulties, particularly where data needs to be
moved to, from, and especially within the cloud—activities that are becoming more
common as both storage media and loci of processing disappear into the cloud.

Most storage services focus on data storage primarily and offer simple—usually
proprietary—data transfer schemes solely for the purpose of allowing clients to store
and retrieve data directly. As their primary focus is on storage, they typically do not
concern themselves heavily with transfer performance, optimization, scheduling, or
the details of the underlying transfer protocols. Migrating or copying data between
cloud storage services also poses a challenge due to the proprietary data access
solutions employed by many cloud storage providers. Indeed, storage services may
even have incentive to keep it that way if it makes it more difficult for a client to
switch to a competitor.

Staging data into cloud data processing centers from an external storage system
poses similar challenges. These processing services often either provide their own
proprietary data staging schemes, or otherwise require users to manage data place-
ment themselves. In most cases, unless the cloud storage service and computation
service are both managed by the same provider, the exercise of moving data from
one site to the other is a detail left to the client. Cloud computation services, like
storage services, likewise do not usually concern themselves much with transfer
performance. The data staging process is frequently treated like an afterthought, or
at least something outside of the provider’s domain of concern.

This insularity has unfortunately led to an ecosystem in which users must make
sacrifices in order to reap the cloud’s benefits. Either they forsake flexibility and
constrain their applications to services explicitly designed to exchange data—
usually limited to a single provider or a small handful of cooperating ones—or
else they take on the burden of custom rigging their own data transfer solution, as
well as guaranteeing its reliability, security, compliance to regulation, availability,
performance, and future maintainability. Is this choice between inconvenience and
inflexibility not antithetical to the nature of the cloud, whose very benediction is
supposed to be the flexibility and convenience it offers over traditional solutions?

382 B. Ross et al.

2.1 Solutions

There are two immediately apparent solutions to the problem of data insolubility in
the cloud:

1. widespread agreement on and subsequent deployment of an open standard for
data placement, or

2. the institution of services which manage data transfer on clients’ behalf.

The first solution has a number of issues. Whose standard do we use? Many
competing standards, open and otherwise, already exist and have not seen
widespread adoption. History tells us that new “universal” standards intended
to replace competing standards often turn out to be just another competing standard,
exacerbating the problem. Furthermore, as was mentioned, cloud storage providers
have economic incentive to continue using proprietary standards. The inertia
required to change the ecosystem at the provider level likely makes this approach
infeasible, at least in the short term.

The second solution is perhaps a more feasible approach, and the one that
seems to be gaining the most traction. Cloud-hosted MFT applications which aim
to provide large-scale data placement between remote sites have begun to appear
as recently as 2010. These services provide a “software as a service” (SaaS)
approach to data management, and purport to offer a solution to the problems of
vendor lock-in and incompatible APIs (application programming interfaces) that
are responsible for the data insolubility problem we face today.

At the very least, MFT in the cloud provides a stopgap measure to mitigate these
problems. However, these services also confer a wide range of potential benefits and
new possibilities, as we shall soon see. Indeed, the future may very well find MFT
a valuable and permanent resident in the cloud ecosystem.

3 Managed File Transfer

Before going any further, a clarification must be made regarding the meaning of the
“MFT” as used in this chapter. MFT has been used in the past to describe any kind of
solution which facilitates large-scale secure data transfer over wide areas and allows
organizations to centrally control and monitor data transfers as they take place. This
includes hardware and software installed on local sites to manage the movement of
data into and out of the physical premises in which the data is stored or processed.

This chapter uses the term MFT to describe such a solution provided as a cloud
service—that is, entirely off-site and without special provisions at the endpoints.
Each instance of “MFT” in this text could very well be replaced with “MFT as a
service” or “MFT in the cloud”, however this would be considerably more onerous
to read, and should be obvious given the subject of this book. It should be assumed
that when “MFT” is used in this chapter it is referring to MFT as a cloud service
unless otherwise noted.

Managed File Transfer as a Cloud Service 383

A distinction must also be made between MFT applications and other types
of services which are commonly identified as data or file transfer services. Many
so-called data transfer services are temporary data storage systems used as an
intermediary for exchanging files between individuals. In these systems, file data is
uploaded to the hosting system by the sender and stored there for a limited amount
of time or until it has been retrieved by the recipient. Such services are mostly
indistinguishable from cloud storage services, with the difference being that files are
hosted temporarily with the intention of being downloaded only by a small number
of recipients.

An MFT application, in contrast, is used to schedule and coordinate data transfers
between distributed endpoints, in a sense acting as “glue” for data storage and pro-
cessing systems in the cloud. MFT applications do not necessarily act as a physical
intermediary for data, though they are of course not excluded from doing so. They
may instead communicate with remote storage systems using protocols understood
by the end systems, and negotiate direct system-to-system transfers without data
flowing through the MFT system. Such transfers are called third-party transfers.
An MFT system might offer temporary data hosting (sometimes called “data
parking” in this context) in order to offer improved transfer reliability, though this
is not necessarily the case.

MFT introduces a number of benefits over ad hoc data transfer implementations.
For one, MFT services can offer asynchronous “fire-and-forget” functionality,
where a client can specify an immediate or future data transfer and delegate
reliability and performance concerns to the MFT system. The system will monitor
transfer progress and deal with issues as they arise. Clients can check on transfer
progress through the system, cancel or reschedule transfers if they so desire, and be
notified by the system when the transfer completes or if it cannot be completed.

MFT applications can also provide support for numerous transfer protocols, and
even perform translations between otherwise incompatible protocols by acting as an
intermediary. This allows existing storage infrastructure to be used without needing
to reconfigure end systems to “speak” the same protocols.

MFT applications may also offer suites of transfer performance optimizers to
algorithmically tweak transfer settings and schedule transfers in order to minimize
conflicts and avoid network congestion. Such optimizers can take into account
transfer priority and user-specified deadlines. An MFT system can also maintain
a historical transfer performance database for different systems to better estimate
transfer completion time and schedule transfers to meet deadlines.

An MFT system should also be able to access remote system directory listings
and file metadata for the systems and protocols it supports and present it in a unified
format. In most cases, the capability of accessing remote metadata is a prerequisite
for performing remote data transfers in first place, making the provision of directory
listing information by an MFT system straightforward. In this chapter, a service
offering such functionality is referred to as a directory listing service (DLS). Such
services can be used for the development of interactive interfaces for browsing file
system hierarchies on remote endpoints. With user interactivity in mind, a DLS may
also take measures to improve the responsiveness of metadata and listing access
operations by, for example, caching and prefetching directory listings.

384 B. Ross et al.

As is typical of cloud services, an MFT system should offer both a graphical
(typically web-based) front end for users to interact with the system, as well as an
API for allowing programmatic access to the system’s services and the development
of third-party client applications. The availability of a machine-accessible API is
important for an MFT system to serve its role as an in-cloud connectivity layer
between distributed cloud-based data storage and processing services.

Lastly, MFT applications can relieve users of the burden of having to manage
transfer security themselves. Such applications can securely manage remote system
credentials on a per-user or per-organization basis, allowing clients to schedule
regular secure transfers and reduce the frequency of credential exchanges with
the system. MFT applications may also take the steps necessary to comply with
regulations regarding secure and private transfer of sensitive data, such as those put
forth in HIPAA.1

An MFT application has the advantage of not needing to invest heavily in either
storage or computation resources. Instead, the only critical resource in an MFT
system is network connectivity, allowing for inexpensive, geographically distributed
deployment of the system.

3.1 Examples of MFT

A number of MFT services exhibiting some or all of these features already exist and
are well-established in the cloud ecosystem. Even at the time of writing this list is
not complete; these are only a few examples.

Globus2 is a service offered by The Globus Alliance at the University of
Chicago [6]. It is aimed at the scientific community and, introduced in November
2010, is one of the earliest examples of an MFT service in the cloud. Globus offers
fire-and-forget GridFTP file transfers as a service, and provides a web-based front
end to their transfer scheduler, as well as a unified interface for requesting authen-
tication credentials for various well-known Grid computing resources. In addition,
the interface offers the ability to graphically list and browse directory contents on
remote GridFTP servers in real time. Globus also applies a number of heuristic
optimizations to its transfers [12] which will be detailed later in the chapter.

Ipswitch’s MOVEit Cloud3 is an MFT service aimed at enterprise organiza-
tions with large-scale data requirements [5]. MOVEit Cloud is built on top of
Ipswitch’s MOVEit File Transfer application. MOVEit Cloud supports a number
of protocols and authentication mechanisms, secure person-to-person file transfers,
and is HIPAA and PCI compliant.

1The Health Insurance Portability and Accountability Act of 1996—a United States legislative act
regarding the privacy of medical records.
2http://globus.org/.
3http://www.moveitmanagedfiletransfer.com/.

http://globus.org/
 http://www.moveitmanagedfiletransfer.com/

Managed File Transfer as a Cloud Service 385

Mover4 is another MFT application designed for use with popular cloud-hosted
data storage systems such as Dropbox and SkyDrive, though it also supports
transfers via FTP and WebDAV [2]. Mover provides an interface for browsing
cloud storage systems and a web-based REST API for interacting with the service
programmatically. It can be used to schedule future and recurring data transfers, and
offers a simplified method for reusing transfer parameters using transfer templates.

StorkCloud5 is an MFT application created by the Data Intensive Distributed
Computing Lab at the University at Buffalo (Fig. 1). It provides support for a number
of data transfer protocols and storage systems, including FTP, GridFTP, HTTP,
SMTP, BitTorrent, SCP/SFTP, and iRODS, as well as a collection of protocol-
agnostic transfer optimization algorithms. The architecture of StorkCloud will be
discussed in detail as a case study of an MFT system in the next section.

4 StorkCloud

StorkCloud is an MFT application based on open source software and is available
to the public free of charge. This chapter will take an in depth look at StorkCloud as
a case study on the design and implementation of MFT systems.

The major components of the StorkCloud system include:

• an extensible multi-protocol transfer job scheduler for queuing, scheduling,
monitoring, and optimizing data transfer jobs;

• a directory listing service (DLS) for prefetching and caching remote directory
metadata in the cloud to minimize response time to users;

• a web API adhering to representational state transfer (REST) design principles;
• pluggable transfer modules which can be used to communicate and negotiate

with different data transfer protocols and storage systems; and
• pluggable protocol-agnostic optimization modules which can be used to dynam-

ically optimize various transfer settings to improve performance.

StorkCloud schedules, optimizes, and monitors data transfer requests from users
through its lightweight thin client utilities (including an Android application, a
web browser interface, and command line tools). The API it exposes through its
client interface layer can be used by third-party clients and libraries, allowing for
StorkCloud to be used as a data connectivity layer in federated cloud systems.
The StorkCloud core is written in Java and is open source. The source code can
be downloaded from the Stork GitHub repository.6

4https://mover.io/.
5https://storkcloud.org/.
6https://github.com/didclab/stork.

https://mover.io/
https://storkcloud.org/
https://github.com/didclab/stork

386 B. Ross et al.

FTP ServerFTP Server

FTP/GridFTPSCP/SFTP HTTP

Transfer Module Interface

SchedulerCred. Manager DLS

Client Interface

StorkCloud

Web Browser
Mobile
Device

ControlControl

Data

Fig. 1 This illustration depicts the interactions between StorkCloud system components

4.1 StorkCloud Scheduler

StorkCloud’s scheduler is a modular, multi-protocol task scheduler which handles
the queuing and execution of data transfer jobs and ensures that they complete
successfully and in a timely manner. The scheduler’s external module interface
allows arbitrary protocol support to be implemented as standalone modules and
introduced to the system with minimal hassle. As the core component of the
StorkCloud system, the scheduler’s job is to take in transfer jobs and provide clients
with information about the progress of jobs upon request.

Jobs submitted to the scheduler are assigned a numerical identifier—the job
ID—which can be used to reference jobs in subsequent requests. The scheduler
can be queried to obtain a job status report, which includes information such as the
source and destination endpoint URLs, the job state (e.g., scheduled, in progress,
failed, complete), the size of the transfer in bytes, the progress of the transfer,
instantaneous and average transfer speeds, job submission and start times, and
estimated transfer completion time.

StorkCloud provides additional reliability to cloud data transfers via data transfer
checkpointing and checksumming for protocols that support them, as well as
alternative protocol fallback mechanisms. These are especially useful in large file
transfers where the likelihood of errors over the lifetime of a transfer is increased.

StorkCloud also provides mechanisms to monitor end-to-end data transfer tasks
to provide clients with real-time progress information as well as to detect failures
and performance problems as early as possible. StorkCloud’s error reporting
framework can distinguish the locus of failure (e.g, network, server, client, software,
hardware) in the event of problems, classify problems as transient or permanent,

Managed File Transfer as a Cloud Service 387

and provide possible recovery options. These error detection, classification, and
recovery mechanisms provide greater reliability and agility to transfers performed
by the system.

The StorkCloud scheduler is based heavily on the Stork Data Scheduler [16]. The
Stork Data Scheduler is considered to be one of the first examples of data scheduling
and optimization tools and has been actively used in many data-intensive application
areas including coastal hazard prediction and storm surge modeling, oil flow
and reservoir uncertainty analysis, numerical relativity and black hole collisions,
digital sky imaging educational video processing and behavioral assessment, and
multiscale computational fluid dynamics.

4.2 Directory Listing Service (DLS)

StorkCloud’s Directory Listing Service (DLS) provides a metadata retrieval service
to clients to enable efficient remote file system browsing before issuing a data
transfer request. Conceptually, DLS is an intermediate layer between StorkCloud
thin clients and arbitrary remote data storage systems that provides access to
directory listings as well as other metadata information in a unified format. In that
sense, DLS acts as a centralized metadata server hosted in the cloud. When a thin
client wants to list a directory or access file metadata on a remote server, it sends a
request containing necessary information (i.e., URL of the top directory to perform
listing on, along with required credentials) to DLS, and DLS responds back to the
client with the requested metadata.

During this process, DLS first checks if the requested metadata is available
in its cache. If it is available in the cache (and the provided credentials match
the associated cached credentials, and the cache entry has not expired, etc.), DLS
directly sends the cached information to the client without connecting to the remote
server. Otherwise, it connects to the remote server, retrieves the requested metadata,
and sends it to the client. Meanwhile, several levels of subdirectories will be
prefetched in the background and cached under the assumption that the user will
visit one of the subdirectories in the near future [24].

Any metadata information handled by DLS will be cached and periodically
checked with the remote server to ensure freshness of the information. Clients also
have the option to refresh/update the DLS cache on demand to bypass the cached
metadata and make sure they are receiving the most up-to-date directory listings and
metadata.

4.3 Web API and Thin Client GUIs

StorkCloud exposes a RESTful web API that allows thin clients—or even other
cloud services and applications—to log in to the system, schedule and control
transfer jobs, perform remote directory listings, manage user credentials, and

388 B. Ross et al.

more. Responses to REST requests are represented in JSON, allowing for easy
development of browser-based thin client applications. The web API can also be
used to develop hybrid web applications which may use StorkCloud’s data transfer
or metadata retrieval services in conjunction with other cloud-based services.

StorkCloud provides two thin client user interfaces: a web browser interface
accessible through the StorkCloud website and a native Android client. Through
these interfaces, users can visually observe transfer progress in real time and stop,
pause, and cancel transfer jobs using a point-and-click interface. Users can also
browse two remote servers simultaneously through a graphical interface which
communicates with StorkCloud’s DLS to access remote directory contents. Users
can traverse remote file systems, select files and directories for transfer, and initiate
a transfer between them.

The thin clients provided by StorkCloud cache and prefetch remote directory data
provided by StorkCloud’s DLS—much in the same way as DLS itself—to provide
a much more responsive and interactive user experience.

In addition to these client interfaces which communicate with StorkCloud using
the web API, the open source scheduler component comes bundled with a command
line utility for communicating with the scheduler directly using either HTTP or a
raw TCP connection.

4.4 Transfer Module Interface

StorkCloud acts as a negotiating system between different data storage systems and
protocols. In order to do this, StorkCloud must be able to “speak” the protocols of
the remote systems it aims to coordinate between. This is done using pluggable,
independent “transfer modules” that provide StorkCloud with a uniform interface to
a given protocol or storage system.

The transfer module interface allows StorkCloud users to develop modules to
support their favorite storage systems, protocols, or middleware easily. Modules
can be written in any language recognized by the operating system, as all commu-
nication between the transfer modules and scheduler is done in JSON. Users who
want to have tighter integration with the system as well as better communication
performance may implement transfer modules in Java to communicate directly with
the StorkCloud scheduler in memory.

StorkCloud supports a mechanism for protocol translation for cross-protocol data
movement using the StorkCloud system as a rendezvous point. It also offers direct
access to file data through its HTTP interface, allowing other StorkCloud thin clients
and third-party applications to access data though any supported protocol or storage
system, with StorkCloud operating as a proxy.

Managed File Transfer as a Cloud Service 389

4.5 Optimization Modules

StorkCloud can perform protocol-agnostic optimization of data transfers using
pluggable optimization algorithms. Optimization modules (also called optimizers),
similar to transfer modules, can be plugged into the server, and incoming jobs
can then request an optimization algorithm to be used for the transfer. Optimizers
advertise which parameters they are designed to optimize, and transfer modules can
likewise advertise which parameters they allow to be adjusted.

If a transfer module allows an optimization algorithm to be used, it queries the
optimizer for sample parameters, runs a sample, and reports the throughput back to
the optimizer. The optimizer uses the reported information to determine parameters
for the next sampling, and continues until either the transfer is complete or the
sampling phase is over. This design allows optimizers to be protocol-agnostic—
as long as the transfer module supports the features the optimizer exposes, neither
needs to know the other’s implementation details.

StorkCloud implements a number of dynamic optimization techniques as opti-
mization modules to provide a method for determining which combination of
parameters is “just right” for a given transfer. The optimization techniques Stork-
Cloud implements try to maximize transfer throughput by choosing optimal paral-
lelism, concurrency, and pipelining levels through combinations of sampling, file set
analysis, heuristic clustering, and learning algorithms applied to historical transfer
statistics.

The optimization algorithms StorkCloud supports will be discussed in the
following sections.

5 Transfer Level Throughput Optimization

Oftentimes during the course of a data transfer, one may experience periods of
poor transfer performance where transfer throughput drops to mere fractions of
maximum possible network capacity. Sometimes such effects are intermittent and/or
out of the control of the user, such as during times of heavy network utilization on
shared networks. However, poor transfer performance can be due to a number of
other confounding factors, e.g., underutilization of end system CPU cores, low disk
I/O speeds, traffic at inter-system routing nodes, unsuitable system-level tuning of
networking protocols, servers not taking advantage of parallel I/O opportunities.
Many of these effects can be remedied by properly configuring application-level
transfer settings at either the source or destination endpoints and dynamically
applying combinations of optimization techniques.

This section will cover algorithms and methodologies for optimizing data
placement operations from the perspective of an MFT application.

390 B. Ross et al.

5.1 Optimization Techniques

Per-transfer optimizations can be used to increase the goodput7 of an individual
data transfer. Adjusting transfer parameters and applying different techniques can
play a significant role in increasing transfer throughput. However, determining
the appropriate transfer settings and the degree to which techniques should be
applied can be difficult, and poor application of the techniques can either cause
underutilization of the network or overburden the network and degrade the perfor-
mance due to factors such as increased packet loss. Inappropriate application of
certain techniques can also violate network policies or cause service disruption in
environments with shared resources. It is therefore important that care is taken when
applying optimization techniques so as to avoid potential issues (Fig. 2).

A number of transfer options and techniques can be applied to many different file
transfer protocols, and the appropriateness of their application differer depending on
the nature of the end-system subnets, storage systems, and network interconnects.
This section will talk about some of these techniques and parameters from the
perspective of an MFT system using the following definitions:

• Pipelining—This involves queuing up multiple sending or receiving commands
at the end-systems in control channel-based transfer applications, as opposed to
waiting for transfer to complete before issuing subsequent commands. This helps
mitigate the effect of latency in a multi-file transfer.

• TCP tuning—A large majority of data transfer protocols are based on TCP,
making TCP tuning techniques a valuable tool for optimizing data transfers.
In particular, TCP tuning refers to reconfiguring end system TCP buffer sizes
to increase performance on networks with high Bandwidth–Delay Products.
However, the effectiveness of this technique only goes so far, as oftentimes end
systems enforce a maximum buffer size that is less than optimal, requiring the
use of other techniques.

• Data channel parallelism (or just parallelism)—This refers to the use of
multiple aggregated data streams (e.g., TCP connections) to a single endpoint,
and can be used to overcome the effect of system level limitations on buffer size.
The throughput of the aggregate channel approximates that of a single connection
with buffer sizes equal to the sum of the individual stream buffer sizes.

• Concurrency—This technique involves transferring different files simultane-
ously, which can take advantage of concurrent I/O in parallel and distributed
storage systems. In some application protocols (e.g., FTP and HTTP), this is
achieved using parallel control channel or session connections, and in those cases
can be used to almost identical effect as parallelism, even when the underlying
storage system does not allow parallel I/O.

7Goodput is the number of useful bits of information transmitted per unit time in a data transfer,
in distinction to the amount of bandwidth actually consumed. The ratio of goodput to throughput
is the transfer efficiency.

Managed File Transfer as a Cloud Service 391

• Striping—This is the use of multiple source and/or destination endpoints to
transfer file data to or from a shared (usually networked) storage subsystem. Like
concurrency, this takes advantage of parallel I/O in the storage system, but the use
of multiple endpoint hosts also allows it to take advantage of parallel CPUs and
sometimes network routes. In the context of network data transfers, the concept
of striping is different from, though analogous to, the concept of striping in a disk
storage array.8

• Compression—This can increase the efficiency of a transfer by increasing the
number of useful bits of information transferred per transmission unit. However,
the use of compression comes at increased computational overhead at both
endpoints, and might not be worth it in cases where file data is highly random
and thus of poor compressibility.9

Fig. 2 Effects of pipelining, parallelism, and concurrency on network load

8In the context of storage systems, striping refers to dividing file contents across several disks in a
RAID to improve read throughput.
9Specifically this refers to lossless compression, as the file data must be totally reconstructible at
the destination endpoint. This chapter does not consider lossy compression for purposes of data
transfer, though it might be useful depending on the application. Imagining examples of such
applications is left as an exercise for the reader.

392 B. Ross et al.

5.2 Dynamic Optimization

These optimization techniques can be used in combination to different degrees to
improve the efficiency of the transfer, insofar as the underlying transfer protocol
supports them. However, the degree to which each technique should be used—and
when—depends highly on the configuration of the network and end systems, and
temporal network conditions. Oftentimes these factors are not explicitly known by
users initiating transfers, and so automatic optimization subroutines are an enticing
feature for an MFT application to have. Such optimization subroutines can range
from simple heuristics that optimize according to file size or historical performance
to advanced algorithms that discover network conditions on the fly and tune transfer
parameters accordingly.

5.3 Examples in MFT Systems

Globus applies a heuristic optimization for GridFTP transfers based on the average
file size of a dataset. At the time of writing, their optimization heuristic always
transfers two files concurrently, and chooses parallelism and pipelining levels
according to the following rules [12].

• If there are more than 100 files with an average file size smaller than 50 MB,
it uses two parallel data channels per file and pipelines up to 20 outstanding
commands a time.10

• If the average file size is larger than 250 MB, it uses eight parallel data channels
per file and pipelines up to five outstanding commands.

• In the default case, it uses four parallel data channels and pipelines up to 10
outstanding commands.

StorkCloud employs a number of dynamic throughput optimization algorithms
designed for optimizing different sets of transfer parameters, which users may select
when they submit a transfer job. Some of these algorithms “sense” the network
between the remote endpoints by performing sample transfers and measuring
transfer performance. Others refer to performance information from past transfers
between the same endpoints, or use additional information about end-system and
configuration to choose theoretically optimal transfer settings. The algorithms
provided by StorkCloud include:

10In the case of Globus, a pipelined command does not necessarily correspond to one data
transfer, meaning pipelining in this sense does not precisely fit the definition given earlier in the
chapter. Nevertheless, the relationship between pipelined commands and pipelined data transfers
is effectively linear.

Managed File Transfer as a Cloud Service 393

• a number of parallel stream modeling and prediction algorithms [14, 22, 23],
• the Parallelism–Concurrency–Pipelining optimizer which uses historical

database information and clustering, and
• the Single Chunk Concurrency and Multi Chunk Concurrency algorithms

which optimize parallelism, concurrency, and pipelining using clustering and
heuristics [8].

Some transfer options can also be used to limit the maximum speed of a data
transfer. For example, limiting the TCP buffer size will constrain the number of
bits that may be transferred in a given window of time, thus imposing an upper
limit on the speed of the transfer. Though this may seem counterproductive, it can
be useful in cases where a data transfer is low priority or has a far-off deadline,
and minimizing the strain a transfer puts on the network might be desirable. This
technique is especially useful when scheduling simultaneous transfers with known
start times and deadlines.

6 Scheduling Optimization and Reservation

Aside from optimizing individual data transfers for maximum performance, MFT
systems also have the responsibility of coscheduling data transfer jobs of widely
variable scale with arbitrary earliest start times and deadlines specified by clients.

As was mentioned in the beginning of the previous section, drops in transfer
throughput can sometimes be time-dependent, as is often the case with slowdowns
during hours of peak usage. These predictable periods of poor performance can
sometimes be mitigated through effective use of timing strategies, especially in
cases of very large transfers. Strategies which take transfer priority and desired
transfer completion time into account can also increase overall throughput and the
number of transfers which complete successfully before their due time.

In practice, an MFT system will be presented with a variety of data transfer tasks
with different requirements. This can include small jobs that should complete as
quickly as possible, to large, long-running jobs that might have a much broader
window of time for completion. Much of the time these transfer jobs are independent
and can be coscheduled without the risk of competing for resources (e.g., bandwidth
at inter-system routing nodes or end system storage devices). However, there will
inevitably be jobs scheduled with destinations that have overlapping routes or are
transferring from the same source endpoint, as well as jobs that have a deadline
in the far future and need not begin immediately. In these cases, MFT applications
are in an advantageous position to make scheduling decisions that reduce resource
contention and network load, and maximize the number of deadlines met.

This section will discuss algorithms and practical considerations for performing
coscheduling from the perspective of an MFT system.

394 B. Ross et al.

6.1 Coscheduling Algorithms

In the context of data transfer, coscheduling is the process of scheduling multiple
concurrent transfer tasks of varying degrees of dependence on shared resources
while taking into account time constraints and minimizing the lateness—time spent
incomplete after the deadline—of a job. In this sense, the coscheduling problem is
“merely” a problem of mathematical optimization.

A number of algorithms exist for coscheduling transfer tasks to minimize
resource contention, maximize long-term throughput, and reduce the probability
of missing transfer deadlines. Depending on the algorithm used, different sets of
information regarding the underlying network characteristics and the nature and
constraints of the data transfers in question may be necessary.

One intuitive approach to coscheduling involves framing it as a variant of the bin
packing problem with two-dimensional “objects” representing transfer jobs being
packed into “bins” which represent available bandwidth between a given source and
destination. The “volume” of the objects being packed corresponds to the size of
the data that must be transferred for a particular job, and the “dimensions” of the
objects are the throughput of the job at particular times.

The dimensions of the objects can vary subject to the time constraints of the job,
so long as the volume remains the same. This allows for some great variability—
some “squishiness”—in the shape of the object (job) being packed into the bin. It is
even permissible to “split” the objects into unconnected parts by having periods of
time in which the throughput dimension is zero.

By varying the dimensions of object—making them “thinner” or “fatter”—or
splitting them, it may be possible to fit more objects in the bin while satisfying
all the constraints. This packing corresponds to a schedule which satisfies the
constraints of all the jobs being coscheduled. The manipulation of the dimensions
of the objects being packed manifests in actual systems as taking measures which
might at first seem to be counterproductive, such as throttling the rate of a transfer
or intermittently pausing transfers. Despite its counterintuitive nature, the concept
of throttling jobs to achieve overall greater across multiple jobs throughput is an
established and well-explored technique [19].

One difficulty with the bin packing approach, however, is introduced by the fact
that the volume of the bins cannot be so simply defined as “available bandwidth”.
Indeed, faithfully representing the nature of the Internet in the reduced problem
would involve overlapping and interdependent bins corresponding to the convoluted
nature of data paths through the Internet. This detail is likely too fine to capture
in the metaphor of bin packing. Nevertheless, the bin packing reduction of the
coscheduling problem can still be applied with useful results [17].

Managed File Transfer as a Cloud Service 395

6.2 Estimation with Historical Performance Data

In addition to having knowledge about transfers in advance, MFT applications can
also take advantage of historical transfer performance to make better decisions
about future data transfers. This information can be fed into learning algorithms
to discover patterns in network usage and make better predictions about optimal
transfer settings. This historical data can also be exchanged with third-party
scheduling applications or even other MFT services to allow for an even richer
transfer history database to be built collaboratively.

Combining information about historical and future transfer jobs can also be used
to develop better methods for estimating transfer completion time. This information
can be used by MFT schedulers for the sake of making smarter scheduling decisions
and for providing users with better estimations of data transfer duration.

Using its historical transfer database and information about ongoing and sched-
uled transfer jobs, StorkCloud is able to provide information to its clients regarding
available end-to-end throughput for the user, the estimated total time it would take
to transfer a particular dataset, and the parameters that need to be used in order
to achieve the highest end-to-end throughput. If the information necessary to make
this predication cannot be found in the historical database, StorkCloud can perform
dummy transfers on the fly and use the results to make predictions.

This estimation service allows users to test network resources and conditions, and
lets data transfer operations be scheduled in advance with preferred time constraints
given by the user—i.e., the requested earliest start time and desired latest completion
time. It also lets users and higher level meta-schedulers plan ahead and reserve
a time period for their data movement operations. This service can potentially be
used to eliminate long delays in transfer completion and increase utilization by
giving opportunities to provision required network and storage resources in advance,
and also enables third-party data schedulers to make more informed scheduling
decisions by organizing requests and focusing on a specific time frame to maximize
performance and resource utilization.

6.3 Practical Considerations

Although in some cases information regarding underlying networks may be pro-
vided by users, ideally such information would be discovered by the MFT system
itself. However, it may not always be possible to do so, especially when conducting
third-party transfers as many transfer protocols and applications do not offer ways to
collect diagnostics information that may be necessary to determine certain network
characteristics.

For example, because of its decentralized nature, data transfers between Internet
hosts may not always take the same route. Furthermore, the routes a given transfer

396 B. Ross et al.

may take might not be even discoverable by the MFT system (or sometimes even
the remote hosts themselves), because diagnostic protocols for discovering routing
information are not universally implemented and much of the time are blocked by
intermediate routing nodes for purposes of security. This means it might not always
be possible to determine with certainty which data transfers might have overlapping
routes, and thus potentially interfere during data transfers.

Even if the route a given data transfer will take is knowable, because of the
heterogeneous nature of the Internet and the lack of diagnostic protocols for doing
so, it is generally difficult to determine the capacity and transient load of the links
in a route. This makes doing beforehand estimations of the maximum data rate of a
transfer, even knowing the routes it will take, a difficult task.

Another difficulty arises in actually controlling transfer rate and guaranteeing
a transfer will be able to maintain a given rate for the entirety of its scheduled
time. The extent to which an MFT application can utilize these techniques varies
depending on the capabilities of the underlying network, the system’s ability to
control and sense the network between two end systems remotely, and the nature of
the transfer protocol underlying the transfer. The use of reservations on networks
that support them can give an MFT application much more control over and
predictive power regarding a transfer.

One other difficulty is that, given that the bin packing approach is NP-hard, it is
infeasible to expect that an exactly optimal coscheduling can be found in every case.
It is more likely then that a heuristic approach will be necessary in real applications.
Combining a heuristic bin packing approach with machine learning techniques
applied to historical transfer data can likely produce near-optimal schedulings
without succumbing to the potential pitfalls of non-polynomial algorithms.

7 Potential Applications of MFT

Many practical applications exist for MFT in the cloud ecosystem. This section will
list a few possible applications in a cloud-connected environment.

7.1 Cloud Data Placement Middleware

One application that was mentioned earlier in the chapter was using MFT as a sort
of “glue” to bridge the gap between cloud storage and cloud computation services.
Centralized data transfer managers have been used successfully to manage dataset
staging in locally distributed computation systems, e.g. HTCondor [16]. MFT would
fulfill an analogous role and confer the same benefits for cloud-based computation
systems.

Managed File Transfer as a Cloud Service 397

An MFT system can be used to stage data between cloud storage systems
and cloud computation systems, freeing users from needing to manage staging
themselves and also taking advantage of transfer and scheduling optimizations
provided by the MFT system.

7.2 Backup Management and Replication

MFT systems can also perform automatic backup of data in cloud storage or
replicate and synchronize data across multiple cloud services. Individuals and
organizations who make regular backups of data can outsource this task to cloud-
hosted MFT systems and take advantage of reliability guarantees and optimized data
transfers.

7.3 Data Transfer for Thin Applications

One of the useful properties of cloud service systems is that they give client
applications the opportunity to offload expensive or difficult tasks to remote systems.
The client then only has to worry about communicating with the remote system and
presenting responses from the server to the user.

MFT systems that offers a programmatic interface for transferring data and navi-
gating remote file systems could be integrated into a thin client application to allow
it to support multiple protocols and optimization algorithms without increasing the
size of the application or burdening the developer to worry about application details.
These applications could even be very lightweight web applications that run in the
browser, allowing web applications to perform file transfers and access file metadata
for multiple protocols and storage systems—something that has until now been
difficult to do in web applications.

7.4 Going Further with MFT

The uses of MFT systems can also reach beyond simply managing data transfers
and fetching directory listings. Indeed, some creative cases may elicit the need for
categorization as something other than “managed file transfer”. Advanced MFT
systems are essentially protocol polyglots, and may be extended to take advantage
of this.

398 B. Ross et al.

Consider that MFT systems are necessarily capable of listing and crawling
storage systems. Add an indexing mechanism, and it can become something
else entirely. Imagine providing a service that allows organizations to index and
search their own data stores, and easily locate, collate, and compare organizational
documents no matter where or how they are stored. Typically such services
are provided only for particular storage systems, but with MFT-as-abstraction layer,
the underlying system can be anything. Imagine applying this to build a search
engine on an index of publicly accessible storage systems—Google, but for more
than just common web protocols.

Consider now that an MFT system that performs protocol translation is essen-
tially a “Swiss Army knife” of storage system clients. Imagine going an extra
step and making it a “Swiss Army knife” of server facades as well. Such systems
could act as gateway to any supported protocol or storage system, accessible by
anything that speaks the “language” of any other supported protocol or storage
system. For example, a system that speaks FTP would be able to interface with a
system that speaks HTTP—the MFT system acting as a translator—and meanwhile
both systems would think they’re speaking to a “native speaker” of the protocol they
are configured to use.

Imagine a world where data transfer is routinely handled by cloud services. Users
would not need to install special software in order to transfer files to or from other
users or services in the cloud. The specifics of the underlying protocol or storage
system would no longer matter. All of the details of the transfer will be offloaded
to the cloud, and when the details change the cloud will adapt and users will never
need to know.

It is left up to the reader to imagine other such creative use cases. Certainly the
possibilities are great when data can flow so readily in the cloud.

Conclusion
This chapter has taken a look at the challenges faced in moving data into, out
of, and around in the cloud. We’ve seen the issues surrounding data solubility
that have arisen as data storage and processing have moved into the cloud, and
how these issues can be addressed by MFT services.

We’ve examined the features of an ideal MFT system, and seen how MFT
services in the cloud can take advantage of their centralized nature in order to
offer benefits over other transfer management solutions. We’ve seen a number
of established examples of research and commercial MFT systems, and we’ve
taken a close look at the architecture of one such system—StorkCloud.

Hopefully this chapter has made a convincing case for MFT. Perhaps in the
future MFT will be as commonplace in the cloud as storage and processing
are today.

Managed File Transfer as a Cloud Service 399

References

1. ARRA/ANI testbed. https://sites.google.com/a/lbl.gov/ani-100g-network.
2. Backup, copy, and migrate files between cloud storage services | Mover. https://mover.io/.
3. Energy Sciences Network (ESnet). http://www.es.net/.
4. Internet2. http://www.internet2.edu/.
5. Ipswitch MOVEit Managed File Transfer. http://www.moveitmanagedfiletransfer.com/.
6. ALLEN, B., BRESNAHAN, J., CHILDERS, L., FOSTER, I., KANDASWAMY, G.,

KETTIMUTHU, R., KORDAS, J., LINK, M., MARTIN, S., PICKETT, K., AND TUECKE, S.
Software as a service for data scientists. Communications of the ACM 55:2 (2012), 81–88.

7. ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W., AND LIPMAN, D. J. Basic Local
Alignment Search Tool. Journal of Molecular Biology 3, 215 (October 1990), 403–410.

8. ARSLAN, E., ROSS, B., AND KOSAR, T. Dynamic protocol tuning algorithms for high
performance data transfers. In Euro-Par (2013), F. Wolf, B. Mohr, and D. an Mey, Eds., Lecture
Notes in Computer Science, Springer, pp. 725–736.

9. CEYHAN, E., AND KOSAR, T. Large scale data management in sensor networking applications.
In In Proceedings of Secure Cyberspace Workshop (Shreveport, LA, November 2007).

10. CHO, B., AND GUPTA, I. Budget-constrained bulk data transfer via internet and shipping
networks. In The 8th International Conference on Autonomic Computing (ICAC) (2011).

11. HEY, T., AND TREFETHEN, A. The data deluge: An e-Science perspective. In In Grid
Computing - Making the Global Infrastructure a Reality, pp. chapter 36, pp. 809–824. Wiley
and Sons, 2003.

12. JUNG, E.-S., KETTIMUTHU, R., AND VISHWANATH, V. Toward optimizing disk-to-disk
transfer on 100G networks.

13. KIEHL, J., HACK, J. J., BONAN, G. B., BOVILLE, B. A., WILLIAMSON, D. L., AND RASCH,
P. J. The national center for atmospheric research community climate model: Ccm3. Journal
of Climate 11:6 (1998), 1131–1149.

14. KIM, J., YILDIRIM, E., AND KOSAR, T. A highly-accurate and low-overhead prediction model
for transfer throughput optimization. In Proceedings of ACM SC’12 DISCS Workshop (2012).

15. KLEIN, R. J. T., NICHOLLS, R. J., AND THOMALLA, F. Resilience to natural hazards: How
useful is this concept? Global Environmental Change Part B: Environmental Hazards 5, 1–2
(2003), 35–45.

16. KOSAR, T., BALMAN, M., YILDIRIM, E., KULASEKARAN, S., AND ROSS, B. Stork data
scheduler: Mitigating the data bottleneck in e-science. The Phil. Transactions of the Royal
Society A 369(3254–3267) (2011).

17. LEINBERGER, W., KARYPIS, G., AND KUMAR, V. Multi-capacity bin packing algorithms
with applications to job scheduling under multiple constraints. In Parallel Processing, 1999.
Proceedings. 1999 International Conference on (1999), IEEE, pp. 404–412.

18. LONI. Louisiana Optical Network Initiative (LONI). http://www.loni.org/.
19. SOUDAN, S., CHEN, B. B., AND VICAT-BLANC PRIMET, P. Flow scheduling and endpoint rate

control in gridnetworks. Future Generation Computer Systems 25, 8 (2009), 904–911.
20. TUMMALA, S., AND KOSAR, T. Data management challenges in coastal applications. Journal

of Coastal Research special Issue No.50 (2007), 1188–1193.
21. XSEDE. Extreme Science and Engineering Discovery Environment. http://www.xsede.org/.
22. YILDIRIM, E., YIN, D., AND KOSAR, T. Prediction of optimal parallelism level in wide area

data transfers. IEEE TPDS 22(12) (2011).
23. YIN, D., YILDIRIM, E., AND KOSAR, T. A data throughput prediction and optimization service

for widely distributed many-task computing. IEEE TPDS 22(6) (2011).
24. ZHANG, B., ROSS, B., TRIPATHI, S., BATRA, S., AND KOSAR, T. Network-aware data caching

and prefetching for cloud-hosted metadata retrieval. In Proceedings of the Third International
Workshop on Network-Aware Data Management (2013), ACM, p. 4.

https://sites.google.com/a/lbl.gov/ani-100g-network
https://mover.io/
http://www.es.net/
http://www.internet2.edu/
http://www.moveitmanagedfiletransfer.com/
http://www.loni.org/
http://www.xsede.org/

Supporting a Social Media Observatory
with Customizable Index Structures:
Architecture and Performance

Xiaoming Gao, Evan Roth, Karissa McKelvey, Clayton Davis,
Andrew Younge, Emilio Ferrara, Filippo Menczer, and Judy Qiu

Abstract The intensive research activity in analysis of social media and
micro-blogging data in recent years suggests the necessity and great potential
of platforms that can efficiently store, query, analyze, and visualize social media
data. To support these “social media observatories” effectively, a storage platform
must satisfy special requirements for loading and storage of multi-terabyte
datasets, as well as efficient evaluation of queries involving analysis of the text
of millions of social updates. Traditional inverted indexing techniques do not meet
such requirements. As a solution, we propose a general indexing framework,
IndexedHBase, to build specially customized index structures for facilitating
efficient queries on an HBase distributed data storage system. IndexedHBase is
used to support a social media observatory that collects and analyzes data obtained
through the Twitter streaming API. We develop a parallel query evaluation strategy
that can explore the customized index structures efficiently, and test it on a set of
typical social media data queries. We evaluate the performance of IndexedHBase
on FutureGrid and compare it with Riak, a widely adopted commercial NoSQL
database system. The results show that IndexedHBase provides a data loading speed
that is six times faster than Riak and is significantly more efficient in evaluating
queries involving large result sets.

X. Gao (�) • A. Younge • J. Qiu
School of Informatics and Computing, Indiana University, Lindley Hall, Room 215 150 S.
Woodlawn Avenue Bloomington, IN 47405
e-mail: gao4@indiana.edu; xqiu@indiana.edu; ajyounge@indiana.edu

E. Roth
Department of Computer Science & Information Technology, University of the District
of Columbia, Washington, DC, USA
e-mail: evanroth@me.com; eroth@indiana.edu

K. McKelvey • C. Davis • E. Ferrara • F. Menczer
School of Informatics and Computing, Indiana University, Informatics West, Room 233, 901 E.
10th Street, Bloomington, IN 47408
e-mail: karissa.mckelvey@gmail.com; krmckelv@indiana.edu; claydavi@indiana.edu;
ferrarae@indiana.edu; fil@indiana.edu

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__17

401

mailto:gao4@indiana.edu
mailto:xqiu@indiana.edu
mailto:ajyounge@indiana.edu
mailto:evanroth@me.com
mailto:eroth@indiana.edu
mailto:karissa.mckelvey@gmail.com
mailto:krmckelv@indiana.edu
mailto:claydavi@indiana.edu
mailto:ferrarae@indiana.edu
mailto:fil@indiana.edu

402 X. Gao et al.

1 Introduction

Data-intensive computing brings challenges in both large-scale batch analysis and
real-time streaming data processing. To meet these challenges, improvements to
various levels of cloud storage systems are necessary. Specifically, regarding the
problem of search in Big Data, the usage of indices to facilitate query evaluation
has been a well-researched topic in the area of databases [16], and inverted indices
[37] are specially designed for full-text search. A basic idea is to first build index
data structures through a full scan of data and documents and then facilitate fast
access to the data via indices to achieve highly optimized search performance.

Beyond these system features, it is a challenge to enable real-time search and
efficient analysis over a broader spectrum of social media data scenarios. For
example, Derczynski et al. [14] discussed the temporal and spatial challenges
in context-aware search and analysis on social media data. Padmanabhan et al.
presented FluMapper [20], an interactive map-based interface for flu-risk analysis
using near real-time processing of social updates collected from the Twitter
streaming API [30]. As an additional scenario within this line of research, we
utilize Truthy (http://truthy.indiana.edu) [18], a public social media observatory that
analyzes and visualizes information diffusion on Twitter. Research performed on the
data collected by this system covers a broad spectrum of social activities, including
political polarization [7, 8], congressional elections [9, 15], protest events [10, 11],
and the spread of misinformation [23, 24]. Truthy has also been instrumental in
shedding light on communication dynamics such as user attention allocation [34]
and social link creation [35]. This platform processes and analyzes some general
entities and relationship, contained in its large-scale social dataset, such as tweets,
users, hashtags, retweets, and user-mentions during specific time windows of social
events. Truthy consumes a stream that includes a sample of public tweets. Currently,
the total size of historical data collected continuously by the system since August
2010 is approximately 10 Terabytes (stored in compressed JSON format). At the
time of this writing, the data rate of the Twitter streaming API is in the range of
45–50 million tweets per day, leading to a growth of approximately 20 GB per day
in the total data size.

This chapter describes our research towards building an efficient and scalable
storage platform for this large set of social microblogging data collected by the
Truthy system. Many existing NoSQL databases, such as Solandra (now known as
DataStax) [13] and Riak [25], support distributed inverted indices [37] to facilitate
searching text data. However, traditional distributed inverted indices are designed
for text retrieval applications; they may incur unnecessary storage and computation
overhead during indexing and query evaluation, and thus they are not suitable for
handling social media data queries. For example, the issue of how to efficiently
evaluate temporal queries involving text search on hundreds of millions of social
updates remains a challenge. As a possible solution, we propose IndexedHBase,
a general, customizable indexing framework. It uses HBase [3] as the underlying
storage platform, and provides users with the added flexibility to define the most

http://truthy.indiana.edu

Supporting a Social Media Observatory with Customizable Index Structures: : : 403

suitable index structures to facilitate their queries. Using Hadoop MapReduce [2]
we implement a parallel query evaluation strategy that can make the best use of
the customized index structures to achieve efficient evaluation of social media data
queries typical for an application such as Truthy. We develop efficient data loading
strategies that can accommodate fast loading of historical files as well as fast
processing of streaming data from real-time tweets. We evaluate the performance
of IndexedHBase on FutureGrid [32]. Our preliminary results show that, compared
with Riak, IndexedHBase is significantly more efficient. It is six times faster for data
loading, while requiring much less storage. Furthermore, it is clearly more efficient
in evaluating queries derived from large result sets.

The rest of this chapter is organized as follows. Section 2 analyzes the char-
acteristics of data and queries. Section 3 gives a brief introduction of HBase.
Section 4 describes the architecture of IndexedHBase and explains the design
and implementation of its data loading, indexing, and query evaluation strategies.
Section 5 evaluates the performance of IndexedHBase and compares it with Riak.
Section 6 discusses related work. “Conclusions and Future Work” section concludes
and describes our future work.

2 Data and Query Patterns

The entire dataset consists of two parts: historical data in .json.gz files, and real-
time data collected from the Twitter streaming API. Figure 1 illustrates a sample
data item, which is a structured JSON string containing information about a tweet
and the user who posted it. Furthermore, if the tweet is a retweet, the original tweet
content is also included in a “retweeted_status” field. For hashtags, user-mentions,
and URLs contained in the text of the tweet, an “entities” field is included to give
detailed information, such as the ID of the mentioned user and the expanded URLs.

In social network analysis, the concept of “meme” is often used to represent
a set of related posts corresponding to a specific discussion topic, communication
channel, or information source shared by users on platforms such as Twitter. Memes
can be identified through elements contained in the text of tweets, such as keywords,
hashtags (e.g., #euro2012), user-mentions (e.g., youtube), and URLs. Our social
media observatory, Truthy, supports a set of temporal queries for extracting and
generating various information about tweets, users, and memes. These queries can
be categorized into two subsets. The first contains basic queries for getting the ID
or content of tweets created during a given time window from their text or user
information, including:

get-tweets-with-meme (memes, time_window)
get-tweets-with-text (keywords, time_window)
get-tweets-with-user (user_id, time_window)
get-retweets (tweet_id, time_window)

404 X. Gao et al.

Fig. 1 An example tweet in JSON format

For the parameters, time_window is given in the form of a pair of strings marking
the start and end points of a time window, e.g., [2012-06-08T00:00:00, 2012-06-
23T23:59:59]. The memes parameter is given as a list of hashtags, user-mentions,
or URLs; memes and keywords may contain wildcards, e.g., “#occupy*” will match
all tweets containing hashtags starting with “#occupy”.

The second subset of queries need information extracted from the tweets
returned by queries in the first subset. These include timestamp-count, user-
post-count, meme-post-count, meme-cooccurrence-count, get-retweet-edges, and
get-mention-edges. Here for example, user-post-count returns the number of posts
about a given meme by each user. Each “edge” has three components: a “from” user
ID, a “to” user ID, and a “weight” indicating how many times the “from” user has
retweeted the tweets from the “to” user or mentioned the “to” user in his/her tweets.

The most significant characteristic of these queries is that they all take a time
window as a parameter. This originates from the temporal nature of social activities.
An obvious brute-force solution is to scan the whole dataset, try to match the content

Supporting a Social Media Observatory with Customizable Index Structures: : : 405

and creation time of each tweet with the query parameters, and generate the results
using information contained in the matched tweets. However, due to the drastic
difference between the size of the entire dataset and the size of the query result,
this strategy is prohibitively expensive. For example, in the time window [2012-
06-01, 2012-06-20] there are over 600 million tweets, while the number of tweets
containing the most popular meme “youtube” is less than two million, which is
smaller by more than two orders of magnitude.

Traditional distributed inverted indices [37], supported by many existing
distributed NoSQL database systems such as Solandra (DataStax) [13] and Riak
[25], do not provide the most efficient solution to locate relevant tweets by their
text content. One reason is that traditional inverted indices are mainly designed
for text retrieval applications, where the main goal is to efficiently find the top K
(with a typical value of 20 or 50 for K) most relevant text documents regarding
a query comprising a set of keywords. To achieve this goal, information, such
as frequency and position of keywords in the documents, is stored and used
for computing relevance scores between documents and keywords during query
evaluation. In contrast, social media data queries are designed for analysis purposes,
meaning that they have to process all the related tweets, instead of the top K most
relevant ones, to generate the results. Therefore, data regarding frequency and
position are extra overhead for the storage of inverted indices, and relevance scoring
is unnecessary in the query evaluation process. The query evaluation performance
can be further improved by removing these items from traditional inverted indices.

Secondly, social media queries do not favor query execution plans using tra-
ditional inverted indices. Figure 2 illustrates a typical query execution plan for
get-tweets-with-meme, using two separate indices on memes and tweet creation
time. This plan uses the meme index to find the IDs of all tweets containing the
given memes and utilizes the time index to find the set of tweet IDs within the
given time window, finally computing the intersection of these two sets to get
the results. Assuming the size of the posting lists for the given memes to be m, and
the number of tweet IDs coming from the time index to be n, the complexity of the

Fig. 2 A typical query execution plan using indices on meme and creation time

406 X. Gao et al.

whole query evaluation process will be O(m + n) = O(max(m, n)), using a merge-
based or hashing-based algorithm for the intersection operation. However, due to the
characteristics of large social media and microblogging datasets, there is normally
an orders-of-magnitude difference between m and n, as discussed above. As a result,
although the size of the query result is bounded by min(m, n), a major part of query
evaluation time is actually spent on scanning and checking irrelevant entries of the
time index. In classic text search engines, techniques such as skipping or frequency-
ordered inverted lists [37] may be utilized to quickly return the top K most relevant
results without evaluating all the related documents. However, such optimizations
are not applicable to our social media observatory. Furthermore, in case of a high
cost estimation for accessing the time index, the search engine may choose to only
use the meme index and generate the results by checking the content of relevant
tweets. However, valuable time is still wasted in checking irrelevant tweets falling
out of the given time window. The query evaluation performance can be further
improved if the unnecessary scanning cost can be avoided.

We propose using a customized index structure in IndexedHBase, as illustrated
in Fig. 3. It merges the meme index and time index, and replaces the frequency
and position information in the posting lists of the meme index with creation time
of corresponding tweets. Facilitated by this customized index structure, the query
evaluation process for get-tweets-with-meme can be easily implemented by going
through the index entries related to the given memes and selecting the tweet IDs
associated with a creation time within the given time window. The complexity
of the new query evaluation process is O(m), which is significantly lower than
O(max(m, n)). To support such index structures, IndexedHBase provides a general
customizable indexing framework, which will be explained in Sect. 4.

Fig. 3 A customized meme element index structure

3 HBase

HBase [3] is an open-source, distributed, column-oriented, and sorted-map datastore
modeled after Google’s BigTable [6]. Figure 4 illustrates the data model of HBase.
Data are stored in tables; each table contains multiple rows, and a fixed number
of column families. Rows are sorted by row keys, which are implemented as byte
arrays. For each row, there can be a various number of qualifiers in each column
family, and at the intersections of rows and qualifiers are table cells. Cell contents
are uninterpreted byte arrays. Cells contents are versioned based on timestamps, and
a table can be configured to maintain a certain number of versions.

Supporting a Social Media Observatory with Customizable Index Structures: : : 407

Fig. 4 An example of the HBase data model

Fig. 5 HBase architecture

Figure 5 shows the architecture of HBase. At any time, there can be one working
HBase master and multiple region servers running in the system. One or more
backup HBase masters can be set up to prevent single point of failure. The Apache
ZooKeeper [5] is used to coordinate the activities of the master and region servers.
Tables are horizontally split into regions, and regions are assigned to different
region servers by the HBase master. Each region is further divided vertically into
stores by column families, and stores are saved as store files in Hadoop Distributed
File System (HDFS) [27]. Data replication in HDFS and region server failover
ensure high availability of table data. Load balance is done through dynamic
region splitting, and scalability can be achieved by adding more data nodes and
region servers. HBase is inherently integrated with Hadoop MapReduce. It supports
MapReduce jobs using HBase tables as both input and output.

Based on this distributed architecture, HBase can store and serve huge amounts
of data. HBase is designed for efficient processing of large volumes of small
data operations. Inside store files, cell values are sorted in the hierarchical order
of <row key, column family, qualifier, timestamp>. Therefore, HBase is efficient
at scanning operations of consecutive rows or columns. HBase supports three
types of compression to the data blocks of store files: LZO, Gzip, and Snappy.
The compression details are transparent to user applications.

408 X. Gao et al.

All these features of HBase make it a good option for hosting and processing
the Truthy data set. The only problem is that it does not provide an inherent
mechanism for searching cell values within tables efficiently. IndexedHBase, as will
be described in Sect. 4, is exactly designed to bridge this gap.

4 Design and Implementation of IndexedHBase

4.1 System Architecture

Figure 6 shows our system architecture based on IndexedHBase. HBase is used to
host the entire dataset and related indices with two sets of tables: data tables for the
original data, and index tables containing customized index structures for query
evaluation. The customizable indexing framework supports two mechanisms for
building index tables: online indexing that indexes data upon upload to the tables,
and batch indexing for building new index structures from existing data tables.
Two data loading strategies are implemented for historical and streaming data. The
parallel query evaluation strategy provides efficient evaluation mechanisms for all
queries, and is used by upper-level applications, such as Truthy, to generate various
statistics and visualizations.

Fig. 6 System architecture of IndexedHBase

4.2 Customizable Indexing Framework

4.2.1 Table Schemas on HBase

Working off the HBase data model, we design the table schemas in Fig. 7. Tables are
managed in units of months. This has two benefits. First, the loading of streaming

Supporting a Social Media Observatory with Customizable Index Structures: : : 409

Fig. 7 Table schemas used in IndexedHBase for Twitter data

data only changes the tables relative to the current month. Secondly, during query
evaluations, the amount of index data and original data scanned is limited by the
time window parameter.

Some details need to be clarified before proceeding further. Each table con-
tains only one column family, e.g. “details” or “tweets”. The user table uses a
concatenation of user ID and tweet ID as the row key, because analysis benefits
from tracking changes in a tweet’s user metadata. For example, a user can change
profile information, which can give insights into her behavior. Another meme index
table is created for the included hashtags, user-mentions, and URLs. This is because
some special cases, such as expandable URLs, cannot be handled properly by the
text index. The memes are used as row keys, each followed by a different number
of columns, named after the IDs of tweets containing the corresponding meme.
The timestamp of the cell value marks the tweet creation time (Fig. 7).

Using HBase tables for customized index has several advantages. The data model
of HBase can scale out horizontally for distributed index structure and embed
additional information within the columns. Since the data access pattern in social
media analysis is “write-once-read-many”, IndexedHBase builds a separate table
for each index structure for easy update and access. Rows in the tables are sorted
by row keys, facilitating prefix queries through range scans over index tables. Using
Hadoop MapReduce, the framework can generate efficient parallel analysis on the
index data, such as meme popularity distribution [34].

4.2.2 Customizable Indexer Implementation

IndexedHBase implements a customizable indexer library, shown in Fig. 8, to
generate index table records automatically according to the configuration file and
insert them upon the client application’s request.

410 X. Gao et al.

Fig. 8 Components of customizable indexer

Fig. 9 An example customized index configuration file

Figure 9 gives an example of the index configuration file in XML format
containing multiple “index-config” elements that hold the mapping information
between one source table and one index table. This element can flexibly define how
to generate records for the index table off a given row from the source table. For
more complicated index structures, users can implement a customizable indexer and
use it by setting the “indexer-class” element.

Both general and user-defined indexers must implement a common interface
which declares one index() method, as presented in Fig. 10. This method takes the
name and row data of a source table as parameters and returns a map as a result.
The key of each map entry is the name of one index table, and the value is a list of
that table’s records.

Supporting a Social Media Observatory with Customizable Index Structures: : : 411

Fig. 10 Pseudocode for the “CustomizableIndexer” interface

Upon initialization, the general customizable indexer reads the index configura-
tion file from the user. If a user-defined indexer class is specified, a corresponding
indexer instance will be created. When index() is invoked during runtime, all related
“index-config” elements are used to generate records for each index table, either by
following the rules defined in “index-config” or by invoking a user-defined indexer.
Finally, all index table names and records are added to the result map and returned
to the client application.

4.2.3 Online Indexing Mechanism and Batch Indexing Mechanism

IndexedHBase provides two means of indexing data: online and batch. The online
mechanism is implemented through the insert() method of the general customizable
indexer, displayed in Fig. 8. The client application invokes the insert() method of
the general customizable indexer to insert one row into a source table. The indexer
will first insert the given row into the source table and then generate index table
records for this row by invoking index() and insert them into the corresponding
index tables. Therefore, from the client application’s perspective, data in the source
table are indexed “online” when first inserted into the table.

The batch indexing mechanism is designed for generating new customized index
tables after all the data have been loaded into the source table. This mechanism is
implemented as a “map-only” MapReduce job using the source table as input. The
job accepts a source table and index table name as parameters and starts multiple
mappers to index data in the source table in parallel, each processing one region
of the table. Each mapper works as a client application to the general customizable
indexer and creates one indexer instance at its initialization time. The indexer is
initialized using the given index table name so that when index() is invoked, it will
only generate index records for that single table. The map() function takes a <key,
value> pair as input, where “key” is a row key in the source table and “value” is
the corresponding row data. For each row of the source table, the mapper uses the
general customizable indexer to generate index table records and write these records
as output. All output records are handled by the table output format, which will
automatically insert them into the index table.

412 X. Gao et al.

4.3 Data Loading Strategies

IndexedHBase supports distributed loading strategies for both streaming data and
historical data. Figure 11 shows the architecture of the streaming data loading
strategy, where one or more distributed loaders are running concurrently and are
connected to the same stream using the Twitter streaming API. Each loader is
assigned a unique ID and works as a client application to the general customizable
indexer. Upon receiving a tweet JSON string, the loader will first take the tweet
ID and do a modulus operation over the total number of loaders in the system.
If the result equals its loader ID, it will load the tweet to IndexedHBase. Otherwise
the tweet is skipped. To load a tweet, the loader first generates records for the tweet
table and user table based on the JSON string, then loads them into the tables
by invoking the insert() method of the general customizable indexer, which will
complete online indexing and update all the data tables as well as the relevant index
tables.

Fig. 11 Streaming data
loading strategy

The historical data loading strategy is implemented as a MapReduce program.
One separate job is launched to load the historical files for each month, and multiple
jobs can be running simultaneously. Each job starts multiple mappers in parallel,
each responsible for loading one file. At running time, each line in the .json.gz file is
given to the mapper as one input, which contains the string of one tweet. The mapper
first creates records for the tweet table and user table and then invokes the general
customizable indexer to get all the related index table records. All table records are
handled by the multi-table output format, which automatically inserts them into
the related tables. Finally, if the JSON string contains a “retweeted_status”, the
corresponding substring will be extracted and processed in the same way.

Supporting a Social Media Observatory with Customizable Index Structures: : : 413

4.4 Parallel Query Evaluation Strategy

We develop a two-phase parallel query evaluation strategy viewable in Fig. 12. For
any given query, the first phase uses multiple threads to find the IDs of all related
tweets from the index tables, and saves them in a series of files containing a fixed
number (e.g., 30,000) of tweet IDs. The second phase launches a MapReduce job to
process the tweets in parallel and extract the necessary information to complete the
query. For example, to evaluate user-post-count, each mapper in the job will access
the tweet table to figure out the user ID corresponding to a particular tweet ID, count
the number of tweets by each user, and output all counts when it finishes. The output
of all the mappers will be processed to finally generate the total tweet count of each
user ID.

Two aspects of the query evaluation strategy deserve further discussion. First,
as described in Sect. 2, prefix queries can be constructed by using parameters such
as “#occupy*”. IndexedHBase provides two options for getting the related tweet IDs
in the first phase. One is simply to complete a sequential range scan of rows in the
corresponding index tables. The other is to use a MapReduce program to complete
parallel scans over the range of rows. The latter option is only faster for parameters
covering a large range spanning multiple regions of the index table.

Second, the number of tweet IDs in each file implies a tradeoff between
parallelism and scheduling overhead. When this number is set lower, more mappers
will be launched in the parallel evaluation phase, which means the amount of work
done by a mapper decreases while the total task scheduling overhead increases. The
optimal number depends on the total number of related tweets and the amount of
resources available in the infrastructure. We set the default value of this number to
30,000 and leave it configurable by the user. Future work will explore automatic
optimization.

Fig. 12 Two-phase parallel evaluation process for an example user-post-count query

414 X. Gao et al.

5 Performance Evaluation Results
and Comparison with Riak

5.1 Testing Environment Configuration

We use eight nodes on the Bravo cluster of FutureGrid to complete tests for both
IndexedHBase and Riak. The hardware configuration for all eight nodes is listed
in Table 1. Each node runs CentOS 6.4 and Java 1.7.0_21. For IndexedHBase,
Hadoop 1.0.4 and HBase 0.94.2 are used. One node is used to host the HDFS
headnode, Hadoop jobtracker, Zookeeper, and HBase master. The other seven nodes
are used to host HDFS datanodes, Hadoop tasktrackers, and HBase region servers.
The data replication level is set to two on HDFS. The configuration details of
Riak will be given in Sect. 5.2. In addition to Bravo, we also use the Alamo HPC
cluster of FutureGrid to test the scalability of the historical data loading strategy of
IndexedHBase, since Alamo can provide a larger number of nodes through dynamic
HPC jobs. Software configuration of Alamo is mostly the same as Bravo.

5.2 Configuration and Implementation on Riak

Riak is a distributed NoSQL database for storing data in the form of <key,
value> objects. It uses a P2P architecture to organize the distributed nodes and
distributes data objects among them using consistent hashing. Data are replicated to
achieve high availability, and failures are handled by a handoff mechanism among
neighboring nodes. A “Riak Search” module can build distributed inverted indices
on data objects for full-text search purposes. Users can use buckets to organize their
data objects and configure indexed fields on the bucket level. Riak supports a special
feature called “inline fields.” If a field is specified as an “inline” field, its value will
be attached to the document IDs in the posting lists, as illustrated in Fig. 13.

Similar to our customized index tables in IndexedHBase, inline fields can be
used to carry out an extra filtering operation to speed up queries involving multiple
fields. However, they are different in two basic aspects. First, inline fields are an
extension of traditional inverted indices, which means overhead such as frequency
information and document scoring still exist in Riak Search. Second, customizable
index structures are totally flexible in the sense that the structure of each index
can be independently defined to contain any subset of fields from the original data.

Table 1 Per-node configuration on Bravo and Alamo Clusters

Cluster CPU RAM Hard disk Network

Bravo 8 * 2.40 GHz (Intel Xeon E5620) 192 G 2 T 40 Gb InfiniBand

Alamo 8 * 2.66 GHz (Intel Xeon X5550) 12 G 500 G 40 Gb InfiniBand

Supporting a Social Media Observatory with Customizable Index Structures: : : 415

Fig. 13 An example of inline field (created_at) in Riak

Fig. 14 An example query implementation on Riak

In contrast, if one field is defined as an inline field on Riak, its value will be attached
to the posting lists of the indices of all indexed fields, regardless of whether it is
useful. As an example, the “sname index table” in Fig. 17 uses the creation time of
user accounts as timestamps, while the “meme index table” uses creation time of
tweets. Such flexibility is not achievable on Riak.

In our tests, all eight nodes of Bravo are used to construct a Riak ring. Each node
runs Riak 1.2.1, using LevelDB as the storage backend. We create two different
buckets to index data with different search schemas. The data replication level is set
to two on both buckets. The tweet ID and JSON string of each tweet are directly
stored into <key, value> pairs. The original JSON string is extended with an extra
“memes” field, which contains all the hashtags, user-mentions, and URLs in the
tweet, separated by tab characters. Riak Search is enabled on both buckets, and the
user_id, memes, text, retweeted_status_id, user_screen_name, and created_at fields
are indexed. Specifically, created_at is defined as a separate indexed field on one
bucket, and as an “inline only” field on the other bucket, meaning that it does not
have a separate index but is stored together with the indices of other fields.

Riak provides a lightweight MapReduce framework for users to query the
data by defining MapReduce functions in JavaScript. Furthermore, Riak supports
MapReduce over the results of Riak Search. We use this feature to implement
queries, and Fig. 14 shows an example query implementation. When this query is
submitted, Riak will first use the index on “memes” to find related tweet objects
(as specified in the “input” field), then apply the map and reduce functions to these
tweets (as defined in the “query” field) to get the final result.

416 X. Gao et al.

5.3 Data Loading Performance

5.3.1 Historical Data Loading Performance

We use all the .json.gz files from June 2012 to test the historical data loading
performance of IndexedHBase and Riak. The total data size is 352 GB. With
IndexedHBase, a MapReduce job is launched for historical data loading, with each
mapper processing one file. With Riak, all 30 files are distributed among eight nodes
of the cluster, so each node ends up with three or four files. Then an equal number
of threads per node were created to load all the files concurrently to the bucket
where “created_at” is configured as an inline field. Threads continue reading the
next tweet, apply preprocessing with the “created_at” and “memes” field, and then
send the tweet to the Riak server for indexing and insertion.

Table 2 summarizes the data loading time and loaded data size on both platforms.
We can see that IndexedHBase is over six times faster than Riak in loading historical
data and uses significantly less disk space for storage. Considering the original file
size of 352 GB and a replication level of two, the storage space overhead for index
data on IndexedHBase is moderate.

We analyze these performance measurements below. By storing data with tables,
IndexedHBase applies a certain degree of data model normalization, and thus avoids
storing some redundant data. For example, many tweets in the original .json.gz
files contain retweeted status, and many of them are retweeted multiple times. With
IndexedHBase, even if a tweet is retweeted repeatedly, only one record is kept for
it in the tweet table. With Riak, such a “popular” tweet will be stored within the
JSON string of every corresponding retweet. The difference in loaded index data
size clearly demonstrates the advantage of a fully customizable indexing framework.
By avoiding frequency and position information and only incorporating useful fields
in the index tables, IndexedHBase saves 455 GB of disk space in storing index
data, which is more than 1/3 the total loaded data size of 1,167 GB. Also note that
IndexedHBase compresses table data using Gzip, which generally provides a better
compression ratio than Snappy used on Riak.

Table 2 Historical data loading performance comparison

Loading
time (h)

Loaded total
data size (GB)

Loaded original
data size (GB)

Loaded index
data size (GB)

Riak 294.11 3258 2591 667

IndexedHBase 45.47 1167 955 212

Riak/IndexedHBase 6.47 2.79 2.71 3.15

Supporting a Social Media Observatory with Customizable Index Structures: : : 417

The difference in loaded data size only explains a part of the difference in total
loading time. Two other reasons are:

1. The loaders of IndexedHBase are responsible for generating both data tables and
index tables. Therefore, the JSON string of each tweet is parsed only once when it
is read from the .json.gz files and converted to table records. On the other hand,
Riak uses servers for its indexing and so each JSON string is actually parsed
twice: first by the loaders for preprocessing, and again by the server for indexing.

2. When building inverted indices, Riak not only uses more space to store the
frequency and position information, but also spends more time collecting them.

5.3.2 Scalable Historical Data Loading on IndexedHBase

We test the scalability of historical data loading on IndexedHBase with the Alamo
cluster of FutureGrid. In this test we take a dataset for two months, May and June
2012, and measure the total loading time with different cluster sizes. The results are
illustrated in Fig. 15. When the cluster size is doubled from 16 to 32 data nodes,
the total loading time drops from 142.72 to 93.22 h, which implies a sub-linear
scalability coming from the concurrent access from mappers of the loading jobs
to HBase region servers. Nonetheless, these results clearly demonstrate that we get
more system throughput and faster data loading speed by adding more nodes to the
cluster.

Fig. 15 Historical data loading scalability

5.3.3 Streaming Data Loading Performance on IndexedHBase

The purpose of streaming data loading tests is to verify that IndexedHBase can
provide enough throughput to accommodate the growing data speed of the Twitter
streaming API. To test the performance of IndexedHBase for handling potential data
rates even faster than the current streams, we design a simulation test using a recent

418 X. Gao et al.

.json.gz file from July 3, 2013. We vary the number of distributed streaming loaders
and test the corresponding system data loading speed. For each case, the whole file
is evenly split into the same number of fragments as the loaders and then distributed
across all the nodes. One loader is started to process each fragment. The loader
reads data from the stream of the local file fragment rather than from the Twitter
streaming API. So this test measures how the system performs when each loader
gets an extremely high data rate that is equal to local disk I/O speed.

Figure 16 shows the total loading time when the number of distributed loaders
increases by powers of two from one to 16. Once again, concurrent access to HBase
region servers results in a decrease in speed-up as the number of loaders is doubled
each time. The system throughput is almost saturated when we have eight distributed
loaders. For the case of eight loaders, it takes 3.85 h to load all 45,753,194 tweets,
indicating the number of tweets that can be processed per day on eight nodes is about
six times the current daily data rate. Therefore, IndexedHBase can easily handle a
high-volume stream of social media data. In the case of vastly accelerated data rates,
as would be the case for the Twitter firehose (a stream of all public tweets), one could
increase the system throughput by adding more nodes.

Fig. 16 Results for streaming data loading test

5.4 Query Evaluation Performance

5.4.1 Separate Index Structures vs. Customized Index Structures

As discussed in Sect. 2, one major purpose of using customized index structures is to
achieve lower query evaluation complexity compared to traditional inverted indices
on separate data fields. To verify this, we use a simple get-tweets-with-meme query
to compare the performance of IndexedHBase with a solution using separate indices
on the fields of memes and tweet creation time, which is implemented through the
Riak bucket where “created_at” is defined as a separately indexed field.

Supporting a Social Media Observatory with Customizable Index Structures: : : 419

In this test we load 4 days of data to both IndexedHBase and the Riak bucket
and measure the query evaluation time with different memes and time windows. For
memes, we choose “#usa”, “#ff”, and “@youtube”, each contained in a different
subset of tweets. The “#ff” hashtag is a popular meme for “Follow Friday.” For
each meme, we use three different time windows with a length between 1 and 3 h.
Queries in this test only return tweet IDs they don’t launch an extra MapReduce
phase to get the content. Figures 17 and 18 present the query execution time for
each indexing strategy. As shown in the plots, IndexedHBase not only achieves a
query evaluation speed that is tens to hundreds of times faster, but also demonstrates
a different pattern in query evaluation time. When separate meme index and time
index are used, the query evaluation time mainly depends on the length of time
window; the meme parameter has little impact. In contrast, using a customized

Fig. 17 Query evaluation time with separate meme and time indices (Riak)

Fig. 18 Query evaluation time with customized meme index (IndexedHBase)

420 X. Gao et al.

meme index, the query evaluation time mainly depends on the meme parameter. For
the same meme, the evaluation time only increases marginally as the time window
gets longer. These observations confirm our theoretical analysis in Sect. 2.

5.4.2 Query Evaluation Performance Comparison

This set of tests is designed to compare the performance of Riak and IndexedHBase
for evaluating queries involving different numbers of tweets and different result
sizes. Since using separate indices has proven inefficient on Riak, we choose
to test the query implementation using “created_at” as an inline field. Queries
are executed on both platforms against the data loaded in the historical data
loading tests. For query parameters, we choose the popular meme “#euro2012,”
along with a time window with a length varied from 3 h to 16 days. The start
point of the time window is fixed at 2012-06-08T00:00:00, and the end point
is correspondingly varied exponentially from 2012-06-08T02:59:59 to 2012-06-
23T23:59:59. This time period covers a major part of the 2012 UEFA European
Football Championship. The queries can be grouped into three categories based on
the manner in which they are evaluated on Riak and IndexedHBase.

1. No MapReduce on Either Riak or IndexedHBase
The meme-post-count query falls into this category. On IndexedHBase, query

evaluation is done by simply going through the rows in meme index tables
for each given meme and counting the number of qualified tweet IDs. In the
case of Riak, since there is no way to directly access the index data, this
is accomplished by issuing an HTTP query for each meme to fetch the “id”
field of matched tweets. Figure 19 shows the query evaluation time on Riak
and IndexedHBase. As the time window gets longer, the query evaluation time
increases for both. However, the absolute evaluation time is much shorter for
IndexedHBase, because Riak has to spend extra time to retrieve the “id” field.

Fig. 19 Query evaluation time for meme-post-count

Supporting a Social Media Observatory with Customizable Index Structures: : : 421

2. No MapReduce on IndexedHBase; MapReduce on Riak
The timestamp-count query belongs to this category. Inferring from the

schema of the meme index table, this query can also be evaluated by only
accessing the index data on IndexedHBase. On Riak it is implemented with
MapReduce over Riak search results, where the MapReduce phase completes
the timestamp counting based on the content of the related tweets. Figure 20
shows the query evaluation time on both platforms. Since IndexedHBase does
not need to analyze the content of the tweets at all, its query evaluation speed is
orders of magnitude faster than Riak.

Fig. 20 Query evaluation time for timestamp-count

3. MapReduce on Both Riak and IndexedHBase
Most queries require a MapReduce phase on both Riak and IndexedHBase.

Figure 21 shows the evaluation time for several of them. An obvious trend is
that Riak is faster on queries involving a smaller number of related tweets, but
IndexedHBase is significantly faster on queries involving a larger number of
related tweets and results. Figure 22 lists the results sizes for two of the queries.
The other queries have a similar pattern.

The main reason for the observed performance difference is the different charac-
teristics of the MapReduce framework on these two platforms. IndexedHBase relies
on Hadoop MapReduce, which is designed for fault tolerant parallel processing of
large batches of data. It implements the full semantics of the MapReduce computing
model and applies a comprehensive initialization process for setting up the runtime
environment on the worker nodes. Hadoop MapReduce uses disks on worker nodes
to save intermediate data and does grouping and sorting before passing them to
reducers. A job can be configured to use zero or multiple reducers. Since most social
media queries use time windows at the level of weeks or months, IndexedHBase can
handle these long time period queries well.

422 X. Gao et al.

Fig. 21 Query evaluation time for queries requiring MapReduce on both platforms

Fig. 22 Result sizes for get-tweets-with-meme and get-mention-edges

The MapReduce framework on Riak, on the other hand, is designed for light-
weight use cases where users can write simple query logic with JavaScript and get
them running on the data nodes quickly without a complicated initialization process.
There is always only one reducer running for each MapReduce job. Intermediate
data are transmitted directly from mappers to the reducer without being sorted
or grouped. The reducer relies on its memory stack to store the whole list of
intermediate data, and has a default timeout of only 5 s. Therefore, Riak MapReduce
is not suitable for processing the large datasets produced by queries corresponding
to long time periods.

Supporting a Social Media Observatory with Customizable Index Structures: : : 423

Fig. 23 Extended meme index table schema

Fig. 24 Query evaluation time with modified meme index table schema

5.4.3 Improving Query Evaluation Performance with Modified
Index Structures

IndexedHBase accepts dynamic changes to the index structures for efficient query
evaluation. To verify this, we extend the meme index table to also include user IDs
of tweets in the cell values, as illustrated in Fig. 23. Using this new index structure,
IndexedHBase is able to evaluate the user-post-count query by only accessing index
data.

We use the batch indexing mechanism of IndexedHBase to rebuild the meme
index table, which takes 3.89 h. The table size increases from 14.23 to 18.13 GB,
which is 27.4 % larger. Figure 24 illustrates the query evaluation time comparison.
The query with the new index structure is faster by more than an order of magnitude.
In cases where user-post-count is frequently used, the query speed improvement is
clearly worth the additional storage required.

6 Related Work

To the best of our knowledge, Truthy [18] is the first complete social media observa-
tory that provides not only analysis tools and visualization of their results, but also
ways to retrieve derived data such as social network information and statistics about

424 X. Gao et al.

users and memes. Moreover, this is the first paper that describes the underlying data
processing platform for supporting such functionalities. VisPolitics [31], TwitInfo
[29], and Ripples [26] are similar analysis systems that generate visualizations about
different aspects of social media network, but do not provide a rich set of statistics
and derived data as Truthy does. Meanwhile, the techniques and indices presented in
this paper could be useful for certain functions in these systems, such as generating
the ‘repost network’ in Ripples, and supporting search of topic keywords and URL
counting in TwitInfo. Commercial entities such as PeopleBrowsr [22], Datasift
[12], and SocialFlow [28] provide consulting services to their customers through
analytics over social media data, but they don’t expose their raw data or results to
the public for research purposes.

IndexedHBase aims to address the temporal challenge in social media analytics
scenarios. Derczynski et al. [14] provide a more complete list of related work
about temporal and spatial queries involving social data. In particular, Alonso
et al. [1] give a detailed discussion about the challenges in extracting temporal
information from online data and applying such information in queries. Notably,
they mention the use case of text queries with temporal constraints in information
retrieval scenarios, where ranking is still important. Weikum et al. [33] further
elaborate on the open research problems for this specific use case in the context
of longitudinal analytics on web archive data. Although the Truthy queries are
not designed for information retrieval purposes, our experience in this project
may still shed light on possible solutions for these problems in multiple aspects,
including customizable index structures, scalable storage platforms, and efficient
index building strategies. The customizable index structures we use share similar
inspiration to multiple-column indices used in relational databases, but index
a combination of full-text and primitive-type fields. Compared with traditional
inverted indices [37], IndexedHBase provides more flexibility about what fields to
use as keys and entries, so as to achieve more efficient query evaluation with less
storage and computation overhead.

Solandra (DataStax) [13] and Riak [25] are two typical NoSQL database systems
that support distributed inverted indices for full-text search. Specifically, Solandra is
an offshoot of Cassandra, which uses a similar data model to HBase. Comparable to
Riak, Cassandra also employs P2P architecture to support scalable data storage and
relies on data replication to achieve fault-tolerance. As discussed in Sect. 2, inverted
indices on Solandra and Riak are designed for text retrieval applications, making
them unsuitable for social media analytics.

Google’s Dremel [19] achieves efficient evaluation of aggregation queries on
large-scale nested datasets by using distributed columnar storage and multi-level
serving trees. Power Drill [17] explores special caching and data skipping mech-
anisms to provide even faster interactive query performance for certain selected
datasets. Percolator [21] replaces batch indexing system with incremental pro-
cessing for Google search. Inspired by Dremel and Power Drill, we will consider
splitting the tweet table into more column families for even better query evaluation
performance. On the other hand, our customizable indexing strategies could also
potentially help Dremel for handling aggregation queries with highly selective
operations.

Supporting a Social Media Observatory with Customizable Index Structures: : : 425

Zaharia et al. [36] propose a fault-tolerant distributed processing model for
streaming data by breaking continuous data streams into small batches and then
applying existing fault-tolerance mechanisms used in batch processing frameworks.
This idea of discretized streams will be useful for our next step of developing a
fault-tolerant streaming data processing framework. Since streaming data are mainly
involved in the loading and indexing phase, simpler failure recovery mechanisms
may be more suitable.

Conclusions and Future Work
This chapter studies an efficient and scalable storage platform supporting
a large Twitter dataset that powers the Truthy system, a public social
media observatory. Our experimentation with IndexedHBase led to interesting
conclusions of general significance. Parallelization and indexing are key
factors in addressing the sheer data size and temporal queries of social data
observatories. Parallelism in particular requires attention to every stage of
data processing. Furthermore, a general customizable indexing framework
is necessary. Index structures should be flexible, rather than static, to facil-
itate special characteristics of the dataset and queries, where optimal query
evaluation performance is achieved at lower cost in storage and computation
overhead. Reliable parallel processing frameworks such as Hadoop MapRe-
duce can handle large intermediate data and results involved in the query
evaluation process.

To the best of our knowledge, IndexedHBase is the first effort in developing
a totally customizable indexing framework on a distributed NoSQL database.
In the future we will add failure recovery to the distributed streaming data
loading strategy. The efficiency of parallel query evaluation can be further
improved with data locality considerations. Spatial queries will be supported
by inferring and indexing spatial information contained in tweets. Thanks to
the batch index building mechanism in IndexedHBase, adding spatial indices
can be done efficiently without completely reloading the original dataset.
Finally, we will integrate IndexedHBase with Hive [4] to provide a SQL-like
data operation interface for easy implementation in social media observatories
such as Truthy.

Acknowledgements We would like to thank Onur Varol, Mohsen JafariAsbagh, Alessandro
Flammini, Geoffrey Fox, and other colleagues and members of the Center for Complex Networks
and Systems Research (cnets.indiana.edu) at Indiana University for helpful discussions and con-
tributions to the Truthy project and the present work. We would also like to personally thank Koji
Tanaka and the rest of the FutureGrid team for their continued help. We gratefully acknowledge
support from the National Science Foundation (grant CCF-1101743), DARPA (grant W911NF-
12-1-0037), and the J. S. McDonnell Foundation. FutureGrid is supported by the National Science
Foundation under Grant 0910812 to Indiana University for “An Experimental, High-Performance
Grid Test-bed.” IndexedHBased is in part supported by National Science Foundation CAREER
Award OCI-1149432.

426 X. Gao et al.

References

1. Alonso, O., Strötgen, J., Baeza-Yates, R. A., Gertz. M. Temporal Information Retrieval:
Challenges and Opportunities. In: Proc. 1st Temporal Web Analytics Workshop (TWAW 2011)

2. Apache Hadoop. http://hadoop.apache.org/
3. Apache HBase. http://hbase.apache.org/
4. Apache Hive. http://hive.apache.org/
5. Apache Zookeeper. http://zookeeper.apache.org/
6. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra, T., Fikes,

A., Gruber, R. Bigtable: A Distributed Storage System for Structured Data. In: Proc. 7th Symp.
Operating System Design and Implementation (OSDI 2006)

7. Conover, M., Ratkiewicz, J., Francisco, M., Goncalves, B., Flammini, A., Menczer, F. Political
Polarization on Twitter. In: Proc. 5th Intl. AAAI Conf. Weblogs and Social Media (ICWSM
2011)

8. Conover, M., Gonçalves, B., Ratkiewicz, J., Flammini, A., Menczer, Filippo. Predicting
the Political Alignment of Twitter Users. In: Proc. IEEE 3rd Intl. Conf. Social Computing
(SocialCom 2011)

9. Conover, M., Gonçalves, B., Flammini, A., Menczer, F. Partisan Asymmetries in Online
Political Activity. EPJ Data Science, 1:6 (2012)

10. Conover, M., Davis, C., Ferrara, E., McKelvey, K., Menczer, F., Flammini, A. The Geospatial
Characteristics of a Social Movement Communication Network. PLoS ONE, 8(3): e55957
(2013)

11. Conover, M., Ferrara, E., Menczer, F., Flammini, A. The Digital Evolution of Occupy Wall
Street. PloS ONE, 8(5), e64679 (2013)

12. Datasift. http://datasift.com
13. DataStax. http://www.datastax.com/
14. Derczynski, L., Yang, B., Jensen, C. Towards Context-Aware Search and Analysis on Social

Media Data. In: Proc. 16th Intl. Conf. Extending Database Technology (EDBT 2013)
15. DiGrazia, J., McKelvey, K., Bollen, J., Rojas, F. More Tweets, More Votes: Social Media as

a Quantitative Indicator of Political Behavior. Available at SSRN: http://dx.doi.org/10.2139/
ssrn.2235423 (2013)

16. Graefe, G. Query Evaluation Techniques for Large Databases. ACM Computing Surveys
(CSUR), 25(2): 73–169 (1993)

17. Hall, A., Bachmann, O., Büssow, R., Gǎnceanu, S., Nunkesser, M. Processing a Trillion Cells
per Mouse Click. In: Proc. 38th Intl. Conf. Very Large Data Bases (VLDB 2012)

18. McKelvey, K., Menczer, F. Design and Prototyping of a Social Media Observatory. In: Proc.
22nd Intl. Conf. World Wide Web Companion (WWW 2013)

19. Melnik, S., Gubarev, A., Long, J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.
Dremel: Interactive Analysis of Web-Scale Datasets. In: Proc. 36th Intl. Conf. Very Large Data
Bases (VLDB 2010)

20. Padmanabhan, A., Wang, S., Cao, G., Hwang, M., Zhao, Y., Zhang, Z., Gao, Y. FluMapper: An
Interactive CyberGIS Environment for Massive Location-based Social Media Data Analysis.
In: Proc. Extreme Science and Engineering Discovery Environment: Gateway to Discovery
(XSEDE 2013)

21. Peng, D., Dabek, F. Large-scale Incremental Processing Using Distributed Transactions and
Notifications. In: Proc. 9th USENIX Symp. Operating Systems Design and Implementation
(USENIX 2010)

22. PeopleBrowsr. http://peoplebrowsr.com
23. Ratkiewicz, J., Conover, M., Meiss, M., Gonçalves, B., Flammini, A., Menczer, F. Detecting

and Tracking Political Abuse in Social Media. In: Proc. 5th Intl. AAAI Conf. Weblogs and
Social Media (ICWSM 2011)

http://hadoop.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
http://zookeeper.apache.org/
http://datasift.com
http://www.datastax.com/
http://dx.doi.org/10.2139/ssrn.2235423
http://dx.doi.org/10.2139/ssrn.2235423
http://peoplebrowsr.com

Supporting a Social Media Observatory with Customizable Index Structures: : : 427

24. Ratkiewicz, J. Conover, M., Meiss, M., Goncalves, B., Patil, S., Flammini, A., Menczer, F.
Truthy: Mapping the Spread of Astroturf in Microblog Streams. In: Proc. 20th Intl. Conf. World
Wide Web Companion (WWW 2011)

25. Riak. http://basho.com/riak/
26. Ripples. https://plus.google.com/ripple/details?url=google.com
27. Shvachko, K., Kuang, H., Radia, S. and Chansler, R. The Hadoop Distributed File System. In:

Proc. 26th IEEE Symp. Mass Storage Systems and Technologies (MSST 2010)
28. SocialFlow. http://socialflow.com
29. TwitInfo. http://twitinfo.csail.mit.edu
30. Twitter Streaming API. https://dev.twitter.com/docs/streaming-apis
31. VisPolitics. http://vispolitics.com
32. Von Laszewski, G., Fox, G., Wang, F., Younge, A., Kulshrestha, A., Pike, G. Design of the

FutureGrid Experiment Management Framework. In: Proc. Gateway Computing Environments
Workshop (GCE 2010)

33. Weikum, G., Ntarmos, N., Spaniol, M., Triantafillou, P., Benczúr, A., Kirkpatrick, S., Rigaux,
P., Williamson, M. Longitudinal Analytics on Web Archive Data: It’s About Time! In: Proc.
5th Biennial Conf. Innovative Data Systems Research (CIDR 2011)

34. Weng, L., Flammini, A., Vespignani, A., Menczer, F. Competition among Memes in a World
with Limited Attention. Nature Sci. Rep., (2) 335 (2012).

35. Weng, L., Ratkiewicz, J., Perra, N., Gonçalves, B., Castillo, C., Bonchi, F., Schifanella, S.,
Menczer, F., Flammini, F. The Role of Information Diffusion in the Evolution of Social
Networks. In: Proc. 19th ACM Conf. Knowledge Discovery and Data Mining (SIGKDD 2013)

36. Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I. Discretized Streams: an Efficient and Fault-
Tolerant Model for Stream Processing on Large Clusters. In: Proc. 4th USENIX Conf. Hot
Topics in Cloud Computing (HotCloud 2012)

37. Zobel, J. Moffat, A. Inverted files for text search engines. ACM Computing Surveys, 38(2) - 6
(2006)

http://basho.com/riak/
https://plus.google.com/ripple/details?url=google.com
http://socialflow.com
http://twitinfo.csail.mit.edu
https://dev.twitter.com/docs/streaming-apis
http://vispolitics.com

	Foreword
	Contents
	Part I Systems and Applications
	Scalable Deployment of a LIGO Physics Application on Public Clouds: Workflow Engine and Resource Provisioning Techniques
	1 Introduction
	2 Related Work
	3 System Architecture and Design
	3.1 Load Balancing

	4 LIGO Data Analysis and the Search for Gravitational Waves
	4.1 Application Requirements

	5 Performance Evaluation
	5.1 Platform Scalability
	5.2 Dynamic Provisioning of Workers

	References

	The FutureGrid Testbed for Big Data
	1 Introduction
	2 Overview of FutureGrid
	2.1 Hardware Overview
	2.1.1 Overview of the Clusters
	2.1.2 Overview of Networking
	2.1.3 Overview of Storage

	3 Services and Tools for Big Data
	3.1 Testbed as a Service (TestbedaaS)
	3.2 Traditional High Performance Computing as a Service (HPCaaS)
	3.2.1 MPI and Batch Queues
	3.2.2 Virtual Large-Memory System

	3.3 Grid as a Service (GridaaS)
	3.4 Infrastructure as a Service (IaaS)
	3.5 Cloud Platform as a Service (PaaS)
	3.5.1 Map Reduce

	4 FutureGrid Usage
	5 System Management
	5.1 Integration of Systems and Development Team
	5.2 DevOps
	5.2.1 DevOps Cycle
	5.2.2 DevOps Supporting Tools

	5.3 Support for Education

	6 Cloudmesh
	6.1 Functionality
	6.2 Architecture
	6.2.1 System Monitoring and Operations
	6.2.2 User and Project Services
	6.2.3 Accounting and App Store
	6.2.4 Networking
	6.2.5 Monitoring

	6.3 Cloud Shifting
	6.4 Graphical User Interface
	6.5 Command Shell and Command Line Interface

	7 Summary
	References

	Cloud Networking to Support Data Intensive Applications
	1 Introduction
	2 Building Blocks and Technologies for Cloud Networking
	2.1 Datacenter Networking
	2.2 Storage Area Network (SAN)
	2.3 Network Protocol Stack
	2.4 Local Area Network Partitioning
	2.5 Virtual Private Network (VPN)
	2.6 Virtual Networks and Overlay Networks
	2.7 High-Performance Backbones
	2.8 Software-Defined Networking (SDN)

	3 Intra-Cloud Networking
	3.1 Commercial IaaS Clouds
	3.2 Open Source IaaS Clouds
	3.2.1 OpenStack Cloud Software
	3.2.2 Apache CloudStack Project

	3.3 Network Virtualization Through SDN

	4 Inter-Cloud Networking
	4.1 CohesiveFT VNS-Cubed
	4.2 Pertino Cloud Network Engine
	4.3 ViNe Overlay Network Infrastructure

	5 Case Studies
	5.1 Optimizing Intra- and Inter-Cloud Data Transfer
	5.2 VM Migration
	5.3 Scientific Applications on the Cloud

	References

	IaaS Cloud Benchmarking: Approaches, Challenges, and Experience
	1 Introduction
	2 A Primer on Benchmarking Computer Systems
	2.1 Why Benchmarking?
	2.2 Elements of Benchmarking

	3 A Generic Architecture for IaaS Cloud Benchmarking
	3.1 Overview
	3.2 Distinguishing Design Features

	4 Open Challenges in IaaS Cloud Benchmarking
	4.1 Methodological
	4.2 System Properties
	4.3 Workload
	4.4 Metrics

	5 Experience Towards IaaS Cloud Benchmarking
	5.1 Methodology: The SPEC Cloud Working Group
	5.2 SkyMark: A Framework for IaaS Cloud Benchmarking
	5.3 Real-World Evaluation of IaaS Cloud Performance
	5.4 Statistical Workload Models
	5.5 Open Data: Several Useful Archives

	References

	GPU-Accelerated Cloud Computing for Data-Intensive Applications
	1 Introduction
	2 Background and Related Work
	2.1 Cloud Computing
	2.2 The GPU
	2.3 MapReduce
	2.4 General Graph Processing

	3 MapReduce on GPU Clusters
	3.1 Mars Overview
	3.2 MarsHadoop
	3.3 Mars-MR-MPI
	3.4 Experiments

	4 Graph Processing on GPUs and the Cloud
	4.1 Parallel Graph Processing on GPUs
	4.2 Parallel Graph Processing on the Cloud

	5 Summary and Open Problems
	References

	Adaptive Workload Partitioning and Allocation for Data Intensive Scientific Applications
	1 Introduction
	1.1 Summary of Contributions
	1.2 Organization

	2 Related Work
	3 Problem Description
	4 Apala
	4.1 Unifying Workloads
	4.2 Decomposing the Unified Workload
	4.3 Distributing the Unified Workload

	5 Evaluation
	5.1 Setup
	5.2 Decomposition Patterns
	5.3 Effectiveness of Load Balance
	5.4 Portability
	5.5 Overhead of Partitioning

	References

	DRAW: A New Data-gRouping-AWare Data Placement Scheme for Data Intensive Applications with Interest Locality
	1 Introduction
	2 Motivation
	3 Data-gRouping-AWare Data Placement
	3.1 History Data Access Graph (HDAG)
	3.2 Data Grouping Matrix (DGM)
	3.3 Optimal Data Placement Algorithm (ODPA)
	3.4 Other Considerations
	3.4.1 The Cases Without Interest Locality
	3.4.2 The Cases with Special Interest Locality
	3.4.3 Multiple Jobs with Multiple Data Sets
	3.4.4 Cluster/Datacenter Using Virtualization

	4 Analysis
	4.1 The Chance That ``Random = Optimal''
	4.2 The Optimal Degree of a Given Data Distribution
	4.3 The ``Optimal-Degree'' of the Random Distribution
	4.4 Multi-Replica Per Rack

	5 Methodology
	5.1 Test Bed
	5.2 Applications
	5.3 Implementation

	6 Experimental Results and Analysis
	6.1 Experiment Results
	6.2 Performance Improvement of MapReduce Programs
	6.2.1 Genome Indexing
	6.2.2 Mass Analyzer on Astrophysics Data

	6.3 Sensitivity Study: The Number of Replica (NR)
	6.4 Overhead of DRAW

	7 Related Work
	References

	Part II Resource Management
	Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction
	1 Introduction
	1.1 Summary of Contributions
	1.2 Organization

	2 Related Work
	3 Problem Formulation
	3.1 Preliminaries
	3.2 Task-Resource Matchmaking: A Game Theoretic Perspective
	3.3 Task-Resource Matchmaking: An Illustrative Scenario
	3.4 Introduction to Dynamic Iterative Auction

	4 Auction Based Design for Efficient Task-resource Matchmaking Strategy
	4.1 The Homogeneous Case
	4.1.1 Selection of the Valuation Function
	4.1.2 Pricing Strategy
	4.1.3 Payment Policy
	4.1.4 Strategy Analysis

	4.2 The K-Category Heterogeneous Case
	4.3 The General Heterogeneous Case

	5 Evaluation Results
	5.1 Performance of Task Scheduling
	5.2 Validation of Incentive Compatibility
	5.3 Performance Comparison with Uniform Price Auction

	References

	Federating Advanced Cyberinfrastructures with AutonomicCapabilities
	1 Introduction
	2 State of the Art
	2.1 Federating Computational Grids
	2.2 Federation in Cloud Computing
	2.3 Interoperability Standardization Activities

	3 Federation Model to Aggregate Distributed Resources
	3.1 Requirements
	3.2 Federation Architecture
	3.3 CometCloud
	3.4 Autonomic Management
	3.5 Enabling Autonomics

	4 Application Scenarios
	4.1 CDS&E Applications
	4.2 Enterprise Business Data Analytics

	5 Lessons Learned
	References

	Part III Programming Models
	Migrating Scientific Workflow Management Systems from the Grid to the Cloud
	1 Introduction
	2 Challenges and Available Solutions
	2.1 Challenges for Traditional Scientific Workflows
	2.1.1 Data Scale and Computation Complexity
	2.1.2 Resource Provisioning
	2.1.3 Collaboration in Heterogeneous Environments

	2.2 Moving Workflow Applications to the Cloud
	2.3 Migrating Workflow Management into the Cloud

	3 Integration of Swift and OpenNebula
	3.1 The Service Framework
	3.2 Integration Architecture and Implementation
	3.2.1 The Swift Workflow Management System
	3.2.2 The OpenNebula Cloud Platform
	3.2.3 Key Components

	4 Performance Evaluation
	4.1 The MODIS Image Processing Workflow
	4.2 Experiment Configuration
	4.3 Experiment Results
	4.3.1 The Serial Submission Experiment
	4.3.2 The Parallel Submission Experiment
	4.3.3 Different Number of Data Blocks Experiment

	5 Related Work
	References

	Executing Storm Surge Ensembles on PAAS Cloud
	1 Introduction
	2 Architecture/System Overview
	2.1 Windows Azure
	2.2 Sigiri Middleware
	2.3 MapReduce: Twister4Azure

	3 The SLOSH Ensemble
	4 Ensemble Deployment and Execution
	4.1 Sigiri Middleware
	4.2 MapReduce Runtime

	5 Output-Aware Job Deployment
	5.1 Load Partitioning
	5.2 Work-Stealing with Sigiri

	6 Modeling the Execution Time
	7 Performance Evaluation
	7.1 Vary Workloads
	7.2 Vary Parallelism
	7.3 Evaluating the Model

	8 Related Work
	References

	Cross-Phase Optimization in MapReduce
	1 Introduction
	1.1 MapReduce Performance in Widely Distributed Environments
	1.2 Cross-Phase Optimization

	2 Oracle: Model-Driven Optimization
	2.1 Model and Optimization
	2.2 Key Insights

	3 Map-Aware Push
	3.1 Overlapping Push and Map to Hide Latency
	3.2 Overlapping Push and Map to Improve Scheduling
	3.3 Map-Aware Push Scheduling
	3.4 Implementation in Hadoop
	3.5 Experimental Results

	4 Shuffle-Aware Map
	4.1 Shuffle-Aware Map Scheduling
	4.2 Implementation in Hadoop
	4.3 Experimental Results

	5 Putting It All Together
	5.1 Amazon EC2
	5.2 PlanetLab

	6 Related Work
	References

	Asynchronous Computation Model for Large-Scale Iterative Computations
	1 Asynchronous Iteration
	2 Delta-Based Accumulative Iterative Computation (DAIC)
	2.1 DAIC Introduction
	2.2 Asynchronous DAIC
	2.3 Convergence
	2.4 Effectiveness
	2.5 Scheduling in Asynchronous DAIC

	3 Write Asynchronous DAIC Algorithms
	3.1 Guidelines
	3.2 Examples
	3.2.1 Single Source Shortest Path
	3.2.2 Linear Equation Solvers
	3.2.3 Adsorption
	3.2.4 Other Algorithms

	4 Maiter: A Framework Supporting Asynchronous DAIC
	4.1 System Design
	4.1.1 Local State Table
	4.1.2 Receive Thread and Update Thread
	4.1.3 Scheduling Within Update Thread
	4.1.4 Message Passing
	4.1.5 Master Design
	4.1.6 Iteration Termination
	4.1.7 Fault Tolerance

	4.2 Maiter API
	4.3 Maiter Program Example

	5 Performance
	6 Related Work
	7 Summary
	References

	Part IV Cloud Storage
	Big Data Storage and Processing on Azure Clouds: Experiments at Scale and Lessons Learned
	1 Introduction
	2 Cloud Storage for Data-Intensive Applications: Challenges
	3 A Case Study: Data Storage and Managementon Azure Clouds
	3.1 Storing Unstructured Data: Azure Blobs
	3.2 Storing NoSQL-Structured Data: Azure Tables
	3.3 Synchronizing Processes for Concurrent Data Processing: Azure Queues
	3.4 Others

	4 Getting Further: Dealing with Storage Latency under Heavy Concurrency
	4.1 Aggregating the Virtual Disks for Communication-Efficient Storage
	4.2 Using Dedicated Compute Nodes for Scalable Data Management
	4.3 Leveraging Low Latency Storage for Reduction-Intensive Data Processing on Azure Clouds

	5 Executing a Large Scale Big Data Experiment on the Cloud
	5.1 The Search for the Brain–Gene Correlations
	5.2 The Computation and Storage Problems
	5.3 Experimental Setup
	5.4 Results
	5.5 Big Data Processing on Clouds: Lessons Learned
	5.5.1 Lessons Learned on How to Best Benefit from the Azure Cloud
	5.5.2 Beyond Azure: Lessons Learned on Big Data Processing on Clouds

	References

	Storage and Data Life Cycle Management in Cloud Environments with FRIEDA
	1 Introduction
	2 Related Work
	3 Background
	3.1 Storage Models
	3.2 I/O Performance in Cloud Environments
	3.3 Resource Model
	3.4 Application Execution modes
	3.5 Scientific Application Data Classes

	4 FRIEDA Life Cycle
	4.1 Data Partitioning
	4.2 Data Management

	5 Storage Planning
	6 Storage Provisioning and Preparation
	7 Data Placement
	8 FRIEDA Execution
	8.1 Communication Protocol
	8.2 Execution Stages
	8.3 Data Grouping

	9 Summary
	References

	Managed File Transfer as a Cloud Service
	1 Introduction
	2 The Problem of Data Insolubility
	2.1 Solutions

	3 Managed File Transfer
	3.1 Examples of MFT

	4 StorkCloud
	4.1 StorkCloud Scheduler
	4.2 Directory Listing Service (DLS)
	4.3 Web API and Thin Client GUIs
	4.4 Transfer Module Interface
	4.5 Optimization Modules

	5 Transfer Level Throughput Optimization
	5.1 Optimization Techniques
	5.2 Dynamic Optimization
	5.3 Examples in MFT Systems

	6 Scheduling Optimization and Reservation
	6.1 Coscheduling Algorithms
	6.2 Estimation with Historical Performance Data
	6.3 Practical Considerations

	7 Potential Applications of MFT
	7.1 Cloud Data Placement Middleware
	7.2 Backup Management and Replication
	7.3 Data Transfer for Thin Applications
	7.4 Going Further with MFT

	References

	Supporting a Social Media Observatory with Customizable Index Structures: Architecture and Performance
	1 Introduction
	2 Data and Query Patterns
	3 HBase
	4 Design and Implementation of IndexedHBase
	4.1 System Architecture
	4.2 Customizable Indexing Framework
	4.2.1 Table Schemas on HBase
	4.2.2 Customizable Indexer Implementation
	4.2.3 Online Indexing Mechanism and Batch Indexing Mechanism

	4.3 Data Loading Strategies
	4.4 Parallel Query Evaluation Strategy

	5 Performance Evaluation Results and Comparison with Riak
	5.1 Testing Environment Configuration
	5.2 Configuration and Implementation on Riak
	5.3 Data Loading Performance
	5.3.1 Historical Data Loading Performance
	5.3.2 Scalable Historical Data Loading on IndexedHBase
	5.3.3 Streaming Data Loading Performance on IndexedHBase

	5.4 Query Evaluation Performance
	5.4.1 Separate Index Structures vs. Customized Index Structures
	5.4.2 Query Evaluation Performance Comparison
	5.4.3 Improving Query Evaluation Performance with Modified Index Structures

	6 Related Work
	References

