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Abstract

The brain must solve a wide range of different temporal problems, each of

which can be defined by a relevant time scale and specific functional

requirements. Experimental and theoretical studies suggest that some

forms of timing reflect general and inherent properties of local neural

networks. Like the ripples on a pond, neural networks represent rich

dynamical systems that can produce time-varying patterns of activity in

response to a stimulus. State-dependent network models propose that sen-

sory timing arises from the interaction between incoming stimuli and the

internal dynamics of recurrent neural circuits. A wide-variety of time-

dependent neural properties, such as short-term synaptic plasticity, are

important contributors to the internal dynamics of neural circuits. In con-

trast to sensory timing, motor timing requires that network actively generate

appropriately timed spikes even in the absence of sensory stimuli. Popula-

tion clock models propose that motor timing arises from internal dynamics

of recurrent network capable of self-perpetuating activity.
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Introduction

The nervous system evolved to allow animals to

adapt to and anticipate events in a dynamic world.

Thus the need to tell time was among the earliest

forces shaping the evolution of the nervous sys-

tem. But telling time is not a singular biological

problem: estimating the speed of moving objects,

determining the interval between syllables, or

anticipating when the sun will rise, are all tempo-

ral problems with distinct computational

requirements. Because of the inherent complex-

ity, diversity, and importance of time to animal

evolution, biology has out of necessity devised

numerous solutions to the problem of time.
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Humans and other animals time events across a

wide range of temporal scales, ranging from

microsecond differences in the time it takes

sound to arrive in the right and left ear, to our

daily sleep-wake cycles, and beyond if we con-

sider the timing of infradian rhythms such as

menstrual cycles. At a societal and technological

level humans also keep track of time over many

orders of magnitude, from the nanosecond accu-

racy of the atomic clocks used for global-

positioning systems to the clocking of our yearly

trip around the sun. It is noteworthy that in the

technological realm we can use the same devices

to tell the time across the full spectrum of time

scales: for example, atomic clocks are used to

time nanosecond delays in the arrival of signals

from different satellites, as well as to make

adjustments to the calendar year. Virtually all

modern man-made clocks—from an atomic

clock to a grandfather clock—rely on the same

simple principle: an oscillator that generates

events at some fixed interval and a counter that

integrates events (“tics”) to provide an estimate of

time with a resolution equal to the period of the

oscillator. In stark contrast, evolution has devised

fundamentally different mechanisms for timing

across different time scales, and even multiple

mechanisms to solve temporal problems within

the same time scale. The fact that there are numer-

ous biological solutions to the problem of telling

time likely reflects a number of factors. First, the

biological building blocks of the brain lack the

speed, accuracy, and counting precision of the

electronic components that underlie modern

man-made clocks. Second, the features required

of a biological timer vary depending on whether

its function is to process speech, or to control the

circadian fluctuations of sleep-wake cycles. Third,

different temporal problems, such as sound locali-

zation, capturing the temporal structure of animal

vocalizations, or estimating when the sun will rise

emerged hundreds of millions of years apart dur-

ing evolution; and were thus subject to entirely

different evolutionary pressures and potential

solutions. The result is that while animals need

to discriminate microsecond differences between

the arrival of sounds to each ear and the hours that

govern their sleep-wake cycles, the timing

mechanisms responsible for both these tasks

have nothing in common. In other words, the

“clock” responsible for the millisecond timing

does not have an hour hand, and our circadian

clock does not have a second hand.

For the above reasons, any discussion of

timing should be constrained to specific scales

and tasks. This chapter will focus on the scale of

tens of milliseconds to a few seconds. It is within

this range in which the most sophisticated forms

of timing lie. Computationally speaking, timing

on shortest and longest scales is mostly limited to

detection of isolated intervals and durations. But

within the scale of tens of milliseconds to

seconds, the brain must process and generate

complex temporal patterns. It is within this

range in which most animals generate and

decode the complex temporal structure of audi-

tory signals used for communication. For exam-

ple, in human language, the duration and

intervals between different speech segments is

critical on many different levels, from the timing

of the interval between syllables and words [1–4]

to the overall prosody in which the rhythm and

speed of speech influence our interpretation of

affect speech recognition and for the determina-

tion of prosody [5]. For example, the pauses

between words contribute to the interpretation

of ambiguous sentences such as “Kate or Pat

and Tony will come to the party” (i.e., will

Kate or Pat as well as Tony come, versus, will

Kate or, Pat and Tony, come) [2]. Additionally,

on the motor side the complex motor patterns

necessary for speech production, playing the

piano, or performing highly coordinated motor

patterns animals must perform to hunt are

heavily dependent on the brain’s ability to pro-

duce timed motor outputs [6]. Perhaps the easiest

way to express the unique sophistication of tem-

poral processing on the scale of tens of milli-

seconds to seconds is by pointing out that

human language can be effectively reduced to a

purely temporal code. In Morse code there is a

single communication channel and all informa-

tion is transmitted in the order, interval, duration,

and pattern of events. It is a testament to the

brain’s ability to process temporal information

that humans can learn to communicate with
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Morse code, but this ability is constrained to a

specific time scale, the brain simply does not

have the hardware to understand Morse code

with ‘dot’ and ‘dash’ durations of a few millisec-

ond or of many seconds: the ability to process

complex patterns is lost at both very fast and very

slow speeds!

In this chapter we will focus on a class of

models mentioned in fourth chapter (Hass and

Durstewitz, this volume) termed state-dependent

networks, that offers a general framework of the

mechanisms underlying timing on the scale of

tens of milliseconds to a few seconds. This class

of models is unique in that it provides a frame-

work to process both simple forms of interval and

duration discrimination, as well as the ability to

process complex spatiotemporal patterns charac-

teristic of speech or Morse code. A key principle

in this framework is that precisely because timing

is such an important computational problem it is

proposed that neurons and neural circuits evolved

precisely to solve temporal problems, and thus

that timing on the scale of tens of milliseconds

to a few seconds should be seen as an intrinsic, as

opposed to a dedicated (fifth chapter), computa-

tion. Thus under this framework timing is simply

one of the main computational tasks neural

networks were “designed” to perform.

Timing with Neural Dynamics

The principle underling most man-made clocks is

that by counting the cycles of an oscillator that

tics at a fixed frequency it is possible to keep

track of time. It is important to note, however,

that there are ways to tell time that do not rely on

oscillators. In principle, any dynamic system,

regardless of whether it exhibits periodicity or

not, can potentially be used to tell time—indeed

this statement is a truism since dynamics refers to

systems that change over time. Consider a child

sliding down a water slide, if she goes down from

the same initial position every time, she will take

approximately the same amount of time to reach

the bottom every time. We could mark the slide

to represent 1 s intervals, which would have

smaller spacing at the top and larger spacings at

the bottom where the velocity is higher. Thus as

the child crosses the different lines we could tell

if she started approximately 1, 2, 3, or 4 s ago.

The point is, is that any dynamical system that

can be follow the same trajectory again and again

has information about time. Indeed, in his

famous experiments on motion Galileo applied

this same concept when analyzing the speed a

ball roles down an inclined plane.

A slightly more appropriate analogy to pre-

pare us for how neural dynamics can be used to

tell time is a liquid. A pebble thrown into a pond

will create a spatiotemporal pattern of ripples:

the concentric waves that travel outwards from

the point of entry. If you were shown two

pictures of these ripples you could easily tell

which picture was taken first based on the diam-

eter of ripple pattern, and importantly with some

knowledge of the system and a bit of math, you

could estimate how long after the pebble was

thrown in were both pictures taken. Now let’s

consider what happens when we throw in second

pebble: the pattern produced by a second pebble

will be a complex interaction between the inter-

nal state of the liquid (the current pattern of

ripples). In other words the ripple pattern pro-

duced by the second pebble will be a function of

the inter-pebble interval, because the interaction

between the internal state of the system and

subsequent “inputs”. As we will see below this

notion of an evolving internal state and the inter-

action between that internal state and new inputs

is key to state-dependent network models—

particularly in the context of sensory timing.

Networks of neurons are a complex dynamic

system—not just any dynamic system, but argu-

ably one of the most complex dynamic systems

known. Defining the internal state of neural net-

work, however, is not as straightforward as it might

seem, so it will be useful to distinguish between

two components that characterize the state of neu-

ral networks: the active and hidden state.

Active States

Traditionally, the state of a neural network is

defined by which neurons are firing at a given
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point in time–I will refer to this as the active state.
We can formally define the active state of a net-

work composed of N neurons as an N-dimensional

vector that is composed of zeros and ones—where

a zero signifies that a neuron is not firing and a one

means that it is (depending on the size of the time

bin we can also represent each value as a real

number representing the firing rate). Such a vector

forms a point in N-dimensional space, and defines

which neurons are active at a time point t. Over the
course of multiple time bins these points form a

path (a neural trajectory) through state space

(Fig. 1A). Because the trajectory plays out in

time each point can potentially be used to tell

time. One of the first models to suggest that the

changing population of active neurons can be used

to encode time was but forth by Michael Mauk in

the context of the cerebellum [7–9]. The cerebel-

lum has a class of neurons termed granule cells,

and these are the most common type of neuron in

your brain—more than half the neurons in the

brain are granule neurons [10]. Mauk proposed

that one reason there are so many granule cells is

because they do not only code for a particular

stimulus or body position but the amount of time

that has elapsed since any given stimulus was

presented. The model assumes that a stimulus

will trigger a certain population of active granules

cells, and that at each time point t + 1 this neuro-

nal population will change, effectively creating a

neural trajectory that plays out in time.Why would

the population of granule cells change in time in

the presence of a constant (non-time varying) stim-

ulus? The answer lies in the recurrency, or feed-

back, that is characteristic of many of the brain’s

circuits. As we will see below the recurrency can

ensure that which neurons are active at time t is not

only dependent on the synapses that are directly

activated by the input, but also depends on the

ongoing activity within the network; thus the

neurons active at t + 1 is a function of both the

input and which neurons were active at t. Under
the appropriate conditions feedback mechanisms

can create continuously changing patterns of activ-

ity (neural trajectories) that encode time.

Numerous in vivo electrophysiology studies

have recorded reproducible neural trajectories

within neural circuits. These neural trajectories

have been observed in response to either a brief

stimulus or prolonged time-varying stimuli

[11–14]. Other studies have demonstrated that

these trajectories contain temporal information

[15–20]. While these results support the notion

that time can be encoded in the active state of

networks of neurons, it has not yet been clearly

demonstrated that the brain is actually using

these neural trajectories to tell time.

Hidden States

Defining the state of a neural network is more

complicated then simply focusing on the active

Fig. 1 Neural trajectories. A) The changing patterns of

activity of a neural network can be represented as neural

trajectories. Any pattern of activity can be represented in a

space where the number of dimensions correspond to the

number of units. In the simple case of two neurons

trajectories can be plotted in 2 dimensional space where

each point corresponds to the number of spikes within a

chosen time window. In this schematic two different

trajectories (blue and red) are elicited by two different

stimuli, and because the trajectories evolve in time, the

location of the each point in space codes for the amount of

time that has elapsed since the onset of either stimulus

(from Buonomano and Maass [73])
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state. Even a perfectly silent network can respond

to the same input in different manners depending

on its recent history of activity. Put another way,

even a silent network can contain a memory of

what happened in the recent past. This is because

neurons and synapses have a rich repertoire of

time-dependent properties that influence the

behavior of neurons and thus of networks. On

the time scale of tens of milliseconds to a few

seconds, time-dependent neural properties include

short-term synaptic plasticity [21, 22] slow inhib-

itory postsynaptic potentials [23, 24],

metabotropic glutamate currents [25], ion channel

kinetics [26, 27], and Ca2+ dynamics in synaptic

and cellular compartments [28, 29], and NMDA

channel kinetics [30]. I refer to these neuronal and

synaptic properties as the hidden network state,

because they are not accessible to the downstream

neurons (or to the neuroscientist performing extra-

cellular recordings) but will nevertheless strongly

influence the response of neurons to internally or

externally generated inputs.

Much of the work on the hidden-states of

neural networks has focused on short-term syn-

aptic plasticity, which refers to the fact that the

strength of a synapse is not a constant but varies

in time in a use-dependent fashion. For example,

if after a long silent period (many seconds) an

action potential is triggered in a cortical pyrami-

dal neuron might produce a postsynaptic poten-

tial (PSP) of 1 mV in a postsynaptic neuron. Now

if a second spike is triggered 100 ms after the first

spike the PSP could be 1.5 mV. Thus the same

synapse can have multiple different strengths

depending on its recent activity. This short-term

plasticity can take the form of either depression

or facilitation, depending on whether the second

PSP is smaller or larger then the ‘baseline’ PSP,

respectively. An example of short-term facilita-

tion between cortical pyramidal neurons is

shown in Fig. 2. Most of the brain’s synapses

undergo depression or facilitation for the dura-

tion of a time scale of hundreds of milliseconds

[21, 31–33], but some forms short-term synaptic

plasticity can last for seconds [21, 34, 35].

It is important to note that short-term synaptic

plasticity is a type of a very short-lasting mem-

ory. The change in synaptic strength is in effect a

memory that a given synapse was recently used.

Furthermore, the memory is time-dependent: the

change in synaptic strength changes smoothly in

time. For example in the case of short-term facil-

itation of EPSPs between cortical pyramidal

neurons the amplitude of the second of a pair of

EPSPs generally increases a few tens of

milliseconds after the first EPSP and then decays

over the next few hundred milliseconds. Because

of this temporal signature the STP plasticity

provides a potential ‘clock’—in the sense that it

contains information about the passage of time.

But as we will see it is unlikely that individual

synapses are literally telling time, rather theoret-

ical and experimental evidence suggests that

short-term synaptic plasticity contributes to

time-dependent changes in the active states of

neural networks, which do code for time.

Hidden and Active States, and Sensory
and Motor Timing

Consider a highly sophisticated temporal task of

communicating using Morse code. As mentioned

above, Morse code is a temporal code, in the

Fig. 2 Short-term synaptic plasticity. Each trace repre-

sent the voltage of a postsynaptic neuron during the paired

recording of two connected layer 5 pyramidal neurons

from the auditory cortex of a rat. The amplitude of the

EPSP (that is, the synaptic strength) changes as a function

of use. In this case facilitation is observed. The strength of

the second EPSP is larger than the first, and the degree of

facilitation is dependent on the interval, the largest degree

of facilitation is observed at 25 ms (from Reyes and

Sakmann [31])
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sense that there is only a single spatial channel:

all information is conveyed in the interval, order,

and number of the “dots” (short elements) and

“dashes” (long elements). Understanding Morse

code requires that our auditory system parse the

intervals and duration of the signals, but

generating Morse code, requires that the motor

system produce essentially these same durations

and intervals. Does the brain use the same timing

circuits for both the sensory and motor

modalities? This important question, relates to

one discussed throughout this book. Are the

mechanisms underlying timing best described

as dedicated—i.e., there is a specialized and

centralized mechanism responsible for timing

across multiple time scales and processing

modalities. Or, conversely is timing intrinsic—

i.e., is timing a general property of neural circuits

and processed in a modality specific fashion [36].

State-dependent network models are examples of

intrinsic models of timing, and argue that

because virtually all neural circuits exhibit active

and hidden states that most neural circuits can

potentially tell time. But different circuits are

likely to be more or less specialized to tell time.

Additionally, different circuits likely rely on the

active or hidden states to different degrees to tell

time. This point is particularly important when

considering the difference between sensory and

motor timing. In a sensory task, such as interval

discrimination, you might be asked to judge if

two tones were separated by 400 ms or not; in a

motor production task you might be asked to

press a button twice with an interval as close to

400 ms as possible. Note that in the sensory task

the critical event is the arrival of the second

externally generated tone. Your brain must

somehow record the time of this external event

and determine whether it occurred 400 ms after

the first. But in the motor task your brain must

actively generate an internal event at 400 ms.

This difference is potentially very important

because sensory timing can be achieved ‘pas-

sively’: time is only readout when the network

is probed by an external stimulus. But because

the network could be silent during the inter-tone

interval it is entirely possible that the time is

‘kept’ entirely by the hidden state (until the

arrival of the second tone, when the hidden

state is translated into an active state). In con-

trast, motor timing cannot rely exclusively on the

hidden state: in order to generate a timed

response there should be a continuously evolving

pattern of activity (although there are some

exceptions to this statement). Thus, although sen-

sory and motor timing may in some cases rely on

the same mechanisms and circuits, it is useful to

consider them separately because of the potential

differences between the contributions of hidden

and active states to sensory and motor timing.

Sensory Timing

The central tenet of state-dependent network

models of sensory timing is that most neural

circuits can tell time as a result of the interaction

between the internal state networks and incoming

sensory information. Computer simulations have

demonstrated how both the hidden and active

states of neural networks can underlie the dis-

crimination of simple temporal intervals and

durations, as well as of complex spatiotemporal

patterns such as speech [37–43]. These models

have been based on spiking models of cortical

networks that incorporate hidden states, gener-

ally short-term synaptic plasticity. The networks

are typically recurrent in nature, that is, the excit-

atory units synapse back on to themselves. Criti-

cally, however, in these models the recurrent

connections are generally relatively weak, mean-

ing that the positive feedback is not strong

enough to generate self-perpetuating activity. In

other words in the absence of input these

networks will return to a silent (or baseline spon-

taneous activity) active state.

To understand the contributions of the hidden

and active states it is useful to consider the dis-

crimination of intervals versus durations or com-

plex time-varying stimuli. Interval

discrimination must rely primarily on the hidden

state. For example, consider the discrimination of

two very brief auditory tones presented 400 ms

apart. After the presentation of the first tone the

network rapidly returns to a silent state—thus the

active state cannot “carry” the timing signal—
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but the hidden state can “remember” the occur-

rence of the first tone (provided the second tone

is presented within in the time frame of the time

constants of short-term synaptic plasticity). But

for a continuous stimulus, such as duration dis-

crimination, or the discrimination of words spo-

ken forwards or backwards, the temporal

information can be encoded in both the hidden

and active state because the stimulus itself is

continuously driving network activity.

To understand the contribution of hidden

states alone to temporal processing we will first

consider very simple feedforward networks (that

is, there are no excitatory recurrent connections

capable of driving activity in the absence of

input). These simple circuits rely primarily on

short-term synaptic plasticity to tell time, and

while they cannot account for the processing of

complex temporal patterns, experimental data

suggest they contribute to interval selectivity in

frogs, crickets, and electric fish [44–48].

Sensory Timing in a Simple Circuit

Figure 3 provides an example of a very simple

feedforward circuit that can discriminate a

100 ms interval from 50 and 200 ms intervals.

The circuit reflects a virtually universal architec-

ture in neural circuits: feedforward excitation

Fig. 3 Simulation of interval selectivity based on short-

term plasticity. (a) Schematic of a feedfoward disynaptic

circuit. Such circuits are almost universally observed

throughout the brain. They are characterized by an input

that excites both an inhibitory and excitatory neuron (for

example, thalamocortical axons synapse on both excitatory

and inhibitory neurons), and feedfoward inhibition (the

excitatory units receives inhibition from the inhibitory neu-

ron). Each of the three synapses exhibit short-term synaptic

plasticity. (b) Short-term synaptic plasticity (the hidden

state) can potentially be used to generate interval selective

neurons. Perhaps the simplest scenario is one in which both

the excitatory and inhibitory neurons receive inputs that

exhibit paired-pulse facilitation. In this example, a the Ex

units spikes is selective to the 100 ms interval because at

50 ms it is inhibited by the spike in the inhibitory neurons,

and at the 200 ms interval short-term facilitation is no

longer strong enough to drive it to threshold
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and disynaptic inhibition [49, 50]. The prototyp-

ical disynaptic circuits is composed of a single

Input, an excitatory (Ex) and inhibitory (Inh)

neuron, where both neurons receive excitatory

synapses from Input, and the excitatory neuron

also receives inhibition from the inhibitory neu-

ron for a total of three synapses: Input ! Ex,

Input ! Inh, and Inh ! Ex. There are many

ways short-term synaptic plasticity can generate

interval selectivity. In this example the excitatory

synapses onto the excitatory and inhibitory neu-

ron exhibit paired-pulse facilitation (the second

EPSP will be stronger then the first). Selectivity

arises from dynamics changes in the balance of

excitation impose by short-term synaptic plastic-

ity. In this example the short-term facilitation

onto the Inh neuron is sufficient to make it fire

to the second pulse at 50 ms but not during the

100 or 200 ms intervals. The short-term facilita-

tion onto the Ex neurons is strong enough to

make it fire to the 50 and 100 ms intervals, but

it does not fire to the 50 ms interval because the

spike in the Inh neuron prevents the spike in the

Ex neuron. Note that this assumes the inhibition

is fast enough to prevent the spike in the Ex

neuron even though it must travel through an

additional neuron. Experimental evidence clearly

demonstrates this is the case [50, 51]: inhibitory

neurons have faster time constants and synapse

on the cell soma of pyramidal neurons (thus

avoiding the dendritic conduction delay). Simply

changing the synaptic strength of the Input !
Ex and Input ! Inh synapses can cause the Ex

unit to fire selectively to the 50 or 200 ms

interval.

This simple model provides an example of

how dynamic changes in the balance of excita-

tion and inhibition produced by short-term syn-

aptic plasticity could potentially underlie the

discrimination of intervals in simple feed-

forward circuits. Importantly, there is experi-

mental evidence that suggest that this is precisely

the mechanism underlying interval selectivity in

some cases. Some species of frogs communicate

though a series of “pulses” and the rate and the

number of pulses provides species-specific

signals. The neuroscientist Gary Rose and his

colleagues have identified neurons in the mid-

brain of these species that respond with some

degree of selectivity to the interval between the

pulses [44, 46, 52, 53]. Similarly, the interval

between brief auditory or bioelectrical pulses in

crickets and electric fish, respectively, are impor-

tant for communication [47, 48]. In these animals

frequency and interval selective neurons have

also been identified. Figure 4 shows an example

of a fish midbrain neuron that does generally not

spike to sequences of electrical discharges

presented at intervals of 10 or 100 ms, but

responds robustly to intervals of 50 ms. Analysis

of the mechanisms underlying these example of

temporal selectivity indicate that it arises from

Fig. 4 Temporal selectivity in midbrain neurons. (a)
Voltage traces from a neuron in the midbrain of an elec-

tric fish. Each trace represents the delivery of trains of

electrical pulses presented at intervals of 100 (left), 50
(middle), and 10 (right) ms. The rows represent three

separate repetition of the trains. The electrical pulses

were delivered in the chamber, picked up by the fish’s

electroreceptors and indirectly transmitted to the neuron

in the exterolateral nucleus. This neuron was fairly selec-

tive to pulses delivered at intervals of 50 ms. (b) The

temporal tuning can be represented by plotting the mean

number of spikes (normalized) per electrical pulse or the

normalized mean PSP amplitude over a range of different

intervals (10–100 ms). From Carlson [47]
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dynamic changes in the balance of excitation and

inhibition produced by short-term synaptic plas-

ticity [44, 46–48]. In other words in these simple

feedforward networks the hidden state of the

networks (in the form of short-term synaptic

plasticity) seems to account for the experimen-

tally observed temporal selectivity.

Sensory Timing in Recurrent Circuits

While theoretical and experimental studies sug-

gest that simple feedforward circuits can perform

simple types of temporal discrimination, it is

unlikely that such circuits can account for the

flexibility, diversity, and complexity characteris-

tic of discrimination of complex time-varying

patterns typical of speech, music, or Morse

code. For complex temporal and spatiotemporal

forms processing, complex recurrent networks

that contain a rich repertoire of connectivity

patterns and hidden states are likely necessary.

Let’s consider what might happen in the audi-

tory cortex or an early auditory sensory area

during a simple interval discrimination task,

and the role of the active and hidden states. The

main input layer of the sensory cortex is Layer

IV, but neurons in all layers can be activated by

the tone, and there is a high degree of both

feedforward and recurrent connectivity within

any given cortical circuit. Thus in response to a

brief tone some complex pattern of active

neurons will be elicited, and this pattern will

comprise the active state. Generally speaking,

within tens of milliseconds after the end of the

tone neurons in the auditory cortex will return to

their baseline levels of activity—suggesting that

the active state does not encode the presentation

of the tone after it is over. Now during an interval

discrimination task a second tone of the same

frequency will be presented at a specific interval

after the onset of the first, let’s assume the

intertone interval was 100 ms. If there was no

‘memory’ of the first tone the second one should

activate the same population of neurons. How-

ever, because of short-term synaptic plasticity

(the hidden state) the strength of many of the

synapses may be different at the arrival of the

first and second tone resulting in the activation of

distinct subsets of neurons. This is illustrated in

Fig. 5a, which illustrates of a computer simula-

tion of a network composed of 400 excitatory and

100 inhibitory neurons. Even when same exact

input pattern is presented to t ¼ 0 and t ¼ 100

ms, many neurons respond differentially to the

first and second tone because of the state-

dependency of the network (in this case as a

result of the hidden state). As show in the lower

panels the change in the network state (defined

by both the active and hidden states) can be

represented in 3D space to allow for the visuali-

zation of the time-dependent changes in network

state. The difference in these populations can be

used to code for the interval between the tones

[37, 39]. State-dependent network models pre-

dict that as information flows through different

cortical areas, the encoding of temporal and spa-

tiotemporal information may increase, but could

begin at early sensory areas such as the primary

auditory cortex. Indeed, a number of studies have

reported that a small percentage of primary audi-

tory cortex neurons are sensitive to the interval

between pairs of tone of the same or different

frequencies [54–56], however there is as yet no

general agreement as to the mechanisms under-

lying this form of temporal sensitivity.

An elegant aspect of the state-dependent net-

work models is that it provides a general frame-

work for temporal and spatiotemporal

processing, it does not simply address the

mechanisms of interval selectivity, but the

processing of complex temporal patterns and

speech [37, 38, 40, 42]. This robustness arises

from the fact that any stimulus will be naturally

and automatically encoded in the context of the

sensory events that preceded it. But this robust-

ness is both a potential computational advantage

and disadvantage. An advantage because it

provides a robust mechanism for the encoding

of temporal and spatiotemporal information—for

example, in speech the meaning of the syllable

tool is entirely different if it is preceded by an

s (stool). But the strength of this framework is

also its potential downside, that is, sometimes it

is necessary to encode identify sensory events

independently of their context—for example if
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Fig. 5 Simulation of a state-dependent network. (a) Each
line represents the voltage of a single neuron in response

to two identical events separated by 100 ms. The first 100

lines represent 100 excitatory units (out of 400), and the

remaining lines represent 25 inhibitory units (out of 100).

Each input produces a depolarization across all neurons in

the network, followed by inhibition. While most units

exhibit subthreshold activity, some spike (white pixels)
to both inputs, or selectively to the 100 ms interval. The

Ex units are sorted according to their probability of firing

to the first (top) or second (bottom) pulse. This selectivity
to the first or second event arises because of the difference

in network state at t ¼ 0 and t ¼ 100 ms. (b) Trajectory
of the network in response to a single pulse (left panel).
The trajectory incorporates both the active and hidden

states of the network. Principal component (PC) analysis

is used to visualize the state of the network in 3D space.

There is an abrupt and rapidly evolving response begin-

ning at t ¼ 0, followed by a slower trajectory. The fast

response is due to the depolarization of a large number of

units (changes in the active state), while the slower

change reflects the short-term synaptic dynamics (the

hidden state). The speed of the trajectory in state-space

can be visualized by the rate of change of the color code

and by the distance between the 25 ms marker spheres.

Because synaptic properties cannot be rapidly “reset,” the

network cannot return to its initial state (arrow) before the
arrival of a second event. The right panel shows the

trajectory in response to a 100 ms interval. Note that the

same stimulus produces a different fast response to the

second event, in other words the same input produced

different responses depending on the state of the network

at the arrival of the input (modified from Karmarkar and

Buonomano [43])
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you hear one-two-three or three-two-one the two
in middle still has the same value independently

of whether it was preceded by one or three.
The state-dependent nature of these networks

has led to a number of experimental predictions.

One such prediction is that in an interval discrim-

ination task timing should be impaired if interval

between two intervals being compares is itself

short. One can think of this as being a result of

the network not having sufficient time to ‘reset’

in between stimuli. This prediction has been

experimentally tested. When the two intervals

being judged (100 ms standard) were presented

250 ms apart, the ability to determine which was

longer was significantly impaired compared to

when they were presented 750 ms apart [43].

Importantly, if the two intervals are presented at

250 ms apart, but the first and second tones were

presented at different frequencies (e.g., 1 and

4 kHz), interval discrimination was not impaired.

The interpretation is that the preceding stimuli

can ‘interfere’ with the encoding of subsequent

stimuli when all the tones are of the same fre-

quency because, all tones activate the same local

neural network (as a result of the tonotopic orga-

nization of the auditory system); but if the first

interval is presented at a different frequency

there is less ‘interference’ because the low fre-

quency tones to not strongly change the state of

the local high frequency network. These results

provide strong support for the hypothesis that

timing is locally encoded in neural networks

and that it relies on the interaction between

incoming stimuli on the internal state of local

cortical networks.

These results are not inconsistent with the

notion that we can learn to process intervals,

speech, or Morse code patterns independent of

the preceding events. But they do suggest that the

computational architecture of the brain might be

to naturally encode the spatiotemporal structure

of sensory events occurring together on the time

scale of a few hundred milliseconds, and that

learning might be necessary in order to disentan-

gle events or “temporal objects” that are tempo-

rally proximal. Indeed, this view is consistent

with the observation that during the early stages

of learning a language words are easier to

understand if they are presented a slow rate, and

if the words are presented at a fast rate we lost the

ability to parse speech and grasp the independent

meaning of each one.

Motor Timing

If you are asked to press a button 1 s after the

onset of a tone, there must be an active internal

‘memory’ that leads to the generation of a move-

ment after the appropriate delay. In contrast to

sensory timing, where an external event can be

used to probe the state of a network, motor

timing seems to require an active ongoing inter-

nal signal. Thus, motor timing cannot be accom-

plished exclusively through the hidden state of a

network. Rather, motor timing is best viewed as

being generated by ongoing changes in the active

state of a neural networks.

Motor timing on the scale of hundreds of

milliseconds to a few seconds encompasses a

wide range of phenomenon studied with a num-

ber of different tasks including. (1) Tapping,

where subjects are asked to tap a finger with a

fixed period [57, 58]. (2) Eyeblink conditioning,

many animals including mice, rabbits, and

humans can be conditioned to blink at a certain

interval (generally less than 1 s) after the onset of

a conditioned stimulus such as a tone, by pairing

the tone with the present of an aversive stimulus

[59, 60]. (3) Spatiotemporal reproduction, motor

timing has also been studied using a slightly

more complex task in which humans are asked

to reproduce a spatiotemporal pattern using their

fingers—much like one would while playing the

piano [61]. An example of such a task is shown in

Fig. 6a. This task is of interest because it requires

that multiple intervals be produced in succession,

i.e., the end of one interval is the beginning of the

next. The fact that this task is easily performed

constrains the mechanisms underlying timing,

for example it makes it unlikely that motor

timing relies on a single timer that requires a

significant amount of time to be reset. Indeed,

analysis of this task has been used to argue that

motor timing relies on a timer that times contin-

uous from the first element (t ¼ 0) through out
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the entire pattern, as opposed to being reset at

each interval [61].

It seems likely that there are multiple neural

mechanisms contributing to different types of

motor timing, of particularly importance may

be the distinction between motor timing tasks

that require the generation of simple intervals,

or periodic or aperiodic patterns. But models

based on dynamics changes in the population of

active neurons can potentially account for not

only a wide range of motor timing tasks, but for

the generation of complex spatiotemporal motor

patterns. Such models, have been referred to as a

population clock [62, 63]. Specifically, in these

models timing emerges from the internal dynam-

ics of recurrently connected neural networks, and

time is inherently encoded in the evolving activ-

ity pattern of the network—a population clock

[6, 62].

As mentioned above, one of the first examples

of such a population clock was proposed in the

context of timing in the cerebellum [7, 8].

Fig. 6 Simulation of a population clock in a recurrent

neural network. (a) Network architecture. A randomly

connected network composed of 1,800 randomly

connected firing rate units. This recurrent network

receives a single input. The four outputs are used to

generate a spatial temporal pattern, and can be interpreted

as four finger that much press the keys of a piano in a

specific spatiotemporal pattern. (b) The output units were
trained to produce the pattern shown (three different runs

overlaid) in response to a brief input (black line). Training
consist of adjusting the weights of the recurrent units onto

the readout units (red lines in panel a). Output traces are
shifted vertically for visual clarity. The dashed black
trace represents a constant input tonic input to the recur-

rent network. Colored rasters represent a subset (20) of

the recurrent units. In these units activity ranges from �1

(blue) to 1 (red) (modified from Laje et al. [61]).
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Specifically, that in response to a continuous

tonic input a continuously varying population of

granule cells will be active as a result of the a

negative feed back loop where granule cells

excite Golgi neurons, which in turn inhibit the

granule cells. In response to a constant stimulus,

conveyed via the mossy fibers, the Gr cell popu-

lation response is not only a function of the

current stimulus, but is also dependent on the

current state of the Gr-Go network. As a result

of the feed-back loop, simulations reveal that a

dynamically changing trajectory of active Gr

cells is created in response to a stimulus [7, 64,

65]. This pattern will trace a complex trajectory

in neuron space, and since each point of the

trajectory corresponds to a specific population

vector of active Gr cells, the network inherently

encodes time. Time can then be read-out by the

Purkinje cells (the ‘readout’ neurons), which

sample the activity from a large population of

Gr cells. Importantly, the Purkinje cells can learn

to generate timed motor responses through con-

ventional associative synaptic plasticity coupled

to the reinforcement signal from the inferior

olive [60]. In this framework, the pattern of Gr

cell activity would be expected not only to

encode all potentially relevant stimuli, but also

to be capable of generating a specific time-stamp

of the time that has elapsed since the onset of

each potential stimulus. This scheme clearly

requires a very high number of distinct Gr cell

patterns. Indeed, the fact that there are over

5 � 1010 Gr cells in the human cerebellum [49]

suggests that they are uniquely well-suited and

indeed designed to encode the large number of

representations that would arise from having to

encode the time from onset for each potential

stimulus.

There is strong experimental evidence that the

cerebellum is involved in motor timing [59, 64,

66]. But it is also clear that other areas of the

brain are also capable of motor timing—indeed

even in the presence of large cerebellar lesions

timing is often only mildly impaired, not

abolished. Additionally, because the cerebellum

lacks any recurrent excitation it is not capable of

generating self-perpetuating activity or time

response in the absence of a continuous input.

Cortical circuits, however, have abundant excit-

atory recurrent connections, and are able to oper-

ate in a truly self-perpetuating regime.

To understand how a network can generate

self-perpetuating activity which can be used for

timing it is useful to consider simpler and less

biologically realistic models. An example of

such a model is shown in Fig. 6. The units of

the network do not spike but can vary their

“activity” levels according to an analog

input–output function. These “firing rate” units

are typically represented by a sigmoid, and the

output can take on any value between �1 and 1

[62, 67]. The network is composed of 1,800

sparsely connected units, each with a time con-

stant of 10 ms (the time constant of the units is

important because if the longest hardwired tem-

poral property in the network is 10 ms, yet the

network is capable of timing many second it

means that timing arises as an emergent property

of the network). As shown in Fig. 6, a brief input

can trigger a complex spatiotemporal pattern of

activity within the recurrent network; and this

pattern can be used to generate multiple, com-

plex spatiotemporal output patterns several

seconds in duration. Different output patterns

can be triggered by different brief input stimuli.

The results shown are from a network with four

outputs (each representing a finger). The network

is trained to reproduce the desired target pattern

every time the corresponding “go” signal is

activated. In this scenario learning takes place

by adjusting the weights on to the readout units.

A potential problem with this class of models,

that will not be addressed in detail here, is that

they tend to exhibit chaotic behavior—that is,

they are very sensitive to noise. However, a

number of studies have begun to address this

limitation through feedback and training the

weights of the recurrent networks [68, 69].

Note that the population clock framework

shown in Fig. 6 does not simply encode time,

but accounts for both the spatial and temporal

aspects of complex spatiotemporal patterns. That
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is, the spatial pattern, the timing, and the order of

the fingers are all encoded in a multiplexed fash-

ion in the recurrent network plus the readout.

Conclusion

Humans time events on scales that span

microseconds to days and beyond. And in con-

trast to the clocks in our pockets and our wrists,

which tell time across scales from milliseconds

to years, biology has devised fundamentally dif-

ferent mechanisms for timing across scales. The

framework proposed in this chapter proposed

that, within the range of tens of hundreds of

millisecond to a few seconds, timing is funda-

mentally unlike man made clocks that rely on

oscillators and counters. Rather, theoretical and

experimental studies suggest that timing on this

scale is fundamentally related to dynamics: the

changing states and patterns of activity that

networks inevitably undergo as a consequence

of the physical properties of neurons and circuits.

An important concept within this framework

is that timing can be a local and inherent compu-

tation performed by neural networks. Yet these

networks can operate in different modes or

regimes, relying more on hidden states in the

case of sensory timing, and more on active states

in motor timing. A powerful feature of the state-

dependent network framework is its generality, it

is not limited to simple intervals or duration but

equally well suited for complex sensory and

motor patterns.

While there is not yet any concrete experi-

mental data regarding the mechanisms underly-

ing any form of timing there is mounting

experimental evidence supporting the notion of

state-dependent mechanisms and that timing

relies on neural dynamics. For example in the

sensory domain there are numerous examples of

interval and frequency selectivity that seem to

clearly rely on the hidden state, particularly

short-term synaptic plasticity [44–48]. Similarly,

in vivo studies in birds, rats, and monkeys have

demonstrated that there is a population code for

time. That is, in relation to an onset event it is

possible to use the population activity of neurons

to determine how much time has elapsed [15–17,

19, 20, 70], however it remains to be proven that

this information is causally being used by the

brain to tell time. Furthermore, in vitro data

suggests that timed responses can also be

observed in isolated cortical networks in vitro
[71, 72].

Although the notion that timing is not the

product of a central clock may run counter to

our intuitions about the passage of time, it is

entirely consistent with the fact that in most

cases time is not an independent dimension of

sensory stimuli, but rather spatially and temporal

processing are often intimately entwined

components of sensory and motor processing.

Given the biological importance of time it

seems suitable that timing on the scale of

hundreds of milliseconds in particular would

rely on local and general properties of the brain’s

hardware, rather than on a dedicated architecture

that would require communication between a

central clock and the diverse sensory and motor

circuits that require timing.

Section Summary

These last three chapters on models or timing do

not provide a comprehensive picture of all theo-

retical and computational work on the neural

mechanisms of timing, but nevertheless, they

highlight the diversity and complexity of the

potential mechanisms of timing. A common

theme in all three chapters is the issue of whether

timing should be viewed as relying on dedicated

or intrinsic neural processes. Fourth chapter

(Hass and Durstewitz, this volume) provided a

sample of different models including both dedi-

cated and intrinsic models, while the last two

chapters contrasted the prototypical examples of

dedicated and intrinsic models. Fifth chapter

(Meck and co-workers) reviewed the main

instantiation of a dedicated model—one based

on pacemaker-accumulator mechanisms—and

subsequent extensions of this approach including

the Striatal Beat-Frequency model. This chapter

described an example of an intrinsic model in

which most neural circuits could perform some
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temporal computations as an inherent conse-

quence of neural dynamics and time-dependent

neural properties.

As highlighted in fourth chapter the models

discussed above are in no way mutually exclu-

sive. Timing encompasses are large range of

different computations which likely rely on a

collection of different mechanisms. Of particular

relevance in the issue of time-scale, and it is

possible that dedicated mechanisms contribute

to timing on the scale of many seconds, while

intrinsic mechanisms underlie timing on the

subsecond scale. Indeed such a dichotomy

resonates with the notion that timing on the longer

engages subjective and cognitive mechanisms,

while those on shorter scale are unconscious and

perceptual in nature.
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assembly sequences arising from spike threshold

adaptation keep track of time in the hippocampus. J

Neurosci. 2011;31(8):2828–34.

16. Jin DZ, Fujii N, Graybiel AM. Neural representation

of time in cortico-basal ganglia circuits. Proc Natl

Acad Sci U S A. 2009;106(45):19156–61.

17. Lebedev MA, O’Doherty JE, Nicolelis MAL.

Decoding of temporal intervals from cortical ensem-

ble activity. J Neurophysiol. 2008;99(1):166–86.

18. Crowe DA, Averbeck BB, Chafee MV. Rapid

sequences of population activity patterns dynamically

encode task-critical spatial information in parietal

cortex. J Neurosci. 2010;30(35):11640–53.

19. Hahnloser RHR, Kozhevnikov AA, Fee MS. An ultra-

sparse code underlies the generation of neural

sequence in a songbird. Nature. 2002;419:65–70.

20. Long MA, Jin DZ, Fee MS. Support for a synaptic

chain model of neuronal sequence generation. Nature.

2010;468(7322):394–9. doi:10.1038/nature09514.

21. Zucker RS. Short-term synaptic plasticity. Annu Rev

Neurosci. 1989;12:13–31.

22. Zucker RS, Regehr WG. Short-term synaptic plastic-

ity. Annu Rev Physiol. 2002;64:355–405.

23. Newberry NR, Nicoll RA. A bicuculline-resistant

inhibitory post-synaptic potential in rat hippocampal

pyramidal cells in vitro. J Physiol. 1984;348

(1):239–54.

24. Buonomano DV, Merzenich MM. Net interaction

between different forms of short-term synaptic plas-

ticity and slow-IPSPs in the hippocampus and audi-

tory cortex. J Neurophysiol. 1998;80:1765–74.

25. Batchelor AM, Madge DJ, Garthwaite J. Synaptic

activation of metabotropic glutamate receptors in the

parallel fibre-Purkinje cell pathway in rat cerebellar

slices. Neuroscience. 1994;63(4):911–5.

26. Johnston D, Wu SM. Foundations of cellular neuro-

physiology. Cambridge: MIT Press; 1995.

27. Hooper SL, Buchman E, Hobbs KH. A computational

role for slow conductances: single-neuron models that

measure duration. Nat Neurosci. 2002;5:551–6.

28. Berridge MJ, Bootman MD, Roderick HL. Calcium

signalling: dynamics, homeostasis and remodelling.

Nat Rev Mol Cell Biol. 2003;4(7):517–29.

29. Burnashev N, Rozov A. Presynaptic Ca2+ dynamics,

Ca2+ buffers and synaptic efficacy. Cell Calcium.

2005;37(5):489–95.

Neural Dynamics Based Timing in the Subsecond to Seconds Range 115

http://dx.doi.org/10.1038/nature09514


30. Lester RAJ, Clements JD, Westbrook GL, Jahr CE.

Channel kinetics determine the time course of NMDA

receptor-mediated synaptic currents. Nature.

1990;346(6284):565–7.

31. Reyes A, Sakmann B. Developmental switch in the

short-term modification of unitary EPSPs evoked in

layer 2/3 and layer 5 pyramidal neurons of rat neocor-

tex. J Neurosci. 1999;19:3827–35.

32. Markram H, Wang Y, Tsodyks M. Differential signal-

ing via the same axon of neocortical pyramidal

neurons. Proc Natl Acad Sci U S A. 1998;95:5323–8.

33. Dobrunz LE, Stevens CF. Response of hippocampal

synapses to natural stimulation patterns. Neuron.

1999;22(1):157–66.

34. Fukuda A, Mody I, Prince DA. Differential ontogene-

sis of presynaptic and postsynaptic GABAB inhibition

in rat somatosensory cortex. J Neurophysiol. 1993;70

(1):448–52.

35. Lambert NA, Wilson WA. Temporally distinct

mechanisms of use-dependent depression at inhibitory

synapses in the rat hippocampus in vitro. J

Neurophysiol. 1994;72(1):121–30.

36. Ivry RB, Schlerf JE. Dedicated and intrinsic models of

time perception. Trends Cogn Sci. 2008;12(7):273–80.

37. Buonomano DV, Merzenich MM. Temporal informa-

tion transformed into a spatial code by a neural network

with realistic properties. Science. 1995;267:1028–30.

38. Lee TP, Buonomano DV. Unsupervised formation of

vocalization-sensitive neurons: a cortical model based

on short-term and homeostatic plasticity. Neural

Comput. 2012;24:2579–603.

39. Buonomano DV. Decoding temporal information: a

model based on short-term synaptic plasticity. J

Neurosci. 2000;20:1129–41.
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