
Chapter 5
Context Aware and Adaptive Systems

Alan Colman, Mahmoud Hussein, Jun Han and Malinda Kapuruge

Abstract Context aware software systems and adaptive software systems sense
changes in their environments, and respond by changing their behaviour and/or
structure appropriately. The perspective of these two approaches, however, tends to
differ. Context aware systems focus on modelling and reasoning about the relevant
environmental context often with aid of formal ontologies The system, however,
can only respond to an anticipated change of configuration setting or a change of
application mode. Adaptive systems in contrast focus on how the system responds to
an unanticipated environmental change. However, adaptive systems typically lack
sophisticated models of context. This chapter analyses the differences and similar-
ities between context-aware and adaptive systems. It then describes an approach
and framework called ROAD that supports the development of context-aware ap-
plications whose structure and behavior can be altered at runtime. ROAD provides
mechanisms to acquire and record context information and provision a central store
of ‘facts’ which are evaluated in rules. These rules mediate operational messages or
trigger adaptations to the structure of the application.

A. Colman (�) · J. Han
School of Software and Electrical Engineering, Swinburne University of Technology,
John Street, Hawthorn, PO Box 218, Melbourne, Australia
e-mail: acolman@swin.edu.au

J. Han
e-mail: jhan@swin.edu.au

M. Hussein
Menofia University, Menofia, Egypt
e-mail: mahmoud.hussein@ci.menofia.edu.eg

M. Kapuruge
DiUS Computing Pty Ltd, Melbourne, Australia
e-mail: mkapuruge@dius.com.au

© Springer Science+Business Media New York 2014 63
P. Brézillon, A. J. Gonzalez (eds.), Context in Computing,
DOI 10.1007/978-1-4939-1887-4_5

64 A. Colman et al.

5.1 Introduction

Context-aware Software systems and Adaptive Software systems have many sim-
ilarities. Both types of system sense changes in their environments, and respond
by changing their behaviour and/or structure appropriately. The perspective of these
two approaches, however, tends to differ. Context-aware systems focus on modelling
and reasoning about the relevant environmental context often with aid of formal on-
tologies (e.g. Wang et al. 2004; Chen et al. 2003; Ranganathan et al. 2003; Bettini
et al. 2010). While these context models may be rich and the reasoning complex, the
context-aware system response typically tends to be simple—that is, an anticipated
change of configuration setting or a change of application mode. Adaptive systems on
the other hand focus on how the system responds to environmental context change or
to changes in requirements. In adaptive systems the range of possible system config-
uration states is much larger. While some of these system states might be anticipated
typically there being so many options available for configuration or regulation that
not all configuration states can be anticipated. However, in general adaptive systems
lack the sophisticated models of context apparent in context aware systems.

This chapter explores how the gap between context aware and adaptive systems,
in particular adaptive service-based compositions, might be systematically bridged
through a domain-specific language and framework that allows the rapid develop-
ment of CAAS systems—Context-Aware Adaptive Systems (Nierstrasz et al. 2009;
Hussein et al. 2011). To show how this gap can be bridged we will start from the
perspective of adaptive systems, analyse the commonalities and differences between
context-aware and adaptive systems, then discuss how richer models of context might
be incorporated into such systems.

The structure of this chapter is as follows. In Sect. 5.2, we give an overview of
approaches to adaptive software systems in terms of the goals of the adaptations,
the environmental variables being monitored and modelled, the type of change en-
acted and how change is realised into the running system. In particular, we look at
approaches that provide the potential to model more complex environments and user-
focused adaptation. Section 5.3 presents a motivating scenario that shows the need
for a system that is both context-aware and adaptive. Section 5.4 sets out the general
requirements that we would need for models and a framework that can support the
development of context-aware adaptive software systems—in particular adaptive ser-
vice compositions. It also addresses some of the challenges faced in the development
of such systems. Section 5.5 describes the approach for specifying the context, func-
tional and adaptation properties of the system using the ROAD framework which is
a model-driven approach to creating decoupled context-aware adaptive service com-
positions. We show how this approach meets the requirements identified in Sect. 5.4.
Section 5.6 discusses related work in terms of our characterisation of context aware
and adaptive systems, with Section 7 concluding the chapter.

5 Context Aware and Adaptive Systems 65

5.2 Adaptive Systems

In the past decade or so there has been extensive research into how to create software
systems that can change themselves in response to their environment (e.g. Cheng
et al. 2008; Bradbury et al. 2004; Patikirikorala et al. 2012). Common with all these
approaches is their aim to achieve some goal related to the system in its environment
through definition of some form of loop whereby the environment and/or the system
itself is monitored, the information gathered is analysed, a decision is taken as to
what change is needed in the system in response, and these changes are then enacted
in the system. For example, IBM in their vision of computer systems that behave
‘autonomically’ called this feedback loop a MAPE-K loop (Monitor, Analyze, Plan
and Execute using a shared Knowledge base) (Kephart and Chess. 2003).

In this section, we will give a very brief overview of approaches to adaptive
software systems based on the categories defined in a control loop (goal, monitoring
and analysing the environment, making and enacting decisions) and contrast these
approaches to work on context-aware systems.

5.2.1 Goal of Adaptation

Adaptive systems have some degree of self-management, for example self-
configuring, self-optimizing, self-healing, and self-protecting—so-called self-*
properties. As well as varying goals, the definition varies as to scope of the ‘sys-
tem’ that needs to be self-managed. In the case of IBM’s autonomic initiative, the
elements are typically regarded as assets within enterprise computing environment
(e.g. servers, databases, network infrastructure, etc.) in order to reduce the amount
of manual intervention required when components in the system fail or need to be
changed. Other work has looked at lower levels of abstraction such as the allocation of
server resources to optimise for energy efficiency. For example, cloud infrastructure
providers continually need to automatically monitor and adapt the efficient provi-
sioning of resources as user-demand and availability of servers change. Yet other
work is focused on the software level, in particular managing service compositions
in order to achieve service level objectives, or the changing availability/performance
of constituent elements. In this case the systems goals and associated rules reflect
real-world business relationships between service consumers and providers.

In contrast, in context-aware systems the goal has been typically to enable an
application to adjust to its context of use or task, potentially taking into account user
preferences (Dey et al. 2001). This adaptation may be restricted to the user interface
level only, or may impact on the configuration of the functional system.

66 A. Colman et al.

5.2.2 Model of the Environment and Reflective Representation
of the System

In much of the work on adaptive systems, the aim is to change the behaviour and/or
structure of the system in order to keep some monitored variable in line with a goal.
These are typically performance variables such as response time, throughput, or
reliability; or alternatively resource consumption variables such as memory used
or energy consumed. As such, for adaptive systems the environmental context-in-
focus is the execution context of the software application rather than just the domain
context of the user (location, time, social situation etc.).The execution context can
typically be well defined in terms of resource parameters, performance parameters,
deployment or network topology, etc. In practice, it is therefore rare to see context
ontologies used in adaptive systems as the environment is well defined in terms of
what parameters are measured. Context-aware systems on the other hand often need
to model and reason about the “messy” and perhaps uncertain domain context of the
real world user.

While many software systems including context-aware systems exhibit various
degrees of ability to adapt themselves, adaptive systems need to maintain a reflective
runtime model (Bencomo 2009) of their own structure and/or behavior (Cheng et al.
2008). This reflective representation is used to reason about and trigger changes in
the system. The ‘self-awareness’ of such systems means that changes can often be
handled automatically compared with conventional systems that require off-line re-
design, implementation and redeployment. The level of granularity of these models
can vary greatly, from the code level (e.g. Wang et al. 2004) through to high level
architectures or service compositions (e.g. Colman and Han 2007). Software archi-
tectural models are a course-grained view of the system as a set of components and
connectors. Such models assume a closed computing environment. Service-oriented
architectures, on the other hand, operate in much more open environments where
the components or services that the application relies upon are not necessarily under
the control of one organization. Such service-oriented compositions rely on the dy-
namic binding of services that are ‘self-describing’ using standards such as the Web
Services Description Language (WSDL). The relationships between these ‘loosely-
coupled’ services therefore need to be actively managed as requirements and service
provisioning changes. The form of representation of models also varies from for-
mal control models that model behavior (e.g. Patikirikorala et al. 2012) to structural
models (e.g. Magee and Kramer 1996) that can automatically be composed, to more
informal declarative representations (e.g.Bradbury et al. 2004; Garlan et al. 2004).

Context-aware systems in contrast do not necessarily maintain an explicit reflec-
tive model of the system. Rather, the system will have a number of predefined modes
which are selected depending on the state of the sensed context. As context-aware sys-
tems become more adaptive their reflective models need to become commensurately
more sophisticated.

5 Context Aware and Adaptive Systems 67

5.2.3 Making and Enacting Decisions

Given a representation of the system and its environmental context, the nature of
the control loop in adaptive systems also varies greatly between approaches, and
depends on whether the system’s behaviour is being regulated, or its structure re-
configured, or both. Regulatory control focuses on changing the behavior of the
system assuming a fixed composition structure. Two predominant forms of regula-
tory control are control-theoretic and rule-based. Control-theoretic approaches create
formal mathematical models of the behavior of the system and aim to maintain the
system at some desired set-point in the face of environmental perturbations. Such
approaches predominantly use blackbox feedback control where the perturbations
are unmodelled and there is no explicit model of context (see Patikirikorala et al.
2012 for a comprehensive survey). Rule-based regulation, on the other hand, can
explicitly reference contextual variables in the form of rule conditions that regulate
interactions over the program or composition structure. Challenges for rule-based
regulation include ensuring consistency of the rule-base both in their definition and
in application, and ensuring that valid, non-oscillatory desirable behavior results
from the application of complex rules sets (Cheng et al. 2008; Mannaert et al. 2012).
Adaptive reconfiguration on the other hand focuses on maintaining a model of the
architectural structure of the system, i.e., how the system is composed from compo-
nents or services. Component based approaches (e.g. Magee and Kramer 1996) focus
on the compatibility and controlled composition of required and provided interfaces
(sometimes through connector components), whereas service-based compositions
typically model a variable business process that manages two levels of indirection:
(i) the relationships between abstract services and (ii) the binding of concrete ser-
vices to those abstract services. Some of the key concerns that these compositional
approaches need to address include ensuring the functional correctness of each archi-
tectural configuration; monitoring and analysing the relative performance of various
configurations; coping with change in components/services bound to the composi-
tion; and safely transitioning between configurations at runtime. While some simple
forms of reconfiguration control rely on selection of an appropriate configuration
from a predefined set, more truly adaptive systems use rules, tactics, strategies or
other planning techniques to enable effective change while ensuring that structural
and behavioral constraints are not violated. The autonomic vision of adaptive sys-
tems (Kephart and Chess 2003) sees such systems as recursive compositions of
self-managing systems that can communicate with each other on both functional and
management levels.

In adaptive systems changes occur at runtime. These changes must be reflected
both in the system model and in the runtime application itself. Many approaches
use a model checking mechanisms to ensure any planned changes are consistent
and beneficial, before any of the planned changes are committed to the runtime
system. Changes in the runtime system (e.g. unavailability of a service) need to be
reflected back in the model so that appropriate decisions can be made. Mechanisms
are therefore required to keep the model and the runtime in sync. In contrast, the

68 A. Colman et al.

number of states in context-aware systems is typically more limited with a set number
of configurations as such system contains no reflective model that can be manipulated.
As these configurations have been predetermined, their validity can be checked at
design time. Decision-making is therefore often a matter of simple switching of
modes based on some in-built logic.

Depending on the type of system, the “intelligence” required to make a control
decision can either be built into the system itself (for example through either rule
design or through some reinforcement learning mechanism), or can be exogenous
to the system (Colman 2007; Colman and Han 2005). In the latter case the adaptive
system only provides the runtime model of the flexible system and the mechanisms
for adapting the system while the decision about what to adapt is made by others.
Approaches such as (Garlan et al. 2004) and (Kapuruge et. al. 2014) do a combination
of both.

5.2.4 Engineering Context-Aware and Adaptive Systems

It is clear from the above discussion that there is no sharp distinction between context-
aware and adaptive systems. Both need to continually monitor their runtime context
in order to make appropriate changes. It is also clear that adding context-awareness
or adaptivity to a basic functional software system adds considerable complexity to
the development task. Supporting the engineering of such systems with appropriate
methodologies, architectures, frameworks and tools therefore becomes necessary.
In context-aware systems, it has been long recognised that the acquisition and man-
agement of context should be treated as a separate concern from the underlying
functional system (Dey et al. 2001; Henricksen and Indulska 2004). Likewise, adap-
tive software frameworks typically maintain the separation at both the conceptual
and implementation levels between the management of the system and the system’s
functionality, albeit within the autonomic element (Colman 2007). Another common
approach that assists the control of the complexity inherent in both context-aware
and adaptive systems is to use model driven frameworks that enable such systems to
be defined at a higher level of abstraction and then (semi-) automatically generated.

In this chapter we will show how adaptive systems, based on a rules-based declar-
ative service-composition approach, can incorporate some of the more complex
aspects of context apparent in context-aware systems. This approach maintains a
separation between functional, management, and contextual requirements and is
supported by a set of tools and framework that enables the ready development of
context-aware adaptive service compositions.

In summary, the table below characterizes some of the prototypical differences
between context-aware systems and adaptive systems. In Sect. 5.6 on related work
we discuss the extent to which various adaptive and context-aware approaches take
these characteristics into account.

5 Context Aware and Adaptive Systems 69

Context-aware systems Adaptive systems

Goal Present appropriate interface
or functionality based on
context of use.
Abstraction at the application
level

Maintain system objective in
response to environmental per-
turbation or changing require-
ments.
Abstraction possibly at many
levels (application, network,
resource, . . .)

Model and analysis of the
environment/user

Complex model of the domain
and user context. Need to
reason about domain
semantics and user preferences

Simple representation of the
environment in the form of pa-
rameters in the domain envi-
ronment or the software system
infrastructure

Representation of the system Operational view of the system
modes

Explicit behavioural or struc-
tural model of the system

Decision making and
enactment

Selection of pre-defined
configuration modes based on
rules and utility models

Tuning system operational pa-
rameters or altering composi-
tion of system structure based
on (multiple) objectives

Engineering models and
modularity

Separation of functional
aspects from context
acquisition

Separation of functional as-
pects from adaptation manage-
ment

5.3 Motivating Scenario for CAAS

Let us consider a travel guide application service that composes a number of other
services to create travel itineraries based on user preferences. These services pro-
vided both the functionality of the system (e.g. route planners, user profile services,
etc.) and the domain context information the system needs in order to function
(e.g. weather and traffic information, attraction finder services and so on). Even
application-specific functions like the derivation of inferred context might be out-
sourced as a service. In this scenario all functionality is provided by services external
to the composition. The role of the composition is to define a process that takes user
requests (e.g. plan itinerary given a set of attraction-types, time available, preferred
transport modes etc.), obtains relevant contextual information (e.g. weather and road
conditions), sends this information to a service that recommends to the user a set of
attractions, which on selection is sent to a route planning service that creates the final
itinerary given the user’s current location. This scenario of the service composition
with its functional and context services is illustrated in Fig. 5.1.

This application needs to adapt in a couple of ways. Firstly, during runtime op-
eration the composition needs to be aware of its execution context. In the case of
a service-oriented system this includes the availability or otherwise of services it
already knows about. For example, moving between regions the application may
have to switch between alternative traffic information providers. This management
capability might be realised by rules embedded in the composition, or the capability

70 A. Colman et al.

Fig. 5.1 Functional and context services

itself might be externalised in the service. Secondly, the provider of the travel guide
service wants to ensure that they can readily incorporate new types of service into
the composition (e.g. a transport disruptions service) without creating disruption to
users of the composite service. The composition needs to therefore be modifiable
without being taken off-line to go through another redesign/implementation-deploy
cycle.

5.4 Requirements for a CAAS Framework

The above scenario suggests a number of general requirements that need to be met
by any CAAS service composition framework. These include the ability to:

1. Mediate messages between functional services based on domain context infor-
mation provided by context provider services.

2. Be able to alter the structure of the composition at runtime based on the execution
context.

3. Be able to incorporate new types of behavior over a given structure by defining
adaptable processes that can be changed at run time.

4. Readily incorporate not only new instances of services whose types are already
known (service selection) but also incorporate new types of service (functional
or context) into the composition without disruption to current process instances,
and define the interactions between those new services and other services.

5 Context Aware and Adaptive Systems 71

5. Incorporate new types of context information into the composition along with
rules and make use of this information to mediate interactions or to handle changes
in execution context.

As discussed in Sect. 5.2.4, given the complexity of CAAS systems, the engineering
of such systems needs to be not only model-driven but maintain a reflective runtime
model. On one hand, separation of concerns needs to be maintained between func-
tional, context and management aspects while, on the other hand, facilitating the
integration of these aspects into well-defined, deployable modules that have some
degree of self-management.

5.5 A Model Driven Rules-based Approach to Implementing
a CAAS Framework

To address the above requirements, in this chapter we propose a model-driven rules-
based approach and framework for developing a CAAS applications. This approach
is based on the clear separation between function, context, and management aspects
as identified in Sect. 5.2, and incorporates these aspects into an integrated managed
service composition. In a CAAS application, the structure and behaviour can be
affected by not only changing state of the application but by changes in domain and
execution contexts. What therefore is needed is a common format to represent this
context information so that appropriate rules can be applied. To do this we adopt the
event–condition–action (ECA) approach as:

• Events are generated as messages received by and passing through the composite.
These messages can either be functional messages being mediated by the compos-
ite, or they may be messages indicating change of context which require updating
of facts stored by the composite.

• Conditions are evaluated based on the stored facts. These facts can either be
context acquired from external services, or be a reflection of the state of the
process or composite itself.

• Actions arising from execution of rules can result in mediation of messages pass-
ing through the composite (e.g. message routing); generation of messages to
services reflecting the state of the process or composite; generation of new facts
either reflecting the internal state of the composite or its external context; firing
of events which are then further evaluated by rules; automatic operational man-
agement actions (e.g. selection of an alternate to service based on availability);
or generation of messages sent to management services/operators indicating need
for re-configuration of the composite.

The following subsections describe how composite structure is defined, how the
operational issues and adaptive behaviour is conditioned by context information,
how this context information is acquired and provisioned, and how the development
process is supported by a framework and tool chain.

72 A. Colman et al.

Fig. 5.2 Functional
composite with domain
context providers

5.5.1 Composite Structure

To create the service composition that is both context aware and adaptive, we extend
our existing approach to creating adaptive service composites called ROAD (Role
Oriented Adaptive Design) (Colman and Han 2007; Kapuruge et al. 2011b). This
chapter will provide a very high level overview of the ROAD framework. A ROAD
composite structure is defined in XML along with associated rule files. These de-
scriptions are deployed to a ROAD4WS container which contains a component called
ROADfactory that generates the run-time service. The interested reader is referred
to (Kapuruge et. al 2014; Kapuruge et al. 2012; Kapuruge et al. 2013a, 2004; Talib
et al. 2010; King and Colman 2009) for more details1. The purpose of this overview
is to show how context facts are acquired and how they are used in the operation and
adaptation of the service composite.

ROAD is based on an organisational paradigm which defines the service compos-
ite as a role structure. Roles represent an abstract service interfaces to which concrete
services (“role players”) are dynamically bound (Kapuruge et al. 2011b). Role play-
ers can be functional services, context provider services, or management services.
Internally, the relationships between roles are represented by two types of contracts
(i.e. functional and contextual) which define permissible interactions between roles.
Figure 5.2 above illustrates a role structure based on our scenario with both external
functional and context provider services attached to the composite roles.

For example, a functional contract “FC2” exists between the user (role A) and
route planner (role B) roles as shown in Fig. 5.2. The contract has a set of permissible
interactions between the contracted roles as shown in Table 5.1. Each interaction has
(1) an identifier (e.g. i2); (2) an operation that needs to be performed by requesting
that interaction and the operation has a name (e.g. PlanRoutes2) and a set of input

1 The ROAD schemas and framework can be viewed and downloaded from https://github.com/road-
framework.

https://github.com/road-framework
https://github.com/road-framework

5 Context Aware and Adaptive Systems 73

Table 5.1 Part of the functional contract “FC2”

Functional Contract ID FC2: User_RoutePlanner
Parties: RoleA: User; RoleB: RoutePlanner;
Interaction Clauses:
i1: {PlanRoute1 (Destination, CurrentLocation), AtoB, Routes};
i2: {PlantRoute2 (Destination, CurrentLocation, TrafficInformation), AtoB, Routes};
...

Table 5.2 The contextual contract “CC1”

Contextual Contract ID CC1: TrafficInfo_RoutePlanner
Parties:

Context Source: TrafficInfo; Context Consumer: RoutePlanner;
Context Attributes:

a1:String: TrafficInformation;

parameters (e.g. destination, current location, and traffic information); (3) a direction
to specify who is responsible for providing the operation included in that interaction;
and (4) a return type (e.g. Routes).

Another type of contract is the contextual contract to define (represent) context
information that is needed by the system roles (i.e. the context model). For example,
the contract “CC1” shown in Table 5.2 specifies that the route planner role needs to
know the live traffic information to calculate the routes effectively.

In addition to functional and context provider role interfaces, ROAD composites
provide a management (“organiser”) interface that allows the structure to be modified
at run time. This interface provides a set of standard CRUD methods (a full list can
be found in Appendix C of (Kapuruge et. al. 2014)) for monitoring and adapting the
composite (e.g. adding and deleting roles and contracts, inject rules into contracts,
etc.). Such methods enable the runtime adaptation of the context model by changing
the system’s contextual roles and contracts, and the system’s functionality by adding,
removing, and changing the functional services of the system (Hussein et al. 2013).

5.5.2 Operational Behaviour

Each composite has a global repository of facts (a “fact tuple space” or FTS). The
FTS stores facts related to both the internal state of the composite and to any rel-
evant execution or domain context acquired via context roles. The composite also
contains a number of points on the role-contract-role path at which a message may be
mediated. These points have rule evaluation mechanisms (implemented in Drools2)
which evaluate patterns of events/facts stored in a local “working memory”. Events

2 http://www.jboss.org/drools/

http://www.jboss.org/drools/

74 A. Colman et al.

R2R1
Router

Analyser

Player
1

Player
2

1

2

3

Context
Provider /
ConsumerContext

role

FTS
Events

Working memory
Subscribe-notify links

...
Analyser

Fig. 5.3 Operational message flow

are triggered as messages pass through the composite. Facts in a working memory
are obtained by it subscribing to relevant facts, including context facts, in the FTS.
In the service composition behavioral mediation may be reactive (per message) or
coordinated into a process. The flow of message through composite is illustrated in
Fig. 5.3.

On receipt of a message at a role R1 ©1 , the message is transformed into the
internal message format of the composite and routed to the relevant contract ©2 . This
routing decision may be context dependent, for example a routing decision might
depend on execution-context facts relating to the availability or loads on required
services. A routing decision might be based on a domain-context rule that describes
a particular user’s preference for a service provider.

Likewise each contract contains a rule evaluation mechanism that can evaluate
the messages against rules defined in the contract. These rules may be independent
of context (e.g. is this type of message permissible) or maybe context-dependent
(e.g. is the message permissable give the current location of the sender). Once the
message has been processed by the contract it is passed to the outgoing role R2 ©3
where it is transformed by the analyser object in that role to be sent to the player.
This message transformation might (a) change the format/ordering of the message
content and (b) incorporate extra information from other messages or facts from the
FTS to make the message perceivable to the recipient.

Processes are implemented using Serendip (Kapuruge et al. 2012; Kapuruge
et al. 2013b), which adds a coordination layer to the reactive message handling
mechanisms of the ROAD framework. An example process is “plan route” shown in
Fig. 5.4. Based on the live traffic information availability, a suitable route planning
function is selected. Then, a set of routes are suggested to the user where she can select
a route. In Serendip, processes can be viewed as event-process-chains (Kapuruge
et al. 2013b) that compose units of behavior.

5 Context Aware and Adaptive Systems 75

Fig. 5.4 An example behaviour process in the travel guide service

Event Cloud

Fig. 5.5 Message coordination in an event driven process

At runtime, process instances are created from declarative process descriptions.
The Serendip process engine enacts process instances in response to the events fed to
the event-cloud. Typically, these events are published by the contracts into the event-
cloud. Figure 5.5 illustrates a message being sent to a player P3 that requires prior
receipt of messages from P1 and P2. Defining processes as a set of event-driven tasks
with pre- and post-events not only makes the process much more readily adaptable
but the evaluation of event conditions (e.g. E1∧E2) readily enables context state to
be included in those conditions.

76 A. Colman et al.

Table 5.3 A rule to cope with the unavailability of the traffic information

Rule “AdaptationRule1”: {
WhenValueChanges (TrafficInfoAvailability);
ifTrafficInfoAvailability == False;
doRemoveContract(“CC2”), Bind(“RoutePlanner”, “RoutePlanner2”),

RemoveInteraction(“FC2”,“i2”), RemoveRole(“TrafficInfo”),
RemoveTask (“P1”, “GetTrafficInfo”), RemoveTask(“P1”, “PlanRoute2”),
RemoveEvent(“P1”, “TrafficInfo Available”)};

5.5.3 Adaptive Behaviour

As can be seen by the description of operational behaviour in the previous section,
both message flow and process are sensitive to rules that evaluate, among other things,
arbitrary context. Rules can also be defined at the global composite level which
respond to anticipated changes in context to enact actions such as activation of role-
player bindings, termination of a process instance, exception handling, generation of
operational management messages to players, etc. An example adaptation rule from
our scenario is given in Table 5.3. This rule is activated (i.e. event) when the traffic
information is not available (i.e. condition). In response to this change, the service is
adapted (i.e. action) by removing the contextual contract “CC2”, binding the route
planner role with the player “RoutePlanner2”, etc.

For more complex decision-making potentially involving unanticipated situations,
an external management player bound to the organizer role can subscribe to events
and facts stored in the FTS. This player, who may be a program or a human controller,
takes the appropriate adaptation decision based on information available, and then
manipulates the composite as mentioned in section 5.5.1. This manipulation might
be as simple as resetting the state of the system fact or as complex as the wholesale
transformation of the composite structure. It is through this mechanism that the
composite is also adapted to changing requirements.

5.5.4 Acquiring and Providing Context Information

Given that both operational and adaptive behavior can be conditioned by context in-
formation stored in the FTS, it remains to be described how such context information
is acquired from external context providers. Or in the case where the composite self
is a provider of context information to other services, how this information is made
available to those services.

From an external point of view context roles and functional roles (as shown in
Fig. 5.3 above) are identical. Both define provided and/or required service interfaces.
The key differences between a context role and a functional role are that, firstly,
context roles read and write from the FTS rather than passing a message to a functional
contract. Secondly, the context role defines acquisition and provisioning regimes to
either pull or push context information to the partner context provider/consumer

5 Context Aware and Adaptive Systems 77

service. These acquisition/provisioning regimes may be either periodic (e.g. update
this context fact every 30 s) or event driven (e.g. notify this context consumer when
this fact changes). It should be noted however that a single role can have both
functional and context aspects given that its player may be sending/receiving both
functional and context messages.

While it is possible to do some simple reasoning to derive/infer context using the
rule mechanisms within the composite, a better strategy in terms of maintaining a
clear separation of concerns and modularity of design is to externalise the reasoning
about context to a separate computational entity/ service that is attached to the com-
posite. Such entities subscribe to context facts using a standard context role, infer
further facts from this information and return this derived context to the composite.
Such inference might be as simple as calculating statistical information from facts
obtained. More complex inference mechanisms using ontologies might also be im-
plemented in such external entities, for example, inferring the situation (i.e. domain
context) of a user based on facts about their interactions over the composite3. If this
external entity is itself implemented as a ROAD composite then it can aggregate
context information from multiple external sources.

5.5.5 Engineering CAAS Applications Using the ROAD
Framework

Our approach has two main phases: development and runtime adaptation. The de-
velopment phase is illustrated in Fig. 5.6. The service requirements are used for
designing the service model using the ROADdesigner Eclipse plugin. The design
transformed to an XML document and rules files following the ROAD schema. This
model captures the service’s functionality, context, and adaptive behavior. The ser-
vice model is then transformed to an executable service using the ROADfactory
component in ROAD4WS (Kapuruge 2011b; Kapuruge et al. 2013b). In particular,
the generated runtime artifacts of the executable service are engineered to change at
runtime (Step 2).

In the second phase, if there is a need to make unanticipated changes at runtime
then the service’s runtime model is adapted (Step 3). The differences between the
running service’s model and its adapted model are then computed. These differences
are then used to generate a set of adaptation actions which are applied to the running
composite service (Step 4). A more detailed description of this dynamic adaption
process can be found in (Hussein et al. 2013).

The ROAD framework has applied in a number domains including adaptive busi-
ness processes (Kapuruge et al. 2013b Kapuruge et al. 2011), personalised mobile
phone call handling based on social context information obtained from social net-
works (Kabir et al. 2012) (see Chapter 19 of this book), context-aware access control

3 See Chapter 19 “Socially-aware applications” for an example of such an approach.

78 A. Colman et al.

ROAD4WS
(Axis2 extension)

ROADfactory
(bundled with Drools rule

engine)

ROADdesigner
(Eclipse EMF)

ROAD
Meta-Model

<?xml version="1.0" encoding="UTF-8"?>
<SMC xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../ROADdesigner/model/smc.xsd">

<Role name="StockAdvice"/>
<Role name="Client"/>
<Role name="Accounts Management"/>
<Role name="Biller"/>
<Role name="Client Payments"/>
<Contract id="1" name="c" ruleFile="test">
<Role1>//@role.1</Role1>
<Role2>//@role.0</Role2>
<Monitor>//@monitor.1</Monitor>
<Monitor>//@monitor.0</Monitor>

</Contract>
<Contract>
<Role1>//@role.4</Role1>
<Role2>//@role.3</Role2>

</Contract>
<Contract>
<Role1>//@role.3</Role1>
<Role2>//@role.2</Role2>

</Contract>
<Player name="Client">
<Role>//@role.1</Role>
<Role>//@role.4</Role>

</Player>
<Player>
<Role>//@role.0</Role>
<Role>//@role.2</Role>

</Player>
<Player>
<MonitorRole>//@monitor.1</MonitorRole>
<MonitorRole>//@monitor.0</MonitorRole>

</Player>
<Monitor name="Usage"/>
<Monitor name="ResTime"/>

</SMC>

rule “StockAdviceCharge"

when

$res : TermExecutedEvent(term == "stockAdviceResponse")

$req : TermExecutedEvent(term == "stockAdvice",

XML and rules

ROADdesigner conforms
with the ROAD meta-model

Designer models the service
composite using ROADdesigner

Designer can update rules and
the composite structure at runtime

ROADdesigner persists the
package in XML form and

automatically generates rule files

ROADfactory creates in-
memory java instances for
the package components
and insert the rules into

Drools

ROAD4WS deploys the service
package as a Web service

Designer

ROADfactory updates the XML and rules
files based on runtime modification

..
.D

es
ig

n-
tim

e
..

.
..

.R
un

tim
e

..
.

Fig. 5.6 ROAD framework tool chain

(Kayes et al. 2014), and multi-tenanted cloud applications (Kumara et al. 2013).
Domain specific evaluations can be found in the above.

5.6 Related Work

A number of approaches support the development of context-aware adaptive software
systems from self-adaptive and context-aware perspectives. In this section, we briefly
analyze approaches in relation to the requirements we have identified.

Separation of Concerns Existing approaches follow one of two ways for system
modeling. Some separate system functionality from management but consider the
context representation implicitly as found in self-adaptive systems research (Salehie
and Tahvildari 2009). Other approaches have an explicit context representation but
hard-code the system management with its functionality, as found in context-aware
systems research (Baldauf et al. 2007). As such, they limit the system’s runtime
adaptation capability. In our approach, we separate the three aspects and keep them
integrated from modeling to implementation and to runtime execution by capturing

5 Context Aware and Adaptive Systems 79

the system-context relationships explicitly (see Section 5). As such, we can clearly
capture and manage the system model, the context model, and their relationships.

Runtime Changes of the Context Model The context model needs to be changed
at runtime to cope with unanticipated context changes such as new context informa-
tion or changes in the number of context element instances unknown at design time,
and to reduce the monitoring overhead by only selecting the context model elements
that are needed by the functional system. Most of the existing approaches have only
a design time context model (e.g. Bettini et al. 2010), and even those approaches that
have a runtime context representation do not provide a method for dynamically man-
aging the context model (Taconet et al. 2009; Sheng et al. 2009; Reichle et al. 2008).
This makes it more difficult to deal with unanticipated runtime context changes. For
example, in the MUSIC project (Rouvoy et al. 2009), the context model elements
are represented at runtime and when an element is needed it is activated. But, they
do not provide a method of managing the context model at the application level.
Our approach has a runtime representation of the context model and its management
(i.e. the organizer interface introduced in Section 5.1) enables its runtime changes.

Two Types of Contexts There are two types of context information that need to
be considered: (1) the domain context, which is the environment information that
affects the system operation; (2) the execution context, which is the system states that
the system management needs to know to initiate the adaptation process if needed.
Current research considers either the domain context (Henricksen and Indulska 2004;
Sheng et al. 2009; Gu et al. 2005; Mohyeldin et al. 2005; Serral et al. 2010), or the
execution context (Garlan et al. 2004; Rouvoy et al. 2009). Our approach handles
both in a generic and consistent way (see Section 5.2).

System-context Relationships They can be classified into (1) operational rela-
tionships, where the system needs to know certain facts about its context to continue
its operation; (2) management relationships, where the system needs to adapt itself
in response to the context changes. Most of existing approaches consider these rela-
tionships implicitly (e.g. Garlan et al. 2004; Morin et al. 2009). Existing approaches
do not maintain a runtime representation of the system-context relationships, and as
such they cannot be changed at runtime. In our approach, we represent the two types
of relationships explicitly and separately (as discussed in Sect. 5.1). Furthermore, we
have a runtime representation of these relationships to enable their runtime change.

System realization Many adaptive architectural approaches are based on dynamic
component models that explicitly connect the required and provided functional inter-
faces of component (e.g. Acme Garlan et al. 1997, Darwin Magee et al. 1995). Any
process is implicit in the behaviour of those components. In contrast, the approach
described here provides an added level of indirection and mediation to the service
composition. The downside of this mediated approach is that it requires message
transformation that may be inherently more inefficient. The upside is that it allows
a much greater the degree of flexibility in the definition of process and allows arbi-
trary mediators to be defined. In the case of ROAD this allows not only context and
other business domain rules to be readily injected into the composition, but context
acquisition and provisioning to be dynamically altered.

80 A. Colman et al.

5.7 Conclusion

ROAD is an adaptive service composition framework that readily enables the in-
corporation of context information to facilitate both functional and management
operations. It does this by providing mechanisms to acquire, record and provision a
central store of ‘facts’which are evaluated in rules that mediate operational messages
or result in adaptations to the behavioral structure of the composite. These facts can
include facts about the composite’s domain and execution context.

Facts can be sourced either internally or from external context providers. The
framework provides a standard way to generate role interfaces from declarative de-
scriptions that can be injected dynamically into the composite. These interfaces can
be for functional, context or management services. It also provides a way to inject
new fact types and rules to adapt the behavior of the composite at run time.

This approach assists in the development of CAAS applications that integrate
the explicit/sophisticated/separate context models of context aware system with the
ability of adaptive systems to manage unanticipated change in their environments
and requirements.

References

Baldauf, M. et al.: A survey on context-aware systems. Int. J. Ad. Hoc. Ubiquitous. Comput. 2,
263–277 (2007)

Bencomo, N.: On the use of software models during software execution. In: Proceedings of the 2009
ICSE Workshop on Modeling in Software Engineering, pp. 62–67. IEEE Computer Society,
Washington DC (2009)

Bettini, C. et al.: A survey of context modelling and reasoning techniques. Pervasive Mob. Comput.
6, 161–180 (2010)

Bradbury, J.S. et al.: A survey of self-management in dynamic software architecture specifications.
In: Proceedings of the 1st ACM SIGSOFT Workshop on Self-Managed Systems, Newport
Beach, CA. ACM, New York (2004)

Chen, H., Finin, T., Joshi A.: An ontology for context-aware pervasive computing environments.
Knowl. Eng. Rev. 18(3), 197–207 (2003)

Cheng, B.H.C. et al.: Software engineering for self-adaptive systems: a research road map. In:
Software Engineering for Self-Adaptive Systems. Schloss Dagstuhl—Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2008)

Colman, A.: Exogenous management in autonomic service compositions. In: Proceedings of the
Third International Conference on Autonomic and Autonomous Systems 2007 (ICAS 2007).
IEEE Computer Society Press, Athens (2007)

Colman,A., Han J.: On the autonomy of software entities and modes of organisation. In: Proceedings
of the 1st International Workshop on Coordination and Organisation (CoOrg 2005), Namur,
Belgium (2005)

Colman, A., Han J.: Using Role-based Coordination toAchieve SoftwareAdaptability. Sci. Comput.
Program. 64(2), pp. 223–245 (2007)

Dey, A.K., Abowd G.D., Salber D.: A Conceptual Framework and a Toolkit for Supporting the
Rapid Prototyping of Context-Aware Applications. Hum. Comput. Interact. 16(2–4), 97–166
(2001)

5 Context Aware and Adaptive Systems 81

Garlan, D., Monroe R., Wile D.: Acme: an architecture description interchange language. In: Pro-
ceedings of the 1997 conference of the Centre for Advanced Studies on Collaborative research,
p. 7. IBM Press, Toronto (1997)

Garlan, D. et al.: Rainbow: architecture-based self-adaptation with reusable infrastructure.
Computer 37, 46–54 (2004)

Gu T.: A service-oriented middleware for building context-aware services. J. Netw. Comput. Appl.
28, 1–18 (2005)

Henricksen, K., Indulska J.: A software engineering framework for context-aware pervasive com-
puting. In: The Second IEEE Annual Conference on Pervasive Computing and Communications
(PERCOM 2004). IEEE Press, New York (2004)

Hussein, M., Han, J., Yu, J., Colman, A.: An approach to model-based development of context-
aware adaptive systems. In: Proceedings of the 2011 IEEE 35th Annual Computer Software and
Applications Conference (2011)

Hussein, M., Han, J., Yu, J.; Colman, A.: Enabling runtime evolution of context-aware adaptive
services. In 10th International Conference on Services Computing (SCC), pp. 248–255. IEEE,
Santa Clara (2013)

Kabir, M.A., Han, J., Yu, J., Colman, A.: SCIMS: a social context information management system
for socially-aware applications. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (ed.)
Advanced Information Systems Engineering. Lecture Notes in Computer Science, vol. 7328,
pp. 301–317 (2012)

Kapuruge, M., Han, J., Colman, A. “Service Orchestration as Organization;; Morgan Kaufmann
(2014)

Kapuruge, M., Colman A., Han J.: Achieving multi-tenanted business processes in SaaS
applications. In: Web Information System Engineering (WISE). Springer, Sydney (2011a)

Kapuruge, M., Colman A., King J.: ROAD4WS—extending Apache Axis2 for adaptive service
compositions. In: IEEE International Conference on Enterprise Distributed Object Computing
(EDOC). IEEE Computer Soc. Helsinki (2011b)

Kapuruge, M., Han J., ColmanA.: Representing service-relationships as first class entities in service
orchestrations. In: International Conference on Web Information System Engineering (WISE),
Cyprus. Springer, Berlin (2012)

Kapuruge, M. et al.: Enabling ad-hoc adaptations through event-driven task decoupling. In: Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE). Springer, Valencia
(2013a)

Kapuruge, M. et al.: ROAD4SaaS: scalable business service-based SaaS Applications, In: Salinesi,
C., Norrie, M., Pastor, Ó. (eds.), Advanced Information Systems Engineering, pp. 338–352.
Springer, Berlin (2013b)

Kayes, A.S.M., Jun H., Colman A.: A context-aware access control framework for software ser-
vices. In: Alessio Lomuscio S.N., Patrizi F., Benatallah B., Brandi I. (eds.) Lecture Notes
in Computer Science: International Conference on Service-oriented Computing (ICSOC), pp.
569–577. Springer, Cham (2014)

Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer. 36(1), 41–50 (2003)
King, J. Colman, A: A multi faceted management interface for web services. Australian software

engineering conference, pp. 191–199. IEEE Computer Society, Los Alamitos (2009)
Kumara, I. et al.: Sharing with a Difference: realizing service-based SaaS applications with runtime

sharing and variation in dynamic software product lines. In: Proceedings of the 2013 IEEE
International Conference on Services Computing, pp. 567–574. IEEE Computer Society, Los
Alamitos (2013)

Magee, J., Kramer, J.: Dynamic structure in software architectures. In: Proceedings of the 4th ACM
SIGSOFT Symposium on Foundations of Software Engineering, pp. 3–14. ACM Press, San
Francisco (1996)

Magee, J. et al.: Specifying distributed software architectures. Software Engineering—ESEC’95,
pp. 137–153. Springer, London (1995)

82 A. Colman et al.

Mannaert, H., Jan, V., Kris V, Towards evolvable software architectures based on systems theoretic
stability. Softw. Pract. Exp. 42(1) 89–116 (2012)

Mohyeldin, E. et. al.: A generic framework for context aware and adaptation behaviour of re-
configurable systems. In: Personal, Indoor and Mobile Radio Communications (PIMRC), pp.
1957–1963. IEEE, Piscataway (2005)

Morin, B. et. al.: Taming dynamically adaptive systems using models and aspects. In: Proceedings
of the 31st International Conference on Software Engineering (2009)

Nierstrasz, O., Denker M., Renggli L.: Model-centric, context-aware software adaptation. Softw.
Eng. Self-Adapt. Syst. 5525, 128–145 (2009)

Patikirikorala, T. et al.: A systematic survey on the design of self-adaptive software systems using
control engineering approaches. In: Proceedings of the 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, Zurich, Switzerland, 04–05 June 2012,
pp. 33–42 (2012)

Ranganathan, A. et al.: Use of Ontologies in a Pervasive Computing Environment. Knowl. Eng.
Rev. 18(3), 209–220 (2003)

Reichle, R. et. al.: A comprehensive context modeling framework for pervasive computing systems.
In: Meier, R., Terzis, S. (eds.) Distributed Applications and Interoperable Systems. Lecture
Notes in Computer Science, vol. 5053, pp. 281–295. (2008)

Rouvoy, R.: MUSIC: middleware support for self-adaptation in ubiquitous and service-oriented
environments. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.)
Software Engineering for Self-Adaptive Systems, pp. 164–182. Springer, Berlin (2009)

Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and landscape and research
challenges. ACM Trans. Auton. Adapt. Syst. 4, 1–42 (2009)

Serral, E. et al.: Towards the model driven development of contextaware pervasive systems.
Pervasive Mob. Comput. 6, 254–280 (2010)

Sheng, Q.Z. et al.: ContextServ: A platform for rapid and flexible development of context-aware
Web services. In: Proceedings of the 31st International Conference on Software Engineering.
(2009)

Taconet, C., et al.: CA3M: a runtime model and a middleware for dynamic context management. In:
Proceedings of the Confederated International Conferences, CoopIS, DOA, IS, and ODBASE.
Vilamoura, Portugal (2009)

Talib, M.A. et al.: A service packaging platform for delivering services. In: IEEE International
Conference on Services Computing (SCC), pp. 202–209. IEEE Computer Society, LosAlamitos.
(2010)

Wang, X.H. et al.: Ontology based context modeling and reasoning using OWL. In: Proceedings of
the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops
(PERCOMW’04). IEEE, Orlando (2004)

	Part I Context in Software and Systems
	Chapter 5 Context Aware and Adaptive Systems
	5.1 Introduction
	5.2 Adaptive Systems
	5.2.1 Goal of Adaptation
	5.2.2 Model of the Environment and Reflective Representation of the System
	5.2.3 Making and Enacting Decisions
	5.2.4 Engineering Context-Aware and Adaptive Systems

	5.3 Motivating Scenario for CAAS
	5.4 Requirements for a CAAS Framework
	5.5 A Model Driven Rules-based Approach to Implementing a CAAS Framework
	5.5.1 Composite Structure
	5.5.2 Operational Behaviour
	5.5.3 Adaptive Behaviour
	5.5.4 Acquiring and Providing Context Information
	5.5.5 Engineering CAAS Applications Using the ROAD Framework

	5.6 Related Work
	5.7 Conclusion
	References

