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Abstract Hierarchically organized tissues are tightly regulated to maintain home-
ostasis under normal conditions and promote the rapid regeneration after injury.
Negative feedback from the tissue itself plays an important role in establishing this
control. In particular differentiated cells emit signals that down-regulate cell division
and inhibit stem cell self-renewal. The mathematical analysis of how these two
feedback mechanisms affect tissue regeneration and stability can provide important
insights into the dynamics of tissue regulation. This topic is also important for
the study of carcinogenesis, given that cancer development requires an escape
from feedback control. Here we discuss various aspects of tissue regulation and
the phenotypic evolutionary pathways that lead to escape from these feedback
mechanisms. Furthermore, we discuss the various tumor growth patterns that arise
through different feedback inactivations. Finally, by examining published clinical
data we propose that the majority of tumor growth patterns found in the literature
can be classified into five categories, which by themselves could reflect the different
evolutionary events that drive tumor progression in different types of stem-cell-
driven cancers.

1 Introduction

In cell lineages tissue development, maintenance and regeneration are highly
regulated. In healthy tissue control loops ensure that the number of cells are
kept at appropriate levels, precluding the appearance of abnormal cell growth and
promoting the efficient regeneration after an injury [17,47]. Two types of feedbacks
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have been identified: long-range and short-range [4]. The long-range feedbacks
respond to the loss of mature cells during an injury, while the short-range feedbacks
act in an autocrine fashion in stem cells [3,6]. In this chapter we will focus on long-
range feedbacks. In particular, two types of feedback loops have been suggested to
be crucial: Differentiated cells secrete factors that inhibit the division of stem cells.
In addition, differentiated cells secrete factors that suppress self renewal of stem
cells and instead promote differentiation of the stem cells [26, 33, 60]. This stops
the expansion of the stem cell population and leads to cell death through terminal
differentiation, thus stopping tissue growth. Negative feedback regulators have been
identified in a large number of tissues including muscle, liver, bone, hair, and the
nervous and hematopoietic systems [13, 14, 33, 55, 61].

In this chapter we present a mathematical model, which includes feedback
regulation in both the division rate and the self-renewal probability of stem cells.
We find that the feedback on the self-renewal probability of stem cells is by itself
sufficient to establish control. However, if feedback on the division rate is absent,
tissue regeneration may lead to significant damped oscillations in the path back
to recovery, which, in the worst case scenario, could even lead to the stochastic
extinction of the cell population. We find that this oscillatory behavior is more
pronounced when the number of stem cell is only a small fraction of the cell
population. In general we find a trade-off between requiring a small equilibrium
fraction of stem cells while avoiding oscillations and the speed at which the system
is able to recover from a perturbation. Spatial interactions and the addition of
feedback inhibition on the cell division rate reduce the amplitude of oscillations
and contribute to the robustness of the system. In addition, feedback inhibition on
the division rate also increases the speed of regeneration.

This discussion falls within the context of ongoing mathematical research on the
areas of tissue regulation and cancer development. The mathematical modeling of
cancer stem cells and cell compartments has lead to significant biological insights
(see e.g. [15, 41, 54, 58]). In particular numerous mathematical models explore
hematopoiesis and different types of blood cancers [1, 5, 12]. Negative feedback
regulation through control loops has been explored in various tissues including the
olfactory epithelium, hematopoietic system, and intestinal crypts [7, 23, 26].

Evidence suggests that tumors retain basic architectural components characteris-
tic of healthy tissue, containing so called ‘cancer stem cells’ or ‘cancer initiating
cells’ that maintain the disease, which leads to the concept of stem-cell-driven
tumors [11]. Carcinogenesis is a complex process, in which different aspects such
as angiogenesis, nutrient availability, metabolic processes, interactions with the
microenvironment, and immune responses all influence how the tumor grows and
evolves [57]. Despite this great complexity and heterogeneity in the mechanism of
tumor formation, it is reasonable to postulate that escape from feedback regulation
must be a key ingredient in the formation of any stem-cell-driven tumor.

In this chapter we discuss a computational evolutionary model which suggests
that full escape from feedback inhibition can only proceed through a unique
sequence of phenotypic transitions. Furthermore, we propose that these dynamics
are a common feature amongst the majority of stem-cell-driven tumors, even if
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the nature and number of the mutational events required to achieve an escape
from feedback regulation are certainly tissue specific. We find that the specific
pathways that lead to uncontrolled proliferation, together with the composition of
the tissue (solid or non-solid), determine the tumor growth pattern that will take
place. According to our models these patterns can be classified into five different
categories, which is supported by data fitting and an extensive search of the tumor
growth data reported in the literature.

2 Model of Feedback Regulated Tissue Homeostasis

In order to examine the evolutionary dynamics of feedback loss, we will first discuss
a computational model that describes feedback-regulated tissue homeostasis, and
then add mutational processes to this model. We consider two types of cells: stem
cells that are characterized by their ability to differentiate and self renew through
cell division, and differentiated cells that do not divide (this includes all cells that
do not have a full capacity to self-renew, for example transit amplifying cells). When
a stem cell divides it may produce either two stem cells with probability p, or two
differentiated daughter cells with probability 1 � p (including asymmetric stem cell
divisions leads to an equivalent mathematical formulation and does not alter any
of the results). In accordance with experimental data, we assume that differentiated
cells produce two regulatory factors: one reduces the probability of stem cell self
renewal and promotes differentiation; the other reduces the rate of cell division.
Thus, a high number of differentiated cells reduces proliferation and increases the
rate of differentiation, which eventually leads to a reduction of the overall cell
population through terminal differentiation. If we call the division rate of stem cells
v and the death rate of differentiated cells d the model is represented schematically
by Fig. 1a.

The system of ordinary differential equations (1) describes the model’s behavior,
where S is the number of stem cells and D the number of differentiated cells. The
self renewal probability of stem cells p.D/ and the division rate v.D/ are treated as
general functions that depend on the number of differentiated cells D. This ensures
that results are not dependent on the particular mathematical expressions used to
describe feedback inhibition. The functions obey the following constraints. First
we require that the self renewal probability as well as the division rate of stem
cells are differentiable decreasing functions of the number of differentiated cells D.
Also, it is assumed that 0:5 < p.0/ � 1, i.e., the maximum probability of self
renewal, p.0/, has to be greater than 0.5 (otherwise the stem cell population will go
extinct). Finally, we require that the feedback functions go to zero as the number of
differentiated cells grow without bound.

PS D .2p.D/ � 1/ v.D/ S
PD D 2.1 � p.D// v.D/ S � dD

(1)
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Fig. 1 Feedback-regulated tissue homeostasis and cell growth properties. (a) Stem cells divide at a
rate v producing either two stem cells with probability p or two differentiated cells with probability
.1�p/. Differentiated cells die at a rate d and produce factors that promote cell differentiation and
inhibit division in stem cells. (b) If the feedback loops satisfy specific conditions (discussed in the
text) the system has a unique equilibrium point that is independent of the initial conditions and is
asymptotically stable. (c) Inhibited growth. If only differentiation feedback is lost, the population
of stem cells and differentiated cells grows without bound at a slower than exponential rate. (d)
Uninhibited growth. If both feedbacks are lost stem cells and differentiated cells grow at a rate
dominated by the same exponential. Time is expressed in units of ln 2=v. OD/, the expect duration
of one cell cycle at equilibrium. Functional forms used to produce the figure: p.D/ D p0=.1CgD/

and v.D/ D v0=.1 C hD/; p0 D 0:6; v0 D 6:93; d D 6:93 � 10�2; h D 4:5 � 10�3; g D 10�4

System (1) has exactly one nonzero equilibrium point . OS; OD/, defined by the
conditions p. OD/ D 0:5 and OS D d OD=v. OD/. We proved in [38] that this equilibrium
point is asymptotically stable if and onlyif �p0. OD/ < 1=.2 OD/ (Fig. 1b). Two
examples of families of functions that satisfy this condition are given by (2). There
are no additional requirements imposed on the function v.D/.

p.D/ D p0=.1 C g log.1 C D// ; 0 < g < 1

p.D/ D p0=.1 C gDm/ ; 0 < g; 0 < m .for m > 1; p0 < m
2.m�1/

/
(2)
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3 Feedback Loss and Cell Growth Properties

In this section we will use the model of tissue homeostasis to study the evolutionary
dynamics of feedback escape and the consequent emergence of uncontrolled cellular
growth. In the model abnormal cell growth occurs when the feedback mechanisms
that control the size of the cell population fail. Failures in each of the two feedback
mechanisms produce different results. If feedback on the division rate is completely
lost, the system remains stable, the steady state number of differentiated cells does
not change, and the steady number of stem cells decreases from d OD=v. OD/ to
d OD=v.0/. If on the other hand the differentiation feedback is completely lost, we
find that the division rate feedback by itself is incapable of controlling cell growth:
both the number of stem cells and differentiated cells grow without bound (Fig. 1c).
These observations point to the differentiation feedback as the more fundamental of
the two control mechanisms. However, even though feedback on the division rate
is by itself incapable of stopping abnormal growth, it does play a critical role by
significantly slowing down the rate of cell proliferation. If feedback inhibition on
stem cell self-renewal is lost, but the feedback on the division rate is still intact,
then the population dynamics are characterized by a relatively slow sub-exponential
increase of the numbers that we called “inhibited growth” (Fig. 1c). When both
feedbacks are lost the growth of the cell population occurs at a faster exponential
rate, which we call “uninhibited growth” (Fig. 1d).

There is another distinctive difference between inhibited and uninhibited growth.
When uninhibited growth takes place, the ratio of stem cells to differentiated cells in
the population converges to a fixed number ..2p0 � 1/v0 C d/=.2.1 � p0/v0/. With
inhibited growth, we find that this ratio cannot converge. More precisely, the ratio
of stem cells to differentiated cells goes to infinity (Fig. 1c). Thus, inhibited tumor
growth is relatively slow and characterized by a predominance of stem cells in the
cell population at late stages of its development; while uninhibited tumor growth is
faster and is characterized by a constant ratio of stem cells to differentiated cells.

4 Mutations and the Evolutionary Dynamics
of Feedback Loss

Here we investigate the evolutionary dynamics of cells that carry mutations respon-
sible for corrupted feedback mechanisms. Such cells must emerge from healthy cells
and have a growth advantage in order to initiate tumor growth. Mutations can corrupt
either the division feedback or the differentiation feedback. In each case, mutations
can lead to failures in the production of feedback signals by differentiated cells,
or to failures in the response to these signals by stem cells. Hereafter we will call
the wild type stem and differentiated cells S and D, and the mutant stem cells
and differentiated cells Sm and Dm. We assume that a mutation occurs in one or
a small group of stem cells, and that the daughters of the mutant stem cells carry
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the same mutations as their parent. We will denote mutations that cause a failure in
production of feedback signals by differentiated cells with the prefix D; and those
that lead to a failure of response by stem cells to these signals with the prefix S .
Mutations that affect cell differentiation will carry the suffix diff- and those that
affect the division rate the suffix div-. Note that when we refer to a mutation event
that inactivates certain feedback processes, we do not imply that a single mutation is
sufficient to achieve this. Indeed, an accumulation of mutations is likely necessary.
In the computational model, what we study are the transitions from one phenotype to
another; we do not explicitly take into account the number of genetic steps required
to attain a particular phenotype, which are certainly specific to the tissue in question.

We consider four types of mutations:

• Stem cells with mutation Ddiff- generate differentiated cells that do not produce
the differentiation-promoting factor (described by system (3)).

• Stem cells with mutation Sdiff- do not respond to the differentiation-promoting
factor (described by system (4)).

• Stem cells with mutation Ddiv- generate differentiated cells that do not produce
the division-inhibiting factor (described by system (5)).

• Stem cells with mutation Sdiv- do not respond to the division-inhibiting factor
(described by system (6)).

PS D .2p.D/ � 1/ v.D C Dm/ S
PD D 2. 1 � p.D/ / v.D C Dm/ S � dD
PSm D .2p.D/ � 1/ v.D C Dm/ Sm

PDm D 2. 1 � p.D/ / v.D C Dm/ Sm � dDm

(3)

PS D .2p.D/ � 1/ v.D/ S
PD D 2. 1 � p.D/ / v.D/ S C .2p0 � 1/ v.D/ Sm � dD
PSm D . 2p0 � 1 / v.D/ Sm

(4)

PS D .2p.D C Dm/ � 1/ v.D/ S
PD D 2. 1 � p.D C Dm/ / v.D/ S � dD
PSm D .2p.D C Dm/ � 1/ v.D/ Sm

PDm D 2. 1 � p.D C Dm/ / v.D/ Sm � dDm

(5)

PS D .2p.D/ � 1/ v.D/ S
PD D 2. 1 � p.D/ / v.D/ S C .2p.D/ � 1/ v0 Sm � dD
PSm D .2p.D/ � 1/ v0 Sm

(6)

We now summarize the main findings in [38]. Mutations that induce a lack of
production by differentiated cells of signals that control cell division and differen-
tiation (Ddiv- and Ddiff-, respectively) do not confer a competitive advantage to
cells that carry them. This absence of competitive advantage is intuitively explained
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by the fact that at any time t the feedback signals are the same for the wild type and
mutant stem cells (Eqs. (3) and (5)). If these mutations arise in a very small number
of cells, as one should expect from a random mutation, the steady state number
of mutant stem cells would remain at a negligible level (Fig. 2a). Moreover, in a
stochastic formulation the probability that this species goes extinct is very high. A
similar result applies to the mutation inducing a lack of response by stem cells to the
division feedback signals Sdiv-. If the system is near equilibrium when the mutation
emerges in one cell, the steady state percentage of mutant stem cells will be very
small. In practice this means that these three mutations would, in all likelihood,
disappear from the cell population. An entirely different scenario occurs if cells
acquire a mutation that leads to a loss of response by stem cells to signals that
control differentiation Sdiff-. This mutation does confer a competitive advantage to
cells that carry it: eventually the mutant stem cells will take over the entire stem cell
population and the total number of cells grows without bound (Fig. 2b,d).

Another possibility is that a mutation confers only a partial loss of response to
signals that control cell differentiation (denoted by Sdiff-/partial). This scenario is
modeled by system (7) where Qp.D/ � p.D/. In this case the mutation leads to
a finite increase in the number of both mutant stem cells and differentiated cells,
which results in a sigmoidal growth pattern (Fig. 2c). The size of this increase
depends on how diminished the response to the differentiation-promoting factors
is. The wild type stem cells go extinct and the ratio of stem cells to differentiated
cells does not change.

PS D .2p.D/ � 1/ v.D/ S
PD D 2. 1 � p.D/ / v.D/ S C 2.1 � Qp.D//v.D/ Sm � dD
PSm D .2 Qp.D/ � 1/ v.D/ Sm

(7)

According to our analysis, the first step towards uncontrolled proliferation must
be the loss of stem cell response to the differentiation feedback. We now want to
investigate what happens to the cell population if a subsequent mutation occurs in
a cell that carries mutation Sdiff-. We find that two types of double mutants, Sdiff-
/Ddiff- and Sdiff-/Ddiv-, do not have a competitive advantage to single mutants
Sdiff-. If the additional mutation occurs in a single cell, the number of stem cells
with a double mutation grows (like the rest of the cell population), but it remains
as a very small percentage of the stem cell population. As a result the growth
dynamics of the entire cell population do not change in any significant way. A
different scenario occurs if the second mutation is Sdiv-. In this case the number
of double mutants Sdiff-/Sdiv- grows at an exponential rate while single mutants
would continue to growth at a much slower sub-exponential pace. As a result the
number of single mutants would eventually become a negligible percentage of the
total number of cells and the entire cell population would appear to grow at an
exponential rate.

Finally, there is the possibility that a mutation produces only a partial loss in the
ability to respond to feedback factors that control the rate of cell division (denoted
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Fig. 2 Evolutionary dynamics of feedback loss. The simulations begin at equilibrium with two
stem cells carrying the specified mutation. (a) For populations near equilibrium, mutations Sdiv-,
Ddiv- and Ddiff- do not confer any competitive advantages over their wild type counterparts. If
the mutation arises in a small number of cells, the steady state number of mutant stem cells will
be negligible. (b) Mutation Sdiff- results in unlimited growth in the number of mutant stem cells
and differentiated cells. (c) Mutation Sdiff-/partial produces a finite increase in both the number
of mutant stem cells and differentiated cells. (d) Mutations Sdiff- and Sdiff-/partial result in the
extinction of the wild type stem cell population. (e) In a cell population that carries mutation Sdiff-
(dashed line) the appearance of mutation Sdiv-/partial produces an acceleration in the growth rate
of the tumor size (solid line). (f) Tumor progression towards uninhibited growth follows a unique
sequence of feedback inactivations: first mutation Sdiff- must occur, followed by mutation Sdiv-.
Simulations use the functional forms and parameters of Fig. 1. In panel 2C, Qp.D/ D 0:1p.D/; in
2E, Qv.D/ D 0:05p.D/
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by Sdiv-/partial). If this type of mutation emerges in a population of wild type cells
the steady state number of mutants will be negligible and invasion is not possible.
However, if the mutation appears in a population of cells that has completely
lost feedback on differentiation (mutation Sdiff-), this diminished response to the
division rate factors will accelerates the rate of tumor growth (Fig. 2e).

This analysis suggests that full escape from feedback-regulated tissue home-
ostasis can only occur via a unique sequence of phenotypic transitions that we
propose to be common among stem-cell-driven tumors, even if the nature and
number of mutational events required to achieve this are certainly tissue specific.
First, a mutation must occur that inactivates the ability of stem cells to respond to
differentiation feedback factors. In a second step, a mutation has to inactivate the
ability of stem cells to respond to division feedback factors. Note that the order in
which these mutation types occur is crucial. In terms of growth dynamics, this would
lead to an initial slow (inhibited) growth, followed by a fast (uninhibited) growth
phase. However, it is important to mention that by the time a tumor is detected, both
sets of mutations might have already occurred and thus the transition between both
growth phases might not be clinically observed.

5 Evolutionary Dynamics in a Spatial Model

The analysis performed so far uses ordinary differential equations that assume
perfect mixing of cells (i.e., no spatial structure) and does not take into account any
stochastic effects. This can be a good description for non-solid tumor growth, which
allows us to gain a thorough analytical understanding of the system. Many tumors,
however, exhibit three-dimensional spatial structure. In this section, we investigate
the evolutionary dynamics of feedback loss in a spatial stochastic model.

To construct the spatial model we assume that cells are restricted to a three-
dimensional rectangular lattice, such that a lattice point can host at most one cell
at any time. As before, stem cells divide producing either two stem cells or two
differentiated cells. A cell is capable of cell division only if there is a free lattice
point adjacent to it. If a cell division takes place, then one offspring remains in
the position occupied by the parent cell and the other occupies a position next to
it, which is chosen randomly from the free adjacent lattice points. The simulations
are based on the stochastic simulation algorithm [20], where the probabilities of
cell division, differentiation, and death correspond to our previous non-spatial mass
action model. More precisely let S and D be the number of differentiated cells at
a given time t . Let F � S be the number of stem cells that are able to divide and
˛, ˇ and � be defined by: ˛ D dD, ˇ D F v.D/, and � D ˛ C ˇ. To implement
the algorithm, set the time of the next reaction to t 0 D t � 1=� log.r/, where r is
a random number uniformly distributed in Œ0; 1/. Then choose the type of reaction
that occurs. The next reaction will be either cell death with a probability ˛=� , or cell
division with a probability ˇ=� . If the next reaction is cell death, every differentiated
cell has the same probability of being chosen; if it is cell division; every stem cell
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that is able to divide has the same probability of being selected. Finally, if cell
division occurs, the probability that the cell divides into two stem cells is p.D/,
and the probability that it divides into two differentiated cells is 1 � p.D/; the place
where one of the offspring will reside is chosen at random, with each available
adjacent position having an equal probability of hosting one of the daughter cells.

In the spatial stochastic model we find the same basic dynamics of feedback
escape (Fig. 3). Again, we observe uninhibited tumor growth if both feedback loops
are broken, and inhibited growth when only the differentiation feedback loop is
lost. In agreement with the non-spatial model, the percentage of stem cells in the
cell population increases progressively with inhibited growth (Fig. 3b), while it
converges to a fixed percentage for uninhibited growth. However, in contrast to the
non-spatial situation, the tumor growth rates are slower. Uninhibited growth is now
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Fig. 3 Spatial model. (a) Spatial arrangement of the cell population at two different times. The
simulation begins with a tissue at near equilibrium with two stem cells randomly selected to carry
mutation Sdiff- at time t D 0. (b) The appearance of mutation Sdiff- results in the unlimited
growth of the mutant stem cell and differentiated cell populations. (c) The number of wild type
stem cells decreases. Note that a small number of stem cells that are trapped—and thus unable do
divide—lingers in the population for a long time. The number of wild type stem cells, however,
becomes a negligible percentage of the entire cell population (see text for discussion). (d) Cell
population with stem cells carrying mutations Sdiff- and Sdiv-. Cell growth is much faster than if
only mutation Sdiff- is present; but, unlike the non-spatial model, the growth is not exponential
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cubic (not exponential) and inhibited growth sub-cubic (Fig. 3d). This is explained
by the fact that in the 3D model the number of stem cells that are able to divide (free
cells) is smaller than the total number of stem cells. We also find that full feedback
escape can only occur through the same unique sequence of phenotypic transitions.
The only mutation that by itself confers a fitness advantage is Sdiff-. The transition
from inhibited to uninhibited growth occurs when an Sdiff- mutant acquires the
additional mutation Sdiv-.

Finally, we note that in the spatial model, when the number mutant stem cells
increases the number of wild type stem cells goes down, but a small number of wild
type stem cells might persist in the population for a long period of time (Fig. 3c).
Indeed, as the overall cell population grows a number of wild type stem cells might
get spatially trapped by surrounding cells leaving them no space available to divide.
(Fig. 3a). As the cell population grows, however, the number of wild type stem cells
becomes a negligible part of the cell population.

Table 1 Fitting parameters in Fig. 5. The functional forms used are p.D/ D
p0=.1 C g

p
D/ and v.D/ D v0=.1 C h

p
D/. For details about the fitting

procedure see the methods section in [38]

Figure p0 v0 d h g

5A 0.71 0.31 Hours�1 0.736 Hour�1 2:22 � 10�3 0

5B 0.55 295 Hours�1 126 Hours�1 3:67 � 10�3 0

5C 0.62 6.29 Days�1 0.251 Days�1 0 0

5D 0.68 1.46 Days�1 0.146 Days�1 0 0

5E 0.67 2.91 Days�1 5.93 Days�1 0 1:74 � 10�4

6 Predicted Versus Experimentally Observed
Growth Patterns

The models analyzed here predict the occurrence of five basic growth patterns,
which can be categorized as: exponential, surface, atypical, sigmoidal and multi-
step [40]. The first two patterns correspond to uninhibited growth: exponential
growth in non-spatial tumors and surface (cubic) growth in spatial tumors. In this
categorization both types of inhibited growth (sub-cubic in spatial tumors and sub-
exponential in non-spatial tumors) are grouped together under the name of atypical
tumor growth. Multi-step growth occurs when a sequence of mutations of type
Sdiff-/partial progressively erode the stem cells’ ability to respond to feedback
signals that promote differentiation. Figure 4 summarizes the different types of
mutations and the evolutionary pathways that produce each of these growth patterns.
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In the next subsection we will provide references of published tumor growth
data for each of the growth patterns discussed. We will also provide data fits
for our models. Our modeling approach assumes general functions describing the
feedbacks p.D/ and v.D/; however, data fitting algorithms require us to choose
specific functional forms. To produce these fits we use Hill functions to model
feedback inhibition (8). Hill functions are widely used to describe ligand–receptor
interactions, which make them natural choices to model the actions of secreted
feedback factors [2]. Moreover, they have been used extensively to model the
specific phenomena of tissue regulation in cell lineage models [7,10,26,30,42,62].
The precise data fitting procedures can be found in [38].

p.D/ D p0=.1 C gDn/; v.D/ D v0=.1 C hDm/ (8)
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No invasion
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Fig. 4 Schematic representation of the possible phenotypic mutations and their effects on the
cell population. According to the model of feedback regulation different evolutionary pathways
produce the various tumor growth patterns observed in the literature (See text for discussion)

6.1 Exponential Growth

In our framework this type of growth takes place when feedback on differentiation
and feedback on cell division is lost in non-spatial tissues. The growth pattern is
produced by the emergence of double mutants Sdiff-/Sdiv-.

Experimentally evidence for exponential tumor growth has been reported in
various types of human and murine leukemias [46,50,52]. Figure 5c presents In vivo
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growth data of L1210 cells [46], a mouse lymphocytic leukemia, which exhibits
exponential dynamics representative of an uninhibited growth pattern in a non-
spatial setting. The best fit resulted in a value of g D 0 and h D 0, the case when
both feedbacks are lost.

6.2 Surface Growth

In our framework this type of growth takes place when feedback on differentiation
and feedback on cell division is lost in spatial tissues. The growth pattern is
produced by the emergence of double mutants Sdiff-/Sdiv-. Intuitively this growth
pattern takes place when the active growth of a solid tumor is limited to a thin
surface layer of cells located near the tumor’s boundary.

Experimental evidence for surface tumor growth has been reported in rat
sarcomas [24], multicellular tumor spheroids [18, 19], in vitro colonies of various
immortalized cancer cell lines [8], and glioblastomas [29]. In Fig. 5d we plot in vitro
data from multicellular tumor spheroids of EMT6/Ro cells [19], a mouse mammary
tumor. The data shows approximately cubic surface growth (as seen by plotting
the cube root of the cell numbers). The best fit of the model occurred when both
feedbacks were lost (g D 0, h D 0).

6.3 Atypical Growth

In our framework this type of growth takes place when feedback on differentiation
is lost, but feedback on the division rate is still operating. The growth pattern is
produced by the emergence of single mutants Sdiff-.

Experimental evidence for atypical tumor growth has been reported in breast
cancer [22], ovarian carcinoma [48], Ehrlich’s ascites tumor [25] and murine
leukemia [49]. In Fig. 5a we plot data from Ehrlich’s ascites tumor [25] growing in
vivo. This tumor, which originated spontaneously as a breast carcinoma in a mouse,
grows in ascitic form, i.e., cells mix well. The data shows sub-exponential growth
with no saturation, suggesting an inhibited growth pattern. The best fit resulted in a
value of g D 0 and h > 0, a scenario where there is a complete loss of differentiation
feedback, but feedback on the division rate is still present. In Fig. 5b we fitted the
spatial model to data from A2780 human ovarian carcinoma [48] (a solid tumor)
growing in mice. The data shows sub-cubic behavior with a power law of 2.17 and
no saturation, consistent with a description of inhibited growth in a spatial setting.
With this behavior in mind we fitted the data assuming that feedback on the division
rate was still present, but feedback on differentiation had been lost. The main frame
shows a projection of the model using the function y D axb; in the inset the results
from the model are plotted together with this function. Simulations were not carried
further due to computational constraints.
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Fig. 5 Experimentally observed growth patterns. (a) Atypical pattern. Inhibited growth in the
non-spatial model. Ehrlich ascites tumor [25] (three experiments shown: �, 4, ı). (b) Atypical
pattern. Inhibited growth in the spatial model. Main frame: (�) A2780 human ovarian carcinoma
[48] and projection of the model (solid line). Inset: Simulation results (�) and projection using
the functional form y D axb . (c) Exponential pattern. Uninhibited growth in the non-spatial
model. (�) L1210 a mouse lymphocytic leukemia [46]. (d) Surface pattern. Uninhibited growth
in the spatial model. Multicellular tumor spheroids of EMT6/Ro cells [19], a mouse mammary
tumor (two experiments shown: ı, �). (e) Sigmoidal pattern. Example in non-spatial tumor. (�)
Jurkat T cell human leukemia [37]. In all the plots the simulations are shown in solid lines; those
corresponding to the spatial model represent the average of 24 runs. For parameters see Table 1
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6.4 Sigmoidal Growth

In our framework this type of growth takes place when feedback on differentiation
is only partially lost. The growth pattern is produced by the emergence of single
mutants of type Sdiff-/partial.

Experimental evidence for sigmoidal tumor growth has been reported for a large
number of tumors (see e.g. [21]), which include breast cancer [51, 56], multiple
types of rodent tumors [9, 25], and human leukemia [37]. Figure 5e plots data of
Jurkat cells [37], originating from a T cell human leukemia. The best fit resulted
in a value of g > 0, a case where the differentiation feedback mechanism is only
partially broken.

6.5 Multi-Step Growth

In our framework this type of growth takes place when a sequence of mutations
progressively erode the stem cells’ ability to respond to feedback signals that
promote differentiation. The growth pattern is produced by sequential acquisitions
of the mutations of the type Sdiff-/partial.

This type of growth pattern is at least partially backed by the theory of multistage
carcinogenesis. According to this theory, cancer is primarily a genetic disease that
requires cells to accumulate sequentially several random mutations and epigenetic
changes [34, 35]. Experimental evidence for multi-step tumor growth has been
reported in multiple mouse mammary tumors [53] and several types of human
sarcomas and carcinomas [36].

7 Dynamics of Tissue Regulation

As we saw in the previous sections tumor initiation requires an escape from the
control mechanisms that maintain tissue homeostasis. It is fundamental then to
understand the regulatory mechanisms themselves and how their dynamics are
shaped by two objectives: promoting the rapid regeneration after an injury and
maintaining tissue homeostasis under normal conditions.

Let us again focus our attention on the regulation of the rates of stem cell
division and self-renewal by negative feedback factors and go back to the analysis
of system (1). First, as we recall that the equilibrium number of stem cells OS
and differentiated cells OD is characterized by the conditions p. OD/ D 1=2 and
OS D d OD=v. OD/. Hence, the equilibrium number of differentiated cells OD depends

only on the self-renewal probability p.D/, and the equilibrium fraction of stem cells
OS=. OS C OD/ on the ratio d=v. OD/. To understand the recovery of the system after a
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perturbation we look at the eigenvalues of the Jacobian matrix evaluated at . OS; OD/.
If we write b D .2p0. OD/ OD C 1/ and Ov D v. OD/, the eigenvalues are:

�1; �2 D �db ˙ p
d 2b2 C 4d.b � 1/Ov

2
(9)

From this last equation it follows that the equilibrium values are asymptotically
stable if and only if b > 0. Conversely if b < 0, the equilibrium is unstable. If b D 0

a Hopf bifurcation might be possible, but this would depend on the specific choice
of the regulation functions v.D/ and p.D/.

In most tissues the number of stem cells makes up only a small fraction of the
entire cell population [57]. It is important then to understand how this requirement
affects the cell dynamics of the regulatory system. In particular we will find that the
equilibrium fraction of stem cells is related to the possibility of oscillatory behavior
after an injury.

To avoid oscillation near the equilibrium point we need the discriminant � in (9)
to be non-negative. As we mention earlier the fraction of stem cells is completely
determined by the ratio " D d=Ov: the smaller " the smaller the fraction of stem cells.
We prove in [39] that if � � 0, then:

lim
"!0

�1; �2 D �d; 0 (10)

Now, if the absolute value of one of the eigenvalues is very small, then the
dynamics of the system are characterized by rapid approach to a slow manifold,
followed by a very slow approach toward equilibrium. Hence, we find a trade-off
between requiring a small equilibrium fraction of stem cells (" small) while avoiding
oscillations and the speed at which the system is able to recover from a perturbation
(influenced by the magnitude of the eigenvalues).

We find then that the existence of a stable nontrivial steady state is independent of
feedback inhibition on the division rate. Moreover, for a fixed equilibrium division
rate Ov the steady state population sizes are independent on the actual function v.D/.
The role of feedback on the division rate in the system lies instead in increasing the
speed at which the system recovers from a perturbation and reducing the amplitude
of oscillations if they happen to occur.

To illustrate these dynamics we perform simulations using Hill equations (8) to
model the feedback functions p.D/ and v.D/. Figure 6a,b track the trajectory of a
cell population that only has feedback on stem cell differentiation (v.D/ constant).
In Fig. 6b the fraction of stem cells is less than 10 % and the maximum self-renewal
probability is kept small .p0 D 0:51/. For the special case of Hill functions it
is shown in [39] that by keeping the maximum self-renewal probability p0 very
small it is possible to avoid oscillations while keeping the fraction of stem cells low.
However, in agreement with the previous results this comes at the price of having a
slow speed of regeneration indicated by the small value of p0.

Figure 6c,d plot the trajectories for systems with feedback inhibition in both the
self-renewal probability and the division rate of stem cells. Call ˇ.D/ D 1 C hDm,
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Fig. 6 (a) and (b) Cell population with one feedback loop. (a) The trajectories oscillate towards
steady state values (dotted line). Parameters, p0 D 0:6; d D 0:1; g D 0:001; S.0/ D 1;

D.0/ D 0. (b) If there is only one feedback loop the maximum self-renewal probability must
be very close to 0.5 to ensure that the trajectories approach the steady states monotonically. In this
subfigure d and g are the same as in (a) but p0 D 0:513. (c) and (d) cell population with two
feedback loops. (c) The steady state number of differentiated cells depends only p0 and g and is
independent of feedback on the division rates. The steady state number of stem cells increases when
the number of feedback loops increase from one to two. The addition of feedback in the division
rate dampens or altogether eliminates the oscillations. (d) Fitting fixed steady state values of stem
cells and differentiated cells values with different levels of feedback inhibition in the division rate.
The stronger the feedback signal in the division rate the smoother the transition the equilibrium
transition to equilibrium

then v.D/ D v0=ˇ.D/ and ˇ.D/ controls the strength of the inhibition signal. We
can get a specific target division rate at equilibrium Ov with different combinations
of the pair .v0; ˇ. OD//; the larger themagnitude of these quantities, the stronger the
feedback in the division rate will be. Figure 6d plots the trajectories for the same
target number of cells with different combinations of the pair .v0; ˇ. OD//. Note
how the addition of feedback on the division rate provides for smoother and faster
recoveries after a perturbation.
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8 Tissue Regulation in a Spatial-Stochastic Model

We now want to assess the dynamics of tissue regulation in the spatial-stochastic
model that was introduced earlier. In general we find that the addition of a spatial
structure results in smoother transitions from perturbed states to equilibrium. When
there are oscillations in the spatial model the amplitudes are smaller than those
found in the corresponding mass action formulation (Fig. 7a,b). Moreover, as we
discuss in [39] oscillation in the mass action model after extreme perturbation
could result in the stochastic extinction of the stem cell pool. The number of these
extinctions is greatly reduced by the addition of the spatial structure. For example,
with the set of parameters .p0 D 0:7; v0 D 0:2; g D 2 � 10�5; ˇ D 1; d D 0:0025/,
a perturbation of the initial conditions .S.0/; D.0// D 0:1. OS; OD/ resulted in the
stochastic extinction of the cell population in all of 100 independent simulations
using the a stochastic version of the mass action model. By comparison extinction
never took place in 30 simulations using the spatial-stochastic model with the same
set of parameters and initial conditions.

In the spatial model we can divide stem cells into two categories: free stem cells,
which have adjacent free lattice points and are thus capable of cell division; and
trapped stem cells, which are completely surrounded by cells and are thus unable to
divide. The equilibrium fraction of stem cells in the mass action model is the same
as the equilibrium number of free stem cells in the spatial model. Hence, for the
same set of parameters the equilibrium number of stem cells will be greater in the
spatial model than in the non-spatial model (Fig. 7b,c).

Suppose that we start with a perturbation in which the number of differentiated
cells is less than OD. Then the probability of differentiation is small and most
cell divisions result in the production of two stem cells. Once the number of
differentiated cells is above OD, differentiation becomes the more likely event and
in the ODE model one sees a steep reduction in the number of stem cells. In the
spatial model, however, the rapid growth phase means that the fraction of free stem
cells is reduced as most stem cells become trapped by other stem cells. Only these
free stem cells are able to divide, slowing down the speed at which they are depleted
and thus reducing the severity of the oscillations. This behavior is exemplified by
Fig. 7b.

9 Discussion

A wealth of data indicates that feedback loops play a central role in the regulation
of healthy tissue. Recent data also supports the notion that tumors retain some of the
architectural aspects of the underlying healthy tissue. It is thought that tumors are
maintained and driven by so-called tumor stem cells or tumor initiating cells, and
that the bulk of the tumor is made up of more differentiated cells that have a reduced
ability to divide and therefore cannot maintain or initiate a cancer. In the light of
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Fig. 7 (a) Cell count of differentiated cells vs time. The blue line was computed using the ODE
model. The red line is the expected cell count in the spatial-stochastic model. (b) Cell count of stem
cells. Results from the ODE (black) and expected cell count in spatial model (green). The expected
number of cells in the spatial model is shown in blue. (c) Expected fraction of stem cells that are
free in the three-dimensional model. Parameters in all figures are: p0 D 0:7; v0 D 0:2; g D
2 � 10�5; ˇ D 1 and d D 0:0025

this, it is reasonable to assume that tumor initiation requires the loss of some of
these feedback loops. In particular, two types of feedback mechanisms appear to be
a common theme across different tissues: negative feedback on the rate of stem cell
division, and negative feedback on the probability that a stem cell division results
in self-renewal rather than in differentiation. Mutations can occur that lead to the
loss of feedback signals produced by cells or that lead to a loss of response to the
feedback signals by stem cells. Using an evolutionary dynamics model, it is found
that only one sequence of events can lead to full escape from feedback control: The
first step is loss of the cells’ ability to respond to the differentiation feedback. While
this leads to unbounded cell growth, the cell population grows relatively slowly
because the emerging tumor is still regulated in part by remnants of the feedback
system (inhibited growth). To escape this remaining regulation, cells also have to
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lose the ability to respond to the division feedback control factors, leading to fast,
uninhibited growth. We note that the order of events is crucial here. In a healthy cell
population, mutant cells that do not respond to the division feedback will not enjoy
a selective advantage and are therefore unlikely to emerge. Such mutants are only
selected for and can only emerge in a background population that has already lost
the ability to respond to the differentiation feedback factors.

Our analysis is supported by key mutations in carcinogenesis that disrupt
negative feedback regulation of cell division patterns. For example, the protein
transforming growth factor beta (TGF-ˇ/ plays a key role in tissue homeostasis
by inhibiting mitosis and promoting cell differentiation [57]. Mutations that affect
TGF-ˇ receptors occur in gastric, biliary, pulmonary, ovarian, esophageal, and head
and neck carcinomas [32]. Moreover, half of all pancreatic carcinomas and more
than a quarter of colon cancers carry mutations that make cells irresponsive to TGF-
ˇ signals that inhibit cell division and promote differentiation [43, 59]. Another
example comes from the epigenetic silencing of BMP4 receptors in glioblastomas
[27]. BMP4 induces glia stem cells to differentiate, inhibiting cell proliferation [28].

Another line of evidence that supports the importance of the Sdiff- phenotype
comes from the manipulation of the MYC gene. A mouse model of human
hepatocellular carcinoma was developed, in which it is possible to regulate the
expression of the human MYC oncogene in murine liver cells, suppressing it
through doxycycline treatment [16,44,45]. Mice treated with doxycycline remained
disease free, while those with active MYC developed malignant tumors that
were locally invasive and able to metastasize. When MYC was subsequently
inactivated, rapid tumor regression was observed that was associated with terminal
differentiation into normal liver cells. MYC expression influences self-renewal
and differentiation of cells, and thus influences the function p.D/ in our model.
Activation of MYC corresponds to a corrupted differentiation feedback (i.e., to the
Sdiff- phenotype in the model), whereas inhibition of MYC reverses this phenotype.
The model predicts Sdiff- to be the initial event leading to uncontrolled growth.
Even if cells have acquired other mutations that can also contribute to tumor
progression, these mutations are predicted to promote growth only in cells that
already have corrupted differentiation feedback. Hence, the model predicts that the
restoration of the differentiation feedback loop, even in cells with further alterations,
results in tumor regression. This same behavior is observed in the experiments
where the macroscopic and malignant nature of the tumors indicate the presence
of additional mutations, which are incapable of promoting growth in the absence of
MYC [16, 44, 45].

Overall, these processes can give rise to five different categories of tumor growth
laws, which we call “exponential,” “surface,” “sigmoidal,” “atypical,” and “multi-
step.” Following an extensive literature search for different tumor growth patterns,
we suggest that most can be assigned to one of these categories. Fitting our model
to experimental data on in vitro and in vivo tumor cell growth, we demonstrated that
the predicted growth patterns describe biological data well. The finding of inhibited
tumor growth patterns in the literature is of particular interest. Such a growth pattern
can only come about if the growing tumor is still partially subject to regulation
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that has remained from the underlying tissue. This gives support to the notion that
tumors are organized and structured according to similar principles as healthy tissue,
at least early in the disease process. The finding of sub-cubic growth laws among
data is particularly notable in this respect because it has not been possible to ascribe
such slow growth to factors other than feedback. While we have shown that our
model can describe a range of tumor growth data well, a crucial experimental test
would be to document the presence of negative feedback loops in early tumors that
are characterized by an inhibited growth pattern, and to further demonstrate that
elimination of this feedback loop leads to accelerated tumor growth.

The findings discussed here have implications for elucidating carcinogenesis
pathways in specific cancers. While we have identified the sequence of two key
phenotypic events in the emergence of stem-cell-driven tumors, this does not mean
that each event corresponds to a single mutation. The inactivation of feedback
responses can involve a multi-step accumulation of mutations, the nature of which
are most likely tissue specific. Hence, it will be important to identify the relevant
feedback loops in the tissues under consideration, and to study the nature of the
mutations that are required for the sequential escape documented here. This could
lead to the discovery of new targets for therapeutic intervention.

We also discussed how the two feedback mechanisms affect the dynamics
of tissue regulation. Feedback on the rate of stem cell differentiation uniquely
determines the equilibrium number of differentiated cells and is by itself capable
of maintaining tissue homeostasis. Feedback on rate of stem cell division controls
the fraction of stem cells in the population and promotes faster recoveries from
perturbations.

It was also found that when the system is recovering from a perturbation
oscillations in the number of cells might take place, a behavior that may be
dangerous and of no obvious biological value. Near equilibrium oscillations are
more likely to occur when the steady state fraction of stem cells is small. Adding
feedback inhibition on the division rate significantly dampens the magnitude of the
oscillations and increases the speed at which the trajectories reach the steady states;
the stronger the feedback signal the stronger the effect. Thus, even if feedback on the
division rate is unnecessary to establish control, it promotes faster and more stable
recoveries after an injury. The addition of spatial structure to the tissue also adds to
the robustness of the systems, by eliminating oscillations or significantly reducing
their amplitude.

Understanding the population dynamics that take place during tissue regeneration
has important applications and has led to significants insights (see, e.g., [26]). In
particular the study of oscillatory behavior is relevant to the dynamics of blood cells.
Damped oscillations have been observed in healthy hematopoiesis [31]. Amongst
pathologies periodic oscillations are a characteristic feature of cyclical neutropenia
[6]. Furthermore, oscillatory behavior has also been identified in chronic and acute
myeloid leukemia [1, 3, 12].

Two principal aims of regulatory mechanisms in hierarchical tissues are the
maintenance of homeostasis, which prevents the onset of cancer, and the promotion
of fast and reliable recovery from injuries. In this chapter we discussed several
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mathematical models that identify key features of the regulatory mechanisms
that promote tissue regeneration and stability. Furthermore, we discussed the
phenotypical pathways by which cancer can escape tissue regulation and how this
might leas to different types of tumor growth patterns. These insights could help the
search for mutations that drive specific cancers and could lead to novel ideas for
treatment.
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