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Preface

Mathematical models are not only practical but also crucial for understanding
biological systems, and the cancer-immune system is no exception. This book on
“Mathematical Models of Tumor-Immune System Dynamics” highlights current
advances in mathematical models (e.g., deterministic, stochastic, and agent-based
models) and demonstrates their applicability in problems arising from cancer
immunology. This book can serve as a reference for researchers working in the field
of cancer immunology and those who might consider entering it.

Recent progress in cancer immunology and advances in immunotherapy suggest
that the immune system plays a fundamental role in combatting tumors, and hence
can be used as a vehicle to prevent or cure cancer. Although theoretical and
experimental studies of tumor-immune dynamics date back to the early 1890s, fun-
damental questions concerning complex interactions between the immune system
and the growing tumor remain. For example, contemporary research programs are
driven by questions concerning how components of the immune system synergize
to limit cancer development, how tumors escape immune recognition and control,
and why some immunotherapies inhibit growth of certain tumors while stimulating
the growth of others.

Indeed, the multidimensional nature of these complex interactions requires cross-
disciplinary approaches to capture more realistic dynamics of the essential biology.
One such approach combines cancer immunology with mathematics to model the
interactions. In particular, mathematical modeling has been used to understand
immune surveillance of developing tumors, the role of the immune system’s
response in maintaining tumor dormancy, and the potential impact of enhancing
anti-tumor immune responses through cancer vaccination. Other novel uses of math-
ematical modeling involve optimizing preventative vaccination strategies against
tumor cells and studying the feasibility of virotherapy, which involves infecting
patients with viruses engineered to favor the infection of tumor cells, rendering
the cancer a target of the patient’s immune response. Understanding these intricate
interactions between cancer and the immune system offers scientists and clinicians
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vi Preface

powerful insights into stimulating and modulating immune responses to prevent or
treat cancer and advance the development of cancer-immunotherapies.

This volume brings together a range of topics on mathematical models of
tumor-immune system dynamics by applied mathematicians and scientists. The
mathematical methods used to study the dynamics of the tumor-immune system in
this book range from ordinary differential equations, to nonlinear partial differential
equations representing complex time- and space-dependent discrete and continuous
processes, to discrete and probabilistic cellular automata. A total of ten chapters are
contributed to this book as follows:

Geoffrey Clapp and Doron Levy, “Incorporating Asymmetric Stem Cell Division
into the Roeder Model for Chronic Myeloid Leukemia.” The authors develop a
system of difference equations to modify Roeder’s agent-based model (ABM)
of chronic myeloid leukemia (CML). Specifically, they incorporate asymmetric
division of stem cells and precursors, allow precursors to live a variable amount
of time before maturing, and introduce feedback inhibition from mature cells to
stem cells and precursors. These modifications result in more accurate simulations
of CML genesis and treatment.

Andrea K. Cooper and Peter S. Kim, “A Cellular Automata and a Partial
Differential Equation Model of Tumor-Immune Dynamics and Chemotaxis.” The
authors present mathematical models of an anti-tumor immune response using a
cellular automaton (CA) and a system of partial differential equations (PDEs) to
account for stochasticity and spatiotemporal heterogeneity. Their models exhibit
three types of behavior: tumor elimination, oscillation, and uncontrolled tumor
growth that depend substantially on the strength of immune cell chemotaxis, or
recruitment, to the tumor site.

Marcello Delitala, Tommaso Lorenzi, and Matteo Melensi, “A Structured Popu-
lation Model of Competition Between Cancer Cells and T Cells Under Immunother-
apy.” The authors present a structured population model of cancer-immune compe-
tition under immunotherapy. The model consists of a system of structured equations
for the dynamics of cancer cells and activated T cells. Simulations highlight the
ability of the model to reproduce the emergence of cancer immuno-editing, that
is, the well-documented process by which the immune system guides the somatic
evolution of tumors by eliminating highly immunogenic cancer cells.

Lisette G. dePillis and Ami E. Radunskaya, “Modeling Tumor-Immune Dynam-
ics.” The goal of this chapter is to understand the dynamics of immune-mediated
tumor rejection, in addition to exploring results of applying combination immune,
vaccine, and chemotherapy treatments. The authors develop and analyze a mathe-
matical model formulated as a system of ordinary differential equations (ODEs) that
governs cancer growth on a cell population level. The model includes populations
of cancer cells, natural killer (NK) cells, and CD8+ T cells.

Peter Hinow and Ami E. Radunskaya, “The Mathematics of Drug Delivery.” The
authors review a discrete and a continuous mathematical model for drug delivery by
matrix tablets and liposomes. The discrete model begins with the construction of
a graph as the contact graph of a random dense sphere packing. The continuous



Preface vii

model is based on a system of reaction-diffusion partial differential equations for
the concentrations of dissolved and undissolved drug and excipient, respectively.
Their cellular automaton (CA) model has shown the best results and is ready for
more concrete applications.

Yangjin Kim, Hyunji Kang, and Sean Lawler, “The Role of the miR-451-AMPK
Signaling Pathway in Regulation of Cell Migration and Proliferation in Glioblas-
toma.” The authors present a hybrid model (ODEs and PDEs) of glioblastoma that
identifies a key mechanism behind the molecular switches between proliferative
and migratory phases in response to metabolic stress and biophysical interaction
between cells. They then examine a hybrid model for the biomechanical interaction
between invasive and proliferative cells, in which all cells are modeled individually,
and show how biophysical properties of cells and the core miR-451- AMPK control
system affect the growth and invasion patterns of glioma spheroids in response to
various glucose levels in the microenvironment.

Urszula Ledzewicz and Heinz Schättler, “An Optimal Control Approach to
Cancer Chemotherapy with Tumor-Immune System Interactions.” The authors
review some results about the structure of optimal chemotherapy protocols in the
presence of tumor immune system interactions that can be derived from population-
based mathematical models using optimal control.

Ignacio A. Rodriguez-Brenes, Natalia L. Komarova, and Dominik Wodarz,
“Negative Feedback Regulation in Hierarchically Organized Tissues: Exploring
the Dynamics of Tissue Regeneration and the Role of Feedback Escape in Tumor
Development.” The authors present a mathematical model that includes feedback
regulation in both the division rate and the self-renewal probability of stem cells.
They find a trade-off between requiring a small equilibrium fraction of stem cells
while avoiding oscillations and the speed at which the system is able to recover from
a perturbation. Spatial interactions and the addition of feedback inhibition on the cell
division rate reduce the amplitude of oscillations and contribute to the robustness of
the system. In addition, feedback inhibition on the division rate also increases the
speed of regeneration.

Trisilowati, Scott W. McCue, and Dann G. Mallet, “A Cellular Automata Model
to Investigate Immune Cell–Tumor Cell Interactions in Growing Tumors in Two
Spatial Dimensions.” The authors develop a hybrid cellular automata (CA) model
to describe the interaction between a growing tumor and the immune system of
the host, including chemokines. The model is able to describe the effect of the
immune system and chemokines on a growing tumor. Increasing the number of
immature dendritic cells (DCs) in the domain causes a decrease in the number of
tumor cells. This result strongly supports the hypothesis that DCs can be used as a
cancer treatment.

Joanna R. Wares, Joseph J. Crivelli, and Peter S. Kim, “Differential Equation
Techniques for Modeling a Cycle-Specific Oncolytic Virotherapeutic.” The authors
present a mathematical model of oncolytic vesticular stomatitis virus (VSV)
in stages. They start by discussing standard mathematical tools along with the
development and analysis of the model. Then they develop the model to incorporate
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the property that oncolytic VSV only tends to affect tumor cells in the active phases
of the cell cycle. The authors show that this mathematical model can be used to
investigate the dynamics of the tumor-virus system.

We thank all of the contributing authors for their hard work that made this
Springer Book a reality. We also thank the reviewers for their dedicated effort
and valuable comments. We sincerely thank the excellent Springer editorial team
for their professional help, patience, and guidance throughout the production
process of this book. The idea for this book was conceived during the US-Sydney
International Workshop on “Mathematical Modeling of Tumor-Immune Dynamics,”
held in Sydney on January 7–10, 2013. This workshop could not have happened
without the help of many dedicated people and generous financial support from
various sponsors. We gratefully acknowledge all of the funding organizations,
particularly the National Science Foundation (Award # DMS-1249258), the Aus-
tralian Mathematical Sciences Institute, the Australian Research Council (Award
# DE120101113), and the Society for Mathematical Biology for their generous
support that made the US-Sydney workshop a remarkable success.

Albany, NY, USA Amina Eladdadi
Sydney, NSW, Australia Peter Kim
Brisbane, QLD, Australia Dann Mallet
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Incorporating Asymmetric Stem Cell
Division into the Roeder Model
for Chronic Myeloid Leukemia

Geoffrey Clapp and Doron Levy

Abstract In this chapter we propose several modifications to the Roeder model
of chronic myeloid leukemia (Roeder et al.: Nat. Med. 12(10), 1181–1184 2006).
Specifically, we incorporate asymmetric division of stem cells and precursors, allow
precursors to live a variable amount of time before maturing, and introduce feedback
inhibition from mature cells to stem cells and precursors. These modifications result
in more accurate simulations of cancer genesis and treatment. In comparison with
the original model, our results indicate lower transition rates of stem cells between
their quiescent and cycling states, which are supported by the rates suggested by
experimental data. Decreased transition rates of stem cells translate into quiescent
cancer stem cells that are better protected from imatinib, resulting in a large residual
cancer burden, even after many years of therapy. Our modeling results suggest that
the efficacy of imatinib would increase if it is combined with a drug that induces
cancer stem cells to cycle.

1 Introduction

Chronic myeloid leukemia (CML) is a myeloproliferative disorder that represents
about 20 % of leukemias in adults [1]. A majority of cases of CML is initiated by the
formation of the Philadelphia chromosome (Ph), which results in the production of
the BCR-ABL gene, coding for a constitutively active tyrosine kinase. The tyrosine
kinase inhibitor imatinib (IM) has significantly improved CML patient outlook.
Treatment with IM results in complete hematological remission in most patients
[16] and cytogenetic remission in 75 % of patients [4]. Moreover, in many patients,
IM induces a major molecular response (MMR), or a 3-log decrease in BCR-ABL
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2 G. Clapp and D. Levy

ratio [9]. Still, in most cases, even after several years of therapy, a small population
of PhC cells persists, and cessation of treatment will generally lead to a rapid
relapse [4].

Several mathematical models have been developed and applied to CML and its
treatment. Modeling approaches include ordinary differential equations (ODEs) [19,
21,22,27], delay differential equations (DDEs) [3,10], branching processes [15,28],
and birth–death processes [13,14]. These tools have been applied to studying cancer
genesis, therapy, combination therapy, and drug resistance. Additionally, in [10,22],
the immune system is incorporated, and in [10], a combination therapy is proposed
that combines IM with cancer vaccines, whose dose and timing are adjusted to the
profile of the immune response in individual patients.

Roeder et al. [24] develop a stochastic agent-based model (ABM) for the
interaction between IM and CML. This model considers the differentiation of
cells through three stages: stem cells, proliferating precursor cells, and non-
proliferating precursor and mature cells. The stem cells are divided into two
compartments: proliferating and non-proliferating stem cells. Individual stem cells
circulate continually between the two compartments and are affected by IM only
while proliferating.

Applications of the Roeder et al. ABM can be found in several papers. In [7],
interferon-˛ (IFN-˛) is considered in combination with IM, in order to stimulate
quiescent cancer cells to enter the cell cycle, where they are more likely to be
affected by IM. In considering drug schedules, it is shown in [24] that pulsed IFN-˛
with continuous IM leads to the greatest clinical benefits while still limiting side
effects. Using patient-specific data, the Roeder model is used in [8] to predict which
patients can be safely taken off IM without relapsing.

Although ABMs are able to capture cell dynamics and interactions, simulations
with a large number of agents can be computationally prohibitive. To address
this difficulty, Kim et al. reformulate the Roeder model as a system of difference
equations [12] and as a system of partial differential equations (PDEs) [11]. A
simplified version of the PDE model is later studied in [5]. An alternative approach
to obtaining a continuum limit of the ABM is proposed by Roeder et al. in [25]. By
using these reduced systems, computation time no longer depends on cell population
sizes, and simulations with realistic numbers of cells are made possible.

In this chapter, we propose several modifications to the Roeder model [24],
constructing a model that more closely represents hematopoiesis. Specifically, we
incorporate asymmetric division of stem cells and precursors, allow precursors to
live a variable amount of time before maturing, and introduce feedback inhibition
from mature cells to stem cells and precursors. These modifications result in more
accurate simulations of cancer genesis and treatment.

The rest of the chapter is organized as follows. In Sect. 2, we provide a brief
overview of the Roeder model. The derivation of the corresponding system of
difference equations is given in Sect. 3. We present our modifications to the Roeder
model in Sect. 4. Parametrization of the model and numerical simulations are
discussed in Sect. 5. The final section “Conclusion” concludes with a discussion
and insight about how CML therapy can be potentially improved.
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2 The Roeder Model

In this section we provide a brief overview of the Roeder model [24]. This model
is an ABM that considers hematopoietic cells in three compartments: stem cells
(STC), proliferating precursor cells (P), and mature cells (M). Stem cells are either
quiescent, denoted by A, or cycling, denoted by ˝ . Let A.t/ and ˝.t/ represent
the total number of quiescent and cycling stem cells at time t . Each individual stem
cell is characterized by an affinity variable a.t/ 2 Œamin; amax� which determines
the probability that the cell will be quiescent or cycling. At each time step, which
represents 1 h, a quiescent stem cell will enter the cell cycle with probability !, and
a cycling stem cell will become quiescent with probability ˛, where

!.˝.t/; a.t// D amin

a.t/
f!.˝.t//; (1)

˛.A.t/; a.t// D a.t/

amax
f˛.A.t//: (2)

Thus, cells with affinity a.t/ close to amax tend to remain or become quiescent,
while cells with a.t/ close to amin tend to remain or become cycling. The functions
f! and f˛ are defined by

f!.˝.t// D 1

�1 C �2 exp
�
�3

˝.t/

N!

� C �4; (3)

f˛.A.t// D 1

�1 C �2 exp
�
�3

A.t/

N˛

� C �4: (4)

Both functions, f! and f˛ , are decreasing sigmoidal functions whose shapes depend
on the parameters �i and�i . The parametersN! andN˛ are scaling factors for˝.t/
and A.t/. Given the values of f! at ˝.t/ D 0, N!=2, N! , and 1, we can compute
the coefficients �i as follows:

�1 D .h1h3 � h22/=.h1 C h3 � 2h2/;

�2 D h1 � �1;

�3 D log..h3 � �1/=�2/;

�4 D f!.1/;

where

h1 D 1=.f!.0/� f!.1//;

h2 D 1=.f!.N!=2/� f!.1//;

h3 D 1=.f!.N!/ � f!.1//:
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A similar set of formulas can be used to determine the parameters �i of f˛ . These
functions are constructed so that the cells that are in the less-populated compartment
are less likely to move.

Quiescent cells that remain quiescent during a time step increase their affinity by
a factor of r , until they reach the maximum affinity amax . Cycling cells that continue
to cycle during a time step decrease their affinity by a factor of d , until they reach
the minimum affinity amin. In other words, cells that remain inA or˝ become more
likely to stay in A or ˝ in the future.

Cycling cells are also characterized by a cell cycle counter c.t/, which represents
their place in the cell cycle. In [24], the cell cycle lasts 49 h, so c.t/ 2 f0; 1; : : : ; 48g.
The first 32 h represent the G1 phase, where cells grow and can transition to
quiescence. Cells that reach c.t/ D 32 commit to division and must go through
the S, G2, and M stages of the cell cycle. After the cell divides (c.t/ D 48), each
daughter cell reenters G1 (c.t/ D 0) and becomes an uncommitted cycling cell that
may transition to quiescence. Quiescent cells that enter the cell cycle have their cell
cycle counter initialized to c.t/ D 32, which means that they commit to at least one
division.

Stem cells that reach affinity a.t/ D amin differentiate into precursor cells.
Precursors (P ) live for a fixed amount of time and undergo a fixed number of
divisions. They then differentiate into mature cells (M ), which do not divide and
die after a fixed amount of time. Figure 1 summarizes the Roeder model.

Both healthy (Ph�) and cancer (PhC) cells differentiate through the maturity
stages discussed above. Ph� cells and PhC cells compete at the stem cell level
through the functions f! and f˛, whose inputs are the total number of cycling
cells and quiescent cells, respectively. PhC cells differ from Ph� cells in their
transition functions f! and f˛ . It is assumed that PhC stem cells are more likely
to transition between quiescence and cycling and that the probability of a quiescent
PhC stem cell transitioning to cycling is only slightly affected by the current number
of cycling stem cells. Cancer genesis is characterized by a long latency period of 5–
7 years, in which PhC and Ph� populations coexist. Without treatment, PhC cells
are eventually able to out-compete Ph� cells and take over the system.

Treatment with IM is assumed to have two effects on PhC stem cells while not
directly affecting Ph� cells. First, all cycling PhC stem cells are killed at a rate rdeg.
In addition, all cycling PhC stem cells become IM-affected with probability rinh.
Once a PhC stem cell becomes IM-affected, its transition function f! is decreased
significantly, making it much less likely for quiescent PhC stem cells to enter the
cell cycle. Note that there is no direct action of IM on quiescent PhC stem cells.

The effect of the treatment is evaluated by monitoring levels of BCR-ABL fusion
transcript in the blood. These levels are reported relative to an endogenous control
transcript, BCR or ABL, in order to normalize the BCR-ABL measurements. This
relative value, known as the BCR-ABL ratio, is estimated in [24] by

BCR-ABL ratio D 100 � .# of mature PhC cells/

2 � .# of mature Ph� cells/C .# of mature PhC cells/
: (5)
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Divide Differentiation

Value of c(t)

Quiescent STCs (Α) Cycling STCs (Ω)

Quiescent STCs may 
enter the cell cycle with
probability ω

Cycling STCs any where
in G1 phase may
become quiescent with
probability 

Affinity a(t+1) =a(t)/r Affinity a(t+1) =a(t)/d 

α α

ω

Precursor cells(P)

Lifespan: 20 days
Cell cycle duration: 1 day

Mature cells (M)

Lifespan: 8 days
Non-dividing

Dead

1 3

4
2

0

31
32

48

S

G2

M

G1

Fig. 1 A diagram for the Roeder model. (1) At each time step, quiescent stem cells enter the cell
cycle with probability !, while cycling cells in G1 become quiescent with probability ˛. Quiescent
stem cells that remain quiescent during a time step increase their affinity by a factor of r , up to
a maximum value of amax . Cycling stem cells that continue to cycle decrease their affinity by a
factor of d . (2) Cycling stem cells progress through G1, S, G2, and M. The cell cycle counter
c.t/ 2 f0; 1; : : : ; 48g indicates the cell’s phase in the cell cycle. Stem cells enter the cell cycle at
hour c.t/ D 32. At hour c.t/ D 48, the cell divides, and its daughter cells reset their cell cycle
counters to c.t/ D 0. (3) A cycling stem cell whose affinity reaches amin differentiates into a
precursor cell, which lives for 20 days and divides once per day. (4) In the last division, precursor
cells differentiate into mature cells, which do not divide and die after 8 days

The contributions of stem cells and precursors to this ratio are negligible because
these populations are small relative to the mature cells, and the mature cells are the
dominant population in the blood. In each healthy Ph� cell, there are two copies
of the control gene, while PhC cells are assumed to possess one copy of the BCR-
ABL fusion gene and one copy of the control gene. Thus, BCR-ABL transcript
levels should be proportional to the number of mature PhC cells, while the control
transcript levels should be proportional to twice the number of mature Ph� cells
plus the number of mature PhC cells. This quantity is multiplied by 100 so that it
represents a percentage.

In simulations, long-term treatment leads to a biphasic decline in BCR-ABL
levels, with a rapid first decline followed by a slower second decline. However,
small populations of PhC cells persist over many years of treatment, and cessation
of treatment generally leads to a rapid relapse.

3 Reducing the Agent-Based Model to a System
of Difference Equations

Although the Roeder model has the advantage of being able to capture the
dynamics of cell–cell interactions, simulations with a realistic number of agents
is computationally very expensive. In the simulations in [24], the number of cells is
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down-scaled to 1=10 of normal patient values, resulting in approximately 105 stem
cells. Even with this reduction in the number of agents, a simulation of 20 years
requires approximately 175,000 steps for each of the 105 agents. (Precursors and
mature cells can be represented as populations, so the total number of agents is the
total number of stem cells.) To address this limitation, the Roeder model is reduced
to a system of PDEs in [11, 25] and a system of difference equations in [12]. In
this section we follow [12] and provide a brief summary of the system of difference
equations. A modified version of this system is what we later use for the numerical
simulations of our modified version of the Roeder model.

In order to decrease the number of variables, Kim et al. [12] discretize the affinity
state space. In [24], d D 1:05 and r D 1:1, so log.d/ D � D 0:0488 � log.r/=2.
By setting d D e� and r D e2�, any cell whose initial affinity is of the form a.t/ D
e�k� for an integer k will continue to have this form. Since 0:002 � a.t/ � 1, k is
restricted to 0 � k � 127. Because of the negative in the exponent, the maximum
affinity corresponds to the minimum k value, and the minimum affinity corresponds
to the maximum k value. More importantly, though, with these new values of r and
d , it is no longer necessary to track individual agents. Rather, for each of the various
k values, we can group stem cells into populations whose affinity a.t/ D e�k�, for
each of the finitely many k values.

Define Ak.t/ and˝k;c.t/ as follows:

Ak.t/ D Number of cells in A at time t with log a.t/ D �k�; (6)

Gk;c.t/ D Number of cells in ˝ at time t with log a.t/ D �k� and c.t/ D c: (7)

As mentioned earlier, k 2 f0; : : : ; 127g, and c 2 f0; : : : ; 48g. Given this dis-
cretization, the Roeder model is represented by the following system of difference
equations:

Ak.t C 1/ D
8
<
:
.A0.t/ � B0.t//C .A1.t/ � B1.t//C .A2.t/ � B2.t//; k D 0;

.AkC2.t/ � BkC2.t//CP31
cD0 �k;c .t/; k D 1 : : : 125;P31

cD0 �k;c.t/; k D 126; 127;

(8)

˝k;c.t C 1/ D

8
ˆ̂̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:̂

B0.t/; k D 0; c D 32;

2˝k�1;48.t/; k > 0; c D 0;

˝k�1;c�1.t/ � �k�1;c�1.t/; k > 0; c D 1; : : : ; 31;

.˝k�1;31.t/ � �k�1;31.t//CBk.t/; k > 0; c D 32;

˝k�1;c�1.t/; k > 0; c D 33; : : : ; 48;

0; otherwise:
(9)
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The terms Bk represent the number of cells that leave Ak and enter the cycling
compartment ˝k;32. �k;c is the number of cells that leave ˝k;c and enter the
quiescent compartmentAk . These terms are defined by

Bk.t/ � Bin
�
Ak.t/; !.˝.t/; e

�k�/
�
; (10)

�k;c.t/ � Bin
�
˝k;c.t/; ˛.A.t/; e

�k�/
�
; c D 0; : : : ; 31; (11)

where ˝.t/ D P
k;c ˝k;c.t/ and A.t/ D P

k Ak.t/ are the total number of cycling
and quiescent stem cells, and the functions ! and ˛ are defined in Eqs. (1) and (2).
In our simulations, we replace these stochastic variables with their expected value
and allow populations to be continuous variables.

At each time step, a quiescent cell may remain quiescent or enter the cell cycle.
Cells that remain quiescent increase their affinity by a factor of r , which translates
to a decrease in k by two. Equation (8) describes the number of quiescent cells
in each compartment, at time t C 1. The first line (k D 0) represents the number
of cells entering A0, namely those cells previously in A0, A1, or A2 that remain
quiescent. In the second line (k D 1; : : : ; 125), cells previously in AkC2 that remain
quiescent enter Ak . The summation term is the number of cycling cells in ˝k;c that
become quiescent. The sum is over c 2 f0; : : : ; 31g because only cells in G1 can
become quiescent. Lastly, when k D 126 or k D 127, there are no quiescent cells
with k > 127 to feed these compartments. Therefore, the only cells entering these
compartment are cycling cells that become quiescent.

On the other hand, cycling cells that continue to cycle decrease their affinity by a
factor of d , which translates to an increase in k by one. At each step, the cell cycle
counter also increases by one. The cycling cells are described by Eq. (9). The first
line (k D 0; c D 32) represents cells that have maximum affinity who are entering
the S phase of the cell cycle. Since there are no cycling cells with greater affinity, the
only cells entering this compartment are quiescent cells that have just entered the
cell cycle. The second line (k > 0; c D 0) represents cells that have just completed
the cell cycle. The constant 2 represents division into two daughter cells, whose cell
cycle counters are reset to c.t/ D 0. The third line (k > 0; c D 1; : : : ; 31) represents
cycling cells in the G1 phase. The right-hand side is the number of cycling cells in
the .k � 1/st compartment that continue to cycle. The beginning of the S phase,
marked by c.t/ D 32, is where transitioning quiescent cells enter the cell cycle.
The fourth line (k > 0; c D 32) is similar to the third, with an additional term
for the quiescent cells that begin cycling. The fifth line (k > 0; c D 33; : : : ; 48)
represents cells in S, G2, and M. Because these cells have committed to division,
they all progress to the next step in the cell cycle and increase their k value by one,
until division. All other cycling cell compartments are zero at all times.

When a cycling cell’s affinity reaches its minimum, corresponding to k taking its
maximum value of 127, the cell differentiates into a precursor cell. The precursor
cell divides once per day for 20 days (480 h). Upon the last division, both daughter
cells differentiate into mature cells, which live for another 8 days without dividing,
and then die. The equations for these compartments are
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Pj .t C 1/ D
8
<
:

P48
cD0 ˝127;c.t/ �P31

cD0 �127;c.t/; j D 0;

2Pj�1.t/; j D 24; 48; 72; : : : ; 456;

Pj�1.t/; otherwise;
(12)

Mj.t C 1/ D
�
2P479.t/; j D 0;

Mj�1.t/; otherwise:
(13)

Here, Pj .t/ is the number of cells that have been precursors for j hours, where
j 2 f0; : : : ; 479g. Mj.t/ is the number of cells that have been mature for j hours,
where j 2 f0; : : : ; 191g. In Eq. (12), the first line on the right-hand side represents
cycling stem cells that reach minimum affinity (k D 127), continue to cycle, and
become precursors. The second line accounts for the division of precursor cells,
which occurs every 24 h. For all other values of j , cells increase their age j by one
per time step. In Eq. (13), precursor cells completing their final division become
mature, which is the first line. The second line represents the fact that mature cells
continue to age without dividing.

As in the Roeder model, cancer genesis is simulated by initializing a single PhC
stem cell into the Ph� cell steady state. Both populations are described by the
system of difference equations (Eqs. 8, 9, 12, 13). The two populations compete
at the stem cell level and differ in their transition functions f! and f˛ .

In simulating treatment, we divide the PhC population into two categories: those
that are not affected by IM, which we denote PhC/R, and those that are, which
we denote PhC/I. These two PhC populations differ in their transition function f! ,
with the PhC/I stem cells being much less likely to transition from quiescence to
cycling. At the beginning of treatment, all PhC cells are not IM-affected. The effects
of treatment are assumed to occur at the beginning of every time step. For each k
and c, let ˝C=R

k;c .t/ be the number of cycling PhC/R cells, and let ˝C=I
k;c .t/ be the

number of PhC/I cells. Each cell in˝C=R
k;c will become IM-affected with probability

rinh. The number of cells in ˝C=R
k;c that becomes IM-affected at that time step is

given by ˝C=I;new
k;c .t/ � Bin.˝C=R

k;c .t/; rinh/. We set

˝
C=R
k;c .t/ WD ˝

C=R
k;c .t/ �˝

C=I;new
k;c .t/; (14)

˝
C=I
k;c .t/ WD ˝

C=I
k;c .t/C˝

C=I;new
k;c .t/: (15)

We additionally assume that all cycling PhC cells will apoptose with probability
rdeg. We therefore remove these cells from the PhC populations at the beginning of
each time step, by subtracting them from Eqs. (14) and (15). In our simulations, we
choose to make the effects of IM deterministic by setting the number of cells that
become IM-affected and apoptose to the expected values rather than taking them
from their binomial distributions. Once the values of ˝k;c.t/ are updated, all three
populations (Ph�, PhC/R, Ph�/I) evolve following Eqs. (8), (9), (12), and (13).
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4 Modifications to the Roeder Model

Divide Differentiation

Value of c(t)

Affinity a(t+1) = a(t)/d Affinity a(t+1) = a(t)/r

Quiescent STCs (Α) Cycling STCs (Ω)

Quiescent STCs may 
enter the cell cycle with
probability ω

Cycling STCs anywhere
in G1 phase may
become quiescent with
probability α α

ω

C cycle duration:
Lifespan: 10-30 days

ell  1 day

Mature cells (M)

Lifespan: 8 days
Non-dividing

Dead

1
3

4

2

0

31
32

48

S

G2

M

G1

Precursor cells(P)

1- aP(t)

aP(t)

1 - aSTC(t)

aSTC (t)

Fig. 2 A diagram of the modified Roeder model. (1) Stem cell transitions between quiescence
and the cell cycle are unchanged. The affinity variable is updated in the same way as in the
original model. (2) Cycling stem cells progress through G1, S, G2, and M. Stem cells enter the
cell cycle at hour c.t/ D 32. (3) At hour c.t/ D 48, the cell divides, and each daughter cell will
remain a stem cell with probability aSTC .t/ and will differentiate into a precursor with probability
1� aSTC .t/. Precursor cells symmetrically renew ten times. For all subsequent divisions, up to a
total of thirty divisions, the daughter cells will remain precursors with probability aP .t/ and will
differentiate into mature cells with probability 1� aP .t/. (4) On the last division, both precursor
cells differentiate into mature cells. Mature cells provide feedback, marked by dashed lines, that
affects the renewal fractions aSTC .t/ and aP .t/ of the stem and precursor cells. After 8 days,
mature cells die

In this section we propose several modifications to the Roeder model [24]. Our
model is summarized in Fig. 2. First, we consider three types of stem cell division:

1. Asymmetric division, in which one daughter cell remains a stem cell and the
other differentiates into a precursor cell

2. Symmetric differentiation, in which both daughter cells differentiate into
precursors

3. Symmetric renewal, in which both daughter cells remain stem cells.

In the Roeder model, all dividing stem cells symmetrically renew. Differentiation
into precursor cells is not tied to a division event, and stem cells whose affinity
reaches amin instantaneously transform into precursor cells. Thus, the affinity
variable controls both cell cycle transitions and differentiation.

By incorporating these three types of cell division, each with probability a0, b0,
and c0, where a0 C b0 C c0 D 1, we provide a mechanism for differentiation that
is independent of affinity, while still allowing a cell’s affinity to control transitions
between quiescence and cycling. Several other modeling groups have represented
differentiation in this way, including [19, 28]. Moreover, in [28], it is suggested
that cancer stem cells tend to symmetrically renew, while healthy stem cells tend to
divide asymmetrically. By associating differentiation with a cell division, it becomes
possible to implement this hypothesis in the model.
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Secondly, we allow precursor cells to divide a variable number of times before
they differentiate into mature cells. To implement this, we allow precursors to go
through the same three types of divisions as stem cells. Precursors can divide
between 10 and 30 times before differentiating into mature cells. This range is
centered around 20 divisions, which is assumed for all precursor cells in [24]. The
lower bound to the number of divisions enforces a minimum number of divisions
before maturation, and the upper bound prevents any precursor cells from living
forever.

Lastly, it is known that hematopoiesis is a very closely regulated process that is
affected by many different signals and cytokines [20]. For instance, granulocyte
colony-stimulating factor (G-CSF) is known to play a significant role in gran-
ulopoiesis [20, 23]. Motivated by [19], we implement feedback inhibition from
mature cells that affects less mature cells (precursors and stem cells). Consider a
cytokine S.t/ that is produced at a constant rate ˛, degraded at a constant rate d ,
and is consumed by mature cells at a rate ˇ. Then

dS

dt
D ˛ � dS � ˇSM; (16)

where M.t/ is the number of mature cells. Since the cytokine dynamics occur on
a faster time scale than cell division, we may assume that the cytokine exists at its
quasi-steady state, which when scaled to s.t/ 2 Œ0; 1�, is

s.t/ D 1

1C kM.t/
; (17)

where s D dS=˛ and k D ˇ=d . We define the renewal fraction a of the stem cell
population as

a D a0

2
C c0: (18)

This quantity represents the probability that a daughter cell of a stem cell will
also be a stem cell. In [19], feedback inhibition affects proliferation rates, renewal
fractions, or both, in the less mature compartments. It is found that regulation of
self-renewal fractions is essential for the system to be able to recover from events
such as chemotherapy that deplete the mature blood cell population. Therefore, we
choose to focus on feedback inhibition that affects renewal fractions aSTC and aP
of stem cells and precursors by defining

aSTC .t/ D aSTC;max

1C kM.t/
; (19)

aP .t/ D aP;max

1C kM.t/
: (20)



Asymmetric Stem Cell Division in a CML Model 11

Here, aSTC;max and aP;max define the maximum renewal fractions of the stem cell
and precursors, respectively. As M.t/ becomes smaller, the renewal fractions of
both stem cells and precursors increases, in order to expand both pools, which
ultimately leads to an increase in mature cells.

We incorporate these changes into the system of difference equations defined by
Eqs. (8), (9), (12), and (13). These changes do not change the form of Eq. (8). Line
2 in Eq. (9) is replaced by

˝k;c.t C 1/ D 2aSTC .t/˝k�1;48.t/; 0 < k < 127; c D 0; (21)

to incorporate asymmetric division of stem cells. Each of the two daughter cells of
the dividing stem cell will remain a stem cell with probability aSTC .t/. Note that
instead of choosing the number of daughter stem cells from a binomial distribution,
we use the expected value. All other lines in Eq. (9) are unchanged, for 0 � k <

127. However, when k D 127, we must account for the fact that cycling cells with
minimum affinity are no longer differentiating into precursors but instead remain
stem cells. Thus, when k D 127, we replace Eq. (9) with

˝127;c.t C 1/ D

8
ˆ̂<
ˆ̂:

2aSTC .t/.˝126;48.t/C˝127;48.t//; c D 0;P127
kD126 ˝k;c�1.t/ � �k;c�1.t/; c D 1 : : : 31;P127
kD126.˝k;31.t/ � �k;31.t//CBk.t/; c D 32;

˝126;c�1.t/C˝127;c�1.t/; c D 33; : : : ; 48:

(22)

The precursor cells are described by

Pj .t C 1/ D

8̂
<̂
ˆ̂:

2.1� aSTC .t//
P

k ˝k;48.t/; j D 0;

2Pj�1.t/; j D 24; 48; 72; : : : ; 240;

2aP .t/Pj�1.t/; j D 264; 288; 312; : : : ; 696;

Pj�1.t/; otherwise:
(23)

Since the precursors can now live for up to 30 days, j D 0; : : : ; 719. Line 1 in
Eq. (23) represents new precursor cells. Stem cells differentiate into precursors
during cell divisions, each of which produces two daughter cells. Each daughter cell
will become a precursor with probability 1 � aSTC .t/. All progenitor cells divide
every 24 h. The first 10 divisions are symmetric renewals, which is represented
by line 2 in Eq. (23). For each subsequent division, up to a total of 30 divisions,
daughter cells will remain precursors with probability aP .t/. For all other times,
precursor cells age by 1 h.

The mature cells are described by

Mj.t C 1/ D
�
2P719.t/C 2.1� aP .t//P29

dD11 P24d�1.t/; j D 0;

Mj�1.t/; otherwise:
(24)
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The only difference from Eq. (13) is when j D 0. This line represents the source
of mature cells. The first term of line 1 of Eq. (24) represents precursors who are
completing their 30th division and must undergo symmetric differentiation. The
second term represents the contributions of all precursors who are completing their
d th division, where d D 11; : : : ; 29. For these divisions, each of the two daughter
cells differentiates with probability 1 � aP .t/. We use this modified system of
difference equations to produce the simulations that are discussed in Sect. 5.

5 Numerical Results

For our simulations, we use the system of difference equations in [12], modified to
incorporate the changes discussed in Sect. 4. For all parameters that are present in
the original Roeder model, we choose the same values given in [24]. In order to
allow the stem cell compartment to grow or shrink, we must set aSTC;max > 0:5.
We choose aSTC;max D 0:52 and aP;max D 0:51. In determining the value of k, we
observe that at steady state, the total number of stem cells should be constant. In
this model, this occurs when the renewal fraction of the stem cells aSTC .t/ D 0:5.
Thus, if we want a steady-state solution with M.t/ D M 0, then we should choose

k D 2aSTC;max � 1

M 0 : (25)

We setM 0 D 6:8246.10/10 cells, which is the mature healthy cell steady-state value
in [12] and apply Eq. (25) to determine k.

Using these parameters, numerical simulations of healthy cells produce a shift
in the stem cell population toward their cycling state, when compared to the
simulations in [12,24]. This shift had to be addressed since it is known that the stem
cells tend to be quiescent [2]. In order to restore the quiescent stem cell population,
we reduce the function f! by a factor of 10, in comparison to the function used
in the original Roeder model. In other words, we reduce the probability that a
quiescent stem cell will enter the cell cycle. This modification restores the balance
of stem cells, with 91% in quiescence at steady state. The parameters, including this
modification of f! , are given in Table 1.

In implementing carcinogenesis, as in [24], we introduce a single PhC stem cell
into the healthy cell population at its steady state. As mentioned previously, in [24],
Ph� and PhC cells compete at the stem cell level. They differ in their transition
functions f! and f˛ . We decrease f! for both populations by a factor of 10, in
order to maintain the same relative difference between these functions for the Ph�
and PhC cells. We additionally assume that Ph� and PhC stem cells compete for
cytokine, which is consumed by the mature cells of both populations. We choose
a smaller value of k for the PhC population, which represents cancer’s decreased
sensitivity to environmental signals. Specifically, we set kcancer = khealthy=2.
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Table 1 Parameters for the simulations in Sect. 5

Parameter Description Ph� PhC/R, PhC/I

amin Minimum value of affinity a 0.002 0.002

amax Maximum value of affinity a 1.0 1.0

� Affinity factor 0.0488 0.0488

d Differentiation coefficient e� e�

r Regeneration coefficient e2� e2�

�c Cell cycle duration 49 h 49 h

�S Duration of S phase 8 h 8 h

�G2=M Duration of G2 and M phases 8 h 8 h

�p Lifespan of proliferating precursor cells 10–30 days 10–30 days

�m Lifespan of mature cells 8 days 8 days

Q�c Cell cycle of proliferating precursors 24 h 24 h

f˛.0/ Transition characteristic for f˛ 0.5 1.0

f˛.N˛=2/ Transition characteristic for f˛ 0.45 0.9

f˛.N˛/ Transition characteristic for f˛ 0.05 0.058

f˛.1/ Transition characteristic for f˛ 0.0 0.0

N˛ Scaling factor 105 105

f!.0/ Transition characteristic for f! 0.05 0.1, 0.00500

f!.N!=2/ Transition characteristic for f! 0.03 0.099, 0.00499

f!.N!/ Transition characteristic for f! 0.01 0.098, 0.00498

f!.1/ Transition characteristic for f! 0.0 0.096, 0.00496

N! Scaling factor 105 105

aSTC;max The maximum renewal fraction of stem cells 0.52 0.52

aP;max The maximum renewal fraction of precursors 0.51 0.51

M 0 The steady-state number of mature cells 6:8246.10/10 1:36492.10/11

We replace the constant lifespan �p D 20 days of precursors with a range of 10–30 days.
Additionally, all parameters related to f! are decreased by a factor of 10 compared with the
values in [12], to restore the population of quiescent stem cells. For all other parameters included
in the original Roeder model, we choose the same values given in [12]. The last three parameters
arise because of our modifications to the model. The parameter M 0 is used in Eq. (25) to
determine the value of k

Figure 3 shows a simulation of cancer genesis for the parameter values described
above. The simulation shows a long latency time during which Ph� (solid) and
PhC (dashed) cells coexist. The PhC population becomes greater than the Ph�
population between years 5 and 6. These simulations show similar behavior to the
simulations of cancer genesis in [12, 24].

A simulation of a treatment is shown in Fig. 4. The initial conditions are taken
from the end of the cancer simulation in Fig. 3. The number of quiescent stem cells,
number of mature cells, and BCR-ABL ratio are displayed as functions of time.
In comparison with results from [12, 24], we observe a much slower decline in the
BCR-ABL ratio and the number of cancer cells during treatment. This difference
can be understood by considering the PhC stem cells. First, recall that quiescent
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Fig. 3 A simulation of cancer genesis. The solid line represents mature Ph� cells, and the dashed
line represents mature PhC cells

PhC stem cells are assumed to be unaffected by IM. These cells are only affected
by IM if they enter the cell cycle. Thus, a decrease in the transition rate of stem cells
from quiescence to cycling results in quiescent PhC stem cells that will remain
quiescent for longer periods of time, during which they will remain protected from
IM. Figure 4a illustrates this phenomenon, as the number of quiescent PhC stem
cells decreases by less than one order and remains above 104, after 20 years of
treatment. As a result, the number of mature PhC cells, shown in Fig. 4b, remains
above 107. The BCR-ABL ratio, shown in Fig. 4c, decreases by about 3.5 orders.
The simulated patient achieves a MMR, or a 3-log decrease in BCR-ABL ratio, at
year 4. However, MMR4 (a 4-log decrease in BCR-ABL ratio) and MMR5 (a 5-log
decrease) are not achieved.

We consider varying the two treatment parameters, rdeg and rinh, in order to
simulate patients that achieve MMR4 and MMR5. We find that increasing rdeg, the
rate at which IM kills cycling PhC stem cells, results in an increase in the rate at
which cancer is cleared, as illustrated in Fig. 5. By increasing rdeg, our simulated
patient achieves MMR4 (rdeg D 0:066 h�1) and MMR5 (rdeg D 0:132 h�1).

On the other hand, rinh has a non-monotonic relationship with the rate of
cancer clearance. The parameter rinh describes the rate at which cycling PhC
stem cells become IM-affected, meaning they become less likely to enter the cell
cycle. Decreasing the transitions of quiescent PhC stem cells to cycling has two
contrasting effects. On one hand, PhC stem cells are prevented from cycling,
limiting the number of mature PhC cells. On the other hand, these quiescent PhC
stem cells cannot be eliminated from the stem cell population, as IM does not kill
non-cycling PhC stem cells.

For large rinh, the PhC population rapidly shifts toward these decreased transi-
tion rates. As a result, initially the simulations show a sharper decline in mature PhC
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Fig. 4 A simulation of treatment. (a) Quiescent stem cells. (b) Mature cells. (c) BCR-ABL ratio.
In (a, b), Ph� cells are represented by a solid line, PhC cells that are not affected by IM are
represented by a dashed line, and PhC cells that are affected by IM are represented by a dotted
line
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Fig. 5 BCR-ABL ratio is plotted during treatment, for three different values of rdeg : 0.033 h�1

(solid), 0.066 h�1(dashed), and 0.132 h�1 (dotted). As rdeg increases, the BCR-ABL ratio declines
more rapidly. For all three simulations, rinh D 0:05 h�1

cells, compared to simulations with smaller rinh values. However, PhC stem cells
with IM-affected transition rates remain quiescent for longer periods of time and are
protected from the degradation effect of IM. Eventually, the number of mature PhC
cells for rinh large becomes greater than the number of mature PhC cells for rinh
smaller. Figure 6b shows the effects of treatment on mature PhC cells over time, for
different values of rinh.

Figure 6a shows the number of quiescent PhC stem cells over time for different
values of rinh. Here, the relationship is more straightforward. As rinh increases,
PhC stem cells become IM-affected more rapidly, and as a result, the number of
quiescent PhC stem cells increases.

Conclusion
In this chapter we modify the Roeder model [24] by adding more biological
detail. Specifically, we incorporate asymmetric division of stem cells and
precursors, allow precursors to live for a variable amount of time before
maturing, and add feedback inhibition from mature cells that affects stem cells
and precursors. A more accurate representation of hematopoiesis can lead to
more realistic simulations of CML genesis and treatment.

Parametrization of our model suggests that healthy stem cells transition
between the quiescent and proliferating compartments at rates that are lower
than the rates obtained in the original Roeder model. In the Roeder model, at
healthy steady state, approximately 1 quiescent stem cell enters the cell cycle
per 1,000 quiescent stem cells per time step. Thus, quiescent cells enter the

(continued)
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Fig. 6 Number of quiescent PhC stem cells and BCR-ABL ratio during treatment, for three
different values of rinh: 0 h�1 (solid), 0.05 h�1 (dashed), 0.1 h�1 (dotted). (a) Quiescent PhC
stem cells. (b) BCR-ABL ratio. Initially, a higher value of rinh leads to faster cancer clearance, but
later the lower values of rinh become more favorable. For all three simulations, rdeg D 0:033 h�1

cell cycle, on average, once per 1.4 months. In contrast, in our simulations, 1
quiescent stem cell enters the cell cycle per 10,000 cells, which translates to
quiescent cells entering the cell cycle, on average, once every 14 months. This
lower rate of entry into the cell cycle by stem cells is supported by [17, 26].

Lower stem cell transition rates have a significant effect on the results of
IM therapy. In our model, we assume that IM only affects cycling PhC cells.
By decreasing the transition rates of PhC stem cells, quiescent PhC stem cells
can never mind evade the effects of IM during treatment. During 20 years of

(continued)
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simulated treatment, we see an initial phase of a few months when IM kills
most cycling PhC stem cells. Once the cycling PhC population is depleted,
the majority of the remaining PhC stem cell population is quiescent and
is therefore protected from IM. What follows is a very slow decline in the
number of quiescent PhC cells over time, since only a few of these cells enter
the cell cycle every hour. Our treatment simulations indicate a much larger
residual cancer population than those in [24]. These results suggest that IM
alone, acting through the implemented mechanisms, can never fully eradicate
the cancer population.

The Stop Imatinib trial [18] sought to determine whether patients who
responded well to IM therapy could be safely taken off treatment without
relapsing. They found that while 61 % of patients relapsed, 39 % remained
in remission for the duration of the 2-year study. It is possible that some of
the patients in sustained remission had no PhC cells remaining when they
stopped IM. If this is the case, it may imply that there is an additional action
of IM that is not included in the model. Alternatively, patients that remain in
sustained remission after stopping IM may still harbor small populations of
PhC cells. Remaining in remission after stopping IM would then require some
other mechanism (e.g., the immune response) to control the PhC population
and prevent it from expanding.

Still, the fact that many patients do relapse after being taken off IM
motivates studying methods by which IM therapy can be improved. Our
results suggest that IM therapy may greatly benefit from quiescent PhC stem
cell activation. IFN-˛ has been shown to activate quiescent stem cells [6] and
is therefore a strong candidate for combination therapy. A detailed analysis of
immunotherapy in this context is left for a future study.
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A Cellular Automata and a Partial Differential
Equation Model of Tumor–Immune Dynamics
and Chemotaxis

Andrea K. Cooper and Peter S. Kim

Abstract Immunotherapy is a newly emerging approach to cancer treatment
that seeks to stimulate a body’s immune defenses, especially T cells, to combat
and potentially eliminate tumors. Relevant tumor–immune interactions depend
on stochasticity, since the dynamics involve a small and decreasing number of
cells, and spatiotemporal heterogeneity, since the dynamics occur in a localized
tumor environment. To account for these two aspects of the system, we develop
mathematical models of an anti-tumor immune response using a cellular automaton
and a system of partial differential equations. We explicitly model immune cell
recruitment to the tumor via cytokine secretion and chemotaxis of immune cells.
Our models exhibit three types of behavior: tumor elimination, oscillation, and
uncontrolled tumor growth that depend substantially on the strength of immune cell
chemotaxis, or recruitment, to the tumor site.

1 Introduction

The early stages of tumor growth are important to understand in medicine. It is the
time when the tumor is most vulnerable, but also the least likely to be detected.
A modern approach to combat tumor development is cancer vaccination [42].
Vaccination takes advantage of the immune system’s natural capacity to fight
pathogens and is seen as an effective means of controlling infectious diseases. Now,
researchers are attempting to use a similar technique in the treatment of cancer, and
experimental evidence has repeatedly shown that the immune system is capable of
selectively targeting tumor cells [21, 52, 53, 56]. However, the dynamics of the anti-
tumor immune response remain poorly understood making it difficult to translate
these results into effective clinical treatments [17, 49].

By developing mathematical and computational models, we can gain a bet-
ter understanding of the dynamics of the system and help us determine which
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parameters most strongly influence the success or failure of an anti-tumor immune
response. In this study, we are most interested in cytotoxic T lymphocytes, or
effector T cells, since these are the immune agents that are most commonly
stimulated by cancer vaccines and other immunotherapies [42]. Effector T cells
interact with cells via a T cell receptor that binds to specific protein sequences,
called antigens, and when an effector T cell interacts strongly enough, it kills the
target cell [22]. Effector T cells that react to unique and specific antigens on tumor
cells are called tumor-specific or anti-tumor effector T cells.

A variety of mathematical models have applied a range of modeling approaches
to study tumor–immune interactions. Tumor–immune models have been formulated
using ordinary differential equations (ODE) [1, 8, 23, 27, 29–32, 38, 40, 47], delay
differential equations (DDE) [3,4,6,11,12,26,45,55], partial differential equations
(PDE) [14, 35, 36], impulsive differential equations [5], and fractional differential
equations [15]. A recent review of tumor immune models using ODE systems can be
found in [13]. Other papers develop agent-based models (ABM), cellular automata
(CA), and hybrid formulations [25, 34, 46, 48].

In this chapter, we focus particularly on the hybrid CA-PDE model in Mallet
and De Pillis [34] and the hybrid ABM-DDE model of Kim and Lee [25]. Inspired
by these models, we formulate a simplified CA to model tumor cell and effector T
cell interactions. Extending these two models, we add a chemoattractant population
and incorporate the chemotaxis of effector cells up the gradient. During an immune
response, effector cells recruit other effectors to the target site by secreting several
immunostimulatory cytokines, such as IL-2 and IL-15, and chemokines, such as
MIP-1˛ [7, 33, 37, 61]. Experiments have also demonstrated that the same type of
effector recruitment occurs during an effector response against a tumor [52, 53].

Neither [34] or [25] explicitly model effector recruitment via chemotaxis, both
opting for a simplified, phenomenological approach. An important extension to
these two models is to incorporate effector recruitment by chemotaxis, so that we
can understand if chemotactic recruitment influences the effectiveness of an anti-
tumor immune response. In this chapter, we discuss how we can develop a CA
model and derive an analogous PDE model of tumor–effector interactions with
chemotaxis.

The chapter is organized as follows: In Sect. 2, we present a probabilistic CA, in
which tumor and effector cell motion and interactions are modeled probabilistically,
while cytokine diffusion is modeled deterministically, and we show numerical
simulations of the CA and discuss how chemotaxis influences the success or failure
of the anti-tumor immune response. In Sect. 3, we show how to derive an analogous
PDE model as a mean field approximation of the probabilistic CA, and we show
numerical simulations of the PDE model and compare them to simulations of the
CA. In Sect. 4, we discuss similarities and differences between the CA and PDE
approaches and suggest possible directions for future work.
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2 Individual Cell-Based Model

In this section, we develop a probabilistic CA model of tumor–immune interactions.
For simplicity, we model the tumor–effector system on a two-dimensional plane as
in [34], although it is straightforward to extend the system to three-dimensions as
in [25]. As in [34], we consider a square domain Œ�L;L�� Œ�L;L�, partitioned into
square elements of width and height	x.

We consider four populations: (1) tumor cells, (2) effector cells, (3) tumor–
effector complexes, and (4) cytokines. At each time step of length 	t , these
populations are updated according to probabilistic and deterministic rules described
below.

Tumor Cells At each time step, each tumor cell attempts to divide with probability
1 � e�	t=�div , where �div is the average time between tumor cell divisions. When a
tumor cell attempts to divide, it randomly chooses one of the four squares (up, down,
left, or right) adjacent to its position with equal probability 1/4. If that square does
not already contain a tumor cell or a tumor–effector complex, a new tumor cell is
placed there, representing a newly divided tumor cell. If a new tumor cell is placed in
a square only occupied by an effector cell, they form a tumor–effector complex. We
ignore any newly divided tumor cells that get placed outside the domain Œ�L;L� �
Œ�L;L�.
Effector Cells Effector cells migrate according to a random walk. At each time
step of duration 	t , each effector cell tries to move one step of length 	x to
one of the four adjacent squares, up, down, left, and right, with probabilities pup,
pdown, pleft, and pright, respectively. The probabilities are functions of the cytokine
concentrations at the effector’s location and four adjacent squares.

We devise our chemotaxis model using a weighted random walk. An effector at
point .x; y/ chooses to try to move one step up, down, left, or right with relative
weightings

wup D 1C �C.x; y C	x; t/ ;

wdown D 1C �C.x; y �	x; t/ ;

wleft D 1C �C.x �	x; y; t/ ; (1)

wright D 1C �C.x C	x; y; t/ ;

for some nonnegative constant �. See Fig. 1a.
As we see in (1), the relative weighting in each direction grows linearly with

respect to the cytokine concentration in the corresponding square. The probabilities
of moving in each direction are given by
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pup D wup

wtotal
; pdown D wdown

wtotal
; pleft D wleft

wtotal
; pright D wright

wtotal
;

where wtotal D wup C wdown C wleft C wright.
If an effector tries to move into a square already containing an effector cell or

tumor–effector complex, it does not move, but stays still. On the other hand, if an
effector cell tries to move into a square occupied by a tumor cell, it moves and the
tumor and effector cells form a tumor–effector complex. See Fig. 1b,c.

We assume that effector cells exist at a constant average concentration E0 (in
terms of cells per area) outside the domain of the model. We calculate the probability
that a single effector migrates into the domain during one time step in the following
manner. Consider the rim of adjacent squares shown in Fig. 2 just beyond the
domain. The total area of the rim is 4.2L	x/, so the expected number of effectors
on the rim at any given time is 8E0L	x. If we assume that the presence of effectors
in the rim is governed by a Poisson process, the probability that there is at least one
effector on the rim at the start of a time step is 1 � e�8E0L	x . (For simplicity, let us
assume that 8E0L	x � 1 and make the approximation that at most one effector is
on the rim at any time.)

If an effector is on the rim, we assume it is not affected by the cytokine gradient
in the domain, so it has an equal probability of 1/4 of moving in any direction,
including into the domain. If an effector tries to enter the domain during the
next time step, we randomly choose the entry location among the internal squares
along the edge of the domain. All edge squares are chosen with equal probability,
except corner squares, which are counted twice, since they can be entered from two
directions. If an effector tries to enter a square that is already occupied by an effector
or tumor–effector complex, it is blocked and does not enter.

blocked

ba c
open

Tumour-effector complex

t t + Δt

Effector cell

time

wrightwleft

wup

wdown

Tumour cell

Fig. 1 Diagrams of rules of effector motion. (a) At each time step, an effector tries to move one
step up, down, left, or right with relative weightings wup, wdown, wleft, and wright that depend on
the cytokine concentrations in adjacent squares. (b) Effector cell motion is blocked if the space is
occupied by an effector or tumor–effector complex. (c) If an effector tries to enter a space occupied
by a tumor cell, the two cells form a tumor–effector complex

At each time step, effectors die with probability 1� e�	t=�death , where �death is the
average lifespan of effectors. As with tumor cells, if an effector migrates outside the
domain Œ�L;L� � Œ�L;L�, we eliminate it from the system.
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Tumor–Effector Complexes Tumor–effector complexes form when tumor and
effector cells end up in the same square. These complexes represent effectors
engaging tumor cells. At each time step, we assume that the tumor cell in a complex
dies with probability 1 � e�	t=�kill , where �kill is the average time for an effector to
kill a tumor cell. In this case, the complex is replaced by only the effector.

Effectors in complexes can still die with probability 1 � e�	t=�death at each time
step. In this case, the complex is replaced by only the tumor cell. It is possible that
both cells in a complex could die during the same time step, in which case the square
is left empty.

Cytokine We assume that cytokine attracts effectors through chemotaxis and is
secreted by effectors that are engaging tumor cells as tumor–effector complexes.
This formulation is similar to the one in [34], which assumes that effectors
interacting with tumor cells can induce, or recruit, other effectors into the region.
Since our cytokines represent a huge number of molecules, we model the cytokine
level in each square deterministically and continuously, rather than as a probabilistic
collection of individual particles. The cytokine level at each square can be any
nonnegative real number.

Fig. 2 Effector immigration
into the domain. At each time
step, an effector tries to enter
the domain with probability
1
4
.1� e�8E0L	x/. An

entering effector has an equal
chance of entering from any
of the squares on the rim
outside the domain. An
effector cannot enter a square
already occupied by an
effector or tumor–effector
complex

Effector

Complex

Δ x2L

open

rim

blocked

domain

We assume cytokine levels decay exponentially at rate 1=�ck, are secreted by
each tumor–effector complex at a constant rate 
 , and diffuse with coefficient DC .
We estimate that cytokines diffuse approximately 20 times as fast as effectors [20],
and we model cytokine diffusion deterministically, rather than as a random walk.
Since the time scale of cytokine diffusion is much faster than other dynamics in the
system, we assume that cytokine levels exist at quasi-steady state with respect to the
locations of the tumor–effector complexes.

To calculate the quasi-steady state, we suppose a tumor–effector complex
secretes cytokine as a point source centered at .x0; y0/. Then, using the fundamental
solution of the diffusion equation [16], the steady-state cytokine level at .x; y/ is
given by
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C.x; y/ D 


Z 1

0

1

4�DC t
exp

�
� t

�ck

�
exp

�
� .x � x0/2 C .y � y0/2

4DC t

�
dt : (2)

We say that the cytokine level in a square of the CA grid is given by the expression
C.x; y/ at the center of the square, so if a complex occupies a square centered at
.i	x; j	y/, then the cytokine level at a square centered at .k	x; l	y/ is given
by (2) for x0 D i	x, y0 D j	x, x D k	x, and y D l	x.

At every time step, we determine the quasi-steady state cytokine distribution of
the entire system by determining the locations .in	x; jn	x/ for n D 1; : : : ; NX of
all NX complexes. Then, we evaluate (2) for each complex and sum the results to
obtain the overall cytokine level in the CA.

Initial Conditions To initialize the simulation, we begin with one tumor cell at the
center of the domain at .0; 0/ and iterate the system over several tumor cell divisions
to obtain a starting tumor mass of between 150 and 250 cells around the center of
the domain. As in [25, 34], we assume that the surrounding tissue plays a passive
role, so we do not explicitly model it. All other populations begin at 0.

2.1 Parameter Estimates

We draw many of our parameter estimates from [25], which obtains its estimates
from a variety of sources. Parameters, descriptions, and estimates are shown in
Table 1.

Table 1 Parameters used in simulations of the cellular automaton

Parameter Description Estimate

	t Time step 1 min

	x Space step 12 �m

L Half width of domain 606 �m

�div Avg. time for tumor cell division 7 days = 10,080 min

�death Avg. effector lifespan 2.5 day = 3,600 min

�kill Avg. time for effector to kill tumor cell 1 day = 1,440 min

�ck Avg. cytokine lifespan 1/2 day = 720 min

� Chemotaxis parameter in (1) 0, 60, or 120


 Secretion rate of cytokine by complexes 1/cell/min

E0 Surrounding concentration of effectors 1� 10�6 cells/�m2

Based on experimental results of Friedl and Gunzer and an estimate from Catron
et al. we estimate that effectors migrate at velocity 12 �m/min [9, 18], so for our
time step, we set 	t D 1 min, and for the space step, we set 	x D 12 �m. This
space step is convenient, because it is also approximately the diameter of a single
cell [2,9,32,34]. We assume that the domain of the CA is a grid with 101 squares on
each side, so that the center square is located at .0; 0/. This means that the halfwidth
of the grid is L D 101	x=2 D 606 �m.
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For consistency, we draw all of our experimental estimates of tumor growth rates
from breast cancer data. Various experimental studies estimate tumor doubling times
of approximately 1 month to a decade [28, 39, 54, 59]. Some mathematical models
consider the possibility of aggressive early-stage tumors with division times of less
than 10 days [27, 34]. In this chapter, we also model a fast-growing tumor with an
average division time of �div D 7 days as in [25]. This rate gives simulations that
produce varied behavior more quickly.

During immune contraction, experiments have measured an effector halflife of
41 h [10], which corresponds to an average lifespan of �death D 41= log.2/ h D
2:5 days. We do not have clear estimates of the average times for effector killing of
tumor cells, but experimental studies show that anti-tumor effectors can sometimes
rapidly kill target cells and even kill multiple target cells simultaneously [60].
However, since the action of killing a target cell may require a long recovery period
between consecutive killings, we use the conservative estimate of �kill D 1 day, or
an average of one per cell per day, as used in [25].

We do not have good estimates of cytokine decay rates, but we assume these
molecules decay faster than the death rate of effector cells, so we estimate �ck D
1=2 day. We also do not have good estimates of cytokine secretion rate, 
 , by
effector cells, but we observe that this parameter scales inversely with respect to
�. Indeed, if we multiply 
 by a factor f , then we end up scaling the cytokine
population, C , by a factor f , so if we scale � by a factor 1=f , the effectors act
exactly the same. So, we only vary � and keep 
 fixed at 1 unit of cytokine per
cell per minute. Based on experimentation, we choose the values 0, 60, and 120 for
the chemotaxis parameter �, because these values produce the three main dynamic
behaviors of the system: uncontrolled tumor growth, oscillation, and rapid tumor
elimination.

Since we are dealing with a two-dimensional CA, it is difficult to directly
translate immune cell concentrations in units of cells per volume as used in [25]
to units of cells per area. For our simulations, we choose an effector concentration
of E0 D 1 � 10�6 cells/�m2, or 1 cell/mm2.

2.2 Simulations of the Cellular Automata Model

We used Matlab R2011b to code and simulate the CA described in Sect. 2. Results
of an example simulation are shown in Fig. 3. In this example, we use the parameters
in Table 1 with chemotaxis parameter � D 120.

Figure 3 shows the distribution of cells and cytokine levels for one simulation of
the CA at time t D 10 days. There are 155 tumor cells, 5 effectors, and 15 tumor–
effector complexes. The complexes secrete cytokine, causing a higher cytokine level
in the vicinity of the tumor mass. Diffusion of cytokine produces a gradient that
attracts circulating effectors towards the cluster of complexes surrounding the tumor
mass.
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Since the model is probabilistic, we run ten simulations to explore a range of
probable behaviors. Effector cells eliminate the tumor population in all simulations.
Figure 4 shows time evolutions of the fastest and slowest times to tumor elimination.

In Fig. 4a, effector cells find the tumor mass quickly, form tumor–effector
complexes, and begin secreting cytokine, which attracts additional effectors, leading
to rapid tumor elimination on day 31. The main difference in Fig. 4b is that effectors
take longer to find the tumor, so the tumor grows to 421 cells before being eliminated
on day 103. In all ten simulations, the ability of tumor–effector complexes to recruit
additional effectors to the tumor site enables the immune response to eliminate the
tumor population quickly.

0

1

−500

500
500

0
x

0
y

−500

Tumour cells
Effector cells
Complexes

CA grid

t = 10 days

Fig. 3 Example CA simulation for chemotaxis parameter � D 120 at time t D 10 days. Locations
of tumor cells, effector cells, and tumor–effector complexes on the 2-D grid are shown at a height
10 % higher than the maximum cytokine level. Cytokine levels are shown by the surface plot. Other
parameter values are taken from Table 1

To determine whether chemotaxis plays a role in the outcome of the anti-tumor
immune response, we simulate the CA with chemotaxis parameter � D 0, i.e.,
no chemotaxis. Figure 5 shows the state of the CA at time t D 400 days for one
simulation.

In Fig. 5, the tumor has grown to 4,485 tumor cells on day 400. There are
also 6 tumor–effector complexes and 1 effector. In contrast to the simulation
shown in Fig. 3, tumor–effector complexes cannot recruit additional effectors, since
effectors do not respond to the cytokine gradient. Without chemotaxis, the tumor–
effector complexes are scattered around the tumor mass with hardly any clustering
or aggregation of effectors or complexes (see Fig. 5). As a result, the effector
response fails to control tumor growth. Figure 6 shows the time evolution of the
cell populations for one simulation.
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As we see in Fig. 6, the tumor population continues to grow at a steady rate
without any surge in the effector response. All ten simulations that we ran using
� D 0 exhibit quantitatively similar behavior with the tumor population growing
to between 3,980 and 4,634 cells by day 400. This result shows that chemotaxis of
effectors plays a significant role in tumor elimination.

To see what happens for intermediate levels of chemotaxis, we run ten sim-
ulations of the CA with � D 60. Results of an example simulation at time
t D 4;000 days are shown in Fig. 7.

In Fig. 7, there are 1,154 tumor cells, 5 effectors, and 13 tumor–effector
complexes on day 2,600. Unlike the case when � D 0, the effector response
has kept the tumor population under control even up to day 2,600. On the other
hand, unlike the case when � D 120, the effector response has not managed to
eliminate the tumor by then. Nonetheless, as in the case when � D 120, the effector
response eventually succeeds in eliminating the tumor for all ten simulations, but
the variability in time to elimination is much higher. Figure 8 shows time evolutions
of the fastest and slowest times to tumor elimination.
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Fig. 4 Time evolution of tumor cells, effectors, and tumor–effector complexes when � D 120.
Other parameters values are taken from Table 1. (a) Fastest tumor elimination among ten
simulations. Tumor is eliminated on day 31. (b) Slowest tumor elimination among ten simulations.
Tumor is eliminated on day 103

Figure 8a shows that in the case when � D 60, it is possible for effectors to
eliminate the tumor without much of a relapse, but as shown in Fig. 8b, it is far
more likely that the system oscillates. Oscillations occur because chemotaxis is
strong enough to recruit a strong effector response against a large tumor; however,
as the tumor shrinks to a smaller size, the number of tumor–effector complexes
surrounding the tumor mass also declines, which reduces the amount of cytokine
secreted at the tumor site. At this point the effector recruitment rate becomes too
low to sustain the response against the tumor, and the tumor relapses.

The highly oscillatory scenario in Fig. 8b is most likely an undesirable outcome.
The tumor reaches high peaks and does not get eliminated for a long time, so it
is quite possible that tumor cells would have had time to mutate or metastasize,
making it more difficult to treat.
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are shown by the surface plot. Other parameter values are taken from Table 1
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We have seen that the CA model exhibits a variety of behaviors and that
chemotaxis of effectors plays a significant role in the final outcome. In the next
section, we develop an analogous PDE model to see how a continuous, deterministic
formulation of the system compares with the CA model.

3 Population Model

To investigate the system from the perspective of a deterministic dynamical system,
we take a mean field approximation of the CA in Sect. 2 to obtain an analogous PDE
model. The approach that we follow is similar to those of [44,50,51,57,58]. In fact,
we directly use a result from Wang and Hillen [57], which we derive again here.
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For simplicity, we show how we derive a mean field approximation in one
space dimension. The generalization to higher dimensions is straightforward. Let
us consider the following rules of cell motion (see Fig. 9):
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Fig. 7 Example CA simulation for chemotaxis parameter � D 60 at time t D 2;600 days.
Locations of tumor cells, effector cells, and tumor–effector complexes on the 2-D grid are shown
at a height 10 % higher than the maximum cytokine level. Cytokine levels are shown by the surface
plot. Other parameter values are taken from Table 1

1. At each time step 	t , a cell at point x tries to move left with probability 1=2 �
".x; t/ and right with probability 1=2C ".x; t/.

2. A cell trying to enter point x succeeds in moving there with probability q.x; t/,
called the squeezing probability in [57].

To derive our mean field model, we make the assumption that the number of
individuals observed within any interval of space at any given time is independent of
the number observed in any nonoverlapping interval [44, 50, 51, 57]. It is a standard
assumption for mean field approximations and is sometimes called the Poisson-point
assumption [43, p. 232].

Let u.x; t/ denote the density of cells at point .x; t/. To clean up notation, if
f D f .x; t/ is a function of x and t , let us define f� D f .x � 	x; t/ and fC D
f .xC	x; t/. Later on, when we take the limit to the continuum model, we also use
fx , fxx , and ft to denote the first and second partial derivatives of f with respect
to x and the partial derivative of f with respect to t , respectively. From the rules of
cell motion, also diagrammed in Fig. 9, we obtain the recursion

u.t C	t/ D u �
�
1

2
� "

�
q�u �

�
1

2
C "

�
qCu

C
�
1

2
C "�

�
qu� C

�
1

2
� "C

�
quC :

(3)
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Fig. 8 Time evolution of tumor cells, effectors, and tumor–effector complexes when � D 60.
Other parameters values are taken from Table 1. (a) Fastest tumor elimination among ten simula-
tions. Tumor is eliminated on day 105. (b) Slowest tumor elimination among ten simulations. The
system is characterized by irregular, stochastic oscillations, and the tumor is eliminated on day
2,884
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Fig. 9 Cell motion out of and into the point x. A cell at point x tries to move in a biased random
walk with a right bias of ".x; t/. If a cell tries to move to a point x, it successfully moves with
squeeze probability q.x; t/

Simplifying (3), we obtain

u.tC	t/ � uD1

2
.�q�u � qCu C qu� C quC/Cq�"u � qC"u C q"�u� � q"CuC

D �q� � 2q C qC
2

� u C q � u� � 2u C uC
2

� .qC � q�/"u � q."CuC � "�u�/:

After further rearrangement, we obtain

u.t C	t/� u

	t
D
�
	x2

2	t

�	
�q� � 2q C qC

	x2
� u C q � u� � 2u C uC

	x2

� 4

	x

�qC � q�
2	x

� "u C q � "CuC � "�u�
2	x

�

:
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Taylor expanding this expression, taking the limit as 	x and 	t go to zero,
assuming that the random walk bias " is of order	x, so that the limit

E.x; t/ D lim
	x!0

".x; t/

	x

exists, and assuming that the limit

D D lim
	x!0
	t!0

	x2

2	t

exists, we arrive at the PDE

ut D DŒ�qxxu C quxx � 4.qx.Eu/C q.Eu/x/�

D D.qux � qxu � 4qEu/x :

This derivation readily generalizes to the higher dimensional form

ut D Dr � .qru � urq � 4qEu/ ; (4)

except that

D D lim
	x!0
	t!0

	x2

4	t
and D D lim

	x!0
	t!0

	x2

6	t
(5)

for the 2-D and 3-D cases, respectively [41, 43].
For our particular model, consider the case of effectors, and for simplicity, let

us consider 1-D random walks as before. The 1-D version of the random walk
weightings (1) is given by

wleft D 1C �C.x �	x; y; t/ ;
wright D 1C �C.x C	x; y; t/ ;

and an effector moves right with probability

pright D 1C �C.x C	x; y; t/

2C �C.x �	x; y; t/C �C.x C	x; y; t/
:

Taylor expanding this expression, we obtain

pright D 1

2
C �	x

2.1C �C/
Cx C o.	x3/ ;
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so the random walk bias is

".x; t/ D �	x

2.1C �C/
Cx C o.	x3/ ;

which means that

E.x; t/ D lim
	x!0

".x; t/

	x
D �	x

2.1C �C/
Cx:

Hence, we can rewrite (4) as

ut D Dr � .qru � urq � qurv/ ;

where

.x; t/ D 2�

1C �C
; v D C ; (6)

and it is straightforward to generalize this equation to higher dimensions. In general,
our PDEs will be of the form

ut D Dr � .qru � urq � qurv/C g.x; t/ (7)

for some growth function g.x; t/, which is also the form obtained in [57].
To obtain a PDE system based on the CA presented in Sect. 2, let the variables

T .r; t/, E.r; t/, X.r; t/, and C.r; t/ denote the population densities at point r and
time t of tumor cells, effectors, complexes, and cytokine, respectively. A diagram
of interactions is shown in Fig. 10.

Tumor Cells For the tumor population T .r; t/, let us assume that tumor cells
diffuse at some slow rate D D DT and grows logistically at rate �T .1 � .T C
X/=K/, where � is the maximum growth rate and K is the maximum possible
density of cells of the same type. Note that in the CA, tumor cells do not actually
diffuse. Instead, dividing cells sprout off new cells in adjacent squares as long as
empty squares are available. This process is tricky to capture using a reaction-
diffusion equation, and it would probably require a free boundary formulation as
in [19], so for simplicity, we model tumor growth as a diffusion and logistic growth
process.

We assume that the rate of tumor–effector interactions follows the law of mass
action, so that the interaction rate is of the form ˛ET , where ˛ is the mass-action
coefficient. In the CA of Sect. 2, the formation of complexes happens immediately
when tumors and effectors came into contact, so we set ˛ to be relatively high. Also,
effector cells in complexes die with mortality rate �, causing the complex to return
to a tumor-cell state at rate �X . Combining all the rates of growth and interactions,
we obtain the reaction term g D �T .1� .T CX/=K/� ˛ET C �X .
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For tumor diffusion, we assume that the squeeze probability is q D 1 � .T C
X/=K , so that the probability of entering a space is the fraction of space remaining
unoccupied by tumor cells and complexes. Tumor cells do not respond to the
cytokine gradient, so for tumors, the chemotaxis factor  D 0. Substituting these
values of D, q, , and g into (7), we have the equation

Tt D DTr �
��
1 � X

K

�
rT C T

K
rX

�
C �T

�
1 � T CX

K

�
� ˛ET C �X (8)

for tumor cells.
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κX
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Fig. 10 Diagram of interactions for the PDE model. Tumor cells grow at a logistic rate .1� .T C
X/=K/. Effectors die at rate �E . Interacting tumors and effectors form complexes at rate ˛ET . A
complex reverts to a tumor cell or effector when the effector in the complex dies at rate �X or kills
the tumor cell at rate �X , respectively. Complexes secrete cytokine at rate 
X , and cytokine decays
at rate ıC . All cells diffuse and effector cells exist at a constant concentration at the boundary

Effector Cells For the effector population E.r; t/, we have a diffusion rate
DDDE . Because effectors cannot move into spaces occupied by other effectors or
complexes, the squeeze probability is q D 1 � .E C X/=K/, where K is again the
maximum density of cells of the same type. Effectors form complexes with tumor
cells at rate ˛ET , die at rate �E , and return from being part of a complex by killing
the attached tumor cell at rate �X . We have the chemotaxis term  from (6), so
from (7), we obtain

Et D DEr �
��
1 � X

K

�
rE C E

K
rX �

�
1 � E CX

K

�
2�ErC
1C �C

�

� ˛ET � �E C �X :

(9)

Note that the chemotaxis term has a form that saturates as the cytokine concentration
C grows. This form results from our rules of biased random motion of effectors in
Sect. 2. As an alternative, if we replaced the relative weightings in (1) for motion in
each direction by
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wup D 1C �.C.x; y C	x; t/ � C.x; y �	x; t// ;
wdown D 1C �.C.x; y �	x; t/ � C.x; y C	x; t// ;

wleft D 1C �.C.x �	x; y; t/ � C.x C	x; y; t// ;

wright D 1C �.C.x C	x; y; t/ � C.x �	x; y; t// ;

and followed a similar derivation that we used to obtain (6), we would obtain
a constant , which apart from the squeeze probability would correspond to the
classical Keller–Segel model of chemotaxis [24].

Tumor–Effector Complexes We assume tumor–effector complexesX.r; t/ diffuse
at rate D D DT , like tumor cells. Complexes cannot move into spaces occupied by
either tumor cells or effectors, so their squeeze probability is q D 1 � .T C E C
X/=K . Complexes form when tumor cells and effectors interact at rates ˛ET , and
they revert to single cells at rate .� C�/X when effectors kill the tumor cell or die.
We assume that complexes do not respond chemotactically to the cytokine gradient.
From (7), we obtain

Xt D DTr �
��
1 � E C T

K

�
rX C X

K
r.E C T /

�
C ˛ET � .� C �/X: (10)

Cytokine We assume cytokine C.r; t/ diffuses at some rate D D DC without any
volume exclusion, so that q D 1. Cytokine is secreted by complexes at rate 
X and
decays at rate ıC , so from (7), we have

Ct D DCr2C C 
X � ıC : (11)

Boundary and Initial Conditions On the boundary of the domain, we assume that
all populations have a constant value of 0, except the effector population, which has
a constant density E0. For a simple initial condition, we assume that all populations
start at 0 at time t D 0, except for the tumor population, which has value K on a
disk of radius R, i.e., T .r; t/ D 1fjjrjj2�R2g.

PDE System Combining (8)–(11), we have the system

Tt D DTr �
��
1 � X

K

�
rT C T

K
rX

�
C �T

�
1 � T CX

K

�
� ˛ET C �X ;

Et D DEr �
��
1 � X

K

�
rE C E

K
rX �

�
1 � E CX

K

�
2�ErC
1C �C

�

� ˛ET � �E C �X ;

Xt D DTr �
��
1 � E C T

K

�
rX C X

K
r.E C T /

�
C ˛ET � .� C �/X ;

Ct D DCr2C C 
X � ıC :
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This system can apply in any number of dimensions, but to keep in line with CA, we
consider the system in two dimensions. However, since our model does not imply
a favored spatial direction, we can reasonably assume that the system is radially
symmetric and simplify the PDE system to one spatial dimension. If we assume
radial symmetry and transform the system to polar coordinates, we obtain
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C 
X � ıC :

(12)

on domain r 2 .0; L/ with boundary conditions T .L; t/ D 0, E.L; t/ D E0,
X.L; t/ D 0, and C.L; t/ D 0 with no-flux boundary conditions at r = 0. We also
have the initial condition T .r; t/ D K for r � R for some R < L and T .r; t/ D 0,
otherwise. All other populations start at 0.

With the radially symmetric formulation (12), total populations are given by

Ptot.t/ D 2�

Z L

0

rP.r; t/dr

for all populations P D T , E , X , and C .

3.1 Parameter Estimates

We translate our parameters from values in Table 1 that we used for the CA in
Sect. 2. A table of parameters, descriptions, and estimates are shown in Table 2.

We consider a domain of approximately the same size as with the CA, so we set
the radius of the PDE domain to be L D 600 �m. In the CA, we allowed one cell to
occupy a square of width 12 �m, so our maximum density of cells of the same type
is K = 1 cell/(12 �m)2 = 0.0069 cells/�m2.
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If we set the initial radius of the tumor to be R D 100 �m, this corresponds
to an initial tumor population of �R2K D 218 cells, which is close to our initial
condition for the CA of starting at around 200 cells.

In our past derivations, for simplicity, we obtained our PDEs from 1-D random
walks, and so we used the relation that the diffusion rate of randomly walking cells
is 	x2=.2	t/. These derivations generalize readily to higher dimensions, but in
2-D, the diffusion rate is given by 	x2=.4	t/ as in (5). Since our CA is built on
a 2-D lattice, the effector diffusion rate that corresponds to a 2-D random walk of
step size 	x and time step 	t is given by DE D 	x2=.4	t/ = (12 �m)2/(2 � 1

min) = 36 �m2/min. We assume that the diffusion rate of tumor cells is very slow
at DT D 0:0001DE and that the cytokine diffusion rate is twenty times the effector
diffusion rate atDC D 20DE , which agrees with the CA rules for cytokine diffusion
in Sect. 2.

Table 2 Parameters used in simulations of the partial differential equation model

Parameter Description Unscaled estimate Rescaled

L Radius of domain 600 �m 0.6 mm

R Radius of initial tumor 100 �m 0.1 mm

K Maximum cell density 0.0069 cells/�m2 1 cell/	x2

DE Diffusion rate of effector cells 36 �m2/min 0.05 mm2/day

DT Diffusion rate of tumor cells 0:0001DE 0:0001DE

DC Diffusion rate of cytokine cells 20DE 20DE

� Logistic tumor growth rate 9:9 � 10�5/min 0.14/day

� Rate effectors kill tumor 6:9 � 10�4/min 1/day

� Mortality rate of effectors 2:8 � 10�4/min 0.4/day


 Secretion rate of cytokine 1/cell/min 1440 (cells/	x2)�1day�1

ı Decay rate of cytokine 0.0014/min 2/day

˛ Tumor–effector interaction rate 0.017/cell/min 24 (cells/	x2)�1day�1

� Chemotaxis parameter 0, 60, or 120 0, 60, or 120

E0 Ambient effector concentration 1� 10�6 cells/�m2 1:4� 10�4 cells/	x2

The tumor growth rate, effector killing rate, effector mortality rate, and cytokine
decay rate are given by � D 1=�div, � D 1=�kill, � D 1=�death, and ı D 1=�ck, where
parameters of the form � are from Table 1. Values of the cytokine secretion rate

 , the cytokine parameter �, and the ambient effector concentration rate E0 can be
used as is from Table 1.

We assume that the interaction rate between tumor cells and effectors in the same
space is fast, so we set ˛ D 24/cell/day, which corresponds to an average interaction
time of 1 h per cell. In column 3 of Table 2, we list all parameters in units of �m
and minutes for consistency with the CA.
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3.2 Rescaling of Parameters

Because the units in the third column of Table 2 have very disparate orders
of magnitude, we rescale the system to time units of days and length units of
millimeters and normalize the population such that the maximum density K scales
to 1. As we will see, this rescaling will result in reasonable parameter values.

It is straightforward to rescale units of time and length to days and millimeters.
Let K0 denote the unscaled value of K , so that K0 D 6:9 � 103 cells/mm2. The
only other value that is affected by rescaling population densities is the ambient
effector concentration, E0. The rescaled value of E0 is E0=K0. The rescaling puts
all population densities in units of fraction of maximum cell density, or cells/	x2,
where 	x is as in Table 1. Note that population units of cells�1 in the CA translate
without a conversion factor to population density units of (cells/	x2)�1 in the PDE,
since one cell in the CA occupies an area of 	x2.

To calculate an unscaled value of a total population, we use

Ptot.t/ D 2�K0

Z L

0

rP.r; t/dr ; (13)

for populations P D T , E , X , and C , where the variable on the left-hand side is
unscaled and the variable on the right-hand side is scaled.

3.3 Results of the Partial Differential Equation Model

We numerically simulate the PDE model (12) using the solver “pdepe” in Matlab
R2011b. Figure 11 shows results of a numerical simulation using parameters in
Table 2 with chemotaxis parameter � D 120.

Figure 11a shows that the effector response causes a fast drop of the initial tumor
population, resulting in a decline to 5.8 cells on day 41.8, which is comparable to the
fastest time to tumor elimination for the CA shown in Fig. 4a. On the other hand, the
effector response fades after the tumor reaches low levels, and the tumor relapses,
leading to another effector response followed by a tumor decline in what appears
to be an unstable oscillation. (Note that since we are dealing with a finite domain
r 2 .0; L/, the system will eventually approach an equilibrium in which the tumor
population occupies nearly all of the domain, but we consider size of the domain
somewhat arbitrary, since many tumors can expand to diameters of well beyond 1
mm before running into physical limitations.)

Figure 11b shows the profile of the tumor density, T .r; t/, at the six tumor peaks
in Fig. 11a. As time progresses, each subsequent peak of tumor cells broadens and
propagates farther from the origin. Since we are considering a radially symmetric
system, the bulges in Fig. 11b correspond to rings of tumor cells around the origin.
In contrast, in our simulations of the CA, we never saw a ring of tumor cells
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Fig. 11 Numerical solution of the PDE system (12) with chemotaxis parameter � D 120. Other
parameter values are taken from Table 2. (a) Time evolution of the total tumor, effector, and
complex populations, calculated using (13). All three populations oscillate with six peaks between
time 0 and 350. (b) Profile of tumor cell densities, T .r; t /, as a function of distance r from the
origin at the times of the five tumor peaks at t D 18:8; 86:8; 151:7; 215:8; 276:6, and 331.0

propagating away from the origin even up to time 2,600 (see Fig. 7). Perhaps, this
difference is due to the continuous nature of the PDE model versus the discrete
nature of the CA. Incorporating a slow rate of tumor diffusion in the CA does not
lead to a widening ring of relapsing tumor cells (data not shown), so slow tumor cell
motion by itself is not enough to create a dispersing tumor. In any case, metastatic
tumors are common, so it would be an interesting future direction to determine
what dynamic characteristics of tumors would make tumor dispersal more likely.
Examples of tumors that migrate away from a pursuing immune response occur in
the model of Mallet and De Pillis [34].

To explore the system without chemotaxis, we consider the system when � D 0

and plot the results in Fig. 12. As we found in the CA, the effector response in
the PDE model without chemotaxis also cannot stop tumor growth (see Fig. 12a).
Furthermore, the leading edge of the tumor population propagates with constant
speed (see Fig. 12b). In fact, if we assume that the effector population remains so
low as to be negligible, the equation for tumor growth simply reduces to Fisher’s
Equation.

We also consider the PDE model with � D 60. Results of the numerical
simulation are shown in Fig. 13. In this scenario, the effector response only manages
to bring the tumor population down to 225.7 and 127.1 cells on days 213.1 and
287.6, respectively, and the magnitudes of the relapses increase more rapidly than
in the case when � D 120 (see Fig. 13a). As before, each successive relapse results
in a ring of tumor cells that broadens and propagates away from the origin (see
Fig. 13b).

As in Fig. 11a, the oscillations when � D 60 also appear unstable. In contrast,
none of the oscillations that we observed in simulations of the CA consistently grew
in magnitude. Instead, the peak heights remained roughly the same until the effector
response probabilistically eliminated the tumor (see Fig. 8b.)
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Fig. 12 Numerical solution of the PDE system (12) with chemotaxis parameter � D 0. Other
parameter values are taken from Table 2. (a) Time evolution of the total tumor population,
calculated using (13). (b) Profile of tumor cell densities, T .r; t / at t D 0; 50; 100; 150, and 200

Like the CA, the PDE model is sensitive to the chemotaxis parameter �, and
higher � leads to a stronger effector response against the tumor, while the absence
of chemotaxis when � D 0 leads to uncontrolled tumor growth. On the other hand,
the PDE model behaves fundamentally differently from the CA model, because the
PDE system does not result in complete elimination of the tumor population, and the
unstable oscillations result in a widening ring of relapsing tumor cells traveling away
from the origin, a phenomenon that we did not observe in our simulations of the CA.
An interesting problem for future investigation would be to determine when the CA
would exhibit fragmentation of a primary tumor mass into propagating secondary
tumors.

4 Discussion

We develop a CA model of tumor and effector T cell interactions that is based on
the hybrid CA-PDE model of Mallet and De Pillis [34] and agent-based model
of Kim and Lee [25]; however, we explicitly add secretion of cytokines and
chemotaxis to model immune recruitment. We then develop an analogous mean-
field approximation of the CA as a system of PDEs and compare the PDE model to
the CA.

For the CA, we see the three types of behavior also obtained in [25, 34]:
rapid elimination of tumor, uncontrolled tumor growth, and a long period of
oscillation before probabilistic tumor elimination. We obtained the three behaviors
by only varying the chemotaxis parameter � from relatively high sensitivity to
chemoattractant at � D 120 to no chemotaxis at � D 0 and found that chemotaxis
strongly influences the ability of the immune response to control or eliminate the
tumor. These simulations corroborate the results of [25, 34], in which the authors
find that T cell recruitment rates strongly influence the effectiveness of anti-tumor
immune responses in both models.
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Numerical simulations of the PDE model also show that dynamics are highly
influenced by the chemotaxis parameter. For the parameter values in Table 2,
which were chosen to be comparable to those of the CA, we do not see a stable
solution corresponding to complete tumor elimination. In fact, it is possible that the
underlying dynamics of the CA with strong chemotaxis is not stable either; it is
just that effector recruitment is strong enough to ensure a high, but not guaranteed,
chance of rapid tumor elimination (see Fig. 4a,b).

A direction for future work would be to determine under what conditions
the PDE model is stable at the tumor-free equilibrium, produces oscillations, or
leads to monotonic tumor growth. Both the PDE model and CA exhibit different
characteristics making them useful to study independently and in comparison. The
CA allows us to more realistically investigate stochasticity and variability of tumor
growth, immune cell migration, and resulting outcomes. On the other hand, the PDE
system can be numerically evaluated much faster than the CA and does not need
to be evaluated multiple times to obtain the average behavior. Studying CA and
PDE models in conjunction will also increase our understanding of the similarities
and differences of modeling systems using discrete, probabilistic frameworks and
continuous, deterministic models.

One could also conduct a more thorough parameter sensitivity analysis of the CA
and PDE models of the same style done in [25]. As in [25], parameters that could
be varied include the tumor growth rate, effector kill rate, sensitivity to cytokine
gradients, and the ambient effector concentration. Such a parameter sensitivity
analysis is relatively straightforward, but for the length and scope of this chapter,
we do not delve into such a study here. In addition, it is also straightforward to
convert the CA and PDE models to three dimensions as considered in [25].

Finally, the CA and PDE models in this chapter can be readily extended to
devise even larger systems of tumor–immune dynamics that could include additional
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populations, such as a heterogenous tumor population, additional immune cells,
multiple cytokines, and chemotaxis of multiple cells to multiple signals. The role
of CA and PDE models in cancer modeling will only grow in the coming years, and
having an understanding of both modeling frameworks and connections between the
two will become increasingly important in mathematical biology.
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A Structured Population Model of Competition
Between Cancer Cells and T Cells
Under Immunotherapy
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Abstract How does immunotherapy affect the evolutionary dynamics of cancer
cells? Can we enhance the anti-cancer efficacy of T cells by using different types
of immune boosters in combination? Bearing these questions in mind, we present
a mathematical model of cancer–immune competition under immunotherapy. The
model consists of a system of structured equations for the dynamics of cancer cells
and activated T cells. Simulations highlight the ability of the model to reproduce
the emergence of cancer immunoediting, that is, the well-documented process by
which the immune system guides the somatic evolution of tumors by eliminating
highly immunogenic cancer cells. Furthermore, numerical results suggest that more
effective immunotherapy protocols can be designed by using therapeutic agents that
boost T cell proliferation in combination with boosters of immune memory.
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1 Introduction

Immunotherapy is a type of treatment that can be used to boost or restore the ability
of the immune system to fight cancer, infections or other form of disease. The
molecular identification of human cancer antigens has allowed the development
of different antigen-specific immunotherapy protocols. These include in vitro
activation of autologous tumor T cells which are re-infused into patients after
expansion, ex vivo expansion of autologous antigen-specific T cells which are then
re-infused into patients, and vaccination with an antigen and an adjuvant to elicit
therapeutic T cells [24, 28].

While T-cell-based therapies have been shown to boost the body’s ability to fight
cancers such as leukemia, lymphoma and breast cancer, they have not improve the
survival rates of patients with melanoma or lung cancer [29, 30]. However, current
immunotherapy protocols have not resulted in durable clinical improvements,
except in single patients [2,13]. A possible reason for the limited ability of cytotoxic
T cells to kill or to contain tumor growth is that they die quickly. In this scenario,
the immune response is not sustained and cancer eventually returns. For this reason,
current research trends include engineering cancer vaccines that induce both tumor-
specific effector T cells, which can reduce the tumor mass, and tumor-specific
memory T cells, which can control tumor relapse by providing the immune system
with “memory” (i.e., they quickly expand becoming activated T cells upon re-
exposure to their cognate antigen).

How does immunotherapy affect the evolutionary dynamics of cancer cells?
Can we enhance the anti-cancer efficacy of T cells by using different types of
immune boosters in combination? Bearing these questions in mind, we propose a
structured population model that describes the dynamics of a well-mixed sample
(i.e., space effects are, prima facie, kept aside) of cancer cells and activated T cells
under immunotherapy. The immunotherapy we consider is based on the delivery
of agents that boost the proliferation of T cells and immune memory. The model
includes proliferation and death processes of both cancer cells and activated T
cells. The mesoscopic formalism of the present model allows us to take into
account microscopic features of cancer–immune competition, which is not possible
in macroscopic models.

In spite of more complex mathematical models of cancer–immune competition
[1–12,14–20,23,25,26], the one we present here relies on just a few parameters. In
fact, as a first step of a long term project, this model is conceived as a tool to test
different hypothetical scenarios, rather than to perform quantitative forecasts.

The reminder of the chapter is organized as follows. In Sect. 2, we describe the
mathematical model and the related underlying assumptions. Section 3 introduces
the general setup for numerical simulations and presents the results obtained under
different parameter settings, which mimic different biological scenarios. We study
the adaptation of the antigenic profile of cancer cells in response to the action exerted
by activated T cells. We also analyze the evolution of the cancer cell density in the
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presence of T cell proliferation boosters and immune memory boosters. Finally,
Sect. 4 contains the conclusions of this chapter and provides also ideas about future
research perspectives.

2 The Model

As a reference system, we consider a population of cancer cells, structured by a
non-negative real variable u 2 U 	 RC that represents the antigenic expression,
and a population of activated T cells, structured by a non-negative real variable v 2
V 
 U that represents those antigens that T cells can effectively attack. For brevity,
we refer to the variables u and v as traits of the cancer cells and T cells, respectively.
Both cell populations are exposed to the action of two types of immunotherapies:
one aimed at boosting the proliferation of activated T cells, and the other aimed
at boosting immune memory. The local densities of cancer cells and T cells are
modeled by the functions fC .t; u/ � 0 and fI .t; v/ � 0. The related total densities
are computed as

�C .t/ D
Z

U

fC .t; u/du; �I .t/ D
Z

V

fI .t; v/dv: (1)

We represent the infusion rates of therapeutic agents boosting proliferation and
immune memory at time t 2 Œ0; T � by the functions cP .t/ � 0 and cM .t/ � 0,
respectively.

The biological phenomena of interest are modeled according to the assumptions
and the strategies summarized below. Mathematical details are similar to those
previously introduced in [6], apart from those which concern the modeling of
immunotherapies:

Cancer Cell Proliferation and Competition for Resources In order to mimic cancer
growth, we introduce a parameter �C > 0, which models the average rate of cell
proliferation net of apoptosis. Furthermore, since cellular proliferation is hampered
by the competition for resources, we assume that interactions can lead cancer cells
to die at an average rate �C > 0.

Clonal Expansion of T Cells and Homeostatic Regulation In order to enhance the
efficacy of immune response, T cells undergo a rapid in situ clonal expansion. We
account for this process by including binary interactions between cancer cells with
trait u and activated T cells with trait v, that occur at a rate described by the function

��E .ju � vj/ > 0; �0
�E
.�/ � 0; (2)

and lead to the proliferation of T cells. In order to model the selectivity of clonal
expansion, the interaction rate is defined as a symmetric and decreasing function
of the distance between the traits of the interacting cells. Parameter �E > 0



50 M. Delitala et al.

measures, on average, the selectivity of the interactions. Moreover, due to the limited
availability of nutrients, and homeostatic regulation mechanisms as well, T cells
cannot proliferate in an unbounded way. As a consequence, we assume that they
can die at an average rate �I > 0 due to interactions with other cells of the same
population.

Action of T Cells Against Cancer Cells T cells are able to target and kill cancer cells
that express their cognate antigen. Therefore, we also include binary interactions
between cancer cells with trait u and activated T cells with trait v, that occur at a
rate described by function

��I .ju � vj/ > 0; �0
�I
.�/ � 0 (3)

and lead to the destruction of cancer cells. Considerations analogous to those drawn
about function ��E hold. It is worth noting that ��I .�/ may be different from ��E .�/,
namely because clonal expansion and immune competition can be characterized by
different levels of selectively.

Boosting of T Cell Proliferation and Immune Memory The effect of therapeutic
agents that enhance the proliferation of T cells are modeled through an increase in
the proliferation rate of T cells by parameter �P > 0. On the other hand, the action
of therapeutic agents that boost immune memory is modeled through a reduction in
the death rate related to homeostatic regulation by parameter �M > 0.

Therefore, we describe the dynamics of the two cell populations through the
following system of structured equations

8
ˆ̂̂
<
ˆ̂̂
:

@

@t
fC .t; u/ D RC .t; u/fC .t; u/;

@

@t
fI .t; v/ D RI .t; v/fI .t; v/;

(4)

where RC and RI model the net proliferation rates of cancer cells and T cells,
respectively,

RC .t; u/ WD .�C � �C�C .t//„ ƒ‚ …
cancer cell proliferation and competition for resources

�
Z

V

��I .ju � vj/fI .t; v/dv
„ ƒ‚ …
action of T cells against cancer cells

;

(5)

RI .t; v/ WD
	Z

U

��E .ju � vj/fC .t; u/du C �P cP .t/




„ ƒ‚ …
clonal expansion and boosting of T cell proliferation

� �I

1C �McM.t/
�I .t/

„ ƒ‚ …
homeostatic regulation and

boosting of immune memory

:

Remark 1. Since we assume a well-mixed cell sample, the current model does not
account for any spatial dynamics. However, we note that the formalism at hand
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would allow us to incorporate spatial effects of the two cell populations. This could
be namely done by integrating the modeling strategies presented in [22] with the
considerations made in [8].

3 Numerical Results

In this section, we study the evolution of cancer cells under the effects of
immunotherapy in the framework of the model presented in the previous section.
In particular, our simulations

1. analyze how cancer cells adapt to the immune response exerted by activated T
cells, in the presence of therapeutic agents that boost the proliferation of activated
T cells and immune memory;

2. verify the existence of suitable infusion schemes that enhance the efficacy of
immunotherapy protocols.

We assume U D V WD Œ0; 1�, while as a time domain we select the interval Œ0; T D
120�. Time is in units of the average cell cycle. We choose the initial conditions

fC .t D 0; u/ D CCe
� .u�0:5/2

0:001 ; fI .t D 0; v/ D CIV .v/;

where V is the characteristic function of the set V and the factors CC;I 2 RC are
such that

�C;I .t D 0/ � 1:

These conditions mimic a biological scenario where, at the beginning of obser-
vations, the cancer cell population is almost monomorphic (i.e., most of the
cancer cells are characterized by the same antigenic expression). Concurrently, the
distribution of activated T cells over the possible antigenic expressions is assumed
to be uniform.

In order to perform numerical simulations, we select a uniform grid with N D
400 points on the segment Œ0; 1�. We denote by fC .tk; un/ � 0 and fI .tk; vn/ � 0

the numerical solutions at grid points un D n	u and vn D n	v (space steps 	u D
	v D 1=N ) and time tk D k	t (time step 	t D 0:1). Therefore,

fC .t; u/ � fC .tk; un/; fI .t; v/ � fI .tk; vn/:

We implement in MATLAB the following implicit–explicit finite difference scheme,
see e.g. [21],

8
<
:
fC .tkC1;un/DfC .tk; un/C	t

�
RC
C .tk; un/fC .tk; un/ �R�

C .tk; un/fC .tkC1; un/
�
;

fI .tkC1;vn/DfI .tk; vn/C	t
�
RC
I .tk; vn/fI .tk; vn/� R�

I .tk; vn/fI .tkC1; vn/
�
;
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where RC
C;I .tk; un/ and R�

C;I .tk; vn/ denote, respectively, the positive and negative
parts of the numerical approximations for RC .t; u/ and RI .t; v/.

For all simulations, the functions ��E and ��I are defined as

��E .ju � vj/ WD e��E ju�vj2 ; ��I .ju � vj/ WD e��I ju�vj2 ;

and the other parameters of the model are set as

�C;P WD 1; �C;I WD 0:5; �E;I WD 1;000; �M WD 1: (6)

The above functions and the related parameters are chosen to be simple and offering
clear illustrations of the generic properties (2) and (3).

Definitions of functions cP and cM are selected case by case to mimic differ-
ent infusion schedules. At first, we study the dynamics of cancer cells without
immunotherapies, that is, when

cP;M .t/ WD 0; 8t 2 Œ0; T �:

Figure 1 shows the “chase-and-escape” dynamics of activated T cells and cancer
cells, i.e.,

1. clonal expansion leads to a rapid proliferation of those T cells that can effectively
attack the antigens mostly expressed by the cancer cell population;

2. the selective pressure exerted by activated T cells causes the selection of the
cancer cells that are actually able to evade immune predation.

This cause the emergence of oscillations in the total densities of cancer cells and T
cells (see the right panel of Fig. 1).

From the evolutionary perspective, let us note that immune competition pushes
the monomorphic cancer cell population to become, in succession, dimorphic,
trimorphic and then tetramorphic (i.e., most of the cells are characterized by two,
three or four given antigenic expressions, respectively). In turn, the same pattern of
evolution is followed by activated T cells with a certain delay, which is due to the
time required to adapt to the antigenic distribution of cancer cells (see the left and
center panels of Fig. 1). In the framework of our model, these evolutionary patterns
can be seen as the result of cancer immunoediting, that is, the well-documented
process by which the immune system guides the somatic evolution of tumors by
eliminating highly immunogenic cancer cells [4, 9].

Next we analyze the evolution of cancer cells under three different immunother-
apy regimes:

1. T cell proliferation boosters only, i.e.,

cP .t/ WD C sgn.sin.!t//C; cM .t/ WD 0I (7)

2. immune memory boosters only, i.e.,

cP .t/ WD 0; cM .t/ WD C sgn.sin.!t//CI (8)
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3. simultaneous delivery of both boosters, i.e.,

cP .t/ WD C

2
sgn.sin.!t//C; cM .t/ WD C

2
sgn.sin.!t//C: (9)

Fig. 1 Cell dynamics without immune boosters. Evolution of fC .t; u/ (left panel), fI .t; v/ (center
panel), �C .t/ (right panel, solid line) and �I .t/ (right panel, dashed line). Clonal expansion leads
to a rapid proliferation of the T cells that can effectively attack the antigens mostly expressed by
the cancer cell population. The selective pressure exerted by activated T cells causes, in turn, the
selection of those cancer cells that are able to evade immune predation

During simulations, we choose ! D 10�=T and we test three different instances of
infusion, which are characterized by picks of different height (see the center panels
of Figs. 2, 3, 4), i.e., we set alternatively C D 4, C D 6 or C D 8. Provided that
the same value of parameter C is selected, the integral

Z T

0

ŒcP .t/C cM .t/� dt

does not change under definitions (7)–(9), that is, the total delivered dose is kept the
same in the three cases at hand. This is actually of primary importance to make a
consistent comparison between the protocols under study.

At first, we study the effects of immunotherapy protocols that rely on the
delivery of T cell proliferation boosters only, i.e., we perform simulations under
definitions (7). The results presented in the left panels of Fig. 2 support the idea that
boosters of T cell proliferation may only allow a temporary reduction in the total
density of cancer cells, which is then followed by a relapse.
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Fig. 2 Cell dynamics with boosters of T cell proliferation. Evolution of �C .t/, �I .t/ and cP .t/
for C D 4 (dotted lines), C D 6 (dashed lines) and C D 8 (solid lines). Boosters of T cell
proliferation allow only a temporary reduction of the concentration of cancer cells

Next, we analyze the efficacy of immunotherapy protocols that make use of
immune memory boosters only, i.e., we perform simulations under definitions (8).
After a comparison between the results shown by the left panels of Fig. 3 and those
presented in the right panel of Fig. 1, we are led to conclude that the dynamics of the
cancer cell density is left almost unaltered with respect to the case without therapies.
The addition of oscillations seems to be the only significant effect.

Finally, we consider the case where the two types of immune boosters are used in
combination, i.e., we perform simulations under definitions (9). The results shown
by the lower left panel of Fig. 4 support the idea that if the two types of immune
boosters considered are used in combination, then there exists certain doses that
make it possible to push the cancer cell population toward extinction, and effectively
control tumor relapse. This may be due to the fact that the simultaneous delivery of
T cell proliferation boosters and boosters of immune memory at sufficiently high
doses allows the total density of immune cells to attain higher values (compare the
center panel of Fig. 4 with the center panels of Figs. 2 and 3).

The qualitative properties of the results presented in Figs. 2, 3, 4 are left unaltered
by variations of the parameter values (6), within reasonable ranges. Furthermore, let
us note that we have developed additional simulations (data not shown) under the
following definitions of functions cP and cM

cP .t/ WD C

2
sgn.sin.!t//C; cM .t/ WD C

2
sgn.sin.!t C �//C; C 2 f4; 6; 8g;

cP .t/ WD C

2
sgn.sin.!t C �//C; cM .t/ WD C

2
sgn.sin.!t//C; C 2 f4; 6; 8g;
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Fig. 3 Cell dynamics with boosters of immune memory. Evolution of �C .t/, �I .t/ and cM .t/
for C D 4 (dotted lines), C D 6 (dashed lines) and C D 8 (solid lines). Immune memory
boosters leave the qualitative dynamics of the cancer cell density almost unaltered with respect to
the case without therapies (to be compared with the right panel of Fig. 1), apart from the addition
of oscillations in the total density of cancer cells

with ! D 10�=T . The obtained results highlight how protocols that rely on the
alternate delivery of T cell proliferation boosters and boosters of immune memory
do not allow to eradicate the cancer cell population.

These results lead us to conclude that, with the doses used in our tests, more
effective immunotherapy protocols can be designed by using combinations of
therapeutic agents that boost T cell proliferation and immune memory. This is in
agreement with the ideas presented in [11, 27].

4 Conclusions and Perspectives

In this chapter, we have presented a structured population model that describes
the dynamics of a well-mixed sample of cancer cells and activated T cells under
immunotherapy. The immunotherapy we consider is based on the delivery of agents
that boost the proliferation of T cells and immune memory. The model includes
proliferation and death processes of both cancer cells and activated T cells, as well
as clonal expansion of T cells and their action against cancer cells.

In spite of more complex mathematical models of cancer–immune competition,
the one we have presented here relies on just a few parameters and it is conceived as
a tool to test different hypothetical scenarios, rather than to perform quantitative
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Fig. 4 Cell dynamics with boosters of T cell proliferation in combination with boosters of immune
memory. Evolution of �C .t/, �I .t/ and cP .t/C cM .t/ for C D 4 (dotted lines), C D 6 (dashed
lines) and C D 8 (solid lines). If the two types of immune boosters considered are used in
combination, then there exists certain doses that allow to achieve the complete eradication of cancer
cells

forecasts. In the framework of this model, we have studied, through numerical
simulations, the adaptation of the antigenic profile of cancer cells in response to the
action exerted by activated T cells. We have also analyzed the evolution of cancer
cell density in the presence of T cell proliferation boosters only, immune memory
boosters only, and combination of them.

Despite its simplicity, the model seems able reproduce the emergence of the
“chase-and-escape” dynamics involving activated T cells and cancer cells. Fur-
thermore, the results presented here support the idea that, ceteris paribus, more
effective immunotherapy protocols can be designed by using suitable combinations
of therapeutic agents that boost both T cell proliferation and immune memory.

Future research will be focussing on refining the modeling strategies of the
evolutionary dynamics of cancer cells. For instance, a natural improvement of the
model would be to include an additional structuring variable, let us say w, related
to the proliferative potential of cancer cells, and replace the parameter �C with an
increasing function of this variable. Furthermore, since cell proliferation implies
resource reallocation (i.e., redistribution of energetic resources from competition-
oriented tasks toward development and maintenance of proliferative potential), it
might also be worth replacing parameter �C and function ��I with some functions
�C .w/ and ��I .ju � vj;w/.

From a mathematical standpoint, it could be interesting to provide a detailed
characterization of the oscillations that arise in the total densities of the two cell
populations. Namely the techniques applied in [21] may prove to be useful to show
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that the evolution equations for �C;I .t/ can resemble a kind of Lotka–Volterra
system, under a proper time rescaling together with suitable assumptions on the
functions and parameters of the model.
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Modeling Tumor–Immune Dynamics

Lisette G. de Pillis and Ami E. Radunskaya

Abstract Mathematical models of tumor–immune interactions provide an analyt-
ical framework in which to address specific questions regarding tumor–immune
dynamics and tumor treatment options. We present a mathematical model, in the
form of a system of ordinary differential equations (ODEs), that governs cancer
growth on a cell population level. In addition to a cancer cell population, the model
includes a population of Natural Killer (NK) and CD8C T immune cells. Our goal
is to understand the dynamics of immune-mediated tumor rejection, in addition to
exploring results of applying combination immune, vaccine and chemotherapy treat-
ments. We characterize the ODE system dynamics by locating equilibrium points,
determining stability properties, performing a bifurcation analysis, and identifying
basins of attraction. These system characteristics are useful, not only for gaining a
broad understanding of the specific system dynamics, but also for helping to guide
the development of combination therapies. Additionally, a parameter sensitivity
analysis suggests that the model can predict which patients may respond positively
to treatment. Numerical simulations of mixed chemo-immuno and vaccine therapy
using both mouse and human parameters are presented. Simulations of tumor
growth using different levels of immune stimulating ligands, effector cells, and
tumor challenge, are able to reproduce data from published studies. We illustrate
situations for which neither chemotherapy nor immunotherapy alone are sufficient
to control tumor growth, but in combination the therapies are able to eliminate the
entire tumor.
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1 Introduction

There are many unanswered and important questions as to how the immune system
interacts with a growing tumor, and which components of the immune system play
significant roles in responding to immunotherapy. For example, does the varying
strength of an individual’s immune response play a significant role in affecting
tumor growth during treatment, and if so, is it possible to predict which individuals
will respond well, and which will not? Mathematical models provide an analytical
framework in which to address such questions, and these models can be used both
descriptively and predictively. It is important to develop models of tumor growth
that include a representation of an immune response. The ultimate goal is to create
models that can reflect a system’s response to emerging biological therapies, such
as vaccine therapy. Mathematical modeling of tumor growth and treatment has been
approached by a number of researchers using a variety of models over the past
decades. (For overviews, see for example [4, 9, 27, 55, 68].)

The Importance of the Immune System and Immunotherapy Immunotherapies
are quickly becoming an important component in the multi-pronged approaches
being developed to treat certain forms of cancer. The goal of immunotherapy
is to strengthen the body’s own natural ability to combat cancer by enhancing
the effectiveness of the immune system. The importance of the immune system
in fighting cancer has been verified in the laboratory as well as with clinical
experiments. See, for example, [28, 52, 53, 57, 69]. Additionally, it is known that
those with weakened immune systems, such as those suffering from AIDS, are more
likely to contract certain rare forms of cancer. This phenomenon can be interpreted
as providing further evidence that the role played by the immune response in battling
cancer is critical. See, for example, [12, 38].

The clear importance of the immune system in controlling cancer growth, both
clinically and mathematically, indicates that models incorporating tumor growth
and treatment would do well to include an immune system component. Once this
component is in place, it is then possible to model how various immunotherapies
may affect the system, either singly or in combination with one another. Recent
clinical data have shown there is potential benefit in harnessing the power of
the immune system in combination with traditional chemotherapy. For example,
in Wheeler et al. [72], it is demonstrated that vaccine therapy in combination
with chemotherapy more effectively extends patient survival times than either
chemotherapy or vaccine therapy alone.

Immunotherapy The clinical evidence for the potential of immune system control
of certain malignancies has motivated new research into the development of
immunotherapies and vaccine therapies for cancers. Some examples are described
in [5, 11, 25, 59, 65, 72]. Immunotherapy falls into three main categories: immune
response modifiers, monoclonal antibodies, and vaccines (see, for example,
[64]). The first category contains substances that affect the immune response,
such as interleukins (including IL-2), interferons, tumor necrosis factors (TNF),
colony-stimulating factors (CSF), and B-cell growth factors. In the next category,
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monoclonal antibodies are currently being developed to target specific cancer
antigens. These monoclonals can distinguish between normal and cancer cells, and
they can then be used to diagnose cancer, as well as to treat tumors by “guiding”
anticancer drugs toward the malignant cells (see, e.g., [34, 48, 62]). In the third
category are vaccines, which are generally used therapeutically, and are created
from tumor cells. These work by helping the immune system to recognize and
attack specific cancer cells. In this work, we implement treatment from the first
category in the form of mathematical terms that represent IL-2 and tumor infiltrating
lymphocyte (TIL) injections, and additionally incorporate treatment from the third
category: new mathematical forms that distinguish between specific and nonspecific
immune responses, allowing for the incorporation of a vaccine component into the
model. Although monoclonal antibody treatments are considered promising, they
are currently not considered in this work.

Cancer Vaccines There are fundamental differences between the use and effects
of antiviral vaccines and anticancer vaccines. While many vaccines for infectious
diseases are preventative, cancer vaccines are designed to be used therapeutically,
treating the disease after it has begun, and preventing the disease from recurring.
Cancer vaccines are still considered to be highly experimental as compared with
other forms of cancer immunotherapy, but in early clinical trials are showing
increasing promise in their ability to improve the immune response to certain forms
of cancer (see, e.g., [64, 72]).

Since cancer vaccines and antiviral vaccines differ in their application, mathe-
matical models of these vaccines should exhibit different dynamics. The goal of this
chapter is to build on existing models of tumor growth, incorporating an immune
system response and expanding these models to include the effect of anti-tumor
vaccination and immunotherapies in conjunction with chemotherapies. In another
work, the authors will extend this model into a larger framework that incorporates
spatial and geometric components.

The outline of this chapter is as follows. In Sect. 2 we describe four cell
population growth models that are commonly used to represent cancer growth,
and outline a parameter fitting approach that can extract growth parameters from
laboratory data. In Sect. 3, we discuss growth and interaction dynamics governing
an immune response to tumor, assuming a single population representing effector-
killer cells of the immune system. In Sect. 4 we further expand our description of
the immune response to include both the innate and the specific responses, and in
Sect. 5, we formulate the mathematical forms that govern the different dynamics of
the innate and specific immune responses. In Sect. 6, we construct a three population
mathematical model that describes the interactions of a tumor cell population with
both the innate and specific immune cell populations. We also carry out a parameter
sensitivity analysis, as well as a bifurcation analysis of the system. In Sect. 7,
we build upon our three population model to allow for simulation of treatments.
Treatment modalities include both cytotoxic chemotherapy and immune-stimulating
therapies. We present numerical simulations that represent both mouse and human
scenarios, using parameters extracted from published literature. Finally, in Sect. 8,
we provide a discussion and summary of this work.
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2 Growth Models

An important step in building a tumor–immune model is to capture the dynamics of
tumor cell population growth alone, before considering growth-limiting interference
from, for example, immune cells or from competition by normal cells for nutrients
and space. There is, so far, no universal consensus as to which fundamental growth
models best reflect tumor cell growth. Among the most commonly used models,
however, are exponential growth (and its generalization, power law growth), logistic
growth, Von Bertalanffy growth, and Gompertz growth. The forms of these growth
laws are in Table 1. All but von Bertalanffy growth require two parameter values be
determined. The Von Bertalanffy model requires three parameter values.

Table 1 Commonly used cell population growth laws

Growth law Equation Number of parameters

Power dT
dt

D aT b Two: a; b:

Logistic dT
dt

D aT .1� bT / Two: a; b:

Gompertz dT
dt

D aT ln .1=bT / Two: a; b:

von Bertalanffy dT
dt

D aT ..bT /c � 1/ Three: a; b; c:

T represents the number of tumor cells, t is time, a; b and
c are parameters

The choice of growth law depends, among other things, on the cancer cell type,
whether the cancer is early or late stage, and the location of the tumor. In the case
of tumor stage, consider, for example, a comparison of exponential and logistic
growth models. As can be seen in Fig. 1, in which we compare exponential to
logistic growth, if the tumor is small (early stage), there is no significant distinction
between the two growth models. The distinction becomes apparent, however, in
the later stages. As opposed to exponential growth, logistic growth is self-limiting.
Even though there are no external growth-limiting factors, a self-limiting growth
model, such as a logistic model, accounts for self-competition within the tumor cell
population for resources like space and nutrients. An exponential growth model is
reasonable to use for early stage growth, but a self-limiting growth model is often
more appropriate for later stage growth. Therefore, even in the absence of tumor
growth data, a modeler can consider tumor size and make a qualitative decision
about whether to the model should reflect self-limiting growth.

Ideally, a modeler will be able to acquire some tumor growth data, and should use
the model that provides the best fit to those data. The process of fitting a model to the
data also yields the appropriate model parameters. There are a number of approaches
to data fitting that are possible. One approach to fitting a model to data is numerical,
and makes use of packaged computational routines. In Matlab [70], for example, the
simplest way to fit a curve to a data set is to plot the data points and make use of
Matlab’s Basic Fitting tool from the pull-down menu of the figure window.
However, the choice of curves that can be fit to the data is limited to splines and
polynomials. If we want to determine how well the solutions to our growth laws of
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Fig. 1 Exponential versus logistic versus growth. In early stage growth, cycle zero through about
cycle 6, both models are similar, and appear to overlap. After cycle 6, the two graphs begin to
diverge, and by cycle 14, the growth curves have diverged significantly. By cycle 15, the logistic
growth curve has leveled off, but the exponential growth curve continues to increase

interest could fit a data set, our numerical approach requires a different approach.
The steps in the process are as follows.

1. Choose a tumor growth data set. Many tumor growth data sets are given in units
of approximate volume, surface area, cross sectional area, or relative volume.
Since the growth laws we are considering represent numbers or concentrations
of cells, then if the data are not already given in cell counts, convert the measures
to approximate cell counts. A useful conversion metric assumes that there are
generally between 1:0 � 106 cellls/mm3 and 2:0 � 106 cells/mm3, [51]. Suppose
we have n data points. Let us call the time-data pairs .ti ; di /;where i D 1; � � � ; n:

2. Assume the tumor cell population, T .t/; obeys a particular growth law, which in
our case will be chosen from Table 1.

3. Solve for T .ti /; that is, determine the model’s predicted population values at
the same time points, ti ; as are used in the data set. For relatively simple ODE
laws, like the ones in Table 1, it is actually possible to find explicit solution
formulas. Solutions to the four growth law ODEs are given in Table 2. However,
it is also acceptable to solve these ODEs numerically. There are many options
for how to do this in Matlab. For example, Matlab’s ode45 routine uses an
adaptive fourth and fifth order Runge–Kutta scheme, and the numerical solutions
are highly accurate in most cases. Many ODEs are not easily solved analytically,
but are fairly straightforward to solve numerically. Thus, a numerical approach
is generally more universally applicable.
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4. Choose a metric, or distance. If you are working in Matlab, you can write a
function in an m-file that Matlab can minimize. The function should return the
sum of the squares of the distances of the solution (analytic or numerical) to
the data points. Suppose we are fitting the logistic curve. Then the distance D
depends on the two parameters a and b; and is given by

D.a; b/ D
nX
iD1
.T.a;b/.ti /� di/

2

where T.a;b/.ti / is the chosen model output at time point ti using parameters
a and b: The input to the distance function includes a vector of the unknown
parameters Œ a b �, in addition to the known values of the data points f.ti ; di /g,
and the solution to the ODE, T .t/. In some cases, the uncertainty in the data
should be taken into account when defining the distance function. For example,
in many cases the data at later time points have more variability, since small
differences in initial conditions can grow over time. We have often found it
fruitful to use a weighted distance function, where the distance to each data point
is normalized by the standard error at that time point.

5. Call a function minimization routine to minimize the distance function D.a; b/:
Here, again, there is a variety of possible approaches. Routines that look for
function minima can be classified broadly as either “local” or “global” search
algorithms. A “local” minimization routine will attempt to move closer to the
function minimum with every step. In our case, this is done by ensuring that
the distance function D.a; b/ can only decrease or stay the same with every
iteration of the search, but D.a; b/ will never be allowed to increase. The
result is that if we start our search near to a local function minimum, the
local algorithm will converge fairly rapidly to that close minimum point, even
if there is a “better” minimum point somewhere else in the function. Global
search algorithms, on the other hand, try to broaden the search for the “best” (or
“global”) minimum by occasionally allowing the distance function to increase
before decreasing it again. One can think of this temporary increase in D.a; b/
as the search function allowing us to climb a hill that will move us to a different,
deeper, valley, in which a better minimum can be found. Local algorithms that
can search for a function’s minimum include Newton’s method, the Conjugate
Gradients method, and the Nelder–Mead Simplex algorithm. These approaches
depend on choosing initial guesses for the values of the parameters a and b;
and the accuracy of the initial guess affects the outcome of the minimization.
Matlab has a built-in routine fminsearch that minimizes an input function
using the Nelder–Mead algorithm. Matlab also has the routine lsqnonlin,
that specifically solves nonlinear least squares problems. As opposed to local
algorithms, global parameter estimation algorithms are able to test a broader
range of parameters, and are therefore less likely to get “stuck” in a local
minimum, but they also may not yield values as accurate as local methods
can. Global approaches include algorithms such as simulated annealing [37],
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and Markov Chain Monte Carlo [32, 67]. Whether a local or global approach
is employed, this step will return values for the model parameters (a and b in the
case of logistic growth), as well as the distance measure that indicates how good
the model fit is (the smaller the distance, the better the fit).

Table 2 Solutions to the four commonly used cell population growth laws

Growth law Equation Solution

Power dT
dt

D aT b T .t/ D ..1� b/.at C C//
1=.1�b/

; where C D T 1�b
0

.1�b/

Logistic dT
dt

D aT .1� bT / T .t/ D 1
Ce�atCb

; where C D 1
T0

C b

Gompertz dT
dt

D aT ln .1=bT / T .t/ D b
�
T0
b

�e.�at/

von Bertalanffy dT
dt

D aT ..bT /c � 1/ T .t/ D 1
b

T c0�
T c0 .1�e�act /C e�act

bc

�1=c

T represents the number of tumor cells, t is time, a; b and c are parameters. In each case, the
given initial condition is T .0/ D T0

As an example, we took a published tumor growth data set from Diefenbach
et al. [24], and fit each of the four growth curves to the data. This example can also be
found in [19,20]. Combining Matlab’s ode45 adaptive Runge–Kutta ODE solver to
get predicted solutions for T .t/with fminsearch to find the parameter values that
minimized the distance between the data points and the model prediction, yielded
the fits seen in Fig. 2. The data we show are from Diefenbach[24] experiments
in which groups of immuno-compromised mice were challenged with increasing
levels of B16-BL6 (a melanoma cell line). Data set 1 represents the mean tumor
cell count in five mice over 33 days after an initial inoculation with 104 melanoma
cells. Data set 2 tracks over 23 days the mean tumor growth data in five mice after
an inoculation of 105 cells, and Data set 3 tracks the mean growth in five mice after
an inoculation of 106 melanoma cells, also over 23 days. With each growth curve,
we also plot the “residual:” the distance between each data point and the predicted
value given by the growth curve. The best fits are those with the smallest residuals.
We can see from Fig. 2 that the smallest residuals and thus the best fits appear to
come from the logistic model and the von Bertalanffy model. However, the principle
of “parameter parsimony” says that the model with the fewest parameters that still
yields a good fit is preferable. Therefore, we should choose to use the logistic model
over the von Bertalanffy model, since the logistic model requires fitting one less
parameter.

The interested reader can find in [66] a larger catalog of fits of these four growth
laws to ten separate tumor cell types: bladder cancer, breast cancer, colon cancer,
head and neck squamous cell carcinoma, hepatocellular carcinoma, lung cancer,
melanoma, ovarian cancer, pancreatic cancer, and renal cell carcinoma. In that work,
tumor growth information for each cell line came from collecting published peer-
reviewed data from at least five separate sources. Similar to the results of [35], the
authors found that the power growth law often yielded a good fit in the sense of
minimizing the residual.
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Fig. 2 A comparison of four growth laws. Data from [24], which describes three different mouse
experiments (marked as “Data set 1,” “Data set 2,” and “Data set 3,” respectively), are used to fit
four different growth laws. Data set 1 represents the mean tumor growth values in a group of five
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3 Competition Models: Adding the Immune System

An individual’s immune system is created to help defend the body from invading
pathogens such as bacteria, fungi, viruses, parasites, and in some cases, cells in the
body that have become cancerous. The immune system is made up of a wide variety
of cells with different functions, ranging from antigen uptake and presentation to
killing of infected or mutated cells. The immune cells are created in the bone marrow
and can be found in the blood and tissue of an individual. The immune cells in the
blood are commonly known as the “white blood cells,” and the average human body
makes about 109 new white blood cells each day.

The immune response to the presence of a foreign substance is a complex cascade
of events, including self-regulating feedback loops. Although there is much we have
learned about the dynamics of the immune response, there is still much we do not
fully understand. Details about some of the known complex workings of the immune
system can be found in [54].

One goal of the immune response is to attack and destroy harmful cells. Immune
cells with the ability to kill are called effector cells. In this section we introduce
effector cells into the model of tumor growth. In the simplest realization, we use a
competition model consisting of a system of two differential equations: one equation
describing the growth of the tumor population, and one equation describing the
growth of the effector cell population.

Early tumor–immune models used the “predator–prey” relationship developed
by Lotka in 1910, and then used by Kolmogorov and subsequently by Volterra in
1925 to describe the fate of fish populations in the Adriatic [1,43,71]. In the context
of tumor growth, effector cells play the role of the predators, and tumor cells are the
prey. Let T denote the population of tumor cells, and E the population of effector
cells. The classical predator–prey relationship assumes:

1. the prey will grow in the absence of the predator;
2. interactions between predator and prey are harmful to the prey but beneficial to

the predator;

J
Fig. 2 (continued) mice after an initial challenge of 104 melanoma cells. Data set 2 shows growth
after a challenge with 105 melanoma cells, and Data set 3 shows growth after a challenge with
106 cells. The solution to each growth model is shown in solid curves, while the data points are
shown by filled squares. In each case, the parameters of the models are chosen to minimize the least
squares distance from the model’s predicted values to the data. Residuals showing the difference
between the predicted values and the data are shown as bars below the graphs in each case. Note
that the first data set has more time points than the other two, so that the last three residuals are due
to differences coming only from the first data set. The two models shown in the left column, the
power law and the Gompertz models, have larger residuals than do the two models depicted on the
right, the logistic and the von Bertalanffy models. Since the logistic model uses fewer parameters
than does von Bertalanffy, we consider logistic growth to yield the best fit to these data
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3. the predators will die in the absence of prey;
4. the number of interactions between predators and prey is proportional to the

product of the two populations.

If we describe the growth of the tumor population using a logistic function, these
assumptions yield the following system of differential equations.

Simplest predator–prey model of tumor (prey) and effector–immune (preda-
tor) interactions:

Tumor:
dT

dt
D rT .1 � bT /� c1TE (1)

Effector W dE

dt
D �dE C c2TE (2)

where c1; c2; d and r are constants.

The interaction terms in Eqs. (1)–(2) have a “mass-action” form, reflecting
Assumption 4, that the total number of encounters between predators and prey are
proportional to the product of the two populations. This follows from a well-mixed
condition, i.e. we assume that each predator is equally likely to encounter each prey.
The discerning reader might note that this will not be the case in the context of
the immune response to solid tumors in vivo, since immune cells won’t have equal
access to all of the tumor cells. We discuss this further in Sect. 5.

Another problem with this simple model is that Assumptions 2 and 3 are not
biologically realistic in the context of tumor–immune interactions. Effector cells can
kill tumor cells in one of two ways: by damaging the tumor cell’s membrane using
a protein called perforin, or by initiating apoptosis (programmed cell death) via
another protein called FasL. Since effector cells produce these proteins in a limited
amount, each interaction decreases their ability to kill in the future. We therefore
introduce a negative inactivation term into Eq. (2). Counteracting this negative effect
is the fact that the presence of the tumor cells stimulates the production of new
immune cells, and the recruitment of these immune cells to the site of the tumor
However, there is some limit to the rate at which the body can produce these cells.
We therefore introduce a positive rate-limiting recruitment term in the Effector cell
equation shown in Fig. 3.

Effector immune cells are present in the body even in the absence of a specific
threat. This “standing army” of cells is created in the bone marrow, and distributes
itself in the tissues, blood and organs in search of harmful cells. We therefore include
in the simple effector–tumor model a constant source rate of effector cells, 
 , noting
that in reality this rate will change with the overall condition of the host, as well
in response to complex regulatory signals from the immune system. Putting these
terms together gives a two-population model of the tumor–immune response:
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Fig. 3 Saturating recruitment term. This type of term occurs frequently in biological and physical
models where rates cannot be infinite

Two-population model of tumor and effector–immune interactions:

Tumor:
dT

dt
D rT .1 � bT /� c1TE (3)

Effector:
dE

dt
D 
 C �T

s C T
� c2TE � dE (4)

where c1; c2; d; 
; �; s and r are constants.

This two-population model has been useful in describing observed behavior that
was mysterious to clinicians. For example, in the work of Kuznetsov et al. [45, 46],
in which the nonlinear dynamics of immunogenic tumors are examined, this tumor–
effector model is shown to exhibit oscillatory growth patterns in tumors, as well as
dormancy and “creeping through”: when the tumor stays very small for a relatively
long period of time, and subsequently grows to be dangerously large (Fig. 4).
This model also demonstrates that two simulated patients could begin with almost
identical characteristics (IC1 and IC2 in Fig. 4), but one has a progressive disease
(IC2) while the immune response of the other patient is able to keep the tumor
relatively small (IC1). Note that, in this case, it is only the initial number of
immune cells that makes the difference, and that the results are non-intuitive: a
slightly lower initial immune response (IC1) results in a smaller tumor. This non-
intuitive behavior can be understood by knowing the geometry of the phase space
of the dynamical system: a separatrix, the stable manifold of the unstable, saddle
equilibrium separates the basins of attraction of the two stable equilibria. Initial
conditions close to the basin boundaries, but on opposite sides of the separatrix,
give rise to trajectories with drastically different long-term behavior.
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In this and other mathematical models, the cyclical behavior of the tumor is
directly attributable to the interaction of the tumor with the immune system. In
[16], the authors also use a single effector population to represent the immune
response, and are able to demonstrate the critical role this effector response plays
in the process of tumor elimination, even when chemotherapy treatments are given.
We discuss models with treatments in Sect. 7.
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Fig. 4 Simulations of the two-population model (Eqs. 3–4) showing sensitivity to initial condi-
tions and the “creeping through” effect. The separatrix or stable manifold of the saddle equilibrium
is shown as a dashed line in the left panel. Two simulations are shown: one with initial conditions
E.0/ D 6:5558 (labeled “IC 1” in red) and one with E.0/ D 6:8777 (labeled “IC 2” in blue).
Both simulations have initial tumor values at T .0/ D 126:6807. Left panel The two trajectories
are shown in the sate space: in both trajectories, the tumor values initially get very small and remain
there for a while. The first trajectory (IC1) is in the basin of attraction of the low tumor equilibrium,
and it spirals towards it. The second trajectory (IC2) is in the basin of attraction of the large tumor
equilibrium, which it approaches quickly after the initial “dormant” period. Note the logarithmic
scale in the left panel. Right panel The same two trajectories are shown over time. Only the tumor
populations are plotted in the right panel. Units are 106 cells. The parameter values used in these
simulations are a D 1:636; b D 0:002; d D 0:3743; s D 20:19; c1 D 1; c2 D 0:00311; � D
1:131 and 
 D 0:06

4 The Innate and Adaptive Immune Response

As we build a mathematical model, our goal is to keep the model as simple as
possible while still addressing the question of interest. If the model is found to be
too simple, we then add complexity in steps. The simple model given in Eqs. (3)
and (4) assumes that the response of the immune system can be represented by a
single “effector” cell population. This simplification of the immune system works
well when modeling clinically observed tumor–immune behaviors such as tumor
dormancy, oscillations in tumor size, and spontaneous tumor regression.

This simplified single-population representation of the immune system is obvi-
ously not sufficient, however, to address questions specific to the roles different
components of the immune response play in the evolution of a tumor. The next
question we will address, as we continue to build and refine our model, is driven
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by the results of a set of experiments by Diefenbach et al. In these experiments,
mouse tumor cell lines are modified to express higher levels of immune stimulating
NKG2D ligands, and the responses of both the “innate” and “specific” components
of the immune system are observed.

Immune cells called NK “Natural Killer” cells, are part of the innate, or non-
specific, immune response. Killer T “Thymus” cells are part of the specific, or
adaptive, immune response, and are activated differently from NK cells. The Killer
T cells are also referred to as CTL “Cytotoxic T Lymphocyte” cells, or CD8C T cells
(which distinguishes them from CD4C T helper cells). Both NK cells and Killer
T cells come from a common lymphoid progenitor, and once activated, are both
called “effector” cells. We next briefly discuss the differences between the innate
and specific responses and discuss their behaviors in very general terms before
introducing the model in Sect. 6 that includes these as separate populations.

The innate immune response, which includes NK cells, is an early defense
against pathogens. The NK cells patrol the body, searching for and killing cells
that they do not recognize as “self” cells (belonging to the body). NK cells are
large granular lymphocytes which do not express markers of either T or B-cell
lineage. NK cells recognize and destroy tumor cells, among others, independent
of prior exposure. Natural killer cells are thought to play a key role in preventing
the development of clinical cancer by killing abnormal cells before they multiply
and grow. One way NK cells recognize that a potential target cell is a “self” cell
is when the target cell presents self antigens through MHC class I receptors on
its surface. When an NK cell comes in contact with a potential target cell, kill-
activating receptors attach to common glycoproteins on the potential target cell, and
the NK cell is primed to kill. However, if the target cell is expressing self antigens
in the MHC-I receptor, when the NK cell binds to the MHC-I-self-antigen complex,
the kill signal is interrupted and neutralized, and the potential target cell remains
unharmed. In the case that the target cell is not expressing a self antigen in the
MHC-I receptor, the activated NK cell will continue in kill mode, releasing perforin
and granzymes, leading to the destruction of the target cell. The NK cell will also
continue in kill mode if the target cell is simply not expressing MHC-I receptors
on its surface. Downregulated MHC-I receptor expression means that the NK cell
cannot bind to that receptor, and there therefore is nothing to inhibit the NK cell’s
kill signal. In some cancer cells, MHC-I receptors are down-regulated on the cell
surface, and are therefore susceptible to NK cell attack. In a sense, when a potential
target cell expresses the self-antigen-MHC-I receptor complex, this can be thought
of as the cell knowing the “secret handshake,” which allows it to escape NK cell
patrols unharmed.

Killer T cells are unlike NK cells in that they must first be primed to recognize
a particular antigen, and in the case of cancer, to recognize a tumor-specific
antigen. The killer T cells, which carry the CD3C marker, are morphologically
small lymphocytes in the peripheral blood. They develop in the thymus and mediate
the immune system’s response to infected or malignant cells. These CD3CCD8C
T cells (or just “CD8C” T cells) are a critical subpopulation of T-lymphocytes
that can be cytotoxic to tumor cells provided previous sensitization has occurred.
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CD8C T cells are able to kill tumor cells through recognition of the tumor-specific
antigen presented on MHC-I receptors on the surface of the tumor cell. The tumor-
antigen specific T cell binds to the MHC-I-tumor-antigen complex. Once bound,
the CD8C T cell is triggered to release perforin and granzymes, leading to the
destruction of the target tumor cell. The CD8C T cell can be thought of as a “police
dog trained in scent discrimination”—it first has to be taught what its target is, and
only then, can it seek out that specific target.

In summary, both NK cells and CTL cells must come in contact with target tumor
cells in order to be able to kill them. The NK cells need no priming, are constantly
on patrol, and kill tumor cells when they do not recognized them as “self.” The CTL
cells, on the other hand, must first be primed to recognize antigen specific to the
tumor cells, and only then will be able to destroy the target tumor cells.

5 Estimating Kill Rates from Data:
The de Pillis–Radunskaya Law

In this section we explore how the differences between the innate and adaptive
immune response manifest themselves in a mathematical model of tumor–immune
interactions. In particular, we want to look more closely at the “kill rate” term given
as c1TE in Eq. (3). If we divide this term by the number of tumor cells, T , we get the
“fractional cell kill rate”, which in this simplest mass-action setting is proportional
to the number of effector cells. In the context of predator–prey dynamics, the
mass-action form is not always appropriate, and the ecological literature discusses
alternative forms, (see [2] and the references therein). As we mentioned in Sect. 3,
a mass-action kill rate assumes that all immune cells are equally likely to interact
with any tumor cell: it assumes spatial homogeneity. In reality, however, this is
not necessarily the case. In the case of the adaptive immune response, CTLs are
recruited to the tumor site by the presence of specific chemicals—not all tumor
cells will be equally accessible to this type of attack. A mass-action form of cell
kill also precludes “resource sharing”: the notion that the number of predators per
prey affects the probability of a kill, and hence the benefit to the predator. Resource-
sharing suggests that the fractional cell kill will be a function of the ratio of predator
to prey.

To determine the fractional cell kill dynamics, data from chromium release assays
published in [24, 26] were used. Chromium release assays determine the ability of
CD8C T cells to lyse target cells expressing specific ligands. The assays in both [24,
26] were standard 4 h 51Cr release assays. Standard techniques exist for collecting,
storing, and co-culturing patients’ immune cells with tumor cells, a procedure which
can be implemented before the onset of treatment, or anytime thereafter. The lytic
activity of these cells can then be analyzed with the assay (see, e.g., approaches
referenced in [26]).
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We rewrite Eq. (3) in the general form:

dT

dt
D rT .1� bT /� g.E; T /T: (5)

The function g.E; T / is the fractional cell kill rate, sometimes called the
“functional response”. In order to determine which fractional cell kill term best
fit the data, we performed data fitting experiments with two different functional
responses: one that depends only on the number of effector cells, and the other that
depends on the ratio of effector to tumor cells.

Power Form g.E; T / D cE�I (6)

Rational Form g.E; T / D d
.E=T /�

s C .E=T /�
: (7)

We note that the Power Form has fewer parameters than the Rational Form.
Therefore, if we get good fits using both the Power Form and the Rational Form,
we should select the Power Form, following the Principle of Parsimony.

Using cell lysis data from [24], we employed an iterative process to find the
parameters c and � in the Power Form that minimized the distance between the
data points and the predicted percent lysis curves generated by the model over a
range of c and � values. For each Œc; �� pair, a prediction was made by solving a
system of differential equations up to time Tf inal D 4 h, with initial values from
the effector:target ratio data in [24]. When using data from assays using only NK
cells, the Power Form provided a good fit, with the best-fit exponent begin � � 1.
Since a good mathematical model will be one in which the desired behaviors of the
system are captured using the simplest mathematics possible, we chose to keep the
mass-action form, g.E; T / D �cE , to describe the effect of the NK cells on tumor
cells. In fact, the optimal value of c determined using our algorithm reproduced the
lysis rate data extremely well (see Fig. 5, top row).

However, when fitting for parameters c and � for the CD8C T cell kill term, we
found that the power form produced growth curves for T that were not particularly
good fits to the data provided in [24]. Instead, we found that we could produce
curves that better fit the data by allowing this term to have the rational form given
in Eq. (7), for which we also had to determine parameter s: In (7), the exponent �
represents how the lysis rate depends on the effector:target ratio, the parameter s
affects the steepness of the curve, and parameter d gives the maximum lysis rate.
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We note that the additional parameter in Eq. (7) gives three degrees of freedom,
so that a better fit to the data should be expected using the rational form. However,
since the observations in [24] give five data points for each cell-type considered, the
closeness of fit to the data supports the idea that the form of this term is correct. In
particular, both in vitro and in vivo experiments indicate that percent lysis appears to
be a function of the ratio of CD8C T cells to tumor cells, explaining the dependence
on the ratio .E=T /. Furthermore, the data indicate that the percent of cells lysed
never exceeds a maximum, a saturation effect that is reflected by the rational form
given in Eq. (7).

This saturation effect highlights the fact that the NK cells and CD8C T cells
are interacting with tumor cells in a qualitatively different way, since there is no
saturation level for the NK cell competition term. It may be that the NK cell-kill
rate could achieve saturation as well in theory, but in practice this does not occur.
On the other hand, it may be that the antigen-specific T-cells follow this curve to
saturation because they are targeting a specific tumor type, and are therefore more
effective in terms of cell–cell interactions.

For conciseness, we will represent the rational form for the fractional cell kill
rate with the letter D, and refer to the fact that cell lysis rates by activated CD8C
T-cells agree with this form as the de Pillis–Radunskaya Law.

The de Pillis–Radunskaya Law:

For tumor-specific effector cells such as CD8C T-cells, the fractional kill rate
is given by:

g.E; T / D D D d
.E=T /�

s C .E=T /�
D d

E�

sT � C E�
(8)

The ratio-dependent form for the fractional cell kill term is mainly phenomeno-
logical, in the sense that it models observable outcomes, not direct underlying
mechanisms. It is not immediately clear what the individual components of this term

J
Fig. 5 Comparison of mathematical cell lysis laws. Top row NK-Cell Lysis. The top graph shows
model predictions smooth curves) plotted with experimental data (squares and circles) from [24] on
RMA cells. The shallow curve predicts lysis percentages for the control cells, while the steep curve
predicts lysis percentages for the ligand-transduced cells. Center and bottom row CD8C T-Tumor
Cell Lysis. The second row of graphs plots experimental data points (circles and squares) taken
from [24] against model cell lysis predictions (solid lines). The center graphs show the power
law prediction and the rational law prediction against lysis data for tumor cells whose primary
and secondary challenges were with control-transduced tumor cells (RMA cells). The bottom row
shows the same comparison for tumor cells whose primary and secondary challenges were with
ligand-transduced cells (RMA cells transduced with Rae1ˇ ligand)
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Fig. 6 Model validation using human data from [26]. Presented here is a comparison between
the power form and the rational form in describing human (CD8C) T-tumor lysis, as was done
in Fig. 5 for mouse data. In each graph, two separate simulations are plotted along with data
from two different patients who experienced regression of melanoma after receiving TIL treatment.
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represent biologically. The use of phenomenological dynamics in modeling biologi-
cal processes is quite common and can serve to provide predictive capabilities in the
model. Such descriptive (as opposed to explanatory) dynamics are frequently used
as a foundation on which to build models of tumor development. For example, see
the comparison of several phenomenological tumor growth models presented in [7],
p. 239. Perhaps future investigations may elucidate the the underlying mechanisms
that give rise to the rational form of the fractional cell kill rate in the context of
tumor–immune interactions.

5.1 Validation of the de Pillis–Radunskaya Law
with Human Data

In order to validate the fundamental model dynamics with respect to the new rational
form of the tumor-specific cell lysis term, we performed another comparison of
the power form versus rational form predictions, this time using human (CD8C)
T-tumor lysis data from [26]. Figure 6 shows the results of this comparison. The
top graph shows the power–law predictions plotted against (CD8C) T-tumor lysis
data for two separate patients. It is clear that the power–law prediction does not fit
the data particularly well. On the other hand, the bottom graph shows the prediction
using our newly introduced rational law. In this case, the model can predict cell lysis
quite accurately, even when applied to this human data set.

For this particular set of data, effector cells are fairly efficient at lysing tumor
cells, with a maximum lysis rate around 60 %. Note that, as with the ligand-
transduced mouse data, the difference between the power form and the rational form
fractional cell kill rates is quite pronounced, once again indicating that the rational
form is particularly well suited to simulating cases in which effector cell lysis rates
are relatively strong.

It is necessary in each case to find the parameters which will describe the
particular type of tumor–immune interaction under study. The two data sets pictured
here underline a feature inherent in the modeling process: there is a wide variety
of cell behavior between any two different patients. Care must therefore be taken
in making sweeping statements regarding specific responses to treatments, and
any quantitative information must be interpreted as one possibility, and not as a
firm predictor in any given case. However, a large set of simulations, along with

J
Fig. 6 (continued) The data show results of cytotoxicity assays with TILs taken 7 days after cell
transfer. The model predictions are represented by the smooth curves, while the experimental data
are represented by squares for patient nine and triangles for patient 10. Note, once again, that the
rational form for predicting (CD8C) T-tumor lysis rates as a function of the effector:target ratio
(as depicted in the lower graph) provides a much better fit to the experimental data than does the
power form (as depicted in the top graph)
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some analysis of the sensitivity of the model to parameter fluctuations can certainly
provide a general picture of possible behaviors under certain conditions. Further
comparisons may lead to new insights in the nature of the differences between
different tumor types, as well as different immuno-therapeutic protocols.

6 Three Population Model: Tumor, NK, CTL

In this section, we introduce the three population tumor–immune model developed
in [23]. Most of the material in this chapter can also be found in [23]. This
mathematical model of tumor–immune interactions sheds light on the differing roles
of the Natural Killer (NK) and CD8C T cells in suppressing various tumor cell lines
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Fig. 7 The bars show the residuals (errors) for the same two data sets shown in Fig. 5 (CD8C T
cell lysis of control-transduced and ligand-transduced tumor cells). The height of each bar shows
the value predicted by the power and rational laws, minus the experimental data values at each
effector:target ratio point. The difference between the power law and rational law models is most
pronounced in the ligand-transduced case, in which the effector cells are far more efficient at lysing
tumor cells
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in mice and humans. The model is driven by the results of experiments carried out
by Diefenbach et al. [24], in which mice were challenged with tumor cells that were
modified to be more recognizable by NK cells and CD8C T cells. The responses of
these two branches of the immune system to the tumor challenge were observed both
separately and in conjunction with each other. After developing the model, using
the methods outlined in Sect. 5 to fit the parameters both to the murine (mouse)
data from [24], and also to human data provided in Dudley et al. [26]. In the human
study, subjects with metastatic melanoma were treated with highly selected tumor-
reactive T cells, and results were observed. Both the mouse and the human studies
provide experimental information about tumor growth rates and effector to tumor
cell kill (or lysis) rates. We use the model to explore the dynamics of tumor rejection,
the specific role of the NK and CD8C T cells, and the development of protective
immunity to subsequent tumor rechallenge.

6.1 Model Development

The specific biological assumptions we took into account when developing our
model equations are based on both accepted knowledge of immune system function
and conclusions stated in [24, 26]. The assumptions include:

1. A tumor grows logistically in the absence of an immune response. This is one
accepted growth model for tumors [7], and is also based on fittings of the data in
[24].

2. Both NK and CD8C T cells are capable of killing tumor cells. (See, for example,
[24, 31, 40].)

3. Both NK and CD8C T cells respond to tumor cells by expanding and increasing
cytolytic activity. (See, for example, [41, 58].) Note that the level of effector
cell “effectiveness” depends on both the number of cells present, as well as the
individual cell’s cytotoxicity. In the model, we do not separate the measures of
high-effectiveness per cell from an increase in cell population, but measure the
combined overall increase in effectiveness in response to tumor.

4. NK cells are normally present in the body, even when no tumor cells are present,
since they are part of the innate immune response. See, for example, [63].

5. As part of the specific immune response, active tumor-specific CD8C T cells are
only present in large numbers when tumor cells are present. (See, for example,
[42, 63])

6. NK and CD8C T cells become inactive after some number of encounters with
tumor cells. (See, for example, [44].)

In the equations, we denote the three cell populations by:

• T .t/, tumor cell population at time t
• N.t/, total level of natural killer cell effectiveness at time t
• L.t/, total level of tumor specific CD8C T cell effectiveness at time t



80 L.G. de Pillis and A.E. Radunskaya

6.2 Model Equations

Using the list of assumptions from above, we describe the system as three coupled
differential equations, where each equation gives the rate of change of the particular
cell population in terms of growth and death, cell–cell kill, cell recruitment, and cell
inactivation. In particular:

Rate of change of tumor cell population D
(Growth and death rate)� (Cell–cell kill rate)

Rate of change of active effector cell populations D
(Growth and death rate) C (Recruitment rate)� (Inactivation rate)

The mathematical forms of the growth and death terms for tumor and immune
cell populations will reflect Assumptions (1), (4) and (5). Assumption (2) is reflected
in the cell–cell kill term, Assumption (3) gives rise to the effector cell recruitment
terms, and Assumption (6) is incorporated through the effector inactivation terms.

Immune recruitment terms are generally assumed to be of a Michaelis–Menten
form, (see, e.g., [46] in which Michaelis–Menten dynamics are derived for immune
cell recruitment by cancer cells). See, for example, Eq. (4). These dynamics are
commonly used in mathematical tumor models that include an immune component,
since they allow for a saturation effect (see, e.g., [42]). In the case of the CD8C T
cells, in addition to being recruited by interactions with T-cell processed tumor cells
through a Michaelis–Menten dynamic, additional CD8C T cells are stimulated by
the interaction of NK cells with tumor cells. This NK stimulation is represented by
the rNT term in Eq. (11). The term rNT , representing a fraction of the number
of interactions between NK cells and tumor cells, is the vehicle through which we
model the fact that the specific immune response of the CD8C T cells is activated
only after the activation of the earlier response of innate immunity.

Substituting specific mathematical forms for each of the growth, death, recruit-
ment, and inactivation terms yields the following system of equations:

Three-dimensional model:

dT

dt
D aT .1 � bT /� cNT �DT (9)

dN

dt
D 
 � fN C gT 2

hC T 2
N � pNT (10)

dL

dt
D �mLC jD2

k CD2
L� qLT C rNT (11)

(continued)
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where

D D d

�
L
T

��

s C �
L
T

�� (12)

From [24] we were able to get data on the growth curves in the absence of an
immune response, which allowed us to estimate parameters a and b. These model
parameters were estimated from the data in [24] by minimizing the least-squares
distance from the simulated values to the data. Data measuring the percent of IFN-
� producing immune cells as a function of ligand expression allowed us roughly
to estimate immune recruitment rates stimulated both by ligand-transduced and
control-transduced tumor cells. Other parameters, such as the background source
rate for NK cells (
) and death rates for immune cells (f and m), were taken from
the literature, e.g. [46, 73]. Although some of these parameters are rough estimates,
and may deviate from other specific data, the model as a whole qualitatively
describes the observed data both in the mouse and in the human experiments.

Table 3 provides a detailed listing of the parameters in this model, along with
their units, descriptions, numerical values for the simulations, and reference sources
from which these values were taken. Detailed development of all terms, except for
the new fractional cell kill term D which was descried in Sect. 5, can be found
in [16].

6.3 Simulating Immunotherapy: Enhancing Ligand
Expression

The three-dimensional model can be used to simulate the effect of enhancing ligand
expression on tumor cells by allowing the relevant parameters to depend on the
tumor cell type. The relevant parameters in this model are c and d , the effectiveness
of the immune cells, along with g and j , the recruitment parameters.

Figure 5 (top) plots the effector:target lysis data from [24] for NK cells, along
with our simulated model curves. The ligand transduced tumor cells are lysed at a
higher rate by NK cells than those that are control transduced. The two values of
NK-lysis parameter c estimated from the two sets of data accurately reproduce the
effects of this ligand transduction.

In the bottom two rows of Fig. 5, effector:target lysis data and simulations for the
CD8C T cells are presented. For our experiments, four CD8C T cell lysis parameters
were determined through fitting to the four ligand transduction data sets of [24], and
these are all able to capture the different experimental outcomes. For brevity, only
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the two cases representing priming and rechallenge with control-transduced cells
and priming and rechallenge with ligand-transduced cells are presented in Fig. 5.
Figure 5 shows the experimental data against the mathematical model prediction
using the best-fit parameter values for both the power form and the new rational
form of the competition term. Note that in Fig. 5 (center row) in which we compare
fits to data for non-ligand transduced cells, although the difference between the fit
achieved by the traditional power kill law and by the new rational kill law is not
clearly visible, the numerical difference in the error term is present. This can be
seen in Fig. 7. Here, we plot the numerical errors between the predictions and the
data, allowing a comparison between the goodness-of-fit of the power form and
rational form of the competition term. In the bottom row of Fig. 5, the superiority
of the fit achieved by the rational kill law over the power kill law is visible and
striking. Similarly, the numerical error bars of the right panel of Fig. 7, reflect the
much smaller error achieved by the rational kill law. It appears that it is critical
to employ the rational law to fit ligand transduced cell data, whereas the use of
either the rational or the power law for non-ligand transduced data will give us an
acceptable fit. This may indicate that the more effective the immune cells are at
lysing their target cells, the more they follow a rational law dynamic.

The simulations show what this model would predict under three different
experimental scenarios similar to those reported in [24]. These simulations explain
some of the reported experimental observations (see [24], Figs. 2 and 3, pp. 167–
168). Ligand transduced cells stimulate the immune response sufficiently to control
tumor growth (Fig. 8, top right), while control-transduced tumor cells escape
immune defenses (Fig. 8, top left). In the top left panel of Fig. 8, the immune
system is rechallenged at day 10 after priming with control-transduced cells, and
the tumor escapes surveillance. In the top right panel of Fig. 8, the immune system
is again rechallenged at day 10 with control-transduced cells, but the primary
challenge was with ligand-transduced cells. This simulation shows that the tumor
is controlled, indicating the development of immunity. Changing ligand levels on
the cells requires changes to the model parameters d; �; and s (all the parameters
involved in the rational T cell kill term D), as well as c (strength of NK cell kill), g
(NK cell recruitment rate), and j (CD8C T cell recruitment rate). Numerical values
for these parameters with varying ligand levels are provided in Table 3.

Simulations generated by a validated mathematical model can be used to detect
thresholds for immune efficacy. In Fig. 8 (bottom row), we reproduce with a
computational solution of our mathematical model the qualitative results of three
sets of experiments that were presented in Fig. 2, p. 167 of [24]. For the experiments
in [24], groups of mice were challenged with either 104, 105 or 106 ligand-
transduced tumor cells, then tumor establishment was tracked. For our in silico
simulations, we also challenge the mathematical system with these three levels of
tumor cells. Figure 8 (bottom left) shows simulated tumor cell growth over time
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in response to these three initial levels of tumor burden in the absence of CD8C T
cell activity, reflecting the experiments in which the mice were depleted of CD8C T
cells. This simulation represents a system lacking a strong antigen-specific immune
response. The system can control a small tumor, but tumor challenges of 105 cells
or more escape the immune system’s control.

Figure 8 (bottom center) shows simulated tumor growth outcomes for the same
three experiments done in the absence of NK cells, reflecting the experiments with
mice depleted of NK cells. The system is now able to control initial tumor burdens
of up to 105 cells, but a larger challenge of 106 cells escapes immunosurveillance.

Figure 8 (bottom right) shows simulated results with both NK and CD8C T cells
active, reflecting the experiments on mice with intact immune systems. With both
the NK cells and the CD8C T cells working together, initial tumor burdens of up to
106 cells are controlled.

6.4 Sensitivity Analysis

In order to discover which components of the model contribute most significantly to
determining final tumor size, we performed a sensitivity analysis. Model sensitivity
was assessed by measuring the effect of small parameter changes on the final
volume of the tumor as represented by a simulation of the system’s evolution
over 25 days. Since ultimately we are interested in predicting a patient’s response
to immunotherapy treatment, we used human data for the sensitivity study. In
particular, the parameter set from patient 9, available in [26], and for whom lysis
data are plotted with squares in Fig. 6, was used as the base point. Each parameter
was perturbed from its estimated value by 1%, and the corresponding percent change
in final tumor volume was calculated.

The results of this parameter sensitivity analysis for the mathematical model
are shown in Fig. 9. The system in this case is found to be most sensitive to the
exponent in the CD8C T lysis term, �; as well as to the tumor growth parameter a.
This suggests that, in addition to the aggressiveness of the tumor, as represented
by growth parameter a, even very small changes in the cytolytic effectiveness
of tumor-specific T cells, as represented by shifts in the value of �, can affect
clinical outcome. This would indicate that any treatment which might enhance this
effectiveness should aggressively be pursued. By contrast, the size of the tumor after
25 days is not very sensitive to the NK cell competition parameter, c. According
to this model, then, the cytolytic activity of the NK cell population alone is not a
determining factor in the eventual size of the tumor, and should be considered in
conjunction with CD8C cell activity.
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Fig. 8 Simulations of (tumor cell)–(NK cell)–(T cell) mutual interactions over time. Top left
System evolution with control-transduced primary inoculation. Ineffective response by NK
cells and CD8C T cells to non-ligand transduced challenge. Top right System evolution with
ligand-transduced primary inoculation. Effective response by NK and CD8C T cells to non-
ligand transduced challenge following priming with ligand-transduced cells. Both systems are
rechallenged with control-transduced cells after 10 days. Bottom row The simulations presented
in these graphs are based on data provided in [24]. In each of the three cases tumor growth is
plotted over time starting with three different initial tumor challenges: 104 , 105, and 106 cells.
In the plots, cell populations are converted to mean surface values. Bottom left Simulation of
Tumor–NK interactions in a system with CD8C T cells depleted. The simulation shows that in
the absence of CD8C T cells, only a tumor inoculation of up to 104 cells is suppressed, whereas
larger challenges escape immunosurveillance. Bottom center Simulation of Tumor-(CD8C T cell)
interactions in a system with NK cells depleted. The simulation shows that in the absence of NK
cells, tumor inoculations of up to 105 cells are suppressed, whereas a larger challenge of 106 cells
escapes immunosurveillance. Bottom right Simulation of Tumor-(CD8C) T–NK interactions in
a system with all immune components intact. Note that the maximum mean tumor surface area
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populations of this small size are not clearly visible in the data plots provided in [24], Fig. 2, p. 167.
The simulation shows that when both NK cells and CD8C T cells are present, tumor inoculations
of up to 106 cells are suppressed
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6.5 Bifurcation Analysis

In addition to a parameter sensitivity analysis of the type described in Sect. 6.4, we
can gain a better understanding of the overall dynamics of the system, by performing
a bifurcation analysis of the system. This type of analysis gives us a global view of
the system, identifying the regions in parameter space that correspond to a “health”
or “diseased” state. Furthermore, if specific parameters have been identified as being
critical to the progression of the disease, or if a particular treatment affects one set
of parameters, a bifurcation analysis can pinpoint values of these parameters that
serve as thresholds beyond which the patient’s system enters the basin of attraction
of a “healthy” stable fixed point. These bifurcation points could become the goal of
therapy design. We will illustrate this idea with some specific parameter sets, guided
in part by the those parameters identified as “sensitive” in Sect. 6.4.
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Fig. 9 This analysis shows that the tumor size is most sensitive to the CD8C T cell kill parameter,
�, as well as to the tumor growth rate parameter a

Before performing the bifurcation analysis, we add a bit more realism to the
model. This model expansion is motivated by our goal of exploring the effect of
different treatment strategies on the progression of the tumor, which we will pursue
in Sect. 7. The expanded model will reflect two additional assumptions:

1. Circulating lymphocyte levels can be used as a measure of patient health (see,
e.g., [33, 50, 56]). The source of the NK cell population can be represented
as a fraction of the circulating lymphocyte population, a simplification meant
to represent the complex cascade of biological events that leads to NK cell
stimulation (see, e.g., [10]).
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2. NK cells, circulating lymphocytes and tumor cells are components of the process
of stimulation and elimination of activated effector cells, a model simplification
meant to reflect the self-regulatory nature of the immune system (see, e.g.,
[26, 31, 39]).

Assumption (1) leads to the introduction of a new state variable, C , representing
the population of circulating lymphocytes, or white blood cells. These circulating
lymphocytes are assumed to be replenished at a constant rate, and die off at a
constant rate, unaffected by the presence of the tumor. The constant source term
for the NK-cells is replaced by a source term proportional to C.t/. Assumption (2)
leads to a additional positive and negative terms in the CD8C, or L.t/ equation.
With these modifications, the expanded model is:

Four-dimensional model:

dT

dt
D aT .1� bT /� cNT �DT (13)

dN

dt
D eC � fN C g

T 2

hC T 2
N � pNT (14)

dL

dt
D �mLC j

D2T 2

k CD2T 2
L � qLT C .r1N C r2C /T � uNL2 (15)

dC

dt
D ˛ � ˇC (16)

where D is the de Pillis–Radunskaya Law, given in Eq. (12).

6.5.1 Finding Equilibria

The first step in understanding the long-term behavior of the tumor–immune system
is to identify the equilibria, and to determine their stability. Equilibria are found
by setting the right-hand side of Eqs. (13)–(15) to zero. We first note that Eq. (16)
decouples from (13)–(15), so that, at equilibrium we have CE D ˛=ˇ.

Equation (13) has one zero at the “tumor-free” equilibrium at TE D 0, and
possibly several nonzero tumor equilibria. Setting T D 0 in (14) and (15) yields
one non-negative tumor-free equilibrium in four-dimensions:

E0 D .TE;NE;LE; CE/ D .0;
e˛

f̌
; 0;

˛

ˇ
/:
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In the case where TE ¤ 0; the equilibria are again determined by finding
the simultaneous solutions of Eqs. (13)–(16), but the values of the nonzero tumor
equilibrium points must be found numerically.

In particular, setting Eq. (14) to zero and solving for N yields

NE D eCE.hC T 2/

f hC .f � g/T 2 C phT C pT 3
(17)

Similarly, requiring that Eq.(13) equal zero (where T ¤ 0) gives

DE D a � abT � cNE (18)

Using this expression in Eq. (12) gives an expression for the equilibrium value of L
in terms of T :

LE1 D
�
DEsT

�

d �DE

�1=�
; (19)
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Finally, setting Eq. (15) to zero gives

L2.uNE/C
�
m � jD2

ET
2

k CD2
ET

2
C qT

�
L � .r1NE C r2CE/T D 0; (20)

which is quadratic in L. Equation (20) has two solutions for each value of T , which
we shall denoteLE2.T / andLE3.T /. Equilibrium points of the system are found by
determining the T -values at which the graphs of LE2.T / and LE3.T / intersect the
graph of LE1.T /. These T values can then be used to find the equilibrium values of
N and L using Eqs. (17) and (19).

Observe that there could be multiple nonzero values of T that simultaneously
satisfy Eqs. (19) and (20). However, these solutions could be negative or complex-
valued. For example, using the estimated set of mouse parameters given in Table 5,
we find two solutions, only one of which is biologically relevant (see Fig. 10). As a
system parameter is changed, other nonzero equilibria can appear (see Fig. 11), or
negative equilibria can become positive, and therefore biologically feasible.

6.5.2 Stability of Equilibria

A system will move towards an equilibrium point if that point is stable, so the next
step in the analysis of the long-term dynamics of the system is to investigate the
stability of all equilibria. The effect of the stability of the tumor-free equilibrium on
the progression of the disease is illustrated in the lower graph of Fig. 11, dashed line.
For this set of parameter values, the tumor-free equilibrium is unstable, while the
high-tumor equilibrium is stable. The stability of the high-tumor equilibrium implies
that, in the absence of treatment, the system will inevitably return to the high-tumor
state, i.e., the tumor will escape immune surveillance unless every single tumor cell
is killed. Thus, in a case such as ours for which there are only two equilibria, if
the tumor-free equilibrium is unstable, then in order to realistically effect a cure,
any treatment must not only reduce the tumor burden, but it must also change the
parameters of the system itself. The role of immunotherapy, therefore, might be
interpreted in this context as a treatment which changes system parameters by, for
example, permanently raising the cytolytic potential of the natural killer cells [the
parameter “c” in Eq. (13)]. We note that if the system were one that admitted a very
small but stable tumor, then another “healthy” state might be one for which it is
possible to maintain the system at this low tumor level.

The stability of an equilibrium is typically determined by linearizing the system
about the calculated values, and by determining the stability of the linearized system
by explicitly solving it. (See any textbook on differential equations, for example,
[6].) However, the term D in Eq. (13) poses a problem since it is not differentiable
at the tumor-free equilibriumE0 D .0; e˛

f̌
; 0; ˛

ˇ
/, so we cannot use this technique to

determine the stability of the tumor-free state.
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However, we can make some relevant observations without linearizing. Suppose

T is positive. We see that
dT

dt
is negative if

a.1 � bT / � cN �D < 0 , cN > a.1 � bT / �D

If we assume thatN is near its value at the tumor-free equilibrium:NE D e˛

fˇ
, then

we get a sufficient condition for stability. Suppose N > 0:5NE then:

c >
2a

NE
) cN > c.:5NE/ > a > a.1 � bT / �D:

Thus, if c is sufficiently large relative to the intrinsic growth rate of the tumor cells, a
small tumor can be controlled by the innate immune response: the tumor population
will decrease towards zero, and the tumor-free equilibrium is stable.

Similarly, suppose we assume a small tumor population: T < 1
b

� 10�3
(for typical values of the intrinsic carrying capacity, b, this corresponds to
a tumor of fewer than 105 cells, below the level of detection). Noting that

D D dL�

sT � CL�
< d , we get a condition for instability.

c <
:999a � d

N
) a.1 � bT / > 0:999a > cN C d > cN CD

) dT

dt
D T .a.1 � bT / � cN �D/ > 0

Thus, for small enough values of c, the tumor will escape immune surveillance
and the disease will progress. Note that we must have d < 0:999 a in order for
there to be a positive value of c that satisfies the first inequality above. This makes
sense, since a small value of d corresponds to a low kill-rate by the CD8C T cells,
reflecting a less effective immune response.

By simulating the four-dimensional model with initial values close to the tumor-
free equilibrium and with gradually increasing values of c, we can estimate the
critical value of c, the bifurcation point, at which the tumor-free equilibrium
becomes unstable. Figure 11 shows that the bifurcation point is at approximately
ccri t D 4:86 � 10�10cell�1day�1, somewhat smaller than the base value of
7:13�10�10 shown in Table 5. For this bifurcation diagram, the parameter d is set to
0:9a � 0:39. All other parameters are those given in Table 5. Similar observations
and experiments can be made with other key parameters, such as the parameter d ,
the maximum kill rate by CD8C cells. See [15] for other examples.

At nonzero equilibrium points, a linear stability analysis can be performed since
the right-hand sides of all of the differential equations are differentiable away from
T D 0;L D 0. As an illustrative example, we show the results of this analysis as
we vary the NK-cell kill rate parameter, c, from zero to a relatively large value.
For very small values of c, the tumor-free equilibrium is unstable, and there is
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a stable, high-tumor equilibrium. This corresponds to a system with a very weak
innate immune response to the tumor, and one tumor cell will reproduce, initiating
the development of a large tumor. As the parameter c increases, the tumor-free
equilibrium becomes stable, and a small number of tumor cells can be controlled
by the immune system. The system returns to the tumor-free equilibrium, even in
the absence of any treatment (Fig. 11, bottom panel).

When the tumor-free equilibrium becomes stable, a nonzero, unstable equilib-
rium appears, separating the two stable equilibria. The system is now bi-stable, and
the goal of treatment should be to get the system into the basin of attraction of
the zero-tumor equilibrium. At c � 1:45 � 10�5, the nonzero equilibria disappear
in a saddle-node bifurcation. For larger values of c the system has only the stable
zero-tumor equilibrium, and the disease will not progress.

Similar analyses can be performed using any of the system parameters in order
to determine conditions for the appearance or disappearance of equilibria and to
determine equilibrium stability. See [15] for a bifurcation analysis of the adaptive
response parameter, j .

Two bifurcations are evident in the diagram in Fig. 11. The first is a transcritical
bifurcation, where the negative equilibrium becomes positive, and the zero-tumor
equilibrium changes its stability. (This bifurcation occurs at values that are too small
to distinguish on the diagram). Before the bifurcation, the zero-tumor equilibrium
is strictly unstable: even one tumor cell will result in the system moving toward the
high-tumor equilibrium. After the bifurcation, the immune system is able to control
small initial tumor populations. Initial tumor populations which are controlled are
said to be in the basin of attraction of the zero-tumor equilibrium. On the other hand,
those which escape immune surveillance, leading the system toward the high-tumor
equilibrium, are said to be in the basin of attraction of the high-tumor equilibrium.
These basins are shown in Fig. 12. Note that since the state-space of the system
is actually four-dimensional, what is depicted in Fig. 12 is the projection of the
basins onto the Tumor-NK plane, where the values of L and C are kept at their
zero-equilibrium values. Figure 12 illustrates the consequences of bi-stability, the
co-existence of two, stable fixed points. If the tumor is initially very small, the tumor
will be controlled by the level of immune response represented by this parameter
set. However, if the tumor somehow grows larger than this threshold, perhaps due
to a temporarily weakened immune system or environmental factors, then the tumor
will grow to a dangerous size, even in the renewed presence of an adequate immune
response. Figure 12 shows two scenarios, where the system starts in identical states,
except that in one case (the dashed red line in the lower panel), the initial tumor has
exactly one additional cell. This tiny change in initial values results in a drastically
different outcome for the patient. The location of the basin boundary is therefore
crucial in determining the outcome of the disease. In the case of a patient who
has undergone chemotherapy which reduces both tumor and immune cell levels,
if these levels place the system above the basin boundary then even an undetectable
tumor will regrow. However, if the patient is given immunotherapy subsequent
to chemotherapy, thereby pushing NK levels to the right of the basin boundary,
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Fig. 11 (Top) Bifurcation diagram showing the effect of varying the NK-kill rate, c: As c
increases from zero, the tumor-free equilibrium becomes stable in a transcritical bifurcation at
ctrans � 4:86� 10�10, and an unstable, nonzero equilibrium appears. In this regime the system is
bi-stable. At csad � 3:0� 10�5 the high, stable equilibrium and the unstable equilibrium coalesce
and disappear in a saddle-node bifurcation. (Bottom) Two solutions of the system showing tumor
growth over time for two values of c, one below the transcritical bifurcation, and one above. For
the smaller value of c, the small initial tumor consisting of 10 cells grows to the high tumor
equilibrium, while for the larger value of c, the immune system is able to drive the tumor back
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the system will evolve toward the stable zero-tumor equilibrium, and the tumor
will not regrow. This hypothetical scenario emphasizes the potential importance of
combination therapy.

7 Model Extension to Simulate Chemotherapy
and Immunotherapy

The next step in model development is to add terms that reflect treatment therapies.
Therefore, in addition to the list of assumptions about tumor and immune system
evolution given in Sects. 6.1 and 6.5, we add assumptions used in the development
of therapeutic terms: Full model development and analysis details can be found
in [15].

• The fraction of the tumor population killed by chemotherapy depends on the
amount of drug in the system. The fraction killed has a maximum less than
one, since only tumor cells in certain stages of development can be killed by
chemotherapy [60].

• A fraction of NK cells, CD8C T cells, and circulating lymphocytes are also killed
by chemotherapy, according to a similar fractional kill curve [29].

Our model, when extended to include treatment terms, not only tracks cell
populations: tumor cells (T ) and immune cells (circulating lymphocytes: C , NK
cells:N , and cytotoxic CD8C T-cells:L), but in addition will track the total number
of circulating lymphocytes (or total white blood cell count in the blood stream),
C.t/; a chemotherapy drug blood concentration M.t/ and an immunotherapy drug
blood concentration I.t/: In our examples, the chemotherapy term represents a non-
targeted cytotoxic medication such as doxorubicin, and the immunotherapy term
represents an interleukin such as IL-2.

Since broadly cytotoxic chemotherapy is damaging to all cells in the system, we
include a chemotherapy drug kill term in each of the cell population equations. We
use a saturation term 1 � e�M to represent the chemotherapy fractional cell kill,
noting that the effectiveness of chemotherapy is bounded: At relatively low concen-
trations of drug, the kill rate is nearly linear, while at higher drug concentrations, the
kill rate plateaus. The mathematical term we use reflects the dose–response curves
suggested by the literature [29]. We then subtract the term K�.1 � e�M/�; from
each the four cell population equations, where � D T;N;L;C .

For immunotherapy treatment, we allow for CD8C T activation by interleukin-
2 (IL-2) immunotherapy. This “drug” is actually a naturally occurring cytokine
in the human body, and its effect on the immune system’s efficacy is described
mathematically with a Michaelis–Menten interaction term in the equation for L.
The presence of IL-2 stimulates the production of CD8C T cells, and the cascade
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Table 5
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of effects requires that we modify certain terms in the equations for T; N and L; in
addition to including new treatment term equations. Details of those modifications
can be found in [15]. The extended system of equations becomes:

Model with chemotherapy and immunotherapy:

dT

dt
D aT .1 � bT /� cNT �DT �KT .1 � e�M/T (21)

dN

dt
D eC � fN C g

T 2

hC T 2
N � pNT �KN.1 � e�M /N (22)

dL

dt
D �mLC j

D2T 2

k CD2T 2
L � qLT C .r1N C r2C /T

� uNL2 �KL.1 � e�M/LC pILI

gI C I
C vL.t/ (23)

dC

dt
D ˛ � ˇC �KC.1 � e�M/C (24)

dM

dt
D ��M C vM.t/ (25)

dI

dt
D ��I I C vI .t/ (26)

D D d
.L=T /�

s C .L=T /�
(27)

7.1 Tumor Growth Response to Treatments: Mouse Data

For the following set of numerical experiments, our model parameter values are
determined using published data both from murine experimental studies [24] and
from human clinical trials [26]. When necessary, we also use previous model
parameters that have been fitted to experimental curves [17, 18, 22, 46]. Tables 5
and 6 provide a full listing of all of the parameters with their units and descriptions.
Full descriptions of parameter derivation for the following set of experiments can
be found in [15].

The first simulation we run represents an in silico mouse that has an immune
response and has been challenged with a tumor, but no treatments are administered.
Simulation results are shown in Fig. 13, top left. The parameter set and initial
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conditions yield a scenario representing an in silico mouse in which the immune
system is not strong enough to stop tumor growth. The tumor reaches carrying
capacity, and we assume the mouse dies under this extreme tumor burden. The initial
conditions for this situation are chosen to be a tumor of size 106 cells, a circulating
lymphocyte population of 1:1 � 107, a natural killer cell population of 5 � 104,
and a population of 100 CD8C T cells. With the set of parameters in Table 5, the
outcome of the simulation is sensitive to the initial conditions chosen. This set of
initial conditions is meant to reflect a laboratory mouse experiment, in which an
initial tumor challenge of 106 cells is directly implanted into the mouse, and then
the progression of the tumor is observed.

The next two simulations employ either chemotherapy or immuotherapy treat-
ments. The chemotherapy treatment approach involves administering seven pulsed
doses of chemotherapy, each dose represented by setting vM.t/ D 1 in Eq. (25) for
1 day, and given in a 14 day cycle. The immunotherapy treatment approach involves
injecting 8 � 108 highly activated CD8C T cells from day 7 to day 8. This CD8C
injection is meant to represent the TIL treatments used for certain patients (see, for
example, [26]).

For an initial tumor challenge of 106 cells, the tumor survives despite either
method of intervention. These experiments are pictured in Fig. 13, top right and
bottom left.

There are also cases in which chemotherapy alone or immunotherapy alone can
be effective in killing a tumor that the immune system could not kill on its own.
These experimental results are not pictured here. However, the range of initial
conditions for which mono-therapies are effective is relatively small in comparison
to the greater effectiveness of combination treatments. This result is consistent
with experimental investigations (see, for example, [49]). The next simulation
represents an in silico mouse treated with both chemotherapy and immunotherapy.
The chemotherapy and immunotherapy treatments given as mono-therapies above
are now given simultaneously, and initial population sizes are set to the same values
as in the previous experiments. Results are displayed in the bottom right image in
Fig. 13.

In these simulations, combination therapy is clearly more effective in controlling
tumor growth than is either individual of treatment alone. The synergistic effect of
combination treatment that we observe reflects the outcomes of some laboratory
studies (see, e.g., [49, 72]). In vivo, these treatments do cause undesirable side
effects, some of which are due to the damage caused to the immune cells. With
this model, the circulating lymphocyte level can be used as a proxy to indicate at
least whether the immune health of the mouse has been damaged too much during
treatment, and dosing can be modified accordingly.
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response to high tumor with chemotherapy administered for 1 day in a 14 day cycle. Bottom left
Immunotherapy. Immune system response to high tumor with the administration of immunotherapy
from days 7 to 8. Bottom right Combination therapy. Chemotherapy and immunotherapy as
previously described given simultaneously effectively control of the tumor. Parameters for all
simulations are provided in Table 5

7.2 Tumor Growth Response to Treatments: Human Data

We next run model simulations using parameters taken from experimental results
of two patients—“Patient 9” and “Patient 10”—from a study by Rosenberg et al.
on metastatic melanoma [26]. Model parameters for both Patients 9 and 10 are
summarized in Table 6.

We first look at the “human” system without treatment. In the simulations using
human parameters, we set an initial tumor burden of 106 cells. This experiment
represents a situation in which the immune system has not become activated
against the tumor cell population until the population has reached 106 cells, a
size which in many cases is still considered to be below the threshold of clinical
detectability in a human. For this tumor, immune system strength is very important
in determining whether or not the body can eliminate a tumor in the absence of
treatment interventions. Simulations show that an immune system with initial values
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of 1 � 105 natural killer cells, 1 � 102 CD8C T cells, and 6 � 1010 circulating
lymphocytes can be considered “healthy,” and is, in fact, sufficient to control the
growth of a 106 tumor challenge (images not shown). However, when the immune
system is weakened, a tumor of the same 106 size grows to a dangerous level in the
absence of treatment interventions. A “weakened” immune system in this case has
initially values set to 1 � 103 NK cells, 10 CD8C T cells, and 6 � 108 circulating
lymphocytes. We note that if we challenge even the “healthy” immune system with
107 tumor cells (an order of magnitude larger than the 106 challenge), even the
healthy immune system is unable to control the tumor. This indicates that the earlier
the immune system can be activated against a growing tumor, the better. We will
also use the 107 size challenge to test the results of treatment interventions.

Simulations of treatments show similar outcomes to the mouse experiments: We
can easily find scenarios in which chemotherapy alone or immunotherapy alone is
not sufficiently effective in controlling tumor growth when initial tumor size is 107

cells, but in combination the therapies can successfully eliminate a tumor. We do not
include all the experiments here. The reader can refer to [15] in which a larger range
of simulations is presented. Here we will focus on experiments that highlight how
certain treatment scenarios can differ from patient to patient, and how outcomes
will be affected if a patient’s immune system is compromised. Measuring certain
patient-specific immune response parameters can be important in helping to predict
whether an individual will respond well to treatments.

As a proxy representing a patient’s immunological health we use the number of
circulating lymphocytes in the body, and do not allow the circulating lymphocytes
to drop below a threshold for which the risk of infection may be too high. In our
experiments, we chose that threshold to be on the order of 108 cells. This amount
reflects a fraction of approximate normal white blood cell levels in an adult human
(see, e.g., [63]).

Simulation results for combination treatment on Patient 9 are shown in Fig. 14,
left. The combination treatment is able to eliminate a tumor of initial size 107

cells, a tumor cell count that is likely to be clinically detectable. The chemotherapy
regimen is given in 9 pulsed doses total, with dose strength vM.t/ D 5, and doses
given once every 10 days. Initial immune strength is 1 � 103 NK cells, 10 CD8C
T cells, and 6 � 108 circulating lymphocytes. Immunotherapy consists of a TIL
injection followed by short doses of IL-2. This mirrors the treatment that was given
to Patients 9 and 10 in Rosenberg’s experiments [26], the difference being that the
patients in the clinical trial were first administered immuno-depleting chemotherapy
before the administration of TIL therapy. IL-2 and chemotherapy concentrations are
shown in Fig. 14, right. The combination treatment given is simply a superposition
of these separate chemotherapy and immunotherapy regimens. We note that, when
administered separately as monotherapies, the chemotherapy treatment alone or the
immunotherapy treatment alone is unsuccessful in controlling tumor.

We next run these treatment simulations using the patient specific parameters
extracted from the Rosenberg et al. study [26] for Patient 10. We use the same
initial conditions for the state of the immune system and the initial tumor challenge.
However, several of the immune response parameters for Patient 10 (such as d
and �) differ from those of Patient 9, causing Patient 10’s CTL response to tumor
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cell growth to be slower. As opposed to the positive response to the combination
treatment approach for Patient 9 (see Fig. 14), the parameter set for Patient 10 allows
continued growth of the tumor, as seen in in Fig. 15, top left. If we wish to control
the tumor, we must modify the treatment. One approach is to administer additional
immunotherapy in the form of more IL-2 doses. This expansion in treatment does
lead to tumor death in silico, as shown in Fig. 15, top right. It is interesting to
note that in this case, tumor behavior seems to reflect tumor dormancy followed by
relapse. The tumor appears to have completely died out by day 22. However, around
day 79, the tumor begins to re-emerge. Without the additional IL-2 treatment given
at day 80, the tumor would regrow. In order to see longer term outcomes, we ran the
simulation for 2,000 days, and the tumor did re-emerge, but at levels generally con-
sidered below detectability thresholds. The tumor subsequently died out again and
did not reappear. See Fig. 15, bottom left. These results indicate that the tumor pop-
ulation has been drawn into the stable zero tumor equilibrium at this point. Such a
case in the clinic would likely be viewed as a successful case of complete remission.

Clearly, the immune system’s tumor handling capacity and response to treatment
is patient specific. This is not surprising, since the combination therapy administered
to thirteen patients in the Rosenberg et al. study [26] gave rise to objective clinical
responses in only 6 of the 13 patients.

8 Discussion

The first model presented in this chapter incorporates tumor–immune interactions
and highlights the qualitative difference in kill rates between the innate immune
response (the effect of the NK cells) and the adaptive response (the effect of the
CD8C cells). The model, with its two different functional forms for the kill rates,
provides a good fit with experimental data resulting from priming and rechallenge
with different combinations of tumor cell types. The fact that two different
functional forms are needed to describe the interactions between tumor cells and
the two branches of the immune system suggests that laboratory experiments might
be designed to illuminate the mechanisms behind the different cell interaction
dynamics. Lessons might also be learned by looking at examples in ecology in
which predator–prey kill rates can obey either a rational law or a power law [2]. We
hypothesize that the more effective the immune cell is at killing, the more closely it
follows a rational law dynamic, as given in Eq. (8).

The experimental and simulated results that were presented in this chapter, along
with the parameter sensitivity analysis, highlight the importance of CD8C T cell
activation on the time course of the disease. Model results appear to indicate that
in order to promote tumor regression, it may be necessary (although perhaps not
sufficient) to focus on increasing CD8C T cell activity. In fact, we propose that
there may be a direct positive correlation between the patient-specific efficacy of
the CD8C T cell response as measured by cytotoxicity assays, and the likelihood of
a patient responding favorably to certain immunotherapy treatments.
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Fig. 14 Human data, Patient 9. Combining the separately unsuccessful therapies for a 107 size
tumor succeeds in eliminating the tumor. Left A 107 cell tumor is successfully eliminated by
combining nine 1-day chemotherapy doses of strength vM .t/ D 5 every 10 days, with a boost
of TILs and IL-2. 109 TILs are administered from day 7 through 8. IL-2 is administered in 6 pulses
from day 8 to day 11 at concentration vI .t / D 5� 105 per pulse. Initial conditions are: 107 Tumor
cells, 1 � 103 NK cells, 10 CD8C T cells, 6 � 108 circulating lymphocytes. Patient 9 parameters
for these simulations are in Table 6. Right Drug concentrations for IL-2 and chemotherapy

In the final sections of the chapter, we extended the first model to include
immuno-modulating therapies. With this extended model, we could test treatment
strategies that used immunotherapies and cancer vaccines in conjunction with
chemotherapy.

Through an analysis of the system of equations in the absence of chemotherapy
or immunotherapy, we determined the equilibrium points of the system along with
the criteria for stability. In some parameter ranges, the system exhibited bi-stability,
where two stable equilibria co-exist. One of these stable equilibria represents a
disease-free state with no tumor cells, and the other represents an unhealthy state
where the tumor grows to a significant size. In this bistable situation, a treatment that
moves the system into the basin of attraction of the stable tumor-free equilibrium by,
for example, reducing the tumor population (through surgery or radiation) and/or by
increasing the number of immune cells (through adoptive cell transfer) could lead
to a “cured” state. Once the system has moved across the boundary into the zero-
tumor basin of attraction, small tumors that arise can be controlled by the immune
response—as long as the system parameters do not change too much.

In other parameter regimes, the tumor-free equilibrium is unstable, and there-
fore it is not sufficient merely to reduce the tumor size. In this case of an unstable
tumor-free equilibrium, even a few tumor cells will be able to escape the immune
surveillance. A successful treatment must be able to change the system parameters
in order to force this equilibrium to become stable. We note that in [30], a similar
conclusion is reached through a different modeling approach: in this case, too, it is
shown that unless system parameters are altered in some way, cytotoxic drugs alone
are often not sufficient to control even a very small tumor.

As can be seen in Figs. 14 and 15, simulations using parameter sets from
two different patients [26] show that treatment efficacy depends strongly on
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Fig. 15 Human data, Patient 10. Top left Combination therapy fails to eliminate the 107 cell tumor
in Patient 10 with more slowly responding immune system, and initial immune strength of 103

NK cells, 10 CD8C T cells, and 6 � 108 circulating lymphocytes. 109 TILs are administered
from days 7 through 8. IL-2 is administered in 6 pulses from day 8 to day 11 at concentration
vI .t / D 5 � 106 per pulse. Top right Combination therapy kills the 107 cell tumor in Patient 10.
Treatment is identical to that in the top left panel, with the exception that additional pulses of IL-2
are administered from days 8 through 13, 20 through 25 and 80 through 90. Bottom left The same
effective combination therapy as given in the top right panel and as shown in the bottom right
panel, but viewed over 2,000 days. Tumor is eventually eliminated. Bottom right Concentrations
for IL-2 and chemotherapy implemented in the simulations shown in the top right and bottom left
panels. Patient 10 parameters are provided in Table 6

patient-specific parameter values. Assays exist that allow for measurement of some
of the significant patient specific parameters used. For example, through chromium
release assays one can measure patient specific immune-tumor lysis rates, while
tumor cell reproduction rates can also be observed and measured in the laboratory.
Changes in these measurable parameters clearly affect system outcomes. Although
not all system parameters are yet measurable, those that are help to provide a good
start in designing customized treatment protocols for individuals.

The development of combination immunotherapy–chemotherapy protocols for
treating certain forms of cancer is a promising strategy in cancer treatment research.
In some preliminary clinical studies, immunotherapy has been found to be most
effective when administered in conjunction with chemotherapy [49], and this
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qualitative result has been borne out in our mathematical simulations, as shown
in Figs. 14 and 15. In this chapter, combination treatments included vaccine
therapy, activated anticancer-cell transfer (TIL injections), and activation-protein
injections (IL-2 injections) together with chemotherapy. Mathematical models of
other forms of immunotherapy and combination chemo-immunotherapy (such as
dendritic cell treatments, regulatory T cell suppression, and targeted monoclonal
antibody therapies) can be found in the works of, for example, [13, 14, 21]. The
mathematical models presented in this chapter can be used as a springboard for
further study and development of patient-specific cancer treatment protocols.

Appendix: Nomenclature and Parameter Values

Here we list all of the parameters used in the model, their meaning and their
estimated values. Tables 3 and 4 are fits to the three-dimensional model, while
Tables 5 and 6 are fits to the four-dimensional model. Tables 3 and 5 are used in
the experiments run to simulate the mouse experiments from [24]. Tables 4 and 6
apply to the human data from [26]. For detailed derivations, see [15, 23].

Table 3 Estimated parameter values: based on mouse experiments provided in [24]

Estimated
Param. Units Description value Source

a day�1 Tumor growth rate 5:14 � 10�1 [24]

b cells�1 1=b is tumor carrying capacity 1:02 � 10�9 [24]

c.n/ cell�1 day�1 Fractional (non)-ligand-transduced tumor
cell kill by NK cells

3:23 � 10�7 [24]

c.l/ 3:50 � 10�6

d.nn/ day�1 Saturation level of fractional tumor cell kill
by CD8C T cells nn, nl , ln, l l : primed with
(non)-ligand-transduced cells, challenged
with (non)-ligand-transduced cells

1:43 [24]

d.nl/ 3:60

d.ln/ 3:51

d.l l/ 7:17

�.nn/ none Exponent of fractional tumor cell kill by
CD8C T cells nn, nl , ln, l l : primed with
(non)-ligand-transduced cells, challenged
with (non)-ligand-transduced cells

5:80 � 10�1 [24]

�.nl/ 4:60 � 10�1

�.ln/ 9:00 � 10�1

�.l l/ 7:50 � 10�1

(continued)
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Table 3 (continued)

Estimated
Param. Units Description value Source

s.nn/ none Steepness coefficient of the Tumor-(CD8C T
cell) competition term nn, nl , ln, l l : primed
with (non)-ligand-transduced cells,
challenged with (non)-ligand-transduced
cells. (Smaller s ) steeper curve)

2:73 [24]

s.nl/ 1:61

s.ln/ 5:07

s.l l/ 4:00� 10�1

e cells day�1 Constant source of NK cells 1:30 � 104 [46]

f day�1 Death rate of NK cells 4:12� 10�2 [46]

g.n/ day�1 Maximum NK cell recruitment rate by
(non)-ligand-transduced tumor cells

2:5� 10�2 [24, 46]

g.l/ 4g.n/

D 2� 10�1

h cell2 Steepness coefficient of the NK cell
recruitment curve

2:02� 107 [46]

p cell�1day�1 NK cell inactivation rate by Tumor cells 1:0� 10�7 [24]

m day�1 Death rate of CD8C T cells 2:0� 10�2 [73]

j.nn/ day�1 Maximum CD8C T cell recruitment rate nn,
nl , ln, l l : primed with
(non)-ligand-transduced cells, challenged
with (non)-ligand-transduced cells

3:75 � 10�2 [24, 46]

j.nl/ 3:75 � 10�2

j.ln/ 3j.nn/

D 1:13� 10�1

j.l l/ 8j.nn/

j.l l/ D 3:0� 10�1

k cell2 Steepness coefficient of the CD8C T cell
recruitment curve

2:02� 107 [24, 46]

q cell�1 day�1 CD8C T cell inactivation rate by Tumor cells 3:42 � 10�10 [46]

r cell�1 day�1 Rate at which tumor-specific CD8C T cells
are stimulated to be produced as a result of
tumor cells killed by NK cells

1:1� 10�7 [47, 73]
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Table 4 Estimated parameter values: patient specific parameters used based on
data in [26] and other sources

Parameter Patient 9 Patient 10 Source

a 5:14� 10�1 5:14 � 10�1 Estimated from [24]

b 1:02� 10�9 1:02 � 10�9 Estimated from [24]

c 3:23� 10�7 3:23 � 10�7 Estimated from data in [24, 26]

d 5:80 4:23 Fit to data from [26]

e 1:3� 104 1:3 � 104 Parameter from [46]

� 1:36 1:43 Fit to data from [26]

f 4:12� 10�2 4:12 � 10�2 Parameter from [46]

g 2:5� 10�2 2:5� 10�2 Estimated from data in [24, 26]

h 2:02� 107 2:02 � 107 Parameter from [46]

j 3:75� 10�2 3:75 � 10�2 Estimated from data in [24, 26]

k 2:0� 107 2:0� 107 Estimated from data in [24, 26]

m 2:00� 10�2 2:00 � 10�2 Estimated from data in [73]

q 3:42� 10�10 3:42 � 10�10 Estimated from data in [46]

p 1:00� 10�7 1:00 � 10�7 Estimated from data in [24]

s 2:5� 10�1 3:6 � 10�1 Fit to data in [26]

r 1:1� 10�7 1:1 � 10�7 Estimated from data in [47, 73]

Table 5 Estimated mouse parameter values

Estimated
Param. Units Description value Source

a day�1 Tumor growth rate 4:31� 10�1 [24]

b cells�1 1/b is tumor carrying capacity 2:17� 10�8 [24]

c cell�1 day�1 Fractional (non)-ligand-transduced tumor cell kill
by NK cells

7:13� 10�10 [24]

d day�1 Saturation level of fractional tumor cell kill by
CD8C T cells. Primed with ligand-transduced
cells, challenged with ligand-transduced cells

8:17 [24]

� none Exponent of fractional tumor cell kill by CD8C

T cells. Primed with ligand-transduced cells,
challenged with ligand-transduced cells

6:57� 10�1 [24]

s none Steepness coefficient of the Tumor-(CD8C T
cell) lysis term D. Primed with ligand-transduced
cells, challenged with ligand-transduced cells.
(Smaller s ) steeper curve)

6:18� 10�1 [24]

e day�1 Fraction of circulating lymphocytes that become
NK cells

1:29� 10�3 [46]

f day�1 Death rate of NK cells 4:12� 10�2 [46]

g day�1 Maximum NK cell recruitment rate by
ligand-transduced tumor cells

4:98� 10�1 [24,
46]

h cell2 Steepness coefficient of the NK cell recruitment
curve

2:02� 107 [46]

(continued)
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Table 5 (continued)

Estimated
Param. Units Description value Source

p cell�1

day�1
NK cell inactivation rate by Tumor cells 1:0 � 10�7 [24]

m day�1 Death rate of CD8C T cells 2:0 � 10�2 [73]

j day�1 Maximum CD8C T cell recruitment rate. Primed
with ligand-transduced cells, challenged with
ligand-transduced cells

9:96 � 10�1 [24, 46]

k cell2 Steepness coefficient of the CD8C T cell
recruitment curve

3:03 � 105 [24, 46]

q cell�1

day�1

CD8C T cell inactivation rate by Tumor cells 3:42�10�10 [46]

r1 cell�1

day�1

Rate at which CD8C T cells are stimulated to be
produced as a result of tumor cells killed by NK
cells

1:1 � 10�7 [47, 73]

r2 cell�1

day�1
Rate at which CD8C T cells are stimulated to be
produced as a result of tumor cells interacting
with circulating lymphocytes

3:0 � 10�11 No data
found

u cell�2

day�1

Regulatory function by NK-cells of CD8C

T-cells
1:80 � 10�8 No data

found

KT day�1 Fractional tumor cell kill by chemotherapy 9:00 � 10�1 [61]

KN ,
KL,
KC

day�1 Fractional immune cell kill by chemotherapy 6:00 � 10�1 [61]

˛ cell day�1 Constant source of circulating lymphocytes 1:21 � 105 [3, 36]

ˇ day�1 Natural death and differentiation of circulating
lymphocytes

1:20 � 10�2 [3, 36]

� day�1 Rate of chemotherapy drug decay 9:00 � 10�1 [8]

Table 6 Estimated human parameter values

Patient 9 Patient 10 Source

a D 4:31� 10�1 a D 4:31� 10�1 [24]

b D 1:02 � 10�9 b D 1:02 � 10�9 [24]

c D 6:41 � 10�11 c D 6:41 � 10�11 [24, 26]

d D 2:34 d D 1:88 [26]

e D 2:08 � 10�7 e D 2:08 � 10�7 [46]

� D 2:09 � D 1:81 [26]

f D 4:12� 10�2 f D 4:12� 10�2 [46]

g D 1:25� 10�2 g D 1:25� 10�2 [24, 26]

h D 2:02� 107 h D 2:02� 107 [46]

j D 2:49� 10�2 j D 2:49� 10�2 [24, 26]

k D 3:66� 107 k D 5:66� 107 [24, 26]

(continued)
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Table 6 (continued)

Patient 9 Patient 10 Source

m D 2:04 � 10�1 m D 9:12 [73]

q D 1:42 � 10�6 q D 1:59 � 10�6 [46]

p D 3:42 � 10�6 p D 3:59 � 10�6 [24]

s D 8:39 � 10�2 s D 5:12 � 10�1 [26]

r1 D 1:10 � 10�7 r1 D 1:10 � 10�7 [47, 73]

r2 D 6:50 � 10�11 r2 D 6:50 � 10�11 No data found

u D 3:00 � 10�10 u D 3:00 � 10�10 No data found

KT D 9:00 � 10�1 KT D 9:00 � 10�1 [61]

KN D KL D KC D 6 � 10�1 KN D KL D KC D 6 � 10�1 [61]

˛ D 7:50 � 108 ˛ D 5:00 � 108 [3, 36]

ˇ D 1:20 � 10�2 ˇ D 8:00 � 10�3 [3, 36]

� D 9:00 � 10�1 � D 9:00 � 10�1 [8]

pI : Maximum CD8CT-cell recruitment rate by IL-2. Units: day�1

pI D 1:25 � 10�1 pI D 1:25 � 10�1 [42]

gI : Steepness of CD8CT-cell recruitment curve by IL-2. Units: cell2

gI D 2:00 � 107 gI D 2:00 � 107 [42]

�I : Rate of IL-2 drug decay. Units: day�1

�I D 1:00 � 101 �I D 1:00 � 101 [42]
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The Mathematics of Drug Delivery

Peter Hinow and Ami E. Radunskaya

Abstract There are a variety of devices for the delivery of pharmaceutical
substances, tablets of course being the most prominent. Pharmaceutical scientists
and physicians have formulated goals, such as release of a drug in a controlled
fashion over an extended period of time or the targeted delivery of a drug to a
specific site in a patient’s body. Since experiments with these delivery devices can
be costly and sometimes only partially conclusive, mathematical modeling can play
a role in understanding the mechanisms behind experimental release profiles and
in developing delivery systems. Here we review mathematical models for drug
delivery by matrix tablets and liposomes.

1 Introduction

Pharmaceutical scientists are concerned with the delivery of drugs to a patients body
in an efficient and safe manner. Dictated by the nature of the ailment and the drug
to treat it, there are several routes of delivery, such as oral, nasal, intravenous,
and transdermal routes to name just a few. Most well known of course is oral
administration and there the most prevalent form of delivery is via tablets. Simple
and convenient to use, they also allow fairly exact measuring of the dose of active
ingredient in each tablet. As we shall see in this chapter, it is often the case that
only a part of the drug load of the tablet is released. With modern drugs being
very expensive it is obvious that the fraction of drug released should be as high as
possible. Another objective is to release the drug load in a controlled fashion so
that the levels of the drug in the body remain in a narrow therapeutic range: levels
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of drug that are too low are sub-therapeutic, and levels that are too high carry the
obvious danger of harmful side effects.

A second, more recently developed delivery device that we will discuss in this
chapter are liposomes. Liposomes are artificially prepared vesicles consisting of a
lipid bilayer that encapsulates the drug in a solution. The lipid bilayer is similar in
nature to those that make up cytoplasmic and nuclear membranes of the cells. Thus
liposomes have the potential to be incorporated by cells through endocytosis and in
addition may be directed towards specific target sites in the body. They further offer
protection of hydrophilic drugs from dissolving before they reach their target zone
in the body. The goal of pharmaceutical scientists is to control the permeability of
the liposome membrane to the drug cargo. One way to accomplish this is with the
help of bile salts that bind to the membrane. Different bile salts act differently on
the liposome membrane, depending of course also on their concentrations. This is
another part of our mathematical modeling efforts to be reviewed in this chapter.

The importance of mathematical modeling of drug delivery has long been
recognized. While early attempts [13] consisted still largely of phenomenological
expressions, in the past decades the need for a deeper understanding of the physical
processes inside a tablet or liposome became clear. In this chapter we review our
own works concerning drug release from matrix tablets [3, 4] and modulation of
liposome permeability [15]. The mathematical tools employed include ordinary
and partial differential equation models, random walks, and cellular automata. The
chapter ends with an outlook on present challenges and the concept of “triggered”
delivery.

2 Drug Release from Matrix Tablets

Matrix tablets are drug delivery devices that release a water-soluble drug over
an extended period of time. Such matrix tablets are formulated from mixtures of
polymer, drug, and excipient powders, of which the latter two are water soluble. The
composition of the powder mixture as well as the choice of compaction pressures
and optional curing temperatures allow variation in the drug release profile of
the tablet. To determine the release profiles experimentally, a tablet fabricated in
this manner is placed into a rotating basket apparatus and the release of the drug
over time is monitored. Earlier mathematical models focused on random walks on
cubic lattices [29, 30], Monte Carlo simulations [18], and percolation theory [6].
A common observation in many works is that there exists a critical fraction of
polymer powder in the mixture below which the release of the drug is complete
or nearly complete. If the polymer fraction is increased above that fraction, the drug
release remains incomplete, say 40–60% of the total load. Frequently expressions
such as the Higuchi law, Peppas equation, or Weibull equation, namely

M.t/ D K
p
t ; M.t/ D Ktn; M.t/ D K.1 � exp.�atb//;
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respectively, are fit to the simulated release curves. In these expressions, M.t/ is
the fraction released at time t , andK; n; a and b are model parameters. While these
expressions allow for easy comparison of different curves, the precise meaning of
the fitted parameters often remains unclear. Subsequent authors have worked with
partial differential equations for diffusion and erosion processes [19, 25]. These
powerful models remain challenging to construct, to parametrize, and to implement.
During the release process, the matrix porosity increases and the topology of the
channel network available for diffusion changes as well. We will address this issue
briefly below.

2.1 The Discrete Model

In [3] we propose two mathematical models for drug release from a matrix tablet,
one discrete and one continuous. The discrete model begins with the construction
of a graph as the contact graph of a random dense sphere packing. Dense sphere
packings are a highly interesting topic in their own right [9, 14, 27] and have found
many applications in statistical physics [20] and space engineering [17]. We use the
“stochastic billiard” method proposed by Lubachevsky and Stillinger [21] where a
certain number of spheres move and grow in a container. The spheres are initialized
with small radii, randomly placed in a container, with random initial velocities. The
spheres then undergo elastic collisions with one another and with the walls, while
the radii grow at constant rates. By assigning different rates to different spheres,
packings with spheres of different sizes can be created. Since the walls of the
container are fixed, the growing spheres have less and less room to move in, and
the collisions become more and more frequent. The process is stopped once the
collision frequency exceeds a certain bound. The spheres in the packing are then
labeled “polymer,” “drug,” and “excipient” according to the composition of the
powder mixture that we want to simulate.

From the sphere packing, we construct a contact graph. The contact graph
consists of a node for each particle (sphere), with edges between nodes that are
less than a prescribed minimum distance apart. Under the assumption that dissolved
drug and excipient particles can diffuse through the tablet, we model the escape
of drug by a random walk along the edges of the contact graph. However, all
edges emanating from a node labeled “polymer” are removed, to represent the
insolubility of polymer. The production process can contain a step of heating of
the tablet which causes polymer to melt and leads to a closer encapsulation of the
drug. In order to model this, we allow for an additional random removal of edges
between neighboring non-polymer spheres. We now begin a random walk on the
contact graph that begins at every drug node and terminates at one of the boundary
nodes. Since edges to polymer nodes have already been removed, only nodes labeled
“drug” or “excipient” are accessible to the random walker. The number of steps
of each walk is counted and the cumulative distribution function is taken as a
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prediction of the release curve. To avoid endless loops, a walk is also terminated
once a maximum number of steps has been reached. Figure 1 illustrates the random
walk in two dimensions.

Fig. 1 Graphical illustration of one random walk through the contact graph. The polymer particles
are the smaller, solid, spheres. The walk terminates when the “walker” reaches the boundary of the
tablet
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Fig. 2 (Left) Simulated release curves for powder mixtures with five different polymer fractions.
The mass fraction is kept constant at 10 %, the remainder of the tablet is comprised of water soluble,
pharmaceutically inactive excipient. (Right) Experimental release of indomethacin (mass fraction
10%) from Eudragit RLPO matrix tablets containing mannitol (90–125�m particle diameter) as
plastic excipient. The tablets were cured at 40ıC for 24 h. Figures are taken from [3] and [8]

The simulation method in [3] is quite capable of reproducing the delayed and
only partial release of drug as the polymer fraction in the powder mixture is
increased. As we mentioned above, heating of the tablet can be simulated by
additional edge removal [3, not shown]. This results in pockets of drug particles that
are completely surrounded by polymer particles and thus unable to escape. The fact
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that the simulated release curves in the left panel of Fig. 2 begin at approximately
one-half of the total amount of drug contained is due to the fact that the sphere
packings used in [3] were relatively small, about 2,000 spheres. Thus surface effects
are more prominent as a lot of drug particles are already situated on the boundary
of the tablet. A more critical shortcoming of the simulated release curves is that
they do not show the change from convex to concave that is visible in some of the
experimental release profiles in the right panel of Fig. 2. This shape is due to the fact
that after the tablet is initially placed in the fluid, some time is required for the fluid
to penetrate the tablet and to dissolve the drug. Moreover, the initial model did
not take into account the rearrangement of the polymer matrix during the process
of powder compaction. To address these problems, in [4] we introduce a cellular
automaton model that we describe in Sect. 2.3.

2.2 The Continuous Model

The second model in [3] is based on a system of reaction-diffusion partial
differential equations for the concentrations of dissolved and undissolved drug and
excipient, respectively. The spatial domain ˝ is a cylinder of radius R and height
H . It is therefore convenient to introduce cylindrical coordinates and to make the
plausible assumption that all dissolution and diffusion processes possess rotational
symmetry, so that the angular variable � can be omitted. We denote by v1 and v2
the concentration of dissolved drug in the solvent and the content of undissolved
drug in the tablet, respectively, with similar expressions u1 and u2 for dissolved
and undissolved excipient. The porosity of the tablet is denoted by � 2 Œ0; 1� and
this will increase as excipient and drug are dissolved in the solvent. The diffusion
of the dissolved substance follows the classical Fick’s law, while the dissolution of
undissolved substance is possible only as long as the surrounding fluid is not already
saturated with dissolved substance. Under these assumptions we obtain a system of
the following type

@

@t
.�.u2; v2/v1/� r.r;z/ � .Dv�.u2; v2/rv1/ D ˛v�.u2; v2/

�
1 � v1

C v
max

�
v2;

@

@t
v2 D �˛v�.u2; v2/

�
1 � v1

C v
max

�
v2;

(1)

with a similar pair (but with possibly different constants) for the dynamics of
the excipient. Here ˛v denotes the rate of drug dissolution. Note that the poros-
ity of the tablet, which itself changes over time, influences the dissolution process
due to the changing contact area between drug and fluid. The porosity function is
given by

�.u2; v2/ D .�0 � �end /
u2 C v2
u02 C v02

C �end ;
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where �0 and �end are the initial and terminal porosities, respectively. The
parameter, �end , reflects the amount of polymer in the tablet: when all of the
drug and excipient have dissolved and diffused out of the table, a higher polymer
content will yield a less porous tablet. In other words, �end decreases as the fraction
of polymer in the tablet increases. Initially all drug and excipient are bound and
uniformly distributed across the tablet so that

u01 D v01 D 0; u02.x/ � u02; and v02.x/ � v02:

Finally, we assume that any dissolved drug and excipient that have reached the
boundary of the tablet are immediately carried away so that the model is completed
by homogeneous Dirichlet boundary conditions for the diffusing substances. The
integral of �.u2; v2/u1 C u2 gives the total amount of drug still in the tablet so
that its antiderivative is the complement of the cumulative release function. A few
numerical solutions are shown in Fig. 3. As can be seen in this figure, the partial
differential equation model captures the change from convex to concave in the
release profiles. This further underscores the importance of including the dissolution
process in any model. On the other hand, this model does not provide an easy way
to quantitatively represent the different possible powder compositions, nor does it
reproduce the partial release in the case of high polymer load. To produce both
features, namely the concavity changes and the saturation of the release profiles, we
develop a cellular automaton model.

Fig. 3 Release profiles predicted by the continuous model (1) as the final porosity �end varies. The
dimensionless parameters used in this example are �0 D 0:02, Du D 0:3, Dv D 0:5 ˛u D ˛v D
1:5 and C u

max D C v
max D u02 D v02 D 1
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2.3 The Cellular Automaton Model

Cellular automata (CA) were first conceived by Stanislaw Ulam and John von
Neumann in the 1940s at a time when computing technology was yet in its infancy.
Since then they have been put to good use in the simulation of traffic networks [22],
neural networks [12], tumor growth [10, 16] and statistical mechanics, to name but
a few examples. In a standard CA, the computational domain (in this context, the
three-dimensional volume taken up by the tablet) is divided into “cells.” Each cell
can be in one of a finite number of states. Rules governing transitions between states
depend on the state of the cell and on the states of its neighbors. In our case of matrix
tablets it is natural to create cells that are empty, occupied by solid substance (drug,
polymer, or excipient), or by water, which in turn carries the dissolved drug and
excipients.

To represent the tablet, the cells of the automaton are arranged on a cubical lattice
filling out a cylinder. Each cell can be in one of five states drug (D), polymer (P),
excipient (X), empty (E), and water (W). Every cell filled with water is in addition
characterized by the concentrations of dissolved drug and excipient, relative to a
saturation concentration. The polymer, drug and excipient cells are present in their
relative concentrations in the powder mixture while the empty sites are created
during the simulation of the compaction process by breaking drug cells into smaller
pieces. The effect of compaction and curing on the polymer cells is to allow polymer
to move into adjacent empty spaces, with a preference for spaces occupied by
polymer. This part of the initialization process allows the user to simulate a variety
of preparation scenarios, since the polymer particles deform under pressure, and
fuse together when heated. Initially, there are no water cells inside the tablet but it
is surrounded at all times by cells filled with water.

In each simulated time step after the initialization step, there are three sub-
processes that are modeled by the cellular automaton rules:

1. Dissolution: the number of wet cells are updated, and the concentration of
dissolved drug and excipient is calculated. Empty cells can be filled with water
if they have water cells as neighbors. Cells occupied by drug or excipient can be
replaced by water if they have water cells as neighbors and these cells have still
some dissolution capacity. Once a drug or excipient cell is replaced by water, the
amount of drug or excipient is then dissolved in the newly formed water cell.

2. Diffusion: Dissolved drug and excipient diffuse freely between neighboring water
cells in accordance with Fick’s law.

3. Transport away from the boundary: The entire tablet is surrounded by a layer
of water cells in which the dissolved substances are diffusing. We simulate some
common experimental setups where the external fluid is stirred by further diluting
the concentrations of drug end excipient in the external boundary layer. This
eases further diffusion of dissolved substances from the interior of the tablet.

A simulation of a small tablet is shown in Fig. 4 to illustrate these steps.
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Fig. 4 Snapshots of the states of the tablet CA for a very small tablet to illustrate the updating
rules. Part of the tablet is cut away so that we can visualize what is happening in the interior. The
states are represented by different colors: red (drug), green (polymer), grey (excipient), water (blue)
and empty (black). Initially (t D 0) the tablet contains no water, and we see the randomly placed
particles of solid drug, excipient and polymer, with a few empty cells. As the tablet is immersed
in the water medium, water cells enter the empty spaces (t D 1), but the interior still consists of
solid particles. Excipient and drug cells then begin to dissolve, and we see the corresponding grey
and red cells becoming blue (t D 10; 20; 50). Finally, all of the accessible drug and excipient is
dissolved, and we see that only a few drug (red) and excipient (grey) cells remain: those that are
surrounded by polymer (green) (t D 199). Note that this visualization does not show the outer
boundary layer of water

One key observation from the experimental data is the initially slow release of
drug from the tablet, especially at high polymer fractions, (see Fig. 2, right panel,
lower graph). One explanation for this very slow release is the formation of a
polymer “shell” when the tablet is thermally cured (heated), [2]. We can represent
this in the model by allowing a layer of polymer cells to form on the outside of
the simulated tablet. A user-specified parameter allows the simulation of polymer
shells of different thickness, so that polymers with varying thermal reactivity can be
modeled. The left panel of Fig. 5 shows a cross-section of a tablet in which a shell
has formed.

All parameters of the CA model have straightforward physical interpretations
such as the geometric dimensions of the tablet, the mass of the particles, and the
diffusion rates of dissolved drug and excipient. The entire CA model, beginning
with the initialization of the tablet has been implemented in C++ and is available
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from the authors upon request. For further details we refer to [4]. In the right
panel of Fig. 5 we see a good qualitative agreement between the simulated release
profiles and the experimental data from the right panel of Fig. 2. This agreement
consists of the ordering of the release profiles according to the polymer content in
the matrix, the change from a convex to a concave phase and the general time scale
of approximately 8 h. It is straightforward to study the influence of the respective
parameters on the release profiles [4, not shown].
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Fig. 5 (Left) Simulated formation of an exterior polymer shell due to thermal curing (white
squares). (Right) Release curve produced by the cellular automaton model for a tablet of 8 mm
diameter and 2 mm height. The drug content is 10 % in all cases while the polymer fraction varies.
The unit of time is 1 h. This figure should also be compared to the experimental data in the right
panel of Fig. 2. The parameters for this figure are taken from [4, Table 1]

Both the experimental data and the simulations reveal a challenge in the matrix
tablets as they are currently formulated. This challenge comes from two competing
goals: the first is to design a tablet so that all of the drug is released. The second
goal is to have the release occur steadily over a fixed amount of time: in the case
of ingested tablets, the best we can hope for is a steady release over 8 h, since the
tablet itself will be eliminated from the system after that. Using our CA model,
we were able to experiment with changing the key parameters: polymer content,
curing temperature (which affects the polymer spreading), and shell formation
(which is affected by the choice of polymer as well as the curing temperature).
Based on these experiments, we found that a polymer concentration of 30 % in
a tablet manufactured at low temperature and cured at low temperature resulted
in a release profile with the desired characteristics, shown in Fig. 6. With this CA
tool, pharmaceutical researchers can easily do experiments in silico that will suggest
which powder mixtures and manufacturing procedures result in an optimal matrix
tablet.
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Fig. 6 Release profile from a simulated CA tablet that shows near complete release of the drug
load at a fairly steady rate over an 8 h period. The parameters used here represent a low curing
temperature, a low pressure compaction process, and a tablet with 30 % polymer

3 Permeability of Liposome Membranes

The matrix tablets described in the previous section are relatively inexpensive to
manufacture and can be “tuned” to have the desired release profiles. However, they
are only useful for drugs that are to be delivered via the gastrointestinal tract. In
some cases, as in the case of many tumors, drugs need to be delivered to a specific
site in the body, and then released there. One way to accomplish this targeted
delivery is to load the drug into small vesicles that have low permeability in the
blood, but whose permeability can be affected by the micro-environment. Hence, by
manipulating this micro-environment, drugs can be delivered to specific sites, and in
specific doses. One promising type of vesicle used for drug delivery are liposomes.

Liposomes are artificially prepared nano-spheres consisting of a lipid bilayer.
They are currently being investigated as potential drug delivery devices [11, 26]
and as model biological membranes. The permeability of the liposome bilayer
membrane can be modified by binding of suitable bile salts. These bile salts occur
naturally in the gastrointestinal tract where they play a central role in the digestion
of dietary fats. This poses the danger of premature degradation of drug-carrying
liposomes. On the other hand, they can also enhance transport across biological
barriers [31]. The release of drugs from liposomes can be experimentally studied
by measuring the release profiles of fluorescent dyes from the nano-particles under
different experimental conditions. In [15] we combined mathematical modeling and
experiments to study the release of carboxyfluorescein from liposomes.

Carboxyfluorescein (CF) is a fluorescent dye which is non-fluorescent when it
is encapsulated at high concentrations inside the liposomes. Once CF has been
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released from the liposomes, the concentration is sufficiently low that it can be
made visible by excitation with light. The level of fluorescence is taken as a
measure for the concentration of CF outside the liposomes. Bile salts, such as
cholate (C), deoxycholate (DC) and monoketocholate (MKC) act as permeability
enhancer by binding to the lipid bilayer. We have created a compartmental model
for the concentrations of bile salts in the exterior space, the leaflets of the liposomes
and the interior volumes [4]. Let Vi ; Vs and Vo denote the total volumes of the
combined liposome interiors, the inner and outer leaflets and the exterior volume,
respectively. Further, let w.t/; x.t/; y.t/ and z.t/ denote the concentrations of bile
salt in the combined interior liposome volume, the combined inner leaflet volume,
the combined outer leaflet volume and the exterior volume, respectively. Then we
have the system of differential equations

Viw
0.t/ D k�1x � k1w;

Vsx
0.t/ D k1w C k2y � .k�1 C k�2/x;

Vsy
0.t/ D k�2x C k1z � .k�1 C k2/y;

Voz
0.t/ D k�1y � k1z;

(2)

where the k’s are the rate constants. The binding of bile salt to a leaflet of the
membrane occurs with rate k1 while its release occurs with rate k�1. It is not
assumed that flipping between inner and outer leaflet occurs at equal rates, so
k2 ¤ k�2 is possible. In principle there could be also different binding and release
rates at the outer and the inner leaflet (due to different curvature), but we wish to
keep the total number of parameters low, as they will be determined by curve fitting.
The concentration of the drug in the interior of all liposomes is denoted by ci and
that in the common exterior by co. The membrane permeability P depends on the
concentration of bile salt in the outer and inner leaflets in two ways. On the one
hand, it can depend on the total concentration of bile salts in both leaflets, on the
other hand it can depend on the difference between these concentrations. We assume
the functional form

P.x; y/ D p1jy � xja1 C p2.x C y/a2 ;

where p1; p2; a1 and a2 are constants to be determined from the experimental data.
With the convention that the flux of CF is from the interior to the exterior, we obtain
from Fick’s law

Vi
dci

dt
D AP.x; y/.co � ci /;

where A is the combined liposome membrane area. Finally, the fluorescence output
is given by

F.t/ D F0 CKco.t/;
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Fig. 7 Optimal least-square fit of the release curves for the bile salts cholate (C), deoxycholate
(DC) and monoketocholate (MKC) at different concentrations of bile salts. The dotted experimen-
tal and solid fitted curves of the same color belong together. Each dot represents a fluorescence
measurement

with background fluorescence level F0 and proportionality constant K . For the
experimental part of the work, liposomes were prepared from soybean phosphatidyl-
choline (SPC) lipids. For more details on the preparation, see [15]. The experimental
release curves for three different bile salts and their numerical recreations are shown
in Fig. 7, where optimal parameters were determined using the Metropolis Monte
Carlo method. Despite uncertainties about certain parameters of the experiment
such as the initial drug concentration inside the liposomes and the exact dependence
of the fluorescence signal on the concentration of CF in the exterior space, some
conclusions can be drawn from the optimal fits. Firstly, we obtained for all types
of bile salts that p1=p2 � 103. This suggests that the membrane permeability
depends much more strongly on the difference of the bile salt concentrations in the
inner and outer leaflets, rather than on the total amount of bile salt in both leaflets.
Secondly, for the bile salts cholate and deoxycholate we obtained that k2 � k�2
which implies that the equilibrium concentrations of bile salt in both leaflets are
approximately equal. This results in an end of leakage of CF after approximately
3–5 h and hence in an entrapment of the drug cargo in the liposomes. In contrast we
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have for monoketocholate that k2=k�2 � 10 and hence the concentrations in both
leaflets are noticeably distinct. This results in a positive steady state permeability
and allows a complete release of the drug cargo on a reasonable timescale
(12–24 h, say).

4 Outlook

In the preceding sections we have described several mathematical approaches to
modeling of drug delivery. In the realm of modeling the drug release from matrix
tablets, our cellular automaton (CA) model has shown the best results and is ready
for more concrete applications. It can be trained with experimental release data and
has the potential to be used as a predictive tool. The software is written in C++ and
available at [5]. In the future, simulations can be sped up by parallelization of the
code. The model itself can be improved in various directions. For example, currently
the dissolution of a drug or excipient cell results in complete and immediate
replacement of this cell by a water cell which then carries a completely saturated
solution. The assumption that one water cell can dissolve a drug cell of equal volume
is clearly not realistic.

Many modern drugs have very specific action sites and it is desirable to deliver
them in a highly localized manner. This includes, but is not restricted to, anti-tumor
vaccines and drugs used to treat neurological disorders such as Parkinson’s disease
and dementia. This has given rise to the concepts of “targeted” and “triggered”
delivery. Liposomes are ideal delivery devices since they are made of naturally
occurring lipid bilayers. Antibodies and ligands attached to the liposome surface
or magnetic nanoparticles can be used to target liposomes to specific cells [1, 24].
Even without such targeting, it is possible to trigger the release of the drug cargo at a
certain specific site [23]. Potential signals for drug release are, for example, an acidic
tumor micro-environment, heat or low-frequency ultrasound. A particular challenge
is the delivery of drugs to the brain, as the brain is protected by the blood–brain
barrier [7, 28]. Here the effect of triggered delivery would be most beneficial as it
would be possible to create a high concentration of the drug in the capillaries of the
brain. However, ultrasound as the triggering signal results in delivery of energy to
the brain and may not be without harmful side effects. An experimentally validated
mathematical model has the power do yield signaling schedules that maximize the
release of encapsulated drug while at the same time minimize the exposure to the
low-frequency ultrasound. This is the topic of ongoing research.
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The Role of the miR-451-AMPK Signaling
Pathway in Regulation of Cell Migration
and Proliferation in Glioblastoma

Yangjin Kim, Hyunji Kang, and Sean Lawler

Abstract Glioblastoma is the most aggressive type of brain cancer with a median
survival time of 1 year. A particular microRNA, miR-451, and its counterpart,
AMPK complex are known to play a key role in controlling the balance between
rapid proliferation and aggressive invasion in response to metabolic stress in the
microenvironment. The present paper develops a hybrid model of glioblastoma that
identifies a key mechanism behind the molecular switches between proliferative
phase and migratory phase in response to metabolic stress and biophysical inter-
action between cells. We first focus on the core miR-451-AMPK control system
and show how up- or down-regulation of components of these pathways affects cell
proliferation and migration. We then examine a hybrid model for the biomechanical
interaction between invasive and proliferative cells, in which all cells are modeled
individually, and show how biophysical properties of cells and the core miR-451-
AMPK control system affect the growth/invasion patterns of glioma spheroids in
response to various glucose levels in the microenvironment. The model predicts
that cell migration depends not only on glucose availability but also on mechanical
constraints between cells. The model predicts various invasion patterns and cell
speeds under normal and low glucose conditions. The hybrid model also predicts
that introduction of chemoattractants at the resection site may lead to the localization
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of infiltrating tumor cells back to the periphery of the resected area, which may
lead to possible follow-up treatment options such as the subsequent surgeries and
optimized elimination of the infiltrating glioma cells.

1 Introduction

1.1 Glioblastoma

Glioblastoma multiforme (GBM) is the most common malignant brain tumor with a
median survival time of approximately 1 year from the time of diagnosis [18,36,77].
These tumors are characterized by the hallmarks of rapid proliferation and their
invasiveness into surrounding normal brain tissue, which results in inevitable tumor
recurrence after surgery [10]. Surgery is the main treatment option, generally
followed by radiotherapy and chemotherapy. Therapeutic approaches are needed
that target the invading cells, in order to improve clinical outcome [16]. Tumor
cells may face challenges such as hypoxia, acidity, and limited nutrient availability
as they grow. In order to maintain rapid growth, glioblastoma cells must adapt to
these changes in the challenging microenvironment [27]. In order to sustain their
rapid proliferation, cancer cells shift their metabolic machinery from oxidative
phosphorylation and anaerobic glycolysis to high levels of glucose uptake and
lactate production (the Warburg Effect) [42, 84].

The tricarboxylic acid (TCA), or Krebs, cycle (Fig. 1) is a key step for generating
an energy source, ATP, in nonhypoxic normal cells. While differentiated cells
favor this mode of metabolism (Fig. 1a), tumor cells adapt aerobic glycolysis [83]
(Fig. 1b) that appears to be a less efficient way of metabolism due to consumption
of large amounts of glucose and production of lactic acid [42]. Using this aerobic
glycolysis [24], cancer cells may have an advantage of not having to depend on
oxygen for energy especially in the hostile (hypoxic) tumor microenvironment,
leading to improved survival [24, 42]. Better understanding of glycolysis in cancer
cells may lead to better treatment of the disease. For instance, drug resistance could
be prevented by inhibition of glycolysis [86].

To ensure an adequate glucose supply, cancer cells adapt by increasing angio-
genesis and invasion [27]. However, cellular responses to glucose withdrawal are
critical for cancer cell survival in the challenging microenvironment where glucose
levels may fluctuate. In order to survive periods of metabolic stress and maintain
viability as cells accumulate, cancer cells therefore engage strategies of metabolic
adaptation [38]. The 50-adenosine monophosphate activated protein kinase (AMPK)
pathway, the major cellular sensor of energy availability [30], is activated by
metabolic stress to promote glucose uptake and energy conservation [30]. Cancer
cells adapt to periods of low energy availability through this conserved cellular
energy sensor, thus avoiding bioenergetic catastrophe and cell death.
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1.2 Role of miRNA in Cancer Development

MiRNAs, key regulators of gene expression, are approximately 22 nucleotide
single-stranded non-coding RNAs [4]. Dysregulation of miRNAs has been asso-
ciated with tumor suppressor and oncogenic activities [20] in many types of cancer,
including glioblastoma where altered miRNA expression favors tumorigenesis
[28, 51]. miRNAs also regulate aerobic glycolysis in cancer development [73].
Glioma invasion is promoted by miR-21 through downregulation of matrix met-
alloprotease (MMP) inhibitors [21]. However, many alterations and functional
significance of these miRNAs are not clearly understood [27].
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Fig. 1 Schematics of oxidative phosphorylation, anaerobic glycolysis, and aerobic glycolysis [42,
46,83,84]. (a) Differentiated cells favor oxidative phosphorylation and anaerobic glycolysis. (b) In
response to rapid growth and proliferation, tumor cells shift their metabolic machinery toward high
levels of glucose uptake and lactate production (Warburg effect; aerobic glycolysis) [42, 83, 84]

1.3 Role of miR-451 in Cell Proliferation and Invasion
in Glioblastoma

There has been discrepancy in the role of miR-451 in regulation of tumor growth
and invasion in glioblastoma, i.e., as tumor suppressive [90] and oncogenic roles
[22] in GBM [52, 59]. While miR-451 was over-expressed in GBM cell lines [28]
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Role of miR-451 in the Regulation of Proliferation
and Migration in Respons to fluctuating Glucose
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Fig. 2 Proposed role of miR-451 in the regulation of LKB1/AMPK signaling in response to high
and low glucose levels [46]. miR-451 levels determine cell migration or proliferation in response
to glucose (red triangle on the left) via AMPK complex on the right module [27]. (a) Normal
glucose levels upregulate miR-451, which in turn leads to increased proliferation and decreased
cell migration by inhibiting the CAB39-LKB1-AMPK pathway. (b) Low glucose levels reduce
miR-451 levels, resulting in upregulation of AMPK activity. This leads to enhanced cell motility
and reduced cell proliferation. Schematic components of miR-451 and the CAB39/LKB1/AMPK
complex is represented by modules ‘M’ (box with brown dotted line) and ‘A’ (box with blue
dotted line) in our theoretical framework. Blue arrows on the right indicate the switching behavior
between the proliferative state in (a) and the migratory state in (b) in response to fluctuating glucose

including CD133, it was down-regulated in three other GBM cell lines [22, 60].
Godlewski et al. [27] identified a novel mechanism in which miR-451 determines
glioma cell survival, motility, and proliferation. They found that (1) miR-451
regulates AMPK signaling in response to various glucose levels in glioblastoma
cells. (2) CAB39 was identified as a target of miR-451 and CAB39 was up-
regulated when cells invade surrounding collagen gel. (3) The effects of miR-451
are mediated by the LKB1/AMPK pathway through the direct targeting of CAB39.
In particular, they [27] found that normal glucose levels up-regulate miR-451,
leading to elevated proliferation and decreased cell migration while low glucose
levels induce down-regulation of miR-451, which in turn promotes cell motility and
inhibits cell proliferation via AMPK signaling, mediated by direct targeting CAB39
[25, 26, 59]. Their model is shown schematically in Fig. 2. This finding emphasizes
the adaptation to altered energy availability under dynamic metabolic stress that is
commonly found in rapidly growing tumors like GBM [38].
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1.4 Infiltrating Glioma

Invasion of glioma cells is a major reason for treatment failure since the migratory
cells are not completely eliminated by standard surgical resection of the tumor,
causing tumor recurrence [10]. Variations are seen in number of invading cells and
patterns of migration [44]. Several factors may contribute to glioma cell migration
in the brain. Extracellular matrix (ECM) may stimulate cell migration in a process
known as haptotactic migration. While the haptotactic process is known to be acti-
vated by pre-existing brain components, it is also greatly influenced by remodeling
of the ECM through the secretion of proteases such as the MMPs [10, 12, 35].
Glioma cell motility is also stimulated by various chemotactic factors, which include
ligands of the EGF family [56], the TGF-ˇ family [61], scatter factor/hepatocyte
growth factor (SF/HGF) [50], SDF-1 [91], and certain lipids [88]. In particular,
other authors studied the action of HGF or scatter factor as a migration switch
[55, 75, 79, 81] and Scianna et al. [69] investigated different behaviors of colonies
of two cell lines (ARO and MLP-29) in response to HGF using cellular Potts
models. Other cell types such as microglia can be attracted to the tumor and secrete
chemoattractants and matrix components [85], providing indirect stimulation of cell
migration. In patients, glioma cells usually follow preferred dispersion routes, for
example, the basal lamina of brain blood vessels or white matter tracts. This implies
that glioma cell migration may be controlled by specific substrates and structures in
the brain. Indeed there are several publications based on a diffusion model [32, 78].
See a general review on hybrid models of tumor growth [63].

The chapter is organized as follows: In Sect. 2 we present and analyze a
population model based on partial differential equations (PDEs) that take into
account the core miR-451-AMPK system. We investigate the effect of glucose
fluctuation on regulation of the core control system, miR-451-AMPK, and explore
the system behavior in response to several different therapeutic interventions in the
signaling pathways. We develop and analyze a hybrid model in Sect. 3. In Sect. 4,
we discuss similarities and differences between the population model and hybrid
approaches and suggest possible directions for future work.

2 A Population Model Via the miR-451-AMPK Signaling

2.1 Mathematical Model of the miR-451-AMPK
Signaling Network

In order to incorporate the signaling network shown in Fig. 3a into our model of cell
migration, we began by simplifying this network. As indicated in the introductory
section, two key players in the intracellular network are miR-451 and AMPK
complex. We get a simplified representation in Fig. 3b from the complex network
in Fig. 3a by merging all complex networks between CAB39/LKB1/STRAD and
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AMPK/MARK into one component (AMPK complex; blue dotted box in Fig. 3a)
and keeping miR-451 in one module (brown dotted box in Fig. 3a). We refer to the
interactions represented by edges in Fig. 3b as the core miR-451-AMPK control
system. By convention, kinetic interpretation of arrows and hammerheads in the
network represents induction (arrow) and inhibition (hammerhead). Two variables
m and a represent activities of miR-451 and the AMPK complex, respectively.

signaling pathwaysa b Mathematical model
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Fig. 3 (a) Conceptual model: regulation of miR451-AMPK signaling pathways in glioma cell
migration and proliferation [25, 27]. (b) Cartoon mathematical model [46]: miR-451 level and
activity of its target complex (CAB39/LKB1/AMPK) were represented by ‘m’ and ‘a’, respectively

Based on the signaling network shown in Fig. 3b, we write the phenomenological
equations for the rate change of those key molecules (m; a) as follows:

dm

dt
D f .g/C �1�

2
2

�2
2 C�5F.a/

� �1m; (1)

da

dt
D h.s/C �3�

2
4

�2
4 C�6H.m/

� �2a; (2)

where g represents the signaling pathways from glucose to miR-451, s represents
the signaling pathways to AMPK, �1 and �3 are the autocatalytic enhancement
parameters for miR-451 and AMPK complex, respectively,�2 and �4 are the Hill-
type inhibition saturation parameters from the counterpart of miR-451 and AMPK
complex, respectively, �5 is the inhibition strength of miR-451 by the AMPK
complex, �6 is the inhibition strength of the AMPK complex by miR-451, �1
and �2 are microRNA/protein degradation rates of miR451 and AMPK complex,
respectively. The glucose signal g increases the rate of miR-451 levels through
a function f .g/, while the AMPK signal s increases the AMPK activity through
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another function h.s/. A requirement on these functions is

@f

@g
> 0; 8g � 0; and

@h

@s
> 0; 8s � 0: (3)

AMPK-dependent inhibition of miR-451 and miR-451-dependent suppression of
AMPK activity are through increasing functions F.a/ and H.m/ in the denomina-
tors in Eqs. (1) and (2), respectively. These functions also have to satisfy

@F

@a
> 0; 8a � 0 and

@H

@m
> 0; 8m � 0: (4)

Our following phenomenological assumptions f .g/D g; F.a/D a2; h.s/D s;

H.m/ D m2 satisfy these conditions (3)–(4) and computational results from the
model are in good agreement with experimental data [27] . By non-dimensionalizing
the Eqs. (1)–(2) with these assumption we have the governing equations as follows:

dM

dt
D G C k1k

2
2

k22 C ˛A2
�M; (5)

�
dA

dt
D S C k3k

2
4

k24 C ˇM2
�A: (6)

The parameters appearing in Eqs. (5)–(6) and Table 1 are referred to as essential
control parameters.

Nondimensionalization and Parameter Estimate

The following dimensionalization was performed to get the dimensionless key
control equations in the main section

T D �1t; M D m

m� ; A D a

a� ; G D g

�1m� ; S D s

�2a� ; k1 D �1

�1m� ; (7)

k2 D �2; k3 D �3

�2a� ; k4 D �4; ˛ D �5.a
�/2; ˇ D �6.m

�/2; � D �1

�2
: (8)

miRs are typically more stable than their targets [40, 87] and the parameter � is
small [1]. While the typical half-life of AMPK is short (�6 h) [14], the half-life of a
miRNA is much larger (101–225 h) [23]. By taking a slightly larger half-life (290 h)
of miR-451, we get a small relative ratio, � D �1

�2
D 0:02. miRNA concentrations in

an animal cell (assuming 1,000–25,000�m3 volume) were estimated to be 80 pM–
2.2 �M [62] and we take our reference value m� D 1:0 �M. Based on the high
(4.5 g/l) and low (0.3 g/l) glucose level in [27] and m�, we estimate glucose supply
rate through several pathways g D .2:4 � 10�5 � 2:4 � 10�3/ �M/h resulting
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in a range of dimensionless glucose input levels G D g

�1m� D 0:01 � 1:0.
AMPK concentration was measured as 35–150 nM in rat liver [31] and we take
a� D 100 nM. We take the signal source of the AMPK complex, s D 2:4 nM/h
leading to S D s

�2a� D 0:2. The autocatalytic rate (�1) of miR-451 is assumed to be
fourfold larger than its negative contribution (�1m�) from its decay in the absence
of inhibition pathway from the AMPK module, k1 D �1

�1m� D 4:0 (Similarly for its

counterpart, the AMPK complex, we take k3 D �3
�2a� D 4:0). Finally, the inhibition

strength (˛ D 1:6) of miR-451 by the AMPK complex was assumed to be a bit
stronger than the inhibition strength (ˇ D 1:0) of the AMPK complex by miR-451.

Once the parameters above were determined, we fitted the data in the level of
LKB1/AMPK activity in [27] in response to negative control and over expressed
levels of miR-451 (Fig. 5b in [27]) in the following way: The steady state of AMPK
complex (As) in terms of miR-451 level (Ms) and other parameters in the miR-451-
AMPK model can be rewritten by

As D S1 C �3�
2
4

�24 C ˇ.M s/2
D 0:2C 4

1C ˇ.M s/2
: (9)

The up-regulated AMPK complex level (�500 pmol of phosphate incorporated
in a dimensional form) for negative control of miR-451 was down-regulated
(�100 pmol of phosphate incorporated in a dimensional form). Using Eq. (9) above,
we estimated the parameter value of ˇ to be 1.0 which gives the low AMPK
complex activity (�As D 0:9) in response to a high dimensionless miR-451 level
(Ms D 4:2) and the high AMPK complex activity (As D 4:2) in response to
negative control of the miR-451 level (Ms D 0:0), resulting in a reasonable �4.7-
fold difference in the AMPK complex activities as seen in the experiments in [27].
Finally, by observing the behavior of the system and experimental data, we assume
that the inhibition strength (˛ D 1:6) of miR-451 by the AMPK complex is bit
larger than the inhibition strength (ˇ D 1:0) of the AMPK complex by miR-451
[45, 46].

Table 1 Parameters that are used in the core control model (miR-451-AMPK system)

Parameter Description Valuea Refs.

k1 miR-451 autocatalytic production rate 4.0 [45, 46]

k2 Hill-type coefficient 1.0 [45, 46]

˛ Inhibition strength of miR-451 by AMPK complex 1.6 [45, 46]

k3 AMPK autocatalytic production rate 4.0 [45, 46]

k4 Hill-type coefficient 1.0 [45, 46]

ˇ Inhibition strength of AMPK complex by miR-451 1.0 [45, 46]

S Signaling source of AMPK 0.2 [45, 46]

� Scaling factor (slow dynamics) 0.02 [1, 14, 23, 45, 46]

thM Threshold of miR-451 for invasion/growth switch 2.0 [45, 46]
a Dimensionless value
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2.1.1 Analysis and Implications

We recall (see Fig. 2) that low (or high) levels of miR-451 imply reduced (or
elevated) cell proliferation and increased (or decreased) migration in response to the
low (or high) glucose level. The effect of glucose in regulation of miR-451 level and
AMPK activity in our model was tested. Figure 4a–c shows three different patterns
and time flow of the dynamics of the steady state (SS; circles) of the core control
system in response to low (G D 0:1), intermediate (G D 0:45), and high (G D 1:0)
levels of glucose in the M -A phase plane, respectively. By taking the appropriate
thresholds, thM (= 2.0) of miR-451 and thA (=2.0) of AMPK, we can define the
migratory region Tm by Tm D f.M;A/ 2 R

2 W M < thM ; A > thAg (dotted
pink box in Fig. 4d) and the proliferative region Tp by Tp D f.M;A/ 2 R

2 W
M > thM ; A < thAg (solid box in Fig. 4d). There exists only one SS (blue filled
circle) in the Tm-zone under the glucose withdrawal condition (G D 0:1; Fig. 4a)
while the unique SS (blue filled circle) exists in the Tp-zone when normal glucose
is provided (G D 1:0; Fig. 4c). For an intermediate level of glucose (G D 0:45),
there exists three SS: two stable SS (two blue filled circles; one in Tp and one in Tm)
and one unstable SS (larger empty red circle) in the middle. This leads to a bi-stable
system shown in Fig. 4b. From these observations, we anticipate to see a hysteresis
bifurcation curve with respect to glucose G. Indeed, we get a hysteresis bifurcation
curve in Fig. 4e by solving miR-451 SS values (Ms) as a function of G when the
core control system (5)–(6) is in equilibrium. While the lower and upper branches
are stable, the middle branch is unstable. When G is small, then the system stays in
the lower branch (Tm). So, glioma cells are in the migratory phase in response to
slow increase in G until it reaches the right knee point of the curve (�0.6) whereM
jumps to the upper branch, putting cells are in the Tp-phase. As G is decreased due
to glucose consumption by cells, the miR-451 level remains elevated, until it hits the
left knee point of the curve (�0.4), at which time the M jumps down to the lower
branch, putting cells back to Tm-phase. These two-way transitions between Tm and
Tp naturally define a bi-stability window (W
 D Œ


�
w; 


�
w�). The size of the window

(jW
 j) depends on other parameters and may even disappear for some parameter
set. So, the effect of glucose is history dependent: when G 2 W
 (bi-stable mode
in Fig. 4b), the cells are in the Tm- and Tp-phase if dG=dt > 0 and dG=dt < 0,
respectively.

2.1.2 Comparison with Experiments

In the experiments by Godlewski et al. [27], there was a reduction in miR-451
levels by 78–82 % when cells (U251 and LN229 in Fig. 5) were cultured in glucose
withdrawal (0.3 g/l; gray) and normal glucose (4.5 g/l; black) conditions. Simulation
results from the model are in good agreement with these experimental results [27],
i.e., there was significant reduction in miR-451 levels in response to glucose
deprivation relative to the control case. See Fig. 5.
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2.1.3 Sensitivity Analysis

In the mathematical model developed in this paper, there are a number of parameters
for which no experimental data are available but they may significantly affect the
system behaviors. We performed sensitivity analysis for key parameters (G, S , k1,
k2, k3, k4, ˛, ˇ, �) in order to see how sensitive is the core system at a given time to
these parameters. As a usual step, we have chosen a biologically relevant range for
each of these parameters and divided each range into 1,000 intervals of uniform
length. Then, a partial rank correlation coefficient (PRCC) value is calculated.
PRCC values lie between �1 and 1 with the sign determining whether an increase
in the parameter value will decrease (�) or increase (C) the miR-451 expression
and AMPK activity at a given time [57]. Figure 6 shows the PRCC values for the
miR-451 level and AMPK activity at t D 100. The miR-451 level turns out to
be positively correlated to G; k1; k2 but is very weakly correlated to k3; k4; ˇ; �.

Fig. 4 (a–c) Dynamic behaviors of the core control system in the M -A phase plane in response
to low [G D 0:1 in (a)], intermediate [G D 0:45 in (b)], and high [G D 1 in (c)] levels of
glucose signals. Blue filled circles = steady states (SS), red empty circle in (b) = unstable SS. (d) A
schematic of proliferative (M > thM ; A < thA) and migratory (M < thM ; A > thA) and regions
in the M -A plane. thM D 2:0; thA D 2:0. All other parameters are fixed as in Table 1. (e) High
and low glucose signals (G) provide an on-off switch of miR-451 over-expression and determine
the dichotomous behavior: cell proliferation or migration [46]. W
 = Œ


�
w; 


�
w� = a window of

bi-stability
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In particular, the miR-451 level will increase significantly if glucose signal G is
enhanced. On the other hand, the miR-451 expression is negatively correlated to the
S; ˛, i.e., miR-451 level would be decreased if either S or ˛ is increased. AMPK
activity is positively (negatively) correlated to S; k3; k4 (G;ˇ) as expected due to
mutual antagonism between miR-451 and AMPK complex.

2.2 Analysis of miR-451-AMPK Core Control System
for Time-Dependent Input

Tumor cells are exposed to fluctuating glucose levels and they must adapt to the new
microenvironment via signaling pathways such as miR-451-AMPK core control
system. We mimic the periodically fluctuating glucose levels as follows

dG

dt
D

NgX
iD1

gsIŒti ;tiChd � � �gG: (10)

where Ng is the number of glucose infusion, gs is the glucose signal on the
time interval Œti ; ti C hd �; i D 1; : : : ; Ng, for a time duration hd and period �
(D tiC1�ti ; i D 1; : : : ; Ng�1; hd < �) between those intervals, I Œ�� is the indicator
function, �g is the decay rate of glucose. Figure 7a, b shows time courses of miR-
451 level, AMPK activity in response to fluctuating glucose level from Eq. (10).
While the system stays in the proliferative phase in response to frequent glucose
infusion (� D 15; Fig. 7a), it alternates between proliferative and migratory phases
with less frequent glucose supply (� D 30; Fig. 7b).

In the same vein, another way of lowering AMPK activities and up-regulation of
miR-451 is to block the signals to the AMPK complex module in a periodic fashion
using some drugs. We assume that this signal to the AMPK module is completely
blocked Ns-times over the time interval Œti ; ti C hs�; i D 1; : : : ; Ns with a duration
hd and period � (D tiC1 � ti ; i D 1; : : : ; Ns � 1). Thus, we consider the following
modified version of the Eq. (6),

�
dA

dt
D

NsX
iD1

Ss.1 � IŒti ;tiChs �/C k3k
2
4

k24 C ˇM2
� A; (11)

where Ss is the signaling strength to the AMPK complex, I.�/ is the indicator
function. Figure 7(c, d) shows growth-invasion patterns in a parameter space Ss-
hd and Ss-� , respectively. While larger duration (hd ) and lower AMPK source Ss
lead to growth (Fig. 7c), shorter period (�) and lower AMPK source is required
to induce anti-invasive effect (Fig. 7d). These results suggest possible therapeutic
anti-invasive strategies at the molecular level.
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2.3 PDE Model

Governing equations for the tumor density (n.x; t/), concentrations of the ECM
(�.x; t/), MMP (P.x; t/), glucose (G.x; t/), miR-451 (M.x; t/), and AMPK
(A.x; t/) are given by

@n

@t
D
	
Dn	n�r �

�
n

nrGp
1C�G jrGj2

�
�r �

�
1n

nr�p
1C ��jr�j2

�

IM<thM

C �11n.1 � n=n0/IM>thM ; (12)

@�

@t
D ��21P� C �22�.1 � �=�0/; (13)

@P

@t
D DP	P C �31n� � �32P; (14)

@G

@t
D DG	G � �41 nG C

N�1X
jD0

�42Ij ; (15)

@M

@t
D .G C k1k

2
2

k22 C ˛A2
�M/

n

n0
; (16)

�
@A

@t
D .S C k3k

2
4

k24 C ˇM2
�A/ n

n0
; (17)

where IM>thM is the indicator function of growth region (where miR-451 level (M )
is greater than a threshold value (thM )) and IM<thM is the indicator function of
the invasive region (where miR-451 level is below the threshold (thM )). Here all
parameter values (Dn; n; �G; 

1
n; ��; �11; n0; �21; �22;DP ; �31; �32;DG; �41; �42)

are positive.
The first three terms in the Eq. (12) represent random motility, chemotaxis,

and haptotaxis, respectively, when the tumor cell is in the migratory phase (Tm).
Here, chemotaxis (or haptotaxis) is the cell movement in response to a chemical
stimulus such as gradients of glucose (rG) with the chemotactic sensitivity (n)
(or adhesive stimulus in the ECM (r�) with the haptotactic sensitivity (1n)). On
the other hand, the last term indicates tumor cell proliferation when the cell is
in the proliferative condition (Tp/. ECM is degraded by tumor-secreted MMPs at
a rate �21. MMPs and glucose diffuse throughout the domain with the diffusion
coefficients, DP ;DG .DP � DG/, respectively. Glucose is consumed by tumor
cells at a rate (�41) but is injected at a rate �42. The core control system (16)–(17)
acts on the system in the presence of the tumor cell density (n=n0 ¤ 0).
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miR-451 expression levels in response to different glucose infusion patterns
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Fig. 7 (a, b) Time courses of the miR-451 level, AMPK activity, and glucose level for fluctuating
glucose supply with the period � D 15 (a), 30 (b). Dotted blue line = thM D 2:0. Parameters: gs D
3:0, hd D 0:5, �g D 0:1. Initial conditions: M (0) = 4.0, A(0) = 0.1, G(0) = 0.1. Initial injection
time: t1 D 10. All other parameters are fixed as in Table 1. (c, d) growth (blue dotted boxes) and
invasion (red solid boxes) patterns in the hd -Ss -plane [(c); � D 10 fixed] and � -Ss-plane [(d);
hd D 2:0 fixed] in response to a periodic intervention of signals to the AMPK complex. Signals to
the AMPK complex (S) were partially blocked in a periodic fashion with various period � , duration
hd , and various signal strength (Ss ). Initial conditions:M (0) = 0.1,A(0) = 4.0. Parameters: glucose
level = 0.5, other parameters are same as in Table 1

Parameter Estimation

(1) Dn : For EC cells migrating in a culture containing angiogenic factor, Stokes
and Lauffenburger [76] measured the diffusion coefficient to be 7 � 10�9 cm2=s.
A ‘typical’ cell motility coefficient has been estimated to be 5 � 10�10 cm2=s [6].
A smaller value, 10�10 cm2=s, was used in [2]. While the experimental results for
motility of human glioma [19] and glioblastoma cells [33] in 2D substrate suggest a



Regulation of Cell Proliferation and Migration in Glioblastoma 139

value ofDn in the range of 1:16�10�10�2:31�10�9 cm2=s, Stein et al. [74] used
a tenfold higher value of Dn (=2.31�10�8 cm2=s) in order to get a better fit to the
experimental data. Burgess et al. [7] took Dn D 1:7 � 10�9 cm2=s, but Sander and
Deisboeck [67] argued that Dn should be much smaller, namely, 10�12 cm2=s. We
shall takeDn D 10�11 cm2=s. (2)DP : In experiments of the movement of MMP-1
in the collagen fibril, Saffarian et al. [66] estimated the diffusion coefficient to be
.8˙1:5/�10�9 cm2=s for wild-type activated MMP-1 and .6:7˙1:5/�10�9 cm2=s
for inactive mutant. In our simulation, we takeDP D 5�10�11 cm2=s. (3)DG : The
diffusion coefficient of G was measured as 6:7 � 10�7 cm2=s in the brain [37] and
1:3� 10�6 cm2=s in collagen gel [64]. The diffusion coefficient in a growing tumor
spheroid or aggregate is much smaller than the one in the medium, and so we take
DG D 2:31 � 10�7 cm2=s. (4) n: In the presence of EGF, glioma cells traveled
a distance 0.4–0.5 cm in 150 h [9]; glioma cells in agar containing EGF traveled
faster, covering a distance of 1.25 cm in 150 h, while in plain agar they traveled
only 0.75 cm during the same period. In experiments with U87MGmEGFR spheroid
growth, Deisboeck et al. [17] calculated the cell velocity to be in the range of 50–
110 �m/24 h. Kim et al. [44] assumed that gradient of the glucose concentration
was 3 � 10�3 � 10�4 g=cm4 and a drift velocity 25–110 �m/24 h of mobile cells
to compute an intermediate value of n D veloci ty

gradient
D 2:76 � 10�4 cm5=(g � s).

We assume that the chemotactic sensitivity is relatively small due to the fluctuating
glucose level. We take n=1:86 � 10�7 cm5 g�1 s�1. (5) 1n: For the haptotactic
sensitivity, we take 1n D 4:17 � 10�5 cm5=(g � s). (6) �11: Doubling time were
in the range from 27 h (U87MG) to 60 h (LN405) for human glioma cells [58];
this translates into proliferation rate of (7.1–8) � 10�6 s�1. Measured values of
proliferation rate were reported as 1/day, or 8 � 10�6 s�1, in typical experiments in
[67]. Taking into consideration the large flux of glucose being supplied periodically
in our system, we take �11 D 1:112� 10�4 s�1. (7) �31: It is difficult to measure the
MMP production rate directly. The range of (1.11–6.94) � 10�8 s�1 was estimated
in [44] for sparsely seeded migrating cells. The MMP production rate, written
as �.n; �/, was modeled by �31n in [44] where �31 D 6:94 � 10�8 s�1. Here,
we model it as �31n�, because � is expected to oscillate quite significantly. In
order to adjust to the order of magnitude of MMP production in [44], we take an
estimated value, �31 D 6:95 � 10�5 cm3 g�1 s�1; see also [58]. (8) �32: MMP is
secreted by a tumor cell and is highly localized (fast decay) in the invading front of
migrating tumor cells. We assume half-life of MMP to be very short (approximately
3.8 h) so that �32 D 5:0 � 10�5 s�1. (9) �41: Nutrient consumption rate was
measured as ˛ D 1:6 pg/cell/min in [53]. We compute �41 from �41G

� D ˛

when G� D 8:9 � 10�4 g=cm3 is between high (4:5 � 10�3 g=cm3) and low
(3:0 � 10�4 g=cm3). Hence, �41 D ˛

G�
D 0:3 cm3=(g � s).

Table 2 lists parameter values used in the model.
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2.4 Simulation Results

Figure 8 shows a time course of total tumor population, concentration of glucose,
miR-451 levels, and AMPK activity. Fluctuating glucose levels (dash-dotted line)
in Fig. 8a lead to peaks of miR-451 levels and low AMPK activity in Fig. 8b. In
turn, fluctuating AMPK levels give rise to the plateau invasion phase and creeping
growth phase of the tumor cells due to infiltrating cells near the surface of the tumor
core when the AMPK level is high.
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Fig. 8 Dynamics of tumor invasion and growth in response to fluctuating glucose. (a) Time
courses of tumor population and glucose level. (b) Time courses of miR-451 level and AMPK
activity in response to fluctuating glucose in (a). Tumor cells adapt proliferative (Tp ; high miR-
451, low AMPK) and migratory phase (Tm; low miR-451, high AMPK) via the core control system
in response to high and low glucose levels, respectively

We now test our hypothesis on growth-invasion patterns of tumor spheroids under
the fluctuating (Fig. 9a) and steady-state glucose conditions (Fig. 9b) when the total
supply of glucose is fixed. Figure 9c shows that the overall growth rate of the tumor
(black solid line) in response to glucose fluctuation is larger than one with fixed
supply of glucose (dotted black line) after 100 h.

Figure 10b shows the effect of inhibition strength (˛) of miR-451 by the AMPK
complex on the tumor population. In contrast to the control case (˛ D 1:6), the
AMPK activity does not fluctuate (Fig. 10a; circle) when ˛ is low (˛ D 0:16),
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which leads to slower tumor growth. Since lower values of the inhibition strength ˛
lead to higher levels of miR-451 and low AMPK activity (Fig. 10a), blocking miR-
451 along the pathways from CAB39/LKB1/STRAD/AMPK to miR-451 could be
a possible therapeutic target of an anti-invasion drug. On the other hand, one would
achieve the similar anti-invasive effect by increasing the inhibition strength (ˇ) of
the AMPK complex by miR-451, i.e., down-regulation of AMPK activities and
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up-regulation of miR-451 (the base value (ˇ D 1:0; solid line) ! ˇ D 10 (circle)
in Fig. 10c). An increase in ˇ also leads to slower tumor growth. Figure 10d shows
tumor populations at t D 0; 50; 100 for various parameter values ˇ D 1:0; 1:2; 10.
In contrast to the control case (ˇ D 1:0), there is a significant decrease in tumor
population and it does not generate invasion-growth patterns when ˇ is large ˇD10.
For an intermediate value of ˇ D 1:2, a periodic fluctuation of AMPK levels is
observed but the duration of high AMPK activities is not as long as one in the case
of the control (ˇ D 1:0). These results are due to the fact that higher values of the
inhibition strength ˇ lead to lower AMPK activity and over-expression of miR-451.
Thus, this increase in ˇ also suggests another possible anti-invasion target.
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3 Hybrid Model

3.1 Cell-Mechanics Model

The behavior of individual cells is based on the models developed by Dallon and
Othmer [15] (DO model) and Kim et al. [47, 48]. The model essentially takes
into account the following forces: (1) the active forces Ti exerted on the substrate
or neighboring cells and the reaction force (Mj;i ), (2) the dynamic drag forces
from adhesive bonds with neighboring cells, (3) static friction force Sj;i for rigid
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Table 2 Parameters that are used in the PDE model

Parameter Description Value� Refs.

Dn Random motility of tumor cells 10�11 cm2=s [44]

DP Diffusion coefficient of MMPs 5� 10�11 cm2=s [44, 66, 71]

DG Diffusion coefficient of glucose 2:31 � 10�7 cm2=s [44, 64],TW

�11 Tumor cell growth rate 1:112 � 10�4 s�1 [58, 67], TW

n0 Carrying capacity of tumor cells 1:0 � 10�3 g=cm3 TW

�21 ECM degradation rate 1:41 � 103 cm3 g�1 s�1 [44],TW

�22 ECM release/reconstruction rate 5:0 � 10�5 s�1 [44],TW

�0 ECM carrying capacity 1:0 � 10�3 g=cm3 [39, 44, 74]

�31 MMP production rate 6:95 � 10�5 cm3 g�1 s�1 TW

�32 MMP decay rate 5:0 � 10�5 s�1 [44],TW

�41 Glucose consumption rate 0:3 cm3=(g � s) [53, 67], TW

�42 Glucose injection rate 1:25 � 10�6 g=.cm3 � s) TW

n Chemotactic sensitivity parameter 1:86 � 10�7 cm5 g�1 s�1 TW

1n Haptotactic parameter 4:17 � 10�5 cm5=(g � s) [44],TW
�TW D This work

attachment between cells or between a cell and the substrate. (See DO for a more
detailed discussion of all forces involved.) The total force on the i th cell is then
given by

Fi D
X
j2N a

i

Mj;i C
X
j2N a

i

Ti C
X

j2N d
i

�ij .vj � vi /C
X
j2N s

i

Sj;i (18)

where N a
i denotes the neighbors of i , including the substrate, upon which it can

exert traction, N d
i is the set of “cells” (which includes substrate and extracellular

matrix ECM) that interact with i via a frictional force, and N s
i denotes the set

of cells that statically bind to cell i . These force balance equations allow us to
calculate all forces involved and track down locations of all cells in addition to
biophysical response of the cells. These forces are expressed in terms of cell velocity
(vi ) and integrating these forces also generates measurable quantities such as the cell
velocity, which can be compared to the experimental data.

There are two kinds of glioma cell involved: proliferative and motile one.
The cells are treated as oriented ellipsoids and cytoplasm is considered as an
incompressible, viscoelastic solid [15, 47]. We assume the multiplicative form of
the growth rate function for the i -th axis of the cell given by

.ugi /
0 D f .
/P.M;A/

where 
 is the force acting on the cell andP is a function of the miR451 activity (M )
and AMPK levels (A). The growth function f .
/ is defined so that cells can grow
under sufficiently small tensile and compressive forces [47,48]. We also assume that
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the cell proliferation is determined by the core control system, i.e., a cell proliferates
when miR-451 is up-regulated and AMPK activity is down-regulated at the cell site:

P.M;A/ D
(
1 if M > thM ; A < thA

0 otherwise
(19)

where thM ; thA are threshold values of the miR-451 and AMPK levels. The active
force Ti of cell i is given by

Ti D �.Mi/
rCp

KC C jrC j2 (20)

where C is the concentration of a chemoattractant. Here, the indicator function
�.M/ is given by

�.M/ D
(
rnF0 if M < thM ;A > thA; cell without physical constraints,

0 otherwise;
(21)

where F0 is the basal magnitude of the active force (0 � jTi j � F0) and rn is a
random number in [0.8, 1.2]. Therefore, the active force is completely turned off for
proliferative cells (Mi > thM ;A < thA), cells under physical constraints (a cell
completely surrounded by neighboring cells), or in the absence of chemotactic
signal (rC D 0).

3.2 Reaction-Diffusion

We let G.x; t/; C.x; t/ be the concentrations of glucose and chemoattractant,
respectively, at space x and time t . Governing equations of all variables are given by

@G

@t
DDG	GC

NGX
jD1

�GinIŒtGj ;t
G
j C�Gd ��˝� C �b�1.x;G/ � �c�2.x;G/ � �GG; (22)

@C

@t
D DC	C C

NCX
jD1

�CinIŒtCj ;t
C
j C�Cd ��˝� � �CC (23)

where DG;DC are the diffusion coefficients of glucose and chemoattractant,
respectively,�Gin (�Cin) is the glucose (chemoattractant) injection rate on a subdomain
˝� over time intervals ŒtGj ; t

G
j C �Gd �; j D 1; : : : ; NG (ŒtCj ; t

C
j C �Cd �; j D

1; : : : ; NC ) with a period �G (�C ) and duration �Gd (�Cd ) after the initial surgery
at t D tS (tG1 > tS ), �b is the glucose flux from blood flow, �c is the consumption
rate of glucose by tumor cells, �G is the glucose removal rate from the system via
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blood flow and glucose consumption in the surrounding tissue [3, 11, 29, 65, 82],
�C is the decay rate of the chemoattractant. Here, indicator functions (�1; �2) are
given by

�1.x;G/ D
(
1 blood vessel

0 otherwise
; �2.x;G/ D

(
1 tumor

0 otherwise.

We also assume no flux (Neumann) boundary conditions ( @G
@�

D 0; @C
@�

D
0; on @˝). The reaction-diffusion equations (22)–(23) are solved on the regular
grid using the alternating-direction implicit (ADI) method and the nonlinear solver
nksol for algebraic systems. A typical spatial grid size used is hx D hy D 0:01 on
a square domain Œ0; 1� � Œ0; 1�. An adaptive time stepping method is used. Table 3
lists parameter values used in the model.

Table 3 Parameters that are used in the hybrid model

Parameter Description Value� Refs.

DG Diffusion coefficient of glucose 6:7 � 10�7 cm2=s [37]

DC Diffusion coefficient of chemoattractant (EGF) 1:66 � 10�6 cm2=s [80]

�c Glucose consumption rate by tumor 0:8 pg/cell/min TW

�G Removal rate of glucose in brain tissue 0:0034 min�1 TW

�C Decay rate of chemoattractant (EGF) 8:02 � 10�6 s�1 [49]
�TW D This work

3.3 Results

We investigate growth/invasion dynamics of a tumor spheroid in response to high
and low glucose levels. Figure 11a–c shows spatial patterns of glioma cells in
response to a high glucose level (G0 D 0:6) at time t D 0; 10; 32 h. The miR451
level stays high and AMPK activity is still low at t D 10 h (Fig. 11d) and all cells
are proliferating in the spherical core without much migration. However, some cells
on the surface begin to migrate away from the core due to the lowered miR-451
level near t D 30 h. Figure 11d shows a time course of the miR-451 level and
AMPK activity at the site of a cell on the surface of the core (black arrowhead in
Fig. 11b, c, e, f). The miR-451 level in this cell is decreased until it drops below the
threshold (thM D 2:0) around 30 h for a phenotypic switch to a migratory state.
See Fig. 11g–i for relatively high glucose profiles at t D 0:1; 6:6; 30 h. On the
other hand, when the glucose level is low (G0 D 0:2), cells on the surface of the
spherical core shed from the core due to the low level of miR-451 and high AMPK
activity at t D 10; 32 h (Fig. 11e, f). (See profiles of glucose at t D 0:1; 6:6; 30 h
in Fig. 11j–l.) For example, the same cell (200th cell; arrowhead) in Fig. 11b, c
migrated far away at the final time (t D 32 h) in response to the low glucose level
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Fig. 11 (a–c, e, f) Spatial patterns of tumor spheroids in response to high (a–c) and low (a, e, f)
glucose levels at t D 0; 10; 32 h. (d) Time courses of core control system (the miR451 level and
AMPK activity) for high (solid) and low (dotted) levels of glucose at a cell site [200th cell marked
by black arrowhead in (b, c, e, f)]. (g–i) Profiles of glucose at t D 0:1; 6:6; 30 h corresponding
to the high initial glucose level (G0 D 0:6) in (a–c). (j–l) Profiles of glucose at t D 0:1; 6:6; 30 h
corresponding to the low initial glucose level (G0 D 0:2) in (a, e, f)

(arrowhead in Fig. 11f). The miR-451 level dropped below the threshold (thM ) at
an early time (t D 1 h) and the cell (arrowhead in Fig. 11e) is in the migratory
phase at t D 10. However, this cell did not migrate due to the physical constraints
from its neighboring cells in the tumor core. After shedding of all neighboring
cells, the cells finally are free from the physical constraints and began to migrate
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(Fig. 11f). The reduction of cell motility with the down-regulated miR-451 level
was also observed in [27]. Godlewski et al. [27] observed that a cell line (U251
cells) stably expressing miR-451 (miR-451C) grows faster than negative control
(miR-451�). In our case, cells maintain high (or low) miR-451 levels for most of
the time in the case of high (or low) glucose level.

This effect of cell mechanics on glioma cell shedding is illustrated in Fig. 12.
When the glucose level is low (G0 D 0:2), the core control system (miR-451,
AMPK) induces the migratory signal of the most of cells. However, cells inside
the spherical core fail to escape due to mechanical constraints and strong adhesion
forces between them. Only the cells on the surface of the spherical core are able to
migrate in response to the ‘escape’ signal (M < thM ;A > thA) from low glucose
levels. For example, more than 70 % of cells inside the spheroid are in the migratory
phase but do not migrate away even at early times of simulation (�1 h). However,
under normal glucose conditions (G0 > 0:6), all cells are in the proliferative phase
and this relative number of trapped cells with the migratory signal is zero until the
glucose level becomes sufficiently low around tD 27 h due to glucose consumption
by tumor cells. The relative number of trapped cells is increased up to 70 % at
t D 31 h due to increased number of cells in the core with the migratory signal.

Fig. 12 Effect of mechanics
on cell invasion [ratio of
‘trapped’ cells (%) with the
migratory signals
(M < thM ;A > thA) within
the spherical core]
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Figure 13a shows the area of the migratory zone at t D 6; 20 h for various glucose
conditions (G0 D 0:1; 0:2; 0:3:0:4; 0:5). While tumor cells migrate aggressively
across large areas (Fig. 11e, f) outside the core under glucose withdrawal conditions
(G0 D 0:1 � 0:4), cell motility is significantly decreased when the glucose level
is high (G0 D 0:5) as observed in experiments [27]. Calculated cell speeds in the
hybrid model are also in good agreement with measured values in experiments (see
Fig. 13b): 39–45 �m/h in 2D barrier-free culture condition and 15–20 �m/h in
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3D glioblastoma cell culture in the absence/presence of EGF-stimulation [41],
15–25 �m/h in glioblastoma cells with/without ˛-actinin isoforms [70],
15–48 �m/h for cells embedded in collagen I matrix [39].
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Fig. 13 (a) Cell motility (area of migratory zone; Amz) in response to various glucose levels
(G0 D 0:1–0.5) at time t D 6, 20 h. (b) Distribution of average cell speeds from the hybrid model

Finally we tested some hypotheses on localization of invasive glioma cells after
conventional surgery at t D 0 h [43]. Figure 14a–d shows profiles of migratory and
proliferative cells at t D 0; 8; 16; 24 h when a chemoattractant and glucose were
injected at the center of the domain at t D 0 h and t D 17 h, respectively. Invasive
tumor cells initially respond to the chemoattractant. Then, most of migratory cells
switch to proliferative ones around t D 17 h (Fig. 14e) when low miR-451
levels jump to higher value M > 5 > thM (Fig. 14f), forming a visible larger
tumor mass (Fig. 14d), in response to glucose injections. Most of these proliferative
cells may enter the migratory phase (M < thM ;A > thA) again when glucose
levels are lowered due to consumption of glucose from the growing tumor mass. It
was assumed that a cell can sense the microenvironment and the active force of a
migratory cell is set to be zero when the cell reaches the periphery of the resection
bed. So, cells stop the migration process on the periphery of the resected area and are
localized near the surgical site, increasing chances of elimination of invasive tumor
cells via the second treatment options such as the follow-up surgery or radiotherapy
if feasible.

4 Discussion and Conclusions

Tumor cell proliferation and migration depend on the type of tumor cells and on the
tumor microenvironment. In this work we focused on tumor cells from glioblastoma.
One of the major obstacles in treatment of glioblastoma is that by the time the
disease is diagnosed glioma cells have already spread into the surrounding brain
tissue and the incomplete elimination of cancer cells by conventional therapeutic
approaches leads to regrowth of these invasive cells, leading to the poor survival
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rate. Infiltrating glioma cells can be cultured from biopsies up to 4 cm away from
the main bulk tumor [72]. Like the guerilla warriors, the glioma cells seem to posses
specific characteristics that allow for diffusive infiltration [13].

We first developed an intracellular model of the miR-451-AMPK core control
system within a glioma cell and population model of tumor cell proliferation and
invasion. Then, we developed a hybrid model where glioma cells are modeled as an
individual unit embedded in the microenvironment and biophysical and biochemical
properties of all cells are taken into account.
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Fig. 14 (a–d) Migration-proliferation profiles of tumor cells at t D 0; 8; 16; 24 h in response to
injection of a chemoattractant at t D 0 h and glucose at t D 17 h after initial surgery at t D 0 h.
Solid circle in (a) = resected area after the first surgery (RS). (e) A time course of cell populations:
proliferative (circle) and migratory (dash-dotted) cells. (f) Time course of miR-451 (solid) and
AMPK activity (dash-dotted) at a cell site [cell id = 22; arrow in (d)]. Dotted black line in the
middle = threshold value of miR-451 (thM D 2:0). Parameters used: tG1 D 17 h; �Gd D 24 h

Simulation of the population model shows how variations in glucose significantly
affect the level of miR-451and, in turn, cell migration. By changing the level
of glucose through periodic injections, the cancer cells will alternate between
migration to proliferation modes via the miR-451-AMPK system. The model
simulation predicts that oscillations in the levels of glucose lead to the faster
growth of the primary tumor relative steady supply of glucose. The model also
suggests that drugs which upregulate miR-451, or block other components of the
CAB39/AMPK pathway, will slow down glioma cell migration, a possible target for
anti-invasion drugs. The miR-451 as well as the downstream signaling molecules
(AMPK, mTOR) was identified as a novel target for growth control in colorectal
carcinoma [8, 54]. For instance, mTOR inhibitors such as rapamycin or RAD001
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and AMPK activator such as AICAR reversed miR-451’s effect on tumor growth
[8]. In general, AMPK pathways have been identified as an emerging drug target
for metabolic syndrome as well [89]. These drugs could be used to control the cell
migration or proliferation in glioblastoma.

The hybrid model was able to reproduce the spatial invasion patterns and cell
motility of glioma cells under normal and low glucose conditions observed in the in
vitro experiment [27] and correct cell speeds in the experiments [39, 41, 70]. Due
to its biophysical properties of the individual cells, the hybrid model can capture
biomechanical properties of a growing tumor. For instance, cell–cell adhesion
between tumor cells plays a significant role in regulation of shedding properties
from the primary spheroid core [45].

For therapeutic strategies, the model suggests that (1) Injection of chemoattrac-
tant at the surgical site may attract invasive tumor cells back to the tumor site,
leading to localization of these invasive tumor cells. This may lead to a follow-
up surgery for eradication of the invisible tumor cells that managed to survive
from the first surgery [43]. (2) Introduction of glucose at the center of the surgical
site may increase the visibility of invisible cells by the up-regulation of miR-
451 and downregulation of AMPK activity. Multiple microsurgical resections for
glioblastoma have been proven to be effective and useful [34]. We also note that
introduction of glucose at the wrong time and locations, for instance presence of
blood vessels on the routes, may interfere this localization strategy and this may
lead to undesirable results (i.e., the proliferation of dispersed infiltrative glioma
cells). Optimal control theories have been applied to optimize expenses on glucose
injections for this strategy i.e., maintaining unregulated status of miR-451 levels to
increase visibility of the tumor near the resection site after localization [68].

Glioma cell migration through a narrow intercellular space between normal brain
cells is an extremely complex process that involves deformation of both cell body
and nucleus via the complex regulation of acto-myosin dynamics [5]. There is
currently only a limited understanding of the complex relationship between the
tumor cells and the host cells in the microenvironment. A better understanding of
this relationship and cell motility may lead to new therapeutic approaches that target
stromal elements instead of, or in addition to, tumor cells. We hope to address these
situations in future work.
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An Optimal Control Approach to Cancer
Chemotherapy with Tumor–Immune System
Interactions

Urszula Ledzewicz and Heinz Schättler

Abstract We review some results about the structure of optimal chemotherapy
protocols in the presence of tumor immune system interactions that can be derived
from population-based mathematical models using optimal control.

1 Introduction

The question how chemotherapeutic agents should be administered to achieve
optimal effects is a difficult one and conclusive answers have not yet been given.
It is a common medical approach to start treatment with maximum tolerated
dose (MTD) strategies: give as much of a cytotoxic drug as is safely possible
and give it right away. The underlying rationale is that cancer is often only
diagnosed in the later stages of the disease and thus immediate and significant
action is required. Mathematically, the scheduling of therapeutic agents over time
in order to optimize some objective related to tumor burden (e.g., tumor volume)
and quality of life of the patient (e.g., some measure of the toxic side effects
of treatment) while the underlying system follows some dynamics (in this case
determined by the processes of tumor development and treatment interactions) is
an optimal control problem. Within such a framework an MTD strategy can be
shown to be the mathematically optimal solution for models that only consider
homogeneous tumor populations of chemotherapeutically sensitive cells (e.g., see
[10, 30, 31, 35, 51, 53, 54, 56]). However, as soon as heterogeneous structures are
considered—tumor populations with varying sensitivities or that may also include
drug resistant populations—then this is not necessarily the case. For example,
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as resistance builds up, protocols that administer drugs at lower than maximum dose
rates become candidates for optimality. Intuitively, as chemotherapy destroys the
sensitive population, over time the proportion of resistant cells becomes dominant
and then the harm to the healthy cells done by full dose chemotherapy outweighs the
increasingly diminishing returns that can be achieved with chemotherapy. In such
a case, it will simply be better (in terms of the overall quality of life of the patient
measured by a quantitative objective) to proceed with less toxic lower dose rates
[24,33]. Chemotherapy at significantly reduced dose rates also has attracted medical
research interest in the past 10 years because it has important secondary effects
on the tumor microenvironment. In several medical papers, both antiangiogenic
and immune stimulatory effects of low dose chemotherapy have been recorded
[15, 22, 41, 43] having led to a reevaluation of an MTD thinking and the notion
that “more is not necessarily better” [14, 15, 17, 42]. Alternative protocols that
administer chemotherapy at reduced less toxic dose rates and basically without any
prolonged interruptions have become an intense focus of medical research known
as “metronomic dosing” (e.g., see [1, 41] and the many references therein).

All this has led to a reexamination of the question how one can optimize the
antitumor, antiangiogenic, and pro-immune effects of therapy by modulating dose
and administration schedule. Rather than merely focussing on the cytotoxic effects
of chemotherapy, a more holistic approach needs to be taken and its effects on the
other components of the tumor microenvironment need to be considered. One major
such component is the immune system and in this paper we consider the structure
of optimal chemotherapy protocols when tumor immune system interactions are
taken into account. The immune system’s first response to its environment is on the
basis of a discrimination between “own” and “foreign” objects [40] and while some
tumor cells may simply be classified as “own” and thus tolerated, generally tumor
cells also exhibit a large number of abnormalities (such as mutated proteins, under-
or over-expressed normal proteins and many more) that lead to the appearance of
specific antigens that will be classified as “foreign” and thus do trigger reactions by
both the innate and adaptive immune system [19, 52]. The empirical hypothesis of
immunosurveillance, i.e., that the immune system may act to eliminate or control
tumors, is well established in the medical community.

The competitive interaction between tumor cells and the immune system is
complex, to say the least, and still is the topic of vast current medical research. It
involves an immense number of events with the kinetics of the interplay strongly
nonlinear and characterized by multi-stability, i.e., persistence of both benign
and malignant scenarios. The possible outcome of this interplay thus is not only
constituted by either tumor suppression or tumor outbreak, but there exist lots of
intermediate scenarios. Depending on the aim of a mathematical analysis, a more
detailed and precise model need not necessarily be better since it may simply
obscure, or even hide the main features.1 Especially, if the aim is to study treatment
protocols, and even more so if we are just interested in general structures rather than

1The short fragment “On Exactitude in Science” by Jorge Luis Borges is of interest here.
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particular cases, then low-dimensional cell population-based mathematical models
that try to capture the essence of the interactions in a few parameters are preferred.
For this reason, here we use some versions of Stepanova’s classical model [50] for
tumor immune system interactions as the vehicle to describe the structure of optimal
therapy protocols. This classical model does capture the main features that we want
to discuss here (such as immunosurveillance and tumor dormancy) while being low-
dimensional and minimally parameterized. This has the advantage of allowing us to
easily visualize the associated geometric features (regions of attractions, stability
boundaries, etc.) that are connected with the various stable behaviors.

Stepanova’s model has been the source of various generalizations, most notably
the paper [23] by Kuznetsov, Makalkin, Taylor and Perelson. In this paper, using
a classical logistic model for cancer growth, the authors estimate the parameters
based on in vivo data of B-lymphoma BCL1 in the spleen of mice and analyze
both local and global bifurcations. De Vladar and González [57] carry out a similar
analysis replacing logistic growth on cancer cells with a Gompertzian model. In
each case, the models exhibit both stable microscopic and macroscopic equilibria
and a comprehensive analysis of the dynamic behavior of the underlying systems
and its bifurcations is carried out in the respective papers. More recently, d’Onofrio
generalized these structures in a unifying meta model [36, 37] that incorporates all
these dynamical models and has similar qualitative features. In Stepanova’s model
the actions of the immune system are agglomerated into one numerical quantity
termed the immunocompetent cell density. Different generalizations of Stepanova’s
underlying model, such as the one given in the paper by Kirschner and Panetta
[20], in order to better model the complex interactions that make up the actions of
the immune system, break up this quantity into T-cells, effector cells, killer cells,
and more. This approach is also taken in the papers by de Pillis, Radunskaya,
and Wiseman [44, 46, 47] who analyze the underlying problem from an optimal
control perspective as it will be done here, albeit using a different type of objective.
Structured population models are considered, for example, by Delitalia and Lorenzi
in [8]. We refer the reader to the review article by Eftimie, Bramson, and Earn [9]
for a more general discussion of other non-spatial mathematical models. Spatial
methods on tumor immune interactions described by partial differential equations
have been considered, for example, in the research of A. Friedman and coworkers in
the context of macrophage activities [7] as well as for specific diseases (e.g., glioma
[12]). Tumor growth under the influence of the full microenvironment is considered
in papers by Friedman and Kim [11, 18]. Even more intricate mathematical models
that try to capture the increasingly complex interactions both within the immune
system itself and with the tumor are based on cellular automata such as in the
work of Mallet, de Pillis and Radunskaya [34, 45]. Here our intention is to describe
some of the fundamental aspects of tumor immune system interactions and their
implications on the qualitative structure of optimal therapy protocols. For this
purpose, Stepanova’s low-dimensional model along with some minor variations
such as done in the papers [23, 39, 57] appears adequate.

In Sect. 2 we briefly describe the underlying concepts from dynamical systems
theory that allow a geometric formulation for the problem of treating cancer as
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moving the state of the system from a malignant region of cancerous growth into
a benign region of tumor dormancy or immunosurveillance. This transfer then is
induced by the solution of an optimal control problem formulated in Sect. 3. Here
the objective function is tailored to the underlying multi-stable structure of the
system with tumor–immune interactions. As one particular scenario, in Sect. 4 we
then develop further the problem of chemotherapy with a strongly targeted cytotoxic
agent and a rudimentary immune boost. For such a model, optimal treatment
protocols switch after a brief administration of maximum dose chemotherapy to
giving significantly lower dose rates. In the medical literature such protocols have
been tested and sometimes are referred to as “chemo-switch” protocols [2, 43].
Clearly, in these solutions the tumor microenvironment plays a major role: the initial
chemotherapy is designed to move the state of the dynamics into a region where the
immune system is potent enough to control (possibly not to eliminate or eradicate)
the cancer and then much lower doses of chemotherapy are sufficient. In fact—but
such a structure is not included in the model—higher doses may be harmful in that
they might adversely effect the immune system which otherwise would have come
to the assistance in combating the tumor.

2 Multistability and Immune Surveillance

In her 1980 paper [50], Stepanova formulated a by now classical mathematical
model of two ordinary differential equations that aggregate the interactions between
tumor cell growth and the activities of the immune system during the development
of cancer. Precisely because of its simplicity—a few parameters incorporate many
medically important features—the underlying equations have been widely accepted
as a basic model. There exist numerous extensions and generalizations of this
model, e.g., [20, 23, 36, 37, 57], that all share in similar qualitative findings: while
the immune system can be effective in the control of small cancer volumes, for
large volumes the cancer dynamics suppresses the immune dynamics and the two
systems effectively become separated [57, appendix B]. In the first case, so-called
immunosurveillance, what medically would be considered cancer never develops;
in the latter case, therapeutic action is needed to cure the disease. However, as will
be seen, the persistence of both benign and malignant scenarios significantly affects
the structure of optimal chemotherapy protocols.

We briefly recall Stepanova’s model. Let x denote the tumor volume with a fixed
finite carrying capacity x1 < 1 and let y be a nondimensional, order of magnitude
variable related to the activities of various types of T -cells activated during the
immune reaction referred to as the immunocompetent cell density. While Stepanova
used an exponential model for the growth of the tumor, here we consider an arbitrary
growth rate F depending on the tumor volume x, F.x/, only assuming that F is a
positive, nondecreasing, twice continuously differentiable function defined on an
interval .0; x1/ that satisfies F.x1/ D 0. We shall generally use Gompertzian,
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logistic or generalized logistic growth models in our simulations. The dynamical
equations of the model are given by

Px D �CxF.x/ � �xy; (1)

Py D �I
�
x � ˇx2�y � ıy C ˛; (2)

with all Greek letters denoting constant coefficients. Equation (2) summarizes the
main features of the immune system’s reaction to cancer. Several organs such as the
spleen, thymus, lymph nodes, and bone marrow each contribute to the development
of immune cells in the body and the parameter ˛ models a combined rate of
influx of T -cells generated through these primary organs; ı is simply the rate of
natural death of the T -cells. The first term in this equation models the proliferation
of lymphocytes. For small tumors, it is stimulated by the tumor antigen which
is assumed to be proportional to the tumor volume x. It is argued in [50] that
large tumors suppress the activity of the immune system. The reasons lie in an
inadequate stimulation of the immune forces as well as a general suppression of
immune lymphocytes by the tumor (see [50] and the references therein). This
feature is expressed in the model through the inclusion of the term �ˇx2. Thus
1=ˇ corresponds to a threshold beyond which the immunological system becomes
depressed by the growing tumor. The coefficients �I and ˇ are used to calibrate
these interactions and in the product with y collectively describe a state-dependent
influence of the cancer cells on the stimulation of the immune system. The first
equation, (1), models tumor growth. The coefficient � denotes the rate at which
cancer cells are eliminated through the activity of T -cells and the term �xy thus
models the beneficial effect of the immune reaction on the cancer volume. Lastly,
�C simply is a tumor growth coefficient. This parameter could have been subsumed
in the functional form F , but we prefer to leave the definition of F to account only
for the qualitatively different structures that specify various growth models for the
cancer cells. In Stepanova’s original formulation this term F is simply given by
FE.x/ � 1, i.e., exponential growth of the cancer cells was considered, but here
we are interested in models with finite carrying capacities and use the Gompertzian
growth model FG.x/ D � ln.x=x1/ or logistic and generalized logistic models of
the form FL.x/ D 1 � .x=x1/� , � > 0.

In Table 1 we summarize the numerical values that were used for the compu-
tations and illustrations shown in this chapter. They almost exclusively are taken
from the paper [23] by Kuznetsov, Makalkin, Taylor, and Perelson who estimate
these parameters based on in vivo experimental data for B-lymphoma BCL1 in the
spleen of mice. In that paper, a classical logistic term is used for cancer growth
and we adjusted the growth rates to account for Gompertzian growth using linear
data fitting [28]. Also, the functional form

�
x � ˇx2�y used in Stepanova’s model

in Eq. (2) is a quadratic expansion of the term used in [23]. Following [23], x is
given in multiples of 106 cells and y is a dimensionless quantity that describes
the immuno-competent cell density on an order of magnitude basis relative to base
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value 1. The time scale is taken relative to the tumor cell cycle in mice and and
is in terms of 0:11 days [23]. However, these values are only used for a numerical
illustration of our analytical results.

Table 1 Variables and parameter values used in numerical computations

Symbol Interpretation Value Dimension Reference

x Tumor volume 106 cells [50]

x0 Initial value for x 600 106 cells

y Immuno-competent
cell density

Orders of magnitude
Non-dimensional

[50]

y0 Initial value for y 0.10 Non-dimensional

˛ Rate of influx 0.1181 Non-dimensional [23]

ˇ Inverse threshold for
tumor suppression

0.00264 Non-dimensional [23]

� Interaction rate 1 107 cells/day [23]

ı Death rate 0.37451 Non-dimensional [23]

�C Tumor growth parameter 0.5618 107 cells/day [28]

�I Tumor stimulated
proliferation rate

0.00484 Non-dimensional [28]

x1 Fixed carrying capacity 780 106 cells

2.1 Regions of Attraction and Stable Manifolds of Equilibria

We briefly review some fundamental concepts and results from dynamical systems
theory that we shall be using. Given a general differential equation of the form
Px D f .x/ with f W G ! R

n a continuously differentiable vector field defined on
some open set G 	 R

n, it follows from standard results on ordinary differential
equations that the initial value problem with initial condition x.0/ D x0 2 G has a
unique solution x D x.t I x0/ which is defined on a maximal open interval I 	 R.
The solution curves in the state space, x.�I x0/ W I ! G, t 7! x.t I x0/, are called the
trajectories of the system and the totality of all solution curves for x0 2 G is called
the phase portrait of the dynamical system. If f .x�/ D 0, then this solution curve is
just the point x.t I x�/ � x� defined for I D R and x� is called an equilibrium point.
In this case, the linear system Py D Ay with A D Df.x�/, the Jacobian matrix of f
at x�, is called the linearization around the equilibrium point. The eigenvalues of the
matrix A are also called the eigenvalues of f at x�. An equilibrium point x� is said
to be hyperbolic if none of its eigenvalues lies on the imaginary axis. Hyberbolic
equilibria play an important role in the theory of dynamical systems since the local
properties of the system near such a point are “stable” in the sense that they do not
change if small changes in the dynamics (such as in values of parameters that define
the vector field f ) occur. For example, local stability properties can be determined
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in terms of its eigenvalues: if all eigenvalues of A D Df.x�/ have negative real
part, then x� is locally asymptotically stable while it is unstable if there exists an
eigenvalue with positive real part.

Definition 1 (Region of Attraction). Let x� be a locally asymptotically stable
equilibrium point for Px D f .x/. Its region of attraction, A.x�/, consists of all
initial conditions x0 for which the corresponding solution exists for all t � 0 and
converges to x� as t ! 1,

A.x�/ D
n
x0 2 G W x.t I x0/ exists for all t > 0 and lim

t!1x.t I x0/ D x�
o
:

It is not difficult to see that the region of attraction of a locally asymptotically
stable equilibrium point is an open and connected subset of the state space. If the
equilibrium point is unstable, then there still exist points on a lower dimensional
manifold for which a similar convergence result holds true.

Definition 2 (Local Stable Manifold). Given a hyperbolic equilibrium point x�
and a sufficiently small neighborhood U of x�, the local stable manifold of x� in
U is defined as the set of all initial conditions x0 2 U such that the corresponding
solution x.t I x0/ exists and lies in U for all t > 0 and converges to x� as t ! 1,

W s
loc.x�IU / D

n
x0 2 U W x.t I x0/ 2 U for all t > 0 and lim

t!1 x.t I x0/ D x�
o
:

Theorem 1 ([13]). Let x� be a hyperbolic equilibrium point and let W denote the
k-dimensional linear subspace of Rn generated by all eigenvectors and generalized
eigenvectors of the matrix Df.x�/ that correspond to eigenvalues with negative
real parts. Then, for U sufficiently small, the local stable manifold of x� in U is a
k-dimensional embedded submanifold and its tangent space at x� is given by W .

The global stable manifold of x� is then defined by propagating the solutions that lie
in a local stable manifold backward in time. If we denote the flow of the differential
equation by ˚t , then we simply have that ˚t.x0/ D x.t I x0/ for t 2 I . Thus we get
the following definition:

Definition 3 (Global Stable Manifold). Given a hyperbolic equilibrium point x�,
let W s

loc.x�IU / denote the local stable manifold for a sufficiently small neighbor-
hood U of x�. The global stable manifold is then defined as

W s.x�/ D [t�0 f˚t.x0/ W x0 2 W s
loc.x�IU /g :

Unfortunately, by propagating trajectories backward, nice geometric properties may
be lost and global stable manifolds need no longer be embedded submanifolds, but
are only what are called immersed submanifolds. For example, a dense line on a
torus might arise.

Local and global unstable manifolds are defined by reversing the orientation of
time.
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2.2 Benign and Malignant Regions for Tumor–Immune
System Interactions

We return to our discussion of the system (1)–(2). There always exists a disease
free equilibrium point at .xf ; yf / D .0; ˛

ı
/ which is locally asymptotically stable

if �CF.0/ <
˛�

ı
and unstable if �CF.0/ >

˛�

ı
. The latter case includes

the Gompertzian model when limx!0C F.x/ D C1. Essentially, if the initial
tumor growth rate �CF.0/ is small enough, then the beneficial effects of the
immune system are able to eliminate the cancerous growth near the tumor free
equilibrium point in an extreme form of immunosurveillance. However, if there also
exist equilibria with positive x-values (and this is the scenario if the disease free
equilibrium point is unstable) then there is always the danger that, even if the disease
free equilibrium is locally stable, that a strong enough perturbation (event) may
dislocate the state out of the region of attraction of this equilibrium point. Note that
the positive half-line fx D 0; y > 0g is invariant and forms the stable manifold of
the disease free equilibrium point if �CF.0/ >

˛�

ı
.

Typically there also exist equilibria with positive tumor volumes. Figure 1
shows the phase portrait of the system (1) and (2) for a Gompertzian growth
rate and the parameters listed in Table 1. There is a locally asymptotically stable
focus at .xb; yb/ D .72:961; 1:327/ (marked by a green star), a saddle point at
.xs; ys/ D .356:174; 0:439/ (marked by a black star) and a second asymptotically
stable node at .xm; ym/ D .737:278; 0:032/ (marked by a red star). In the diagram
we also marked the stable manifold of the saddle as the red curve and the unstable
manifold of the saddle as the green curve. Both of these, since the dimension is 2,
are differentiable curves. Indeed, these curves play the most important roles in the
overall tumor–immune system dynamics: it is the stable manifold of the saddle that
separates the benign from the malignant behavior and it is the unstable manifold of
the saddle that for realistic initial conditions determines the steady-state behavior
of the uncontrolled system. Similar geometric structure are also valid for higher
dimensional systems which are called Morse-Smale systems [13].

Note that the tumor volume for the stable equilibrium point .xm; ym/ is close
to the carrying capacity and that it is by an order of magnitude larger than for the
equilibrium point .xb; yb/. For a typical set of parameter values, these values might
be interpreted as a microscopic and a macroscopic locally asymptotically stable
equilibrium point with the high value clearly indicating that the patient will succumb
to the disease.

Definition 4 (Benign and Malignant Equilibria). We call a locally asymptoti-
cally stable equilibrium point .x�; y�/ of the Eqs. (1) and (2) malignant if the corre-
sponding tumor volume x� is close to the carrying capacity of the system, benign if
it is by an order of magnitude smaller. We call the region of attraction of a malignant,
respectively benign equilibrium point the malignant, respectively benign region.

In case of a microscopic benign equilibrium, this region can be interpreted as the set
of all states of the system where the immune system is able to control the cancer.
This is one possible way of describing geometrically what medically has been called
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immunosurveillance. On the other hand, the region of attraction of the macroscopic
equilibrium point corresponds to conditions when the system has escaped from this
immunosurveillance and the disease will become lethal. Obviously, the boundary
between these two behaviors is the critical mathematical object to study and it is
formed by the stable manifold of the saddle point. Reality is far more complicated
than accounted for in this model and constantly random (and otherwise not modeled)
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Fig. 1 Phaseportrait of the uncontrolled system (1) and (2) for a Gompertzian growth rate F.x/ D
� log.x=x1/ and the parameter values in Table 1. The green star marks the benign equilibrium
point .xb; yb/ and the red star marks the malignant equilibrium point .xm; ym/. Their regions
of attractions are separated by the stable manifold (shown as the solid red curve) of the saddle
point (marked by the black star). The solid green curve is the unstable manifold of the saddle point
which represents the steady-state (long term) behavior of the system for initial points in the benign,
respectively malignant regions

events will take place that move the state of the system around in the state-space.
Once a temporary disturbance has passed, the system will again settle down to
follow the trajectories in the phase portrait. This may lead to the escape of the system
from immunosurveillance, but it also opens up the possibility of moving the state of
the system from a malignant position into the benign region through therapy. This
naturally leads to an optimal control formulation that will be discussed in Sect. 3.

2.3 Benign and Malignant Regions for Generalized
Logistic Growth

We still analyze the dynamics of the system for a generalized logistic growth rate

F.x/ D 1 �
�
x

x1

��
; � > 0;
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and, especially, how the benign and malignant regions change with the parameter
�. This exponent largely determines the rate of tumor growth: for small values of �,
the term .x=x1/� will be close to 1 and the model reflects a slowly growing tumor
while tumor growth accelerates with increasing values of � reaching unrestricted
exponential growth in the limit � ! 1. We only remark that if the function F
is multiplied with a tumor growth parameter �, and if this coefficient is made to
depend on the parameter � in the order of � D O.1

�
/, then a Gompertzian model

is obtained in the limit � ! 0. In this sense, the generalized logistic rate function
F interpolates between Gompertzian growth as � ! 0 and exponential growth as
� ! 1 with the parameter � determining the speed of tumor growth.

For a generalized logistic growth model, the disease free equilibrium point is
locally asymptotically stable for �C <

˛�

ı
and unstable for �C >

˛�

ı
. We shall

see below that there are no other equilibria for � close to 0 and in these cases the
disease free equilibrium point is globally asymptotically stable, i.e., every solution
converges to .xf ; yf /. This simply corresponds to a scenario when the immune
system is able to control the cancerous growth. If �C >

˛�

ı
, there will always exists

at least one equilibrium point with positive x-value. Solving the equation Px D 0 for
y and substituting into the relation Py D 0, these equilibria are determined by the
solutions of the nonlinear equation

�C

�
1 �

�
x

x1

��� �
�I
�
x � ˇx2

�� ı
�C ˛� D 0: (3)

in the interval .0; x1/. Note that zeros x� can only lie where the quadratic
polynomial

q.x/ D �I
�
x � ˇx2� � ı

is negative. Thus, if �I � 4ˇı, then all zeros x� lie in the intervals .0; x1/ or
.x2; x1/ with x1 < x2 the positive roots of q given by

x1 D 1

2ˇ

 
1 �

s
1� 4

ˇı

�I

!
and x2 D 1

2ˇ

 
1C

s
1 � 4ˇı

�I

!
I

for �I < 4ˇı, the polynomial q is always negative and thus the location of the roots
in .0; x1/ is not restricted. But in any case, there will never be more than three
roots.

Proposition 1. For a generalized logistic growth rate F.x/ D 1�.x=x1/� and for
all values of � > 0, there exist at most three equilibria for the dynamical system (1)–
(2) that have positive x-values. If �C >

˛�

ı
, then at least one such equilibrium point

exists.
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Proof. Rewrite Eq. (3) in the following form defining the polynomial P� and the
rational function R,

P�.x/ D 1 �
�
x

x1

��
D ˛�

�C

1

�I .ˇx2 � x/C ı
D R.x/:
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Fig. 2 Illustration of the possible number of equilibria for a generalized logistic growth rate
F.x/ D 1� .x=x1/� in the cases �I < 4ˇı (left) and �I > 4ˇı (right)

First consider the case when �I < 4ˇı. Under this assumption, R is positive
on Œ0;1/ with a global maximum for Qx D 1

2ˇ
. Since P�.x/ D 1 � .x=x1/� is

a decreasing function, it follows that there exists at most one equilibrium point in
the interval Œ0; 1

2ˇ
�, possibly none. In the interval Œ 1

2ˇ
;1/, the function R has a

unique inflection point Ox and is strictly concave over the interval Œ 1
2ˇ
; Ox/ and strictly

convex over Œ Ox;1/. Coupled with monotonicity and convexity properties of the
function P , it follows that there can be no more than two additional zeroes on the
interval Œ 1

2ˇ
;1/ for at most three possible zeros. Note that it is possible that there

are no solutions for certain parameter values, but there will always exist at least
one positive solution if R.0/ D ˛�

ı�C
< 1 simply since, in this case, we have that

R.0/ < 1 D P.0/ while R.x1/ > 0 D P�.x1/.
In the case when �I > 4ˇı, the function R has simple poles at x1 and x2 and is

positive and strictly monotonically increasing over .0; x1/ and positive and strictly
monotonically decreasing over .x2; x1/. Again it follows from monotonicity prop-
erties that there can be at most one zero on .0; x1/ and since limx!x1�R.x/ D C1,
it is clear that there exists a solution in this interval if and only if R.0/ D ˛�

ı�C
� 1.

Similarly, R is monotonically decreasing and convex over the interval .x2; x1/.
This allows for at most two more solutions. However, there may be none, especially
if � becomes very small. The underlying geometric properties are illustrated in
Fig. 2. �
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Figure 3 shows the values of the equilibria as a function of � for the data from
Table 1. We have �C >

˛�

ı
and thus the disease free equilibrium point .xf ; yf / D

.0; ˛
ı
/ is unstable. For small values of �, � < �� D 0:40355, there only exists one

globally asymptotically stable equilibrium point with small x-value that corresponds
to a microscopic benign state. These parameter values medically reflect a situation
where tumor growth is slow and the reaction of the immune system is able to control
the tumor. For �� D 0:40355 the system undergoes a saddle-node bifurcation
[13, 21] and two additional equilibria, one stable (malignant), the other unstable,
are created and the system becomes multi-stable for � > �� with three equilibria.
The benign equilibrium point .xb; yb/ is a stable focus whose values are represented
by the green curves in Fig. 3 and the malignant equilibrium point .xm; ym/ is a
stable node whose values are represented by the red curves; the values for the saddle
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Fig. 3 Values of the non disease free equilibria for the system (1) and (2) with a generalized
logistic growth rate F.x/ D 1�.x=x1/� as a function of �. The values for the benign equilibrium
point are shown as the green curve, for the saddle point as the blue curve and for the malignant
equilibrium point as the red curve with the x-values given in the figure on the top and the y-values
in the figure at the bottom. A saddle-node bifurcation occurs for �� D 0:40355 : : : and for � < ��

there exists only a globally asymptotically stable benign equilibrium. This scenario geometrically
represents the medical concept of immunosurveillance. (Reproduced with permission from [29],
c�2012, AIMS)
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point .xs; ys/ are represented by the blue curves. For example, for classical logistic
growth (� D 1) the numerical values are given by .xb; yb/ D .35:158; 0:537/,
.xs; ys/ D .387:527; 0:283/ and .xm; ym/ D .736:102; 0:032/.

Figure 4 illustrates the phaseportraits for the values � D 0:75 and 5. In each
figure we have highlighted the stable manifold of the saddle .xs; ys/, which forms
the stability boundary for the benign and malignant regions, as a thick solid red line.
These phase portraits show the decrease of the benign region at the expense of the
malignant regions as the parameter � increases reflecting the fact that the immune
system becomes increasingly overwhelmed by a fast growing tumor. In the limit
� ! 1 the malignant region converges to the region of uncontrolled growth for
the exponential model. This region differs little from the one for � D 5. The benign
equilibrium point .xb; yb/ converges to the disease free equilibrium point .xf ; yf /
as � ! 1.
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Fig. 4 Phase portraits of the system (1) and (2) with a generalized logistic growth rate F.x/ D
1� .x=x1/� for � D 0:75 (left) and � D 5 and the parameter values from Table 1. As � increases
(a model for faster growing tumors), the malignant region increases in size

3 Therapy as an Optimal Control Problem: Transfer
of the State from the Malignant into the Benign Region

We consider therapy with both a chemotherapeutic agent and some rudimentary
immunotherapy in the form of an immune boost. Following the log-kill hypothesis,
we assume that the elimination of tumor cells is proportional to the tumor volume
x and the concentration of the chemotherapeutic agent which we denote by u.
The effects of the chemotherapeutic agent on the immune system are complex
and are more difficult to assert. It is natural to model the effects on existing
cells of the immune system by a log-kill term in the equation for Py, but the
negative side effects of chemotherapy also generally cause a lower influx of
T-cells from the primary organs that are effected by chemotherapy, especially the
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bone marrow. These can be modeled by reducing the factor ˛ that models this
influx. For simplicity, we do not include a pharmacokinetic model and identify dose
rates with concentrations. (Generally, the changes in the optimal controls are of the
same nature as, for example, discussed in the papers [25, 32, 38].) We also include
a rudimentary immunotherapy in the form of an immune boost which is added as
a positive term to Eq. (2). Overall, the controlled equations with treatment take the
form

Px D �CxF.x/ � �xy � �xu; (4)

Py D �I
�
x � ˇx2

�
y � ıy � �yu C ˛ .1 � �u/C �yv: (5)

Admissible controls are Lebesgue measurable functions u and v which take values
in the interval Œ0; 1�. Since no pharmacokinetic model is included, without loss of
generality we normalize the maximum values for the controls to 1 and subsume the
maximum dose rates/concentrations in the coefficients for the pharmacodynamic
model (�, �, � and �). As before, all Greek letters denote constant positive
coefficients and in addition we have that � < 1. The state space for the problem
is given by M D f.x; y/ W 0 < x < x1; 0 < yg and we assume that initial
conditions lie in M. We also restrict the tumor growth rate F to Gompertzian,
logistic or generalized logistic models. For each of these the carrying capacity is
finite and we have that F.x1/ D 0.

Proposition 2. The region P is positively invariant for the control system, i.e., given
arbitrary admissible controls u W Œ0; T � ! Œ0; 1� and v W Œ0; T � ! Œ0; 1� defined over
an interval Œ0; T �, T � 1, the solution to the dynamics (4) and (5) exists on Œ0; T �
and the corresponding trajectory lies in M.

Proof. Since PyjyD0 D ˛ .1 � �u/ > ˛ .1� �/ > 0, it follows that the y-components
of the solution is always positive. Furthermore, for any control u, x � 0 is an
equilibrium solution to Eq. (4) and we also have that PxjxDx1

< 0. Hence the x-
component of the solution cannot leave the finite open interval .0; x1/. It follows
that the right hand side of the dynamics is linearly bounded and, by a standard
argument of ODEs, this implies that solutions exist on all of Œ0; T �. �

The practical aim of therapy thus becomes to move an initial state .x0; y0/ of the
system that lies in the malignant region of the uncontrolled system into the region
of attraction of the stable, benign equilibrium point while keeping side effects
tolerable. This can be formulated as the following optimal control problem:

[CI] for a free terminal time T , minimize the objective

J D Ax.T / � By.T /C
Z T

0

.Cu.t/CDv.t/C S/ dt; (6)
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over all Lebesgue measurable functions u W Œ0; T � ! Œ0; 1� and v W Œ0; T � !
Œ0; 1� subject to the dynamics (4) and (5) and initial conditions x.0/ D x0 and
y.0/ D y0.

The objective function consists of three separate components: (1) the penalty term
Ax.T / � By.T / at the final time is designed to induce the state of the system
to move from the malignant into the benign region, (2) the integrals

R T
0 u.t/dt

and
R T
0

v.t/dt measure the total amounts of drugs given, and (3) the penalty term
ST on the final time is included to make the mathematical problem well-posed.
All coefficients are positive. The choice of the weights aims at striking a balance
between the benefit at the terminal time T , Ax.T / � By.T /, and the overall
side effects measured by the total amount of drugs given, while it guarantees the
existence of an optimal solution by also penalizing the free terminal time T . We
emphasize that the coefficients in the objective (6) are variables of choice and should
be fine tuned to calibrate the system’s optimal response. We discuss the rationale
behind each term.

(1) The main feature here is to formulate the objective (6) in such a way that
minimization induces a transfer of the system from the malignant into the
benign region of the state space. For this, it may no longer be adequate to
just minimize the tumor volume since, as can be seen in the phaseportraits,
small tumor volumes are possible that lie in the malignant region if the immune
system is depressed. Rather, the geometric shape of the separatrix matters.
Ideally, if a functional description of this manifold could be given, one would
minimize or maximize the level sets of this function to achieve a transfer into
the benign region. But these are generally highly transcendental equations that
cannot be solved explicitly. On the other hand, local approximations for the
separatrix at the saddle point are easily obtained. It follows from Theorem 1 that
the stable eigenspace at the saddle is the tangent space to the separatrix. This
tangent line is easily computed and its normal vector can serve as a reasonable
direction in which we want the system to move. A second natural option is to
take the direction of the (correctly oriented) unstable eigenvector at the saddle
since this is the path which uncontrolled trajectories in the benign region will
closely follow. It follows from the geometric properties of the system near the
saddle that the coefficients A and B are positive in both cases. Minimizing this
quantity thus creates the necessary incentive for the system to move into the
benign region.

(2) The model does not include a separate compartment of healthy cells to describe
the side effects of treatment. These are only measured indirectly through
the total amounts of drugs administered. Following standard pharmacological
practice, these are represented by the AUC (area under the curve) and we
thus include the term

R T
0
Cu.t/ C Dv.t/dt in the objective as a so-called soft

constraints. Clinical data as to the severity of the drugs should be reflected in the
choices for C and D. Naturally, the specific type of tumor and stage of cancer
will enter into the choice of these coefficients. In a more advanced stage, higher
side effects will need to be tolerated and smaller values of C would be taken.
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(3) The last term in the objective function, which can be written either under the
integral or as a separate penalty term ST , is included to give a mathematically
well-posed problem formulation. Indeed, the existence of the asymptotically
stable, benign equilibrium point generates controlled trajectories that improve
the value Ax.T /� By.T / of the objective along the trivial controls u D 0 and
v D 0. If no penalty is imposed on the terminal time, then this creates a “free
pass” structure in which the value of the objective can be improved without
incurring a cost. As a result of this feature, an optimal solution may not exist.
Intuitively, the controls switch to .u; v/ D .0; 0/ immediately as the separatrix
is crossed and then take an increasingly longer time as they pass near the saddle
point with the infimum arising in the limit T ! 1. The infimum arises as the
control switches to follow u D 0 when the controlled trajectory intersects the
separatrix, then follows the separatrix for an infinite time to the saddle and
then again leaves this saddle point along the unstable manifold, once more
taking an infinite time. This indeed would be the “optimal” solution for this
problem formulation, but it is not an admissible trajectory in our system. From
a practical point of view, it clearly is undesirable for the system to move along
the boundary between benign and malignant behaviors. In view of imprecise
and mathematically unmodeled dynamics and other random perturbations, the
addition of this term provides desired robustness and stability properties for the
underlying real system. Thus it makes perfect sense, both mathematically and
practically, to include a penalty term on the final time in the objective. This
creates a well-posed mathematical problem for which the existence of solutions
follows from standard theory.

3.1 Necessary Conditions for Optimality: Bang-Bang
and Singular Controls

We write the state of the system as z D .x; y/T and express the dynamics in the
vector field form

Pz D f .z/C ug1.z/C vg2.z/ (7)

with drift vector field

f .z/ D
�

�CxF.x/ � �xy

�I
�
x � ˇx2�y � ıy C ˛

�
(8)

and control vector fields

g1.z/ D �
�

�x

�y C ˛�

�
and g2.z/ D

�
0

�y

�
(9)
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For a two-dimensional row-vector � D .�1; �2/, we define the Hamiltonian

H D H.�; x; y; u; v/

as

H D Cu CDv C S C �1 .�CxF.x/ � �xy � �xu/ (10)

C�2
�
�I
�
x � ˇx2�y � ıy � �yu C ˛ .1 � �u/C �yv

�

or, equivalently, in terms of the drift and control vector fields as

H D S C h�; f .z/i C u .C C h�; g1.z/i/C v .D C h�; g2.z/i/ :

If .u�; v�/ is an optimal control defined over an interval Œ0; T � with corresponding
trajectory z� D .x�; y�/T , then it follows from the Pontryagin maximum principle
[48] (for some more recent references on the topic, see [5,6,49]) that there exists an
absolutely continuous covector � D .�1; �2/, � W Œ0; T � ! �

R
2
��

, that satisfies the
adjoint equations

P�1.t/ D �@H
@x
.�.t/; x�.t/; y�.t/; u�.t/; v�.t//

D ��1.t/
˚
�C

�
x�.t/F 0.x�.t//C F.x�.t//

� � �y�.t/ � �u�.t/


��2.t/�I .1 � 2ˇx�.t// y�.t/ (11)

P�2.t/ D �@H
@y
.�.t/; x�.t/; y�.t/; u�.t/; v�.t//

D �1.t/�x�.t/ � �2
˚
�I
�
x�.t/ � ˇx�.t/2

� � ı � �u�.t/C �v�.t/


(12)

with terminal conditions �1.T / D A and �2.T / D �B such that for almost every
time t 2 Œ0; T �, the optimal controls .u�.t/; v�.t// minimize the Hamiltonian H
along .�.t/; x�.t/; y�.t// over the control set Œ0; 1� � Œ0; 1� with the minimized
Hamiltonian being constant and equal to 0,

H.�.t/; x�.t/; y�.t/; u�.t/; v�.t// � 0:

Controlled trajectories .z; .u; v// for which there exists a multiplier � such that these
conditions are satisfied are called extremals and the triple .z; .u; v/; �// including the
multiplier is called an extremal lift. Note that the adjoint equation is a homogeneous
linear equation that can succinctly be written in the form

P�.t/ D ��.t/ .Df .z�.t//C u�.t/Dg1.z�.t//C v�.t/Dg2.z�.t/// : (13)

The transversality condition on �.T / implies the following statement:
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Corollary 1. The multiplier � is nontrivial, i.e., �.t/ ¤ 0 for all t 2 Œ0; T �.
Since the HamiltonianH is linear in the controls and the control set is a compact

interval in R
2, the minimization decouples and can be carried out separately.

Defining the switching functions ˚1 for u and ˚2 for v as

˚1.t/ D CCh�.t/; g1.z�.t//i D C ��1.t/�x�.t/��2.t/ .�y�.t/C ˛�/ ; (14)

and

˚2.t/ D D C h�.t/; g2.z�.t//i D D C �2.t/�y�.t/; (15)

it follows that

u�.t/ D
(
0 if ˚1.t/ > 0;

1 if ˚1.t/ < 0;
and v�.t/ D

(
0 if ˚2.t/ > 0;

1 if ˚2.t/ < 0:
(16)

A priori the control is not determined at times � where the switching function
vanishes, ˚i.�/ D 0, with every value possible in principle. However, if the
derivative of the switching function is nonzero, d˚i

dt
.�/ ¤ 0, then ˚i changes

sign at � and the control is discontinuous with a switch between the boundary
values of the control interval. Controls which only have switchings of this type
are called bang-bang and we also refer to the constant controls given by 0 or 1
as bang controls. The other extreme arises if a switching function ˚i vanishes
identically over a nonempty open interval I . In this case also all its derivatives
must vanish on I and differentiating the switching functions while enforcing the
dynamics until the controls explicitly appear typically allows to compute controls
u� and v� that generate such behavior. A different procedure is employed in [55].
If these controls take values in the control set, they are admissible and often
become the prime candidates for optimality. Such controls are called singular for
historical reasons which have to do with the fact that the matrix of the second
derivatives ofH with respect to the controls becomes singular, in fact, is identically
zero in our case. Additional necessary conditions for optimality, the so-called
generalized Legendre-Clebsch conditions [5, 49], allow to distinguish between
locally minimizing and maximizing controls. Here, since we consider a multi-input
optimal control problem, it is even possible that both controls would be singular at
the same time in which case the controls are called totally singular.

Overall, optimal controls need to be synthesized from the constant bang and
singular controls. This generally is a highly nontrivial task and requires to analyze
the zero sets of the switching functions. For this, it is imperative to have a transparent
procedure to compute the derivatives of the switching function and this is provided
with the help of the Lie bracket of vector fields.

Definition 5 (Lie Bracket of Vector Fields). Given two differentiable vector fields
f and g defined on some open set G 	 R

n, f; g W G ! R
n, their Lie bracket Œf; g�

is another vector field defined on G by



Cancer Chemotherapy with Tumor–Immune System Interactions 175

Œf; g�.x/ D Dg.x/f .x/ �Df.x/g.x/:

We only mention the most important structural properties of the Lie bracket. It is
clear that the Lie bracket is anti-commutative, i.e., for all vector fields we have that
Œf; g� D �Œg; f � and a simple computation verifies that for any vector fields f , g
and h the Lie bracket satisfies the Jacobi identity

Œf; Œg; h�� C Œg; Œh; f ��C Œh; Œf; g�� � 0:

Proposition 3. Let z.�/ be a solution of the dynamics (7) for the controls u and v
and let � be a solution of the corresponding adjoint Eq. (13). For a continuously
differentiable vector field h, let

�.t/ D h�.t/; h.z.t//i D �.t/h.z.t//: (17)

The derivative of � is then given by

P�.t/ D h�.t/; Œf C ug1 C vg2; h�.z.t//i : (18)

Proof. Dropping the argument t , along the solutions of the dynamics and adjoint
equation, we have that

P� D P�h.z/C �Dh.z/Pz
D �� .Df .z/C uDg1.z/C vDg2.z// h.z/C �Dh.z/ .f .z/C ug1.z/C vg2.z//

D � .Dh.z/f .z/ �Df.z/h.z//C u� .Dh.z/g1.z/ �Dg1.z/h.z//
C v� .Dh.z/g2.z/ �Dg2.z/h.z//

D h�; Œf C ug1 C vg2; h�.z/i :

For example, since Œh; h� � 0 for any vector field h, the first derivatives of the
switching functions ˚1 and ˚2 are thus given by

P̊
1.t/ D h�.t/; Œf C vg2; g1�.z�.t//i

and

P̊
2.t/ D h�.t/; Œf C ug1; g2�.z�.t//i :

The commutator of the control vector fields is easily computed to be

Œg1; g2�.z/ D
�

0

�˛�

�
; (19)



176 U. Ledzewicz and H. Schättler

and thus is a constant vector field. For � D 0, i.e., when the effects of chemotherapy
on the constant influx of immune cells from the primary organs are not considered
(or are small), the two control vector fields commute and this considerably simplifies
the mathematical analysis. Generally, an analysis of the necessary conditions for
optimality of the maximum principle needs to be carried out to obtain information
as to the concatenation structure of optimal controls. We show how such an analysis
is carried out for two simpler models when we neglect the effects of chemotherapy
on the immune system or simply assume that these are small. Such an assumption
can be justified for so-called strongly targeted drugs.

4 Optimizing Cancer Chemotherapy with Strongly
Targeted Cytotoxic Drugs

In this simplified version of model (4) and (5) we only consider a chemotherapeutic
agent and assume that its effects on the immune system are small and thus in a first
approximation can be ignored. In this case, the dynamics simplifies to

Px D �CxF.x/ � �xy � �xu; x.0/ D x0; (20)

Py D �I
�
x � ˇx2

�
y � ıy C ˛; y.0/ D y0: (21)

We shall analyze the structure of optimal controls for both a Gompertzian (FG.x/ D
� ln.x=x1/) and generalized logistic growth model (FL.x/ D 1�.x=x1/� , � > 0)
and it will be seen that the results for the Gompertzian model relate to the limiting
behavior of the results for the generalized logistic model as � ! 0. The drift and
control vector fields are

f .z/ D
�

�CxF.x/ � �xy

�I
�
x � ˇx2�y � ıy C ˛

�
and g.z/ D

���x
0

�
:

Since the Hamiltonian vanishes identically, it follows from the terminal conditions
�1.T / D A and �2.T / D �B that the terminal points of optimal controlled
trajectories need to lie on specific curves. We thus get the following transversality
conditions for the terminal points.

Lemma 1. If the optimal control ends with a segment where u D 0 or the control
is singular, u D using, then the terminal point .x�.T /; y�.T // lies on the curve

A

�
��Cx ln

�
x

x1

�
� �xy

�
� B ��I

�
x � ˇx2

�
y � ıy C ˛

�C S D 0I (22)

if the optimal control ends with a segment for u D 1, then it lies on the curve
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A

�
��Cx ln

�
x

x1

�
� �xy � �x

�
�B ��I

�
x � ˇx2�y � ıy C ˛

�CC CS D 0:

(23)

4.1 Singular Controls and Arcs

If an optimal control u� is singular on an open interval I , then the switching
function ˚ ,

˚.t/ D C C h�.t/; g .z�.t//i D C � �1.t/�x�.t/;

and all its derivatives vanish on I . Furthermore, the Hamiltonian H vanishes
identically over Œ0; T � and thus we also have that

H D S C h�.t/; f .z�.t//i C u�.t/˚.t/ � 0:

Along a singular arc it therefore follows that

H D S C h�.t/; f .z�.t//i � 0

and combining this relation with ˚.t/ � 0, we obtain

h�.t/; Cf .z�.t//i � �CS � h�.t/; Sg .z�.t//i

so that

h�.t/; Cf .z�.t// � Sg.z�.t//i � 0:

Furthermore, it follows from Proposition 3 that

P̊ .t/ D h�.t/; Œf; g�.z�.t//i � 0

on I . Since � 2 �
R
2
��

is nontrivial, the vector fields Cf � Sg and Œf; g� must be
linearly dependent when the optimal control is singular. Hence a singular arc must
lie in the curve determined by

det .Cf .z/ � Sg.z/; Œf; g�.z// D 0: (24)

Proposition 4. For the optimal control problem [CI], any singular arc is contained
in the zero set S of the following quadratic function in y,

P.x; y/ D p2.x/y
2 C p1.x/y C p0.x/;
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with coefficients that are functions of x given by

p0.x/ D �C˛�CxF 0.x/;

p1.x/ D ŒC�CF.x/C S���I .x � 2ˇx2/ � �CxF 0.x/C
�
�I
�
x � ˇx2

�� ı
�
;

p2.x/ D �C��I
�
x � 2ˇx2

�
:

Proof. A direct calculation verifies that the Lie bracket Œf; g� is given by

Œf; g�.z/ D Dg.z/f .z/ �Df.z/g.z/ D �x

�
�CxF

0.x/
�I .1 � 2ˇx/y

�
:

Hence we have that

det .Cf .z/ � Sg.z/; Œf; g�.z//

D �x

ˇ̌
ˇ̌
ˇ̌
C .�CxF.x/ � �xy/C S�x �CxF

0.x/

C
�
�I
�
x � ˇx2�y � ıy C ˛

�
�I .1 � 2ˇx/y

ˇ̌
ˇ̌
ˇ̌

D �x � P.x; y/

with the function P defined by the determinant on the right-hand side. Multiplying
out the terms verifies the functional form and the coefficients specified above. �

SinceP is quadratic in y, for every fixed value x the singular curveS contains at
most two points in M. For a Gompertzian growth model, we have that xF 0

G.x/ � �1
and for the generalized logistic model we get xF 0

L.x/ D ��.x=x1/� . In either case,
the coefficient p0.x/ is always positive. The quadratic coefficient p2.x/ does not
depend on the growth function and is negative for x < 1

2ˇ
and positive for x > 1

2ˇ
.

In particular, for x < 1
2ˇ

there exist two real solutions, one positive, one negative.
Only the positive one is of interest for the problem and thus the singular curve S is
the graph of a function over the interval .0; 1

2ˇ
/. Whether solutions exist for x > 1

2ˇ

depends on the actual parameter values. Analytic formulas for y as a function of x
can still be written down, but they get unwieldy.

For a singular trajectory to be optimal, it must satisfy the Legendre-Clebsch
condition for optimality [5, 49]. In its simplest version it states that

h�.t/; Œg; Œf; g��.z�.t//i � 0 (25)

along the extremal lift associated with the singular control (while this quantity is
nonnegative along maximizing controls). A direct calculation shows that

Œg; Œf; g��.z/ D D .Œf; g�/ .z/g.z/ �Dg.z/Œf; g�.z/
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D ��2x
�
�C

�
xF 0.x/C x2F 00.x/

�
�I .1 � 4ˇx/ y

�
;

but we now need to analyze the different growth functions separately.
For a Gompertzian model, FG.x/ D � ln.x=x1/, we have that

xF 0
G.x/ � �1 and xF 0

G.x/C x2F 00
G.x/ � 0

and thus the Lie brackets are given by

Œf; g�.z/ D �x

� ��C
�I .1 � 2ˇx/y

�

and

Œg; Œf; g��.z/ D ��2x
�

0

�I .1 � 4ˇx/ y

�
:

The vector fields g and Œf; g� are linearly independent unless x D 1
2ˇ

. For x D
1
2ˇ

there does not exist a point on the singular curve: it follows from P̊ .t/ D
��1.t/ ��C2ˇ D 0 that �1.t/ D 0 and thus ˚.t/ D C > 0. For x ¤ 1

2ˇ
, we can

express the second-order brackets Œf; Œf; g�� and Œg; Œf; g�� as linear combinations of
this basis in the form

Œf; Œf; g��.z/ D '1.z/g.z/C '2.z/Œf; g�.z/ (26)

and

Œg; Œf; g��.z/ D �1.z/g.z/C �2.z/Œf; g�.z/: (27)

Along a singular arc we have that

h�.t/; g .z�.t//i D �C < 0

and

h�.t/; Œf; g� .z�.t//i D 0:

Hence

h�.t/; Œg; Œf; g�� .z�.t//i D �C�1.z�.t//

and thus the Legendre-Clebsch condition is satisfied if and only if �1.z�.t// is
nonnegative. It is not difficult to see that
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�1.z/ D ��C
1 � 4ˇx

1 � 2ˇx
and �2.z/ D �� 1 � 4ˇx

1 � 2ˇx

so that the strengthened Legendre-Clebsch condition is satisfied for 0 < x < 1
4ˇ

and
1
2ˇ
< x and it is violated for 1

4ˇ
< x < 1

2ˇ
.

By solving the equation

R̊ .t/ D h�.t/; Œf; Œf; g��.z�.t//i C u.t/ h�.t/; Œg; Œf; g��.z�.t//i D 0 (28)

for the control u, the singular control can formally be expressed as

using.t/ D �h�.t/; Œf; Œf; g�� .z�.t//i
h�.t/; Œg; Œf; g�� .z�.t//i :

Using the representations for the second order brackets, this simplifies to

using.t/ D �'1.z�.t// h�.t/; g.z�.t//i C '2.z�.t// h�.t/; Œf; g�.z�.t//i
�1.z�.t// h�.t/; g.z�.t//i C �2.z�.t// h�.t/; Œf; g�.z�.t//i

D �'1.z�.t//
�1.z�.t//

: (29)

Overall, we therefore have the following result:

Proposition 5 ([28]). For the optimal control problem [CI] with a Gompertzian
growth rate, FG.x/ D � ln.x=x1/, the control that keeps the singular curve S
invariant is given in feedback form as

using.t/ D �'1.z�.t//
�1.z�.t//

with the coefficients '1 and �1 defined through the relations (26) and (27). This
control is admissible if and only if its value lies in the interval Œ0; 1�. The
strengthened Legendre-Clebsch condition is satisfied for x < 1

4ˇ
and 1

2ˇ
< x, and it

is violated for 1
4ˇ
< x < 1

2ˇ
.

Based on the formulas derived above, the singular arc, the singular control, and
their admissible portions can easily be evaluated numerically. Note that, given a
point z�.t/ 2 S , the equations ˚.t/ D 0 and P̊ .t/ D 0 have a unique solution
for the multiplier �.t/ and if the singular control is admissible, this locally defines a
singular arc along which the strengthened Legendre-Clebsch condition is satisfied.
In Fig. 5 we illustrate the structure of the singular curve for the data from Table 1
and parameter values .C; S/ D .0:05; 0:05/.

For the generalized logistic growth rate, FL.x/ D 1 � .x=x1/� , � > 0, we have
that



Cancer Chemotherapy with Tumor–Immune System Interactions 181

xF 0
L.x/ D ��

�
x

x1

��
and x2F 00

L.x/ D �� .� � 1/

�
x

x1

��

and thus

Œf; g�.z/ D �x

 
��C�

�
x
x1

��

�I .1 � 2ˇx/ y

!

and

Œg; Œf; g��.z/ D ��2x
 

��C�2
�

x
x1

��

�I .1 � 4ˇx/ y

!
:
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Fig. 5 Example of singular curves for problem [CI] with a Gompertzian growth rate FG.x/ D
� ln.x=x1/. The admissible portions (where the values of the control lie in the interval Œ0; 1�)
are identified by the solid green segments. Only these segments represent actual trajectories of the
system

Proposition 6 ([29]). For the optimal control problem [CI] with a generalized
logistic growth rate FL.x/ D 1 � .x=x1/� , � > 0, the strengthened Legendre-
Clebsch condition is satisfied if and only if

� <
1 � 4ˇx�.t/
1 � 2ˇx�.t/

: (30)

Proof. Suppose the control u� is singular over an open interval I . Then ˚.t/ � 0

on I , i.e., �1.t/�x�.t/ � C > 0, implies that �1 is positive along a singular arc.
Furthermore, P̊ .t/ � 0 on I gives that
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�2.t/�I .1 � 2ˇx�.t// y�.t/ � �1.t/�C �

�
x�.t/
x1

��
> 0:

Evaluating the Legendre-Clebsch condition, and using the above relation to elimi-
nate the multiplier �2, we obtain that

h�.t/; Œg; Œf; g��.z�.t//i

D �2
�
�1.t/�C

�
x�.t/
x1

��
�2x�.t/C �2.t/�I

�
4ˇx2�.t/ � x�.t/

�
y�.t/

�

D �2�1.t/x�.t/

8
<̂
:̂
�C

�
x�.t/
x1

��
�2 C

�C

�
x�.t/

x1

��
�

1 � 2ˇx�.t/
.4ˇx�.t/ � 1/

9
>=
>;

D �2�1.t/�C

�
x�.t/
x1

��
�x�.t/

�
� � 1 � 4ˇx�.t/

1 � 2ˇx�.t/

�
: (31)

Since �1.t/ is positive along a singular arc, this implies that condition (25) holds if
and only if (30) is satisfied. �

This determines the following intervals along which an optimal control can be
singular dependent on the parameter �.

Corollary 2 ([29]). Suppose an optimal control u� for the optimal control problem
[CI] with a generalized logistic growth rate is singular at time t . Then, it follows
that

1. if 0 < � < 1, we have either 0 � ˇx�.t/ < 1
2
1��
2�� <

1
4

or 1
2
< ˇx�.t/,

2. if 1 � � � 2, then 1
2
< ˇx�.t/ and

3. if � > 2, then 1
2
< ˇx�.t/ < 1

2
1��
2�� . �

These relations readily follow from condition (30) and are illustrated in Fig. 6. In
the limiting case � ! 0 we obtain that the Legendre-Clebsch condition is satisfied
for ˇx in the intervals Œ0; 1

4
/ [ . 1

2
;1/ and this agrees with Proposition 5 for a

Gompertzian growth function. As � increases, these intervals shrink until, in the
limit � ! 1, for exponential growth singular controls no longer are optimal.
The computation of the singular control is exactly as for the case of a Gompertzian
function and the same formula (29) is valid, albeit with different functions �1 and '1.

4.2 Optimal Controlled Trajectories for a Gompertzian
Growth Function

We give some examples of optimal controlled trajectories for different scenarios
that show the structure of the solutions [28]. Optimal controls for problem [CI]
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Fig. 6 The highlighted region for fixed value of � (plotted vertically) represents the intervals
(horizontally) scaled in terms of ˇx on which the Legendre-Clebsch condition for minimality of
singular arcs is satisfied. As � increases, these intervals become smaller and in the limit � ! 1
(exponential growth) singular controls are not optimal. (Reproduced with permission from [29],
c�2012, AIMS)

typically contain a singular arc and its presence makes numerical computations
challenging. The numerical difficulties lie with the fact that singular controls
are only optimal on lower dimensional submanifolds and without any a priori
information about these structures, numerical algorithms have extreme difficulties
finding these sets. A numerically computed “optimal” solution often simply shows
numerical chattering, i.e., controls that seemingly switch rapidly between various
values, not necessarily the extreme points 0 and 1 of the control interval. These
are tell-tale signs of optimal singular arcs. In the computations below (which are
reproduced from the papers [26] and [28]) the classical "-approach was used in
which a quadratic penalty term "

R T
0

u2.t/dt is added to the objective and then the
optimal controls for the underlying problem are recovered in the limit as " ! 0.
For the actual computations GPOPS (General Pseudo-spectral OPtimal Control
Software), an open-source MATLAB optimal control software that implements
the Gauss hp-adaptive pseudo-spectral methods (http://www.gpops.org/) was used.
These methods approximate the state using a basis of Lagrange polynomials and
collocate the dynamics at the Legendre-Gauss nodes [3,4,16]. The continuous-time
optimal control problem is then transformed into a finite-dimensional nonlinear
programming problem that is being solved using standard algorithms. These type
of algorithms are especially effective to find controls that lie in the interior of
the control set like the singular controls for our problem. The analytical formulas
derived above allowed us to verify that the numerically found solutions indeed were
accurate in the sense that the corresponding controlled trajectories followed the

http://www.gpops.org/
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singular curve S along singular controls. In some simple cases, which arise when
the coefficients C and S in the objective (6) skew the importance of the side-effects
versus the terminal time, optimal controls give full-dose chemotherapy over the full
interval Œ0; T �. But aside for such special scenarios, optimal solutions always contain
a time interval when the control is singular.

We illustrate the changes in the structure of optimal controls as we vary
the coefficients C and S in the objective. The coefficients A and B related to the
stable eigenvector of the saddle are kept constant as A D 0:00192 and B D 1

and the numerical value chosen for � is � D 1. In our computations, we use the
same initial condition given by .x0; y0/ D .600; 0:1/. The initial tumor volume x0
is given as a multiple of some reference value and represents a tumor cell count that
is 600 times higher than some chosen base value (106 cells); y0 is a dimensionless,
order-of-magnitude quantity that represents a depletion of the immuno-competent
cell densities to 10% of a nominal value. These initial conditions lie well within the
malignant region and initially in each scenario considered below the control is given
by u � 1 for some interval Œ0; t1�.

Scenario 1: If the penalty on the terminal time T is taken large relative to the side-
effects of treatment,S  C , this term becomes dominant and the optimal control
is simply constant given by full dose treatment, u � 1. Figure 7 shows such an
example when S D 0:28 and C D 0:001. In the figure, the initial and terminal
points are labeled w0 D .x0; y0/ and wT D .xT ; yT /, respectively. It is noticeable
that with such a high cost on the terminal time, the optimal trajectory barely
crosses into the benign region. A blow-up of the trajectory near the terminal point
is given in the small box inserted into the figure.) Yet, assuming the dynamics
follows the uncontrolled system after the final time T , the state then converges to
the benign equilibrium point. The figure also shows the potential singular arc for
these coefficients which in this range is the graph of a function with its admissible
portion identified by the solid green segment. For these parameter values the
optimal solution terminates exactly at the time when the singular arc is reached,
but this is a mere coincidence without significance. The figure also shows the
terminal curves defined by the transversality conditions (22) and (23) and in this
case the terminal point lies at the intersection of the singular curve with the curve
defining the transversality condition for u D 1.

Scenario 2: As the penalty S on the time used is decreased, optimal controlled
trajectories starting from the initial condition .x0; y0/ give an initial maximum
dose chemotherapy, u � 1, until the singular curve S is reached. If the
corresponding singular control is admissible, at that time the optimal control
switches to the singular control. Optimal controlled trajectories then follow the
singular arc from the malignant into the benign region across the separatrix. In
the benign region, at a certain time � administration of chemotherapy stops,
i.e., the control switches to u � 0 and follows the uncontrolled trajectory
towards the benign equilibrium point. If the penalty on the chemotherapeutic
agent is not too high, then optimal controls will switch one more time to give
a short full dose chemotherapy segment at the end of treatment, possibly after
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Fig. 7 Optimal controlled trajectory for Scenario 1. The optimal control is constant given by
u�.t / 	 1

a prolonged period of rest. We use the notation 1s0, respectively 1s01, to label
such concatenation sequences for the optimal controls. That is, an 1s01-trajectory
starts with an interval Œ0; t1� when the control is at maximum dose rate, u � 1,
followed by an interval Œt1; �� where the control is singular and the trajectory
follows an admissible singular arc. The optimal behavior then includes a rest
period over an interval Œ�; 
� when no drugs are given, u � 0, and may end with
another short burst of full dose chemotherapy over a final interval Œ
; T �. Such
a structure can also be used to define a three-dimensional minimization problem
over the variables .�; 
; T / whose numerical solution defines the optimal control.
Overall, a concatenation sequence for the control of at most the form 1s01 results.
Figure 8 shows an example of such a numerically computed optimal controlled
trajectory for .C; S/ D .0:01; 0:2/. As before, we label the initial and terminal
conditions by w0 D .x0; y0/ and wT D .xT ; yT /, respectively, and we denote the
consecutive switching points by w1, w2 and w3. In the range where the singular
arc comes into play, it is the graph of a function and the figure also identifies its
admissible segment as the solid green segment of the curve.

Scenario 3: If the penalty on the chemotherapeutic agent is increased further, the
last full dose therapy segment disappears and the structure of optimal controlled
trajectories reduces to 1s0. Increasing the parameter C gives a more prominent
role to the side effects and in this case the optimal trajectory ends on the
curve (22) that defines the terminal values for the control u D 0. This situation is
rather typical and we illustrate it for the case .C; S/ D .0:05; 0:01/ in Fig. 9.
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Fig. 8 Optimal controlled trajectory for Scenario 2. Following an initial full dose chemotherapy
segment, the optimal control switches to the singular control as the singular arc is reached and
then follows the singular arc. After a prolonged rest period, another short burst of chemotherapy
is given at the end. Note that the tumor volume initially increases along the rest period, but as the
immune system becomes stronger this trend is reversed

4.3 Comments and Interpretation

There are some interesting theoretical insights about optimal therapies in the
presence of tumor immune interactions that can be drawn from these numerical
computations. By including a penalty term on the final time T , we have given a
well-posed formulation for which optimal controls exist. If a strong emphasis is put
onto this penalty, optimal controls simply will be constant maximum dose therapies.
Thus, if time is of the essence, give as much as you can as soon as you can. However,
if a longer time horizon is permissible and the coefficient at the terminal time T is
lowered, optimal controls become concatenations that start with a full dose therapy
session to reduce the high initial tumor burden, but then switch to reduced dose
rates according to the singular control. During such a period (see scenario 2) it is
even possible that the tumor volume x increases again. But the immunocompetent
density y increases as well and since the states already lie in the benign region, this
eventually leads to a better outcome with the trajectories converging to the benign
equilibrium point. Note that optimal controls no longer aim at eradicating the tumor,
but rather are content to move the state of the system into a region where the innate
beneficial actions of the immune system are able to maintain the cancer at a low
level reminiscent of tumor dormancy and/or immune surveillance. In the medical
literature, such protocols that initially apply a burst of MTD chemotherapy to reduce
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Fig. 9 Optimal controlled trajectory for Scenario 3. Following an initial full dose chemotherapy
segment, the optimal control switches to the singular control as the singular arc is reached and
then follows the singular arc from the malignant into the benign region. Because of stronger side
effects, no additional chemotherapy is given at the end. Again note that the tumor volume also
increases initially along the rest period and again this trend is reversed as the immune system
becomes stronger

the tumor volume and then sustain a smaller volume with reduced dosages have
been considered under the terminology of “chemo-switch” strategies [2, 43]. The
additional and usually very short burst of full dose chemotherapy that marks the end
of some of these therapies also is quite interesting. While this may appear a bit odd,
such strategies seem to represent a common pattern pursued in some chemotherapies
based on physicians’ experience. Thus, despite the model’s simplicity, its solutions
give some interesting practical insights into how to schedule therapies over time.

With the prominent role played by the singular arc, these solutions for model
[CI] contrast with the optimal bang-bang controls for cell-cycle specific models
for cancer chemotherapy [30, 31, 53, 54, 56] when optimal controls are bang-bang
with upfront dosing, i.e., confirm the MTD paradigm. In both types of models it
is implicitly assumed that the tumor population consists of chemotherapeutically
sensitive cells, but here it is the mitigating influence of the immune system which for
smaller tumor volumes leads to the abandonment of the strict bang-bang scheme that
is seen in the cell-cycle specific models. Intuitively, if the system is in a condition
where it is able to manage the cancer by itself, why administer chemotherapy?
Indeed, if negative influences of the chemotherapy on the immune system are added,
high-dose chemotherapy precisely may destroy this innate ability of the organism.
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4.4 Optimizing Combination Treatment: Targeted
Chemotherapy with Immune Boost

We close with giving optimal solutions when we add some rudimentary form of
immunotherapy in the form of an immune boost to the model [26]. For example,
this can be provided by the application of a drug based on the interleukin family.
In this case [CI] is a multi-input optimal control problem with controls u and v.
Figure 10 shows the phaseportrait for the corresponding system for a Gompertzian
growth function when only an immune boost at constant maximum dose is used. As
before, the parameters for the dynamics are from Table 1 and in the control vector
field for the immune boost we choose � D 1. The uncontrolled system shows the
same bistable behavior as described in Sect. 2.2. The malignant region shrinks with
the immune boost, but immunotherapy alone is not able to eliminate it and thus
control the tumor. The stable manifold of the saddle at .xs; ys/ D .555:1; 0:191/

still separates a region where the immune system aided by the immune boost
can eliminate the cancer (here the y-values of the system approach C1 while
x converges to 0 from the right) from a region where the cancer eventually
will dominate and trajectories converge to the asymptotically stable malignant
equilibrium point .xm; ym/ D .715:6; 0:048/. Thus chemotherapy is needed.

An important feature of this formulation is that the control vector fields g1 and
g2 commute [see (19)]. This implies that the derivatives of the switching functions,
˚1.t/ D C C h�.t/; g1.z�.t//i for u and ˚2.t/ D D C h�.t/; g2.z�.t//i for v, are
given by
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Fig. 10 Phaseportrait for the system (1) and (2) for a Gompertzian growth rate F.x/ D
� log.x=x1/ with full dose immune boost only (i.e., u 	 0 and v 	 1). The malignant region
becomes smaller, but persists. Chemotherapy is needed to move initial conditions in the malignant
region into the benign region
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P̊
i .t/ D h�.t/; Œf; gi �.z.t//i ; i D 1; 2: (32)

In particular, these derivatives do not depend on the controls u or v and thus are
absolutely continuous functions that can be differentiated further. It follows from
Proposition 3 that

R̊
i .t/ D h�.t/; Œf C ug1 C vg2; Œf; gi ��.z.t//i ; i D 1; 2:

From above, we have that

Œf; g1�.z/ D �x

�
�CxF

0.x/
�I .1 � 2ˇx/y

�

and another computation verifies that

Œf; g2�.z/ D Dg2.z/f .z/ �Df.z/g2.z/ D �

�
�xy

˛

�

which does not depend on the particular growth model F used. Furthermore, a
direct computation verifies that the Lie brackets Œg1; Œf; g2�� and Œg2; Œf; g1�� vanish
identically. Thus, regardless of the tumor growth model used, the second derivatives
of the switching functions are given by

R̊
1.t/ D h�.t/; Œf C ug1; Œf; g1��.z�.t//i (33)

and

R̊
2.t/ D h�.t/; Œf C vg2; Œf; g2��.z�.t//i : (34)

The Lie bracket relations of the vector fields therefore decouple the controls u and
v in the first two derivatives of the switching functions. In particular, the general
formulas derived above for a singular control for the chemotherapeutic agent u
remain valid, but with the one change that the equation H � 0 now involves the
second control v� and thus reads

H D S C h�.t/; f .z�.t//i C v�.t/ .D C h�.t/; g2.z�.t//i/ � 0:

Proposition 7 ([26]). Optimal controls v� are not singular on any interval.

Proof. Suppose the control v� is singular on an open interval I . Regardless of the
specific form of the control u�, by the Legendre-Clebsch condition, it is a necessary
condition for optimality of v� that

h�.t/; Œg2; Œf; g2��.z.t//i � 0 on I:
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On I we have that

˚2.t/ D D C h�.t/; g2.z�.t//i � 0 and P̊
2.t/ D h�.t/; Œf; g2�.z�.t//i � 0:

The vector fields g2 and Œf; g2� are linearly independent on M and can therefore
be used as a basis for the higher order Lie brackets. We write the second-order Lie
bracket Œg2; Œf; g2�� as a linear combination of g2 and Œf; g2� in the form

Œg2; Œf; g2��.z/ D  1.z/g2.z/C  2.z/Œf; g2�.z/

with smooth functions  1 and  2. A simple computation verifies that

Œg2; Œf; g2��.z/ D �2
�
�xy

�˛
�
;

and solving the equations

�

�
�xy

�˛
�

D  1.z/

�
0

y

�
C  2.z/

�
�xy

˛

�

gives

 1.z/ D �2�˛
y

and  2.z/ D �:

Hence along a singular control v� it follows that we have

h�.t/; Œg2; Œf; g2��.z�.t//i
D  1.z�.t// h�.t/; g2.z�.t//i C  2.z�.t// h�.t/; Œf; g2�.z�.t//i

D  1.z�.t// .�D/C  2.z�.t// � 0 D 2D�˛

y�.t/
> 0

violating the Legendre-Clebsch condition. �

Thus, an immune boost will be given in a bang-bang manner and for a possible
singular control u�, we only need to consider the two cases v� D 0 and v� D 1. If
v� D 0, this reduces to the earlier situation with the same formulas valid verbatim.
For v� D 1 we now obtain that

det .C .f .z/C g2 .z// � .D C S/g1.z/; Œf; g1�.z// D 0

and this expression is equal to

det .Cf .z/� Sg1.z/; Œf; g1�.z//
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CC det .g2 .z/ ; Œf; g1�.z//

�D det .g1.z/; Œf; g1�.z// :

The first term corresponds to the expression computed earlier and the other terms
are given by

det .g2 .z/ ; Œf; g1�.z// D ��xy

ˇ̌
ˇ̌ 0 �CxF

0.x/
1 �I .1 � 2ˇx/y

ˇ̌
ˇ̌ D ����Cx2F 0.x/y

and

det .g1.z/; Œf; g1�.z// D �x

ˇ̌
ˇ̌��x �CxF

0.x/
0 �I .1 � 2ˇx/y

ˇ̌
ˇ̌ D ��2�I .x � 2ˇx2/xy:

Hence, if we write

det .C .f .z/C g2 .z//� .D C S/g1.z/; Œf; g1�.z//

D �x �Q.x; y/ D �x � �q2.x/y2 C q1.x/y C q0.x/
�
;

then Q differs from P only in the linear term which now is given by

q1.x/ D �I .x � 2ˇx2/ ŒC�CF.x/C .D C S/��

�C�CxF 0.x/
�
�I .x � ˇx2/� ı C �

�

while q0.x/ � p0.x/ and q2.x/ � p2.x/.
Based on the formulas derived above, the singular arc, the singular control, and

their admissible portions can easily be evaluated numerically. As an illustration,
Fig. 11 shows how the singular curve S changes from v � 0 (blue curve) to v � 1

(red curve) for the parameter values from Table 1 for the dynamics, � D 2 and
� D 1, and the coefficientsC D 0:036,D D 0:007 and S D 0:036 for the objective.

Scenario 4: Figure 12 shows an optimal control (top) and its corresponding
trajectory (bottom) for the same parameter values for the dynamics as before
and coefficients � D 2 and � D 1 in the control vector fields. Also the initial
condition is the same as before, .x0; y0/ D .600; 0:1/. The objective again is
defined with A D 0:00192 and B D 1 (coming from the stable eigenvector of
the saddle for the uncontrolled system) and we have chosen the other weights
as C D 0:01, D D 0:025 and S D 0:001. For these weights, both the side
effects of chemotherapy and the immune boost are significant. Chemotherapy
has overall the better effectiveness and becomes the dominant therapy. Initially
chemotherapy is given at full dose without any immune boost. However, already
after a brief time interval, as the state of the system nears the separatrix,
chemotherapy is reduced drastically and is only administered at lower dose
rates according to the singular control using. Once more the “chemo-switch”
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Fig. 11 Example of the changes in the singular curve S for the chemotherapeutic agent u without
(v 	 0, blue curve) and with (v 	 1, red curve) immune boost

type behavior of administration of a chemotherapeutic agent is seen as optimal.
In the figure of the trajectory the corresponding switching points are indicated
on the trajectory by a red asterisk. Once a “safe” distance to the separatrix
has been established, chemotherapy is switched off and the system follows
the uncontrolled trajectory towards the benign stable equilibrium point. This
portion of the trajectory closely follows the unstable manifold of the saddle
for the uncontrolled system and is labeled as the “free pass” in Fig. 12. Along
this trajectory, only a small penalty for the time is incurred. Towards the end,
when the cancer volume is already quite small, it becomes beneficial to give
an immune boost with the precise timing depending on the penalty S given
to the terminal time. The two green asterisks on the corresponding trajectory
mark the beginning and end of the arc generated by the action of the immune
boost. Towards the end, as it was the case in scenario 2, another short full dose
chemotherapy session starting at the point marked on the trajectory with a red
star reduces the cancer volume further. Thus for this choice of weights in the
objective, chemotherapy is the dominant treatment option and overall for the
administration of the chemotherapeutic agent we again have a concatenation
structure for the optimal controls of the form 1s01. Immunotherapy is only
used as an additional tool once the cancer volume has become small so that the
tumor–immune interactions become significant and for the immune boost the
concatenation structure for the controls is 010.

Conclusion
We developed some results about the structure of optimal chemotherapy
protocols when tumor–immune system interactions are included in the model.
As vehicle for the mathematical analysis we chose the classical model by

(continued)
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Fig. 12 Optimal controls
(top) and corresponding
trajectory (bottom) for
scenario 4. The stars on the
trajectory indicate the points
when switchings in the
optimal controls occur (red
asterisks for switchings in the
chemotherapy, green
asterisks for switchings in the
immunotherapy).
Chemotherapy remains the
dominant mode of
administration with the
immune boost only aiding
towards the end. (Reproduced
with permission from [26],
c�2013, AIMS)

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

−chemo
−immune boos t

1s01 010

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

"free pass"

initial condition

Stepanova [50], but the ideas that were presented, such as the concept of a
malignant and benign region and viewing treatment as effecting the transfer
from the malignant into the benign region, are generally valid. Most of the
analysis presented and the numerical solutions shown are for the case of a
strongly targeted chemotherapeutic agent when it is reasonable to neglect its
effects on the immune system. Once such effects become stronger and are
included in the mathematical analysis, the actual equations for the singular
arc and singular control become more complex (c.f.,[27]). Research on the
structure of optimal protocols in this case is still ongoing, but similar types of
optimal structures are expected.
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Negative Feedback Regulation in Hierarchically
Organized Tissues: Exploring the Dynamics
of Tissue Regeneration and the Role of Feedback
Escape in Tumor Development

Ignacio A. Rodriguez-Brenes, Natalia L. Komarova, and Dominik Wodarz

Abstract Hierarchically organized tissues are tightly regulated to maintain home-
ostasis under normal conditions and promote the rapid regeneration after injury.
Negative feedback from the tissue itself plays an important role in establishing this
control. In particular differentiated cells emit signals that down-regulate cell division
and inhibit stem cell self-renewal. The mathematical analysis of how these two
feedback mechanisms affect tissue regeneration and stability can provide important
insights into the dynamics of tissue regulation. This topic is also important for
the study of carcinogenesis, given that cancer development requires an escape
from feedback control. Here we discuss various aspects of tissue regulation and
the phenotypic evolutionary pathways that lead to escape from these feedback
mechanisms. Furthermore, we discuss the various tumor growth patterns that arise
through different feedback inactivations. Finally, by examining published clinical
data we propose that the majority of tumor growth patterns found in the literature
can be classified into five categories, which by themselves could reflect the different
evolutionary events that drive tumor progression in different types of stem-cell-
driven cancers.

1 Introduction

In cell lineages tissue development, maintenance and regeneration are highly
regulated. In healthy tissue control loops ensure that the number of cells are
kept at appropriate levels, precluding the appearance of abnormal cell growth and
promoting the efficient regeneration after an injury [17,47]. Two types of feedbacks
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have been identified: long-range and short-range [4]. The long-range feedbacks
respond to the loss of mature cells during an injury, while the short-range feedbacks
act in an autocrine fashion in stem cells [3,6]. In this chapter we will focus on long-
range feedbacks. In particular, two types of feedback loops have been suggested to
be crucial: Differentiated cells secrete factors that inhibit the division of stem cells.
In addition, differentiated cells secrete factors that suppress self renewal of stem
cells and instead promote differentiation of the stem cells [26, 33, 60]. This stops
the expansion of the stem cell population and leads to cell death through terminal
differentiation, thus stopping tissue growth. Negative feedback regulators have been
identified in a large number of tissues including muscle, liver, bone, hair, and the
nervous and hematopoietic systems [13, 14, 33, 55, 61].

In this chapter we present a mathematical model, which includes feedback
regulation in both the division rate and the self-renewal probability of stem cells.
We find that the feedback on the self-renewal probability of stem cells is by itself
sufficient to establish control. However, if feedback on the division rate is absent,
tissue regeneration may lead to significant damped oscillations in the path back
to recovery, which, in the worst case scenario, could even lead to the stochastic
extinction of the cell population. We find that this oscillatory behavior is more
pronounced when the number of stem cell is only a small fraction of the cell
population. In general we find a trade-off between requiring a small equilibrium
fraction of stem cells while avoiding oscillations and the speed at which the system
is able to recover from a perturbation. Spatial interactions and the addition of
feedback inhibition on the cell division rate reduce the amplitude of oscillations
and contribute to the robustness of the system. In addition, feedback inhibition on
the division rate also increases the speed of regeneration.

This discussion falls within the context of ongoing mathematical research on the
areas of tissue regulation and cancer development. The mathematical modeling of
cancer stem cells and cell compartments has lead to significant biological insights
(see e.g. [15, 41, 54, 58]). In particular numerous mathematical models explore
hematopoiesis and different types of blood cancers [1, 5, 12]. Negative feedback
regulation through control loops has been explored in various tissues including the
olfactory epithelium, hematopoietic system, and intestinal crypts [7, 23, 26].

Evidence suggests that tumors retain basic architectural components characteris-
tic of healthy tissue, containing so called ‘cancer stem cells’ or ‘cancer initiating
cells’ that maintain the disease, which leads to the concept of stem-cell-driven
tumors [11]. Carcinogenesis is a complex process, in which different aspects such
as angiogenesis, nutrient availability, metabolic processes, interactions with the
microenvironment, and immune responses all influence how the tumor grows and
evolves [57]. Despite this great complexity and heterogeneity in the mechanism of
tumor formation, it is reasonable to postulate that escape from feedback regulation
must be a key ingredient in the formation of any stem-cell-driven tumor.

In this chapter we discuss a computational evolutionary model which suggests
that full escape from feedback inhibition can only proceed through a unique
sequence of phenotypic transitions. Furthermore, we propose that these dynamics
are a common feature amongst the majority of stem-cell-driven tumors, even if
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the nature and number of the mutational events required to achieve an escape
from feedback regulation are certainly tissue specific. We find that the specific
pathways that lead to uncontrolled proliferation, together with the composition of
the tissue (solid or non-solid), determine the tumor growth pattern that will take
place. According to our models these patterns can be classified into five different
categories, which is supported by data fitting and an extensive search of the tumor
growth data reported in the literature.

2 Model of Feedback Regulated Tissue Homeostasis

In order to examine the evolutionary dynamics of feedback loss, we will first discuss
a computational model that describes feedback-regulated tissue homeostasis, and
then add mutational processes to this model. We consider two types of cells: stem
cells that are characterized by their ability to differentiate and self renew through
cell division, and differentiated cells that do not divide (this includes all cells that
do not have a full capacity to self-renew, for example transit amplifying cells). When
a stem cell divides it may produce either two stem cells with probability p, or two
differentiated daughter cells with probability 1�p (including asymmetric stem cell
divisions leads to an equivalent mathematical formulation and does not alter any
of the results). In accordance with experimental data, we assume that differentiated
cells produce two regulatory factors: one reduces the probability of stem cell self
renewal and promotes differentiation; the other reduces the rate of cell division.
Thus, a high number of differentiated cells reduces proliferation and increases the
rate of differentiation, which eventually leads to a reduction of the overall cell
population through terminal differentiation. If we call the division rate of stem cells
v and the death rate of differentiated cells d the model is represented schematically
by Fig. 1a.

The system of ordinary differential equations (1) describes the model’s behavior,
where S is the number of stem cells and D the number of differentiated cells. The
self renewal probability of stem cells p.D/ and the division rate v.D/ are treated as
general functions that depend on the number of differentiated cells D. This ensures
that results are not dependent on the particular mathematical expressions used to
describe feedback inhibition. The functions obey the following constraints. First
we require that the self renewal probability as well as the division rate of stem
cells are differentiable decreasing functions of the number of differentiated cells D.
Also, it is assumed that 0:5 < p.0/ � 1, i.e., the maximum probability of self
renewal, p.0/, has to be greater than 0.5 (otherwise the stem cell population will go
extinct). Finally, we require that the feedback functions go to zero as the number of
differentiated cells grow without bound.

PS D .2p.D/� 1/ v.D/ S
PD D 2.1� p.D// v.D/ S � dD

(1)
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Fig. 1 Feedback-regulated tissue homeostasis and cell growth properties. (a) Stem cells divide at a
rate v producing either two stem cells with probability p or two differentiated cells with probability
.1�p/. Differentiated cells die at a rate d and produce factors that promote cell differentiation and
inhibit division in stem cells. (b) If the feedback loops satisfy specific conditions (discussed in the
text) the system has a unique equilibrium point that is independent of the initial conditions and is
asymptotically stable. (c) Inhibited growth. If only differentiation feedback is lost, the population
of stem cells and differentiated cells grows without bound at a slower than exponential rate. (d)
Uninhibited growth. If both feedbacks are lost stem cells and differentiated cells grow at a rate
dominated by the same exponential. Time is expressed in units of ln 2=v. OD/, the expect duration
of one cell cycle at equilibrium. Functional forms used to produce the figure: p.D/ D p0=.1CgD/
and v.D/ D v0=.1C hD/; p0 D 0:6; v0 D 6:93; d D 6:93 � 10�2; h D 4:5� 10�3; g D 10�4

System (1) has exactly one nonzero equilibrium point . OS; OD/, defined by the
conditionsp. OD/ D 0:5 and OS D d OD=v. OD/. We proved in [38] that this equilibrium
point is asymptotically stable if and onlyif �p0. OD/ < 1=.2 OD/ (Fig. 1b). Two
examples of families of functions that satisfy this condition are given by (2). There
are no additional requirements imposed on the function v.D/.

p.D/ D p0=.1C g log.1CD// ; 0 < g < 1

p.D/ D p0=.1C gDm/ ; 0 < g; 0 < m .for m > 1; p0 <
m

2.m�1/
/

(2)
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3 Feedback Loss and Cell Growth Properties

In this section we will use the model of tissue homeostasis to study the evolutionary
dynamics of feedback escape and the consequent emergence of uncontrolled cellular
growth. In the model abnormal cell growth occurs when the feedback mechanisms
that control the size of the cell population fail. Failures in each of the two feedback
mechanisms produce different results. If feedback on the division rate is completely
lost, the system remains stable, the steady state number of differentiated cells does
not change, and the steady number of stem cells decreases from d OD=v. OD/ to
d OD=v.0/. If on the other hand the differentiation feedback is completely lost, we
find that the division rate feedback by itself is incapable of controlling cell growth:
both the number of stem cells and differentiated cells grow without bound (Fig. 1c).
These observations point to the differentiation feedback as the more fundamental of
the two control mechanisms. However, even though feedback on the division rate
is by itself incapable of stopping abnormal growth, it does play a critical role by
significantly slowing down the rate of cell proliferation. If feedback inhibition on
stem cell self-renewal is lost, but the feedback on the division rate is still intact,
then the population dynamics are characterized by a relatively slow sub-exponential
increase of the numbers that we called “inhibited growth” (Fig. 1c). When both
feedbacks are lost the growth of the cell population occurs at a faster exponential
rate, which we call “uninhibited growth” (Fig. 1d).

There is another distinctive difference between inhibited and uninhibited growth.
When uninhibited growth takes place, the ratio of stem cells to differentiated cells in
the population converges to a fixed number ..2p0 � 1/v0 C d/=.2.1� p0/v0/. With
inhibited growth, we find that this ratio cannot converge. More precisely, the ratio
of stem cells to differentiated cells goes to infinity (Fig. 1c). Thus, inhibited tumor
growth is relatively slow and characterized by a predominance of stem cells in the
cell population at late stages of its development; while uninhibited tumor growth is
faster and is characterized by a constant ratio of stem cells to differentiated cells.

4 Mutations and the Evolutionary Dynamics
of Feedback Loss

Here we investigate the evolutionary dynamics of cells that carry mutations respon-
sible for corrupted feedback mechanisms. Such cells must emerge from healthy cells
and have a growth advantage in order to initiate tumor growth. Mutations can corrupt
either the division feedback or the differentiation feedback. In each case, mutations
can lead to failures in the production of feedback signals by differentiated cells,
or to failures in the response to these signals by stem cells. Hereafter we will call
the wild type stem and differentiated cells S and D, and the mutant stem cells
and differentiated cells Sm and Dm. We assume that a mutation occurs in one or
a small group of stem cells, and that the daughters of the mutant stem cells carry
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the same mutations as their parent. We will denote mutations that cause a failure in
production of feedback signals by differentiated cells with the prefix D; and those
that lead to a failure of response by stem cells to these signals with the prefix S .
Mutations that affect cell differentiation will carry the suffix diff- and those that
affect the division rate the suffix div-. Note that when we refer to a mutation event
that inactivates certain feedback processes, we do not imply that a single mutation is
sufficient to achieve this. Indeed, an accumulation of mutations is likely necessary.
In the computational model, what we study are the transitions from one phenotype to
another; we do not explicitly take into account the number of genetic steps required
to attain a particular phenotype, which are certainly specific to the tissue in question.

We consider four types of mutations:

• Stem cells with mutationDdiff- generate differentiated cells that do not produce
the differentiation-promoting factor (described by system (3)).

• Stem cells with mutation Sdiff- do not respond to the differentiation-promoting
factor (described by system (4)).

• Stem cells with mutation Ddiv- generate differentiated cells that do not produce
the division-inhibiting factor (described by system (5)).

• Stem cells with mutation Sdiv- do not respond to the division-inhibiting factor
(described by system (6)).

PS D .2p.D/� 1/ v.D CDm/S
PD D 2. 1 � p.D/ / v.D CDm/S � dD
PSm D .2p.D/� 1/ v.D CDm/Sm
PDm D 2. 1 � p.D/ / v.D CDm/Sm � dDm

(3)

PS D .2p.D/� 1/ v.D/ S
PD D 2. 1 � p.D/ / v.D/ S C .2p0 � 1/ v.D/ Sm � dD
PSm D . 2p0 � 1 / v.D/ Sm

(4)

PS D .2p.D CDm/ � 1/ v.D/ S
PD D 2. 1 � p.D CDm/ / v.D/ S � dD
PSm D .2p.D CDm/ � 1/ v.D/ Sm
PDm D 2. 1 � p.D CDm/ / v.D/ Sm � dDm

(5)

PS D .2p.D/ � 1/ v.D/ S
PD D 2. 1 � p.D/ / v.D/ S C .2p.D/� 1/ v0 Sm � dD
PSm D .2p.D/ � 1/ v0 Sm

(6)

We now summarize the main findings in [38]. Mutations that induce a lack of
production by differentiated cells of signals that control cell division and differen-
tiation (Ddiv- and Ddiff-, respectively) do not confer a competitive advantage to
cells that carry them. This absence of competitive advantage is intuitively explained
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by the fact that at any time t the feedback signals are the same for the wild type and
mutant stem cells (Eqs. (3) and (5)). If these mutations arise in a very small number
of cells, as one should expect from a random mutation, the steady state number
of mutant stem cells would remain at a negligible level (Fig. 2a). Moreover, in a
stochastic formulation the probability that this species goes extinct is very high. A
similar result applies to the mutation inducing a lack of response by stem cells to the
division feedback signals Sdiv-. If the system is near equilibrium when the mutation
emerges in one cell, the steady state percentage of mutant stem cells will be very
small. In practice this means that these three mutations would, in all likelihood,
disappear from the cell population. An entirely different scenario occurs if cells
acquire a mutation that leads to a loss of response by stem cells to signals that
control differentiation Sdiff-. This mutation does confer a competitive advantage to
cells that carry it: eventually the mutant stem cells will take over the entire stem cell
population and the total number of cells grows without bound (Fig. 2b,d).

Another possibility is that a mutation confers only a partial loss of response to
signals that control cell differentiation (denoted by Sdiff-/partial). This scenario is
modeled by system (7) where Qp.D/ � p.D/. In this case the mutation leads to
a finite increase in the number of both mutant stem cells and differentiated cells,
which results in a sigmoidal growth pattern (Fig. 2c). The size of this increase
depends on how diminished the response to the differentiation-promoting factors
is. The wild type stem cells go extinct and the ratio of stem cells to differentiated
cells does not change.

PS D .2p.D/� 1/ v.D/ S
PD D 2. 1 � p.D/ / v.D/ S C 2.1� Qp.D//v.D/ Sm � dD
PSm D .2 Qp.D/� 1/ v.D/ Sm

(7)

According to our analysis, the first step towards uncontrolled proliferation must
be the loss of stem cell response to the differentiation feedback. We now want to
investigate what happens to the cell population if a subsequent mutation occurs in
a cell that carries mutation Sdiff-. We find that two types of double mutants, Sdiff-
/Ddiff- and Sdiff-/Ddiv-, do not have a competitive advantage to single mutants
Sdiff-. If the additional mutation occurs in a single cell, the number of stem cells
with a double mutation grows (like the rest of the cell population), but it remains
as a very small percentage of the stem cell population. As a result the growth
dynamics of the entire cell population do not change in any significant way. A
different scenario occurs if the second mutation is Sdiv-. In this case the number
of double mutants Sdiff-/Sdiv- grows at an exponential rate while single mutants
would continue to growth at a much slower sub-exponential pace. As a result the
number of single mutants would eventually become a negligible percentage of the
total number of cells and the entire cell population would appear to grow at an
exponential rate.

Finally, there is the possibility that a mutation produces only a partial loss in the
ability to respond to feedback factors that control the rate of cell division (denoted
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Fig. 2 Evolutionary dynamics of feedback loss. The simulations begin at equilibrium with two
stem cells carrying the specified mutation. (a) For populations near equilibrium, mutations Sdiv-,
Ddiv- and Ddiff- do not confer any competitive advantages over their wild type counterparts. If
the mutation arises in a small number of cells, the steady state number of mutant stem cells will
be negligible. (b) Mutation Sdiff- results in unlimited growth in the number of mutant stem cells
and differentiated cells. (c) Mutation Sdiff-/partial produces a finite increase in both the number
of mutant stem cells and differentiated cells. (d) Mutations Sdiff- and Sdiff-/partial result in the
extinction of the wild type stem cell population. (e) In a cell population that carries mutation Sdiff-
(dashed line) the appearance of mutation Sdiv-/partial produces an acceleration in the growth rate
of the tumor size (solid line). (f) Tumor progression towards uninhibited growth follows a unique
sequence of feedback inactivations: first mutation Sdiff- must occur, followed by mutation Sdiv-.
Simulations use the functional forms and parameters of Fig. 1. In panel 2C, Qp.D/ D 0:1p.D/; in
2E, Qv.D/ D 0:05p.D/
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by Sdiv-/partial). If this type of mutation emerges in a population of wild type cells
the steady state number of mutants will be negligible and invasion is not possible.
However, if the mutation appears in a population of cells that has completely
lost feedback on differentiation (mutation Sdiff-), this diminished response to the
division rate factors will accelerates the rate of tumor growth (Fig. 2e).

This analysis suggests that full escape from feedback-regulated tissue home-
ostasis can only occur via a unique sequence of phenotypic transitions that we
propose to be common among stem-cell-driven tumors, even if the nature and
number of mutational events required to achieve this are certainly tissue specific.
First, a mutation must occur that inactivates the ability of stem cells to respond to
differentiation feedback factors. In a second step, a mutation has to inactivate the
ability of stem cells to respond to division feedback factors. Note that the order in
which these mutation types occur is crucial. In terms of growth dynamics, this would
lead to an initial slow (inhibited) growth, followed by a fast (uninhibited) growth
phase. However, it is important to mention that by the time a tumor is detected, both
sets of mutations might have already occurred and thus the transition between both
growth phases might not be clinically observed.

5 Evolutionary Dynamics in a Spatial Model

The analysis performed so far uses ordinary differential equations that assume
perfect mixing of cells (i.e., no spatial structure) and does not take into account any
stochastic effects. This can be a good description for non-solid tumor growth, which
allows us to gain a thorough analytical understanding of the system. Many tumors,
however, exhibit three-dimensional spatial structure. In this section, we investigate
the evolutionary dynamics of feedback loss in a spatial stochastic model.

To construct the spatial model we assume that cells are restricted to a three-
dimensional rectangular lattice, such that a lattice point can host at most one cell
at any time. As before, stem cells divide producing either two stem cells or two
differentiated cells. A cell is capable of cell division only if there is a free lattice
point adjacent to it. If a cell division takes place, then one offspring remains in
the position occupied by the parent cell and the other occupies a position next to
it, which is chosen randomly from the free adjacent lattice points. The simulations
are based on the stochastic simulation algorithm [20], where the probabilities of
cell division, differentiation, and death correspond to our previous non-spatial mass
action model. More precisely let S and D be the number of differentiated cells at
a given time t . Let F � S be the number of stem cells that are able to divide and
˛, ˇ and � be defined by: ˛ D dD, ˇ D F v.D/, and � D ˛ C ˇ. To implement
the algorithm, set the time of the next reaction to t 0 D t � 1=� log.r/, where r is
a random number uniformly distributed in Œ0; 1/. Then choose the type of reaction
that occurs. The next reaction will be either cell death with a probability ˛=� , or cell
division with a probabilityˇ=� . If the next reaction is cell death, every differentiated
cell has the same probability of being chosen; if it is cell division; every stem cell



206 I.A. Rodriguez-Brenes et al.

that is able to divide has the same probability of being selected. Finally, if cell
division occurs, the probability that the cell divides into two stem cells is p.D/,
and the probability that it divides into two differentiated cells is 1�p.D/; the place
where one of the offspring will reside is chosen at random, with each available
adjacent position having an equal probability of hosting one of the daughter cells.

In the spatial stochastic model we find the same basic dynamics of feedback
escape (Fig. 3). Again, we observe uninhibited tumor growth if both feedback loops
are broken, and inhibited growth when only the differentiation feedback loop is
lost. In agreement with the non-spatial model, the percentage of stem cells in the
cell population increases progressively with inhibited growth (Fig. 3b), while it
converges to a fixed percentage for uninhibited growth. However, in contrast to the
non-spatial situation, the tumor growth rates are slower. Uninhibited growth is now
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Fig. 3 Spatial model. (a) Spatial arrangement of the cell population at two different times. The
simulation begins with a tissue at near equilibrium with two stem cells randomly selected to carry
mutation Sdiff- at time t D 0. (b) The appearance of mutation Sdiff- results in the unlimited
growth of the mutant stem cell and differentiated cell populations. (c) The number of wild type
stem cells decreases. Note that a small number of stem cells that are trapped—and thus unable do
divide—lingers in the population for a long time. The number of wild type stem cells, however,
becomes a negligible percentage of the entire cell population (see text for discussion). (d) Cell
population with stem cells carrying mutations Sdiff- and Sdiv-. Cell growth is much faster than if
only mutation Sdiff- is present; but, unlike the non-spatial model, the growth is not exponential
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cubic (not exponential) and inhibited growth sub-cubic (Fig. 3d). This is explained
by the fact that in the 3D model the number of stem cells that are able to divide (free
cells) is smaller than the total number of stem cells. We also find that full feedback
escape can only occur through the same unique sequence of phenotypic transitions.
The only mutation that by itself confers a fitness advantage is Sdiff-. The transition
from inhibited to uninhibited growth occurs when an Sdiff- mutant acquires the
additional mutation Sdiv-.

Finally, we note that in the spatial model, when the number mutant stem cells
increases the number of wild type stem cells goes down, but a small number of wild
type stem cells might persist in the population for a long period of time (Fig. 3c).
Indeed, as the overall cell population grows a number of wild type stem cells might
get spatially trapped by surrounding cells leaving them no space available to divide.
(Fig. 3a). As the cell population grows, however, the number of wild type stem cells
becomes a negligible part of the cell population.

Table 1 Fitting parameters in Fig. 5. The functional forms used are p.D/ D
p0=.1 C g

p
D/ and v.D/ D v0=.1 C h

p
D/. For details about the fitting

procedure see the methods section in [38]

Figure p0 v0 d h g

5A 0.71 0.31 Hours�1 0.736 Hour�1 2:22 � 10�3 0

5B 0.55 295 Hours�1 126 Hours�1 3:67 � 10�3 0

5C 0.62 6.29 Days�1 0.251 Days�1 0 0

5D 0.68 1.46 Days�1 0.146 Days�1 0 0

5E 0.67 2.91 Days�1 5.93 Days�1 0 1:74 � 10�4

6 Predicted Versus Experimentally Observed
Growth Patterns

The models analyzed here predict the occurrence of five basic growth patterns,
which can be categorized as: exponential, surface, atypical, sigmoidal and multi-
step [40]. The first two patterns correspond to uninhibited growth: exponential
growth in non-spatial tumors and surface (cubic) growth in spatial tumors. In this
categorization both types of inhibited growth (sub-cubic in spatial tumors and sub-
exponential in non-spatial tumors) are grouped together under the name of atypical
tumor growth. Multi-step growth occurs when a sequence of mutations of type
Sdiff-/partial progressively erode the stem cells’ ability to respond to feedback
signals that promote differentiation. Figure 4 summarizes the different types of
mutations and the evolutionary pathways that produce each of these growth patterns.
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In the next subsection we will provide references of published tumor growth
data for each of the growth patterns discussed. We will also provide data fits
for our models. Our modeling approach assumes general functions describing the
feedbacks p.D/ and v.D/; however, data fitting algorithms require us to choose
specific functional forms. To produce these fits we use Hill functions to model
feedback inhibition (8). Hill functions are widely used to describe ligand–receptor
interactions, which make them natural choices to model the actions of secreted
feedback factors [2]. Moreover, they have been used extensively to model the
specific phenomena of tissue regulation in cell lineage models [7,10,26,30,42,62].
The precise data fitting procedures can be found in [38].

p.D/ D p0=.1C gDn/; v.D/ D v0=.1C hDm/ (8)
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Fig. 4 Schematic representation of the possible phenotypic mutations and their effects on the
cell population. According to the model of feedback regulation different evolutionary pathways
produce the various tumor growth patterns observed in the literature (See text for discussion)

6.1 Exponential Growth

In our framework this type of growth takes place when feedback on differentiation
and feedback on cell division is lost in non-spatial tissues. The growth pattern is
produced by the emergence of double mutants Sdiff-/Sdiv-.

Experimentally evidence for exponential tumor growth has been reported in
various types of human and murine leukemias [46,50,52]. Figure 5c presents In vivo
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growth data of L1210 cells [46], a mouse lymphocytic leukemia, which exhibits
exponential dynamics representative of an uninhibited growth pattern in a non-
spatial setting. The best fit resulted in a value of g D 0 and h D 0, the case when
both feedbacks are lost.

6.2 Surface Growth

In our framework this type of growth takes place when feedback on differentiation
and feedback on cell division is lost in spatial tissues. The growth pattern is
produced by the emergence of double mutants Sdiff-/Sdiv-. Intuitively this growth
pattern takes place when the active growth of a solid tumor is limited to a thin
surface layer of cells located near the tumor’s boundary.

Experimental evidence for surface tumor growth has been reported in rat
sarcomas [24], multicellular tumor spheroids [18, 19], in vitro colonies of various
immortalized cancer cell lines [8], and glioblastomas [29]. In Fig. 5d we plot in vitro
data from multicellular tumor spheroids of EMT6/Ro cells [19], a mouse mammary
tumor. The data shows approximately cubic surface growth (as seen by plotting
the cube root of the cell numbers). The best fit of the model occurred when both
feedbacks were lost (g D 0, h D 0).

6.3 Atypical Growth

In our framework this type of growth takes place when feedback on differentiation
is lost, but feedback on the division rate is still operating. The growth pattern is
produced by the emergence of single mutants Sdiff-.

Experimental evidence for atypical tumor growth has been reported in breast
cancer [22], ovarian carcinoma [48], Ehrlich’s ascites tumor [25] and murine
leukemia [49]. In Fig. 5a we plot data from Ehrlich’s ascites tumor [25] growing in
vivo. This tumor, which originated spontaneously as a breast carcinoma in a mouse,
grows in ascitic form, i.e., cells mix well. The data shows sub-exponential growth
with no saturation, suggesting an inhibited growth pattern. The best fit resulted in a
value of g D 0 and h > 0, a scenario where there is a complete loss of differentiation
feedback, but feedback on the division rate is still present. In Fig. 5b we fitted the
spatial model to data from A2780 human ovarian carcinoma [48] (a solid tumor)
growing in mice. The data shows sub-cubic behavior with a power law of 2.17 and
no saturation, consistent with a description of inhibited growth in a spatial setting.
With this behavior in mind we fitted the data assuming that feedback on the division
rate was still present, but feedback on differentiation had been lost. The main frame
shows a projection of the model using the function y D axb; in the inset the results
from the model are plotted together with this function. Simulations were not carried
further due to computational constraints.
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Fig. 5 Experimentally observed growth patterns. (a) Atypical pattern. Inhibited growth in the
non-spatial model. Ehrlich ascites tumor [25] (three experiments shown: 
, 4, ı). (b) Atypical
pattern. Inhibited growth in the spatial model. Main frame: (�) A2780 human ovarian carcinoma
[48] and projection of the model (solid line). Inset: Simulation results (
) and projection using
the functional form y D axb . (c) Exponential pattern. Uninhibited growth in the non-spatial
model. (�) L1210 a mouse lymphocytic leukemia [46]. (d) Surface pattern. Uninhibited growth
in the spatial model. Multicellular tumor spheroids of EMT6/Ro cells [19], a mouse mammary
tumor (two experiments shown: ı, 
). (e) Sigmoidal pattern. Example in non-spatial tumor. (
)
Jurkat T cell human leukemia [37]. In all the plots the simulations are shown in solid lines; those
corresponding to the spatial model represent the average of 24 runs. For parameters see Table 1
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6.4 Sigmoidal Growth

In our framework this type of growth takes place when feedback on differentiation
is only partially lost. The growth pattern is produced by the emergence of single
mutants of type Sdiff-/partial.

Experimental evidence for sigmoidal tumor growth has been reported for a large
number of tumors (see e.g. [21]), which include breast cancer [51, 56], multiple
types of rodent tumors [9, 25], and human leukemia [37]. Figure 5e plots data of
Jurkat cells [37], originating from a T cell human leukemia. The best fit resulted
in a value of g > 0, a case where the differentiation feedback mechanism is only
partially broken.

6.5 Multi-Step Growth

In our framework this type of growth takes place when a sequence of mutations
progressively erode the stem cells’ ability to respond to feedback signals that
promote differentiation. The growth pattern is produced by sequential acquisitions
of the mutations of the type Sdiff-/partial.

This type of growth pattern is at least partially backed by the theory of multistage
carcinogenesis. According to this theory, cancer is primarily a genetic disease that
requires cells to accumulate sequentially several random mutations and epigenetic
changes [34, 35]. Experimental evidence for multi-step tumor growth has been
reported in multiple mouse mammary tumors [53] and several types of human
sarcomas and carcinomas [36].

7 Dynamics of Tissue Regulation

As we saw in the previous sections tumor initiation requires an escape from the
control mechanisms that maintain tissue homeostasis. It is fundamental then to
understand the regulatory mechanisms themselves and how their dynamics are
shaped by two objectives: promoting the rapid regeneration after an injury and
maintaining tissue homeostasis under normal conditions.

Let us again focus our attention on the regulation of the rates of stem cell
division and self-renewal by negative feedback factors and go back to the analysis
of system (1). First, as we recall that the equilibrium number of stem cells OS
and differentiated cells OD is characterized by the conditions p. OD/ D 1=2 and
OS D d OD=v. OD/. Hence, the equilibrium number of differentiated cells OD depends

only on the self-renewal probabilityp.D/, and the equilibrium fraction of stem cells
OS=. OS C OD/ on the ratio d=v. OD/. To understand the recovery of the system after a
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perturbation we look at the eigenvalues of the Jacobian matrix evaluated at . OS; OD/.
If we write b D .2p0. OD/ OD C 1/ and Ov D v. OD/, the eigenvalues are:

�1; �2 D �db ˙p
d2b2 C 4d.b � 1/Ov

2
(9)

From this last equation it follows that the equilibrium values are asymptotically
stable if and only if b > 0. Conversely if b < 0, the equilibrium is unstable. If b D 0

a Hopf bifurcation might be possible, but this would depend on the specific choice
of the regulation functions v.D/ and p.D/.

In most tissues the number of stem cells makes up only a small fraction of the
entire cell population [57]. It is important then to understand how this requirement
affects the cell dynamics of the regulatory system. In particular we will find that the
equilibrium fraction of stem cells is related to the possibility of oscillatory behavior
after an injury.

To avoid oscillation near the equilibrium point we need the discriminant	 in (9)
to be non-negative. As we mention earlier the fraction of stem cells is completely
determined by the ratio " D d=Ov: the smaller " the smaller the fraction of stem cells.
We prove in [39] that if 	 � 0, then:

lim
"!0

�1; �2 D �d; 0 (10)

Now, if the absolute value of one of the eigenvalues is very small, then the
dynamics of the system are characterized by rapid approach to a slow manifold,
followed by a very slow approach toward equilibrium. Hence, we find a trade-off
between requiring a small equilibrium fraction of stem cells (" small) while avoiding
oscillations and the speed at which the system is able to recover from a perturbation
(influenced by the magnitude of the eigenvalues).

We find then that the existence of a stable nontrivial steady state is independent of
feedback inhibition on the division rate. Moreover, for a fixed equilibrium division
rate Ov the steady state population sizes are independent on the actual function v.D/.
The role of feedback on the division rate in the system lies instead in increasing the
speed at which the system recovers from a perturbation and reducing the amplitude
of oscillations if they happen to occur.

To illustrate these dynamics we perform simulations using Hill equations (8) to
model the feedback functions p.D/ and v.D/. Figure 6a,b track the trajectory of a
cell population that only has feedback on stem cell differentiation (v.D/ constant).
In Fig. 6b the fraction of stem cells is less than 10 % and the maximum self-renewal
probability is kept small .p0 D 0:51/. For the special case of Hill functions it
is shown in [39] that by keeping the maximum self-renewal probability p0 very
small it is possible to avoid oscillations while keeping the fraction of stem cells low.
However, in agreement with the previous results this comes at the price of having a
slow speed of regeneration indicated by the small value of p0.

Figure 6c,d plot the trajectories for systems with feedback inhibition in both the
self-renewal probability and the division rate of stem cells. Call ˇ.D/ D 1C hDm,
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Fig. 6 (a) and (b) Cell population with one feedback loop. (a) The trajectories oscillate towards
steady state values (dotted line). Parameters, p0 D 0:6; d D 0:1; g D 0:001; S.0/ D 1;

D.0/ D 0. (b) If there is only one feedback loop the maximum self-renewal probability must
be very close to 0.5 to ensure that the trajectories approach the steady states monotonically. In this
subfigure d and g are the same as in (a) but p0 D 0:513. (c) and (d) cell population with two
feedback loops. (c) The steady state number of differentiated cells depends only p0 and g and is
independent of feedback on the division rates. The steady state number of stem cells increases when
the number of feedback loops increase from one to two. The addition of feedback in the division
rate dampens or altogether eliminates the oscillations. (d) Fitting fixed steady state values of stem
cells and differentiated cells values with different levels of feedback inhibition in the division rate.
The stronger the feedback signal in the division rate the smoother the transition the equilibrium
transition to equilibrium

then v.D/ D v0=ˇ.D/ and ˇ.D/ controls the strength of the inhibition signal. We
can get a specific target division rate at equilibrium Ov with different combinations
of the pair .v0; ˇ. OD//; the larger themagnitude of these quantities, the stronger the
feedback in the division rate will be. Figure 6d plots the trajectories for the same
target number of cells with different combinations of the pair .v0; ˇ. OD//. Note
how the addition of feedback on the division rate provides for smoother and faster
recoveries after a perturbation.
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8 Tissue Regulation in a Spatial-Stochastic Model

We now want to assess the dynamics of tissue regulation in the spatial-stochastic
model that was introduced earlier. In general we find that the addition of a spatial
structure results in smoother transitions from perturbed states to equilibrium. When
there are oscillations in the spatial model the amplitudes are smaller than those
found in the corresponding mass action formulation (Fig. 7a,b). Moreover, as we
discuss in [39] oscillation in the mass action model after extreme perturbation
could result in the stochastic extinction of the stem cell pool. The number of these
extinctions is greatly reduced by the addition of the spatial structure. For example,
with the set of parameters .p0 D 0:7; v0 D 0:2; g D 2� 10�5; ˇ D 1; d D 0:0025/,
a perturbation of the initial conditions .S.0/;D.0// D 0:1. OS; OD/ resulted in the
stochastic extinction of the cell population in all of 100 independent simulations
using the a stochastic version of the mass action model. By comparison extinction
never took place in 30 simulations using the spatial-stochastic model with the same
set of parameters and initial conditions.

In the spatial model we can divide stem cells into two categories: free stem cells,
which have adjacent free lattice points and are thus capable of cell division; and
trapped stem cells, which are completely surrounded by cells and are thus unable to
divide. The equilibrium fraction of stem cells in the mass action model is the same
as the equilibrium number of free stem cells in the spatial model. Hence, for the
same set of parameters the equilibrium number of stem cells will be greater in the
spatial model than in the non-spatial model (Fig. 7b,c).

Suppose that we start with a perturbation in which the number of differentiated
cells is less than OD. Then the probability of differentiation is small and most
cell divisions result in the production of two stem cells. Once the number of
differentiated cells is above OD, differentiation becomes the more likely event and
in the ODE model one sees a steep reduction in the number of stem cells. In the
spatial model, however, the rapid growth phase means that the fraction of free stem
cells is reduced as most stem cells become trapped by other stem cells. Only these
free stem cells are able to divide, slowing down the speed at which they are depleted
and thus reducing the severity of the oscillations. This behavior is exemplified by
Fig. 7b.

9 Discussion

A wealth of data indicates that feedback loops play a central role in the regulation
of healthy tissue. Recent data also supports the notion that tumors retain some of the
architectural aspects of the underlying healthy tissue. It is thought that tumors are
maintained and driven by so-called tumor stem cells or tumor initiating cells, and
that the bulk of the tumor is made up of more differentiated cells that have a reduced
ability to divide and therefore cannot maintain or initiate a cancer. In the light of
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Fig. 7 (a) Cell count of differentiated cells vs time. The blue line was computed using the ODE
model. The red line is the expected cell count in the spatial-stochastic model. (b) Cell count of stem
cells. Results from the ODE (black) and expected cell count in spatial model (green). The expected
number of cells in the spatial model is shown in blue. (c) Expected fraction of stem cells that are
free in the three-dimensional model. Parameters in all figures are: p0 D 0:7; v0 D 0:2; g D
2� 10�5; ˇ D 1 and d D 0:0025

this, it is reasonable to assume that tumor initiation requires the loss of some of
these feedback loops. In particular, two types of feedback mechanisms appear to be
a common theme across different tissues: negative feedback on the rate of stem cell
division, and negative feedback on the probability that a stem cell division results
in self-renewal rather than in differentiation. Mutations can occur that lead to the
loss of feedback signals produced by cells or that lead to a loss of response to the
feedback signals by stem cells. Using an evolutionary dynamics model, it is found
that only one sequence of events can lead to full escape from feedback control: The
first step is loss of the cells’ ability to respond to the differentiation feedback. While
this leads to unbounded cell growth, the cell population grows relatively slowly
because the emerging tumor is still regulated in part by remnants of the feedback
system (inhibited growth). To escape this remaining regulation, cells also have to
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lose the ability to respond to the division feedback control factors, leading to fast,
uninhibited growth. We note that the order of events is crucial here. In a healthy cell
population, mutant cells that do not respond to the division feedback will not enjoy
a selective advantage and are therefore unlikely to emerge. Such mutants are only
selected for and can only emerge in a background population that has already lost
the ability to respond to the differentiation feedback factors.

Our analysis is supported by key mutations in carcinogenesis that disrupt
negative feedback regulation of cell division patterns. For example, the protein
transforming growth factor beta (TGF-ˇ/ plays a key role in tissue homeostasis
by inhibiting mitosis and promoting cell differentiation [57]. Mutations that affect
TGF-ˇ receptors occur in gastric, biliary, pulmonary, ovarian, esophageal, and head
and neck carcinomas [32]. Moreover, half of all pancreatic carcinomas and more
than a quarter of colon cancers carry mutations that make cells irresponsive to TGF-
ˇ signals that inhibit cell division and promote differentiation [43, 59]. Another
example comes from the epigenetic silencing of BMP4 receptors in glioblastomas
[27]. BMP4 induces glia stem cells to differentiate, inhibiting cell proliferation [28].

Another line of evidence that supports the importance of the Sdiff- phenotype
comes from the manipulation of the MYC gene. A mouse model of human
hepatocellular carcinoma was developed, in which it is possible to regulate the
expression of the human MYC oncogene in murine liver cells, suppressing it
through doxycycline treatment [16,44,45]. Mice treated with doxycycline remained
disease free, while those with active MYC developed malignant tumors that
were locally invasive and able to metastasize. When MYC was subsequently
inactivated, rapid tumor regression was observed that was associated with terminal
differentiation into normal liver cells. MYC expression influences self-renewal
and differentiation of cells, and thus influences the function p.D/ in our model.
Activation of MYC corresponds to a corrupted differentiation feedback (i.e., to the
Sdiff- phenotype in the model), whereas inhibition of MYC reverses this phenotype.
The model predicts Sdiff- to be the initial event leading to uncontrolled growth.
Even if cells have acquired other mutations that can also contribute to tumor
progression, these mutations are predicted to promote growth only in cells that
already have corrupted differentiation feedback. Hence, the model predicts that the
restoration of the differentiation feedback loop, even in cells with further alterations,
results in tumor regression. This same behavior is observed in the experiments
where the macroscopic and malignant nature of the tumors indicate the presence
of additional mutations, which are incapable of promoting growth in the absence of
MYC [16, 44, 45].

Overall, these processes can give rise to five different categories of tumor growth
laws, which we call “exponential,” “surface,” “sigmoidal,” “atypical,” and “multi-
step.” Following an extensive literature search for different tumor growth patterns,
we suggest that most can be assigned to one of these categories. Fitting our model
to experimental data on in vitro and in vivo tumor cell growth, we demonstrated that
the predicted growth patterns describe biological data well. The finding of inhibited
tumor growth patterns in the literature is of particular interest. Such a growth pattern
can only come about if the growing tumor is still partially subject to regulation
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that has remained from the underlying tissue. This gives support to the notion that
tumors are organized and structured according to similar principles as healthy tissue,
at least early in the disease process. The finding of sub-cubic growth laws among
data is particularly notable in this respect because it has not been possible to ascribe
such slow growth to factors other than feedback. While we have shown that our
model can describe a range of tumor growth data well, a crucial experimental test
would be to document the presence of negative feedback loops in early tumors that
are characterized by an inhibited growth pattern, and to further demonstrate that
elimination of this feedback loop leads to accelerated tumor growth.

The findings discussed here have implications for elucidating carcinogenesis
pathways in specific cancers. While we have identified the sequence of two key
phenotypic events in the emergence of stem-cell-driven tumors, this does not mean
that each event corresponds to a single mutation. The inactivation of feedback
responses can involve a multi-step accumulation of mutations, the nature of which
are most likely tissue specific. Hence, it will be important to identify the relevant
feedback loops in the tissues under consideration, and to study the nature of the
mutations that are required for the sequential escape documented here. This could
lead to the discovery of new targets for therapeutic intervention.

We also discussed how the two feedback mechanisms affect the dynamics
of tissue regulation. Feedback on the rate of stem cell differentiation uniquely
determines the equilibrium number of differentiated cells and is by itself capable
of maintaining tissue homeostasis. Feedback on rate of stem cell division controls
the fraction of stem cells in the population and promotes faster recoveries from
perturbations.

It was also found that when the system is recovering from a perturbation
oscillations in the number of cells might take place, a behavior that may be
dangerous and of no obvious biological value. Near equilibrium oscillations are
more likely to occur when the steady state fraction of stem cells is small. Adding
feedback inhibition on the division rate significantly dampens the magnitude of the
oscillations and increases the speed at which the trajectories reach the steady states;
the stronger the feedback signal the stronger the effect. Thus, even if feedback on the
division rate is unnecessary to establish control, it promotes faster and more stable
recoveries after an injury. The addition of spatial structure to the tissue also adds to
the robustness of the systems, by eliminating oscillations or significantly reducing
their amplitude.

Understanding the population dynamics that take place during tissue regeneration
has important applications and has led to significants insights (see, e.g., [26]). In
particular the study of oscillatory behavior is relevant to the dynamics of blood cells.
Damped oscillations have been observed in healthy hematopoiesis [31]. Amongst
pathologies periodic oscillations are a characteristic feature of cyclical neutropenia
[6]. Furthermore, oscillatory behavior has also been identified in chronic and acute
myeloid leukemia [1, 3, 12].

Two principal aims of regulatory mechanisms in hierarchical tissues are the
maintenance of homeostasis, which prevents the onset of cancer, and the promotion
of fast and reliable recovery from injuries. In this chapter we discussed several
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mathematical models that identify key features of the regulatory mechanisms
that promote tissue regeneration and stability. Furthermore, we discussed the
phenotypical pathways by which cancer can escape tissue regulation and how this
might leas to different types of tumor growth patterns. These insights could help the
search for mutations that drive specific cancers and could lead to novel ideas for
treatment.
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A Cellular Automata Model to Investigate
Immune Cell–Tumor Cell Interactions
in Growing Tumors in Two Spatial Dimensions

Trisilowati, Scott W. McCue, and Dann G. Mallet

Abstract We develop a hybrid cellular automata model to describe the effect of the
immune system and chemokines on a growing tumor. The hybrid cellular automata
model consists of partial differential equations to model chemokine concentrations,
and discrete cellular automata to model cell–cell interactions and changes. The
computational implementation overlays these two components on the same spatial
region. We present representative simulations of the model and show that increasing
the number of immature dendritic cells (DCs) in the domain causes a decrease in
the number of tumor cells. This result strongly supports the hypothesis that DCs
can be used as a cancer treatment. Furthermore, we also use the hybrid cellular
automata model to investigate the growth of a tumor in a number of computational
“cancer patients.” Using these virtual patients, the model can explain that increasing
the number of DCs in the domain causes longer “survival.” Not surprisingly, the
model also reflects the fact that the parameter related to tumor division rate plays an
important role in tumor metastasis.

1 Introduction

In this chapter, we present a mathematical model of a growing tumor and the
interaction between the tumor cells and the host immune system using a cellular
automata model. This model can describe the system in much more detail than
models based on ordinary differential equations because it allows for spatial
variations and cell–cell interactions of every single cell in the system.

Strong evidence exists in the literature supporting the hypothesis that tumor
growth is directly influenced by the cellular immune system of the host. We stress
this point further and note some specific interactions that, with the cellular automata
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(CA) modeling strategy, can now be incorporated directly into our mathematical
model. Hart [21] states that dendritic cells (DCs), found in many types of tumors,
are the dominant antigen-presenting cells for initiating and maintaining the host
immune response. They are critical in activating, stimulating, and recruiting T
lymphocytes which have the ability to lyse tumor cells. Also, Sandel et al. [42]
discuss the influence of DCs in controlling prostate cancer. Furthermore, tumor-
infiltrating DCs are a key factor at the interface between the innate and adaptive
immune responses in malignant diseases. Beside their primary role in the induction
and regulation of the adaptive anti-tumoral immune response, more recent studies
have shown that DCs have a capacity to directly kill cancer cells [27]. Natural
killer (NK) cells and cytotoxic T lymphocyte cells also play important roles in the
response of the immune system against the tumor as described in Kindt et al. [25].

In the tumor microenvironment, the tumor produces chemokines that can attract
components of the immune system including DCs, NK cells, and T cells to the
neighborhood. Chemokines are a family of small cytokines, or proteins secreted by
many different cell types, including tumor cells. These chemokines also function to
activate DCs which, in turn, can stimulate and activate other parts of the immune
system [46]. They can affect cell–cell interactions and play a fundamental role in
the recruiting or attracting of cells of the immune system to sites of infection or, of
interest in the present research, tumor growth.

The dynamics of tumor growth has been studied intensively using mathematical
models over the past four decades (see also Araujo and McElwain for a review to
the early 2000s [4]) with the interaction of growing tumors with the host immune
system rising to prominence in around the last 15 years. Many of these models
are presented using ordinary differential equations (ODEs) or partial differential
equations (PDEs). Such methodologies impose restrictions on the modeled system’s
time-scales, as described in Ribba et al. [39].

Unlike ODE and PDE models, CA models can describe more complex mech-
anisms in the biological system without such restrictions by way of detailing
phenomena at the individual cell or particle level. In this chapter we employ a
hybrid cellular automata (HCA) modeling strategy, allowing us to extend the CA
to incorporate other effects by coupling a CA with PDEs.

The interactions of a tumor and the host immune system using the CA framework
have been modeled previously by, for example, Mallet and de Pillis [31] and de Pillis
et al. [12], where they presented the first multidimensional, hybrid cellular automata
model of the process that incorporated important signalling molecules. However,
these models and others neglected to describe DCs and chemokines and their roles
in tumor growth and control. Kim and Lee also modeled cancer and immunity via
a hybrid model, however the approach they took was to use an agent-based model
coupled with a system of delay differential equations [24]. In this chapter, we offer
an alternative to Kim and Lee’s model and improve on the work of Mallet and de
Pillis by explicitly describing more of the host immune system.

The purpose of the model developed in the present research is to investigate the
growth of a small solid tumor when that growth is affected by the immune system.
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To this end, we present a hybrid cellular automata model of the interaction between
a growing tumor and cells of the innate and specific immune system, including the
role of DCs and chemokines.

To include the effect of a chemokine in this model, we recognize the significantly
smaller size of such molecules compared with biological cells and introduce a PDE
to describe the concentration of chemokine secreted by the tumor. We combine the
numerical solution of the PDE with a number of biologically motivated automata
rules to govern the evolution of various cell populations from the HCA model.
We use the hybrid cellular automata model to simulate the growth of a tumor in a
number of computational “cancer patients.” Each simulated patient is distinguished
from others by way of patient-specific characteristics reflected through particular
parameter choices. We define “death” of a patient as the situation where the cells
of the tumor reach the boundary of our model domain; effectively this represents
tumor metastasis.

In the sections to follow, we present a discussion of the role of DCs and
chemokines related to cell–cell interactions in tumor growth. Furthermore, the
development of the HCA model is considered before analyzing numerical simu-
lations. We conclude with a discussion of the results.

2 The Role of Dendritic Cells and Chemokines

Here we present a more detailed discussion of the role of the immune system
(especially DCs) and chemokines as related to cell–cell interactions in tumor
growth. This discussion provides us the basis for making rules in HCA model.

The immune system plays an important role in defending the body against
pathogens by identifying and killing non-self or foreign matter such as viral
particles, parasites and importantly here, tumor cells [41]. The immune system
consists of two components: namely the innate and adaptive systems. The innate
immune system, including DCs, NK cells, and macrophages, can recognize antigen
without the requirement for previous priming by specific non-self antigens [41].
However, the adaptive immune system, including cytotoxic T cells, helper T cells
and B cells, need the antigen to be processed and presented in a histocompatibility
complex through antigen presenting cells (APCs) [5, 41]. DCs are known to be the
most efficient APC and express high levels of MHC class I and II molecules [20].

Current evidence suggests that there is a large number of functional states for
DCs and their immunogenic capacity depends on the microenvironment [29]. The
tumor microenvironment is a complex system that consists of the extracellular
matrix [38] and stromal cells including fibroblasts, endothelial cells, lymphocytes,
macrophages, DCs, and neutrophils, and it supports and regulates tumor growth
[38, 46].

In the tumor microenvironment, DCs play a crucial role in activating, stimulating
and recruiting the immune system. DCs can be activated by chemokines secreted by
tumor cells or after direct interactions with the tumor itself [38,46]. These activated
DCs can stimulate and regulate components of the immune system including CTL
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cells [44] and NK cells, which after activation can directly kill tumor cells [7, 20].
Furthermore, helper T cells that are activated by DCs [44] can produce chemokines
which, in turn, lead to CTL cell stimulation [46].

Dendritic cells found in various types of solid tumors are antigen presenting
cells that initiate and regulate immunity as well as shape the host response to
tumors [13, 21]. They play an important role in activating, stimulating, recruiting,
and developing the immune response. Therefore, it can be concluded that tumor-
infiltrating DCs play a key role in a cellular anti-tumor immune response by
infiltrating, capturing, and processing tumor antigens, recruiting and activating the
immune system [13, 42].

Dendritic cells play a vital role as the major regulator in CTL cell and NK cell
activation [10, 15, 27], they also can control the activation of B cells [5]. As well,
DCs have a unique function depending on their stage of maturation. Immature DCs
(iDC) are very efficient in antigen uptake and are capable of presenting captured
antigens through their surface receptors. After antigen uptake, DCs migrate from
peripheral tissues to the lymph nodes, where antigen presentation to the immune
system occurs [5, 45]. In the secondary lymphoid tissues, DCs are mature and able
to attract, interact, and activate the immune system including T lymphocytes and
helper T cells to initiate a primary immune response [1].

Cytotoxic T cells are activated by DCs through antigens presented to MHC class
I molecules. Also, DCs activate CD4 helper T cells which then secrete chemokines
that can enhance immunoglobulin production. CD4 helper T cells are activated by
binding via their T cell receptor (TCR) to MHC class II molecules. Then they can
be recognized by specific CD4 helper T cells in the cell membrane, where MHC
peptide complex is presented to the CD4 helper T cells by DCs. CD4 cells can be
categorized according to the type of signalling that they receive, Th1 CD4 helper T
cells and Th2 CD4 helper T cells. Th1 CD4 helper T cells secrete chemokines such
as IL-2, thereby stimulating cell-mediated immunity by activating CTL cells. Th2
CD4 helper T cells mediate an antibody response by releasing chemokines such as
IL-4 and IL-10 [20].

On the other hand, active CTL cells can kill mature DCs [9] by presenting antigen
on their surface. In a recent study, cytokine-induced killer T cells (CIK), expanded
T cells from ex vivo have been shown to selectively eliminate iDC by direct
cytotoxicity [23]. Furthermore, Moretta [34] notes that NK cells can downregulate
the function of DCs by killing iDCs in peripheral tissues, and also states that NK
cells might have a role in killing mature DCs.

Dendritic cells are considered as the most potent component of the immune
system because they facilitate transport of antigen-presenting cells to the lymphoid
tissue and provide efficient stimulation of T cells [30]. From experimental studies
in mice, DCs have been shown to be very efficient in stimulating CTL cells [30].
Because of their unique role in initiating and regulating the immune response,
currently DCs are exploited in the hope of becoming a novel tool for cancer therapy.
It has been shown that DCs are feasible, safe [8, 32, 43], and efficient for treatment
of some cancer patients, especially if DCs are matured and activated [1]. The
first study related to DC vaccination was carried out by Hsu et al. in 1996 [22].
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They investigated the ability of DCs pulsed ex vivo to stimulate host anti-tumor
immunity in patients with B cell lymphoma. Other research, for example, Schuler
et al. [43], Fong et al. [19], and Burgdorf et al. [8], also discussed the use of DCs in
cancer immunotherapy.

Chemokines and chemokine receptors, important in immune homeostatis and
surveillance, also play an important role in the tumor environment. In the tumor
microenvironment, chemokines are produced both by stromal cells (fibroblasts,
endothelial cells, and infiltrating leukocytes) and by the tumor itself [3, 46].
Tumors, such as glioblastoma, melanoma, and neuroblastoma, secrete high levels
of chemokines that can promote tumor growth and progression. These chemokines
also can induce stromal cells to produce cytokines or chemokines which, in turn,
can regulate angiogenesis, tumor growth, and metastasis in the tumor microenviron-
ment [46]. Stromal cells within the tumor, including DCs, lymphocytes, fibroblasts,
macrophages, and neutrophils, may be activated by tumor cells through cell–cell
interactions or cytokines or chemokines produced by tumor cells [46].

Chemokines secreted by tumor or stromal cells can also attract a large number
of leukocytes such as DCs, NK cells, and T cells (helper T and cytotoxic T lympho-
cytes) to the tumor site which may result in tumor regression and elimination [46].
Although chemokines secreted by tumor cells can stimulate or inhibit tumor growth,
modulation of chemokine activity in a selective manner at the site of the tumor can
lead to tumor cell apoptosis. These kinds of chemokines can be chosen for their
potential to attract immune cells to the tumor site that may result in successful tumor
treatment. From experiments involving mouse tumors, chemokines such as CCL5
and CCL21 are promising avenues for cancer therapy investigations [37, 47].

3 Mathematical Model

We consider the early growth of a solid tumor and its interaction with the immune
system and a tumor-secreted chemokine. The model is comprised of a system of
partial differential equations to describe the chemokines secreted by the tumor and
CD4C T cells, coupled with a discrete, stochastic cellular automata that describes
the various cell types comprising the host-tumor environment.

Following Ferreira et al. [16,17] and de Pillis et al. [12,31] the tumor environment
is modeled as a square-shaped computational domain of side length L (see Fig. 1).
Each square element in the grid represents a location that may contain a healthy
cell, tumor cell, or immune cell. The domain is partitioned into a regular square grid
with each element of the grid representing a space approximately corresponding
with the size of a tumor cell (around 10–20�m; [2, 28]). These elements are
the discrete locations considered in the cellular automata component of the model,
while the midpoint of each element will be used as a mesh-point in the numerical
scheme used to solve the partial differential equation component.

Initially, non-cancerous healthy cells cover the whole of the model domain,
then the tumor mass is allowed to grow from one cancer cell placed at the center
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Fig. 1 Schematic showing
the partitioning of the
problem domain into cellular
automata elements (squares)
and mesh-points for
numerical solution of the
partial differential equation

x

y

CA element

of the grid. Cells of the host immune system are initially spread randomly over the
domain throughout the other healthy cells. Four separate immune cell populations
are considered here—the NK cells and DCs of the innate immune system and cells
of the specific immune response, represented by the CTL cells and helper T cells.
Each of these four cell types may exist in either an active or inactive state.

Computationally, the CA grid is stored as a two-dimensional data structure
(matrix) with CA elements directly corresponding with elements of the data
structure. The number stored in the matrix corresponds with the type of cell
occupying that element in the domain, according to the definitions given in Table 1.

Simulations of the model progress via discrete time steps, at which each spatial
location is investigated to determine its contents and ascertain whether or not any
change will occur. This is summarized in Algorithm 1.

The rules for the cellular automata component as well as the form of the diffusion
equation for chemokines are presented below.

3.1 Diffusion Equation for Chemokine Concentration

Chemokines are small (8–14 kDa, in size [38]), cell-secreted protein molecules that
can affect cell–cell interactions. In this model we consider two different chemokine
molecules. Given that such molecules are very small compared with the size of
tumor and host cells, we treat them essentially as a continuum and use a partial
differential equation to model changes in their concentration in space and time.
Denoting the concentration of the chemokines as C1.x; y; t/ and C2.x; y; t/ we
have,
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Table 1 The different cell
species tracked in the cellular
automata and the numerical
value denoting each species
in the computational
implementation

Number Description

0 Healthy cell

1 Tumor cell

2 Necrotic debris

3 Inactive CD8C cytotoxic T cell

4 Active CD8C cytotoxic T cell

5 Inactive dendritic cell

6 Active dendritic cell

7 Inactive CD4C helper T cell

8 Active CD4C helper T cell

9 Active natural killer cell

10 Inactive natural killer cell

Algorithm 1 Pseudocode overview for the full model algorithm
Set parameters for current computational patient
Initialize CA domain contents
Solve PDEs
for each time step do

for each CA element do
Determine cell type in element
Characterize neighborhood of element
Update PDE solutions (chemokine concentration)
Test whether event will occur and update state

end for
end for
Export data

whereDC1 andDC2 are the diffusion coefficients for the chemokines. The parameter

 is the rate of secretion of chemokine by tumor cells. The rate of chemokine
secretion by CD4C helper T cells is represented by � as a natural degradation rate
and � as a natural production rate. The constant ˛ represents the rate of secretion of
chemokine resulting from interactions between activated DCs and helper T cells,
while ˇ represents the rate at which chemokine is used up in activating CD8C
cytotoxic T cells. The description of model variables can be seen in Table 2.

Initially and on the boundaries, we assume that there are no chemokines.
However, these partial differential equations must be solved at each time step of
the HCA model. Given that chemokines are secreted by the tumor cells and when
CD4C T helper cells and DCs come in contact (in the cellular automata component
of the model), at later times the initial condition used in a HCA time step becomes
nonzero and is in fact provided by the outcomes of the cell-level interactions.
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Table 2 The variables used in the hybrid cellular automata model.
Here x and y are the spatial variables for the PDE component, t denotes
the time variable, and i and j represent spatial locations in the cellular
automata component

Variable Description

C1.x; y; t/ Concentration of chemokine secreted by tumor cells

C2.x; y; t/ Concentration of chemokine secreted by CD4CT cells

Ni;j Healthy host cell

Ti;j Tumor cell

DI
i;j Inactive dendritic cell

DA
i;j Active dendritic cell

I Ii;j Inactive CD8C cytotoxic T cell

IAi;j Active CD8C cytotoxic T cell

HI
i;j Inactive CD4C helper T cell

HA
i;j Active CD4C helper T cell

KI
i;j Inactive natural killer cell

KA
i;j Active natural killer cell

3.2 Cellular Automata Rules

In this model, we consider a number of biological cell types including normal
healthy cells, tumor cells (necrotic, dividing and migrating), DCs, NK cells, CTL
cells, and helper T cells. To build the CA model, we define “rules” that draw
upon the biological literature to describe cell–cell interactions, cell effects on the
environment, and effects of the environment on cells.

The evolution of the cell species involved in the tumor-host interactions consid-
ered here is governed by a set of discrete, stochastic rules which are presented below.
Each particular cell-level action or interaction has associated with it, a probability
of success. Generally speaking, we calculate the number

P cell
event D f .:/;

where f depends on relevant cell types and conditions in the neighborhood.
We compare P cell

event with a pseudo-random number, r , drawn from the uniform
distribution on the interval [0,1]. If r < P cell

event, then the event is carried out,
otherwise the event is deemed to have failed to occur. To describe the evolution
of the cell population, we introduce the general algorithm for our cellular automata
rules, as presented in Algorithm 2.

We now consider each cell type in turn and introduce the specific forms of the
CA rules utilized in the model.
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Algorithm 2 Pseudocode for testing occurrence of individual events.
Draw r � U Œ0; 1�

Calculate P cell
event using current state of CA

if r < P cell
event then

update state (the event occurs)
end if

3.2.1 Host Cells

Following from the work of Ferreira et al. [16] and of Mallet and de Pillis [31],
we assume that the healthy host cells are effectively passive bystanders in the
interaction. They do not hinder the growth of the tumor cells or the movement of
any cell type.

3.2.2 Tumor Cells

In this model, we consider tumor growth to be influenced by the immune system via
NK cells, CTL cells, and DCs. The tumor cells undergo the processes of division,
migration, and lysis resulting from interactions with components of the immune
system such as NK cells, CD8C cytotoxic T cells, and DCs. We assume lysis is
dependent upon the local strength of the immune system and model division to be
influenced by crowding due to the presence of other tumor cells, respectively.

At each time step, the neighborhood of each tumor cell is surveyed to determine
whether the cells of the active immune system are present or not. If immune cells
are present, the tumor cell is marked for potential lysis whereas if there are no active
immune system cells in the neighborhood, then the tumor cell is marked for potential
division or migration. A stochastic rule is then implemented to determine whether
or not the action (division, migration or lysis) will be carried out. While the time-
scales of these processes can vary (between or within cell types), for generality we
consider equal time-scales and tie to this the time step of the numerical solution
method. With this in mind, we impose the following cellular automata rules for
tumor cells.

Cell division: When a tumor cell is marked for division, that action is carried out
with a probability that depends upon the density of tumor cells in the neighborhood
of the dividing cell. In particular, we have

P T
div D 1 �

P
i;j2� Ti;j
8

;

where
P

i;j2� Ti;j is the number of tumor cells in a one-cell radius of the cell of
interest.

When division occurs, the resulting daughter cell is placed in an element of the
neighborhood of the dividing cell in the following order: filling an empty element,
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replacing (killing and consuming/removing) a healthy host cell, adding to the tumor
burden of the least filled neighboring element. From Fig. 2a, it can be seen that
tumor cell division is more likely when there is space in the neighborhood for the
resulting daughter cell.

Lysis by CD8C cytotoxic T cells: Active CD8C T cells are able to directly lyse
tumor cells when they share a local neighborhood. We assume that the intensity of
the immune system effect is proportional to the number of active CD8C T cells in
the neighborhood of the tumor cell. The probability of tumor lysis depends on the
strength of the active immune system in the neighborhood of the tumor cell (see
Fig. 2b), and is given by

P T
lysis D 1 � exp

0
B@�

0
@�lysis

X
i;j2�

�
IAi;j CKA

i;j CDA
i;j

�
1
A
2
1
CA;

where again �lysis controls the shape of the curve allowing it to capture qualitative
understanding of the biology and

X
i;j2�

�
IAi;j CKA

i;j CDA
i;j

�

is the number of active immune cells in a one-cell radius of the tumor cell of interest.

Cell migration: At each time step the tumor cells marked for migration do so with a
constant probability, k1 as given below

P T
mig D k1:

These rules are presented in pseudocode form in Algorithm 3.

3.2.3 CD4C Helper T Cells

Inactive CD4C helper T cells are subject to change as a result of natural replen-
ishment and activation due to direct interaction between DCs and existing inactive
CD4C helper T cells. At each time step, the neighborhood of each inactive CD4C
helper T cell is surveyed to determine whether DCs are present. If any DCs are
present, then the CD4C helper T cell is marked for potential activation, otherwise
the CD4C helper T cell is marked for random migration. A stochastic rule is then
implemented to determine whether or not the action (migration or activation) will
be carried out. A normal background level of inactive CD4C helper T cells is also
maintained at each time step. To this end, we impose the following cellular automata
rules.
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Algorithm 3 Pseudocode for tumor cell related events.
if (location holds tumor cell) then

Calculate the number of tumor cells in the neighborhood
Calculate the number of immune cells in the neighborhood
Find new location at random in the neighborhood
Draw r � U Œ0; 1�

Calculate P T
div using current state of CA

Calculate P T
lysis using current state of CA

if r < P T
div and (new location holds healthy cell) then

fill new location with tumor cell
else if r < P T

lysis then
current surface become necrotic debris

else if r < P T
mig then

cell move
end if

end if
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Fig. 2 The form of the curves used to determine the probability of (a) tumor cell division and (b)
tumor cell lysis, given different neighborhood conditions

Activation following DC and inactive CD4C helper T cell contact: When inactive
helper T cells come in contact with DCs, they have probability

P CD4
act D 1 � exp

0
@�

X
i;j2�

�
DI
i;j CDA

i;j

�2
1
A

of becoming active CD4C T cells which are then able to secrete chemokines to
activate cytotoxic T cells (see Eq. (2)). Here

X
i;j2�

�
DI
i;j CDA

i;j

�

is the number of inactive and active DCs in a one-cell radius of the cell of interest.
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CD4C T cell migration: If any DCs are present, then the CD4C helper T cell is
marked for potential activation, otherwise the CD4C helper T cell is marked for
random migration with probability of migration given by

P CD4
mig D k2:

Natural replenishment to background level: A near-constant minimum background
level of inactive and active helper T cells is ensured at each time step by replacing
some healthy cells on the boundary with inactive helper T cells. This mimics
replenishment of the CD4C population from external sources (such as the lymph
nodes). At each time step we determine the proportion of all locations in the domain
occupied by inactive and active helper T cells. Whenever this is less than the
minimum background level, H0, each healthy cell on the boundary of the domain
has probability

P CD4
rep D H0 � 1

n2

X
i;j2�

�
HI
i;j CHA

i;j

�

of being replaced with an inactive CD4C T cell from outside of the problem domain,
where H0 is the ‘normal’ density of inactive CD4CT helper cells and n2 is the total
number of CA elements.

These rules are presented in pseudocode form in Algorithm 4.

Algorithm 4 Pseudocode for CD4C helper T cell related events.

if (location holds inactive CD4C helper T cell ) then
Calculate the number of tumor cells in the neighborhood
Find inactive DCs in the neighborhood
Calculate the number of inactive and active DCs in the neighborhood
Draw r � U Œ0; 1�

Calculate P CD4
act using current state of CA

if The number of tumor cells in the neighborhood >D 1 then
current surface replace with healthy cell

else if r < P CD4
act then

current surface replace with active CD4C helper T
else if r < constant then

inactive CD4C helper T cell moves towards the higher chemokine concentration
end if

end if

3.2.4 CD8C Cytotoxic T Cells

Inactive CD8C cytotoxic T cells are subject to change as a result of natural
replenishment and activation as a result of direct interaction between existing
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inactive CD8C cytotoxic T cells and either active DCs, tumor cells, or cytokines
produced by active CD4C helper T cells. At each time step, the neighborhood of
each inactive CD8C cytotoxic T cell is surveyed to determine whether active DCs
or tumor cells are present. If any DCs or tumor cells or cytokines are present, then
the inactive CD8C cytotoxic T cell is marked for potential activation, otherwise
the CD8C cytotoxic T cell is marked for random migration or movement towards
regions of higher chemokine concentration. If the chemokine level secreted by
active CD4C T cells is greater than some threshold concentration, C20 , then the
inactive CD8C cytotoxic T cell is marked for activation. A stochastic rule is then
implemented to determine whether or not the action (migration or activation) will be
carried out. A normal background level of inactive CD8C T cells is also maintained
at each time step. As a result, we impose the following cellular automata rules.

Activation following DC and/or tumor cell and inactive CD8C T cell contact: When
inactive cytotoxic T cells come in contact with DCs and/or activated T cells they
have probability

P CD8
act D 1 � exp

0
B@�

0
@X
i;j2�

DI
i;j C IAi;j

1
A
2
1
CA;

of becoming active CD8C T cells, which are then able to lyse tumor cells. Here

X
i;j2�

�
DI
i;j C IAi;j

�
;

is the number of active DCs and active CD8C T cells in a one-cell radius of the
cell of interest. We assume that active CD8C cytotoxic T cells can lyse tumor cells
more than once. CD8C cytotoxic T cells are neutralized if there are no more tumor
cells in the neighborhood. CD8C cytotoxic T cells can also kill active DCs. At each
time step, the neighborhood of each active CD8C cytotoxic T cell is surveyed to
determine whether active DCs are present. If any DCs are present, then the CD8C
cytotoxic T cells lyse the DCs.

CD8C T cell migration: At each time step the inactive CD8C T cells marked for
migration do so with a constant probability given by,

P CD8
mig D k3:

Natural replenishment to background level: Similar to the helper T cells, a near-
constant minimum background level of inactive and active cytotoxic T cells is
maintained at each time step by replacing some healthy cells on the boundary
with inactive cytotoxic T cells. At each time step we determine the proportion
of all locations in the domain occupied by inactive and active cytotoxic T cells.
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Whenever this is less than the minimum background level, I0, each healthy cell on
the boundary of the domain has probability

P CD8
rep D I0 � 1

n2

X
i;j2�

�
I Ii;j C IAi;j

�

of being replaced with an inactive CD8C T cell from outside of the problem domain,
where I0 is the ‘normal’ density of inactive CD8C T cells and n2 is the total number
of CA elements.

These rules are presented in pseudocode form in Algorithm 5.

Algorithm 5 Pseudocode for inactive CD8C T cell related events.
if (location holds CD8C T cell) then

Calculate the number of tumor cells in the neighborhood
Find active DCs in the neighborhood
Find active CD4C helper T cells in the neighborhood
Calculate chemokine concentration in the neighborhood
Find new location at random in the neighborhood
Draw r � U Œ0; 1�

Calculate P CD8
act using current state of CA

if the number of tumor cells in the neighborhood >D 1 then
current surface replace with active CD8C T cell

else if r < P CD8
act then

current surface replace with active CD8C T cell
else if chemokine concentration > threshold chemokine concentration then

current surface replace with active CD8C T cell
else if r < k3 then

inactive CD8C T cells move to the new location
end if

end if

3.2.5 Dendritic Cells

Inactive DCs are activated when they come in contact with either chemokines
secreted by tumor cells or with the tumor itself. DCs process the tumor-associated
antigens and present the antigen on their cell surface. Active DCs play an important
role in the activation of T cells and can also be lysed by activated CD8C cytotoxic
T cells as a result of presenting antigen on their surface. At each time step, the
neighborhood of each inactive DC is surveyed to determine whether tumor cells
or chemokines are present nearby. If either are present, the DCs are marked for
potential activation. The neighborhood of each active dendritic cell is surveyed for
the presence of active CD8C T cells. If the chemokine concentration level secreted
by tumor cells is greater than some threshold concentration, C10 , then the inactive
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DC is marked for activation. When active cytotoxic T cells reside nearby, the DC
is marked for potential lysis. A stochastic rule is then implemented to determine
whether or not the action (migration, lysis, or activation) will be carried out.
A normal background level of inactive DCs is also maintained at each time step.
As a result, we impose the following cellular automata rules.

Activation by interaction with chemokines and/or tumor cells: Inactive DCs process
and present tumor associated antigen upon interaction with tumor cells. That is,
active DCs are activated with a probability given by

P DC
act D 1 � exp

0
B@�

0
@�act

X
i;j2�

Ti;j

1
A
2
1
CA;

where �act controls the shape of the curve allowing it to capture qualitative
understanding of the biology and

P
i;j2� Ti;j is the number of tumor cells in a one-

cell radius of the cell of interest.

Lysis by active CD8C T cells: CD8C T cells kill DCs presenting antigen with
probability

P DC
lysis D k4:

Dendritic cell migration: At each time step the inactive DCs marked for migration
do so with a constant probability

P DC
mig D k5:

Natural replenishment to background level: Similarly, a near-constant minimum
background level of inactive and active DCs is maintained at each time step by
replacing some healthy cells on the boundary with inactive DCs. At each time step
we determine the proportion of all locations in the domain occupied by inactive and
active DCs. Whenever this is less than the minimum background level, D0, each
healthy cell on the boundary of the domain has probability

P inactDC
rep D D0 � 1

n2

X
i;j2�

�
DI
i;j CDA

i;j

�
(3)

of being replaced with an inactive DC from outside of the problem domain, where
D0 is the “normal” density of inactive DCs and n2 is the total number of CA
elements.

These rules are presented in pseudocode form in Algorithm 6.
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3.2.6 Natural Killer Cells

Inactive NK cells are subject to change as a result of natural replenishment and
activation as a result of direct interaction between existing inactive NK cells and
either active DCs, tumor cells, or cytokines produced by tumor cells. At each time
step, the neighborhood of each inactive NK cell is surveyed to determine whether
active DCs or tumor cells are present. If any DCs or tumor cells or cytokines are
present, then the inactive NK cell is marked for potential activation, otherwise the
NK cell is marked for random migration. If the chemokine level secreted by tumor
cellsis greater than some threshold concentration, C10 , then the inactive NK cell is

Algorithm 6 Pseudocode for DCs related events.
if (location holds inactive DCs) then

Calculate the number of tumor cells in the neighborhood
Calculate chemokines concentration in the neighborhood
Find new location at random in the neighborhood
Draw r � U Œ0; 1�

Calculate P DC
act using current state of CA

if number of tumor cells in the neighborhood >D 1 then
if r < P DC

act then
current surface replace with active DCs

end if
else if chemokine concentration > threshold chemokine concentration then

current surface replace with active DCs
else if r < k5 then

inactive DCs move to the new location
end if

end if

marked for activation. Active NK cells will survey their neighborhood to determine
whether tumor cells are present. If any tumor cells are present, then the active NK
cell is marked as having potential to lyse tumor cells. A stochastic rule is then
implemented to determine whether or not the action will be carried out. A normal
background level of inactive NK cells is also maintained at each time step. To this
end, we impose the following cellular automata rules.

Activation by interaction with DCs: When inactive NK cells come in contact with
DCs, they have probability

P NK
act D 1 � exp

0
B@�

0
@X
i;j2�

DA
i;j

1
A
2
1
CA

of becoming activated, which are then able to lyse tumor cells. Here
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X
i;j2�

DA
i;j

is the number of active DCs in a one-cell radius of the cell of interest.

NK cells migration: At each time step the inactive NK cells marked for migration
do so with a constant probability given by

P NK
mig D k6;

where k6 is a constant.

Natural replenishment to background level: Similarly, a near-constant minimum
background level of inactive and active NK cells are maintained at each time step by
replacing some healthy cells on the boundary with inactive NK cells. At each time
step we determine the proportion of all locations in the domain occupied by inactive
and active NK cells. Whenever this is less than the minimum background level,K0,
each healthy cell on the boundary of the domain has probability

P inactNK
rep D K0 � 1

n2

X
i;j2�

�
KI
i;j CKA

i;j

�

of being replaced with an inactive NK cell from outside of the problem domain,
where K0 is the ‘normal’ density of inactive NK cells and n2 is the total number of
CA elements.

These rules are presented in pseudocode form in Algorithm 7.

Algorithm 7 Pseudocode of NK cell related events.
if (location holds inactive NK cell) then

Calculate the number of tumor cells in the neighborhood
Find active DCs in the neighborhood
Calculate chemokine concentration in the neighborhood
Find new location at random in the neighborhood
Draw r � U Œ0; 1�

Calculate P NK
act using current state of CA

if the number of tumor cells in the neighborhood >D 1 then
current surface replace with active NK cell

else if r < P NK
act then

current surface replace with active NK cell
else if chemokine concentration > threshold chemokine concentration then

current surface replace with active NK cell
else if r < k6 then

inactive NK cells move to the new location
end if

end if
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4 Simulation and Results

The numerical simulation of the model involves two main steps. Spatial changes for
the chemokine species are determined by solving the partial differential equation.
Then the cell-level phenomena (such as cell–cell interactions, cell death, division,
and migration) are carried out, dependent on the updated chemokine levels, by
updating the cellular automata component of the model. We tie the time step of this
iteration process to the approximate period of tumor cell division (approximately
0.5–10 days; see for example, [26, 40]).
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Fig. 3 The growing tumor and host immune system. After 25 cell cycles (a). After 50 cell cycles
(b). After 75 cell cycles (c). After 100 cell cycles (d)

We combine the solution of the PDE with the CA as described in Sect. 3.2
to simulate the evolution of the growing tumor. Here, a two-dimensional regular
100 � 100 square domain is used with 100 cell cycles and a Moore neighborhood
is considered for the cellular automata rules. In this simulation, we solve the
PDE model using the finite difference method and an estimated value of diffusion
coefficient for chemokine, DC1 and DC2 , is 10�4 �m2s�1. The distribution of the
growing tumor after 25, 50, 75, and 100 cell cycles is shown in Fig. 3, with results
qualitatively matching those of Mallet and de Pillis [31] and those commonly found
in tumor modeling literature.
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Figure 4 shows the evolution of the tumor cell and necrotic cell densities over 100
cell cycles. This plot shows the characteristic exponential and linear growth phases
of solid, avascular tumors (see, for example, Folkman and Hochberg [18]), as well as
a slower growing population of necrotic cells. Figure 5 shows the number of tumor
cells for 100 simulations (thin lines) and the median simulation (thick line) of the
CA model over 100 cell cycles. In addition, increasing the number of immature DCs
in the domain causes a decrease in the number of tumor cells (this result is run by
100 simulations), as shown in Fig. 6. This result strongly supports the hypothesis
that DCs can be used as a cancer treatment.
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Fig. 4 Total cell counts of tumor and necrotic cells after 100 cell cycles. This plot shows the
familiar exponential growth of tumor cells and a slower (approximately linear) growth of a
population of necrotic cells

In Fig. 7b we see that initially, the number of mature DCs is zero until immature
DCs come in contact with tumor cells, at which point the matured DCs commence
killing the tumor cells. Also, immature DCs are activated by chemokines secreted
by the tumor cells. As expected, due to the nature of Eq. (3), the populations of
immature and mature DCs remain approximately steady over the extent of the tumor
growth. Similarly, the same behavior occurs in the populations of CTL cells and
helper T cells, see Figs. 7 and 8.

Figure 9 represents the evolution of cytotoxic T cells, DCs, T helper cells, NK
cells, healthy cells, tumor cells, and necrotic cells for five simulations over 300
cell cycles. Parameters used are: I0 D 0:005;D0 D 0:002;H0 D 0:002;K0 D
0:001; Pdiv D 0:5; Pmig D 0:2. The initial number of CD8C T cells is approxi-
mately 50 cells or 0.005 % of the total cells in the domain (see Fig. 9a). In this case,
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Fig. 5 Total tumor cell counts for 100 simulations (thin) and the median simulation (thick) of the
CA model over 100 cell cycles. We see that the model successfully predicts the familiar exponential
growth stage for a growing tumor

the tumor cells reach the boundary after approximately 140 cell cycles (see Fig. 9e).
However, increasingthe probability of tumor cell division to Pdiv D 0:9, results in
the tumor cells reaching the boundary after only approximately 100 cell cycles (see
Fig. 10e). It means that the probability of tumor cell division is more dominant to
affect the growing of tumor than increasing the immune cells.

We also use the hybrid cellular automata model to investigate the growth of a
tumor in a number of computational “cancer patients.” Each computational patient
is distinguished from others by altering model parameters. We define “death” of a
patient as occurring when the tumor is able to metastasize. Effectively, this is when
the cells of the tumor reach the boundary of our model domain. We define Kaplan–
Meier “survival” estimates as

S.t/ D number of individuals ‘surviving’ longer than t

total number of individuals studied
;

where t is a time from initial diagnosis to “death.” We present the results of
these simulations using a simulated Kaplan–Meier survival curve, shown in Figs. 11
and 12.

Figure 11 describes that metastasis sets in for the first patients after approxi-
mately 80 cell cycles. In addition, at 300 cell cycles after one tumor cell is allowed
to grow, the metastasis of the simulated tumors occurred in approximately 70 % of
patients with lowest iDC in the domain, but approximately 40 % of the patients
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Fig. 6 Total cell counts of tumor cells for 100 simulations showing the effect of varying the DCs
as indicated on the graph over 100 cell cycles. This plot shows that increasing the population of
DCs decreases the number of tumor cells

with the highest iDC in the domain. This means that increasing the number of
immature DC in the domain results in significantly longer “survival.” These results
qualitatively agree with experimental data, see for example, Becker et al., Daud
et al., and Nagorsen et al. [6, 11, 35].

Similarly, as shown in Fig. 12, the patients showed better survival as the number
of inactive CTLs within the domain increases. These results also agree with
experimental data as explained by Naito et al. [36].

5 Discussion

In this chapter, we have developed a hybrid cellular automata model to describe the
interaction between a growing tumor and the immune system of the host, including
chemokines. The model is able to describe the effect of the immune system and
chemokines on a growing tumor. Increasing the number of immature DCs in the
domain causes a decrease in the number of tumor cells. This result strongly supports
the hypothesis that DCs can be used as a cancer treatment. Furthermore, we also use
the hybrid cellular automata model to investigate the growth of a tumor in a number
of computational “cancer patients.” Using these virtual patients, the model can
explain that increasing the number of DCs in the domain causes longer “survival.”
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Fig. 7 Total cell counts of CD8C T cells (a) and DCs (b) after 100 cell cycles

Not surprisingly, the model also reflects the fact that the parameter related to tumor
division rate plays an important role in tumor metastasis.

In previous work, Duchting and Vogelsaenger [14] pioneered the use of discrete
cellular automata for modeling cancer, in an investigation of the effects of radiother-
apy. Ferreira et al. [16] modeled avascular cancer growth with a CA model based on
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Fig. 8 Total cell counts of CD4C helper T cells (a) and NK cells (b) after 100 cell cycles

the fundamental biological processes of proliferation, motility, and death, including
competition for diffusing nutrients among normal and cancer cells. Mallet and de
Pillis [31] constructed a hybrid cellular automata cancer model that built on the work
of Ferreira et al. to include NK cells as the innate immune system and CTL cells as
the specific immune system. The Mallet and de Pillis model was lacking in its detail
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Fig. 9 The evolution of CD8C T cells, DCs, T Helper cells, NK cells, healthy cells, tumor cells
and necrotic cells for 5 simulations over 300 cell cycles. Parameters used are: I0 D 0:005;D0 D
0:002;H0 D 0:002;K0 D 0:001; Pdiv D 0:5; Pmig D 0:2. All tumors metastasize at or before
around 150 cell cycles
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Fig. 10 The evolution of CD8C T cells, Dendritic cells, T Helper cells, NK cells, healthy cells,
tumor cells, and necrotic cells for 5 simulations over 300 cell cycles. Parameters used are: I0 D
0:009;D0 D 0:002;H0 D 0:002;K0 D 0:001; Pdiv D 0:9; Pmig D 0:2. All tumors metastasize
at or before around 100 cell cycles
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Fig. 11 Simulated Kaplan–Meier curve with different initial values of immature DCs as indicated
on the graph. This plot shows that increasing the population percentage of DCs in patients will
increase survival rate
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Fig. 12 Simulated Kaplan–Meier curve with different initial values of immature CTL as indicated
on the graph. This plot shows that increasing the population percentage of CTL cells in patients
will increase survival rate
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of the immune system and in this present research we have improved on their work
by explicitly describing more of the host immune system. While direct comparison
of the models is difficult, the results as presented in this chapter qualitatively reflect
the findings of Mallet and de Pillis and of Ferreira et al. while extending them to
incorporate greater realism in the description of the immune system.

While models based on differential equations allow for analytical investigations
such as stability and parameter sensitivity analyses, and ease of fitting the model
to experimental data, these types of models cannot capture the detailed cellular and
sub-cellular level complexity of the biological system. On the other hand, HCA
models can describe, in far greater detail, the intricacies of the biological process
such as the interaction between individual cells. In current work complementary to
the present research of this chapter, we have included greater realism in the model-
ing of tumor-secreted chemokines by allowing secretion due to cell–cell interaction.
Currently, chemokines and their receptors in the tumor microenvironment are being
extensively investigated to produce therapeutic interventions to combat cancer (see
for example, Allavena et al. [3] and Murooka et al. [33]). Future developments based
upon this model will allow for simulation-based and theoretical investigations of
such interventions.

In this chapter, we have developed a model that can be employed as a preliminary
investigative tool for experimentalists who conduct expensive in vitro and in vivo
experiments to test and refine hypotheses prior to entering the lab. With further
cross-disciplinary collaboration, this type of model can be refined to provide a more
accurate description of the underlying cancer biology and hence yield more relevant
predictions and tests of hypotheses.
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Differential Equation Techniques for Modeling
a Cycle-Specific Oncolytic Virotherapeutic

Joanna R. Wares, Joseph J. Crivelli, and Peter S. Kim

Abstract The development of a mathematical model of oncolytic virotherapeutic
vesticular stomatitis virus (VSV) is presented in stages. Standard mathematical tools
are discussed along with the development and analysis of the model. A defining
property of VSV is that it only affects tumor cells when they are in the active phases
of the cell cycle. To model this characteristic, we first model tumor growth and
separate cells into active and resting, which takes the form of a linear system of
differential equations. We then take into account the minimum time needed for cells
to travel through the active phases of the cell cycle, first using delay-differential
equations and then later age-structured partial differential equations. Our basic
tumor growth model allows us to investigate linear systems analysis (eigenvalue
analysis). We then study similar techniques for delay differential equations, after
adding the minimum time necessary to travel through the active phases of the
cell cycle to the model. After tumor growth alone has been modeled, we include
viral dynamics, which takes the form of a nonlinear system of ordinary differential
equations. We investigate how linearization helps us understand how to properly
develop the model. Finally we add the minimum biological time to the viral model.
With the model fully developed, we arrive at a system of differential equations, one
of which is an age-structured partial differential equation, which provides a nice
example for discussing the method of characteristics. Finally, we show how our
model can be used to investigate the dynamics of the tumor-virus system. As we
travel through the development of our model, we discuss various techniques to
analyze ordinary, delay, and partial differential equations.
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1 Introduction

In this chapter, we provide a review of the mathematical techniques used to
develop and analyze a model of oncolytic virotherapeutic vesicular stomatitis virus,
VSV [9]. The model provides a platform for understanding the dynamics of systems
of ordinary differential equations (ODE), delay differential equations (DDE), as well
as a starting point for understanding partial differential equations (PDE).

Oncolytic virotherapeutics (OV), specially engineered cancer-killing viruses,
differ based on the mechanisms of the underlying virus used. Examples of oncolytic
viruses that have demonstrated anti-tumor efficacy include adenoviruses [12],
Coxsackieviruses [1], herpes simplex viruses [21], measles viruses [10], Newcastle
disease virus [18], reoviruses [8], Seneca Valley virus [20], vaccinia viruses [17],
and vesicular stomatitis virus [5]. Various models have been proposed as represen-
tations for treatment of cancer with oncolytic virotherapeutics, and frequently the
models are novel specifically because of the differences in the underlying virus.

Early OV modeling efforts by Wodarz et al. [23] explored the different oncolytic
mechanisms at play, death from replication of the virus, from an immune response
mounted against the virus, or from an immune response due to molecules secreted
by the tumor cells in response to the virus invasion. Wu et al. [25] looked at
the race between the tumor, the OV, and the immune system (which attacks both
the tumor and the OV) in a partial differential equations model which included
spatial dynamics. More specific models followed, Friedman et al. looked at Glioma
virotherapy in combination with an immunosuppressant, cyclophosphamide [11].
Bajzer et al. and Biesecker et al. [2, 6] look at optimal dosing and timing of doses
using recombinant measles virus. Wodarz and Komarova followed up in 2009 with
a more general study of virus therapy, looking at which models were consistent with
various experimentally validated tumor dynamics [13, 24].

In a previous work, we developed a model of the oncolytic virotherapeutic,
VSV [9]. VSV is an RNA virus that has demonstrated anti-tumor efficacy in a
large range of human tumor cell lines, including prostate, breast, cervical, and
hematologic cancers [4]. VSV also has the distinguishing characteristic that it is
only transmissible when the tumor cells are in the active phases of the cell cycle
[16]. We therefore developed the model to differentiate between tumor cells in active
phases and the quiescent phase of the cell cycle. To do so, the tumor population was
separated into two compartments, one compartment for the cells in the active phases
and one compartment for cells in the quiescent phase. In the first part of this chapter,
we describe the movement of cells between these two compartments, including
cell division and natural cell death. The differential equations system that was
developed is simple being linear with constant coefficients. To begin our discussion,
we describe how linear systems analysis was used to analyze the dynamics of the
tumor growth system alone.

Next, we include the idea that there is a minimum time necessary for cells
to travel through the active phases of the cell cycle. To force cells to remain in
the active phases for a minimum time, the model is converted into a system of
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differential equations, one of which includes a delay. Basic theory of analyzing
delay differential equations is then presented, along with some results particular
to the VSV model, as an example of how to utilize the analysis methods.

Next we incorporate virotherapy into the base model, while at first excluding the
delay. To build the model properly, an investigation of the transmission term was
necessary. We explain the basics of local nonlinear systems analysis and reveal how
it was helpful in developing our model. Upon completion of this stage, the model
became a four-dimensional model, with cycling cells separated into infected and
susceptible, with an additional compartment for the virions [2].

Finally, we bring all of the components together, transmission and delay, and
arrive at a system of five equations, one of which is an age-structured partial
differential equation, which captures the minimum time necessary to travel through
the active phases of the cell cycle. We review the method of characteristics and show
how this method was utilized twice in the paper, in one case to solve an equation
and later in a proof that shows that solutions of the PDE system remain nonnegative.

The development of the model and underlying mathematical theory are interest-
ing alone, but mathematical biology is at its best when we can say something about
the underlying biological system using the mathematical model. Therefore, at the
end of this chapter, we review the biological results in the original paper, obtained
through numerical simulations and stability analysis, which elucidate the factors
that promote complete remission, controlled tumor growth, or uncontrolled tumor
growth.

2 Linear System Techniques

First, tumor growth alone is modeled. The model comprises two compartments,
Q.t/ and S.t/, representing the volume of tumor cells in the quiescent phases and
the active phases of the cell cycle at time t , respectively. Later in the chapter, the
minimum biological time needed to travel through the active phases of the cell cycle
and the viral dynamics will be added to the model. But for now, the model will
simply track tumor growth, accounting for the transition to resting and back to the
active phases of the cell cycle. The equations of the model are

Q0.t/ D 2a2S � a1Q � d1Q; (1)

S 0.t/ D a1Q � a2S � d2S: (2)

The parameters a1 and a2 are the rates that cells move fromQ to S and S to Q,
respectively, with cells dividing into two when they leave the active phase, hence
the 2a2 in the first term of the Q0.t/ equation. Cells die naturally at rates d1 and d2
forQ and S , respectively.

The system is linear with constant coefficients and provides a nice example
of how linear analysis is used to qualitatively understand a system of differential
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equations. The system is also solvable but the solution is in terms of parameters,
and understanding how the parameters affect the dynamics of the system is easier if
we analyze the stability of the equilibria, rather than looking at the analytical forms
of the solutions. To fully appreciate this, we will look at both methods.

The solutions can be found using the eigenvalue method. If the eigenvalues of
the coefficient matrix are real, the general solution of the system has the form

	
Q.t/

S.t/



D c1e

�1t

	
v1
v2



C c2e

�2t

	
v3
v4



; (3)

where, �1 and �2 are the eigenvalues of the coefficient matrix. The corresponding
eigenvectors are Œv1 v2�T and Œv3 v4�T , respectively, and c1 and c2 are constants that
can be found once initial values, Q.0/ and S.0/ are given.

The coefficient matrix of our model system is

A D
	�.a1 C d1/ 2a2

a1 �.a2 C d2/



; (4)

so the eigenvalues of A are

�1 D �.a1 C a2 C d1 C d2/� p
	

2
; (5)

�2 D �.a1 C a2 C d1 C d2/C p
	

2
; (6)

where

	 D .a1 C a2 C d1 C d2/
2 � 4 .a1.d2 � a2/C d1.a2 C d2// ;

with corresponding eigenvectors

	
v1
v2



D
	
3a2 C d2 � p

	

2a1



; (7)

	
v3
v4



D
	
3a2 C d2 C p

	

2a1



: (8)

As you can imagine, trying to divine anything from (3) with these eigenvalues
and eigenvectors inserted would be quite difficult. Instead, qualitative analysis is
employed to study the long term behavior of the tumor. With qualitative analysis,
we can ask, based solely on the growth and death parameters, will the tumor prosper
or decline? Unless A is singular, which is highly improbable, the only equilibrium
of the system is the tumor free equilibrium (Q.t/, S.t/) = (0,0), so another way to
ask our question is, will nonzero solutions of the system approach (0,0) or move
away from it?
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To determine our answer, we look at the eigenvalues of the matrix A. Linear
systems analysis allows us to determine the stability of the equilibrium (0,0) solely
from the sign of the real parts of the eigenvalues of the coefficient matrix. If the
real parts of the eigenvalues of A are less than zero, then (0,0) is asymptotically
stable, and solutions move toward (0,0) as t ! 1. Therefore, the tumor will be
extinguished naturally. On the other hand, if the eigenvalues of A have positive real
parts, then (0,0) is unstable and the tumor will grow indefinitely. If one eigenvalue
has positive real part and the other has negative real part, then (0,0) is a saddle and
is unstable (with only two trajectories moving toward the equilibrium). If the
eigenvalues have real part equal to zero, then the situation is more complicated.
Also note that the eigenvectors are not used in understanding the stability of (0,0).
Using qualitative analysis, we can more easily discuss the long term behavior of the
solutions of the system than if we only had the analytical form of the solution alone.

Using the information in the preceding paragraph and the equations for the
eigenvalues, we can come up with conditions, based on the parameters of the model,
that determine when (0,0) will be stable. We only need to determine when the real
parts of the eigenvalues are both negative [9].

From (5) and (6), we know both eigenvalues are always real when all parameters
are nonnegative, since

.a1 C a2 C d1 C d2/
2 � 4.a1.d2 � a2/C d1.a2 C d2//

D d21 C .a1 C a2 C d2/
2 � 2d1.a1 C a2 C d2/C 4a1a2

D .d1 � .a1 C a2 C d2//
2 C 4a1a2 � 0:

Hence, if a1.d2 � a2/ C d1.a2 C d2/ > 0, both eigenvalues are negative and the
cancer-free equilibrium is asymptotically stable, implying that the tumor would
disappear naturally. On the contrary, if a1.d2 � a2/ C d1.a2 C d2/ < 0, then
one eigenvalue is positive, the cancer-free equilibrium is unstable, implying that
the tumor will grow without bounds. Notice that if either d1 > a1 or d2 > a2
(i.e., either compartment has a death rate which dominates the corresponding rate
of transfer within the system), then the cancer-free equilibrium is stable [9]. We
note that these results are analogous to those of Crivelli et al. [9] and Villasana and
Radunskaya [22].

3 Delay Differential Equations

If we model cell transitions as above, there is a possibility that the cell will move into
the active phases of the cell cycle and immediately split and transition to quiescence.
In reality, cells take some amount of time to transit through the active phases of the
cell cycle, due to various biological process in mitosis. The amount of time it takes
to travel through the cell cycle is not pre-determined, but is stochastic in nature.
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We think of the total amount of time needed to travel through the cell cycle as some
minimum time � plus some additional time that is Poisson in nature. The minimum
time is deterministic and is modeled with a delay. The additional time is modeled
through the exponential rate that cells transition back to resting.

To model the minimum time necessary to complete the active phases of the cell
cycle, we add a delay to the model. Cells transition from quiescence to the active
phases of the cell cycle at a rate of a1 and remain there for a minimum time � ,
representing the duration of mitosis. The way we model this mathematically, is to
transition cells through a holding compartment, NS , representing mitosis, for � days.
Cells move fromS to NS at a rate of a2, but cannot move back toQ until the minimum
time is over. After the requisite time � , cells move from NS into Q. If this were the
whole story, we could account for the transition through NS by moving cells out of
NS at rate a2S.t � �/, so that the rate of cells leaving at time t would be precisely

equal to the rate that cells entered � days ago at time t � � . However, cells still die
at a rate of d3 while traveling through NS . Therefore, the model equations are

Q0.t/ D 2a2e
�d3�S.t � �/ � a1Q � d1Q; (9)

S 0.t/ D a1Q � a2S � d2S; (10)

NS 0.t/ D a2S � d3 NS � a2e
�d3�S.t � �/; (11)

where the term e�d3� accounts for the proportion of cells that have died over the �
days in the holding compartment, NS . To have a well-defined model, we also include
history functions given by Q.t/ D �q.t/, S.t/ D �s.t/ and NS.t/ D �Ns.t/, for
�� � t � 0.

Notice that the first two equations in the system are not coupled with the holding
compartment, so we can analyze the behavior of the system by only considering the
first two equations and solving the equation for NS in terms of S.t/.

Even though our system is still linear, the delay makes the system much
more difficult to analyze. In general, systems of DDEs lead to characteristic
quasipolynomials that include terms of the form e��� , where � is a time delay in
the system.

To obtain the characteristic equation for our DDE system, we guess a solution of
the form e�tv for some constant vector v. Substituting this solution into (9) and (10)
and simplifying, we obtain

�	�.a1 C d1/ 2a2e
�d3� e���

a1 �.a2 C d2/



� �I2

�
v D 0

where I2 is the 2 � 2 identity matrix. Hence, it follows that

det

	�.a1 C d1/� � 2a2e
�d3� e���

a1 �.a2 C d2/� �



D 0:
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Calculating this determinant, we obtain the characteristic equation

P.�/ D 2a1a2e
�d3� e��� � .a1 C d1 C �/.a2 C d2 C �/ D 0: (12)

As is the case with transcendental equations of this form, in general, there
are infinitely many roots. As in the ODE case, we use the eigenvalues to prove
something about the tumor-free-equilibrium instead of finding the actual solutions
to the delay equations.

Given below, a result from the original work [9] which is proved using the
eigenvalues from the characteristic equation, describes a condition on � , which, if
achieved, results in a stable cancer-free equilibrium.

Theorem 1. For any a1, a2, d1, d2, d3 > 0, .Q; S/ D .0; 0/ is stable when

� >
1

d3
log

�
2a1a2

.a1 C d1/.a2 C d2/

�
> 0

and unstable when

0 < � <
1

d3
log

�
2a1a2

.a1 C d1/.a2 C d2/

�
:

Theorem 1 shows that for any growth and death rates, there is a � , given by the
condition in the theorem, for which the tumor would be naturally eliminated. To
prove this theorem, we first proved the following lemma [9]. See the original work
for the proof.

Lemma 1. For any a1, a2, d1, d2, d3 > 0, the rightmost eigenvalue derived from
the characteristic equation (12) is real.

Having proven the previous lemma, we proved the following proposition [9]. The
theorem directly follows.

Proposition 1. For any parameters a1, a2, d1, d2, d3 > 0, the cancer-free
equilibrium .Q; S/ D .0; 0/ of the system (9)–(10) is globally asymptotically
stable if

2a1a2e
�d3� � .a1 C d1/.a2 C d2/ < 0;

and unstable if

2a1a2e
�d3� � .a1 C d1/.a2 C d2/ > 0:

Using our result, it is also possible to determine a threshold delay value of � , about
which stability switches occur. We see that lengthening the time spent in the active
phases of the cell cycle can cause the doubling time of the tumor population to
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increase and thereby cause the tumor to be eliminated. Many therapeutics work in
this way to lengthen the time that cells stay in the cell cycle so that they reproduce
more slowly.

4 Virus System

So far, we have been investigating a system that describes tumor growth, including
the minimum time necessary for the cell to travel through the active phases of the
cell cycle. But the main goal of the work was to understand the dynamics of the
oncolytic virus, VSV. At this point, the virus is introduced into the system. To add
the virus, we must add compartments for the virus, V , and for cells that are infected
by the virus, I .

Mathematically, the most interesting question here is how to model transmission
of the virus to cells that are in the active phases of the cell cycle. As not to confound
the situation, we first look at transmission, ignoring the minimum time spent in the
active phases of the cell cycle.

As previously considered in (1) and (2), the model without virus is

Q0.t/ D 2a2S � a1Q � d1Q; (13)

S 0.t/ D a1Q � a2S � d2S: (14)

After adding the virus and infected cell populations, we arrive at

Q0.t/ D 2a2S � a1Q � d1Q; (15)

S 0.t/ D a1Q � a2S � d2S � � VS
N
; (16)

I 0.t/ D �
VS

N
� ıI; (17)

V 0.t/ D ˛I � �
VS

N
� !V: (18)

Let us examine how the system changes when the virus and infected cells are
added. The top equation is the same because the virus cannot act when cells are
in the Q state. The next equation, which describes how the size of the population
of active cells changes, has a new term, �� VS

N
, which describes the rate that cells

become infected. This term then appears again in the next equation, as cells move
from S to I when they become infected. Here,N , is the total volume of tumor cells
and virions in the system (N D S CI CV ). Modelers frequently use a mass-action
term for transmission (here that would be ��VS ). On the other hand, the term we
used is called a ratio- or frequency-dependent term.
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If we use a mass-action term to describe the dynamics of the virus, then the virus
has no effect on the local stability of the tumor-free equilibrium (.Q; S; I; V / D
.0; 0; 0; 0/). To understand this, we extend our linear analysis from Sect. 3 to
nonlinear systems. To do so, we must call on the Hartman–Grobman Theorem.

Formally, the Hartman–Grobman Theorem is a topological result. Informally, it
is likely the most used tool for understanding the long term behavior of nonlinear
differential equations systems. A formal statement is given in Perko [19]:

Theorem 2 (Hartman–Grobman Theorem). Let E be an open subset of R
n

containing the origin, let f 2 C1.E/, and let �t be the flow of the nonlinear
system Px D f.x/. Suppose that f.0/ D 0 and that the matrix A D Df.0/ has no
eigenvalue with zero real part. Then there exists a homeomorphism H of an open
set U containing the origin onto an open set V containing the origin such that for
each x0 2 U , there is an open interval I0 	 R containing zero such that for all
x0 2 U and t 2 I0

H ı �t .x0/ D eAtH.x0/: (19)

A friendlier (but less technical) version of this theorem can be found in Cain and
Reynolds [7] and is helpful in this discussion:

Theorem 3 (Hartman–Grobman Theorem, Friendly Version). Suppose x0 is an
isolated equilibrium of a nonlinear system Px D f.x/. Then in the vicinity of x0 , the
linearization x0 D J f.x0/.x � x0/ about that equilibrium has the same qualitative
behavior as the original nonlinear system.

In the virus system, the vectors x D .Q; S; I; V /T and f is the vector formulated
right hand side of our system of differential equations.

The Hartman–Grobman Theorem tells us that solutions of a nonlinear system act
like solutions of their corresponding linearized system near hyperbolic equilibria.
Assuming that the tumor-free equilibrium is hyperbolic (no eigenvalues with zero
real part), we can linearize the system and see how the virus affects the stability of
the tumor-free equilibrium.

But what is this term J f.x0/.x � x0/, and what does it have to do with
linearization? Linearizing a nonlinear system means that we take the multivariate
functions on the right hand side of each differential equation in the system and
Taylor expand each one around each equilibrium (x0), so that

dx
dt

D f.x0/C J f.x0/.x � x0/C higher order terms; (20)

where J is the Jacobian, the matrix of all first derivatives of the vector valued
function, f. We then drop the higher order terms, since we want to know about the
local stability of the equilibria. We can drop the higher order terms because we are
interested in the local behavior of the system and the higher order terms are small
when we are near the equilibrium.
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Since x0 is an equilibrium of the system, we know that f.x0/ D 0 so that

dx
dt

D J f.x0/.x � x0/: (21)

Next, we want to change the main vector of variables to be the distance from the
equilibrium instead of the total distance. We do so by substituting Nx D .x � x0/ and
noting that dx

dt
D d Nx

dt
since dx0

dt
D 0. We then have

d Nx
dt

D J f.x0/.Nx/: (22)

This is the linearized version of the system around the equilibrium x0. From
the Hartman–Grobman Theorem, we know we can determine the stability of any
hyperbolic equilibrium by eigenvalue analysis of the Jacobian evaluated at the
equilibrium of interest.

Now going back to virus system, we want to know how the stability of the tumor-
free equilibrium (.Q; S; I; V / D .0; 0; 0; 0/) is affected by the introduction of the
virus. The real question is, by introducing the virus, can we eliminate the tumor over
time, or in mathematical terms, can introduction of the virus change the sign of the
real part of the eigenvalues of the Jacobian so that they go from at least one being
positive to all negative?

In the original paper, we make the argument that the virus cannot affect local
stability of the tumor-free equilibrium if transmission is modeled using a mass-
action term �VS instead of the ratio-dependent term �VS

N
, where N D Q C S C

I C V . Now that we understand what it means to linearize a system and talk
about stability of the tumor-free equilibrium under linearization, let us look at what
happens when we linearize the system which includes mass-action transmission:

Q0.t/ D 2a2S � a1Q � d1Q; (23)

S 0.t/ D a1Q � a2S � d2S � �VS; (24)

I 0.t/ D �VS � ıI; (25)

V 0.t/ D ˛I � �VS � !V: (26)

The Jacobian, J , of the right-hand side of this system is

J.Q; S; I; V / D

2
664

�a1 � d1 2a2 0 0

a1 �a2 � d2 � �V 0 ��S
0 �V �ı �S

0 ��V ˛ �!

3
775 :

So far, it looks like the parameters of the virus are coming into play repeatedly in
the Jacobian matrix and will have an important role to play in determining the sign



Differential Equation Techniques for Modeling a Cycle-Specific. . . 263

of the eigenvalues. But we must remember that before we find the eigenvalues, we
evaluate the Jacobian at the tumor-free equilibrium .Q; S; I; V / D .0; 0; 0; 0/), so
anywhere we see a V or an S , that term will be zero. These are all of the transmission
terms. At the tumor-free equilibrium, the Jacobian is

J.0; 0; 0; 0/ D

2
664

�a1 � d1 2a2 0 0

a1 �a2 � d2 0 0

0 0 �ı 0

0 0 ˛ �!

3
775 :

This is a block matrix and the eigenvalues from the top-left block only depend
on the parameters a1, a2, d1, and d2, which is the coefficient matrix of the
linear submodel describing tumor growth alone without virus (see (13) and (14)).
The two eigenvalues of the lower-right block are �ı and �!, which are always
negative, because ı and ! are always positive. So we see that if we use mass-
action transmission, the virus is not able to affect the stability of the tumor-free
equilibrium because the terms related to the virus do not alter the signs of the
eigenvalues associated with tumor growth. The eigenvalues due to the virus-
associated parameters are always negative and the others are unaffected by the virus.

However, if we use ratio-dependent transmission, as is in (15) and (18), it has
been shown that the virus can affect the stability of the tumor-free equilibrium [15].
Ratio dependence also makes sense biologically because it allows for the spatial size
of the tumor to change, whereas mass action makes the assumption that the spatial
dimension is staying constant, while the density changes, which is not usually the
case for tumors.

It is noted that the biological relevance of these results is not certain. In the
mass-action type model, oscillations are frequently seen that drive the tumor size
to near zero [9, 13, 24]. In the true biological system, when the tumor is near
zero, it can be removed completely due to the stochasticity of the underlying
dynamics. Additionally, the formulation of the ratio-dependent term is sensitive to
perturbations, causing the model to not be entirely robust.

5 PDE Virus System

First, a model of tumor growth was developed. We then investigated how incor-
porating the time needed to travel through the cell cycle affected the stability of
the tumor-free equilibrium of the model by developing a system of equations that
included a delay. Next, we created a model of tumor growth and viral dynamics
without the delay. In this section, we finally put all of the components together into
one model.

We can no longer use delay differential equations, because the transmission term
is nonlinear and we can no longer solve directly for the loss of cells in the holding
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state NS , as we did in the simpler growth-only model. After developing the model, we
want to make sure that the solutions match those of the simpler model, if the viral
parameters are set to zero. To do so, we must first complete our analysis of (11) by
solving for NS in terms of S , which we think of as a known function of t .

Begin with the differential equation

NS 0.t/ D a2S � d3 NS � a2e�d3�S.t � �/; (27)

which is linear in NS .
The integrating factor is ed3t . After multiplying by the integrating factor on both

sides and integrating between 0 and t , we find that

NS.t/ D NS.0/e�d3t C a2e
�d3t

Z t

t��
ed3uS.u/du � a2e�d3t

Z 0

��
ed3u�s.u/du: (28)

We also assume that cells that are in the holding state before t D �� , leave
before t D 0. Mathematically we can do this by setting NS.0/ D a2

R 0
�� e

d3u�s.u/du:
Therefore, the solution is

NS.t/ D a2e
�d3t

Z t

t��
ed3uS.u/du: (29)

After developing the full model, we will check that it is consistent with this solution.
Now to the full model. Our full PDE model, including the minimum biological

time needed to complete the active phases of the cell cycle, as well as the viral
transmission, is

dQ

dt
D 2 OS.�; t/� a1Q � d1Q; (30)

dS

dt
D a1Q � a2S � d2S � �

VS

N
; (31)

@ OS
@t

C @ OS
@x

D �d3 OS � � V
OS

N
; (32)

dI

dt
D �ıI C �

VS C V NS
N

; (33)

dV

dt
D ˛I � !V � �

VS C V NS
N

: (34)

where NS.t/ D R �
0

OS.x; t/dx, N.t/ D Q.t/C S.t/C NS.t/C I.t/C V.t/, and the
boundary condition is given by

OS.0; t/ D a2S.t/:
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OS is a function of two variables: t–time, and x–the length of time already spent in
the cell cycle. A diagram of the full PDE model is given in Fig. 1.

V

a1Q

a2S

I

S

Q

2S(τ,t)

x = 0

x = τ S(x,t)

αI

κ VS
N

κ VS
N

quiescent infected

susceptible

mitosis

virus

Fig. 1 Compartmental diagram for the full model of virotherapy, given by (30)–(34). Transfer
occurs from the quiescent to the non-quiescent, or susceptible, cell population at rate a1, and
susceptible cells begin mitosis at rate a2. Cells undergoing mitosis remain in a holding state
for � units of time. After completing mitosis, two daughter cells enter the quiescent population.
Susceptible cells are infected through contact with the free virus population at rate �V=N and enter
the infected state. Viral reproduction in infected cells, combined with lysis, leads to production of
free virions at a rate ˛. Although not shown in the diagram, all cell and virus populations, Q, S ,
OS , I , and V die or decay at rates d1, d2, d3, ı, and !, respectively

Note that the PDE now accounts for the loss of susceptible cells in the delay
period. For biological relevance, the initial conditions, Q.0/, S.0/, OS.x; 0/, I.0/,
and V.0/, are all assumed to be nonnegative. To extend the model to the origin,
when N D 0, we let the right-hand sides of (30)–(34) equal zero. Note that the
system (30)–(34) also reduces to (15)–(18) when � D 0.

Remember, we want to show that if we remove virotherapy, the solution we
obtain is the same as (29). To do so, we will use the method of characteristics, a
technique that can be used to solve certain partial differential equations (PDE). We
use it here to find the solution of the full system when virotherapy is turned off, and
then afterward, to prove that solutions of the full system with virotherapy do not
become negative.

The main idea behind the method of characteristics is that you divide the domain
into characteristic curves. Along these characteristic curves, the PDE becomes an
ODE that you can solve, given suitable initial value data. After you find solutions on
the characteristic curves, you convert the solutions into one concise surface solution
for the PDE.

A standard example involves the advection equation

a
@u

@t
C b

@u

@x
D 0; (35)

where a and b are not zero. We are looking for solutions u.t; x/ that satisfy this
PDE.
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The characteristic curves are found by realizing that the normal to the surface
.t; x; u.t; x// is given by .ut ; ux;�1/. Our PDE tell us that .a; b; 0/�.ut ; ux;�1/ D 0,
so we look for .a; b; 0/ which lies in the tangent plane to .t; x; u.t; x//. To do so,
we let

dt

ds
D a (36)

dx

ds
D b (37)

du

ds
D 0; (38)

where we are parameterizing the characteristic curve in the tangent plane by s.
Solving the system of ordinary differential equations in terms of s we find

t.s/ D as C c1

x.s/ D bs C c2

u.s/ D c3:

We can get rid of the parameter s, noting that the characteristic curves are ax � bt

and that the solution u is constant along these characteristic curves. Therefore, the
solution is an arbitrary differentiable function u.t; x/ D f .ax � bt/. The particular
function needed when modeling is determined from auxiliary conditions. To see
why the solution makes sense, notice from the chain rule that

a
@u

@t
C b

@u

@x
D abf 0.ax � bt/ � baf 0.ax � bt/ D 0:

Now, let us examine how we used the method of characteristics in a couple
different ways in the paper. Going back to the model, if we remove virotherapy,
and assume that, for 0 � x � � , OS.x; 0/ D a2�s.�x/e�d3x , then this system acts
like (9)–(11). We want to show that is the PDE model really is equivalent to (9)–(11)
by showing that NS is the same as (29).

Similar to the preceding example, if we use the method of characteristics, we let

dt

ds
D 1

dx

ds
D 1

d OS
ds

D �d3 OS;
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Solving the system of ODEs, we find

t.s/ D s C c1

x.s/ D s C c2

OS.s/ D OS.s D 0/e�d3s;

which implies

OS.s C c2; s C c1/ D OS.c2; c1/e�d3s :

Letting s D Qx, c1 D Qt � Qx, and c2 D 0 for Qt � Qx and removing the tildes, we obtain

OS.x; t/ D OS.0; t � x/e�d3x:

We can then find NS.t/ by noting that OS.0; t � x/ D a2S.t � x/:

NS.t/ D
Z �

0

OS.x; t/dx D
Z �

0

OS.0; t � x/e�d3xdx (39)

D
Z �

0

a2S.t � x/e�d3xdx (40)

D
Z t

t��
a2S.u/e

�d3.t�u/du (41)

D a2e
�d3t

Z t

t��
ed3.u/S.u/du: (42)

And so we have achieved our goal, showing that NS is the same as for the virus free
system, see (29).

We also used the method of characteristics and integrating factor techniques to
prove that solutions that begin nonnegative remain nonnegative for all time. We
include the theorem and proof here as a more complicated example of using the
method of characteristics [9].

Theorem 4. Assume that Q.0/, S.0/, OS.x; 0/, I.0/, and V.0/ are nonnegative.
Then, solutions of the system (30)–(34) are nonnegative for t � 0.

Proof. If Q.0/ D S.0/ D OS.x; 0/ D OS.0; t/ D I.0/ D V.0/ D 0, then Q.t/ D
S.t/ D OS.x; t/ D I.t/ D V.t/ D 0 for all t , and we are at equilibrium.

Otherwise by assumption, at t D 0, all compartments are greater than or equal to
zero and the total populationN.0/ > 0. In this case, we assume

t0 D inf
t>0

ft jQ.t/ < 0; S.t/ < 0; NS.t/ < 0; I.t/ < 0 or V.t/ < 0g;

with t0 < 1 and proceed to arrive at a contradiction.
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Let W D I C V . We first assume that ! � ı, so

W 0 D �!W C .˛ � ı C !/I:

If f .t/ D .˛ � ı C !/I , then f .t/ � 0 for t 2 Œ0; t0�. Second, we assume that
! < ı, so

W 0 D �ıW C ˛I C .ı � !/V:

If f .t/ D ˛I C .ı � !/V , then f .t/ � 0 for t 2 Œ0; t0�, so in general,

W 0 D �c1W C f .t/; (43)

for some c1 > 0 2 R and f .t/ � 0 for t 2 Œ0; t0�.
The solution of (43) is

W.t/ D W.0/e�c1t C e�c1t
Z t

0

ec1�f .�/d�:

IfW.0/ D 0, the system reduces to the model with no treatment. Otherwise, because
W.0/ > 0 and f .t/ � 0, it follows that W.t/ > 0 for t 2 Œ0; t0�. Then, since
W.t0/ > 0, the total populationN.t0/ > 0. Now, with N.t0/ > 0, we can show that
all compartments will stay nonnegative past t0.

We begin with the age-structured PDE (32) and show that OS.�; t/ � 0 for t 2
Œ0; t0 C �/ where � D minf�; �g for some � > 0. For each � 2 R, we define

S�
� .T / D OS.� C T; T /:

and find solutions along the characteristic lines x D � C T with t D T . Then,

dS�
�

dT
D @ OS
@x

C @ OS
@t

and

.S�
� /

0 D �d3S�
� � � VS

�
�

N
:

Hence, for each �, we have converted (32) into an ODE.
Since t D T ,

S�0

� .t/ D �d3S�
� .t/ � �

V.t/S�
� .t/

N.t/
:
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Letting g.t/ D d3 C �V.t/

N.t/
, we rewrite the equation above as

S�0

� .t/ D �g.t/S�
� .t/: (44)

Replacing Eq. (32) with (44), we obtain a system of ODEs for each characteristic
line. From the form of the system of equations and the nonnegativity of initial
conditions, it follows that t0 > 0.

Since N.t0/ > 0, the ODE system is well-posed and a solution exists on an
interval .t0 � �; t0 C �/. Moreover, by continuity, we may assume N.t/ > 0 for
t 2 .t0 � �; t0 C �/.

Then solutions of Eq. (44) along the characteristic lines x D � C t are

S�
� .t/ D S�

� .0/e
� R t

0 g.u/du:

Each characteristic line in the .x; t/ plane intersects either the nonnegativex-axis
or the positive t-axis. If � � 0, then the characteristic line intersects the nonnegative
x-axis and S�

� .0/ D OS.�; 0/, which is nonnegative by assumption. Otherwise, if
� < 0, the characteristic line intersects the positive t-axis at ��, and S�

� .0/ D
OS.0;��/ D a2S.��/. By definition of t0, we know that S.��/ is nonnegative when
�� 2 Œ0; t0�. Thus, S�

� .0/ � 0 for each characteristic line that intersects the positive
t-axis at or below t0, (� � �t0).

Since g.t/ is bounded (0 � g.t/ � d3 C �) and S�
� .0/ � 0 for � � �t0, on the

corresponding characteristic lines, S�
� .t/ will remain nonnegative for as long as the

solution exists. Therefore, OS.�; t/will also remain nonnegative for t 2 .t0��; t0C�/
where � D minf�; �g. The constant � is defined in this way to ensure that solutions
lie on the proper characteristic lines and that solutions exist.

Next, we evaluate (30)–(34), excluding the PDE. Each of the four equations is of
the form B 0.t/ D A.t/ � r.t/B.t/, and each equation has a solution of the form

B.t/ D B.0/e� R t
0 r.s/ds C

Z t

0

e� R t
� r.s/dsA.�/d�;

where B is Q, S , I or V . For (30), the variable A.t/ D 2 OS.�; t/, and we know that
OS.�; t/ is greater than or equal to zero for t 2 Œ0; t0 C �/ from the earlier argument

using the method of characteristics. By assumption, the initial conditionQ.0/ � 0,
so we obtainQ.t/ � 0 for t 2 .t0��; t0C�/. For (31), the variableA.t/ D a1Q.t/,
so by similar reasoning, it follows that S.t/ � 0 for t 2 .t0 � �; t0 C �/. Since
S.t/ � 0 for t 2 .t0 � �; t0 C �/, it follows that S�

� .0/ � 0 for characteristic lines

intersecting the t-axis up to t0 C �. So, OS.x; t/ � 0 for t 2 .t0 � �; t0 C �/, and
therefore the same holds for NS.t/. Finally, since Q;S; OS � 0, it follows from (33)
and (34) that solutions cannot leave the positive quadrant of the I � V plane and I
and V will remain nonnegative for t 2 .t0 � �; t0 C �/.

We have shown that all compartments remain nonnegative for t 2 .t0��; t0C�/.
This contradicts the definition of t0. We conclude that solutions remain nonnegative
for all time.
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6 Numerical Simulations

Models of biological systems are interesting from a mathematical point of view,
but more importantly, for what they say about the biology. We used the models we
developed above to understand the dynamics of the tumor-virus system in terms
of biological parameters. In our paper [9], we numerically studied the dynamics
from two perspectives: trajectories over time and stability regions using parameters
from the literature (Table 1). By investigating trajectories over time, we showed
that increasing the delay or adding virus can change the stability of the tumor free
equilibrium. We also showed, using stability regions, that the specific parameters of
the tumor or the virus affect the stability of the tumor-free equilibrium.

6.1 Non-Delay Case

We numerically simulated the various models using solvers, such as dde23, in
MATLAB (Mathworks, MA), first without delay, then with the delay. Figure 2 plots
solutions under three different conditions. The leftmost plot displays exponential
tumor growth resulting from the system (13) and (14). The middle plot shows
solutions of the system when a mass-action transmission term is used, whereas
the plot on the right shows solutions for ratio-dependent transmission, using
system (15)–(18) for the case of ratio-dependent transmission and system (23)–(26)
for the case of mass-action transmission. Note that the untreated tumor grows
exponentially (Fig. 2, left), whereas the treated tumor is eliminated (Fig. 2, right).
Mass-action solutions are presented to show how solutions oscillate under such
dynamics (Fig. 2, middle).

Two parameters, ˛ and �, are strongly correlated with the effectiveness of
VSV treatment in system (15)–(18). Increase in viral replication is modeled by
increasing ˛. Increasing viral replication increases virus-cell contact and results in
a better treatment. As � increases, likelihood of infection increases, also increasing
the efficacy of the treatment. Figure 3 shows the effects of changing ˛ and � on the
stability or instability of the cancer-free equilibrium.

6.2 Delay Case

Next, we looked at the models including the minimum time biologically necessary to
complete division and compared to the non-delay system. In the left panel of Fig. 4,
we plot solutions of the system, including the delay, but without VSV treatment.
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Fig. 2 Numerical solutions of VSV, excluding delay. Left: exponential tumor growth in the
absence of therapy, (13) and (14). Middle: growing oscillatory behavior of solutions when virus-
cell contact is modeled using mass action, (23)–(26). Right: complete tumor elimination; virus-cell
contact is modeled using ratio dependence, (15)–(18). Parameter values: a1 D 0:9, a2 D 0:6,
d1 D 0:00001, ı D 1:119, ! D 0:3, ˛ D 3, � D 1 in the case of mass-action transmission
(middle), and � D 1, in the case of ratio-dependent transmission (right)

Fig. 3 Stability diagram for
viral reproduction (˛) and
contact (�). Other parameter
values are as in Fig. 2, i.e.
a1 D 0:9, a2 D 0:6,
d1 D 0:00001, ı D 1:119,
! D 0:3, and ˛ D 3
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Parameters were chosen so that the solutions grow exponentially. In the middle
panel, using the same parameters for tumor growth, we look at the VSV model
that excludes the delay. We once again see exponential growth of the tumor (middle
panel). The right most panel shows how interaction of the treatment and the delay
causes successful elimination of the tumor. When the time delay is included, VSV
successfully eliminates the tumor (right panel), demonstrating how the delay and
the treatment interact, leading to successful eradication of the tumor.

Finally, we study stability diagrams of the VSV treatment parameters,˛, �, and � .
Figure 5 shows how the parameters interact, two at a time, to change the stability of
the tumor free equilibrium.
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Fig. 4 Left: uncontrolled tumor growth (in the absence of virotherapy) under prolonged cell cycle
progression (� D 0:5). Middle: when � D 0:8, virotherapy treatment fails; minimum cell cycle
time is not accounted (� D 0). Right: when � D 0:8, virotherapy with a minimum cycling
time (� D 0:5) results in a stable cancer-free state. All other parameter values are the same as
in Fig. 2, i.e. a1 D 0:9, a2 D 0:6, d1 D 0:00001, ı D 1:119, ! D 0:3, and ˛ D 3
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Fig. 5 Stability maps when ˛, �, and � are varied, two at a time. For small ˛ and �, a delay value
(� ) beyond a certain threshold will ensure stability of the origin. Parameter values, if not varied,
are a1 D 0:9, a2 D 0:6, d1 D 0:00001, ı D 1:119, ! D 0:3,˛ D 1:5, � D 1, and � D 1

7 Discussion

In this chapter, we have developed a model of vesicular stomatitus virus (VSV),
a candidate oncolytic virus, which has the defining feature that it can only infect
tumor cells when they are in the active phases of the cell cycle.

We began with a simple tumor growth model containing compartments for
resting and proliferating cells. This model took the form of a linear system of
differential equations. We used the model to discuss basic techniques for linear
systems analysis, the eigenvalue method. We presented results from the original
work [9], giving conditions, in terms of parameters, for which the tumor would
grow indefinitely or decay based solely on parameters related to the tumor.

Next, we extended the model to account for the minimum biological time
course of the active phases of the cell cycle. In doing so, we arrived at a three-
dimensional system of linear delay differential equations. Eigenvalue analysis for
delay differential equations was discussed and a basic example given. We also
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Table 1 Table of parameters given by (30)–(34). Parameters were obtained from the
references cited in the fourth column. For all simulations, it was assumed that d3 D d2

Parameter Description Estimate Reference

a1 Quiescent cell entrance into active phases (day�1) 0:9 [14]

a2 Active cell entrance into quiescence (day�1) 0:6 [14]

d1 Quiescent cell death (day�1) 1� 10�5 [14]

d2 Active cell death (day�1) 0:15 [14]

˛ Virion production (day�1) 3 Variable

ı Infected cell elimination (day�1) 1:119 [3]

! Free virion decay (day�1) 0:3 [3]

� Minimum duration of active phases (day) Œ0; 3� Variable

� Kinetic coefficient (day�1) Œ0; 5� Variable

reviewed the main result for that model: for a given set of model parameters, there
exists a minimum value of the delay � that will drive the system towards a globally
stable cancer-free state, which can be calculated in terms of the growth and death
rates of tumor populations.

Our next extension involved introducing virotherapy treatment by including two
additional compartments: infected cells and free virions, creating a nonlinear system
of differential equations. We discussed linearization techniques and methods of
analysis. These methods helped us understand why transmission kinetics should be
modeled through ratio-dependent contact between free virions and tumor cells. Our
model complements experimental results that suggest that initiation of virotherapy
treatment can drive the system towards the cancer-free equilibrium.

Finally, we developed our full model using an age-structured PDE model. We
introduced the method of characteristics, a method commonly used to solve basic
hyperbolic PDEs. We then showed how we used this method to obtain results in our
original work. We first showed that the PDE without virotherapy is identical to the
DDE model. The method of characteristics was used in a more complicated example
to show that the solutions of our full model remain nonnegative. As a last note,
we showed how numerical simulations could further the discussion by allowing us
to examine time trajectories and stability regions.

This work reveals how techniques and tools from differential equations can be
used to develop and analyze models of oncolytic viruses. Each virus is unique and
therefore different models will be needed to study the characteristics of each one.
Here, we progressively developed a model of VSV using ordinary, delay, and partial
differential equations and presented the necessary tools to build and analyze that
particular model.
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