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       Hemangioblastomas    are slow-growing, but highly vascular 
tumors that arise in specifi c regions of the central nervous 
system (CNS) and retina. They constitute about 0.9 % of 
total brain tumors [ 1 ]. Hemangioblastomas may occur spo-
radically, or as tumors associated with von Hippel–Lindau 
syndrome (vHL) in about 35–40 % of patients [ 1 – 3 ]. In some 
series, as much as 80 % of hemangioblastomas are associ-
ated with vHL. 

   Genetics 

 vHL syndrome is associated with a germline mutation in the 
 VHL  gene on chromosome 3p25. However, according to 
the genetic “two-hit hypothesis” proposed by Knudson, 
 tumorigenesis requires a second somatic inactivation of the 
other  VHL  allele. 

 Other than mutations in  VHL , there is a paucity of data 
regarding other genetic hits in hemangioblastomas that might 
contribute to tumorigenesis. Sprenger et al. performed com-
parative genomic hybridization (CGH) of ten sporadic 
hemangioblastomas and found that the most common genetic 
aberrations in sporadic tumors are loss of chromosome 3 
(70 %), loss of chromosome 6 (50 %), loss of chromosome 9 
(30 %), loss of 18q (30 %), and gain of chromosome 19 
(30 %). Based on the frequencies and co-occurrence of these 
genetic changes, they hypothesized that the loss of chromo-
some 3 is an early event in oncogenesis in sporadic heman-
gioblastomas, followed by loss of chromosome 6 and 
subsequently chromosomes 9 and 18q, and lastly by the gain 
of chromosome 19 [ 4 ]. In another study, CGH results of 7 
vHL-associated and 16 sporadic hemangioblastomas were 
compared. Mutations in the  VHL  gene on 3p25-56 were 
found in 100 % of hereditary hemangioblastomas, but only 
in 30 % of sporadic tumors. Conversely, complete loss of 
chromosome 3 occurred more commonly in sporadic 
 hemangioblastomas (69 %) than in vHL-associated heman-
gioblastomas (14 %). Thus, it can be concluded that sporadic 

mutation in the  VHL  gene is not the primary oncogenic event 
in sporadic hemangioblastomas [ 5 ]. 

 Epigenetic and other means of somatic inactivation of 
 VHL  are also being investigated. It has been proposed that 
inactivation of promoter CpG islands, due to hypermethyl-
ation, leads to transcriptional silencing of  VHL  [ 6 ]. 

 Prowse et al. examined 53 vHL-related tumors, includ-
ing 30 renal cell carcinomas (RCCs), 15 hemangioblasto-
mas, 5 pheochromocytomas and 3 pancreatic tumors, for 
genetic changes such as LOH (loss of heterozygosity), 
intragenic somatic mutations as well as DNA hypermethyl-
ation. In this series, hypermethylation of the vHL gene was 
detected in 33 % of tumors (6 out of 18 tumors; 2 RCCs and 
4 hemangioblastomas). Two tumors, both hemangioblasto-
mas, showed intragenic somatic mutations in a wild-type 
gene [ 6 ]. 

 In a subsequent study, Rickert et al. performed CGH of 20 
hemangioblastomas (one vHL and the remainder sporadic), 
which revealed that the most common cytogenetic changes 
associated with hemangioblastomas include the loss of chro-
mosomes 19, 6, and 22q, which are seen in 35 %, 30 %, and 
15 % of patients, respectively, and the loss of chromosome 6 
being signifi cantly associated with the cellular variant. Loss 
of chromosome 3 was uncommon in this series of sporadic 
hemangioblastomas, in contrast to the earlier studies by 
Sprenger et al. [ 7 ]. 

 Lemeta et al. suggested that LOH at 6q is common and 
concurrent with 3p loss in sporadic hemangioblastomas [ 8 ]. 
This fi nding was subsequently confi rmed by other studies [ 4 , 
 7 ,  9 ]. The same authors subsequently demonstrated high 
prevalence of LOH at the ZAC-1 tumor suppressor gene 
region located on 6q24-25. Moreover, they also demon-
strated that promoter methylation of ZAC-1 leads to epigen-
etic silencing of the gene in 90 % of tumors [ 10 ]. 

 CGH has demonstrated that the reticular and cellular vari-
ants of hemangioblastoma have different cytogenetic pro-
fi les, with the loss of chromosome 6 signifi cantly associated 
with the cellular variants [ 7 ].  
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   Pathogenesis 

 vHL tumorigenesis can be mediated by both  hypoxia- induced 
factor (HIF) and non-HIF-mediated mechanisms. HIF-1 is a 
heterodimeric transcriptional factor that regulates genes 
which respond to changes in oxygen levels in tissues [ 11 , 
 12 ]. It is composed of HIF-1α and HIF-1β subunits [ 13 ]. 
Levels of HIF-1α are upregulated under hypoxic conditions 
and, by translocation into the nucleus and dimerization with 
HIF-1β, activate genes that promote angiogenesis (VEGF), 
erythropoiesis (EPO), nitric oxide synthesis (NOS), and glu-
cose transport (GLUT-1). However, under normoxic condi-
tions, HIF-1α undergoes ubiquitin-mediated degradation in 
the proteosomes, which are mediated by vHL protein 
[ 14 – 19 ]. The vHL protein binds to HIF-1α only after it 
undergoes oxygen-dependent hydroxylation of the proline 
residues 402 or 564 or both by members of the Elongin fam-
ily (EG1N) [ 15 ,  18 – 21 ]. EG1N1 is the primary HIF-1 
hydroxylase while EG1N2 and EG1N3 play compensatory 
roles under certain conditions [ 22 ]. However, when vHL is 
mutated, HIF-1α will not undergo degradation and remains 
constitutionally active [ 23 ]. This promotes tumorigenesis by 
increased transcriptional activation of genes that promote 
angiogenesis and other growth factors. 

 It has also been demonstrated that vHL is critical for cel-
lular [ 24 ] differentiation during development and its inacti-
vation causes developmental arrest [ 25 ] and protracted 
cellular differentiation [ 26 ]. The cell of origin in hemangio-
blastoma is an embryologically arrested hemangioblast 
derived from the mesoderm, which retains its multipotent 
properties and ability to differentiate into both red blood 
cells and blood vessel endothelium [ 27 ,  28 ]. Accordingly, 
foci of extramedullary hematopoeisis have been detected in 
hemangioblastomas. Vortmeyer et al. have detected the pres-
ence of fetal hemoglobin in these areas of extramedullary 
hematopoeisis, suggesting that the vHL deletion leads to 
primitive hematopoeisis [ 25 ,  26 ]. Moreover, co-expression 
of Epo and Epo receptor on these hemangioblasts represents 
a key event in vHL defi ciency and further promotes tumor 
growth via autocrine and paracrine stimulation [ 25 ]. 
Developmentally arrested structural elements composed of 
hemangioblast progenitor cells have been demonstrated in 
the cerebella of  VHL -mutated patients [ 29 ]. Hemangioblastic 
activity in the nervous system occurs in the embryonic stage 
[ 30 ] and hence its presence in adult brain depicts persistence 
of developmentally arrested hemangioblastic cells. vHL dis-
ease produces developmental aberrations giving rise to angi-
omesenchymal tumorlets resembling hemangioblastomas in 
the human CNS [ 31 ]. More recently, the pleuripotent vHL 
defi cient cells in hemangioblastomas have been demon-
strated to give rise to mast cells via the c-Kit signaling path-
way. Accordingly, mast cells from tumor samples of patients 
exhibited LOH in the VHL alleles when compared with the 
peripheral blood lymphocytes [ 32 ].  

   Pathology 

 Macroscopically, hemangioblastoma is a well-circumscribed 
tumor, with both solid and cystic components. The tumor 
appears yellow in color due to its high lipid content. 

 Microscopically, the tumor has two components: a net-
work of capillaries lined by hyperplastic endothelial cells 
with intervening vacuolated stromal cells, which have pale 
cytoplasms, pleomorphic nuclei and high lipid content. 
Mitoses are conspicuously absent [ 33 ]. A recent study of 
156 tumors reports that tumor architecture relates to the size 
of the tumor; with smaller tumors (<8 mm 3 ) composed of 
mesenchymal architecture comprising of a network of capil-
laries, while the larger tumors composed of enlarged stro-
mal cells clustered in groups (Fig.  14.1 ) [ 26 ]. The stromal 
cell, which is the tumor cell in hemangioblastoma, is an 
embryologically arrested hemangioblast derived from the 
mesoderm that retains its multipotent properties as well as 
the ability to differentiate into both red blood cells and 
blood vessel endothelium. The stromal cells are immunore-
active for cytokeratin, S-100, NSE (neuron specifi c eno-
lase), actin, GFAP (glial fi brillary acid protein), vimentin, 
and EMA (epithelial membrane antigen). The stromal and 
capillary endothelial cells express different surface adhe-
sion molecules suggesting different cells of origin. The cap-
illary endothelial cells express endothelium associated 
adhesion molecules such as ICAM- 1, ICAM-2, PECAM, 
ELAM, and VCAM-1. The stromal cells express neuronal 
cell adhesion molecule (NCAM), which further supports its 
mesenchymal origin. Since NCAM is also expressed by 
metastatic renal cell cancer to the CNS, its expression by 
hemangioblastoma can present as a diagnostic challenge 
[ 34 ,  35 ]. The stromal cells also stain negatively for von 
Willebrand factor, a marker of endothelial origin [ 36 ]. 
Brachyury, a protein transcription product of the T box 
gene, which regulates the formation of mesoderm, is 
expressed in the cytoplasm of stromal cells and is highly 
specifi c for hemangioblastoma, distinguishing it from mor-
phologically similar lesions such as metastatic clear cell 
renal cell cancer and angiomatous meningioma [ 37 ,  38 ].

   Histologically, hemangioblastomas are classifi ed into two 
variants: the more common reticular variant (composed of 
proliferating vascular elements) and the rare cellular variant 
(composed of epitheloid clusters of stromal cells), which are 
associated with greater GFAP positivity, higher proliferation 
index, and probability of recurrence [ 39 ]. 

 Receptors for cellular growth factors including pro- 
angiogenic factors, such as epidermal growth factor receptor 
(EGFR), platelet derived growth factor receptor (PDGFR), 
placental growth factor receptor (PFG-1), and vascular endo-
thelial growth factor receptor (VEGF), are expressed on 
tumor cells in hemangioblastomas [ 40 ]. However, unlike 
malignant gliomas, the VEGF expression does not correlate 
with the vascular density as indicated by the expression of 
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CD34-positive endothelial cells. This suggests that 
 pro- angiogenic factors other than VEGF probably contribute 
to the intense tumor vascularity [ 41 ].  

   Clinical Features 

 Hemangioblastomas most commonly arise in the CNS espe-
cially, but not exclusively, in the posterior fossa. The fre-
quent sites of occurrence in the order of commonality are 
cerebellum, dorsal part of the spinal cord, brainstem, and 
retina (Figs.  14.2  and  14.3 ) [ 42 – 44 ]. The most common site 
of occurrence of hemangioblastomas in the spinal cord is the 
thoracic region, followed by cervical and lumbar (48 %, 
36 % and 16 %, respectively) [ 45 ]. Spinal cord and  brainstem 

hemangioblastomas are frequently associated with tumors at 
other sites and especially cerebellar hemangioblastomas; in 
turn, however, cerebellar hemangioblastomas are less fre-
quently associated with tumors at the other sites, suggesting 
that the spinal cord/brainstem hemangioblastomas are 
the accompanying manifestation of the latter [ 46 ,  47 ]. 
Supratentorial (cerebral, sellar/suprasellar, intraventricular) 
hemangioblastomas are rare [ 48 – 50 ]. It is sometimes diffi -
cult to differentiate supratentorial hemangioblastoma from 
meningioma [ 38 ,  51 ]. Occasionally, hemangioblastomas 
may arise in extraneural sites such as bone, soft tissue, skin, 
liver, pancreas, and kidney [ 52 – 55 ].

    One-third of hemangioblastomas are associated with the 
vHL syndrome. The spectrum of tumors [ 56 ] associated with 
vHL is broad and includes hemangioblastomas, renal cell 

  FIG. 14.1.    ( a ,  b ) H&E, ( c ) ERG, ( d ) Inhibin, ( e ) Carbomic anhy-
drase  and ( f ) Azocarmine. ( a ) H&E stain shows a highly vascular 
neoplasm. The tumor is composed of vascular cells and cells with 
round nuclei designated as “stromal” cells. ( b ) Higher power 
reveals numerous vascular channels (v) and interspersed stromal 
cells are seen. Note the nuclear pseudoinclusion in a stromal cell 

( arrowhead ). ( c ): ERG immunohistochemistry. Note the intense 
nuclear staining in vascular cells; ( d ,  e ) Inhibin and carbonic anhy-
drase immunohistochemistry. Note the intense staining in stromal 
cells ( f ) Azocarmine stain highlights vascular channels ( a ,  f , ×50; 
 b–d , and  e , ×100).       
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carcinomas [ 57 ,  58 ], pheochromocytomas [ 59 ], extra- adrenal 
paragangliomas [ 60 ,  61 ], retinal angiomas [ 62 – 64 ], neuroen-
docrine pancreatic tumors [ 65 – 69 ], papillary cystadenomas 
of the epididymis [ 70 ] and broad uterine ligament [ 71 ], as 
well as endolymphatic sac tumors (ELSTs) of the middle ear 
[ 72 – 74 ]. vHL-mutated patients with hemangioblastomas are 
generally younger and present with multiple tumors, while 
the non-vHL-associated tumors are seen in older patients 
and are usually solitary. 

 Based on clinical manifestations, vHL is classifi ed into 
type 1 and type 2. Type 1 vHL is not associated with pheo-
chromocytoma while type 2 is. Type 2 is further divided into 
type 2A, 2B, and 2C. vHL-type 2b is associated with high 
incidence of hemangioblastoma and pheochromocytoma 
[ 44 ,  75 – 77 ]. 

 Since patients with vHL syndrome are predisposed to 
developing multiple hemangioblastomas and require 
 specialized surveillance and treatment, it is imperative to 
correctly diagnose vHL as early as possible. Genetic testing 
for vHL in addition to a comprehensive family history 
should be  considered standard practice for all patients with 
CNS hemangioblastomas, especially those diagnosed under 

30 years of age. Clinical screening of vHL-associated tumors 
consists of complete neuraxis imaging with magnetic 
 resonance imaging (MRI) of the brain and entire spine, 
MRI of the abdomen, retinoscopy, and measurement of urine 
catecholamines. Some authors have suggested ophthalmo-
logic screening for family members of vHL disease for early 
detection of retinal hemangioblastomas [ 78 ]. 

 Hemangioblastomas are considered benign tumors, but 
can cause signifi cant neurological defi cits depending on their 
size and location. Headache, vomiting, cerebellar symptoms, 
and cranial nerve involvement may be the presenting fea-
tures. Posterior fossa tumors can also cause cerebrospinal 
fl uid (CSF) fl ow obstruction leading to hydrocephalus 
[ 79 ,  80 ]. Patients with spinal cord tumors may present with 
progressive scoliosis and radicular symptoms until the tumor 
is large enough to cause weakness. Onset of retinal heman-
gioblastomas can start prior to 10 years of age until 30 years, 
after which the risk gradually decreases. It usually presents 
with unilateral involvement [ 77 ]. Hemangioblastomas 
exhibit a stuttering growth pattern, i.e., there are periods of 
growth followed by periods of quiescence, which may be as 
long as 2 years. Indications for treatment relate to the 

  FIG. 14.2    MRI shows the tumor within the inferior medial left cer-
ebellum. Lesion in isointense with the adjacent brain parenchyma 
on the T1 weighted sequences (Panel  a ), hyperintense on T2 

weighted sequence (Panel  c ), and avidly enhances gadolinium 
(Panel  b ). Diffusion weighted sequence does not demonstrate 
hyperintense signal within the mass (Panels  e  and  f )       
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patient’s symptoms and tumor size, location, and rate of pro-
gression [ 81 ]. It is quite common for spinal cord hemangio-
blastomas to present with syrinx formation [ 82 ]. Occurrence 
of erythrocytosis with male predominance is common in 
hemangioblastomas due to production of erythropoietin [ 83 , 
 84 ]. Due to their arteriovenous malformation-like vascular-
ization, solid hemangioblastomas present a unique neurosur-
gical challenge [ 85 ]. 

 There have been numerous clinical reports of worsening 
of vHL-associated hemangioblastomas in pregnancy, lead-
ing to progressive neurological defi cits and obstructive 
hydrocephalus [ 86 – 90 ]. However, in the fi rst prospective 
study comparing the rate of tumor growth in pregnant versus 
the nonpregnant cohorts with vHL-associated hemangioblas-
tomas, Ye et al. observed that there were no differences in 
tumor growth rate, peritumoral cyst growth and the need for 
surgery. However, this was a small study with only 27 
patients in the pregnancy cohort and it is possible that 
patients who chose to become pregnant were already in a 
better state of health leading to selection bias [ 91 ].  

   Imaging 

 Hemangioblastomas show post-contrast enhancement on 
computed tomogram (CT) scans and T1-weighed MRI. 
Imaging studies show the typical appearance of a cyst with 
mural nodule in approximately 60 % of cases. The nodular 
portion shows fl ow voids in the T1 and T2-weighted 
sequences. Generally, the cysts are slightly hyperintense 
compared to CSF in T1-weighted images. Both the nodule 
and the cyst appear bright on T2 and fl uid attenuated inver-
sion recovery (FLAIR) sequences [ 92 ].  

   Treatment 

 While most neurosurgeons agree that surgical intervention 
of symptomatic hemangioblastomas is required, contro-
versy arises in dealing with asymptomatic hemangioblasto-
mas, which commonly occur in patients with vHL syndrome. 
Unlike other benign intracranial tumors that exhibit a slow, 

  FIG. 14.3.    MRI shows the tumor that appears as an irregular thick-
walled mass in the region of the left cerebellar tonsil, which 
enhances intensely with gadolinium (Panel  b ). Mass in predomi-
nantly T1 hypointense (panel  a ) but contains several areas of T2 

hyperintensity indicating hemorrhagic component (Panel  c ). 
Diffusion studies show hyperintensity relative to the contralateral 
white matter (Panels  e  and  f ).       
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progressive growth pattern, hemangioblastomas often have 
prolonged periods of growth arrest, thus making their 
 natural course diffi cult to predict [ 81 ]. For asymptomatic, 
radiographically stable tumors, no treatment may be recom-
mended. When asymptomatic tumors show progression on 
imaging only, the best time for intervention may be diffi cult 
to determine [ 93 – 96 ]. Similar to patients with other tumor 
predisposition syndromes, the optimal clinical management 
of vHL requires a specialist who oversees and coordinates a 
multidisciplinary plan of care, including appropriate 
 screening tests. 

 From a therapeutic perspective, surgical removal remains 
the treatment of choice for hemangioblastomas and has been 
successfully employed for cerebellar [ 97 ], spinal [ 98 ,  99 ], 
and brainstem [ 94 ,  100 ] hemangioblastomas. Preoperative 
cerebral angiography helps surgeons determine the nature of 
the tumor vascular supply. Following diagnostic imaging, 
pretreatment with dexamethasone for several days is gener-
ally recommended. Intraoperative bleeding increases with 
tumor size, making en bloc resection of larger tumors diffi -
cult. However, modern microsurgical techniques are used to 
identify feeding vessels and thus help minimize intraopera-
tive bleeding. Dissection should be carried out along the 
external surface of the tumor in the gliotic brain-tumor inter-
face, to avoid entering the tumor, thus preventing brisk hem-
orrhage from the hemangioblastoma. The tumor-associated 
cysts are non-neoplastic and consist of compressed glial tis-
sue, which collapses on its own once the associated tumor is 
removed. Postoperative complications include temporary 
worsening of neurological defi cits, new neurological defi -
cits, which may or may not resolve during follow-up, cranial 
postoperative infection, hydrocephalus and aseptic meningi-
tis [ 101 ]. A postoperative contrast-enhanced MRI is rou-
tinely obtained to verify extent of resection. If no residual is 
noted, tumor recurrence is rare. 

 More recently, stereotactic radiosurgery is also being 
employed with encouraging results especially in spinal 
hemangioblastomas [ 102 – 105 ]. One advantage of radiosur-
gery is the ability to treat multiple lesions in a single treat-
ment setting. In a series of 9 patients with 20 spinal 
hemangioblastomas, 4-year tumor overall and solid tumor 
control rates with stereotactic radiosurgery were as high as 
90 % and 95 %, respectively [ 106 ]. In other studies, however, 
patients with multiple hemangioblastomas associated with 
vHL syndrome were found to less likely exhibit tumor con-
trol after treatment with radiation therapy compared to single 
sporadic hemangioblastomas [ 107 ,  108 ]. In general, smaller 
tumor volumes and higher doses of radiation (median 16 Gy) 
confer a better tumor control [ 109 ]. 

 In contrast to surgery and radiation therapy, there is a 
paucity of data on systemic treatment of hemangioblasto-
mas. Since hemangioblastomas are highly vascular, sys-
temic  anti- angiogenic therapies are being investigated as an 
alternative to surgery, particularly in vHL patients with mul-
tiple tumors. Several vHL patients have been treated with 

 semaxanib, a multi-tyrosine kinase inhibitor predominantly 
active against VEGFR-2. Although disease stabilization out-
side the CNS was observed in some patients, most of the 
treatment responses were limited to retinal hemangioblasto-
mas [ 110 ]. In a clinical trial for vHL patients with sunitinib, 
which predominantly targets VEGFR and PDGFR, antitu-
mor activity was seen against renal cell carcinoma, but not 
hemangioblastomas [ 111 ]. EGFR, which is overexpressed 
and activated in hemangioblastomas, represents an addi-
tional attractive target for therapeutic intervention and study 
in future clinical trials [ 112 ]. There have been case reports 
on the use of anti- angiogenic agents such as bevacizumab 
[ 113 ], pazopanib [ 114 ], sunitinib [ 115 ], thalidomide [ 116 ], 
and interferon [ 117 ] with limited success. However, no pro-
spective clinical trials using these agents have been con-
ducted to date.  

   Prognosis 

 Gross total tumor resection was a predictor of prolonged 
progression-free survival (PFS) in one series [ 118 ]. Poor 
prognostic factors include poor performance status [ 101 ], 
multiple hemangioblastomas, retinal hemangioblastomas, 
and presence of solid rather than cystic tumors. The risk of 
recurrence in the future is higher if the age of diagnosis is 
younger than 40 years with primary sites being the brainstem 
and spinal cord [ 119 ].     
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