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Abstract In this chapter we propose several modifications to the Roeder model
of chronic myeloid leukemia (Roeder et al.: Nat. Med. 12(10), 1181–1184 2006).
Specifically, we incorporate asymmetric division of stem cells and precursors, allow
precursors to live a variable amount of time before maturing, and introduce feedback
inhibition from mature cells to stem cells and precursors. These modifications result
in more accurate simulations of cancer genesis and treatment. In comparison with
the original model, our results indicate lower transition rates of stem cells between
their quiescent and cycling states, which are supported by the rates suggested by
experimental data. Decreased transition rates of stem cells translate into quiescent
cancer stem cells that are better protected from imatinib, resulting in a large residual
cancer burden, even after many years of therapy. Our modeling results suggest that
the efficacy of imatinib would increase if it is combined with a drug that induces
cancer stem cells to cycle.

1 Introduction

Chronic myeloid leukemia (CML) is a myeloproliferative disorder that represents
about 20 % of leukemias in adults [1]. A majority of cases of CML is initiated by the
formation of the Philadelphia chromosome (Ph), which results in the production of
the BCR-ABL gene, coding for a constitutively active tyrosine kinase. The tyrosine
kinase inhibitor imatinib (IM) has significantly improved CML patient outlook.
Treatment with IM results in complete hematological remission in most patients
[16] and cytogenetic remission in 75 % of patients [4]. Moreover, in many patients,
IM induces a major molecular response (MMR), or a 3-log decrease in BCR-ABL
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ratio [9]. Still, in most cases, even after several years of therapy, a small population
of PhC cells persists, and cessation of treatment will generally lead to a rapid
relapse [4].

Several mathematical models have been developed and applied to CML and its
treatment. Modeling approaches include ordinary differential equations (ODEs) [19,
21,22,27], delay differential equations (DDEs) [3,10], branching processes [15,28],
and birth–death processes [13,14]. These tools have been applied to studying cancer
genesis, therapy, combination therapy, and drug resistance. Additionally, in [10,22],
the immune system is incorporated, and in [10], a combination therapy is proposed
that combines IM with cancer vaccines, whose dose and timing are adjusted to the
profile of the immune response in individual patients.

Roeder et al. [24] develop a stochastic agent-based model (ABM) for the
interaction between IM and CML. This model considers the differentiation of
cells through three stages: stem cells, proliferating precursor cells, and non-
proliferating precursor and mature cells. The stem cells are divided into two
compartments: proliferating and non-proliferating stem cells. Individual stem cells
circulate continually between the two compartments and are affected by IM only
while proliferating.

Applications of the Roeder et al. ABM can be found in several papers. In [7],
interferon-˛ (IFN-˛) is considered in combination with IM, in order to stimulate
quiescent cancer cells to enter the cell cycle, where they are more likely to be
affected by IM. In considering drug schedules, it is shown in [24] that pulsed IFN-˛
with continuous IM leads to the greatest clinical benefits while still limiting side
effects. Using patient-specific data, the Roeder model is used in [8] to predict which
patients can be safely taken off IM without relapsing.

Although ABMs are able to capture cell dynamics and interactions, simulations
with a large number of agents can be computationally prohibitive. To address
this difficulty, Kim et al. reformulate the Roeder model as a system of difference
equations [12] and as a system of partial differential equations (PDEs) [11]. A
simplified version of the PDE model is later studied in [5]. An alternative approach
to obtaining a continuum limit of the ABM is proposed by Roeder et al. in [25]. By
using these reduced systems, computation time no longer depends on cell population
sizes, and simulations with realistic numbers of cells are made possible.

In this chapter, we propose several modifications to the Roeder model [24],
constructing a model that more closely represents hematopoiesis. Specifically, we
incorporate asymmetric division of stem cells and precursors, allow precursors to
live a variable amount of time before maturing, and introduce feedback inhibition
from mature cells to stem cells and precursors. These modifications result in more
accurate simulations of cancer genesis and treatment.

The rest of the chapter is organized as follows. In Sect. 2, we provide a brief
overview of the Roeder model. The derivation of the corresponding system of
difference equations is given in Sect. 3. We present our modifications to the Roeder
model in Sect. 4. Parametrization of the model and numerical simulations are
discussed in Sect. 5. The final section “Conclusion” concludes with a discussion
and insight about how CML therapy can be potentially improved.
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2 The Roeder Model

In this section we provide a brief overview of the Roeder model [24]. This model
is an ABM that considers hematopoietic cells in three compartments: stem cells
(STC), proliferating precursor cells (P), and mature cells (M). Stem cells are either
quiescent, denoted by A, or cycling, denoted by ˝. Let A.t/ and ˝.t/ represent
the total number of quiescent and cycling stem cells at time t . Each individual stem
cell is characterized by an affinity variable a.t/ 2 Œamin; amax� which determines
the probability that the cell will be quiescent or cycling. At each time step, which
represents 1 h, a quiescent stem cell will enter the cell cycle with probability !, and
a cycling stem cell will become quiescent with probability ˛, where

!.˝.t/; a.t// D amin

a.t/
f!.˝.t//; (1)

˛.A.t/; a.t// D a.t/

amax

f˛.A.t//: (2)

Thus, cells with affinity a.t/ close to amax tend to remain or become quiescent,
while cells with a.t/ close to amin tend to remain or become cycling. The functions
f! and f˛ are defined by

f!.˝.t// D 1

�1 C �2 exp
�
�3

˝.t/

N!

� C �4; (3)

f˛.A.t// D 1

�1 C �2 exp
�
�3

A.t/

N˛

� C �4: (4)

Both functions, f! and f˛ , are decreasing sigmoidal functions whose shapes depend
on the parameters �i and �i . The parameters N! and N˛ are scaling factors for ˝.t/

and A.t/. Given the values of f! at ˝.t/ D 0, N!=2, N! , and 1, we can compute
the coefficients �i as follows:

�1 D .h1h3 � h2
2/=.h1 C h3 � 2h2/;

�2 D h1 � �1;

�3 D log..h3 � �1/=�2/;

�4 D f!.1/;

where

h1 D 1=.f!.0/ � f!.1//;

h2 D 1=.f!.N!=2/ � f!.1//;

h3 D 1=.f!.N!/ � f!.1//:
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A similar set of formulas can be used to determine the parameters �i of f˛ . These
functions are constructed so that the cells that are in the less-populated compartment
are less likely to move.

Quiescent cells that remain quiescent during a time step increase their affinity by
a factor of r , until they reach the maximum affinity amax . Cycling cells that continue
to cycle during a time step decrease their affinity by a factor of d , until they reach
the minimum affinity amin. In other words, cells that remain in A or ˝ become more
likely to stay in A or ˝ in the future.

Cycling cells are also characterized by a cell cycle counter c.t/, which represents
their place in the cell cycle. In [24], the cell cycle lasts 49 h, so c.t/ 2 f0; 1; : : : ; 48g.
The first 32 h represent the G1 phase, where cells grow and can transition to
quiescence. Cells that reach c.t/ D 32 commit to division and must go through
the S, G2, and M stages of the cell cycle. After the cell divides (c.t/ D 48), each
daughter cell reenters G1 (c.t/ D 0) and becomes an uncommitted cycling cell that
may transition to quiescence. Quiescent cells that enter the cell cycle have their cell
cycle counter initialized to c.t/ D 32, which means that they commit to at least one
division.

Stem cells that reach affinity a.t/ D amin differentiate into precursor cells.
Precursors (P ) live for a fixed amount of time and undergo a fixed number of
divisions. They then differentiate into mature cells (M ), which do not divide and
die after a fixed amount of time. Figure 1 summarizes the Roeder model.

Both healthy (Ph�) and cancer (PhC) cells differentiate through the maturity
stages discussed above. Ph� cells and PhC cells compete at the stem cell level
through the functions f! and f˛ , whose inputs are the total number of cycling
cells and quiescent cells, respectively. PhC cells differ from Ph� cells in their
transition functions f! and f˛ . It is assumed that PhC stem cells are more likely
to transition between quiescence and cycling and that the probability of a quiescent
PhC stem cell transitioning to cycling is only slightly affected by the current number
of cycling stem cells. Cancer genesis is characterized by a long latency period of 5–
7 years, in which PhC and Ph� populations coexist. Without treatment, PhC cells
are eventually able to out-compete Ph� cells and take over the system.

Treatment with IM is assumed to have two effects on PhC stem cells while not
directly affecting Ph� cells. First, all cycling PhC stem cells are killed at a rate rdeg .
In addition, all cycling PhC stem cells become IM-affected with probability rinh.
Once a PhC stem cell becomes IM-affected, its transition function f! is decreased
significantly, making it much less likely for quiescent PhC stem cells to enter the
cell cycle. Note that there is no direct action of IM on quiescent PhC stem cells.

The effect of the treatment is evaluated by monitoring levels of BCR-ABL fusion
transcript in the blood. These levels are reported relative to an endogenous control
transcript, BCR or ABL, in order to normalize the BCR-ABL measurements. This
relative value, known as the BCR-ABL ratio, is estimated in [24] by

BCR-ABL ratio D 100 � .# of mature PhC cells/

2 � .# of mature Ph� cells/ C .# of mature PhC cells/
: (5)



Asymmetric Stem Cell Division in a CML Model 5

Divide Differentiation

Value of c(t)

Quiescent STCs (Α) Cycling STCs (Ω)

Quiescent STCs may 
enter the cell cycle with
probability ω

Cycling STCs any where
in G1 phase may
become quiescent with
probability 

Affinity a(t+1) =a(t)/r Affinity a(t+1) =a(t)/d 

α α

ω

Precursor cells(P)

Lifespan: 20 days
Cell cycle duration: 1 day

Mature cells (M)

Lifespan: 8 days
Non-dividing

Dead

1 3

4
2

0

31
32

48

S

G2

M

G1

Fig. 1 A diagram for the Roeder model. (1) At each time step, quiescent stem cells enter the cell
cycle with probability !, while cycling cells in G1 become quiescent with probability ˛. Quiescent
stem cells that remain quiescent during a time step increase their affinity by a factor of r , up to
a maximum value of amax . Cycling stem cells that continue to cycle decrease their affinity by a
factor of d . (2) Cycling stem cells progress through G1, S, G2, and M. The cell cycle counter
c.t/ 2 f0; 1; : : : ; 48g indicates the cell’s phase in the cell cycle. Stem cells enter the cell cycle at
hour c.t/ D 32. At hour c.t/ D 48, the cell divides, and its daughter cells reset their cell cycle
counters to c.t/ D 0. (3) A cycling stem cell whose affinity reaches amin differentiates into a
precursor cell, which lives for 20 days and divides once per day. (4) In the last division, precursor
cells differentiate into mature cells, which do not divide and die after 8 days

The contributions of stem cells and precursors to this ratio are negligible because
these populations are small relative to the mature cells, and the mature cells are the
dominant population in the blood. In each healthy Ph� cell, there are two copies
of the control gene, while PhC cells are assumed to possess one copy of the BCR-
ABL fusion gene and one copy of the control gene. Thus, BCR-ABL transcript
levels should be proportional to the number of mature PhC cells, while the control
transcript levels should be proportional to twice the number of mature Ph� cells
plus the number of mature PhC cells. This quantity is multiplied by 100 so that it
represents a percentage.

In simulations, long-term treatment leads to a biphasic decline in BCR-ABL
levels, with a rapid first decline followed by a slower second decline. However,
small populations of PhC cells persist over many years of treatment, and cessation
of treatment generally leads to a rapid relapse.

3 Reducing the Agent-Based Model to a System
of Difference Equations

Although the Roeder model has the advantage of being able to capture the
dynamics of cell–cell interactions, simulations with a realistic number of agents
is computationally very expensive. In the simulations in [24], the number of cells is



6 G. Clapp and D. Levy

down-scaled to 1=10 of normal patient values, resulting in approximately 105 stem
cells. Even with this reduction in the number of agents, a simulation of 20 years
requires approximately 175,000 steps for each of the 105 agents. (Precursors and
mature cells can be represented as populations, so the total number of agents is the
total number of stem cells.) To address this limitation, the Roeder model is reduced
to a system of PDEs in [11, 25] and a system of difference equations in [12]. In
this section we follow [12] and provide a brief summary of the system of difference
equations. A modified version of this system is what we later use for the numerical
simulations of our modified version of the Roeder model.

In order to decrease the number of variables, Kim et al. [12] discretize the affinity
state space. In [24], d D 1:05 and r D 1:1, so log.d/ D � D 0:0488 � log.r/=2.
By setting d D e� and r D e2�, any cell whose initial affinity is of the form a.t/ D
e�k� for an integer k will continue to have this form. Since 0:002 � a.t/ � 1, k is
restricted to 0 � k � 127. Because of the negative in the exponent, the maximum
affinity corresponds to the minimum k value, and the minimum affinity corresponds
to the maximum k value. More importantly, though, with these new values of r and
d , it is no longer necessary to track individual agents. Rather, for each of the various
k values, we can group stem cells into populations whose affinity a.t/ D e�k�, for
each of the finitely many k values.

Define Ak.t/ and ˝k;c.t/ as follows:

Ak.t/ D Number of cells in A at time t with log a.t/ D �k�; (6)

Gk;c.t/ D Number of cells in ˝ at time t with log a.t/ D �k� and c.t/ D c: (7)

As mentioned earlier, k 2 f0; : : : ; 127g, and c 2 f0; : : : ; 48g. Given this dis-
cretization, the Roeder model is represented by the following system of difference
equations:

Ak.t C 1/ D
8
<
:

.A0.t/ � B0.t// C .A1.t/ � B1.t// C .A2.t/ � B2.t//; k D 0;

.AkC2.t/ � BkC2.t// C P31
cD0 �k;c.t/; k D 1 : : : 125;P31

cD0 �k;c.t/; k D 126; 127;

(8)

˝k;c.t C 1/ D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂
:

B0.t/; k D 0; c D 32;

2˝k�1;48.t/; k > 0; c D 0;

˝k�1;c�1.t/ � �k�1;c�1.t/; k > 0; c D 1; : : : ; 31;

.˝k�1;31.t/ � �k�1;31.t// C Bk.t/; k > 0; c D 32;

˝k�1;c�1.t/; k > 0; c D 33; : : : ; 48;

0; otherwise:

(9)
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The terms Bk represent the number of cells that leave Ak and enter the cycling
compartment ˝k;32. �k;c is the number of cells that leave ˝k;c and enter the
quiescent compartment Ak . These terms are defined by

Bk.t/ � Bin
�
Ak.t/; !.˝.t/; e�k�/

�
; (10)

�k;c.t/ � Bin
�
˝k;c.t/; ˛.A.t/; e�k�/

�
; c D 0; : : : ; 31; (11)

where ˝.t/ D P
k;c ˝k;c.t/ and A.t/ D P

k Ak.t/ are the total number of cycling
and quiescent stem cells, and the functions ! and ˛ are defined in Eqs. (1) and (2).
In our simulations, we replace these stochastic variables with their expected value
and allow populations to be continuous variables.

At each time step, a quiescent cell may remain quiescent or enter the cell cycle.
Cells that remain quiescent increase their affinity by a factor of r , which translates
to a decrease in k by two. Equation (8) describes the number of quiescent cells
in each compartment, at time t C 1. The first line (k D 0) represents the number
of cells entering A0, namely those cells previously in A0, A1, or A2 that remain
quiescent. In the second line (k D 1; : : : ; 125), cells previously in AkC2 that remain
quiescent enter Ak . The summation term is the number of cycling cells in ˝k;c that
become quiescent. The sum is over c 2 f0; : : : ; 31g because only cells in G1 can
become quiescent. Lastly, when k D 126 or k D 127, there are no quiescent cells
with k > 127 to feed these compartments. Therefore, the only cells entering these
compartment are cycling cells that become quiescent.

On the other hand, cycling cells that continue to cycle decrease their affinity by a
factor of d , which translates to an increase in k by one. At each step, the cell cycle
counter also increases by one. The cycling cells are described by Eq. (9). The first
line (k D 0; c D 32) represents cells that have maximum affinity who are entering
the S phase of the cell cycle. Since there are no cycling cells with greater affinity, the
only cells entering this compartment are quiescent cells that have just entered the
cell cycle. The second line (k > 0; c D 0) represents cells that have just completed
the cell cycle. The constant 2 represents division into two daughter cells, whose cell
cycle counters are reset to c.t/ D 0. The third line (k > 0; c D 1; : : : ; 31) represents
cycling cells in the G1 phase. The right-hand side is the number of cycling cells in
the .k � 1/st compartment that continue to cycle. The beginning of the S phase,
marked by c.t/ D 32, is where transitioning quiescent cells enter the cell cycle.
The fourth line (k > 0; c D 32) is similar to the third, with an additional term
for the quiescent cells that begin cycling. The fifth line (k > 0; c D 33; : : : ; 48)
represents cells in S, G2, and M. Because these cells have committed to division,
they all progress to the next step in the cell cycle and increase their k value by one,
until division. All other cycling cell compartments are zero at all times.

When a cycling cell’s affinity reaches its minimum, corresponding to k taking its
maximum value of 127, the cell differentiates into a precursor cell. The precursor
cell divides once per day for 20 days (480 h). Upon the last division, both daughter
cells differentiate into mature cells, which live for another 8 days without dividing,
and then die. The equations for these compartments are
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Pj .t C 1/ D
8<
:

P48
cD0 ˝127;c.t/ � P31

cD0 �127;c.t/; j D 0;

2Pj �1.t/; j D 24; 48; 72; : : : ; 456;

Pj �1.t/; otherwise;

(12)

Mj .t C 1/ D
�

2P479.t/; j D 0;

Mj �1.t/; otherwise:
(13)

Here, Pj .t/ is the number of cells that have been precursors for j hours, where
j 2 f0; : : : ; 479g. Mj .t/ is the number of cells that have been mature for j hours,
where j 2 f0; : : : ; 191g. In Eq. (12), the first line on the right-hand side represents
cycling stem cells that reach minimum affinity (k D 127), continue to cycle, and
become precursors. The second line accounts for the division of precursor cells,
which occurs every 24 h. For all other values of j , cells increase their age j by one
per time step. In Eq. (13), precursor cells completing their final division become
mature, which is the first line. The second line represents the fact that mature cells
continue to age without dividing.

As in the Roeder model, cancer genesis is simulated by initializing a single PhC
stem cell into the Ph� cell steady state. Both populations are described by the
system of difference equations (Eqs. 8, 9, 12, 13). The two populations compete
at the stem cell level and differ in their transition functions f! and f˛ .

In simulating treatment, we divide the PhC population into two categories: those
that are not affected by IM, which we denote PhC/R, and those that are, which
we denote PhC/I. These two PhC populations differ in their transition function f! ,
with the PhC/I stem cells being much less likely to transition from quiescence to
cycling. At the beginning of treatment, all PhC cells are not IM-affected. The effects
of treatment are assumed to occur at the beginning of every time step. For each k

and c, let ˝
C=R

k;c .t/ be the number of cycling PhC/R cells, and let ˝
C=I

k;c .t/ be the

number of PhC/I cells. Each cell in ˝
C=R

k;c will become IM-affected with probability

rinh. The number of cells in ˝
C=R

k;c that becomes IM-affected at that time step is

given by ˝
C=I;new
k;c .t/ � Bin.˝

C=R

k;c .t/; rinh/. We set

˝
C=R

k;c .t/ WD ˝
C=R

k;c .t/ � ˝
C=I;new
k;c .t/; (14)

˝
C=I

k;c .t/ WD ˝
C=I

k;c .t/ C ˝
C=I;new
k;c .t/: (15)

We additionally assume that all cycling PhC cells will apoptose with probability
rdeg . We therefore remove these cells from the PhC populations at the beginning of
each time step, by subtracting them from Eqs. (14) and (15). In our simulations, we
choose to make the effects of IM deterministic by setting the number of cells that
become IM-affected and apoptose to the expected values rather than taking them
from their binomial distributions. Once the values of ˝k;c.t/ are updated, all three
populations (Ph�, PhC/R, Ph�/I) evolve following Eqs. (8), (9), (12), and (13).
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4 Modifications to the Roeder Model

Divide Differentiation

Value of c(t)

Affinity a(t+1) = a(t)/d Affinity a(t+1) = a(t)/r

Quiescent STCs (Α) Cycling STCs (Ω)

Quiescent STCs may 
enter the cell cycle with
probability ω

Cycling STCs anywhere
in G1 phase may
become quiescent with
probability α α

ω

C cycle duration:
Lifespan: 10-30 days

ell  1 day

Mature cells (M)

Lifespan: 8 days
Non-dividing

Dead

1
3

4

2

0

31
32

48

S

G2

M

G1

Precursor cells(P)

1- aP(t)

aP(t)

1 - aSTC(t)

aSTC (t)

Fig. 2 A diagram of the modified Roeder model. (1) Stem cell transitions between quiescence
and the cell cycle are unchanged. The affinity variable is updated in the same way as in the
original model. (2) Cycling stem cells progress through G1, S, G2, and M. Stem cells enter the
cell cycle at hour c.t/ D 32. (3) At hour c.t/ D 48, the cell divides, and each daughter cell will
remain a stem cell with probability aST C .t/ and will differentiate into a precursor with probability
1 � aST C .t/. Precursor cells symmetrically renew ten times. For all subsequent divisions, up to a
total of thirty divisions, the daughter cells will remain precursors with probability aP .t/ and will
differentiate into mature cells with probability 1 � aP .t/. (4) On the last division, both precursor
cells differentiate into mature cells. Mature cells provide feedback, marked by dashed lines, that
affects the renewal fractions aST C .t/ and aP .t/ of the stem and precursor cells. After 8 days,
mature cells die

In this section we propose several modifications to the Roeder model [24]. Our
model is summarized in Fig. 2. First, we consider three types of stem cell division:

1. Asymmetric division, in which one daughter cell remains a stem cell and the
other differentiates into a precursor cell

2. Symmetric differentiation, in which both daughter cells differentiate into
precursors

3. Symmetric renewal, in which both daughter cells remain stem cells.

In the Roeder model, all dividing stem cells symmetrically renew. Differentiation
into precursor cells is not tied to a division event, and stem cells whose affinity
reaches amin instantaneously transform into precursor cells. Thus, the affinity
variable controls both cell cycle transitions and differentiation.

By incorporating these three types of cell division, each with probability a0, b0,
and c0, where a0 C b0 C c0 D 1, we provide a mechanism for differentiation that
is independent of affinity, while still allowing a cell’s affinity to control transitions
between quiescence and cycling. Several other modeling groups have represented
differentiation in this way, including [19, 28]. Moreover, in [28], it is suggested
that cancer stem cells tend to symmetrically renew, while healthy stem cells tend to
divide asymmetrically. By associating differentiation with a cell division, it becomes
possible to implement this hypothesis in the model.
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Secondly, we allow precursor cells to divide a variable number of times before
they differentiate into mature cells. To implement this, we allow precursors to go
through the same three types of divisions as stem cells. Precursors can divide
between 10 and 30 times before differentiating into mature cells. This range is
centered around 20 divisions, which is assumed for all precursor cells in [24]. The
lower bound to the number of divisions enforces a minimum number of divisions
before maturation, and the upper bound prevents any precursor cells from living
forever.

Lastly, it is known that hematopoiesis is a very closely regulated process that is
affected by many different signals and cytokines [20]. For instance, granulocyte
colony-stimulating factor (G-CSF) is known to play a significant role in gran-
ulopoiesis [20, 23]. Motivated by [19], we implement feedback inhibition from
mature cells that affects less mature cells (precursors and stem cells). Consider a
cytokine S.t/ that is produced at a constant rate ˛, degraded at a constant rate d ,
and is consumed by mature cells at a rate ˇ. Then

dS

dt
D ˛ � dS � ˇSM; (16)

where M.t/ is the number of mature cells. Since the cytokine dynamics occur on
a faster time scale than cell division, we may assume that the cytokine exists at its
quasi-steady state, which when scaled to s.t/ 2 Œ0; 1�, is

s.t/ D 1

1 C kM.t/
; (17)

where s D dS=˛ and k D ˇ=d . We define the renewal fraction a of the stem cell
population as

a D a0

2
C c0: (18)

This quantity represents the probability that a daughter cell of a stem cell will
also be a stem cell. In [19], feedback inhibition affects proliferation rates, renewal
fractions, or both, in the less mature compartments. It is found that regulation of
self-renewal fractions is essential for the system to be able to recover from events
such as chemotherapy that deplete the mature blood cell population. Therefore, we
choose to focus on feedback inhibition that affects renewal fractions aST C and aP

of stem cells and precursors by defining

aST C .t/ D aST C;max

1 C kM.t/
; (19)

aP .t/ D aP;max

1 C kM.t/
: (20)
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Here, aST C;max and aP;max define the maximum renewal fractions of the stem cell
and precursors, respectively. As M.t/ becomes smaller, the renewal fractions of
both stem cells and precursors increases, in order to expand both pools, which
ultimately leads to an increase in mature cells.

We incorporate these changes into the system of difference equations defined by
Eqs. (8), (9), (12), and (13). These changes do not change the form of Eq. (8). Line
2 in Eq. (9) is replaced by

˝k;c.t C 1/ D 2aST C .t/˝k�1;48.t/; 0 < k < 127; c D 0; (21)

to incorporate asymmetric division of stem cells. Each of the two daughter cells of
the dividing stem cell will remain a stem cell with probability aST C .t/. Note that
instead of choosing the number of daughter stem cells from a binomial distribution,
we use the expected value. All other lines in Eq. (9) are unchanged, for 0 � k <

127. However, when k D 127, we must account for the fact that cycling cells with
minimum affinity are no longer differentiating into precursors but instead remain
stem cells. Thus, when k D 127, we replace Eq. (9) with

˝127;c.t C 1/ D

8̂
<̂
ˆ̂:

2aST C .t/.˝126;48.t/ C ˝127;48.t//; c D 0;P127
kD126 ˝k;c�1.t/ � �k;c�1.t/; c D 1 : : : 31;P127
kD126.˝k;31.t/ � �k;31.t// C Bk.t/; c D 32;

˝126;c�1.t/ C ˝127;c�1.t/; c D 33; : : : ; 48:

(22)

The precursor cells are described by

Pj .t C 1/ D

8̂
<̂
ˆ̂:

2.1 � aST C .t//
P

k ˝k;48.t/; j D 0;

2Pj �1.t/; j D 24; 48; 72; : : : ; 240;

2aP .t/Pj �1.t/; j D 264; 288; 312; : : : ; 696;

Pj �1.t/; otherwise:

(23)

Since the precursors can now live for up to 30 days, j D 0; : : : ; 719. Line 1 in
Eq. (23) represents new precursor cells. Stem cells differentiate into precursors
during cell divisions, each of which produces two daughter cells. Each daughter cell
will become a precursor with probability 1 � aST C .t/. All progenitor cells divide
every 24 h. The first 10 divisions are symmetric renewals, which is represented
by line 2 in Eq. (23). For each subsequent division, up to a total of 30 divisions,
daughter cells will remain precursors with probability aP .t/. For all other times,
precursor cells age by 1 h.

The mature cells are described by

Mj .t C 1/ D
�

2P719.t/ C 2.1 � aP .t//
P29

dD11 P24d�1.t/; j D 0;

Mj �1.t/; otherwise:
(24)
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The only difference from Eq. (13) is when j D 0. This line represents the source
of mature cells. The first term of line 1 of Eq. (24) represents precursors who are
completing their 30th division and must undergo symmetric differentiation. The
second term represents the contributions of all precursors who are completing their
d th division, where d D 11; : : : ; 29. For these divisions, each of the two daughter
cells differentiates with probability 1 � aP .t/. We use this modified system of
difference equations to produce the simulations that are discussed in Sect. 5.

5 Numerical Results

For our simulations, we use the system of difference equations in [12], modified to
incorporate the changes discussed in Sect. 4. For all parameters that are present in
the original Roeder model, we choose the same values given in [24]. In order to
allow the stem cell compartment to grow or shrink, we must set aST C;max > 0:5.
We choose aST C;max D 0:52 and aP;max D 0:51. In determining the value of k, we
observe that at steady state, the total number of stem cells should be constant. In
this model, this occurs when the renewal fraction of the stem cells aST C .t/ D 0:5.
Thus, if we want a steady-state solution with M.t/ D M 0, then we should choose

k D 2aST C;max � 1

M 0 : (25)

We set M 0 D 6:8246.10/10 cells, which is the mature healthy cell steady-state value
in [12] and apply Eq. (25) to determine k.

Using these parameters, numerical simulations of healthy cells produce a shift
in the stem cell population toward their cycling state, when compared to the
simulations in [12,24]. This shift had to be addressed since it is known that the stem
cells tend to be quiescent [2]. In order to restore the quiescent stem cell population,
we reduce the function f! by a factor of 10, in comparison to the function used
in the original Roeder model. In other words, we reduce the probability that a
quiescent stem cell will enter the cell cycle. This modification restores the balance
of stem cells, with 91 % in quiescence at steady state. The parameters, including this
modification of f! , are given in Table 1.

In implementing carcinogenesis, as in [24], we introduce a single PhC stem cell
into the healthy cell population at its steady state. As mentioned previously, in [24],
Ph� and PhC cells compete at the stem cell level. They differ in their transition
functions f! and f˛ . We decrease f! for both populations by a factor of 10, in
order to maintain the same relative difference between these functions for the Ph�
and PhC cells. We additionally assume that Ph� and PhC stem cells compete for
cytokine, which is consumed by the mature cells of both populations. We choose
a smaller value of k for the PhC population, which represents cancer’s decreased
sensitivity to environmental signals. Specifically, we set kcancer = khealthy=2.
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Table 1 Parameters for the simulations in Sect. 5

Parameter Description Ph� PhC/R, PhC/I

amin Minimum value of affinity a 0.002 0.002

amax Maximum value of affinity a 1.0 1.0

� Affinity factor 0.0488 0.0488

d Differentiation coefficient e� e�

r Regeneration coefficient e2� e2�

�c Cell cycle duration 49 h 49 h

�S Duration of S phase 8 h 8 h

�G2=M Duration of G2 and M phases 8 h 8 h

�p Lifespan of proliferating precursor cells 10–30 days 10–30 days

�m Lifespan of mature cells 8 days 8 days

Q�c Cell cycle of proliferating precursors 24 h 24 h

f˛.0/ Transition characteristic for f˛ 0.5 1.0

f˛.N˛=2/ Transition characteristic for f˛ 0.45 0.9

f˛.N˛/ Transition characteristic for f˛ 0.05 0.058

f˛.1/ Transition characteristic for f˛ 0.0 0.0

N˛ Scaling factor 105 105

f!.0/ Transition characteristic for f! 0.05 0.1, 0.00500

f!.N!=2/ Transition characteristic for f! 0.03 0.099, 0.00499

f!.N!/ Transition characteristic for f! 0.01 0.098, 0.00498

f!.1/ Transition characteristic for f! 0.0 0.096, 0.00496

N! Scaling factor 105 105

aST C;max The maximum renewal fraction of stem cells 0.52 0.52

aP;max The maximum renewal fraction of precursors 0.51 0.51

M 0 The steady-state number of mature cells 6:8246.10/10 1:36492.10/11

We replace the constant lifespan �p D 20 days of precursors with a range of 10–30 days.
Additionally, all parameters related to f! are decreased by a factor of 10 compared with the
values in [12], to restore the population of quiescent stem cells. For all other parameters included
in the original Roeder model, we choose the same values given in [12]. The last three parameters
arise because of our modifications to the model. The parameter M 0 is used in Eq. (25) to
determine the value of k

Figure 3 shows a simulation of cancer genesis for the parameter values described
above. The simulation shows a long latency time during which Ph� (solid) and
PhC (dashed) cells coexist. The PhC population becomes greater than the Ph�
population between years 5 and 6. These simulations show similar behavior to the
simulations of cancer genesis in [12, 24].

A simulation of a treatment is shown in Fig. 4. The initial conditions are taken
from the end of the cancer simulation in Fig. 3. The number of quiescent stem cells,
number of mature cells, and BCR-ABL ratio are displayed as functions of time.
In comparison with results from [12, 24], we observe a much slower decline in the
BCR-ABL ratio and the number of cancer cells during treatment. This difference
can be understood by considering the PhC stem cells. First, recall that quiescent
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Fig. 3 A simulation of cancer genesis. The solid line represents mature Ph� cells, and the dashed
line represents mature PhC cells

PhC stem cells are assumed to be unaffected by IM. These cells are only affected
by IM if they enter the cell cycle. Thus, a decrease in the transition rate of stem cells
from quiescence to cycling results in quiescent PhC stem cells that will remain
quiescent for longer periods of time, during which they will remain protected from
IM. Figure 4a illustrates this phenomenon, as the number of quiescent PhC stem
cells decreases by less than one order and remains above 104, after 20 years of
treatment. As a result, the number of mature PhC cells, shown in Fig. 4b, remains
above 107. The BCR-ABL ratio, shown in Fig. 4c, decreases by about 3.5 orders.
The simulated patient achieves a MMR, or a 3-log decrease in BCR-ABL ratio, at
year 4. However, MMR4 (a 4-log decrease in BCR-ABL ratio) and MMR5 (a 5-log
decrease) are not achieved.

We consider varying the two treatment parameters, rdeg and rinh, in order to
simulate patients that achieve MMR4 and MMR5. We find that increasing rdeg, the
rate at which IM kills cycling PhC stem cells, results in an increase in the rate at
which cancer is cleared, as illustrated in Fig. 5. By increasing rdeg , our simulated
patient achieves MMR4 (rdeg D 0:066 h�1) and MMR5 (rdeg D 0:132 h�1).

On the other hand, rinh has a non-monotonic relationship with the rate of
cancer clearance. The parameter rinh describes the rate at which cycling PhC
stem cells become IM-affected, meaning they become less likely to enter the cell
cycle. Decreasing the transitions of quiescent PhC stem cells to cycling has two
contrasting effects. On one hand, PhC stem cells are prevented from cycling,
limiting the number of mature PhC cells. On the other hand, these quiescent PhC
stem cells cannot be eliminated from the stem cell population, as IM does not kill
non-cycling PhC stem cells.

For large rinh, the PhC population rapidly shifts toward these decreased transi-
tion rates. As a result, initially the simulations show a sharper decline in mature PhC
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Fig. 4 A simulation of treatment. (a) Quiescent stem cells. (b) Mature cells. (c) BCR-ABL ratio.
In (a, b), Ph� cells are represented by a solid line, PhC cells that are not affected by IM are
represented by a dashed line, and PhC cells that are affected by IM are represented by a dotted
line
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Fig. 5 BCR-ABL ratio is plotted during treatment, for three different values of rdeg: 0.033 h�1

(solid), 0.066 h�1(dashed), and 0.132 h�1 (dotted). As rdeg increases, the BCR-ABL ratio declines
more rapidly. For all three simulations, rinh D 0:05 h�1

cells, compared to simulations with smaller rinh values. However, PhC stem cells
with IM-affected transition rates remain quiescent for longer periods of time and are
protected from the degradation effect of IM. Eventually, the number of mature PhC
cells for rinh large becomes greater than the number of mature PhC cells for rinh

smaller. Figure 6b shows the effects of treatment on mature PhC cells over time, for
different values of rinh.

Figure 6a shows the number of quiescent PhC stem cells over time for different
values of rinh. Here, the relationship is more straightforward. As rinh increases,
PhC stem cells become IM-affected more rapidly, and as a result, the number of
quiescent PhC stem cells increases.

Conclusion
In this chapter we modify the Roeder model [24] by adding more biological
detail. Specifically, we incorporate asymmetric division of stem cells and
precursors, allow precursors to live for a variable amount of time before
maturing, and add feedback inhibition from mature cells that affects stem cells
and precursors. A more accurate representation of hematopoiesis can lead to
more realistic simulations of CML genesis and treatment.

Parametrization of our model suggests that healthy stem cells transition
between the quiescent and proliferating compartments at rates that are lower
than the rates obtained in the original Roeder model. In the Roeder model, at
healthy steady state, approximately 1 quiescent stem cell enters the cell cycle
per 1,000 quiescent stem cells per time step. Thus, quiescent cells enter the

(continued)
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Fig. 6 Number of quiescent PhC stem cells and BCR-ABL ratio during treatment, for three
different values of rinh: 0 h�1 (solid), 0.05 h�1 (dashed), 0.1 h�1 (dotted). (a) Quiescent PhC
stem cells. (b) BCR-ABL ratio. Initially, a higher value of rinh leads to faster cancer clearance, but
later the lower values of rinh become more favorable. For all three simulations, rdeg D 0:033 h�1

cell cycle, on average, once per 1.4 months. In contrast, in our simulations, 1
quiescent stem cell enters the cell cycle per 10,000 cells, which translates to
quiescent cells entering the cell cycle, on average, once every 14 months. This
lower rate of entry into the cell cycle by stem cells is supported by [17, 26].

Lower stem cell transition rates have a significant effect on the results of
IM therapy. In our model, we assume that IM only affects cycling PhC cells.
By decreasing the transition rates of PhC stem cells, quiescent PhC stem cells
can never mind evade the effects of IM during treatment. During 20 years of

(continued)
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simulated treatment, we see an initial phase of a few months when IM kills
most cycling PhC stem cells. Once the cycling PhC population is depleted,
the majority of the remaining PhC stem cell population is quiescent and
is therefore protected from IM. What follows is a very slow decline in the
number of quiescent PhC cells over time, since only a few of these cells enter
the cell cycle every hour. Our treatment simulations indicate a much larger
residual cancer population than those in [24]. These results suggest that IM
alone, acting through the implemented mechanisms, can never fully eradicate
the cancer population.

The Stop Imatinib trial [18] sought to determine whether patients who
responded well to IM therapy could be safely taken off treatment without
relapsing. They found that while 61 % of patients relapsed, 39 % remained
in remission for the duration of the 2-year study. It is possible that some of
the patients in sustained remission had no PhC cells remaining when they
stopped IM. If this is the case, it may imply that there is an additional action
of IM that is not included in the model. Alternatively, patients that remain in
sustained remission after stopping IM may still harbor small populations of
PhC cells. Remaining in remission after stopping IM would then require some
other mechanism (e.g., the immune response) to control the PhC population
and prevent it from expanding.

Still, the fact that many patients do relapse after being taken off IM
motivates studying methods by which IM therapy can be improved. Our
results suggest that IM therapy may greatly benefit from quiescent PhC stem
cell activation. IFN-˛ has been shown to activate quiescent stem cells [6] and
is therefore a strong candidate for combination therapy. A detailed analysis of
immunotherapy in this context is left for a future study.
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