
Chapter 24
Multi-context Logics—A General Introduction

Chiara Ghidini and Luciano Serafini

Abstract Multi-context logics (MCLs) constitute a family of formalisms that allow
one to integrate multiple logical theories (contexts) into an articulated structure,
where different theories can affect one another via so-called bridge-rules. In the
past 20 years multi-context logics have been developed for contexts in propositional
logics, first order logics, description logics and temporal logic. Each of these logics
has been developed, in an independent manner, for representing and reasoning about
contextual knowledge in a specific application domain instead of originating from a
single general formal framework. The absence of such a general formal framework
for Multi-Context Systems (MCS), from which to extract tailored versions for the
different application domain, has led to the development of a rather heterogeneous
family of formal systems, whose comparison is sometimes very difficult. Being able
to represent all these systems as specifications of a general class would be very
useful as, for instance, one could reuse results proven in one MCS in another one.
In this chapter, the authors provide an a-posteriori, systematic, and homogeneous
description of the various MCSs introduced in the past. The authors do this firstly
by providing a general definition of the MCS framework with its main components,
which is general enough to capture the various versions of MCSs. Then, an account
of the main logical specialisations of the MCS framework is provided, with an
explanation of the domain of application they have been developed for.

24.1 Introduction

Multi-context logics (MCLs) are a family of formalisms for the integration of multiple
logical theories (contexts) in an articulated composite structure. They are based
upon two key principles of contextual knowledge, named principle of locality and
principle of compatibility (Ghidini and Giunchiglia 2001). The principle of locality
states that a context represents (or, in a more technical fashion, axiomatizes in a
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Fig. 24.1 The magic box. a The complete scenario. b Mr. 1 and Mr. 2’s views. c Incompatible
views

logical theory) a portion of the world, and that every statement entailed by such a
representation is intended to hold within that portion of the world. The principle of
compatibility instead states that different contexts that describe overlapping portions
of world are represented by compatible logical theories, which are constrained to
describe compatible situations. To illustrate these principles, and the idea of context
underlined by MCLs we recall here the magic box example originally introduced
in Ghidini and Giunchiglia (2001).

Example 1 Consider the scenario of Fig. 24.1a. Two observers, Mr. 1 and Mr. 2,
are looking at a rectangular glass box from two different perspectives, one from the
front, and one from the side. The box consists of six sectors, each sector possibly
containing a ball. The box is “magic” and observers cannot distinguish the depth
inside it. Figure 24.1b shows what Mr. 1 and Mr. 2 can see in the scenario depicted
in Fig. 24.1a.

In this example we have two contexts, each context describing what an observer
sees (its viewpoint) and the consequences that it is able to draw from it. The content
of the two contexts is graphically represented in Fig. 24.1b. Notice that here the term
context does not refer to a particular circumstance, or state of affair, but it refers to
the point of view of each agent. Indeed we use the expression “the context of agent
1 (or 2)” to indicate his/her point of view.

Concerning locality, both Mr. 1 and Mr. 2 have the notions of a ball being on the
right or on the left. However there may be situations in which there is a ball which
is on the right for Mr. 1 and not on the right for Mr. 2. Furthermore Mr.2 has the
notion of “a ball being in the center of the box” which is meaningless for Mr.1.

Concerning compatibility, the partial representations of Mr. 1 and Mr. 2’s contexts
are obviously related. The relation is a consequence of the fact that Mr. 1 and Mr. 2 see
the same box. Figure 24.1b shows a pair of two compatible representations (contexts),
while Fig. 24.1c shows a pair of incompatible representations (contexts). In this
simple example we can synthetically describe all the compatible representations
using a narrative like: “if Mr. 1 sees at least a ball then Mr. 2 sees at least a ball”.

The MCL representing the magic box scenario is composed of:
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• Two logical theories T1 and T2, each of them containing the logical representation
of the context that describes one of the observer’s viewpoints over the box. Each
logical theory Ti will be described using an appropriate, and possibly different,
logic Li , interpreted in its own set of local models.

• A description of how to constrain the individual logical theories (and similarly
the underlying logical models) in pairs that represent compatible viewpoints.

By generalising from the above example, the basic framework of MCLs is constituted
by a number of logical theories Ti , each of them used to represent a context by means
of an appropriate logic Li , plus a description of how to combine/constrain the individ-
ual logical theories in compatible sequences that represent the entire multi-context
structure. In the past 20 years this basic framework of MCL has been developed to
model contexts described by means of different types of logic. In this chapter we
provide an account of the main logical specialisation of MCLs, namely propositional
logic and first order logic Multi-context Logics with an explanation of the types of
applications they have been used for.

The chapter is structured as follows. In Sect. 24.2 we introduce the general defi-
nition of Multi Context Logic with its basic components, namely: syntax, semantics,
logical consequence and deductive system (in literature called Multi Context Sys-
tem). MCLs can be categorized in two main families, namely: propositional MCL and
quantificational MCL. In Sect. 24.3 we introduce the general definition of proposi-
tional MCL and some of the MCL that have been proposed in the past. In Sect. 24.4 we
introduce quantificational MCLs and its two main important instances: Distributed
First Order Logics and Distributed Description Logics.

24.2 Multi-context Logics

It its more general form, a multi-context logic (MCL) is defined on a family of logics
{Li}i∈I where each Li is a logic used to formalize the i-th context. We assume that
each logic Li is equipped with a formal language, a class of structures in which this
language is interpreted, a satisfiability relation (denoted by |=i) which defines when
a formula is true or false in an interpretation structure, and a logical consequence
relation (also denoted by |=i), that states when a formula is a logical consequence of
a set of formulas of the language of Li .

Languages of MCL

We distinguish two main categories of MCL: propositional and quantificational MCL,
depending on the fact the languages associated to each context, are only propositional
or quantificationals. By propositional languages we refer to logical languages that
contain only expressions that express that a certain state of affair has a certain truth
value (independently from the specific truth value). Quantificational languages ex-
tend propositional languages with the possibility of specifying objects of the domain,
by means of special expressions usually called terms. In the case of quantificational
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multi-context logic we extend the language of Li (with i ∈ I ) with a set of terms
called arrow variables, denoted as x→j and xj→, (with x variable and j ∈ I ). Arrow
variables are used to point to objects to other domains. The formal semantic will be
clarified later.

Multi-context Structure

The set I of context indexes (aka context names) can be either a simple set, or a set
equipped with an algebraic structure such as, for instance a partial order, a lattice, a
linear order, and possibly a set of operations on context indices. For instance, a partial
order structure 〈I ,≺〉 can be used to represent a set of contexts which are organized
according to a general-specific relation. For instance if football is the context
(theory) that formalizes the domain of football, while Sport is the context (theory)
that formalizes the more general domain of sport, the fact that the football domain is
more specific than the sport domain can be captured by imposing football≺sport
in I . A discrete linear order can be used to represent the evolution of the knowledge of
one or a group of agents, where each context formalizes the agents’ knowledge state
at a given stage. For instance if icd10 is the context that describes the international
classification diseases - version 10, and icd11 is the context that describes the the
next version of the same classification, then icd10 ≺ icd11 states that icd11 is the
subsequent version of icd10. Finally a lattice structure can be adopted to represent
knowledge which holds in convex time intervals (represented by pairs of time points
〈start , end〉. The containment relation between intervals, represents the fact that the
temporal span of a context covers the temporal span of another context.

Multi-context Model

A model for a multi-context logic {Li}i∈I is a class of functions C where each function
c ∈ C assigns to each element i ∈ I a set of interpretations ci for the logic Li . Each
element of ci is called a local model of Li , and every c ∈ C is called a chain1.
Figure 24.2 provides a graphical illustration of a chain for a set of four contexts. A
multi-context model is also called compatibility relation to emphasize the fact that
it describes a class of compatible combinations of local models that mimic the type
of relation that is assumed to hold between the original contexts they represent.

Some additional definitions are necessary to define the semantics for quantifica-
tional MCL. Quantificational logics extend propositional logics with the capability
of predicating properties of objects of a universe, by introducing a class of expres-
sions that denote objects of a domain. These expressions are usually called terms.
As happens for propositional formulas, terms in different contexts can have different

1 The term “chain” is slightly misleading, as it suggests that the set of contexts are structured in a
total order (i.e., a chain) which might not be the case. Historically total ordered context structure
was the first form of multi-context logic that has been studied. This made it natural to use the term
“chain” for c ∈ C. For the sake of notation this terminology was maintained also in more complex
MCLs with different context structures as the one depicted in Fig. 24.2.
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Fig. 24.2 A multi-context
model. Each language is
interpreted in a set of models.
Each combination of sets of
local models defines a chain
and belongs to a compatibility
relation. Graphically (and
formally) this can be thought
as an iper-arc on the graph of
a set of sets of local models
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meaning. Classical examples of terms with context dependent meaning taken from
the area of formal linguistics are indexicals (like “here”, “now”, “me”); other ex-
amples can be found in the area of heterogeneous information integration, where a
term can be used differently in different information resources (e.g., “Trento” in a
database can be used to denote the province of Trento, while in another one is used
to denote the city of Trento). Conversely, meaning of terms in different contexts can
be related. To capture the relations between elements of different domains of inter-
pretation we introduce the notion of domain relation. More precisely, let �m be the
domain of a local model m, and �i = ⋃

m∈ci
�m, �j = ⋃

m∈cj
�m be the domains

of interpretation for the models in ci and cj respectively, then a domain relation rij

from i to j is any subset of �i × �j .2

For instance suppose that A is the context corresponding to the database of books
available on a web catalogue (say Amazon), and B is the database of the physical
copies of books available in a library (say Biblioteca di Trento). A chain for the MCL
composed of A and B is a pair 〈cA, cB〉. To represent the correspondence between
the books titles available on Amazon and the book copies available in the Library
of Trento, we can use the rAB , that contains each pairs 〈a, b1〉 , . . . , 〈a, bk〉 where
b1, . . . , bk are the k ≥ 1 copies of the book a sold by Amazon, which are available
in the library of Trento.

2 The domain relation is used to represent the overlapping between the domains of two contexts.
Usually, in databases, or in ontology integration scenarios, the overlapping between two domains
�i and �j is represented by imposing that �i ∩�j contains a set of elements which are supposed
to exists both in the domain of the ith context and of the j th context. The usage of a domain
relation turns out to be more flexible than assuming domain intersection since it allows to integrate
knowledge defined over overlapping but heterogeneous domains of interpretation. The typical case
is the one of two databases that adopt a different level of abstraction to represent a specific domain.
For instance, time at the level of day, and time at the level of hours.
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Fig. 24.3 A MCL model

c1

c2

c2

c1

r

¬r

l

¬l

l

r

¬l

l

cr

c ¬r

Multi-context Satisfiability

Satisfiability is a relation that spans between a model and formulas belonging to
different logical languages, which are not necessarily disjoint. This introduces the
necessity to distinguish between formulas that occur in different contexts. A labelled
formula is an expression of the form i : φ where φ is a well formed formula of Li .
The intuitive meaning of i : φ is that φ holds in the i-th context.

Local satisfiability, that is, the satisfiability of a formula φ in a context i, is defined
w.r.t. the local models and, possibly, the assignments to the free variables occurring in
φ in case of quantificational contexts. Intuitively, a labelled formula i : φ is satisfied
by a model C if all the local models m ∈ ci for all the chains c ∈ C satisfy φ.

To make a simple example, consider the MCL model C for the magic box scenario
depicted in Fig. 24.3. As explained in the introduction, this scenario can be formalized
with two contexts 1 and 2 that formalise the points of view of Mr. 1 and Mr. 2,
respectively. The two contexts are associated with two propositional logics L1 and
L2 respectively, defined over the sets of propositional atoms {l, r} and {l, c, r}3.
Intuitively, we aim at introducing a definition that says that C satisfies the formula
1 : ¬r∨ l as the two elements c1 and c′1 belonging to the (only) two chains c and c′ in
the model C satisfy the formula ¬r ∨ l (where, in turn, the fact that c1 and c′1 satisfy
¬r ∨ l means that all the local models they contain satisfy that formula according to
the notion of satisfiability in the appropriate logic, propositional in this case).

The above definition is sufficient for propositional contexts and also for quantifi-
cational contexts, if φ does not contain free variables. However, the general definition
should also take into account the case in which φ contains free and arrow variables,
which need to be assigned to the elements of the domains of the models in ci . Notice
however the models of ci could have different domains of interpretation, so variables
need to be assigned so that they are meaningful in all the models m ∈ ci . i.e., to
the intersections of the domains of the models in ci . So if a is an assignment for
the variable x, since we want to maintain the definition that c |= i : φ(x)[ai] if
m |= φ(x)[ai] for all m ∈ ci , then x should necessarily be assigned by ai to some
element which is in the intersection of the domains of each m ∈ ci . More formally, a
local assignment ai should map every (arrow) variable x in an element of

⋂
m∈ci

�m,
where �m is the domain of interpretation associated to the model m. We make the
additional assumption that such an intersection is non-empty.

3 Where l, c and r stand for left, center and right, respectively.
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Formally, for any formula i : φ, for every multi-context model C, for every chain
c ∈ C and for every assignment ai that assigns the free variables occurring in i : φ

to the intersection of the domains of interpretation of the locals models in ci , we
say that C satisfies i : φ w.r.t. the assignment ai if for all c ∈ C, c |= φ[ai], where
c |= φ[ai] means that m |=i φ[ai] for all the local models m of the i-th element
ci ∈ c, and |=i is the satisfiability relation defined in the logic Li . We indicate that
C models i : φ with the symbol C |= i : φ[ai]. When we have to evaluate a set of
labelled formulas Γ that span over multiple contexts free variables, as all the other
symbols, are locally interpreted, and therefore we need to have an assignment ai for
each context i ∈ I . This is called local assignment. An MC-assignment (or simply
an assignment) is a family of assignments a = {ai}i∈I such that for each i �= j ∈ I ,
ai assigns every variables of Li which is not an arrow variable, and if Li and Lj are
quantificational logics, there is a domain relation rij such that: if aj (xi→) is defined
then

〈
ai(x), aj (xi→)

〉 ∈ rij and if ai(x→j ) is defined then
〈
ai(x→j ), aj (x)

〉 ∈ rij .

Multi-context Logical Consequence

In MCL the notion of logical consequence is defined over labelled formulas. In
particular, if Γ is a set of labelled formulas and i : φ a labelled formula, then i : φ

is a logical consequence of Γ if and only if,

1. there is a model C, a chain c ∈ C and a family of assignments a = {ai}i∈I to the
free variables of Γ ∪ {φ} such that c |= Γ ∪ {i : φ}[a], and

2. for all models C, for all c ∈ C and for all family of assignments a = {ai}i∈I to
the free variables of the formulas in Γ if c |= Γ then there is an extension a′ of
the assignment a, to the free variables of φ such that c |= i : φ[a′

i]
4.

Information Flow Across Contexts via Bridge Rules

In a MCL every context is interpreted in a set of local models, possibly arranged
into chains. Local interpretation is the way to relate the truth and the falsity of the
formulas to each context. However, only certain combinations of local interpretations
are possible. Those are the ones admitted by the class of compatibility relations
associated to a MCL. At the level of formulas, this means that there is a dependency
between the truth of a (set of) formulas in a context and the truth of different formulas
another context. To go back to our magic box scenario, this means that if a formula
l (there is a ball in the left sector) is true in the context of Mr.1, then the formula
l ∨ c ∨ r (there is at least one ball in the box) must be true in the context of Mr.2.

From this perspective we can say that (classes of) compatibility relation(s) deter-
mine an information flow across contexts: the truth of a certain formula in a context

4 In the definition of multi-context logical consequence there is an implicit existential quantification
of the free variables in φ which are not free in Γ . This is similar to what happens for the semantics
of rules in logic programming, where variables that appear in the head of a rule (the consequence)
which are not contained in the body are usually interpreted existentially.
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affects (imposes) the truth of another formula in a different context. Bridge rules are
expressions over the languages of different contexts that enable the formalisation of
this information flow. They are of the form:

i1 : φ1, . . . , in : φn, not in+1 : φn+1, . . . , not im : φm → i : φ (24.1)

with 0 ≤ n ≤ m, ik ∈ I and φk a formula in the language of Lik . The intuitive
reading of (24.1) is: “if φ1, . . . , φn hold in i1, . . . , in respectively and φn+1, . . . , φm

do not hold in in+1, . . . , im respectively, then φ holds in i.” Thus, a simple bridge
rule that represents the propagation flow in the magic box example discussed above
is

1 : l → 2 : l ∨ c ∨ r. (24.2)

Multi-context System

We are now ready to define an axiomatic system for multiple contexts. A multi-context
system MCS in a multi-context logic LI = {Li}i∈I is a pair 〈T, BR〉 where T is a
family of theories {Ti}i∈I , with Ti a set of closed formulas in the logic Li , and BR

is a set of bridge rules. Intuitively, each Ti axiomatizes what is true in the logic Li ,
while the bridge rules BR axiomatize the constraints imposed by the compatibility
relations and act like cross-logic axioms.

Reasoning in Multi-context Systems

There are multiple reasoning systems for MCL. Depending on the local logics, dif-
ferent reasoning systems have been developed in the past. Often, reasoning methods
for specific MCL are the result of the combination via bridge rules of local rea-
soning methods. The work in Giunchiglia and Serafini (1994), Ghidini and Serafini
(1998) propose an extension of Natural Deduction for reasoning in propositional and
first order MCLs; in Serafiniand Roelofsen (2005) the SAT decision procedure for
propositional logic is extended to a context SAT (or C-SAT) procedure to check for
satisfiability in propositional multi-context systems; in Ghidini (1999), Borgida and
Serafini (2003) tableaux methods for reasoning in modal and description logics have
been extended for MCLs based on modal/description logics; Brewka et al. (2007) ex-
tends answer set programming to deal with propositional MCLs with non-monotonic
bridge rules; finally, Bozzato and Serafini (2013) shows how SROIQ2-RL rule based
forward reasoning can be extended to deal with multi-context logics in which each
context is associated to a semantic web language OWL2RL. In the remaining of the
chapter we will briefly recall and describe the most important reasoning methods
that have been developed for MCLs along with an explanation of their main usages.

Local and Global Inconsistency

The fact that in MCL knowledge is split in multiple theories, makes MCL a flexible
framework for modelling various types of inconsistencies. A first form of inconsis-
tency arise when a proposition is assumed to hold in a context and the negation of the
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same proposition is assumed to hold in another context. This is easily represented in
MCL with the two formulas i : φ and j : ¬φ, which, in general, can be managed
without generating any form of inconsistency. This is similar to what happens in
multi modal logic where the two propositions �iφ and �jφ do not interfere, unless
there are specific axioms that connect the two modalities �i and �j . In addition
to this, in MCL we can define two forms of inconsistency. One is called local in-
consistency and refers to the fact that in a particular context it is possible to derive
contradictory statements, i.e., for some i ∈ I , i : φ and i : ¬φ are both derivable; the
second is called global inconsistency, which refers to the fact that a contradiction is
derivable in all the contexts, i.e., for all i ∈ I , i : φ and i : ¬φ are both derivable.
In general local inconsistency does not entail global inconsistency. So it is possi-
ble that one context is locally inconsistent, while others are consistent. From the
semantic perspective, local inconsistency in a context i corresponds to the fact that
there are chains in the compatibility relation of an MCL where i is interpreted in the
empty set of local model, while other contexts are associated with a non empty set of
local models.

24.3 Propositional Multi-context Logic

The fisrt, and simplest, family of MCLs that was developed is based on an unstruc-
tured set I of contexts, where each context is described by means of a propositional
logical language. Following the general definition, a propositional multi-context
logic (PMCL) is defined starting from a family {Pi}i∈I , where each Pi is a set of
propositional variables. Each logic Li is therefore described using a propositional
language defined on Pi . A model (compatibility relation) C for PMCL is composed
by a set of chains c ∈ C where each ci is a set of truth assignments to the proposi-
tional variables in Pi (that is, each ci is a set of propositional models defined over
Pi). Depending on the constraints one imposes on C it is possible to define various
types of PMCS. In the following we provide three important examples of PMCS
present in literature.

Partitioning Propositional Theories

One of the simplest ways of looking at multi-context logics is in terms of a partition of
a (propositional) theory into a set of interacting microtheories. In this case the entire
MCS is the (propositional) theory, the different contexts are the microtheories, and the
compatibility relations (or analogously bridge rules) express the way microtheories
are connected one to another. As explained in Amir and Mcilraith (2000), one of
the main reason for partitioning a large (propositional) theory into a set of smaller
interacting microtheories is efficiency of reasoning.

Partitioned propositional theories correspond to a specific class of compatibility
relations for PMCL, which we indicate with Cpart , that contain chains c defined as
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follows:

for all i ∈ I , |ci | = 1 (24.3)

for all p ∈ Pi ∩ Pj , ci(p) = cj (p) (24.4)

Condition (24.3) states that all the elements ci of a chain contain exactly one local
model and intuitively represents the fact that each chain can be considered as com-
posed of different contexts (the different ci) that have a complete representation of a
scenario (from their point of view). For instance, the chain c′ = 〈c′1, c′2〉 in Fig. 24.3
satisfies this requirement and correspond to the scenario in which Mr. 1 sees a ball
in the left sector, and no ball in the right sector, and Mr. 2 sees a ball in the center
and left sectors and no ball in the right sector. Condition (24.4) states that the differ-
ent elements ci contained in a chain agree on the interpretation of the propositional
variables that are common to the two elements. Intuitively this means that the two
contexts described by, say, ciandcj agree on the truth value of the knowledge they
have in common.

If we denote with |=part the logical consequence defined w.r.t. Cpart , then we can
state the following correspondence between a partitioned PMCL and propositional
logic.

Theorem 1 Let T = T1�· · ·�Tn be a propositional theory on the set of propositions
P , which is partitioned in n theories Ti ⊆ T (for 1 ≤ i ≤ n) defined on the set of
propositional variables Pi , then: for every formula φ that contains only propositions
in Pi , we have that

T |= φ if and only if 1 : T1, . . . , n : Tn |=part i : φ.

Partial Views

Relaxing conditions (24.3) and (24.4) enables to obtain a more general (that is,
weaker) class of MCLs where each context can be considered as describing a partial
view on the world. For example, in Fig. 24.3 element c1 corresponds to a partial view
of the two sector’s box where Mr. 1 can state that there is a ball in the right sector but
is uncommitted on whether there is a ball in the left hand side sector (e.g., because
the sector is behind a wall as in an example shown in Ghidini and Giunchiglia (2001).

As shown in Roelofsen and Serafini (2004), this general formulation of PMCL is
embeddable in the propositional multi-modal logic S5, with one modal operator �i

for each context label i ∈ I . Local formulas of the form i : φ are translated in �iφ,
and bridge rules of the form (24.1) are translated in the implication

�i1φ1 ∧ · · · ∧ �inφn → �iφ (24.5)

The correspondence between this PMCL and multi-modal S5 is not an equivalence
since modal logics has a global language allowing formulas that express relations
between local models which are more complex that the one representable in terms of
propagation rules. For instance the modal formula �iφ ∨ �jφ does not correspond
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Fig. 24.4 A hierarchical meta structure

to any bridge rule between i and j as it cannot be represented as a propagation
pattern. Another example is negated modal formulas like e.g., ¬�iφ, which is not
expressible in MCL, as it states that a proposition does not hold in a context. This
limitations in the expressivity reflects the fundamental assumption of MCL, i.e., that
every formula should be stated in a context. This expressivity limitation turns out to
be of great help in the definition of modular reasoning systems, since they prevent
to express global inconsistency, since there is no global formula. The assumption
of not permitting global logical operators, has been relaxed in the formulaization of
non-monotonic MCL (Brewka et al. 2007), where the negation (as failure) operator
is applicable to a labelled formula, obtaining not(i : φ).

Hierarchical Meta Logics

In the work on propositional multi-context logics, a special effort was devoted to
investigate the usage of these formalisms to formalize the “object and meta relation”
between contexts, that is, the situation in which for each context one can define a
meta context that predicates on what holds in the object context.

In this case I is the set of natural numbers with the usual total linear order, and
each language Li is a propositional language, such that for every formula φ in the
language of Li there is a propositional variable •(φ) in the language of Li+1, as
depicted in Fig. 24.4.

The compatibility relation COM for a hierarchical meta logic satisfies the following
constraints:

1. Closure w.r.t. union: If c, c′ ∈ C, then c∪c′ ∈ C (where c∪c′ = {ci ∪c′i}i∈I ).
2. Interpretation of meta-formulas: For all c ∈ C, i ∈ I and φ in Li , ci |= φ

if and only if ci+1 |= •(φ).
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The work in Giunchiglia and Serafini (1994) shows that this logic is equivalent to
the modal logic K, when the “•” operator is translated in the modal operator �,
while further works (see, e.g., Ghidini 1999) prove that by further restricting C it
is possible to obtain the other normal modal logics, such as B, K4, K45, S4 and
S5, and have applied these equivalence results to model propositional attitudes and
multi-agent systems by means of a context-based approach (see, e.g., Cimatti et al.
1994; Benerecetti et al. 1998a; Benerecetti et al. 1998b; Fisherand Ghidini 2010).

24.4 Quantified Multi-context Logics

Quantified multi-context logics extend propositional MCL with the possibility of
predicating object properties in different contexts and relations between objects. The
two principles of MCL of locality and compatibility are extended to the contextual
interpretation of terms. In details: according to the locality principle, each context
is associated with a local domain. According to the compatibility principle, only
certain combinations of local domains are admitted. For instance, if A and B are the
contexts associated to two databases DBA and DBB , respectively, then the universe
of A (i.e., the set of constants that appear in the relations of DBA) can be completely
distinct from the universe of DBB . For instance, the two databases might use different
identifiers, and different ways to denote attributes, and so on. On the other hand, if
the intended domains of both DBA and DBB overlap, i.e., they contain information
about a common subset of objects, say books, then the identifiers of books used in the
two databases should be somehow related. As explained in the introductory section,
the relation between local domains is modelled via the, so-called, domain relation.

Specific instances of quantified MCL have been developed with the scope of
formalizing heterogeneous database integration, ontology integration, and ontology
matching. They are all monotonic logics, and the local logics are either first order
logic, or description logics. In the following subsections we introduce the two main
quantified MCLs: Distributed First Order Logics (Ghidini and Serafini 1998) and
Distributed Description Logics (Borgida and Serafini 2003).

24.4.1 Distributed First Order Logics

DFOL is a family of MCL that has been defined with the objective of formalizing
contextual knowledge expressed in first order languages. One of the main motivation
for DFOL is the formalization of heterogeneous relational database integration (Ser-
afini and Ghidini 2004) and to provide a formal semantics for heterogeneous schema
and ontology mapping (Serafini et al. 2007).

A DFOL is defined on a family of first order logics {Li}i∈I . A DFOL model is
any compatibility relation {c} composed of a single chain c where ci , for all i ∈ I

is a (possibly empty) set of interpretations of Li on the same domain �i �= ∅. With
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respect of the original formalization described in Ghidini and Serafini (1998) we also
admit the arrow variable xi→ and x→i in the language Li and the domain relation
rii . This results in a more uniform treatment.

Consequently, this simplify the general definition on assignment, as this implies
that the intersection of the domains of all the local models associated to the context i,
is the same as the domain of each local model. The representational hypothesis which
derives by assuming shared domain for all local models in ci is the fact that at each
context there is complete knowledge on the size of the local domain. Formally this
corresponds to the fact that every formula φ that does not contain, constant symbols,
functional symbols, and predicate symbols with the exception of the equality symbol,
is such that C |= i : φ or C |= i : ¬φ. i.e., all the ith local models agree on the
evaluation of φ5. Examples of such formulas, are the those that allow to state bounds
on the dimension of the domain. as, i : ∀x0, . . . , xm

∨
0≤i<j≤m xi = xj , which states

that ith domain contains at most m elements, and i : ∃x1, . . . , xn

∧
0≤i<j≤n xi �= xj

that states that ith domain contains at least n elements. The assumptions, of constant
local domains does not imply full constant domains, i.e., the fact that every domain
in every context has the same dimension. Indeed, for instance the set of labelled
formulas {1 : ∀xy.x = y, 2 : ∃xy.x �= y} is satisfiable, and they state that the
domain of context 1 contain one element and the domain of context 2 contains at
least two elements.

DFOL is the first example of MCL described in this chapter where logical con-
sequence relation involves the assignment to variables. Under the assumption of
constant local domains, we can simplify the definition of logical consequence as
follows:

Γ |= φ if for every chain c and every assignment a for all the variables in Γ , if c

|= Γ [a] then there is an extension of a to a′such that c |= i : φ[a′]. (24.6)

24.4.1.1 Representing Cross Domain Constraints in DFOL

In the general case, i.e., when no constraints are imposed on the compatibility rela-
tion, the logical consequences across contexts is extremely week, and it is such that
Γ�=i |= i : φ iff |= i : φ (where Γ�=i is a set of labelled formulas with index different
from i). As in all the other MCL’s, also in DFOL it is possible to impose restrictions
on the compatibility relation and on the domain relation by means of bridge rules. In
the following we present some of the properties involving quantificational contextual
information that can be formalized by means of DFOL bridge rules:
Absolute names. In general, in different contexts a constant (or a term) can have
different meanings, however, it is also possible that the meaning of a term in a
context is related to the meaning of another term in another context. An extreme

5 Notice that, if |ci | > 1, i.e., there is more than one local model, it is possible that C �|= i : φ and
C �|= i : ¬φ.
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situation is when a constant is an absolute/global name. I.e., a constant that have the
same meaning in all the context. Absolute names can be modelled by imposing the
following bridge rule to be valid for every i, j ∈ I .

i : a = xi→ i : a = x → j : xi→ = a i : a = x→i → j : x = a (24.7)

The first of the above bridge rules imposes that the constant a is interpreted in a
unique element by all local model in ci . Indeed if ci contains two models m and m′
that interpret a in two different objects, then it is not possible that m |= a = xi→[a]
and m′ |= a = xi→[a], and therefore c �|= i : a = xi→. The other two bridge rules in
(24.7) do not impose that a is interpreted in the same object in i and j , since �i and
�j can be different (possibly disjoint) domains, but they state that the interpretation
of a in contexts i and j corresponds via the translation defined by the domain relation
among the domains of the two contexts. If the bridge rules in (24.7) are imposed for
two individual constants a and b in the intersection of the languages of Li and Lj ,
then we have that the following logical consequences hold.

i : a �= b |= j : a �= b i : a = b |= j : a = b

Imposing bridge rules (24.7) on the set of constants contained in the intersection
of the universes of two databases DBA and DBB , corresponds to assume that the
intersection of the universes of the two DBs are isomorphic, and therefore this allow
to safely join informations about the intersected domain available in both DBs.

Constraints on the domain relation. Bridge rules can be used to formalize relations
between domains in different contexts. For instance, in some situation it is useful to
assume that the domains of two contexts (say i and j ) are isomorphic. This can be
forced by the bridge rules

→ j : ∃y.y = xi→ → i : ∃y.y = x→j i : x→j = y→j → j : x = y

The first two of the above bridge rules imposes that for every element x of the domain
of context i, there is a corresponding element of the domain of context j and, vice-
versa for every element of the domain of context j , there is a corresponding element
of the domain of context i. The third one states that the domain relation between i

and j must be a function. In Ghidiniand Serafini (1998) we describe how many other
properties can be formalised by bridge rules containing just the equality symbol and
arrow variables.

Join among heterogeneous domains. Bridge rules can be used to express the fact that
a certain knowledge in a database DBC can be obtained by joining the information
available in two heterogeneous databases DBA and DBB . As an example, suppose
that we want to represent that the ternary relation R(x, y, z) in the database DBC

is obtained by a join between the relations P (x, y) in DBA, and Q(y, z) in DBB

over the argument y. But we know that the three databases have three heterogeneous
representation of the values in the attributes, and therefore before doing the join it is
necessary to perform a translation. There are three possible ways to proceed,
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i1 : �1(x) i2 : �2(y)

i : � (xi1→ yi2→)

deduction in i1 deduction in i2

deduction in i

BR

(1) 1 : 
(2) 1 :
(3) 1 :
(4) 2 :
(5) 2 :
(6) 2 :

P(a)

1
x= a

(

1)(
2)(

assumption
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P(x) 2)
Q(x1→) 1 2) from (1) by BR
b= x1→ (

(
2) from (2) by BR

Q(b) )1 2) from (4) and (5)

from (1) and (2)

,

,
,

Fig. 24.5 A DFOL proof

• Translate the tuples of P from DBA into the DBB , do the join in B and translate
the result into C. This is represented by the bridge rules

A : P (x, y), B : Q(y, z) ∧ yA→ = y ∧ xA→ = x → C : R(xB→, yB→, zB→)

• Do the same but starting form DBB , joining in DBA and translating in DBC , which
is represented by the bridge rule:

B : R(y, z), A : P (x, y) ∧ yB→ = y ∧ zB→ = z → C : R(xA→, yA→, zA→)

• or transfer the tuples of P and Q into DBC and do the join there. This way of
reasoning is represented by the bridge rule:

A:P (x, y), B:Q(y, z), C:x=xA→∧y=yA→∧y=yB→∧ z=zB→ → C:R(x, y, z)

24.4.1.2 Reasoning in DFOL

Being DFOL an extension of first order logic, reasoning in DFOL is an undecidable
task but it is finitely axiomatizable. In Ghidini and Serafini (1998) we proposed
a sound and complete Natural Deduction Calculus for DFOL logical consequence
parametrized on a set of bridge rules BR. This calculus is sound and complete with
respect to the class of DFOL models and the domain relations that satisfies the set
of bridge rules BR. Natural Deduction systems for FOL is a set of inference rules,
with an arbitrary (finite) number of premises and a single conclusion. A deduction
of φ form a set of hypothesis φ1, . . . , φn is a tree rooted at φ, with leaves φ1, . . . , φn,
such that the father node is derived by applying an inference rule to it’s children.
The extension of ND to DFOL with bridge rules BR, is obtained by composing local
deductions via bridge rules. Informally, the bridge rule i1 : φ1(x), i2 : φ2(y) →
i : ψ(xi1→, yi2→) allows to “plug in” a deduction in context i1 the two deductions
performed in context i1 and i2 that infers the premises of the bridge rule. In Fig. 24.5
we provide a graphical representation of local inference composition and an example
of a simple proof in DFOL.
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24.4.2 Distributed Description Logics

DDL has been introduced in Borgida and Serafini (2003) as a variation of multi-
context logic with the motivation of modeling ontology matching and integration by
means of a formal logic. In DDL local logics Li’s are description logics. The start-
ing point of ontology mapping is constituted by two (a set of) ontologies, usually
called source and target ontology. Ontology matching algorithms provides a set of
semantic matches that partially maps the elements of the source ontology into the
“corresponding” elements of the target ontology6. Once a source ontology is seman-
tically matched with a target ontology, and every heterogeneity in the representation
of knowledge by the two ontologies has been resolved, the knowledge contained in
the two ontologies can be integrated and combined in a unique (sometimes modular)
knowledge base. In many cases ontology matches act as information channels that
propagate knowledge from the source ontology to the target ontology that is extended
with the additional information coming from the source ontology. This perspective
of ontology matching/integration can be naturally represented in multi-context logic,
using context based on description logic languages. In DDL each context represents
an ontology and semantic matches between a source ontology i and a target ontol-
ogy j are represented via bridge rules with premises in i and consequences in j . A
context i can contain concepts and role subsumptions, namely formulas of the form
i : C ! D, i : R ! S, and assertions, namely statements of the form i : C(a) and
i : R(a, b) where C and D are concept expressions, R and S are role expressions
and a and b are individuals. A model for DDL is the same as a DFOL model on
the FOL translation of the description logic language (where concepts, are unary
predicate, relation binary predicates, and individual constants stays the same) with
the restriction that for every chain c, and every i ∈ I , |ci | ≤ 1. DDL bride rules are
used to represent ontology matches, and they can be defined among concepts, roles
and individuals. Heterogeneous bridge rules has also been introduced, which maps
concepts to roles and viceversa (e.g., “wedding” to “is-married-to”), but for simplic-
ity we only report homogeneous bridge rules here: Bridge rules between concepts
and roles are of two forms

i : C
!−→ j : D i : C

"−→ j : D (24.8)

where C and D are concept expressions in Li and Lj respectively. The above bridge
rules are satisfied by the DDL model c if there is domain relation rij such that

rij (Cci ) ⊆ Dcj rij (Cci ) ⊇ Dcj (24.9)

where Xci is the extension of the concept C in the unique model m ∈ ci or it is the
empty set if ci = ∅.

6 The most general setting semantic matches are associated with weights (confidence value) but
when mappings are crisp (i.e., confidence value is equal to 1) then they can be fruitfully formalized
in two valued logics.
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The intuitive meaning of DDL bridge rules can be easily induced from the satisfi-

ability conditions (24.9). In particular the
!−→ bridge rule, states that the concept C

in i matches with some subconcept of D in j . While the
"−→ bridge rule states that

the concept C in i is mapped into some superconcept of D in j . Analogous bridge
rules can be defined among roles. Bridge rules among individuals are expressions of
the form

i : a
=−→ j : b1. (24.10)

The bridge rule (24.10) is satisfied when 〈ami , bmj 〉 ∈ rij (where mi and mj are local
models in ci and cj respectively). The intuitive meaning of the bridge rule (24.10) is
that b is one of the possible translations in j of a in i.

Similarly to what happens for DL, which is a fragment of FOL, DDL is a fragment
of DFOL. Indeed a DDL can be rewritteng into a DFOL by applying the standard
translation of DL into FOL for each of the formulas in Li , and by translating the
bridge rule (24.8) into the following DFOL bridge rules:

i : C(x→j ) → j : D(x) j : D(x) → i : C(x→j ) (24.11)

and translating the individual bridge rule (24.10) into

i : x = a → j : xi→ = b. (24.12)

The semantics of DDL bridge rules entails a form of information propagation between
mapped ontologies. The papers Serafini et al. (2004), Serafiniand Tamilin (2005),
Ghidini et al. (2007) investigate on the knowledge propagation patterns between
a source and a target ontology mapped with a set of DDL bridge rules. A simple
example of such a propagation pattern from i to j induced by a pair of mappings
from i to j is described by the following sound inference:

i : A ! B i : A
"−→ j : G i : B

!−→ j : H

j : G ! H
.

The above propagation pattern in true for any unrestricted domain relation. How-
ever in many cases it’s interesting to investigate on DDL models where the domain
relation satisfies natural restriction, such as functionality or injectivity or compo-
sitionality. The more restricted the domain relation the more information is passed
by the bridge rules. Detailed investigation of different propagation patterns depend-
ing on the restriction imposed on the domain relation are studied in Homola and
Serafini (2010).

24.5 Conclusions

Research and implementation activities around multi context system has been carried
out for the last 25 years with a number of significant results that include propositional
MCLs, first order MCLs, description logics-based MCLs, and MCL for semantic
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web languages like RDF and OWL. The research activities have focused to the
development of theoretical frameworks as well as a set of prototype implementations,
among which DRAGO, a Distributed Reasoning Architecture for a set of ontology
linked via ontology mappings (Serafini and Tamilin 2005), and the Contextualized
Knowledge Repository (Bozzato et al. 2013), a system that extends standard RDF
triple stores with the capability of reasoning with multiple RDF graphs (Contexts)
linked via bridge rules.

A number of studies that compare multi context system with other logical for-
malism that support distributed knowledge representation have also been developed,
and mappings between the different formalisms have been proposed. In particular
Serafini and Bouquet (2000) presents a formal comparison between propositional
MCL and the propositional logic of contexts based on modal logics proposed in Bu-
vac and Mason (1993), while Brockmans et al. (2009) exploits DFOL for encoding
and comparing several formalisms for ontology mappings.

In this chapter we have provided an overview of the main families of multi context
logics (MCLs), a logical formalism that allow to integrate multiple logical theories
(contexts) in a structure of inter-related contexts, a description of their main logical
properties and an illustration of the types of applications they have been used for.
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