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Abstract

Scalar Timing Theory (an information-processing version of Scalar

Expectancy Theory) and its evolution into the neurobiologically plausible

Striatal Beat-Frequency (SBF) theory of interval timing are reviewed.

These pacemaker/accumulator or oscillation/coincidence detection

models are then integrated with the Adaptive Control of Thought-Rational

(ACT-R) cognitive architecture as dedicated timing modules that are able

to make use of the memory and decision-making mechanisms contained in

ACT-R. The different predictions made by the incorporation of these

timing modules into ACT-R are discussed as well as the potential

limitations. Novel implementations of the original SBF model that allow

it to be incorporated into ACT-R in a more fundamental fashion than the

earlier simulations of Scalar Timing Theory are also considered in con-

junction with the proposed properties and neural correlates of the “internal

clock”.

Keywords

Interval timing � Scalar timing theory � Striatal beat-frequency theory �

Adaptive control of thought-rational cognitive architecture

Introduction

There are abundant examples of behavioral pro-

cesses engaged in by humans and other animals

in which short-timescale temporal information

plays an critical role, ranging from estimation

of how long one can safely look away from the

highway during driving [1], to the subtle role that

pauses in a speech signal play in language-based

communication [2], to the trap-line foraging of

bumblebees and hummingbirds that is partly

guided by their knowledge of how long it takes

a flower to replenish its nectar after a previous

visit [3–5]. In all these examples, interval timing

enables the organism to improve its prediction

about the onsets and offsets of impending
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environmental events. To allow for these

predictions, an internal signal has to exist that

provides the organism with a sense of time in

order to anticipate these events. In the case of

state-dependent models, categorically defined

internal states are associated with specific behav-

ioral actions attributed to each of the states [6].

By the pacing of transitions from one state to the

other, behavior emerges that is attuned to the

temporal regularities of the environment without

the need of a dedicated clock or timing circuit (e.

g., the behavioral theory of timing [7, 8]). In

other state-dependent models, timing is an intrin-

sic property of the neural dynamics that elapse

over the course of tens of milliseconds to a few

seconds following the onset of a timed event

(Buonomano, this volume; [9]).

However, the majority of dedicated models of

time perception (for comparisons between dedi-

cated vs. intrinsic models [6, 10–12]) assume that

interval timing can best be described by a triad of

clock, memory, and decision stages as depicted

in the top-left box of Fig. 1. Most of the work that

adheres to this triad can be traced back to the

pioneering work of Creelman [13] and Treisman

[14] who proposed the first information-

processing (IP) models of interval timing. In

these models, a dedicated clock stage provides

a continuous or an interval-scale index of the

passing of time since the onset of a temporally

relevant event. Whenever the offset of the to-be-

timed interval is observed, the clock reading is

taken and stored in memory. After sufficient

experience, the onset of upcoming stimuli can

be predicted by comparing the current clock

reading to the previously stored memory values.

Although in the early work on interval timing

most studies focused on the role of the pace-

maker/accumulator, it was soon acknowledged

that all stages of information processing (e.g.,

clock, memory, and decision) could contribute

to the behavioral profiles observed in the
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Fig. 1 Top-left box shows the outline of most information-

processing models of interval timing based on a triad of

clock, memory and decision stages [6, 17, 20, 64]. The

main picture depicts one instance of these models; the

Scalar Timing Theory as described in Church [24]. The

main clock components are shown in green, the boxes

processing input and output in red, the memory

components in yellow, and the decision components in blue
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temporal control of behavior [15]. One of the

best developed theories that fits this general

description and specifies how the different IP

components contribute to observed behavior is

Scalar Timing Theory [16, 17]—sometimes

referred to as Scalar Expectancy Theory as origi-

nally developed by Gibbon [18, 19]. The general

properties of these interval-timing systems have

been described by Church [20] and more recently

by Allman et al. [21].

Scalar Timing Theory

Description of the General Outline

A detailed version of Scalar Timing Theory is

shown in Fig. 1 in order to provide an apprecia-

tion of the model’s various levels of complexity

[16, 22, 23]. This outline and the following

description are based on the computational

implementation of Scalar Timing Theory

described by Church [24], although slightly

modified versions have been described elsewhere

[25]. According to Scalar Timing Theory, the

“internal clock” of an organism that is engaged

in the measurement of the physical duration of an

external event (T) is comprised of a pacemaker

that emits pulses at a regular rate. Whenever a

temporally salient event is observed, a start sig-

nal is sent that closes a switch (or gate) between

the pacemaker and an accumulator, allowing for

pulses to reach the accumulator where they are

integrated as a function of time. As the switch

has to be closed in order for an event to be

encoded, a process that is assumed to take some

time, the model accounts for variation in the

duration between the physical onset of the event

and the first pulse passing the switch. This dura-

tion is assumed to be normally distributed: t1 ¼
η(μt1, σt1)—see papers by Meck and colleagues

[26, 27]. Any pulse that passes the switch is

thought to increase the value of the accumulator

by one. By means of this coupled pacemaker/

accumulator process, a measure of subjective

duration (D) is available to the organism. When

the imperative stimulus is observed, the organ-

ism can read out the accumulator, noticing that

the time between the warning and imperative

stimulus took, for example, 32 pulses. Of course,

perceiving the imperative stimulus might also

have taken time, reflected in switch opening

latency: t2 ¼ η(μt2, σt2), so that the subjective

duration is assumed to be D ¼ T � T0 [27],

with T0 representing t1 � t2.

As most psychophysical phenomena, interval

timing adheres to Weber’s law, with shorter

durations being estimated with less variability

than longer durations. As this is typically

demonstrated by observing identical response

distributions after a scale transform (e.g., divide

all distributions by the mean of the distribution),

such superimposition of timing functions is

referred to as the scalar property of interval timing

[17, 28–30]. In contrast to many other psycho-

physical theories that assume that the subjective

percept is non-linearly related to the objective

input [31, 32], Scalar Timing Theory puts forward

that the clock stage provides a veridical mapping

of objective, external time to subjective, internal

time [18]. Although it is sometimes claimed that

the veridical time assumption is supported by

experiments in which subjects have to compare

the amount of time that is still left during the

perception of a previously learned interval with

another previously learned interval—the Time-

Left experiments by Gibbon and Church [33];

see also Wearden’s study [34]. It has been argued

that the behavior observed in these procedures

might also stem from strategies that do not tap

directly into the underlying time scales [35–38]. A

stronger case for the support of a linear encoding

can be found in studies in which empirical

response distributions were observed that are sim-

ilar to the theoretical distributions associated with

the linear encoding of time [39, 40].

Because all of these accounts assume veridi-

cal timing, the clock stage typically isn’t used to

account for the scalar property. Instead, Scalar

Timing Theory assumes that the memory stage is

the source of the scalar property—see papers by

Gibbon and Church [16, 22, 33] for general

details, or more specifically, that the scalar prop-

erty is induced by the process that copies values

from the accumulator to the memory store. When

the offset of a temporal interval is observed, the
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current value of the accumulator, a, is multiplied

by a memory translation constant k*—drawn

from a normal distribution η(μk*, σk*) [26,

41–43] before the value is copied to reference

memory. This multiplication results in wider

memory distributions for longer durations than

for shorter durations, providing the basis for the

adherence to the scalar property of interval

timing. In the default version of Scalar Timing

Theory, the memory store is considered to “con-

sist of a large number of unorganized samples”

[24, p. 9] although the samples must of course be

associated with the environmental events that

they encode for.

Whenever the organism wants to respond

simultaneously with the onset of an upcoming

event, it retrieves a random sample from memory

that is associated with previous experiences with

that event, and starts the accumulation process as

soon as the warning signal is observed. However,

since m, the sample from memory has been

multiplied by the k* memory translation con-

stant, a direct comparison between a, the value

in the accumulator and m is not informative.

Instead, Scalar Timing Theory assumes that a

ratio comparison is made between m and a that

is subsequently compared to a threshold parame-

ter b to decide whether or not a response has to be

made (i.e., if (|a � m|/m) < b, then make a

response). Like the other parameters, the thresh-

old is assumed to be sampled from a random

distribution: b ¼ η(μb,σb).
Although Scalar Timing Theory was origi-

nally developed within the context of animal

learning and conditioning procedures, it has

been successfully applied to temporal processing

in humans, in both healthy and clinical

populations [44–46] and has aided in the inter-

pretation of the changes in interval timing

capacities over lifespan development, including

age-related declines [47–49]. In these settings,

Scalar Timing Theory has accounted for many

different phenomena associated with interval

timing, such as the effects of different experi-

mental contexts and procedures [50, 51], of phar-

macological manipulations [52–56] and of

emotional [52–58] and attentional [59–62]

influences.

Challenges for the Information-
Processing Models of Interval Timing

In any task related to interval timing, all (or

most) of the processes and stages mentioned

above play a role. As these different processes

and stages interact, it is sometimes not straight-

forward or even possible to attribute a particular

empirical observation to a particular aspect of an

IP model of interval timing because any change

in a particular procedure can be mimicked by a

change in another aspect of the model. Neverthe-

less, it is important to critically evaluate any

model or theory, and especially assess the valid-

ity of those components that are central to the

phenomena covered. Like in other complex

domains, the approach has been to isolate partic-

ular components and to specifically manipulate

the experimental setup so that conclusions can be

drawn relating to that component. This approach

has obviously been an important line of research

in the field of interval timing, with for example

studies (see also [63]) showing that the scalar

property should be captured in the memory

components instead of in the accumulation pro-

cess associated with Scalar Timing Theory [33],

that a single sample is selected from reference

memory on each trial instead of multiple [64],

and that memory samples stored in reference

memory affect other memory samples [65].

Stable Representation and Modularity

Scalar Timing Theory could be seen as a self-

contained module that provides temporal informa-

tion to a cognitive system or architecture that

performs a more general task which relies on tem-

poral information. Although one could, of course,

still study the components of this black box, this

approach would allow for using the output of Sca-

lar Timing Theory without worrying about which

internal processes have given rise to that particular

output. However, this does require that irrespective

of the task that is modeled using Scalar Timing

Theory, the components should always function in

the same way, cf., Figure 3.2-1.2 in [24].
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Although rarely explicitly acknowledged, but

see [63], the inclusion of a more cognitive deci-

sion component makes it difficult to adhere to

this strong claim. Let’s take, for example, human

performance in a duration bisection task [66]. In

a bisection experiment, participants are

presented durations that they have to classify as

either more similar to a previously learned

“short” duration or as more similar to a previ-

ously learned “long” duration. When the propor-

tion of “more similar to long” responses is

plotted as a function of the length of the physical

duration, a smooth sigmoid psychometric curve

is typically observed, but see [67] with almost

none of the shortest durations being classified as

“long” (and vice versa for the longest duration),

and with the bisection point (i.e., the point at

which both answer options are equally often cho-

sen) typically at the geometric mean of both

standards [30, 66]. At first sight, it might seem

that Scalar Timing Theory can quite straightfor-

wardly account for the performance observed in

bisection tasks: at the onset of the to-be-judged

duration, the switch is closed and pulses will be

accumulated. However, on the basis of what

information will Scalar Timing Theory make a

decision? Since this is a judgment task (and not a

reproduction task), one might assume that the

participant just waits for the offset of the presented

duration, and then decides “short” if the observed

a is closer to a memory sample associated with the

short standard than to one associated with the long

standard. That is, if (|a � mshort|/mshort) < (|a �
mlong|/mlong) then choose “short”, otherwise

choose “long”. Although at cursory inspection it

might seem that this process fits nicely with the

outline presented in Fig. 1, it requires that the

decision process compares a to both mshort and

mlong, requiring two retrievals from memory and

a more complex comparison than the typically

assumed simple comparison to a preset threshold.

One could, of course, assume that this comparison

isn’t made within Scalar Timing Theory, but that

the output of the clock is transferred to later

stages. However, this would then assume that

“non-timing” processes have access to the mem-

ory stage that is embedded in the timing module,

violating basic assumptions of modularity. A third

alternative hypothesis entails the creation of a

bisection criterion [68], which could act as an

internal, subjective representation of the point of

subjective equality. According to this view,

participants could internally commit to a “long”

response as soon as this bisection criterion has

passed. This criterion could be based on the geo-

metric mean of the samples representing the short

and long standards—i.e., sqrt(mshort � mlong). To

allow for scalar variance, this point of subjective

equality would have to be recalculated for each

trial from two sampled values. Thus, to allow for

this interpretation of the duration bisection task,

the timing model outlined in Fig. 1 would have to

be extended to represent a process that would

result in a subjective bisection criterion that

could take the place of m, but that is based on

two retrievals from reference memory.

Although all three of these accounts would

require modifications to the basic outline of Sca-

lar Timing Theory illustrated in Fig. 1, recent

electrophysiological data indicate that additional

changes to the model might be necessary. Ng

et al. [69] recorded EEG during a duration bisec-

tion task. From earlier work, it is known that

during timing tasks a slow brain potential wave

of negative polarity develops, referred to as the

contingent negative variation (CNV), which

resolves after a temporal decision has been made

[70, 71]. If a bisection criterion is used by

participants, one would expect the CNV to resolve

at or around the point of subjective equality (e.g.,

geometric mean of the short and long standards).

This pattern was indeed observed by Ng et al. [69],

supporting the hypothesis that a comparison to the

bisection criterion drives performance. However,

the results also indicated that participants tempo-

rally prepared for the possible offset of the short

tones, because the CNV increased starting at the

onset of the comparison duration and reached its

maximum amplitude around the time when the

offset of the shortest duration would be presented.

These results suggest that on the one hand a com-

parison is made based on a mcriterion based onmshort

andmlong, but on the other hand also indicate that a

sample representing mshort is still available to the

decision-making system given that value seems to

be used to prepare for the upcoming stimuli.
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Obviously, one could modify Scalar Timing

Theory to account for these changes, and, as

argued by Wearden [63], the basic properties of

the timing system would still be the same. How-

ever, if one allows arbitrarily complex

modifications to the original system (such as

including a sequential timing process that first

retrieves and estimates mshort and then retrieves

mlong and estimates the average of mshort and

mlong), a model consistent with Scalar Timing

Theory can be constructed to fit almost any data

set [63]. Moreover, because this more complex

model provides considerable flexibility in deci-

sion processes, temporal arithmetic and, for

example, the number and type of retrievals

from reference memory, new parameters will

need to be introduced that account for the

latencies associated with these new processes.

The inclusion of these parameters would make

it difficult to constrain the model on the basis of

empirical data from timing studies.

Degrees of Freedom Problem in Models
of Interval Timing

The issues outlined above can be reduced to a

straightforward “degrees of freedom” problem:

although timing studies provide a wealth of data

that can constrain theories of interval timing, the

number of degrees of freedom enables Scalar

Timing Theory to easily cover most or all possi-

ble outcomes of these studies, cf., non-

constraining models in [72]. Two approaches

can be taken to solve this problem that both

focus on reducing the degrees of freedom. First,

by introducing new behavioral measures that the

theory should be able to account for, one can

decrease the overall degrees of freedom. For

example, if a particular model has 6 degrees of

freedom, a new behavioral measure might

require a certain parameter of that model to be

set to a particular value to allow for a good fit,

thus reducing the number of degrees of freedom

to 5 for all other behavioral measures because

that value has become fixed. This strategy can be

seen as constraining the number of degrees of

freedom by bringing in additional, potentially

external constraints. Second, any process

assumed by Scalar Timing Theory should even-

tually be identifiable in the neurobiology of the

organism that demonstrates the capacity to time

durations in the hundreds of milliseconds-to-

minutes range. For example, if no brain area

can be identified that corresponds to the accumu-

lator as proposed by Scalar Timing Theory, one

might need to reconsider the existence of an

accumulator [73, 74] or if some proposals for

the working of the memory stage are implausible

from a neurobiological perspective, these

alternatives might be rejected and thus constrain

the theory. These constraints are derived from a

reevaluation of the components already present

in a theory, and could therefore be described as

additional internal constraints.

In the remainder of this chapter, we will focus

on four recent developments that focus on

providing additional constraints on theories of

interval timing by either incorporating additional

external or internal constraints, or by providing

cross-validation. First, we will discuss an

integrated model of interval timing that embeds

a dedicated clock structure consistent with Scalar

Timing Theory in a more general cognitive archi-

tecture that provides externally validated

constraints on the memory and decision stages

[75]. Although this model could be seen as more

complex than Scalar Timing Theory, this

integrated model allows for modeling the

interactions between non-temporal and temporal

aspects of cognition. By incorporating the

constraints that have been identified by fitting

the cognitive architecture to other domains and

tasks, models of interval timing become more

constrained. Second, we will discuss how a

model based on cortico-striatal interactions can

replace Scalar Timing Theory’s traditional clock

and memory stages [44, 54, 76], removing a

number of degrees of freedom from the original

model because the basic properties of this clock

have been directly derived from neurobiological

observations. Third, we will discuss how this

cortico-striatal model can be integrated into the

architecture-based model and how a number of

elementary neurobiological constraints bring

about the scalar property in interval timing.
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Fourth, and finally, we will present the outline of

a model that integrates interval timing in a more

general framework of oscillation-driven cogni-

tive behavior.

Integration of Cognitive Architectures

While working on computational models of

behavioral tasks that were at first sight not obvi-

ously time dependent, Taatgen et al. realized that

a number of phenomena they encountered were

partly driven by their participants’ sense of time.

For example, Van Rijn and Anderson [77] had

human participants perform a lexical-decision

task at either normal speed or under speed stress

and found evidence that the likelihood of

guessing could be described as a function of the

temporal distance to the response deadline.

Given that Adaptive Character of Thought-

Rational (ACT-R) [78, 79], the cognitive archi-

tecture frequently used for modeling these tasks,

didn’t provide any straightforward way to

account for the passage of time, Taatgen et al.

[75] extended ACT-R with a clock module based

on the dedicated clock stage found in Scalar

Timing Theory. Although Scalar Timing Theory

also includes a memory stage, and several mem-

ory models have been proposed [80, 81], no

model of temporal memory has been proposed

that captures the more general features of mem-

ory systems utilized in human cognition. In con-

trast, the ACT-R theory provides an advanced

and more constrained framework for modeling

both memory and decision-making processes.

Consequently, these default ACT-R components

were used instead of incorporating the memory

and decision stages from Scalar Timing Theory.

The combination of both “internal clock” and

ACT-R frameworks thus provides a best-of-

both-worlds approach to modeling interval

timing-based behavior. An outline of this

integrated-architecture model of interval timing

is illustrated in Fig. 2.

Memory

Temporal Buffer

Accumulator

Start Signal

Pacemaker increments

resets

Declarative Module

Retrieval Buffer

Visual Buffer Manual Buffer

Productions

Problem Buffer

Visual Module Manual Module

Matching

Selection

Execution

External World

Clock Decision

Fig. 2 An outline of the integrated-architecture timing

model. The Clock component is similar to the clock stage

found in Scalar Timing Theory [17], but with inter-pulse

intervals approximating a geometric sequence. The Decision

and Memory components are implemented by the decision

rules and declarative memory system of ACT-R, the archi-

tecture that also provides the other components [75]. The

color of the components matches the colors used in Fig. 1
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Although we discuss the three most important

components of the integrated-architecture model

of interval timing below, it should be noted that

this architecture also provides for components

that are involved with observing and acting on

the environment. As a result of these additional

components, models developed using this

integrated-architecture can provide principled

predictions about t1 and t2 which reflect the

time that it takes to perceive and act on the

onset and offset of a temporally salient event.

That is, any visual event in the “External

World” has to be observed via the “Visual Mod-

ule”, before decision rules in the Decision com-

ponent can relay the start signal to the Clock

component (see Fig. 2). As each component is

based on formal theoretical work in the respec-

tive fields, the amount of time associated with t1
(and t2) can be predicted based on previous work

instead of having it sampled from a normal dis-

tribution. Similarly, the incorporation of motor

components (e.g., the “Manual Module”) allows

for estimating the delays associated with the

actual response, an aspect of behavior not typi-

cally included in Scalar Timing Theory or similar

models.

One of the challenges faced when integrating

different theoretical approaches or frameworks is

that certain assumptions that are necessary in the

one framework, are difficult to account for in the

other framework. For example, Scalar Timing

Theory assumes that the accumulator value is

multiplied by a before it’s being copied to refer-

ence memory. In contrast, the ACT-R theory

states that output from any module is automati-

cally copied to memory, potentially subjected to

some additive noise. However, the memory trans-

lation constant k* has a multiplicative effect [i.e.,

a � η(μk*, σk*), instead of η(0, σa)], and thus is

not in line with the constraints of the architecture.

Although one could, in principle, add explicit

strategies that implement this multiplicative strat-

egy, this process would be rather cumbersome,

and add significant processing time. In addition

to this, using the memory translation constant

would imply the use of ratio rules for

comparisons, a process that is also not easily

accounted for (see also [82], which argued that

ratio-rules are difficult to account for in neurobio-

logical models). That is, a ratio-rule requires that

whenever the system checks whether a particular

duration has passed, (1) the current value from the

accumulator has to be retrieved, (2) the reference

value has to be retrieved from memory and (3)

subsequently subtracted from the accumulator

value, (4) divide the outcome of the subtraction

by the reference value, to finally (5) compare the

division to a threshold. Apart from requiring con-

siderable processing and working memory

resources, this suggests that timing an interval is

a highly obtrusive process that would severely

affect other cognitive tasks executed in parallel.

This caveats could be perceived as a negative

point for the integrated-architecture model, but it

is also indicative of the consequences of adding

external constraints to a theory: sometimes addi-

tional constraints require a change of thought.

In the sections below, we will discuss the three

major components of the integrated-architecture

model of interval timing, but we refer the inter-

ested reader to Taatgen et al. [75] and Van Rijn

and Taatgen [83] for additional background.

Clock Stage

As the memory system in the integrated-

architecture model cannot easily account for the

scalar property of interval timing, the main source

of scalar variance has to be found in the clock

module. Therefore, a pragmatic approach was

taken in which a pacemaker produces pulses

with a gradually decreasing rate according to the

following formula: pn ¼ pn�1 � a + η(0,pn�1 �
b) where pn indicates the time between pulse n and

n � 1 (and p0 represents the initial value), a

represents the pulse multiplier (the common

ratio), and b the parameter determining the width

of the noise distribution. It is important to note

that although this function does provide a non-

linear mapping, the non-linearity of this mapping

is much dampened in comparison to the non-

linearity suggested by logarithmic mappings of

objective to subjective time. In fact, apart from

the noise component, the subjective experience of

time follows a geometric series, as a particular
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pulse count n in the accumulator will be observed

at time Σx � {1..n} (px � ax). By fitting this model

to empirical data [83], the p0 was determined to be

100 ms, a was set at 1.02, and b at 0.015. Interest-

ingly, this set of parameters indicates that the

average inter-pulse time for short event durations

(i.e., around 1 s) is shorter (~120 ms) than has

been suggested in the literature [27] but at longer

durations (i.e., around 5 s), the average inter-pulse

duration is about 200 ms indicating that the

assumed pulse length for typical interval timing

durations is comparable to previously identified

values. Regardless of the precise values, this non-

linear mapping of objective to subjective time

results in a higher temporal resolution immedi-

ately after the onset of an event than at later

phases. This non-linearity gives rise to scalar

effects on subjective duration, since an interval

of about 5 s can only be estimated with a precision

of 200 ms, whereas an interval with a duration of

about 1 s can be estimated with a precision of

120 ms. Together with the inherent noise in the

system, which also scales up with event duration

and has a multiplicative effect in the geometric

sequence, the scalar property of interval timing

emerges [84–86].

Memory Stage

As mentioned above, the integrated-architecture

model incorporates the ACT-R memory mecha-

nism. Although a full discussion of this mecha-

nism is beyond the scope of this chapter (see [87]

for an introduction, and [88] for more recent

discussion of the functioning of declarative

memory), the main aspects of the declarative

memory system from the perspective of interval

timing are that all facts stored in the system as

memory traces are subject to decay, and that

various forms of memory mixing (i.e., the blend-

ing of different facts) are accounted for [89]. The

psychological processes underlying this memory

system have been extensively tested, both at the

level of aggregate behavior and at the level of

between-trial effects [90]. It should be noted

however, that a separate working memory—as

proposed in Scalar Timing Theory [43, 91–93]—

is difficult to align with ACT-R, because the

most similar component or “problem state” [94,

95] plays a different functional role.

The “memory mixing” mechanism takes an

average of several memory traces, weighted by

the activity of each trace and how well they

match the current experimental context. As the

traces contain pulse counts copied from the clock

system, this blending process will adjust the

count associated with a particular interval down-

wards if that interval is presented in the context

of “shorter” alternatives, but upwards if “longer”

alternatives are present. This way, the memory

system, developed outside of the context of inter-

val timing, naturally accounts for Vierordt’s law

[96–98]. Moreover, the memory system also nat-

urally predicts trial-by-trial effects, with

estimates of more recent trials having a stronger

effect than older trials that have been subjected to

decay for a longer period of time [98, 99]. By

means of statistical modeling, Taatgen and Van

Rijn [100] showed that the impact of older trials

quickly wanes, as the influence of two trials ago

is about half the size as the influence of the

previous trial. To summarize, by incorporating

an existing memory system into the integrated-

architecture model of interval timing, both

existing (e.g., memory mixing [50, 65, 98]) and

new (e.g., feedback-based contamination of ref-

erence memory [100]; see [99] for other phenom-

ena associated with feedback processing) timing

phenomena can be quantitatively explained with-

out having to introduce additional cognitive pro-

cesses or model parameters.

Decision Stage

Although ratio-rules are favored [67] in Scalar

Timing Theory, the variable m to which the value

of accumulator is compared (i.e., |a � m|/m) is

not strictly defined, and can range from a simple

count retrieved from memory (e.g., mi) to

the earlier discussed point-of-subjective-equality

(e.g., sqrt(mshort � mlong) in duration bisection

studies. Although these choices imply different

processes and will most likely be associated with

different latencies, the choice ofm is not separately
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modeled. In contrast, ACT-R’s decision rules can-

not perform complicated processes in a single step.

For example, it is straightforward to test whether

the current value in the accumulator is similar to a

value retrieved from the memory store. However,

multiple decision rules are needed to test whether

the value of the accumulator is similar to the mean

of two samples (e.g., separate steps for retrieving

the samples, calculating the mean, etc.). Because

this process is likely to take a reasonable amount

of time (depending on the level of expertise, but

probably more than 500 ms), ACT-R provides

testable predictions regarding the nature of m and

many other parameters.

Putting Everything Together

By integrating Scalar Timing Theory’s clock

stage into the ACT-R architecture, one can create

models of tasks (e.g., peak-interval and other tem-

poral generalization procedures) that have been

typically analyzed using Scalar Timing Theory

[75]. More interesting, the additional “non-

clock” components also allow for creating models

of more complicated behavior. For example,

participants in a study reported in Van Rijn and

Taatgen [83] had to reproduce durations with the

start of the duration cued by the appearance of a

stimulus on either the left or right side of a fixation

point. On most trials, the next cue was presented

before the duration associated with the previous

cue had passed, resulting in partially overlapping

intervals as shown in Fig. 3. This diagram also

illustrates one of the main results from this study,

which is that the later the secondary event started,

the longer its estimated duration.

Obviously, there are many potential sources

of variance in this model, ranging from how the

onsets of the two events are perceived, to the

time it would cost to retrieve memory traces or

to calculate intermediate values, to the noise

associated with motor responses. However, ear-

lier work with the ACT-R architecture has

provided us with reliable default parameters for

all these components, so the integrated-

architecture model can focus on explaining

those aspects of the task that are most closely

related to interval timing. In this particular task,

the main question is, of course, how participants

Fig. 3 Outline of the experimental procedures used to

investigate the timing of multiple overlapping event

durations [83]. In this example, the standard duration of

2 s is estimated to be 17 pulses. In the example shown at

the top, the second duration starts 600 ms or 5 pulses after

the first duration has started. The model thus estimates the

end of the second event at 5 + 17 pulses, resulting in a

duration estimate of 2.72 � 600 ¼ 2.12 s. In the bottom
example, the second event only starts at 1.5 s (13 pulses),

so the response that signals the perceived offset of the

second event duration is given at 13 + 17 pulses, resulting

in an estimate of 4.15 � 1.5 ¼ 2.65 s. This subjective

lengthening result was attributed to a non-linear represen-

tation of time
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manage to estimate two (or more) event

durations in parallel. A theoretical possibility,

although not directly supported by either the

integrated-architecture model nor by Scalar

Timing Theory, is that the two durations would

be estimated independently, as if a secondary

clock-system was spawned [92, 101, 102].

Although recent findings from rats have

provided strong evidence for simultaneous tem-

poral processing, i.e., the use of multiple clocks

that can be run, paused, and reset independently

[101, 102], findings from human participants

have tended to support sequential processing

[83]. In this case it appears that when participants

time overlapping event durations, the value of

the accumulator is read out at the onset of the

secondary duration, and that after finishing the

first duration wait for the same number of pulses

previously stored to determine their response.

Because of the geometric series-based subjective

time, the duration of the pulses added at the end

will be longer than the duration of the same

number of pulses integrated at the beginning of

the interval, thus explaining the effect

demonstrated in Fig. 3. Obviously, the later the

onset of the second event, the more pulses have

to be added at the end of the distribution, and thus

the larger the overshoot of the estimation. At the

same time, as participants were provided feed-

back based on their performance, it is to be

expected that they would try to optimize their

timing behavior, thus shortening their internal

representations of the standard durations. Fig-

ure 4 shows the main results of the experiment

and the model fit. The narrow distribution of the

dotted line in the left panel indicates that

participants had mastered reproducing the 2-s-

interval during training. During the experimental

phase of the experiment, the response

distributions for the first and second event

durations differ. The response distribution for

the first event duration is shifted slightly for-

wards, whereas the response distribution of the

second event duration is shifted backwards. As

can be seen in the right panel, these patterns are

well-described by the model. In the model, the

forward shift is caused by the incorporation of

the feedback. Each time an event duration is

over- or underestimated, participants received

feedback (either “too long” or “too short”). As

on many trials the second duration was over-

estimated, participants often received “too

long” as feedback, and as a result updated their

memory representation of the standard event

duration. The backward shift shown by the dotted

line can be explained by inferring a non-linear

Fig. 4 Main results of the Van Rijn and Taatgen study

[83]. The left panel shows the distributions for the empir-

ical data, the right panel for the model fits. The dotted line
shows the distribution during the last blocks of the train-

ing session, the solid line shows the distribution for the

event duration that ended first, and the dashed line for the

event duration that ended last. The model’s explanation

for the leftward shift of the solid line is based on the

updating of the standard due to feedback, the rightward

shift of the dashed line is due to the proposed non-linear

representation of time. Adapted from Figure 4 in Van Rijn

and Taatgen [83]
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timescale, as discussed earlier. Although individ-

ual parameters could have been adjusted to

improve the fit to this specific dataset even further,

the parameters were chosen to provide the best fit

to a series of experiments. Most importantly how-

ever, the best fit was obtained with a parameter

larger than 1.0, reflecting a non-linear subjective

time scale. Since this experiment, we have consid-

ered this estimate as fixed and have used the same

parameters in all subsequent models [100], as

have other researchers [103].

To summarize, using the integrated-archi-

tecture model of interval timing makes it possible

to create models that provide quantitative

estimates of behavior that allow for a much more

thorough testing of alternatives than would be

possible if one is limited to qualitative predictions.

Nevertheless, even when computational models

are constructed that provide a reasonable fit the

empirical data, the underlying mechanisms should

always be scrutinized to make sure that they still

align to the latest insights in neuroscience (see

Hass and Durstewitz, this volume).

Neural Mechanisms of Interval Timing

The central tenet of both Scalar Timing Theory

and the integrated-architecture model of interval

timing is that a dedicated clock or timing circuit

provides access to an index of subjective time,

but neither theory has made any specific claims

on the neural instantiation of this timekeeper.

Interestingly, the neuroscience literature has

suggested that the (pre-) supplementary motor

area (SMA) might be part of the neural instantia-

tion of the clock as it has been suggested to act as

the accumulator [54]. The main observation

supporting this notion was that the amplitude of

a slow electrophysiological wave (the contingent

negative variation, CNV) that is supposed to

originate from the (pre-) SMA appears to covary

as a function of the event duration that was

estimated, e.g., CNV magnitude effect

[104–106]. However, more recent work

questions this interpretation because the CNV

magnitude effect has proven difficult to replicate

[73] and more recent electrophysiological data

fails to align with the assumption that the CNV

represents the accumulation process proposed by

Scalar Timing Theory [69], but see also [107]. As

a consequence, the interpretation of the original

CNV results and its specificity of this slow wave

potential to interval timing remains uncertain

[74, 108]. It is clear from the empirical data that

this slow wave develops over time and that it

quickly resolves after a criterion duration has

passed. However, this assumption could also be

explained by assuming that the buildup observed

in the SMA is driven by another source and

only serves as an indirect measure of time. This

explanation aligns nicely with the original notion

that the buildup of the CNV reflects expectancy

[109, 110]; and see for more recent reviews

[111, 112], something that requires a sense of

time, but is not necessarily time itself. This

explanation is also supported by fMRI-EEG co-

recordings on the basis of which it has been

suggested that thalamo-cortical interactions reg-

ulate CNV amplitude ([113], see also the next

section). Obviously, this line of argument can be

followed for any accumulation or ramping

patterns observed in neural substrates: the accu-

mulation could be the source of time as hypo-

thesized in the Scalar Timing Theory or the

integrated-architecture theory discussed above,

or it could be a derivative of time—Hass and

Durstewitz, this volume; [74].

Although the instantiation of the clock stage is

the most critical, several other difficulties remain

when attempting to integrate the IP models

discussed above with neurobiological mecha-

nisms. For example, no neurobiological mecha-

nism has been identified that can perform the ratio

comparisons as hypothesized by the Scalar

Timing Theory [76, 82]. Although the possibility

remains that the required neural mechanisms may

be identified in the coming years, another view

that has emerged assumes that interval timing is

based on the coincidence detection of patterns of

oscillating neurons in cortico-thalamic-basal

ganglia circuits [12, 44, 54, 71, 114–116].
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Striatal Beat-Frequency Model

Based on the work of Miall [117], Matell and

Meck [76] have proposed an alternative neural

instantiation of the clock stage that assumes a

cortico-striatal network as the primary source of

temporal information. Although the full model is

more detailed, especially with respect to the role

of certain nuclei of the basal ganglia and the

thalamus, the main outline is shown in Fig. 5.

This SBF model is built around the notion that

cortical neurons or neuron ensembles (the “Cor-

tical Oscillators” in Fig. 5) oscillate at relative

stable (over time) but different (over oscillators)

frequencies, and that medium spiny neurons

(MSNs –labeled A and B) act as detectors that

Fig. 5 Schematic depiction of the oscillatory-based timing

circuit of the Striatal Beat-Frequency model [6, 76, 117]. At

the start of an event, the phase of the Cortical Oscillators is

reset after which the oscillations recommence. The different

frequencies of the oscillators give rise to different activity

patterns over time, depicted to the right of the Cortical

Oscillators. Striatal medium spiny neurons (A and B) receive
input from the oscillators via glutamatergic Connections. By

dopaminergic input to the striatal neurons (not shown) after

temporally salient events, the striatal neurons become sensi-

tive to specific patterns in the oscillators (illustrated with

boxes outlining activity patterns). In this illustration, striatal

medium spiny neuron A has been reinforced to detect a

coincidence pattern that occurs just after the onset of the

event, and neuron B is sensitive to a pattern associated with a

slightly longer event duration
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become active if a certain pattern is observed (via

“Connections”) among the oscillators. Because

the oscillators have different frequencies, differ-

ent points in time after resetting the phases of the

oscillators will be associated with different

patterns, thus allowing for the association

between a certain coincidence pattern among

the oscillators and a temporally salient event.

In the following sections, we will discuss the

neurobiology and the functional properties of

these different components of the SBF model.

The Oscillators

When discussing the role of oscillators in

keeping track of time, the first concept that

might come to mind is the suprachiasmatic

nucleus (SCN), a tiny region in the anterior part

of the hypothalamus. The SCN has an approxi-

mate period of 24 h and acts as the central time-

keeper for circadian mediated behavior and body

functions [118, 119]. In contrast to the SCN,

which provides a single oscillating 24-period

output signal, the oscillators in SBF models are

assumed to play a more indirect role in the track-

ing of time from milliseconds to hours [120].

In the beat-frequency model proposed by

Miall [117], populations of high-frequency

(~10 Hz) oscillators are assumed to underlie the

perception of event durations in the range of

milliseconds to tens of seconds or minutes (i.e.,

durations > 0.1 Hz). Each oscillator is assumed

to have its own frequency, to become active

when its activation has reached a certain thresh-

old value, and will stay active until its activation

drops below the threshold (this typically results

in each oscillator being active for about 1–2 % of

each cycle). In this basic beat-frequency model,

all oscillators are connected to a single output

unit or integrator. At the start of a to-be-timed

event, the phase of all oscillators is reset after

which the oscillations recommence. At the end of

the event, Hebbian-type learning adjusts the

connections between active oscillators and the

output unit towards 1, and the other oscillators

towards 0. After sufficient training, this model

can reproduce the perceived duration of the event

by resetting the phases of the oscillators at the

start of the reproduction and responding when

the integrator receives sufficient input from the

oscillators. The simulations presented by Miall

[117] elegantly demonstrate that populations of

high-frequency oscillators with between-

oscillator variation in period can act as a

“clock” for interval timing as the system can

accurately represent durations in the range of

milliseconds to hours [12].

Using this basic beat-frequency model as a

foundation, Matell and Meck [6, 76] have pro-

posed the Striatal Beat-Frequency (SBF) model.

Although the main extension is the augmented

output unit (see the section “Striatal Medium

Spiny Neurons”), these authors also refined

what information is provided by the oscillators

to later portions of the clock stage. Instead of

assuming a binary output function per oscillator,

with a single active period for a small proportion

of every cycle and no activity during the

remaining part of the cycle, the SBF model

assumes a sinusoidal output pattern. This

assumption is based on the idea that instead of a

single neuron acting as an oscillator, each oscil-

lator could be considered as an ensemble of

neurons with a similar frequency (similar to the

volley principle in auditory perception). Because

neurons are known to fire probabilistically, with

a firing rate that is a function of the phase [121],

the output of each ensemble-based oscillator will

follow a sinusoidal pattern [76, 122–124]. This

idea has been further tested by Oprisan and

Buhusi [85, 86], who have implemented this

process using biophysically realistic Morris-

Lecar (ML) cortical neurons [125, 126].

Assuming a similar Hebbian-type process for

learning the connections between the output of

the ensemble-oscillators and the output unit,

Matell and Meck [6, 76] demonstrated that this

extension was sufficient to elicit a more

Gaussian-shaped pattern of activity in the output

unit that is similar to what was observed in

single cell recordings in the dorsal striatum.

Moreover, by adding some global variability in

the dopaminergic control of clock speed
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[127–130]—resulting in all oscillators running

either slightly faster or slower on each trial—

longer durations are represented by a wider

shaped distribution in the output unit, reflecting

the scalar property even at the single-cell level

[131]. Matell and Meck [76] have analytically

shown how the scalar property can emerge from

the SBF model of interval timing. In their imple-

mentation of the SBF model, they assume that

virtually all of the cortical neurons that project

onto MSNs fire regularly at frequencies in the

8–12 Hz band. Moreover, the output of each of

these cortical neurons is modeled by a continu-

ous sine curve oscillation. In contrast, the output

of real neurons occurs as spikes, which are usu-

ally described by a point process. Although the

sine wave description is used for its mathemati-

cal simplicity, each beat has a temporal width (e.

g., ~50 ms broadening for a 10 Hz oscillation),

which will likely have a significant influence on

the timing variance. More recently, Buhusi and

Oprisan [84] have examined the Morris-Lecar

(ML) model for neuron firing, which generates

non-linear, action potential-like beat oscillations.

The “beats” produced with this MLmodel should

also exhibit temporally broadening and hence

affect timing variance in a manner currently

unaccounted for. As a consequence, a more bio-

logically realistic way to implement the SBF

model would be to describe the output of cortical

neurons by regular spikes (with a small jitter);

each spike transmitted to the MSN evokes a

postsynaptic excitatory current (EPSC); coinci-

dent spikes produce superimposed EPSCs that

lead to spike discharge of the MSN, by which

target durations are discriminated using the

coincidence-detection mechanism described

within the original SBF model [76].

Striatal Medium Spiny Neurons

Although the changes in the functioning of the

oscillators are probably equally important in the

development from the basic beat-frequency

model to the SBF model, the Striatal Beat-

Frequency model is named after the more precise

neurobiological grounding of the output unit.

According to the SBF model, striatal MSNs are

the neurobiological implementation of the output

unit of the basic beat-frequency model. This link

is well supported by neurobiological evidence

[54, 71, 132]. For example, the striatum is con-

sidered to be the main input system for the basal

ganglia, with each striatal MSN receiving input

from up to thirty thousand different cortical and

thalamic units. The large number of connections

aligns well with the assumption that the output

unit is connected to a large number of oscillators.

Second, the basal ganglia—and more specifically

the dorsal striatum—are often considered to be a

perceptual filtering system, with clear evidence

that the striatal MSNs need a large number of

coherent input signals before they fire. This, of

course, is required to prevent the MSNs from

firing as a result of limited oscillator input.

Most importantly, Matell et al. [131] have

shown that about 20 % of the measured dorsal

striatal cell ensembles showed a temporally spe-

cific modulation in firing rate, with particular

ensembles becoming active around 10 s after a

signal, and other ensembles after around 40 s.

This indicates that there are neurons in cortico-

striatal circuits that are tuned to specific event

durations [132, 133].

In the basic beat-frequency model, the output

unit only fired when a specific number of output

units were active at the same point in time. Using

striatal MSNs as the output unit, Matell and Meck

[6, 76] updated the temporal integration and

detection process. Based on earlier work, the inte-

gration window for coincidence detection was set

to 25 ms, reflecting the observation that multiple

input signals need not arrive at exactly the same

point in time to still be processed as if a coherent

input pattern was observed. Moreover, based on

the observation that less input is required to keep a

MSN active once it has become active, an asym-

metric threshold was implemented which results

in a slight right skew in the output unit firing

distributions. Such coincidence-detection pro-

cesses and oscillatory processes are ubiquitous in

the brain and are a major advantage for the SBF

model [9, 44, 76, 134–136].
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Connections

In both the original SBF model [6, 76] and in the

SBF-ML model [84–86], the input to the striatal

MSNs is mediated by the synaptic strength of the

connections between oscillators and MSNs. In the

SBFmodel, the synaptic strength is determined by

averaging the state of the oscillators at previous

times of reinforcement. This learning is driven by

long-term potentiation modulated by the dopa-

mine that is released upon the registration of a

temporally salient event. The synaptic strengths

will represent a distribution of oscillatory states,

as global noise in the frequencies of oscillators

will result in slightly different oscillatory states on

different trials. As a result, the detection of longer

event durations will more heavily rely on

oscillators with lower frequencies. Because

slower oscillators will have a longer period of

higher activity, the MSNs encoding a long event

duration will receive input for a longer period of

time and thus stay active longer, giving an addi-

tional source of scalar variance.

Given that these simulations involve all

striatal MSNs having identical properties (such

as the way incoming information is integrated

and similar firing thresholds), and each MSN

could be connected to any oscillator, each MSN

could, in principle, represent any event duration

unless they are chronotopically organized [132].

Therefore, the ability to represent a particular

event duration depends on the learned synaptic

strengths. In both SBF and SBF-ML, the synaptic

strengths of a particular MSN are based on a

memory representation of all previous

experiences with the event duration that that

particular MSN encodes for. As such, these

cortico-striatal synaptic strengths have the same

functional role as the pulse counts stored in ref-

erence memory in Scalar Timing Theory [17]

and in the integrated-architecture account of

timing [100]: i.e., the synaptic strengths serve

as a filtering mechanism that constrains the firing

of a MSN to times associated with a particular

event duration, in the same way as the pulse

counts constrain a response to a particular accu-

mulator value or clock reading stored in memory.

Interval Timing within the Striatal
Beat-Frequency Model

In IP theories of interval timing, the memory

stage links the clock—implemented as a combi-

nation of a pacemaker and accumulator—to the

processes that should perform a certain action at

a particular point in time: only when the value

stored in the accumulator is equal to or similar

enough to the value retrieved from memory will

the decision rule be applied. The three main

components of the SBF model can be straightfor-

wardly mapped onto this description [44, 54, 76].

First, the oscillators provide the same type of

information as the combined pacemaker-

accumulator in the IP models—a unique pattern

of activation versus a unique integer count for

different event durations. Second, as mentioned

above, the cortico-striatal connections serve a

similar role as the memory traces in the IP

models, with synaptic strengths acting as a filter-

ing mechanism that constrains the firing of a

MSN to times associated with a particular event

duration, in the same way as the pulse counts

constrain a response to a particular accumulator

value. And third, the firing of a MSN is synony-

mous with the decision stage in the IP models. In

Scalar Timing Theory, the firing of a decision

rule indicates that later, unspecified processes

can perform the action that was associated with

the reproduced duration (i.e., start pressing a

lever to receive the food reward), whereas in

the integrated-architecture account, observing

that the values in the accumulator and the

retrieved memory trace are identical will cause

a decision rule to be applied that sets in action the

execution of the temporally constrained action.

The main difference between the SBF model

and pacemaker-accumulator models is that

pacemaker-accumulator models implicitly

assume that there is one decision rule which

could, in principle, be used for estimating differ-

ent event durations. That is, the same ratio rule in

Scalar Timing Theory or the same decision rule

in the integrative-architecture theory could be

used to estimate different event durations as
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long as these durations can be uniquely encoded

in and retrieved from memory. In the SBF model,

the synaptic strengths are unique to each individ-

ual receiving MSN, which means that each sub-

jectively unique event duration has to be encoded

by a unique MSN. One could therefore say that

after experiencing a particular duration D a num-

ber of times, which will have resulted in well-

learned synaptic strengths, the associated MSN

has become a temporal “feature detector” that

will always fire after D time has passed. If, at a

later point in time, another event has the same

temporal structure, this particular MSN could be

linked to that event as well, suggesting that

striatal MSNs act in a very similar manner as

feature detectors or perceptrons for other types

of sensory input [137, 138].

Integration of Striatal Beat-Frequency
and Models of Complex Interval Timing

Although the SBF and SBF-ML simulations

focus on learning and reproducing a single dura-

tion, any timing system should be able to distin-

guish between or estimate multiple intervals. As

acknowledged by Matell and Meck [76] and

Oprisan and Buhusi [85, 86], and shown in

Fig. 5, multiple striatal MSNs could be

connected to the same set of oscillators. By

means of different reinforcement patterns, each

MSN would have different synaptic strengths

and thus be attuned to different event durations.

This raises the question as to whether each event

will be associated to its own MSN, or whether

different events that share a relatively similar

temporal pattern will be encoded using the

same MSN. It might be clear that it is theoreti-

cally impossible to have a separate MSN for each

possible event duration this would require an

infinite number of MSNs. At the same time,

objective event durations that are sufficiently

different should also be perceived as being dif-

ferent. The minimal objective duration that reli-

ably results in subjective differences is called the

just-noticeable-difference (JND) and, as

described by Weber’s law, is proportional to the

length of the two to-be-distinguished durations.

This would suggest that temporal precision is

higher for shorter durations than for longer

durations. That is, the distance between the

event duration to which a MSN is most sensitive

and the event duration of its direct neighbor

should increase with the length of those

durations.

This theoretical rationale for a nonlinear dis-

tribution of the MSNs is supported by computer

simulations. Based on assumptions derived from

the SBF model, we have constructed a novel

variant of the SBF model (SBFn) that can learn

to encode multiple (“n”) distinct event durations.

The initial state of this SBFnmodel is depicted in

the left panel of Fig. 6. Each smaller distribution

reflects the receptive field of a single detector that

is modeled after the MSNs in the SBF model.

Based on the simulations presented by Matell

and Meck [76]—see for example their Figure

3.2-12, we expressed each neuron’s sensitivity

for a particular event duration as a skewed-normal

distribution with a mean equal to the encoded

duration, a standard deviation that is scalar in the

mean, and a slight skew of 2. The left panel of

Fig. 6 also shows the initial a-theoretic linear

distribution of the detectors over the range of

event durations for which they are sensitive.

After creating this initial distribution, the SBFn

model is presented with randomly drawn event

durations, uniformly sampled from the entire

range. For each sampled event duration, the

MSN with the most active receptive field is

selected, simulating that this particular objective

duration is perceived as the subjective duration

represented by that detector. In line with the idea

that the synaptic strengths will be updated each

time an event duration is encountered that results

in the firing of aMSN, the mean of the distribution

is updated following a simple reinforcement

learning algorithm. The distributions shown in

the right panel of Fig. 6 represent the detectors

of SBFn after sufficient training has been provided
and a relatively stable pattern has emerged.

Clearly, a nonlinear pattern is exhibited, starting

with high temporal resolution at shorter durations

with a negatively accelerating decrement in tem-

poral resolution for longer durations. The dotted

line shown in the right panel of Fig. 6 is a best fit
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geometric series, indicating that the temporal res-

olution closely resembles Fechner’s observation

that the subjective experience increases arithmet-

ically for geometrically increasing physical

stimuli. Interestingly, many of the basic

assumptions of these different SBF models could

also be applied to the IP models of interval timing.

For example, the assumption of global variability

in the frequencies of the oscillators could be trans-

lated to variability in clock speed between trials in

Scalar Timing Theory as was proposed by Matell

and Meck [76]. This would remove the need for

the memory translation based on k*. However, to

account for other effects associated with the scalar

property, such as the JND effect, a ratio-rule

would still be required.

As the distribution of simulated detectors in

the SBFn model follows the same pattern of

nonlinearity as was used in the integrated-

architecture model of interval timing, it is

straightforward to update this model to match

the properties of the neurobiologically

constrained SBFnmodel. That is, where the orig-

inal integrated-architecture model assumed that

the clock module provides a readout on an inter-

val scale that represents the current time, an

updated version could simply be provided with

an indication of which MSN fired most recently.

Because these feature detectors will always fire

in sequence, the model will be able to predict

which detector will fire next, thus providing an

index of the passage of time even before the

target detector has fired (concept of “shorter”

than) as well as after it has fired (concept of

“longer” than). This information could drive

expectancy-based processes as it might provide

the thalamocortical-based input to decision pro-

cesses that regulate the CNV amplitude as

hypothesized by Nagai et al. [113]. Although a

complete SBF model as implemented by Matell

and Meck [76] and Oprisan and Buhusi [85, 86]

could be included in the integrated-architecture

model, a more pragmatic approach would be to

update the parameters of the geometric series in

the model so that the mapping of objective to

subjective time follows the distributions of the

MSNs of the SBFn model.

Integration of Interval Timing
and Models of Working Memory

One of the remaining questions is related to the

source of the oscillations that provide the input to

the MSNs as neither the SBF nor SBFn model
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(B) Learned, Stable Distribution

Fig. 6 Starting distribution (left panel) and learned, sta-

ble distribution (right panel) of an extended Striatal Beat-
Frequency model that can represent multiple durations

(SBFn). The x-axis depicts the objective time to which

each of the ten simulated detectors modeled after striatal

medium spiny neurons is sensitive. Each of the detectors

has a skewed-normal receptive field that scales with the

represented event duration. The initial state of the SBFn
model, depicted in the left panel reflects linear temporal

precision. The stable distribution of detectors, shown in

the right panel, emerges after training. This distribution

follows a geometric series as can be seen by the dotted
line that follows the function ∑(110 � 1.1n) + 150
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identifies the exact source. Interestingly, both

theoretical and empirical work suggests that

working memory and interval timing rely not

only on the same anatomical structures, but also

on the same neural representation of a specific

stimulus [139, 140]. Specifically, cortical

neurons may fire in an oscillatory fashion to

form representations of stimuli, and the MSNs

may detect those patterns of cortical firing that

occur co-incident to important events. Informa-

tion about stimulus identity can be extracted

from which cortical neurons are involved in the

representation, and information about duration

can be extracted from their relative phase.

Based on this link between working memory

and interval timing [140], the SBF and SBFn

models of interval timing can be extended to an

oscillatory model of interval timing and working

memory (SBFm). The principles derived from

these biologically based models also fit well

with a family of models that emphasize the

importance of time in many working-memory

phenomena [141–143].

Neural oscillation is an important feature in

both interval timing and working memory.

In particular, the activation of working memory

is associated with increased gamma oscillations

(e.g., 25–100 Hz) in the frontal cortex that are

entrained to the hippocampal theta-frequency

range (e.g., 5–12 Hz) in multiple brain areas

including the cortex, striatum, and hippocam-

pus—all relevant to interval timing [139, 144].

Recent evidence suggests that phase-amplitude

coupling (PAC) of theta and gamma occurs dur-

ing working memory maintenance [145–147]—

where PAC refers to the phenomenon of cou-

pling between the amplitude of a faster oscilla-

tion and the phase of a slower oscillation. Such a

relation between different frequency ranges has

been shown to be a prevailing feature of neural

activity associated with cognitive function.

Penttonen and Buzsaki [148], for example,

showed a natural logarithmic relationship in the

periods of delta, theta, gamma, and ultra-fast

oscillations, while Lakatos et al. [149] have

shown hierarchical relations in delta, theta, and

gamma bands of activity. In this regard, the

relations among these different frequency

categories are thought to be important in

controlling patterns of neural activation.

Computer simulations suggest that multiple

oscillators with different frequencies produce

these logarithmic and hierarchical relationships.

Moreover, the simulated relation between differ-

ent frequency ranges appears to be fractal, i.e.,

gamma oscillations are entrained within theta,

which is, in turn, entrained within delta

oscillations [139]. Consequently, it has been

hypothesized that interval timing and working

memory are decoded from different ranges of

these oscillatory periods. More specifically,

MSNs in the striatum could detect cortical target

representations from the spatio-temporal patterns

of gamma spikes entrained with theta (for stimu-

lus attributes in working memory) or from syn-

chronous patterns of theta oscillations entrained

in slow oscillations (for event durations in inter-

val timing). In this manner, the same patterns of

oscillation in cortical networks can represent

stimulus attributes and event durations simulta-

neously. Moreover, an optimal strategy for detec-

tion can distinguish between interval timing and

working memory, i.e., a diverse range of

delta–theta frequencies is favorable for encoding

event duration, whereas synchronous theta

oscillations are better for maintaining one or

more items in working memory because this

effectively increases the size of neuronal net-

work. Therefore, the observed interference

between interval timing and working memory

[150–154] can be explained in terms of how the

range of theta-oscillation frequencies is set (e.g.,

multiple theta frequencies or a single theta fre-

quency synchronized with cortical oscillations).

We suggest that network synchrony analyses, as

described by Burke et al. [155] and Gu et al.

[139], are able to distinguish between two types

of spectral modulations: (1) those that reflect

synchronous engagement of MSNs in the stria-

tum with cortical or hippocampal neurons and (2)

those that reflect either asynchronous

modulations of neural activity or local synchrony

accompanied by disengagement from other brain

structures. The basic idea is that these different

spectral modulations within cortico-thalamic-

basal ganglia circuits have distinct
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spatiotemporal profiles during the timing of

event durations and the encoding of specific

stimulus attributes in working memory [99,

132, 140], thus providing an integrative format

for the representation of time and other types of

episodic information.

Summary and Conclusions

In this chapter we have shown how over the

years the original IP model of interval timing

has been extended. At the basis of this work

lies the original theory proposed by Treisman

[14] which specified, in verbal terms, how the

combination of clock, memory and decision

stages could give rise to temporal behavior.

Gibbon et al. [17] further developed this

model in a series of papers that refined the

original theory by providing specific and

quantitative implementations of the different

IP stages. A large proportion of the current

work in the field of interval timing is still

based on the ideas put forward in the context

of this Scalar Timing Theory. Two lines of

work can be identified that branched off from

this original model. Work in one branch

focused on improving the neurobiological

foundations of Scalar Timing Theory. The

main example of this work is the Striatal

Beat-Frequency model [6, 76] which

demonstrates that a cortico-thalamic-basal

ganglia network can implement the clock

stage as proposed in Scalar Timing Theory.

The other branch has focused on comple-

menting the IP-models of interval timing

with an integrated cognitive architecture [75,

83]. On the one hand, this integrated-

architecture allows researchers to create

models of more complex tasks in which inter-

val timing plays a crucial role, whereas on the

other hand this integration provides further

constraints on interval-timing theories as the

putative processes need to be filled in with

greater detail. This requirement can also result

in new explanations for existing phenomena.

For example, the processes underlying the

long-term declarative memory system of the

integrative- architecture model allow for the

precise modeling of the memory effects [100]

observed in interval timing (i.e., the “memory

mixing” effect—[50, 65, 98]).

Current work in this field is focused on

reuniting these two branches. In the SBFn

model, the SBF and integrated-architecture

model of interval timing are combined,

providing a neurobiology-based model that

can be used to model complex time-based

tasks. Although extending the integrative-

architecture model to include a SBF-based

clock stage does not change its functional

properties, the neurobiological basis of the

SBF model provides further constraints for

this architecture-based model. Another

approach to unification is the proposed

SBFm model. The idea for this model is

based on extensive work that links working

memory to oscillations in the same cortico-

striatal network that serves as the basis of the

SBF model. The SBFm model links working

memory processes and interval timing by

assuming that the firing patterns of the

oscillating neurons could encode for content

in the working memory system, whereas the

phase of these oscillations could encode for

temporal properties [139, 140]. Future work

will focus on the implementation of this

SBFm model, and at the same time testing

the predictions of this model using, for exam-

ple, network synchrony analyses [139, 155]

and model-based fMRI analyses [156–158]

in an attempt to unify prospective and retro-

spective time estimation [159–163].
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