
123

S P R I N G E R B R I E F S I N CO M P U T E R S C I E N C E

Eric Hardin
Helena Mitasova
Laura Tateosian
Margery Overton

GIS-based
Analysis of
Coastal Lidar
Time-Series

SpringerBriefs in Computer Science

Series Editors
Stan Zdonik
Shashi Shekhar
Jonathan Katz
Xindong Wu
Lakhmi C. Jain
David Padua
Xuemin (Sherman) Shen
Borko Furht
V.S. Subrahmanian
Martial Hebert
Katsushi Ikeuchi
Bruno Siciliano
Sushil Jajodia
Newton Lee

More information about this series at http://www.springer.com/series/10028

http://www.springer.com/series/10028

Eric Hardin • Helena Mitasova • Laura Tateosian
Margery Overton

GIS-based Analysis of
Coastal Lidar Time-Series

123

Eric Hardin
Department of Physics
North Carolina State University
Raleigh, NC, USA

Laura Tateosian
Center for Geospatial Analytics
North Carolina State University
Raleigh, NC, USA

Helena Mitasova
Department of Marine, Earth

and Atmospheric Sciences
North Carolina State University
Raleigh, NC, USA

Margery Overton
Department of Civil, Construction

and Environmental Engineering
North Carolina State University
Raleigh, NC, USA

ISSN 2191-5768 ISSN 2191-5776 (electronic)
ISBN 978-1-4939-1834-8 ISBN 978-1-4939-1835-5 (eBook)
DOI 10.1007/978-1-4939-1835-5
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2014947349

© The Author(s) 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Contents

1 Introduction . 1
1.1 Mapping Coastal Terrain Change . 1
1.2 GRASS GIS and Sample Data Set . 3
1.3 Organization of This Book . 5
References . 6

2 Processing Coastal Lidar Time Series . 7
2.1 General Workflow . 7
2.2 Analysis of Lidar Point Clouds . 9
2.3 Computing DEMs . 11

2.3.1 Masking Surveyed Areas . 11
2.3.2 Binning . 13
2.3.3 Spline Interpolation . 14

2.4 Eliminating Water Surface Features. 19
2.5 Correcting Systematic Errors . 20
References . 25

3 Raster-Based Analysis . 27
3.1 Core and Envelope, Dynamic Layer . 27
3.2 Time-of-Minimum and Time-of-Maximum . 29
3.3 Per-Cell Univariate Statistics . 30
3.4 Per-Cell Regression Analysis. 32
References . 34

4 Feature Extraction and Feature Change Metrics . 35
4.1 Shorelines and Shoreline Migration Range . 35
4.2 Foredune Features . 36

4.2.1 Foredune Ridge Line . 37
4.2.2 Foredune Toe Line . 39

4.3 Crescentic and Parabolic Dune Features . 42

v

vi Contents

4.4 Generating Transects. 46
4.4.1 Transects at Uniform Locations . 46
4.4.2 Transects at Optimized Locations. 47

4.5 Measuring Line Feature Change . 51
4.5.1 Shoreline Change . 52

4.6 Mapping Location and Change of Built Structures. 55
4.7 Derived Parameters: Storm Vulnerability Scale . 59
References . 61

5 Volume Analysis . 63
5.1 DEM Differencing . 63
5.2 Landscape Segmentation into Bins. 64

5.2.1 Long-Shore Partitioning . 64
5.2.2 Cross-Shore Segments . 65

5.3 Volume Estimation for Segments. 67
5.4 Volume Change Metrics . 68
References . 70

6 Visualizing Coastal Change . 71
6.1 Color and Relief Shading . 71
6.2 Perspective Views of 3D Surfaces . 74
6.3 Comparing Multiple Surfaces: Map Swipe and 3D Cross-Sections . . . 74
6.4 Animations in 2D and 3D Space . 75
6.5 Visualization with Space-Time Cube (STC) . 76
References . 79

Appendix . 81
1 Sample Datasets . 81
2 Color Tables . 82

Chapter 1
Introduction

Management of highly dynamic coastal landscapes requires repeated mapping
and analysis of observed changes. Modern mapping techniques such as lidar
increased the frequency and level of detail in coastal surveys and new methods
were developed to extract valuable information from these data using Geographic
Information Systems. In this chapter we discuss mapping of coastal change, on-line
data resources, and the basics of installation and working with open source GRASS
(Geographical Resources Analysis Support System) GIS used in this book.

1.1 Mapping Coastal Terrain Change

The present day coastal landscape is the result of complex interactions between
natural processes and anthropogenic activities. Rapid urban development combined
with increased shore erosion and severe storm impacts create new challenges
for coastal management (Fig. 1.1). Quantification, modeling, and visualization
of short term evolution of coastal systems is needed to better understand the
impacts of natural processes and anthropogenic interventions. Identification of areas
susceptible to high rates of erosion, accurate mapping of elevation and sand volume
change and assessment of coastal vulnerability due to storm surge is critical for
responsible coastal planning and management (Stockdon et al. 2007).

Numerous studies have demonstrated advantages of lidar surveys for assessment
of shoreline and dune erosion (Burroughs and Tebbens 2008; Overton et al. 2006;
Sallenger Jr et al. 2003; Stockdon et al. 2002). Lidar-based, bare earth Digital
Elevation Models (DEMs) have been widely used for quantification of beach and
dune volume change (Mitasova et al. 2004; Overton et al. 2006; White and Wang
2003), including assessment of major storm and hurricane impacts (Sallenger et al.
2006). The high density of lidar data points and near-annual frequency of coastal
mapping in some regions provide time series of elevation data that can be used

© The Author(s) 2014
E. Hardin et al., GIS-based Analysis of Coastal Lidar Time-Series, SpringerBriefs
in Computer Science, DOI 10.1007/978-1-4939-1835-5__1

1

2 1 Introduction

Fig. 1.1 Coastal management challenges on North Carolina Outer Banks: (a) storm impacts in
Rodanthe (Hurricane Sandy, NCDOT 2012); (b) beach erosion in Nags Head (Hurricane Isabel,
USGS 2003); (c) sand transport threatens homes and infrastructure (Nor’easter Athena, NCDOT
2012)

to extract new information about spatial patterns of coastal dynamics using raster
and feature-based techniques. The changes in lidar technology over the past decade
produced data sets with different accuracies, scanning patterns, and point densities.
For this reason, geospatial analysis, when applied to multi-year lidar time series,
also needs to address the issues of accurate data integration and computation
of a consistent set of elevation models. Advanced three-dimensional Geographic
Information Systems (GIS) provide a means for efficient integration of these new
types of measurements. Once this integration is complete, GIS can be used to
perform a wide range of sophisticated analyses and visualizations (Mitasova et al.
2011). This book explains both the necessary preprocessing and the subsequent
analysis accompanied by step by step instructions and scripts applied to data sets
from the North Carolina coast.

Lidar data and imagery for the coastal United States can be downloaded from
the “Digital Coast”, a National Oceanic and Atmospheric Administration operated
website (National Oceanic and Atmospheric Administration Coastal Services Cen-
ter 2010). The website provides tools for searching and pre-processing of data, such
as coordinate transformation and gridding. It also allows users to select a wide range
of data types and formats, such as all return, first return or bare ground points in the
las/ format or an ascii/ text file. In this book, we use data for the coast of North

1.2 GRASS GIS and Sample Data Set 3

Carolina (NC) downloaded from the “Digital Coast”. Additional data, including
extensive collections of aerial imagery for NC are available from the NC Department
of Transportation (NC DOT). High accuracy NC DOT benchmarks measured along
the centerline of the highway NC-12 can be downloaded at http://www.obtf.org/
NC12Alignment/NC12.htm. These benchmarks can be used to identify and reduce
systematic error in the lidar.

1.2 GRASS GIS and Sample Data Set

The examples in this book process and analyze coastal lidar time series using
the Geographic Resources Analysis and Support System (GRASS)—the free and
open source GIS, specifically the GRASS7.0 release. The software is available to
download for free from http://grass.osgeo.org/. The easiest to start with are the pre-
compiled binary packages with installers available for Linux, MS-Windows, and
Mac OS X. The basic terminology and data organization in GRASS7 is described
in the GRASS GIS Quickstart document (http://grass.osgeo.org/grass71/manuals/
helptext.html).

After installing the GRASS software create a directory where you will store all
GRASS data. Name this directory grassdata/. This directory is often referred
to as GIS data directory or GISDBASE. Within GISDBASE, GRASS data are
organized into projects called LOCATIONS, which are defined by their coordinate
system and spatial extent. When GRASS is started for the first time, you will
be provided an option to navigate to and choose to work within an existing
LOCATION, or define a new LOCATION using the Location wizard. LOCATIONS
are subdivided into MAPSETS, which are used to organize data for sub-projects or
for different users. Each LOCATION has a MAPSET called PERMANENT which
is used for storing the coordinate system information and baseline geospatial data
for the given project.

You can find all data sets used in this book at http://geospatial.ncsu.edu/osgeorel/
data.html. Before starting GRASS, download the data set northcarolina_
coast_spm.zip and unpack it in your grassdata/ directory. The data set
is provided as a LOCATION which includes North Carolina boundaries in its
PERMANENT MAPSET and a NagsHead_series/ MAPSET with time series
of lidar-derived DEMs. The DEMs represent coastal topography along 1 km of
shoreline at 1 m resolution in the town of Nags Head, NC, next to Jockeys Ridge
State Park (Fig. 1.2). The time series contains series of time snapshots starting
in 1996 (Mitasova et al. 2010). Additional data used in this book can also be
downloaded from this website. These include the point cloud series for Jockey’s
ridge and Rodanthe (JR_*_lidar.txt and R_*_lidar.txt respectively),
the road centerline (road_centerline.txt), and the road surface point cloud
(DARE_BE*.txt).

http://www.obtf.org/NC12Alignment/NC12.htm
http://www.obtf.org/NC12Alignment/NC12.htm
http://grass.osgeo.org/
http://grass.osgeo.org/grass71/manuals/helptext.html
http://grass.osgeo.org/grass71/manuals/helptext.html
http://geospatial.ncsu.edu/osgeorel/data.html
http://geospatial.ncsu.edu/osgeorel/data.html

4 1 Introduction

Fig. 1.2 Location of the study sites on Outer Banks, North Carolina

Once GRASS is installed and the data set downloaded and unpacked in the
grassdata/ directory, you can start GRASS by clicking on its icon or from the
terminal by typing

grass70

A start-up menu will open (Fig. 1.3) and you will be asked to select the GIS Data
Directory (grassdata/), LOCATION (northCarolina_coast_spm/), and
MAPSET (NagsHead_series/). After starting GRASS, a welcome message
appears in the terminal and the Graphical User Interface (GUI) with the Map Display
window and GIS Layers Manager will open.

If you are not familiar with GRASS you can get started by following a video tuto-
rial at http://courses.ncsu.edu/mea582/common/media/02/getting_started_GUI_1.
mov or check out the latest GRASS videos on YouTube https://www.youtube.com/
results?search_query=grass+gis. The GRASS Reference manual gives a description
of all GRASS commands and is available online at http://grass.osgeo.org/grass70/
manuals/index.html.

You can perform GRASS GIS analysis using the graphical user interface (GUI),
or using commands that correspond to the GUI tools and can be run in the GRASS
shell or in the ‘Command console’. GRASS workflows can also be executed via
Python code. A Python interpreter is embedded within the GRASS GIS software.
The easiest approach for running GRASS commands with Python is to run these
scripts inside of GRASS.

Examples in this book are written as command line workflows (equivalent to shell
code), which are executed in the GRASS shell or the command console. Examples
using Python scripting are provided when more complicated control structures or
string parsing are needed. The Python code should be executed using the Python

http://courses.ncsu.edu/mea582/common/media/02/getting_started_GUI_1.mov
http://courses.ncsu.edu/mea582/common/media/02/getting_started_GUI_1.mov
https://www.youtube.com/results?search_query=grass+gis
https://www.youtube.com/results?search_query=grass+gis
http://grass.osgeo.org/grass70/manuals/index.html
http://grass.osgeo.org/grass70/manuals/index.html

1.3 Organization of This Book 5

Fig. 1.3 GRASS startup screen

interpreter inside the GRASS environment. Note, that with the default settings, the
Python scripts can not be executed outside of the GRASS environment.

1.3 Organization of This Book

This book focuses on GIS-based processing, analysis, and visualization of coastal
lidar time-series. The descriptions of the approaches outlined here are accompanied
by examples, which are implemented using GRASS GIS, and freely available
sample data.

The next chapter describes the initial data processing that is necessary to
integrate the lidar data into a consistent raster time series. The following two
chapters explain per-cell statistical analysis and techniques for extracting coastal
features (including shorelines, dunes, and structures). Chapter 5 covers volumetric
analysis (i.e., volume estimation and change-based metrics). Chapter 6 provides an

6 1 Introduction

introduction to techniques for coastal data visualization and explains visualization
in space-time cube. The appendix includes a summary of data and color tables for
raster maps used throughout the book.

References

Burroughs, S. and Tebbens, S. (2008). Dune retreat and shoreline change on the Outer Banks of
North Carolina. Journal of Coastal Research, 24:104–112. DOI: 10.2112/05-0583.1.

Mitasova, H., Drake, T., Bernstein, D., and Harmon, R. (2004). Quantifying rapid changes in
coastal topography using modern mapping techniques and geographic information system.
Environmental and Engineering Geoscience, 10:1–11. DOI: 10.2113/10.1.1.

Mitasova, H., Hardin, E., Overton, M., and Kurum, M. (2010). Geospatial analysis of vulnerable
beach-foredune systems from decadal time series of lidar data. Journal of Coastal Conserva-
tion, 14:161–172. DOI: 10.1007/s11852-010-0088-1.

Mitasova, H., Hardin, E., Starek, M., Harmon, R., and Overton, M. (2011). Landscape dynamics
from LiDAR data time series. Geomorphometry 2011, Redlands, CA, pages 3–6.

National Oceanic and Atmospheric Administration Coastal Services Center (2010). NOAA Coastal
Services Center Coastal Lidar. http://csc.noaa.gov/digitalcoast/dataregistry/#/ Accessed 16 Jun.
2014.

Overton, M., Mitasova, H., Recalde, J., and Vanderbeke, N. (2006). Morphological evolution of a
shoreline on a decadal time scale. Proceedings of the 30th International Conference on Coastal
Engineering, San Diego, California, page 3851.

Sallenger, A., Stockdon, H., Fauver, L., Hansen, M., Thompson, D., Wright, C., and Lillycrop, J.
(2006). Hurricanes 2004: An overview of their characteristics and coastal change. Estuaries
and Coasts, 29:880–888. DOI: 10.1007/BF02798647.

Sallenger Jr, A., Krabill, W., Swift, R., Brock, J., List, J., Hansen, M., Holman, R., Manizade, S.,
Sontag, J., Meredith, A., et al. (2003). Evaluation of airborne topographic lidar for quantifying
beach changes. Journal of Coastal Research, 19(1):125–133. ISSN: 0749-0208.

Stockdon, H., Sallenger, A., and Holman, R. (2007). A simple model for the
spatially-variable coastal response to hurricanes. Marine Geology, 238:1–20.
DOI: 10.1016/j.margeo.2006.11.004.

Stockdon, H., Sallenger, A., List, J., and Holman, R. (2002). Estimation of shoreline position and
change from airborne topographic lidar data. Journal of Coastal Research, 18:502–513.

White, S. and Wang, Y. (2003). Utilizing DEMs derived from LIDAR data to analyze morphologic
change in the North Carolina coastline. Remote Sensing of Environment, 85(1):39–47. DOI:
10.1016/S0034-4257(02)00185-2.

http://10.2112/05-0583.1
http://10.2113/10.1.1
http://10.1007/s11852-010-0088-1
http://csc.noaa.gov/digitalcoast/dataregistry/#/
http://10.1007/BF02798647
http://10.1016/j.margeo.2006.11.004
http://10.1016/S0034-4257(02)00185-2

Chapter 2
Processing Coastal Lidar Time Series

In this chapter, we analyze time series of lidar data point clouds to assess the point
density, gaps in coverage, spatial extent and accuracy. Based on this analysis and
a given application, we select an appropriate resolution and interpolation method
for computating raster-based digital elevation models (DEM). We explain a per
raster-cell average approach and two splines-based approaches for computating
DEMs. Finally, we discuss how to assess systematic error using geodetic bench-
marks or other ground truth point data and how to correct any shifted DEMs to
create a consistent DEM time series.

2.1 General Workflow

Time series of lidar point clouds include data from multiple surveys often acquired
for different purpose by various types of lidar technology. To understand the
properties of point clouds in the time series, we first analyze the data at a sequence
of resolutions and then apply interpolation to compute a DEM at the selected
resolution. The methodology, which can be applied to both first return or bare
ground data can be summarized as follows:

• Integrate the point-cloud data acquired from various sources within a single
coordinate system.

• Perform per-cell statistical analysis of point data at a hierarchical set of
resolutions, and use the results to select a common DEM resolution.

• Derive the spatial extent of each survey and a mask for the study area from
preliminary low-resolution DEMs computed using the mean elevation value for
each cell.

© The Author(s) 2014
E. Hardin et al., GIS-based Analysis of Coastal Lidar Time-Series, SpringerBriefs
in Computer Science, DOI 10.1007/978-1-4939-1835-5__2

7

8 2 Processing Coastal Lidar Time Series

Table 2.1 Characteristics of the lidar surveys based on the available metadata

Published

Accuracy

Published vertical/

point horizontal

Agency,* Dates Lidar equipment density (m))

NOAA/NASA/USGS
October 19, 1996
September 1 and 26, 1997
September 7, 1998; post-Bonnie�

September 9, 1999; post-Dennis�
September 18, 1999; post-Floyd�

October 6, 1999

Airborne topographic
Mapper II

1pt/3m 0.15/2.00

NCDENR/FEMA/NCFMP
February 2001

Leica Geosystems aeroscan 1pt/3m 0.20/2.00

NASA/USGS
September 18, 2003 pre-Isabel�
September 21, 2003 post-Isabel�

EAARL 1pt/3m 0.15/2.00

JALBTCX
August 28, 2004
September 28, 2005, post-Ophelia�

Compact hydrographic
Airborne rapid total
Survey (charts)

1pt/1m 0.3/1.4

NOAA
March 27, 2008

IOCM 1pt/1m 0.3/1.4

NASA, USGS
December 1, 2009, post-Nor’Ida�

EAARL 1pt/1m 0.2/0.75

NOAA
August 8, 2011, post-Irene�

1pt/1m 0.3/1.4

*NASA = National Aeronautics and Space Administration, NOAA = National Oceanic and
Atmospheric Administration, USGS = U.S. Geological Survey, NCDENR = North Carolina
Department of Environment and Natural Resources, FEMA = Federal Emergency Management
Agency, NCFMP = North Carolina Floodplain Mapping Program, JALBTCX = Joint Airborne
Lidar Bathymetry Center of Expertise, EAARL = Experimental Advanced Airborne Research
Lidar, IOCM = Integrated Ocean and Coastal Mapping
� Hurricane names

• Compute more detailed, smoothed DEMs for the masked study area using spatial
interpolation.

• Compare the DEMs with high accuracy ground-based data to remove potential
systematic errors and verify the accuracy of each DEM.

The result of this procedure is a consistent series of DEMs which have a common
resolution and are clipped to a common spatial extent. To illustrate the workflow
we use the provided series of lidar point clouds acquired along the coast of NC
since 1996 (Table 2.1). The published horizontal accuracy of this data is 2 m, while
the vertical accuracy is 0.12–0.20 m.

2.2 Analysis of Lidar Point Clouds 9

2.2 Analysis of Lidar Point Clouds

Data from lidar surveys acquired over the span of several years and for a wide range
of applications have varied point densities, spatial extents, and accuracy. We use
point per-cell statistics to map the distribution of point densities (as the number of
points found in each raster cell) and the range of values in a raster cell. We use this
to create a low resolution DEM by computing mean point elevation per cell. This
information is helpful when selecting a common resolution for the entire series of
DEMs.

To compute the per cell statistics we first set the resolution using g.region
and then import the lidar points from a lidar text files. In the code below, we use the
r.in.xyz GRASS command to compute the point count for each raster cell at a
resolution 5 m. Then we use the r.univar module to calculate mean point count
per raster cell.

Purpose: Get mean cell statistics.
Refer to Ch. 1 Sec. 1.2 for information on where to
download the data.
Start grass with location northcarolina_coast_spm
and mapset NagsHead_series.
grass70

Set region to Jockey’s Ridge area and display
provided DEM in 2D and 3D
g.region rast=NagsHead_series_1m -p
d.rast NH_2008_1m

Compute number of lidar points per grid cell at 5m
resolution for the 1999 survey
g.region res=5
r.in.xyz input=JR_19990909.txt output=JR_stats_n \

method=n fs=’,’
r.null map=JR_stats_n setnull=0
Get the mean per cell count
r.univar -ge map=JR_stats_n

To perform this kind of analysis for a set of resolutions and series of lidar
point clouds, we use Python code. In the code below, we compute the point count,
elevation range, and mean elevation for each raster cell at the resolutions of 0.5, 2,
5, and 10 m. Then we calculate global statistics on the range raster maps for each
resolution.

Purpose: Get mean cell statistics.
import grass.script as grass
files = [’JR_19971002.txt’, ’JR_19990909.txt’,

’JR_2001.txt’, ’JR_20051126.txt’, ’JR_20080327.txt’
]

10 2 Processing Coastal Lidar Time Series

resolutions=[0.5, 2, 5, 10]
grass.run_command(’g.region’,

region=’NagsHead_series_1m’)
report = ’date\tres\tn\trange\n’
for f in files:

report += f + ’\n’
for res in resolutions:

report += ’\t’ + str(res) + ’\t’
Set the resolution.
grass.run_command(’g.region’, res=res)
Get the per cell count.
grass.run_command(’r.in.xyz’, input=f,

output=’JR_stats_n’, method=’n’, fs=’,’,
overwrite=True)

grass.run_command(’r.null’, map=’JR_stats_n’,
setnull=0)

Get the mean per cell count.
stats = grass.parse_command(’r.univar’,

flags=’ge’, map=’JR_stats_n’)
report += str(stats[’mean’]) + ’\t’
Get the per cell range.
grass.run_command(’r.in.xyz’, input=f,

output=’JR_stats_range’, method=’range’,
fs=’,’, overwrite=True)

grass.run_command(’r.mapcalc’,
expression=’JR_stats_range_c=if(isnull(JR_
stats_n),

null(), JR_stats_range)’, overwrite=True)
Get the mean per cell range.
stats = grass.parse_command(’r.univar’,

flags=’ge’, map=’JR_stats_range_c’)
report += str(stats[’mean’]) + ’\n’

grass.run_command(’g.region’,
region=’NagsHead_series_1m’)

print(report)

The results of this lidar point cloud analysis at a hierarchy of resolutions for selected
surveys are summarized in Table 2.2 and illustrated by Fig. 2.1. At a resolution
of 10 m, the mean range of elevations within the raster cells exceeds 1 m for all
surveys and 2 m for the last three surveys, indicating that important features may be
lost at this resolution. At a resolution of 2 m, the mean range is between 0.08 and
0.65 m and the number of points per raster cell is less than one for older surveys,
indicating the need for interpolation. At 0.5 m resolution, the within-cell mean range

2.3 Computing DEMs 11

Table 2.2 Mean per cell
point count and elevation
range at 0.5, 2 and 10 m
resolution for selected lidar
surveys of Nags Head

Grid size (m) Points per cell Range (m)

1997 0.5 1.102 0.020
2 2.559 0.249

10 45.522 1.753

1999 0.5 1.113 0.023
2 3.295 0.315

10 60.012 1.822

2001 0.5 1.000 0.000
2 1.006 0.011

10 7.394 1.358

2005 0.5 1.267 0.034
2 6.025 0.560

10 145.361 2.669

2008 0.5 1.030 0.012
2 3.589 0.444

10 85.303 2.143

was less than the published data accuracy and interpolation is necessary for all
surveys. To preserve the shape of the buildings, we select 0.5 m resolution and the
time series of DEMs will be created by interpolation.

2.3 Computing DEMs

To compute a consistent series of DEMs we first derive masks of mapped areas for
each survey, then we apply interpolation using the method most appropriate for our
application.

2.3.1 Masking Surveyed Areas

Interpolating lidar point data to high resolution DEMs is only meaningful in regions
with adequate point coverage, We can mask out low density point regions so that
only high density regions are interpolated. Masking is also important because it can
substantially reduce the processing time during data analysis. We identify regions
to mask by first importing the lidar points at a resolution much greater than the lidar
point space (The high resolution value is selected based on the point density analysis
in Sec. 2.2). Then we set each cell in the resultant raster to 1 if the cell contains any
lidar data points or a ‘no-data’ value if it does not (Fig. 2.2). The following GRASS
code sets the resolution to 5 m and uses the r.in.xyz and r.mapcalc functions
to perform these two steps and create a mask based on point density:

12 2 Processing Coastal Lidar Time Series

Fig. 2.1 Point density (lidar point count) and elevation range at different resolutions

2.3 Computing DEMs 13

Fig. 2.2 Point cloud and a derived mask based on 1999 lidar

Purpose: Create a masked survey area.
g.region NagsHead_series_1m res=5
r.in.xyz input=JR_1999.txt output=JR_1999_n_5m \

method=n fs=’,’ --o
r.mapcalc expression=’JR_1999_mask=if(JR_1999_n_5m \

== 0, null(), 1)’ --o

Raster operations (including interpolation) can then be limited to the mask by
running the following commands:

Purpose: Limit raster operations with a mask.
g.region res=0.5
r.mask input=JR_1999_mask

Raster operations will continue to be limited to the mask area until the mask is
removed by running r.mask with the -r flag:

Purpose: Remove raster mask.
r.mask -r input=JR_1999_mask

With the mask set up we can now interpolate the DEMs using a method suitable
for the given application.

2.3.2 Binning

When a lidar point cloud is available in an ASCII text format (such as x,y,z tuples)
and has at least one point in each raster cell at a fixed resolution, a DEM surface
can be generated directly from the lidar points using the r.in.xyz module. The

14 2 Processing Coastal Lidar Time Series

module computes a raster map where the value in each raster cell is a univariate
statistic of the lidar data points contained in that cell. For this reason, the method
is referred to as binning. The method parameter specifies the statistical measure,
such as the maximum, minimum, or mean elevation value. We use the analysis of
lidar point density outlined in the Sec. 2.2 to select the adequate resolution. For
binning, a resolution of 2 m was chosen to ensure that most grid cells contained at
least one lidar point.

DEMs are usually computed by setting method to mean (Fig. 2.3a).

Purpose: Create DEM using raster statistics.
g.region region=NagsHead_series_1m res=2
r.in.xyz input=JR_20080327.txt \

output=JR_20080327_binmean1m method=mean fs=’,’

2.3.3 Spline Interpolation

Continuous DEMs at resolutions higher than the average point spacing can be
computed using spatial interpolation. GRASS7 provides two spline-based modules
for bivariate interpolation: v.surf.rst and v.surf.bspline.

Detailed, smoothed sets of DEMs and topographic parameters (slope, aspect
and curvatures) can be computed using the regularized spline with tension (RST)
method (Mitasova et al. 2005). RST belongs to interpolation functions that minimize
the deviations from the measured points and a smoothness seminorm (Mitas and
Mitasova 1999). The RST smoothness seminorm includes derivatives of all orders
with their weights decreasing with the increasing derivative order leading to the
following function:

z.r/ D a1 C
NX

j D1

�j R.%j / (2.1)

R.%j / D �ŒE1.%j / C ln.%j / C CE� (2.2)

where z.r/ is elevation at a point r D .x; y/, a1 is a trend, �j are coefficients, N is
the number of given points, R.%j / is a radial basis function, %j D .'rj =2/2, ' is a
generalized tension parameter, rj D jr � rj j is a distance, CE D 0:577215 is the
Euler constant, and E1.%j / is the exponential integral function (Abramowitz and
Stegun 1965; Mitášová and Mitáš 1993). The coefficients a1 and f�j g are obtained
by solving the system of linear equations:

NX

j D1

�j D 0: (2.3)

2.3 Computing DEMs 15

a1 C
NX

j D1

�j

�
R.%j / C ı

w0

wj

�
D z.ri /; i D 1; : : : ; N (2.4)

where w0=wj are positive weighting factors representing a smoothing parameter at
each given point rj D .xj ; yj /.

The method has both geostatistical and physical interpretation (Mitas and
Mitasova 1999). It is formally equivalent to universal kriging with the choice of the
covariance function determined by the smoothness seminorm. The intuitive physical
interpretation of this method is a thin surface that can be tuned from a rigid plate to
a rubber sheet by changing its tension (Fig. 2.3). The tension parameter ' controls
the distance over which the given points influence the resulting surface while
smoothing controls the vertical deviation of the surface from data points. By using
an appropriate combination of tension and smoothing, it is possible to apply the
function to various types of surfaces from smoothly changing topography to rough
terrain, and select a level of detail represented by a DEM without changing the
resolution. The optimal values of parameters can often be found by minimizing the
cross validation error (Hofierka et al. 2002; Mitas and Mitasova 1999). The tension
and smoothing parameters for each DEM computation can be optimized to reduce
the noise and ensure a comparable level of detail in each DEM (see Mitasova et al.
(2005), or Neteler and Mitasova (2008) for more details on RST implementation
and optimization of its parameters for lidar data).

The RST interpolation for the entire DEM series along with computation of
topographic parameters (slope, aspect, profile and tangential curvatures) can be
carried out in GRASS by importing the lidar data points using the v.in.ascii
function and then interpolating the points using the v.surf.rst function, as in
the following Python script:

Purpose: Import point clouds and interpolate using
the RST method.
Refer to Ch. 1 Sec. 1.2 for information on where to
download the data.
import grass.script as grass

Find and set region from point cloud.
grass.run_command(’v.in.ascii’,

input=’R_19961016_lidar.txt’,
output=’temp’, format=’point’, separator=’,’,
skip=0, x=1, y=2, z=3)

grass.run_command(’g.region’, flags=’pa’,
vect=’temp’, res=0.5)

Import and interpolate point clouds.
dates = [19961016, 19971002, 19980907, 19990909,

19990918, 19991104, 2001, 20030916, 20030921,

16 2 Processing Coastal Lidar Time Series

20040925, 20051126, 20080327]
ten = [1200, 1200, 500, 1000, 1000, 1000, 1500, 1000,

1000, 1500, 2000, 2000]
for i in range(len(dates)):

fin = ’R_’+str(dates[i])+’_lidar.txt’
vect = ’R_’+str(dates[i])
Import lidar points that fall within the current
region.
grass.run_command(’v.in.ascii’, flags=’tbr’,

input=fin, output=vect, format=’point’,
fs=’,’, skip=0, x=1, y=2, z=3)

rast = ’R_’+str(dates[i])+’_05mrst’
Interpolate using RST with scale dependent
tension.
grass.run_command(’v.surf.rst’, flags=’tz’,

input=vect, elev=rast, slope=rast+’_slp’,
pcurv=rast+’_pcurv’, tcurv=rast+’_tcurv’,
tension=ten[i], smooth=0.5, overwrite=True)

The value of the tension parameter is modified for each data set to account
for the differences in point densities and level of detail. The script runs the
RST interpolation with the -t flag, so that tension is not influenced by the data
segmentation and normalization.

Another approach to generating smoothed sets of DEMs is bilinear or bicubic
spline interpolation with Tykhonov regularization. In this approach each observation
(or lidar data point) is interpreted as a linear combination of spline functions
(Brovelli et al. 2004)

h0.tm/ D
X

lk

alks�g .tm � �lk/ C vm (2.5)

where h0.tm/ is the elevation of the mth lidar data point, tm is the planimetric
location of the lidar data point, alk is an unknown fitting parameter, s�g is an
interpolation function with compact support (the range of which is described by
�) and order g (e.g., g D 1 describes a bilinear function), �lk is the planimetric
location of the spline interpolating function (which centers on raster cell lk), and
vm is an unobserved disturbance.

Equation (2.5) can be written in matrix form as

Y 0 D Aa C v (2.6)

where

Y 0 D Œ: : : h0.tm/ : : : �T (2.7)

a D Œ: : : alk : : : �T (2.8)

2.3 Computing DEMs 17

Fig. 2.3 DEM computed by (a) binning (b) v.surf.rst with low tension (c) v.surf.rst
with high tension (d) v.surf.bspline with large Tykhonov regularization (e)
v.surf.bspline with small Tykhonov regularization

18 2 Processing Coastal Lidar Time Series

and

A D
2

4
: : : : : : : : :

: : :
P

lk alks�g .tm � �lk/ : : :

: : : : : : : : :

3

5 (2.9)

The estimated set of parameters, Oa is obtained by minimizing the equation

min �.a/ D minfjY 0 � Oyj2 C �K.a/g D �. Oa/ (2.10)

where jY 0 � Oyj2 is the least squares minimizing functional and �K.a/ is a
regularizing factor that avoids singularities in areas with no data. Regularization
is done by minimizing the slope or curvature of the interpolating function. If � is
chosen to be small, the normal matrix is poorly conditioned in areas with little or no
data. If � is chosen to be large, a smoother surface is obtained.

Spline interpolation with Tykhonov regularization is achieved in GRASS using
v.surf.bspline. The compact support of the weighting function (i.e., �) is
controlled by the spline step (sie and sin in the EW and NS directions). Adequate
values for sie and sin are likely to be close to twice the mean point spacing,
which can be found by running v.surf.bspline with the -e flag. The degree
of smoothing is controlled by the Tykhonov smoothing parameter lambda_i.
Larger values of lamda_i result in a smoother map, and the optimal value can
be determined with a leave-one-out cross validation procedure with the -c flag.

Purpose: Import point clouds and interpolate using
the bspline method.
Refer to Ch. 1 Sec. 1.2 for information on where to
download the data.
g.region NagsHead_series_1m
v.in.ascii -ztbr input=JR_20080327.txt \

output=JR_20080327 fs=’,’ x=1 y=2 z=3
v.surf.bspline -ze input=JR_20080327 raster=temp
[..]
Estimated point density: 0.8537
Estimated mean distance between points: 1.082
[..]
Choose sin and sie to be twice mean distance
between points.
v.surf.bspline -z input=JR_20080327 \

raster=NH_2008_1mbspl_lam1 sin=2 sie=2
r.colors map=NH_2008_1mbspl_lam1 \

rules=color_elev_coast.txt
Find an optimal lambda_i.
Reduce region for computational efficiency

2.4 Eliminating Water Surface Features 19

g.region n=s+40 e=w+40
v.surf.bspline -c input=JR_20080327 \

raster_output=temp sin=2 sie=2
g.region n=250670 s=249730 w=913366 e=914342 res=1
v.surf.bspline - input=JR_20080327 \

raster_output=JR_2008_1mbspl_lam001 sin=2 sie=2 \
lambda_i=0.01 --o

r.colors map=JR_2008_1mbspl_lam001 \
rast=NH_2008_1mbspl_lam1

To interpolate the entire series, use the Python code above for the RST method but
replace v.surf.rst with the command v.surf.bspline. DEMs resulting
from large and small values of lamda_i are shown in Figs. 2.3 d and e.

2.4 Eliminating Water Surface Features

For many applications, such as volume calculations or shoreline extraction, ele-
vation data representing water surface features should be set to ‘no-data’ values.
After the DEMs are generated this can be achieved by setting elevations that
are lower than the mean high water (MHW) elevation to ‘no-data’ values. Any
remaining data regions that have a smaller area than the largest one are presumed to
represent wave crests and other spurious data, so these are also set to the ‘no-data’
value (Fig. 2.4).

Fig. 2.4 Elimination of water surface features

Purpose: Eliminate water surface features.
r.mapcalc \
expression=’JR_20080327_05mbspl_ext_gt036=if
(JR_20080327_05mbspl_ext>0.36,\

20 2 Processing Coastal Lidar Time Series

1, null())’ --o
r.to.vect input=JR_20080327_05mbspl_ext_gt036 \

output=JR_20080327_05mbspl_ext_gt036 type=area --o

Find the unique, database-generated category of the
largest area.
In this case, the category is 1.
v.report -s map=JR_20080327_05mbspl_ext_gt036 \

option=area

v.extract input=JR_20080327_05mbspl_ext_gt036 \
output=JR_20080327_05mbspl_ext_mask cats=1 --o

v.to.rast input=JR_20080327_05mbspl_ext_mask \
output=JR_20080327_05mbspl_ext_mask use=val \
value=1 --o

r.mapcalc\
expression=’JR_20080327_05mbspl_ext_masked=
JR_20080327_05mbspl_ext\

* float(JR_20080327_05mbspl_ext_mask)’ --o

g.remove rast="JR_20080327_05mbspl_ext_gt036,
JR_20080327_05mbspl_ext_mask"

g.remove vect="JR_20080327_05mbspl_ext_gt036,
JR_20080327_05mbspl_ext_mask"

2.5 Correcting Systematic Errors

Due to the registration errors, lidar data can be shifted and this shift needs to be
identified and corrected if the data are used for assessment of topographic change.

Systematic errors can be identified by comparing the interpolated DEMs along
stable features and geodetic benchmarks in open areas (Fig 2.5). Our sample data
set was corrected using the centerline of highway NC-12 because this road was
not modified during the study time period and thus had a time-invariant elevation
(unlike the erodible terrain surface). If no high-accuracy altimetric data along the
centerline is available and if the metrics that are to be derived from the DEM time-
series are not datum dependent (e.g., change measurements or rates of change),
then the DEMs can simply be referenced to each other using the stable features,
such as roads. Alternatively, if high-accuracy altimetric data is available, then for
each lidar dataset, elevation differences between the high-accuracy data and lidar
can be computed. The median difference quantifies the systematic error. Although
mean and median errors are often comparable, the median is chosen for its lower
sensitivity to outliers. In the relatively flat coastal terrain, systematic error can be
assumed to be spatially constant and can be corrected by shifting the lidar-based
DEMs so that the median difference becomes zero. Although the median error is

2.5 Correcting Systematic Errors 21

Fig. 2.5 (a) RTKGPS versus lidar profile along the road centerline. Elevation along the centerline
of highway NC 12 from (b) uncorrected lidar and (c) lidar with corrected systematic error
(Mitasova et al. 2009)

22 2 Processing Coastal Lidar Time Series

used because of its resistance to outliers, care should still be given to ensure that
spurious features captured in the lidar (e.g., cars and overwash deposits) are not
used to correct systematic error.

High-accuracy altimetric data along the centerline of highway NC-12
are available as high-resolution road lidar point clouds and as geodetic
benchmarks measured by the NCDOT. In the following examples, DARE_
BE94zm3_01m_rstdm.txt contains road lidar, whereas road_centerline.
txt contains data points digitized from a DEM along the centerline of NC-12.
Systematic error can be corrected using the NCDOT benchmarks by importing
them as raster cells, computing the error using r.mapcalc, and finally finding the
median error by running r.univar with the extended statistics flag -e:

Purpose: Correct systematic error using road
centerline using raster approach.
Refer to Ch. 1 Sec. 1.2 for information on where to
download the data.
import grass.script as grass
grass.run_command(’r.in.xyz’,

input=’road_centerline.txt’,
output=’road_centerline’, fs=’,’, x=1, y=2, z=3)

grass.run_command(’r.mapcalc’,
expression=’temp_NH_2008_1m_error=road_centerline -
NH_2008_1m’)

load statistics into a python dictionary with
parse_command
stats = grass.parse_command(’r.univar’, flags=’ge’,

map=’temp_NH_2008_1m_error’)
correction = stats[’median’]
grass.run_command(’r.mapcalc’,

expression=’NH_2008_1m_corrected=NH_2008_1m + ’ +
correction)

If the region is large, a vector approach may be more efficient. The benchmarks can
be imported as vector points, and a data table can be populated with DEM elevations
at benchmark locations using v.what.rast. After updating the database tables,
the individual errors can be calculated and the median error can be found by running
v.db.univar with the extended statistics -e:

Purpose: Correct systematic error using road
centerline using vector approach.
import grass.script as grass
grass.run_command(’v.in.ascii’,

input=’road_centerline.txt’,
output=’road_centerline’, fs=’,’, x=1, y=2,
overwrite=True)

2.5 Correcting Systematic Errors 23

grass.run_command(’v.db.renamecolumn’,
map=’road_centerline’, column=’dbl_1,x’)

grass.run_command(’v.db.renamecolumn’,
map=’road_centerline’, column=’dbl_2,y’)

grass.run_command(’v.db.renamecolumn’,
map=’road_centerline’, column=’dbl_3,z’)

grass.run_command(’v.db.addcolumn’,
map=’road_centerline’, layer=1, columns=’elev
DOUBLE PRECISION, error DOUBLE PRECISION’)

grass.run_command(’v.what.rast’,
map=’road_centerline’, layer=1,
raster=’NH_2008_1m’, column=’elev’)

grass.run_command(’v.db.update’,
map=’road_centerline’, col=’error’, qcol=’z-elev’)

grass.run_command(’v.db.select’,
map=’road_centerline’)

stats = grass.parse_command(’v.db.univar’,
flags=’ge’, table=’road_centerline’, column=’error’
)

correction = stats[’median’]
grass.run_command(’r.mapcalc’,

expression=’NH_2008_1m_corrected=NH_2008_1m + ’ +
correction)

The approach for correcting systematic error using road lidar data is analogous to
using geodetic benchmarks, with the additional step of a centerline extraction. This
can be achieved using a least cost path approach where the cost is a function of
distance to the sides of the road.

import grass.script as grass
Purpose: Correct systematic error using road surface
lidar.
Refer to Ch. 1 Sec. 1.2 for information on where to
download the data.
grass.run_command(’r.in.ascii’,

input=’DARE_BE94zm3_01m_rstdm.txt’,
output=’DARE_BE94zm3_01m_rstdm’)

grass.run_command(’g.region’, flags=’pg’,
rast=’DARE_BE94zm3_01m_rstdm’)

region = grass.region()
res = region[’nsres’]
Generate start raster (side of road).
grass.run_command(’r.mapcalc’,
expression=’DARE_BE94zm3_01m_rstdm_inv=if(isnull
(DARE_BE94zm3_01m_rstdm),

24 2 Processing Coastal Lidar Time Series

1, null())’)
grass.run_command(’r.buffer’,

input=’DARE_BE94zm3_01m_rstdm_inv’,
output=’start_rast’, distance=res)

grass.run_command(’g.remove’,
rast=’DARE_BE94zm3_01m_rstdm_inv’)

Generate a map equal to resolution on the road
and a map equal to distance from the side of road.
grass.run_command(’r.mapcalc’,

expression=’temp=if(isnull(DARE_BE94zm3_01m_rstdm),
null(),’ + res + ’)’)

grass.run_command(’r.cost’, flags=’k’, input=’temp’,
output=’cost’, start_rast=’start_rast’)

Extract centerline connecting two points
that were digitized at opposite ends of the road.
pt1=’913795,250598’
pt2=’913992,250202’
grass.run_command(’r.mapcalc’,

expression=’cost=exp(-5*cost)’, overwrite=True)
grass.run_command(’r.cost’, flags=’k’, input=’cost’,

output=’ccost’, start_coordinates=pt1,
stop_coordinates=pt2, overwrite=True)

grass.run_command(’r.drain’, flags=’n’,
input=’ccost’, output=’NC12_centerline’,
voutput=’NC12_centerline’, coordinate=pt2)

Once the centerline is extracted, the error correction can be computed using
r.mapcalc and r.univar as before:

Purpose: Correct systematic error using
lidar-extracted centerline.
import grass.script as grass
grass.run_command(’r.mapcalc’,

expression=’NH_2008_1m_error=if(isnull(NC12_
centerline), null(),
DARE_BE94zm3_01m_rstdm-NH_2008_1m)’)

stats = grass.parse_command(’r.univar’, flags=’ge’,
map=’NH_2008_1m_error’)

correction = stats[’median’]
grass.run_command(’r.mapcalc’,

expression=’NH_2008_1m_corrected=NH_2008_1m + ’ +
correction)

References 25

References

Abramowitz, M. and Stegun, I. (1965). Handbook of mathematical functions: with formulas,
graphs, and mathematical tables, volume 55. Dover publications.

Brovelli, M. A., Cannata, M., and Longoni, U. M. (2004). LIDAR data filtering and DTM
interpolation within GRASS. Transactions in GIS, 8(2):155–174.

Hofierka, J., Parajka, J., Mitasova, H., and Mitas, L. (2002). Multivariate interpolation of
precipitation using regularized spline with tension. Transactions in GIS, 6(2):135–150.

Mitas, L. and Mitasova, H. (1999). Spatial interpolation. Geographical Information Systems:
Principles, Techniques, Management and Applications, Wiley, 481.

Mitášová, H. and Mitáš, L. (1993). Interpolation by regularized spline with tension: I. Theory and
implementation. Mathematical geology, 25(6):641–655.

Mitasova, H., Mitas, L., and Harmon, R. (2005). Simultaneous spline approximation and
topographic analysis for lidar elevation data in open-source GIS. IEEE Geoscience and Remote
Sensing Letters, 2:375–379. DOI: 10.1109/LGRS.2005.848533.

Mitasova, H., Overton, M., Recalde, J., Bernstein, D., and Freeman, C. (2009). Raster-based
analysis of coastal terrain dynamics from multitemporal lidar data. Journal of Coastal
Research, 25:207–215. DOI: 10.2112/07-0976.1.

Neteler, M. and Mitasova, H. (2008). Open source GIS: a GRASS GIS approach. New York:
Springer, third edition.

http://10.2112/07-0976.1

Chapter 3
Raster-Based Analysis

Raster-based analysis on two or more DEMs can provide information about change
patterns and trends. A common approach to mapping elevation change between two
surveys is DEM differencing, performed by map algebra within GIS (r.mapcalc
in GRASS). For a larger number of elevation data snapshots, per cell statistics can
be applied to the raster DEMs to derive summary maps, which reveal the spatial
patterns of stable and dynamic sites, the time periods when sites reach their highest
or lowest elevations, and the trends in elevation change.

3.1 Core and Envelope, Dynamic Layer

We can characterize terrain evolution over a given time period by a series of
raster DEMs z.i; j; tk/ derived from lidar surveys acquired at time snapshots
tk; k D 1; : : : ; n, as discussed in Chap. 2 and Mitasova et al. (2009). We define the
core surface as the minimum elevation and the envelope surface as the maximum
elevation measured at each cell over the given time period .t1; tn/:

zcore.i; j / D min
k

z.i; j; tk/ k D 1; : : : ; n (3.1)

zenv.i; j / D max
k

z.i; j; tk/ k D 1; : : : ; n (3.2)

The space bounded by the core and envelope surfaces defines a dynamic layer. For a
sandy coastal environment, typical for barrier islands, the core surface represents a
boundary between a dynamic layer and a stable sand volume that has not moved
during the entire study period. The envelope surface represents the outer boundary
of the dynamic layer within which the terrain evolved during the given time
period .t1; tn/.

© The Author(s) 2014
E. Hardin et al., GIS-based Analysis of Coastal Lidar Time-Series, SpringerBriefs
in Computer Science, DOI 10.1007/978-1-4939-1835-5__3

27

28 3 Raster-Based Analysis

Fig. 3.1 (a) Core and (b) envelope surfaces derived from time series of lidar data (c) cross section
of the core, envelope, and terrain surface at multiple time snap shots

We run the r.series command with the method parameter set to minimum
compute the core surface and maximum to compute the envelope surface (Fig. 3.1).
‘No-data’ values are propagated using the -n flag when computing the core surface
because ‘no-data’ values indicate areas that were subaqueous in the time series:

Purpose: Compute core and envelope surfaces.
import grass.script as grass
grass.run_command(’g.region’, rast=’NH_1999_1m’)
mlist = grass.read_command(’g.mlist’, type=’rast’,

pattern=’NH_*_1m’, mapset=’.’, fs=’,’)
Compute the core surface.

3.2 Time-of-Minimum and Time-of-Maximum 29

grass.run_command(’r.series’, flags=’n’, input=mlist,
output=’NH_core’, method=’minimum’)

grass.run_command(’r.colors’, map=’NH_core’,
raster=’NH_1999_1m’)

Compute the envelope surface.
grass.run_command(’r.series’, input=mlist,

output=’NH_env’, method=’maximum’)
grass.run_command(’r.colors’, map=’NH_env’,

raster=’NH_1999_1m’)

Core and envelope surfaces provide the basis for several quantitative measures
of coastal dynamics such as shoreline migration range and relative volume change.
We will cover these measures later in this book.

3.2 Time-of-Minimum and Time-of-Maximum

A raster map representing the time associated with the core surface can be used
to identify locations and time when the land surface was at its minimum within
the given study period. Similarly, raster map showing the time associated with the
envelope surface identifies the time when the land surface was at its maximum.
Raster maps representing time-of-minimum and time-of-maximum can be computed
as:

tmax.i; j / D tl ; where z.i; j; tl / D zenv.i; j / (3.3)

tmin.i; j / D tp; where z.i; j; tp/ D zcore.i; j / (3.4)

where the indices l and p represent the values in the time map and tl or tp , the date
at which this value occurred, is stored as an attribute (label).

We compute the time-of-minimum and time-of-maximum maps by running
r.series with the method parameter set to min_raster and max_raster,
respectively (Fig. 3.2). We then use the r.category command to assign the labels
representing the dates associated with the index of the raster maps in the time series.

Purpose: Compute time-of-minimum and time-of-maximum
maps, and apply categories.
import tempfile
import os
fname = tempfile.mkstemp()[1]
f = open(fname, ’w’)
rules = """0:1999
1:2001
2:2004
3:2005

30 3 Raster-Based Analysis

4:2007
5:2008"""
f.write(rules)
f.close()
grass.run_command(’r.series’, flags=’n’, input=mlist,

output=’NH_min_time’, method=’min_raster’)
grass.run_command(’r.series’, input=mlist,

output=’NH_max_time’, method=’max_raster’)
grass.run_command(’r.category’, map=’NH_min_time’,

rules=fname)
grass.run_command(’r.category’, map=’NH_max_time’,

rules=fname)
os.remove(fname)

In our sample data, the time of maximum map shows clearly that the elevation
maximum has moved south over time (Fig. 3.2b).

3.3 Per-Cell Univariate Statistics

In addition to core, envelope, and time-of-minimum and time-of-maximum maps,
other univariate statistics with physical interpretations can be calculated. The
standard deviation map can be used to identify the stable and dynamic areas in
terms of elevation change. It is computed as:

Fig. 3.2 Surfaces representing the time of (a) minimum and (b) maximum elevation observed in
the time series of lidar data

3.3 Per-Cell Univariate Statistics 31

Fig. 3.3 Surfaces representing (a) the standard deviation and (b) range of terrain elevation
observed in the time series of lidar data

z� .i; j / D
vuut 1

n

nX

kD1

Œz.i; j; tk/ � z	.i; j /� (3.5)

where

z	.i; j / D 1

n

nX

kD1

z.i; j; tk/ (3.6)

where z� .i; j / is the standard deviation in the raster cell .i; j / and z	.i; j / is the
mean elevation value observed in this cell over time. The range map, computed as
the difference between the maximum and minimum elevation recorded during the
study period represents the magnitude of elevation change, or the thickness of the
dynamic layer at each raster cell.

We compute the standard deviation and range maps by running r.series with
the method parameter set to stddev and range, respectively (Fig. 3.3):

Purpose: Compute standard deviation and range maps.
grass.run_command(’r.series’, input=mlist,

output=’NH_stddev’, method=’stddev’)
grass.run_command(’r.series’, input=mlist,

output=’NH_range’, method=’range’)
Specify color maps in the current directory (or use a
full file path name).

32 3 Raster-Based Analysis

grass.run_command(’r.colors’, map=’NH_stddev’,
rules=’color_stddev.txt’)

grass.run_command(’r.colors’, map=’NH_range’,
rules=’color_range.txt’)

In the example above, the highest standard deviation and range of elevation change
was on the sand dune and at locations where homes were built or removed (Fig. 3.3).

In addition to mapping the most dynamic and stable areas, standard deviations
are useful for evaluating the accuracy of DEM time series. For example, for our
sample time series, when the values of the standard deviations are extracted for
each NC DOT benchmark along the NC-12 highway centerline, the average value
of the standard deviation is 0.14 m, almost equal to the published accuracy of the
lidar data.

3.4 Per-Cell Regression Analysis

Continuous terrain evolution is characterized by gradual changes in the elevation
surface over time; For example, such changes may represent sand dune migration
due to wind transport or vegetation growth. To detect discrete changes, we extracted
elevation changes that exceeded a set threshold; Whereas, to quantify continuous
evolution, we map spatial patterns and the rate of elevation change over time.

The spatial distribution of the linear rate of change can be estimated by
computing linear regression for each raster cell .i; j / in the time series of n raster
elevation maps. The result of the regression can be represented by three raster maps:
(a) slope of the regression line rs.i; j /; (b) offset ro.i; j /; and (c) coefficient of
determination rc.i; j /.

zr .i; j / D ro.i; j / C rs.i; j /z.i; j / (3.7)

For active bare wind blown dunes, both elevation growth and loss can be continuous.
We can map the dune erosion and dune growth areas as raster cells .ie; je/ and
.id ; jd /, respectively, that fulfill the following conditions

rs.ie; je/ < "e \ rc.ie; je/ > rcmin (3.8)

rs.id ; jd / > "d \ rc.id ; jd / > rcmin (3.9)

where "e and "d are threshold negative and positive regression slopes indicating
dune erosion and growth, respectively, and rcmin is a threshold value for the
coefficient of determination for which the relationship can be considered linear.
Areas with rc.i; j / less than rcmin do not a have clear linear trend of growth or
decline. These represent areas where growth has switched to decline as the dune has
migrated. Similar analysis can be applied to forest canopy surfaces to estimate the
rate of forest growth and identify areas with forest decline.

3.4 Per-Cell Regression Analysis 33

Fig. 3.4 Surfaces derived from the time series of lidar: (a) the rate of elevation change and (b)
coefficient of determination for which the rate of change can be considered linear

The r.series command assumes that input maps are spaced at even time
intervals. If input maps are not at even time intervals, maps containing ‘no-data’
values can be inserted so that maps are spaced approximately as they should be.
We can then compute the linear regression maps shown in Fig. 3.4 as follows:

Purpose: Compute null maps for use when elevation
snapshots are not evenly spaced in time.
import grass.script as grass
grass.run_command(’r.mapcalc’,

expression=’Null=null()’)
mlist =

’NH_1999_1m,Null,NH_2001_1m,Null,Null,NH_2004_1m,
NH_2005_1m,Null,NH_2007_1m,NH_2008_1m’

grass.run_command(’r.series’, input=mlist,
output=’NH_r_s,NH_r_o,NH_r_c’,
method=’slope,offset,detcoeff’)

grass.run_command(’r.colors’, map=’NH_r_s’,
rules=’color_regrslope.txt’)

grass.run_command(’r.colors’, map=’NH_r_c’,
rules=’regrcoefdet.txt’)

An alternate approach, registers the DEMs in a temporal database using the
commands t.create and t.register. Then the regression can be performed
by the t.rast.series command which supports variable time interval.

34 3 Raster-Based Analysis

References

Mitasova, H., Hardin, E., Overton, M., and Harmon, R. (2009). New spatial measures of terrain
dynamics derived from time series of lidar data. Proc. 17th Int. Conf. on Geoinformatics,
Fairfax, VA. DOI: 10.1109/GEOINFORMATICS.2009.5293539. Associated animation: http://
skagit.meas.ncsu.edu/\simhelena/gmslab/papers/Core_Envelope_anim.ppt.

http://10.1109/GEOINFORMATICS.2009.5293539
http://skagit.meas.ncsu.edu/$sim $helena/gmslab/papers/Core_Envelope_anim.ppt
http://skagit.meas.ncsu.edu/$sim $helena/gmslab/papers/Core_Envelope_anim.ppt

Chapter 4
Feature Extraction and Feature Change Metrics

Coastal change has been historically measured by metrics derived for specific
coastal linear features such as shorelines. Linear features are also important for
measuring sand dune migration based on the location of dune crests and slip faces
and for prediction of coastal vulnerability. In this chapter we present methods for
extracting shorelines, dune ridges, dune crests and building footprints from DEMs.
Then we measure the change of these features and use them to map vulnerability to
storms.

4.1 Shorelines and Shoreline Migration Range

A shoreline is the interface between the land and the ocean. The location of
the shoreline is fundamentally important to various aspects of coastal science
and engineering. However, the cross-shore and vertical location of the shoreline
continuously changes both temporally and spatially. Thus, differing definitions of
the shoreline exist for various applications.

Shoreline location is often approximated by a constant elevation contour drawn
in a tidal datum. The specific tidal datum and contour elevation may depend on the
application. With our set of sample DEMs registered relative to the mean high water
datum, we approximate the shoreline location with the z D 0:8 m elevation contour,
extracted with the r.contour command. We use an elevation of 0:8 m (which was
selected by Burroughs and Tebbens (2008)) because elevation data seaward of the
0:0 m shoreline proxy have already been set to ‘no-data’ values in the sample DEMs.
To eliminate small 0:8 m contours on the beach representing small depressions, we
use the parameter cut which removes all contours with a small point count (below
the given threshold), leaving only a single shoreline proxy.

© The Author(s) 2014
E. Hardin et al., GIS-based Analysis of Coastal Lidar Time-Series, SpringerBriefs
in Computer Science, DOI 10.1007/978-1-4939-1835-5__4

35

36 4 Feature Extraction and Feature Change Metrics

Purpose: Use r.contour to extract contour.
l is the shoreline proxy elevation
c is the threshold to exclude small anomalies
l = 0.8
c = 400
dates = [19961016, 19971002, 19980907, 19990909,

19990918, 2001, 20040925, 20051126, 20080327]
for date in dates:

rast = ’NH_’+str(date)+’_1m’
grass.run_commands(’r.contour’, input=rast,

output=’NH_’+str(date)+’_08m’, levels=l,
cut=c)

The z D 0:8 m elevation contour extracted from the 2008 DEM as an approximation
of the shoreline is shown in Fig. 4.4. Extracted contours can be smoothed using
the v.generalize command. A number of smoothing approaches are available,
which are set via the method parameter. A sliding average approach can be
employed by running:

Purpose: Smooth extracted shoreline.
v.generalize input=NH_2008_08m output=NH_2008_08m_sm \

method=sliding_averaging threshold=0 look_ahead=51

Shoreline contours extracted from the core and envelope surfaces define a
shoreline migration range within which the shoreline evolved during the given
time interval .t1; tn/. The short-term range of shoreline migration is the distance
between the most ocean-ward (maximum) and most landward (minimum) locations
of the shoreline within the study period. The shoreline might have migrated only
in one direction (landward in case of systematic erosion or ocean-ward in case of
systematic accretion) or back and forth (e.g., erosion due to hurricane followed by
recovery, or due to the erosion-nourishment-erosion cycle). The shoreline migration
range (also referred to as the shoreline band) is shown in Fig. 4.1.

Shoreline-based metrics such as erosion/accretion rate and migration range do
not measure the volume of sediment moved or the location of the displaced volume.
For example, while many storm events erode the beach, the sediment is carried into
the nearshore and beach recovery can occur after the storm as the waves build the
beach. On the other hand, during a washover event, both sediment from the beach
and the dune may be carried landward and taken out of the beach and dune system.
The short-term range of shoreline migration quantifies the variability of shoreline
position, but does not provide long-term trend information (Mitasova et al. 2012).

4.2 Foredune Features

Foredunes are linear dunes parallel to the shoreline rising on the in-land side of
the beach. These dunes provide critical protection for homes and roads during
storms. Properties of the foredunes, such as the ridge height and position of its toe

4.2 Foredune Features 37

Fig. 4.1 The shoreline migration range in the town of Nags Head

relative to the beach are fundamental parameters for estimating coastal vulnerability.
In this section, we present innovate techniques for extracting foredune features using
GIS-based tools.

4.2.1 Foredune Ridge Line

Traditionally, foredune ridges have been mapped using cross-shore transects or by
digitizing based on the data derived from DEMs and imagery. Here we present an
alternative, more automated method based on the least cost path tracing (Hardin
et al. 2012).

To use the least cost path to derive the fore dune ridge line, a suitable quantitative
definition of the dune ridge is needed. In this way, a cost surface can be generated
and the least cost path can be found. There are a number of conditions that the
cost function must satisfy. First, the cost function must be an inverse function of
elevation because the dune ridge is at a local elevation maximum and the paths
that pass below the dune ridge should have high cumulative costs. Second, the least
cost path is found based on the cost of passing through a grid cell and the traveled
distance. To account for the complexity of dune ridges, the cost of a slightly shorter,
lower elevation path should be greater than a slightly longer, higher elevation path.
Third, the cost function should be continuous everywhere, unlike z�1 and other
power functions, which can satisfy the above two conditions but are discontinuous at
z D 0. Finally, the cost function should be positive everywhere. This means that the
cost should approach zero as elevation increases as opposed to approaching negative
infinity. The cost function that was found to fulfill the above stated conditions was
defined as

Jij D e�˛zij (4.1)

38 4 Feature Extraction and Feature Change Metrics

where Jij is the dimensionless cost of traversing the raster cell .i; j /, zij (m) is
the DEM elevation, and ˛ (m�1) is a tunable parameter. The dune ridge is then
extracted by generating the cumulative cost surface and finding the path with the
least cumulative cost:

Jtot D min
n

NX

n

Jin;jn (4.2)

where Jtot is the cumulative cost, n indexes over the cells in the path, N is the
number of cells in a path, and the starting and ending points, .i0; j0/ and .iN ; jN /,
are fixed at the ends of the studied dune ridge. The cost surface described by
Eq. (4.1) can be generated in a GIS using map algebra, and the least cost path
described by Eq. (4.2) can be calculated using standard cumulative cost surface
generation and least cost path routing tools.

Purpose: Extract a dune ridge as a least cost path.
Specify two points that were manually selected at
opposite ends of dune ridge.
Compute cost surface.
r.mapcalc expression=’cost=exp(-2*NH_2008_1m)’ --o
Compute a cumulative cost surface.
r.cost -k input=cost output=cumulative_cost \

start_coordinates=’913859,250658’ \
stop_coordinates=’914305,249739’ --o

Calculate the least coast path.
r.drain input=cumulative_cost \

output=NH_2008_duneRidge \
vector_output=NH_2008_duneRidge \
start_coordinates=’914305,249739’ --o

Extract dune ridge.
r.mapcalc \
expression=’NH_2008_duneRidge=float\
(NH_2008_duneRidge)*NH_2008_1m’ --o

The dune ridge extracted from the 2008 DEM is shown in Fig. 4.4. In this example,
which performs ridge-line extraction on a DEM with homes, the algorithm runs the
line across two homes which are very close to the actual dune ridge. Later in this
chapter, we will show how to extract building footprints and create a least cost path
which avoids the homes.

The complexity of the least cost path line geometry can be adjusted using the
tunable parameter ˛ which has been set to a value of 2 in our example, based on
empirical observations. High values of ˛ yield a more complex, detailed ridge line
shape; Whereas, lower values of ˛ lead to a straighter, simplified line (Fig. 4.2).
Values for ˛ can be optimized for a given application using a representative sample
of the dune ridge where a highly accurate location of the dune ridge is available.
The optimized ˛ will also depend on the scale of the process being modeled.

4.2 Foredune Features 39

Fig. 4.2 Ridge lines extracted with different values of parameter ˛

4.2.2 Foredune Toe Line

The foredune toe is qualitatively defined as the location where the beach meets the
coastal foredune. It is often identified along a cross-shore beach profile as the loca-
tion with the greatest change in slope (profile curvature maximum) or where shallow
sloping terrain on the beach meets steep foredune terrain (Burroughs and Tebbens
2008; Elko et al. 2002; Stockdon et al. 2007; Stockdon and Thompson 2007a,b).
Estimating the curvature requires the computation of second-order derivatives of
an intrinsically noisy surface. This makes the curvature-based dune toe extraction
methods highly dependent on resolution and smoothing parameters.

Alternatively, the dune toe can be identified as the location with the largest
distance between the given elevation profile and a line connecting the dune ridge
and shoreline (Mitasova et al. 2011). A continuous dune toe line can be extracted by
implementing this conceptualization in two dimensions, where the beach profile
becomes the terrain surface and the line connecting the dune ridge and shore-
line becomes a tightly stretched elastic sheet with boundary conditions at the
dune ridge and shoreline (Fig. 4.3). Further, instead of approximating the dune toe as
the point where the elevation profile is most deviated from a line connecting the dune
ridge and shoreline, the path of greatest deviation between the terrain surface and
the elastic sheet approximates the continuous dune toe line (Fig. 4.3).

40 4 Feature Extraction and Feature Change Metrics

Fig. 4.3 Illustration of the extraction of a dune toe in which (a) the dune ridge is extracted,
(b) the elevation of a zero-energy elastic membrane connecting the dune ridge and the shoreline
is computed, (c) the sheet and the terrain are differenced and the path of greatest deviation is
computed, and finally, (d) the dune toe (approximated by the path of greatest deviation) is overlaid
on the terrain surface

The elastic sheet can be modeled as an array of springs with nodes located at
each raster cell (Hardin et al. 2012), which is a crude model for a deformable cloth
that is well established in computer graphics literature (Breen et al. 1992; Provot
1995). The nodes at the ends of the sheet are fixed to the shoreline and the dune
ridge. Only a spring force acts on each node, which depends on its elevation relative
to the elevation of its neighbors,

Fi;j D .zi;j � ziC1;j / C .zi;j � zi�1;j / C .zi;j � zi;j C1/ C .zi;j � zi;j �1/ (4.3)

D 4zi;j � ziC1;j � zi�1;j � zi;j C1 � zi;j �1 (4.4)

The static equilibrium position of the sheet can efficiently be computed by solving
Eq. (4.3) as a linear system of N equations where N is the combined number
of nodes that either constitute the sheet or represent boundary conditions. This
approach requires software functionality not typically included in standard GIS
packages. Alternatively, we can compute Eq. (4.3) using an iterative, relaxation
approach:

4.2 Foredune Features 41

z�
i;j D 1

4
.ziC1;j C zi�1;j C zi;j C1 C zi;j �1/ (4.5)

where with each iteration the elevation of every node is reassigned the mean
elevation of its four nearest neighbors during the previous iteration. This is achieved
by repeatedly applying a Laplace filter (or smoothing filter). We apply a Laplace
filter in GRASS using the r.neighbors command where the neighborhood
operation is set to average (method=average) and the neighborhood is limited
to the four nearest neighbors by setting size=3 and using the -c flag to indicate a
circular neighborhood.

Once the elevation of the elastic sheet is solved, we difference the elevations
of the sheet and the terrain surface to produce a raster map that represents the
deviation between the two surfaces, Di;j (Fig. 4.3). Finally, we derive the cost
surface using Eq. (4.1) where zi;j has been replaced by the difference between the
DEM and the sheet, Di;j , and we extract the dune toe line as the least cost path using
Eq. (4.2). The extracted dune toe line is shown in Fig. 4.4. The following GRASS
code implements the dune toe extraction process:

Purpose: Compute dune toe line with elastic sheet
method.
#
Reduce computational region to area containing
boundary
conditions for efficiency.
import grass.script as grass
grass.run_command(’v.patch’,

input=’NH_2008_duneRidge,NH_2008_08m’,
output=’sheet_BC’)

grass.run_command(’g.region’, vect=’sheet_BC’)
grass.run_command(’v.to.rast’, input=’NH_2008_08m’,

output=’NH_2008_08m’, use=’val’, value=’0.8’)
grass.run_command(’r.patch’,

input=’NH_2008_duneRidge,NH_2008_08m’,
output=’sheet_BC’, overwrite=True)

grass.run_command(’g.copy’, rast=’NH_2008_1m,sheet’)
iterations = 3000
for i in range(iterations):

print i
grass.run_command(’r.neighbors’, flags=’c’,

input=’sheet’, output=’sheet’, method=’average’,
size=3, overwrite=True)

grass.run_command(’r.patch’,
input=’sheet_BC,sheet’, output=’sheet’,
overwrite=True)

42 4 Feature Extraction and Feature Change Metrics

grass.run_command(’r.colors’, map=’sheet’,
rast=’NH_2008_1m’)

Make small null buffer around dune ridge and
shoreline to keep extracted toe between them.
grass.run_command(’r.buffer’, input=’sheet_BC’,

output=’sheet_BC_buff’, dist=1)
grass.run_command(’r.mapcalc’,

expression=’deviation_map=if(isnull(sheet_BC_buff),
sheet-NH_2008_1m, null())’)

Again, use two manually selected points.
pt1 = ’913878,250654’
pt2 = ’914317,249759’
Extract dune toe.
grass.run_command(’r.mapcalc’,

expression=’cost=exp(-5*deviation_map)’)
grass.run_command(’r.cost’, flags=’k’, input=’cost’,

output=’cumulative_cost’, start_coordinates=pt1,
stop_coordinates=pt2)

grass.run_command(’r.drain’, input=’cumulative_cost’,
output=’NH_2008_duneToe’,
voutput=’NH_2008_duneToe’, start_coordinates=pt2)

grass.run_command(’r.mapcalc’,
expression=’NH_2008_duneToe=float(NH_2008_duneToe)

*NH_2008_1m’)

4.3 Crescentic and Parabolic Dune Features

Sand dune fields with parabolic or crescentic dunes form in coastal areas with a large
supply of sand and steady, strong winds. These dunes, also referred to as backdunes,
often migrate and change their shape creating a highly dynamic landscape. To
quantify the dune migration and transformation we extract dune features, such as
peaks, slip faces, active crests, and windward side ridges. Slip faces and dune crests
can be extracted using thresholds in slope and profile curvature.

We can compute these parameters simultaneously by interpolating DEMs using
the first- and second-order partial derivatives of the RST function and principles of
differential geometry (Mitasova and Hofierka 1993). The same general equations
apply for estimating these parameters from raster-based DEMs. Assuming that the
elevation surface is approximated by a bivariate function z D f .x; y/ (which can be
the RST function or a polynomial), we first we introduce the following simplifying
notations:

fx D @z

@x
; fy D @z

@y
; fxx D @2z

@x2
; fyy D @2z

@y2
; fxy D @2z

@x@y

(4.6)

4.3 Crescentic and Parabolic Dune Features 43

Fig. 4.4 DEM overlaid with the extracted shoreline (0:8 m elevation contour), dune toe, and dune
ridge. The dune ridge extraction approach erroneously extracts structures when structures are on
or immediately adjacent to the dune ridge. Using bare ground DEM or creating a cost surface with
high cost for pixels with buildings will correct this problem as we show later in this chapter

and

p D f 2
x C f 2

y ; q D p C 1: (4.7)

Then the steepest slope angle
 in degrees or percent is computed from gradient
rf D .fx; fy/ as follows

 D arctan
p

p
Œ%� D 100:
p

p (4.8)

and the equation for the profile curvature �s.m
�1/ is

�s D fxxf 2
x C 2fxyfxfy C fyyf 2

y

p
p

q3
: (4.9)

Previous application of this approach to lidar data demonstrated that suitable
selection of the RST parameters (tension and smoothing) is essential for deriving the
topographic parameters at the level of detail matching the size of the dune features
(Mitasova et al. 2004). It is also important to note that the analysis should be applied
to a bare earth DEM. If only the first return DEM is available, the vegetated areas
should be masked out.

In our example, we will extract the dune crests and slip faces from the first return
lidar point cloud which represents the Jockey’s Ridge dune field in the year 2008.
First, we interpolate the DEM with simultaneous computation of slope and profile
curvature. We use 3D visualization and raster map query to identify the threshold
values of profile curvature and slope associated with the dune crests and slip faces.
Then, we use map algebra to mask out the vegetated areas based on the land cover

44 4 Feature Extraction and Feature Change Metrics

map derived by Weaver et al. (2010) and to extract dune crests and slip faces
into separate raster map layers. The threshold of profile curvature �s > 0:08 m�1

(convexity) proved to be a good indicator of dune crests (Fig. 4.5a). Slopes
 > 25ı
can be used to identify the slip faces (Fig. 4.5b).

Purpose: Extract dune crests and slip faces.
see Chapter 2, subsection 2.2.3
for import of the lidar point cloud JR_20080327
lu_2009 is the land cover map, where the category 1
is sand
g.region res=1 n=250690 s=249502 w=912791 e=913931 -p
v.surf.rst -t JR_20080327 elev=JR_20080327 \

slo=JR_20080327_slp pc=JR_20080327_pc ten=500 \
smo=2. npmin=150 dmin=0.9

r.mapcalc \
expression=’JR_20080327_crest=if(JR_20080327_pc>0.04\

&& lu_2009 == 1,1,null())’
r.mapcalc \

expression=’JR_20080327_slip=if(JR_20080327_slp>25 \
&& lu_2009 == 1,2,null())’

In addition to the dune crests and slip faces, backslope dune ridges and evolution
of slope values along these ridges are important indicators of dune landform stages
in relation to sand supply. In general, mountain ridges can be identified using plan or
tangential curvature (Mitasova and Hofierka 1993); However, this approach is not
very suitable for dunes with smooth windward sides and low values of curvature.
Therefore, an alternative approach based on the density of slope lines generated
uphill from each grid cell can be used (Mitasova et al. 1996). The slope lines follow
the direction of surface gradient and are perpendicular to contours. This approach is
an inverse version of the flow accumulation algorithm commonly used for extraction
of streams (e.g., Tarboton 1997). To extract ridges, slope lines are computed using a
D-infinite (vector-grid) algorithm (Mitasova et al. 1996). This approach avoids the
artificial patterns produced by the standard D-8 methods on smooth surfaces typical
for dunes. Dune ridges are then extracted as grid cells with the number of slope
lines passing through them (slope line accumulation) greater than a given threshold.
In the following example, the threshold is 600: (Fig. 4.6).

Purpose: Compute upslope flowline density raster
map and
vector representation of flowlines for each
50th cell.
r.flow -u JR_20080327_05m dsout=JR_20080327_05m_upfl
flout=JR_20080327_05m_upfline skip=50
Extract raster cells with flowline density > 600
and assign them the slope values.
r.mapcalc\

4.3 Crescentic and Parabolic Dune Features 45

expression=’JR_20080327_05m_ridges=if(/
JR_20080327_05m_upfl > 600, slope, null())’

Compute the univariate statistics for the slope
along the ridge line.
r.univar JR_20080327_05m_ridges

We can apply this approach to the entire time series of DEMs for Jockey’s Ridge
and analyze the trend in slope values along the ridges. Decline in the average slope
along the ridge would be an indication of dune stabilization.

Fig. 4.5 DEM overlaid with the map of (a) slip faces and (b) dune crests

46 4 Feature Extraction and Feature Change Metrics

Fig. 4.6 DEM (year 2001, bare earth) overlaid with the map of uphill slope-line density color
map. Inset shows the slope-lines and the values of slope along the extracted section of the ridge

4.4 Generating Transects

It is common practice to reduce a coastal landscape representation to a series of
two-dimensional cross-shore profiles. From the set of profiles, salient parameters
(e.g., shoreline location and beach slope) can be measured and conceptual or
physics-based models can be computed. Here we outline how to generate a set of
uniformly spaced transects and how to adaptively place non-uniform transects.

4.4.1 Transects at Uniform Locations

A set of uniform profiles can be drawn in GRASS using the add-on module
v.transects. Add-on modules are not part of the standard set of GRASS
modules; However, add-on modules include additional functionality, such as
v.transects, and are available by any of the following means:

• Use the GRASS module g.extension. GRASS add-ons are GRASS
extensions written by members of the GRASS community.

• Download from the GRASS add-ons page: http://grass.osgeo.org/download/
addons/

http://grass.osgeo.org/download/addons/
http://grass.osgeo.org/download/addons/

4.4 Generating Transects 47

• Download from (or upload to) the source code repository using the SVN client
software:

svn co http://svn.osgeo.org/grass/grass-addons
/grass7

The module v.transects draws a set of transects that are orthogonal to
a baseline (e.g., shoreline or other contour). The transects are uniformly spaced
according to the transect_spacing parameter, and are offset from the baseline
according to the dleft and dright parameters. For example, a set of transects
spaced at 50 m intervals, as shown in Fig. 4.7, can be generated along the 0:8 m
contour by running the following GRASS commands:

Purpose: Generate a set of cross-shore transects.
g.region rast=NH_2008_1m
r.contour input=NH_2008_1m output=NH_2008_08m \

level=0.8 cut=400
v.transects.py input=NH_2008_08m \

output=NH_2008_transects transect_spacing=50 \
dleft=50 dright=150 --o

4.4.2 Transects at Optimized Locations

The choice of profile spacing is a balance between resources and adequate repre-
sentation of the terrain. However, profiles can be irregularly spaced in an optimized
way to best represent the terrain using an approach based on line simplification.

Measurements of topographic parameter values along a series of transects can
be thought of as a polyline in the parameter space of topographic parameters.
The polyline representation is specified by a sequence of n vertices (V1; V2; : : : ; Vn)
and n � 1 line segments (V1V2; V2V3; : : : ; Vn�1Vn). The vertices correspond to
transects and have k coordinates, which correspond to alongshore location and k�1

topographic parameter values.
Profiles can be irregularly spaced by first constructing a polyline representation

of the topography at the maximum alongshore resolution. The number of vertices
in the polyline representation (which correspond to profiles) can be considerably
reduced while still representing the terrain well using the Douglas and Peucker
(1973) line simplification algorithm. The Douglas and Peuker algorithm approxi-
mates a polyline, P , with a polyline, P 0, where the vertices that specify P 0 are
a subset of the vertices that specify P (Ebisch 2002; Hershberger and Snoeyink
1992). The vertices that specify P 0 are determined in a recursive manner until an
error threshold, �, is met.

Initially, the simplified polyline is specified only by the endpoints of the
unsimplified polyline,

P 0 D V1Vn: (4.10)

48 4 Feature Extraction and Feature Change Metrics

Fig. 4.7 A set of cross-shore transects placed at 50 m intervals

Then, the vertex Vf 2 fV1; V3; : : : ; Vng that is most separated from P 0 is identified.
If Vf is separated from P 0 by a distance less than �, then P 0 is considered to be a
good approximation to P; and the simplification of P is complete. Alternatively, if
the distance from Vf to P 0 is greater than or equal to �, then Vf is inserted into P 0,

P 0 D V1Vf Vn: (4.11)

Following the inclusion of Vf , the procedure is recursively applied to each line
segment in P 0 with the corresponding set of vertices (e.g., V1Vf with fV1; : : : ; Vf g
and Vf Vn with fVf ; : : : ; Vng) until a good approximation to P is reached. Finally,
the profiles that correspond to the remaining vertices are used to model the terrain
whereas the others are discarded.

Prior to polyline simplification, parameter space should be normalized so that
the simplification is not biased to represent the parameters that typically assume
larger values (e.g., beach width compared to dune height). The vertex coordinates
in parameter space can be normalized according to:

Oxp
n D xp

n � < xp >

�
p
x

(4.12)

4.4 Generating Transects 49

where Oxp
n is the pth component of the normalized coordinate of the nth vertex,

p is the normalized component (which corresponds to a particular topographic
parameter), xp

n is the unnormalized component of the coordinate, < xp > and �
p
x

are the mean and standard deviation respectively of the pth component of all the
vertices in the polyline.

We generate the polyline representation of an 1D feature by replacing the x,y
values with cat,z values. Then we simplify the line using v.generalize by
setting the method parameter to douglas_reduction:

Purpose: Optimize transect locations.
import grass.script as grass
import tempfile

grass.run_command(’g.region’, rast=’NH_2008_1m’)
Extract dune ridge.
pt1=’913855,250657’
pt2=’914305,249740’
grass.run_command(’r.mapcalc’,

expression=’cost=exp(-5*NH_2008_1m)’,
overwrite=True)

grass.run_command(’r.cost’, flags=’k’, input=’cost’,
output=’cumulative_cost’, start_coordinates=pt1,
stop_coordinates=pt2, overwrite=True)

grass.run_command(’r.drain’, flags=’n’,
input=’cumulative_cost’,
output=’NH_2008_duneRidge’, start_coordinates=pt2,
overwrite=True)

Output dune ridge and import as point vector map
fname = tempfile.mkstemp()[1]
grass.run_command(’r.stats’, flags=’1gn’,

input=’NH_2008_duneRidge,NH_2008_1m’, output=fname,
fs=’|’)

grass.run_command(’v.in.ascii’, input=fname,
output=’test’, x=1, y=2, cat=3, z=4, fs=’|’,
overwrite=True)

find the number of points
vinfo = grass.parse_command(’v.info’, flags=’tg’,

map=’test’)
points = vinfo[’points’]

Import parameter-space line by changing the category
values to be the x value and the elevation to be
the y value

50 4 Feature Extraction and Feature Change Metrics

Import as a line by converting the result to
grass standard vector format
vect = grass.read_command(’v.out.ascii’, input=’test’

)
vect = vect.strip(’\n’).split(’\n’)
vect = [line.split(’|’) for line in vect]
vect = [[int(line[3]),float(line[2])] for line in

vect]
vect.sort()
vect = [’ ’.join(map(str,line)) for line in vect]
vect = ’\n’.join(vect)
vect = ’L ’ + points + ’\n’ + vect

fout = open(fname, ’w’)
fout.write(vect)
fout.close()
grass.run_command(’v.in.ascii’, flags=’n’,

input=fname, output=’test_ps’, format=’standard’,
overwrite=True)

Simplify parameter space line.
grass.run_command(’v.generalize’, flags=’c’,

input=’test_ps’, output=’test_ps_gen’,
method=’douglas_reduction’, threshold=0,
reduction=10, overwrite=True)

grass.run_command(’v.to.points’, flags=’v’,
input=’test_ps_gen’, output=’test_ps_gen_pts’,
overwrite=True)

vinfo = grass.parse_command(’v.info’, flags=’tg’,
map=’test_ps_gen_pts’, overwrite=True)

points = vinfo[’points’]

retrieve the categories (called "cats") of the nodes
that remain in the simplified line
cats = grass.read_command(’v.out.ascii’,

input=’test_ps_gen_pts’)
cats = cats.strip(’\n’).split(’\n’)
cats = [int(line.split(’|’)[0]) for line in cats]
cats.sort()
cats = map(str, cats)
cats = ’,’.join(cats)

4.5 Measuring Line Feature Change 51

grass.run_command(’v.out.ascii’, input=’test’,
output=fname, cats=cats)

grass.run_command(’v.in.ascii’, input=fname,
output=’NH_duneRidge_gen_pts’, x=1, y=2, z=3,
cat=4, fs=’|’, overwrite=True)

os.remove(fname)

Figure 4.8 shows a set of transects placed at optimized locations so that they capture
the variations of a dune ridge.

4.5 Measuring Line Feature Change

Feature change is usually measured as a horizontal distance between the location of
features at different time snapshots. The distance is measured along regularly spaced
transects and the result is often reported as a spatially (and temporally) aggregated
value.

Fig. 4.8 A set of cross-shore transects placed at regular and optimized locations

52 4 Feature Extraction and Feature Change Metrics

4.5.1 Shoreline Change

The shoreline position is measured from a reference line. The shoreline displace-
ment is measured at discrete locations using a series of equidistant spaced (in this
study 50 m), cross-shore transects. The methods are described by Dolan et al. (1978,
1980), Overton and Fisher (1996), and others, with similar methods used in Morton
and Miller (2005).

Typically, shoreline location is measured along a cross-shore transects. Cross-
shore transect spacing is decided by the scale of shoreline variability that is intended
to be measured; Variability on a scale smaller than transect spacing contributes to
uncertainty in the measurement. In this way, measuring shoreline along a transect
is sensitive to transect placement. In this section, shoreline location is measured
by calculating the area of land above MHW within the shoreline band. This is
done for each 50 m wide segment. Then, the area is divided by the width of the
segment giving an average displacement of the shoreline from the core shoreline. In
averaging the shoreline measurement over the width of the segment, the uncertainty
in the measurement due to small-scale variability is also divided by the segmented
width. The use of area to measure shoreline location, as opposed to measuring along
a single transect, attempts to reduce the uncertainty in the measurement resulting
from transect placement. Beach area measurements are performed in a similar
manner to volume measurements described in Sec. 5.3.

By applying line feature extraction to the core and envelope, the space within
which the given line feature evolved can be mapped. For example, shorelines
extracted from the core and envelope define a shoreline band within which the
shoreline evolved during the given period (Fig. 4.9a). Additional metrics that
provide quantitative information about mass redistribution within the evolving
landscape have also been derived (Hardin et al. 2011).

Typically, coastal features run parallel to the shoreline; That is, they are measured
along a series of cross-shore transects. We can find the locations where coastal

Fig. 4.9 Change in the dune ridge, dune toe and shoreline between the years 1998 and 2008: (a)
respective evolution bands and (b) 3D ridge evolution space

4.5 Measuring Line Feature Change 53

features intersect transects using the v.clean command. Then we can compare
the changes in the location and characteristics of a feature across time steps, as
shown in the following GRASS code sample:

Purpose: Extract baseline shoreline and generate
cross-shore transects.
import grass.script as grass

grass.run_command(’g.region’, rast=’NH_2008_1m’)

grass.run_command(’r.contour’, input=’NH_2008_1m’,
output=’NH_2008_08m’, levels=0.8, cut=600,
overwrite=True)

grass.run_command(’v.transects.py’,
input=’NH_2008_08m’, output=’NH_transects’,
transect_spacing=50, dleft=50, dright=200,
overwrite=True)

Add columns to transects to hold intersection
locations.
grass.run_command(’v.category’, input=’NH_transects’,

output=’temp’, option=’add’, overwrite=True)
grass.run_command(’g.rename’,

vect=’temp,NH_transects’, overwrite=True)
grass.run_command(’v.db.addtable’,

map=’NH_transects’, table=’table_trans’, layer=1,
columns=’trans_num int,x_1999 double
precision,y_1999 double precision,z_1999 double
precision,x_2008 double precision,y_2008 double
precision,z_2008 double precision,r2 double
precision,del_z double precision’)

grass.run_command(’v.db.update’, map=’NH_transects’,
col=’trans_num’, qcol=’cat’)

Use manually selected endpoints.
pt1="913861,250665"
pt2="914301,249736"
for date in [1999, 2008]:

Get dune ridge and intersection points.
grass.run_command(’r.mapcalc’,

expression=’cost=exp(-5*NH_’+str(date)+’_1m)’,
overwrite=True)

grass.run_command(’r.cost’, flags=’k’,
input=’cost’, output=’ccost’, coordinate=pt1,
stop_coordinate=pt2, null_cost=1, overwrite=True
)

54 4 Feature Extraction and Feature Change Metrics

grass.run_command(’r.drain’, input=’ccost’,
output=’NH_’+str(date)+’_duneRidge’,
voutput=’NH_’+str(date)+’_duneRidge’,
coordinate=pt2, overwrite=True)

grass.run_command(’v.patch’,
input=’NH_’+str(date)+’_duneRidge,NH_transects’,
output=’temp’, overwrite=True)

grass.run_command(’v.clean’, input=’temp’,
output=’temp_o’,
error=’NH_’+str(date)+’_duneRidge_pts’,
tool=’break’, overwrite=True)

Get transect number and elevation for each
intersection point.
grass.run_command(’v.category’,

input=’NH_’+str(date)+’_duneRidge_pts’,
output=’NH_’+str(date)+’_duneRidge_pts_cat’,
option=’add’, overwrite=True)

grass.run_command(’v.db.addtable’,
map=’NH_’+str(date)+’_duneRidge_pts_cat’,
table=’table_’+str(date), layer=1,
columns=’trnsct int,z double precision’)

grass.run_command(’v.what.vect’,
map=’NH_’+str(date)+’_duneRidge_pts_cat’,
layer=1, column=’trnsct’, qmap=’NH_transects’,
qlayer=1, qcolumn=’trans_num’, dmax=1)

grass.run_command(’v.what.rast’,
map=’NH_’+str(date)+’_duneRidge_pts_cat’,
layer=1, raster=’NH_’+str(date)+’_1m’,
column=’z’)

Populate transect table with dune data.
a = grass.read_command(’v.out.ascii’,

input=’NH_’+str(date)+’_duneRidge_pts_cat’,
output=’-’, columns=’trnsct,z’)

a = a.strip(’\n’)
for line in a.split(’\n’):

line = line.split(’|’)
grass.run_command(’v.db.update’,

map=’NH_transects’, layer=1,
column=’x_’+str(date), value=line[0],
where=’trans_num=’+line[2])

grass.run_command(’v.db.update’,
map=’NH_transects’, layer=1,
column=’y_’+str(date), value=line[1],
where=’trans_num=’+line[2])

4.6 Mapping Location and Change of Built Structures 55

grass.run_command(’v.db.update’,
map=’NH_transects’, layer=1,
column=’z_’+str(date), value=line[4],
where=’trans_num=’+line[2])

grass.run_command(’v.db.update’, map=’NH_transects’,
layer=1, column=’r2’,
qcolumn=’(x_2008-x_1999)*(x_2008-x_1999)

+(y_2008-y_1999)*(y_2008-y_1999)’)
grass.run_command(’v.db.update’, map=’NH_transects’,

layer=1, column=’del_z’, qcolumn=’z_2008-z_1999’)
grass.run_command(’v.db.select’, map=’NH_transects’,

columns=’r2,del_z’)

4.6 Mapping Location and Change of Built Structures

We can map the location of homes in relatively flat coastal terrain using a simple
raster analysis. For the case where hb D 9 m, structures can be extracted by running
the following GRASS commands:

Purpose: Identify potential structures as elevations
above threshold (9m) in envelope surface.
Limit search to beach front by buffering shoreline.
g.region rast=NH_env
v.buffer input=NH_2008_08m \

output=NH_2008_08m_200mbuff distance=200
v.to.rast input=NH_2008_08m_200mbuff \

output=NH_2008_08m_200mbuff typ=area use=val value=1
r.mask raster=NH_2008_08m_200mbuff
Extract the houses.
r.mapcalc \

expression=’NH_houses_rast=if((NH_env-9),1,null(),
null())’ --o

r.mask raster=NH_2008_08m_200mbuff -r

Beach-front homes extracted through raster analysis are shown in Fig. 4.10.
Building footprint layers can be used to generate more complex cost surfaces
for more accurate dune ridge extraction, e.g., by increasing the cost in building
footprints:

Purpose: Extract dune ridges.
r.mapcalc \

expression=’cost=exp(-2*if(isnull(NH_houses_rast), \
NH_2008_1m, 9+(9-NH_2008_1m)))’ --o

56 4 Feature Extraction and Feature Change Metrics

r.cost -k input=cost output=cumulative_cost \
coordinate=913859,250658 \
stop_coordinate=914305,249739 --o

r.drain input=cumulative_cost \
output=NH_2008_duneRidge voutput=NH_2008_duneRidge \
coordinate=914305,249739 --o

r.mapcalc\
expression=’NH_2008_duneRidge=float(\
NH_2008_duneRidge)

* NH_2008_1m’ --o

Discrete terrain changes, such as construction or destruction of a building, are
characterized by a significant difference in elevation for a set of grid cells measured
between two time snapshots tk and tkC1. To accurately identify this type of change,
adequate representation of structures is required. Usually this is found in multiple-
return or last-return (not bare earth) lidar-derived DEMs with resolutions 0.3–0.5 m.
Structures that were built or lost between the beginning and end of the study period

Fig. 4.10 Beach-front structures extracted through raster analysis

4.6 Mapping Location and Change of Built Structures 57

can be identified using the core and envelope surfaces, given by Eqs. (3.1) and (3.2)
respectively, as grid cells .ic; jc/ that fulfill the following condition:

zenv.ic; jc/ � zcore.ic; jc/ > hb (4.13)

where hb is the threshold relative height of the building captured by lidar. To map
only the buildings that were built or lost, we can modify the map algebra expression
above as follows:

Purpose: Identify elevation difference between core
and envelope above threshold (9 m).
g.region rast=NH_env
r.mask input=NH_2008_08m_200mbuff
r.mapcalc\
expression=’NH_houses_change=if((NH_env-NH_core)\
>9,1,null(),null())’

r.mask input=NH_2008_08m_200mbuff -r

Lost structures will be located in grid cells .il ; jl / that fulfill the condition given
by Eq. (4.13) and the following relation:

tmax.il ; jl / < tmin.il ; jl / (4.14)

while new structures can be identified as grid cells .in; jn/ where:

tmax.in; jn/ > tmin.in; jn/ (4.15)

with raster maps tmax.i; j / and tmin.i; j / defined by Eqs. (3.3) and (3.4). If more
detailed temporal information is needed, the extracted new or lost buildings can be
vectorized using the standard GIS tools and the associated centroids .ic; jc/ can be
used to perform an automated query of the entire DEM time series.

Purpose: Identify structures that were either
built or destroyed during the study period.
Convert raster structures to vector areas.
r.to.vect input=NH_houses_rast output=NH_houses_vect \

type=area --o
Remove small areas, e.g, telephone poles.
v.clean input=NH_houses_vect \

output=NH_houses_vect_clean tool=rmarea thresh=15 \
--o

Convert house centroid to point location.
v.extract input=NH_houses_vect_clean \

output=NH_houses_centroid type=centroid --o

58 4 Feature Extraction and Feature Change Metrics

v.type input=NH_houses_centroid \
output=NH_houses_point from_type=centroid \
to_type=point --o

Sample dem time series.
v.out.ascii input=NH_houses_point output=- \

separator=’ ’ | r.what map=NH_1999_1m,NH_2001_1m
Make a raster map showing built and lost homes
in which
positive/negative elevation differences indicate
built/lost.
r.mapcalc expression=’NH_elev_diff=(NH_env-NH_core) *\

if(NH_2008_1m>NH_1999_1m,1,-1)’
v.db.addcolumn map=NH_houses_vect_clean columns="diff \

DOUBLE PRECISION"
v.rast.stats map=NH_houses_vect_clean \

raster=NH_elev_diff method=average col_prefix=mean
v.to.rast input=NH_houses_vect_clean \

output=NH_houses_elev_diff use=attr \
attrcolumn=mean_avera

Use threshold of 3 to filter small differences.
r.mapcalc\

expression="NH_houses_built_lost=if(\
NH_houses_elev_diff>3,\
1, if(temp2<-3,-1,null()))"

Elevation differences at grid cells .ic; jc/ computed for the individual successive
time snapshots tp and tpC1, p D 1; : : : ; n � 1:

�z.ic; jc; td / D z.ic; jc; tp/ � z.ic; jc; tpC1/

can be analyzed and a time interval td when a new house was built can be identified
using condition:

�z.ic; jc; td / < �hb (4.16)

and when a house was lost can be identified with the following condition:

�z.ic; jc; td / > hb (4.17)

Using this approach, we can also investigate whether there were any homes that
were built and quickly lost within the study period or that were lost and re-built
(Fig. 4.11). Extracted information about the new and old buildings can be compared
with county records to evaluate the results, verify permits for the new buildings and
identify potential violations.

4.7 Derived Parameters: Storm Vulnerability Scale 59

Fig. 4.11 Beach-front structures classified as built or destroyed

We can also extract a wide range of additional information about structures
and their relation to terrain evolution to support decision making and coastal
management. For example, we can identify vulnerable new structures that were built
on a very small core (stand on moving sand) by combining Eqs. (4.13) and (4.15)
with a condition:

zcore.in; jn/ < zb (4.18)

where zb is minimum core elevation considered safe (e.g. based on storm surge, or
sea level rise). Homes located within the shoreline evolution band (already lost or
highly vulnerable) can also be easily identified.

4.7 Derived Parameters: Storm Vulnerability Scale

Coastal vulnerability to storm events depends on storm characteristics as well as the
continuously evolving, spatially varying beach and foredune topography (Morton
2002; Wright et al. 1970). Efforts to identify vulnerable locations have focused on
characterizing the prestorm topographic features relative to storm parameters (e.g.,
García-Mora et al. 2001; Hallermeier and Rhodes 2011; Jiménez et al. 2009; Jin and

60 4 Feature Extraction and Feature Change Metrics

Fig. 4.12 Storm scale draped over DEM

Overton 2011; Judge et al. 2003; Sallenger 2000; Stockdon et al. 2007; Stockdon
and Thompson 2007a,b). All of these efforts rely on topographic parameters (e.g.,
dune ridge height, dune toe height, beach width, and beach slope) that are typically
extracted from cross-shore profiles or digitized from three-dimensional surfaces.
The need to perform regional scale analyses over potentially hundreds of profiles
has driven the development of automated techniques for extraction of critical coastal
features and estimation of their parameters.

One of the vulnerability assessment methods that requires dune and beach
parameters is the storm impact scale (Sallenger 2000). It specifies four distinct
erosion regimes that can occur during storm events. These regimes are defined by
the elevations of the pre-storm dune ridge Dhigh and the dune toe Dlow relative to the
storm surge elevation with and without run-up, Rhigh and Rlow, respectively. Wave
run-up is typically estimated using the 2 % exceedance levels and is a function of
beach slope, tan ˇ, and the deep water wave height and period. The four distinct
erosion regimes are as follows:

• The swash regime occurs when Rhigh < Dhigh and is characterized by beach
erosion and a likely post-storm recovery.

• The collision regime occurs when Dlow < Rhigh < Dhigh leading to dune erosion,
with eroded sand unlikely to be redeposited back onto the dune after the storm.

• The overwash regime occurs when Rhigh > Dhigh and is characterized by severe
dune erosion and inland transport of sediment.

• Finally, the inundation regime occurs when Rlow > Dhigh.

The inundation of a barrier island can flatten dunes, cause massive inland and
offshore transport of sediment, and lead to barrier island breaching. A raster based
implementation of the storm impact scale shown in Fig. 4.12 has been presented by
Hardin et al. (2012).

References 61

References

Breen, D., House, D., and Getto, P. (1992). A physically-based particle model of woven cloth. the
visual computer. The Visual Computer, 8(5-6):264–277. DOI: 10.1007/BF01897114.

Burroughs, S. and Tebbens, S. (2008). Dune retreat and shoreline change on the Outer Banks of
North Carolina. Journal of Coastal Research, 24:104–112. DOI: 10.2112/05-0583.1.

Dolan, R., Hayden, B., and Heywood, J. (1978). A new photogrammetric method for determining
shoreline erosion. Coastal Engineering, 2:21–39.

Dolan, R., Hayden, B., May, P., and May, S. (1980). The reliability of shoreline change
measurements from aerial photographs. Shore and Beach, 48(4):22–29.

Douglas, D. and Peucker, T. (1973). Algorithms for the reduction of the number of points required
to represent a digitized line or its caricature. The Canadian Cartographer, 10(2):112–122.

Ebisch, K. (2002). A correction to the Douglas–Peucker line generalization algorithm. Computers
& Geosciences, 28:995–997.

Elko, N., Sallenger, A., Guy, K., Stockdon, H., Karen, L., and Morgan, L. (2002). Barrier island
elevations relevant to potential storm impacts: 1. techniques. Technical report, US Geological
Survey.

García-Mora, M., Gallego-Fernández, J., Williams, A., and Garcia-Novo, F. (2001). A coastal
dune vulnerability classification. A case study of the SW Iberian Peninsula. Journal of coastal
research, pages 802–811.

Hallermeier, R. and Rhodes, P. (2011). Generic treatment op dune erosion for 100-year event.
Proceedings of the International Conference on Coastal Engineering, 1(21).

Hardin, E., Kurum, M., Mitasova, H., and Overton, M. (2012). Least cost path extraction of
topographic features for storm impact scale mapping. Journal of Coastal Research.

Hardin, E., Mitasova, H., and Overton, M. (2011). Quantification and Characterization of Terrain
Evolution in the Outer Banks, N.C. In Proceedings of the Coastal Sediments ‘11, Miami, FL,
pages 739–753.

Hershberger, J. and Snoeyink, J. (1992). Speeding Up the Douglas-Peucker Line-Simplification
Algorithmn. In Proceedings of the 5th Symposium on Data Handling, pages 134–143.

Jiménez, J., Ciavola, P., Balouin, Y., Armaroli, C., Bosom, E., and Gervais, M. (2009). Geomorphic
coastal vulnerability to storms in microtidal fetch-limited environments: Application to NW
Mediterranean & N Adriatic Seas. J. Coast. Res., SI, 56:1641–1645.

Jin, Q. and Overton, M. (2011). Quantitative analysis of coastal dune erosion based on
geomorphology features and model simulation. In Proceedings of the Coastal Sediments ‘11,
Miami, FL, pages 1825–1840.

Judge, E., Overton, M., and Fisher, J. (2003). Vulnerability indicators for coastal dunes. Journal
of Waterway, Port, Coastal, and Ocean Engineering.

Mitasova, H., Drake, T., Bernstein, D., and Harmon, R. (2004). Quantifying rapid changes in
coastal topography using modern mapping techniques and geographic information system.
Environmental and Engineering Geoscience, 10:1–11. DOI: 10.2113/10.1.1.

Mitasova, H., Hardin, E., Starek, M., Harmon, R., and Overton, M. (2011). Landscape dynamics
from LiDAR data time series. Geomorphometry 2011, Redlands, CA, pages 3–6.

Mitasova, H. and Hofierka, J. (1993). Interpolation by regularized spline with tension: II.
Application to terrain modeling and surface geometry analysis.

Mitasova, H., Hofierka, J., Zlocha, M., and Iverson, L. (1996). Modelling topographic potential for
erosion and deposition using GIS. International Journal of Geographical Information Systems,
10(5):629–641.

Mitasova, H., Overton, M., Oliver, R., and Hardin, E. (2012). Ocean shoreline migration. Technical
report, Albemarle-Pamlico National Estuary Program.

Morton, R. (2002). Factors controlling storm impacts on coastal barriers and beaches – a
preliminary basis for near real-time forecasting. Journal of Coastal Research, 18:486–501.

http://10.1007/BF01897114
http://10.2112/05-0583.1
http://10.2113/10.1.1

62 4 Feature Extraction and Feature Change Metrics

Morton, R. and Miller, T. (2005). NC_TRANSECTS_ST - short-term shoreline change rates for
north carolina atlantic coast generated at a 50m transect spacing, 1970-1997. Technical report,
U.S. Geological Survey Open-File Report 2005-1326.

Overton, M. and Fisher, J. (1996). Shoreline analysis using digital photogrammetry. In Coastal
Engineering (1996), pages 3750–3761. ASCE.

Provot, X. (1995). Deformation constraints in a mass-spring model to describe rigid cloth
behaviour. In Graphics Interface 95, pages 147–154, Quebec, Canada.

Sallenger, A. (2000). Storm impact scale for barrier island. Journal of Coastal Research,
16:890–895. ISSN: 0749-0208.

Stockdon, H., Sallenger, A., and Holman, R. (2007). A simple model for the
spatially-variable coastal response to hurricanes. Marine Geology, 238:1–20. DOI:
10.1016/j.margeo.2006.11.004.

Stockdon, H. and Thompson, D. (2007a). Vulnerability of National Park Service beached to
inundation during a direct hurricane landfall: Cape Lookout National Seashore. U.S. Geological
Survey Open-File Report 2007-1376.

Stockdon, H. and Thompson, D. (2007b). Vulnerability of National Park Service beached to
inundation during a direct hurricane landfall: Fire Island National Park. U.S. Geological Survey
Open File Report 2007-1389.

Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas
in grid digital elevation models. Water resources research, 33(2):309–319.

Weaver, K., Mitasova, H., and Overton, M. (2010). Geospatial analysis of the dynamics of a coastal
sand dune using time series of lidar data and tangible geospatial modeling system (tangeoms).
Evolution, 20:22.

Wright, L., Swaye, F., and Coleman, J. (1970). Effects of Hurricane Camille on the landscape
of the Breton-Chandeleur Island chain and the eastern portion of the lower Mississippi delta.
Technical report, DTIC Document.

http://10.1016/j.margeo.2006.11.004

Chapter 5
Volume Analysis

Coastal landform change is driven by sediment transport and redistribution of sand.
In this chapter, we present techniques for mapping volumes of land mass using
rectangular segments and analyzing volume evolution and redistribution in absolute
and relative terms.

5.1 DEM Differencing

DEMs can be differenced to produce a map that represents the change in the
elevation surface between the two time snapshots. These maps are sometimes
referred to as DEMs of Difference (DoD) and can be produced in GRASS using
r.mapcalc. For example, the total change in elevation within the Nag’s Head
study area from the beginning of the study period (1999) to the end of the study
period (2008), which is shown in Fig. 5.1, can be can be computed by running the
following GRASS commands:

Purpose: Compute a DEM of Difference (DoD).
r.mapcalc \

expression=’NH_total_change=NH_2008_1m-NH_1999_1m’
r.colors map=NH_total_change \

rules=color_elevation_diff.txt

Volume change per raster cell is then obtained by multiplying the elevation change
by the raster cell area.

© The Author(s) 2014
E. Hardin et al., GIS-based Analysis of Coastal Lidar Time-Series, SpringerBriefs
in Computer Science, DOI 10.1007/978-1-4939-1835-5__5

63

64 5 Volume Analysis

Fig. 5.1 DEMs representing the terrain at the beginning (1999) and end (2008) of the study period,
as well as the difference between the two maps, representing the terrain change observed during
the student period

5.2 Landscape Segmentation into Bins

To compute volumes and volume change for areas larger than the raster cell
(to reduce noise and provide information more indicative of the local coastal state)
but still small enough to provide information about spatial redistribution of sand,
the beach-foredune area can be partitioned into the rectangular segments. These
segments can be generated by combining long-shore partitions with cross-shore
transects.

5.2.1 Long-Shore Partitioning

We have already derived the core and envelope surfaces as the minimum and
maximum elevations measured for each raster cell. We have also delineated a
shoreface area, called the shoreline band, as the area between the MHW contours of
the core and envelope surfaces. The area within the shoreline band bounds shoreline
evolution over the study period, and the width of the shoreline band measures the
shoreline migration range (Mitasova et al. 2012). The shoreline band will be our
first long-shore partition.

The second long-shore partition is defined inland of the shoreline band. It is
bound by the core (minimum) shoreline and by a horizontal distance of 110 m
inland of the core shoreline to bound the upper-beach dune section. The constant
inland distance of 110 m was chosen to ensure complete lidar data coverage for
each year. The area within the shoreline band and the area that extends inland of the
shoreline band (Fig. 5.2) can be extracted using r.mapcalc in conjunction with
v.buffer:

5.2 Landscape Segmentation into Bins 65

Fig. 5.2 Area within the shoreline band (extracted as the area bounded by the core and envelope
shorelines) and the area that extends 110 m inland of the shoreline

Purpose: Extract area within shoreline band.
r.mapcalc \

expression=’shorelineBand=if(isnull(NH_core) && \
!isnull(NH_env), 1, null())’

Extract area landward of the shoreline band.
r.contour input=NH_core output=NH_core_shoreline \

level=0.8 cut=400
v.buffer input=NH_core_shoreline \

output=NH_core_shoreline_110mbuff distance=110
v.to.rast input=NH_core_shoreline_110mbuff \

output=NH_core_shoreline_110mbuff typ=area use=val \
value=1

r.mapcalc expression=’coreArea=if(!isnull(NH_core) && \
!isnull(NH_core_shoreline_110mbuff), 1, null())’

The area inland of the core shoreline will be referred to as the area with core as
opposed to the shoreline band area which has no core surface in it.

5.2.2 Cross-Shore Segments

In order to quantify along-shore trends, we can further partition the beach foredune
system using cross-shore transects perpendicular to a baseline. The baseline can be
a selected shoreline (in our example we use the core surface shoreline) or an off-
shore line approximately parallel with a selected shoreline. Cross-shore segments
can be generated using the GRASS add-on module v.transects, by setting the
type parameter to area.

66 5 Volume Analysis

Fig. 5.3 Vector map
representing the volumes for
each segment area displayed
over a shaded relief

Purpose: Segment the DEM into cross-shore areas
along the shoreline.
r.contour input=NH_core output=NH_core_shoreline\

level=0.8 cut=400 --o
v.clean and v.build.polylines were required to keep
the contour from doubling back
v.clean input=NH_core_shoreline \

output=NH_core_shoreline_c tool=rmsa --o
v.build.polylines input=NH_core_shoreline_c \

output=NH_core_shoreline --o
v.transects.py input=NH_core_shoreline \

output=NH_alongShoreSegments dleft=50 dright=150 \
type=area transect_spacing=50 --o

An overlay of long-shore and cross-shore segments will create partitioning of the
beach-foredune system into rectangular segments as shown in Fig. 5.3. These
partitions will allow us to map and quantify the volume change along the highly
dynamic shoreline band and along the upper beach-foredune segments.

5.3 Volume Estimation for Segments 67

5.3 Volume Estimation for Segments

Volume of mass over a given area can be estimated from a DEM by summing
elevations in raster cells defining this area

V D A
X

i

X

j

z.i; j / (5.1)

where V is the volume, A is the area of a raster cell, z is the elevation of a surface,
and i and j are summed over all raster cells in the area for which volume is
computed. In the following example, we estimate the total volume defined by a
raster surface and horizontal plane or datum over a given area using the r.volume
command. We set a MASK to the raster map coreArea to limit the volume
calculation to the area of interest.

Purpose: Limit volume measurement to 100 m of
shoreline.
r.mask input=coreArea
r.volume NH_2008_1m
r.mask input=coreArea -r

To calculate the volume for each cross-shore segment (which is a vector area), we
connect a table to the vector map. Then we populate the table with statistics derived
from the DEM using the v.rast.stats command as in the following GRASS
code:

Purpose: Calculate the volume in each segment.
v.db.addtable map=NH_alongShoreSegments
v.rast.stats vector=alongShoreSegments \

raster=NH_2008_1m column_prefix=NH2008
v.db.addcolumn map=NH_alongShoreSegments \

column=’volume DOUBLE PRECISION’
volume = raster cell area (which is 1) * sum of
elevations
v.db.update map=NH_alongShoreSegments col=volume \

qcol="1*NH2008_sum"
v.db.select map=NH_alongShoreSegments \

columns="cat,volume"

We can then display the volumes as colored vector areas using the module
d.vect.thematic (Fig. 5.3).

68 5 Volume Analysis

Fig. 5.4 Graph showing volumes in the shoreline band and a heat map showing volume evolution

5.4 Volume Change Metrics

Given the volume maps computed for each time snapshot, we can analyze the
pattern of volume change. In addition to a standard graph showing volumes along
the segments for each year (Fig. 5.4), we can compute the volume differences
between any given time snapshots for all segments using vector attributes database
operations or by converting the vector volumes map to raster representation and
using map algebra. Evolution of volumes over time can be represented using a heat
map (Tateosian et al. 2013) (Fig. 5.4).

Relative volumes, normalized according to the volume of the dynamic layer,
allow us to analyze the volume of each segment relative to the minimum (core) and
maximum (envelope) volume and how this pattern has changed over time. Relative
volume in the upper beach—foredune area (area with core, inland from the core
shoreline) is defined for each time snapshot and for each segment j as follows:

OVij D Vij � Vcj

Vej � Vcj

; (5.2)

where OVij is the relative volume for the i th survey in the time series, Vij is the
volume under the i th elevation surface, Vej is the volume under the envelope surface,
and Vcj is the volume under the core surface. Volumes were calculated relative to
MHW. This relative volume can then be calculated by running the following GRASS
commands:

5.4 Volume Change Metrics 69

Purpose: Calculate relative volume.
r.mask input=coreArea
r.mapcalc\
expression="NH_2008_volRel_inland=\
(NH_2008_1m-NH_core)/(NH_env-NH_core)"

r.univar NH_2008_volRel_inland
[..]
mean: 0.442037
[..]
r.mask input=coreArea -r

Relative volume within the shoreline band (between the core and envelope
shorelines) is defined for each time snapshot and for each segment j as follows:

OWij D Wij

Wej

; (5.3)

where OWij is the relative volume for the i th survey in the time series, Wij , is the
volume under the i th elevation surface, and Wej is the volume under the envelope
surface within the shoreline band. By definition, the core surface does not exist
within the shoreline band above MHW and therefore the core volume Wcj is equal
to zero. Relative volume in the shoreline band can be calculated by running the
following commands:

Purpose: Calculate relative volume in the shoreline
band.
r.mask input=shorelineBandr
r. mapcalcexpression=\
"NH_2008_volRel_shoreband=NH_2008_1m/NH_env"
r.univar NH_2008_volRel_shoreband
[..]
mean: 0.863858
[..]
r.mask input=shorelineBand -r

Although it is typical to report volumetric analysis in absolute values in units of m3

(Burroughs and Tebbens 2008; White and Wang 2003), analyzing and visualizing
relative volume offers some advantages: First, the core surface gives a lower bound
on terrain evolution, and for this reason, the core is a logical datum. Removal of the
core values from the analysis highlights changes, (e.g., in areas where the volume
of transported sediment is much less than the volume of the stable sediment under
the core surface). Second, because the core represents a minimum bound on volume
evolution, volumes near the core volume represent worst case scenarios observed in
the time-series. Finally, because the terrain evolved exclusively within the dynamic
layer, visualizing volume as a percent of the dynamic layer volume allows for an

70 5 Volume Analysis

Fig. 5.5 Graph showing core and envelope volumes, and heat map showing relative volume
evolution

at-a-glance determination of the present state relative to the minimum and maximum
observed over the study period. Evolution of the relative volumes can be visualized
using a heat map (Fig. 5.5).

References

Burroughs, S. and Tebbens, S. (2008). Dune retreat and shoreline change on the Outer Banks of
North Carolina. Journal of Coastal Research, 24:104–112. DOI: 10.2112/05-0583.1.

Mitasova, H., Overton, M., Oliver, R., and Hardin, E. (2012). Ocean shoreline migration. Technical
report, Albemarle-Pamlico National Estuary Program.

Tateosian, L., Mitasova, M., Thakur, S., Hardin, E., Russ, E., and Bruce, B. (2013). Visualizations
of coastal terrain time-series. Information Visualization, 13:266–282.

White, S. and Wang, Y. (2003). Utilizing DEMs derived from LIDAR data to analyze morphologic
change in the North Carolina coastline. Remote Sensing of Environment, 85(1):39–47. DOI:
10.1016/S0034-4257(02)00185-2.

http://10.2112/05-0583.1
http://10.1016/S0034-4257(02)00185-2

Chapter 6
Visualizing Coastal Change

Scientific visualization provides a means for effective analysis and communication
of complex information that may be otherwise difficult to explain and explore.
This particularly applies to coastal geomorphology, where 3D spatial and temporal
patterns and relationships are critical for capturing landscape features and their
dynamics. In this chapter we present GIS-based techniques for visualizing dynamic
coastal landscapes using 2D maps, 3D perspective views, animations, and the space-
time cube approach.

6.1 Color and Relief Shading

Continuous-tone color ramps are commonly used to represent elevation, elevation
change, and topographic parameters. The colors can be assigned with equal intervals
or with variable intervals based on the statistical distribution of the mapped values.
For example, histogram equalized color ramps employ a monotonic, non-linear
mapping which assigns the color values to grid cells to achieve a uniform color
distribution. These color ramps are effective for highlighting topographic features
in regions with an uneven distribution of mapped values (Fig. 6.1). Divergent color
ramps are used for variables which have positive and negative values indicating
an opposing property, such as, gain and loss (Fig. 5.1) or convexity and concavity
(negative and positive curvatures, Fig. 6.2). Discrete color maps are best suited for
the classified features, such as new and old homes, discrete maps, such as time
of minimum (Fig. 3.2) but they are also effective for continuous features when
highlighting certain intervals or if a simplified representation of the spatial pattern
is needed. The color tables for GRASS GIS raster maps are managed using the
r.colors command. You can find most of the custom colors tables used in this
book in the Appendix, formatted as a text input for the r.colors command.

© The Author(s) 2014
E. Hardin et al., GIS-based Analysis of Coastal Lidar Time-Series, SpringerBriefs
in Computer Science, DOI 10.1007/978-1-4939-1835-5__6

71

72 6 Visualizing Coastal Change

Fig. 6.1 (a) Equal interval and (b) histogram equalized color ramps for a slope map

Fig. 6.2 Curvature map
overlaid on Jockey’s Ridge
DEM

Relief shading (Horn 1981) combined with color is gradually replacing contours
as a means for representing and analyzing elevation data. This technique captures
subtle terrain features that are often missed by the traditional contour representation.
It has become one of the preferred techniques for visualization of high resolution
lidar-based DEMs. Images representing relief shading are derived by computing the
image intensity values as a function of the illumination angle (the angle between
the incoming light source ray and elevation surface normal):

6.1 Color and Relief Shading 73

Fig. 6.3 Creating a colored relief shaded map: (a) elevation color image (b) shaded relief image
(c) combined elevation color as hue and shaded relief as intensity

cos./ D cos.!/ cos.
/ C sin.!/ sin.
/ cos.ˇ � ˛/ (6.1)

where ! is light source altitude angle measured from the zenith,
 is the elevation
surface slope angle, ˇ is the light source azimuth, and ˛ is the elevation surface
aspect. Landscapes with the relatively flat topography common in coastal regions,
require a large ! angle (low light source) to reveal shallow depressions, narrow
foredunes, and other types of small features. We compute the image represent-
ing illuminated topography with the r.shaded.relief command. In coastal
regions, exaggerating relief by setting the zmult parameter to 3 further improves
the visualization of subtle landforms. The resulting map is then displayed by the
d.his command with relief shading used as intensity and elevation color used
as hue:

Purpose: Compute shaded relief map.
r.shaded.relief input=NH_2008_1m output=NH_2008_shade \

zmult=3
d.his i=NH_2008_shade h=NH_2008_1m

The DEM and the map representing relief shading are shown in Fig. 6.3.
Relief shading provides a 2D orthogonal view of the topography at a uniform

scale and it is suitable for landform mapping using on-screen digitizing. Several
add-ons modules, such as r.shaded.pca, r.local.relief, r.skyview,
and r.sun.daily provide additional capabilities for visualization of topography
based on surface illumination from multiple directions or terrain openness (see the
manual pages for these modules for more details and references).

74 6 Visualizing Coastal Change

6.2 Perspective Views of 3D Surfaces

Illuminated surface visualization in a 3D perspective view improves perception
of relative elevation that can be interactively exaggerated to highlight even small
landforms and anthropogenic features such as berms or buried sand fences. GRASS
3D perspective viewer is fully integrated with a 2D display in the wxPython
graphical user interface (GUI). It allows users to switch between 2D and 3D views
seamlessly. Perspective views can also be generated from the command line or from
within a script using the m.nviz.image command. The 3D visualization tool
in GRASS wxnviz uses two light sources: a dim white light that remains directly
above the surface at all times and serves as an ambient light, creating a component of
illumination that is a function of slope and is independent of azimuth. The position
of the second light source is adjustable and controlled interactively by the user.
When light is being adjusted, a sphere appears on the surface and is continuously
redrawn to show the effects of lighting changes (Fig. 6.4).

A color map draped over an elevation model is widely used to convey the
relationship between the surface geometry and parameters derived from the DEM,
such as slope, aspect, or curvatures (Fig. 6.2). Line, point, or polygon features can be
draped over the illuminated elevation surface to provide baseline information, such
as roads and building footprints, or geomorphologic features such as shorelines,
ridge lines, or peaks (Figs. 4.4 and 4.6). Surfaces can also be combined with 3D
vector data. For example, to explore the relationship of a multiple return point
cloud with the bare ground surface or to represent structures such as buildings
and bridges. Several screen capture videos demonstrate the 3D visualization tool,
for example, http://courses.ncsu.edu/mea582/common/GIS_anal_grass/GIS_Anal_
grvisual.html.

6.3 Comparing Multiple Surfaces: Map Swipe
and 3D Cross-Sections

Changes in elevation and land cover between two time snapshots can be visually
compared using a slider tool, also referred to as mapswipe (Fig. 6.5), avail-
able through wxGUI (http://grasswiki.osgeo.org/wiki/WxGUI_Map_Swipe) or as
a command g.gui.mapswipe.

Overlaid multiple surfaces visualized in 3D perspective view with interactive
cross-sections are effective for analyzing topographic change and land surface
evolution. A reference plane at constant elevation improves the perception of rel-
ative positions between surfaces in cross-sections. Screen capture video “Visualiza-
tion in GRASS GIS III: cutting planes” (http://courses.ncsu.edu/mea582/common/
GIS_anal_grass/GIS_Anal_grvisual.html) demonstrates the interaction with cutting
planes to create the cross-section application for our coastal data set is shown by
Fig. 3.1.

http://courses.ncsu.edu/mea582/common/GIS_anal_grass/GIS_Anal_grvisual.html
http://courses.ncsu.edu/mea582/common/GIS_anal_grass/GIS_Anal_grvisual.html
http://grasswiki.osgeo.org/wiki/WxGUI_Map_Swipe
http://courses.ncsu.edu/mea582/common/GIS_anal_grass/GIS_Anal_grvisual.html
http://courses.ncsu.edu/mea582/common/GIS_anal_grass/GIS_Anal_grvisual.html

6.4 Animations in 2D and 3D Space 75

Fig. 6.4 Interactively changing the light source direction in the wxPython GUI. The lighting on
the appearance of the DEM is apparent

6.4 Animations in 2D and 3D Space

Animations have become an indispensable tool for analyzing and visualizing time
series of coastal terrain monitoring data and models of terrain evolution. Sequences
of raster maps computed by simulation tools or interpolated lidar survey data can
be animated using a series of 2D images or perspective views (Mitas et al. 1997).
A series of color maps sequentially draped over a 3D perspective view of a static ele-
vation surface and evolving 3D surfaces are effective approaches for analyzing and
communicating the relationship between landforms and process dynamics. Simulta-
neous animation of 2D images and 3D perspective views, together with vector data
is supported by the animation tool available through wxGUI (http://grasswiki.osgeo.
org/wiki/WxGUI_Animation_Tool) or as a command g.gui.animation.

http://grasswiki.osgeo.org/wiki/WxGUI_Animation_Tool
http://grasswiki.osgeo.org/wiki/WxGUI_Animation_Tool

76 6 Visualizing Coastal Change

Fig. 6.5 Using the slider to compare two images, 1998 and 2008 DEMs

6.5 Visualization with Space-Time Cube (STC)

The space-time cube (STC) approach plots spatio-temporal data within a reference
cube, where the xy-plane represents geographic position and the vertical axis
(z-direction) represents time. STC is effective for visualizing trajectories of objects
and movement data (Kristensson et al. 2009; Kwan and Lee 2004; Shrinivasan
2005), multivariate time-varying data (Li and Kraak 2005; Tateosian et al. 2013),
and discrete data derived from DEMs (Thakur et al. 2013).

We can stack a series of DEMs in an STC to create a voxel model of terrain
evolution. We can then extract an isosurface for a selected elevation value to
represent terrain evolution along this elevation contour. For example, the shoreline
contours, when displayed as a 2D map result in a tangle of lines that may be
difficult to interpret (Tateosian et al. 2013). As an alternative to these overlapping
lines, the shoreline can be extracted from the voxel model to create an isosurface
representing shoreline evolution (Starek et al. 2011). To enhance interpretation of
such isosurfaces we drape a color map over the isosurface to associate the stratum
of the isosurface with the epoch (time period). Alternatively, other attributes, such
as the rate of change or distance to a road, can also be represented by a draped

6.5 Visualization with Space-Time Cube (STC) 77

Fig. 6.6 Evolution of a small migrating dune along elevation contour: (a) displayed as a set of
overlapping contours in 2D and (b) represented as an isosurface extracted from a space-time cube
voxel model

color map (Starek et al. 2011). In the following example, we stack a series of
lidar-based DEMs into a voxel model and visualize the evolution of elevation
contours associated with a small migrating dune as isosurfaces (Fig. 6.6):

Purpose: Visualize terrain dynamics as space-time
cube.
Set the 3D region.
g.region n=250416 s=249942 w=913734 e=914022 t=40 \

b=12 \
nsres=2 ewres=2 res3=4 tbres=4 -ap3

Stack the DEMs into voxel model
(ignoring variable time interval in this example).
r.to.rast3 \

in=NH_1999_1m,NH_2001_1m,NH_2004_1m,NH_2005_1m,
\NH_2007_1m,NH_2008_1m \
out=NH_99_08_stack

r3.info NH_99_08_stack
r3.univar NH_99_08_stack
r3.stats NH_99_08_stack nsteps=10

Create a volume for isosurface coloring according
to time.
r.mapcalc NH_1999_t=1999
r.mapcalc NH_2001_t=2001
r.mapcalc NH_2004_t=2004
r.mapcalc NH_2005_t=2005
r.mapcalc NH_2007_t=2007
r.mapcalc NH_2008_t=2008
r.to.rast3 \

input=NH_1999_t,NH_2001_t,NH_2004_t,NH_2005_t,
\NH_2007_t,NH_2008_t \
out=NH_9908_t

78 6 Visualizing Coastal Change

Visualize in wxnviz
Add NH_2008_1m DEM (2D raster) and NH_99_08_stack
(3D raster) in GIS layer manager
Zoom to computational region and switch from 2D to
3D view
Under the View tab: set view to east and z-exag to 3
Under the Data tab: for Surface, set fine
resolution to 1
Under the Data > Volume tab select the
NH_99_08_stack as 3D raster map
(it should be there already)
Select Draw Mode > isosurfaces, Resolution 1
For List of isosurfaces Add > Level 9
by typing 9 for Isosurface attributes > Isosurface
value
for isosurface color map you can keep the default
or select NH_9908_t to color the isosurface
according to the years
Adjust the vertical position of the volume to
around 10
to pull it above the DEM
Adjust the view under View tab and lighting under
Appearance tab
You can add isosurfaces with additional values
or switch to crossections by selecting Mode slices
after saving your settings in wxnviz
you can use m.nviz.image to generate the images
through command line

To apply this approach to a time series of point clouds, we define a trivariate
function, G, to represent land surface evolution:

z D G.x; y; t/ (6.2)

where x; y is the horizontal location, t is the time coordinate and elevation z is the
modeled variable. The function G.x; y; t/ can be derived from a series of m point
clouds f.xi ; yi ; zi /; i D 1; : : : nkgtk; k D 1; : : : ; m where .x; y; z/ are coordinates,
nk is number of points in the kth point cloud and tk is the time of the survey.
We merge the data from all point clouds and re-organize them into a single point
cloud .xi ; yi ; ti ; zi /i D 1; : : : ;

P
nk that is then interpolated into a voxel model (3D

grid) using a trivariate interpolation function, the regularized smoothing spline, with
anisotropic tension applied in the time dimension (Mitasova et al. 1995). Oct-tree
segmentation is used to support spatial interpolation of the large merged point cloud.
Time resolution is selected to be close to the time interval of the surveys, although
the approach is designed to handle irregular time intervals as well. Evolution of a

References 79

given contour z D c is then visualized as a set of isosurfaces extracted from the
voxel model. For example, shoreline evolution will be represented by the isosurface
z D zMHW , where zMHW is the mean high water elevation level.

Purpose: Interpolate the volume from the
given point data and
(optionally) compute gradients.
Time is given in 100-day units (400-day resolution)
give the space-time volume box approximately same
values as our DEM.

v.in.ascii -z JR9908_xytz_100d.txt \
out=JR9908_xytz_100d x=1 y=2 z=3

v.info JR9908_xytz_100d
g.region n=250416 s=249942 w=913734 e=914022 t=40 \

b=12 nsres=2 ewres=2 res3=4 tbres=4 -ap3
v.vol.rst in=JR9908_xytz_100d wcol=dbl_4 ten=40 \

smo=0.5 segm=30 npmin=250 dmin=5 \
elev=JRxytz9908_4m100d

you can visualize the JRxytz9908_4m100d voxel model
using wxnviz
as in our previous example and you can check the
interpolated time slices as follows
r3.to.rast JRxytz9908_4m100d out=JRxytz9908_4m100d

browse the resulting series of maps using wxgui
animation tool

Visual analysis of space-time isosurface topology is useful for identifying
specific surface evolution features. For example, if the extracted contour represents
elevation close to a foredune ridge, “holes” in the isosurface represent temporal
loss of elevation that has recovered, typical for an overwash after which the dune
was repaired or recovered (Starek et al. 2011). For additional examples of STC
application to elevation data see Mitasova et al. 2012; Starek et al. 2011, and
Tateosian et al. 2013.

References

Horn, B. (1981). Hill shading and the reflectance map. Proceedings of the IEEE, 69(1):14–47.
Kristensson, P. O., Dahlback, N., Anundi, D., Bjornstad, M., Gillberg, H., Haraldsson, J., Martens-

son, I., Nordvall, M., and Stahl, J. (2009). An evaluation of space time cube representation
of spatiotemporal patterns. Visualization and Computer Graphics, IEEE Transactions on,
15(4):696–702.

80 6 Visualizing Coastal Change

Kwan, M.-P. and Lee, J. (2004). Geovisualization of human activity patterns using 3D GIS: a
time-geographic approach. Spatially integrated social science, 27.

Li, X. and Kraak, M.-J. (2005). New views on multivariable spatiotemporal data: the space time
cube expanded. In International Symposium on Spatio-temporal Modelling, Spatial Reasoning,
Analysis, Data Mining and Data Fusion, volume 36, pages 199–201.

Mitas, L., Brown, W., and Mitasova, H. (1997). Role of dynamic cartography in simulations of
landscape processes based on multivariate fields. Computers & Geosciences, 23(4):437–446.

Mitasova, H., Harmon, R. S., Weaver, K. J., Lyons, N. J., and Overton, M. F. (2012). Scientific
visualization of landscapes and landforms. Geomorphology, 137(1):122–137.

Mitasova, H., Mitas, L., Brown, W. M., Gerdes, D. P., Kosinovsky, I., and Baker, T. (1995).
Modelling spatially and temporally distributed phenomena: new methods and tools for GRASS
GIS. International Journal of Geographical Information Systems, 9(4):433–446.

Shrinivasan, Y. (2005). Visualization of spatio-temporal patterns in public transport data.
Starek, M. J., Mitasova, H., Hardin, E., Weaver, K., Overton, M., and Harmon, R. S. (2011).

Modeling and analysis of landscape evolution using airborne, terrestrial, and laboratory laser
scanning. Geosphere, 7(6):1340–1356.

Tateosian, L., Mitasova, M., Thakur, S., Hardin, E., Russ, E., and Bruce, B. (2013). Visualizations
of coastal terrain time-series. Information Visualization, 13:266–282.

Thakur, S., Tateosian, L., Mitasova, H., Hardin, E., and Overton, M. (2013). Summary
visualizations for coastal spatial-temporal dynamics. International Journal for Uncertainty
Quantification, 3(3).

Appendix

1 Sample Datasets

This appendix provides a description of the data used in this book and attribution to
the original source.

Nags Head Lidar
Naming Convention: NH_*_lidar.txt
Source: Digital Coast - NOAA Coastal Services Center Website: http://www.csc.
noaa.gov/digitalcoast/
Data Type: Lidar
Purpose: To provide elevation data for a portion of the town of Nags Head.

Rodanthe Lidar
Naming Convention: R_*_lidar.txt
Source: Digital Coast - NOAA Coastal Services Center Website: http://www.csc.
noaa.gov/digitalcoast/
Data Type: Lidar
Purpose: To provide elevation data for a portion of the town of Rodanthe and some
of the Pea Island Wildlife Refuge.

Highway NC 12 Centerline
Naming Convention: road_centerline.txt
Source: Original to this book
Website: http://geospatial.ncsu.edu/osgeorel/data.html Data Type: Manually digi-
tized points
Purpose: To provide points along the centerline of highway NC 12 within the town
of Nags Head to be used for systematic error correction.

© The Author(s) 2014
E. Hardin et al., GIS-based Analysis of Coastal Lidar Time-Series, SpringerBriefs
in Computer Science, DOI 10.1007/978-1-4939-1835-5

81

82 Appendix

Highway NC 12 Lidar
Naming Convention: DARE_BE94zm3_01m_rstdm.txt
Source: North Carolina Department of Public Safety
Website: https://www.ncdps.gov/
Data Type: Lidar
Purpose: To provide elevation of highway NC 12 within the town of Nags Head to
be used for systematic error correction.

2 Color Tables

This appendix provides color tables used throughout the book.
color_elev_coast.txt

-2 aqua
-.2 aqua
-0.1 grey
0.1 grey
1 yellow
3 orange
5 green
10 brown
40 white

color_stddev.txt

0 245 245 220 #beige
0.1 193 255 193 #darkseagreen1
0.25 180 238 180 #darkseagreen2
0.5 155 205 155 #darkseagreen3
0.75 105 139 105 #darkseagreen4
1 255 165 0 #orange1
1.25 238 154 0 #orange2
1.5 205 133 0 #orange3
1.75 139 90 0 #orange4
2 255 127 0 #darkorange 1
2.25 238 118 0 #darkorange 2
2.5 205 102 0 #darkorange 3
2.75 139 69 0 #darkorange 4
3 255 69 0 #orangered 1
3.25 238 64 0 #orangered 2
3.5 205 51 51 #brown 3
4 139 35 35 #brown 4
7.3 220 20 60 #crimson

Appendix 83

color_range.txt

0 255:255:0 #yellow
1.4 255:165:0 #orange
2.0 255:75:0 #dark orange
2.1 255:75:0 #dark orange
2.2 124:252:0 #light green
2.4 124:252:0 #light green
4 139:37:0 #orange red
8 139:37:0 #orange red
9 199:21:133 #violet red
40 199:21:133 #violet red

color_regrslope.txt

-4 139 26 26 #firebrick4
-1 205 51 51 #brown 4
-0.5 238 99 99 #indianred2
-0.1 255 64 64 #brown1
-0.01 255 215 0 #gold1
0 255 215 0 #gold1
0.01 255 215 0 #gold1
0.1 99 184 255 #steelblue1
0.5 30 144 255 #dodgerblue1
1 16 78 139 #dodgerblue4
2 25 25 112 #midnightblue
3 71 60 139 #slateblue4

color_regrcoefdet.txt

0 white
0.25 blue
0.5 green
0.75 yellow
1 red

color_elevation_diff.txt

-12 0 0 0
-5 188 47 54
-1.5 251 0 13
-1.2 163 0 8
-1.0 163 0 8
-0.5 107 155 0
0.0 205 247 111
0.5 107 155 0
1.0 69 3 111

84 Appendix

1.2 69 3 111
1.5 108 10 171
5 93 38 128
12 1 1 1

	Contents
	1 Introduction
	1.1 Mapping Coastal Terrain Change
	1.2 GRASS GIS and Sample Data Set
	1.3 Organization of This Book
	References

	2 Processing Coastal Lidar Time Series
	2.1 General Workflow
	2.2 Analysis of Lidar Point Clouds
	2.3 Computing DEMs
	2.3.1 Masking Surveyed Areas
	2.3.2 Binning
	2.3.3 Spline Interpolation

	2.4 Eliminating Water Surface Features
	2.5 Correcting Systematic Errors
	References

	3 Raster-Based Analysis
	3.1 Core and Envelope, Dynamic Layer
	3.2 Time-of-Minimum and Time-of-Maximum
	3.3 Per-Cell Univariate Statistics
	3.4 Per-Cell Regression Analysis
	References

	4 Feature Extraction and Feature Change Metrics
	4.1 Shorelines and Shoreline Migration Range
	4.2 Foredune Features
	4.2.1 Foredune Ridge Line
	4.2.2 Foredune Toe Line

	4.3 Crescentic and Parabolic Dune Features
	4.4 Generating Transects
	4.4.1 Transects at Uniform Locations
	4.4.2 Transects at Optimized Locations

	4.5 Measuring Line Feature Change
	4.5.1 Shoreline Change

	4.6 Mapping Location and Change of Built Structures
	4.7 Derived Parameters: Storm Vulnerability Scale
	References

	5 Volume Analysis
	5.1 DEM Differencing
	5.2 Landscape Segmentation into Bins
	5.2.1 Long-Shore Partitioning
	5.2.2 Cross-Shore Segments

	5.3 Volume Estimation for Segments
	5.4 Volume Change Metrics
	References

	6 Visualizing Coastal Change
	6.1 Color and Relief Shading
	6.2 Perspective Views of 3D Surfaces
	6.3 Comparing Multiple Surfaces: Map Swipe and 3D Cross-Sections
	6.4 Animations in 2D and 3D Space
	6.5 Visualization with Space-Time Cube (STC)
	References

	Appendix
	1 Sample Datasets
	2 Color Tables

