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Abstract The development of a mathematical model of oncolytic virotherapeutic
vesticular stomatitis virus (VSV) is presented in stages. Standard mathematical tools
are discussed along with the development and analysis of the model. A defining
property of VSV is that it only affects tumor cells when they are in the active phases
of the cell cycle. To model this characteristic, we first model tumor growth and
separate cells into active and resting, which takes the form of a linear system of
differential equations. We then take into account the minimum time needed for cells
to travel through the active phases of the cell cycle, first using delay-differential
equations and then later age-structured partial differential equations. Our basic
tumor growth model allows us to investigate linear systems analysis (eigenvalue
analysis). We then study similar techniques for delay differential equations, after
adding the minimum time necessary to travel through the active phases of the
cell cycle to the model. After tumor growth alone has been modeled, we include
viral dynamics, which takes the form of a nonlinear system of ordinary differential
equations. We investigate how linearization helps us understand how to properly
develop the model. Finally we add the minimum biological time to the viral model.
With the model fully developed, we arrive at a system of differential equations, one
of which is an age-structured partial differential equation, which provides a nice
example for discussing the method of characteristics. Finally, we show how our
model can be used to investigate the dynamics of the tumor-virus system. As we
travel through the development of our model, we discuss various techniques to
analyze ordinary, delay, and partial differential equations.
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1 Introduction

In this chapter, we provide a review of the mathematical techniques used to
develop and analyze a model of oncolytic virotherapeutic vesicular stomatitis virus,
VSV [9]. The model provides a platform for understanding the dynamics of systems
of ordinary differential equations (ODE), delay differential equations (DDE), as well
as a starting point for understanding partial differential equations (PDE).

Oncolytic virotherapeutics (OV), specially engineered cancer-killing viruses,
differ based on the mechanisms of the underlying virus used. Examples of oncolytic
viruses that have demonstrated anti-tumor efficacy include adenoviruses [12],
Coxsackieviruses [1], herpes simplex viruses [21], measles viruses [10], Newcastle
disease virus [18], reoviruses [8], Seneca Valley virus [20], vaccinia viruses [17],
and vesicular stomatitis virus [5]. Various models have been proposed as represen-
tations for treatment of cancer with oncolytic virotherapeutics, and frequently the
models are novel specifically because of the differences in the underlying virus.

Early OV modeling efforts by Wodarz et al. [23] explored the different oncolytic
mechanisms at play, death from replication of the virus, from an immune response
mounted against the virus, or from an immune response due to molecules secreted
by the tumor cells in response to the virus invasion. Wu et al. [25] looked at
the race between the tumor, the OV, and the immune system (which attacks both
the tumor and the OV) in a partial differential equations model which included
spatial dynamics. More specific models followed, Friedman et al. looked at Glioma
virotherapy in combination with an immunosuppressant, cyclophosphamide [11].
Bajzer et al. and Biesecker et al. [2, 6] look at optimal dosing and timing of doses
using recombinant measles virus. Wodarz and Komarova followed up in 2009 with
a more general study of virus therapy, looking at which models were consistent with
various experimentally validated tumor dynamics [13, 24].

In a previous work, we developed a model of the oncolytic virotherapeutic,
VSV [9]. VSV is an RNA virus that has demonstrated anti-tumor efficacy in a
large range of human tumor cell lines, including prostate, breast, cervical, and
hematologic cancers [4]. VSV also has the distinguishing characteristic that it is
only transmissible when the tumor cells are in the active phases of the cell cycle
[16]. We therefore developed the model to differentiate between tumor cells in active
phases and the quiescent phase of the cell cycle. To do so, the tumor population was
separated into two compartments, one compartment for the cells in the active phases
and one compartment for cells in the quiescent phase. In the first part of this chapter,
we describe the movement of cells between these two compartments, including
cell division and natural cell death. The differential equations system that was
developed is simple being linear with constant coefficients. To begin our discussion,
we describe how linear systems analysis was used to analyze the dynamics of the
tumor growth system alone.

Next, we include the idea that there is a minimum time necessary for cells
to travel through the active phases of the cell cycle. To force cells to remain in
the active phases for a minimum time, the model is converted into a system of
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differential equations, one of which includes a delay. Basic theory of analyzing
delay differential equations is then presented, along with some results particular
to the VSV model, as an example of how to utilize the analysis methods.

Next we incorporate virotherapy into the base model, while at first excluding the
delay. To build the model properly, an investigation of the transmission term was
necessary. We explain the basics of local nonlinear systems analysis and reveal how
it was helpful in developing our model. Upon completion of this stage, the model
became a four-dimensional model, with cycling cells separated into infected and
susceptible, with an additional compartment for the virions [2].

Finally, we bring all of the components together, transmission and delay, and
arrive at a system of five equations, one of which is an age-structured partial
differential equation, which captures the minimum time necessary to travel through
the active phases of the cell cycle. We review the method of characteristics and show
how this method was utilized twice in the paper, in one case to solve an equation
and later in a proof that shows that solutions of the PDE system remain nonnegative.

The development of the model and underlying mathematical theory are interest-
ing alone, but mathematical biology is at its best when we can say something about
the underlying biological system using the mathematical model. Therefore, at the
end of this chapter, we review the biological results in the original paper, obtained
through numerical simulations and stability analysis, which elucidate the factors
that promote complete remission, controlled tumor growth, or uncontrolled tumor
growth.

2 Linear System Techniques

First, tumor growth alone is modeled. The model comprises two compartments,
Q.t/ and S.t/, representing the volume of tumor cells in the quiescent phases and
the active phases of the cell cycle at time t , respectively. Later in the chapter, the
minimum biological time needed to travel through the active phases of the cell cycle
and the viral dynamics will be added to the model. But for now, the model will
simply track tumor growth, accounting for the transition to resting and back to the
active phases of the cell cycle. The equations of the model are

Q0.t/ D 2a2S � a1Q � d1Q; (1)

S 0.t/ D a1Q � a2S � d2S: (2)

The parameters a1 and a2 are the rates that cells move from Q to S and S to Q,
respectively, with cells dividing into two when they leave the active phase, hence
the 2a2 in the first term of the Q0.t/ equation. Cells die naturally at rates d1 and d2

for Q and S , respectively.
The system is linear with constant coefficients and provides a nice example

of how linear analysis is used to qualitatively understand a system of differential
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equations. The system is also solvable but the solution is in terms of parameters,
and understanding how the parameters affect the dynamics of the system is easier if
we analyze the stability of the equilibria, rather than looking at the analytical forms
of the solutions. To fully appreciate this, we will look at both methods.

The solutions can be found using the eigenvalue method. If the eigenvalues of
the coefficient matrix are real, the general solution of the system has the form

�
Q.t/

S.t/

�
D c1e�1t

�
v1

v2

�
C c2e�2t

�
v3

v4

�
; (3)

where, �1 and �2 are the eigenvalues of the coefficient matrix. The corresponding
eigenvectors are Œv1 v2�

T and Œv3 v4�
T , respectively, and c1 and c2 are constants that

can be found once initial values, Q.0/ and S.0/ are given.
The coefficient matrix of our model system is

A D
� �.a1 C d1/ 2a2

a1 �.a2 C d2/

�
; (4)

so the eigenvalues of A are

�1 D �.a1 C a2 C d1 C d2/ � p
�

2
; (5)

�2 D �.a1 C a2 C d1 C d2/ C p
�

2
; (6)

where

� D .a1 C a2 C d1 C d2/
2 � 4 .a1.d2 � a2/ C d1.a2 C d2// ;

with corresponding eigenvectors

�
v1

v2

�
D

�
3a2 C d2 � p

�

2a1

�
; (7)

�
v3

v4

�
D

�
3a2 C d2 C p

�

2a1

�
: (8)

As you can imagine, trying to divine anything from (3) with these eigenvalues
and eigenvectors inserted would be quite difficult. Instead, qualitative analysis is
employed to study the long term behavior of the tumor. With qualitative analysis,
we can ask, based solely on the growth and death parameters, will the tumor prosper
or decline? Unless A is singular, which is highly improbable, the only equilibrium
of the system is the tumor free equilibrium (Q.t/, S.t/) = (0,0), so another way to
ask our question is, will nonzero solutions of the system approach (0,0) or move
away from it?



Differential Equation Techniques for Modeling a Cycle-Specific. . . 257

To determine our answer, we look at the eigenvalues of the matrix A. Linear
systems analysis allows us to determine the stability of the equilibrium (0,0) solely
from the sign of the real parts of the eigenvalues of the coefficient matrix. If the
real parts of the eigenvalues of A are less than zero, then (0,0) is asymptotically
stable, and solutions move toward (0,0) as t ! 1. Therefore, the tumor will be
extinguished naturally. On the other hand, if the eigenvalues of A have positive real
parts, then (0,0) is unstable and the tumor will grow indefinitely. If one eigenvalue
has positive real part and the other has negative real part, then (0,0) is a saddle and
is unstable (with only two trajectories moving toward the equilibrium). If the
eigenvalues have real part equal to zero, then the situation is more complicated.
Also note that the eigenvectors are not used in understanding the stability of (0,0).
Using qualitative analysis, we can more easily discuss the long term behavior of the
solutions of the system than if we only had the analytical form of the solution alone.

Using the information in the preceding paragraph and the equations for the
eigenvalues, we can come up with conditions, based on the parameters of the model,
that determine when (0,0) will be stable. We only need to determine when the real
parts of the eigenvalues are both negative [9].

From (5) and (6), we know both eigenvalues are always real when all parameters
are nonnegative, since

.a1 C a2 C d1 C d2/
2 � 4.a1.d2 � a2/ C d1.a2 C d2//

D d 2
1 C .a1 C a2 C d2/

2 � 2d1.a1 C a2 C d2/ C 4a1a2

D .d1 � .a1 C a2 C d2//
2 C 4a1a2 � 0:

Hence, if a1.d2 � a2/ C d1.a2 C d2/ > 0, both eigenvalues are negative and the
cancer-free equilibrium is asymptotically stable, implying that the tumor would
disappear naturally. On the contrary, if a1.d2 � a2/ C d1.a2 C d2/ < 0, then
one eigenvalue is positive, the cancer-free equilibrium is unstable, implying that
the tumor will grow without bounds. Notice that if either d1 > a1 or d2 > a2

(i.e., either compartment has a death rate which dominates the corresponding rate
of transfer within the system), then the cancer-free equilibrium is stable [9]. We
note that these results are analogous to those of Crivelli et al. [9] and Villasana and
Radunskaya [22].

3 Delay Differential Equations

If we model cell transitions as above, there is a possibility that the cell will move into
the active phases of the cell cycle and immediately split and transition to quiescence.
In reality, cells take some amount of time to transit through the active phases of the
cell cycle, due to various biological process in mitosis. The amount of time it takes
to travel through the cell cycle is not pre-determined, but is stochastic in nature.
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We think of the total amount of time needed to travel through the cell cycle as some
minimum time � plus some additional time that is Poisson in nature. The minimum
time is deterministic and is modeled with a delay. The additional time is modeled
through the exponential rate that cells transition back to resting.

To model the minimum time necessary to complete the active phases of the cell
cycle, we add a delay to the model. Cells transition from quiescence to the active
phases of the cell cycle at a rate of a1 and remain there for a minimum time � ,
representing the duration of mitosis. The way we model this mathematically, is to
transition cells through a holding compartment, NS , representing mitosis, for � days.
Cells move from S to NS at a rate of a2, but cannot move back to Q until the minimum
time is over. After the requisite time � , cells move from NS into Q. If this were the
whole story, we could account for the transition through NS by moving cells out of
NS at rate a2S.t � �/, so that the rate of cells leaving at time t would be precisely

equal to the rate that cells entered � days ago at time t � � . However, cells still die
at a rate of d3 while traveling through NS . Therefore, the model equations are

Q0.t/ D 2a2e�d3�S.t � �/ � a1Q � d1Q; (9)

S 0.t/ D a1Q � a2S � d2S; (10)

NS 0.t/ D a2S � d3
NS � a2e

�d3�S.t � �/; (11)

where the term e�d3� accounts for the proportion of cells that have died over the �

days in the holding compartment, NS . To have a well-defined model, we also include
history functions given by Q.t/ D �q.t/, S.t/ D �s.t/ and NS.t/ D �Ns.t/, for
�� � t � 0.

Notice that the first two equations in the system are not coupled with the holding
compartment, so we can analyze the behavior of the system by only considering the
first two equations and solving the equation for NS in terms of S.t/.

Even though our system is still linear, the delay makes the system much
more difficult to analyze. In general, systems of DDEs lead to characteristic
quasipolynomials that include terms of the form e��� , where � is a time delay in
the system.

To obtain the characteristic equation for our DDE system, we guess a solution of
the form e�t v for some constant vector v. Substituting this solution into (9) and (10)
and simplifying, we obtain

�� �.a1 C d1/ 2a2e
�d3� e���

a1 �.a2 C d2/

�
� �I2

�
v D 0

where I2 is the 2 � 2 identity matrix. Hence, it follows that

det

� �.a1 C d1/ � � 2a2e
�d3� e���

a1 �.a2 C d2/ � �

�
D 0:
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Calculating this determinant, we obtain the characteristic equation

P.�/ D 2a1a2e�d3� e��� � .a1 C d1 C �/.a2 C d2 C �/ D 0: (12)

As is the case with transcendental equations of this form, in general, there
are infinitely many roots. As in the ODE case, we use the eigenvalues to prove
something about the tumor-free-equilibrium instead of finding the actual solutions
to the delay equations.

Given below, a result from the original work [9] which is proved using the
eigenvalues from the characteristic equation, describes a condition on � , which, if
achieved, results in a stable cancer-free equilibrium.

Theorem 1. For any a1, a2, d1, d2, d3 > 0, .Q; S/ D .0; 0/ is stable when

� >
1

d3

log

�
2a1a2

.a1 C d1/.a2 C d2/

�
> 0

and unstable when

0 < � <
1

d3

log

�
2a1a2

.a1 C d1/.a2 C d2/

�
:

Theorem 1 shows that for any growth and death rates, there is a � , given by the
condition in the theorem, for which the tumor would be naturally eliminated. To
prove this theorem, we first proved the following lemma [9]. See the original work
for the proof.

Lemma 1. For any a1, a2, d1, d2, d3 > 0, the rightmost eigenvalue derived from
the characteristic equation (12) is real.

Having proven the previous lemma, we proved the following proposition [9]. The
theorem directly follows.

Proposition 1. For any parameters a1, a2, d1, d2, d3 > 0, the cancer-free
equilibrium .Q; S/ D .0; 0/ of the system (9)–(10) is globally asymptotically
stable if

2a1a2e�d3� � .a1 C d1/.a2 C d2/ < 0;

and unstable if

2a1a2e
�d3� � .a1 C d1/.a2 C d2/ > 0:

Using our result, it is also possible to determine a threshold delay value of � , about
which stability switches occur. We see that lengthening the time spent in the active
phases of the cell cycle can cause the doubling time of the tumor population to
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increase and thereby cause the tumor to be eliminated. Many therapeutics work in
this way to lengthen the time that cells stay in the cell cycle so that they reproduce
more slowly.

4 Virus System

So far, we have been investigating a system that describes tumor growth, including
the minimum time necessary for the cell to travel through the active phases of the
cell cycle. But the main goal of the work was to understand the dynamics of the
oncolytic virus, VSV. At this point, the virus is introduced into the system. To add
the virus, we must add compartments for the virus, V , and for cells that are infected
by the virus, I .

Mathematically, the most interesting question here is how to model transmission
of the virus to cells that are in the active phases of the cell cycle. As not to confound
the situation, we first look at transmission, ignoring the minimum time spent in the
active phases of the cell cycle.

As previously considered in (1) and (2), the model without virus is

Q0.t/ D 2a2S � a1Q � d1Q; (13)

S 0.t/ D a1Q � a2S � d2S: (14)

After adding the virus and infected cell populations, we arrive at

Q0.t/ D 2a2S � a1Q � d1Q; (15)

S 0.t/ D a1Q � a2S � d2S � �
VS

N
; (16)

I 0.t/ D �
VS

N
� ıI; (17)

V 0.t/ D ˛I � �
VS

N
� !V: (18)

Let us examine how the system changes when the virus and infected cells are
added. The top equation is the same because the virus cannot act when cells are
in the Q state. The next equation, which describes how the size of the population
of active cells changes, has a new term, �� VS

N
, which describes the rate that cells

become infected. This term then appears again in the next equation, as cells move
from S to I when they become infected. Here, N , is the total volume of tumor cells
and virions in the system (N D S CI CV ). Modelers frequently use a mass-action
term for transmission (here that would be ��VS ). On the other hand, the term we
used is called a ratio- or frequency-dependent term.
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If we use a mass-action term to describe the dynamics of the virus, then the virus
has no effect on the local stability of the tumor-free equilibrium (.Q; S; I; V / D
.0; 0; 0; 0/). To understand this, we extend our linear analysis from Sect. 3 to
nonlinear systems. To do so, we must call on the Hartman–Grobman Theorem.

Formally, the Hartman–Grobman Theorem is a topological result. Informally, it
is likely the most used tool for understanding the long term behavior of nonlinear
differential equations systems. A formal statement is given in Perko [19]:

Theorem 2 (Hartman–Grobman Theorem). Let E be an open subset of R
n

containing the origin, let f 2 C 1.E/, and let �t be the flow of the nonlinear
system Px D f.x/. Suppose that f.0/ D 0 and that the matrix A D Df.0/ has no
eigenvalue with zero real part. Then there exists a homeomorphism H of an open
set U containing the origin onto an open set V containing the origin such that for
each x0 2 U , there is an open interval I0 � R containing zero such that for all
x0 2 U and t 2 I0

H ı �t .x0/ D eAt H.x0/: (19)

A friendlier (but less technical) version of this theorem can be found in Cain and
Reynolds [7] and is helpful in this discussion:

Theorem 3 (Hartman–Grobman Theorem, Friendly Version). Suppose x0 is an
isolated equilibrium of a nonlinear system Px D f.x/. Then in the vicinity of x0 , the
linearization x0 D J f.x0/.x � x0/ about that equilibrium has the same qualitative
behavior as the original nonlinear system.

In the virus system, the vectors x D .Q; S; I; V /T and f is the vector formulated
right hand side of our system of differential equations.

The Hartman–Grobman Theorem tells us that solutions of a nonlinear system act
like solutions of their corresponding linearized system near hyperbolic equilibria.
Assuming that the tumor-free equilibrium is hyperbolic (no eigenvalues with zero
real part), we can linearize the system and see how the virus affects the stability of
the tumor-free equilibrium.

But what is this term J f.x0/.x � x0/, and what does it have to do with
linearization? Linearizing a nonlinear system means that we take the multivariate
functions on the right hand side of each differential equation in the system and
Taylor expand each one around each equilibrium (x0), so that

dx
dt

D f.x0/ C J f.x0/.x � x0/ C higher order terms; (20)

where J is the Jacobian, the matrix of all first derivatives of the vector valued
function, f. We then drop the higher order terms, since we want to know about the
local stability of the equilibria. We can drop the higher order terms because we are
interested in the local behavior of the system and the higher order terms are small
when we are near the equilibrium.
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Since x0 is an equilibrium of the system, we know that f.x0/ D 0 so that

dx
dt

D J f.x0/.x � x0/: (21)

Next, we want to change the main vector of variables to be the distance from the
equilibrium instead of the total distance. We do so by substituting Nx D .x � x0/ and
noting that dx

dt
D d Nx

dt
since dx0

dt
D 0. We then have

d Nx
dt

D J f.x0/.Nx/: (22)

This is the linearized version of the system around the equilibrium x0. From
the Hartman–Grobman Theorem, we know we can determine the stability of any
hyperbolic equilibrium by eigenvalue analysis of the Jacobian evaluated at the
equilibrium of interest.

Now going back to virus system, we want to know how the stability of the tumor-
free equilibrium (.Q; S; I; V / D .0; 0; 0; 0/) is affected by the introduction of the
virus. The real question is, by introducing the virus, can we eliminate the tumor over
time, or in mathematical terms, can introduction of the virus change the sign of the
real part of the eigenvalues of the Jacobian so that they go from at least one being
positive to all negative?

In the original paper, we make the argument that the virus cannot affect local
stability of the tumor-free equilibrium if transmission is modeled using a mass-
action term �VS instead of the ratio-dependent term �VS

N
, where N D Q C S C

I C V . Now that we understand what it means to linearize a system and talk
about stability of the tumor-free equilibrium under linearization, let us look at what
happens when we linearize the system which includes mass-action transmission:

Q0.t/ D 2a2S � a1Q � d1Q; (23)

S 0.t/ D a1Q � a2S � d2S � �VS; (24)

I 0.t/ D �VS � ıI; (25)

V 0.t/ D ˛I � �VS � !V: (26)

The Jacobian, J , of the right-hand side of this system is

J.Q; S; I; V / D

2
664

�a1 � d1 2a2 0 0

a1 �a2 � d2 � �V 0 ��S

0 �V �ı �S

0 ��V ˛ �!

3
775 :

So far, it looks like the parameters of the virus are coming into play repeatedly in
the Jacobian matrix and will have an important role to play in determining the sign
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of the eigenvalues. But we must remember that before we find the eigenvalues, we
evaluate the Jacobian at the tumor-free equilibrium .Q; S; I; V / D .0; 0; 0; 0/), so
anywhere we see a V or an S , that term will be zero. These are all of the transmission
terms. At the tumor-free equilibrium, the Jacobian is

J.0; 0; 0; 0/ D

2
664

�a1 � d1 2a2 0 0

a1 �a2 � d2 0 0

0 0 �ı 0

0 0 ˛ �!

3
775 :

This is a block matrix and the eigenvalues from the top-left block only depend
on the parameters a1, a2, d1, and d2, which is the coefficient matrix of the
linear submodel describing tumor growth alone without virus (see (13) and (14)).
The two eigenvalues of the lower-right block are �ı and �!, which are always
negative, because ı and ! are always positive. So we see that if we use mass-
action transmission, the virus is not able to affect the stability of the tumor-free
equilibrium because the terms related to the virus do not alter the signs of the
eigenvalues associated with tumor growth. The eigenvalues due to the virus-
associated parameters are always negative and the others are unaffected by the virus.

However, if we use ratio-dependent transmission, as is in (15) and (18), it has
been shown that the virus can affect the stability of the tumor-free equilibrium [15].
Ratio dependence also makes sense biologically because it allows for the spatial size
of the tumor to change, whereas mass action makes the assumption that the spatial
dimension is staying constant, while the density changes, which is not usually the
case for tumors.

It is noted that the biological relevance of these results is not certain. In the
mass-action type model, oscillations are frequently seen that drive the tumor size
to near zero [9, 13, 24]. In the true biological system, when the tumor is near
zero, it can be removed completely due to the stochasticity of the underlying
dynamics. Additionally, the formulation of the ratio-dependent term is sensitive to
perturbations, causing the model to not be entirely robust.

5 PDE Virus System

First, a model of tumor growth was developed. We then investigated how incor-
porating the time needed to travel through the cell cycle affected the stability of
the tumor-free equilibrium of the model by developing a system of equations that
included a delay. Next, we created a model of tumor growth and viral dynamics
without the delay. In this section, we finally put all of the components together into
one model.

We can no longer use delay differential equations, because the transmission term
is nonlinear and we can no longer solve directly for the loss of cells in the holding
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state NS , as we did in the simpler growth-only model. After developing the model, we
want to make sure that the solutions match those of the simpler model, if the viral
parameters are set to zero. To do so, we must first complete our analysis of (11) by
solving for NS in terms of S , which we think of as a known function of t .

Begin with the differential equation

NS 0.t/ D a2S � d3
NS � a2e�d3�S.t � �/; (27)

which is linear in NS .
The integrating factor is ed3t . After multiplying by the integrating factor on both

sides and integrating between 0 and t , we find that

NS.t/ D NS.0/e�d3t C a2e�d3t

Z t

t��

ed3uS.u/du � a2e�d3t

Z 0

��

ed3u�s.u/du: (28)

We also assume that cells that are in the holding state before t D �� , leave
before t D 0. Mathematically we can do this by setting NS.0/ D a2

R 0

�� ed3u�s.u/du:

Therefore, the solution is

NS.t/ D a2e�d3t

Z t

t��

ed3uS.u/du: (29)

After developing the full model, we will check that it is consistent with this solution.
Now to the full model. Our full PDE model, including the minimum biological

time needed to complete the active phases of the cell cycle, as well as the viral
transmission, is

dQ

dt
D 2 OS.�; t/ � a1Q � d1Q; (30)

dS

dt
D a1Q � a2S � d2S � �

VS

N
; (31)

@ OS
@t

C @ OS
@x

D �d3
OS � �

V OS
N

; (32)

dI

dt
D �ıI C �

VS C V NS
N

; (33)

dV

dt
D ˛I � !V � �

VS C V NS
N

: (34)

where NS.t/ D R �

0
OS.x; t/dx, N.t/ D Q.t/ C S.t/ C NS.t/ C I.t/ C V.t/, and the

boundary condition is given by

OS.0; t/ D a2S.t/:
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OS is a function of two variables: t–time, and x–the length of time already spent in
the cell cycle. A diagram of the full PDE model is given in Fig. 1.

V

a1Q

a2S

I

S

Q

2S(τ,t)

x = 0

x = τ S(x,t)

αI

κ VS
N

κ VS
N

quiescent infected

susceptible

mitosis

virus

Fig. 1 Compartmental diagram for the full model of virotherapy, given by (30)–(34). Transfer
occurs from the quiescent to the non-quiescent, or susceptible, cell population at rate a1, and
susceptible cells begin mitosis at rate a2. Cells undergoing mitosis remain in a holding state
for � units of time. After completing mitosis, two daughter cells enter the quiescent population.
Susceptible cells are infected through contact with the free virus population at rate �V=N and enter
the infected state. Viral reproduction in infected cells, combined with lysis, leads to production of
free virions at a rate ˛. Although not shown in the diagram, all cell and virus populations, Q, S ,
OS , I , and V die or decay at rates d1, d2, d3, ı, and !, respectively

Note that the PDE now accounts for the loss of susceptible cells in the delay
period. For biological relevance, the initial conditions, Q.0/, S.0/, OS.x; 0/, I.0/,
and V.0/, are all assumed to be nonnegative. To extend the model to the origin,
when N D 0, we let the right-hand sides of (30)–(34) equal zero. Note that the
system (30)–(34) also reduces to (15)–(18) when � D 0.

Remember, we want to show that if we remove virotherapy, the solution we
obtain is the same as (29). To do so, we will use the method of characteristics, a
technique that can be used to solve certain partial differential equations (PDE). We
use it here to find the solution of the full system when virotherapy is turned off, and
then afterward, to prove that solutions of the full system with virotherapy do not
become negative.

The main idea behind the method of characteristics is that you divide the domain
into characteristic curves. Along these characteristic curves, the PDE becomes an
ODE that you can solve, given suitable initial value data. After you find solutions on
the characteristic curves, you convert the solutions into one concise surface solution
for the PDE.

A standard example involves the advection equation

a
@u

@t
C b

@u

@x
D 0; (35)

where a and b are not zero. We are looking for solutions u.t; x/ that satisfy this
PDE.
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The characteristic curves are found by realizing that the normal to the surface
.t; x; u.t; x// is given by .ut ; ux; �1/. Our PDE tell us that .a; b; 0/�.ut ; ux; �1/ D 0,
so we look for .a; b; 0/ which lies in the tangent plane to .t; x; u.t; x//. To do so,
we let

dt

ds
D a (36)

dx

ds
D b (37)

du

ds
D 0; (38)

where we are parameterizing the characteristic curve in the tangent plane by s.
Solving the system of ordinary differential equations in terms of s we find

t.s/ D as C c1

x.s/ D bs C c2

u.s/ D c3:

We can get rid of the parameter s, noting that the characteristic curves are ax � bt

and that the solution u is constant along these characteristic curves. Therefore, the
solution is an arbitrary differentiable function u.t; x/ D f .ax � bt/. The particular
function needed when modeling is determined from auxiliary conditions. To see
why the solution makes sense, notice from the chain rule that

a
@u

@t
C b

@u

@x
D abf 0.ax � bt/ � baf 0.ax � bt/ D 0:

Now, let us examine how we used the method of characteristics in a couple
different ways in the paper. Going back to the model, if we remove virotherapy,
and assume that, for 0 � x � � , OS.x; 0/ D a2�s.�x/e�d3x , then this system acts
like (9)–(11). We want to show that is the PDE model really is equivalent to (9)–(11)
by showing that NS is the same as (29).

Similar to the preceding example, if we use the method of characteristics, we let

dt

ds
D 1

dx

ds
D 1

d OS
ds

D �d3
OS;
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Solving the system of ODEs, we find

t.s/ D s C c1

x.s/ D s C c2

OS.s/ D OS.s D 0/e�d3s;

which implies

OS.s C c2; s C c1/ D OS.c2; c1/e
�d3s :

Letting s D Qx, c1 D Qt � Qx, and c2 D 0 for Qt � Qx and removing the tildes, we obtain

OS.x; t/ D OS.0; t � x/e�d3x:

We can then find NS.t/ by noting that OS.0; t � x/ D a2S.t � x/:

NS.t/ D
Z �

0

OS.x; t/dx D
Z �

0

OS.0; t � x/e�d3xdx (39)

D
Z �

0

a2S.t � x/e�d3xdx (40)

D
Z t

t��

a2S.u/e�d3.t�u/du (41)

D a2e
�d3t

Z t

t��

ed3.u/S.u/du: (42)

And so we have achieved our goal, showing that NS is the same as for the virus free
system, see (29).

We also used the method of characteristics and integrating factor techniques to
prove that solutions that begin nonnegative remain nonnegative for all time. We
include the theorem and proof here as a more complicated example of using the
method of characteristics [9].

Theorem 4. Assume that Q.0/, S.0/, OS.x; 0/, I.0/, and V.0/ are nonnegative.
Then, solutions of the system (30)–(34) are nonnegative for t � 0.

Proof. If Q.0/ D S.0/ D OS.x; 0/ D OS.0; t/ D I.0/ D V.0/ D 0, then Q.t/ D
S.t/ D OS.x; t/ D I.t/ D V.t/ D 0 for all t , and we are at equilibrium.

Otherwise by assumption, at t D 0, all compartments are greater than or equal to
zero and the total population N.0/ > 0. In this case, we assume

t0 D inf
t>0

ft j Q.t/ < 0; S.t/ < 0; NS.t/ < 0; I.t/ < 0 or V.t/ < 0g;

with t0 < 1 and proceed to arrive at a contradiction.
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Let W D I C V . We first assume that ! � ı, so

W 0 D �!W C .˛ � ı C !/I:

If f .t/ D .˛ � ı C !/I , then f .t/ � 0 for t 2 Œ0; t0�. Second, we assume that
! < ı, so

W 0 D �ıW C ˛I C .ı � !/V:

If f .t/ D ˛I C .ı � !/V , then f .t/ � 0 for t 2 Œ0; t0�, so in general,

W 0 D �c1W C f .t/; (43)

for some c1 > 0 2 R and f .t/ � 0 for t 2 Œ0; t0�.
The solution of (43) is

W.t/ D W.0/e�c1t C e�c1t

Z t

0

ec1�f .�/d�:

If W.0/ D 0, the system reduces to the model with no treatment. Otherwise, because
W.0/ > 0 and f .t/ � 0, it follows that W.t/ > 0 for t 2 Œ0; t0�. Then, since
W.t0/ > 0, the total population N.t0/ > 0. Now, with N.t0/ > 0, we can show that
all compartments will stay nonnegative past t0.

We begin with the age-structured PDE (32) and show that OS.�; t/ � 0 for t 2
Œ0; t0 C 	/ where 	 D minf
; �g for some 
 > 0. For each � 2 R, we define

S�
� .T / D OS.� C T; T /:

and find solutions along the characteristic lines x D � C T with t D T . Then,

dS�
�

dT
D @ OS

@x
C @ OS

@t

and

.S�
� /0 D �d3S

�
� � �

VS�
�

N
:

Hence, for each �, we have converted (32) into an ODE.
Since t D T ,

S�0

� .t/ D �d3S
�
� .t/ � �

V.t/S�
� .t/

N.t/
:
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Letting g.t/ D d3 C �V.t/

N.t/
, we rewrite the equation above as

S�0

� .t/ D �g.t/S�
� .t/: (44)

Replacing Eq. (32) with (44), we obtain a system of ODEs for each characteristic
line. From the form of the system of equations and the nonnegativity of initial
conditions, it follows that t0 > 0.

Since N.t0/ > 0, the ODE system is well-posed and a solution exists on an
interval .t0 � 
; t0 C 
/. Moreover, by continuity, we may assume N.t/ > 0 for
t 2 .t0 � 
; t0 C 
/.

Then solutions of Eq. (44) along the characteristic lines x D � C t are

S�
� .t/ D S�

� .0/e� R t
0 g.u/du:

Each characteristic line in the .x; t/ plane intersects either the nonnegative x-axis
or the positive t-axis. If � � 0, then the characteristic line intersects the nonnegative
x-axis and S�

� .0/ D OS.�; 0/, which is nonnegative by assumption. Otherwise, if
� < 0, the characteristic line intersects the positive t-axis at ��, and S�

� .0/ D
OS.0; ��/ D a2S.��/. By definition of t0, we know that S.��/ is nonnegative when
�� 2 Œ0; t0�. Thus, S�

� .0/ � 0 for each characteristic line that intersects the positive
t-axis at or below t0, (� � �t0).

Since g.t/ is bounded (0 � g.t/ � d3 C �) and S�
� .0/ � 0 for � � �t0, on the

corresponding characteristic lines, S�
� .t/ will remain nonnegative for as long as the

solution exists. Therefore, OS.�; t/ will also remain nonnegative for t 2 .t0�	; t0C	/

where 	 D minf
; �g. The constant 	 is defined in this way to ensure that solutions
lie on the proper characteristic lines and that solutions exist.

Next, we evaluate (30)–(34), excluding the PDE. Each of the four equations is of
the form B 0.t/ D A.t/ � r.t/B.t/, and each equation has a solution of the form

B.t/ D B.0/e� R t
0 r.s/ds C

Z t

0

e� R t
� r.s/dsA.�/d�;

where B is Q, S , I or V . For (30), the variable A.t/ D 2 OS.�; t/, and we know that
OS.�; t/ is greater than or equal to zero for t 2 Œ0; t0 C 	/ from the earlier argument

using the method of characteristics. By assumption, the initial condition Q.0/ � 0,
so we obtain Q.t/ � 0 for t 2 .t0 �	; t0 C	/. For (31), the variable A.t/ D a1Q.t/,
so by similar reasoning, it follows that S.t/ � 0 for t 2 .t0 � 	; t0 C 	/. Since
S.t/ � 0 for t 2 .t0 � 	; t0 C 	/, it follows that S�

� .0/ � 0 for characteristic lines

intersecting the t-axis up to t0 C 	. So, OS.x; t/ � 0 for t 2 .t0 � 	; t0 C 	/, and
therefore the same holds for NS.t/. Finally, since Q; S; OS � 0, it follows from (33)
and (34) that solutions cannot leave the positive quadrant of the I � V plane and I

and V will remain nonnegative for t 2 .t0 � 	; t0 C 	/.
We have shown that all compartments remain nonnegative for t 2 .t0 �	; t0 C	/.

This contradicts the definition of t0. We conclude that solutions remain nonnegative
for all time.
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6 Numerical Simulations

Models of biological systems are interesting from a mathematical point of view,
but more importantly, for what they say about the biology. We used the models we
developed above to understand the dynamics of the tumor-virus system in terms
of biological parameters. In our paper [9], we numerically studied the dynamics
from two perspectives: trajectories over time and stability regions using parameters
from the literature (Table 1). By investigating trajectories over time, we showed
that increasing the delay or adding virus can change the stability of the tumor free
equilibrium. We also showed, using stability regions, that the specific parameters of
the tumor or the virus affect the stability of the tumor-free equilibrium.

6.1 Non-Delay Case

We numerically simulated the various models using solvers, such as dde23, in
MATLAB (Mathworks, MA), first without delay, then with the delay. Figure 2 plots
solutions under three different conditions. The leftmost plot displays exponential
tumor growth resulting from the system (13) and (14). The middle plot shows
solutions of the system when a mass-action transmission term is used, whereas
the plot on the right shows solutions for ratio-dependent transmission, using
system (15)–(18) for the case of ratio-dependent transmission and system (23)–(26)
for the case of mass-action transmission. Note that the untreated tumor grows
exponentially (Fig. 2, left), whereas the treated tumor is eliminated (Fig. 2, right).
Mass-action solutions are presented to show how solutions oscillate under such
dynamics (Fig. 2, middle).

Two parameters, ˛ and �, are strongly correlated with the effectiveness of
VSV treatment in system (15)–(18). Increase in viral replication is modeled by
increasing ˛. Increasing viral replication increases virus-cell contact and results in
a better treatment. As � increases, likelihood of infection increases, also increasing
the efficacy of the treatment. Figure 3 shows the effects of changing ˛ and � on the
stability or instability of the cancer-free equilibrium.

6.2 Delay Case

Next, we looked at the models including the minimum time biologically necessary to
complete division and compared to the non-delay system. In the left panel of Fig. 4,
we plot solutions of the system, including the delay, but without VSV treatment.
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Fig. 2 Numerical solutions of VSV, excluding delay. Left: exponential tumor growth in the
absence of therapy, (13) and (14). Middle: growing oscillatory behavior of solutions when virus-
cell contact is modeled using mass action, (23)–(26). Right: complete tumor elimination; virus-cell
contact is modeled using ratio dependence, (15)–(18). Parameter values: a1 D 0:9, a2 D 0:6,
d1 D 0:00001, ı D 1:119, ! D 0:3, ˛ D 3, � D 1 in the case of mass-action transmission
(middle), and � D 1, in the case of ratio-dependent transmission (right)

Fig. 3 Stability diagram for
viral reproduction (˛) and
contact (�). Other parameter
values are as in Fig. 2, i.e.
a1 D 0:9, a2 D 0:6,
d1 D 0:00001, ı D 1:119,
! D 0:3, and ˛ D 3
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Parameters were chosen so that the solutions grow exponentially. In the middle
panel, using the same parameters for tumor growth, we look at the VSV model
that excludes the delay. We once again see exponential growth of the tumor (middle
panel). The right most panel shows how interaction of the treatment and the delay
causes successful elimination of the tumor. When the time delay is included, VSV
successfully eliminates the tumor (right panel), demonstrating how the delay and
the treatment interact, leading to successful eradication of the tumor.

Finally, we study stability diagrams of the VSV treatment parameters, ˛, �, and � .
Figure 5 shows how the parameters interact, two at a time, to change the stability of
the tumor free equilibrium.
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Fig. 4 Left: uncontrolled tumor growth (in the absence of virotherapy) under prolonged cell cycle
progression (� D 0:5). Middle: when � D 0:8, virotherapy treatment fails; minimum cell cycle
time is not accounted (� D 0). Right: when � D 0:8, virotherapy with a minimum cycling
time (� D 0:5) results in a stable cancer-free state. All other parameter values are the same as
in Fig. 2, i.e. a1 D 0:9, a2 D 0:6, d1 D 0:00001, ı D 1:119, ! D 0:3, and ˛ D 3
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Fig. 5 Stability maps when ˛, �, and � are varied, two at a time. For small ˛ and �, a delay value
(� ) beyond a certain threshold will ensure stability of the origin. Parameter values, if not varied,
are a1 D 0:9, a2 D 0:6, d1 D 0:00001, ı D 1:119, ! D 0:3,˛ D 1:5, � D 1, and � D 1

7 Discussion

In this chapter, we have developed a model of vesicular stomatitus virus (VSV),
a candidate oncolytic virus, which has the defining feature that it can only infect
tumor cells when they are in the active phases of the cell cycle.

We began with a simple tumor growth model containing compartments for
resting and proliferating cells. This model took the form of a linear system of
differential equations. We used the model to discuss basic techniques for linear
systems analysis, the eigenvalue method. We presented results from the original
work [9], giving conditions, in terms of parameters, for which the tumor would
grow indefinitely or decay based solely on parameters related to the tumor.

Next, we extended the model to account for the minimum biological time
course of the active phases of the cell cycle. In doing so, we arrived at a three-
dimensional system of linear delay differential equations. Eigenvalue analysis for
delay differential equations was discussed and a basic example given. We also
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Table 1 Table of parameters given by (30)–(34). Parameters were obtained from the
references cited in the fourth column. For all simulations, it was assumed that d3 D d2

Parameter Description Estimate Reference

a1 Quiescent cell entrance into active phases (day�1) 0:9 [14]

a2 Active cell entrance into quiescence (day�1) 0:6 [14]

d1 Quiescent cell death (day�1) 1 � 10�5 [14]

d2 Active cell death (day�1) 0:15 [14]

˛ Virion production (day�1) 3 Variable

ı Infected cell elimination (day�1) 1:119 [3]

! Free virion decay (day�1) 0:3 [3]

� Minimum duration of active phases (day) Œ0; 3� Variable

� Kinetic coefficient (day�1) Œ0; 5� Variable

reviewed the main result for that model: for a given set of model parameters, there
exists a minimum value of the delay � that will drive the system towards a globally
stable cancer-free state, which can be calculated in terms of the growth and death
rates of tumor populations.

Our next extension involved introducing virotherapy treatment by including two
additional compartments: infected cells and free virions, creating a nonlinear system
of differential equations. We discussed linearization techniques and methods of
analysis. These methods helped us understand why transmission kinetics should be
modeled through ratio-dependent contact between free virions and tumor cells. Our
model complements experimental results that suggest that initiation of virotherapy
treatment can drive the system towards the cancer-free equilibrium.

Finally, we developed our full model using an age-structured PDE model. We
introduced the method of characteristics, a method commonly used to solve basic
hyperbolic PDEs. We then showed how we used this method to obtain results in our
original work. We first showed that the PDE without virotherapy is identical to the
DDE model. The method of characteristics was used in a more complicated example
to show that the solutions of our full model remain nonnegative. As a last note,
we showed how numerical simulations could further the discussion by allowing us
to examine time trajectories and stability regions.

This work reveals how techniques and tools from differential equations can be
used to develop and analyze models of oncolytic viruses. Each virus is unique and
therefore different models will be needed to study the characteristics of each one.
Here, we progressively developed a model of VSV using ordinary, delay, and partial
differential equations and presented the necessary tools to build and analyze that
particular model.
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