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Abstract Mathematical models of tumor–immune interactions provide an analyt-
ical framework in which to address specific questions regarding tumor–immune
dynamics and tumor treatment options. We present a mathematical model, in the
form of a system of ordinary differential equations (ODEs), that governs cancer
growth on a cell population level. In addition to a cancer cell population, the model
includes a population of Natural Killer (NK) and CD8C T immune cells. Our goal
is to understand the dynamics of immune-mediated tumor rejection, in addition to
exploring results of applying combination immune, vaccine and chemotherapy treat-
ments. We characterize the ODE system dynamics by locating equilibrium points,
determining stability properties, performing a bifurcation analysis, and identifying
basins of attraction. These system characteristics are useful, not only for gaining a
broad understanding of the specific system dynamics, but also for helping to guide
the development of combination therapies. Additionally, a parameter sensitivity
analysis suggests that the model can predict which patients may respond positively
to treatment. Numerical simulations of mixed chemo-immuno and vaccine therapy
using both mouse and human parameters are presented. Simulations of tumor
growth using different levels of immune stimulating ligands, effector cells, and
tumor challenge, are able to reproduce data from published studies. We illustrate
situations for which neither chemotherapy nor immunotherapy alone are sufficient
to control tumor growth, but in combination the therapies are able to eliminate the
entire tumor.
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1 Introduction

There are many unanswered and important questions as to how the immune system
interacts with a growing tumor, and which components of the immune system play
significant roles in responding to immunotherapy. For example, does the varying
strength of an individual’s immune response play a significant role in affecting
tumor growth during treatment, and if so, is it possible to predict which individuals
will respond well, and which will not? Mathematical models provide an analytical
framework in which to address such questions, and these models can be used both
descriptively and predictively. It is important to develop models of tumor growth
that include a representation of an immune response. The ultimate goal is to create
models that can reflect a system’s response to emerging biological therapies, such
as vaccine therapy. Mathematical modeling of tumor growth and treatment has been
approached by a number of researchers using a variety of models over the past
decades. (For overviews, see for example [4, 9, 27, 55, 68].)

The Importance of the Immune System and Immunotherapy Immunotherapies
are quickly becoming an important component in the multi-pronged approaches
being developed to treat certain forms of cancer. The goal of immunotherapy
is to strengthen the body’s own natural ability to combat cancer by enhancing
the effectiveness of the immune system. The importance of the immune system
in fighting cancer has been verified in the laboratory as well as with clinical
experiments. See, for example, [28, 52, 53, 57, 69]. Additionally, it is known that
those with weakened immune systems, such as those suffering from AIDS, are more
likely to contract certain rare forms of cancer. This phenomenon can be interpreted
as providing further evidence that the role played by the immune response in battling
cancer is critical. See, for example, [12, 38].

The clear importance of the immune system in controlling cancer growth, both
clinically and mathematically, indicates that models incorporating tumor growth
and treatment would do well to include an immune system component. Once this
component is in place, it is then possible to model how various immunotherapies
may affect the system, either singly or in combination with one another. Recent
clinical data have shown there is potential benefit in harnessing the power of
the immune system in combination with traditional chemotherapy. For example,
in Wheeler et al. [72], it is demonstrated that vaccine therapy in combination
with chemotherapy more effectively extends patient survival times than either
chemotherapy or vaccine therapy alone.

Immunotherapy The clinical evidence for the potential of immune system control
of certain malignancies has motivated new research into the development of
immunotherapies and vaccine therapies for cancers. Some examples are described
in [5, 11, 25, 59, 65, 72]. Immunotherapy falls into three main categories: immune
response modifiers, monoclonal antibodies, and vaccines (see, for example,
[64]). The first category contains substances that affect the immune response,
such as interleukins (including IL-2), interferons, tumor necrosis factors (TNF),
colony-stimulating factors (CSF), and B-cell growth factors. In the next category,
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monoclonal antibodies are currently being developed to target specific cancer
antigens. These monoclonals can distinguish between normal and cancer cells, and
they can then be used to diagnose cancer, as well as to treat tumors by “guiding”
anticancer drugs toward the malignant cells (see, e.g., [34, 48, 62]). In the third
category are vaccines, which are generally used therapeutically, and are created
from tumor cells. These work by helping the immune system to recognize and
attack specific cancer cells. In this work, we implement treatment from the first
category in the form of mathematical terms that represent IL-2 and tumor infiltrating
lymphocyte (TIL) injections, and additionally incorporate treatment from the third
category: new mathematical forms that distinguish between specific and nonspecific
immune responses, allowing for the incorporation of a vaccine component into the
model. Although monoclonal antibody treatments are considered promising, they
are currently not considered in this work.

Cancer Vaccines There are fundamental differences between the use and effects
of antiviral vaccines and anticancer vaccines. While many vaccines for infectious
diseases are preventative, cancer vaccines are designed to be used therapeutically,
treating the disease after it has begun, and preventing the disease from recurring.
Cancer vaccines are still considered to be highly experimental as compared with
other forms of cancer immunotherapy, but in early clinical trials are showing
increasing promise in their ability to improve the immune response to certain forms
of cancer (see, e.g., [64, 72]).

Since cancer vaccines and antiviral vaccines differ in their application, mathe-
matical models of these vaccines should exhibit different dynamics. The goal of this
chapter is to build on existing models of tumor growth, incorporating an immune
system response and expanding these models to include the effect of anti-tumor
vaccination and immunotherapies in conjunction with chemotherapies. In another
work, the authors will extend this model into a larger framework that incorporates
spatial and geometric components.

The outline of this chapter is as follows. In Sect. 2 we describe four cell
population growth models that are commonly used to represent cancer growth,
and outline a parameter fitting approach that can extract growth parameters from
laboratory data. In Sect. 3, we discuss growth and interaction dynamics governing
an immune response to tumor, assuming a single population representing effector-
killer cells of the immune system. In Sect. 4 we further expand our description of
the immune response to include both the innate and the specific responses, and in
Sect. 5, we formulate the mathematical forms that govern the different dynamics of
the innate and specific immune responses. In Sect. 6, we construct a three population
mathematical model that describes the interactions of a tumor cell population with
both the innate and specific immune cell populations. We also carry out a parameter
sensitivity analysis, as well as a bifurcation analysis of the system. In Sect. 7,
we build upon our three population model to allow for simulation of treatments.
Treatment modalities include both cytotoxic chemotherapy and immune-stimulating
therapies. We present numerical simulations that represent both mouse and human
scenarios, using parameters extracted from published literature. Finally, in Sect. 8,
we provide a discussion and summary of this work.
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2 Growth Models

An important step in building a tumor–immune model is to capture the dynamics of
tumor cell population growth alone, before considering growth-limiting interference
from, for example, immune cells or from competition by normal cells for nutrients
and space. There is, so far, no universal consensus as to which fundamental growth
models best reflect tumor cell growth. Among the most commonly used models,
however, are exponential growth (and its generalization, power law growth), logistic
growth, Von Bertalanffy growth, and Gompertz growth. The forms of these growth
laws are in Table 1. All but von Bertalanffy growth require two parameter values be
determined. The Von Bertalanffy model requires three parameter values.

Table 1 Commonly used cell population growth laws

Growth law Equation Number of parameters

Power dT
dt

D aT b Two: a; b:

Logistic dT
dt

D aT .1 � bT / Two: a; b:

Gompertz dT
dt

D aT ln .1=bT / Two: a; b:

von Bertalanffy dT
dt

D aT ..bT /c � 1/ Three: a; b; c:

T represents the number of tumor cells, t is time, a; b and
c are parameters

The choice of growth law depends, among other things, on the cancer cell type,
whether the cancer is early or late stage, and the location of the tumor. In the case
of tumor stage, consider, for example, a comparison of exponential and logistic
growth models. As can be seen in Fig. 1, in which we compare exponential to
logistic growth, if the tumor is small (early stage), there is no significant distinction
between the two growth models. The distinction becomes apparent, however, in
the later stages. As opposed to exponential growth, logistic growth is self-limiting.
Even though there are no external growth-limiting factors, a self-limiting growth
model, such as a logistic model, accounts for self-competition within the tumor cell
population for resources like space and nutrients. An exponential growth model is
reasonable to use for early stage growth, but a self-limiting growth model is often
more appropriate for later stage growth. Therefore, even in the absence of tumor
growth data, a modeler can consider tumor size and make a qualitative decision
about whether to the model should reflect self-limiting growth.

Ideally, a modeler will be able to acquire some tumor growth data, and should use
the model that provides the best fit to those data. The process of fitting a model to the
data also yields the appropriate model parameters. There are a number of approaches
to data fitting that are possible. One approach to fitting a model to data is numerical,
and makes use of packaged computational routines. In Matlab [70], for example, the
simplest way to fit a curve to a data set is to plot the data points and make use of
Matlab’s Basic Fitting tool from the pull-down menu of the figure window.
However, the choice of curves that can be fit to the data is limited to splines and
polynomials. If we want to determine how well the solutions to our growth laws of
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Fig. 1 Exponential versus logistic versus growth. In early stage growth, cycle zero through about
cycle 6, both models are similar, and appear to overlap. After cycle 6, the two graphs begin to
diverge, and by cycle 14, the growth curves have diverged significantly. By cycle 15, the logistic
growth curve has leveled off, but the exponential growth curve continues to increase

interest could fit a data set, our numerical approach requires a different approach.
The steps in the process are as follows.

1. Choose a tumor growth data set. Many tumor growth data sets are given in units
of approximate volume, surface area, cross sectional area, or relative volume.
Since the growth laws we are considering represent numbers or concentrations
of cells, then if the data are not already given in cell counts, convert the measures
to approximate cell counts. A useful conversion metric assumes that there are
generally between 1:0 � 106 cellls/mm3 and 2:0 � 106 cells/mm3, [51]. Suppose
we have n data points. Let us call the time-data pairs .ti ; di /; where i D 1; � � � ; n:

2. Assume the tumor cell population, T .t/; obeys a particular growth law, which in
our case will be chosen from Table 1.

3. Solve for T .ti /; that is, determine the model’s predicted population values at
the same time points, ti ; as are used in the data set. For relatively simple ODE
laws, like the ones in Table 1, it is actually possible to find explicit solution
formulas. Solutions to the four growth law ODEs are given in Table 2. However,
it is also acceptable to solve these ODEs numerically. There are many options
for how to do this in Matlab. For example, Matlab’s ode45 routine uses an
adaptive fourth and fifth order Runge–Kutta scheme, and the numerical solutions
are highly accurate in most cases. Many ODEs are not easily solved analytically,
but are fairly straightforward to solve numerically. Thus, a numerical approach
is generally more universally applicable.
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4. Choose a metric, or distance. If you are working in Matlab, you can write a
function in an m-file that Matlab can minimize. The function should return the
sum of the squares of the distances of the solution (analytic or numerical) to
the data points. Suppose we are fitting the logistic curve. Then the distance D

depends on the two parameters a and b; and is given by

D.a; b/ D
nX

iD1

.T.a;b/.ti / � di/
2

where T.a;b/.ti / is the chosen model output at time point ti using parameters
a and b: The input to the distance function includes a vector of the unknown
parameters Œ a b �, in addition to the known values of the data points f.ti ; di /g,
and the solution to the ODE, T .t/. In some cases, the uncertainty in the data
should be taken into account when defining the distance function. For example,
in many cases the data at later time points have more variability, since small
differences in initial conditions can grow over time. We have often found it
fruitful to use a weighted distance function, where the distance to each data point
is normalized by the standard error at that time point.

5. Call a function minimization routine to minimize the distance function D.a; b/:

Here, again, there is a variety of possible approaches. Routines that look for
function minima can be classified broadly as either “local” or “global” search
algorithms. A “local” minimization routine will attempt to move closer to the
function minimum with every step. In our case, this is done by ensuring that
the distance function D.a; b/ can only decrease or stay the same with every
iteration of the search, but D.a; b/ will never be allowed to increase. The
result is that if we start our search near to a local function minimum, the
local algorithm will converge fairly rapidly to that close minimum point, even
if there is a “better” minimum point somewhere else in the function. Global
search algorithms, on the other hand, try to broaden the search for the “best” (or
“global”) minimum by occasionally allowing the distance function to increase
before decreasing it again. One can think of this temporary increase in D.a; b/

as the search function allowing us to climb a hill that will move us to a different,
deeper, valley, in which a better minimum can be found. Local algorithms that
can search for a function’s minimum include Newton’s method, the Conjugate
Gradients method, and the Nelder–Mead Simplex algorithm. These approaches
depend on choosing initial guesses for the values of the parameters a and b;

and the accuracy of the initial guess affects the outcome of the minimization.
Matlab has a built-in routine fminsearch that minimizes an input function
using the Nelder–Mead algorithm. Matlab also has the routine lsqnonlin,
that specifically solves nonlinear least squares problems. As opposed to local
algorithms, global parameter estimation algorithms are able to test a broader
range of parameters, and are therefore less likely to get “stuck” in a local
minimum, but they also may not yield values as accurate as local methods
can. Global approaches include algorithms such as simulated annealing [37],
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and Markov Chain Monte Carlo [32, 67]. Whether a local or global approach
is employed, this step will return values for the model parameters (a and b in the
case of logistic growth), as well as the distance measure that indicates how good
the model fit is (the smaller the distance, the better the fit).

Table 2 Solutions to the four commonly used cell population growth laws

Growth law Equation Solution

Power dT
dt

D aT b T .t/ D ..1 � b/.at C C//
1=.1�b/

; where C D T 1�b
0

.1�b/

Logistic dT
dt

D aT .1 � bT / T .t/ D 1
Ce�at

Cb
; where C D 1

T0
C b

Gompertz dT
dt

D aT ln .1=bT / T .t/ D b
�

T0

b

�e.�at/

von Bertalanffy dT
dt

D aT ..bT /c � 1/ T .t/ D 1
b

T c
0�

T c
0 .1�e�act /

C

e�act

bc

�1=c

T represents the number of tumor cells, t is time, a; b and c are parameters. In each case, the
given initial condition is T .0/ D T0

As an example, we took a published tumor growth data set from Diefenbach
et al. [24], and fit each of the four growth curves to the data. This example can also be
found in [19,20]. Combining Matlab’s ode45 adaptive Runge–Kutta ODE solver to
get predicted solutions for T .t/ with fminsearch to find the parameter values that
minimized the distance between the data points and the model prediction, yielded
the fits seen in Fig. 2. The data we show are from Diefenbach[24] experiments
in which groups of immuno-compromised mice were challenged with increasing
levels of B16-BL6 (a melanoma cell line). Data set 1 represents the mean tumor
cell count in five mice over 33 days after an initial inoculation with 104 melanoma
cells. Data set 2 tracks over 23 days the mean tumor growth data in five mice after
an inoculation of 105 cells, and Data set 3 tracks the mean growth in five mice after
an inoculation of 106 melanoma cells, also over 23 days. With each growth curve,
we also plot the “residual:” the distance between each data point and the predicted
value given by the growth curve. The best fits are those with the smallest residuals.
We can see from Fig. 2 that the smallest residuals and thus the best fits appear to
come from the logistic model and the von Bertalanffy model. However, the principle
of “parameter parsimony” says that the model with the fewest parameters that still
yields a good fit is preferable. Therefore, we should choose to use the logistic model
over the von Bertalanffy model, since the logistic model requires fitting one less
parameter.

The interested reader can find in [66] a larger catalog of fits of these four growth
laws to ten separate tumor cell types: bladder cancer, breast cancer, colon cancer,
head and neck squamous cell carcinoma, hepatocellular carcinoma, lung cancer,
melanoma, ovarian cancer, pancreatic cancer, and renal cell carcinoma. In that work,
tumor growth information for each cell line came from collecting published peer-
reviewed data from at least five separate sources. Similar to the results of [35], the
authors found that the power growth law often yielded a good fit in the sense of
minimizing the residual.
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Fig. 2 A comparison of four growth laws. Data from [24], which describes three different mouse
experiments (marked as “Data set 1,” “Data set 2,” and “Data set 3,” respectively), are used to fit
four different growth laws. Data set 1 represents the mean tumor growth values in a group of five
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3 Competition Models: Adding the Immune System

An individual’s immune system is created to help defend the body from invading
pathogens such as bacteria, fungi, viruses, parasites, and in some cases, cells in the
body that have become cancerous. The immune system is made up of a wide variety
of cells with different functions, ranging from antigen uptake and presentation to
killing of infected or mutated cells. The immune cells are created in the bone marrow
and can be found in the blood and tissue of an individual. The immune cells in the
blood are commonly known as the “white blood cells,” and the average human body
makes about 109 new white blood cells each day.

The immune response to the presence of a foreign substance is a complex cascade
of events, including self-regulating feedback loops. Although there is much we have
learned about the dynamics of the immune response, there is still much we do not
fully understand. Details about some of the known complex workings of the immune
system can be found in [54].

One goal of the immune response is to attack and destroy harmful cells. Immune
cells with the ability to kill are called effector cells. In this section we introduce
effector cells into the model of tumor growth. In the simplest realization, we use a
competition model consisting of a system of two differential equations: one equation
describing the growth of the tumor population, and one equation describing the
growth of the effector cell population.

Early tumor–immune models used the “predator–prey” relationship developed
by Lotka in 1910, and then used by Kolmogorov and subsequently by Volterra in
1925 to describe the fate of fish populations in the Adriatic [1,43,71]. In the context
of tumor growth, effector cells play the role of the predators, and tumor cells are the
prey. Let T denote the population of tumor cells, and E the population of effector
cells. The classical predator–prey relationship assumes:

1. the prey will grow in the absence of the predator;
2. interactions between predator and prey are harmful to the prey but beneficial to

the predator;

J
Fig. 2 (continued) mice after an initial challenge of 104 melanoma cells. Data set 2 shows growth
after a challenge with 105 melanoma cells, and Data set 3 shows growth after a challenge with
106 cells. The solution to each growth model is shown in solid curves, while the data points are
shown by filled squares. In each case, the parameters of the models are chosen to minimize the least
squares distance from the model’s predicted values to the data. Residuals showing the difference
between the predicted values and the data are shown as bars below the graphs in each case. Note
that the first data set has more time points than the other two, so that the last three residuals are due
to differences coming only from the first data set. The two models shown in the left column, the
power law and the Gompertz models, have larger residuals than do the two models depicted on the
right, the logistic and the von Bertalanffy models. Since the logistic model uses fewer parameters
than does von Bertalanffy, we consider logistic growth to yield the best fit to these data
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3. the predators will die in the absence of prey;
4. the number of interactions between predators and prey is proportional to the

product of the two populations.

If we describe the growth of the tumor population using a logistic function, these
assumptions yield the following system of differential equations.

Simplest predator–prey model of tumor (prey) and effector–immune (preda-
tor) interactions:

Tumor:
dT

dt
D rT .1 � bT / � c1TE (1)

Effector W dE

dt
D �dE C c2TE (2)

where c1; c2; d and r are constants.

The interaction terms in Eqs. (1)–(2) have a “mass-action” form, reflecting
Assumption 4, that the total number of encounters between predators and prey are
proportional to the product of the two populations. This follows from a well-mixed
condition, i.e. we assume that each predator is equally likely to encounter each prey.
The discerning reader might note that this will not be the case in the context of
the immune response to solid tumors in vivo, since immune cells won’t have equal
access to all of the tumor cells. We discuss this further in Sect. 5.

Another problem with this simple model is that Assumptions 2 and 3 are not
biologically realistic in the context of tumor–immune interactions. Effector cells can
kill tumor cells in one of two ways: by damaging the tumor cell’s membrane using
a protein called perforin, or by initiating apoptosis (programmed cell death) via
another protein called FasL. Since effector cells produce these proteins in a limited
amount, each interaction decreases their ability to kill in the future. We therefore
introduce a negative inactivation term into Eq. (2). Counteracting this negative effect
is the fact that the presence of the tumor cells stimulates the production of new
immune cells, and the recruitment of these immune cells to the site of the tumor
However, there is some limit to the rate at which the body can produce these cells.
We therefore introduce a positive rate-limiting recruitment term in the Effector cell
equation shown in Fig. 3.

Effector immune cells are present in the body even in the absence of a specific
threat. This “standing army” of cells is created in the bone marrow, and distributes
itself in the tissues, blood and organs in search of harmful cells. We therefore include
in the simple effector–tumor model a constant source rate of effector cells, � , noting
that in reality this rate will change with the overall condition of the host, as well
in response to complex regulatory signals from the immune system. Putting these
terms together gives a two-population model of the tumor–immune response:
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Fig. 3 Saturating recruitment term. This type of term occurs frequently in biological and physical
models where rates cannot be infinite

Two-population model of tumor and effector–immune interactions:

Tumor:
dT

dt
D rT .1 � bT / � c1TE (3)

Effector:
dE

dt
D � C �T

s C T
� c2TE � dE (4)

where c1; c2; d; �; �; s and r are constants.

This two-population model has been useful in describing observed behavior that
was mysterious to clinicians. For example, in the work of Kuznetsov et al. [45, 46],
in which the nonlinear dynamics of immunogenic tumors are examined, this tumor–
effector model is shown to exhibit oscillatory growth patterns in tumors, as well as
dormancy and “creeping through”: when the tumor stays very small for a relatively
long period of time, and subsequently grows to be dangerously large (Fig. 4).
This model also demonstrates that two simulated patients could begin with almost
identical characteristics (IC1 and IC2 in Fig. 4), but one has a progressive disease
(IC2) while the immune response of the other patient is able to keep the tumor
relatively small (IC1). Note that, in this case, it is only the initial number of
immune cells that makes the difference, and that the results are non-intuitive: a
slightly lower initial immune response (IC1) results in a smaller tumor. This non-
intuitive behavior can be understood by knowing the geometry of the phase space
of the dynamical system: a separatrix, the stable manifold of the unstable, saddle
equilibrium separates the basins of attraction of the two stable equilibria. Initial
conditions close to the basin boundaries, but on opposite sides of the separatrix,
give rise to trajectories with drastically different long-term behavior.
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In this and other mathematical models, the cyclical behavior of the tumor is
directly attributable to the interaction of the tumor with the immune system. In
[16], the authors also use a single effector population to represent the immune
response, and are able to demonstrate the critical role this effector response plays
in the process of tumor elimination, even when chemotherapy treatments are given.
We discuss models with treatments in Sect. 7.
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Fig. 4 Simulations of the two-population model (Eqs. 3–4) showing sensitivity to initial condi-
tions and the “creeping through” effect. The separatrix or stable manifold of the saddle equilibrium
is shown as a dashed line in the left panel. Two simulations are shown: one with initial conditions
E.0/ D 6:5558 (labeled “IC 1” in red) and one with E.0/ D 6:8777 (labeled “IC 2” in blue).
Both simulations have initial tumor values at T .0/ D 126:6807. Left panel The two trajectories
are shown in the sate space: in both trajectories, the tumor values initially get very small and remain
there for a while. The first trajectory (IC1) is in the basin of attraction of the low tumor equilibrium,
and it spirals towards it. The second trajectory (IC2) is in the basin of attraction of the large tumor
equilibrium, which it approaches quickly after the initial “dormant” period. Note the logarithmic
scale in the left panel. Right panel The same two trajectories are shown over time. Only the tumor
populations are plotted in the right panel. Units are 106 cells. The parameter values used in these
simulations are a D 1:636; b D 0:002; d D 0:3743; s D 20:19; c1 D 1; c2 D 0:00311; � D
1:131 and � D 0:06

4 The Innate and Adaptive Immune Response

As we build a mathematical model, our goal is to keep the model as simple as
possible while still addressing the question of interest. If the model is found to be
too simple, we then add complexity in steps. The simple model given in Eqs. (3)
and (4) assumes that the response of the immune system can be represented by a
single “effector” cell population. This simplification of the immune system works
well when modeling clinically observed tumor–immune behaviors such as tumor
dormancy, oscillations in tumor size, and spontaneous tumor regression.

This simplified single-population representation of the immune system is obvi-
ously not sufficient, however, to address questions specific to the roles different
components of the immune response play in the evolution of a tumor. The next
question we will address, as we continue to build and refine our model, is driven
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by the results of a set of experiments by Diefenbach et al. In these experiments,
mouse tumor cell lines are modified to express higher levels of immune stimulating
NKG2D ligands, and the responses of both the “innate” and “specific” components
of the immune system are observed.

Immune cells called NK “Natural Killer” cells, are part of the innate, or non-
specific, immune response. Killer T “Thymus” cells are part of the specific, or
adaptive, immune response, and are activated differently from NK cells. The Killer
T cells are also referred to as CTL “Cytotoxic T Lymphocyte” cells, or CD8C T cells
(which distinguishes them from CD4C T helper cells). Both NK cells and Killer
T cells come from a common lymphoid progenitor, and once activated, are both
called “effector” cells. We next briefly discuss the differences between the innate
and specific responses and discuss their behaviors in very general terms before
introducing the model in Sect. 6 that includes these as separate populations.

The innate immune response, which includes NK cells, is an early defense
against pathogens. The NK cells patrol the body, searching for and killing cells
that they do not recognize as “self” cells (belonging to the body). NK cells are
large granular lymphocytes which do not express markers of either T or B-cell
lineage. NK cells recognize and destroy tumor cells, among others, independent
of prior exposure. Natural killer cells are thought to play a key role in preventing
the development of clinical cancer by killing abnormal cells before they multiply
and grow. One way NK cells recognize that a potential target cell is a “self” cell
is when the target cell presents self antigens through MHC class I receptors on
its surface. When an NK cell comes in contact with a potential target cell, kill-
activating receptors attach to common glycoproteins on the potential target cell, and
the NK cell is primed to kill. However, if the target cell is expressing self antigens
in the MHC-I receptor, when the NK cell binds to the MHC-I-self-antigen complex,
the kill signal is interrupted and neutralized, and the potential target cell remains
unharmed. In the case that the target cell is not expressing a self antigen in the
MHC-I receptor, the activated NK cell will continue in kill mode, releasing perforin
and granzymes, leading to the destruction of the target cell. The NK cell will also
continue in kill mode if the target cell is simply not expressing MHC-I receptors
on its surface. Downregulated MHC-I receptor expression means that the NK cell
cannot bind to that receptor, and there therefore is nothing to inhibit the NK cell’s
kill signal. In some cancer cells, MHC-I receptors are down-regulated on the cell
surface, and are therefore susceptible to NK cell attack. In a sense, when a potential
target cell expresses the self-antigen-MHC-I receptor complex, this can be thought
of as the cell knowing the “secret handshake,” which allows it to escape NK cell
patrols unharmed.

Killer T cells are unlike NK cells in that they must first be primed to recognize
a particular antigen, and in the case of cancer, to recognize a tumor-specific
antigen. The killer T cells, which carry the CD3C marker, are morphologically
small lymphocytes in the peripheral blood. They develop in the thymus and mediate
the immune system’s response to infected or malignant cells. These CD3CCD8C
T cells (or just “CD8C” T cells) are a critical subpopulation of T-lymphocytes
that can be cytotoxic to tumor cells provided previous sensitization has occurred.
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CD8C T cells are able to kill tumor cells through recognition of the tumor-specific
antigen presented on MHC-I receptors on the surface of the tumor cell. The tumor-
antigen specific T cell binds to the MHC-I-tumor-antigen complex. Once bound,
the CD8C T cell is triggered to release perforin and granzymes, leading to the
destruction of the target tumor cell. The CD8C T cell can be thought of as a “police
dog trained in scent discrimination”—it first has to be taught what its target is, and
only then, can it seek out that specific target.

In summary, both NK cells and CTL cells must come in contact with target tumor
cells in order to be able to kill them. The NK cells need no priming, are constantly
on patrol, and kill tumor cells when they do not recognized them as “self.” The CTL
cells, on the other hand, must first be primed to recognize antigen specific to the
tumor cells, and only then will be able to destroy the target tumor cells.

5 Estimating Kill Rates from Data:
The de Pillis–Radunskaya Law

In this section we explore how the differences between the innate and adaptive
immune response manifest themselves in a mathematical model of tumor–immune
interactions. In particular, we want to look more closely at the “kill rate” term given
as c1TE in Eq. (3). If we divide this term by the number of tumor cells, T , we get the
“fractional cell kill rate”, which in this simplest mass-action setting is proportional
to the number of effector cells. In the context of predator–prey dynamics, the
mass-action form is not always appropriate, and the ecological literature discusses
alternative forms, (see [2] and the references therein). As we mentioned in Sect. 3,
a mass-action kill rate assumes that all immune cells are equally likely to interact
with any tumor cell: it assumes spatial homogeneity. In reality, however, this is
not necessarily the case. In the case of the adaptive immune response, CTLs are
recruited to the tumor site by the presence of specific chemicals—not all tumor
cells will be equally accessible to this type of attack. A mass-action form of cell
kill also precludes “resource sharing”: the notion that the number of predators per
prey affects the probability of a kill, and hence the benefit to the predator. Resource-
sharing suggests that the fractional cell kill will be a function of the ratio of predator
to prey.

To determine the fractional cell kill dynamics, data from chromium release assays
published in [24, 26] were used. Chromium release assays determine the ability of
CD8C T cells to lyse target cells expressing specific ligands. The assays in both [24,
26] were standard 4 h 51Cr release assays. Standard techniques exist for collecting,
storing, and co-culturing patients’ immune cells with tumor cells, a procedure which
can be implemented before the onset of treatment, or anytime thereafter. The lytic
activity of these cells can then be analyzed with the assay (see, e.g., approaches
referenced in [26]).



Modeling Tumor–Immune Dynamics 73

We rewrite Eq. (3) in the general form:

dT

dt
D rT .1 � bT / � g.E; T /T: (5)

The function g.E; T / is the fractional cell kill rate, sometimes called the
“functional response”. In order to determine which fractional cell kill term best
fit the data, we performed data fitting experiments with two different functional
responses: one that depends only on the number of effector cells, and the other that
depends on the ratio of effector to tumor cells.

Power Form g.E; T / D cE�I (6)

Rational Form g.E; T / D d
.E=T /�

s C .E=T /�
: (7)

We note that the Power Form has fewer parameters than the Rational Form.
Therefore, if we get good fits using both the Power Form and the Rational Form,
we should select the Power Form, following the Principle of Parsimony.

Using cell lysis data from [24], we employed an iterative process to find the
parameters c and � in the Power Form that minimized the distance between the
data points and the predicted percent lysis curves generated by the model over a
range of c and � values. For each Œc; �� pair, a prediction was made by solving a
system of differential equations up to time Tf inal D 4 h, with initial values from
the effector:target ratio data in [24]. When using data from assays using only NK
cells, the Power Form provided a good fit, with the best-fit exponent begin � � 1.
Since a good mathematical model will be one in which the desired behaviors of the
system are captured using the simplest mathematics possible, we chose to keep the
mass-action form, g.E; T / D �cE , to describe the effect of the NK cells on tumor
cells. In fact, the optimal value of c determined using our algorithm reproduced the
lysis rate data extremely well (see Fig. 5, top row).

However, when fitting for parameters c and � for the CD8C T cell kill term, we
found that the power form produced growth curves for T that were not particularly
good fits to the data provided in [24]. Instead, we found that we could produce
curves that better fit the data by allowing this term to have the rational form given
in Eq. (7), for which we also had to determine parameter s: In (7), the exponent �

represents how the lysis rate depends on the effector:target ratio, the parameter s

affects the steepness of the curve, and parameter d gives the maximum lysis rate.
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We note that the additional parameter in Eq. (7) gives three degrees of freedom,
so that a better fit to the data should be expected using the rational form. However,
since the observations in [24] give five data points for each cell-type considered, the
closeness of fit to the data supports the idea that the form of this term is correct. In
particular, both in vitro and in vivo experiments indicate that percent lysis appears to
be a function of the ratio of CD8C T cells to tumor cells, explaining the dependence
on the ratio .E=T /. Furthermore, the data indicate that the percent of cells lysed
never exceeds a maximum, a saturation effect that is reflected by the rational form
given in Eq. (7).

This saturation effect highlights the fact that the NK cells and CD8C T cells
are interacting with tumor cells in a qualitatively different way, since there is no
saturation level for the NK cell competition term. It may be that the NK cell-kill
rate could achieve saturation as well in theory, but in practice this does not occur.
On the other hand, it may be that the antigen-specific T-cells follow this curve to
saturation because they are targeting a specific tumor type, and are therefore more
effective in terms of cell–cell interactions.

For conciseness, we will represent the rational form for the fractional cell kill
rate with the letter D, and refer to the fact that cell lysis rates by activated CD8C
T-cells agree with this form as the de Pillis–Radunskaya Law.

The de Pillis–Radunskaya Law:

For tumor-specific effector cells such as CD8C T-cells, the fractional kill rate
is given by:

g.E; T / D D D d
.E=T /�

s C .E=T /�
D d

E�

sT � C E�
(8)

The ratio-dependent form for the fractional cell kill term is mainly phenomeno-
logical, in the sense that it models observable outcomes, not direct underlying
mechanisms. It is not immediately clear what the individual components of this term

J
Fig. 5 Comparison of mathematical cell lysis laws. Top row NK-Cell Lysis. The top graph shows
model predictions smooth curves) plotted with experimental data (squares and circles) from [24] on
RMA cells. The shallow curve predicts lysis percentages for the control cells, while the steep curve
predicts lysis percentages for the ligand-transduced cells. Center and bottom row CD8C T-Tumor
Cell Lysis. The second row of graphs plots experimental data points (circles and squares) taken
from [24] against model cell lysis predictions (solid lines). The center graphs show the power
law prediction and the rational law prediction against lysis data for tumor cells whose primary
and secondary challenges were with control-transduced tumor cells (RMA cells). The bottom row
shows the same comparison for tumor cells whose primary and secondary challenges were with
ligand-transduced cells (RMA cells transduced with Rae1ˇ ligand)
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Fig. 6 Model validation using human data from [26]. Presented here is a comparison between
the power form and the rational form in describing human (CD8C) T-tumor lysis, as was done
in Fig. 5 for mouse data. In each graph, two separate simulations are plotted along with data
from two different patients who experienced regression of melanoma after receiving TIL treatment.
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represent biologically. The use of phenomenological dynamics in modeling biologi-
cal processes is quite common and can serve to provide predictive capabilities in the
model. Such descriptive (as opposed to explanatory) dynamics are frequently used
as a foundation on which to build models of tumor development. For example, see
the comparison of several phenomenological tumor growth models presented in [7],
p. 239. Perhaps future investigations may elucidate the the underlying mechanisms
that give rise to the rational form of the fractional cell kill rate in the context of
tumor–immune interactions.

5.1 Validation of the de Pillis–Radunskaya Law
with Human Data

In order to validate the fundamental model dynamics with respect to the new rational
form of the tumor-specific cell lysis term, we performed another comparison of
the power form versus rational form predictions, this time using human (CD8C)
T-tumor lysis data from [26]. Figure 6 shows the results of this comparison. The
top graph shows the power–law predictions plotted against (CD8C) T-tumor lysis
data for two separate patients. It is clear that the power–law prediction does not fit
the data particularly well. On the other hand, the bottom graph shows the prediction
using our newly introduced rational law. In this case, the model can predict cell lysis
quite accurately, even when applied to this human data set.

For this particular set of data, effector cells are fairly efficient at lysing tumor
cells, with a maximum lysis rate around 60 %. Note that, as with the ligand-
transduced mouse data, the difference between the power form and the rational form
fractional cell kill rates is quite pronounced, once again indicating that the rational
form is particularly well suited to simulating cases in which effector cell lysis rates
are relatively strong.

It is necessary in each case to find the parameters which will describe the
particular type of tumor–immune interaction under study. The two data sets pictured
here underline a feature inherent in the modeling process: there is a wide variety
of cell behavior between any two different patients. Care must therefore be taken
in making sweeping statements regarding specific responses to treatments, and
any quantitative information must be interpreted as one possibility, and not as a
firm predictor in any given case. However, a large set of simulations, along with

J
Fig. 6 (continued) The data show results of cytotoxicity assays with TILs taken 7 days after cell
transfer. The model predictions are represented by the smooth curves, while the experimental data
are represented by squares for patient nine and triangles for patient 10. Note, once again, that the
rational form for predicting (CD8C) T-tumor lysis rates as a function of the effector:target ratio
(as depicted in the lower graph) provides a much better fit to the experimental data than does the
power form (as depicted in the top graph)
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some analysis of the sensitivity of the model to parameter fluctuations can certainly
provide a general picture of possible behaviors under certain conditions. Further
comparisons may lead to new insights in the nature of the differences between
different tumor types, as well as different immuno-therapeutic protocols.

6 Three Population Model: Tumor, NK, CTL

In this section, we introduce the three population tumor–immune model developed
in [23]. Most of the material in this chapter can also be found in [23]. This
mathematical model of tumor–immune interactions sheds light on the differing roles
of the Natural Killer (NK) and CD8C T cells in suppressing various tumor cell lines
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effector:target ratio point. The difference between the power law and rational law models is most
pronounced in the ligand-transduced case, in which the effector cells are far more efficient at lysing
tumor cells
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in mice and humans. The model is driven by the results of experiments carried out
by Diefenbach et al. [24], in which mice were challenged with tumor cells that were
modified to be more recognizable by NK cells and CD8C T cells. The responses of
these two branches of the immune system to the tumor challenge were observed both
separately and in conjunction with each other. After developing the model, using
the methods outlined in Sect. 5 to fit the parameters both to the murine (mouse)
data from [24], and also to human data provided in Dudley et al. [26]. In the human
study, subjects with metastatic melanoma were treated with highly selected tumor-
reactive T cells, and results were observed. Both the mouse and the human studies
provide experimental information about tumor growth rates and effector to tumor
cell kill (or lysis) rates. We use the model to explore the dynamics of tumor rejection,
the specific role of the NK and CD8C T cells, and the development of protective
immunity to subsequent tumor rechallenge.

6.1 Model Development

The specific biological assumptions we took into account when developing our
model equations are based on both accepted knowledge of immune system function
and conclusions stated in [24, 26]. The assumptions include:

1. A tumor grows logistically in the absence of an immune response. This is one
accepted growth model for tumors [7], and is also based on fittings of the data in
[24].

2. Both NK and CD8C T cells are capable of killing tumor cells. (See, for example,
[24, 31, 40].)

3. Both NK and CD8C T cells respond to tumor cells by expanding and increasing
cytolytic activity. (See, for example, [41, 58].) Note that the level of effector
cell “effectiveness” depends on both the number of cells present, as well as the
individual cell’s cytotoxicity. In the model, we do not separate the measures of
high-effectiveness per cell from an increase in cell population, but measure the
combined overall increase in effectiveness in response to tumor.

4. NK cells are normally present in the body, even when no tumor cells are present,
since they are part of the innate immune response. See, for example, [63].

5. As part of the specific immune response, active tumor-specific CD8C T cells are
only present in large numbers when tumor cells are present. (See, for example,
[42, 63])

6. NK and CD8C T cells become inactive after some number of encounters with
tumor cells. (See, for example, [44].)

In the equations, we denote the three cell populations by:

• T .t/, tumor cell population at time t

• N.t/, total level of natural killer cell effectiveness at time t

• L.t/, total level of tumor specific CD8C T cell effectiveness at time t
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6.2 Model Equations

Using the list of assumptions from above, we describe the system as three coupled
differential equations, where each equation gives the rate of change of the particular
cell population in terms of growth and death, cell–cell kill, cell recruitment, and cell
inactivation. In particular:

Rate of change of tumor cell population D
(Growth and death rate)� (Cell–cell kill rate)

Rate of change of active effector cell populations D
(Growth and death rate) C (Recruitment rate)� (Inactivation rate)

The mathematical forms of the growth and death terms for tumor and immune
cell populations will reflect Assumptions (1), (4) and (5). Assumption (2) is reflected
in the cell–cell kill term, Assumption (3) gives rise to the effector cell recruitment
terms, and Assumption (6) is incorporated through the effector inactivation terms.

Immune recruitment terms are generally assumed to be of a Michaelis–Menten
form, (see, e.g., [46] in which Michaelis–Menten dynamics are derived for immune
cell recruitment by cancer cells). See, for example, Eq. (4). These dynamics are
commonly used in mathematical tumor models that include an immune component,
since they allow for a saturation effect (see, e.g., [42]). In the case of the CD8C T
cells, in addition to being recruited by interactions with T-cell processed tumor cells
through a Michaelis–Menten dynamic, additional CD8C T cells are stimulated by
the interaction of NK cells with tumor cells. This NK stimulation is represented by
the rNT term in Eq. (11). The term rNT , representing a fraction of the number
of interactions between NK cells and tumor cells, is the vehicle through which we
model the fact that the specific immune response of the CD8C T cells is activated
only after the activation of the earlier response of innate immunity.

Substituting specific mathematical forms for each of the growth, death, recruit-
ment, and inactivation terms yields the following system of equations:

Three-dimensional model:

dT

dt
D aT .1 � bT / � cNT � DT (9)

dN

dt
D � � f N C gT 2

h C T 2
N � pNT (10)

dL

dt
D �mL C jD2

k C D2
L � qLT C rNT (11)

(continued)
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where

D D d

�
L
T

��

s C �
L
T

��
(12)

From [24] we were able to get data on the growth curves in the absence of an
immune response, which allowed us to estimate parameters a and b. These model
parameters were estimated from the data in [24] by minimizing the least-squares
distance from the simulated values to the data. Data measuring the percent of IFN-
� producing immune cells as a function of ligand expression allowed us roughly
to estimate immune recruitment rates stimulated both by ligand-transduced and
control-transduced tumor cells. Other parameters, such as the background source
rate for NK cells (�) and death rates for immune cells (f and m), were taken from
the literature, e.g. [46, 73]. Although some of these parameters are rough estimates,
and may deviate from other specific data, the model as a whole qualitatively
describes the observed data both in the mouse and in the human experiments.

Table 3 provides a detailed listing of the parameters in this model, along with
their units, descriptions, numerical values for the simulations, and reference sources
from which these values were taken. Detailed development of all terms, except for
the new fractional cell kill term D which was descried in Sect. 5, can be found
in [16].

6.3 Simulating Immunotherapy: Enhancing Ligand
Expression

The three-dimensional model can be used to simulate the effect of enhancing ligand
expression on tumor cells by allowing the relevant parameters to depend on the
tumor cell type. The relevant parameters in this model are c and d , the effectiveness
of the immune cells, along with g and j , the recruitment parameters.

Figure 5 (top) plots the effector:target lysis data from [24] for NK cells, along
with our simulated model curves. The ligand transduced tumor cells are lysed at a
higher rate by NK cells than those that are control transduced. The two values of
NK-lysis parameter c estimated from the two sets of data accurately reproduce the
effects of this ligand transduction.

In the bottom two rows of Fig. 5, effector:target lysis data and simulations for the
CD8C T cells are presented. For our experiments, four CD8C T cell lysis parameters
were determined through fitting to the four ligand transduction data sets of [24], and
these are all able to capture the different experimental outcomes. For brevity, only
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the two cases representing priming and rechallenge with control-transduced cells
and priming and rechallenge with ligand-transduced cells are presented in Fig. 5.
Figure 5 shows the experimental data against the mathematical model prediction
using the best-fit parameter values for both the power form and the new rational
form of the competition term. Note that in Fig. 5 (center row) in which we compare
fits to data for non-ligand transduced cells, although the difference between the fit
achieved by the traditional power kill law and by the new rational kill law is not
clearly visible, the numerical difference in the error term is present. This can be
seen in Fig. 7. Here, we plot the numerical errors between the predictions and the
data, allowing a comparison between the goodness-of-fit of the power form and
rational form of the competition term. In the bottom row of Fig. 5, the superiority
of the fit achieved by the rational kill law over the power kill law is visible and
striking. Similarly, the numerical error bars of the right panel of Fig. 7, reflect the
much smaller error achieved by the rational kill law. It appears that it is critical
to employ the rational law to fit ligand transduced cell data, whereas the use of
either the rational or the power law for non-ligand transduced data will give us an
acceptable fit. This may indicate that the more effective the immune cells are at
lysing their target cells, the more they follow a rational law dynamic.

The simulations show what this model would predict under three different
experimental scenarios similar to those reported in [24]. These simulations explain
some of the reported experimental observations (see [24], Figs. 2 and 3, pp. 167–
168). Ligand transduced cells stimulate the immune response sufficiently to control
tumor growth (Fig. 8, top right), while control-transduced tumor cells escape
immune defenses (Fig. 8, top left). In the top left panel of Fig. 8, the immune
system is rechallenged at day 10 after priming with control-transduced cells, and
the tumor escapes surveillance. In the top right panel of Fig. 8, the immune system
is again rechallenged at day 10 with control-transduced cells, but the primary
challenge was with ligand-transduced cells. This simulation shows that the tumor
is controlled, indicating the development of immunity. Changing ligand levels on
the cells requires changes to the model parameters d; �; and s (all the parameters
involved in the rational T cell kill term D), as well as c (strength of NK cell kill), g

(NK cell recruitment rate), and j (CD8C T cell recruitment rate). Numerical values
for these parameters with varying ligand levels are provided in Table 3.

Simulations generated by a validated mathematical model can be used to detect
thresholds for immune efficacy. In Fig. 8 (bottom row), we reproduce with a
computational solution of our mathematical model the qualitative results of three
sets of experiments that were presented in Fig. 2, p. 167 of [24]. For the experiments
in [24], groups of mice were challenged with either 104, 105 or 106 ligand-
transduced tumor cells, then tumor establishment was tracked. For our in silico
simulations, we also challenge the mathematical system with these three levels of
tumor cells. Figure 8 (bottom left) shows simulated tumor cell growth over time
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in response to these three initial levels of tumor burden in the absence of CD8C T
cell activity, reflecting the experiments in which the mice were depleted of CD8C T
cells. This simulation represents a system lacking a strong antigen-specific immune
response. The system can control a small tumor, but tumor challenges of 105 cells
or more escape the immune system’s control.

Figure 8 (bottom center) shows simulated tumor growth outcomes for the same
three experiments done in the absence of NK cells, reflecting the experiments with
mice depleted of NK cells. The system is now able to control initial tumor burdens
of up to 105 cells, but a larger challenge of 106 cells escapes immunosurveillance.

Figure 8 (bottom right) shows simulated results with both NK and CD8C T cells
active, reflecting the experiments on mice with intact immune systems. With both
the NK cells and the CD8C T cells working together, initial tumor burdens of up to
106 cells are controlled.

6.4 Sensitivity Analysis

In order to discover which components of the model contribute most significantly to
determining final tumor size, we performed a sensitivity analysis. Model sensitivity
was assessed by measuring the effect of small parameter changes on the final
volume of the tumor as represented by a simulation of the system’s evolution
over 25 days. Since ultimately we are interested in predicting a patient’s response
to immunotherapy treatment, we used human data for the sensitivity study. In
particular, the parameter set from patient 9, available in [26], and for whom lysis
data are plotted with squares in Fig. 6, was used as the base point. Each parameter
was perturbed from its estimated value by 1%, and the corresponding percent change
in final tumor volume was calculated.

The results of this parameter sensitivity analysis for the mathematical model
are shown in Fig. 9. The system in this case is found to be most sensitive to the
exponent in the CD8C T lysis term, �; as well as to the tumor growth parameter a.
This suggests that, in addition to the aggressiveness of the tumor, as represented
by growth parameter a, even very small changes in the cytolytic effectiveness
of tumor-specific T cells, as represented by shifts in the value of �, can affect
clinical outcome. This would indicate that any treatment which might enhance this
effectiveness should aggressively be pursued. By contrast, the size of the tumor after
25 days is not very sensitive to the NK cell competition parameter, c. According
to this model, then, the cytolytic activity of the NK cell population alone is not a
determining factor in the eventual size of the tumor, and should be considered in
conjunction with CD8C cell activity.
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Fig. 8 Simulations of (tumor cell)–(NK cell)–(T cell) mutual interactions over time. Top left
System evolution with control-transduced primary inoculation. Ineffective response by NK
cells and CD8C T cells to non-ligand transduced challenge. Top right System evolution with
ligand-transduced primary inoculation. Effective response by NK and CD8C T cells to non-
ligand transduced challenge following priming with ligand-transduced cells. Both systems are
rechallenged with control-transduced cells after 10 days. Bottom row The simulations presented
in these graphs are based on data provided in [24]. In each of the three cases tumor growth is
plotted over time starting with three different initial tumor challenges: 104 , 105, and 106 cells.
In the plots, cell populations are converted to mean surface values. Bottom left Simulation of
Tumor–NK interactions in a system with CD8C T cells depleted. The simulation shows that in
the absence of CD8C T cells, only a tumor inoculation of up to 104 cells is suppressed, whereas
larger challenges escape immunosurveillance. Bottom center Simulation of Tumor-(CD8C T cell)
interactions in a system with NK cells depleted. The simulation shows that in the absence of NK
cells, tumor inoculations of up to 105 cells are suppressed, whereas a larger challenge of 106 cells
escapes immunosurveillance. Bottom right Simulation of Tumor-(CD8C) T–NK interactions in
a system with all immune components intact. Note that the maximum mean tumor surface area
achieved in this plot is only 6 mm2, as compared with 300 mm2 in the previous two plots. Tumor
populations of this small size are not clearly visible in the data plots provided in [24], Fig. 2, p. 167.
The simulation shows that when both NK cells and CD8C T cells are present, tumor inoculations
of up to 106 cells are suppressed
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6.5 Bifurcation Analysis

In addition to a parameter sensitivity analysis of the type described in Sect. 6.4, we
can gain a better understanding of the overall dynamics of the system, by performing
a bifurcation analysis of the system. This type of analysis gives us a global view of
the system, identifying the regions in parameter space that correspond to a “health”
or “diseased” state. Furthermore, if specific parameters have been identified as being
critical to the progression of the disease, or if a particular treatment affects one set
of parameters, a bifurcation analysis can pinpoint values of these parameters that
serve as thresholds beyond which the patient’s system enters the basin of attraction
of a “healthy” stable fixed point. These bifurcation points could become the goal of
therapy design. We will illustrate this idea with some specific parameter sets, guided
in part by the those parameters identified as “sensitive” in Sect. 6.4.
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Fig. 9 This analysis shows that the tumor size is most sensitive to the CD8C T cell kill parameter,
�, as well as to the tumor growth rate parameter a

Before performing the bifurcation analysis, we add a bit more realism to the
model. This model expansion is motivated by our goal of exploring the effect of
different treatment strategies on the progression of the tumor, which we will pursue
in Sect. 7. The expanded model will reflect two additional assumptions:

1. Circulating lymphocyte levels can be used as a measure of patient health (see,
e.g., [33, 50, 56]). The source of the NK cell population can be represented
as a fraction of the circulating lymphocyte population, a simplification meant
to represent the complex cascade of biological events that leads to NK cell
stimulation (see, e.g., [10]).
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2. NK cells, circulating lymphocytes and tumor cells are components of the process
of stimulation and elimination of activated effector cells, a model simplification
meant to reflect the self-regulatory nature of the immune system (see, e.g.,
[26, 31, 39]).

Assumption (1) leads to the introduction of a new state variable, C , representing
the population of circulating lymphocytes, or white blood cells. These circulating
lymphocytes are assumed to be replenished at a constant rate, and die off at a
constant rate, unaffected by the presence of the tumor. The constant source term
for the NK-cells is replaced by a source term proportional to C.t/. Assumption (2)
leads to a additional positive and negative terms in the CD8C, or L.t/ equation.
With these modifications, the expanded model is:

Four-dimensional model:

dT

dt
D aT .1 � bT / � cNT � DT (13)

dN

dt
D eC � f N C g

T 2

h C T 2
N � pNT (14)

dL

dt
D �mL C j

D2T 2

k C D2T 2
L � qLT C .r1N C r2C /T � uNL2 (15)

dC

dt
D ˛ � ˇC (16)

where D is the de Pillis–Radunskaya Law, given in Eq. (12).

6.5.1 Finding Equilibria

The first step in understanding the long-term behavior of the tumor–immune system
is to identify the equilibria, and to determine their stability. Equilibria are found
by setting the right-hand side of Eqs. (13)–(15) to zero. We first note that Eq. (16)
decouples from (13)–(15), so that, at equilibrium we have CE D ˛=ˇ.

Equation (13) has one zero at the “tumor-free” equilibrium at TE D 0, and
possibly several nonzero tumor equilibria. Setting T D 0 in (14) and (15) yields
one non-negative tumor-free equilibrium in four-dimensions:

E0 D .TE; NE; LE; CE/ D .0;
e˛

f̌
; 0;

˛

ˇ
/:
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In the case where TE ¤ 0; the equilibria are again determined by finding
the simultaneous solutions of Eqs. (13)–(16), but the values of the nonzero tumor
equilibrium points must be found numerically.

In particular, setting Eq. (14) to zero and solving for N yields

NE D eCE.h C T 2/

f h C .f � g/T 2 C phT C pT 3
(17)

Similarly, requiring that Eq.(13) equal zero (where T ¤ 0) gives

DE D a � abT � cNE (18)

Using this expression in Eq. (12) gives an expression for the equilibrium value of L

in terms of T :

LE1 D
�

DEsT �

d � DE

�1=�

; (19)
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the estimated parameter set
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Finally, setting Eq. (15) to zero gives

L2.uNE/ C
�

m � jD2
ET 2

k C D2
ET 2

C qT

�
L � .r1NE C r2CE/T D 0; (20)

which is quadratic in L. Equation (20) has two solutions for each value of T , which
we shall denote LE2.T / and LE3.T /. Equilibrium points of the system are found by
determining the T -values at which the graphs of LE2.T / and LE3.T / intersect the
graph of LE1.T /. These T values can then be used to find the equilibrium values of
N and L using Eqs. (17) and (19).

Observe that there could be multiple nonzero values of T that simultaneously
satisfy Eqs. (19) and (20). However, these solutions could be negative or complex-
valued. For example, using the estimated set of mouse parameters given in Table 5,
we find two solutions, only one of which is biologically relevant (see Fig. 10). As a
system parameter is changed, other nonzero equilibria can appear (see Fig. 11), or
negative equilibria can become positive, and therefore biologically feasible.

6.5.2 Stability of Equilibria

A system will move towards an equilibrium point if that point is stable, so the next
step in the analysis of the long-term dynamics of the system is to investigate the
stability of all equilibria. The effect of the stability of the tumor-free equilibrium on
the progression of the disease is illustrated in the lower graph of Fig. 11, dashed line.
For this set of parameter values, the tumor-free equilibrium is unstable, while the
high-tumor equilibrium is stable. The stability of the high-tumor equilibrium implies
that, in the absence of treatment, the system will inevitably return to the high-tumor
state, i.e., the tumor will escape immune surveillance unless every single tumor cell
is killed. Thus, in a case such as ours for which there are only two equilibria, if
the tumor-free equilibrium is unstable, then in order to realistically effect a cure,
any treatment must not only reduce the tumor burden, but it must also change the
parameters of the system itself. The role of immunotherapy, therefore, might be
interpreted in this context as a treatment which changes system parameters by, for
example, permanently raising the cytolytic potential of the natural killer cells [the
parameter “c” in Eq. (13)]. We note that if the system were one that admitted a very
small but stable tumor, then another “healthy” state might be one for which it is
possible to maintain the system at this low tumor level.

The stability of an equilibrium is typically determined by linearizing the system
about the calculated values, and by determining the stability of the linearized system
by explicitly solving it. (See any textbook on differential equations, for example,
[6].) However, the term D in Eq. (13) poses a problem since it is not differentiable
at the tumor-free equilibrium E0 D .0; e˛

f̌
; 0; ˛

ˇ
/, so we cannot use this technique to

determine the stability of the tumor-free state.
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However, we can make some relevant observations without linearizing. Suppose

T is positive. We see that
dT

dt
is negative if

a.1 � bT / � cN � D < 0 , cN > a.1 � bT / � D

If we assume that N is near its value at the tumor-free equilibrium: NE D e˛

fˇ
, then

we get a sufficient condition for stability. Suppose N > 0:5NE then:

c >
2a

NE

) cN > c.:5NE/ > a > a.1 � bT / � D:

Thus, if c is sufficiently large relative to the intrinsic growth rate of the tumor cells, a
small tumor can be controlled by the innate immune response: the tumor population
will decrease towards zero, and the tumor-free equilibrium is stable.

Similarly, suppose we assume a small tumor population: T < 1
b

� 10�3

(for typical values of the intrinsic carrying capacity, b, this corresponds to
a tumor of fewer than 105 cells, below the level of detection). Noting that

D D dL�

sT � C L�
< d , we get a condition for instability.

c <
:999a � d

N
) a.1 � bT / > 0:999a > cN C d > cN C D

) dT

dt
D T .a.1 � bT / � cN � D/ > 0

Thus, for small enough values of c, the tumor will escape immune surveillance
and the disease will progress. Note that we must have d < 0:999 a in order for
there to be a positive value of c that satisfies the first inequality above. This makes
sense, since a small value of d corresponds to a low kill-rate by the CD8C T cells,
reflecting a less effective immune response.

By simulating the four-dimensional model with initial values close to the tumor-
free equilibrium and with gradually increasing values of c, we can estimate the
critical value of c, the bifurcation point, at which the tumor-free equilibrium
becomes unstable. Figure 11 shows that the bifurcation point is at approximately
ccri t D 4:86 � 10�10cell�1day�1, somewhat smaller than the base value of
7:13�10�10 shown in Table 5. For this bifurcation diagram, the parameter d is set to
0:9a � 0:39. All other parameters are those given in Table 5. Similar observations
and experiments can be made with other key parameters, such as the parameter d ,
the maximum kill rate by CD8C cells. See [15] for other examples.

At nonzero equilibrium points, a linear stability analysis can be performed since
the right-hand sides of all of the differential equations are differentiable away from
T D 0; L D 0. As an illustrative example, we show the results of this analysis as
we vary the NK-cell kill rate parameter, c, from zero to a relatively large value.
For very small values of c, the tumor-free equilibrium is unstable, and there is
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a stable, high-tumor equilibrium. This corresponds to a system with a very weak
innate immune response to the tumor, and one tumor cell will reproduce, initiating
the development of a large tumor. As the parameter c increases, the tumor-free
equilibrium becomes stable, and a small number of tumor cells can be controlled
by the immune system. The system returns to the tumor-free equilibrium, even in
the absence of any treatment (Fig. 11, bottom panel).

When the tumor-free equilibrium becomes stable, a nonzero, unstable equilib-
rium appears, separating the two stable equilibria. The system is now bi-stable, and
the goal of treatment should be to get the system into the basin of attraction of
the zero-tumor equilibrium. At c � 1:45 � 10�5, the nonzero equilibria disappear
in a saddle-node bifurcation. For larger values of c the system has only the stable
zero-tumor equilibrium, and the disease will not progress.

Similar analyses can be performed using any of the system parameters in order
to determine conditions for the appearance or disappearance of equilibria and to
determine equilibrium stability. See [15] for a bifurcation analysis of the adaptive
response parameter, j .

Two bifurcations are evident in the diagram in Fig. 11. The first is a transcritical
bifurcation, where the negative equilibrium becomes positive, and the zero-tumor
equilibrium changes its stability. (This bifurcation occurs at values that are too small
to distinguish on the diagram). Before the bifurcation, the zero-tumor equilibrium
is strictly unstable: even one tumor cell will result in the system moving toward the
high-tumor equilibrium. After the bifurcation, the immune system is able to control
small initial tumor populations. Initial tumor populations which are controlled are
said to be in the basin of attraction of the zero-tumor equilibrium. On the other hand,
those which escape immune surveillance, leading the system toward the high-tumor
equilibrium, are said to be in the basin of attraction of the high-tumor equilibrium.
These basins are shown in Fig. 12. Note that since the state-space of the system
is actually four-dimensional, what is depicted in Fig. 12 is the projection of the
basins onto the Tumor-NK plane, where the values of L and C are kept at their
zero-equilibrium values. Figure 12 illustrates the consequences of bi-stability, the
co-existence of two, stable fixed points. If the tumor is initially very small, the tumor
will be controlled by the level of immune response represented by this parameter
set. However, if the tumor somehow grows larger than this threshold, perhaps due
to a temporarily weakened immune system or environmental factors, then the tumor
will grow to a dangerous size, even in the renewed presence of an adequate immune
response. Figure 12 shows two scenarios, where the system starts in identical states,
except that in one case (the dashed red line in the lower panel), the initial tumor has
exactly one additional cell. This tiny change in initial values results in a drastically
different outcome for the patient. The location of the basin boundary is therefore
crucial in determining the outcome of the disease. In the case of a patient who
has undergone chemotherapy which reduces both tumor and immune cell levels,
if these levels place the system above the basin boundary then even an undetectable
tumor will regrow. However, if the patient is given immunotherapy subsequent
to chemotherapy, thereby pushing NK levels to the right of the basin boundary,
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Fig. 11 (Top) Bifurcation diagram showing the effect of varying the NK-kill rate, c: As c

increases from zero, the tumor-free equilibrium becomes stable in a transcritical bifurcation at
ctrans � 4:86 � 10�10, and an unstable, nonzero equilibrium appears. In this regime the system is
bi-stable. At csad � 3:0 � 10�5 the high, stable equilibrium and the unstable equilibrium coalesce
and disappear in a saddle-node bifurcation. (Bottom) Two solutions of the system showing tumor
growth over time for two values of c, one below the transcritical bifurcation, and one above. For
the smaller value of c, the small initial tumor consisting of 10 cells grows to the high tumor
equilibrium, while for the larger value of c, the immune system is able to drive the tumor back
to the tumor-free equilibrium. In both panels, other parameters are from Table 5, except for d ,
which is set to 0.3877. Initial values for the lower panel are: .10; e˛
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ˇ
/
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the system will evolve toward the stable zero-tumor equilibrium, and the tumor
will not regrow. This hypothetical scenario emphasizes the potential importance of
combination therapy.

7 Model Extension to Simulate Chemotherapy
and Immunotherapy

The next step in model development is to add terms that reflect treatment therapies.
Therefore, in addition to the list of assumptions about tumor and immune system
evolution given in Sects. 6.1 and 6.5, we add assumptions used in the development
of therapeutic terms: Full model development and analysis details can be found
in [15].

• The fraction of the tumor population killed by chemotherapy depends on the
amount of drug in the system. The fraction killed has a maximum less than
one, since only tumor cells in certain stages of development can be killed by
chemotherapy [60].

• A fraction of NK cells, CD8C T cells, and circulating lymphocytes are also killed
by chemotherapy, according to a similar fractional kill curve [29].

Our model, when extended to include treatment terms, not only tracks cell
populations: tumor cells (T ) and immune cells (circulating lymphocytes: C , NK
cells: N , and cytotoxic CD8C T-cells: L), but in addition will track the total number
of circulating lymphocytes (or total white blood cell count in the blood stream),
C.t/; a chemotherapy drug blood concentration M.t/ and an immunotherapy drug
blood concentration I.t/: In our examples, the chemotherapy term represents a non-
targeted cytotoxic medication such as doxorubicin, and the immunotherapy term
represents an interleukin such as IL-2.

Since broadly cytotoxic chemotherapy is damaging to all cells in the system, we
include a chemotherapy drug kill term in each of the cell population equations. We
use a saturation term 1 � e�M to represent the chemotherapy fractional cell kill,
noting that the effectiveness of chemotherapy is bounded: At relatively low concen-
trations of drug, the kill rate is nearly linear, while at higher drug concentrations, the
kill rate plateaus. The mathematical term we use reflects the dose–response curves
suggested by the literature [29]. We then subtract the term K�.1 � e�M /�; from
each the four cell population equations, where � D T; N; L; C .

For immunotherapy treatment, we allow for CD8C T activation by interleukin-
2 (IL-2) immunotherapy. This “drug” is actually a naturally occurring cytokine
in the human body, and its effect on the immune system’s efficacy is described
mathematically with a Michaelis–Menten interaction term in the equation for L.
The presence of IL-2 stimulates the production of CD8C T cells, and the cascade
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Fig. 12 (Top) Basins of attraction of the zero-tumor and high-tumor equilibria in the bi-stable
regime. Two orbits are shown that start near the basin boundary, with initial populations differing
by only one tumor cell. (Bottom) Solution curves showing the evolution of the tumor population
over time for the two orbits shown in the upper graph with initial values near the basin boundary.
The two initial conditions are: T1.0/ D 2:8817259�107 (solid blue line) and T2.0/ D 2:8815260�
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used in these simulations: c D 1:0 � 1005; d D 0:387702. Other parameters are those listed in
Table 5
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of effects requires that we modify certain terms in the equations for T; N and L; in
addition to including new treatment term equations. Details of those modifications
can be found in [15]. The extended system of equations becomes:

Model with chemotherapy and immunotherapy:

dT

dt
D aT .1 � bT / � cNT � DT � KT .1 � e�M /T (21)

dN

dt
D eC � f N C g

T 2

h C T 2
N � pNT � KN .1 � e�M /N (22)

dL

dt
D �mL C j

D2T 2

k C D2T 2
L � qLT C .r1N C r2C /T

� uNL2 � KL.1 � e�M /L C pI LI

gI C I
C vL.t/ (23)

dC

dt
D ˛ � ˇC � KC .1 � e�M /C (24)

dM

dt
D ��M C vM .t/ (25)

dI

dt
D ��I I C vI .t/ (26)

D D d
.L=T /�

s C .L=T /�
(27)

7.1 Tumor Growth Response to Treatments: Mouse Data

For the following set of numerical experiments, our model parameter values are
determined using published data both from murine experimental studies [24] and
from human clinical trials [26]. When necessary, we also use previous model
parameters that have been fitted to experimental curves [17, 18, 22, 46]. Tables 5
and 6 provide a full listing of all of the parameters with their units and descriptions.
Full descriptions of parameter derivation for the following set of experiments can
be found in [15].

The first simulation we run represents an in silico mouse that has an immune
response and has been challenged with a tumor, but no treatments are administered.
Simulation results are shown in Fig. 13, top left. The parameter set and initial
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conditions yield a scenario representing an in silico mouse in which the immune
system is not strong enough to stop tumor growth. The tumor reaches carrying
capacity, and we assume the mouse dies under this extreme tumor burden. The initial
conditions for this situation are chosen to be a tumor of size 106 cells, a circulating
lymphocyte population of 1:1 � 107, a natural killer cell population of 5 � 104,
and a population of 100 CD8C T cells. With the set of parameters in Table 5, the
outcome of the simulation is sensitive to the initial conditions chosen. This set of
initial conditions is meant to reflect a laboratory mouse experiment, in which an
initial tumor challenge of 106 cells is directly implanted into the mouse, and then
the progression of the tumor is observed.

The next two simulations employ either chemotherapy or immuotherapy treat-
ments. The chemotherapy treatment approach involves administering seven pulsed
doses of chemotherapy, each dose represented by setting vM .t/ D 1 in Eq. (25) for
1 day, and given in a 14 day cycle. The immunotherapy treatment approach involves
injecting 8 � 108 highly activated CD8C T cells from day 7 to day 8. This CD8C
injection is meant to represent the TIL treatments used for certain patients (see, for
example, [26]).

For an initial tumor challenge of 106 cells, the tumor survives despite either
method of intervention. These experiments are pictured in Fig. 13, top right and
bottom left.

There are also cases in which chemotherapy alone or immunotherapy alone can
be effective in killing a tumor that the immune system could not kill on its own.
These experimental results are not pictured here. However, the range of initial
conditions for which mono-therapies are effective is relatively small in comparison
to the greater effectiveness of combination treatments. This result is consistent
with experimental investigations (see, for example, [49]). The next simulation
represents an in silico mouse treated with both chemotherapy and immunotherapy.
The chemotherapy and immunotherapy treatments given as mono-therapies above
are now given simultaneously, and initial population sizes are set to the same values
as in the previous experiments. Results are displayed in the bottom right image in
Fig. 13.

In these simulations, combination therapy is clearly more effective in controlling
tumor growth than is either individual of treatment alone. The synergistic effect of
combination treatment that we observe reflects the outcomes of some laboratory
studies (see, e.g., [49, 72]). In vivo, these treatments do cause undesirable side
effects, some of which are due to the damage caused to the immune cells. With
this model, the circulating lymphocyte level can be used as a proxy to indicate at
least whether the immune health of the mouse has been damaged too much during
treatment, and dosing can be modified accordingly.
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Fig. 13 Mouse data. Top left No treatment. Immune system without intervention where the tumor
reaches carrying capacity and the mouse “dies”. Top right Chemotherapy. The immune system
response to high tumor with chemotherapy administered for 1 day in a 14 day cycle. Bottom left
Immunotherapy. Immune system response to high tumor with the administration of immunotherapy
from days 7 to 8. Bottom right Combination therapy. Chemotherapy and immunotherapy as
previously described given simultaneously effectively control of the tumor. Parameters for all
simulations are provided in Table 5

7.2 Tumor Growth Response to Treatments: Human Data

We next run model simulations using parameters taken from experimental results
of two patients—“Patient 9” and “Patient 10”—from a study by Rosenberg et al.
on metastatic melanoma [26]. Model parameters for both Patients 9 and 10 are
summarized in Table 6.

We first look at the “human” system without treatment. In the simulations using
human parameters, we set an initial tumor burden of 106 cells. This experiment
represents a situation in which the immune system has not become activated
against the tumor cell population until the population has reached 106 cells, a
size which in many cases is still considered to be below the threshold of clinical
detectability in a human. For this tumor, immune system strength is very important
in determining whether or not the body can eliminate a tumor in the absence of
treatment interventions. Simulations show that an immune system with initial values
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of 1 � 105 natural killer cells, 1 � 102 CD8C T cells, and 6 � 1010 circulating
lymphocytes can be considered “healthy,” and is, in fact, sufficient to control the
growth of a 106 tumor challenge (images not shown). However, when the immune
system is weakened, a tumor of the same 106 size grows to a dangerous level in the
absence of treatment interventions. A “weakened” immune system in this case has
initially values set to 1 � 103 NK cells, 10 CD8C T cells, and 6 � 108 circulating
lymphocytes. We note that if we challenge even the “healthy” immune system with
107 tumor cells (an order of magnitude larger than the 106 challenge), even the
healthy immune system is unable to control the tumor. This indicates that the earlier
the immune system can be activated against a growing tumor, the better. We will
also use the 107 size challenge to test the results of treatment interventions.

Simulations of treatments show similar outcomes to the mouse experiments: We
can easily find scenarios in which chemotherapy alone or immunotherapy alone is
not sufficiently effective in controlling tumor growth when initial tumor size is 107

cells, but in combination the therapies can successfully eliminate a tumor. We do not
include all the experiments here. The reader can refer to [15] in which a larger range
of simulations is presented. Here we will focus on experiments that highlight how
certain treatment scenarios can differ from patient to patient, and how outcomes
will be affected if a patient’s immune system is compromised. Measuring certain
patient-specific immune response parameters can be important in helping to predict
whether an individual will respond well to treatments.

As a proxy representing a patient’s immunological health we use the number of
circulating lymphocytes in the body, and do not allow the circulating lymphocytes
to drop below a threshold for which the risk of infection may be too high. In our
experiments, we chose that threshold to be on the order of 108 cells. This amount
reflects a fraction of approximate normal white blood cell levels in an adult human
(see, e.g., [63]).

Simulation results for combination treatment on Patient 9 are shown in Fig. 14,
left. The combination treatment is able to eliminate a tumor of initial size 107

cells, a tumor cell count that is likely to be clinically detectable. The chemotherapy
regimen is given in 9 pulsed doses total, with dose strength vM .t/ D 5, and doses
given once every 10 days. Initial immune strength is 1 � 103 NK cells, 10 CD8C
T cells, and 6 � 108 circulating lymphocytes. Immunotherapy consists of a TIL
injection followed by short doses of IL-2. This mirrors the treatment that was given
to Patients 9 and 10 in Rosenberg’s experiments [26], the difference being that the
patients in the clinical trial were first administered immuno-depleting chemotherapy
before the administration of TIL therapy. IL-2 and chemotherapy concentrations are
shown in Fig. 14, right. The combination treatment given is simply a superposition
of these separate chemotherapy and immunotherapy regimens. We note that, when
administered separately as monotherapies, the chemotherapy treatment alone or the
immunotherapy treatment alone is unsuccessful in controlling tumor.

We next run these treatment simulations using the patient specific parameters
extracted from the Rosenberg et al. study [26] for Patient 10. We use the same
initial conditions for the state of the immune system and the initial tumor challenge.
However, several of the immune response parameters for Patient 10 (such as d

and �) differ from those of Patient 9, causing Patient 10’s CTL response to tumor
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cell growth to be slower. As opposed to the positive response to the combination
treatment approach for Patient 9 (see Fig. 14), the parameter set for Patient 10 allows
continued growth of the tumor, as seen in in Fig. 15, top left. If we wish to control
the tumor, we must modify the treatment. One approach is to administer additional
immunotherapy in the form of more IL-2 doses. This expansion in treatment does
lead to tumor death in silico, as shown in Fig. 15, top right. It is interesting to
note that in this case, tumor behavior seems to reflect tumor dormancy followed by
relapse. The tumor appears to have completely died out by day 22. However, around
day 79, the tumor begins to re-emerge. Without the additional IL-2 treatment given
at day 80, the tumor would regrow. In order to see longer term outcomes, we ran the
simulation for 2,000 days, and the tumor did re-emerge, but at levels generally con-
sidered below detectability thresholds. The tumor subsequently died out again and
did not reappear. See Fig. 15, bottom left. These results indicate that the tumor pop-
ulation has been drawn into the stable zero tumor equilibrium at this point. Such a
case in the clinic would likely be viewed as a successful case of complete remission.

Clearly, the immune system’s tumor handling capacity and response to treatment
is patient specific. This is not surprising, since the combination therapy administered
to thirteen patients in the Rosenberg et al. study [26] gave rise to objective clinical
responses in only 6 of the 13 patients.

8 Discussion

The first model presented in this chapter incorporates tumor–immune interactions
and highlights the qualitative difference in kill rates between the innate immune
response (the effect of the NK cells) and the adaptive response (the effect of the
CD8C cells). The model, with its two different functional forms for the kill rates,
provides a good fit with experimental data resulting from priming and rechallenge
with different combinations of tumor cell types. The fact that two different
functional forms are needed to describe the interactions between tumor cells and
the two branches of the immune system suggests that laboratory experiments might
be designed to illuminate the mechanisms behind the different cell interaction
dynamics. Lessons might also be learned by looking at examples in ecology in
which predator–prey kill rates can obey either a rational law or a power law [2]. We
hypothesize that the more effective the immune cell is at killing, the more closely it
follows a rational law dynamic, as given in Eq. (8).

The experimental and simulated results that were presented in this chapter, along
with the parameter sensitivity analysis, highlight the importance of CD8C T cell
activation on the time course of the disease. Model results appear to indicate that
in order to promote tumor regression, it may be necessary (although perhaps not
sufficient) to focus on increasing CD8C T cell activity. In fact, we propose that
there may be a direct positive correlation between the patient-specific efficacy of
the CD8C T cell response as measured by cytotoxicity assays, and the likelihood of
a patient responding favorably to certain immunotherapy treatments.
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Fig. 14 Human data, Patient 9. Combining the separately unsuccessful therapies for a 107 size
tumor succeeds in eliminating the tumor. Left A 107 cell tumor is successfully eliminated by
combining nine 1-day chemotherapy doses of strength vM .t/ D 5 every 10 days, with a boost
of TILs and IL-2. 109 TILs are administered from day 7 through 8. IL-2 is administered in 6 pulses
from day 8 to day 11 at concentration vI .t / D 5 � 105 per pulse. Initial conditions are: 107 Tumor
cells, 1 � 103 NK cells, 10 CD8C T cells, 6 � 108 circulating lymphocytes. Patient 9 parameters
for these simulations are in Table 6. Right Drug concentrations for IL-2 and chemotherapy

In the final sections of the chapter, we extended the first model to include
immuno-modulating therapies. With this extended model, we could test treatment
strategies that used immunotherapies and cancer vaccines in conjunction with
chemotherapy.

Through an analysis of the system of equations in the absence of chemotherapy
or immunotherapy, we determined the equilibrium points of the system along with
the criteria for stability. In some parameter ranges, the system exhibited bi-stability,
where two stable equilibria co-exist. One of these stable equilibria represents a
disease-free state with no tumor cells, and the other represents an unhealthy state
where the tumor grows to a significant size. In this bistable situation, a treatment that
moves the system into the basin of attraction of the stable tumor-free equilibrium by,
for example, reducing the tumor population (through surgery or radiation) and/or by
increasing the number of immune cells (through adoptive cell transfer) could lead
to a “cured” state. Once the system has moved across the boundary into the zero-
tumor basin of attraction, small tumors that arise can be controlled by the immune
response—as long as the system parameters do not change too much.

In other parameter regimes, the tumor-free equilibrium is unstable, and there-
fore it is not sufficient merely to reduce the tumor size. In this case of an unstable
tumor-free equilibrium, even a few tumor cells will be able to escape the immune
surveillance. A successful treatment must be able to change the system parameters
in order to force this equilibrium to become stable. We note that in [30], a similar
conclusion is reached through a different modeling approach: in this case, too, it is
shown that unless system parameters are altered in some way, cytotoxic drugs alone
are often not sufficient to control even a very small tumor.

As can be seen in Figs. 14 and 15, simulations using parameter sets from
two different patients [26] show that treatment efficacy depends strongly on
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Fig. 15 Human data, Patient 10. Top left Combination therapy fails to eliminate the 107 cell tumor
in Patient 10 with more slowly responding immune system, and initial immune strength of 103

NK cells, 10 CD8C T cells, and 6 � 108 circulating lymphocytes. 109 TILs are administered
from days 7 through 8. IL-2 is administered in 6 pulses from day 8 to day 11 at concentration
vI .t / D 5 � 106 per pulse. Top right Combination therapy kills the 107 cell tumor in Patient 10.
Treatment is identical to that in the top left panel, with the exception that additional pulses of IL-2
are administered from days 8 through 13, 20 through 25 and 80 through 90. Bottom left The same
effective combination therapy as given in the top right panel and as shown in the bottom right
panel, but viewed over 2,000 days. Tumor is eventually eliminated. Bottom right Concentrations
for IL-2 and chemotherapy implemented in the simulations shown in the top right and bottom left
panels. Patient 10 parameters are provided in Table 6

patient-specific parameter values. Assays exist that allow for measurement of some
of the significant patient specific parameters used. For example, through chromium
release assays one can measure patient specific immune-tumor lysis rates, while
tumor cell reproduction rates can also be observed and measured in the laboratory.
Changes in these measurable parameters clearly affect system outcomes. Although
not all system parameters are yet measurable, those that are help to provide a good
start in designing customized treatment protocols for individuals.

The development of combination immunotherapy–chemotherapy protocols for
treating certain forms of cancer is a promising strategy in cancer treatment research.
In some preliminary clinical studies, immunotherapy has been found to be most
effective when administered in conjunction with chemotherapy [49], and this
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qualitative result has been borne out in our mathematical simulations, as shown
in Figs. 14 and 15. In this chapter, combination treatments included vaccine
therapy, activated anticancer-cell transfer (TIL injections), and activation-protein
injections (IL-2 injections) together with chemotherapy. Mathematical models of
other forms of immunotherapy and combination chemo-immunotherapy (such as
dendritic cell treatments, regulatory T cell suppression, and targeted monoclonal
antibody therapies) can be found in the works of, for example, [13, 14, 21]. The
mathematical models presented in this chapter can be used as a springboard for
further study and development of patient-specific cancer treatment protocols.

Appendix: Nomenclature and Parameter Values

Here we list all of the parameters used in the model, their meaning and their
estimated values. Tables 3 and 4 are fits to the three-dimensional model, while
Tables 5 and 6 are fits to the four-dimensional model. Tables 3 and 5 are used in
the experiments run to simulate the mouse experiments from [24]. Tables 4 and 6
apply to the human data from [26]. For detailed derivations, see [15, 23].

Table 3 Estimated parameter values: based on mouse experiments provided in [24]

Estimated
Param. Units Description value Source

a day�1 Tumor growth rate 5:14 � 10�1 [24]

b cells�1 1=b is tumor carrying capacity 1:02 � 10�9 [24]

c.n/ cell�1 day�1 Fractional (non)-ligand-transduced tumor
cell kill by NK cells

3:23 � 10�7 [24]

c.l/ 3:50 � 10�6

d.nn/ day�1 Saturation level of fractional tumor cell kill
by CD8C T cells nn, nl , ln, l l : primed with
(non)-ligand-transduced cells, challenged
with (non)-ligand-transduced cells

1:43 [24]

d.nl/ 3:60

d.ln/ 3:51

d.l l/ 7:17

�.nn/ none Exponent of fractional tumor cell kill by
CD8C T cells nn, nl , ln, l l : primed with
(non)-ligand-transduced cells, challenged
with (non)-ligand-transduced cells

5:80 � 10�1 [24]

�.nl/ 4:60 � 10�1

�.ln/ 9:00 � 10�1

�.l l/ 7:50 � 10�1

(continued)
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Table 3 (continued)

Estimated
Param. Units Description value Source

s.nn/ none Steepness coefficient of the Tumor-(CD8C T
cell) competition term nn, nl , ln, l l : primed
with (non)-ligand-transduced cells,
challenged with (non)-ligand-transduced
cells. (Smaller s ) steeper curve)

2:73 [24]

s.nl/ 1:61

s.ln/ 5:07

s.l l/ 4:00 � 10�1

e cells day�1 Constant source of NK cells 1:30 � 104 [46]

f day�1 Death rate of NK cells 4:12 � 10�2 [46]

g.n/ day�1 Maximum NK cell recruitment rate by
(non)-ligand-transduced tumor cells

2:5 � 10�2 [24, 46]

g.l/ 4g.n/

D 2 � 10�1

h cell2 Steepness coefficient of the NK cell
recruitment curve

2:02 � 107 [46]

p cell�1day�1 NK cell inactivation rate by Tumor cells 1:0 � 10�7 [24]

m day�1 Death rate of CD8C T cells 2:0 � 10�2 [73]

j.nn/ day�1 Maximum CD8C T cell recruitment rate nn,
nl , ln, l l : primed with
(non)-ligand-transduced cells, challenged
with (non)-ligand-transduced cells

3:75 � 10�2 [24, 46]

j.nl/ 3:75 � 10�2

j.ln/ 3j.nn/

D 1:13 � 10�1

j.l l/ 8j.nn/

j.l l/ D 3:0 � 10�1

k cell2 Steepness coefficient of the CD8C T cell
recruitment curve

2:02 � 107 [24, 46]

q cell�1 day�1 CD8C T cell inactivation rate by Tumor cells 3:42 � 10�10 [46]

r cell�1 day�1 Rate at which tumor-specific CD8C T cells
are stimulated to be produced as a result of
tumor cells killed by NK cells

1:1 � 10�7 [47, 73]



Modeling Tumor–Immune Dynamics 103

Table 4 Estimated parameter values: patient specific parameters used based on
data in [26] and other sources

Parameter Patient 9 Patient 10 Source

a 5:14 � 10�1 5:14 � 10�1 Estimated from [24]

b 1:02 � 10�9 1:02 � 10�9 Estimated from [24]

c 3:23 � 10�7 3:23 � 10�7 Estimated from data in [24, 26]

d 5:80 4:23 Fit to data from [26]

e 1:3 � 104 1:3 � 104 Parameter from [46]

� 1:36 1:43 Fit to data from [26]

f 4:12 � 10�2 4:12 � 10�2 Parameter from [46]

g 2:5 � 10�2 2:5 � 10�2 Estimated from data in [24, 26]

h 2:02 � 107 2:02 � 107 Parameter from [46]

j 3:75 � 10�2 3:75 � 10�2 Estimated from data in [24, 26]

k 2:0 � 107 2:0 � 107 Estimated from data in [24, 26]

m 2:00 � 10�2 2:00 � 10�2 Estimated from data in [73]

q 3:42 � 10�10 3:42 � 10�10 Estimated from data in [46]

p 1:00 � 10�7 1:00 � 10�7 Estimated from data in [24]

s 2:5 � 10�1 3:6 � 10�1 Fit to data in [26]

r 1:1 � 10�7 1:1 � 10�7 Estimated from data in [47, 73]

Table 5 Estimated mouse parameter values

Estimated
Param. Units Description value Source

a day�1 Tumor growth rate 4:31 � 10�1 [24]

b cells�1 1/b is tumor carrying capacity 2:17 � 10�8 [24]

c cell�1 day�1 Fractional (non)-ligand-transduced tumor cell kill
by NK cells

7:13 � 10�10 [24]

d day�1 Saturation level of fractional tumor cell kill by
CD8C T cells. Primed with ligand-transduced
cells, challenged with ligand-transduced cells

8:17 [24]

� none Exponent of fractional tumor cell kill by CD8C

T cells. Primed with ligand-transduced cells,
challenged with ligand-transduced cells

6:57 � 10�1 [24]

s none Steepness coefficient of the Tumor-(CD8C T
cell) lysis term D. Primed with ligand-transduced
cells, challenged with ligand-transduced cells.
(Smaller s ) steeper curve)

6:18 � 10�1 [24]

e day�1 Fraction of circulating lymphocytes that become
NK cells

1:29 � 10�3 [46]

f day�1 Death rate of NK cells 4:12 � 10�2 [46]

g day�1 Maximum NK cell recruitment rate by
ligand-transduced tumor cells

4:98 � 10�1 [24,
46]

h cell2 Steepness coefficient of the NK cell recruitment
curve

2:02 � 107 [46]

(continued)
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Table 5 (continued)

Estimated
Param. Units Description value Source

p cell�1

day�1
NK cell inactivation rate by Tumor cells 1:0 � 10�7 [24]

m day�1 Death rate of CD8C T cells 2:0 � 10�2 [73]

j day�1 Maximum CD8C T cell recruitment rate. Primed
with ligand-transduced cells, challenged with
ligand-transduced cells

9:96 � 10�1 [24, 46]

k cell2 Steepness coefficient of the CD8C T cell
recruitment curve

3:03 � 105 [24, 46]

q cell�1

day�1

CD8C T cell inactivation rate by Tumor cells 3:42�10�10 [46]

r1 cell�1

day�1

Rate at which CD8C T cells are stimulated to be
produced as a result of tumor cells killed by NK
cells

1:1 � 10�7 [47, 73]

r2 cell�1

day�1
Rate at which CD8C T cells are stimulated to be
produced as a result of tumor cells interacting
with circulating lymphocytes

3:0 � 10�11 No data
found

u cell�2

day�1

Regulatory function by NK-cells of CD8C

T-cells
1:80 � 10�8 No data

found

KT day�1 Fractional tumor cell kill by chemotherapy 9:00 � 10�1 [61]

KN ,
KL,
KC

day�1 Fractional immune cell kill by chemotherapy 6:00 � 10�1 [61]

˛ cell day�1 Constant source of circulating lymphocytes 1:21 � 105 [3, 36]

ˇ day�1 Natural death and differentiation of circulating
lymphocytes

1:20 � 10�2 [3, 36]

� day�1 Rate of chemotherapy drug decay 9:00 � 10�1 [8]

Table 6 Estimated human parameter values

Patient 9 Patient 10 Source

a D 4:31 � 10�1 a D 4:31 � 10�1 [24]

b D 1:02 � 10�9 b D 1:02 � 10�9 [24]

c D 6:41 � 10�11 c D 6:41 � 10�11 [24, 26]

d D 2:34 d D 1:88 [26]

e D 2:08 � 10�7 e D 2:08 � 10�7 [46]

� D 2:09 � D 1:81 [26]

f D 4:12 � 10�2 f D 4:12 � 10�2 [46]

g D 1:25 � 10�2 g D 1:25 � 10�2 [24, 26]

h D 2:02 � 107 h D 2:02 � 107 [46]

j D 2:49 � 10�2 j D 2:49 � 10�2 [24, 26]

k D 3:66 � 107 k D 5:66 � 107 [24, 26]

(continued)
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Table 6 (continued)

Patient 9 Patient 10 Source

m D 2:04 � 10�1 m D 9:12 [73]

q D 1:42 � 10�6 q D 1:59 � 10�6 [46]

p D 3:42 � 10�6 p D 3:59 � 10�6 [24]

s D 8:39 � 10�2 s D 5:12 � 10�1 [26]

r1 D 1:10 � 10�7 r1 D 1:10 � 10�7 [47, 73]

r2 D 6:50 � 10�11 r2 D 6:50 � 10�11 No data found

u D 3:00 � 10�10 u D 3:00 � 10�10 No data found

KT D 9:00 � 10�1 KT D 9:00 � 10�1 [61]

KN D KL D KC D 6 � 10�1 KN D KL D KC D 6 � 10�1 [61]

˛ D 7:50 � 108 ˛ D 5:00 � 108 [3, 36]

ˇ D 1:20 � 10�2 ˇ D 8:00 � 10�3 [3, 36]

� D 9:00 � 10�1 � D 9:00 � 10�1 [8]

pI : Maximum CD8CT-cell recruitment rate by IL-2. Units: day�1

pI D 1:25 � 10�1 pI D 1:25 � 10�1 [42]

gI : Steepness of CD8CT-cell recruitment curve by IL-2. Units: cell2

gI D 2:00 � 107 gI D 2:00 � 107 [42]

�I : Rate of IL-2 drug decay. Units: day�1

�I D 1:00 � 101 �I D 1:00 � 101 [42]
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