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Foreword

How the brain processes temporal information is a fundamental question

relevant to systems, cellular, computational, and cognitive neuroscience, as

well as to the psychophysics of music and language. During the last and

present decades, interval timing has been intensively studied in humans and

animals with a variety of methodological approaches. The present book

brings together the latest information gathered from this exciting area of

research, putting special emphasis on the neural underpinnings of time

processing in behaving human and non-human primates. Thus, Neurobiology
of Interval Timing integrates for the first time the current knowledge of

animal behavior and human cognition related to the passage of time across

different behavioral contexts, including perception and production of time

intervals, as well as rhythmic activities, using different experimental and

theoretical frameworks.

The book is composed of chapters written by leading experts in the fields

of psychophysics, computational neuroscience, functional imaging, system

neurophysiology, and musicology. This cutting-edge scientific work

integrates the current knowledge of the neurobiology of timing behavior,

putting in perspective the current hypothesis of how the brain quantifies the

passage of time across a wide variety of critical behaviors.

With Neurobiology of Interval Timing neuroscientists, experimental

psychologists, and ethologists will gain the necessary background to under-

stand the psychophysics and neurophysiology of time, in perceptual and

motor activities that involve rhythms or single intervals. This is a perfect

textbook for graduate students in the field of neurobiology of timing.

Querétaro, Mexico Hugo Merchant
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Jennifer T. Coull Laboratoire de Neursociences Cognitives, Université

Aix-Marseille & CNRS, Marseille Cedex 3, France

Victor de Lafuente Instituto de Neurobiologı́a, UNAM, Campus Juriquilla,

Querétaro, Mexico

Daniel Durstewitz Bernstein-Center for Computational Neuroscience,

Central Institute of Mental Health, Medical Faculty Mannheim of Heidelberg

University, Mannheim, Germany
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Introduction to the Neurobiology
of Interval Timing

Hugo Merchant and Victor de Lafuente

Abstract

Time is a fundamental variable that organisms must quantify in order to

survive. In humans, for example, the gradual development of the sense of

duration and rhythm is an essential skill in many facets of social behavior

such as speaking, dancing to-, listening to- or playing music, performing a

wide variety of sports, and driving a car (Merchant H, Harrington DL,

Meck WH. Annu Rev Neurosci. 36:313–36, 2013). During the last 10

years there has been a rapid growth of research on the neural

underpinnings of timing in the subsecond and suprasecond scales, using

a variety of methodological approaches in the human being, as well as in

varied animal and theoretical models. In this introductory chapter we

attempt to give a conceptual framework that defines time processing as

a family of different phenomena. The brain circuits and neural

underpinnings of temporal quantification seem to largely depend on its

time scale and the sensorimotor nature of specific behaviors. Therefore,

we describe the main time scales and their associated behaviors and show

how the perception and execution of timing events in the subsecond and

second scales may depend on similar or different neural mechanisms.

Keywords

Time perception � Sensory timing � Motor timing � Timing models

Time Scales and Their Neural
Substrates

From microseconds to circadian rhythms, tempo-

ral information is used to guide behavior. Spe-

cific brain mechanisms have been suggested for

the temporal processing of different time scales

covering 12 orders of magnitude [1] (Fig. 1).
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Microsecond Scale

Information processing in the microseconds has

been studied in binaural hearing and echo-

location. In the case of binaural hearing the

microseconds scale is used by the auditory sys-

tem to determine the time differences in the

action potentials coming for the two ears, called

interaural delays, to determine the spatial origin

of a sound. The sound will arrive slightly earlier

in the near ear, usually in the order of 600–700 μs
as natural interaural time differences (ITDs). To

process these minimal binaural cues, birds and

mammals have developed sensitive tympanic

ears and highly specialized auditory brainstem

circuits [2]. The neural processing stages that

compare inputs from the left and right ears arise

early, immediately after the first synaptic relay in

the cochlear nucleus. Most neurons that are sen-

sitive to ITDs are excited by inputs from the

cochlear nuclei of both ears and are called EE

(excitatory-excitatory) neurons. The EE neurons

are in the mammalian medial superior olive

(MSO) and are classically thought to be organ-

ized in a ‘delay line and coincidence detector’

arrangement. An influential model [3] suggests

that individual neurons fire in response to

precisely synchronized excitation from both

ears, and systematically varied axonal conduc-

tion delays along the length of the MSO nucleus

serves to offset ITDs, so that each neuron is

‘tuned’ to a best ITD value that cancels the signal

delays from the left and right ear (However, see

[2] for an alternative and more complex mecha-

nism). Hence, neurons tuned to different ITDs

are critical to encode small time changes in the

binaural input in order to detect the spatial source

of a sound.

On the other hand, echolocation (biosonar) is

an active auditory process in which an animal

emits a sound and then listens to the reflections of

that sound (echo) to create neural images of its

nearby environment. For example, bats and

dolphins use the time interval between an out-

going sound pulse and its returning echo for the

detection, identification, and localization of air-

borne and underwater targets, respectively [4]. A

single echolocation call (a call being a single

continuous trace on a sound spectrogram) can

last between 200 μs and 100 ms, depending on

the stage of prey-catching behavior that the bat is

engaged in. Downward frequency modulated

(FM) sweeps, used in most bat echolocation

signals, provide for very good estimates of

Fig. 1 Time across four

different timescales.

Different behaviors and

brain mechanisms are

engaged in the

microseconds, hundreds of

milliseconds, seconds to

minutes, and circadian

scales

2 H. Merchant and V. de Lafuente



pulse–echo delays [5]. These time delays, rang-

ing around 600–12,000 μs, are encoded within

the inferior colliculus in the central auditory sys-

tem of echolocating bats by specialized neurons

that respond only to a limited range of

pulse–echo delays [6]. These so-called delay-

tuned neurons are sensitive to delays between

the FM elements in the emitted pulse and in the

returning echo. Thus, populations of delay-tuned

neurons contribute to the analysis of the distance

between the objects and the bat [7].

Milliseconds Range

Interval timing in the hundreds of milliseconds

(200–1,000 ms) is involved in a broad spectrum

of activities, ranging from object interception

and collision avoidance to complex behaviors

such as speech perception and articulation, and

the execution and appreciation of music and

dance. In addition, motion processing in the

visual and tactile modalities, as well as the

coordination of fine movements occurs in this

time range [1]. The ability to quantify time in

this scale is very flexible and organisms have

great control of the onset and offset of time

estimation depending on the contingencies of

the environment. Therefore, temporal processing

in the hundreds of milliseconds is quite sophisti-

cated; yet, its neural underpinnings are largely

unknown.

Seconds to Minutes Scale

The quantification of intervals in the seconds to

minutes range is referred by many authors as

interval timing and depends on conscious and

cognitive control. Temporal processing in this

range is involved in foraging [8], decision

making [9], sequential motor performance [10],

as well as multiple-step arithmetic [11], and

associative conditioning [12]. Thus, timing in

this scale serves as the contextual framework

through which behavior is mapped onto the

external world. Furthermore, timing in the

seconds to minutes scale is highly influenced by

other processes, such as attention and memory,

which interact with the mechanism of a pre-

sumed internal clock. The cognitive nature of

time quantification in this scale has made diffi-

cult the functional dissociation between the neu-

ral circuits involved in interval timing from those

associated with attentional processes, working

memory and the intention to execute a move-

ment, between others.

Circadian Rhythms

The biological timing system that organizes the

diurnal environmental oscillations every 24 h is

known as the circadian clock. The two major

functions of the circadian clock are: (1) to opti-

mize the temporal manifestations of different

biological activities during the day by the antici-

pation of recurring fluctuations in the environ-

ment, and (2) to separate incompatible

biological processes such as feeding and sleeping.

The circadian rhythms in mammals are governed

by a complex network of cellular-molecular

oscillators distributed throughout the brain and

peripheral tissues [13]. The master clock is in

the hypothalamic suprachiasmatic nuclei (SCN)

that synchronizes the internal time with the

external light–dark cycle, entraining the overall

rhythmicity of a wide variety of peripheral clocks

in the organism. The endogenous circadian clock

in mammals possesses a rhythm with an approxi-

mate 24-h free-running period, and the major

external synchronizing external signal is light.

Therefore, SCN acts as a relay between the exter-

nal light–dark cycle and the endogenous timing

system [14]. The SCN innervates numerous brain

nuclei in order to transmit circadian time infor-

mation to other CNS clocks. On the other hand,

the majority of the cells in the body contain a cell-

autonomous circadian clock that is strongly

linked to the metabolic pathways. An emerging

view for the adaptive significance of circadian

clocks is their fundamental role in orchestrating

metabolism [15]. Thus, all these peripheral clocks

are governed directly or indirectly by the SCN

that controls the rhythms of activity and rest,

feeding, body temperature, and hormone release.

Introduction to the Neurobiology of Interval Timing 3



Different Timing Behaviors Equal
Different Timing Mechanisms?

The present book focuses mainly on the neural

basis of temporal processing in the hundreds of

milliseconds range, although some of the

chapters also deal with the underpinnings of

timing behaviors in the seconds to minutes

scale. Many authors defend the notion of differ-

ent brain mechanisms for the two time ranges,

and there is still some debate on which is the

threshold time where the clock for the hundreds

of milliseconds scale is replaced by the time

keeping mechanism for the seconds to minutes

range. This time threshold seems to be in the

order of 1,300–2,000 ms for perceptual and

motor timing tasks that involve one interval or a

set of isochronous intervals [see the chapter

“About the (Non)Scalar Property for Time Per-

ception” by Simon Grondin and chapter

“Elucidating the Internal Structure of Psycho-

physical Timing Performance in the Sub-second

and Second Range by Utilizing Confirmatory

Factor Analysis” by Thomas H. Rammsayer and

Stefan J. Troche]. However, some researchers

sustain that these two time scales are governed

by the same neural clock during complex

behaviors, such as the perception and execution

of music with a complex hierarchical structure of

tempi (see chapter of Jessica Graham).

The word “timing” can have the connotation

of either how long an event lasts or when an event

occurs. This implies that the neural clock or

clocks should have the ability to encode the

elapsed time from a stimulus, an act, or process,

such as the time between two notes in a song;

along with the capacity to measure the time

remaining for an action, where the system should

select the precise moment for doing something

for an accurate result, like when a tennis player

hits a ball (Fig. 2; [16, 17]). In addition, the

perception and production of time in the

hundreds of milliseconds is deeply involved in

a large repertoire of behaviors, not only using

different sensory modalities but also a variety

of effector systems [18]. Furthermore, in some

behaviors an explicit representation of the inter-

val to be timed is used as in tapping with a

rhythm, while in others time processing is

covertly present or implicit as during continuous

drawing, where timing is an emergent property of

Fig. 2 Time can be

computed using different

sensory modalities, during

the execution of rhythms

and dance, and can be

computed as elapsed time

from an event or as the time

remaining for an action,

such as an interception of a

moving target

4 H. Merchant and V. de Lafuente



the trajectory produced [18, 19]. Also, time

intervals can be produced or estimated just once

or as many times as needed [20, 21]. Finally,

temporal processing can be associated to time

synchronization to external events, as in the

case of music played by groups of musicians, or

can be internally timed like in the case of a

soloist [22]. Therefore, some of the key elements

of temporal processing include the time scale

being quantified, the modality of the stimulus

that guide timing, whether time is being

measured for a movement or for a perceptual

decision, whether the task involves single or

multiple intervals, whether timing is externally

or internally generated, and the implicit or

explicit nature of timing (Fig. 2; [23]).

Researchers have generated two opposite

views regarding the neural underpinning of tem-

poral processing [24, 25]. On one side there is the

hypothesis of a common mechanism that pro-

cesses temporal information across many behav-

ioral contexts and in a multimodal fashion; on the

other, there is the notion of a totally ubiquitous

mechanism that is context dependent and that has

the dynamic properties of cortical networks as its

underpinnings. The former has been supported by

classical psychophysical observations [20, 26,

27] using a black box approach, and by lesion

[28] and functional imaging studies [29]; whereas

the latter has been suggested by modeling [30,

31], brain slice recordings [32], and new psycho-

physical approaches [32, 33]. A third possibility

suggests the existence of a partially distributed

timing mechanism, integrated by main core inter-

connected structures such as the cortico-thalamic-

basal ganglia circuit (CTBGc), and areas that are

selectively engaged depending on the specific

behavioral requirement of a task [34, 35]. These

task-dependent areas may interact with the core

timing system to produce the characteristic tem-

poral output profile in a specific task [36]. This

intermediate idea is based on recent psycho-

physical studies [37, 38] and functional imaging

meta-analysis [39] that do not support the exis-

tence of neither a common timingmechanism that

functions equally every time a subject quantifies

time, nor a set of timing mechanisms that are

specific for each task context.

An Initial Taxonomy of Timing

The psychophysics of temporal quantification

started as early as the late nineteenth century

[40], and many timing tasks and species have

been used to test the existence of one or multiple

neural clocks. In contrast, the study of the neural

basis of timing is quite recent (started in the

1980s), and there is still not enough evidence to

accept or refute any of the hypotheses delineated

in the previous section. Nevertheless, our current

knowledge about the functional and anatomical

organization of the brain gives us important hints

about what are the possible rules governing tem-

poral processing across different behavioral

contexts. Importantly, we have thought that the

field is in need of a classification scheme of tem-

poral behaviors according to their sensorimotor

nature. Thus, in the following text we attempt to

provide a preliminary taxonomy of timing.

Sensory Timing

Organisms are able to extract temporal information

from stimuli of all sensorymodalities, even if there

is no time sensory organ (Fig. 2). We still do not

know how time is computed from the activation of

different sensory systems nor where in the sensory

hierarchy is the temporal information computed for

perceptual or motor purposes. In order to answer

these fundamental questions it is important to

understand the general anatomofunctional arrange-

ment of the auditory, visual and somatosensory

systems that correspond to the most important

modalities for temporal information processing,

particularly in the hundreds of milliseconds

range. These sensory systems include the follow-

ing commonalities: the sensory transduction of

physical information into action potentials in the

sensory receptors; the projection of this infor-

mation (through thalamic nuclei) to the primary

sensory areas of the cerebral cortex; the processing

of the different aspects of the stimuli in the cortical-

and subcortical circuits engaged by the sensory

input; and finally, the use of high order sensory

processing for perception, learning and memory,

Introduction to the Neurobiology of Interval Timing 5



and voluntarymotor action (Fig. 3). Thus, initially,

time information could be extracted from the trans-

duction of the stimulus and the encoding of its

physical properties in the first relays of the sensory

systems. Few studies have focused on temporal

processing during the transduction and projection

phases of sensation. In this regard, the auditory

midbrain of many vertebrates shows cells that are

tuned to the duration of stimuli in the range of tens

of milliseconds (10–100 ms). Studies across verte-

brates have identified cells with preferred durations

and temporal response bandwidths that mirror the

range of species-specific vocalizations (see [41] for

a review). Therefore, the auditory system has the

ability to efficiently extract temporal information

early in the chain of processing. In addition, the

primary auditory cortex of the cat also shows cells

that are tuned to the duration of auditory stimuli

[42]. The duration tuning in this area is much

broader, and the best duration was distributed

over a wider range of durations (10–500 ms) than

in the bat’s inferior colliculus [42]. Hence, it has

been suggested that duration selectivity in A1

results from integration along the time domain

across the auditory ascending pathway. Overall,

these studies suggest that the auditory modality

has the strong ability to extract temporal infor-

mation in the range of tens of milliseconds across

the first relays of sensory processing, which

indicates that time is a fundamental behavioral

parameter for audition.

For vision, the first node in the visual pathway

that shows duration tuned cells is the primary

visual cortex or V1 (Fig. 3). These cells show

an orderly change in response magnitude after a

visual stimulus of a particular duration is

Fig. 3 A flux diagram for stimulus processing in

the auditory, visual and somatosensory modalities, rang-

ing from sensation (square) to high order processing

(ellipse). The orange ellipses highlight the levels of

processing where different aspects of time quantification

may occur
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presented in their receptive field [43]. The range

of durations represented in V1 goes from 50 to

400 ms. Interestingly, no such tuned cells were

found in the lateral geniculate nucleus of the

thalamus [43], suggesting that time selectivity

is a property arising from local processing in

V1 Recent psychophysical studies have investi-

gated the sensory adaptation for the temporal

properties of stimuli, an effect that probably

depends on the primary sensory cortical areas.

For instance, the apparent duration of a visual

stimulus can be modified in a local region of the

visual field by adaptation to oscillatory motion or

flicker, suggesting that there is a spatially

localized temporal mechanism for the sensation

of time of visual events in the first nodes of the

cortical hierarchy of visual processing [32, 33].

The neurophysiological studies of time

processing suggest that the auditory modality

has a privileged capability for time quantification.

Indeed, temporal processing measured in psycho-

physical tasks on humans is more accurate and

precise when the intervals are defined by auditory

than visual or tactile stimuli, and this occurs dur-

ing both perceptual and production timing tasks.

Furthermore, the time intervals marked by audi-

tory signals are judged to be longer than those

defined by visual stimuli [22, 44, 45].

Another property of the sensory input that

affect the timing performance is whether the

intervals are filled or empty. In sound cued empty

intervals, for example, only the onset and the offset

of the interval are marked by clicks, whereas in

filled intervals, a tone or noise burst is presented

continuously throughout the interval. Thus, it has

been shown that filled intervals are perceived as

being longer than empty durations of the same

length, and that the discrimination threshold is

smaller for empty than for filled intervals [46].

New experiments are needed to determinewhether

the effect of filled or empty intervals depends on

the encoding of duration by tuned cells in the early

stages of sensory processing.

At this point is important to make the distinc-

tion between a temporal code that is an extra

channel for encoding information in the brain

and that depends on the precise temporal struc-

ture of spike trains, and interval timing or tem-

poral processing where the brain represents time

itself as a variable, solving sensorimotor

problems such as interval duration [47].

The time sensation, hence, seems to depend

on specialized groups of cells in early nodes of

the sensory processing that are tuned to the dura-

tion of auditory and visual stimuli (Fig. 3). Con-

sequently, the sensation of the passage of time in

the tens to hundreds of milliseconds is modality

specific and depends on the anatomofunctional

properties of each sensory system, where hearing

has a clear advantage in timing.

Perception of Time

The integration of duration information across

the senses appears to depend on extrastriate

regions such as the posterior parietal cortex

[48], the superior temporal sulcus [49], and

dorsal medial superior temporal area [50]. The

multimodal integration of time is then an inter-

mediate step for time perception. Next, the

recognition and interpretation of the sensation

of the passage of time across senses can be used

for the perception of time during discrimination

or categorization tasks, or for the execution of

voluntary movements with a strict temporal con-

trol (Fig. 3). Needless to say that the high order

processing of time information for perception,

learning and memory, and voluntary motor

action depends of complex networks of cortical

areas in the parietal, temporal and frontal lobes,

as well as the basal ganglia and the cerebellum

(Fig. 3). It is in these distributed networks where

the core timing mechanism may lay.

The study of perceptual interval learning and

the generalization properties of such learning

have provided important insights into the neural

underpinnings of multimodal temporal infor-

mation processing. For example, using interval

discrimination it has been shown that intensive

learning can generalize across untrained auditory

frequencies [51, 52], sensory modalities [53, 54],

stimulus locations [53], and even from sensory

to motor-timing tasks [55]. However, all these

studies found no generalization toward untrained

interval durations. In addition, it has been

suggested that the learning transfer depends on

the improvement of temporal processing and not
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on more efficient memory or decision processes,

at least for auditory interval discrimination [52].

Therefore, these findings not only support the

notion of a centralized or a partially overlapping

distributed timing mechanism, but they also

introduce the concept of duration-specific

circuits. Regarding the first point we can specu-

late that the timing signals sent from the primary

sensory cortical areas to the large and distributed

core timing network during the learning period

may increase the global efficiency of the tempo-

ral information processing. Thus, an efficient

core timing network will transfer its improved

timing abilities across senses during perceptual

and motor contexts. Favoring this notion are

fMRI studies that have reported that early and

late visual or auditory areas are activated during

production and perception tasks of intervals

using visual or auditory markers, respectively

[56–58]. In addition, these studies have found

that a larger set of areas was activated in both

sensory conditions, including SMA, dorsal

premotor cortex, posterior parietal cortex, puta-

men, and the cerebellum [39, 57].

Overall, these findings support the idea that

perception of time is a complex phenomenon

that probably depends on the interaction of many

cortical and subcortical structures conforming a

dynamic network that can associate the incoming

temporal sensory information with the time mem-

ory traces in order to generate perceptual

decisions about the magnitude of time in a partic-

ular behavior (Fig. 3), such as the discrimination

of two durations.

Motor Timing

As we mentioned before, interval timing in the

milliseconds is a prerequisite for many complex

behaviors such as the perception and production

of speech [59], the execution and appreciation of

music and dance [60], and the performance of

sports [16]. Time in music comes in a variety of

patterns which include isochronous sequences

where temporal intervals are of a single constant

duration or, more commonly; sequences

containing intervals of many durations forming

a meter (see the chapter “Perceiving Temporal

Regularity in Music: The Role of Auditory

Event-Related potentials (ERPs) in Probing

Beat Perception” by Henkjan Honing et al. and

the chapter “Neural Underpinnings of Music:

The Polyrhythmic Brain” by Peter Vuust et al.).

In addition, the ability to capture and interpret

the beats in a rhythmic pattern allows people to

entrain their behavior and dance in time to music

[61]. Music and dance, then, are behaviors that

depend on intricate loops of perception and

action, where temporal processing can be

involved during the synchronization of move-

ments with sensory information or during the

internal generation of movement sequences

[60]. Many functional imaging studies have

demonstrated that the circuits engaged in the

perception of time are the same that are activated

during motor timing [35, 39, 57]. The cortico-

basal ganglia-thalamo-cortical circuit (CBGT),

that includes the medial premotor areas [Supple-

mentary (SMA) and Presupplementary motor

areas (preSMA)], as well as the neostriatum,

the globus pallidus and the motor thalamus, is a

network that is engaged every time that an inter-

val is perceived or a temporalized movement is

executed. Hence, these studies support the notion

that the CBGT circuit is a key element of the core

timing network, and that it is activated during the

categorization or discrimination of time intervals

as well as during the perception and production

of rhythms (Fig. 3). These imaging studies, how-

ever, do not have the temporal resolution to

reveal the neural dynamics inside the CBGT

circuit during temporal processing.

Recent neurophysiological experiments have

revealed duration tuning in the medial premotor

areas and the neostriatum of monkeys performing

a set of tapping tasks [1, 36, 62]. Thus, these

studies confirm the existence of interval tuning

in the core timing network, which was inferred

from learning and generalization studies of time

intervals [53, 55, 63] and suggested in conceptual

papers [64]. Importantly, it was found that a large

population of tuned cells in the medial premotor

areas and the neostriatum showed similar pre-

ferred intervals across tapping behaviors that

varied in the number of produced intervals and

the modality used to drive temporal processing

[36]. Hence, interval-tuning invariance across the
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different tasks suggests that these two areas of the

CBGT circuit can tag the timed durations as a

context-independent neural signal. In contrast,

the cells that are duration tuned in lower levels

of sensory processing are modality specific.

A robust finding in experimental psychology is

that temporal processing is improved when there

are repeated presentations of the standard interval

[65, 66]. Multiple-interval advantages have been

reported for both auditory and visual sequences

for tasks involving time-interval perception as

well as temporalized tapping [21, 66, 67]. For

example, in a time discrimination task, increasing

the number of repetitions of the first interval

reduces the duration-discrimination thresholds

[68]. Similarly, the temporal variability is smaller

during multiple rather that single interval produc-

tion task, where subjects tap on a push-button

[37]. The recording of cells in the medial

premotor areas of monkeys producing one or six

intervals in a sequence revealed a possible mech-

anism for the temporal improvement due to an

increase in the number of executed or perceived

intervals. The interval tuned cells in this area

showed a multiplicative response scaling for

more produced intervals with the corresponding

increase in discharge rate in their preferred inter-

val for six instead of one produced intervals [36].

Hence, the observed decrease in temporal

variability with the number of timed intervals

could be the result of the increase in discharge

rate in the preferred interval of duration tuned

cells in the core timing network.

A set of functional imaging studies have

revealed the neural and functional overlap

between perceptual and motor timing, and the

conclusion is that the motor network of the

CBGT is activated across a wide range of timing

contexts. A critical question, then, is what is the

meaning of this anatomofunctional overlap? One

possibility is that the increase in the BOLD sig-

nal in the motor areas across timing tasks reflects

the presence of confounding cognitive processes,

such as effector selection and motor preparation,

or working memory, and decision processes.

This is unlikely however, since SMA, the

CBGT circuit, and the prefrontal cortex are

selectively activated even when duration

estimates are registered with a perceptual dis-

crimination [39], or after motor preparation

and/or execution processes have been rigorously

controlled for [35, 69] (see chapter “Getting the

Timing Right: Experimental Protocols for

Investigating Time with Functional Neuroimag-

ing and Psychopharmacology” by Jennifer T.

Coull). Another possibility is that timing shares

the neural circuitry with motor function because

our general sense of time has been developed

through action since childhood [70, 71]. This

proposal is similar in principle to other embodied

theories of time perception [72]. Developmental

studies have demonstrated that young children

appear to represent time in motor terms [73].

Their duration estimates are more accurate when

the duration is filled with an action than when it is

empty [70] and they find it difficult to dissociate an

estimate of duration from the motor act itself (see

chapter “Getting the Timing Right: Experimental

Protocols for Investigating Time with Functional

Neuroimaging and Psychopharmacology” by

Coull). Hence, it is possible that the motor circuits

are engaged early in development to build up and

acquire representations of time, forming a core

timing network inside the motor system. This is

not a new idea, the current knowledge of the rela-

tion between perception and voluntary acts, have

sustained new hypotheses where different cogni-

tive functions may share the same neural

representations and circuits for action and percep-

tion [74, 75]. In the case of temporal processing, it

is possible that the learned associations between

particular actions and their durations have been

engrained in the dynamics of the cortical and sub-

cortical motor networks [31]. Thus, the dynamic

representation of time in the activity of cell

populations could become a generalized temporal

representation, which is independent of the motor

output, and can be used for motor and perceptual

acts that require a strict temporal control (Fig. 3).

Book Overview

Successful behavior depends on the ability to

execute motor actions within tightly constrained

temporal intervals. An otherwise correct action is
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useless if triggered before or after a critical time

period. Timing is thus deeply embedded in ner-

vous system function and it is as critical for

motor plans as it is for the analysis of sensory

information. In this book, leading neuroscientists

summarize and discuss the advances in their

quest to understand the mechanisms of time per-

ception and the ability to generate timely actions.

The systematic study of time perception has a

rich history, dating back to the work of Mach,

Czermak and Helmholtz in the mid 1800s. As

will be evident on the first part of the book,

dealing with the psychophysics of time esti-

mation, a basic question that researchers have

repeatedly addressed is how good we are at

telling time. Psychophysics researchers have

found that when subjects are asked to indicate

the end of a time interval, by pressing a push

button for example, they sometimes fall short

and sometimes overshoot the desired time inter-

val. How the variability of these errors increase

as a function of the magnitude of the time inter-

val is sill a matter of debate. Linear increases in

the standard deviation of errors as a function of

interval length (Weber’s law) have been

observed within certain range of temporal

intervals but it is often observed that different

experimental settings can result in contradictory

results. Whether Weber’s law holds for time

perception, and within which range it does, is

an important question that could reveal separate

timing mechanisms for different time scales.

The psychophysical study of time has uncov-

ered a number of interesting phenomena. It has

been observed, for example, that counting or

performing a motor action at regular intervals

near 0.6 s significantly increases the ability to

time long intervals spanning several seconds.

This preferred interval might be related to the

time scale at which humans pace music, speech,

and motor actions such as walking. As will be

evident throughout the book, psychophysics is

the source of the quantitative phenomena feeding

our models and physiological investigations.

As in many fields of neuroscience, modeling

has played an important role in timing research.

Models allow exploring how well specific neuro-

nal circuits or architectures can reproduce the

diverse phenomena observed in interval timing.

The book’s second part deals with models of

timing and the quest to describe the essential

mechanisms of timing, of which, Weber’s law

(or scalar property as is often named), is of most

importance.

An early influential model proposed that

timing could be achieved with a pacemaker, an

accumulator, and a memory/decision process to

compare the measured interval. This model has

been developed over the years and a modern

proposal suggests that this mechanism could be

implemented by cortico-striatal interactions in

which cortical neurons act as oscillators and

medium spiny neurons in the striatum as

integrators and coincidence detectors.

Instead of a dedicated timing circuit, an

important result from modeling efforts has

shown that timing can be carried by linear

decoders trained to recognize particular states

of a neural network. If the activation states of a

given network follow reproducible trajectories

across time and space, then the output neurons

could be used to mark time intervals and initiate

timely motor actions. It has been shown that

simulated neural networks can display activity

dynamics that are familiar to physiologists, such

as ramps and transient onsets, but importantly,

modeling demonstrated that any network

dynamic, represented by the trajectory of the

network state across time, can be used to measure

time. Timing, then, might not need dedicated

neuronal elements but could be incorporated as

an intrinsic property of every neuronal circuit.

Modeling efforts have also demonstrated that

potential timing mechanisms exist at all levels of

complexity in the nervous system, from calcium

buffers within single neurons, to networks of

cortical and subcortical areas. This is an impor-

tant result. Rather than constraining the possible

mechanism and neuronal substrates underlying

timing, models have shown that timing can be

carried at the level of single neurons with

ramping activity, at the level of neuronal

populations in which activity cascades spatially

and temporally across ensembles of neurons, and

at the level networks spanning cortical and sub-

cortical structures such as the proposed coincide
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detectors of spiny neurons receiving periodic

activity from the cortex.

A problem often encountered by theoretical

scientists is that more than one model can repro-

duce any given phenomenon. Thus, it is impor-

tant for theorists to constantly check their models

against experimental results. Experimentalists

have used a variety of techniques to probe the

brain in the quest to understand the physiological

basis of timing. Among these, fMRI, single neu-

ron recordings and EEG have yielded important

results. The fourth part of the book deals with the

physiological processes that underlie the brain’s

ability to estimate time.

Single neuron recordings in the primate brain

revealed increases in activity of primary motor

neurons that start in anticipation not only to

imminent movements, but also in anticipation

of predictable sensory cues. Thus, the ability to

anticipate changes in the environment that occur

at predictable times is evident in the same

circuits that initiate motor actions. Neurons in

the medial premotor cortex, an area often called

the supplementary motor cortex, also display

time dependent activity that indicate remaining

and elapsed time in relation to the initiation of

periodic motor commands. However, instead of

general purpose timing circuits, the activity of

motor, premotor and striatal neurons are strongly

dependent on the particular motor plan that the

animals intend to generate. Until now, physio-

logical investigations have failed to uncover a

general purpose timing mechanism, and it is

increasingly clear that the there is no timing

area or general clock that the brain uses to tell

time. This view is compatible with the findings of

fMRI studies carried in humans performing

timing tasks. Such findings, presented in the

fourth chapter of the book, show that a large

network of areas, comprising the SMA, frontal

and parietal cortices as well as the basal ganglia,

are recruited to perform tasks requiring the esti-

mation of elapsed and remaining time. The sug-

gestion that timing might be carried by motor

circuits is further supported by evidence that

patients with Parkinson’s disease show motor as

well as perceptual timing deficits.

The human ability to perceive and generate

precisely timed intervals is most evident in musi-

cal performance and music appreciation. The

final part of the book deals with the neuronal

signals that correlate with our ability to perceive

rhythm. Recording of brain potentials have

shown that the human brain has an innate ability

to predict rhythmic sensory events, and that error

signals emerge when the music fails to meet

metric expectations. While the belt and parabelt

regions of the auditory cortex are fundamental to

appreciate music structure, there is evidence that

the premotor cortices are also engaged in follow-

ing rhythmic patterns of sensory information. It

is proposed that the joy of music comes from the

ability to predict such rhythmic patterns.

As it will be evident throughout the book, the

ability to predict sensory events and generate

precisely timed actions seems not to depend on

a localized general-purpose timing circuit.

Rather, every neuronal network, from those

involved in sensory perception to those executing

motor commands, including those underlying our

awareness of time, incorporates timing as an

essential feature of the information it processes.
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Psychophysics of Interval Timing



About the (Non)scalar Property
for Time Perception

Simon Grondin

Abstract

Approaching sensation scientifically is relatively straightforward. There

are physical attributes for stimulating the central nervous system, and

there are specific receptors for each sense for translating the physical

signals into codes that brain will recognize. When studying time though,

it is far from obvious that there are any specific receptors or specific

stimuli. Consequently, it becomes important to determine whether inter-

nal time obeys some laws or principles usually reported when other senses

are studied. In addition to reviewing some classical methods for studying

time perception, the present chapter focusses on one of these laws, Weber

law, also referred to as the scalar property in the field of time perception.

Therefore, the question addressed here is the following: does variability

increase linearly as a function of the magnitude of the duration under

investigation? The main empirical facts relative to this question are

reviewed, along with a report of the theoretical impact of these facts on

the hypotheses about the nature of the internal mechanisms responsible for

estimating time.

Keywords

Temporal processing � Scalar timing � Weber law � Internal clock

Experimental psychology is rich of a very long

research tradition in the field of sensation and

perception, and in the field of animal behaviour.

The study of time perception has been part of this

tradition. The reader can find in the literature old

reports of fine investigations related somehow to

psychological time. Amongst others, experimen-

tal psychology already offered, towards the end

of the nineteenth century, a few systematic

investigations by Vierordt [1] and Bolton [2]

on rhythm. As well, in his classical book,

The Principles of Psychology, James [3] already

established several distinctions about the experi-

ences of time, including the idea of a “specious”

present (a unified moment, distinct from past or

future), the transition from simultaneity to

successiveness, and the difference between time
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in retrospect and experiencing the passage of

time (referred to as retrospective and prospective

timing in the next paragraph). Amongst the clas-

sical publications of the twentieth century, the

books by Fraisse [4, 5] on rhythm and on psycho-

logical time were certainly, at the moment of

their publication, significant syntheses of the

main pieces of information in the field. More-

over, a meeting on timing and time perception,

held in New York in 1983 and leading to the

proceedings edited by Gibbon and Allan [6]

proved to be a critical event as people from

different perspectives on time perception were

grouped together. Until then, time perception

researchers studying humans and those studying

nonhuman animals worked on similar topics, but

quite independently. Both posited the use of an

internal clock (the pacemaker-counter device

described later in this chapter), and emphasized

a fundamental characteristic of the clock. For

researchers with a background in human psycho-

physics (usually interested in sensation and per-

ception), the Weber law was a central concern; as

well, researchers on animal timing paid special

attention on a feature that is essentially equiva-

lent, the so-called scalar property (described

below). Since that meeting, many methods used

for studying animal timing were used also for

studying human time perception, which allowed

for additional testing of the scalar property.

Because a theory based on this internal clock

perspective, and emphasizing this scalar property

has been dominating the field of timing and time

perception in the last decades, assessing the

validity of this scalar property is a fundamental

issue, an issue that is at the heart of this chapter.

Experimental and Analytic Tools
for Studying Time Perception

Methods

The timing and time perception literature offers a

myriad of methods for investigating the nature of

psychological time, its functioning and

properties [7]. Of critical importance when

approaching the time perception literature is to

distinguish retrospective and prospective timing

(see Fig. 1). In the former case, participants in an

experiment have to complete a task or an activity

and they receive no prior warning that they will

have to estimate the duration of this task or

activity subsequently. With retrospective timing,

which is associated with memory processes

[8, 9], participants will either make a verbal

estimate (with chronometric units) of the dura-

tion or reproduce the duration. The choice of

activity is of course partly linked to the duration

of the task, temporal reproduction being difficult

to apply when an activity lasts many minutes for

instance. The structure of events is critical for

remembering duration retrospectively [10]. Note

that recent investigations with retrospective

judgments cover intervals lasting a few minutes

up to almost an hour [11–15]. Finally, retro-

spective judgments about time could also cover

the remembering of the duration of public events

[16, 17] or autobiographical events [18, 19] last-

ing days or months and occurring years ago.

The investigations involving prospective

timing, i.e., in conditions where participants are

informed before they begin a task or an activity

that timing will be required, are much more

numerous in the timing literature, involve a

large variety of methods (tasks or procedures),

and are the focus of the present chapter. In addi-

tion to the methods described earlier—verbal

estimates and interval reproduction—that can

also be used for prospective timing, this para-

digm includes the use of interval production

where a participant produces an interval, with

finger taps for instance, matching the interval

reported in temporal units by an experimenter.

A fourth method used in a prospective timing

condition could be referred to as interval compar-

ison. There are various ways of comparing the

relative durations of several intervals. On the one

hand, it is possible to present two successive

intervals and to ask whether the second one is

shorter or longer than the first one (a forced-

choice procedure); and it is also possible to

make multiple repetitions of the first and of the

second intervals (sequences of empty intervals

marked by brief sensory signals) as is the case

in experiments where rhythm is under investi-

gation. This is a typical discrimination procedure

in psychophysics. On the other hand, a participant
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might be asked to judge one of two, or of many

intervals, after each presentation of one interval.

This general feature was referred to by Allan [20]

as the single-stimulus method of presentation,

and could also be viewed as a kind of categori-

zation task. There are two classical cases of

single-stimulus method in the animal, and now

human, timing literature. One is the temporal

bisection task where the shortest and the longest

of a series of intervals are presented several times

at the beginning of the experiment. After these

presentations, a participant has to determine, on

each trial, if the interval presented is closer to the

short or to the long interval previously presented.

With a temporal generalization task, the standard

interval (at midpoint of a series of intervals) is

first presented several times, and then, after each

presentation of an interval, a participant should

indicate whether the presented interval is similar

or not to the standard. Note finally that there are

many other methods used in prospective timing

(for instance, the peak procedure developed in

animal timing, and different adaptive procedures,

developed in psychophysics, where the relative

length of intervals to be discriminated are

adapted from trial to trial).

In the case of the bisection method for

instance, a psychometric function could be

drawn by plotting the probability of responding

“long” on the y axis as a function of the series of

intervals (from the shortest to the longest) on the

x axis. An index of performance (for instance one

standard deviation on the curve1) can be

Paradigm

Retrospective 
timing

Prospective 
timing

Verbal 
estimate

Interval 
reproduction

Verbal 
estimate

Interval 
reproduction

Interval 
production

Interval 
comparison

Single 
stimulus

Bisection Temporal 
generalization

Forced choice

Single 
intervals

Sequences of 
intervals

Fig. 1 Schematic view of

the main experimental

methods for studying time

perception (from Grondin

[24])

1 Traditionally in psychophysics, when a psychometric

function is used, the distance on the x axis corresponding
to 75 and 25 % of “long” responses, divided by 2, is the

discrimination threshold.
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extracted from the function. This index, divided

by the mid-point between the shortest and lon-

gest intervals provides an estimate of the Weber

fraction for a given experimental condition. In

the case where psychometric functions are based

on a forced-choice procedure, i.e. when both

standard and comparison intervals are presented

on each trial the Weber fraction is obtained by

dividing the discrimination threshold by the

value of the standard interval.

Two Laws and One Theoretical Position

One should expect two fundamental qualities

from a timekeeping device. This timing system

must be able to remain close to the target dura-

tion to be timed, i.e., over a series of trials, the

mean estimated intervals (central tendency) must

be close to real duration. The deviation from the

target duration is called the constant error. As

well, the variability (dispersion) of this series of

trials must be kept as low as possible by the

device [21]. As we will see below, this temporal

variability is quite important because it is a criti-

cal feature of the most cited model in the field of

timing and time perception, the Scalar Expec-

tancy Theory [SET—22, 23]. This variability is

often described in terms of Weber fraction,

described below.

Laws
Remaining close to real duration could be

reformulated in term of the psychophysical law.

If remaining close to real duration for one given

interval is a critical issue, having a system for

which the feature applies over a large range of

duration is also critical. In psychophysics, one

fundamental issue is the relationship, for a given

sensory continuum, between the psychological

magnitude and the physical value. For instance,

does the psychological magnitude increase expo-

nentially, linearly or logarithmically as with the

increase of the physical magnitude? In general,

for the different sensory continua, the relation-

ships can take several forms that can be

summarized within the so-called power law

[25]. Applied to time, the law could be reported

as follows:
ET ¼ kTN ð1Þ

where ET is the estimated time, T the physical

time, k a constant related to the intercept. The

exponent N, which is generally considered the

signature of the sensory continuum under investi-

gation, is close to 1 for time. Indeed, defenders of

SET usually report that the exponent value is one

[20]. However, there are reasons to believe that

the exponent value is often closer to 0.9 (see the

extensive review by Eisler [26]).

The psychophysical law is one of two major

issues in psychophysics, the other one being

related to the variability of the sensory experi-

ence: Does variability increase linearly as a func-

tion of the magnitude of physical stimuli?

According to what is referred to in psycho-

physics as Weber’s law, it does [27].

In its strict form, and in the context of timing,

the variability (σ) of time estimates increases line-

arly with the duration of the interval to be timed (t):

σ ¼ kt ð2Þ
where k is the Weber fraction (k ¼ σ/t). In other

words, the variability to time ratio, sometimes

known as the coefficient of variation in the

timing literature, should be constant. This rela-

tion (Eq. 2) is referred to as Weber’s law. There

are other forms of Weber’s law (for instance,

σ2 ¼ k2t2, Getty [28]; see Killeen and Weiss

[29] for a general model of Weber’s law for

time). The next sections are dedicated to empiri-

cal reports where the validity of Weber’s law for

time is tested, and it is indeed the main focus of

the present chapter.

Theory
Over the past 50 years, the field of time percep-

tion has been guided by one very important theo-

retical proposal: There is an internal, single,

central clock, and this clock is a pacemaker-

counter device [30, 31]. This view can be

summarized as follows. The pacemaker emits

pulses that are accumulated in a counter, and

the number of pulses counted determines the
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perceived length of an interval (the experienced

duration). Why would someone make errors in

judging time depends on several factors. While

older studies have focussed primarily on the

properties of the pacemaker [32], there are

other sources of variance. Indeed, Allan and

Kristofferson [33] pointed out that “. . .the input

process is thought as one which takes a measure

of the temporal extent of a stimulus pattern,

compares the measure either to an internal stan-

dard or to the memory of a measure of a standard

stimulus, and triggers a response, which may or

may not be biased, depending on the outcome of

the comparison process” [33, p. 26]. The reader

probably recognizes the three levels of

processing—the clock (the input process), mem-

ory and decision-making—which have been

emphasized since in the information processing

version of SET [34]. In other words, nearly

40 years ago, these authors noted how critical

these three processing levels are for accounting

for timing and time perception (Fig. 2).

SET, which has been a very popular theory of

timing over the past 30 years, as noted earlier, is

characterized by two basic features [35–37].

First, in terms of the psychophysical law, the

relation is supposed to be linear and the exponent

equal to 1, a feature that is disputable, as noted

earlier. The second feature stipulates that the pro-

portion between variability and mean is scalar,

i.e., is supposed to be constant; in other words,

Weber’s fraction, k, is constant. When the psy-

chometric functions obtainedwith different target

durations are plotted on a relative time scale, they

should superimpose. In brief, with SET, a time-

scale invariance principle should apply. The

reader will find in this book many chapters

describing timing models where the scalar prop-

erty is not that central (see also review articles:

[24, 38, 39]).

Empirical Facts

This portion of the chapter is dedicated to a brief

review of some experiments where the Weber’s

law for time was tested. When approaching the

validity of this law for time, there are at least two

key issues that might be considered: what range

of durations are we dealing with and does the

same conclusion hold when different methods

are used for estimating the variability as a func-

tion of base duration. In the case of the first

question, it would obviously not be reasonable

to search for a mechanism that would account for

the processing of microseconds or of few

milliseconds (as is necessary in echolocation or

sound localization) and for hours (like circadian

rhythms: see [40–43]). The interest of experi-

mental psychologists for Weber’s law for time,

or the scalar property of timing, usually covers a

few hundreds of milliseconds up to a few

Fig. 2 An illustration of

the three levels of

processing in a timing task

where errors could occur.

Note that at the clock level,

errors may also depend on

arousal, which is

influencing the

pacemaker’s rate, and on

attention, which is acting

on the amount of pulses

passing (gate), and on the

moments where the

timekeeping activity starts

and stops (switch) (adapted

from Zakay and Block [8])
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seconds, which corresponds to the range within

which the processing of speech, motion coordi-

nation and the conscious estimation of time

occur.

Recent Data: Restricted Range

In a recent article, Merchant et al. [44] completed

a systematic investigation of Weber’s law for

time. What is interesting in this paper is the fact

that not only perception and production methods

were used, but the modality for marking intervals

was manipulated (auditory vs. visual stimuli), as

well as the number of intervals presented (single

vs. multiple). With the tasks involving only per-

ceptual processes (discrimination), it is known

that changing the number of intervals presented

for judging time influences the performance

levels. Would the Weber fraction remain con-

stant, for any temporal task, for specific

conditions where different performance levels

are expected?

Although there were quite a bit of differences

among the experimental conditions, the results of

Merchant et al. [44] showed a strict compliance

to the scalar property: the variability increased

linearly as a function of interval duration, and

this observation applied in all tasks. Although the

demonstration was convincing, there is one fun-

damental piece of information that should be

reported here about this study: the standard

intervals used in this study varied from 350 to

1,000 ms. Indeed, all intervals presented to the 13

participants of this study were briefer than

1,300 ms. As we will see in the next paragraphs,

restricting the investigation to this duration range

makes a huge difference when comes the

moment to decide whether or not the scalar prop-

erty holds for time perception.

That said not all reports with intervals briefer

than 1 s revealed that the Weber fraction is con-

stant. For instance, in a series of experiments

where the single-stimulus (categorization)

method was used, this fraction was higher at 1

than at 0.2 s, and this effect was neither due to the

number of intervals used to determine threshold,

nor to the range of intervals to be compared [45].

In one recent series of experiments designed

specifically to test Weber’s Law, the question

was addressed this way. Let’s have a restricted

range of durations, between 1 and 2 s, and see if

the Weber fraction is constant and if it is constant

whatever the method used to determine the per-

formance levels [46]. This could be seen as a

kind of extension of the Merchant et al.’s study

[44], but involving a new range of durations.

Once again, the series of tests involves percep-

tion and production tasks, but also single and

multiple interval presentations. Once again,

even if the estimated variability was expected to

differ across methods, the Weber fraction should

remain constant. Would this also be true once

again for another, admittedly restricted, range

of durations, i.e. between 1 and 1.9 s?

In the first experiment of the series reported in

Grondin [46], participants were presented with a

standard interval 1, 3 or 5 times with a series of 2,

4, or 6 brief auditory signals. After 2,166 ms, a

comparison interval was presented 1, 3 or 5 times

with a series of 2, 4, or 6 brief auditory signals.

The task of the participant was to report whether

the second interval(s) was(were) shorter or lon-

ger than the first(s) (duration discrimination).

There were 4 standard-interval conditions:

1, 1.3, 1.6, and 1.9 s. In the 1-s standard

condition, the comparison intervals lasted 860,

900, 940, 980, 1,020, 1,060, 1,100, and 1,140 ms

and in the other standard conditions, the

comparison intervals were multiplied by 1.3,

1.6 and 1.9. In other words, the comparison

intervals ranged, for instance, from 1,634 to

2,166 ms in the 1.9-s standard condition.

Individual psychometric functions were

drawn in each experimental condition and a

Weber fraction was calculated for each condi-

tion. As illustrated in the upper panel of Fig. 3,

the Weber fraction is higher in the 1-interval

condition than in the two other conditions. This

is not surprising given that it is known that per-

formance is better when multiple instead of sin-

gle intervals are presented (see for instance

22 S. Grondin



[47–49]). However, the results also revealed that

in the three conditions under investigation, the

Weber fraction is not constant. More specifically,

the Weber fraction gets higher as the standard

interval gets higher. The key finding here is the

fact that essentially the same pattern of results

was obtained, whatever the level of performance.

The same type of results was reported in

Grondin [46] in two other experiments.

In one experiment, participants were

presented 1, 3, or 5 intervals marked by 2, 4, or

6 brief sounds. The intervals lasted 1–1.9 s.

Participants were asked to reproduce the inter-

val(s) with two brief taps on the keyboard (in

Session 2, restricted to the 3- and 5-interval

conditions, they also synchronized their taps

with sounds). The middle panel of Fig. 3 shows

once again that the Weber fraction, which is

indeed a coefficient of variation in this experi-

ment (the inter-tap variability divided by the

mean reproduction), is not constant. For instance,

this coefficient is significantly higher in the 1.9-

than in 1.0-s condition.

In the third experiment of this series, the

conditions were exactly as in the first experi-

ment. However, instead of presenting a standard

and a comparison interval on each trial, the stan-

dard was present a few times at the beginning of

a block; also, after each presentation of one of the

comparison intervals, participants had to catego-

rize the presented interval as shorter, or longer,

than the standard. In addition to replicating that

performance is improved when more than one

interval is presented, the experiment once again

showed (see lower panel of Fig. 3) that theWeber

fraction gets higher as the standard gets higher.

In brief, whatever the method (discrimination,

reproduction or categorization) used in Grondin

[46], and whether single or multiple (rhythm)

intervals are presented, a violation of Weber’s

law was observed. The fact that the same princi-

ple applies with single and multiple intervals is

quite interesting. There are reasons to believe

that the functional arrangement of neural systems

responsible for timing differs according to

whether single or multiple intervals are presented

during a timing task [50]. In their attempt to

categorize several timing tasks on the basis of

the degree of relationships, Merchant and

collaborators conducted hierarchical clustering

and multidimensional scaling analyses that
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revealed that single interval mechanisms proba-

bly engage neural substrates that are different

from the one used when multiple intervals are

involved in a timing task. Indeed, there are recent

neuroscientific evidences showing that the role of

the cerebellum, at least for the processing of

subsecond intervals, differs according to the

type of temporal processing required, duration-

based (single interval presentation) vs. beat-

based (multiple interval presentations)

processing [51]. These evidences were obtained

on the basis of both neurostimulation [52] and

functional magnetic resonance imaging [53, 54]

investigations.

Bangert et al. [55] also reported recent data

suggesting that there is a violation of Weber’s

law for time. Indeed, they reported that the coef-

ficient of variation is higher at 1,700 ms than at

1,350 ms, where the coefficient is already higher

than at 1,175 or 1,000 ms. For brief intervals

(270–1,175 ms), there was no such violation of

the Weber’s law but beyond that point, the

Weber fraction increased. In their Experiment

3, which involved intervals ranging from 270 to

1,870 ms, the authors replicated previous

findings obtained with a reproduction task, but

contrary to what was reported in Grondin [46],

there was no violation of the Weber’s law for a

duration discrimination task. Note however that

their Weber fraction was higher (but not signifi-

cantly different) at 1,700 or 1,870 ms than at

1,350 ms.

Recent Data: Extended Range

When extended to a much larger range of

durations, the question of using explicit counting

(or some segmentation strategy) or not becomes

very critical. Explicit count of numbers reduces

very much the Weber fraction from 1 to 2 s, but

this fraction remains stable from 2 to 4 s ([56],

Experiment 2). Some human data show that the

Weber fraction remains constant, even without

counting, for intervals up to 24 s for an interval

reproduction task [57, 58], and that this fraction

is even reduced with longer intervals when

explicit counting is adopted [58]. The reduction

of the Weber fraction with longer intervals was

observed in Grondin and Killeen [57] only with

musicians, not with non-musicians, and this

observation applies with both the use of explicit

counting and singing for segmenting time. Note

finally that, when a series of intervals is produced

sequentially, the Weber fraction increases with

longer intervals (up to 24 s—non-musician

participants) in spite of the use of explicit

counting [59].

Some other recent data, issued from the ani-

mal timing literature, also exhibit a clear viola-

tion of the Weber’s law when a large range of

durations is under investigation [60]. This dem-

onstration was conducted with pigeons with both

a categorization and a production method (see

Fig. 4).

Revisiting Older Data

The older literature is filled with demonstrations

supporting some form of Weber’s law, which

might be a reason why SET remained so popular

over the years. However, a closer look at some

portions of what is available in the literature

reveals some important signs of the non con-

stancy of Weber’s law at some point between 1

and 2 s.

Take for instance the study by Halpern and

Darwin [61] on rhythm discrimination. They

used a series of clicks marking intervals and

reported a linear relationship between the thresh-

old value (one standard deviation on the y axis of
the left panel of Fig. 5) and the value of the inter-

click intervals (ICI) on the x axis. A close look at

the figure indicates that the two data points on the

left (lower ICI values) are above the function,

which is consistent with the generalized form of

Weber’s law where it is reported that the Weber

fraction tends to get higher with very weak

magnitudes of a sensory scale, including time

[62]. This could be explained by the part of

nontemporal variance in the process (represented
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by a in the following description based on Eq. 2:

σ ¼ kt + a). The interesting point here is related

to the two points on the right of the function.

They are both above the fitted function. Indeed,

there is a huge step in the standard deviation

value when the base ICI increases from 1,150 to

1,300 ms. What could be argued here as demon-

stration of the robustness of Weber’s law for

rhythm discrimination rather contains a tangible

sign that there is an important change somewhere

around 1.3 s, a sign that there is a deviation from

strict proportionality.2

Fig. 5 Growth of the threshold value (one standard devi-

ation on the y axis) as a function of inter-click intervals (in

ms) in Halpern and Darwin ([61]—left panel) or base

duration (standard) in Grondin et al. ([64]—right panel)
(for specific explanations, see the text)
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Fig. 4 Weber fraction as a function of the mean in two different temporal tasks, categorization and production,

performed by pigeons (in Bizo et al. [60])

2 The reader will also find a Weber fraction increase for

tempo discrimination, from 1 to 1.4 s, in Ehrlé and Sam-

son [63, Table 5].
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As well, the results on the right panel of Fig. 5

illustrate a similar phenomenon. In these data

reported by Grondin et al. [64] on the duration

discrimination of single intervals marked by brief

sounds, the threshold value (one standard devia-

tion) increases as a function of time. In this study,

it is argued that function is fundamentally

changed according to whether a participant is

allowed (filled points) or not (empty points) to

count explicitly during the task. The function in

the no-counting condition (dotted line) accounts

reasonably well for the data from 0.7–1.9 s.

However, the first three points (lower value on

x) are below the function and the other two points

are above. There is a kind of step between 1.3

and 1.6 s that is negligible in the context of a

comparison with a counting condition.

In addition to these two specific cases, the

reader may also find several other examples of

the violation of Weber’s law in the older timing

literature. In his review of a few reports on the

relationship between the Weber fraction and

time, Fraisse [65] reported three clear cases

where the Weber fraction is not constant, that of

Woodrow [66], Stott [67], and Getty [28]. While

the fraction gets higher when the base duration is

about 2 s in Stott, it increases after 1.5 s in

Woodrow. The data from Getty [28] were col-

lected on two participants, including the author.

Their threshold was estimated for the discrimina-

tion of single auditory intervals for 15 base

durations from 50 to 3,200 ms. The Weber frac-

tion was quite constant from 200 to 2,000 ms, but

clearly higher at 2,800 and 3,200 ms.

The reader may also find a composite figure in

Grondin [68] where different reports also suggest

that, with different methods, there is an increase

in the Weber fraction for longer intervals. The

data on auditory tempo discrimination from

Drake and Botte [47] show a higher Weber frac-

tion with 1.5-s than with 1-s standards. As well,

the Weber fraction is higher at 1.2 than at 0.9 s

for the discrimination of time intervals presented

in sequences marked by visual signals [69].

Moreover, with a task involving the production

of a continuous sequence of intervals, Madison

[70] showed that the coefficient of variation gets

higher when intervals are longer than 1.2 s.

Another composite figure, where the coeffi-

cient of variation as a function of time is

reported, is proposed in the review paper of Gib-

bon et al. [71]. In this figure, the results from 28

human and 15 animal studies are reported. The

mean features extracted from the general picture

by the authors are the following. For very brief

intervals (<100 ms), the coefficient of variation

is higher as base durations get briefer (which is

consistent with a generalized form of Weber’s

law). Then, from 0.1 to 1.5 s, the coefficient

remains constant, and increases again over

1.5 s. Some signs of a new noticeable increase

are observable at 500 s.

In brief, there were multiple indications in the

old timing literature revealing that the Weber

fraction is not constant. Nevertheless, in spite of

these indications, many authors assumed that the

scalar property holds for time.

Other Challenges: Outstanding Issues

Two main issues could be extracted from this

review. First, there is a violation of the scalar

property for time perception, and there are multi-

ple reasons to believe that this non constancy of

the Weber fraction occurs at some point between

1 and 1.9 s. Secondly, this non constancy is not

due to some specific methodological features

since the demonstrations were completed with

different methods (production vs. perception), in

conditions where time intervals are marked with

sounds or flashes, and in conditions where either

presentations of single or multiple intervals are

used. Therefore, the violation of the scalar prop-

erty seems to be quite a robust phenomenon.

The scalar expectancy theory, described ear-

lier, has been one of the most, if not the most,

useful theory of time perception in the past

30 years. One central feature of this theory has

actually been its scalar property: the variability to

time ratio, or Weber fraction, should be constant

over a wide range of durations. Considering the

series of evidences provided in the present review,

this feature does not hold. Does that mean that

SET is obsolete? Probably not, given its power to

account for multiple data, either in the human and
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animal timing literature [72]; however, it is neces-

sary to try to understand the source and meaning

of this non-constant Weber fraction.

One or Multiple Timing Devices

A fundamental question that should be asked is

whether or not the same timing system is respon-

sible for accounting for temporal judgments

whatever the method of investigation employed

and whatever the range of durations. If the timing

system is a pacemaker-counter embedded within

a framework that includes memory and deci-

sional processes, and the predicted output of

this entire mechanism is a scalar property, then

the “same” (unique, central) perspective is a

position difficult to defend. This however does

not exclude the possibility that there is a central

timing device, as long as the scalar property is

not a pre-requisite of the model.

If the question of the central timekeeping

device is restricted to a narrower range of

durations such as the one used for obtaining the

data reported in Fig. 3 (1–1.9 s), and the scalar

property is expected from this device, the

response is tricky. On the one hand, the Weber

fraction is clearly not constant, which should

lead to a rejection of the central/unique-device

hypothesis. On the other hand, whatever the con-

dition (perception vs. production; single- vs.

multiple-interval presentations), the same phe-

nomenon occurs: an increase of the fraction that

mostly occurs between 1.3 and 1.6 s. With such a

common feature, it remains reasonable to keep

believing that the same system is used.

Maybe there is no need to consider if the

scalar property holds when time comes to assess

whether or not there is a central timekeeping

device. And maybe there is no need for positing

that there is a central timing device. If there is no

unique timekeeping device, we may posit the

hypothesis that there is a multiplicity of time-

keeping mechanisms, actually because a com-

plete adaptation to real life situations requires a

multiplicity of temporal adjustments. Such an

avenue though is a difficult one in science. We

may also try to remain reasonable and propose

the existence of two distinct timekeeping

mechanisms, at least, for durations ranging

from 100 ms up to a few seconds, i.e. for a

range that would cover the processing of speech

or motion coordination, as noted earlier.

Two Timekeeping Systems?

Let’s return to the right panel of Fig. 5. This

figure is essentially saying that there is a point,

circa 1.2 or 1.3 s, beyond which there are benefits

to be expected from the adoption of a different

way of approaching a timing task [56, 58, 64,

73]. Beyond this point, the constancy of the

Weber fraction is on shaky ground; but there is

actually an option, at least for human observers.

It is possible to count explicitly. One can choose

to count numbers explicitly, and count rapidly or

slowly, depending on the intervals to deal with. If

not numbers, one may adopt other strategies

including foot tapping like a drummer, imagining

the hand of a clock for counting seconds, or even

simply singing [57, 59].

Counting explicitly and not counting could be

viewed like two different timekeeping systems.

However, counting is nothing more than

segmenting a long interval into a series of

subintervals [29, 74]. The estimation of the dura-

tion of each subinterval may require the contri-

bution of the same timekeeping system as the one

used for the entire long interval. The idea is to

minimize variance. If the summation of the vari-

ance of each subinterval, plus the variance

associated with the count of the number of

subintervals is lower than the variance associated

with the timekeeping of the entire interval, then it

is advantageous to count.

That said, having two different functions in

Fig. 5 (right panel) could be interpreted as the

presence of two mechanisms. Tentatively, the

crossing point could be viewed like a critical

phase change, i.e., a point where the system is

transported in a new state or at least, where it is

advantageous to adopt a new state. As noted

above, this point occurs circa 1.2 or 1.3 s, and

1.3 s is actually a critical duration where the non-

constancy becomes noticeable in numerous
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timing tasks (Fig. 3). Interestingly, animal timing

data also show that intervals in that duration

range are critical. In their review of animal and

human timing literatures, Gibbon et al. [71]

pointed toward a 1.5-s critical value. Even more

intriguing is the fact that, in the animal timing

literature, 1.2 s is sometimes identified as one of

the local maxima, on the time continuum, for

sensitivity to time [75, 76]; beyond this value,

there is a loss of sensitivity. Therefore, the

increased Weber fraction between 1 and 2 s

very likely reflects a fundamental limitation for

processing temporal information.

The idea of chunking pieces of information

for increasing the capability of the information

processing system is not new [77, 78]. It is

indeed one of the most important features of the

human processing system. The same principle is

applied here for increasing the efficiency to pro-

cess temporal information. When intervals reach

a point where the processing system begins to be

less efficient, the other mechanism—call it

chunking/segmenting/counting—is available for

dealing more efficiently with the task. If one

wants to venture an interpretation in terms of

traditional information processing wording, it

looks as if the space occupied by long intervals

exceeds the temporal capacity of working mem-

ory [79–81].

As noted by Grondin [46], the concept of a

limited temporal span may remind of the idea

that was referred to by Michon [82] as psycho-

logical present (or specious present [3]; or sub-
jective present [83]). This concept indeed

describes a time window within which it is pos-

sible to form a coherent package of information.

The point where the Weber fraction increase

occurs, somewhere between 1 and 1.9 s, could

be interpreted as a way for quantifying the tem-

poral span of this window.

Resolving problems with a two-way

approach is far from original in psychology.

For instance, in the auditory system, there are

two theories—temporal coding vs. place cod-

ing—to account for the capability to distinguish

sound frequencies. And instead of rejecting one

theory or another, it was proved convenient to

associate the temporal coding avenue (and

volley principle) with the processing of low-

frequency components, and the place coding

interpretation (including von Bekesy’s classical

traveling wave theory) with the high-frequency

components of sounds. Along that line, there

could be an interpretation of temporal informa-

tion processing in terms of brief vs. long

intervals, say, below or beyond 1.3 s, with both

systems being always available but the level of

sensitivity/efficiency being optimal only for a

given duration range.

The reader will find traces of a dual-system

approach in the timing literature. For instance,

Grondin and Rousseau [84] adopted such an

approach for explaining why brief empty time

intervals marked by two signals delivered from

the same modality are much easier to discrimi-

nate than intervals marked by intermodal signals

(specific vs. aspecific processors). In their

dynamic attending theory of time perception,

Jones and Boltz [85] distinguished two modes

for processing temporal information, a future-

oriented mode, based on the regularities of

events occurring in the environment, and an ana-
lytic-oriented mode.

Indeed, it would be difficult to specify the

exact nature of the mechanism dedicated to the

processing of brief intervals. It could be a mech-

anism dependent on the nature of the signals

available in the environment or marking

intervals, as noted in the past paragraph, or it

could be a state-dependent network. According

to Buonomano [40, 86] timing does not depend

on a clock, but on time-dependent changes in the

state of neural networks. In this model, being

able to judge duration means to recognize spatial

patterns of activity.

Note that other dichotomies are proposed in

the time perception literature. As for the duration

range, there are indications of sensory-based

processing, by opposition to cognitively-based

processing, when the discriminations of intervals

around 50 ms vs. 1 s are compared [87, 88].

Other authors proposed to distinguish explicit

timing, as in repetitive tapping like the one used

in consecutive interval productions, and implicit

timing like the one used in drawing movements

[89, 90].
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Conclusion

This review of the literature on the scalar

property for timing and time perception

reveals that there is actually no such scalar

property. The literature is filled with

demonstrations that Weber’s law does not

hold or at least, when it holds, it is for a

much restricted range of durations, as in Mer-

chant et al. [44], or when a general picture is

taken and explicit counting not forbidden, as

in Grondin [62] for instance. The violation of

the scalar property for time calls for a re-

examination of models, such as SET, based

on a clock-counter device. The literature

offers multiple alternatives, including the pos-

sibility to have multiple timers, to process

temporal information on the basis of a

frontal-striatal circuitry ([91]; see the chapter

by Meck and co-workers in this volume) or, as

noted earlier, to read time on the basis of the

output of a state-dependent network (see the

chapter by Buonomano in this volume).

On the other hand, there is a convergence

of findings showing that sensitivity to time is

significantly lost when intervals become too

long (say > 1.3 s); moreover, we know that

humans actually have a trick, explicit

counting, for compensating this loss. This

may indicate the presence of two fundamental

ways of processing temporal information.

Cognitive psychology is actually filled with

numerous dual-process interpretations [92].

These interpretations, or theories, take several

forms like a dichotomy between heuristic/

holistic and systematic/analytic systems, asso-

ciative vs. rule-based systems, or implicit vs.

explicit systems, to name only a few. And on

some occasions, these distinctions are

associated with some specific way with

which each cerebral hemisphere processes

information. Apparently, it could be proved

useful to undertake the neurophysiological

study of temporal processing with such a

dual-process approach in mind, a dual-process

that is provoked by the fact that we have to

deal with different duration ranges. Indeed, as

stated by Rammsayer and Troche (this

volume), one avenue is to posit that there are

two functionally related timing mechanisms

underlying interval timing. According to

these authors, these mechanisms are

associated either with the processing of sub-

second intervals or with the processing of

supra-second intervals.

Acknowledgement This research program conducted by

the author is supported by research grants from the Natu-

ral Sciences and Engineering Council of Canada since

1991. I would like to thank Emi Hasuo and Vincent

Laflamme for their comments on the text or help with

the figures.

References

1. Vierordt K. Der zeitsinn nach versuchen. Tubingen:

Laupp; 1868.

2. Bolton T. Rhythm. Am J Psychol. 1894;6(2):145–238.

3. James W. The principles of psychology. New York:

Dover; 1890.

4. Fraisse P. Les structures rythmiques. Louvain: Studia

Psychologica; 1956.

5. Fraisse P. Psychologie du temps. Paris: Presses

Universitaires de France; 1957.

6. Gibbon J, Allan LG, editors. Timing and time percep-

tion, vol. 423. New York: New York Academy of

Sciences; 1984.

7. Grondin S. Methods for studying psychological time.

In: Grondin S, editor. Psychology of time. Bingley:

Emerald Group; 2008. p. 51–74.

8. Zakay D, Block RA. Temporal cognition. Curr Dir

Psychol Sci. 1997;6(1):12–6.

9. Ornstein R. On the experience of time. New York:

Penguin; 1969.

10. Boltz MG. Effects of event structure on retrospective

duration judgments. Percept Psychophys. 1995;57(7):

1080–96.

11. Bisson N, Grondin S. Time estimates of internet surf-

ing and video gaming. Timing Time Percept. 2013;

1(1):39–64.

12. Bisson N, Tobin S, Grondin S. Remembering the

duration of joyful and sad musical excerpts.

Neuroquantology. 2009;7(1):46–57.

13. Bisson N, Tobin S, Grondin S. Prospective and retro-

spective time estimates of children: a comparison

based on ecological tasks. PLoS One. 2012;7(3):

e33049. http://www.plosone.org/article/info%3Adoi

%2F10.1371%2Fjournal.pone.0033049.

14. Grondin S, Plourde M. Judging multi-minute intervals

retrospectively. Q J Exp Psychol. 2007;60(9):

1303–12.

15. Tobin S, Bisson N, Grondin S. An ecological

approach to prospective and retrospective timing of

About the (Non)scalar Property for Time Perception 29

http://www.plosone.org/article/info%3Adoi/10.1371/journal.pone.0033049
http://www.plosone.org/article/info%3Adoi/10.1371/journal.pone.0033049


long durations: a study involving gamers. PLoS One.

2010;5(2):e9271. http://www.plosone.org/article/info

%3Adoi%2F10.1371%2Fjournal.pone.0009271.

16. Burt CDB. The effect of actual event duration and

event memory on the reconstruction of duration infor-

mation. Appl Cogn Psychol. 1993;7(1):63–73.

17. Burt CDB, Kemp S. Retrospective duration estimation

of public events. Mem Cognit. 1991;19(3):252–62.

18. Burt CDB. Reconstruction of the duration of autobio-

graphical events. Mem Cognit. 1992;20(2):124–32.

19. Burt CDB, Kemp S, Conway M. What happens if you

retest autobiographical memory 10 years on? Mem

Cognit. 2001;29(1):127–36.

20. Allan LG. The perception of time. Percept

Psychophys. 1979;26(5):340–54.

21. Killeen PR. Counting the minutes. In: Macar F,

Pouthas V, Friedman W, editors. Time, action and

cognition: towards bridging the gap. Dordrecht:

Kluwer; 1992. p. 203–14.

22. Gibbon J. Scalar expectancy theory and Weber’s law

in animal timing. Psychol Rev. 1977;84(3):279–325.

23. Gibbon J. Origins of scalar timing. Learn Motiv.

1991;22(1):3–38.

24. Grondin S. Timing and time perception: a review of

recent behavioral and neuroscience findings and theo-

retical directions. Atten Percept Psychophys. 2010;

72(3):561–82.

25. Stevens SS. Psychophysics: introduction to its percep-

tual, neural and social prospects. New York: Wiley;

1975.

26. Eisler H. Experiments on subjective duration

1878–1975: a collection of power function exponents.

Psychol Bull. 1976;83(6):1154–71.

27. Rammsayer TH, Grondin S. Psychophysics of human

timing. In: Miller RA, editor. Time and the brain.

Reading: Harwood Academic; 2000. p. 157–67.

28. Getty D. Discrimination of short temporal intervals: a

comparison of two models. Percept Psychophys.

1975;18(1):1–8.

29. Killeen PR, Weiss NA. Optimal timing and the Weber

function. Psychol Rev. 1987;94(4):455–68.

30. Creelman CD. Human discrimination of auditory

duration. J Acoust Soc Am. 1962;34(5):582–93.

31. Treisman M. Temporal discrimination and the

indifference interval: implications for a model of the

“internal clock”. Psychol Monogr. 1963;77(13):1–31.

32. Grondin S. From physical time to the first and second

moments of psychological time. Psychol Bull. 2001;

127(1):22–44.

33. Allan LG, Kristofferson AB. Psychophysical theories

of duration discrimination. Percept Psychophys. 1974;

16(1):26–34.

34. Matthews WJ. Can we use verbal estimation to dissect

the internal clock? Differentiating the effects of pace-

maker rate, switch latencies, and judgment processes.

Behav Processes. 2011;86(1):68–74.

35. Allan LG. The influence of the scalar timing model on

human timing research. Behav Processes. 1998;44(2):

101–17.

36. Lejeune H, Wearden JH. Scalar properties in animal

timing: conformity and violations. Q J Exp Psychol.

2006;59(11):1875–908.

37. Wearden J. Applying the scalar timing model to

human time psychology: progress and challenges. In:

Helfrich H, editor. Time and mind II. Göttingen:

Hogrefe & Huber; 2003. p. 21–39.

38. Balsam PD, Drew MR, Gallistel CR. Time and asso-

ciative learning. CompCogn Behav Rev. 2010;5:1–22.

39. Gorea A. Ticks per thought or thoughts per tick? A

selective review of time perception with hints on future

research. J Physiol Paris. 2011;105(4–6):153–63.

40. Buonomano DV. The biology of time across different

scales. Nat Chem Biol. 2007;3(10):594–7.

41. Buhusi CV, Meck WH. What makes us tick? Func-

tional and neural mechanisms of interval timing.

Nat Rev Neurosci. 2005;6(10):755–65.

42. Mauk MD, Buonomano DV. The neural basis of

temporal processing. Annu Rev Neurosci. 2004;27:

307–40.

43. Wackerman J. Inner and outer horizons of time

experience. Span J Psychol. 2007;10:20–32.

44. Merchant H, Zarco W, Prado L. Do we have a com-

mon mechanism for measuring time in the hundreds

of millisecond range? Evidence from multiple-

interval timing tasks. J Neurophysiol. 2008;99(2):

939–49.

45. Grondin S. Unequal Weber fraction for the categori-

zation of brief temporal intervals. Atten Percept

Psychophys. 2010;72(5):1422–30.

46. Grondin S. Violation of the scalar property for time

perception between 1 and 2 seconds: evidence from

interval discrimination, reproduction, and categori-

zation. J Exp Psychol Hum Percept Perform. 2012;

38(4):880–90.

47. Drake C, Botte MC. Tempo sensitivity in auditory

sequences: evidence for a multiple-look model. Per-

cept Psychophys. 1993;54(3):277–86.

48. Grondin S, McAuley JD. Duration discrimination in

crossmodal sequences. Perception. 2009;38(10):

1542–59.

49. Ten Hoopen G, Van Den Berg S, Memelink J,

Bocanegra B, Boon R. Multiple-look effects on tem-

poral discrimination within sound sequences. Atten

Percept Psychophys. 2011;73(7):2249–69.

50. Merchant H, ZarcoW, Bartolo R, Prado L. The context

of temporal processing is represented in the multi-

dimensional relationships between timing tasks. PLoS

One. 2008;3(9):e3169. http://www.plosone.org/article/

info%3Adoi%2F10.1371%2Fjournal.pone.0003169.

51. Keele SW, Nicoletti R, Ivry R, Pokorny RA.

Mechanisms of perceptual timing: beat-based or
interval-based judgements? Psychol Res. 1989;50(4):

251–6.

52. GrubeM, Lee KH, Griffiths TD, Barker AT,Woodruff

PW. Transcranial magnetic theta-burst stimulation of

the human cerebellum distinguishes absolute,

duration-based from relative, beat-based perception

of subsecond time intervals. Front Psychol.

30 S. Grondin

http://www.plosone.org/article/info%3Adoi/10.1371/journal.pone.0009271
http://www.plosone.org/article/info%3Adoi/10.1371/journal.pone.0009271
http://www.plosone.org/article/info%3Adoi/10.1371/journal.pone.0003169
http://www.plosone.org/article/info%3Adoi/10.1371/journal.pone.0003169


2010;1:171. http://www.frontiersin.org/Journal/10.

3389/fpsyg.2010.00171/abstract.

53. Grube M, Cooper FE, Chinnery PF, Griffiths TD.

Dissociation of duration-based and beat-based audi-

tory timing in cerebellar degeneration. Proc Natl Acad

Sci U S A. 2010;107(25):11597–601.

54. Teki S, Grube M, Kumar S, Griffiths TD. Distinct

neural substrates of duration-based and beat-based

auditory timing. J Neurosci. 2011;31(10):3805–12.

55. Bangert AS, Reuter-Lorenz PA, Seidler RD.

Dissecting the clock: understanding the mechanisms

of timing across tasks and temporal intervals. Acta

Psychol (Amst). 2011;136(1):20–34.

56. Grondin S, Ouellet B, Roussel MÈ. Benefits and limits
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Elucidating the Internal Structure of
Psychophysical Timing Performance in
the Sub-second and Second Range by
Utilizing Confirmatory Factor Analysis
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Abstract

The most influential theoretical account in time psychophysics assumes the

existence of a unitary internal clock based on neural counting. The distinct

timing hypothesis, on the other hand, suggests an automatic timing mecha-

nism for processing of durations in the sub-second range and a cognitively

controlled timing mechanism for processing of durations in the range of

seconds. Although several psychophysical approaches can be applied for

identifying the internal structure of interval timing in the second and sub-

second range, the existing data provide a puzzling picture of rather inconsis-

tent results. In the present chapter, we introduce confirmatory factor analysis

(CFA) to further elucidate the internal structure of interval timing perfor-

mance in the sub-second and second range. More specifically, we investi-

gated whether CFA would rather support the notion of a unitary timing

mechanism or of distinct timing mechanisms underlying interval timing in

the sub-second and second range, respectively. The assumption of two

distinct timing mechanisms which are completely independent of each

other was not supported by our data. The model assuming a unitary timing

mechanism underlying interval timing in both the sub-second and second

range fitted the empirical data much better. Eventually, we also tested a third

model assuming two distinct, but functionally related mechanisms. The

correlation between the two latent variables representing the hypothesized

timing mechanisms was rather high and comparison of fit indices indicated

that the assumption of two associated timing mechanisms described the

observed data better than only one latent variable. Models are discussed in

the light of the existing psychophysical and neurophysiological data.
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Introduction

Within the field of psychophysical research on

timing and time perception, there are two com-

peting major theoretical accounts on the mecha-

nisms underlying the temporal processing of

intervals in the range of seconds and milli-

seconds referred to as the distinct timing hypo-
thesis and the common timing hypothesis. The

distinct timing hypothesis acts on the assumption

that processing of temporal information in the

sub-second range depends upon a qualitatively

different mechanism than processing of temporal

information in the second range. The common

timing hypothesis, on the other hand, acts on the

assumption of a single, central timing mecha-

nism. As depicted in the first chapter, over the

past 50 years psychophysical research on time

perception has been guided by the notion of a

common timing mechanism underlying temporal

processing of intervals irrespective of interval

duration (cf. [1, 2]). Although such internal

clock models based on neural counting provide

a useful heuristic for explaining human and ani-

mal performance on timing of brief intervals,

there is increasing empirical evidence challeng-

ing the assumption of a common, unitary timing

mechanism (for a review see: first chapter of this

volume; [2–4]). Over the past two decades,

psychophysical research on interval timing has

been in the search of a definite answer on

whether a common timing mechanism or two

distinct timing mechanisms account for the

timing of intervals in the second and sub-second

range.

In the present chapter, we will acquaint the

reader with the basic assumptions of both the

common and distinct timing hypotheses. Further-

more, we will provide a concise overview of the

basic findings of psychophysical studies

designed to experimentally dissociate the two

timing mechanisms implied by the distinct

timing hypothesis. As we will see, the available

psychophysical studies, so far, failed to provide

unambiguous experimental evidence against or

in favour of either of the two competing

hypotheses. Therefore, we will introduce a

novel methodological approach, based on confir-

matory factor analysis, for investigating the

internal structure of psychophysical timing per-

formance in the sub-second and second range.

The Common Timing Hypothesis: A
Unitary Timing Mechanism Based on
Neural Counting

To date, the most popular conception in time

psychophysics represents the notion of a com-

mon timing mechanism underlying temporal

processing of intervals in the sub-second and

second range. This highly influential theoretical

account of human and animal timing and time

perception assumes the existence of a single

internal clock based on neural counting (e.g.,

[2, 5–11]). The main features of such an

internal-clock mechanism are a pacemaker and

an accumulator. The neural pacemaker generates

pulses, and the number of pulses relating to a

physical time interval is recorded by the accumu-

lator. Thus, the number of pulses counted during

a given time interval indexes the perceived dura-

tion of this interval. Hence, the higher the clock

rate of the neural pacemaker the finer the tempo-

ral resolution of the internal clock will be, which

is equivalent to more accuracy and better perfor-

mance on timing tasks.

The assumption of a unitary internal-clock

mechanisms based on neural counting also

represents the established explanation for the

Scalar Expectancy Theory (SET) introduced by

Gibbon [7, 12]. SET is one of the currently most

prominent theoretical accounts of human and

animal timing. According to SET, when esti-

mating the duration of a given standard interval,

a participant’s responses follow a normal distri-

bution around the interval duration. The width of

this response distribution is predicted to be pro-

portional to the standard duration. This linear

covariation of the mean and the standard devia-

tion of the response distribution across different

standard durations, referred to as the scalar prop-

erty of interval timing, is also asserted by

Weber’s law [9, 13].
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Although direct experimental evidence for the

notion of a single, common timing mechanism

underlying temporal processing in the sub-

second and second range is hard to obtain, some

indirect psychophysical evidence can be derived

from the failure to detect so-called ‘break points’

in the precision of interval timing across interval

durations ranging from 68 ms to 16.7 min [14].

Such break points would be the expected out-

come if different timing mechanisms, with dif-

ferent levels of absolute precision of timing,

were used for measuring intervals of different

durations [15, 16]. At the same time, however,

the scalar property of interval timing for brief

durations is seriously questioned by psychophys-

ical research in humans (see Chapter 1; [8, 17])

and animals (e.g., [18]).

The Distinct Timing Hypothesis:
Interval Timing in the Second and
Sub-second Range Is Based on Two
Distinct Timing Mechanisms

As early as 1889, Münsterberg [19] put forward

the idea of two distinct timing mechanisms

underlying temporal information processing. He

assumed that durations less than one third of a

second can be directly perceived whereas longer

durations need to be (re-)constructed by higher

mental processes. More recently, Michon [20]

argued that temporal processing of intervals lon-

ger than approximately 500 ms is cognitively

mediated while temporal processing of shorter

intervals is supposedly “of a highly perceptual

nature, fast, parallel and not accessible to cogni-

tive control” [20, p. 40]. More recent studies,

pursuing Michon’s [20] conception, provided

converging evidence that the transition from sen-

sory/automatic to cognitively mediated timing

might lie closer to 250 ms than to 500 ms [21,

22].

In a first attempt to provide direct experimen-

tal evidence for the validity of the distinct timing

hypothesis, Rammsayer and Lima [23] applied a

dual-task paradigm guided by the following

considerations: If, as suggested by Michon [20],

temporal discrimination of intervals longer than

approximately 500 ms is cognitively mediated,

one would expect that temporal discrimination

under relatively high cognitive load would be

more difficult than temporal discrimination

under lower cognitive load. On the other hand,

if discrimination of extremely brief intervals is

based upon an automatic, sensory mechanism,

performing a concurrent nontemporal cognitive

task should produce no deleterious effect on

temporal discrimination of intervals in the range

of milliseconds. To test these predictions, a dual-

task procedure was used with duration discrimi-

nation as the primary task and word learning as a

secondary nontemporal cognitive task. Results

from the dual-task conditions were compared

with results from single-task conditions. If two

tasks compete for the same pool of cognitive

resources then simultaneous performance on

both tasks should be impaired compared to per-

formance on one task alone. With this approach,

Rammsayer and Lima [23] found that temporal

discrimination of intervals ranging from 50 to

100 ms is unaffected by a secondary cognitive

task whereas duration discrimination of intervals

in the range of seconds is markedly impaired by

the same secondary task. The likely conclusion

was that timing of intervals in the sub-second

range is based on an automatic, sensory mecha-

nism while timing of intervals in the second

range is cognitively mediated.

To further test the distinct timing hypothesis,

Rammsayer and Ulrich [4] investigated the

effects of maintenance and elaborative rehearsal

as a secondary task on temporal discrimination of

intervals in the sub-second and second range.

Unlike mere maintenance rehearsal, elaborative

rehearsal as a secondary task involved transfer

of information from working memory to long-

term memory and elaboration of information to

enhance storage in long-term memory. Temporal

discrimination of brief intervals was not affected

by a secondary cognitive task that required either

maintenance or elaborative rehearsal. Concurrent

elaborative rehearsal, however, reliably impaired

temporal discrimination of intervals in the

second range as compared to maintenance

rehearsal and a control condition with no second-

ary task.
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These findings support the notion of two dis-

tinct timing mechanisms involved in temporal

processing of intervals in the sub-second and

second range. While temporal processing of

intervals in the second range demands cognitive

resources, temporal processing of intervals in the

sub-second range appears to be highly sensory in

nature and beyond cognitive control.

The distinct timing hypothesis is also

supported by neuropharmacological and neuro-

imaging studies on temporal information

processing. Findings from neuroimaging studies

are consistent with the notion of an automatic

timing system for measuring brief intervals in

the sub-second range and a cognitively con-

trolled system, depending on the right dorsolat-

eral prefrontal cortex, for temporal processing of

intervals in the suprasecond range (for reviews

see [24–26]). Similarly, neuropharmacological

timing studies also suggest the existence of a

prefrontal cognitive system for the processing

of temporal information in the second range and

a subcortical automatic system controlled by

mesostriatal dopaminergic activity for temporal

processing in the range of milliseconds (for

reviews see [27–29]).

Statistical Approaches for Identifying
the Internal Structure of
Psychophysical Timing Performance

In the face of the rather ambiguous experimental

findings with regard to the common timing and

distinct timing hypotheses, additional statistical

approaches became increasingly important.

There are at least two basic statistical approaches

to investigating whether tasks that require fine

temporal resolution and precise timing depend

upon a unitary timing mechanism. The method
of slope analysis is derived from Getty’s [30]

generalization of Weber’s law. With this

approach, changes in timing variability as a func-

tion of timescale (e.g., sub-second vs. second

range) can be compared across tasks. If the

slope of the variability functions of two tasks is

equivalent, a common timing mechanism under-

lying both tasks is inferred (for more information

see [31]).

The correlational approach is based on the

general assumption that if the same timing

mechanism is involved in two tasks, the perfor-

mance or timing variability of the two tasks

should be highly correlated. Common forms of

the correlational approach to the identification of

the internal structure of psychophysical timing

performance represent correlational analyses

(e.g., [32]), exploratory factor analysis (e.g.,

[33]), and multiple linear regression [34].

In an attempt to apply the correlational

approach to elucidate the dimensional properties

of temporal information processing in the sub-

second and second range, Rammsayer and

Brandler [33] used exploratory factor analysis

to analyse eight psychophysical temporal tasks

in the sub-second (temporal-order judgment, and

rhythm perception) and second range (temporal

discrimination and generalization of filled

intervals). Their main finding was that the first

principle factor accounted for 31.5 % of the total

variance of the eight different temporal tasks.

More specifically, all the various temporal

tasks, except rhythm perception and auditory

fusion, showed substantial loadings on this fac-

tor. Rammsayer and Brandler [33] interpreted

this outcome as evidence for a common, unitary

timing mechanism involved in the timing of

intervals in the sub-second and second range.

Confirmatory Factor Analysis: An
Alternative, Theory-Driven
Methodological Approach for
Identifying the Internal Structure of
Psychophysical Timing Performance

Confirmatory factor analysis (CFA) represents a

methodological approach more sensitive to theo-

retical assumptions and given hypotheses than the

exploratory factor analysis applied by Rammsayer

and Brandler [33]. Similar to the exploratory

factor analysis, CFA is based on the correlations

(or actually unstandardized correlations, i.e.

covariances) of a set of measurements. While

exploratory factor analysis makes a proposal for

the number of latent variables underlying a given

covariance matrix without any theoretical

assumptions, CFA probes whether theoretically
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predefined latent variables can be derived from the

pattern of correlations.

Assume, for example, that 100 participants

performed on three timing tasks in the second

range and three other timing tasks in the sub-

second range. You compute the correlations

among the six tasks and, hence, you produce an

empirical correlation matrix. As a supporter of

the distinct timing hypothesis, you expect

statistically significant correlations between the

three timing tasks in the second range. Because

you assume that a specific timing mechanism for

intervals in the second range accounts for these

significant correlations, you derive a factor (i.e.,

a latent variable) from the three timing tasks in

the second range which represents the timing

mechanism for the second range. You also expect

significant correlations between the three timing

tasks in the sub-second range. As for the second

range, these significant correlations suggest a

timing mechanism specific to processing of tem-

poral information in the sub-second range which

is, consequently, represented by a factor (latent

variable) derived from these sub-second timing

tasks. In addition, you expect the pair-wise

correlations between a given timing tasks in the

second range, on the one hand, and a given

timing tasks in the sub-second range, on the

other hand, to be statistically non-significant.

This is because the distinct timing hypothesis

assumes different distinct mechanisms to under-

lie timing in the second and in the sub-second

range, respectively. If the correlations between

timing tasks in the second and the sub-second

range are non-significant, also the correlation

between the latent variables representing the

timing mechanism in the second and sub-second

range, respectively, should be low. Thus, a latent

variable model derived from the basic assump-

tion of the distinct timing hypothesis should con-

tain a latent variable for timing in the second

range and another latent variable for timing in

the sub-second range with a non-significant

correlation between these two latent variables.

In case, however, that you are a follower of

the common timing hypothesis, you would

expect that individual differences in one timing

task go with individual differences in any other

timing task—regardless of whether these tasks

use stimulus durations in the second or sub-

second range. As a consequence, there should

be significant correlations among performances

of all tasks (irrespective of the stimulus duration)

suggesting a common latent variable which

accounts for these relationships.

Thus, the two alternative timing hypotheses

result in different predictions of how a corre-

lation matrix of tasks in the second and in the

sub-second range should look like. CFA

compares the respective predicted correlation

matrix with the empirically observed correlation

matrix and, thus, provides indices of how accu-

rately the expected matrix fits the observed

matrix. These indices are, therefore, called fit

indices and will be described in more detail

below. On the basis of these model fit indices, it

can then be decided which of the two models

describes the observed data better and should be

preferred. It should be noted, however, that CFA

does actually not analyze the correlations but the

covariances, i.e., the unstandardized correlations.

Therefore, we will refer to “covariance” and

“covariance matrix” in the following paragraphs.

Applying Confirmatory Factor
Analysis for Identifying the Internal
Structure of Psychophysical Timing
Performance: An Example of Use

We will demonstrate the application of CFA by

means of a study that was designed to probe

whether covariances of interval timing tasks in

the second and sub-second range can be

described by the assumption of either one or

two latent variables supporting the common or

distinct timing hypothesis, respectively. In order

to obtain a sufficient number of behavioral data

for the CFA approach, a rather large sample of

130 participants (69 males and 61 females rang-

ing in age from 18 to 33 years) had been tested.

Psychophysical Assessment of Interval
Timing Performance

For psychophysical assessment of performance

on interval timing, three temporal discrimination
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tasks and two temporal generalization tasks were

used. Because the auditory system has the finest

temporal resolution of all senses (for reviews see

[35, 36]), auditory intervals were presented in all

tasks.

On each trial of a typical temporal discrimina-

tion task, the participant is presented with two

intervals and his/her task is to decide which of

the two intervals was longer. There are two types

of intervals commonly employed in temporal dis-

crimination tasks. One type is the filled interval

and the other type is the empty (silent) interval. In

filled auditory intervals, a tone or noise burst is

presented continuously throughout the interval,

whereas in auditorily marked empty intervals

only the onset and the offset are marked by clicks

(see Fig. 1). Thus, in empty intervals, there is no

auditory stimulus present during the interval itself.

Most importantly, type of interval appears to

affect temporal discrimination of auditory

intervals in the range of tens of milliseconds. For

such extremely brief intervals, performance on

temporal discrimination was found to be reliably

better with filled than with empty intervals. This

effect seems to be limited to intervals shorter than

approximately 100 ms and is no longer detectable

for longer intervals [37].

Based on these considerations, our

participants performed one block of filled and

one block of empty intervals with a standard

duration of 50 ms each, as well as one block of

filled intervals with a standard duration of

1,000 ms. Order of blocks was counterbalanced

across participants. Each block consisted of 64

trials, and each trial consisted of one standard

interval and one comparison interval. The dura-

tion of the comparison interval varied according

to an adaptive rule [38] to estimate x.25 and x.75

of the individual psychometric function, that is,

the two comparison intervals at which the

response “longer” was given with a probability

of 0.25 and 0.75, respectively. Generally

speaking ‘adaptive’ means that stimulus presen-

tation on any given trial is determined by the

preceding set of stimuli and responses. There-

fore, the comparison interval is varied in duration

from trial to trial depending on the participant’s

previous response. Correct responding resulted

in a smaller duration difference between the con-

stant standard and the variable comparison inter-

val, whereas incorrect responses made the task

easier by increasing the difference in duration

between the standard and the comparison interval

(for more details see [39]). As an indicator of

Fig. 1 Schematic diagram of the time course of an

experimental trial of the temporal discrimination task

with filled (Panel A) and empty (Panel B) intervals in

the sub-second range. In filled intervals, a white-noise

burst is presented continuously throughout the interval,

whereas in empty intervals only the onset and the offset

are marked by brief 3-ms white-noise burst. Thus, in

empty intervals, there is no stimulus present during the

interval itself. On each trial, the participant is presented

with two intervals a constant 50-ms standard interval and

a variable comparison interval (50 � x ms). The

participant’s task is to decide which of the two intervals

was longer. The duration of the comparison interval

varied from trial to trial depending on the participant’s

previous response. Correct responding resulted in a

smaller duration difference between the standard and the

comparison interval, whereas incorrect responses made

the task easier by increasing the difference in duration

between the standard and the comparison interval
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discrimination performance, the difference

limen, DL [40], was determined for each tempo-

ral discrimination task.

In addition to the temporal discrimination

tasks, two temporal generalization tasks (see

first chapter) were employed with standard

durations of 75 and 1,000 ms for the sub-second

and second range, respectively. Like temporal

discrimination, temporal generalization relies

on timing processes but additionally on a refer-

ence memory of sorts [41, 42]. This is because in

the first part of this task, participants are

instructed to memorize the standard stimulus

duration. For this purpose, the standard interval

was presented five times accompanied by the

display “This is the standard duration”. Then

the test phase began. On each trial of the test

phase, one duration stimulus was presented.

Participants had to decide whether or not the

presented stimulus was of the same duration as

the standard stimulus stored in memory. The test

phase consisted of eight blocks. Within each

block, the standard duration was presented

twice, while each of the six nonstandard intervals

was presented once. In the range of seconds, the

standard stimulus duration was 1,000 ms and the

nonstandard durations were 700, 800, 900, 1,100,

1,200, and 1,300 ms. In the range of

milliseconds, the nonstandard stimulus durations

were 42, 53, 64, 86, 97, and 108 ms and the

standard duration was 75 ms. All duration stimuli

were presented in randomized order. As a quan-

titative measure of performance on temporal

generalization an individual index of response

dispersion [43] was determined. For this purpose,

the proportion of total “yes”-responses to the

standard duration and the two nonstandard

durations immediately adjacent (e.g., 900,

1,000, and 1,100 ms in the case of temporal

generalization in the second range) was deter-

mined. This measure would approach 1.0 if all

“yes”-responses were clustered closely around

the standard duration.

The standard durations of the interval timing

tasks for the sub-second and second range were

selected because the hypothetical shift from one

timing mechanism to the other may be found at

an interval duration somewhere between 100 and

500 ms [20–22, 44, 45]. Furthermore, when

participants are asked to compare time intervals,

many of them adopt a counting strategy. Since

explicit counting becomes a useful timing strat-

egy for intervals longer than approximately

1,200 ms [46, 47], the long standard duration

was chosen not to exceed this critical value.

Statistical Analyses Based on
Confirmatory Factor Analysis: Different
Indices for Evaluation of Model Fit

The twomodels investigated bymeans of CFA are

schematically presented in Fig. 2. Proceeding from

the common timing hypothesis, Model 1 assumes

that one common latent variable underlies perfor-

mance on all five interval timing tasks (see Fig. 2,

model on the left). Model 2 refers to the distinct

timing hypothesis assuming two distinct latent

variables. One latent variable underlies perfor-

mance on the timing tasks in the sub-second

range, i.e., the temporal generalization and the

two duration discrimination tasks with stimuli in

the sub-second range. A second latent variable

underlies performance on the temporal generaliza-

tion and the duration discrimination tasks with

stimuli in the second range. According to the dis-

tinct timing hypothesis, these two latent variables

are not correlated with each other (see Fig. 2,

model on the right). Since CFA provides an evalu-

ation of howwell a theoretical model describes the

observed data, the comparison of so-called model
fit indices helps to decidewhether the unitary or the

distinct timing hypothesis better predicts the

empirical data.

In order to test whether the empirical data are

well described by given theoretical assumptions,

the observed covariance matrix is compared with

the theoretically impliedmatrix. The dissimilarity

can be tested for significance by the χ2 test [48]. A
significant χ2 value requires rejecting the null

hypothesis which says that the observed and

implied covariance matrices are identical and

differences are just due to sampling error. A

non-significant χ2 value, on the contrary,

indicates that the theoretical model is not proven

to be incorrect and that the empirical data fit the
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theoretical expectations. The χ2 value, however,
depends on the sample size and easily yields sig-

nificance with large sample sizes which are

required for the computation of CFA. Therefore,

to avoid that models are rejected just because of

too large sample sizes, further model fit indices

are usually computed [49]. In the following, the

most common and widely-used additional fit

indices will be briefly introduced.

The Comparative Fit Index (CFI) estimates

how much better a given model describes the

empirical data compared to a null model with

all variables assumed to be uncorrelated. The

CFI varies between 0 and 1 and a value of more

than 0.95 is acceptable [50].

The Akaike Information Criterion (AIC) is an

explicit index of the parsimony of a model. This is

important as it is required that models should be

as parsimonious (i.e., as less complex) as possible.

The AIC charges the χ2 value against model com-

plexity in terms of degrees of freedom. The lower

the AIC, the more parsimonious is the model.

TheRootMean Square Error of Approximation

(RMSEA) is relatively independent of sample size

and tests the discrepancy between observed and

implied covariance matrices. Furthermore, the

RMSEA considers the complexity of a model so

that higher parsimony is reinforced by this fit

index. To indicate a good model, the RMSEA

should be smaller than 0.05 but also values

between 0.05 and 0.08 are considered acceptable

[51]. Another advantage of the RMSEA is that a

confidence interval can be computedwhich should

include 0 to approximate a perfect model fit.

Eventually, the Standardized Root Mean
Square Residual (SRMR) represents an index of

the covariance residuals as the difference

between empirical and implied covariances

which should be smaller than 0.10 [52].

Model Evaluation by Means of
Confirmatory Factor Analysis:
Preliminary Considerations

The twomodels, depicted in Fig. 2, were evaluated

based on the previously described model fit

indices. Model 1 constitutes the common timing

hypothesis, while Model 2 illustrates a schematic

representation of the distinct timing hypothesis

Fig. 2 Two models reflecting the common timing hypo-

thesis (model on the left) and the distinct timing hypothesis

(model on the right), respectively. The common timing

hypothesis assumes correlational relationships among the

five interval timing tasks, irrespective of interval duration,

which can be explained by a common latent variable. The

distinct timing hypothesis suggests that performances on

the three interval timing tasks in sub-second range are

highly correlatedwith each other and that these correlations

are due to a specificmechanism for the timing of intervals in

the sub-second range. Similarly, also performances on the

two interval timing tasks for the second range are expected

to correlate with each other due to a specific mechanism

underlying the timing of intervals in the second range. Both

these mechanisms, however, are conceptualized to be

completely independent from each other as indicated by

the correlation coefficient of r ¼ 0.00. Note. TD1: tempo-

ral discrimination of filled intervals in the sub-second

range; TD2: temporal discrimination of empty intervals in

the sub-second range; TD3: temporal discrimination of

filled intervals in the second range; TG1: temporal general-

ization of filled intervals in the sub-second range; TG2:

temporal generalization of filled intervals in the second

range
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suggesting two distinct timing mechanisms for

processing of temporal information in the sub-

second and second range, respectively. In this con-

text, it is important to note that the finding of a non-

significant χ2 value for one model and a significant

χ2 value for the other model does not necessarily

mean that the first model describes the data signifi-

cantly better than the secondmodel. Therefore, the

general rule for comparing different theoretical

models is to test whether differences of the model

fits are substantial. In the case that two models are

in a hierarchical (or nested) relationship, the differ-

ence between their χ2 values and their degrees of

freedom can be calculated and this difference

value can be tested for statistical significance.

This, however, is only possible when the two

models to be compared are in a nested relation-

ship. A nested relationship means that one or

more paths are freely estimated in one model,

but fixed in the other one. In the present study, an

example for a path refers to the correlation

between the two latent variables in Model 2. In

this case, the correlation between the two latent

variables is fixed to zero because the distinct

timing hypothesis predicts two independent

mechanisms for interval timing in the second

and in the sub-second range. In Model 1, the

same correlation can be seen as being fixed to 1

indicating that the two latent variables in Model

2 are virtually identical or represent one and the

same latent variable, i.e. one common timing

mechanism irrespective of interval duration.

Therefore, Model 1 and Model 2 are not nested

models because they have the same number of

degrees of freedom.

If, however, an alternative third model would

imply a freely estimated correlation between the

two latent variables of Model 2 (i.e., the assumed

correlation coefficient is not theoretically fixed to

a certain value of 1 [as in Model 1], or 0 [as in

Model 2]), this alternative Model 3 can be con-

sidered a nested model compared to Model 1 and

Model 2. This is because fixing this correlation in

Model 3 to 1 would result in Model 1 and fixing

the correlation in Model 3 to 0 would result in

Model 2. Thus, the hypothesized Models 1 and

2 can be directly compared to Model 3 by means

of a χ2 difference test.

Our Models 1 and 2, as already pointed out,

are not nested. Because non-nested models can-

not be compared by χ2 differences, this type of

model has to be compared by their parsimony in

terms of the AIC value (see above). As already

explicated above, a difference in the AIC values

indicates that the model with the lower AIC

describes the data more parsimoniously and,

therefore, better than the model with the higher

AIC. Thus, it is the AIC which has to be used to

directly compare Model 1 and Model 2 in the

present study.

Model Evaluation by Means of
Confirmatory Factor Analysis: Results
of the Present Study

Descriptive statistics and intercorrelations of the

five interval timing tasks are given in Table 1. In

order to contrast the common with the distinct

timing hypothesis, we computed CFAs on the

two models presented in Fig. 2. Model 1

proceeded from the assumption of a common,

unitary timing mechanism so that covariances

among performance on all five psychophysical

timing tasks were explained by one latent vari-

able. This model, depicted in Fig. 3, explained

the data well as can be seen from a non-

significant χ2 test [χ2(5) ¼ 6.27; p ¼ 0.28] as

well as from CFI (0.99) which exceeded the

requested limit of 0.95. Also the RMSEA was

smaller than 0.08 (RMSEA ¼ 0.04) and the

90 % confidence interval included zero (ranging

from 0.00 to 0.14). The AIC was 2,396.0 and the

SRMR ¼ 0.03. Thus, the assumption of a com-

mon unitary timing mechanism is supported by

our finding that the empirical data were well

described by the theoretical assumption of a sin-

gle latent variable underlying performance on

interval timing tasks in both the sub-second and

the second range.

Nevertheless, the finding of a model, that

describes the empirical data quite well, does not

necessarily mean that there are no other models

which describe the empirical data even better.

Therefore, we tested the distinct timing hypo-

thesis by deriving a first latent variable from the
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three temporal tasks with stimuli in the sub-

second range and a second latent variable from

the two timing tasks with stimuli in the second

range. Furthermore, in order to represent two

independent mechanisms, the correlation

between the two latent variables was fixed to

zero (see Fig. 4). As indicated by all model fit

indices, this model did not yield a sufficient fit to

the data [χ2(6) ¼ 42.88; p < 0.001; CFI ¼ 0.67;

RMSEA ¼ 0.22; 90 %-confidence interval rang-

ing from 0.16 to 0.28; AIC ¼ 2,430.63; SRMR

¼ 0.18]. Thus, the assumption of two distinct

mechanisms underlying the processing of time

intervals in the sub-second and second range

Table 1 Mean performance scores (M) and standard deviations (SD) as well as intercorrelations for the five interval

timing tasks

Indicator of performance

M SD Sub-second range Second range

TD2 TG1 TD3 TG2

Sub-second range

TD1 DL (ms) 7.7 2.7 0.43 *** 0.38 *** 0.20 * 0.36 ***

TD2 DL (ms) 16.0 6.7 0.44 *** 0.36 *** 0.41 ***

TG1 Response dispersion 0.38 0.12 0.19 * 0.37 ***

Second range

TD3 DL (ms) 118.9 42.0 0.37 ***

TG2 Response dispersion 0.37 0.13

Note: TD1 temporal discrimination of filled intervals in the sub-second range, TD2 temporal discrimination of empty

intervals in the sub-second range, TD3 temporal discrimination of filled intervals in the second range, TG1 temporal

generalization of filled intervals in the sub-second range, TG2 temporal generalization of filled intervals in the second

range

*p < 0.05 (two-tailed); ***p < 0.001 (two-tailed)

Fig. 3 Results of the common timing model (Model 1)

with the assumption of one common latent variable under-

lying individual differences in all five interval timing

tasks irrespective of interval duration. The model fit

indices suggest a good model fit [χ2(5) ¼ 6.27;

p ¼ 0.28; CFI ¼ 0.99; RMSEA ¼ 0.04; AIC ¼ 2,396.0;

SRMR ¼ 0.03]. Presented are completely standardized

factor loadings as well as residual variances of the five

interval timing tasks. For abbreviations see Table 1

Fig. 4 Results of the distinct timing model (Model 2)

with the assumption of two completely independent latent

variables underlying temporal processing of intervals in

the sub-second and second range, respectively. The model

fit indices suggest a poor model fit [χ2(6) ¼ 42.88;

p < 0.001; CFI ¼ 0.67; RMSEA ¼ 0.22; AIC

¼ 2,430.63; SRMR ¼ 0.18]. Presented are completely

standardized factor loadings as well as residual variances

of the five interval timing tasks. For abbreviations see

Table 1
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did not conform to the empirical data. Moreover,

the AIC indicates that Model 1 is more parsimo-

nious than Model 2 (despite more degrees of

freedom in Model 2) suggesting that Model 1

describes the data better than Model 2.

It should be noted that Model 2 could only be

computed when the factor loadings of the interval

timing tasks in the second range were fixed. If

not, the model parameters could not be estimated.

This is sometimes the case if a latent variable is

derived from only two manifest variables. The

fact that we fixed this factor loading was the

reason why the degrees of freedom of Model

2 do not equal the degrees of freedom ofModel 1.

In a final step, we investigated whether tem-

poral processing of intervals in the range of

milliseconds may be dissociable from temporal

processing of intervals in the second range even

if the underlying processes are associated with

each other. Therefore, in a third model, the cor-

relation between the two latent variables of the

distinct timing model was not fixed to zero but

freely estimated. Without fixing this correlation,

Model 2 turned into Model 3 which fit the data

well [χ2(4) ¼ 3.16; p ¼ 0.53; CFI ¼ 1.00;

RMSEA ¼ 0.00; 90 %-confidence interval rang-

ing from 0.00 to 0.12; AIC ¼ 2,394.9; SRMR

¼ 0.02]. As can be seen from Fig. 5, this model

revealed a correlation of r ¼ 0.80 (p < 0.001)

between the two latent variables. As described

above, Model 3 and Model 1 are in a hierarchical

relationship so that their model fits can directly

be compared by means of a χ2-difference test.

This test revealed that the model fits of Model 1

and Model 3 did not differ significantly from

each other [Δχ2(1) ¼ 3.11; p ¼ 0.08]. The AIC

value of Model 1, however, was larger than the

AIC value of Model 3. Hence, Model 3, assum-

ing two dissociable timing mechanisms which

are highly related to each other, describes the

data comparably well as Model 1 but more parsi-

moniously relative to the model fit and, thus,

should be preferred over Model 1.

A Common Timing Mechanism or
Two Functionally Related Timing
Mechanisms?

In order to elucidate the internal structure of psy-

chophysical timing performance in the sub-

second and second range, we employed a CFA

approach. More specifically, we investigated

whether CFA would rather support the notion of

a common unitary timing mechanism or of two

distinct timing mechanisms underlying timing

performance in the sub-second and second

range, respectively. The assumption of two dis-

tinct timing mechanisms which are completely

independent of each other, as represented by

Model 2, was not supported by the present data.

All fit indices indicated a poor model fit. On the

other hand, Model 1 assuming a single common

timing mechanism underlying timing perfor-

mance in both the sub-second and second range

did not only describe the data quite well but also

better than Model 2. At this stage of our analysis,

however, it would be premature to conclude that a

unitary timing mechanism is the best explanation

of our data. As an alternative model, we therefore

introduced and examined Model 3. This model

Fig. 5 Results of the third, rather exploratory, timing

model (Model 3) assuming two dissociable but associated

latent variables underlying the timing of intervals in the

sub-second and second range, respectively. The model fit

indices suggest a good model fit [χ2(4) ¼ 3.16; p ¼ 0.53;

CFI ¼ 1.00; RMSEA ¼ 0.00; AIC ¼ 2,394.9; SRMR

¼ 0.02]. Presented are completely standardized factor

loadings as well as residual variances of the five interval

timing tasks. The correlation of r ¼ 0.80 between the two

latent variables is highly significant (p < 0.001). For

abbreviations see Table 1
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assumes two distinct, but functionally related,

mechanisms underlying timing performance in

the sub-second and second range, respectively.

As a matter of fact, Model 3 described the data

also very well and even somewhat better than

Model 1. Thus, although the correlation between

the two latent variables was quite high, the com-

parison of fit indices indicated that the assump-

tion of two closely associated latent variables

described the observed data better than the

assumption of only one latent variable.

The large portion of shared variance of

approximately 64 % between the two latent

variables in Model 3 can be interpreted in terms

of a ‘simple’ functional relationship between the

two timing mechanisms involved in the temporal

processing of extremely brief intervals in the

range of milliseconds and longer intervals in the

range of seconds, respectively. Such an associa-

tion may be due to some operations common to

both timing mechanisms or due to ‘external’

factors, such as specific task demands or task

characteristics (cf. [4]) that exert an effective

influence on both timing mechanisms. An alter-

native interpretation of Model 3, however, points

to a hierarchical structure for the processing of

temporal information in the sub-second and sec-

ond range. According to this latter account, at a

first level, temporal information is processed by

two distinct timing mechanisms as a function of

interval duration; one mechanism for temporal

processing of information in the range of

milliseconds and the other one for processing of

temporal information in the range of seconds.

This initial stage of duration-specific temporal

processing is controlled by a superordinate,

duration-independent processing system at a

higher level.

Empirical Findings Are Required to
Validate the Findings Based on the
Confirmatory Factor Analysis
Approach

It is important to note that we cannot decide statis-

tically on these two alternative interpretations of

Model 3. For this reason, we will provide some

empirical findings in the following that support the

general validity of Model 3 and also address the

two tentative interpretations derived from this

model.

With the timing tasks applied in the present

study, participants had to attend to the intervals

to be judged, maintain the temporal information,

categorize it, make a decision, and, eventually,

perform a response. Although not directly

involved in the genuine timing process per se,

these mainly cognitive processes are essential for

succeeding in interval timing independent of the

range of interval duration. Therefore, it seems

mandatory to take into account the involvement

of cognitive processes irrespective of the interval

duration to be timed. This view is consistent with

the idea expressed by Model 3 that the timing

mechanisms underlying temporal processing of

intervals in the range of milliseconds and

seconds are not completely independent of each

other but may share some common processes

[24, 53, 54]. The involvement of various non-

temporal processes, and especially the failure to

control for it across different studies, may also

account for the inconsistent results obtained from

the few studies applying a dual-task approach for

testing the distinct timing hypothesis (cf. [4, 55]).

In a recent imaging study by Gooch et al. [56],

voxel-based lesion-symptom mapping analysis

revealed that the right pre-central gyrus as well

as the right middle and inferior frontal gyri are

involved in the timing of intervals in both the

sub-second and second range. These findings are

complemented by neuroimaging data from Lewis

and Miall [57] showing consistent activity in the

right hemispheric dorsolateral and ventrolateral

prefrontal cortices and the anterior insula during

the timing of both sub- and supra-second

intervals. All these reports are consistent with

several previous imaging (for a review see [58])

and clinical (e.g., [59, 60]) studies demonstrating

that specific regions of the right frontal lobe play

a crucial role in interval timing in the sub-second

and second range. As these regions were

activated regardless of the interval duration to

be timed, these brain structures may be part of a

core neural network mediating temporal infor-

mation processing.
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In the light of these findings, the two tentative

interpretations of Model 3, outlined above, can

be substantiated as follows. According to our first

interpretation of Model 3, temporal information

in the sub-second and second range is processed

by two functionally related timing mechanisms.

Both these timing mechanisms may operate

largely independent of each other but draw

upon some working memory processes required

to successfully perform any given interval timing

task irrespective of interval duration. Thus, the

observed correlation between the two latent

variables in Model 3 may originate from working

memory functions shared by the two mechanisms

underlying temporal processing in the sub-

second and second range, respectively. It remains

unclear, however, whether these shared memory

functions can account as a single contributing

factor for the strong functional relationship

between the two latent variables.

Also compatible with Model 3 is the notion of

a hierarchical structure of the timing mechanism.

According to this account, temporal information

is processed in a duration-specific way at an

initial stage that is controlled by a common

superordinate duration-independent component.

This superordinate component can be tentatively

interpreted as an overarching neural network for

the processing of temporal information (cf. [61]).

Most interestingly, in their most recent review on

the neural basis of the perception and estimation

of time, Merchant et al. [31] also put forward the

idea of a partly distributed timing mechanism

with a core timing system based on a cortico-

thalamic-basal ganglia circuit.

At first sight, our CFA analyses clearly argued

against the distinct timing hypothesis. From this

perspective, a clear-cut distinction between sen-

sory/automatic and cognitively mediated tempo-

ral processing appears to be too strict.

Nevertheless, Model 3 does not inevitably rule

out the existence of distinct mechanisms for the

timing of intervals in the sub-second and second

range, respectively. Apparently, a ‘hard’ bound-

ary between a sensory/automatic and a cognitive

mechanism for millisecond and second timing is

unlikely to exist. Nevertheless, the assumption of

a transition zone from one timing mechanism to

the other with a significant degree of processing

overlap [21, 53] would also be consistent with

our Model 3. Within this transition zone, both

mechanisms may operate simultaneously and

their respective contributions to the outcome of

the timing process would depend on the specific

nature and duration range of a given temporal

task [21, 53, 62]. If this is true, one would expect

a decreasing correlational relationship between

both latent variables in Model 3 when the differ-

ence is increased between the base durations of

the interval timing tasks in the sub-second and

second range. This is because the processing

overlap should vanish with increasing dissimilar-

ity between the base durations. To our knowl-

edge, however, the transition zone hypothesis has

not been empirically tested yet.

Conclusions

Taken together, application of a CFA

approach for investigating the internal struc-

ture of interval timing performance in the sub-

second and second range clearly argues

against the validity of the distinct timing

hypothesis that assumes two timing

mechanisms completely independent of each

other. Although the model of a common uni-

tary timing mechanism fitted the empirical

data much better than the model based on the

distinct timing hypothesis, the outcome of our

CFA analyses supported the basic idea of two

functionally related timing mechanisms

underlying interval timing in the sub-second

and second range, respectively. Future

research is required to identify the major

constituents of both these mechanisms and to

further elucidate their functional interaction.

Although CFA cannot always warrant

clear-cut solutions, an extension of the tradi-

tional psychophysical methodology by

incorporating a theory-driven statistical

approach, such as CFA, proved to be a useful

and highly feasible procedure. Let us consider

Grondin’s review of the literature (see first

chapter) which revealed that there is actually

no scalar property for timing and time percep-

tion. This finding calls for a re-examination of

existing and highly popular models, such as
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pacemaker-counter models or SET. In that

case, statistical approaches, such as CFA, pro-

vide a promising tool for developing, testing,

and validating new models even on the basis

of psychophysical data already at hand.
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Neurocomputational Models of Time
Perception

Joachim Hass and Daniel Durstewitz

Abstract

Mathematical modeling is a useful tool for understanding the

neurodynamical and computational mechanisms of cognitive abilities

like time perception, and for linking neurophysiology to psychology. In

this chapter, we discuss several biophysical models of time perception and

how they can be tested against experimental evidence. After a brief

overview on the history of computational timing models, we list a number

of central psychological and physiological findings that such a model

should be able to account for, with a focus on the scaling of the variability

of duration estimates with the length of the interval that needs to be

estimated. The functional form of this scaling turns out to be predictive

of the underlying computational mechanism for time perception. We then

present four basic classes of timing models (ramping activity, sequential

activation of neuron populations, state space trajectories and neural

oscillators) and discuss two specific examples in more detail. Finally,

we review to what extent existing theories of time perception adhere to

the experimental constraints.

Keywords

Computational modeling � Weber’s law � Ramping activity � Synfire

chains

Introduction

Time perception is crucial to survival in many

species. Environmental resources, social

interactions, escape from predators, availability

of prey, or simply environmental responses trig-

gered by one’s own actions, may all depend on

the right timing. Predictions of events ahead

often may only be useful if the relative timing

of the event can be predicted as well. Despite the

wealth of studies on almost all aspects of time

perception, its neurobiological basis is still elu-

sive in many regards. For instance, there seems to

be no anatomically or physiologically unique and
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well-defined basis for the perception and

processing of temporal information. Human

imaging studies so far do not provide a very

coherent picture about the brain regions involved

[1], although some networks start to emerge (see

fourth chapter in this book). Also, lesion and

patient studies so far were unable to identify

any particular “timing area” in the brain. Like-

wise, there is no consensus on which of the

several proposed neuronal mechanisms actually

underlies the perception of time.

Time perception also shows a number of

features which are not easily explained from the

neurobiological point of view. Among those are

the well known linear relations between objec-

tive time and subjective time on the one hand

(the linear psychophysical law) [2–4], and the

one between objective time and the variability

or error of a time estimate on the other hand (the

scalar property) [2, 3, 5–7]. These relations have

been established in psychophysical experiments

and are reminiscent of similar relations in other

modalities, such as Weber’s law. However, net-

work mechanisms in the brain are usually highly

non-linear, so that it is not immediately clear how

linear relationships could be implemented (the

problem of the neural integrator, e.g. Seung

et al. [8]). The scalar property is even more

puzzling: If temporal intervals were represented

by some kind of counting or integration process,

as often proposed [5, 7, 9–11], noise in each of

the counted elements would lead to a linear

increase of the variance of the total count, and

thus the time estimate. However, the scalar prop-

erty requires the standard deviation, the square-

root of the variance, to increase linearly in time.

This means that the scaling of actual timing

errors with interval length is much worse than

would be expected from a counting or integration

process. As one would assume that evolution

strives for optimality in information processing,

this needs to be explained. Finally, subjective

estimates of duration are prone to distortion by

a number of non-temporal factors [5, 12], such as

attention, stimulus intensity, and various

neuromodulatory systems such as dopamine

[13]. The neural mechanisms of these distortions

and their potential biological function are not

well understood.

Mathematical modeling of neural systems is a

useful tool to gain insight into potentially underly-

ing mechanisms and their psychological

implications and neurodynamical properties.

Such models could provide a kind of proof of the

biological feasibility of a proposed mechanism.

Furthermore, they can help to achieve a deeper

understanding of the neural mechanics at work

by providing complete control over all systems

parameters, and reveal the exact statistical

properties of the mechanism. For time perception,

a large number of modeling studies exist and sug-

gest a wide variety of potential neuronal

mechanisms. In fact, almost any process in the

brain that unfolds in time could be a potential

candidate for encoding interval durations, as

reflected in this plethora of proposed mechanisms,

which makes the hunt for the actually biologically

employed mechanisms even more difficult.

In the following, we first provide a brief over-

view over the history of computational timing

models and define a number of constraints both

from psychological and physiological

experiments which can be used to assess the

validity of a given timing model. One of the

most often used criteria is the dependence of

the magnitude of timing errors on the length of

the estimated interval, which is often found to

scale linearly with time (Weber’s law). In the

fourth section, we summarize results which may

allow to assess whether a given timing model

may be able to reproduce this scalar property or

another form of error scaling, even without

performing the corresponding simulations or

knowing all the details of its implementation.

The fifth section will then deal with various

neurocomputational models of time perception,

focusing on our own work [14, 15], and finally,

we discuss how these are consistent with the

constraints named above and current neurobio-

logical knowledge.

A Brief History of Computational
Models of Time Perception

The first mathematical models of time perception

appeared in psychology as an attempt to explain

the results of psychophysical experiments. These
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information-processing models are meant as a

mathematical description of the data and do not

necessarily have any direct connection to neuro-

nal processes. Among the first formalized ideas

where the so-called “pacemaker-accumulator”

models, introduced in the early 1960s by

Creelman [11] and Treisman [16]. Creelman

reproduced the limited performance in discrimi-

nating two intervals of slightly different duration

by assuming a series of random pulses with a

fixed frequency (the pacemaker), which are

counted (accumulated) to form an estimate of

time. Treisman used the same basic mechanism,

but assumed an oscillator as pacemaker and

offered a more complete model structure includ-

ing processing stages for storing and comparing

the intervals. Elements from both models were

repeated, mixed and refined in a large number of

subsequent pacemaker-accumulator models (see

e.g. Grondin [5] for a review). By far the most

popular variant is the “scalar expectancy theory”

(SET) by Gibbon [7]. He formalized each

processing stage according to its possible source

of variance and introduced a scalar component

that lead to timing errors that increase linearly

with time (Weber’s law, or the “scalar prop-

erty”). SET quickly became the standard model

in the animal timing literature [2], and later also

for human time perception [2, 10]. Fifteen years

after introduction of the pacemaker-accumulator

models, Jones [17] proposed a fundamentally

different information-processing model of time

perception, which was more focused on the inter-

action of the sense of time with the external

world and other sensory modalities. This model

also constantly developed and is now known

under the name of “dynamic attending theory”

(DAT) [18]. It assumes a set of oscillators with

frequencies that can be adapted to rhythms or

other temporal cues in the external world. Rather

than counting the revolution of these oscillators,

the adapted frequency of the oscillator itself is

used to encode the temporal information.

Dynamic attending theory is still popular for the

analysis of human responses to sequences and

rhythms [19].

Along different lines, a number of theoretical

advances [20] led to a renaissance of the field of

artificial (“connectionist-type”) neural networks

during the 1980s. These models consist of a set of

simple processing elements which are connected

through synapse-like edges with variable

weights. Although the equations describing

these systems are fairly simple, they can emulate

universal Turing machines with the

corresponding computational power, given cer-

tain structural assumptions like recurrent links,

and nonlinear input/output functions. In the con-

text of temporal processing, connectionist

networks have first been used to model the

circuits in the cerebellum and the hippocampus

underlying conditioned responses [21–23]: In a

conditioning experiment, the interval between

the conditioned and the unconditioned stimulus

must be bridged in order to elicit the conditioned

response at the correct time. Thus, these models

can also be viewed at as implicit models of time

perception. In this context, a guiding hypothesis

was that time perception is realized by so-called

delay lines, i.e. a neural signal traveling along a

series of synaptic links, each of which induces a

delay, such that the time elapsed can be encoded

as the spatial position of the signal. This basic

principle seems to hold, for instance, in the audi-

tory system of barn owls, which use the sub-

millisecond delay between signals from both

ears to localize the spatial source of a sound

[24]. In addition to connectionist-style models

of conditioning, there were also more explicit

attempts to translate existing information-

processing models of time perception into a neu-

ral network formalism [25], as well as

completely new ideas based on the unique

properties of neural networks, such as the beat

frequency model by Miall [26] (see section

“Time Perception from Oscillators” below and

Chapter 2.2 for more information).

In the 1990s, driven by accelerating advance

in both neurobiology and computer power, it

became possible to simulate biophysical models

which had a structure similar to that of artificial

neural networks, but were directly based on

physical equations for describing voltage and

current dynamics in neurons and synapses.

Buonomano et al. pioneered detailed,

biophysics-based simulations of the cerebellum

(including conditioning experiments with time

delays of several hundred ms [27]) and cortical

Neurocomputational Models of Time Perception 51



network models including synaptic short-term

plasticity which enabled interval discrimination

in an emergent and natural fashion (i.e. without

much parameter tuning) [28, 29]. During the

following years, a large number of neural timing

models—both of the biophysical and connection-

ist type—were advanced, exploring a wide range

of potential biological mechanisms, which range

from properties of single neurons [30], neural

oscillators read out by coincidence detectors

[31] to reverberating loops within the cerebellum

[32, 33], slowly climbing activity in neocortical

neurons [14, 34], synfire chains [15, 35] and

stochastic decay of memory traces [35].1

In parallel to the advances in neurocompu-

tational modeling, psychological theories of

timing also flourished. The scalar expectancy

theory was on peak of its popularity, “probably

the most widely cited model of time perception

during the 1990s” [5], and still other information-

processing models were proposed to challenge

SET’s success, such as the behavioral theory of

timing [38] or pacemaker-free approaches [39].

In the 2000s, the number of models and experi-

mental findings grew further, and the different

fields and modeling approaches of time percep-

tion in psychology and in neuroscience slowly

began to converge. To name but a few examples:

The connectionist model by Miall [26] was

embedded in a neuroanatomal architecture of

striato-cortical circuits proposed by Matell and

Meck [31], and implemented sources of

variability as in SET. The concept of the delay

line was implemented in spiking neuronal

networks called synfire chains [15, 35] and

analyzed in terms of timing errors. And the bio-

physical state-dependent network by

Buonomano [29] was tested in a series of psy-

chophysical experiments [40]. This trend of

merging the different fields still continues to

date, up to a point where models can be directly

tested by experimental findings from both fields.

Experimental Constraints on Time
Perception Models

Experimental work has unraveled a couple of

psychological and biological constraints candi-

date mechanisms of time perception should obey

to. On the biological side, besides the general

requirement that the mechanism should be

biophysically feasible and physiologically rea-

sonable, it should account for the pharmacologi-

cal modulation of time perception. Temporal

processing can be strongly altered by drugs,

such as agonists and antagonists of dopamine

and acetylcholine receptors [13]. For instance,

animal and human studies have shown that the

duration of a temporal interval is perceived as

longer under the influence of D2 receptor

antagonists, implying a slow-down of the inter-

nal clock [41, 42], while intervals are perceived

as shorter under D2 agonists, as if the clock

would speed up. Such drug effects may be

explained by neurocomputational models

constructed with sufficient biological detail.

On the psychological side, the following three

constraints are to be named:

1. Linear psychophysical law: Psychophysical

laws describe how the subjective magnitude

of a stimulus feature changes as a function of

the physical magnitude of that feature. In time

perception, it relates subjective time to physi-

cal or objective time. A large number of

experiments have shown that this relation is

best described by a linear function [2–4].

2. Scalar property of timing errors: Similar to

the psychophysical law, one can also relate

the standard deviation of a duration estimate

(measured either directly by the variability of

response times, or e.g. by the just noticeable

difference between two similar intervals) to

the real duration. Most often, this relation has

been found to be linear, refereed to as

Weber’s law of time perception or the scalar

property [2, 3, 5–7].2 However, deviations

1All these models deal with the perception of single

temporal intervals in the subsecond to minutes range.

See [29, 36] for extensions to sequences of intervals,

and [37] for longer and shorter durations.

2More precisely, the scalar property requires that the

entire distribution of a time estimate scales with the phys-

ical duration, i.e. it also includes the linear psychophysi-

cal law.
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from linearity have also been reported [2, 3, 5,

43]. In particular, the increase of the timing

errors with duration is supra-linear (e.g. with

the square or cube of time) for longer intervals

[44–46] and sub-linear for shorter ones (e.g.

with the square-root of time) [46].

3. Modulation by non-temporal factors: The

subjective duration of an interval can be

influenced by a number of stimulus features

unrelated to interval duration itself, and by the

current state of the brain [5, 12, 47]. For

instance, intervals are overestimated if they

are signaled by stimuli that are large, intense,

or moving. Other factors that modulate sub-

jective duration are attention, arousal or the

position of a stimulus within a sequence.

Ideally, a neurocomputational model of time

perception should not only be consistent with

these constraints, but should actually be able to

explain how they evolve from the underlying

biophysics or network mechanisms. As the scalar

property has often been highlighted as the most

fundamental of these psychophysical constraints,

we will start below with some theoretical, statis-

tical considerations on it.

The Scalar Property and Its Relation to
Basic Mechanisms of Time Perception

The scalar property is a recurring result in

experiments on time perception and, as noted

above, is not trivial to explain in neuronal

terms. Many models of time perception have

attempted to reproduce it. While some models

just explicitly incorporated a source of scalar

variance, thus not really explaining its origin,

others directly aimed to provide a mechanistic

explanation. Often, these mechanisms are only

revealed by a thorough understanding of the

underlying mathematics. The fact that there are

some models that are intrinsically able to repro-

duce the scalar property and others which do not,

raises the question of whether this former class of

models has some common features that separates

it from the latter. Moreover, empirically, the

scalar property has been reported to hold not

universally, but both error scalings that are

supra-linear or sub-linear have been reported as

well. Supra-linear increases predominantly occur

at longer time scales, while sub-linear scaling is

most often seen at shorter times. Almost no

model of time perception is able to reproduce

both of these deviations (but see [15, 39]), but

for our understanding of the underlying biophys-

ical and physiological mechanisms, the existence

of different error scalings may be highly impor-

tant and revealing.

The problem of explaining the scaling of

timing errors is an intrinsically stochastic one,

so it seems appropriate to interpret the mecha-

nism underlying time perception as a stochastic

process. A stochastic process can be loosely

defined as a random variable (e.g. a neuron’s

firing rate) that evolves in time according to

some rule that may be given purely in probabilis-

tic terms (as, e.g., in a Markov chain) or may be

formulated as a recursive or a differential equa-

tion that includes a probabilistic (noise) compo-

nent. Hence, successive values will be defined by

some (conditional) probability distribution rather

than being determined strictly deterministically.

In the brain there are many sources of intrinsic

noise (such as thermal fluctuations, ion channel

noise, or stochastic synaptic release) as well as

noise introduced by the unpredictable nature by

which environmental inputs may impinge on us.

Thus, quite naturally, various noise sources could

affect the neuronal processes of interval time

estimation. In many models, noise is a pure nui-

sance qua definition, a factor that limits precise

and accurate information processing. However, it

has also been proposed that noise may play a

potentially beneficial role [48], e.g. in the detec-

tion of weak stimuli (termed stochastic reso-

nance) [48–50] or decision making [51]. In time

perception, noise itself may also be an actual

source of temporal information. As an example,

consider the task of estimating time from the

motion of all ink particles in a drop of ink. One

way to do this would be to let the drop run down a

sloped surface. On average, all ink particles

move in the same direction in this case, so a

good estimate of time could be derived from the

mean distance the whole drop has passed, given

knowledge of how fast it moves. Of course, not
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all of the particles will move at the same speed,

and because of this variability, there will also be

a certain variability in the estimate of time. A

fundamentally different way to measure time

using the ink is to put the drop into a large pot

of water and to observe the diffusion of the ink

particles. Over time, the radius of the inky spot will

increase, while the concentration of ink at the

center of the spot decreases, so both of these

quantities could be used to estimate the passage

of time. In this case, however, on average the

particles do no move at all, as on average the center

of the spot will stay where the ink was injected.

Rather, it is the variance that increases over time

and which carries the temporal information.

In a similar manner, noise and variability nat-

urally occurring in neuronal systems may be

exploited to decode the duration of an interval.

This raises the question of how the quality of this

encoding can be quantified, and compared with

the alternative encoding of time in the systematic

changes of the mean. One way to measure this is

the Fisher information, which quantifies how

much information the system contains regarding

one of the parameters p of the probability distri-

bution P(x, p) that underlies the stochastic pro-

cess, such as the time.

Importantly, this information measure can be

directly related to the variability of an estimator

of interval time, which can be any quantity

derived from the stochastic process (such as

diameter of the ink spot in the example above)

from which the time estimate can be directly read

off. A mathematical theorem states that the vari-

ance Var t
_

� �
of such an estimator t

_
can never

fall below a lower bound

Var t
_

� �
� 1

IF tð Þ,

where IF(t) is the Fisher information of the time t.

This so-called Cramer-Rao bound restricts the

precision of any estimator of time, no matter

which exact mechanism it relies on or which

process it was derived from. Now, as the brain

is a system under constant evolutionary pressure,

one would expect that it is geared towards

extracting as much information about the exter-

nal world as possible, and to optimize

information transfer [52, 53]. If this is true for

time perception as well, then the above theory

says that the optimal (lowest variability) estimate

of interval time is given by the Cramer-Rao

bound. Thus, timing errors observed in psycho-

physical experiments should follow the same

functional form as computed by the Cramer-

Rao bound.

In Hass and Herrmann [54], we computed the

Cramer-Rao bound for an important class of pro-

cesses, namely those with a Gaussian probability

distribution, and compared the results to those

from experiments and neurocomputational

models. We assumed that the variance of these

processes increases linearly in time. The assump-

tion of this particular form of variance increase

over time is justified whenever the timing pro-

cess relies on some kind of counting or integra-

tion (see above).3 Three different principle ways

of time estimation were considered: First, tem-

poral estimates can be based on the mean (sys-

tematic) changes in a process, like gradually

rising activity. This is by far the most commonly

suggested approach in both psychological and

neurocomputational models of time perception.

Under the assumption that the mean of the pro-

cess increases linearly with time, as it is implied

by the linear psychophysical law, we found that

the timing errors (standard deviation of the esti-

mate) increase like the square root of time. Such

a scaling was also generally observed in the

corresponding neurocomputational models,

unless specific assumptions were deliberately

put in to change the scaling. Second, we consid-

ered estimates based on linearly increasing vari-

ance of the process. Such an estimate can be

easily obtained by dividing the observed variance

at a given time by the variance observed at the

start of the interval. For such an estimator, we

found the scalar property to hold exactly, with a

slope that does not depend on the parameters of

the model. It is important to note that this does

not trivially follow from the linearity of the

3 Furthermore, it is required that the temporal correlations

of the process decay to zero for sufficiently long times.
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increase in variance, as we consider the standard

deviation (square root of variance) of the esti-

mate. For a mean-based estimator, the very same

variance increase leads to a sub-linear scaling of

timing errors. Finally, the third option considered

was to estimate time from decaying correlations.

Just as the variance in a noisy system increases

over time, the correlation (e.g. among two spike

patterns) will decay over time, unless specific

mechanisms are in place to counteract this ten-

dency. Thus, the amount of correlation present at

a given time can also be used to estimate the

passage of time [55]. We found that irrespective

of the exact form of the correlation function, the

increase in timing errors is steeper than linear

(rather than linear, as claimed in Ahrens and

Sahani [55]). Figure 1 shows two examples

with an exponential and a power-law decay in

correlations, both resulting in the same error

scaling, and for comparison also the scaling for

the mean- and variance-based estimators. When

there are different sources of temporal informa-

tion in a single process, combining them (e.g. in a

maximum-likelihood estimator) may increase

the precision of the estimate, but there is a hier-

archy of temporal information conveyed by the

process in the sense that mean-based estimators

always dominate over variance-based ones, and

variance-based estimators dominate over those

relying on decaying covariances. These results

still hold when several different processes are

combined to generate a joint estimate of time,

as it is likely the case in the brain.

This analysis has at least two interesting

implications. First, using a time estimate that

relies on the intrinsically stochastic features of a

process, namely the variance increasing over

time, is the only way for the scalar property to

hold exactly (given the assumptions made).

Although this was not explicitly stated in all of

the neurocomputational studies in which the sca-

lar property holds [34, 35, 56–59], a closer look

at the proposed mechanisms indeed strongly

suggests variance-based estimates [54]. Second,

both supra-linear and sub-linear scaling of timing

errors can result from fundamentally different

types of estimators, based on correlations or on

means, respectively. Potentially, the experimen-

tally observed transitions among different scal-

ing regimes (see above) are due to changes in the

type of estimator used by the nervous system.

Neurocomputational Models of Time
Perception

As mentioned above, there is a large number of

modeling studies on time perception exploiting a

vast variety of neuronal mechanisms. Here, we

focus on those four currently most frequently

discussed (Fig. 2), and review two of them in

more detail (ramping activity and synfire chains),

while for the other two (oscillator models and

state space trajectories), we will just briefly dis-

cuss the experimental evidence in terms of the

constraints introduced above.

Time Perception from Slowly Ramping
Firing Rates

One class of models assumes that interval time

estimates are derived from neural firing rates

slowly ramping up or down during the interval

to be encoded, and reaching peak activity when

Fig. 1 Comparison of the minimal standard deviations of

estimators of interval duration based on different sources

of temporal information. All solid lines show processes

with exponentially decaying correlation. Dotted line:
Power-law correlation information only. Solid gray line:
Exponential correlation information only. Upper solid
black line: Correlation and variance information com-

bined. Lower solid gray line: Correlation, variance and

mean information combined. For long enough intervals,

the error function is well approximated by the respective

functional expressions. Reprinted with permission from

Hass and Herrmann [54]. Copyright 2012 by the

Massachusetts Institute of Technology
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the to be estimated interval is about over [14, 60].

This kind of ramping or climbing activity has

frequently been observed in in-vivo electrophys-

iological recordings from various cortical areas

[61] such as the motor and premotor cortex [62,

63], lateral interpariatal cortex [64], SMA and

preSMA [65] and PFC [66–69] (for more details,

see section “Experimental Evidence for the

Ramping Activity Model” below). To represent

and read out different interval times, one may

either adjust the slope of ramping activity to the

interval to be estimated, such that after that time

always a fixed threshold activity is reached

which triggers a response in postsynaptic

neurons, or downstream neurons or networks

may be tuned to specific firing rates of the

ramping neuron population. Both mechanisms

may be combined of course. Adjusting the slope

of climbing activity may be necessary in any

case, however, since the range of firing rates of

cortical neurons as well as the sensitivity to firing

rate changes are limited, so that it would be

advantageous to adapt the rate range dynamically

to the set of interval times to be represented (as

supported by experimental data, see below).

Downstream neurons may also reset activity in

the ramping neurons once the threshold (and thus

the temporal interval) has been passed [14].

Ramping activity as observed experimentally

has several properties that are not trivial to

explain. Foremost, ramping activity can stretch

over tens of seconds, which seems incompatible

with many of the much faster biophysical time

constants which govern electrical activity in recur-

rent cortical networks. Furthermore, ramping

often is surprisingly linear [62, 65, 69, 70], and,

as already noted, its slope seems to adjust to

observed temporal intervals [60, 67, 69, 70].

One model that implements interval timing

through adjustable ramping activity rests on a

single cell positive feedback loop between

spiking activity, spike-triggered Ca2+ influx,

and Ca2+-activated depolarizing (inward)

currents [14], that slowly drives the cell from a

low towards a high steady firing rate.

The mathematical model [14] contains only

those biophysical ingredients essential for

explaining the phenomenon at the spiking level.

Fig. 2 Overview over four principle mechanisms of time perception that are currently supported by experimental

evidence. See text for details
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It consists of a so-called leaky integrate and fire

(LIF) unit where changes in membrane potential

V are governed by a single differential equation

C
dV

dt
¼ gL V � ELð Þ þ IAHP þ IADP þ Iext: ð1Þ

This equation reflects a passive membrane circuit,

with a membrane capacitance C in parallel to a

leakage conductance gL (representing always

open ion channels) and a battery EL (representing

the passive resting potential to which the cell

would relax in the absence of any other currents),

to which three active current sources were added.

These are Iext which describes an external input to

the neuron, mediated either by synapses or direct

current injection through an electrode, an after-

hyperpolarizing (AHP) current which ensures a

realistic refractory period after a spike was trig-

gered, and a calcium-dependent after-depolarizing

(ADP) current as it has been described in pyrami-

dal neurons [71, 72]. This simple neuron model

does not contain voltage-dependent sodium and

potassium channels which are usually responsible

for the generation of action potentials in real

neurons. Instead, a fixed threshold potential Vth

is defined, and whenever the voltage crosses this

threshold from below, a spike is recorded and the

voltage is set to a reset value Vr. In agreement with

empirical observations [73], each spike triggers a

fixed amount of Ca2+ influx which then exponen-

tially decays in time. Calcium influx in turn

activates the ADP current

IADP ¼ gADPm V � EADPð Þ ð2Þ

which depends on a Ca2+-dependent gating vari-

able m which gives the proportion of open

channels (or the opening probability) between

zero and one. The Ca2+-dependent gate m is

governed by another differential equation

τADP
dm

dt
¼ minf Ca2þ t� tsp

� �� �� m: ð3Þ

m relaxes to a steady-state value minf, which

depends on the cellular calcium concentration.

As the reversal potential EADP of this current is

far above spiking threshold (+35 mV [72]), open-

ing this channel causes a depolarization of the

cell, leading to further spiking activity, which in

turn leads to further Ca2+ influx, and so on.

Hence, once activated, this positive feedback

loop will drive the cell towards higher and higher

firing rates, up to a point where it is exactly

counter-balanced through negative feedback

loops given by the hyperpolarizing currents Ileak
and IADP as well as inhibitory synaptic feedback

(not further discussed here). This point at which

the different positive and negative feedback

loops and thus current sources are exactly in

balance, is called a stable fixed point of the

system, and corresponds to steady self-

maintained spiking activity with a rate that

depends on the different cellular parameters.

Thus, once the cell is activated beyond a thresh-

old that gets this positive feedback loop between

spike-triggered Ca2+ influx, Ca2+-activated ADP

currents, and ADP-driven spiking, started, it will

usually quickly approach this stable fixed point

corresponding to persistent spiking activity. This

transition is usually quite fast, on the order of the

time constants of the cell membrane and the

conductances of the involved ion channels,

hence leading to a quick ramping-up of activity.

To examine the dynamics of the transition to

the stable firing state in more detail, it is instruc-

tive to plot the instantaneous firing rate f (i.e. the
inverse of the interval between two spikes)

against the ADP current <ADP> averaged over

this interval. In this so-called phase plane, the

steady state is a point given by a pair of values

(f0, <ADP>0) which will remain constant once

this state has been reached. This point is also

defined by the intersection of two curves in this

plane, the so-called nullclines (Fig. 3). The f

nullcline is the set of all points at which the net

change in firing rate becomes exactly zero, while

the <ADP> nullcline is the set of all points at

which there is no change in average ADP current

anymore (consequently, the fixed or steady state

point is exactly the point where both these

quantities do not change anymore, as given by

their intersection). Another way to put this is to

note that the f nullcline gives the average amount

of ADP current for each level of firing rate f
needed to maintain exactly that particular rate,
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while, vice versa, the<ADP> nullcline represents

the amount of average ADP current that is pro-

duced at a given firing rate f. Thus, wherever these
two curves meet, demand and supply of ADP

current are in perfect balance, and the system

remains at that state if unperturbed.

A special situation arises when the parameters

of the model are configured such that the two

nullclines lie on top of each other for a larger

range of firing rates. In this case, rate-driven

ADP activation and ADP-driven spiking activity

are in balance over a whole range of rates,

resulting in a continuum of fixed points which

is called a line attractor [8, 74, 75]. Thus, the

system is able to maintain a range of steady firing

rates and, in the absence of further perturbations,

will remain at the rate at which it has been put by

some input. However, if the overlap between the

nullclines and thus the balance between ADP

current supply and demand is slightly disturbed,

the continuum of fixed points breaks down leav-

ing a narrow corridor between two flanking fixed

points through which activity can rise again, i.e.

this cellular system, once pushed beyond some

threshold, will move again towards the upper

fixed point (Fig. 3, left panels). The essential

feature of this system now is that the speed of

ramping activity, i.e. the rate of change in firing

rate, is determined by the distance between the

two nullclines: As the system is still very close to

the completely balanced line attractor configura-

tion, at each firing rate the ADP input will only

be a tiny little more than what would be needed

to maintain this rate, so firing rate will increase

Fig. 3 Ramping activity in a single cell model based on a

positive feedback loop [14] for three different

configurations of the nullclines. Left: State space spanned
by the instantaneous firing rates (FR) and the gADP con-

ductance averaged over one inter-spike interval, including

the FR nullcline (dashed), the <ADP> nullcline (solid
black) and the trajectory that the system takes through the

FR/<ADP> space when briefly excited by external

inputs. Right: Time course of the firing rate for each

configuration. The small bump at the beginning results

from the brief initial stimulation. Modified from

Durstewitz [14] with permission (Copyright 2003 by the

Society for Neuroscience)
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only slowly. In other words, the width of the

corridor in Fig. 3 (left panels) defines an effective

time constant, given through the system’s

dynamic, which can be many orders of magni-

tude longer than any of the system’s biophysical

time constants, and which will vary as the dis-

tance between nullclines is varied. Thus, the

result is a slow ramping of firing rates as seen

in the electrophysiological experiments (Fig. 3,

right panels).

It is important to emphasize that the speed of

the transition, i.e. the slope of ramping activity,

and thus the length of the intervals that can be

encoded depends directly on the amount of

imbalance between ADP demand and supply, or

in other words, the mismatch between the two

nullclines: The smaller the imbalance, the slower

the transition. In this manner, at least in principle,

arbitrarily slow ramping could be achieved if the

difference between the two nullclines becomes

arbitrarily small over a large range of firing rates.

On the other hand, if the nullclines are very far

apart (Fig. 3, lower left panel), the transition is as

fast as the internal time constants of the neuron

would permit (Fig. 3, lower right panel).

One way to systematically manipulate this

mismatch between f and <ADP> nullclines,

thus regulating the slope of ramping activity, is

to change the amount of input into the neuron:

The higher this input, the lower the ADP input

needed to maintain a given rate. This could be

achieved either through changing synaptic input

from another group of neurons which thus

regulates the slope of ramping activity, or

through synaptic plasticity within the circuit of

the ramping neuron itself (which could be driven

by a temporal difference error signal for instance,

see [14] for details).

The question remains how the parameters of a

real neuron could be adjusted such that the two

nullclines are almost in parallel over a wide

range of firing rates, which is a prerequisite for

ramping activity. One possible way to achieve

this is by means of a self-organization process

that monitors long-term fluctuations of the cal-

cium concentration: In a line-attractor configura-

tion, noise-induced fluctuations tend to be large

as along the line there is no force opposing

fluctuations (i.e., movement along the direction

of the line attractor can be conceived as “friction-

free”). Hence, the system could potentially drive

itself into a line attractor configuration by

adjusting its parameters (here, the steepness of

the <ADP> nullcline) such that the variance in

calcium concentration is maximized.

Finally, another issue concerns how the slope

of the timer could be adjusted to observed

intervals. Figure 4 outlines a potential self-

organizing mechanism based on an underlying

network oscillation and spike-timing dependent

synaptic plasticity (STDP). STDP is an experi-

mental phenomenon where the direction and

magnitude of synaptic long-term changes depend

on the precise timing of the pre- and postsynaptic

action potentials (first described by Markram

et al. [76], reviewed e.g. in Bi and Poo [77]): A

presynaptic spike preceding postsynaptic spiking

will lead to long-term potentiation (LTP), i.e. an

increase in synaptic plasticity with a magnitude

depending on the precise temporal differences

between the spikes as illustrated in Fig. 4a,

while if, vice versa, the presynaptic spike follows

the postsynaptic spike in time, long-term depres-

sion (LTD) will result. Hence, STDP formally

obeys the ideas of Hebb [78] that neurons which

contribute to the spiking of other neurons should

increase their synaptic weights to those neurons,

while if this “causal order” is reversed, the

weight should be diminished. Now the key idea

of Fig. 4 is that an underlying network oscillation

translates the firing rates of a ramping neuron,

encoding estimated time, and an “indicator neu-

ron”, encoding the actual occurrence of an event,

into a spike time (phase) difference. Neurons

firing at higher rates will spike earlier during

each cycle of the network oscillation (an idea

also common to hippocampal place coding by

phase, e.g. Buzsáki and Draguhn [79]). Hence,

if timer activity ramps up too slowly compared to

the actual event time, the activity of the event

indicator neurons will be higher than those of the

timer neurons. Consequently, the indicator

neurons will lead the timer neurons in phase

during each oscillation cycle, and thus, synaptic
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weights from the indicator to the timer neuron

will increase due to the STDP rule, providing

more synaptic drive and leading to a speed-up

of ramping activity (Fig. 4b). Conversely, if

timer activity ramps up too quickly and hence

the timer neuron fires more than the event

indicator neurons at the time of occurrence, the

spike order between the two will be reversed

during each oscillation cycle, and consequently

STDP will translate this into depression of the

respective synaptic weight to the timer neurons,

slowing them down again. Only if the slope of

ramping activity is properly adjusted, firing

rates of timer and event-indicator neurons will

be similar, and synaptic changes will be

balanced.

Fig. 4 Putative biophysical mechanism for adjusting the

slope of ramping activity to observed intervals. (a) Spike-
timing dependent synaptic plasticity (STDP) as observed

in slice recordings: Direction and magnitude of the syn-

aptic change depend on the precise time difference

between the presynaptic (tpre) and postsynaptic (tpost)
action potential. (b) Left: An underlying network oscilla-

tion translates the differences in firing rates between a

ramping (timer) neuron (started at Tcue by a cue) and an

event-indicator neuron (firing at Tstim upon presentation

of a stimulus) into a phase (spike time) difference within

each oscillation cycle, as indicated in the inset. Right:
This in turn will be converted by STDP into a proper

synaptic efficiency change. (c) Same as b for a situation

where ramping activity peaks too late compared to the

actual event time
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Experimental Evidence for the Ramping
Activity Model
As already noted, ramping activity is common in

many cortical and sub-cortical structures, in fact

providing the initial motivation for the above

model. In addition, in some studies this kind of

slowly ramping activity has indeed been observed

to adjust to the temporal interval between a

predicting cue and a sequent reward [60, 67, 69,

70]. EEG studies have revealed a similar phenom-

enon, the so-called Contingent Negative Variation

(CNV). This component also ramps up during time

perception tasks, and the slope of the increase is

correlated with behavioral performance [80, 81].

The CNV originates from the median fronto-

central region (FCz), most likely from the SMA,

consistent with results from fMRI studies [81, 82].

Furthermore, the single neuron model was based

on biophysical ingredients known to be present in

many cortical pyramidal cells. In particular, the

ADP current (also termed ICAN [83]) which is

central to the model has been demonstrated to be

involved not only in single cell persistent activity

[71], but in fact could establish a whole range of

stable firing rates in single neurons [84] as

predicted by a line attractor configuration

(although other dynamical mechanisms for this

phenomenon have been proposed as well, see

Fransén et al. [85]). Furthermore, we recently re-

analyzed the model with regards to dopaminergic

modulation. According the current electrophysio-

logical literature, the activation of D2 receptors

caused a decrease of both inhibitory and excitatory

conductances, but the decrease is much stronger in

the GABAergic, inhibitory ones. The result is a net

increase of the synaptic input to the model neuron,

which shifted the firing rate nullcline downwards

[86]. As a result, the gap to the ADP nullcline

increases, and the high-rate fixed point is reached

faster, consistent with the experimentally

suggested speed-up of the internal clock [13, 41,

42]. Vice versa, inactivating the D2 receptors has

the opposite effect. Of course, this finding strongly

relies on the relative magnitude of the attenuation

of excitatory vs. inhibitory conductances, and it

should be pointed out that the literature on this is

still quite scarce.

In summary, the model is quite well supported

regarding its neurobiological substrate. With

regards to the psychophysical support for the

model, Fig. 3 shows that the firing rates increase

roughly linearly with time, at least far away from

the fixed point. Thus, assuming that temporal

intervals are encoded by firing rates reasonably

below the fixed point, a linear psychophysical

law is approximately reproduced. The scaling of

timing errors was not analyzed for this model so

far, but from the information-theoretical analysis

in fourth section one may infer that it should be a

square-root function in time, as the interval esti-

mation is clearly based on the deterministic

(mean-based) ramping of the firing rates. Thus,

the scalar property would not hold for this model

without additional assumptions. However, it is

conceivable that for very small differences

between the nullclines (yielding longer transition

times), the drift towards the upper fixed point is

more and more dominated by noise in the system

rather than by the systematic driving force. In

this case, the estimator could effectively become

variance-based and thus reproduce the scalar

property. Another possibility is that it is not so

much the current value of ramping activity that

transports the interval estimate, but the

adjustable slope and ultimately the read-out by

postsynaptic neurons once a fixed threshold is

reached (see above). In this case, shorter

intervals would be estimated by timer neurons

with a wider gap between their gADP and firing

rate nullclines, reducing noise-induced variation

as the flow towards the fixed point is stronger.

Conversely, longer intervals would be estimated

by timer neurons with a small gap between

nullclines, leading to larger noise-induced varia-

tion. These additional mechanisms may change

the usual square-root scaling for mean-based

timers.

Time Perception from Synfire Chains

Another principal mechanism for time percep-

tion is the traveling of neuronal activity along a

chain of neural groups, each of which
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representing a specific temporal interval such

that traveling time directly translates into an

interval time estimate (Fig. 5, right panel) [15,

35, 87]. Hence, in the simplest scenario, pools of

neurons would be chained through feedforward

synaptic connections, so that each pool in the set

would activate its successor pool. There is, how-

ever, an important problem with such a straight-

forward solution: For such a chain of neuronal

pools to work as a reliable timer, on the one hand

it must be ensured that each pool provides suffi-

cient synaptic activation to make neurons in the

next pool fire. If this fails only for a single pool,

the chain is broken and time estimation would

break down. Importantly, in this case, as the

length of interval time increases, a complete fail-

ure in the ability to estimate that interval would

increase in likelihood as the number of pools

through which activity has to pass successfully

(i.e., the chain length) increases with time. How-

ever, this is not observed experimentally and also

contradicts our everyday experience.4 One the

other hand, synaptic connections among pools

should not be too strong either, such that run-

away excitation throughout the network is

prevented. It turns out that for a specific chain-

like network architecture, called a synfire chain

(Fig. 5, left panel) [89], there exists a stable state

that is characterized by the stable propagation of

synchronous activity packages. Synchronous

spiking is assumed to be particularly efficient in

driving postsynaptic neurons as coincident input

from many synapses tend to elicit a much larger

excitatory postsynaptic potential than if these

inputs were smeared out in time. A key feature

of the synfire chain is a strongly converging and

diverging connectivity, i.e. each neuron in one

pool projects onto many other neurons in the

subsequent pool (divergence) and also receives

connections from many neurons in the preceding

pool (convergence), such that small deviations in

spike times tend to be averaged out by the multi-

ple synapses. It can be shown that for this type of

architecture a stable solution (fixed point) exists

in a state space spanned by the fraction of

activated neurons in a pool on the one hand

side, and the jitter of spike times within a pool

on the other. Hence, under certain conditions, too

large jitter in spiking times (which would cause

non-coincident and thus weaker overall postsyn-

aptic input) would automatically shrink down

again under the system dynamics. Likewise, the

fraction of activated neurons in a pool also tends

towards a stable number, i.e. if either too many or

too few neurons were active in the preceding

pool, the number of active neurons in the next

pool would automatically return to the fixed

point value. Thus, stable propagation of synchro-

nous spiking activity throughout the chain is

ensured, and both the dying out or runaway of

activity is prevented, even in the presence of

realistic synaptic background noise [90, 91].

The spiking jitter at the fixed point has been

shown to be below one millisecond, thus the

synfire chain was proposed as a possible candi-

date for precise spike time patterns that have

been observed experimentally (e.g. Riehle et al.

[92]).

The high precision in spike times also makes

the synfire chain a promising candidate for a

neural substrate for time perception. If the first

pool of the chain is activated at the onset of an

interval to be timed, temporal information will be

translated into a spatial code as activity spreads

through the chain in a wave-like manner, such

that the time elapsed since initiation of the chain

is represented by the spatial location of the pool

that is currently most active [15] (Fig. 5). For this

mechanism, one can also compute the full statis-

tics of the time estimate from the temporal

properties of the individual pools: On average,

it takes a time Δt in the range of milliseconds for

the activity to be transmitted from one pool to the

next. The individual spike times jitter around this

mean which can be well approximated by a

Gaussian distribution with a standard deviation

of σΔt well below one millisecond (Fig. 5). Thus,

the interval time T is estimated from the pool

number i that is active at that time by the estima-

tor T
_ ¼ ∑ i

l¼1Δt lð Þ. As the mean of Δt is indepen-
dent of the pool number, the average of this

estimator is simply Δt � i and its standard

4 It should be noted, however, that there is a computa-

tional study which considered such failures as a possible

basis for the scalar property [88].
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Fig. 5 (Left) Illustration of
the synfire chain model

structure. A readout

network ℳ receives

convergent connections to

from different synfire

chains such asC1 andC2. By
the competition between

the respective weights, w1

and w2, the network

determines which chain

optimally responds at a

time interval represented

by the output unit in ℳ.

(Right) Raster plot showing
the spikes in the readout

network ℳ and selected

pools from the chains C1
and C2. Each dot

corresponds to a spike. In

C1, activity propagates

faster and with smaller

jitter σP compared to C3.
Reprinted from Hass et al.

[15] with permission

(Copyright 2008 by the

authors)
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deviation is σΔt

ffiffiffiffi
T
_

q
, as the variance of the sum of

weakly correlated Gaussian random variables

approximately adds up as well. This scaling of

the standard deviation is in line with the predic-

tion of the information-theoretical framework

(see “The Scalar Property and Its Relation to

Basic Mechanisms of Time Perception” above),

as this model clearly uses a mean-based estimator

for time perception. Thus, as it stands, the scalar

property would not be reproduced by this model.

However, physiological constraints may intro-

duce additional sources of variability and poten-

tially change the scaling of timing errors. In a

synfire chain, one apparent constraint is the

length of the chain. The synfire chain has been

proposed as a model of the cortical column [93]

which comprises ~10,000 neurons. Furthermore,

based on the theoretical framework laid out above

each pool would need a minimum of about 100

neurons to ensure stable transmission. Given a

mean transmission time of about 1 ms, it follows

that each chain could only encode intervals of

up to 100 ms. If the chain length is anatomically

fixed, the only way to encode longer intervals

is to transmit the activity more slowly, i.e. to

increase the transmission time Δt. To investigate

how this could be implemented, a chain was

modeled using integrate-and-fire neurons (see

section “Time Perception from Slowly Ramping

Firing Rates” above) connected by synapses with

a physiologically realistic time course of postsyn-

aptic potentials determined by a so-called alpha

function with a single time constant α:

PSP tð Þ ¼ t

α
exp � t

α

� �
: ð4Þ

In addition to the feedforward connections along

the chain, each neuron received stochastic excit-

atory and inhibitory input to mimic synaptic

bombardment originating from other neurons

and areas outside the circuit. This input was

adjusted to exhibit high variability as typical for

real cortical networks. This random input is the

basis for the temporal jitter in the spike times that

result in timing errors.

To change the velocity of neural transmission

along the chain, each of the parameters of the

model was manipulated individually, with changes

in the synaptic time constant α being the most

effective means for changing the speed of propa-

gation. It turned out that each of the parameter

manipulations that increases Δt also increases the

timing error σΔt. This result is illustrated in Fig. 6:

Each curve shows the timing error as a function of

the duration of the interval with a different Δt.
While this error still follows a square-root function

for each individual chain, increasing Δt leads to

longer encoded intervals but also to a larger multi-

plicative factor in the square-root scaling function.

From Fig. 6, it is also apparent that there is an

optimal chain for each temporal interval to be

encoded, where by optimality we mean that the

timing error is minimal. As the increase of this

error with Δt is much larger (order 3) than the

increase along the layers (order 1/2), it is always

optimal to use the entire length of the chain with

the lowest Δt that is able to encode the current

interval. The form of the optimal timing error is

[15]

σ�T Tð Þ¼ σmin Δtð Þ �
ffiffiffi
T

p þD for T�min Δtð Þ�L
AT3þBT2þCTþD otherwise,

�

ð5Þ

where σ2min Δtð Þ is the variance of the minimal

transmission delay Δt. The dotted line in Fig. 6

shows a fit of the simulated data to Eq. (5), which

Fig. 6 Timing error, e.g. standard deviation of the dura-

tion estimate, as a function of the interval duration for

various speeds of propagation. The solid curves depict

simulation data and the dotted line represents the optimal

timing error σT
*(T) from Eq. (5). It is close to the lower

envelope of the simulation data. Reprinted from Hass et al.

[15] with permission (Copyright 2008 by the authors)
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is close to the lower envelope of all chains. For

intervals below 100 ms, this line coincides with

the square-root error function of the fastest chain.

For intervals considerably above 100 ms, the

scaling of the error becomes supra-linear, but

one can also find an intermediate regime

(~100–400 ms) where the scaling is approxi-

mately linear. Thus, if one assumes that there is

a mechanism for selecting the optimal chain for

each temporal interval, the anatomical constraint

of a maximum chain length will produce all three

regimes of error scaling that have been observed

experimentally: Sub-linear scaling at short inter-

val durations, supra-linear scaling at long

durations, and (approximately) linear scaling

for intermediate intervals. Also, the model

explains why it is actually necessary to switch to

a more unfavorable error scaling at longer times.

Furthermore, as apparent from Fig. 6, only

intervals of up to ~700 ms can be encoded by this

mechanism. For much longer values of Δt, the
spike time jitter becomes so high that a reliable

transmission is no longer guaranteed. This value is

close to the interval length that has been proposed

as a transition point between different kinds of

neural mechanisms for temporal encoding.

Experimental Evidence for the Synfire
Chain Model
In general, the existence of synfire chains in

cortical networks is supported by the observation

of precise spatio-temporal spiking patterns which

may be less well explained by other physiologi-

cal or anatomical concepts [89, 92, 94–97] (but

see Izhikevich [98] for an alternative concept).

However, the results from these experiments are

discussed controversially (see Abeles [94] and

Grün [96] for current arguments), and direct evi-

dence for synfire chains may be hard to obtain if

the neural pools forming a chain are not spatially

organized, as in that case even with current mul-

tiple unit recording techniques only a few

neurons may be captured from each chain. It

has also been argued that the statistical tests for

detecting spatio-temporal spike time patterns

may rest on incorrect or insufficient null

hypotheses and are thus flawed (McLelland and

Paulsen [99], see also Grün [96]), and that the

occurrence of precise spatio-temporal patterns

could therefore be explained by chance.

With regards to the evidence for synfire chains

as a timing mechanism, this model provides a

possible explanation for the temporal tuning

curves of neurons in various neocortical areas

[100–104]: When averaged across trials, neurons

in a given pool representing a specific temporal

interval will fire most often at the time that is

given by the accumulated mean transmission

time for that pool, but due to noise and spike

time jitter in the chain, they will also tend to

fire for longer and shorter intervals with a likeli-

hood smoothly decaying with distance from the

mean time. While modulation of interval timing

by non-temporal factors or pharmacological

conditions was not specifically addressed in this

model, the fact that almost any change of a model

parameter would change the transmission time

highlights that subjective duration is easily sus-

ceptible to other factors in this framework. In

particular, as discussed above (section “Time

Perception from Slowly Ramping Firing

Rates”), activation of D2 receptors may lead to

an increase in net synaptic current [86], and if

this holds in this model as well, the average

membrane potential is shifted closer to the firing

threshold under D2 activation, which also lead to

a faster transmission and thus an increased speed

of the internal clock, as observed experimentally.

Regarding psychological evidence, the model

can obviously reproduce the linear psychophysi-

cal law as long as the average transmission time

among neural pools is constant in time, which is

fulfilled in a stable synfire configuration. Further-

more, while it was not possible to reproduce

scalar timing with the basic one-chain model, a

collection of multiple chains adapted to represent

different interval times in an optimal manner

could potentially explain the experimentally

observed changes of scaling behavior for differ-

ent interval durations. Finally, non-temporal

factors such as attention or stimulus intensity

are also likely to modify the net input currents

and thus, the average distance from firing thresh-

old, in a similar manner as D2 receptor activation

does. Thus, one may naturally expect these

factors to distort timing within this model

framework.
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Time Perception from State Space
Trajectories

An intriguing and elegant possibility for

representing time suggested by Buonomano

[29] (see also Chapter 2.3 in this book) is that a

neural system may just exploit the naturally

occurring variation in neural and synaptic

properties and the temporal evolution of neural

states, without the need of explicitly and specifi-

cally tuned mechanisms (an idea related to the

computational concept of a “liquid state

machine” introduced by Maass et al. [105]). A

neural system, once activated, would follow a

unique trajectory through its state space (Fig. 2)

[40, 51], e.g. the space spanned by the membrane

potentials or the firing activities of all the

neurons in a local network. In other words, at

each point in time, due to the multiple feedback

loops and effective time constants in a highly

diverse neural network, the state of population

activity will be different and unique. Thus, by

adapting downstream networks to read out spe-

cific population states they could be tuned

towards specific temporal intervals, alleviating

the need for specific anatomical architectures or

physiological mechanisms. Karmarkar and

Buonomano [40] found the predictions of this

kind of model to be consistent with human psy-

chophysical experiments, at least within the

range of up to hundreds of milliseconds. These

experiments were explicitly tailored to probe the

state-dependent nature of temporal

representations by presenting context intervals

before the actual test intervals. The authors also

tested for timing errors, and found that the scalar

property does not hold. Rather, the errors

increased sub-linearly in time [40], as expected

from a mean-based model. Unfortunately, the

nature of the psychophysical law was not tested,

and neither the effect of non-temporal factors nor

of pharmacological manipulations.

In terms of the underlying neurobiology, the

idea of using state space trajectories for time

perception is supported by recent in vivo electro-

physiological evidence from the rodent prefron-

tal cortex using multiple single-unit recordings

[106]: While the activities of individual neurons

may strongly vary over time, the “spatial” dis-

tance of neural population states in the neural

state space (also termed the multiple single-unit

activity [MSUA] space in this context), seemed

to almost linearly increase with the passage of

time across a wide range (Fig. 3 from Hyman

et al. [106]). That is, temporal intervals were

implicitly encoded in an approximately linear

fashion, at least across some range, by the dis-

similarity of neural population patterns (as

measured by their distance in state space).

Time Perception from Oscillators

The final class of mechanisms for time percep-

tion to be discussed here is also one of the first

proposed: Exploitation of the temporal properties

of neuronal oscillators, which are ubiquitous in

the brain at various frequency bands [79,

107–109]. An oscillator can be a single neuron

or a set of neurons which fire at similar

frequencies due to synaptic interactions (leading

to mutual forcing and thus, frequency locking) or

due to similar cellular properties. Timing models

based on oscillations fall into three sub-

categories: In the simplest case, the interval that

needs to be encoded is equal to the period of the

oscillator, i.e. the time it needs for one full revo-

lution. To be able to encode a range of intervals,

either a bank of oscillators with different

frequencies is assumed [25] or a single oscillator

with variable frequencies that are entrained to

external stimuli [19, 110, 111]. In the second

class of models, the period of an oscillator is

typically much smaller than the interval to be

timed, and the estimate is formed by counting

the number of revolutions the oscillator has

made. These so-called pacemaker-accumulator

models have been extremely influential in the

psychological timing literature [5, 110]. How-

ever, they do not crucially rely on the regular

oscillatory nature of the pacemakers. In fact,

they are more commonly equipped with a

Poisson pacemaker at a fixed rate, which also

includes an element of variability. In a third

class of models, the periods are also much

smaller than the intervals in question, but they

are not encoded by counting revolutions, but by
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coincidence detection from a bank of oscillators

with slightly different frequencies: Consider two

oscillators with different frequencies which are

initialized at the same time. Due to the different

frequencies, their states evolve at different

speeds, and it is only after several revolutions

of both oscillators that they will meet again at

the same phase (this is called a “beat”). If a set of

downstream neurons detects these moments of

coincidence, it will be able to encode intervals

that are much longer than the intrinsic periods of

the oscillators. This idea was originally proposed

by Miall [26] and later embedded into a detailed

framework of cortico-striatal structures by

Matell and Meck [13, 31, 82]. This so-called

“striatal beat model” (see Chapter 2.1 in this

book) is currently the best supported of the oscil-

lator models, although the exact nature of the

oscillators is not discussed. Furthermore, it

reproduces the scalar property and the linear

psychophysical law. However, this is a not a

generic property of the model. The authors

assumed that the synaptic weights between the

oscillators and the coincidence detector show a

variability that reflects the distribution of the

durations. This distribution was chosen Gaussian

with a standard deviation of 10 % of the interval

duration. Clearly, this assumed distribution per-

fectly follows the scalar property, and thus, the

estimated durations also do. In a similar way, a

later variant of this model [112] explains the

modulatory effect of dopamine by assuming

that dopaminergic drugs directly influence the

firing rates of the oscillators. No mechanistic

(biophysical) account of the scalar property or

the distorting effects of dopamine or non-

temporal factors was provided so far (but see

Hass et al. [86] for preliminary results). Never-

theless, the more recent model [112] does include

amore realistic neuronmodel and learning of new

intervals by means of synaptic plasticity. Also, it

seems to be the first to account for the effects of

cholinergic drugs on temporal memory patterns.

Time Perception from Other
Mechanisms

While we can not provide a comprehensive

review over all existing timing models, it is

worth mentioning two further classes of models

with interesting properties. The first is the influ-

ential “spectral timing” theory with has been

introduced by Grossberg and colleagues [23,

113] in the context of machine learning and

later in a different form by Staddon and Higa

[39]. In this model class, there is a range (a

“spectrum”) of elements with different time

constants. The activity of each of these elements

peaks at a certain interval duration, and the tem-

poral information of all elements is combined

into a single output signal by means of learning.

In this sense, spectral timing bears similarities

with the multiple synfire chain model discussed

in section “Time Perception from Synfire

Chains”. Under certain assumptions, these

models reproduce the scalar property of timing

errors, but as for the oscillator models, this

follows directly from specific assumptions.

The second class of models is based on the

stochastic switching of bistable neuronal units.

This switching happens at random times, and can

be either from active to inactive [56, 58] or vice

versa [59]. Depending on the direction of

switching, this leads either to ramping up or

ramping down of activity, similar as in the

model in section “Time Perception from Slowly

Ramping Firing Rates” [14]. Interestingly, these

models reproduce the scalar property without

further assumptions, and could also be classified

as variance-based processes, in agreement with

our analysis [54].

Conclusion

In this chapter we reviewed several candidate

neurocomputational mechanisms of interval

timing, as well as some of the experimental

evidence for or against them. While a large

variety of computational mechanisms has

been proposed so far, we put the focus on

those which we felt are particularly rooted in

neurophysiological evidence. Table 1 gives an

overview of how well each of the presented

model classes are supported by the criteria we

defined. From this comparison, it is obvious

that none of the mechanisms we discussed

in detail is able to reproduce the scalar

property exactly without making additional

assumptions. As discussed in fourth section,

this is consistent with the fact that most of the
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mechanisms and models suggested up to date

rely on mean-based estimators, which seems

to be the most straightforward way to imple-

ment linear subjective interval timing in the

nervous system, and which also agrees with

neurophysiological observations like ramping

activity. The only exception is the class of

stochastic switching. However, the neural

basis of these models and their relation to the

remaining constraints is less clearly defined

compared to the aforementioned classes of

mechanisms, so this is a puzzle that still

remains to be resolved. On the other hand,

sub- and supra-linear errors in interval time

estimation have been observed as well for

some temporal range, and not all experimental

data sets clearly and unambiguously support

the existence of a scalar regime [43]. As

outlined above, these regimes of different

error scaling are likely based on fundamen-

tally different underlying neuronal

mechanisms, so it seems worthwhile to inves-

tigate the temporal constraints of different

timing models, and thus the reasons to switch

mechanisms at certain durations.

As a final remark, we would like to empha-

size that there is very likely more than just one

mechanism of time perception operating in the

brain, as also suggested by the different scal-

ing regimes and multitude of different areas

preferentially involved in time perception in

one or the other range. Timing is fundamental

to almost any sensory and motor process, with

different time frames relevant at different

levels of the hierarchy (e.g., millisecond range

for specific sequences of motor commands up

to seconds, minutes or hours at the scale of

behavioral organization). All brain areas har-

bor a rich repertoire of biophysical and net-

work mechanisms that may be exploited for

timing, and hence a variety of timing

mechanisms tailored to specific computational

needs may have evolved in different brain

areas. This in turn brings up the question of

how the estimates from many different indi-

vidual timing processes are combined to form

a coherent representation of time. Recent

experiments [114–117] suggest that the tem-

poral information from different sources is

weighted in a statistical optimal (Bayesian)

way. Understanding this integration may turn

out as important as the clarification of the

individual mechanisms of time perception

themselves.
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Dedicated Clock/Timing-Circuit
Theories of Time Perception
and Timed Performance

Hedderik van Rijn, Bon-Mi Gu, and Warren H. Meck

Abstract

Scalar Timing Theory (an information-processing version of Scalar

Expectancy Theory) and its evolution into the neurobiologically plausible

Striatal Beat-Frequency (SBF) theory of interval timing are reviewed.

These pacemaker/accumulator or oscillation/coincidence detection

models are then integrated with the Adaptive Control of Thought-Rational

(ACT-R) cognitive architecture as dedicated timing modules that are able

to make use of the memory and decision-making mechanisms contained in

ACT-R. The different predictions made by the incorporation of these

timing modules into ACT-R are discussed as well as the potential

limitations. Novel implementations of the original SBF model that allow

it to be incorporated into ACT-R in a more fundamental fashion than the

earlier simulations of Scalar Timing Theory are also considered in con-

junction with the proposed properties and neural correlates of the “internal

clock”.

Keywords

Interval timing � Scalar timing theory � Striatal beat-frequency theory �

Adaptive control of thought-rational cognitive architecture

Introduction

There are abundant examples of behavioral pro-

cesses engaged in by humans and other animals

in which short-timescale temporal information

plays an critical role, ranging from estimation

of how long one can safely look away from the

highway during driving [1], to the subtle role that

pauses in a speech signal play in language-based

communication [2], to the trap-line foraging of

bumblebees and hummingbirds that is partly

guided by their knowledge of how long it takes

a flower to replenish its nectar after a previous

visit [3–5]. In all these examples, interval timing

enables the organism to improve its prediction

about the onsets and offsets of impending
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environmental events. To allow for these

predictions, an internal signal has to exist that

provides the organism with a sense of time in

order to anticipate these events. In the case of

state-dependent models, categorically defined

internal states are associated with specific behav-

ioral actions attributed to each of the states [6].

By the pacing of transitions from one state to the

other, behavior emerges that is attuned to the

temporal regularities of the environment without

the need of a dedicated clock or timing circuit (e.

g., the behavioral theory of timing [7, 8]). In

other state-dependent models, timing is an intrin-

sic property of the neural dynamics that elapse

over the course of tens of milliseconds to a few

seconds following the onset of a timed event

(Buonomano, this volume; [9]).

However, the majority of dedicated models of

time perception (for comparisons between dedi-

cated vs. intrinsic models [6, 10–12]) assume that

interval timing can best be described by a triad of

clock, memory, and decision stages as depicted

in the top-left box of Fig. 1. Most of the work that

adheres to this triad can be traced back to the

pioneering work of Creelman [13] and Treisman

[14] who proposed the first information-

processing (IP) models of interval timing. In

these models, a dedicated clock stage provides

a continuous or an interval-scale index of the

passing of time since the onset of a temporally

relevant event. Whenever the offset of the to-be-

timed interval is observed, the clock reading is

taken and stored in memory. After sufficient

experience, the onset of upcoming stimuli can

be predicted by comparing the current clock

reading to the previously stored memory values.

Although in the early work on interval timing

most studies focused on the role of the pace-

maker/accumulator, it was soon acknowledged

that all stages of information processing (e.g.,

clock, memory, and decision) could contribute

to the behavioral profiles observed in the

Decision:
 

( |a - m | / m ) < b

Perception of 
warning stimulus

Respond

Switch 
Closed?

Pacemaker
pi ~ f(pi-1,time)

Accumulator
a = num( pi )

b ~ (µb, b) Reference Memory
m  M

Toggle Switch
Select Memory 

Sample
Select Threshold

Modify a to m

a  (µk*, k*)

Memory

Decision

Pacemaker Switch Accumulator

Start Signal

Clock

YesNo

Clock

Fig. 1 Top-left box shows the outline of most information-

processing models of interval timing based on a triad of

clock, memory and decision stages [6, 17, 20, 64]. The

main picture depicts one instance of these models; the

Scalar Timing Theory as described in Church [24]. The

main clock components are shown in green, the boxes

processing input and output in red, the memory

components in yellow, and the decision components in blue
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temporal control of behavior [15]. One of the

best developed theories that fits this general

description and specifies how the different IP

components contribute to observed behavior is

Scalar Timing Theory [16, 17]—sometimes

referred to as Scalar Expectancy Theory as origi-

nally developed by Gibbon [18, 19]. The general

properties of these interval-timing systems have

been described by Church [20] and more recently

by Allman et al. [21].

Scalar Timing Theory

Description of the General Outline

A detailed version of Scalar Timing Theory is

shown in Fig. 1 in order to provide an apprecia-

tion of the model’s various levels of complexity

[16, 22, 23]. This outline and the following

description are based on the computational

implementation of Scalar Timing Theory

described by Church [24], although slightly

modified versions have been described elsewhere

[25]. According to Scalar Timing Theory, the

“internal clock” of an organism that is engaged

in the measurement of the physical duration of an

external event (T) is comprised of a pacemaker

that emits pulses at a regular rate. Whenever a

temporally salient event is observed, a start sig-

nal is sent that closes a switch (or gate) between

the pacemaker and an accumulator, allowing for

pulses to reach the accumulator where they are

integrated as a function of time. As the switch

has to be closed in order for an event to be

encoded, a process that is assumed to take some

time, the model accounts for variation in the

duration between the physical onset of the event

and the first pulse passing the switch. This dura-

tion is assumed to be normally distributed: t1 ¼
η(μt1, σt1)—see papers by Meck and colleagues

[26, 27]. Any pulse that passes the switch is

thought to increase the value of the accumulator

by one. By means of this coupled pacemaker/

accumulator process, a measure of subjective

duration (D) is available to the organism. When

the imperative stimulus is observed, the organ-

ism can read out the accumulator, noticing that

the time between the warning and imperative

stimulus took, for example, 32 pulses. Of course,

perceiving the imperative stimulus might also

have taken time, reflected in switch opening

latency: t2 ¼ η(μt2, σt2), so that the subjective

duration is assumed to be D ¼ T � T0 [27],

with T0 representing t1 � t2.

As most psychophysical phenomena, interval

timing adheres to Weber’s law, with shorter

durations being estimated with less variability

than longer durations. As this is typically

demonstrated by observing identical response

distributions after a scale transform (e.g., divide

all distributions by the mean of the distribution),

such superimposition of timing functions is

referred to as the scalar property of interval timing

[17, 28–30]. In contrast to many other psycho-

physical theories that assume that the subjective

percept is non-linearly related to the objective

input [31, 32], Scalar Timing Theory puts forward

that the clock stage provides a veridical mapping

of objective, external time to subjective, internal

time [18]. Although it is sometimes claimed that

the veridical time assumption is supported by

experiments in which subjects have to compare

the amount of time that is still left during the

perception of a previously learned interval with

another previously learned interval—the Time-

Left experiments by Gibbon and Church [33];

see also Wearden’s study [34]. It has been argued

that the behavior observed in these procedures

might also stem from strategies that do not tap

directly into the underlying time scales [35–38]. A

stronger case for the support of a linear encoding

can be found in studies in which empirical

response distributions were observed that are sim-

ilar to the theoretical distributions associated with

the linear encoding of time [39, 40].

Because all of these accounts assume veridi-

cal timing, the clock stage typically isn’t used to

account for the scalar property. Instead, Scalar

Timing Theory assumes that the memory stage is

the source of the scalar property—see papers by

Gibbon and Church [16, 22, 33] for general

details, or more specifically, that the scalar prop-

erty is induced by the process that copies values

from the accumulator to the memory store. When

the offset of a temporal interval is observed, the
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current value of the accumulator, a, is multiplied

by a memory translation constant k*—drawn

from a normal distribution η(μk*, σk*) [26,

41–43] before the value is copied to reference

memory. This multiplication results in wider

memory distributions for longer durations than

for shorter durations, providing the basis for the

adherence to the scalar property of interval

timing. In the default version of Scalar Timing

Theory, the memory store is considered to “con-

sist of a large number of unorganized samples”

[24, p. 9] although the samples must of course be

associated with the environmental events that

they encode for.

Whenever the organism wants to respond

simultaneously with the onset of an upcoming

event, it retrieves a random sample from memory

that is associated with previous experiences with

that event, and starts the accumulation process as

soon as the warning signal is observed. However,

since m, the sample from memory has been

multiplied by the k* memory translation con-

stant, a direct comparison between a, the value

in the accumulator and m is not informative.

Instead, Scalar Timing Theory assumes that a

ratio comparison is made between m and a that

is subsequently compared to a threshold parame-

ter b to decide whether or not a response has to be

made (i.e., if (|a � m|/m) < b, then make a

response). Like the other parameters, the thresh-

old is assumed to be sampled from a random

distribution: b ¼ η(μb,σb).
Although Scalar Timing Theory was origi-

nally developed within the context of animal

learning and conditioning procedures, it has

been successfully applied to temporal processing

in humans, in both healthy and clinical

populations [44–46] and has aided in the inter-

pretation of the changes in interval timing

capacities over lifespan development, including

age-related declines [47–49]. In these settings,

Scalar Timing Theory has accounted for many

different phenomena associated with interval

timing, such as the effects of different experi-

mental contexts and procedures [50, 51], of phar-

macological manipulations [52–56] and of

emotional [52–58] and attentional [59–62]

influences.

Challenges for the Information-
Processing Models of Interval Timing

In any task related to interval timing, all (or

most) of the processes and stages mentioned

above play a role. As these different processes

and stages interact, it is sometimes not straight-

forward or even possible to attribute a particular

empirical observation to a particular aspect of an

IP model of interval timing because any change

in a particular procedure can be mimicked by a

change in another aspect of the model. Neverthe-

less, it is important to critically evaluate any

model or theory, and especially assess the valid-

ity of those components that are central to the

phenomena covered. Like in other complex

domains, the approach has been to isolate partic-

ular components and to specifically manipulate

the experimental setup so that conclusions can be

drawn relating to that component. This approach

has obviously been an important line of research

in the field of interval timing, with for example

studies (see also [63]) showing that the scalar

property should be captured in the memory

components instead of in the accumulation pro-

cess associated with Scalar Timing Theory [33],

that a single sample is selected from reference

memory on each trial instead of multiple [64],

and that memory samples stored in reference

memory affect other memory samples [65].

Stable Representation and Modularity

Scalar Timing Theory could be seen as a self-

contained module that provides temporal informa-

tion to a cognitive system or architecture that

performs a more general task which relies on tem-

poral information. Although one could, of course,

still study the components of this black box, this

approach would allow for using the output of Sca-

lar Timing Theory without worrying about which

internal processes have given rise to that particular

output. However, this does require that irrespective

of the task that is modeled using Scalar Timing

Theory, the components should always function in

the same way, cf., Figure 3.2-1.2 in [24].

78 H. van Rijn et al.



Although rarely explicitly acknowledged, but

see [63], the inclusion of a more cognitive deci-

sion component makes it difficult to adhere to

this strong claim. Let’s take, for example, human

performance in a duration bisection task [66]. In

a bisection experiment, participants are

presented durations that they have to classify as

either more similar to a previously learned

“short” duration or as more similar to a previ-

ously learned “long” duration. When the propor-

tion of “more similar to long” responses is

plotted as a function of the length of the physical

duration, a smooth sigmoid psychometric curve

is typically observed, but see [67] with almost

none of the shortest durations being classified as

“long” (and vice versa for the longest duration),

and with the bisection point (i.e., the point at

which both answer options are equally often cho-

sen) typically at the geometric mean of both

standards [30, 66]. At first sight, it might seem

that Scalar Timing Theory can quite straightfor-

wardly account for the performance observed in

bisection tasks: at the onset of the to-be-judged

duration, the switch is closed and pulses will be

accumulated. However, on the basis of what

information will Scalar Timing Theory make a

decision? Since this is a judgment task (and not a

reproduction task), one might assume that the

participant just waits for the offset of the presented

duration, and then decides “short” if the observed

a is closer to a memory sample associated with the

short standard than to one associated with the long

standard. That is, if (|a � mshort|/mshort) < (|a �
mlong|/mlong) then choose “short”, otherwise

choose “long”. Although at cursory inspection it

might seem that this process fits nicely with the

outline presented in Fig. 1, it requires that the

decision process compares a to both mshort and

mlong, requiring two retrievals from memory and

a more complex comparison than the typically

assumed simple comparison to a preset threshold.

One could, of course, assume that this comparison

isn’t made within Scalar Timing Theory, but that

the output of the clock is transferred to later

stages. However, this would then assume that

“non-timing” processes have access to the mem-

ory stage that is embedded in the timing module,

violating basic assumptions of modularity. A third

alternative hypothesis entails the creation of a

bisection criterion [68], which could act as an

internal, subjective representation of the point of

subjective equality. According to this view,

participants could internally commit to a “long”

response as soon as this bisection criterion has

passed. This criterion could be based on the geo-

metric mean of the samples representing the short

and long standards—i.e., sqrt(mshort � mlong). To

allow for scalar variance, this point of subjective

equality would have to be recalculated for each

trial from two sampled values. Thus, to allow for

this interpretation of the duration bisection task,

the timing model outlined in Fig. 1 would have to

be extended to represent a process that would

result in a subjective bisection criterion that

could take the place of m, but that is based on

two retrievals from reference memory.

Although all three of these accounts would

require modifications to the basic outline of Sca-

lar Timing Theory illustrated in Fig. 1, recent

electrophysiological data indicate that additional

changes to the model might be necessary. Ng

et al. [69] recorded EEG during a duration bisec-

tion task. From earlier work, it is known that

during timing tasks a slow brain potential wave

of negative polarity develops, referred to as the

contingent negative variation (CNV), which

resolves after a temporal decision has been made

[70, 71]. If a bisection criterion is used by

participants, one would expect the CNV to resolve

at or around the point of subjective equality (e.g.,

geometric mean of the short and long standards).

This pattern was indeed observed by Ng et al. [69],

supporting the hypothesis that a comparison to the

bisection criterion drives performance. However,

the results also indicated that participants tempo-

rally prepared for the possible offset of the short

tones, because the CNV increased starting at the

onset of the comparison duration and reached its

maximum amplitude around the time when the

offset of the shortest duration would be presented.

These results suggest that on the one hand a com-

parison is made based on a mcriterion based onmshort

andmlong, but on the other hand also indicate that a

sample representing mshort is still available to the

decision-making system given that value seems to

be used to prepare for the upcoming stimuli.
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Obviously, one could modify Scalar Timing

Theory to account for these changes, and, as

argued by Wearden [63], the basic properties of

the timing system would still be the same. How-

ever, if one allows arbitrarily complex

modifications to the original system (such as

including a sequential timing process that first

retrieves and estimates mshort and then retrieves

mlong and estimates the average of mshort and

mlong), a model consistent with Scalar Timing

Theory can be constructed to fit almost any data

set [63]. Moreover, because this more complex

model provides considerable flexibility in deci-

sion processes, temporal arithmetic and, for

example, the number and type of retrievals

from reference memory, new parameters will

need to be introduced that account for the

latencies associated with these new processes.

The inclusion of these parameters would make

it difficult to constrain the model on the basis of

empirical data from timing studies.

Degrees of Freedom Problem in Models
of Interval Timing

The issues outlined above can be reduced to a

straightforward “degrees of freedom” problem:

although timing studies provide a wealth of data

that can constrain theories of interval timing, the

number of degrees of freedom enables Scalar

Timing Theory to easily cover most or all possi-

ble outcomes of these studies, cf., non-

constraining models in [72]. Two approaches

can be taken to solve this problem that both

focus on reducing the degrees of freedom. First,

by introducing new behavioral measures that the

theory should be able to account for, one can

decrease the overall degrees of freedom. For

example, if a particular model has 6 degrees of

freedom, a new behavioral measure might

require a certain parameter of that model to be

set to a particular value to allow for a good fit,

thus reducing the number of degrees of freedom

to 5 for all other behavioral measures because

that value has become fixed. This strategy can be

seen as constraining the number of degrees of

freedom by bringing in additional, potentially

external constraints. Second, any process

assumed by Scalar Timing Theory should even-

tually be identifiable in the neurobiology of the

organism that demonstrates the capacity to time

durations in the hundreds of milliseconds-to-

minutes range. For example, if no brain area

can be identified that corresponds to the accumu-

lator as proposed by Scalar Timing Theory, one

might need to reconsider the existence of an

accumulator [73, 74] or if some proposals for

the working of the memory stage are implausible

from a neurobiological perspective, these

alternatives might be rejected and thus constrain

the theory. These constraints are derived from a

reevaluation of the components already present

in a theory, and could therefore be described as

additional internal constraints.

In the remainder of this chapter, we will focus

on four recent developments that focus on

providing additional constraints on theories of

interval timing by either incorporating additional

external or internal constraints, or by providing

cross-validation. First, we will discuss an

integrated model of interval timing that embeds

a dedicated clock structure consistent with Scalar

Timing Theory in a more general cognitive archi-

tecture that provides externally validated

constraints on the memory and decision stages

[75]. Although this model could be seen as more

complex than Scalar Timing Theory, this

integrated model allows for modeling the

interactions between non-temporal and temporal

aspects of cognition. By incorporating the

constraints that have been identified by fitting

the cognitive architecture to other domains and

tasks, models of interval timing become more

constrained. Second, we will discuss how a

model based on cortico-striatal interactions can

replace Scalar Timing Theory’s traditional clock

and memory stages [44, 54, 76], removing a

number of degrees of freedom from the original

model because the basic properties of this clock

have been directly derived from neurobiological

observations. Third, we will discuss how this

cortico-striatal model can be integrated into the

architecture-based model and how a number of

elementary neurobiological constraints bring

about the scalar property in interval timing.
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Fourth, and finally, we will present the outline of

a model that integrates interval timing in a more

general framework of oscillation-driven cogni-

tive behavior.

Integration of Cognitive Architectures

While working on computational models of

behavioral tasks that were at first sight not obvi-

ously time dependent, Taatgen et al. realized that

a number of phenomena they encountered were

partly driven by their participants’ sense of time.

For example, Van Rijn and Anderson [77] had

human participants perform a lexical-decision

task at either normal speed or under speed stress

and found evidence that the likelihood of

guessing could be described as a function of the

temporal distance to the response deadline.

Given that Adaptive Character of Thought-

Rational (ACT-R) [78, 79], the cognitive archi-

tecture frequently used for modeling these tasks,

didn’t provide any straightforward way to

account for the passage of time, Taatgen et al.

[75] extended ACT-R with a clock module based

on the dedicated clock stage found in Scalar

Timing Theory. Although Scalar Timing Theory

also includes a memory stage, and several mem-

ory models have been proposed [80, 81], no

model of temporal memory has been proposed

that captures the more general features of mem-

ory systems utilized in human cognition. In con-

trast, the ACT-R theory provides an advanced

and more constrained framework for modeling

both memory and decision-making processes.

Consequently, these default ACT-R components

were used instead of incorporating the memory

and decision stages from Scalar Timing Theory.

The combination of both “internal clock” and

ACT-R frameworks thus provides a best-of-

both-worlds approach to modeling interval

timing-based behavior. An outline of this

integrated-architecture model of interval timing

is illustrated in Fig. 2.

Memory

Temporal Buffer

Accumulator

Start Signal

Pacemaker increments

resets

Declarative Module

Retrieval Buffer

Visual Buffer Manual Buffer

Productions

Problem Buffer

Visual Module Manual Module

Matching

Selection

Execution

External World

Clock Decision

Fig. 2 An outline of the integrated-architecture timing

model. The Clock component is similar to the clock stage

found in Scalar Timing Theory [17], but with inter-pulse

intervals approximating a geometric sequence. The Decision

and Memory components are implemented by the decision

rules and declarative memory system of ACT-R, the archi-

tecture that also provides the other components [75]. The

color of the components matches the colors used in Fig. 1
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Although we discuss the three most important

components of the integrated-architecture model

of interval timing below, it should be noted that

this architecture also provides for components

that are involved with observing and acting on

the environment. As a result of these additional

components, models developed using this

integrated-architecture can provide principled

predictions about t1 and t2 which reflect the

time that it takes to perceive and act on the

onset and offset of a temporally salient event.

That is, any visual event in the “External

World” has to be observed via the “Visual Mod-

ule”, before decision rules in the Decision com-

ponent can relay the start signal to the Clock

component (see Fig. 2). As each component is

based on formal theoretical work in the respec-

tive fields, the amount of time associated with t1
(and t2) can be predicted based on previous work

instead of having it sampled from a normal dis-

tribution. Similarly, the incorporation of motor

components (e.g., the “Manual Module”) allows

for estimating the delays associated with the

actual response, an aspect of behavior not typi-

cally included in Scalar Timing Theory or similar

models.

One of the challenges faced when integrating

different theoretical approaches or frameworks is

that certain assumptions that are necessary in the

one framework, are difficult to account for in the

other framework. For example, Scalar Timing

Theory assumes that the accumulator value is

multiplied by a before it’s being copied to refer-

ence memory. In contrast, the ACT-R theory

states that output from any module is automati-

cally copied to memory, potentially subjected to

some additive noise. However, the memory trans-

lation constant k* has a multiplicative effect [i.e.,

a � η(μk*, σk*), instead of η(0, σa)], and thus is

not in line with the constraints of the architecture.

Although one could, in principle, add explicit

strategies that implement this multiplicative strat-

egy, this process would be rather cumbersome,

and add significant processing time. In addition

to this, using the memory translation constant

would imply the use of ratio rules for

comparisons, a process that is also not easily

accounted for (see also [82], which argued that

ratio-rules are difficult to account for in neurobio-

logical models). That is, a ratio-rule requires that

whenever the system checks whether a particular

duration has passed, (1) the current value from the

accumulator has to be retrieved, (2) the reference

value has to be retrieved from memory and (3)

subsequently subtracted from the accumulator

value, (4) divide the outcome of the subtraction

by the reference value, to finally (5) compare the

division to a threshold. Apart from requiring con-

siderable processing and working memory

resources, this suggests that timing an interval is

a highly obtrusive process that would severely

affect other cognitive tasks executed in parallel.

This caveats could be perceived as a negative

point for the integrated-architecture model, but it

is also indicative of the consequences of adding

external constraints to a theory: sometimes addi-

tional constraints require a change of thought.

In the sections below, we will discuss the three

major components of the integrated-architecture

model of interval timing, but we refer the inter-

ested reader to Taatgen et al. [75] and Van Rijn

and Taatgen [83] for additional background.

Clock Stage

As the memory system in the integrated-

architecture model cannot easily account for the

scalar property of interval timing, the main source

of scalar variance has to be found in the clock

module. Therefore, a pragmatic approach was

taken in which a pacemaker produces pulses

with a gradually decreasing rate according to the

following formula: pn ¼ pn�1 � a + η(0,pn�1 �
b) where pn indicates the time between pulse n and

n � 1 (and p0 represents the initial value), a

represents the pulse multiplier (the common

ratio), and b the parameter determining the width

of the noise distribution. It is important to note

that although this function does provide a non-

linear mapping, the non-linearity of this mapping

is much dampened in comparison to the non-

linearity suggested by logarithmic mappings of

objective to subjective time. In fact, apart from

the noise component, the subjective experience of

time follows a geometric series, as a particular
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pulse count n in the accumulator will be observed

at time Σx � {1..n} (px � ax). By fitting this model

to empirical data [83], the p0 was determined to be

100 ms, a was set at 1.02, and b at 0.015. Interest-

ingly, this set of parameters indicates that the

average inter-pulse time for short event durations

(i.e., around 1 s) is shorter (~120 ms) than has

been suggested in the literature [27] but at longer

durations (i.e., around 5 s), the average inter-pulse

duration is about 200 ms indicating that the

assumed pulse length for typical interval timing

durations is comparable to previously identified

values. Regardless of the precise values, this non-

linear mapping of objective to subjective time

results in a higher temporal resolution immedi-

ately after the onset of an event than at later

phases. This non-linearity gives rise to scalar

effects on subjective duration, since an interval

of about 5 s can only be estimated with a precision

of 200 ms, whereas an interval with a duration of

about 1 s can be estimated with a precision of

120 ms. Together with the inherent noise in the

system, which also scales up with event duration

and has a multiplicative effect in the geometric

sequence, the scalar property of interval timing

emerges [84–86].

Memory Stage

As mentioned above, the integrated-architecture

model incorporates the ACT-R memory mecha-

nism. Although a full discussion of this mecha-

nism is beyond the scope of this chapter (see [87]

for an introduction, and [88] for more recent

discussion of the functioning of declarative

memory), the main aspects of the declarative

memory system from the perspective of interval

timing are that all facts stored in the system as

memory traces are subject to decay, and that

various forms of memory mixing (i.e., the blend-

ing of different facts) are accounted for [89]. The

psychological processes underlying this memory

system have been extensively tested, both at the

level of aggregate behavior and at the level of

between-trial effects [90]. It should be noted

however, that a separate working memory—as

proposed in Scalar Timing Theory [43, 91–93]—

is difficult to align with ACT-R, because the

most similar component or “problem state” [94,

95] plays a different functional role.

The “memory mixing” mechanism takes an

average of several memory traces, weighted by

the activity of each trace and how well they

match the current experimental context. As the

traces contain pulse counts copied from the clock

system, this blending process will adjust the

count associated with a particular interval down-

wards if that interval is presented in the context

of “shorter” alternatives, but upwards if “longer”

alternatives are present. This way, the memory

system, developed outside of the context of inter-

val timing, naturally accounts for Vierordt’s law

[96–98]. Moreover, the memory system also nat-

urally predicts trial-by-trial effects, with

estimates of more recent trials having a stronger

effect than older trials that have been subjected to

decay for a longer period of time [98, 99]. By

means of statistical modeling, Taatgen and Van

Rijn [100] showed that the impact of older trials

quickly wanes, as the influence of two trials ago

is about half the size as the influence of the

previous trial. To summarize, by incorporating

an existing memory system into the integrated-

architecture model of interval timing, both

existing (e.g., memory mixing [50, 65, 98]) and

new (e.g., feedback-based contamination of ref-

erence memory [100]; see [99] for other phenom-

ena associated with feedback processing) timing

phenomena can be quantitatively explained with-

out having to introduce additional cognitive pro-

cesses or model parameters.

Decision Stage

Although ratio-rules are favored [67] in Scalar

Timing Theory, the variable m to which the value

of accumulator is compared (i.e., |a � m|/m) is

not strictly defined, and can range from a simple

count retrieved from memory (e.g., mi) to

the earlier discussed point-of-subjective-equality

(e.g., sqrt(mshort � mlong) in duration bisection

studies. Although these choices imply different

processes and will most likely be associated with

different latencies, the choice ofm is not separately
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modeled. In contrast, ACT-R’s decision rules can-

not perform complicated processes in a single step.

For example, it is straightforward to test whether

the current value in the accumulator is similar to a

value retrieved from the memory store. However,

multiple decision rules are needed to test whether

the value of the accumulator is similar to the mean

of two samples (e.g., separate steps for retrieving

the samples, calculating the mean, etc.). Because

this process is likely to take a reasonable amount

of time (depending on the level of expertise, but

probably more than 500 ms), ACT-R provides

testable predictions regarding the nature of m and

many other parameters.

Putting Everything Together

By integrating Scalar Timing Theory’s clock

stage into the ACT-R architecture, one can create

models of tasks (e.g., peak-interval and other tem-

poral generalization procedures) that have been

typically analyzed using Scalar Timing Theory

[75]. More interesting, the additional “non-

clock” components also allow for creating models

of more complicated behavior. For example,

participants in a study reported in Van Rijn and

Taatgen [83] had to reproduce durations with the

start of the duration cued by the appearance of a

stimulus on either the left or right side of a fixation

point. On most trials, the next cue was presented

before the duration associated with the previous

cue had passed, resulting in partially overlapping

intervals as shown in Fig. 3. This diagram also

illustrates one of the main results from this study,

which is that the later the secondary event started,

the longer its estimated duration.

Obviously, there are many potential sources

of variance in this model, ranging from how the

onsets of the two events are perceived, to the

time it would cost to retrieve memory traces or

to calculate intermediate values, to the noise

associated with motor responses. However, ear-

lier work with the ACT-R architecture has

provided us with reliable default parameters for

all these components, so the integrated-

architecture model can focus on explaining

those aspects of the task that are most closely

related to interval timing. In this particular task,

the main question is, of course, how participants

Fig. 3 Outline of the experimental procedures used to

investigate the timing of multiple overlapping event

durations [83]. In this example, the standard duration of

2 s is estimated to be 17 pulses. In the example shown at

the top, the second duration starts 600 ms or 5 pulses after

the first duration has started. The model thus estimates the

end of the second event at 5 + 17 pulses, resulting in a

duration estimate of 2.72 � 600 ¼ 2.12 s. In the bottom
example, the second event only starts at 1.5 s (13 pulses),

so the response that signals the perceived offset of the

second event duration is given at 13 + 17 pulses, resulting

in an estimate of 4.15 � 1.5 ¼ 2.65 s. This subjective

lengthening result was attributed to a non-linear represen-

tation of time
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manage to estimate two (or more) event

durations in parallel. A theoretical possibility,

although not directly supported by either the

integrated-architecture model nor by Scalar

Timing Theory, is that the two durations would

be estimated independently, as if a secondary

clock-system was spawned [92, 101, 102].

Although recent findings from rats have

provided strong evidence for simultaneous tem-

poral processing, i.e., the use of multiple clocks

that can be run, paused, and reset independently

[101, 102], findings from human participants

have tended to support sequential processing

[83]. In this case it appears that when participants

time overlapping event durations, the value of

the accumulator is read out at the onset of the

secondary duration, and that after finishing the

first duration wait for the same number of pulses

previously stored to determine their response.

Because of the geometric series-based subjective

time, the duration of the pulses added at the end

will be longer than the duration of the same

number of pulses integrated at the beginning of

the interval, thus explaining the effect

demonstrated in Fig. 3. Obviously, the later the

onset of the second event, the more pulses have

to be added at the end of the distribution, and thus

the larger the overshoot of the estimation. At the

same time, as participants were provided feed-

back based on their performance, it is to be

expected that they would try to optimize their

timing behavior, thus shortening their internal

representations of the standard durations. Fig-

ure 4 shows the main results of the experiment

and the model fit. The narrow distribution of the

dotted line in the left panel indicates that

participants had mastered reproducing the 2-s-

interval during training. During the experimental

phase of the experiment, the response

distributions for the first and second event

durations differ. The response distribution for

the first event duration is shifted slightly for-

wards, whereas the response distribution of the

second event duration is shifted backwards. As

can be seen in the right panel, these patterns are

well-described by the model. In the model, the

forward shift is caused by the incorporation of

the feedback. Each time an event duration is

over- or underestimated, participants received

feedback (either “too long” or “too short”). As

on many trials the second duration was over-

estimated, participants often received “too

long” as feedback, and as a result updated their

memory representation of the standard event

duration. The backward shift shown by the dotted

line can be explained by inferring a non-linear

Fig. 4 Main results of the Van Rijn and Taatgen study

[83]. The left panel shows the distributions for the empir-

ical data, the right panel for the model fits. The dotted line
shows the distribution during the last blocks of the train-

ing session, the solid line shows the distribution for the

event duration that ended first, and the dashed line for the

event duration that ended last. The model’s explanation

for the leftward shift of the solid line is based on the

updating of the standard due to feedback, the rightward

shift of the dashed line is due to the proposed non-linear

representation of time. Adapted from Figure 4 in Van Rijn

and Taatgen [83]
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timescale, as discussed earlier. Although individ-

ual parameters could have been adjusted to

improve the fit to this specific dataset even further,

the parameters were chosen to provide the best fit

to a series of experiments. Most importantly how-

ever, the best fit was obtained with a parameter

larger than 1.0, reflecting a non-linear subjective

time scale. Since this experiment, we have consid-

ered this estimate as fixed and have used the same

parameters in all subsequent models [100], as

have other researchers [103].

To summarize, using the integrated-archi-

tecture model of interval timing makes it possible

to create models that provide quantitative

estimates of behavior that allow for a much more

thorough testing of alternatives than would be

possible if one is limited to qualitative predictions.

Nevertheless, even when computational models

are constructed that provide a reasonable fit the

empirical data, the underlying mechanisms should

always be scrutinized to make sure that they still

align to the latest insights in neuroscience (see

Hass and Durstewitz, this volume).

Neural Mechanisms of Interval Timing

The central tenet of both Scalar Timing Theory

and the integrated-architecture model of interval

timing is that a dedicated clock or timing circuit

provides access to an index of subjective time,

but neither theory has made any specific claims

on the neural instantiation of this timekeeper.

Interestingly, the neuroscience literature has

suggested that the (pre-) supplementary motor

area (SMA) might be part of the neural instantia-

tion of the clock as it has been suggested to act as

the accumulator [54]. The main observation

supporting this notion was that the amplitude of

a slow electrophysiological wave (the contingent

negative variation, CNV) that is supposed to

originate from the (pre-) SMA appears to covary

as a function of the event duration that was

estimated, e.g., CNV magnitude effect

[104–106]. However, more recent work

questions this interpretation because the CNV

magnitude effect has proven difficult to replicate

[73] and more recent electrophysiological data

fails to align with the assumption that the CNV

represents the accumulation process proposed by

Scalar Timing Theory [69], but see also [107]. As

a consequence, the interpretation of the original

CNV results and its specificity of this slow wave

potential to interval timing remains uncertain

[74, 108]. It is clear from the empirical data that

this slow wave develops over time and that it

quickly resolves after a criterion duration has

passed. However, this assumption could also be

explained by assuming that the buildup observed

in the SMA is driven by another source and

only serves as an indirect measure of time. This

explanation aligns nicely with the original notion

that the buildup of the CNV reflects expectancy

[109, 110]; and see for more recent reviews

[111, 112], something that requires a sense of

time, but is not necessarily time itself. This

explanation is also supported by fMRI-EEG co-

recordings on the basis of which it has been

suggested that thalamo-cortical interactions reg-

ulate CNV amplitude ([113], see also the next

section). Obviously, this line of argument can be

followed for any accumulation or ramping

patterns observed in neural substrates: the accu-

mulation could be the source of time as hypo-

thesized in the Scalar Timing Theory or the

integrated-architecture theory discussed above,

or it could be a derivative of time—Hass and

Durstewitz, this volume; [74].

Although the instantiation of the clock stage is

the most critical, several other difficulties remain

when attempting to integrate the IP models

discussed above with neurobiological mecha-

nisms. For example, no neurobiological mecha-

nism has been identified that can perform the ratio

comparisons as hypothesized by the Scalar

Timing Theory [76, 82]. Although the possibility

remains that the required neural mechanisms may

be identified in the coming years, another view

that has emerged assumes that interval timing is

based on the coincidence detection of patterns of

oscillating neurons in cortico-thalamic-basal

ganglia circuits [12, 44, 54, 71, 114–116].
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Striatal Beat-Frequency Model

Based on the work of Miall [117], Matell and

Meck [76] have proposed an alternative neural

instantiation of the clock stage that assumes a

cortico-striatal network as the primary source of

temporal information. Although the full model is

more detailed, especially with respect to the role

of certain nuclei of the basal ganglia and the

thalamus, the main outline is shown in Fig. 5.

This SBF model is built around the notion that

cortical neurons or neuron ensembles (the “Cor-

tical Oscillators” in Fig. 5) oscillate at relative

stable (over time) but different (over oscillators)

frequencies, and that medium spiny neurons

(MSNs –labeled A and B) act as detectors that

Fig. 5 Schematic depiction of the oscillatory-based timing

circuit of the Striatal Beat-Frequency model [6, 76, 117]. At

the start of an event, the phase of the Cortical Oscillators is

reset after which the oscillations recommence. The different

frequencies of the oscillators give rise to different activity

patterns over time, depicted to the right of the Cortical

Oscillators. Striatal medium spiny neurons (A and B) receive
input from the oscillators via glutamatergic Connections. By

dopaminergic input to the striatal neurons (not shown) after

temporally salient events, the striatal neurons become sensi-

tive to specific patterns in the oscillators (illustrated with

boxes outlining activity patterns). In this illustration, striatal

medium spiny neuron A has been reinforced to detect a

coincidence pattern that occurs just after the onset of the

event, and neuron B is sensitive to a pattern associated with a

slightly longer event duration
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become active if a certain pattern is observed (via

“Connections”) among the oscillators. Because

the oscillators have different frequencies, differ-

ent points in time after resetting the phases of the

oscillators will be associated with different

patterns, thus allowing for the association

between a certain coincidence pattern among

the oscillators and a temporally salient event.

In the following sections, we will discuss the

neurobiology and the functional properties of

these different components of the SBF model.

The Oscillators

When discussing the role of oscillators in

keeping track of time, the first concept that

might come to mind is the suprachiasmatic

nucleus (SCN), a tiny region in the anterior part

of the hypothalamus. The SCN has an approxi-

mate period of 24 h and acts as the central time-

keeper for circadian mediated behavior and body

functions [118, 119]. In contrast to the SCN,

which provides a single oscillating 24-period

output signal, the oscillators in SBF models are

assumed to play a more indirect role in the track-

ing of time from milliseconds to hours [120].

In the beat-frequency model proposed by

Miall [117], populations of high-frequency

(~10 Hz) oscillators are assumed to underlie the

perception of event durations in the range of

milliseconds to tens of seconds or minutes (i.e.,

durations > 0.1 Hz). Each oscillator is assumed

to have its own frequency, to become active

when its activation has reached a certain thresh-

old value, and will stay active until its activation

drops below the threshold (this typically results

in each oscillator being active for about 1–2 % of

each cycle). In this basic beat-frequency model,

all oscillators are connected to a single output

unit or integrator. At the start of a to-be-timed

event, the phase of all oscillators is reset after

which the oscillations recommence. At the end of

the event, Hebbian-type learning adjusts the

connections between active oscillators and the

output unit towards 1, and the other oscillators

towards 0. After sufficient training, this model

can reproduce the perceived duration of the event

by resetting the phases of the oscillators at the

start of the reproduction and responding when

the integrator receives sufficient input from the

oscillators. The simulations presented by Miall

[117] elegantly demonstrate that populations of

high-frequency oscillators with between-

oscillator variation in period can act as a

“clock” for interval timing as the system can

accurately represent durations in the range of

milliseconds to hours [12].

Using this basic beat-frequency model as a

foundation, Matell and Meck [6, 76] have pro-

posed the Striatal Beat-Frequency (SBF) model.

Although the main extension is the augmented

output unit (see the section “Striatal Medium

Spiny Neurons”), these authors also refined

what information is provided by the oscillators

to later portions of the clock stage. Instead of

assuming a binary output function per oscillator,

with a single active period for a small proportion

of every cycle and no activity during the

remaining part of the cycle, the SBF model

assumes a sinusoidal output pattern. This

assumption is based on the idea that instead of a

single neuron acting as an oscillator, each oscil-

lator could be considered as an ensemble of

neurons with a similar frequency (similar to the

volley principle in auditory perception). Because

neurons are known to fire probabilistically, with

a firing rate that is a function of the phase [121],

the output of each ensemble-based oscillator will

follow a sinusoidal pattern [76, 122–124]. This

idea has been further tested by Oprisan and

Buhusi [85, 86], who have implemented this

process using biophysically realistic Morris-

Lecar (ML) cortical neurons [125, 126].

Assuming a similar Hebbian-type process for

learning the connections between the output of

the ensemble-oscillators and the output unit,

Matell and Meck [6, 76] demonstrated that this

extension was sufficient to elicit a more

Gaussian-shaped pattern of activity in the output

unit that is similar to what was observed in

single cell recordings in the dorsal striatum.

Moreover, by adding some global variability in

the dopaminergic control of clock speed
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[127–130]—resulting in all oscillators running

either slightly faster or slower on each trial—

longer durations are represented by a wider

shaped distribution in the output unit, reflecting

the scalar property even at the single-cell level

[131]. Matell and Meck [76] have analytically

shown how the scalar property can emerge from

the SBF model of interval timing. In their imple-

mentation of the SBF model, they assume that

virtually all of the cortical neurons that project

onto MSNs fire regularly at frequencies in the

8–12 Hz band. Moreover, the output of each of

these cortical neurons is modeled by a continu-

ous sine curve oscillation. In contrast, the output

of real neurons occurs as spikes, which are usu-

ally described by a point process. Although the

sine wave description is used for its mathemati-

cal simplicity, each beat has a temporal width (e.

g., ~50 ms broadening for a 10 Hz oscillation),

which will likely have a significant influence on

the timing variance. More recently, Buhusi and

Oprisan [84] have examined the Morris-Lecar

(ML) model for neuron firing, which generates

non-linear, action potential-like beat oscillations.

The “beats” produced with this MLmodel should

also exhibit temporally broadening and hence

affect timing variance in a manner currently

unaccounted for. As a consequence, a more bio-

logically realistic way to implement the SBF

model would be to describe the output of cortical

neurons by regular spikes (with a small jitter);

each spike transmitted to the MSN evokes a

postsynaptic excitatory current (EPSC); coinci-

dent spikes produce superimposed EPSCs that

lead to spike discharge of the MSN, by which

target durations are discriminated using the

coincidence-detection mechanism described

within the original SBF model [76].

Striatal Medium Spiny Neurons

Although the changes in the functioning of the

oscillators are probably equally important in the

development from the basic beat-frequency

model to the SBF model, the Striatal Beat-

Frequency model is named after the more precise

neurobiological grounding of the output unit.

According to the SBF model, striatal MSNs are

the neurobiological implementation of the output

unit of the basic beat-frequency model. This link

is well supported by neurobiological evidence

[54, 71, 132]. For example, the striatum is con-

sidered to be the main input system for the basal

ganglia, with each striatal MSN receiving input

from up to thirty thousand different cortical and

thalamic units. The large number of connections

aligns well with the assumption that the output

unit is connected to a large number of oscillators.

Second, the basal ganglia—and more specifically

the dorsal striatum—are often considered to be a

perceptual filtering system, with clear evidence

that the striatal MSNs need a large number of

coherent input signals before they fire. This, of

course, is required to prevent the MSNs from

firing as a result of limited oscillator input.

Most importantly, Matell et al. [131] have

shown that about 20 % of the measured dorsal

striatal cell ensembles showed a temporally spe-

cific modulation in firing rate, with particular

ensembles becoming active around 10 s after a

signal, and other ensembles after around 40 s.

This indicates that there are neurons in cortico-

striatal circuits that are tuned to specific event

durations [132, 133].

In the basic beat-frequency model, the output

unit only fired when a specific number of output

units were active at the same point in time. Using

striatal MSNs as the output unit, Matell and Meck

[6, 76] updated the temporal integration and

detection process. Based on earlier work, the inte-

gration window for coincidence detection was set

to 25 ms, reflecting the observation that multiple

input signals need not arrive at exactly the same

point in time to still be processed as if a coherent

input pattern was observed. Moreover, based on

the observation that less input is required to keep a

MSN active once it has become active, an asym-

metric threshold was implemented which results

in a slight right skew in the output unit firing

distributions. Such coincidence-detection pro-

cesses and oscillatory processes are ubiquitous in

the brain and are a major advantage for the SBF

model [9, 44, 76, 134–136].
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Connections

In both the original SBF model [6, 76] and in the

SBF-ML model [84–86], the input to the striatal

MSNs is mediated by the synaptic strength of the

connections between oscillators and MSNs. In the

SBFmodel, the synaptic strength is determined by

averaging the state of the oscillators at previous

times of reinforcement. This learning is driven by

long-term potentiation modulated by the dopa-

mine that is released upon the registration of a

temporally salient event. The synaptic strengths

will represent a distribution of oscillatory states,

as global noise in the frequencies of oscillators

will result in slightly different oscillatory states on

different trials. As a result, the detection of longer

event durations will more heavily rely on

oscillators with lower frequencies. Because

slower oscillators will have a longer period of

higher activity, the MSNs encoding a long event

duration will receive input for a longer period of

time and thus stay active longer, giving an addi-

tional source of scalar variance.

Given that these simulations involve all

striatal MSNs having identical properties (such

as the way incoming information is integrated

and similar firing thresholds), and each MSN

could be connected to any oscillator, each MSN

could, in principle, represent any event duration

unless they are chronotopically organized [132].

Therefore, the ability to represent a particular

event duration depends on the learned synaptic

strengths. In both SBF and SBF-ML, the synaptic

strengths of a particular MSN are based on a

memory representation of all previous

experiences with the event duration that that

particular MSN encodes for. As such, these

cortico-striatal synaptic strengths have the same

functional role as the pulse counts stored in ref-

erence memory in Scalar Timing Theory [17]

and in the integrated-architecture account of

timing [100]: i.e., the synaptic strengths serve

as a filtering mechanism that constrains the firing

of a MSN to times associated with a particular

event duration, in the same way as the pulse

counts constrain a response to a particular accu-

mulator value or clock reading stored in memory.

Interval Timing within the Striatal
Beat-Frequency Model

In IP theories of interval timing, the memory

stage links the clock—implemented as a combi-

nation of a pacemaker and accumulator—to the

processes that should perform a certain action at

a particular point in time: only when the value

stored in the accumulator is equal to or similar

enough to the value retrieved from memory will

the decision rule be applied. The three main

components of the SBF model can be straightfor-

wardly mapped onto this description [44, 54, 76].

First, the oscillators provide the same type of

information as the combined pacemaker-

accumulator in the IP models—a unique pattern

of activation versus a unique integer count for

different event durations. Second, as mentioned

above, the cortico-striatal connections serve a

similar role as the memory traces in the IP

models, with synaptic strengths acting as a filter-

ing mechanism that constrains the firing of a

MSN to times associated with a particular event

duration, in the same way as the pulse counts

constrain a response to a particular accumulator

value. And third, the firing of a MSN is synony-

mous with the decision stage in the IP models. In

Scalar Timing Theory, the firing of a decision

rule indicates that later, unspecified processes

can perform the action that was associated with

the reproduced duration (i.e., start pressing a

lever to receive the food reward), whereas in

the integrated-architecture account, observing

that the values in the accumulator and the

retrieved memory trace are identical will cause

a decision rule to be applied that sets in action the

execution of the temporally constrained action.

The main difference between the SBF model

and pacemaker-accumulator models is that

pacemaker-accumulator models implicitly

assume that there is one decision rule which

could, in principle, be used for estimating differ-

ent event durations. That is, the same ratio rule in

Scalar Timing Theory or the same decision rule

in the integrative-architecture theory could be

used to estimate different event durations as
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long as these durations can be uniquely encoded

in and retrieved from memory. In the SBF model,

the synaptic strengths are unique to each individ-

ual receiving MSN, which means that each sub-

jectively unique event duration has to be encoded

by a unique MSN. One could therefore say that

after experiencing a particular duration D a num-

ber of times, which will have resulted in well-

learned synaptic strengths, the associated MSN

has become a temporal “feature detector” that

will always fire after D time has passed. If, at a

later point in time, another event has the same

temporal structure, this particular MSN could be

linked to that event as well, suggesting that

striatal MSNs act in a very similar manner as

feature detectors or perceptrons for other types

of sensory input [137, 138].

Integration of Striatal Beat-Frequency
and Models of Complex Interval Timing

Although the SBF and SBF-ML simulations

focus on learning and reproducing a single dura-

tion, any timing system should be able to distin-

guish between or estimate multiple intervals. As

acknowledged by Matell and Meck [76] and

Oprisan and Buhusi [85, 86], and shown in

Fig. 5, multiple striatal MSNs could be

connected to the same set of oscillators. By

means of different reinforcement patterns, each

MSN would have different synaptic strengths

and thus be attuned to different event durations.

This raises the question as to whether each event

will be associated to its own MSN, or whether

different events that share a relatively similar

temporal pattern will be encoded using the

same MSN. It might be clear that it is theoreti-

cally impossible to have a separate MSN for each

possible event duration this would require an

infinite number of MSNs. At the same time,

objective event durations that are sufficiently

different should also be perceived as being dif-

ferent. The minimal objective duration that reli-

ably results in subjective differences is called the

just-noticeable-difference (JND) and, as

described by Weber’s law, is proportional to the

length of the two to-be-distinguished durations.

This would suggest that temporal precision is

higher for shorter durations than for longer

durations. That is, the distance between the

event duration to which a MSN is most sensitive

and the event duration of its direct neighbor

should increase with the length of those

durations.

This theoretical rationale for a nonlinear dis-

tribution of the MSNs is supported by computer

simulations. Based on assumptions derived from

the SBF model, we have constructed a novel

variant of the SBF model (SBFn) that can learn

to encode multiple (“n”) distinct event durations.

The initial state of this SBFnmodel is depicted in

the left panel of Fig. 6. Each smaller distribution

reflects the receptive field of a single detector that

is modeled after the MSNs in the SBF model.

Based on the simulations presented by Matell

and Meck [76]—see for example their Figure

3.2-12, we expressed each neuron’s sensitivity

for a particular event duration as a skewed-normal

distribution with a mean equal to the encoded

duration, a standard deviation that is scalar in the

mean, and a slight skew of 2. The left panel of

Fig. 6 also shows the initial a-theoretic linear

distribution of the detectors over the range of

event durations for which they are sensitive.

After creating this initial distribution, the SBFn

model is presented with randomly drawn event

durations, uniformly sampled from the entire

range. For each sampled event duration, the

MSN with the most active receptive field is

selected, simulating that this particular objective

duration is perceived as the subjective duration

represented by that detector. In line with the idea

that the synaptic strengths will be updated each

time an event duration is encountered that results

in the firing of aMSN, the mean of the distribution

is updated following a simple reinforcement

learning algorithm. The distributions shown in

the right panel of Fig. 6 represent the detectors

of SBFn after sufficient training has been provided
and a relatively stable pattern has emerged.

Clearly, a nonlinear pattern is exhibited, starting

with high temporal resolution at shorter durations

with a negatively accelerating decrement in tem-

poral resolution for longer durations. The dotted

line shown in the right panel of Fig. 6 is a best fit

Dedicated Clock/Timing-Circuit Theories of Time Perception and Timed Performance 91



geometric series, indicating that the temporal res-

olution closely resembles Fechner’s observation

that the subjective experience increases arithmet-

ically for geometrically increasing physical

stimuli. Interestingly, many of the basic

assumptions of these different SBF models could

also be applied to the IP models of interval timing.

For example, the assumption of global variability

in the frequencies of the oscillators could be trans-

lated to variability in clock speed between trials in

Scalar Timing Theory as was proposed by Matell

and Meck [76]. This would remove the need for

the memory translation based on k*. However, to

account for other effects associated with the scalar

property, such as the JND effect, a ratio-rule

would still be required.

As the distribution of simulated detectors in

the SBFn model follows the same pattern of

nonlinearity as was used in the integrated-

architecture model of interval timing, it is

straightforward to update this model to match

the properties of the neurobiologically

constrained SBFnmodel. That is, where the orig-

inal integrated-architecture model assumed that

the clock module provides a readout on an inter-

val scale that represents the current time, an

updated version could simply be provided with

an indication of which MSN fired most recently.

Because these feature detectors will always fire

in sequence, the model will be able to predict

which detector will fire next, thus providing an

index of the passage of time even before the

target detector has fired (concept of “shorter”

than) as well as after it has fired (concept of

“longer” than). This information could drive

expectancy-based processes as it might provide

the thalamocortical-based input to decision pro-

cesses that regulate the CNV amplitude as

hypothesized by Nagai et al. [113]. Although a

complete SBF model as implemented by Matell

and Meck [76] and Oprisan and Buhusi [85, 86]

could be included in the integrated-architecture

model, a more pragmatic approach would be to

update the parameters of the geometric series in

the model so that the mapping of objective to

subjective time follows the distributions of the

MSNs of the SBFn model.

Integration of Interval Timing
and Models of Working Memory

One of the remaining questions is related to the

source of the oscillations that provide the input to

the MSNs as neither the SBF nor SBFn model
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(B) Learned, Stable Distribution

Fig. 6 Starting distribution (left panel) and learned, sta-

ble distribution (right panel) of an extended Striatal Beat-
Frequency model that can represent multiple durations

(SBFn). The x-axis depicts the objective time to which

each of the ten simulated detectors modeled after striatal

medium spiny neurons is sensitive. Each of the detectors

has a skewed-normal receptive field that scales with the

represented event duration. The initial state of the SBFn
model, depicted in the left panel reflects linear temporal

precision. The stable distribution of detectors, shown in

the right panel, emerges after training. This distribution

follows a geometric series as can be seen by the dotted
line that follows the function ∑(110 � 1.1n) + 150
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identifies the exact source. Interestingly, both

theoretical and empirical work suggests that

working memory and interval timing rely not

only on the same anatomical structures, but also

on the same neural representation of a specific

stimulus [139, 140]. Specifically, cortical

neurons may fire in an oscillatory fashion to

form representations of stimuli, and the MSNs

may detect those patterns of cortical firing that

occur co-incident to important events. Informa-

tion about stimulus identity can be extracted

from which cortical neurons are involved in the

representation, and information about duration

can be extracted from their relative phase.

Based on this link between working memory

and interval timing [140], the SBF and SBFn

models of interval timing can be extended to an

oscillatory model of interval timing and working

memory (SBFm). The principles derived from

these biologically based models also fit well

with a family of models that emphasize the

importance of time in many working-memory

phenomena [141–143].

Neural oscillation is an important feature in

both interval timing and working memory.

In particular, the activation of working memory

is associated with increased gamma oscillations

(e.g., 25–100 Hz) in the frontal cortex that are

entrained to the hippocampal theta-frequency

range (e.g., 5–12 Hz) in multiple brain areas

including the cortex, striatum, and hippocam-

pus—all relevant to interval timing [139, 144].

Recent evidence suggests that phase-amplitude

coupling (PAC) of theta and gamma occurs dur-

ing working memory maintenance [145–147]—

where PAC refers to the phenomenon of cou-

pling between the amplitude of a faster oscilla-

tion and the phase of a slower oscillation. Such a

relation between different frequency ranges has

been shown to be a prevailing feature of neural

activity associated with cognitive function.

Penttonen and Buzsaki [148], for example,

showed a natural logarithmic relationship in the

periods of delta, theta, gamma, and ultra-fast

oscillations, while Lakatos et al. [149] have

shown hierarchical relations in delta, theta, and

gamma bands of activity. In this regard, the

relations among these different frequency

categories are thought to be important in

controlling patterns of neural activation.

Computer simulations suggest that multiple

oscillators with different frequencies produce

these logarithmic and hierarchical relationships.

Moreover, the simulated relation between differ-

ent frequency ranges appears to be fractal, i.e.,

gamma oscillations are entrained within theta,

which is, in turn, entrained within delta

oscillations [139]. Consequently, it has been

hypothesized that interval timing and working

memory are decoded from different ranges of

these oscillatory periods. More specifically,

MSNs in the striatum could detect cortical target

representations from the spatio-temporal patterns

of gamma spikes entrained with theta (for stimu-

lus attributes in working memory) or from syn-

chronous patterns of theta oscillations entrained

in slow oscillations (for event durations in inter-

val timing). In this manner, the same patterns of

oscillation in cortical networks can represent

stimulus attributes and event durations simulta-

neously. Moreover, an optimal strategy for detec-

tion can distinguish between interval timing and

working memory, i.e., a diverse range of

delta–theta frequencies is favorable for encoding

event duration, whereas synchronous theta

oscillations are better for maintaining one or

more items in working memory because this

effectively increases the size of neuronal net-

work. Therefore, the observed interference

between interval timing and working memory

[150–154] can be explained in terms of how the

range of theta-oscillation frequencies is set (e.g.,

multiple theta frequencies or a single theta fre-

quency synchronized with cortical oscillations).

We suggest that network synchrony analyses, as

described by Burke et al. [155] and Gu et al.

[139], are able to distinguish between two types

of spectral modulations: (1) those that reflect

synchronous engagement of MSNs in the stria-

tum with cortical or hippocampal neurons and (2)

those that reflect either asynchronous

modulations of neural activity or local synchrony

accompanied by disengagement from other brain

structures. The basic idea is that these different

spectral modulations within cortico-thalamic-

basal ganglia circuits have distinct

Dedicated Clock/Timing-Circuit Theories of Time Perception and Timed Performance 93



spatiotemporal profiles during the timing of

event durations and the encoding of specific

stimulus attributes in working memory [99,

132, 140], thus providing an integrative format

for the representation of time and other types of

episodic information.

Summary and Conclusions

In this chapter we have shown how over the

years the original IP model of interval timing

has been extended. At the basis of this work

lies the original theory proposed by Treisman

[14] which specified, in verbal terms, how the

combination of clock, memory and decision

stages could give rise to temporal behavior.

Gibbon et al. [17] further developed this

model in a series of papers that refined the

original theory by providing specific and

quantitative implementations of the different

IP stages. A large proportion of the current

work in the field of interval timing is still

based on the ideas put forward in the context

of this Scalar Timing Theory. Two lines of

work can be identified that branched off from

this original model. Work in one branch

focused on improving the neurobiological

foundations of Scalar Timing Theory. The

main example of this work is the Striatal

Beat-Frequency model [6, 76] which

demonstrates that a cortico-thalamic-basal

ganglia network can implement the clock

stage as proposed in Scalar Timing Theory.

The other branch has focused on comple-

menting the IP-models of interval timing

with an integrated cognitive architecture [75,

83]. On the one hand, this integrated-

architecture allows researchers to create

models of more complex tasks in which inter-

val timing plays a crucial role, whereas on the

other hand this integration provides further

constraints on interval-timing theories as the

putative processes need to be filled in with

greater detail. This requirement can also result

in new explanations for existing phenomena.

For example, the processes underlying the

long-term declarative memory system of the

integrative- architecture model allow for the

precise modeling of the memory effects [100]

observed in interval timing (i.e., the “memory

mixing” effect—[50, 65, 98]).

Current work in this field is focused on

reuniting these two branches. In the SBFn

model, the SBF and integrated-architecture

model of interval timing are combined,

providing a neurobiology-based model that

can be used to model complex time-based

tasks. Although extending the integrative-

architecture model to include a SBF-based

clock stage does not change its functional

properties, the neurobiological basis of the

SBF model provides further constraints for

this architecture-based model. Another

approach to unification is the proposed

SBFm model. The idea for this model is

based on extensive work that links working

memory to oscillations in the same cortico-

striatal network that serves as the basis of the

SBF model. The SBFm model links working

memory processes and interval timing by

assuming that the firing patterns of the

oscillating neurons could encode for content

in the working memory system, whereas the

phase of these oscillations could encode for

temporal properties [139, 140]. Future work

will focus on the implementation of this

SBFm model, and at the same time testing

the predictions of this model using, for exam-

ple, network synchrony analyses [139, 155]

and model-based fMRI analyses [156–158]

in an attempt to unify prospective and retro-

spective time estimation [159–163].
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Neural Dynamics Based Timing
in the Subsecond to Seconds Range

Dean V. Buonomano

Abstract

The brain must solve a wide range of different temporal problems, each of

which can be defined by a relevant time scale and specific functional

requirements. Experimental and theoretical studies suggest that some

forms of timing reflect general and inherent properties of local neural

networks. Like the ripples on a pond, neural networks represent rich

dynamical systems that can produce time-varying patterns of activity in

response to a stimulus. State-dependent network models propose that sen-

sory timing arises from the interaction between incoming stimuli and the

internal dynamics of recurrent neural circuits. A wide-variety of time-

dependent neural properties, such as short-term synaptic plasticity, are

important contributors to the internal dynamics of neural circuits. In con-

trast to sensory timing, motor timing requires that network actively generate

appropriately timed spikes even in the absence of sensory stimuli. Popula-

tion clock models propose that motor timing arises from internal dynamics

of recurrent network capable of self-perpetuating activity.

Keywords

Millisecond timing � Neural dynamics � Short-term synaptic plasticity �

Temporal processing � Motor timing

Introduction

The nervous system evolved to allow animals to

adapt to and anticipate events in a dynamic world.

Thus the need to tell time was among the earliest

forces shaping the evolution of the nervous sys-

tem. But telling time is not a singular biological

problem: estimating the speed of moving objects,

determining the interval between syllables, or

anticipating when the sun will rise, are all tempo-

ral problems with distinct computational

requirements. Because of the inherent complex-

ity, diversity, and importance of time to animal

evolution, biology has out of necessity devised

numerous solutions to the problem of time.
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Humans and other animals time events across a

wide range of temporal scales, ranging from

microsecond differences in the time it takes

sound to arrive in the right and left ear, to our

daily sleep-wake cycles, and beyond if we con-

sider the timing of infradian rhythms such as

menstrual cycles. At a societal and technological

level humans also keep track of time over many

orders of magnitude, from the nanosecond accu-

racy of the atomic clocks used for global-

positioning systems to the clocking of our yearly

trip around the sun. It is noteworthy that in the

technological realm we can use the same devices

to tell the time across the full spectrum of time

scales: for example, atomic clocks are used to

time nanosecond delays in the arrival of signals

from different satellites, as well as to make

adjustments to the calendar year. Virtually all

modern man-made clocks—from an atomic

clock to a grandfather clock—rely on the same

simple principle: an oscillator that generates

events at some fixed interval and a counter that

integrates events (“tics”) to provide an estimate of

time with a resolution equal to the period of the

oscillator. In stark contrast, evolution has devised

fundamentally different mechanisms for timing

across different time scales, and even multiple

mechanisms to solve temporal problems within

the same time scale. The fact that there are numer-

ous biological solutions to the problem of telling

time likely reflects a number of factors. First, the

biological building blocks of the brain lack the

speed, accuracy, and counting precision of the

electronic components that underlie modern

man-made clocks. Second, the features required

of a biological timer vary depending on whether

its function is to process speech, or to control the

circadian fluctuations of sleep-wake cycles. Third,

different temporal problems, such as sound locali-

zation, capturing the temporal structure of animal

vocalizations, or estimating when the sun will rise

emerged hundreds of millions of years apart dur-

ing evolution; and were thus subject to entirely

different evolutionary pressures and potential

solutions. The result is that while animals need

to discriminate microsecond differences between

the arrival of sounds to each ear and the hours that

govern their sleep-wake cycles, the timing

mechanisms responsible for both these tasks

have nothing in common. In other words, the

“clock” responsible for the millisecond timing

does not have an hour hand, and our circadian

clock does not have a second hand.

For the above reasons, any discussion of

timing should be constrained to specific scales

and tasks. This chapter will focus on the scale of

tens of milliseconds to a few seconds. It is within

this range in which the most sophisticated forms

of timing lie. Computationally speaking, timing

on shortest and longest scales is mostly limited to

detection of isolated intervals and durations. But

within the scale of tens of milliseconds to

seconds, the brain must process and generate

complex temporal patterns. It is within this

range in which most animals generate and

decode the complex temporal structure of audi-

tory signals used for communication. For exam-

ple, in human language, the duration and

intervals between different speech segments is

critical on many different levels, from the timing

of the interval between syllables and words [1–4]

to the overall prosody in which the rhythm and

speed of speech influence our interpretation of

affect speech recognition and for the determina-

tion of prosody [5]. For example, the pauses

between words contribute to the interpretation

of ambiguous sentences such as “Kate or Pat

and Tony will come to the party” (i.e., will

Kate or Pat as well as Tony come, versus, will

Kate or, Pat and Tony, come) [2]. Additionally,

on the motor side the complex motor patterns

necessary for speech production, playing the

piano, or performing highly coordinated motor

patterns animals must perform to hunt are

heavily dependent on the brain’s ability to pro-

duce timed motor outputs [6]. Perhaps the easiest

way to express the unique sophistication of tem-

poral processing on the scale of tens of milli-

seconds to seconds is by pointing out that

human language can be effectively reduced to a

purely temporal code. In Morse code there is a

single communication channel and all informa-

tion is transmitted in the order, interval, duration,

and pattern of events. It is a testament to the

brain’s ability to process temporal information

that humans can learn to communicate with
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Morse code, but this ability is constrained to a

specific time scale, the brain simply does not

have the hardware to understand Morse code

with ‘dot’ and ‘dash’ durations of a few millisec-

ond or of many seconds: the ability to process

complex patterns is lost at both very fast and very

slow speeds!

In this chapter we will focus on a class of

models mentioned in fourth chapter (Hass and

Durstewitz, this volume) termed state-dependent

networks, that offers a general framework of the

mechanisms underlying timing on the scale of

tens of milliseconds to a few seconds. This class

of models is unique in that it provides a frame-

work to process both simple forms of interval and

duration discrimination, as well as the ability to

process complex spatiotemporal patterns charac-

teristic of speech or Morse code. A key principle

in this framework is that precisely because timing

is such an important computational problem it is

proposed that neurons and neural circuits evolved

precisely to solve temporal problems, and thus

that timing on the scale of tens of milliseconds

to a few seconds should be seen as an intrinsic, as

opposed to a dedicated (fifth chapter), computa-

tion. Thus under this framework timing is simply

one of the main computational tasks neural

networks were “designed” to perform.

Timing with Neural Dynamics

The principle underling most man-made clocks is

that by counting the cycles of an oscillator that

tics at a fixed frequency it is possible to keep

track of time. It is important to note, however,

that there are ways to tell time that do not rely on

oscillators. In principle, any dynamic system,

regardless of whether it exhibits periodicity or

not, can potentially be used to tell time—indeed

this statement is a truism since dynamics refers to

systems that change over time. Consider a child

sliding down a water slide, if she goes down from

the same initial position every time, she will take

approximately the same amount of time to reach

the bottom every time. We could mark the slide

to represent 1 s intervals, which would have

smaller spacing at the top and larger spacings at

the bottom where the velocity is higher. Thus as

the child crosses the different lines we could tell

if she started approximately 1, 2, 3, or 4 s ago.

The point is, is that any dynamical system that

can be follow the same trajectory again and again

has information about time. Indeed, in his

famous experiments on motion Galileo applied

this same concept when analyzing the speed a

ball roles down an inclined plane.

A slightly more appropriate analogy to pre-

pare us for how neural dynamics can be used to

tell time is a liquid. A pebble thrown into a pond

will create a spatiotemporal pattern of ripples:

the concentric waves that travel outwards from

the point of entry. If you were shown two

pictures of these ripples you could easily tell

which picture was taken first based on the diam-

eter of ripple pattern, and importantly with some

knowledge of the system and a bit of math, you

could estimate how long after the pebble was

thrown in were both pictures taken. Now let’s

consider what happens when we throw in second

pebble: the pattern produced by a second pebble

will be a complex interaction between the inter-

nal state of the liquid (the current pattern of

ripples). In other words the ripple pattern pro-

duced by the second pebble will be a function of

the inter-pebble interval, because the interaction

between the internal state of the system and

subsequent “inputs”. As we will see below this

notion of an evolving internal state and the inter-

action between that internal state and new inputs

is key to state-dependent network models—

particularly in the context of sensory timing.

Networks of neurons are a complex dynamic

system—not just any dynamic system, but argu-

ably one of the most complex dynamic systems

known. Defining the internal state of neural net-

work, however, is not as straightforward as it might

seem, so it will be useful to distinguish between

two components that characterize the state of neu-

ral networks: the active and hidden state.

Active States

Traditionally, the state of a neural network is

defined by which neurons are firing at a given
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point in time–I will refer to this as the active state.
We can formally define the active state of a net-

work composed of N neurons as an N-dimensional

vector that is composed of zeros and ones—where

a zero signifies that a neuron is not firing and a one

means that it is (depending on the size of the time

bin we can also represent each value as a real

number representing the firing rate). Such a vector

forms a point in N-dimensional space, and defines

which neurons are active at a time point t. Over the
course of multiple time bins these points form a

path (a neural trajectory) through state space

(Fig. 1A). Because the trajectory plays out in

time each point can potentially be used to tell

time. One of the first models to suggest that the

changing population of active neurons can be used

to encode time was but forth by Michael Mauk in

the context of the cerebellum [7–9]. The cerebel-

lum has a class of neurons termed granule cells,

and these are the most common type of neuron in

your brain—more than half the neurons in the

brain are granule neurons [10]. Mauk proposed

that one reason there are so many granule cells is

because they do not only code for a particular

stimulus or body position but the amount of time

that has elapsed since any given stimulus was

presented. The model assumes that a stimulus

will trigger a certain population of active granules

cells, and that at each time point t + 1 this neuro-

nal population will change, effectively creating a

neural trajectory that plays out in time.Why would

the population of granule cells change in time in

the presence of a constant (non-time varying) stim-

ulus? The answer lies in the recurrency, or feed-

back, that is characteristic of many of the brain’s

circuits. As we will see below the recurrency can

ensure that which neurons are active at time t is not

only dependent on the synapses that are directly

activated by the input, but also depends on the

ongoing activity within the network; thus the

neurons active at t + 1 is a function of both the

input and which neurons were active at t. Under
the appropriate conditions feedback mechanisms

can create continuously changing patterns of activ-

ity (neural trajectories) that encode time.

Numerous in vivo electrophysiology studies

have recorded reproducible neural trajectories

within neural circuits. These neural trajectories

have been observed in response to either a brief

stimulus or prolonged time-varying stimuli

[11–14]. Other studies have demonstrated that

these trajectories contain temporal information

[15–20]. While these results support the notion

that time can be encoded in the active state of

networks of neurons, it has not yet been clearly

demonstrated that the brain is actually using

these neural trajectories to tell time.

Hidden States

Defining the state of a neural network is more

complicated then simply focusing on the active

Fig. 1 Neural trajectories. A) The changing patterns of

activity of a neural network can be represented as neural

trajectories. Any pattern of activity can be represented in a

space where the number of dimensions correspond to the

number of units. In the simple case of two neurons

trajectories can be plotted in 2 dimensional space where

each point corresponds to the number of spikes within a

chosen time window. In this schematic two different

trajectories (blue and red) are elicited by two different

stimuli, and because the trajectories evolve in time, the

location of the each point in space codes for the amount of

time that has elapsed since the onset of either stimulus

(from Buonomano and Maass [73])
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state. Even a perfectly silent network can respond

to the same input in different manners depending

on its recent history of activity. Put another way,

even a silent network can contain a memory of

what happened in the recent past. This is because

neurons and synapses have a rich repertoire of

time-dependent properties that influence the

behavior of neurons and thus of networks. On

the time scale of tens of milliseconds to a few

seconds, time-dependent neural properties include

short-term synaptic plasticity [21, 22] slow inhib-

itory postsynaptic potentials [23, 24],

metabotropic glutamate currents [25], ion channel

kinetics [26, 27], and Ca2+ dynamics in synaptic

and cellular compartments [28, 29], and NMDA

channel kinetics [30]. I refer to these neuronal and

synaptic properties as the hidden network state,

because they are not accessible to the downstream

neurons (or to the neuroscientist performing extra-

cellular recordings) but will nevertheless strongly

influence the response of neurons to internally or

externally generated inputs.

Much of the work on the hidden-states of

neural networks has focused on short-term syn-

aptic plasticity, which refers to the fact that the

strength of a synapse is not a constant but varies

in time in a use-dependent fashion. For example,

if after a long silent period (many seconds) an

action potential is triggered in a cortical pyrami-

dal neuron might produce a postsynaptic poten-

tial (PSP) of 1 mV in a postsynaptic neuron. Now

if a second spike is triggered 100 ms after the first

spike the PSP could be 1.5 mV. Thus the same

synapse can have multiple different strengths

depending on its recent activity. This short-term

plasticity can take the form of either depression

or facilitation, depending on whether the second

PSP is smaller or larger then the ‘baseline’ PSP,

respectively. An example of short-term facilita-

tion between cortical pyramidal neurons is

shown in Fig. 2. Most of the brain’s synapses

undergo depression or facilitation for the dura-

tion of a time scale of hundreds of milliseconds

[21, 31–33], but some forms short-term synaptic

plasticity can last for seconds [21, 34, 35].

It is important to note that short-term synaptic

plasticity is a type of a very short-lasting mem-

ory. The change in synaptic strength is in effect a

memory that a given synapse was recently used.

Furthermore, the memory is time-dependent: the

change in synaptic strength changes smoothly in

time. For example in the case of short-term facil-

itation of EPSPs between cortical pyramidal

neurons the amplitude of the second of a pair of

EPSPs generally increases a few tens of

milliseconds after the first EPSP and then decays

over the next few hundred milliseconds. Because

of this temporal signature the STP plasticity

provides a potential ‘clock’—in the sense that it

contains information about the passage of time.

But as we will see it is unlikely that individual

synapses are literally telling time, rather theoret-

ical and experimental evidence suggests that

short-term synaptic plasticity contributes to

time-dependent changes in the active states of

neural networks, which do code for time.

Hidden and Active States, and Sensory
and Motor Timing

Consider a highly sophisticated temporal task of

communicating using Morse code. As mentioned

above, Morse code is a temporal code, in the

Fig. 2 Short-term synaptic plasticity. Each trace repre-

sent the voltage of a postsynaptic neuron during the paired

recording of two connected layer 5 pyramidal neurons

from the auditory cortex of a rat. The amplitude of the

EPSP (that is, the synaptic strength) changes as a function

of use. In this case facilitation is observed. The strength of

the second EPSP is larger than the first, and the degree of

facilitation is dependent on the interval, the largest degree

of facilitation is observed at 25 ms (from Reyes and

Sakmann [31])
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sense that there is only a single spatial channel:

all information is conveyed in the interval, order,

and number of the “dots” (short elements) and

“dashes” (long elements). Understanding Morse

code requires that our auditory system parse the

intervals and duration of the signals, but

generating Morse code, requires that the motor

system produce essentially these same durations

and intervals. Does the brain use the same timing

circuits for both the sensory and motor

modalities? This important question, relates to

one discussed throughout this book. Are the

mechanisms underlying timing best described

as dedicated—i.e., there is a specialized and

centralized mechanism responsible for timing

across multiple time scales and processing

modalities. Or, conversely is timing intrinsic—

i.e., is timing a general property of neural circuits

and processed in a modality specific fashion [36].

State-dependent network models are examples of

intrinsic models of timing, and argue that

because virtually all neural circuits exhibit active

and hidden states that most neural circuits can

potentially tell time. But different circuits are

likely to be more or less specialized to tell time.

Additionally, different circuits likely rely on the

active or hidden states to different degrees to tell

time. This point is particularly important when

considering the difference between sensory and

motor timing. In a sensory task, such as interval

discrimination, you might be asked to judge if

two tones were separated by 400 ms or not; in a

motor production task you might be asked to

press a button twice with an interval as close to

400 ms as possible. Note that in the sensory task

the critical event is the arrival of the second

externally generated tone. Your brain must

somehow record the time of this external event

and determine whether it occurred 400 ms after

the first. But in the motor task your brain must

actively generate an internal event at 400 ms.

This difference is potentially very important

because sensory timing can be achieved ‘pas-

sively’: time is only readout when the network

is probed by an external stimulus. But because

the network could be silent during the inter-tone

interval it is entirely possible that the time is

‘kept’ entirely by the hidden state (until the

arrival of the second tone, when the hidden

state is translated into an active state). In con-

trast, motor timing cannot rely exclusively on the

hidden state: in order to generate a timed

response there should be a continuously evolving

pattern of activity (although there are some

exceptions to this statement). Thus, although sen-

sory and motor timing may in some cases rely on

the same mechanisms and circuits, it is useful to

consider them separately because of the potential

differences between the contributions of hidden

and active states to sensory and motor timing.

Sensory Timing

The central tenet of state-dependent network

models of sensory timing is that most neural

circuits can tell time as a result of the interaction

between the internal state networks and incoming

sensory information. Computer simulations have

demonstrated how both the hidden and active

states of neural networks can underlie the dis-

crimination of simple temporal intervals and

durations, as well as of complex spatiotemporal

patterns such as speech [37–43]. These models

have been based on spiking models of cortical

networks that incorporate hidden states, gener-

ally short-term synaptic plasticity. The networks

are typically recurrent in nature, that is, the excit-

atory units synapse back on to themselves. Criti-

cally, however, in these models the recurrent

connections are generally relatively weak, mean-

ing that the positive feedback is not strong

enough to generate self-perpetuating activity. In

other words in the absence of input these

networks will return to a silent (or baseline spon-

taneous activity) active state.

To understand the contributions of the hidden

and active states it is useful to consider the dis-

crimination of intervals versus durations or com-

plex time-varying stimuli. Interval

discrimination must rely primarily on the hidden

state. For example, consider the discrimination of

two very brief auditory tones presented 400 ms

apart. After the presentation of the first tone the

network rapidly returns to a silent state—thus the

active state cannot “carry” the timing signal—
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but the hidden state can “remember” the occur-

rence of the first tone (provided the second tone

is presented within in the time frame of the time

constants of short-term synaptic plasticity). But

for a continuous stimulus, such as duration dis-

crimination, or the discrimination of words spo-

ken forwards or backwards, the temporal

information can be encoded in both the hidden

and active state because the stimulus itself is

continuously driving network activity.

To understand the contribution of hidden

states alone to temporal processing we will first

consider very simple feedforward networks (that

is, there are no excitatory recurrent connections

capable of driving activity in the absence of

input). These simple circuits rely primarily on

short-term synaptic plasticity to tell time, and

while they cannot account for the processing of

complex temporal patterns, experimental data

suggest they contribute to interval selectivity in

frogs, crickets, and electric fish [44–48].

Sensory Timing in a Simple Circuit

Figure 3 provides an example of a very simple

feedforward circuit that can discriminate a

100 ms interval from 50 and 200 ms intervals.

The circuit reflects a virtually universal architec-

ture in neural circuits: feedforward excitation

Fig. 3 Simulation of interval selectivity based on short-

term plasticity. (a) Schematic of a feedfoward disynaptic

circuit. Such circuits are almost universally observed

throughout the brain. They are characterized by an input

that excites both an inhibitory and excitatory neuron (for

example, thalamocortical axons synapse on both excitatory

and inhibitory neurons), and feedfoward inhibition (the

excitatory units receives inhibition from the inhibitory neu-

ron). Each of the three synapses exhibit short-term synaptic

plasticity. (b) Short-term synaptic plasticity (the hidden

state) can potentially be used to generate interval selective

neurons. Perhaps the simplest scenario is one in which both

the excitatory and inhibitory neurons receive inputs that

exhibit paired-pulse facilitation. In this example, a the Ex

units spikes is selective to the 100 ms interval because at

50 ms it is inhibited by the spike in the inhibitory neurons,

and at the 200 ms interval short-term facilitation is no

longer strong enough to drive it to threshold
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and disynaptic inhibition [49, 50]. The prototyp-

ical disynaptic circuits is composed of a single

Input, an excitatory (Ex) and inhibitory (Inh)

neuron, where both neurons receive excitatory

synapses from Input, and the excitatory neuron

also receives inhibition from the inhibitory neu-

ron for a total of three synapses: Input ! Ex,

Input ! Inh, and Inh ! Ex. There are many

ways short-term synaptic plasticity can generate

interval selectivity. In this example the excitatory

synapses onto the excitatory and inhibitory neu-

ron exhibit paired-pulse facilitation (the second

EPSP will be stronger then the first). Selectivity

arises from dynamics changes in the balance of

excitation impose by short-term synaptic plastic-

ity. In this example the short-term facilitation

onto the Inh neuron is sufficient to make it fire

to the second pulse at 50 ms but not during the

100 or 200 ms intervals. The short-term facilita-

tion onto the Ex neurons is strong enough to

make it fire to the 50 and 100 ms intervals, but

it does not fire to the 50 ms interval because the

spike in the Inh neuron prevents the spike in the

Ex neuron. Note that this assumes the inhibition

is fast enough to prevent the spike in the Ex

neuron even though it must travel through an

additional neuron. Experimental evidence clearly

demonstrates this is the case [50, 51]: inhibitory

neurons have faster time constants and synapse

on the cell soma of pyramidal neurons (thus

avoiding the dendritic conduction delay). Simply

changing the synaptic strength of the Input !
Ex and Input ! Inh synapses can cause the Ex

unit to fire selectively to the 50 or 200 ms

interval.

This simple model provides an example of

how dynamic changes in the balance of excita-

tion and inhibition produced by short-term syn-

aptic plasticity could potentially underlie the

discrimination of intervals in simple feed-

forward circuits. Importantly, there is experi-

mental evidence that suggest that this is precisely

the mechanism underlying interval selectivity in

some cases. Some species of frogs communicate

though a series of “pulses” and the rate and the

number of pulses provides species-specific

signals. The neuroscientist Gary Rose and his

colleagues have identified neurons in the mid-

brain of these species that respond with some

degree of selectivity to the interval between the

pulses [44, 46, 52, 53]. Similarly, the interval

between brief auditory or bioelectrical pulses in

crickets and electric fish, respectively, are impor-

tant for communication [47, 48]. In these animals

frequency and interval selective neurons have

also been identified. Figure 4 shows an example

of a fish midbrain neuron that does generally not

spike to sequences of electrical discharges

presented at intervals of 10 or 100 ms, but

responds robustly to intervals of 50 ms. Analysis

of the mechanisms underlying these example of

temporal selectivity indicate that it arises from

Fig. 4 Temporal selectivity in midbrain neurons. (a)
Voltage traces from a neuron in the midbrain of an elec-

tric fish. Each trace represents the delivery of trains of

electrical pulses presented at intervals of 100 (left), 50
(middle), and 10 (right) ms. The rows represent three

separate repetition of the trains. The electrical pulses

were delivered in the chamber, picked up by the fish’s

electroreceptors and indirectly transmitted to the neuron

in the exterolateral nucleus. This neuron was fairly selec-

tive to pulses delivered at intervals of 50 ms. (b) The

temporal tuning can be represented by plotting the mean

number of spikes (normalized) per electrical pulse or the

normalized mean PSP amplitude over a range of different

intervals (10–100 ms). From Carlson [47]
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dynamic changes in the balance of excitation and

inhibition produced by short-term synaptic plas-

ticity [44, 46–48]. In other words in these simple

feedforward networks the hidden state of the

networks (in the form of short-term synaptic

plasticity) seems to account for the experimen-

tally observed temporal selectivity.

Sensory Timing in Recurrent Circuits

While theoretical and experimental studies sug-

gest that simple feedforward circuits can perform

simple types of temporal discrimination, it is

unlikely that such circuits can account for the

flexibility, diversity, and complexity characteris-

tic of discrimination of complex time-varying

patterns typical of speech, music, or Morse

code. For complex temporal and spatiotemporal

forms processing, complex recurrent networks

that contain a rich repertoire of connectivity

patterns and hidden states are likely necessary.

Let’s consider what might happen in the audi-

tory cortex or an early auditory sensory area

during a simple interval discrimination task,

and the role of the active and hidden states. The

main input layer of the sensory cortex is Layer

IV, but neurons in all layers can be activated by

the tone, and there is a high degree of both

feedforward and recurrent connectivity within

any given cortical circuit. Thus in response to a

brief tone some complex pattern of active

neurons will be elicited, and this pattern will

comprise the active state. Generally speaking,

within tens of milliseconds after the end of the

tone neurons in the auditory cortex will return to

their baseline levels of activity—suggesting that

the active state does not encode the presentation

of the tone after it is over. Now during an interval

discrimination task a second tone of the same

frequency will be presented at a specific interval

after the onset of the first, let’s assume the

intertone interval was 100 ms. If there was no

‘memory’ of the first tone the second one should

activate the same population of neurons. How-

ever, because of short-term synaptic plasticity

(the hidden state) the strength of many of the

synapses may be different at the arrival of the

first and second tone resulting in the activation of

distinct subsets of neurons. This is illustrated in

Fig. 5a, which illustrates of a computer simula-

tion of a network composed of 400 excitatory and

100 inhibitory neurons. Even when same exact

input pattern is presented to t ¼ 0 and t ¼ 100

ms, many neurons respond differentially to the

first and second tone because of the state-

dependency of the network (in this case as a

result of the hidden state). As show in the lower

panels the change in the network state (defined

by both the active and hidden states) can be

represented in 3D space to allow for the visuali-

zation of the time-dependent changes in network

state. The difference in these populations can be

used to code for the interval between the tones

[37, 39]. State-dependent network models pre-

dict that as information flows through different

cortical areas, the encoding of temporal and spa-

tiotemporal information may increase, but could

begin at early sensory areas such as the primary

auditory cortex. Indeed, a number of studies have

reported that a small percentage of primary audi-

tory cortex neurons are sensitive to the interval

between pairs of tone of the same or different

frequencies [54–56], however there is as yet no

general agreement as to the mechanisms under-

lying this form of temporal sensitivity.

An elegant aspect of the state-dependent net-

work models is that it provides a general frame-

work for temporal and spatiotemporal

processing, it does not simply address the

mechanisms of interval selectivity, but the

processing of complex temporal patterns and

speech [37, 38, 40, 42]. This robustness arises

from the fact that any stimulus will be naturally

and automatically encoded in the context of the

sensory events that preceded it. But this robust-

ness is both a potential computational advantage

and disadvantage. An advantage because it

provides a robust mechanism for the encoding

of temporal and spatiotemporal information—for

example, in speech the meaning of the syllable

tool is entirely different if it is preceded by an

s (stool). But the strength of this framework is

also its potential downside, that is, sometimes it

is necessary to encode identify sensory events

independently of their context—for example if
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Fig. 5 Simulation of a state-dependent network. (a) Each
line represents the voltage of a single neuron in response

to two identical events separated by 100 ms. The first 100

lines represent 100 excitatory units (out of 400), and the

remaining lines represent 25 inhibitory units (out of 100).

Each input produces a depolarization across all neurons in

the network, followed by inhibition. While most units

exhibit subthreshold activity, some spike (white pixels)
to both inputs, or selectively to the 100 ms interval. The

Ex units are sorted according to their probability of firing

to the first (top) or second (bottom) pulse. This selectivity
to the first or second event arises because of the difference

in network state at t ¼ 0 and t ¼ 100 ms. (b) Trajectory
of the network in response to a single pulse (left panel).
The trajectory incorporates both the active and hidden

states of the network. Principal component (PC) analysis

is used to visualize the state of the network in 3D space.

There is an abrupt and rapidly evolving response begin-

ning at t ¼ 0, followed by a slower trajectory. The fast

response is due to the depolarization of a large number of

units (changes in the active state), while the slower

change reflects the short-term synaptic dynamics (the

hidden state). The speed of the trajectory in state-space

can be visualized by the rate of change of the color code

and by the distance between the 25 ms marker spheres.

Because synaptic properties cannot be rapidly “reset,” the

network cannot return to its initial state (arrow) before the
arrival of a second event. The right panel shows the

trajectory in response to a 100 ms interval. Note that the

same stimulus produces a different fast response to the

second event, in other words the same input produced

different responses depending on the state of the network

at the arrival of the input (modified from Karmarkar and

Buonomano [43])
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you hear one-two-three or three-two-one the two
in middle still has the same value independently

of whether it was preceded by one or three.
The state-dependent nature of these networks

has led to a number of experimental predictions.

One such prediction is that in an interval discrim-

ination task timing should be impaired if interval

between two intervals being compares is itself

short. One can think of this as being a result of

the network not having sufficient time to ‘reset’

in between stimuli. This prediction has been

experimentally tested. When the two intervals

being judged (100 ms standard) were presented

250 ms apart, the ability to determine which was

longer was significantly impaired compared to

when they were presented 750 ms apart [43].

Importantly, if the two intervals are presented at

250 ms apart, but the first and second tones were

presented at different frequencies (e.g., 1 and

4 kHz), interval discrimination was not impaired.

The interpretation is that the preceding stimuli

can ‘interfere’ with the encoding of subsequent

stimuli when all the tones are of the same fre-

quency because, all tones activate the same local

neural network (as a result of the tonotopic orga-

nization of the auditory system); but if the first

interval is presented at a different frequency

there is less ‘interference’ because the low fre-

quency tones to not strongly change the state of

the local high frequency network. These results

provide strong support for the hypothesis that

timing is locally encoded in neural networks

and that it relies on the interaction between

incoming stimuli on the internal state of local

cortical networks.

These results are not inconsistent with the

notion that we can learn to process intervals,

speech, or Morse code patterns independent of

the preceding events. But they do suggest that the

computational architecture of the brain might be

to naturally encode the spatiotemporal structure

of sensory events occurring together on the time

scale of a few hundred milliseconds, and that

learning might be necessary in order to disentan-

gle events or “temporal objects” that are tempo-

rally proximal. Indeed, this view is consistent

with the observation that during the early stages

of learning a language words are easier to

understand if they are presented a slow rate, and

if the words are presented at a fast rate we lost the

ability to parse speech and grasp the independent

meaning of each one.

Motor Timing

If you are asked to press a button 1 s after the

onset of a tone, there must be an active internal

‘memory’ that leads to the generation of a move-

ment after the appropriate delay. In contrast to

sensory timing, where an external event can be

used to probe the state of a network, motor

timing seems to require an active ongoing inter-

nal signal. Thus, motor timing cannot be accom-

plished exclusively through the hidden state of a

network. Rather, motor timing is best viewed as

being generated by ongoing changes in the active

state of a neural networks.

Motor timing on the scale of hundreds of

milliseconds to a few seconds encompasses a

wide range of phenomenon studied with a num-

ber of different tasks including. (1) Tapping,

where subjects are asked to tap a finger with a

fixed period [57, 58]. (2) Eyeblink conditioning,

many animals including mice, rabbits, and

humans can be conditioned to blink at a certain

interval (generally less than 1 s) after the onset of

a conditioned stimulus such as a tone, by pairing

the tone with the present of an aversive stimulus

[59, 60]. (3) Spatiotemporal reproduction, motor

timing has also been studied using a slightly

more complex task in which humans are asked

to reproduce a spatiotemporal pattern using their

fingers—much like one would while playing the

piano [61]. An example of such a task is shown in

Fig. 6a. This task is of interest because it requires

that multiple intervals be produced in succession,

i.e., the end of one interval is the beginning of the

next. The fact that this task is easily performed

constrains the mechanisms underlying timing,

for example it makes it unlikely that motor

timing relies on a single timer that requires a

significant amount of time to be reset. Indeed,

analysis of this task has been used to argue that

motor timing relies on a timer that times contin-

uous from the first element (t ¼ 0) through out
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the entire pattern, as opposed to being reset at

each interval [61].

It seems likely that there are multiple neural

mechanisms contributing to different types of

motor timing, of particularly importance may

be the distinction between motor timing tasks

that require the generation of simple intervals,

or periodic or aperiodic patterns. But models

based on dynamics changes in the population of

active neurons can potentially account for not

only a wide range of motor timing tasks, but for

the generation of complex spatiotemporal motor

patterns. Such models, have been referred to as a

population clock [62, 63]. Specifically, in these

models timing emerges from the internal dynam-

ics of recurrently connected neural networks, and

time is inherently encoded in the evolving activ-

ity pattern of the network—a population clock

[6, 62].

As mentioned above, one of the first examples

of such a population clock was proposed in the

context of timing in the cerebellum [7, 8].

Fig. 6 Simulation of a population clock in a recurrent

neural network. (a) Network architecture. A randomly

connected network composed of 1,800 randomly

connected firing rate units. This recurrent network

receives a single input. The four outputs are used to

generate a spatial temporal pattern, and can be interpreted

as four finger that much press the keys of a piano in a

specific spatiotemporal pattern. (b) The output units were
trained to produce the pattern shown (three different runs

overlaid) in response to a brief input (black line). Training
consist of adjusting the weights of the recurrent units onto

the readout units (red lines in panel a). Output traces are
shifted vertically for visual clarity. The dashed black
trace represents a constant input tonic input to the recur-

rent network. Colored rasters represent a subset (20) of

the recurrent units. In these units activity ranges from �1

(blue) to 1 (red) (modified from Laje et al. [61]).
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Specifically, that in response to a continuous

tonic input a continuously varying population of

granule cells will be active as a result of the a

negative feed back loop where granule cells

excite Golgi neurons, which in turn inhibit the

granule cells. In response to a constant stimulus,

conveyed via the mossy fibers, the Gr cell popu-

lation response is not only a function of the

current stimulus, but is also dependent on the

current state of the Gr-Go network. As a result

of the feed-back loop, simulations reveal that a

dynamically changing trajectory of active Gr

cells is created in response to a stimulus [7, 64,

65]. This pattern will trace a complex trajectory

in neuron space, and since each point of the

trajectory corresponds to a specific population

vector of active Gr cells, the network inherently

encodes time. Time can then be read-out by the

Purkinje cells (the ‘readout’ neurons), which

sample the activity from a large population of

Gr cells. Importantly, the Purkinje cells can learn

to generate timed motor responses through con-

ventional associative synaptic plasticity coupled

to the reinforcement signal from the inferior

olive [60]. In this framework, the pattern of Gr

cell activity would be expected not only to

encode all potentially relevant stimuli, but also

to be capable of generating a specific time-stamp

of the time that has elapsed since the onset of

each potential stimulus. This scheme clearly

requires a very high number of distinct Gr cell

patterns. Indeed, the fact that there are over

5 � 1010 Gr cells in the human cerebellum [49]

suggests that they are uniquely well-suited and

indeed designed to encode the large number of

representations that would arise from having to

encode the time from onset for each potential

stimulus.

There is strong experimental evidence that the

cerebellum is involved in motor timing [59, 64,

66]. But it is also clear that other areas of the

brain are also capable of motor timing—indeed

even in the presence of large cerebellar lesions

timing is often only mildly impaired, not

abolished. Additionally, because the cerebellum

lacks any recurrent excitation it is not capable of

generating self-perpetuating activity or time

response in the absence of a continuous input.

Cortical circuits, however, have abundant excit-

atory recurrent connections, and are able to oper-

ate in a truly self-perpetuating regime.

To understand how a network can generate

self-perpetuating activity which can be used for

timing it is useful to consider simpler and less

biologically realistic models. An example of

such a model is shown in Fig. 6. The units of

the network do not spike but can vary their

“activity” levels according to an analog

input–output function. These “firing rate” units

are typically represented by a sigmoid, and the

output can take on any value between �1 and 1

[62, 67]. The network is composed of 1,800

sparsely connected units, each with a time con-

stant of 10 ms (the time constant of the units is

important because if the longest hardwired tem-

poral property in the network is 10 ms, yet the

network is capable of timing many second it

means that timing arises as an emergent property

of the network). As shown in Fig. 6, a brief input

can trigger a complex spatiotemporal pattern of

activity within the recurrent network; and this

pattern can be used to generate multiple, com-

plex spatiotemporal output patterns several

seconds in duration. Different output patterns

can be triggered by different brief input stimuli.

The results shown are from a network with four

outputs (each representing a finger). The network

is trained to reproduce the desired target pattern

every time the corresponding “go” signal is

activated. In this scenario learning takes place

by adjusting the weights on to the readout units.

A potential problem with this class of models,

that will not be addressed in detail here, is that

they tend to exhibit chaotic behavior—that is,

they are very sensitive to noise. However, a

number of studies have begun to address this

limitation through feedback and training the

weights of the recurrent networks [68, 69].

Note that the population clock framework

shown in Fig. 6 does not simply encode time,

but accounts for both the spatial and temporal

aspects of complex spatiotemporal patterns. That
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is, the spatial pattern, the timing, and the order of

the fingers are all encoded in a multiplexed fash-

ion in the recurrent network plus the readout.

Conclusion

Humans time events on scales that span

microseconds to days and beyond. And in con-

trast to the clocks in our pockets and our wrists,

which tell time across scales from milliseconds

to years, biology has devised fundamentally dif-

ferent mechanisms for timing across scales. The

framework proposed in this chapter proposed

that, within the range of tens of hundreds of

millisecond to a few seconds, timing is funda-

mentally unlike man made clocks that rely on

oscillators and counters. Rather, theoretical and

experimental studies suggest that timing on this

scale is fundamentally related to dynamics: the

changing states and patterns of activity that

networks inevitably undergo as a consequence

of the physical properties of neurons and circuits.

An important concept within this framework

is that timing can be a local and inherent compu-

tation performed by neural networks. Yet these

networks can operate in different modes or

regimes, relying more on hidden states in the

case of sensory timing, and more on active states

in motor timing. A powerful feature of the state-

dependent network framework is its generality, it

is not limited to simple intervals or duration but

equally well suited for complex sensory and

motor patterns.

While there is not yet any concrete experi-

mental data regarding the mechanisms underly-

ing any form of timing there is mounting

experimental evidence supporting the notion of

state-dependent mechanisms and that timing

relies on neural dynamics. For example in the

sensory domain there are numerous examples of

interval and frequency selectivity that seem to

clearly rely on the hidden state, particularly

short-term synaptic plasticity [44–48]. Similarly,

in vivo studies in birds, rats, and monkeys have

demonstrated that there is a population code for

time. That is, in relation to an onset event it is

possible to use the population activity of neurons

to determine how much time has elapsed [15–17,

19, 20, 70], however it remains to be proven that

this information is causally being used by the

brain to tell time. Furthermore, in vitro data

suggests that timed responses can also be

observed in isolated cortical networks in vitro
[71, 72].

Although the notion that timing is not the

product of a central clock may run counter to

our intuitions about the passage of time, it is

entirely consistent with the fact that in most

cases time is not an independent dimension of

sensory stimuli, but rather spatially and temporal

processing are often intimately entwined

components of sensory and motor processing.

Given the biological importance of time it

seems suitable that timing on the scale of

hundreds of milliseconds in particular would

rely on local and general properties of the brain’s

hardware, rather than on a dedicated architecture

that would require communication between a

central clock and the diverse sensory and motor

circuits that require timing.

Section Summary

These last three chapters on models or timing do

not provide a comprehensive picture of all theo-

retical and computational work on the neural

mechanisms of timing, but nevertheless, they

highlight the diversity and complexity of the

potential mechanisms of timing. A common

theme in all three chapters is the issue of whether

timing should be viewed as relying on dedicated

or intrinsic neural processes. Fourth chapter

(Hass and Durstewitz, this volume) provided a

sample of different models including both dedi-

cated and intrinsic models, while the last two

chapters contrasted the prototypical examples of

dedicated and intrinsic models. Fifth chapter

(Meck and co-workers) reviewed the main

instantiation of a dedicated model—one based

on pacemaker-accumulator mechanisms—and

subsequent extensions of this approach including

the Striatal Beat-Frequency model. This chapter

described an example of an intrinsic model in

which most neural circuits could perform some
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temporal computations as an inherent conse-

quence of neural dynamics and time-dependent

neural properties.

As highlighted in fourth chapter the models

discussed above are in no way mutually exclu-

sive. Timing encompasses are large range of

different computations which likely rely on a

collection of different mechanisms. Of particular

relevance in the issue of time-scale, and it is

possible that dedicated mechanisms contribute

to timing on the scale of many seconds, while

intrinsic mechanisms underlie timing on the

subsecond scale. Indeed such a dichotomy

resonates with the notion that timing on the longer

engages subjective and cognitive mechanisms,

while those on shorter scale are unconscious and

perceptual in nature.
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Part III

Neural Correlates of Interval Timing



Signs of Timing in Motor Cortex During
Movement Preparation and Cue
Anticipation

Bjørg Elisabeth Kilavik, Joachim Confais, and Alexa Riehle

Abstract

The capacity to accurately anticipate the timing of predictable events is

essential for sensorimotor behavior. Motor cortex holds an established

role in movement preparation and execution. In this chapter we review the

different ways in which motor cortical activity is modulated by event

timing in sensorimotor delay tasks. During movement preparation, both

single neuron and population responses reflect the temporal constraints of

the task. Anticipatory modulations prior to sensory cues are also observed

in motor cortex when the cue timing is predictable. We propose that the

motor cortical activity during cue anticipation and movement preparation

is embedded in a timing network that facilitates sensorimotor processing.

In this context, the pre-cue and post-cue activity may reflect a presetting

mechanism, complementing processing during movement execution,

while prohibiting premature responses in situations requiring delayed

motor output.

Keywords

Motor cortex � Timing � Delay tasks � Movement preparation � Cue

anticipation

Introduction: Sensorimotor Delay
Tasks

When a tennis player tracks a ball in motion

during a match, he precisely times when his

hand should swing the racket to intercept the

ball. Similarly, when a driver anticipates the traf-

fic light turning green, he/she uses an internal

representation of elapsed (or remaining) time

before stepping on the gas pedal. These examples

illustrate that past experience and environmental

clues are used to accurately anticipate the timing

of predictable events, thereby improving sensori-

motor behavior. In the laboratory, pre-cued motor

tasks (Fig. 1) are often used to study movement

preparation processes. In such tasks, movements

are initiated faster when the GO signal timing is

known in advance ([1–4], see reviews in [5, 6]).
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More generally, when temporal uncertainty about

the GO signal occurrence decreases, the behav-

ioral reaction time (RT) also decreases. By

introducing multiple delay durations presented

at random from trial to trial, RT will significantly

increase on average, as the notion of a predict-

able event is confounded. However, because in

this case the conditional probability of receiving

a GO signal increases with time, RT will

decrease for increasing delay durations [1]. Fur-

thermore, even when the delay duration is con-

stant RTs vary from trial to trial, suggesting a

variable representation of subjective delay dura-

tion across trials [6, 7].

The strong dependency of sensorimotor

behavior on time estimation processes has

motivated a growing interest to uncover their

neural correlates. Niki and Watanabe [8] were

the first to connect anticipatory single neuron

delay activity to implicit time estimation. Since

then, several studies interpreted neuronal dis-

charge during delays as being related to timing

processes, both in sensory and motor areas [3, 4,

7, 9–26]. These studies used tasks in which an

informative cue is followed by a delay prior to an

imperative GO signal or a self-timed movement

initiation (Fig. 1), implying either implicit or

explicit timing processes, respectively [27]. In

an instructed delay task the subject must process

the cue during the preparatory delay and prepare

the movement, whilst simultaneously avoiding

premature movement release. The preparatory

delay between the cue and the GO signal either

has a fixed duration or varies from trial to trial

between a minimal and maximal duration. The

presence of a GO signal obviates the need to

estimate delay duration explicitly in order to

perform the task correctly. However, the fact

that RTs are faster when the timing of GO is

more predictable confirms that this timing infor-

mation is implicitly exploited in order to opti-

mize performance (e.g., receiving the reward

sooner in the case of animal subjects). A different

approach is needed to study explicit timing. Here

the subject is asked to provide an estimate of the

delay duration, either by self-timing a movement

initiation (no final GO signal provided; e.g., [3,

21, 22, 25, 28–30]), tapping rhythmically (e.g.,

[31–33]; reviewed in the following chapter in

this volume), intercepting a moving target (see

review in [34]), associating a particular motor

response with a particular delay duration [3], or

comparing two delay durations (e.g., [13, 35,

36]).

Importantly, most sensorimotor delay tasks

also contain a well-defined pre-cue epoch, with

either a fixed or a variable (but predictable) dura-

tion (Fig. 1). The event that marks the start of this

pre-cue delay can either be self-generated by the

subject, such as pressing a start-button or ending

the movement in the preceding trial, or it can be

an external signal presented to the subject. In

sensory cortex, it was shown that the pre-cue

anticipatory activity in visual area V4 was

modulated by the hazard rate of the visual cue

[12]. Furthermore, anticipatory activity preced-

ing somatosensory stimulation has been shown in

somatosensory cortex [37, 38], and in auditory

cortex preceding auditory stimuli [39]. However,

such cue anticipatory neuronal activity is not

restricted to sensory areas, as it can also be

found in motor cortex [9, 10, 40, 41].

In this chapter we will examine the different

ways in which timing affects neuronal activity in

motor cortex. We will first show that task timing

organizes motor cortical activity during move-

ment preparation, observable in both the spiking

activity of single neurons and in different neuro-

nal population measures. Sensorimotor behavior

Fig. 1 A generic sensorimotor delay task. Instructed

delay tasks typically use a (warning) cue followed after

a delay by an imperative GO signal. The cue might pro-

vide full, partial or no information about the movement to

be executed after GO. During the preparatory delay

between the cue and GO, the movement can be prepared

using the available information. Note that in some cases,

there is not explicit GO signal, and movement onset (Mvt)

should be timed by the subject (self-paced). Furthermore,

there is often a pre-cue delay of predictable duration,

whenever there is an initial external signal or self-

generated movement (trial start) preceding the cue that

provides temporal information. During the pre-cue delay,

the subject can anticipate the moment of cue occurrence

(temporal orienting) in order to optimize cue detection
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is a distributed process, most likely with several

areas working in parallel during different task

epochs. In line with this idea, we will show that

motor cortical activity is already modulated

before movement preparation, e.g., during the

anticipation of sensory cues.

We propose that the motor cortical activity

during cue anticipation and movement prepara-

tion is embedded in a timing network that

facilitates sensorimotor processing. In particular,

activity prior to and following the sensory cue

may reflect presetting mechanisms that comple-

ment the subsequent processing during move-

ment execution, whilst prohibiting a premature

response in situations requiring a delayed motor

output.

Part 1: Timing During Movement
Preparation

Spiking Activity During Movement
Preparation

Neurons in many cortical and sub-cortical areas

change their firing rate progressively during the

preparatory delay [3, 4, 8, 9, 13, 16, 24, 25, 35,

42–46]. Such climbing activity can be observed

in both self-paced, explicit timing tasks (see

example in [47]) and implicit timing tasks using

a GO signal (Fig. 2a, b). These neuronal activity

patterns have been successfully used in single

trials to decode the elapsed time of an event/

movement and the onset time of subsequent

events/movements [13, 25, 26]. Climbing activ-

ity has also been tested as a timing mechanism in

modeling approaches [48–50]. One approach

proposed that task timing modulates the slope,

but not the final peak of activity. Thus, a thresh-

old mechanism could read-out the end of a timed

interval [50].

Okamoto et al. [51] suggested that climbing

activity observable in across-trial averages might

instead be a result of variable transition times of

bimodal activity. They described single neuron

activity from anterior cingulate cortex with

bimodal firing rate distributions and a large

across-trial variability, matching well their

proposed model. The generality of this proposi-

tion still remains to be explored in other brain

areas where climbing activity was reported. In

data recorded from primary motor cortex (M1)

and dorsal premotor cortex (PMd) previously

presented in Confais et al. [41], we calculated

spike count distributions of neurons with

climbing activity. None of the 58 selected

neurons with climbing activity had bimodal

spike count distributions during the preparatory

delay (all selected neurons had a minimal firing

rate of 10 spikes/s at GO, spike counts measured

in 200 ms sliding windows with 100 ms overlap).

This preliminary result suggests that bimodal

activity patterns do not account for the climbing

activity observed in trial averages during move-

ment preparation in motor cortical areas.

However, if climbing activity reflects a timing

mechanism, the slope of the firing rate should be

modulated with delay duration, the slope being

steeper in short than in long delays. Furthermore,

the onset of the climbing activity should start at

the beginning of the delay, possibly preceded by

an initial phasic response to the cue. Thus, the

time of onset should be independent of the dura-

tion. When exploring this in the aforementioned

dataset of 58 neurons, we found that only three

neurons had similar onset latencies, but different

slopes in short and long delays. Several neurons

displayed a change in slope combined with a

change in onset latency (13/58; see example neu-

ron in Fig. 2a), and the majority kept the slope

constant with a pure shift in onset latency (41/

58). This suggests that motor cortical climbing

activity clearly reflects task timing, and can even

be used to decode time ([25]; note that neurons

with an onset difference will also be informative

for delay duration), but does not seem to be a

self-sufficient mechanism responsible for track-

ing time. Rather, this activity might be embedded

in a context-dependent timing network.

As time estimation is at the core of anticipa-

tory behavior it is reasonable to ask if neuronal

delay activity correlates with the subjective esti-

mate of time. As a consequence of the scalar

property of time estimation processes [52], the

variability in time estimation increases continu-

ously as time passes during the delay. This scalar

Signs of Timing in Motor Cortex During Movement Preparation and Cue Anticipation 123



Fig. 2 Scaling of motor cortical activity during move-

ment preparation. (a) Example of a neuron that adjusts

(scales) both the onset and the slope of climbing activity

during movement preparation to the delay duration

between the cue and GO. On top, the trial-by-trial activity
is shown for short and long delay trials as raster plots,

124 B.E. Kilavik et al.



property may then be reflected in the increasing

variability of neuronal delay activity. Renoult

et al. [7] studied the influence of temporal prior

information on neuronal delay activity in mon-

key motor cortex during a task in which two

equally probable delay durations were randomly

presented.

The neuron presented in Fig. 2b (left panel)

showed three distinct epochs of increased activ-

ity during long delay trials: the first after presen-

tation of the cue, the second around the expected

GO signal (ES) at the end of the short delay

(50 % probability), and the third towards the

actual occurrence of the GO signal at the end of

the long delay. The increased activity during the

second and third epochs appeared without the

presentation of any external signal, indicating a

fairly accurate estimate of the delay durations.

Whereas the activity increase following the cue

was clearly time-locked to the stimulus, the

activity during the third epoch was clearly

aligned to movement onset, trial-by-trial. The

activity during the second epoch around ES had

an intermediate alignment. Thus, neuronal activ-

ity went from being aligned to the occurrence of

an external signal (cue) to being aligned to move-

ment onset via some intermediate alignment to

an internal signal (ES), and across-trial

variability in the temporal profile of neuronal

discharge increased throughout the delay.

Renoult et al. [7] hypothesized that if one

considers the animal’s subjective timing of the

delay as the elapsed time between the cue and

movement onset, then suppressing the temporal

variability in RT should decrease the across-trial

variability in neuronal discharge. Here the cue is

considered as being t0, where time is reset in

each trial. The time between the cue (t0) and

movement onset was kept identical across trials

by first defining a new time scale per trial and

then rescaling it across trials. Each spike was

then displaced in time accordingly (i.e., the far-

ther a spike from t0 the larger its displacement).

As expected, the variability in the timing of neu-

ronal peak discharges no longer increased during

the trial (Fig. 2b right panel). This suggests a
�

Fig. 2 (Continued) with individual lines for each behav-

ioral trial and each dot representing an action potential.

The peri-event time histograms (PETHs) are shown in the

bottom panels. To the left, the data of short and long delay
trials is aligned to cue onset. Clearly the onset of the

increase in activity after the cue occurs later in long

delay trials. To the right, the data is aligned to movement

onset. Whereas the peak in activity shortly preceding

movement onset is the same for short and long delay

trials, the slope of the increase in activity is steeper for

short delay trials. The gray rectangles represent the aver-
age (�std) time of cue onset in long and short delay trials.

The larger black dots in the raster plots represent move-

ment onset (left plots) or cue onset (right plots). Trials are
aligned offline according to increasing RT. The duration

of the cue was 55 ms, the short delay 700 ms and the long

delay 1,500 ms. For more details on the task, see Confais

et al. [41] (unpublished data from J Confais, BE Kilavik,

A Ponce-Alvarez and A. Riehle). (b) Raster plots of an
example neuron recorded during a task in which the GO

signal could be presented either after a short or long delay

duration. Here only long delay trials are shown, and ES

(expected signal, left plot) represents the moment in

which the animal expected the GO signal with 50 %

probability. To the left, trials are aligned to external

signals. To the right, trials are re-scaled according to the

duration between the cue and movement onset (Mvt). See

the text and Renoult et al. [7] for more details on the task

and analysis (unpublished data from: A. Riehle, L.

Renoult and S. Roux). (c, d) Averaged normalized beta

peak power between cue and GO (�sem) across 191 LFPs

for monkey T and 631 for monkey M, recorded in the

same task as the example neurons shown in a. Monkey T

(c) had a systematic difference between short and long

delay trials, with a majority of LFPs having higher power

in the end of short trials than in the middle of long trials

(light gray window; same moment in time after the cue;

72 % of LFPs with significantly higher power in short

than in long trials, compared to only 10 % with an oppo-

site effect; 2-way ANOVA, movement direction and

delay duration as factors). In monkey M (d), there was

no systematic power difference between short and long

trials across LFPs, but overall power changed only little

during the preparatory delay. (e, f) Averaged beta peak

frequency between cue and GO (�sem) for the same LFPs

as shown in c, d. Many LFPs had significantly different

beta peak frequency comparing the end of short trials with

the middle of long trials (gray window). A majority had

lower frequency in short trials (70 and 26 % of LFPs in

monkey T and M, respectively; only 3 % had an opposite

effect). For both monkeys, cue duration was 55 ms. For

monkey T, the short and long delays were 700 and

1,500 ms, while they were 1,000 and 2,000 ms for mon-

key M. For more details of task and data analysis, please

see Kilavik et al. [93] (c–f: unpublished data from Kilavik

and Riehle; preliminary results presented in [47])
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direct link between the temporal profile of spik-

ing activity and time estimation. The timing of

motor cortical activity reflects the elasticity
(“rubberband”) of the animal’s subjective time.

Finally, Roesch and Olson [19] found that

many of the neurons in frontal areas (including

premotor cortex close to the arcuate sulcus) that

were sensitive to delay duration, were also sensi-

tive to reward magnitude in a saccade task. These

neurons typically exhibited higher firing rate

shortly after the presentation of a cue indicating

a short delay or a large forthcoming reward. This

result might, at least in part, be explained by the

notion that waiting for a long delay before

receiving a reward decreases the subjective

value of the reward (time discounting; [53]),

suggesting that reward and delay duration might

both act on general motivation. Indeed, in mon-

key studies, effects related to reward and GO

signal expectancy cannot be clearly dissociated

from the effects related to timing in many cases

(but see [26, 54]). However, climbing activity

also occurs in the absence of immediate reward,

reflected in population activity measures in

human participants described below.

Population Activity During Movement
Preparation

The extracellular local field potential (LFP) may

be recorded from the same electrode as spikes, by

low-pass filtering of the raw signal (e.g., below

250 Hz), and is modulated in parallel to single

neuron discharge. It is considered to mainly

reflect the (sub-threshold) synaptic activity in a

large population of neurons, with additional

contributions from spike-after potentials or

intrinsic trans-membrane current changes

[55–57]. Since the LFP sums activity around

the electrode, modulations observable in the

LFP must reflect more or less synchronous activ-

ity in a sufficiently large population of neurons,

possibly indicating a degree of coherent network

activity [58, 59]. Currently there is a great inter-

est in understanding the relationship between the

spiking activity of single neurons and the slower

fluctuations of the LFP (e.g., [60, 61]). The intra-

cerebral LFP is related to the externally recorded

electro- and magneto-encephalographic (EEG/

MEG) signal, usually recorded in human

participants. EEG and MEG signals are less spa-

tially specific than the LFP, but one might con-

sider these external signals to represent some sort

of spatial summation of many (local) LFPs.

Sensorimotor-related activity that scales to

delay duration can also be observed in population

measures such as the LFP, EEG and MEG. One

example is the fronto-central contingent negative

variation (CNV). The CNV is a slow negative

wave that develops between the cue and GO,

mainly studied in the human EEG/MEG. Origi-

nally, Walter et al. [62] proposed that this event-

related potential might reflect time estimation.

Indeed, the CNV is sensitive to the duration of

a delay or a stimulus presentation [63–66], and

while the slope is steeper for shorter durations,

the peak at the end of the duration remains

unchanged in size during both explicit and

implicit timing tasks, suggesting duration inde-

pendence [67, 68]. Overall, the timing-related

dynamics of the CNV resembles the build-up

spiking activity of single neurons described

above. It was therefore proposed that both types

of signals reflect the encoding of the timing of an

upcoming event [67].

Oscillations are frequently observed in LFP,

EEG and MEG signals. Power modulations in

brain oscillations may be related to the degree

of (rhythmic) spike synchronization [58] and/or

the overall level of activity in neuronal

populations [69]. Furthermore, the oscillation

frequency may be related to the extent of neuro-

nal networks [70–72] or the underlying

excitation-inhibition balance [73–77].

Oscillations at different frequencies may there-

fore reflect different neuronal populations and/or

network states. The typical oscillation frequency

in motor cortex is within the so-called beta range

(~13–30 Hz; [78, 79]). Beta oscillations can syn-

chronize over large networks, spanning multiple

cortical [80–83] and sub-cortical areas [84, 85].

These oscillations are not strictly time-locked to

signals or movements, as is the case for event-

related potentials such as the CNV described

above. However, beta oscillations are clearly
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modulated during sensorimotor behavior, being

most prominent in epochs without overt

movements (e.g., during delays) and during sta-

ble postures, and being minimal in power during

movements as well as transiently following the

presentation of sensory cues (see review in [86]).

Motor cortical beta oscillations might reflect sen-

sorimotor updating and planning processes [80,

81, 83, 86–89], and a handful of observations in

monkeys and humans suggest that they are also

sensitive to timing processes [39, 47, 90]. In a

recent study using rhythmic streams of auditory

stimuli, Fujioka et al. [39] recorded MEG in

human participants and found beta power to

peak just before each sound event in several

areas, including motor cortex, even though

participants were only required to passively lis-

ten to the rhythmic streams. The authors

suggested that this distributed pre-cue increase

in beta power provides a mechanism for

maintaining predictive timing. Arnal [91] pro-

posed that this motor cortical sensory prediction

might rely on the simulation of movements via

an internal model, allowing the prediction of

stimulus timing and its sensory consequences.

However, it is also possible that this activity is

a reflection of an automatic, covert movement

preparation entrained by rhythmic stimuli. Such

an automatic facilitation of gait by rhythmic

stimuli has already been shown in Parkinsonian

patients [92].

We observed similar effects in the motor cor-

tical LFP of monkeys performing a visuomotor

task with two possible delay durations ([47], see

also [93]). Figure 2d–g show the modulations in

beta peak power and frequency between the cue

and the GO signal, comparing short and long

delay trials. In monkey T (Fig. 2d) the beta

power increased substantially towards the GO

signal, with a steeper increase in short than in

long delay trials, following a post-cue transient

power decrease. In this study [93] we

demonstrated for the first time that not only

peak power is task-modulated, but also the peak

frequency of beta oscillations. Interestingly, even

if beta power differed between short and long

delay trials in only one of the two monkeys

included in this study, beta frequency differed

systematically between short and long delay

trials for both monkeys (Fig. 2f, g). Following

the cue, there was a transient increase in beta

frequency, which was similar in onset and slope

for short and long delay trials. Subsequent to this

increase, the beta frequency slowly decreased

towards the GO signal, with a steeper slope in

short than long delay trials. Saleh et al. [90]

recorded LFPs in primary motor cortex of a

human patient who had to point to a spatial target

with his chin. Five spatial cues were displayed

successively, and he had to select either the sec-

ond or the fourth cue in different trials. The

power of beta oscillations peaked transiently

before each spatial cue, with the highest pre-cue

power for the correct cue. Furthermore, the beta

power was phase-locked to slower delta

oscillations (0.5–1.5 Hz) that matched the dura-

tion of the inter-cue intervals. In a similar way,

Roux et al. [94] showed that the across-trial

averaged LFPs systematically modulated as a

slow wave during the delay period in relation to

the temporal scheme of the task. This slow wave

modulation also varied as a function of reaction

time. In other words, the wave modulation varies

in relation to the internal timing of delay duration

of the animal from trial to trial; a similar effect

was found for spiking activity of single neurons

([7]; see above).

Interestingly, modulations of duration-

selective beta oscillations appear to be similar

to the CNV and the neuronal spiking activity.

This suggests that many different types of grad-

ual changes in motor cortical activity are

duration-sensitive, with faster modulations for

shorter durations, and a tendency to reach the

same level of activation at the expected end of

the estimated duration (e.g., the GO signal).

Importantly, the scaling of activity modulations

to duration was also found in human participants

that were not receiving immediate reward on a

single-trial basis. Thus, even though certain

populations of neurons in motor areas are sensi-

tive to reward magnitude and delay duration

[19], there are also clear signs of similar timing

sensitivity in these areas in the absence of an

immediate reward.
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To conclude, motor cortical activity during

movement preparation scales to delay duration

and internal time estimation. This observation

might reflect well-timed movement preparation,

rather than an invariant timing mechanism. An

alternative interpretation would be that motor

cortex is part of a larger network coding time in

a context-dependent manner.

Precise Spike Synchrony and GO Signal
Anticipation

It is commonly accepted that sensorimotor

functions are reflected in changes in firing rate

in widely distributed populations of neurons [6].

However, the temporal coding hypothesis

suggests that not only changes in firing rate but

also precise spike timing constitute an important

part of the representational substrate for percep-

tion and action. Precise spike timing here refers

to spike synchronization or other precise spatio-

temporal patterns of spike occurrences among

neurons organized in functional groups, com-

monly called cell assemblies [95–98]. The con-

cept of cell assemblies uses synchrony as an

additional dimension to firing rate, as a candidate

for information processing. The observation of

precise spike synchrony between pairs of

neurons [1] might be interpreted as activation of

a functional cell assembly [99]. Motor cortical

neurons synchronize their activity significantly at

the moment of signal expectancy, indicating the

end of an estimated delay duration, often without

any corresponding firing rate modulation [1, 2,

100]. Thus, behavioral timing modulates both

spike synchrony and firing rate independently.

Both experimental and theoretical studies point

to the importance of synchronous spiking activ-

ity, particularly in a low firing-rate regime (e.g.,

[101]). Indeed, synchrony and firing rate might

be complementary coding strategies, allowing

for efficient computation with less activity

through increased synchrony.

Assuming such a complementarity, the ques-

tion arises whether improving the behavioral per-

formance in a timing paradigm can alter the

interplay between synchrony and firing rate. To

study this, we quantified the strength of syn-

chrony across pairs of neurons recorded in three

monkeys performing a choice RT task, and com-

pared it to the mean firing rate in the same

neurons. In this task, the monkeys were asked

to select the correct movement direction based on

the delay duration between a cue and the GO

signal, thus requiring correct estimation of

elapsed time (see [3, 100]). Two targets of dif-

ferent colors were presented at the start of each

trial (cue). A non-directional GO signal (audi-

tory) was presented after a short or a long delay,

randomly and with equal probability. The mon-

key learned to associate target color with delay

duration.

We developed a method that provides the

strength of synchronous spiking activity of an

entire population of neuron pairs (see [100]) for

the population quantification, for the statistics

see the review by [102]. This method is based

on the comparison between the numbers of

empirical coincident spikes in pairs of neurons

and the numbers of predicted coincident spikes,

taking into account the instantaneous trial-by-

trial firing rates of the neurons [102]. The differ-

ence between the number of observed versus

predicted coincident spikes yields an analytical

measure for each time-point and indicates the

statistical significance of having more (or less)

synchrony than expected by chance. This analy-

sis can be done across all trials for all pairs of

neurons, giving a time-resolved measure of pop-

ulation synchrony ([100]; see Fig. 3a).

In this study, the monkeys progressively

improved their performance during the months

of recording, significantly shortening RTs and/or

reducing RT variability, suggesting an improved

estimation of the delay durations [100]. We

therefore split the population of recorded neurons

into the first and last part of the recording period.

Due to the task structure, the monkey expected

(with 50 % probability) a GO signal at the end of

the short delay (ES; Fig. 3). In long delay trials,

the synchrony strength of neuron-pairs recorded

during the late sessions (black line) transiently

increased after the expected GO signal (ES),

exceeding the significance level of p ¼ 0.01 by

far (dashed horizontal line). This brief increase
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of precise synchrony might provide an internal

switch signal, triggered by correct time estima-

tion, allowing a change in movement preparation

(movement time and/or movement direction). In

the same trial epoch, the mean population firing

rate decreased in late compared to early sessions

(Fig. 3b). We concluded that performance opti-

mization in timing tasks might be achieved by

increasing precise spike synchrony in relation to

temporal expectancy, thereby boosting network

efficiency. This may be accompanied by fewer

spikes overall [100].

Phasic Responses to the Cue

We have so far considered motor cortical activity

during the preparatory delay up to movement

execution. However, motor cortex also exhibits

short-latency signal-related phasic responses

(<200 ms) to informative sensory cues ([103,

104]; examples in Fig. 4a, b). Pure execution-

related activity modulation patterns are more

often observed in the central sulcus of M1,

whereas delay- and signal-related activities are

more common in PMd, the convexity of M1

being intermediate with respect to activity

patterns [45, 103–108]. Auditory and visual

cues are similarly efficient in eliciting signal-

related directional responses [109]. Roux et al.

[3] showed that even the absence of an expected

GO signal (i.e., an internal event) was followed

by a phasic response in neurons that otherwise

responded to cues. The cue does not need to be

spatial in nature; a central symbolic cue also

elicits a phasic response [110–114], though with

a longer latency than for a simple peripheral cue

[107, 113]. However, a directionally non-

informative cue does not elicit any phasic

response in the motor cortex (e.g., [40, 103]).

Several lines of evidence suggest that the

occurrence of a phasic response to a cue is related

to movement preparation, rather than to a more

general shift in spatial attention. First, neurons

Fig. 3 Precise spike synchrony and GO signal expec-

tancy. (a) Average firing rates (PETHs) of neurons

recorded in one monkey during performance of a choice

RT task, comparing early vs. late recording sessions

(spanning several months). In this task, the monkey had

to select the correct movement direction by estimating the

delay duration between the cue and the GO signal (see

main text). The GO signal could be presented either after

a short or after a long delay duration. Here only long delay

trials are shown, and ES (expected signal) represents the

moment in which the animal expected the GO signal with

50 % probability. (b) The data was analyzed with the

“Unitary Event” technique [102, 149]. We developed a

measure that provides the strength of synchronous spiking

activity of an entire population of neuron pairs [100]. We

used a sliding window of 100 ms duration (shifts of 5 ms)

moving through the entire length of the trial. We counted

the number of empirical coincidences and calculated the

number of coincidences that we would expect by chance

by taking into account the instantaneous firing rate of the

two neurons, for a temporal precision of up to 3 ms. We

then summed the result over all trials and pairs of neurons

and calculated the statistical significance (joint-surprise)

of the difference between empirical and predicted

coincidences. Whenever the significance value exceeded

the threshold (dashed line, p ¼ 0.01), this defined an

epoch in which significantly more coincidences occurred

than would be expected by chance. Coincidences within

such an epoch are called “unitary events” [149]. Values

around zero indicate that there are as many synchronous

spikes as expected by chance, positive (negative) values

indicate more (less) coincidences. The data is shown for

42 vs. 45 neuron pairs, in early vs. late sessions, respec-

tively (figure reproduced from [100])
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Fig. 4 Phasic responses to cues in motor cortex. (a) An
example of a trial-averaged visual evoked potential (VEP)

to the cue in one motor cortical LFP, comparing short and

long delay trials. The labels N1 and P1 denote the two first

typical components of the motor cortical VEP. (b) An

example of a motor cortical neuron responding phasically

to the cue, comparing short and long delay trials. The

rasters are shown in the upper plot and the PETHs in the

lower plot. The larger black dots to the right in the raster

plot represent movement onset. (c, d) Distributions of

duration selectivity indexes for all VEPs (n ¼ 436) and

movement-related potentials (MRPs; n ¼ 419), around

movement onset, of two monkeys. The VEP and MRP

sizes were calculated using the root-mean-square in single

trial, including the N1 and P1 components of the VEP and

the three most prominent components of the MRP. The

duration selectivity index was defined as a contrast com-

paring average sizes in short and long delay trials [(short

� long)/(short + long)]. Positive values thus define short

delay duration preference. As a reference value, an index

of +0.33 would mean that the LFP amplitude is twice as

big in short than in long trials. The outlines include all

VEPs and MRPs and the filled bars only the VEPs and

MRPs with a significant difference in size between short

and long delay trials (n ¼ 330 and 217 for VEPs and

MRPs, respectively). Significance in individual VEPs

and MRPs was tested with a two-way ANOVA (delay

duration and movement direction as factors, p < 0.05).

The medians of the distributions of significant VEPs and

MRPs are +0.11 and �0.06, respectively, significantly

shifted away from zero (Wilcoxon signed rank test;

p < <0.001 for VEPs and MRPs). See Kilavik et al.

[108] for more details on recording and analysis

techniques (data from [108]). (e, f) Distributions of dura-
tion selectivity indexes for all neurons in two monkeys

with a phasic response to the cue (n ¼ 418) and for all

130 B.E. Kilavik et al.



with a phasic response to the GO signal may show

as well a phasic response to the cue [106]. Second,

this phasic response to the GO signal may

decrease strongly or even disappear if the preced-

ing cue provided already spatial information

(“pre-processing neuron” of 6, 45, 115). Third,

neurons in PMd are much more responsive (and

selective) to cues indicating the target of a move-

ment than to cues indicating the target of a shift in

attentional focus [40, 116–119]. Last, the signal-

related activity in PMd reflects the planned action

rather than the characteristics of the cue itself

(shape, color, location) [111, 114, 120].

The earliest modulations in motor cortical

activity start around 50–60 ms after cue onset

[103, 104, 108] and are generally less spatially

selective than the later ones [104]. Signal-related

activity with slightly shorter latencies might

reflect a first wave of information concerning

targets of potential movements. This preliminary

information becomes more refined as more com-

plex processing of the cue continues to unfold.

For instance, in both M1 and PMd the vast major-

ity of initial phasic responses are selective to the

direction of the target and not to the direction of

the movement [12, 121, 122]. Even partial infor-

mation about movement direction elicits a phasic

response, though with a smaller amplitude than

after complete directional information [107,

123]. Finally, the very early signal-related activ-

ity is relatively unaffected by the condition of a

GO-NOGO task, unlike the subsequent delay-

activity [124–126].

The signal-related phasic response is as sensi-

tive to delay duration as the subsequent delay

activity during movement preparation [3, 108].

Figure 4a, b show examples of a LFP visual

evoked potential (VEP) (A) and a neuron with a

phasic change in activity (B), both recorded in

motor cortex as a response to the cue [41, 108]. In

both cases, the amplitudes of the phasic response

were larger in short delay trials than in long delay

trials. This was true for a majority of motor

cortical LFP VEPs (77 %, see Fig. 4c; [108]).

Interestingly, this result is complementary to the

fact that movement-related potentials (MRPs)

observed during movement execution are larger

in long delay than in short delay trials (significant

in 52 %; Fig. 4d; [108]). We found that the phasic

cue response in 25 % of these neurons was selec-

tive to delay duration (Fig. 4e; [41]), preferring,

as in VEPs, mainly short delay trials. The influ-

ence of delay duration on the spiking activity

during movement execution was less clear

(17 % significant; Fig. 4f), even though a major-

ity had higher firing rates in long delay trials,

similarly to MRPs.

If the early phasic activity after the cue in

motor cortex reflects a pre-processing mecha-

nism, we can conclude that pre-processing is

more prominent in short delay trials, observable

in overall higher firing rates and larger VEPs.

This is complementary to a lower activity in

short delay trials during movement execution,

particularly noticeable in the MRPs. Beyond

this, we can currently only speculate on why

there is such a large quantitative difference

between the spiking activities and MRPs around

movement onset. It is important to note that the

LFP not only reflects sub-threshold synaptic

activity, but also population activity. This

means that a weak, but consistent, effect of

delay duration in a sufficiently large population

of neurons may be observed more clearly in the

LFP. Importantly, the modulation of evoked LFP

responses by delay duration suggests that there is

a high degree of flexibility in the movement

preparation process, which is significantly

�

Fig. 4 (Continued) neurons, independently of their activ-

ity pattern around movement onset (n ¼ 847). The dura-

tion selectivity index was calculated as described above,

using mean spike counts in 200 ms large windows, after

cue onset and around movement onset. Significance was

tested with a two-way ANOVA (delay duration and

movement direction as factors; p < 0.05). Medians for

the sub-sets of significant neurons ( filled gray bars) are
+0.14 for the phasic visual responses (n ¼ 105) and

�0.06 for the movement-related responses (n ¼ 143), in

both cases significantly shifted away from zero

(Wilcoxon signed rank test; p < <0.001 and p ¼ 0.017,

respectively) (unpublished data from J Confais, BE

Kilavik, A Ponce-Alvarez and A. Riehle)
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influenced by the knowledge of the available

time prior to movement execution [108].

Earlier we described how neuronal activity

during movement preparation is scaled to delay

duration and internal time estimation. Here we

show that this scaling can also be extended to

signal processing and movement execution

epochs. One appealing interpretation is that for

shorter delays it might be optimal to complete

movement preparation early directly after cue

presentation, whereas for longer delays it may

become more ‘economic’ to encode only general

aspects of the movement early in the delay (e.g.,

movement direction or goal) and to finalize more

detailed aspects of the movement prior to and

during its execution.

Part 2: Timing During Cue
Anticipation

In the first part of this chapter, we described how

the timing of a motor task profoundly shapes the

activity of motor cortex during movement prepa-

ration. In this part, we will see how available

information about time is also used to predict

the timing of an upcoming cue, which carries

relevant information for movement preparation.

In this context, an anticipatory pattern of activity

preceding the cue onset can be observed in motor

cortical areas, even in absence of motor

preparation.

In the movement preparation paradigm (see

Fig. 1) a delay is used to temporally separate the

moment when the subject is provided with infor-

mation about the desired action (for example, a

spatial cue indicating the position that should be

pointed towards) and the moment when this

action has to be performed (GO signal). How-

ever, in most experimental protocols, the subject

can also estimate the duration preceding the

informative cue. The timing of the cue can be

predicted by keeping the preceding delay fixed in

all trials (e.g., [9]) or by adding a “pre-cue” to

indicate the length of the upcoming delay in each

trial (e.g., [41]). Since the movement preparation

paradigm was first implemented, it was regularly

reported that a fraction of motor cortical neurons

modulate their firing rate well before the presen-

tation of the cue. However, this was only

described as a side note [40, 106, 107, 109, 111,

122, 127] or examples of neurons with such an

activity were shown [3, 103], but only a few

studies examined this type of anticipatory activ-

ity directly [9, 10, 41]. Interestingly, this type of

activity has been described in a wide range of

brain structures, such as the caudate nucleus

[128–130], the prefrontal cortex [8, 131], and

the somatosensory cortex [37]. In this part we

will review the main characteristics of this “cue-

anticipatory activity” by focusing on motor pre-

paration in motor cortical areas, and will suggest

a possible functional significance. For conve-

nience purposes, we refer to the neurons showing

this type of activity as “cue-anticipatory neurons”

in this chapter.

Prevalence of Cue-Anticipatory Activity
in Frontal Areas

All works describing an anticipatory activity

used a fixed or highly predictable pre-cue delay.

Vaadia et al. [10] trained monkeys extensively in

a task that included a fixed 3 s delay preceding

the cue, whereas in our task the pre-cue delay

duration was indicated in advance to the animal

by an auditory signal [41]. We observed different

patterns of motor cortical spiking activity during

this delay: some neurons increase their activity

preceding the cue (see Fig. 5b), others decrease it

(Fig. 5a), and the remaining neurons do not mod-

ulate. Even if the ratios vary from study to study,

most studies report more neurons with increasing

than decreasing firing rates [10, 41, 106]. How-

ever, the ratio of neurons with anticipatory activ-

ity seems to depend on the cortical location. Most

studies in frontal areas showed the strongest rep-

resentation of anticipatory activity in PMd.

Crammond and Kalaska [106] showed a higher

percentage of anticipatory neurons in PMd than

in M1. Additionally, they demonstrated that the

ratio of anticipatory neurons with increasing ver-

sus decreasing activity changed with the distance

to the central sulcus. The majority of anticipatory

neurons increased their activity in PMd and in
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Fig. 5 Pre-cue anticipatory activity in motor cortex.

(a, b) Raster plots and PETHs of two example neurons

with pre-cue anticipatory activity (short delay trials on the

left, long delay trials on the right). The trials are arranged
chronologically. In a, please note the suppression of

activity following the cue for this neuron with pre-cue

decreasing activity. In b, note the phasic response to cue

in this neuron with pre-cue increasing activity. (c) Aver-
aged activity of all neurons in one monkey (�sem),

classified according to pattern of pre-cue anticipatory

activity. The baseline activity (final 200 ms before TC)

of each neuron is subtracted prior to averaging. Pre-cue

increasing neurons in red (n ¼ 129), pre-cue decreasing

in blue (n ¼ 95), and non-anticipatory neurons in green
(n ¼ 228). TC: time cue presented for 200 ms, indicating

delay durations, Cue: spatial cue presented for 55 ms,

indicating target location, GO: directionally non-

informative GO signal (data from [41])
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the rostral part of M1, whereas all anticipatory

neurons recorded in the caudal (sulcal) part of

M1 decreased their activity. Interestingly, this

caudal zone of M1 has the highest density of

direct cortico-motoneuronal projections [132].

Hoshi and Tanji [111] showed more anticipatory

neurons in PMd than in the ventral part of the

premotor cortex (PMv). They also showed that

anticipatory neurons in PMd were more sensitive

to the expected information contained in the cue

than those in PMv. Di Pellegrino et al. [40] and

Vaadia et al. [10] showed similar differences

between PMd and prefrontal cortex (PF), whereby

anticipatory activity was observed more often in

PMd than in PF neurons, accompanied by an

increased sensitivity to the expected cue informa-

tion in PMd neurons. In contrast, we did not find

any difference in the proportions of anticipatory

neurons between PMd and M1, but this may be

due to the fact that our recording chamber only

captured the rostral part of M1 [41].

Influence of Expected Cue Information

As mentioned above, some studies found an

effect of different cue aspects on the anticipatory

activity. In particular, three studies showed an

influence of the expected information carried by

the cue, albeit to a different extent. Vaadia et al.

[10] used a block-wise presented task in which

the cue in one block either indicated the target of

the movement or was non-informative. They

showed that a small fraction of the neurons

changed selectively their activity preceding the

cue, depending on the block. Similarly, in Di

Pellegrino andWise [40], the cue indicated either

the movement target or a shift in attentional

focus, irrespective of the movement target.

Two-thirds of the anticipatory neurons

modulated their firing rate depending on the

information carried by the cue, with generally

more activity in the “movement target” blocks

than in the “attention only” blocks. Finally,

Hoshi and Tanji [111] showed that the activity

of more than 10 % of the anticipatory PMd

neurons significantly changed their activity

depending on whether the cue was expected to

contain movement target information or to con-

tain information about which arm to use. Inter-

estingly, the expected reward can also modulate

the cue anticipatory activity. Vaadia et al. [10]

added a condition in which the trials were

rewarded at random and showed that a subsam-

ple of anticipatory neurons stopped responding

after several unrewarded trials in a row.

Although most of the anticipatory neurons in

these studies show an increasing activity, some

display a decreasing pattern. We will now

describe how these patterns of anticipatory activ-

ity are predictive for the firing rate modulations

during movement preparation [9, 41].

Relationship Between Cue Anticipation
and Movement Preparation Activity

We recorded motor cortical single neuron activ-

ity in a delayed center-out reaching task [41].

Each trial contained two successive delays of

equal duration, indicated at the beginning of

each trial by an auditory cue. At the end of the

first delay, a spatial cue indicating the direction

of the upcoming movement was briefly flashed.

At the end of the second delay, the (non-

informative) GO signal requested to reach to

the cued target. This task was conceptually dif-

ferent during the two delays: during the first

delay, the monkeys used the temporal informa-

tion provided by the temporal cue to accomplish

at a given time a visual detection task, whereas

they had to time and prepare the upcoming

movement during the second delay. In about

40 % of the neurons the activity was modulated

during the first delay and these neurons were

therefore classified as anticipatory. From this

group, 60 % increased and 40 % decreased their

activity (examples in Fig. 5). When comparing

the averaged activity of these different neuronal

populations, a striking difference could be seen

during the second delay (Fig. 5c). Following the

spatial cue, the pre-cue anticipatory neurons with

increasing activity showed an early phasic

response, whereas the neurons with decreasing

activity were largely suppressed during the same

epoch. This confirms the finding by Mauritz and
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Wise [9] that almost all anticipatory neurons with

an increasing activity show a phasic, short-

latency response to the spatial cue. In addition,

we show that the activity of the decreasing antic-

ipatory neurons is suppressed after the cue. Sim-

ply put, the pre-cue increasing neurons are more

active during the post-cue cue epoch than during

the movement, whereas the pre-cue decreasing

neurons are more active during movement exe-

cution [41].

Delay Duration Effects During Cue
Anticipation

If the cue occurs probabilistically at one out of

several, discrete points in time, the subject might

expect a cue after shorter durations, even when the

cue does not appear. This expectation has been

shown in neurons that increase their activity until

the time of the expected cue and then suddenly

decrease their activity when the cue does not

occur [3, 7, 9, 133]. In other words, if a neuron

is classified as “increasing” during a short delay, it

may change its pattern during a long delay [10].

Alternatively, the duration of the delay may be

known with certainty, as in the study of Confais

et al. [41]. Here, it becomes evident that the mod-

ulation depth in both increasing and decreasing

anticipatory neurons is larger in short than in

long delay trials (Fig. 6a). In the first part of this

chapter, we described how the neuronal response

to the spatial cue depended on delay duration, with

both the phasic spiking activity and the VEP of the

LFPs being larger in short than in long delay trials

(Fig. 4). Most anticipatory neurons with an

increasing pre-cue activity also show a phasic

response to the cue. Therefore, the larger modula-

tion of pre-cue firing rate observed in these

neurons in short delay trials might mediate the

subsequent larger responses to the cue. Further-

more, the differences in firing rate in short and

long delay trials are clearly opposite for the

increasing and decreasing sub-populations

(Fig. 6b). This “mirrored” modulation of the pre-

cue firing rate suggests that the two sub-

populations of neurons have complementary roles.

Fig. 6 Influence of delay duration on pre-cue anticipa-

tory activity. (a) Mean activity (�sem) of the cue-

anticipatory increasing (red, n ¼ 170) and decreasing

neurons (blue, n ¼ 113) recorded in one monkey (mon-

key M). The activity in short and long delay trials are in

dark and light colors, respectively. TC-lo and TC-sh is the
onset of the time cue (200 ms duration) in long and short

delay trials, informing about the delay duration. The data

is aligned to Cue onset. The baseline activity has been

subtracted. The light gray rectangle indicates the epoch

used to compute the significance of the difference

between short- and long-delay trials. (b) Distributions of

the indexes of duration selectivity comparing short and

long delay trials, using the pre-cue epoch marked in a.
The index is defined as [(short � long)/(short + long)].

Positive values indicate a higher activity in short delay

trials. Only the neurons with a significant difference

(Mann–Whitney U test, p < 0.05) are shown (n ¼ 58

and 25 for increasing and decreasing neurons, in red and

blue respectively). The medians of both distributions are

significantly shifted away from 0 (Wilcoxon signed rank

test, p < 0.05) (unpublished data from J Confais, BE

Kilavik, A Ponce-Alvarez and A. Riehle)
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Possible Functional Role(s) of Pre-cue
Anticipatory Activity

The anticipatory activity could be the reflection

of attentional processes, as already shown in

PMd [134, 135]. However, we did not find any

difference in the pre-cue activity between correct

and error trials, i.e., selecting the wrong cue,

presumably because of attentional fluctuations

[41]. Alternatively, it could reflect a general

timing process. Durstewitz [49] proposes that

climbing activity, like the one observed before

the spatial cue, could be a possible substrate of

time estimation. Furthermore, several fMRI stud-

ies show activation of the premotor cortex during

tasks involving time estimation [136, 137]. How-

ever, as we discussed in Part 1, a timing mecha-

nism based on climbing activity would need a

fixed onset and a slope that differs according to

delay duration. Yet, Fig. 5c (right panel) shows

that the activity during the second part of the first

delay in long trials is flat until the cue appears.

This suggests that even if such an activity

depends on the ability of the animal to estimate

the delay duration, it is unlikely that it reflects

timing per se. Another hypothesis would be that

the anticipatory activity uncovers two parallel

processes complementary to each other. One

would facilitate the response to the spatial cue

through an additive gain (as it is the case in the

caudate nucleus, e.g., [129]), whereas the other

would suppress a premature motor response,

since the movement execution has to be withheld

until the GO signal appears (“proactive volitional

inhibition”, e.g., [138], “impulse control”, e.g.

[139], “proactive control”, see [140] for a

review). Such an interpretation is supported by

a modeling study of Moody and Wise [141]

showing that an anticipatory activity emerges in

some neurons before the cue during a match-to-

sample task, but only if the cue timing is predict-

able. Removing these neurons either leads to

false negative or false positive responses. The

authors interpret this result as evidence for two

parallel processes before cue occurrence, while

preventing a premature response.

One prediction can be drawn from the idea

that two sub-populations compensate each

other’s activity. The neuronal activities within a

sub-population (e.g., neurons increasing their

activity) would tend to positively co-vary trial-

by-trial, whereas the neuronal activities of the

Fig. 7 Trial-by-trial correlations between cue-

anticipatory neurons. The curves represent the mean coef-

ficient of correlation (�sem), for pairs of cue-anticipatory

neurons with the same activity pattern (both increasing or

decreasing, in light grey) and with opposite activity

patterns (one increasing and one decreasing, in dark
grey). We used a sliding window of 250 ms to guarantee

a sufficient amount of spikes, and selected only neurons

recorded on different electrodes. In each window, we

performed a Spearman rank correlation between the

spike counts across trials of each neuron pair. The corre-

lation coefficients were transformed in Fisher z before

averaging across pairs, and then transformed back. We

only analyzed the pre-cue delay in long delay trials. The

diamonds at the top and bottom of the plots indicate time

bins in which the mean coefficient of correlation is signif-

icantly different from 0 (Wilcoxon signed-rand test,

p < 0.05). Only long-delay trials are shown. (a) Monkey

T, n ¼ 48 and 43 pairs of neurons of the same and

different category, respectively. (b) Monkey M, n ¼ 25

and 16 pairs of neurons of the same and different cate-

gory, respectively (unpublished data from J Confais, BE

Kilavik, A Ponce-Alvarez and A Riehle)
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two different subpopulations would negatively

co-vary. To test this hypothesis, we computed

the mean trial-by-trial correlation (“noise corre-

lation”, see [142]) between spiking activities of

pairs of neurons with the same anticipatory acti-

vity pattern and with opposite anticipatory acti-

vity, recorded simultaneously (Fig. 7). The mean

trial-by-trial correlation of firing rates is dramat-

ically different for pairs within the same category

than for pairs from different categories. Neurons

with the same pattern of pre-cue anticipatory

activity are mainly positively correlated.

Neurons with different patterns are not correlated

initially, but become increasingly negatively

correlated during the pre-cue delay. This again

supports the idea that the two sub-populations

play complementary roles in order to facilitate

cue detection, while preventing premature motor

output. These two sub-populations do not only

negatively co-vary in relation to the pre-cue

delay duration in their averaged activity

(Fig. 6), but are also dynamically co-adjusted

on a trial-by-trial basis (Fig. 7).

To conclude, the cue-anticipatory activity

may reflect prospective facilitation of cue

processing concurrent with proactive movement

inhibition. As mentioned initially, cue-

anticipatory activity is more prevalent in PMd

than in other frontal areas. This idea is supported

by studies linking PMd to the processing of spa-

tial cues (e.g., [118]) and movement inhibition

[143–145]. With this in mind, our results could

therefore be interpreted as PMd playing a key

role in the pre-setting of these processes.

Summary and Conclusion

The accurate estimation of time intervals is an

essential aspect of motor performance; it is at

the core of any anticipatory behavior. We

have shown that timing processes are indeed

represented in motor cortical single neuron

and population activity, in a manner that is

strongly dependent on context. It is tempting

to speculate that the increase of firing rate and

spike synchrony at specific task moments

reflect a cognitive state; an internal represen-

tation of the precise timing of an expected

event. This could favor the idea that timing,

to some extent, is a constituent of currently

active networks, and is therefore a distributed

brain process. However, it is not clear if time

itself is represented in the brain as an invariant

process, separable from other processes, such

as cue anticipation or movement preparation.

The characteristics of the single neuron

climbing activity observed during movement

preparation in motor cortical areas suggest its

origin upstream from the recorded neuron.

Additionally, the effects of implicit and

explicit timing in the activity of single

neurons in motor cortex are very similar. It

is difficult to discern in motor cortical activity

whether different mechanisms are involved

when timing is only implicitly used to

improve performance or when timing is a

crucial component of the task.

To conclude, if time estimation is a process

independent of contextual features such as

probability or movement preparation, then

the signatures of time that we have described

here are more likely the result of time estima-

tion and not the time estimation process itself

(see also the discussion in [3]). The question

still remains open whether a general, context-

independent neuronal correlate of time esti-

mation exists (e.g., [146–148]).
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Neurophysiology of Timing in the
Hundreds of Milliseconds: Multiple
Layers of Neuronal Clocks in the Medial
Premotor Areas

Hugo Merchant, Ramón Bartolo, Oswaldo Pérez, Juan Carlos
Méndez, Germán Mendoza, Jorge Gámez, Karyna Yc,
and Luis Prado

Abstract

The precise quantification of time in the subsecond scale is critical for

many complex behaviors including music and dance appreciation/execu-

tion, speech comprehension/articulation, and the performance of many

sports. Nevertheless, its neural underpinnings are largely unknown.

Recent neurophysiological experiments from our laboratory have shown

that the cell activity in the medial premotor areas (MPC) of macaques can

represent different aspects of temporal processing during a

synchronization-continuation tapping task (SCT). In this task the rhyth-

mic behavior of monkeys was synchronized to a metronome of isochro-

nous stimuli in the hundreds of milliseconds range (synchronization

phase), followed by a period where animals internally temporalized their

movements (continuation phase). Overall, we found that the time-keeping

mechanism in MPC is governed by different layers of neural clocks. Close

to the temporal control of movements are two separate populations of

ramping cells that code for elapsed or remaining time for a tapping

movement during the SCT. Thus, the sensorimotor loops engaged during

the task may depend on the cyclic interplay between two neuronal

chronometers that quantify in their instantaneous discharge rate the time

passed and the remaining time for an action. In addition, we found MPC

neurons that are tuned to the duration of produced intervals during the

rhythmic task, showing an orderly variation in the average discharge rate

as a function of duration. All the tested durations in the subsecond scale

were represented in the preferred intervals of the cell population. Most of

the interval-tuned cells were also tuned to the ordinal structure of the six

intervals produced sequentially in the SCT. Hence, this next level of

temporal processing may work as the notes of a musical score, providing

information to the timing network about what duration and ordinal
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element of the sequence are being executed. Finally, we describe how the

timing circuit can use a dynamic neural representation of the passage of

time and the context in which the intervals are executed by integrating the

time-varying activity of populations of cells. These neural population

clocks can be defined as distinct trajectories in the multidimensional cell

response-space. We provide a hypothesis of how these different levels of

neural clocks can interact to constitute a coherent timing machine that

controls the rhythmic behavior during the SCT.

Keywords

Interval timing � Medial premotor areas � Interval tuning � Ramping

activity � Network dynamics

Introduction

Time is a crucial variable in life and organisms

have developed different mechanisms to quantify

the passage of time along a wide range of

durations. From microseconds to circadian

rhythms, temporal information is used to orga-

nize behavior and specific brain mechanisms

have been suggested for the measurement of

different time scales. Indeed, the central nervous

system does not have a time sensory organ; how-

ever, organisms are able to extract temporal

information from stimuli of all sensory

modalities and use it to generate timed behaviors.

This chapter focuses on the neural underpinnings

of interval timing in the hundreds of

milliseconds, since it is a time scale involved in

many complex behaviors such as the perception

and production of speech [1, 2], the execution

and appreciation of music and dance [3, 4], and

the performance of a large variety of sports

[5–7]. In music, for example, time comes in a

variety of patterns which include isochronous

sequences where temporal intervals are of a sin-

gle constant duration or, more commonly, poly-

rhythmic sequences containing intervals of many

durations. In addition, the ability to capture and

interpret the beats in a rhythmic pattern allows

people to move and dance in time to music [3].

Music and dance, then, are behaviors that depend

on intricate loops of perception and action, where

temporal processing can be engaged during the

synchronization of movements with sensory

information or during the internal generation of

movement sequences [4]. In a simplified version

of these activities, numerous studies have exam-

ined how subjects synchronize taps with rhyth-

mic isochronous auditory stimuli and then

continue tapping at the instructed rate without

the advantage of the sensory metronome [8, 9].

Thus, the synchronization-continuation tapping

task (SCT) has at least four main components,

namely, a sensorimotor process during synchro-

nization, an internal timing component during

both synchronization and continuation, a cyclic

element for repetitive interval production, and a

working-memory component used during the

continuation. The cyclic nature of this task

implies that subjects must keep track of the

time elapsed since the previous sensory and

motor events as well as the time remaining until

the next events [10].

The present manuscript describes the func-

tional properties of neurons in the primate medial

premotor cortex (MPC, i.e. supplementary motor

area [SMA] and pre-supplementary motor area

[preSMA]) during the execution of the SCT. We

show how the single cell and population activity

of this cortical area represents different aspects

of the temporal processing involved in the exe-

cution of a rhythmic task that has been a back-

bone in the timing literature.
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Ramping Activity as an Instantaneous
Timing Signal for Temporal Execution

We recorded the activity of MPC cells during a

version of the SCT where monkeys were

required to push a button each time stimuli with

a constant interstimulus interval were presented,

which resulted in a stimulus-movement cycle

(Fig. 1a). After four consecutive synchronized

movements, the stimuli stopped, and the

monkeys continued tapping with the same inter-

val for three additional intervals. Brief auditory

or visual interval markers were used during the

synchronization phase and the range of target

intervals was from 450 to 1,000 ms [10, 11].

The monkeys were able to accurately produce

the target intervals, showing an average

underestimation of ~50 ms across interval

durations during the synchronization and contin-

uation phases of the SCT (Fig. 1b). In addition,

we analyzed the temporal variability of the

monkeys’ tapping performance, which was

defined as the SD of the individual inter-response

intervals [12, 13]. Temporal variability increased

linearly as a function of interval duration in both

phases of SCT (Fig. 1c). These findings show

that the monkeys had a remarkably accurate

timing performance in this complex temporal

tapping task. Furthermore, the data show a tem-

poral variability that followed the scalar property

of interval timing, a property that has been

documented in many species and temporal tasks

[14]. In a recent study, where the speed profile of

Fig. 1 (a) Sincronization-Continuation Task (SCT).

Monkeys were required to push a button (R, black line)
each time stimuli with a constant interstimulus interval (S,

gray line) were presented, which resulted in a stimulus-

movement cycle. After four consecutive synchronized

movements, the stimuli stopped, and the monkeys

continued tapping with a similar pacing for three additional

intervals. The target intervals, defined by brief auditory or

visual stimuli, were 450, 550, 650, 850, and 1,000 ms, and

were chosen pseudo-randomly within a repetition. (b) Con-
stant error (produced-target interval) during the perfor-

mance of the SCT in the auditory interval marker

condition. Monkeys slightly underestimated the interval

durations during the synchronization (black) and continua-
tion (gray) phases of SCT. The SEM is smaller than the dot

diameter. (c) Temporal variability (i.e. the intertap SD)

increased as a function of target interval during both phases

of SCT. (d) Iterative algorithm used to find the best regres-

sion model to explain the increase or decrease of instanta-

neous activity over time with respect to a sensory or motor

event. Top, raster plot and mean SDF (gray function) of a
ramping cell aligned to the first tap of the continuation

phase. The region indicated by the dotted rectangle is

expanded below, where a series of linear regression

functions are displayed, including the best model identified

by the algorithm shown as the thicker line. (e) Parameters

that were extracted from the linear regression model for the

motor and relative-timing ramps. Modified from [10, 36]
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the tapping movements was computed using

semiautomatic video tracking algorithms, we

demonstrated that monkeys temporalize their

movement-pauses and not their tapping

movements during the SCT [15–17]. Macaques

showed a strong ability to temporalize their

movement-pauses for a wide range of intervals

(450–1,000 ms), while their movements were

similar across the duration of produced intervals,

the sequential structure of the SCT, or the modal-

ity of the interval marker. These findings suggest

that monkeys use an explicit timing strategy to

perform the SCT, where the timing mechanism

controlled the duration of the movement-pauses,

while also triggered the execution of stereotyped

pushing movements across each produced inter-

val in the rhythmic sequence [15].

The extracellular activity of single neurons in

the medial premotor areas was recorded during

task performance using a system with seven

independently movable microelectrodes

(1–3 MΩ, Uwe Thomas Recording, Germany

[10]). A large population of neurons showed

ramping activity before or after the button press

in the SCT (703 out of 1,083 recorded cells) [18].

Indeed, we developed a warping algorithm to

determine whether the cells responses were

aligned to the sensory or motor aspects of the

Fig. 2 Ramp population

functions for motor (a),
relative-timing (b),
absolute-timing (c) and
time-accumulator (d) cells.
a and b are aligned to the

next button press while c
and d are aligned to the

previous button press. The

color code in the inset of A

corresponds to the duration

of the produced intervals

during the SCT. (e) Time to

button press of the ramp

population functions at

14 Hz for absolute-timing

(A-t) cells plotted against

the time to button press

associated with the ramp

population functions at

7 Hz for relative-timing (R-

t) cells. The ramp

population functions are

equal to the addition of the

magnitudes of individual

ramps over time. Modified

from [10]
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SCT, and we found that most MPC cells were

aligned to the tapping movements instead of the

stimuli used to drive the temporal behavior [18].

Next, an iterative algorithm was used to find

the best regression model to explain the increase

or decrease of instantaneous activity over time

with respect to a sensory or motor event using the

spike density function (SDF; Fig. 1d). With this

method we defined for each ramp the following

parameters: duration, slope, peak magnitude, and

the time τ from the peak to the stimulus presen-

tation or button press (Fig. 1e). Using this infor-

mation, we classified different cell populations

with ramping activity in four groups: motor,

relative-timing, absolute-timing and time-

accumulator [10]. For example, a large group of

cells (n ¼ 236) show ramps before the move-

ment onset that are similar across produced

durations and the sequential structure of the

task, and therefore, are considered motor ramps

(Fig. 2a). The inherent noise present in single

temporal ramps, however, implies that the down-

stream reading neural node cannot rely on single

cells to quantify the passage of time or produce

accurately timed movements. Therefore, we pro-

pose a population code for encoding time during

SCT, where the reading network adds the

magnitudes of a population of individual ramps

over time, resulting in a ramp population func-

tion [R t; Ið Þ ¼ ΣN
n¼1r t;Ið Þ

N , where r(t, I) corresponds

to each individual ramp over time (t), from 1 to N
total number of ramps of a cell type, and for a

particular produced interval (I)]. Figure 2a shows

the ramp population functions for the motor

cells, where it is evident that the motor ramps

are similar across the intervals produced by the

monkeys during the SCT performance [10].

Interestingly, another cell population showed

an increase in ramp duration but a decrease in

slope as a function of the animals’ produced

duration, reaching a similar discharge magnitude

at a specific time before the button press. These

cells are called relative-timing cells, since their

ramping profile could signal how much time is

left for triggering the button press in the task

sequence (n ¼ 163 cells; Fig. 2b). Therefore,

there is a population of MPC neurons that has

the response properties to encode the time

remaining for a motor event, and once the popu-

lation reaches a firing magnitude threshold it

could trigger the button press movements [10].

On the other hand, other groups of cells show

a consistent increase followed by a decrease in

their instantaneous discharge rate when their

activity was aligned to the previous button press

rather than to the next one (n ¼ 304 neurons). In

these absolute-timing cells the duration of the up-

down profile of activation increases as a function

of the produced interval (Fig. 2c), whereas in the

time-accumulator cells there is an additional

increase in the magnitude of the ramps’ peak

(Fig. 2d). Therefore, these cells could be

representing the passage of time since the previ-

ous movement, using two different encoding

strategies: one functioning as an accumulator of

elapsed time where the peak magnitude and the

duration of the activation period is directly

associated with the time passed, and another

where only the duration of the activation period

is encoding the length of the time passed since

the previous movement [10].

The rhythmic structure of the SCT may

impose the need not only for the prediction of

when to trigger the next tap to generate an inter-

val, but also for the quantification of the time

passed from the previous movement, in order to

have cohesive timing mechanism to produce a

repetitive tapping behavior. Indeed, the cells

encoding elapsed (absolute-timing) and

remaining time (relative-timing) showed some

level of interaction during each cycle of time

production in the SCT, supporting this notion

[10] (Fig. 2e).

Cell activity changes associated with tempo-

ral information processing in behaving monkeys

have been reported in the cerebellum [19], the

basal ganglia [20], the thalamus [21], the poste-

rior parietal cortex [22, 23], and the prefrontal

cortex [24–27], as well as in the dorsal premotor

cortex [28], motor cortex [29, 30], and the medial

premotor areas MPC [10, 31]. These areas form

different circuits that are linked to sensorimotor

processing using the skeletomotor or oculomotor

effector systems. Most of these studies have

described climbing activity during different
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timing contexts, which include discrimination of

time, time estimation, single interval reproduc-

tion, and delay-related responses. Therefore, the

increase or decrease in instantaneous activity as a

function of the passage of time is a property

present in many cortical and subcortical areas

of the cortico-thalamic-basal ganglia circuit

(CTBGc) that may be involved in different

aspects of temporal processing in the hundreds

of milliseconds scale. Indeed, recent studies have

suggested the existence of a partially distributed

timing mechanism, integrated by main core

interconnected structures such as the CTBGc,

and areas that are selectively engaged depending

on the specific behavioral requirement of a task

[12, 32, 33]. These task-dependent areas may

interact with the core timing system to produce

the characteristic pattern of performance

variability in a paradigm and the set of intertask

correlations described previously in psychophys-

ical experiments [12].

The ubiquitous presence of cells’ increments

or decrements in discharge rate as a function of

time across different timing tasks and areas of a

potential core timing circuit suggests that

ramping activity is a fundamental element of

the timing mechanism. A key characteristic of

ramping activity is their instantaneous nature and

the fact that they normally peak at the time of an

anticipated motor response. In the case of the

SCT, the multiple neural chronometers must

interact at some point in their ramping activity

in order to define the rhythmic structure of the

task. Thus, the tight interaction between the cells

computing the elapsed time since the previous

tap with the cells encoding the time remaining to

the next tap generates a coordinated cycle of

activation that ends with the triggering of a

motor command, and the activation of motor

cells involved in the execution of the tapping

movement. Therefore, although the reported

absolute-timing and the time-accumulator cells

(Fig. 2c, d) are encoding the elapsed time since

the previous motor event, it is evident that

ramping cells are engrained in the temporal con-

struction of motor intentions and actions [23, 34,

35]. This is a crucial point, since every timing

task requires a movement, whether to express the

perceptual decision in categorization or discrim-

ination tasks or to produce accurately timed

movements in tasks like SCT. Therefore,

ramping activity may be part of the temporal

apparatus that gates the motor responses to

express a perceptual decision or produce a

timed movement in a variety of behavioral

contexts. An alternative possibility is that

ramping activity reflects the accumulation of

temporal information as described in the poste-

rior parietal cortex [36, 37]. On the other hand,

more abstract timing signals such as interval

tuning, which are described below, can represent

more cognitive elements of temporal processing.

Interval Tuning: An Abstract Signal
of Temporal Cognition

Psychophysical studies on learning and generali-

zation of time intervals give support to the notion

that neurons in the timing circuit are tuned to

specific interval durations, but can be activated

in a modality- and context-independent fashion

[38–40]. In addition, interval tuning has been

suggested in conceptual papers [41]. In a recent

paper, we described a graded modulation in the

discharge rate of cells as a function of interval

duration during the SCT in cells of MPC [42].

Figure 3a, b shows the profile of activation of a

cell in the preSMA of a monkey performing this

task. The neuron shows larger activity for the

longest durations, with a preferred interval

around 900 ms (Fig. 3c). In fact, a large popula-

tion of MPC cells is tuned to different interval

durations during the SCT, with a distribution of

preferred intervals that covers all durations in the

hundreds of milliseconds, although there was a

bias towards long preferred intervals (n ¼ 487

neurons; Fig. 3d). These observations suggest

that the MPC contains a representation of inter-

val duration, where different populations of

interval-tuned cells are activated depending on

the duration of the produced interval [42]. In

addition, most of these cells also showed selec-

tivity to the sequential organization of the task, a

property that has been described in sequential

motor tasks in MPC [43]. The cell in Fig. 3a, b
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also shows an increase in activity during the last

produced interval of the continuation phase of

the task. Again, at the cell population level, all

the possible preferred ordinal-sequences were

covered (n ¼ 426 neurons) [42]. These findings

support the notion that MPC can multiplex

interval duration with the number of elements

in a sequence during the rhythmic tapping [42].

Cell tuning is an encoding mechanism used by

the cerebral cortex to represent different sensory,

motor, and cognitive features [44], which include

the duration of the intervals, as reported here.

Fig. 3 Interval and ordinal-sequence tuning. (a)
Responses of an interval-tuned cell with a long preferred

interval and a sequential response to the last interval of

the continuation phase during the SCT. Raster histogram

aligned (black line) to the third tap of the continuation in

the visual condition. (b) Average spike-density functions

of the responses shown in a. (c) Tuning function for the

same cell, where the mean (�SEM) of the discharge rate

is plotted as a function of the target interval duration. The

continuous line corresponds to the Gaussian fitting of the

data. (d) Histograms of the preferred intervals in the

visual marker condition for cells with significant interval

tuning during the SCT. Modified from [36]
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This signal must be integrated as a population

code, where the cells can vote in favor of their

preferred interval to generate a neural “tag” of

the interval that is being executed during rhyth-

mic tapping tasks. Interestingly, the cell tuning

for duration is commonly accompanied by tuning

to the ordinal structure of the SCT. Hence, the

temporal and sequential information is

multiplexed in a cell population signal that

works as the notes of a musical score in order

to define the duration of the produced interval

and its position in the learned SCT sequence [10,

45].

As described above the elapsed or remaining

time for a temporalized movement during the

SCT is encoded in the ramping activity of MPC

cells [10]. Relevant to the interval tuning phe-

nomenon is the fact that one type of ramping cell

shows a linear increase in its instantaneous dis-

charge rate as a function of the elapsed time since

a motor event, working as a time “accumulator”.

Here, we found that most of these time-

accumulator cells were also significantly tuned

to an interval, showing preferred intervals only

for long durations. Therefore, a crucial question

is what is the difference in functional impact

between pure time-accumulator and pure

interval-selective cells during the SCT? To try

to answer this question we computed the Mutual

Information (MI) between the spike density

functions of the time-accumulator or the non-

ramping interval-tuned cells and the target

intervals using a sliding window for the auditory

marker condition. The MI is a measure of the

statistical dependency between the behavioral

variable, in this case the target interval, and the

neural activity. The MI of time-accumulator cells

showed an up-down profile of activation with a

MI maximum around the ramps’ peak (Fig. 4a).

In contrast, for interval-tuned cells that did not

show a ramping profile in their instantaneous

discharge rate, the MI was smaller but similar

throughout the produced intervals (Fig. 4b).

These findings support the notion that ramping

cells are engrained in the dynamic construction

of motor intentions and actions [10, 34, 46, 47].

On the other hand, interval tuning on the overall

discharge rate may represent more cognitive

aspects of temporal processing that are disen-

gaged from the motor tapping output.

Neural Population Clocks in Behaving
Primates: Temporal Processing in the
Neural Dynamics

Time can be encoded in the unique temporal

patterns of the integrated activity of groups of

cells [47]. These cell populations should show

time varying activity that is related to temporal

processing. Different population clocks have

been reported. For example, using a model of

the activity of granule cells in the cerebellum, a

Fig. 4 Mutual Information for cells tuned to interval

during the SCT. (a) Mean (black) and SEM (gray) of the
mutual information as a function of time to ramp peak for

the population of time-accumulator (n ¼ 100) cells. (b)
Mean (black) and SEM (gray) of the mutual information

as a function of time to button press for the non-ramping

duration-tuned (n ¼ 304) cells
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continuously changing population pattern can be

read by Purkinje cells to tell time [48]. In addi-

tion, cell response simulations of recurrent corti-

cal networks have been used to build population

clocks that encode time in the context of tempo-

ral production [47] or perception [49]. In these

models, time is implicitly encoded in the time-

varying but repetitive state of the simulated

networks.

Using the same logic, a clock population

model was constructed using the task related

activity of populations of MPC cells during the

SCT. The history of the state of population

responses can be depicted as an evolving trajec-

tory in principal component space. Principal

component analysis (PCA) is an analytical tool

used to determine the most meaningful

dimensions of a multidimensional dataset. Thus,

Fig. 5 shows a 3D plot, using the first three PCAs,

of the millisecond by millisecond change in the

network state depicted here as a trajectory of the

neural population during the six produced

intervals of the SCT for a particular interval

duration. Once the animal starts the tapping

sequence in the task, the evolving trajectory of

the population moves in a specific fashion to

generate spirals for each of the produced

intervals in the synchronization and continuation

phases of the SCT (labeled as S1–S3 and C1–C3,

respectively). Once the trial is finished

(diamonds) the population returns to a state sim-

ilar to the beginning (cubes) of the SCT. These

trajectories of the recorded population are similar

on different trials using the same interval,

suggesting that the population clock reliably

represents the passage of time. Indeed, there is

a large difference in the population clock

trajectories between interval durations (450 and

850 ms) and task phases. Hence, when reading

the activity of task related cells, the next node of

the core timing circuit can have access to infor-

mation about the interval that is being produced

and whether the subject is handling time in a

sensory guided or an internally driven context.

Multiple Layers of Neuronal Clocks
in the Medial Premotor Cortex

Our neurophysiological recordings in behaving

animals indicate that MPC, an area of the core

timing mechanism [32], uses multiple encoding

strategies to represent different aspects of the

temporal structure of the SCT. Ramping activity,

the most reported timing signal in the literature,

is close to the motor output and is used to trigger

the multiple movements of the task sequence.

Thus, the tight interaction between the cells com-

puting the elapsed time since the previous tap

with the cells encoding the time remaining to

the next tap generates a coordinated cycle of

activation that defines the rhythmic structure of

the SCT. Figure 6 shows the ramping activity at

the bottom of the encoding hierarchy of time

during the SCT. We suggest that the ramps prob-

ably define the duration of each element of the

rhythmic sequence, triggering the tapping

Fig. 5 Plot of the population dynamics of 549 cells

during the SCT using the first three components of a

Principal Component analysis on the time varying activity

of the cells. The color code is associated to the passage of

time for two network trajectories corresponding to 450

and 850 ms interval durations (see color codes at the

bottom). The cubes correspond to the beginning of the

trial, the ellipses to the median of the tapping movements

(the tap ordinal number is inside), and the diamonds to the
end of the trial. The trials are aligned to the fourth tapping

movement as indicated by the gray arrows. S1–S3 corre-

spond to the three synchronization intervals and C1–C3 to

the three continuation intervals. Note the large difference

in the network trajectories between interval durations and

task phases. Unpublished observations
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command that is probably generated in premotor

areas and the primary motor cortex [34, 35].

Consequently, it is possible that the timing mech-

anism uses a temporal code in the form of ramp

to encode timing actions [50, 51].

On top of these instantaneous signals we have

neural tuning, which encodes the duration and

the ordinal element of the six intervals produced

sequentially during the SCT, as depicted in

Fig. 6. This next level of temporal processing

may work as the notes of a musical score,

providing information to the timing network

about what duration and ordinal element of the

sequence is being executed. This information can

be used to coordinate the networks that have

been shaped by training to associate the temporal

and ordinal structure of the SCT with the reward

contingencies of our experiments [51].

Finally, the CNS uses dynamic neural

representations of the passage of time and the

context in which the intervals are executed by

integrating the time-varying activity of

populations of cells. Thus, the dynamics of the

local cell ensemble and the overall flux of infor-

mation in the core timing network can define the

properties of the population clock observed in the

MPC during the execution of the SCT. This

integrated population signal is at the top of the

hierarchy, since different nodes of the core timing

network can: (1) read, (2) process, and (3) transmit

the locally transformed population signal in a

dynamic and reverberant fashion. This dynamic

Fig. 6 A model of the interaction between the multiple

layers of neuronal clocks in the medial premotor cortex.

Bottom. Ramping activity defines the movement to move-

ment temporal behavior of the animals during the SCT.

Middle. Neuronal tuning to both duration and sequential

order during the SCT as an abstract signal of what is the

identity of the actually executed interval in an overlearned

rhythmic task and its relation with the reward contingen-

cies. Top. A population clock arises from the time-varying

activity of a population of neurons dynamically

interacting inside the MPC and across the core timing

network
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and complex signal can encode the passage of

time together with: (1) the history of the encoded

interval in a rhythmic sequence, and (2) the con-

text in which the intervals are produced, namely,

using sensory cues or internal commands.
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The Olivo-Cerebellar System as a Neural
Clock

James Ashe and Khalaf Bushara

Abstract

The cerebellum, and the olivo-cerebellar system in particular, may be the

central mechanism of a neural clock that provides a rhythmic neural signal

used to time motor and cognitive processes. Several independent lines of

evidence support this hypothesis. First, the resting membrane potential of

neurons in the inferior olive oscillates at ~10 Hz and the neural input from

the olive leads to rhythmic complex spikes in cerebellum Purkinje cells.

Second, the repeating modular microstructure of the cerebellum is ideally

suited for performing computations underlying a basic neural process such

as timing. Third, damage to the cerebellum leads to deficits in the percep-

tion of time and in the production of timed movements. Fourth, functional

imaging studies in human subjects have shown activation of the inferior

olive specifically during time perception. However, additional data on the

exact role of rhythmic cerebellar activity during basis motor and sensory

processing will be necessary before the hypothesis that the cerebellum is a

neural clock is more widely accepted.

Keywords

Cerebellum � Inferior olive � Time � Perception � Motor control

Many of the chapters on the neural control of

interval timing in this volume focus on the role

of the cerebral cortex. As a counterbalance, here

we provide an overview of the role of the cerebel-

lum in the control of timing including data from a

series of experiments we have done to elucidate

that the issue. The putative role of the cerebellum

in timing behaviors is intimately connected with

the importance of the structure in the control of

movement. Flourens [2] was the first to suggest

that the cerebellum was responsible for the coor-

dination of movement and since then an extensive

literature has shown that damage to the cerebel-

lum leads to tremor, unsteadiness of gait and

poorly coordinated movements [3]. However, the
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clear association between the cerebellum and

motor control has also presented something of a

puzzle. The cerebellum does not appear to be

responsible for the generation of movement per

se. Neural recordings from Purkinje cells, which

receive the principal inputs to the cerebellum, and

from neurons in the deep nuclei, which constitute

the only output, have shown only a modest rela-

tion to movement or movement parameters;

detailed sensorimotor maps show that large areas

of the cerebellum, particularly in the lateral

hemispheres, are ‘silent’ [4, 5] in that they have

no apparent relation to motor function. One poten-

tial solution to the discrepancy between the impor-

tance of the cerebellum in motor control and the

lack of a strong relation to motor parameters,

which also takes account of its homogenous and

repetitive microstructure, is that the structure does

not control individual movements but executes a

basic neural process that is essential for normal

movement and perhaps other brain functions (this

is an elaboration of the ‘functional equivalence’ of

different parts of the cerebellum first proposed by

Flourens). A major hypothesis about this ‘basic

process’ is that the cerebellum functions as a

biological clock in the millisecond range [6, 7]

with the beat of the clock provided by spontane-

ous rhythmic activity in the inferior olive [8–10].

In this scenario, the beat from the olive is trans-

mitted via the climbing fibers to Purkinje cells

(PCs) in which it is manifested by a complex

spike. It has been suggested that the role of a

biological clock in the cerebellum is not confined

to the regulation of motor and sensory processes

but might also track the temporal progression of

cognitive processes [11–13].

The Olivo-Cerebellum Has Clock-Like
Properties

The principal support for this hypothesis rests on

several key findings: (1) the inherent rhythmic

pacemaker activity of inferior olive (IO) neurons

[14, 15] that elicit synchronous rhythmic activity

in target Purkinje-cell neurons, (2) the oscillating

resting membrane potential of IO neurons, (3) the

effects of lesions on time perception and motor

performance, and (4) functional imaging studies

of the inferior olive during time during explicit

and implicit timing behaviors.

Rhythmic Pacemaker Activity
of Inferior Olive

The inferior olive located in the medulla projects

to the contralateral cerebellar cortex through the

climbing fibers whose synapse to the Purkinje

cell (PC) is the most robust in the nervous system

[16]. An action potential in a climbing fiber leads

with high probability to a complex spike (multi-

phasic potential of high amplitude) in the PC to

which it projects [17]. The property of rhythmic-

ity in the timing of occurrence of complex spikes

was first conclusively demonstrated by Bell and

Kawasaki [15] using extracellular recordings in

the guinea pig though and was also documented

about the same time in the frog [18]; neurons in

the IO also produce spontaneous action

potentials in the 1–10 Hz range [14, 19].

Rhythmic activity in these structures might

not be of any great import in itself and would

not necessarily provide the ingredients from

which to build a practical neural clock were it

not for the additional property of synchronicity

that is also evident in olivary neurons and their

target Purkinje cells [20]. The gap junctions

between adjacent IO neurons [21, 22] enable

electrotonic coupling which is thought to be the

physiological basis of the synchronous

oscillations produced by the IO [20, 23] that are

reflected at the level of the PCs in the cerebellum

by synchronous complex spikes in PCs [22, 24].

Furthermore, we now know that synchronous PC

activity leads to time-locked activation of cells in

the target deep nuclei [25] providing a mecha-

nism for the propagation of temporal information

from the inferior olive to the principal output

structure of the cerebellum (Fig. 1).

Oscillating Membrane Potential of IO
Neurons

The resting membrane potential of IO neurons

oscillates at a frequency close to 10 Hz [14, 26,

27] and this property is likely fundamental to the
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rhythmic action potentials they generate [20, 28].

The peaks in the rhythmic oscillation are

associated with an increased probability of action

potential generation therefore this phenomenon

would bias the IO neurons to spike rhythmically.

The oscillations also influence the effect of IO

output on its Purkinje cell targets in a less obvi-

ous way. It has recently been shown that a single

somatic action potential in an olivary neuron

results in bursts of multiple of axonal spikes

and that the number of axonal bursts is positively

correlated with the phase of the oscillations at

which the action potential occurred [29]. In turn,

the number of axonal bursts modulate the pattern

of the complex spikes produced in the PCs

providing yet another mechanism through the

time dependent output of the inferior olive can

be propagated through the cerebellum and

beyond (Fig. 2).

Fig. 1 Rhythmic simple and complex spikes in three

different Purkinje cells. a: simple spikes (short duration

biphasic complexes) and less frequent complex spikes

(CS); b: CS only, and c: small primarily negative CS

also indicated by dots. There is clear though not consis-

tent rhythmic CS activity at a rate of 8–10 Hz. Modified

from Bell and Kawasaki [15]

Fig. 2 Spontaneous oscillatory electrical activity in infe-

rior olive neurons using simultaneous optical imaging and

intracellular recording upper panel; superimposition of

the optical signal (red) and intracellular voltage recording
(black) shows the coherence of the temporal waveform.

Lower panels; spatial distribution of voltage imaging at

five different time points (dots in the upper panel). Aster-
isk indication the spatial location of intracellular record-

ing (modified from [1])
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Effects of Lesions in Humans
and in Experimental Animals

Inferior Olive

One of the most distinctive neurological

syndromes in humans, oculo-palatal myoclonus

[30, 31], is defined by rhythmic involuntary

movements of the eyes and soft palate that oscil-

late at 1–3 Hz and is caused by a lesion

interrupting the projection from the deep cere-

bellar nuclei to the inferior [32]. The mechanism

of the tremor in this condition is thought to be the

removal of inhibitory projections to the elec-

tronic gap junctions in the olive thereby leading

to hyperactivity and hypertrophy of the olivary

neurons [33]. The association between hyperac-

tivity in the olive and rhythmic oscillations is

also supported by experiments involving the

administration of harmaline to experimental

animals. Harmaline is a psychoactive alkaloid

obtained from the plant Paganum harmala that

causes a rhythmic tremor ~8–10 Hz when

administered in sufficient concentration to the

cat and non-human primate [34, 35]. Neural

recordings from the inferior olive during

harmaline-induced tremor show rhythmic syn-

chronous discharges at the same frequency as

the tremor [9] and this is reflected in the cerebel-

lum by a similar pattern of complex spike dis-

charge in PCs. The tremor is not affected either

by decerebration or by lesions of the Purkinje

cell layer of the cerebellum. However, the tremor

is abolished entirely following lesions of the

inferior olive. Therefore, there is incontrovertible

evidence that the inferior olive is capable of

generating a rhythmic discharge resulting in

tremor that is independent of input from, or mod-

ulation by, other brain structures. These findings

may also be relevant to the pathogenesis of

essential tremor one of the most common neuro-

logical disorders for which the cause and the

pathophysiology are unknown. Essential tremor,

which is often familial, is a progressive neuro-

degenerative disease that leads to bilateral hand

tremor (6–8 Hz) which is often embarrassing

and inconvenient and may become disabling.

In patients with this condition, the most consis-

tent abnormalities in brain imaging and in brain

histology are found in the inferior olive and in the

cerebellum. Postmortem examination of subjects

with essential tremor showed 25 % fewer

Purkinje cells on average and a sevenfold

increase in degenerative changes in the intact

PCs compared to normal controls [36]. Although

neural recordings in the olivo-cerebellar

structures have not been done in human subjects,

one would predict that both the olive and the PCs

would show rhythmic discharges in the 6–8 Hz

range.

Cerebellum

Behavioral studies in human subjects with

lesions of the cerebellar cortex due to disease or

injury show a constellation of abnormalities for

which disruption of the temporal organization of

behavior may be the primary underlying cause.

In these subjects, voluntary movements of the

limbs are disrupted by tremor and errors in

amplitude, and there is an inability to perform

rhythmic movements at a specific rate [3]. Stud-

ies on the perception of time and the production

of timed movements have shown that both are

impaired in subjects with damage to the cerebel-

lum leading to the hypothesis [12] that the cere-

bellum provides a basic timing mechanism

common to motor, perceptual and even cognitive

neural processes [11].

Imaging Studies in Human Subjects

Only recently has it become possible to perform

functional imaging studies in human subjects

with sufficient resolution to reliably image the

inferior olive. These data have become all the

more important because of the continuing con-

troversy (see below) regarding the presence of
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rhythmic IO activity in intact behaving animals

and by extension its relevance to cerebellar func-

tion and to motor, sensory, and cognitive

processes.

Olive Activation in Time Perception

As a prelude to a more comprehensive examina-

tion of the role of the olivo-cerebellar system in

time processing, we performed a series of studies

focused on the properties of this system in

humans using functional MRI. The first question

we addressed was whether these structures were

activated during time perception when the per-

ception was dissociated from any motor output;

this starting-point was chosen because of doubts

that the cerebellum had any role in time percep-

tion [37]. In the first study [38], we used three

different visually-instructed behavioral tasks that

involved the perception and motor performance

of complex temporal sequences (rhythms) in the

hundreds-of-milliseconds range, which, through

the use of conjunction analysis [39] enabled us to

dissociate brain activation related to temporal

perception and performance. In the SYNCHRO-

NIZE task subjects synchronized the movement

of the right index finger with a rhythmic visual

stimulus; in the REPRODUCE task, subjects

observed a rhythmic visual stimulus (observa-
tion) and after a variable reproduced the rhythm

from memory using the index finger (perfor-

mance); in the MATCH task, subjects observed

two visually instructed rhythms and were asked

to indicate whether the rhythms were the same or

different. We found that multiple areas within the

cerebellar cortex were activated during temporal

perception and performance (Fig. 3a, b); this

result is consistent with the hypothesis that

timing is a basic function of the cerebellum and

establishes that neither motor performance nor

motor preparation is a prerequisite for its activa-

tion during timing tasks. An important finding in

the study was that the inferior olive was engaged

exclusively during the perception of rhythmic

visual stimuli; in Fig. 3c, we can see that the

BOLD signal in the inferior olive increased dur-

ing perception in two of the behavioral tasks

(MATCH and REPRODUCE) but showed no

change when temporal rhythms were tapped

from memory (performance component in

REPRODUCE) or when subjects tapped in syn-

chrony with a rhythmic visual stimulus (SYN-

CHRONIZE). The activation of the olive during

time perception alone demonstrated its specific-

ity for timing processes independently of visual

or somatosensory stimulation, which had previ-

ously been associated with olive activation in

non-human primates [40, 41]. The failure to

detect increased activation of the olive during

the performance of rhythmic movements may

be because of the suppressed ‘responsiveness’

of the olive in the context of upcoming voluntary

movements [42–44] or, alternatively, it may be

because timed motor performance is mediated by

the much smaller dorsal and medial accessory

olivary nuclei (DAO and MAO) and therefore

unlikely to be detected using conventional

fMRI methods.

Activation in Inferior Olive Specific
for Stimulus Timing

Although the previously discussed experiment

[38] provided evidence supporting a role for

the inferior olive in time perception, an alterna-

tive interpretation of the results is that the olive

is sensitive to unexpected sensory stimuli inde-

pendent of modality and not necessarily specific

for timing per se. Therefore, we performed an

additional experiment in which we dissociated

the temporal and non-temporal characteristics of

different sensory stimuli [45]. Subjects were

asked to focus on specific characteristics (orien-

tation, color, or timing) of a visually displayed

stimulus and indicate when it changed during

individual trials. Attending to and perceiving

the temporal and non-temporal properties of

the stimuli led to increased activation in the
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cerebellar hemispheres that was common to all

three stimulus characteristics. The activation of

the inferior olive, however, was specific for

changes in the timing of the visual stimulus

suggesting that attention to sensory stimuli

alone was not sufficient to activate the olive

(Fig. 4).

Activation of Inferior Olive During
Implicit Timing

Much of our time-related behaviors are implicit

and occur below the level of awareness. We can

successfully intercept a moving target without

explicit temporal computations, and learning

Fig. 3 (a) Event-related activation of the inferior olive

(white arrow) time locked to the perception of rhythmic

sequences of visual stimuli. (b) Corresponding sagittal

anatomical section showing the inferior olive

(black arrow). (c) Time course of the average hemody-

namic response at inferior olive peak activation

(�2, �32, �54) time locked to perception in REPRO-

DUCE trials (red), perception in MATCH trials

(orange), motor reproduction from memory (green),
and stimulus-guided motor response synchronized to

the temporal sequence (blue). Error bars indicate SD.

Peri-stimulus time is in seconds
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temporal regularities is the basis of many of our

skilled behaviors. In addition, implicit timing is a

critical component of classical conditioning and

other associative behaviors. It had long been

assumed, using indirect evidence from classical

conditioning and neural recording studies

[46–49] that the olivo-cerebellar system

mediated implicit timing. To directly test this

hypothesis in human subjects, we used a tempo-

ral ‘odd-ball’ paradigm during event-related

functional imaging [50]. We first measured the

ability of each subject to detect an asynchronous

stimulus with ~50 % probability (temporal detec-

tion threshold) within a series of otherwise syn-

chronous visual stimuli (Fig. 5a); the mean

detection threshold for the whole group was

approximately 200 ms. During functional imag-

ing, the subjects were asked to decide whether a

series of visual stimuli was synchronous or asyn-

chronous (containing one deviant stimulus at

each subject’s detection threshold) The experi-

mental design enabled us to compare brain acti-

vation during detected and undetected deviant

stimuli. Multiple areas within the olivary-

cerebellar system showed equal activation during

the detected and undetected deviant visual

stimuli (Fig. 5b): bilaterally in the inferior olives

land in lobule VIIIa of the cerebellum; right Crus

I and left Crus II of the cerebellum.

These data show that changes in the timing of

visual stimuli activate the inferior olives and

areas within the cerebellar cortex independently

of awareness and are consistent with the

impairments in classical and trace eye-blink con-

ditioning found in human subjects with cerebel-

lar damage [51, 52]. The capacity of the inferior

olive to encode temporal information is

supported by physiological studies showing that

stimulus timing is encoded relative to the phase

of sub-threshold current oscillations [10, 29] and

that external stimuli “reset” the olivary

oscillations resulting in synchronized firing of a

large population of neurons in phase with the

external stimulus [53, 54]. Therefore it would

appear that the low level information-processing

of temporal information in the inferior olive is

independent of attention and cognitive control

mechanisms; the elaboration of this temporal

signal in the cerebellum may indeed be the

basic process for which the architecture of the

cerebellum is ideally suited.

Dissenting Voices

The timing hypothesis of olivo-cerebellar func-

tion, however, is quite controversial [55] and is

far from being generally accepted. Its validity

has been challenged on the grounds that much

of the supporting data has come from restricted

experimental preparations, anesthetized animals,

and from tissue-slice studies in vitro, The experi-
mental finding that perhaps presents the greatest

challenge to the timing hypothesis is the failure

to find rhythmic neural activity in either Purkinje

cells or in deep cerebellar nuclei in a crucial

Fig. 4 Inferior olive response to stimulus timing change.

(a) Event-related activation of the inferior olive (arrow)
and cerebellum time-locked to the onset of stimuli. (b)
Fitted hemodynamic response curves of inferior olive

peak activation (2, �36, �52) time-locked to changes in

timing (red), spatial orientation (blue), and color (green)
of the visual stimuli. PST, post-stimulus time in seconds.

Error bars indicate SE
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Fig. 5 (a) Percentage of trials in which subjects were aware
(blank columns) or unaware (hatched columns) of the

change in stimulus timing. In each trial, subjects observed

a sequence of visual stimuli occurring at 1 Hz except for one

deviant stimulus that occurred sooner than expected by 100,

150, 200, 250, or 300 ms. A deviation of 200 ms in stimulus
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series of experiments in non-human primates

[56, 57]. Although the inability of Thach and

colleagues to detect rhythmic activity in these

structures may be related both to the low sensi-

tivity of single-channel extracellular recording

for uncovering a process that is reflected at the

level of the neural population [58, 59] and to the

use of a behavioral paradigm not closely related

to time perception or production, nevertheless,

the controversy is unlikely to be resolved until

rhythmic complex spiking activity or its func-

tional equivalent* is documented in neural

recordings from Purkinje cells in awake behav-

ing non-human primates [60].

*It is possible that low frequency, apparently

random, complex spikes in Purkinje cells have an

underlying chaotic dynamic structure that can

mimic rhythmicity within a certain time window

[61]. The finding of such chaotic dynamics in the

output of the inferior olive in awake behaving

non-human primates would be one way in which

the continuing controversy about whether the infe-

rior olive behaves as a neural clock might be

resolved. Therefore, examining time series of neu-

ral data, either the direct output of the inferior

olivary neurons or complex spikes in cerebellar

Purkinje cells, using sophisticated methodology is

essential if we are to know the truth about the role

of the inferior olive in neural timing behavior [60].
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From Duration and Distance
Comparisons to Goal Encoding
in Prefrontal Cortex

A. Genovesio and S. Tsujimoto

Abstract

Timing is a very abstract representation that shares with other magnitudes,

such as numerosity, the peculiarity of being independent from any particu-

lar sensory modality. Not only we can time stimuli in different modalities

but we can also compare the durations of different visual, auditory and

somatosensory stimuli. Furthermore, even though time is not directly

associated with space, and we are inclined to consider space and time as

two different perceptual dimensions of our existence, an increasing number

of studies challenge this idea by showing that timing and spatial processing

have some relationship that involves sharing computation resources and

that time may have a spatial representation. A more general theory, called

theory of magnitude (ATOM), considers both timing and spatial

computations, together with other magnitudes, as originating from a general

magnitude system [Walsh VA, Trends Cogn Sci 7(11):483–8, 2003]. The

neural underpinnings of time and its relationship to the processing of spatial

information have started to be investigated only recently, but the field is

rapidly growing. It is addressing the representation of time in several

cortical and subcortical brain areas. Information processing of time and

space are not strictly specialized in neural and cognitive mechanisms and

we believe that studying them only separately may restrict our understand-

ing of these processes. In this chapter, we will firstly introduce the role of

the prefrontal cortex (PF) in coding relative durations. We will point out

that the comparison of durations makes use of intermediate computations

based on the order of the events. Secondly, we will describe the comparison

mechanisms that are implemented by PF to make perceptual decisions

about durations in relation to those involved in making decisions about

spatial locations and distances. We will distinguish the decision processes
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from the goal choices, and we will examine which computational resources

are shared between different magnitudes and which are domain-specific.

We will summarize our results within the context of a more general PF

function in promoting the generation of goals from the current context,

consisting of domain- and modality-specific coding of stimuli of different

modalities or magnitudes.

Keywords

Prefrontal cortex � Time � Distance � Magnitudes

Timing Function in PF

Timing functions have been associated with many

brain regions, including the cerebellum, basal

ganglia, and posterior parietal cortex [1–5], as

well as PF. Among such areas, the role of PF in

temporal perception has been shown by several

neuropsychological [6, 7] and neuroimaging [8, 9]

studies. For example, patients with right PF

lesions show deficits in timing tasks [6, 10–12].

Likewise, transcranial magnetic stimulation

(TMS) to the right PF cortex has been shown to

impair explicit timing tasks in the suprasecond

range of durations [13, 14]. In monkeys, inactiva-

tion of the dorsolateral prefrontal cortex (PFdl)

through injections of bicuculline, a GABAA antag-

onist, produces deficits in the duration discrimina-

tion task, and the same task activates the PFdl in

the context of a parietal-frontal network, in a posi-

tron emission tomography study, with covariation

of activations between parietal and PF areas [8].

PF involvement in explicit timing has been also

shown by adopting the variable foreperiod para-

digm in which a target is presented after a

foreperiod of different duration. In this paradigm,

a progressive increase of the likelihood that a target

will appear with the passage of time is associated

with a reduction of the reaction time of the

response to the target appearance. The reaction

time advantage for longer foreperiods has been

found to be compromised in patients with right

PF damage [15–17]. Similar conclusions come

from a TMS study of the right PF cortex [18].

In addition to neuropsychological and neuro-

imaging studies, an increasing number of studies

have focused on the single cell level in primates.

Since the early work of Niki and Watanabe [19]

that proposed a role of cortical neurons in

encoding durations, neurophysiological experi-

ments in primates have investigated temporal

processing in parietal cortex [20–23], PF cortex

[24–31], motor and premotor cortex [4, 26, 32, 33,

35–38], and basal ganglia neurons both in

monkeys [39] and in rats [40, 41]. Some of these

neurophysiological experiments, including ours

[42, 43], have investigated perceptual timing

using paradigms that required subjects to compare

the durations of two stimuli, whereas others have

focused on the motor aspects of timing. Another

approach to the study of time is to consider a

particular type of temporal expectation: the time

to reward. Several neurophysiological studies

have shown that PF activity is modulated by the

time until reward [30, 44]. Notwithstanding the

importance of these studies, the interpretation of

their results is challenged by the correlation,

intrinsic to these paradigms, between value and

time, because an earlier expected reward brings in

itself also a greater value to the animal.

We started our investigation of the role of PF

on timing encoding several years ago [24] by

studying implicit timing in PFdl and PF area 9,

by using a saccade strategy task with three dif-

ferent durations (1, 1.5, or 2 s) of stimulus pre-

sentation. Although originally designed for

studying the neural correlate of learning

strategies, variable durations of the stimulus

presentations allowed us to investigate the repre-

sentation of the elapsed time as well. We showed

that the activity of ~9 % of the neurons was
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modulated after the stimulus offset by the dura-

tion of the preceding stimulus presentation. This

“elapsed time” modulation could not be

explained by differences in saccadic reaction

times. Most neurons showed a greater activity

for either short (Fig. 1a) or long delays

(Fig. 1b). A much smaller proportion of neurons

(25 %) preferred intermediate delays. The modu-

lation of the activity by stimulus duration was

often preceded by a ramping up of the activity in

the neurons with a long duration preference

(Fig. 1b). It is worth noting that the elapsed-

time effect on the neural activity emerged even

though there was no requirement for the

monkeys to time the stimulus duration.

Duration Task

Figure 2a illustrates the duration discrimination

task adopted to study PF in two macaques. In this

task, the monkey viewed two stimuli, a red

square or a blue circle, of different durations

presented sequentially. The monkey’s task was

to choose which of them lasted longer by touch-

ing a switch below it. The task was designed such

that the monkey could not plan its motor

response before the “go” signal (i.e., the targets

appearance), because each choice stimulus could

appear with the same probability on each side of

the screen’s center.

The duration of the two stimuli was defined

according to one of two duration sets termed “V”

and “square” distributions (Fig. 2d). We adopted

these two sets of stimulus durations for different

purposes. The ‘V’ distribution prevented the sub-

ject from predicting the second stimulus duration

based on the duration of the first stimulus, but it

did not allow us to distinguish absolute from

relative duration coding. The ‘square’ set had

the advantage of varying systematically the dura-

tion differences.

Fig. 1 Two examples of PF neurons encoding the duration

of the previous stimulus. (a) Neuron with a preference for

the shorter duration of the previous stimulus presentation.

(b) Neuron with a preference for the longer durations.

Activity (raster dots) is aligned on the end of the delay

period (vertical lines), sorted by time to saccade onset

(square marks). Light gray background shading indicates

the delay period and the dark gray background shading

indicates the post-delay period used for the analysis. Fix,

onset of fixation; IS on, onset of IS; IS off, offset of IS; Sac

on, onset of saccade. FromGenovesio A., Tsujimoto S.Wise

S.P J. Neurophysiol. 95, 3281-3285, 2006, with permission
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Figure 2e shows the location of the recorded

neurons. The recordings were made in two corti-

cal areas: rostral to the arcuate sulcus in the

caudal PF cortex (area 8) and in both banks of

the principal sulcus and the adjacent convexity

cortex in the PFdl (area 46). Because we did not

find any dramatic differences between the two

areas, we pooled together the results from the

two areas in this chapter.

The duration task required the monkey to per-

form several computations on the duration infor-

mation. The monkeys should (1) encode the S1

duration, (2) maintain that duration in memory in

the D1 period until S2 occurred, and (3) compare

their durations. In this chapter we will focus only

on the comparison process, first in the delay

period and then in the decision period.

Encoding of Relative Duration
in the Delay Period

We examined the representation of relative dura-

tion in the second delay of the duration task that

starts after the first stimulus is turned off, in terms

of the order of presentation of the two sequen-

tially presented stimuli and in terms of their

features (blue or red). Using a two-way

ANOVA, we found that the activity of ~30 %

of the neurons depended on whether either S1 or

S2 lasted longer. Moreover, approximately 25 %

of neurons showed a second type of representa-

tion that depended on whether the blue or the red

stimulus lasted longer. We will take up both

types later in the chapter, when we will focus

our attention on the decision period.

By using ANOVA, alone, we could not asses

whether these two classes of neurons were

encoding categorically which stimulus lasted

longer or how much the stimuli differed in dura-

tion parametrically. Furthermore, we could not

disentangle the encoding of absolute and relative

duration coding. That could be addressed by a

stepwise regression analysis. We applied this

analysis only to the data collected with the

“square” distribution, which varied the duration

difference between stimuli in a highly graded

manner. With a first analysis, we assessed the

role of four factors related to the order of presen-

tation: the absolute stimulus duration of both S1

and S2, which stimulus lasted categorically lon-

ger (S1 or S2), and their difference in duration. In

a second analysis, we assessed the role of other

four factors associated to the stimulus features:

the absolute duration of both the red and the blue

stimuli, which of them lasted longer (blue or red)

and their difference in duration.

We found that the strongest signals were

represented by the categorical representation of

the relative duration based on the order of pre-

sentation of the two stimuli (12–19 %) and

based on their stimulus features (12–19 %), in

addition to the absolute duration of the second

stimulus (13–16 %). The representation of the

parametric difference between S1 and S2

durations reached ~10 %. In contrast, we found

a very small proportion of neurons that encoded

the difference between the blue and the red

stimuli durations parametrically (5–7 %),

which was very close to chance levels. Based

on these results, we can propose two ways in

which duration information could be compared

by neurons in PF. For example, consider a trial

in which the first stimulus is blue, the second is

red, and the red stimulus is longer than the blue

one. One way to determine that the blue stimulus

is longer than the red stimulus would be by

integrating two pieces of information: (1) the

second stimulus lasted longer than the first stim-

ulus, and (2) the second stimulus was red.

Neurons showing an interactive effect by the

two-way ANOVA for the relative duration

based on the order of presentation and on the

stimulus features reflected this computation [42].

Alternatively, the representation of blue-stimulus

duration could be compared directly with a rep-

resentation of the red-stimulus duration. We also

found neurons showing a duration-color conjunc-

tion encoding, such as a preference for a long

stimulus but only when it was blue. Such neurons

that could represent the information required for

this second type of computation. Both integrative

processes are likely to coexist and they should

not be considered as mutually exclusive.
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General Considerations on the
Representation of Time in PF

So far, we have described neurons that encoded

relative durations. We found that the encoding of

relative duration was represented in two

“formats”, one associated to the order and the

other to the stimulus features. The first can be

thought as a conjunction of relative duration and

order while the second as the conjunction of

duration and stimulus color. The encoding of

conjunctions of features represents a key differ-

ence with the parietal cortex. Such a role of PF in

duration comparison agrees with an imaging

study by Rao et al. [9] that associated PF activity

to the later stage of the task corresponding to the

duration comparison.

This result adds duration to the list of

examples of conjunctive encoding identified by

past studies using a variety of paradigms in PFdl

[45–49]. For example, Tsujimoto and Sawaguchi

[45] and Tsujimoto et al. [46, 50] have found

neurons encoding conjunctions of goals and

outcomes. In a cued strategy task Tsujimoto

et al. [46] found neurons encoding the conjunc-

tion of stay and shift strategies with goals in

PFdl, similar to the signal found by Genovesio

et al. [47]. Another example can be found in a

study by Hoshi and Tanji [49]. They have

reported that PF neurons encoded the combina-

tion of arm (left/right) and spatial goal in a task in

which two sequentially presented cues instructed

which arm to use and the goal location.

We found that a substantial population of

neurons encoded whether the red or the blue

Fig. 2 (a) Duration discrimination task. When the mon-

key touched a central switch a white circle (pre-cue)

appeared and the monkey was required to start fixation

until a later “go” signal. After the pre-cue period, the

monkey viewed the first stimulus (S1) followed by a

first delay period (D1). After, the second stimulus

appeared followed by a subsequent delay period (D2) of

variable duration. After this second delay both stimuli

reappeared, one to the left and the other to the right

serving as a “go” signal and the monkey was required to

choose the stimulus that lasted longer, indicating his

decision by touching the switch below that stimulus. (b)
MTS task. In this task the monkey viewed sequentially

two identical stimuli called samples, either two red
squares or two blue circles of different durations as

those used in the “square set” of the duration task. The

monkey’s task was to choose the target that had appeared

twice. (c) Distance task. In this task one stimulus

appeared above and the other below the reference point

in an order determined randomly. After the appearance of

the two targets the monkey was required to choose the

farthest stimulus from the reference point. (d)
Distributions of durations. The distribution of duration

could belong to one of two sets either the ‘V’ or the

“square” set. The distance task had a square distribution

identical to the duration task only with distances instead

of durations. (e) Penetration sites. Composite of the two

monkeys. Abbreviation: AS arcuate sulcus, PS principal

sulcus
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stimulus had lasted longer during the delay. Later

in this chapter, by comparing the information

derived from other tasks, we will be able to

separate the decision process from the goal rep-

resentation functions performed by different

subpopulations of the neurons that encoded

which stimulus blue or red lasted longer. Not-

withstanding the fact that our experiment did not

impose any requirement to the monkeys to report

whether the first stimulus had lasted longer or

shorter, we found neurons performing this inter-

mediate computation. This result underlines the

importance of ordering temporally the contents

of our experience, such as the stimuli to compare

in our task.

Furthermore, we found neurons that encoded

higher order conjunctions, combining the infor-

mation on which stimulus was the first based on

the order of presentation with the information on

which stimulus was the longest, blue or the red.

Such a hypothetical neuron would show a spe-

cific preference: for example, for the red stimulus

being both the first of the sequence and the lon-

gest stimulus. Neither a longer red second stimu-

lus nor a blue first longer stimulus would activate

such a neuron.

To date, only a few neurophysiological stud-

ies have investigated PF’s role in timing

encoding [26–28, 38, 51, 52]. Three studies

adopted a task similar to ours in PF [27, 28, 38]

and we will compare their results to ours.

Oshio et al. [27] have described neurons

encoding which stimulus had lasted longer but

not neurons encoding duration differences and a

relative duration encoding based on the order of

stimulus presentation. We obtained different

results, which are probably explained by some

task differences. They used durations of the first

stimulus that allowed the subject to predict the

duration of the second upcoming stimulus, there-

fore no other duration comparison was necessar-

ily required after the presentation of the first

stimulus. Interestingly, when the second stimulus

duration could not be predicted on the basis of

the first stimulus duration, in a separate study on

the basal ganglia, Chiba et al. [39] identified

neurons with proprieties similar to those

described in our study, such as the coding of the

duration of the first stimulus presentation in the

following delay period and the coding of whether

the first or the second stimulus had lasted longer.

It is likely that the differences between their PF

and basal ganglia data depend on task

differences, associated to the predictability of

the duration of the comparison stimulus, rather

than on different roles played by these two areas.

In a more recent study, using the same task,

Oshio et al. [28] recorded from PF using short

and long stimuli that overlapped more than in

their previous study [27], reducing the issue of

predictability of the second stimulus duration. In

this study the authors focused the analysis on the

first stimulus period identifying neurons with

both buildup and sustained activity in addition

to others with phasic activities with unimodal

peak times of response around 0.8 s. This dura-

tion corresponded roughly to the middle duration

of the averages of the long and short stimuli. That

suggests that the monkeys could have compared

the duration of the first stimulus with this single

filtering duration to separate durations into long

and short categories.

Another neurophysiological study on timing

used a matching-to-sample paradigm to examine

duration coding in PFdl [29]. In contrast to our

study, Sakurai et al. [29] did not report relative

duration neurons. They identified only a small

proportion of neurons designed as “comparison

neurons” that might contribute to comparing the

duration of the two stimuli. However, these

neurons were defined only for having a phasic

activity specifically associated with the presenta-

tion of the comparison stimulus and not with the

sample presentation. As we have described

before, contrary to their results, many neurons

in our experiment encoded the relative duration.

This discrepancy probably also results from task

differences. As in the work by Oshio et al. [27],

the monkeys studied by Sakurai et al. [29] could

simply categorize stimuli as either short or long,

rather than encoding the sample duration, and the

use of only two durations (0.5 and 2.0 s) was the

reason for this interpretational problem. There-

fore, these “comparison neurons” might have

represented a rank-order signal like the neuron

in Fig. 3b, indicating that the stimulus presented
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was the second of the sequence, irrespective of

any duration comparisons.

Order-encoding properties have been

described previously by several studies for both

colored patterns [53] and for spatial stimuli [54].

For example, in the experiment of Funahashi

et al. [54] the monkeys performed a delayed

sequential reaching task, in which they were

required to remember the position of two of

three cues and their temporal order of presen-

tation. They found a consistent population of

neurons that showed a rank-order activity

either in combination with the cue position or

irrespectively.

Fig. 3 (a) Neuron encoding which stimulus was farther

and longer based on the stimulus order. Background
shading indicates the decision period (80–400 ms after

the ideal decision point). This neuron showed an higher

activity when the first stimulus was longer (S1 of greater

magnitude) in the duration task. The same neuron showed

an opposite preference for the second stimulus farther (S2

of greater magnitude) in the distance task. (b) Rank-order
and color selective neuron in the duration task. This

neuron showed a preference for the first red stimulus. (c)
Neuron encoding the relative magnitude based on the

stimulus features in the duration task but not in the dis-

tance task with a preference for longer blue stimuli in the

duration task. (d) Neuron encoding the same goal in all

three tasks. This neuron showed the same preference for

the red goal in all three tasks. Modified from Genovesio,

A., Tsujimoto, S., Wise, S.P. Neuron 74, 656-662, 2012,

with permission
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Sakurai et al. [29] also found neurons

representing which stimulus was either short or

long. Some neurons showed a phasic discharge

when the stimulus could be categorized as either

short or long. However, the experimental design

could not rule out the possibility that these

categories of neurons represented an abstract

category instead than specific durations.

Other studies have focused on time reproduc-

tion [33, 51]. Yumoto et al. [51] have recorded

from PF area 9 using a time reproduction task in

which monkeys were trained to estimate and

reproduce the duration of a visual stimulus with

a button press. They found a first population of

neurons which were modulated by the previous

stimulus duration, similar to what we have previ-

ously described [24, 42]. They indentified also a

second population of neurons modulated by the

duration that the subjects needed to reproduce.

Interestingly, only a minority of neurons

belonged to both categories, pointing to a sepa-

ration of functions between duration decoding

and temporal organization of movement execu-

tion. Furthermore, inactivating the same area

through injection of muscimol affected the repro-

duction of the duration interval. Specifically, this

kind of temporary inactivation shortened the

duration that the monkeys produced.

Another study [52] has examined the role of

both PF and the caudate nucleus in a visuomotor

task that required the monkeys to make sequen-

tial saccades to visual targets after short fixed

intervals. This study did not impose any explicit

training regarding the timing of the events. The

authors identified a subpopulation of neurons

with peaks of activity distributed in relationship

to several task events that may represent time-

stamps of different durations, as part of what the

authors call the “infrastructure of neural repre-

sentation of events and actions”. They found very

similar phasic discharges in both areas that are

known to be connected through cortico-basal

ganglia loops, supporting their combined role in

timing [55].

We found stronger effects in periarcuate cortex

compared to PFdl. Although most of the

periarcuate cortex recordings were located in the

cortex rostral to the arcuate sulcus we have

included in the analysis a small number of neurons

within the dorsal premotor cortex (PMd). PMd

neurons are known to be involved in other non-

motor [56] and attentional function [57], and their

role in timing is compatible with their other

functions. Lebedev et al. [25] have shown that

from the ensemble of neurons recorded in PMd

neurons it could be decoded both the elapsed time

information from the previous hand movement

and the time until the onset of the next movement

in a task in which the monkeys released a key after

a temporal interval. Similarly Lucchetti and Bon

[34] have shown a buildup activity for predictable

delays before movements in PMd.

Interaction Between Duration
and Other Magnitudes

Temporal and spatial perceptions can interfere

with each other and produce misperceptions in

both humans [58–60] and monkeys [61]. How-

ever, most of the studies initially have focused on

the interaction between space and number rather

than between space and time. Therefore, we

describe first briefly a variety of interactions

between numbers and other magnitudes. It has

been shown that numbers can have a spatial

representation organized along a “mental number

line” [62, 63] and that numerical processing can

interact with saccade performance, shifting of

spatial attention, pointing and grasping move-

ments, and line bisection tasks [64, 65]. On the

other hand, numerical processing can be

influenced by visuospatial variables. For example,

spatial cueing and visual hemifield presentations

can produce an influence on numerical compa-

risons [66, 67]. Interestingly, even eye position

can influence both the representation of numbers

[68] and the representation of high-level cognitive

processes such as non-propositional reasoning

[69]. Moreover, physical space perception and

the mental number line can be affected similarly

in patients with hemineglect [70, 71].

To explain the influence of different

magnitudes on each other, a domain-general sys-

tem has been proposed that would encode

abstractly a greater or lesser quantity, independent
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of the specific metric such as duration, distance, or

numerosity [1, 72]. Although several psychophys-

ical effects support the ATOM theory, fewer stud-

ies have focused specifically on the interaction

between space and time. In one of these,

Srinivasan and Carey [73] showed that binding

visible lines with tone duration appeared to be

easier when their durations were relationally

equivalent both in adults and infants.

Even saccadic eye movements can influence

and compress magnitude judgments of both

space and time [74, 75]. Two bars flashed one

hundred ms apart around the time of the saccade

are perceived compressed in time (closer in time)

much like the spatial compression of a bar

flashed around the time of the saccade towards

the location of the saccade target [74].

In monkeys, Merritt et al. [61] found symmetri-

cal interactions between temporal and spatial

judgments. Other experiments, however, have

shown asymmetries in the interference effects,

suggesting a less complete overlap between

representations of magnitudes. As an example of

asymmetry, it has been shown that the duration of

a visual stimulus could affect the perception of its

length but not the reverse, and that this phenome-

non occurs in both adults [58] and children [76].

The same asymmetry has been reported with lan-

guage. Interestingly in metaphorical language,

there are more words describing time in terms of

space than describing space in terms of time. In

contrast to the results of Merritt et al. [61],

asymmetries between space and time have been

found byMendez et al. [77]. They have shown that

a previous experience in categorizing distances

could affect duration categorization but not the

reverse. It is possible that findings about

asymmetries may reflect differences in task diffi-

culty for different kinds of magnitudes. Along this

line, a recent study by Javadi and Aichelburg [78]

has shown that a failure in finding a reciprocal

interference between magnitudes may depend on

selecting the appropriate range of magnitudes to

enable the detection of interfering effects. By using

high numerosities and short durations, they found

an effect of temporal magnitudes on numerosities,

in addition to the opposite direction of interference,

which had been previously reported.

Even if the presence of some asymmetries

might contradict a strong version of the theory

of common magnitude, the interaction between

space and time indicates that there is at least a

partial overlap between space and time coding,

which can affect perceptual decisions.

Further support for a common magnitude sys-

tem comes also from the results of Stroop-like

paradigms, such as the one adopted by Xuan

et al. [79]. They have shown that stimuli of four

different nontemporal magnitudes such as the

number of dots, the numeric value of digits and

the luminance and size of squares could affect a

duration judgment: stimuli of greater magnitude

were judged to last longer. Another study

supporting the theory is an old pharmacological

study by Meck and Church [80].

Using a psychophysical choice procedure,

Meck and Church [80] have shown that metham-

phetamine shifted the psychophysical functions

leftward for both number and duration

comparisons in an experiment that used a psy-

chophysical choice procedure.

Other studies goes beyond the ATOM pro-

posal emphasizing that time, like numerosity

[62, 63], is represented on a mental time line

oriented along a left-to-right dimension that

can be accessed through spatial attention

mechanisms. The mental time line (MTL) pro-

posal can be considered a more specific hypothe-

sis than ATOM, emphasizing the organization of

different magnitudes in a spatial layout. Atten-

tion would then operate on the spatial represen-

tation of the different magnitudes, probably by

using the same parietal areas involved in visuo-

spatial attention. Several studies have tested the

MTL hypothesis using similar paradigms to

those used for studying numerosity and we will

refer here to just a few. In support of the MTL

hypothesis it has been found that the presentation

of lateralized irrelevant visual distracters can

influence temporal perceptions producing

underestimation for cues to the left and overesti-

mation for cues to the right [81], the same way as

it has been shown for numerical magnitudes.

Right hemisphere parietal patients with left

neglect show a rightward bias in duration bisec-

tion task requiring setting the midpoint of a time
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interval [82], similarly to what emerged from

past studies adopting line bisection tasks. Note-

worthy, the same rightward bias has been pro-

duced by a TMS over the right parietal cortex

[82]. The perception of stimuli duration can be

also affected by their location, producing either

an underestimation or an overestimation of the

duration when presented in the left and in the

right hemispaces, respectively [83]. Manipula-

tion of spatial attention by optokinetic stimula-

tion toward the right and left fields produced the

same duration distortions [84]. In summary, a

variety of psychophysical studies have shown

that duration perception can be stretched by

other magnitudes, at least to a certain degree.

Notwithstanding all this evidence in support of

an overlapping between magnitudes, other evi-

dence suggests that the overlapping is only par-

tial. For example, at least for the number and

duration domains, it is possible to have

dissociations between numerosity and duration

functions following different parietal lesions

[85], and temporal perception is not affected in

adults with developmental dyscalculia [86].

At the single cell level, PF neurons encode

space, time and number [24, 87–89], and several

theories of the PF cortex have emphasized the

domain generality processing of PF [90–92].

These considerations led us to investigate timing

and spatial representations at the single cell level

in PF recording the same neurons in the duration

and in the distance discrimination tasks. An addi-

tional matching-to-sample (MTS) task served as

a control for goal representations. We need to

point out that our experiment [43], that we will

describe later in this chapter, was not designed to

distinguish between the ATOM and the MTL

proposals. Its main objective was to investigate

the role of PF in decision making within different

magnitudes, studied in separate tasks and in

absence of any interference between magnitudes.

Common Goal but Separate Decision
Signals for Duration and Distance

Figure 2b, c illustrate the MTS and the distance

tasks used in addition to the duration task.

We adopted as a control task a particular type

of MTS task in which the presentation of the

“sample” stimulus was repeated twice (Fig. 2b).

In this task, the monkeys were required to choose

the same stimulus presented as the sample on that

trial (Fig. 2b). We introduced this control task to

identify potential neurons sharing a common

goal representation. Its main feature was that

the goal choice did not depend on any magnitude

comparison process. The first and second sample

durations were the same as in the duration task

but their duration difference was irrelevant to the

task. The task was designed to preserve the same

task events that characterized the duration task,

such as each epoch’s duration and the fixation

requirement.

In the distance task on each trial, the monkey

viewed two visual stimuli, presented sequen-

tially, on a video screen at different distances

from a reference point at screen center. In this

task the two stimuli differed in relation to their

distance from the reference point and not in their

duration. The monkey’s task was to choose the

stimulus farther from the central reference point.

We recorded data from 1,209 neurons in the

duration discrimination and from 1,671 neurons

in the distance discrimination task (Fig. 2c). We

recorded 621 neurons from both tasks and 261

neurons from all three tasks, and these

subpopulations will be used in the comparison

among tasks.

In this part of the chapter, we focus our task

comparisons on a decision period immediately

after the decision point. The decision point is

defined as the moment in time in which the

information available would suffice for an ideal

observer to reach a decision. The decision point

in the distance discrimination task corresponded

to the presentation of S2. In the duration discrim-

ination task, to define the decision point we need

to distinguish two categories of trials based on

which stimulus, either the first or the second,

lasted longer. When S2 was shorter than S1, the

decision on which stimulus had lasted longer

could be made at S2 offset, and this was defined

as the decision point for these trials. When S2

lasted longer, the decision point was not

“marked” by the S2 offset, but corresponded
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instead to the moment at which the S2 duration

surpassed that of the S1.

As we have already described earlier in this

chapter, which focused on the second delay

period, for the decision period we classified

(two-way ANOVA) the relative duration and

the relative distance neurons in two classes, one

encoding the relative duration or distance based

on the order of the two stimuli and the other

based on their features. In the MTS task, for the

same task period as in the duration task, we

identified goal-selective neurons modulated by

the stimulus features (blue and red) of the two

samples (one-way ANOVA).

Figure 3a shows an example of a neuron

encoding relative duration and relative distance

information based on the order of presentation of

the two stimuli. This neuron shows a phasic

increase of activity in the decision period when

the first stimulus was the longest (S1 of greater

magnitude) in the duration task and the closest

(S2 of greater magnitude) in the distance task,

therefore this neuron represents an example of a

neuron contributing to different cognitive

domains. However, looking at this neuron’s

activity, it is apparent that it did not reflect any

abstract concept of magnitude. This is because

the preference for which stimulus was the longest

(higher magnitude) reversed to the smaller mag-

nitude (closer) in the spatial domain. Neurons

with a relative duration or distance encoding

based on the stimulus order should not be con-

fused with rank-order neurons. Rank-order

neurons, in fact, are characterized by differences

in activity between the first and the second stim-

ulus. It is likely that the relative encoding signal

shown in Fig. 3a might arise from the combina-

tion of duration and rank-order information. Fig-

ure 3b shows a rank-order neuron with greater

activity elicitated by the presentation of S1 com-

pared to that elicitated by the presentation of S2.

The rank-order signal was maintained in the first

delay, and it is possible that such neurons

activated by the S1 presentation could lead later

to the activation of other rank-order neurons with

a preference for the second stimulus when the

second stimulus is turned on. Without this infor-

mation might not be possible to determine when

the duration of the stimulus presented should be

compared with the duration of the previous one.

Notice that the neuron in Fig. 3b shows a further

level of integration that goes beyond a “pure”

rank-order signal, consisting of an additional

modulation by the color of first stimulus, which

Fig. 4 Bar plot counting the neurons specific to one (red
or green) or to both tasks (blue), with neurons having the

same preference summed in the dark-colored bar and

neurons with different preferences summed in the light-
colored bar. (a) Neurons encoding relative information

based on order. (b) Neurons encoding relative informa-

tion based on the stimulus features in the format of a.

(c) Subpopulation of cells in (b) recorded in all three

tasks. The Venn diagram shows the number of cells with

significant effects in all the various combinations of the

tasks. Percentages refer to the cells showing the same

preference (red or blue) in either two or three overlapping
tasks
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was absent during the presentation of the second

stimulus. In other words, this cell was specifically

tuned to the presentation of a first red stimulus.

To asses at the population level whether the

type of encoding based on the stimulus order

shown by the neuron in Fig. 3a represented a

domain-general signal common to duration and

distance computations, we compared the neural

selectivity of the same neurons in different tasks.

Figure 4a shows a bar plot for neurons with

significant encoding in the duration task only, the

distance task only, or in both tasks, based on

order of presentation of the two stimuli. We

found that the majority of the neurons encoded

the decision in each domain independently (two-

way ANOVA), as indicated in Fig. 4a by the red

and green bars, respectively in the distance and

the duration tasks. Only a relatively small per-

centage of neurons (26 %) indicated by the blue

bar participated to the decision process in both

domains. We asked whether this last group of

neurons could represent abstractly the relative

magnitudes in a domain-general way. We found

neurons sharing the same preference (dark blue

bar), as predicted for neurons representing mag-

nitude in the abstract, but we found them in

roughly the same proportion as the neurons

with opposite preferences (light blue bar). There-

fore, the cell preference in one task appeared

independent of that in the other. Although there

was no complete dissociation of functions

between neurons for distance and duration

comparisons and the same neuron could partici-

pate to both computations, there was no tendency

to share a common preferred magnitude.

In addition to the relative duration and dis-

tance encoding signals based on the order of

presentation of the two stimuli, we also com-

pared the relative encoding based on the stimulus

features between tasks. We will examine now the

proprieties of the neurons encoding which stim-

ulus had the greatest magnitude in the duration

and distance tasks based on the stimuli features,

but first we start by examining the different type

of neurons that could be expected.

Figure 5 shows the activity of four ideal

neurons characterized by different proprieties.

In this Fig. 5, all the four ideal neurons are

chosen for having the greatest activity for the

red longer stimuli. Examining the activity of the

neuron of Fig. 5a in the distance task it appears

that it shows an opposite preference in the two

tasks and for this reason it could not represent

any common magnitude. The neuron of Fig. 5b is

not involved in distance comparisons because is

a pure duration neuron. The neurons of Fig. 5c, d

show the same preference for red stimuli of

greater magnitude, making them potential

candidates for representing a domain-general

signal. However, after examining the activity of

these neurons in the MTS task, it is apparent that

only the neuron of Fig. 5c shows a true domain-

general signal, while the neuron of Fig. 5c

represents the red goal. In fact, only for the

neuron of Fig. 5c the preference for red longer

and farther stimuli cannot not be accounted in

terms of red goal encoding. Now we will exam-

ine two example PF neurons in relationship to the

categories defined for the ideal neurons. Figure 3c

shows a neuron that encoded the relative duration

based on the stimulus features during the deci-

sion period of the duration task. The neuron

preferred the longest blue stimulus, but did not

show any selectivity for which stimulus was the

farthest in the distance task, resembling the ideal

neuron shown in Fig. 5b.

Figure 3d shows a different type of neuron with

a preference for red longer trials. The same neu-

ron, when tested in the distance discrimination

task, showed a similar relative distance encoding,

with a preference for red farther stimuli. There-

fore, not only was this neuron part of the compari-

son of both magnitudes, but it also shared the same

preference. That is, it seemed to encode for “red-

greater” in both tasks. To distinguish between the

two possibilities exemplified by the neurons of

Fig. 5c, d, we need to examine the activity in the

MTS task. Was the neuron of Fig. 3d encoding

“red greater” as a domain-general abstract signal,

independent of goal encoding, or was it just

encoding the red goal? Examining the activity of

this neuron in the MTS task helps answering this

question. Figure 3d (bottom) in fact shows that the

same neuron maintained its preference in the MTS

task. That is, it encoded the red goal, a finding that

supports the second interpretation: this cell
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encoded a goal signal as exemplified by the ideal

neuron in Fig. 5d.

Then we asked what proportion of neurons

encoded goals, similarly to the ideal neuron

represented in Fig. 5d and to the neuron of

Fig. 3d, rather than abstract magnitude as for

the ideal neuron of Fig. 5c. Figure 4b shows the

relative encoding in the duration and distance

tasks based on the stimulus features. As with

the duration encoding based on the order of pre-

sentation, the majority of neurons encoded rela-

tive magnitude in one domain only, either for

Fig. 5 Four ideal neurons modulated by the relative

duration based on the stimulus features in the duration

task. All the four ideal neurons show the highest activity

for the red longer stimulus (a). This neuron shows an

opposite preference in the distance discrimination task,

with higher activity for the blue farthest stimulus, there-

fore, this neuron could not encode which stimulus had

greater magnitude in a domain-general way. (b) Similarly

to the neuron in (a), this ideal neuron cannot not encode

domain-general information, but in this case it is because

it is not modulated in the distance discrimination task. (c)
Neuron showing a domain-general coding of relative

magnitude. For this neuron the preference for the red

stimulus of greater magnitude in both tasks could not be

accounted in terms of goal encoding, because this neuron

does not show higher activity for the red goal in the MTS

task. (d) Neuron encoding the red goal. For this neuron,

the red goal encoding in the MTS sample task can account

for the preference for red longer and farther stimuli in the

duration and distance tasks. On the top an example trial

for each task, blue lines indicate trials with blue longer

stimuli, blue farther stimuli, and blue samples, respec-

tively in the duration, distance, and MTS tasks
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space (red bar) or for time (green bar), with only

a third of neurons (blue bar) encoding it in both

tasks (Fig. 4b). However, in contrast to the

neurons of Fig. 4a, all of the neurons modulated

in both tasks (blue bar in Fig. 4b), with rare

exceptions, shared the preference for the same

stimulus as the stimulus of greater magnitude

(dark blue bar). We then tested the subpopulation

of these neurons studied also in the MTS task for

goal effects. We found that all these neurons, with

rare exceptions, when studied in the MTS task,

shared the same preference as in the duration task

(see Fig. 4c) supporting the idea that neurons

encoding which stimulus was farther and longer

based on the stimulus features in both tasks

encoded the goal chosen by the monkey. Note

that without the MTS control task, we might

have interpreted the activity of these neurons as

an example of common magnitude encoding.

Examining the time course of the population

activity averages of the three classes of neurons,

it appeared that both the population of neurons

encoding the perceptual decision on the relative

magnitude only in one task based on either the

order of presentation or their stimulus features

showed a signal that dissipated earlier than the

goal encoding neurons (see Fig. 3 in Genovesio

et al. [43]) supporting a role in the initial decision

process that lead to the goal selection.

Modality-Specific and Modality-
Generality in a Strategy Task

The difference between the domain-specific

activities and the domain-general goal neural

activities and their time course, with the first

leading to the second in the PF cortex, in some

respects can be considered analogous to the dif-

ference between modality-specific and modality-

general activities described in a previous study in

monkeys [93], which used a strategy task to

study PFdl, the orbitofrontal cortex, and the fron-

tal pole cortex. In that task, a cue instructed one

of two strategies: stay with the previous response

or shift to the alternative. The cue could be either

one visual stimulus or a specific reward amount.

We compared the activity in two version of the

task using different reward amounts and different

visual stimuli as strategy cues.

We found that the spatial goal coding during

the period of the strategy cue presentation was

modality-specific, with the spatial goal prefer-

ence (right or left) independent of the cue modal-

ity. Later in the delay period, the neurons

transitioned from a modality-specific response

to a modality-general response, one sharing the

preference for the same position.

In contrast to the goal encoding, we did not

find any correlation between the preferred

strategies in the two tasks with different cue

modalities. Therefore, strategy encoding

appeared modality-specific in PFdl (and also in

orbitofrontal cortex), in contrast to the modality-

general goal encoding found after an initial

modality-specific encoding.

The role of the PFdl in the generation of goals

has been emphasized by several neurophysiolog-

ical studies in monkeys [88, 94–96] as mentioned

earlier. Furthermore, several brain-imaging stud-

ies in humans have confirmed goal encoding in

PFdl. For example, Rowe et al. [97] have shown

that self generated finger movements as opposed

to externally dictated movements activated PFdl,

and Jahanshahi et al. [98] have shown that the

generation of more random numbers produced

more activation in PFdl.

Conclusions

Several brain-imaging studies have implicated

a parietal-frontal network in a domain-general

representation of magnitudes [1, 8, 9, 62, 99,

100], and, as we have already discussed, cross-

modal interference has been shown between

several domains, such as spatial and temporal

[1, 58, 61, 72, 74, 79, 84, 101].

Notwithstanding these studies, our findings

suggest that considering the representation

and the comparison of magnitudes as a unitary

process can be an oversimplification. In our

experiment, we have focused on the relative

encoding of magnitudes such as “greater

than” and “less than” rather than on the abso-

lute magnitude codes, such as “large” and

“small”. We asked whether a neuron that

encoded “greater than” in the duration task
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also encoded “farther than” in the distance

task. We have not yet examined whether a

neuron that encodes a “long” duration

encodes also a “far” stimulus. To our knowl-

edge, no other neurophysiological study has

addressed the study of common magnitude in

terms of relative coding. Tudusciuc and

Nieder [102] have addressed the coding of

absolute magnitude in monkeys in the context

of numerosity and spatial length. Adopting a

delayed matching-to-sample task design, they

have described neurons that encoded absolute

magnitudes either in only one domain or in

both domains in both PF and in the ventral

intraparietal area (VIP). However, it is not

clear whether the neurons encoding both

magnitudes shared the same preference for

numerosity and line length. Moreover, their

task did not require relative magnitude

comparisons, such as “greater than” and

“less than”. Being domain-specific instead of

domain-general, however, does not contradict

with the role of PF in generating other, more

abstract representations within each magni-

tude. For example, we have described for the

same experiment a highly abstract coding of

the relative distance [103], which was inde-

pendent of the location of the two stimuli

presented (above or below the reference

point). In our experiment, we have identified

domain-specific perceptual processing at the

single-cell level. These neurons were located

in the same PF location with no clear separa-

tion [43]. Therefore, it is not surprising that

brain-imaging studies would detect common

activations for different magnitudes because

the activity of different classes of neurons

overlaps within the same voxels. The

differences between imaging data and ours

might also be reconciled by assuming that

the neurons encoding goals were shared by

the duration and the distance domains. The

presence of a goal representation was not

surprising in view of the many previous stud-

ies that have reported such representations in

PF [88, 94, 95, 104] and it is possible that the

psychophysical interaction across cognitive

domains occurs at the level of goal choices,

rather than at the level of perceptual decisions.

Moreover, we have shown that spatial and

temporal computations tended to share also a

common representation in terms of left/right

goal [43] or response and the level of action

can represent another source of interactions

among magnitudes. Our results are in line

with the original idea of the ATOM proposal

that suggests that the development of magni-

tude processing originates from the interac-

tion with the external world through action

to which it is strictly associated [1]. Several

past studies have supported this proposal

[105, 106]. In accordance with this idea, it

has been shown that semantic information

labelled on target objects such as “LARGE”

and “SMALL” can affect the grip opening

[105]. The grip aperture was larger when the

objects were labelled with “LARGE” than

when they were labelled with “SMALL”.

Numbers can similarly affect action: large

numbers speed up the grip opening and small

numbers speed up the grip closing [106]. To

summarize, the neuronal population that

encodes spatial goals and responses identified

in PF might generate interference between

different magnitudes and actions by serving

as a shared resource for choosing among dif-

ferent options.

We cannot rule out the possibility that

there is a domain-general representation in

other parts of the brain, and the parietal cortex

might be a candidate [1] and it has been shown

[107] that some parietal cortex neurons repre-

sent the same rule in both spatial and numeri-

cal domains. Parietal cortex has also been

proposed as an important node of a timing

network [20, 52, 108, 109]. In support of a

parietal representation of magnitudes, the

parietal cortex has been found to be activated

in brain-imaging studies by tasks that require

orienting attention to spatial locations and

time intervals [110] and by collision tasks

that required the integration of spatial and

temporal information to predict the collision

[111]. However, as we have shown in PF,

these brain-imaging studies in parietal cortex

also cannot determine whether or not different

networks of neurons participate in coding dif-

ferent magnitudes.
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To better understand what is shared among

magnitude representations, we should con-

sider the distributed representation of time,

where different computations can share

resources with other magnitudes with differ-

ent degree of overlapping. Following this

idea, it is useful to identify the different stages

in the processing of magnitude information.

First, there could be a partial overlap of

computational resources for different

magnitudes in the parietal cortex, in which

different magnitudes have been hypothesized

to share a common representational format

along a common mental, spatially organized

line. Second, based on our results, we can

assume that there is an additional level of

resource sharing for goal and response

representations in PF. In between the two

stages, we have identified a dissociation of

functions between neurons comparing

magnitudes based on the order and on the

features of stimuli for distances and durations.

Our results suggest that future experiments

should address the study of magnitudes and

their interplay by fractioning magnitude com-

parison in different computational steps, as we

have started to do with our study. Considering

a common magnitude representation as a

unique system, although distributed through

several brain areas, is apparently an

oversimplification.

At the same time, we cannot rule out the

possibility that domain-general representations

in the comparison process might vary flexibly,

based on whatever task demands happen to

prevail at any given time, and especially

when subjects are required to formulate cross-

domain judgments.

In summary, in the context of the scalar

timing theory [112], which postulates a model

with different clock, memory and comparison

modules, we have shown that the “comparison

timing module” hypothesized by the model

appears to be specific to durations.

In a comprehensive theory of the PF cor-

tex, it has been proposed by Wise and

Passingham [113] that the main role of PF is

generating goals or sequence of goals based

on the current context and the current needs.

The current context can include information

relative to different magnitudes, such as dura-

tion, distance, number and the order of the

events. In a recent extension of the theory

that includes the posterior parietal cortex,

Genovesio et al. [114] have proposed that

new prefrontal- posterior parietal cortex

networks evolved in anthropoids as a special-

ization for rapid learning of what foraging

goals to choose based on relative metrics,

with the information about the relative metric

provided by the parietal cortex. According to

this view, this network that evolved in anthro-

poid primates to improve foraging choices

served as a pre-adaptation for the develop-

ment of human reasoning and intelligence.
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Probing Interval Timing
with Scalp-Recorded
Electroencephalography (EEG)

Kwun Kei Ng and Trevor B. Penney

Abstract

Humans, and other animals, are able to easily learn the durations of events

and the temporal relationships among them in spite of the absence of a

dedicated sensory organ for time. This chapter summarizes the investigation

of timing and time perception using scalp-recorded electroencephalography

(EEG), a non-invasive technique that measures brain electrical potentials on

a millisecond time scale. Over the past several decades, much has been

learned about interval timing through the examination of the characteristic

features of averaged EEG signals (i.e., event-related potentials, ERPs)

elicited in timing paradigms. For example, the mismatch negativity

(MMN) and omission potential (OP) have been used to study implicit and

explicit timing, respectively, the P300 has been used to investigate temporal

memory updating, and the contingent negative variation (CNV) has been

used as an index of temporal decision making. In sum, EEG measures

provide biomarkers of temporal processing that allow researchers to probe

the cognitive and neural substrates underlying time perception.
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The ability to detect, remember, and use the

temporal relations among stimuli is critical for

anticipating their future occurrence [1–3]. Accu-

rate anticipation facilitates stimulus processing

and is reflected in improved perception, response

times, and decision quality [4–8]. This chapter

provides an introduction to the use of scalp-

recorded electroencephalography (EEG) and

event-related potentials (ERPs) as tools for

investigating the cognitive and neural basis of

timing and time perception. To this end, we first

provide a brief description of the EEG technique

and then review a broad selection of the EEG

literature that addresses questions related to

interval timing.
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Electroencephalography (EEG) &
Event Related Potentials (ERPs)

Modern EEG amplifiers have made it relatively

straightforward to non-invasively record brain

electrical potentials in humans with electrodes

placed on the scalp (Fig. 1). These scalp-

recorded potentials reflect an instantaneous sum-

mation of excitatory and inhibitory post-synaptic

potentials (EPSPs, IPSPs) from tens of thousands

of neurons, primarily cortical pyramidal cells,

spread over several cm2 of brain surface [9].

Although EEG has excellent temporal resolu-

tion, it has relatively poor spatial resolution

because the detectability of a brain potential at

a particular scalp electrode is determined by the

orientation of the neurons with respect to the

scalp surface, the organization of simultaneously

active neurons with respect to each other (i.e.,

open versus closed-field arrangement), and the

number of simultaneously active neurons (see

Fig. 2). Equally important, the signal originating

from one neural source can be detected at multi-

ple scalp locations due to volume conduction of

the electrical potential. Consequently, the electri-

cal potential recorded at a specific scalp location

may be the summation of signals from multiple

neural generators spread over a wide region of

brain at a substantial distance from the electrode

site [9, 10]. There are many EEG source locali-

zation techniques, but discussion of the strengths

and weaknesses of these localization methods is

beyond the scope of the present chapter (for

discussion see [11]).

The ongoing EEG contains voltage

fluctuations that are related to the perceptual or

cognitive process of interest (i.e., the signal), but

it also contains voltage fluctuations (i.e., so-

called noise) that are due to task irrelevant per-

ceptual and cognitive processes (e.g., the partici-

pant thinking about lunch) and/or physiological

artifacts such as heart rate, whole body

movements, or eyeblinks. A typical human EEG

experiment includes a relatively large number of

trials in each of the experimental conditions

because averaging the EEG signal across many

trials from the same condition amplifies EEG

features that are time- and phase-locked to the

events of interest while suppressing random

noise [12, 13]. The output of this averaging pro-

cedure is referred to as an ERP, the components

of which can be consistently identified by polar-

ity, latency, and scalp topography. As illustrated

in Fig. 3, ERP components are either transient,

meaning they span a narrow time window and are

evoked by rapid changes such as a stimulus

onset, or sustained, meaning they span several

hundred milliseconds or more and are evoked

by both rapid and gradual changes [14]. It is

worth emphasizing that a component does not

necessarily reflect a single perceptual or cogni-

tive process. Finally, although ERP analysis is

the conventional approach to analyzing averaged

EEG signals, it can be complemented by single-

trial methods that examine the variability of the

EEG signal across trials [15, 16].

Detailed introductory guides to using EEG/

ERPs to address fundamental questions about

perception and cognition are provided in a num-

ber of excellent texts [10, 17]. More advanced

topics, including source localization, are covered

Fig. 1 Illustration of EEG electrode placement on a 3D

head model. Electrodes are typically positioned based on

percentage distances from various skull landmarks so that

they can be placed consistently across participants, at

least with respect to those landmarks. Across participants

there is significant variation in the brain tissue that lies

immediately below a particular electrode site. Moreover,

because of volume conduction and summation of electri-

cal potentials the source of the electrical signal at an

electrode is not necessarily the tissue immediately

beneath it (see text)
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in detail by Nunez and Srinivasan [9] and in

edited volumes by Handy [17, 18] as well as

Ullsperger and Debener [19].

To summarize, scalp-recorded EEG is a non-

invasive recording of the neuroelectric signals

generated by the brain. It primarily comprises

the summation of post-synaptic potentials of cor-

tical pyramidal neurons that are simultaneously

active, in open-field configuration, and positioned

radially with respect to the recording site. EEG

possesses very good temporal specificity, but rel-

atively poor spatial specificity. EEG measured

during a cognitive task includes neuroelectric

changes that are relevant and irrelevant to the

task. The ERP is a time-locked and phase-locked

brain response to the event of interest.

Implicit and Explicit Timing

Perhaps the most common lab-based approach to

the study of interval timing in humans is to instruct

participants to attend to the durations of stimuli

and then make an explicit response based on a

judgment about those durations (i.e., explicit

timing). For example, the judgment could be a

comparison of a standard and a probe duration, a

decision about whether a target interval has

elapsed, or a verbal estimate of a stimulus duration.

However, there are also situations in which

actions or brain responses are clearly time based

or time sensitive, but the stimulus duration is

judged implicitly or pre-attentively. For exam-

ple, if a 10 ms tone pip is presented once every

200 ms 20 times in a row, but on the 21st presen-

tation the tone pip is delayed by 100 ms, the brain

will respond to the change even if the participant

has been instructed to ignore the tone stream

[20]. This ERP component, known as the Mis-

match Negativity (MMN), is a sensitive marker

of pre-attentive stimulus processing (e.g., [21])

and, as described below, has been used to inves-

tigate pre-attentive or implicit timing.

The distinction between explicit and implicit

timing tasks is important because the different

objectives and procedures in these tasks can lead

Fig. 2 Neuron orientation determines whether an electri-

cal potential can be detected at the scalp. First, neurons

must be aligned with respect to each other (open field

arrangement; lower right panel), rather than positioned

randomly (closed field arrangement; upper right panel),
in order for simultaneous changes in membrane potential

to be detectable by a scalp electrode. In other words, the

dipoles formed by the individual neurons must sum,

rather than cancel. Second, membrane potential changes

from large groups of neurons, represented here as dipoles

(left panel), are detectable at a scalp surface electrode

when a group of neurons forming an open field is oriented

perpendicularly with respect to that electrode, i.e., it

comprises radial, rather than tangential, dipoles
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to different behavioral and neural manifestations

[5, 22] and this has direct consequences for the

interpretation of neuroelectric signals.

Mismatch Negativity (MMN)

The auditory MMN is elicited when a stimulus

violates a pattern or rule established by previously

presented stimuli [21]. The rule may be defined by

physical stimulus characteristics such as pitch,

intensity, or duration such that an infrequent

900 Hz tone presented in a sequence of frequent

1,000 Hz tones will elicit a MMN, but also can be

defined by the relationship between stimuli rather

than physical characteristics [23]. For example, if

participants hear a sequence of sounds in which

each sound is higher in pitch than the previous

one, then a lower pitch sound will elicit a MMN.

The MMN component is obtained by subtracting

the ERP response elicited by the more frequent

(standard) stimuli from the ERP response elicited

Fig. 3 Summary of the main steps involved in EEG data

collection and analysis. Top Left: Electrodes are attached to
the surface of a participant’s scalp before she performs the

experiment. The EEG amplifier receives neuroelectrical

signals and stimulus timing information (i.e., triggers) so

that the onset time of events of interest can be assigned to

the correct time point in the EEG recording. Amplified and

digitized EEG signals are then stored and ready for

preprocessing and analysis. Behavioral data are often col-

lected so that brain-behavior associations can be studied.

Top Center: During preprocessing, multi-channel (elec-

trode) ongoing EEG data of the whole experimental session

are checked for contamination by noise and irrelevant

signals are minimized. The processed EEG data are then

epoched, so that only segments of EEG signals closely

related to the events of interest are retained. Epochs are

grouped according to experimental condition, and averag-

ing is performed across epochs of the same condition. Top
Right: Averaging reveals a waveform containing signals

that are time- and phase-locked to the onset of the event of

interest. Peaks and troughs of this Event Related Potential

(ERP) that have functional implications are called

components, and are assigned labels according to their

polarity and peak latency, e.g., the positive peak at

100 ms that is sensitive to the perceptual features of the

event is labeled the P1 or P100. Bottom: ERP parameters

that may be sensitive to the experimental manipulations

include component amplitude, latency, and distribution

across the scalp, and their relationship with behavior or

other physiological signals
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by the rare (deviant) stimuli. It is easiest to distin-

guish when participants are not actively attending

to the auditory stimulus stream because otherwise

it can be concealed due to the partially

overlapping and much larger P300 response [21].

Researchers have used duration changes in the

context of mismatch negativity experiments to

address questions about the auditory change detec-

tion system itself, as well as questions about the

cognitive and neural substrates of interval timing.

Several early studies suggested that the MMN

could be elicited only when the standard stimuli

were at most a few hundred milliseconds long [24,

25]. However, Näätänen et al. [26] reported a

MMN for stimuli of several seconds, which

indicates that under at least some circumstances

the pre-attentive timing process is not limited to a

brief temporal window of integration.

Of greater relevance here is use of the MMN

response as a tool to investigate the perceptual

and cognitive processes underlying interval

timing [20, 27–29]. The pre-attentive nature of

the MMN response lends itself to interval timing

investigations that would otherwise be difficult to

achieve. This includes examining sensitivity to

time in the absence of attention allocation to the

timing task and in the absence of explicit task

instructions. Hence, the MMN allows the timing

abilities of preverbal children to be tested and the

functions of the adult timing system to be

measured in a way that is unbiased by the

instructions provided to participants.

Brannon et al. [27] used an auditory oddball

task to investigate the interval timing abilities of

10-month old human infants and adults (Fig. 4).

The standard intervals were defined by 50 ms

tone pips separated by an inter-stimulus-interval

(ISI) of 1,500 ms, whereas the rare deviant

intervals had an ISI of 500 ms. The infants and

adults showed comparable MMN responses to

the deviant stimuli, which suggests that infants

have at least some of the basic mechanisms

underlying time perception. Subsequent work

from the same group [28] demonstrated that

although larger standard and deviant ISI ratios

(1:4; 1:3; 1:2; 2:3) elicited larger MMN

amplitudes, changing the duration values while

keeping the standard to deviant ratio constant did

not affect the MMN amplitude. Consequently,

the data were interpreted as indicating that

Weber’s law for time holds in infants, as well

as adults. These results are important because

they reveal similarities in pre-attentive interval

timing between infants and adults that would

otherwise be impossible to demonstrate using

behavioral measures that rely on explicit

instructions.

Tse and Penney [20] used the MMN to investi-

gate how people time empty intervals (i.e.,

intervals demarcated by two short stimuli, one at

the beginning of the interval and one at the end).

Whether such intervals are timed with respect to

the onsets or offsets of the demarcating stimuli has

been the subject of dispute in the timing literature.

However, the rule used could easily be influenced

by the task instructions provided to the participant,

so Tse and Penney [20] used the instruction-free

MMN paradigm. Specifically, they adjusted the

durations of the markers so that the pattern of

MMN amplitudes elicited across the five deviant

conditions would indicate the rule being applied.

For example, in one condition the standard dura-

tion would be experienced as 130 ms if the partici-

pant timed the stimuli from marker onset-to-onset

whereas it would be experienced as 110 ms if the

participant timed it from marker offset-to-onset.

The deviant stimulus in this condition was selected

so that the marker onset-to-onset rule would result

in a 40 ms duration, whereas the marker offset-to-

onset rule would result in a 20ms duration. Hence,

the magnitude of change was 69 % under the

onset-to-onset rule, but 81 % under the offset-to-

onset rule. Across five deviant conditions, the

onset-to-onset rule resulted in a larger deviant

change than the offset-to-onset rule in some

conditions, but a smaller deviant change in the

other conditions. Hence, the pattern of MMN

amplitude effects across the conditions would pro-

vide support for one rule or the other. The data

pattern revealed that pre-attentive timing is from

stimulus offset to stimulus onset in the case

of empty interval timing. This experiment

demonstrates that it is possible to use ERP

components to discriminate between competing

models of timing behavior without biasing the

participant by providing instructions.

Probing Interval Timing with Scalp-Recorded Electroencephalography (EEG) 191



In summary, the pre-attentive change detection

system in the human brain is sensitive to duration

changes on the order of tens of milliseconds to

several seconds. In laboratory settings, the MMN

is elicited when the regularity established by the

presentation of the standard stimuli is violated by

rare deviant stimuli. With appropriate experimen-

tal design, MMN paradigms allow researchers to

study timing in the absence of instructional

bias [20] across a wide range of participant

populations [27].

Omission Potentials

When participants pay attention to a stimulus

train comprising regularly occurring events

(i.e., a constant ISI) the omission of a stimulus

from the sequence elicits an ERP component

referred to as an omission potential [30–37].

OPs are strongly sensitive to the temporal

structure of the stimulus sequence, which

suggests that they reflect neural processes related

to interval timing, short term memory for time,

and/or temporal expectations [32, 38]. For

instance, jittering the stimulus sequence

abolishes the OP for both visual and auditory

stimuli [32, 39], whereas removing the task rele-

vance of the omitted stimulus or the allocation of

attention to it reduces OP amplitude, increases its

latency, and latency variability [40]. Further-

more, OPs are not correlated with motor RT

and are elicited even when a motor response is

not required [41].

Fig. 4 Mismatch Negativity (MMN) in infants. Top: A
MMNwas elicited when infants heard a stream of predom-

inately isochronous auditory tones (1,500 ms ISI) with rare

shortened ISIs (375 ms). Middle: ERPs elicited by the two

ISI types revealed a strong negative response when the ISI

was a deviant. The MMN is typically shown as the differ-

ence wave between the ERP of the Standard interval and

that of the Deviant interval. Bottom: Topographical

distributions of the infant MMN. Although not illustrated

in the figure, the MMN showed systematic changes in

amplitude as a function of the ratio between standard and

deviant (Experiment 1), but not as a function of stimulus

duration when the standard to deviant ratio was held con-

stant (Experiment 2). Redrawn from Brannon et al. [28]
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Bullock et al. [32] examined the effect of

omission placement (end of the stimulus train

vs. middle of a continuous train) and stimulus

presentation frequency (from 0.3–40 Hz) on the

visual OP. In the low presentation frequency

range (0.3–2 Hz), sequences as short as two

stimuli per trial across repeated trials gave rise

to a stable positive OP. Jittering the ISI (e.g.,

regular ISI of 2 s vs. jittered ISI with mean of

2 s) or reducing attention to the stimulus train

(e.g., participants were not required to count

omissions) reduced the OP amplitude,

demonstrating the importance of temporal regu-

larity and attention for OP generation. Interest-

ingly, changing the modality of the final stimulus

before stimulus omission did not eliminate the

OP. However, the authors did not examine

whether the OP latency varied due to the modal-

ity change. In a subsequent study using auditory

stimuli, Karamürsel and Bullock [39] observed a

change in the OP latency. Systematic examina-

tion of OP differences across modalities is of

interest because stimulus modality influences

interval timing in some circumstances (see [42]

for review). In this regard, the OP may serve as a

useful tool for probing the origin of these

differences and help reveal whether representa-

tion/processing of time is modality specific or

amodal.

To this end, Penney [37] recorded

participant’s EEG while they performed a stop

reaction time task [43]. This task requires

participants to respond when they believe a

sequence of stimuli has ended. Although no

explicit instructions to time the stimuli are

given, participants must be sensitive to the SOA

between successive stimuli because this allows

them to recognize that the delay since the last

stimulus occurred is long enough to indicate that

the sequence is over. Penney [37] presented

visual and auditory sequences in two separate

blocks. Within each block, the stimulus onset

asynchrony (SOA) of a sequence was either 470

or 770 ms. Biphasic omission potentials were

elicited in all conditions (Fig. 5), suggesting at

least a partially shared timing process across

Fig. 5 Omission Potential (OP). Top Left: An Omission

Potential can be elicited in a stop reaction time task, in

which participants respond to the unpredictable termination

of a stream of isochronous stimuli. The OP is measured

from the time-point when the omitted stimulus would have

occurred. Bottom Left: Illustration of the topographical dis-
tribution of the biphasic (negative-positive) OP reported in

Penney [37] using either auditory or visual stimulus trains in

the stop RT task. The early negative phase had a right

frontal focus, while the late positive component had a strong

parietal distribution. Right: The ERPs of the OP were com-

parable regardless of modality and ISI, suggesting amodal

processes during implicit time estimation. The inset shows
that a biphasic OP was not elicited when isochronous tones

were presented, implying a relation of the OP to the viola-

tion of temporal regularity. Redrawn from Penney [37]
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modalities. Specifically, a negative OP elicited

between 150 and 200 ms after the scheduled

onset of the omitted stimulus was comparable

between modalities and was not related to the

RT difference observed in the behavioral data.

This result is consistent with an amodal regular-

ity detection/decision mechanism.

In a single modality experiment, Busse and

Woldorff [40] asked participants to perform an

auditory oddball (pitch change) detection task in

which the SOA between successive tones was

either 1 or 2 s and which included task irrelevant

tone omissions 11, 22, or 33 % of the time. They

observed a biphasic OP in all conditions regard-

less of SOA and percentage of tone omissions,

but the OP was smaller when the SOA was 2 s as

compared to 1 s and smaller when tone omissions

were most frequent (i.e., 33 %). In contrast to

Penney [37], they observed that the OP in the

long SOA condition had a broader latency than

the short SOA condition, which they attributed to

increased variability in the OP as SOA increased.

However, they did not determine whether the

variability increase was scalar [44].

Recently, Motz et al. [36] used the auditory

OP to study how humans process violations in

metrical patterns. In all blocks, the main beat was

produced by periodic (SOA ¼ 1,000 ms), pink-

noise bursts. A weaker beat produced by peri-

odic, but less frequent, white noise bursts was

embedded in the main beat, generating a poly-

rhythm either at a simple integer ratio (1/3) or a

non-metrical ratio of the pink-noise beat (metri-

cal: 33 % of the between beat distance vs. non-

metrical: 43 and 53 % of the between beat dis-

tance). Omission occurred at the last expected

beat of the white noise bursts. The latency of

the positive component of the biphasic OP

recorded at the CPz electrode corresponding to

omission at 33, 43, and 53 % of the between beat

distance indicated a cognitive bias that

regularized perception of non-metrical beats to

the nearest simple integer ratio (50 %). While the

OP latency at 43 % was later than that at 33 %,

the OP latency at 53 % was earlier than that at

33 %, showing up-regulation (bias towards later)

and down-regulation (bias towards earlier),

respectively. However, the regularization was

not complete, as shown by smaller than expected

changes in the OP latencies, suggesting flexibil-

ity in metric perception. In a related vein,

Jongsma et al. [45] compared the OP elicited in

musically trained (average of 15.6 years) and

untrained individuals when they listened to

rhythmic percussion sounds (ISI ¼ 800 ms)

with an unpredictable omission after three to

seven beats. The amplitudes and latencies of

single-trial positive OPs at the Pz electrode

were identified using wavelet de-noising [46].

OP latency variability was smaller in the group

of musically trained participants, suggesting bet-

ter ability of implicit timing (e.g., beat percep-

tion) and/or temporal deviant detection with

musical training.

To summarize, similar to the MMN, the OP

reflects detection of a violation of the temporal

regularity of a stimulus stream. However, unlike

the MMN, elicitation of the OP appears to

require that the omitted stimulus be task relevant

and attended, suggesting a different underlying

mechanism. The morphology of the OP also

appears to change according to the temporal

variability inherent in the preceding stimuli

[40]. Recent timing studies using the OP suggest

that certain timing processes are amodal [37] and

that the brain imposes regularity in environments

of high temporal predictability [36]. Finally, as

with the MMN [47], the timing system

contributing to the OP is susceptible to effects

of training, especially for auditory stimuli [34,

45]. As demonstrated by Busse and Woldorff

[40], omission of a stimulus is likely perceived

as a change in stimulus probability or stimulus

expectancy, thus the OP is often considered a

close relative of another prominent late positive

component—the P300 [38, 48–50].

P300

The P300 has long been associated with

decision-making [51] and is usually triggered

after stimulus evaluation, but before response

selection and motor execution (see [52] for

review). It reflects memory and/or expectancy

match [53, 54] or evaluation of the conditional
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probability of the occurrence of a rare target [55].

There are two types of P300: the novelty-related,

frontally distributed P3a that is associated with

stimulus-driven attention processes in the frontal

cortical regions, and the memory-based,

parietally distributed P3b that is associated with

attention and memory processes in the temporal

and parietal cortices [52, 56].

Posterior positive slow waves (PSW) such as

the P300 and anterior negative slow waves

(NSW) such as the contingent negative variation

(CNV; discussed below) can co-occur in antici-

patory and timing paradigms (e.g., [57, 58]), with

the NSWs likely providing the context for the

functions reflected by the PSWs [48, 59]. Larger

NSW-PSW for interval timing tasks relative to

non-timing tasks is claimed to reflect a stronger

and wider activation of neural populations that is

not due to difficulty differences between the two

task types. For example, Gibbons et al. [60]

asked participants to perform temporal generali-

zation and pitch discrimination tasks on identical

auditory stimuli. The participants were less accu-

rate in the pitch task, but the NSW-PSW

amplitudes were larger in the temporal generali-

zation task. Moreover, this pattern remained

when participants were sorted into better-

timing/worse-pitch-discrimination and better-

pitch-discrimination/worse-timing groups. The

authors interpreted this result as indicating a

stronger involvement of working memory in the

timing task than in the non-timing task. A similar

interaction between the CNV and P300 specific

to timing tasks was also reported by Gontier et al.

[61] in a contrast of duration and size

discrimination.

Miniussi et al. [62] asked participants to per-

form a simple reaction time task in which a visual

cue predicted the cue-target interval (SOA)

correctly 80 % of the time (600 or 1,400 ms).

The P300 elicited by the valid visual target had a

shorter peak latency and was more positive for

the 600 ms SOA. The authors suggested that the

provision of temporal information ‘synchronizes

or prepares motor processes, or sharpens decision

processes’ [62, p. 1516]. The P300 in this study

had a parietal distribution, resembling the P3b.

Synchronization of behavior, cognitive

processes, and/or neural activity is the thesis of

the Dynamic Attending Theory (DAT) (see [63]

for a review). DAT states that different

oscillators, whether in the brain or the environ-

ment interact with one another and may result in

entrainment (synchronization). Attention to

stimuli is maximal at the moments of maximal

entrainment, leading to more effective stimulus

processing [64].

Schmidt-Kassow et al. [65] recently tested

this idea by comparing the P3b amplitude and

latency elicited by oddball tones when

participants listened to tone sequences with vary-

ing degrees of temporal predictability. The P3b

amplitude was largest and the latency shortest

when tones were isochronous. The authors

attributed the stronger and faster response to

deviants to an entrainment effect on attention

brought about by the regular temporal structure

of the task.

However, effective use of the P300 to investi-

gate interval timing requires careful consider-

ation of exogenous factors [49]. Specifically,

although a P300 amplitude difference may be

observed by comparing durations that are longer

and shorter than the target duration, the effect

may not reflect timing-specific processes.

Instead, it simply may be due to overlap from

exogenous, negative ERP components when the

durations are long, leading to the commonly

reported effect that the P300 elicited by the offset

of durations longer than the target is less positive

than that elicited by durations shorter than the

target (e.g., [60, 66]). Gibbons and Rammsayer

[66] specifically controlled for this possibility by

including a condition in which participants pas-

sively listened to the same stimuli that were used

in the temporal generalization condition (ranging

from 125 to 275 ms). Two late positive

potentials, a parietal P300 and a frontal P500,

were elicited only when duration estimation

was required. The P300 decreased in amplitude

as duration increased, whereas the P500 was

larger when the durations were non-targets. Fur-

thermore, these components were not modulated

by variation in tone pitch. The authors proposed a

two-stage model for processing brief durations.

The duration-modulated, parietal P300 was
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interpreted as a memory-based P3b time-locked

to stimulus onset, which indicates an immediate

temporal processing of the stimulus that can only

be completed when the stimulus is shorter than

the target. The duration-insensitive, fronto-

central P500 component was interpreted as a

novelty P3a timelocked to the expected duration

offset at the target duration (200 ms) that

indicates a violation of expectation.

The P300 also has been related to perfor-

mance in temporal tasks. Gibbons and Stahl

[67] asked participants to reproduce a 2-s empty

auditory target duration as accurately as possible.

Timing performance was evaluated by median

split of the sample based on either mean repro-

duction accuracy (absolute error) or variation of

reproduction (coefficient of variation, CV). The

amplitude of the marker offset P300 at Cz was

more positive in the group with less variable

reproductions (smaller CV). There was also a

negative correlation between the offset P300

amplitude and the CV. A similar, but weaker,

relationship obtained between the marker onset

P300 and the CV. Consistent with their two-stage

model of temporal generalization (cf. [66]), the

authors proposed that the offset P300 during the

target presentation indicated a comparison

between the presented target and the internal

representation of the target. Thus, participants

did not passively attend to the presented target,

but actively revised their internal representation

when necessary. Better performers engaged in

these processes more efficiently, forming more

accurate expectations about the time of offset of

the target duration, which resulted in larger offset

P300 amplitudes.

Using temporal discrimination with a delayed

response (1 s after the offset of the probe dura-

tion), Rebaı̈ and colleagues [61, 68–71] observed

a prefrontal P300-like component after the offset

of the probe duration, which they termed a late

positive component of timing (LPCt). Paul et al.

[70] asked participants to discriminate the visual

durations in one of the three possible pairs (100/

200 ms, 300/600 ms, and 1,000/2,000 ms),

presented either in the order short-long or long-

short. For short-long trials, an increased positive

amplitude LPCt coincided with increased S2

duration, higher discrimination accuracy, and

shorter RTs. In a subsequent study, Paul et al.

[71] manipulated the difficulty of a visual tem-

poral generalization task (600 ms standard) by

adjusting the linear spacing between probe

durations (difficult: 75 ms; easy: 150 ms). Task

difficulty is believed to modulate decision

thresholds in temporal generalization [72] and

here the difficult version yielded fewer “same

duration” responses than the easy version. The

LPCt amplitude was significantly more positive

for the Difficult condition than the Easy condi-

tion. The authors posited that the LPCt reflects

temporal decision-making processes. Moreover,

they also noted the importance of investigating

both negative and positive ERP components

together in order to fully reveal the temporal

network [48, 59]. For example, the decision

threshold and/or response uncertainty, as

reflected by P300 and LPCt, may be a function

of the efficiency of attentional ‘mobilization’

during the monitoring of the to-be-timed interval,

as reflected by the CNV.

To summarize, the P300 has been associated

with attention, memory, and the evaluation of

stimulus probability and expectancy of occur-

rence [52, 55]; processes that have direct impact

on decision making [51, 59, 70]. Changes in

amplitude and latency have allowed researchers

to infer the brain’s sensitivity to temporal regu-

larity among stimuli [65] and how temporal

information is tracked and updated when the

time judgment has to be made in a discrete fash-

ion [66]. The latter is consistent with the

increased emphasis on the influence of contex-

tual temporal information on temporal judgments

through Bayesian principles [73–75].

Contingent Negative Variation (CNV)

Walter et al. [76] first identified the CNV as an

electrophysiological marker of expectancy. In

this classic study, an initial stimulus (S1) served

as a cue for presentation of a second stimulus

(S2) that appeared 1 s later. In some conditions

the S2 served as an imperative stimulus

indicating a response requirement (i.e., a button
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press) and in others it did not. A slow negative

potential with a fronto-central topographical dis-

tribution (i.e., the CNV) appeared during the

S1–S2 period, but only when the S2 served as

an imperative stimulus or participants were asked

to estimate a 2 s duration before the button press.

Typically, the CNV displays a gradual increase

or ramp in negativity until it reaches a plateau

and then resolves back to baseline or a positive

potential value, as illustrated in Fig. 6. In some

cases, the plateau is sustained for several hundred

milliseconds (e.g., [77, 78]). Over the years, the

CNV has been associated with a variety of phys-

iological and cognitive functions such as arousal,

motivation, attention, and anticipatory prepara-

tion [78–83].

The stimuli used to elicit a CNV may consist

of a cue and an imperative stimulus [4, 62, 76],

onset-offset of a continuous signal [77, 84, 85],

onset-offset markers that demarcate an ‘empty’

duration [86], coincidental timing from stimulus

onset to time to contact [87], a delay period

between an imperative stimulus and performance

feedback [88, 89], or an oddball design in which

one duration is designated as the standard and

one or more other durations as the deviants [90].

The CNV can also be seen in paradigms that

employ isochronous stimulus sequences. For

instance, Pfeuty et al. [91] analyzed the CNV

elicited when participants had to discriminate

two auditory sequences of three to six tones

based on tempo. Praamstra et al. [92] studied

the sensorimotor CNV with an implicit timing

task in which participants had to make manual

responses to isochronous visual cues.

The CNV has at least two subcomponents.

The initial CNV (iCNV) is elicited within about

1 s of S1 onset and sometimes peaks within 1 s. It

is modulated by the perceptual properties of the

S1 stimulus [57, 85, 93–95], S1–S2 duration

Fig. 6 Top Right: The CNV is reliably evoked in S1–S2

paradigms. S1 and S2 can be individual stimuli or the onset

and offset of a continuous tone (i.e., a filled interval). The

ERP is usually time-locked to the onset of S1. Left: The
CNV recorded at the FCz electrode when participants

completed an auditory duration bisection task in which

they had to judge whether the probe duration was more

similar to the short (800 ms) or long (3,200 ms) anchor

duration. The results imply that participants treated the

geometric mean (1,600 ms) as the criterion duration (see

text). The CNV amplitude often ramps steadily after the

early perceptual ERP components such as N100 and P200.

Depending on task details, the CNV may reach maximal

negativity and remain sustained at that voltage value for

several hundred milliseconds. Bottom: Current source den-
sity (CSD) of the CNV shows that the CNV is a long-

lasting negativity over fronto-central electrode sites. CSD

reduces volume-conducted signals and is thus more sensi-

tive to superficial neural sources in the proximity of the

electrode. Consequently, the topographical distribution

suggests the medial frontal cortices as potential

contributors to the CNV. Redrawn from Ng et al. [77]
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probability [96–98], and task-specific anticipa-

tion [79, 99]. It may reflect the orientation to

S1, which prepares the participant for subsequent

reaction (the ‘O’ wave; e.g., [100, 101]). The

second subcomponent, the termination CNV

(tCNV), overlaps with the iCNV when the

S1–S2 interval is short, usually appears 1 or 2 s

before S2, and increases in negativity as the S2

onset approaches. It is modulated by stimulus

anticipation [102, 103], task load [79], and

motor preparation [104–106], but is distinct

from the readiness potential (the ‘E’ wave;

e.g.,) [102, 107, 108]. If the S1–S2 duration is

long enough (>4 s), the two subcomponents

appear as a bimodal, long-lasting CNV [109,

110]. Finally, based on a comparison of the

CNVs generated in a simple reaction time task,

a 4-s foreperiod task, a 4-s temporal production

task, and the encoding phase of a 4-s temporal

reproduction task Macar and colleagues [35,

111] argued for the existence of a third CNV

component that reflects the temporal and proba-

bilistic linkage between S1 and S2.

In general, a CNV is consistently observed

only when the participant pays attention to a

stimulus and/or the stimulus is task-relevant.

For example, Campbell et al. [84] asked

participants to respond to a 20 ms gap that

appeared early (300 ms) or late (1,300 ms) in an

otherwise continuous 1,400 ms tone when the

tone frequency was 500 Hz, but not when it was

1,500 Hz. A sustained slow negative wave

(SNW) related to the auditory stimulation was

present in all conditions regardless of response

requirements, but the CNV was present and

superimposed on the SNW only when a response

was required. The relationship of the CNV to

anticipation and time perception is bolstered by

findings showing a CNV for duration

comparisons of auditory stimuli, but not pitch

or intensity comparisons [112, 113], and in a

temporal discrimination task, but not in a size

discrimination task in the same test session [61].

Numerous studies have revealed an associa-

tion between the CNV and time perception per-

formance (e.g., [114, 115]). For example,

Ladanyi and Dubrovsky [116] compared perfor-

mance and CNVs of participants making verbal

estimates of 10 or 20 s. Compared to less accu-

rate estimators, the more accurate estimators

showed smaller amplitude CNVs that resolved

faster and had a slower ramping to the maximum

negativity. More recently, Pfeuty et al. [85]

tested temporal discrimination for filled tones

and empty intervals demarcated by two brief

tones. They found that the CNV amplitude was

significantly larger (see also [117]) and perfor-

mance (accuracy) significantly worse when the

intervals were filled (69 % correct) as compared

to empty (77 % correct). A recent experiment by

Wiener et al. [118] demonstrated a relationship

between the processes contributing to the CNV

amplitude and time perception using repetitive

transcranial magnetic stimulation (rTMS), which

perturbs neural activity by non-invasive applica-

tion of strong external magnetic fields.

Participants performed temporal discrimination

with and without rTMS applied to the right supe-

rior marginal gyrus (SMG). The difference in the

mean CNV amplitude (270–470 ms) between

rTMS and non-rTMS trials and the difference in

an index derived from the proportion of ‘longer

than standard’ responses in rTMS and non-rTMS

trials were computed and a positive correlation

was found between the two measures.

Furthermore, the putative neural sources of

the CNV are implicated in interval timing, as

shown by the agreement between electrophysio-

logical source localization and functional neuro-

imaging data. Surface Laplacian [119, 120]

EEG/MEG (a magnetic counterpart of EEG)

source localizations [121–123], and intracranial

EEG recordings (e.g., [124, 125]) show that the

supplementary motor area (SMA) and the pre-

SMA, together with the right dorsal lateral pre-

frontal cortex (DLPFC) and posterior cortices,

are among the major neural generators of the

sensorimotor CNV. fMRI analyses also consis-

tently identify the involvement of the SMA in

sub- and supra-second timing (see [5, 126–131]

for reviews).

The CNV frequently has been interpreted

within the framework of the pacemaker-

accumulator model of Scalar Timing Theory

(STT; [44]). According to this model, the number

of pulses stored in an accumulator represents the

198 K.K. Ng and T.B. Penney



duration of the event of interest. Comparison of

this pulse count with representations of relevant

durations held in long-term memory forms the

basis of the decision process [72]. Although the

debate about the existence and putative neural

mechanisms of the ‘internal clock’ is ongoing

[132–135], the idea that neurons or groups of

neurons acting as signal accumulators give rise

to cognition is common. For example, it has been

used to explain and predict performance in per-

ceptual decision-making (e.g., [136, 137]),

response competition and inhibition (e.g.,

[138]), as well as numerical cognition (e.g.,

[139–141]).

Assuming there is a linear relationship

between real time and perceived time [142,

143], the STT pacemaker-accumulator model

asserts that neural activation increases over

time, longer intervals are represented by more

total clock pulses, and thus higher final neural

activation. In line with this rationale, early

investigations of the neural mechanisms underly-

ing the CNV suggested that it resulted from the

summation of excitatory post-synaptic potentials

(EPSP) at the apical dendrites in deeper cortical

layers, an indication of cortical excitability [79,

144]. Furthermore, the ramping negative poten-

tial of the CNV resembles an accumulation pro-

cess resulting from spreading activation or signal

integration of neurons in medial frontal brain

areas [35, 120, 135, 145–150].

CNV Amplitude

The hypothesis that the CNV amplitude reflects

neural accumulator function during duration esti-

mation has received some empirical support.

Macar et al. [120] showed a relationship between

the CNV amplitude, as determined from a sur-

face Laplacian computation, and the subjective/

perceived duration of a 2,500 ms target interval

in a temporal reproduction task. The authors

assigned the reproduction trials to one of three

categories based on accuracy (2,600–2,800 ms;

2,400–2,600 ms; 2,200–2,400 ms) and then

generated response locked CNVs for each cate-

gory by participant. Comparison of the grand

average waveforms of the three groups of trials

indicated that the CNV amplitude decreased (i.e.,

became less negative) as the produced intervals

decreased, even though the participants were

attempting to reproduce the same 2,500 ms target

duration in all cases. In a subsequent experiment,

Macar and Vidal [119] further showed that the

amplitude of the surface Laplacian CNV

reflected a consolidated representation of the

memory (Experiment 2) rather than learning or

updating of the temporal memory of the target

duration (Experiment 1). The importance of

memory consolidation in determining the CNV

was also suggested by Mochizuki et al. [151],

who varied the retention period (3,000 or

9,000 ms) between encoding of a 2,700 or

3,000 ms stimulus and its reproduction. The

CNV during the reproduction phase was larger

for the 9,000 ms retention interval, which the

authors attributed to the stronger need to reacti-

vate the decayed memory of the target duration

when the retention interval was 9,000 ms.

Bendixen et al. [152] replicated and extended

the amplitude effect of Macar et al. [120] using

a temporal discrimination task with much shorter

intervals (500 ms on average). Comparing the

grand averaged onset-locked CNV from trials

that received a ‘short’ response to the CNV

from those classified as ‘long’, they found that

N100 and CNV amplitudes were more negative

when the response was ‘long’, in line with the

pacemaker-accumulator hypothesis.

However, Macar and Vidal [153] failed to

replicate the association between CNV ampli-

tude and perceived duration/temporal perfor-

mance when untrained participants were tested

on a temporal discrimination task using intervals

of about 2 s. More recently, Kononowicz and van

Rijn [81] also failed to find the association in a

replication of the paradigm used by Macar et al.

[120]. Instead, these authors found evidence for a

habituation effect on the CNV amplitude across

the experimental session. Ng et al. [77] also

failed to find evidence relating CNV amplitude

to perceived duration in a duration bisection task

with anchor durations of 800 and 3,200 ms. Inter-

mediate probe duration trials were sorted into

those that received a ‘short’ response and those
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that received a ‘long’ response and onset-locked

CNVs were determined. There was limited sup-

port for a difference in CNV amplitude based on

duration classification and when there was a dif-

ference, it tended to be opposite to the predicted

direction (i.e., larger CNVs for shorter perceived

durations).

Several experiments using temporal discrimi-

nation, or implicit timing tasks with sub- and

supra-second durations with untrained

participants also failed to find a difference in

the CNV amplitude as a function of the interval

duration [92, 109, 148, 154]. To summarize,

although some studies demonstrated a consistent

relationship between CNV amplitude and perfor-

mance in a variety of timing tasks, interpreting

these results as evidence for the pacemaker-

accumulator model of time perception appears

unwarranted given the sum total of available

evidence [82, 155].

CNV Peak Latency and Slope

The initial ramping and subsequent resolution of

the CNV (i.e., return to baseline from the peak

negative potential) has also been claimed to

reflect the memory representation of the target

duration. For the initial ramp, researchers [149,

150, 156, 157] have drawn attention to the resem-

blance between the CNV’s gradual increase in

negativity and the gradual change in the firing

rate of single cells in response to different cue-

target contingencies [158]. This climbing neural

activity hypothesis has been used to account for

the CNV elicited in timing tasks (see [159], sev-

enth chapter of this book, for a discussion of this

hypothesis in motor preparation and cued antici-

pation). Pfeuty et al. [157] proposed that whereas

the unchanging CNV amplitude in some studies

may reflect a fixed criterion of the accumulator to

trigger a decision, duration encoding and differ-

entiation is achieved by adjusting how rapidly

this criterion is reached. Moreover, once the cri-

terion is reached, a decision can be made (e.g.,

‘longer than the target’) without further accumu-

lation of temporal information, which means the

CNV may resolve before stimulus offset. In fact,

several authors [86, 160] noted that a critical

difference between the CNV evoked by percep-

tual or motor preparatory experiments and the

CNV evoked by time perception experiments is

the early resolution of the CNV in the latter case.

For example, using relatively long durations

(e.g., >5 s) in a temporal discrimination task,

Macar and Vitton [86] observed that the CNVs

corresponding to the standard and target

durations resolved before stimulus offset, while

the standard—target delay (3 s) and the delay

between target termination and response (3 s)

elicited typical expectancy CNVs that did not

resolve until the end of the specific interval.

Many researchers claim that the CNV resolution

marks the moment of decision-making in interval

timing [77, 153, 157, 161]. It is purported that a

positive decision-making or motor programming

component may be superimposed on the CNV

[160], consistent with the often cited co-

occurrence of the CNV and late positive

components such as the P300 and Late Positive

Component of time [57, 70, 71, 161, 162].

Quantification of the ramping and resolution

of the CNV is also done by calculating the slope

of the CNV [77, 92, 161, 163, 164]. Macar and

Vidal [153] used both visual and tactile temporal

generalization tasks to show that the CNV

peaked at the memorized target duration

(2,000 ms) rather than at the end of the probe

duration (2,500 or 3,100 ms). Pfeuty et al. [164]

obtained similar results with a S1–S2 duration

comparison task. During S2, the CNV reached its

negative peak at the S1 target duration (700 ms)

at left hemisphere and medial frontal electrode

locations, while at right hemisphere frontal elec-

trode sites the CNV peaked at the end of S2. The

authors suggested that the distinct CNV profiles

at the right and left hemisphere electrodes

reflected distinct memory representations for

the S1 target duration and the elapsing S2 dura-

tion. Furthermore, there was a correlation

between CNV peak latency and the subjective

standard derived from the generalization gradi-

ent. In a subsequent S1–S2 experiment [157], the

authors showed that given the same S2 probe

duration (794 ms), the peak latency of the CNV

corresponded to the S1 target duration (600 vs.
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794 ms), although they failed to obtain an effect

of target duration on CNV amplitude. Finally, in

a bisection task Ng et al. [77] found that the CNV

did not ramp to its maximum at the assumed

criterion, which was the geometric mean of the

short and long anchor durations (1,600 ms), but

did so closer to the duration of the short anchor

(800 ms). The negativity remained at the same

level until the geometric mean and then resolved,

hinting that more temporal information is avail-

able to the participants in the bisection task than

in an S1–S2 temporal task. Similar to the results

of Pfeuty et al. [164], they also found that the

slope of the iCNV was positively correlated with

the participant’s bisection point, which is in line

with an ‘accumulator-with-fixed-criterion’

hypothesis. Using a temporal discrimination

task with durations of 800, 1,000, and 1,200 ms,

Tarantino et al. [161] also reported an early reso-

lution of the CNV close to the target interval.

Praamstra et al. [92] replicated the peak

latency and slope effects [153, 157] in an implicit

motor timing task. In this task, participants

pressed one of two keys depending on whether

an arrow pointed to the left or the right. Each trial

comprised a short sequence of cues, each

presented isochronously (2,000 ms) with the

exception of the final cue. A CNV occurred

between successive cues, but when the final cue

was presented late (2,500 ms), the CNV peaked

at the expected inter-stimulus interval (2,000 ms)

and then began to resolve. Mento et al. [90]

obtained similar results using an oddball task

with empty visual durations. Participants were

instructed to attend to the stimuli, which lasted

1,500 (70 % of the trials; standard), 2,500, or

3,000 ms (15 % each; deviants), but there was

no response requirement. ERPs elicited by the

two deviants showed an orderly decrease in the

CNV amplitude (i.e., peak) at about the standard

interval of 1,500 ms, suggesting that participants

established a representation of the temporal

structure of the task [165].

In contrast to the CNV amplitude results, those

for the CNV peak latency and slope appear to be

reasonably consistent. Indeed, studies that failed

to show a relationship had a focus or experimental

design that did not allow the authors to do similar

analyses (e.g., [117]), or the design of the experi-

ment did not allow participants to consolidate a

temporal criterion [29, 61, 69]. The latter possibil-

ity emphasizes the importance of careful consid-

eration of task requirements when interpreting the

data [166–168]. In sum, the available evidence

suggests a relatively robust relationship between

interval timing and CNV peak latency and slope

[90], while the relationship between CNV ampli-

tude and timing stimulus duration is equivocal at

best [81, 155].

In summary, the CNV is elicited consistently

in timing tasks with intervals spanning hundreds

of milliseconds to several seconds. Its putative

neural generators are active in both ‘automatic’

and ‘cognitively mediated’ time perception

[127]. Similar to the OP, attention to the to-be-

timed stimulus is required for the timing-related

CNV to occur [84] and like the MMN and OP,

the CNV can be elicited in paradigms without

explicit timing instructions [90, 92], and like the

P300, the CNV can be elicited during the timing

of discrete events [91, 164]. The CNV amplitude

and peak latency are influenced by the temporal

information in the task [77, 120]. It is possible

that the CNV reflects a temporal representation

based on neural ramping and integration (pulse

accumulation). This would be consistent with the

pacemaker-accumulator model of STT and the

climbing activity model [35, 149]. The accumu-

lation stops and the CNV resolves when a tem-

poral decision can be made [153, 157]. However,

recent investigations of ERP components that

follow the CNV resolution, such as the potentials

elicited by the offset marker of an empty interval

[155] and the error-related negativity (ERN;

[74]), suggest that these components change

depending on the magnitude of difference

between the target interval and the test interval.

This implies that at least some timing processes

continue after the CNV has resolved. Hence, the

specific relationship between the CNV and

timing processes remains to be determined.

Conclusion

In this chapter, we have provided a brief over-

view of the range of timing and time percep-

tion questions to which scalp-recorded EEG
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methods have been applied. We have seen

EEG/ERPmeasures used as a proxy for behav-

ioral measures in situations where a task

requiring behavioral response was not possible

(e.g., MMN in infants) or instructions about

how to complete a timing task could strongly

bias the results obtained (MMN, OPs). We

have also seen from the CNV literature the

critical importance of seeking corroborating

evidence from multiple paradigms and

methods when interpreting EEG/ERP features

as biomarkers of the specific cognitive pro-

cesses posited by timing models. In sum,

scalp-recorded EEG/ERP has great potential

as an investigative tool for the study of interval

timing, but much remains to be discovered.
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56. Lange K, Rösler F, Röder B. Early processing stages

are modulated when auditory stimuli are presented at

an attended moment in time: an event-related poten-

tial study. Psychophysiology. 2003;40(5):806–17.

57. Kok A. The effect of warning stimulus novelty on

the P300 and components of the contingent negative

variation. Biol Psychol. 1978;6(3):219–33.

58. Le Dantec C, Gontier E, Paul I, Charvin H, Bernard

C, Lalonde R, et al. ERPs associated with visual

duration discriminations in prefrontal and parietal

cortex. Acta Psychol (Amst). 2007;125(1):85–98.

59. Birbaumer N, Elbert T. P3: byproduct of a

byproduct. Behav Brain Sci. 1988;11(3):375–7.

60. Gibbons H, Brandler S, Rammsayer TH.

Dissociating aspects of temporal and frequency

processing: a functional ERP study in humans. Cor-

tex. 2003;39(4–5):947–65.

61. Gontier E, Paul I, Le Dantec C, Pouthas V, Jean-

Marie G, Bernard C, et al. ERPs in anterior and
posterior regions associated with duration and size

discriminations. Neuropsychology. 2009;23

(5):668–78.

62. Miniussi C, Wilding EL, Coull JT, Nobre AC.

Orienting attention in time. Modulation of brain

potentials. Br J Neurol. 1999;122(8):1507–18.

Probing Interval Timing with Scalp-Recorded Electroencephalography (EEG) 203



63. Large EW, Jones MR. The dynamics of attending:

how people track time-varying events. Psychol Rev.

1999;106(1):119–59.

64. Schirmer A, Simpson E, Escoffier N. Listen up!

Processing of intensity change differs for vocal and

nonvocal sounds. Brain Res. 2007;1176:103–12.

65. Schmidt-KassowM, Schubotz RI, Kotz SA. Attention

and entrainment: P3b varies as a function of temporal

predictability. Neuroreport. 2009;20(1):31–6.

66. Gibbons H, Rammsayer TH. Electrophysiological

correlates of temporal generalization: evidence for

a two-process model of time perception. Cogn Brain

Res. 2005;25(1):195–209.

67. Gibbons H, Stahl J. ERP predictors of individual

performance on a prospective temporal reproduction

task. Psychol Res. 2008;72(3):311–20.

68. Gontier E, Le Dantec C, Leleu A, Paul I, Charvin H,

Bernard C, et al. Frontal and parietal ERPs associated

with duration discriminations with or without task

interference. Brain Res. 2007;1170:79–89.

69. Gontier E, Le Dantec C, Paul I, Bernard C, Lalonde

R, Rebaı̈ M. A prefrontal ERP involved in decision

making during visual duration and size discrimina-

tion tasks. Int J Neurosci. 2008;118(1):149–62.

70. Paul I, Le Dantec C, Bernard C, Lalonde R, Rebaı̈ M.

Event-related potentials in the frontal lobe during

performance of a visual duration discrimination

task. J Clin Neurophysiol. 2003;20(5):351–60.

71. Paul I, Wearden J, Bannier D, Gontier E, Le Dantec

C, Rebaı̈ M. Making decisions about time: event-

related potentials and judgements about the equality

of durations. Biol Psychol. 2011;88(1):94–103.

72. Wearden JH. Decision processes in models of

timing. Acta Neurobiol Exp. 2004;64(3):303–17.

73. Ahrens MB, Sahani M. Observers exploit stochastic

models of sensory change to help judge the passage

of time. Curr Biol. 2011;21(3):200–6.

74. Gu B-M, Jurkowski AJ, Malapani C, Lake JI, Meck

WH. Bayesian models of interval timing and the

migration of temporal memories as a function of

Parkinson’s Disease and dopamine-related error

processing. In: Vatakis A, Allman MJ, editors.

Time distortions in mind: temporal processing in

clinical populations. Boston, MA: Brill Academic

Publishers; 2013.

75. Jazayeri M, Shadlen MN. Temporal context calibrates

interval timing. Nat Neurosci. 2010;13(8):1020–6.

76. Walter WG, Cooper R, Aldridge VJ, McCallumWC,

Winter AL. Contingent negative variation: an elec-

tric sign of sensori-motor association and expectancy

in the human brain. Nature. 1964;203(4943):380–4.

77. Ng KK, Tobin S, Penney TB. Temporal accumula-

tion and decision processes in the duration bisection

task revealed by contingent negative variation. Front

Integr Neurosci. 2011;5:77. 10.3389/fnint.2011.

00077. eCollection 2011.

78. Tecce JJ. Contingent negative variation (CNV) and

psychological processes in man. Psychol Bull.

1972;77(2):73–108.

79. Birbaumer N, Elbert T, Canavan AG, Rockstroh B.

Slow potentials of the cerebral cortex and behavior.

Physiol Rev. 1990;70(1):1–41.

80. Casini L, Vidal F. The SMAs: neural substrate of the

temporal accumulator? Front Integr Neurosci.

2011;5:35. 10.3389/fnint.2011.00035. eCollection

2011.

81. Kononowicz TW, van Rijn H. Slow potentials in

time estimation: the role of temporal accumulation

and habituation. Front Integr Neurosci. 2011;5:48.

10.3389/fnint.2011.00048. eCollection 2011.

82. Van Rijn H, Kononowicz TW, Meck WH, Ng KK,

Penney TB. Contingent negative variation and its

relation to time estimation: a theoretical evaluation.

Front Integr Neurosci. 2011;5:91. 10.3389/fnint.

2011.00091. eCollection 2011.

83. McCallum WC. Brain slow potential changes and

motor response in a vigilance situation. In: McCallum

WC, Knott JR, editors. Responsive brain. Bristol:

John Wright and Sons Ltd; 1976. p. 46–50.

84. Campbell K, Herzig A, Jashmidi P. The extent of

active processing of a long-duration stimulus

modulates the scalp-recorded sustained potential.

Brain Cogn. 2009;69(1):170–5.

85. Pfeuty M, Ragot R, Pouthas V. Brain activity during

interval timing depends on sensory structure. Brain

Res. 2008;1204:112–7.

86. Macar F, Vitton N. An early resolution of contingent

negative variation (CNV) in time discrimination.

Electroencephalogr Clin Neurophysiol. 1982;54

(4):426–35.

87. Masaki H, Sommer W, Takasawa N, Yamazaki K.

Neural mechanisms of timing control in a coincident

timing task. Exp Brain Res. 2012;218(2):215–26.

88. Brunia CHM. Slow potentials in anticipatory behav-

ior. J Psychophysiol. 2004;18(2–3):59–60.
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Searching for the Holy Grail:
Temporally Informative Firing Patterns
in the Rat

Matthew S. Matell

Abstract

This chapter reviews our work from the past decade investigating cortical

and striatal firing patterns in rats while they time intervals in the multi-

seconds range. We have found that both cortical and striatal firing rates

contain information that the rat can use to identify how much time has

elapsed both from trial onset and from the onset of an active response

state. I describe findings showing that the striatal neurons that are

modulated by time are also modulated by overt behaviors, suggesting

that time modulates the strength of motor coding in the striatum, rather

than being represented as an abstract quantity in isolation. I also describe

work showing that there are a variety of temporally informative activity

patterns in pre-motor cortex, and argue that the heterogeneity of these

patterns can enhance an organism’s temporal estimate. Finally, I describe

recent behavioral work from my lab in which the simultaneous cueing of

multiple durations leads to a scalar temporal expectation at an intermedi-

ate time, providing strong support for a monotonic representation of time.

Keywords

Premotor cortex � Cingulate cortex � Striatum � Interval timing � Rat �

Behavior � Electrophysiology

Introduction

Timing and time perception in the seconds to

minutes range, interval timing, is of fundamental

importance for survival, being implicated as a

necessary process for foraging [1, 2] and associa-

tive conditioning [3, 4], and it serves as the

contextual framework through which behavior

can efficiently map onto the external world.

Despite the importance of this capacity, our

understanding of the neural mechanisms through

which temporal perception and control are

achieved remains minimal. As such, the “Holy

Grail” of the field is to identify the neural

structures, activity patterns, and computational

processes that serve as the “internal clock”.

While this task will necessarily be achieved by
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triangulating across a range of methodologies,

such as pharmacological manipulations [5–7],

anatomic lesion studies [8–11], functional brain

imaging [12–15], and genetic analyses [16, 17],

electrophysiological recordings in behaving

animals are likely to be of foremost importance

due to their capacity to provide exquisite tempo-

ral and spatial resolution of neural activity.

Recording single neuron activity in behaving

non-human primates and relating this activity to

cognitive processes has been occurring for nearly

half a century [18, 19]. In the vast majority of

work carried out since then, the subjects are

trained over the course of several months to

remain motionless during a behavioral task in

which a specific cognitive operation is being

investigated. This approach developed due to

concerns that overt behavioral changes could be

used as a mediating “placeholder” for the cogni-

tive operation under investigation. For example,

in the frequently used delayed matching to sam-

ple task, a subject is briefly presented with a

stimulus (e.g., a red cue light) and then after a

short stimulus-free delay is asked to choose the

corresponding stimulus when presented along

with an alternative (i.e., choose the red, rather

than green, cue light). As the delay lengthens, the

task requires working memory (as opposed to

iconic memory), and alternate strategies might

be utilized by the subject to improve perfor-

mance. One such strategy would be a differential

behavioral response in which the subject engages

in a specific behavior during the delay (e.g.,

squeezing its hand following a red cue light),

and then evaluates its behavioral state, rather

than its working memory store, at test. Since

such a strategy eliminates the working memory

demands, thereby preventing the study from

achieving its goals, these overt behaviors are

eliminated during training by having the subject

remain motionless, and requiring the subject to

specify its decision with a highly stereotyped

behavioral response (e.g., looking left or right)

that can be recorded using electromyography

(EMG) or electrooculography (EOG), to verify

that the behavior is not being covertly executed.

While it is important to keep in mind that other

covert behaviors that are not being recorded

could potentially be functioning in a similar

vein, in general, these techniques have provided

considerable evidence about the neural mechani-

sms underlying a number of cognitive processes

(e.g., that neurons in prefrontal cortex are

activated in a stimulus-specific manner during

the delay, thereby suggesting an important role

in working memory [20–22]).

Not surprisingly, this restricted behavior strat-

egy has also been extensively used in the non-

human primate studies investigating the electro-

physiological activity patterns underlying inter-

val timing [23–31]. While these studies have

revealed a number of important findings, ethical

and monetary considerations somewhat prohibit

us from carrying out other important studies on

non-human primates. For example, although

showing that a certain neural structure has firing

patterns that are consistent with it serving as an

internal clock process is important, removing the

structure to assess its necessity in timing is a

critical next step. Furthermore, it would be

quite useful to be able to evaluate how these

neural firing patterns, and the corresponding tem-

poral control of behavior, change in response to

lesions of the region’s input structures. Such

studies can be more feasibly done in rodents. In

addition, the vast majority of studies on interval

timing behavior conducted over the last three

decades have been done in rats and pigeons,

and identifying the neural underpinnings of

timing behavior in these species provides a nec-

essary direct link to such work.

Neurophysiology of Timing in the Rat

For these reasons, a number of years ago, we

began conducting ensemble electrophysiological

studies on rats trained to respond in a temporally

controlled manner for food reinforcement. In the

spirit of this book serving as an educational

resource, I will briefly reflect on my observations

and thoughts from my initial forays into the elec-

trophysiology of time in rats. While it may go

without saying, the most important element in

task design is to consider appropriate experimen-

tal control. Simply recording neural activity
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while a rat engages in a temporal production task

(e.g., the peak-interval procedure—[32]), does

not provide sufficient leverage for identifying

the mechanisms contributing to temporal percep-

tion. Obtaining peak-shaped neural activity may

be evidence of an internal temporal representa-

tion that functions in a non-linear manner, com-

puting similarity to previously reinforced neural

“clock” states, or it may be that one is recording

from an effector process, such as that used for

generating the motor output to make the behav-

ioral responses. As described above, the neces-

sary approach is to shape the subject’s behavior

so that it differs from the obtained neural activity

pattern. In this way, the neural pattern can poten-

tially be interpreted as reflecting a central, cogni-

tive operation, rather than the reflection of an

input or output signal. In the non-human primate

studies described above, by keeping the subject

motionless, the dynamic evolution of neural

activity cannot be directly related to behavior,

which is essentially stationary.

Following a similar strategy, we initially

thought that a temporal perception task, such as

the duration discrimination task [33], would

serve this function. In a duration discrimination

task, the subject is exposed to a stimulus (e.g., a

tone) for one of two different durations, after

which it classifies the length of the duration by

making a choice response. In contrast to a tem-

poral production task in which the animal

responds at times when it anticipates that food

reinforcement is available, there is no need to

respond during the to-be-timed interval. Instead,

it can conserve energy by simply perceiving the

duration of the stimulus, and then making a deci-

sion regarding stimulus length once the stimulus

has terminated. However, a paper was published

at roughly the time at which we were considering

experimental designs that demonstrated that rats

would utilize a behavioral strategy to facilitate

their temporal decisions, such that they would

position themselves in front of the “short”

response lever early in the trial, and then switch

to being in front of the “long” response lever in a

probabilistic manner as a function of elapsed

time [34]. This behavioral sequencing strategy

is in some ways similar to humans counting

seconds to enhance their temporal precision [35,

36], in that the rats are using a mediating spatial

sequencing strategy. We decided to make it more

difficult for the rats to utilize this strategy by

requiring them to hold down a central lever dur-

ing the to-be-perceived interval, thereby

preventing this sequential behavior approach.

Remarkably, the rats simply suppressed their

locomotor behavior without eliminating it

completely. Specifically, they held down the cen-

tral lever with their forelimbs, while probabilisti-

cally directing their rump toward the appropriate

lever as a function of time. While we considered

incorporating further behavioral restrictions to

prevent such behavior, I began to believe that

we ran a strong risk of simply blinding ourselves

to the rat’s behavioral strategies, rather than

eliminating them. Indeed, a topic of discussion

in the lab at this time was whether all electro-

physiological studies suffer from the so-called

“sphincter problem” (i.e., whether an internal

behavior exists that co-varies with the cognitive

event being studied and is the source of the

neural activity, but as we are unable to see this

internal behavior, we conclude that it doesn’t

exist).

As a result, I decided it would be more profit-

able to allow our subjects to engage in whatever

behaviors they wished to mediate time, and to

record these freely emitted behaviors as they

emerged in time. In this way, we would be able

to identify periods of time in which the subject’s

behavior was stationary (e.g., a continuous bout

of operant responding), thereby allowing us to

examine the dynamics of neural activity that

occurred during these behavioral states. These

neural dynamics could then be interpreted in the

same way that one would interpret neural activity

obtained while the subject was in a motionless

state. Moreover, this approach has several

advantages in comparison to a motionless record-

ing strategy. First, it dramatically minimizes the

problem of covert behaviors contributing to the

neural activity profiles because we are not train-

ing our subjects to suppress overt behaviors,

thereby potentially facilitating the adoption of

covert behavioral strategies. Second, the training

time required to teach subjects to remain
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motionless is eliminated. Third and most impor-

tantly, we are allowing the subjects to generate

temporally controlled behavior in an uncon-

strained manner, which provides the best approx-

imation to the cognitive and behavioral strategies

used in the real world.

Specifically, we adopted a matched behavior

strategy [37] in which the same overt motor

behaviors are elicited under different cognitive

or motivational states, here different temporal

expectations. In this manner, the neural activity

associated with the operant behaviors can be

“subtracted out”, and firing rate differences can

be associated with the different temporal

expectations. Specifically, we utilized a multiple

duration peak-interval procedure. A peak-

interval procedure is a variant of a discrete trials,

fixed-interval schedule in which a to-be-timed

stimulus commences and the first operant

response (e.g., a lever press) after the criterion

duration has elapsed (e.g., 10 s) provides rein-

forcement and terminates the signal. Responses

made prior to the criterion duration have no

programmed consequence. In the peak proce-

dure, a proportion of trials are non-reinforced

probe trials in which the signal stays on for

three to four times the criterion duration, before

it terminates in a response-independent manner.

The average response rate as a function of signal

duration on these probe trials (the peak response

function) rises gradually from a low operant rate

at trial onset to a peak around the criterion time,

and then returns in a nearly symmetrical manner

to the baseline rate following the criterion dura-

tion. The time of maximal responding, the peak

time, is used as a measure of the subject’s tem-

poral expectation of reinforcement, and the

spread of responding is used as a measure of

the subject’s temporal precision. The response

rate at the peak time, the peak rate, is used as a

measure of motivation. When tested with multi-

ple durations with equal payoff likelihoods, it is

commonly found that the peak rate for a short

duration (e.g., 10 s) is greater than the peak rate

for a longer duration (e.g., 40 s), potentially

reflecting a greater value of obtaining reward

with a shorter delay [38]. A hallmark of interval

timing behavior is that it obeys the scalar

property, or Weber’s Law applied to temporal

control [39–41]. It is seen behaviorally in that

the breadth of the peak function is proportional to

the peak time. In other words, the peak spread

when timing 10 s is four times smaller than the

peak spread when timing 40 s. The scalar prop-

erty is often graphically depicted by normalizing

the peak functions as a function of peak rate and

peak time, so that the resulting functions are

plotted as a proportion of maximal rate on the

ordinate, and a proportion of peak time on the

abscissa. When this is done, the peak functions

for different durations overlap, or superimpose,

suggesting that the subject’s decision to respond

is based on a proportional similarity to the crite-

rion duration, and is simply scaled for different

durations.

At first glance, the differences in peak spread

and peak rate for different durations appear to

hinder the use of a matched behavior strategy, as

the behavior is not identical across the different

durations. However, these differences in behav-

ior are an artifact of averaging across multiple

trials, and this concern is mitigated when the

subject’s behavior is examined on the level of

individual trials. Specifically, the behavior on

single trials is well characterized by a sequence

of three response rate states, a low-rate state in

which the subject is not actively engaged in

operant responding, a high-rate state in which

the subject responds repeatedly on the operant

manipulandum at a high rate, and then another

low-rate state. While the low-rate states may be

composed of a variety of behaviors (e.g., sitting

quietly, grooming, general locomotor activity,

checking the food magazine, occasional operant

behavior, etc.), the high-rate state is composed of

continuous operant behavior, emitted at a near

constant rate. Importantly, the rate of responding

during this high rate state does not tend to differ

across durations. Rather, the differences in peak

rate and peak spread seen in the mean functions

are a result of increased variability in the start

and stop times associated with the high rate state.

I should note here that the claim that the high rate

state is identical across all durations needs to be

examined more closely in the future, perhaps

utilizing the change point detection algorithm
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recently developed by Gallistel and colleagues

[42, 43], as we have seen that the high rate state

for long durations is sometimes composed of

periods of high rate responding interspersed

with brief visits to the food magazine, whereas

these excursions are less common when

responding for short durations (see also [44]).

At any event, by selecting periods of time in

which the operant behavior is emitted at equiva-

lent high rates, the neural activity during these

periods can be directly compared, and

differences in neural activity can be ascribed to

differences related to temporal expectancy or

directly related variables such as value.

Over the past decade we have published sev-

eral papers using this approach, and I will review

our findings in this chapter. Matell et al. [45]

trained rats on a two-duration fixed-interval pro-

cedure to lever press for possible food reinforce-

ment at 10 s and 40 s from signal onset (see

Fig. 1, Panel A). Briefly, onset of a tone signaled

that the trial had begun. On some trials, the first

response after 10 s was reinforced and the trial

was terminated. On other trials, the first response

after 40 s was reinforced, and the trial

terminated. Subjects did not know which dura-

tion would pay off on each trial, and therefore

began responding around 10 s, and if this didn’t

pay off, they paused responding, and then

initiated responding again around 40 s. Because

of the probabilistic nature of reinforcement for

the 10 s duration (25 %), but 100 % reinforce-

ment at 40 s (if the trial wasn’t reinforced and

terminated at 10 s), response rates peaked at

similar levels at 10 s and 40 s. A hallway and

barrier were constructed around the response

lever, so that the rats could only respond using

their right forepaw, with their body directed

away from the front wall, to more adequately

match the behavioral state across durations. Sin-

gle unit firing rates were recorded from the ante-

rior dorsal striatum and the anterior cingulate

cortex while the rats engaged in this task. The

majority of the neurons in both areas showed

firing rate fluctuations that peaked (or dipped)

at the times of lever pressing activity, suggesting

either a direct relationship with the motor activ-

ity of lever pressing which peaked at the criterion

times, or with the associated expectation of rein-

forcement that motivated the lever pressing.

More importantly, a modest proportion (~25 %)

of these neurons had different firing rates during

a response window just prior to the 10 s criterion

compared to an equally wide response window

just prior to the 40 s criterion (see Fig. 2). Close

investigation of these response windows revealed

that they were composed of a mix of behaviors,

including lever pressing, food cup checking, and

moving between these locations. As such, we

restricted our analysis to the periods of time

within these windows during which the rats

were actively poking (i.e., a high response rate

state), and we used the lever press topography (e.

g., the press duration) as a covariate in our anal-

ysis. This analysis revealed that 22 % of the

striatal neurons and 15 % of the anterior cingu-

late neurons had different firing rates during

equivalent behavioral segments that occurred at

different times. We interpreted these differential

rates at the two intervals as indicating that these

cells are sensitive to elapsed time.

These results are consistent with the

postulates of the Striatal Beat Frequency Model

[46, 47] that striatal neurons are integrating time-

varying cortical activity patterns to generate a

temporal expectation. Specifically, the Striatal

Beat Frequency model proposed that a broad

array of cortical neurons have sub-threshold

oscillations in their membrane potentials, with

different neurons having different underlying

periodicities. These sub-threshold oscillations

would result in a pattern of spiking that carries

this oscillatory signature (i.e., a Fourier analysis

would reveal maximal power at the neuron’s

oscillation frequency). The model proposes that

the onset of a biologically relevant signal would

synchronize the oscillatory phase of these

neurons, but because of their different intrinsic

periodicities, their firing should rapidly

desynchronize. As a result, the dynamic pattern

of activity across the cortex will evolve and

could represent the amount of time elapsed

from the synchronizing event. As individual

striatal neurons receive input from 10,000 to

30,000 different cortical neurons [48], they are

in a unique position to detect a specific
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Fig. 1 Graphical representation of the timing tasks

discussed in this chapter, as well as the typical single

trial behavioral pattern. Panel A. In this two duration

fixed-interval procedure, a tone commences signaling

the start of a trial. On “short” trials (top), the first lever

press after 10 s earns reinforcement and terminates the
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constellation of cortical activity [49]. We pro-

posed that dopamine-mediated long-term poten-

tiation would strengthen the synaptic weights of

those neurons that were firing around the time of

reinforcement, whereas long-term depression

would dampen synaptic inputs that were uncor-

related with reward. As such, individual striatal

neurons would be stimulated in proportion to the

degree to which the current cortical activity pat-

tern matched the pattern associated with previous

reinforcement. When the amount of stimulation

surpassed a threshold, the striatal neuron would

fire, indicating that “time is up”. In this way, the

dynamic evolution of cortical activity reflects the

clock stage of an information processing account

of timing, the cortico-striatal synaptic weights

reflect the memory stage, and striatal activity

reflects the decision stage. Intriguingly, the dif-

ference in firing rate across the two trained

durations was consistently larger in the striatal

neurons than the cortical neurons. This finding is

consistent with the fact that striatal output

through the basal ganglia feeds back to the cortex

and merges with on-going cortical activity,

which should cause the firing pattern of the cor-

tical neurons to reflect a dampened version of the

striatal decision stage output. On the other hand,

we did not see any oscillatory activity in the

cortical activity, which is inconsistent with the

proposed clock process of the striatal beat

frequency model. Furthermore, the model did

not simulate the effects of feedback, so it remains

unclear whether the model’s ability to generate

temporal expectancy would be helped or hin-

dered by such striatal-thalamo-cortical feedback.

Nevertheless, while the first issue is a bit of a

thorn in the side of the model, the basic tenets of

dynamic cortical activity being filtered by a syn-

aptically based memory and read out by striatal

neurons remain consistent with the data.

Motor Timing or Abstract Timing?

While the results of the study described above

provided clear information that elapsed time

modulates striatal activity, the results were

ambiguous in regards to what aspect of temporal

information was being represented. Take for

example the neuron depicted in Fig. 2, which

was representative of the majority of temporally

informative firing patterns. There is a prominent

peak at 10 s, and a secondary, smaller, rise to

40 s. One possible coding scheme that is consis-

tent with this pattern is what we can call “abstract

temporal coding”. In this scheme, times of high

spike activity correspond to times at which the

rat expects food to be available, irrespective of

the motor actions concurrently emitted by the rat.

The difference in maximal firing rate at the two

�

Fig. 1 (continued) signal. On “long” trials (bottom), the
first lever press after 40 s earns reinforcement and

terminates the signal. There is no programmed conse-

quence of responding prior to the criterion duration, and

no signal is provided regarding which duration will be

reinforced. As a result, the rats tend to respond around

10 s, and if no reinforcement is received, pause for some

time and then respond again around 40 s. Panel B. In this

concurrent variable-interval/fixed-interval procedure, a

tone commences signaling the start of the trial. On

variable-interval trials (top), reinforcement is delivered

with a low probability (e.g., 1 %) for each moment that

the rat’s snout is in the left nosepoke. On fixed-interval

trials (middle), reinforcement is delivered for the first

response on the center nosepoke after 15 s have elapsed

since trial onset. On probe trials (bottom), no reinforce-

ment is provided and the signal stays on for at least 40 s.

As no signal is provided to indicate trial type, the rat

begins responding on the left, variable-interval, nosepoke,

switches to responding on the center, fixed-interval,

nosepoke as time approaches 15 s, and then switches

back to responding on the left nosepoke after 15 s has

passed. Panel C. In this two-modality, two-duration peak-

interval procedure, a signal commences signaling trial

onset. On 10 s fixed-interval trials, a tone commences,

and the first center nosepoke response after 10 s is

reinforced and the signal is terminated. On 20 s fixed-

interval trials, a light commences, and the first center

nosepoke response after 20 s is reinforced and the signal

is terminated. A proportion of trials are probe trials in

which either the tone or light commences and stays on for

three to four times the associated fixed-interval duration,

but no reinforcement is delivered and the stimulus

terminates in a response-independent manner. Rats

respond on these trials around the time that reinforcement

is normally delivered. In addition, compound probe trials

were presented in which the tone and light were simulta-

neously presented. On these trials, rats responded maxi-

mally at a time in-between the two fixed-interval

durations
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Fig. 2 Peristimulus time raster and histogram displaying

the activity pattern of a representative striatal neuron

showing differential activity at two times associated

with possible reinforcement (10 s and 40 s), thereby

indicating the striatum’s sensitivity to a specific temporal

interval. The average firing rate of a striatal neuron is

shown as a grey histogram, while the subject’s lever

pressing is shown as a black line. Importantly, the lever

pressing rate was equivalent at these two times of reward,

thereby ruling out a simple motor coding role of the firing

rate differences in the striatal neuron. This figure from

Matell, M.S. Meck, W.H., & Nicolelis, M.A., Interval

timing and the encoding of signal duration by ensembles

of cortical and striatal neurons. Behavioral Neuroscience,
117(4), 760-773, 2003, APA, adapted with permission
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criterion times might reflect that the neuron is

specifically tuned to the 10 s duration, or it could

reflect the increased precision of representing

10 s compared to 40 s (i.e., scalar timing), with

both times being fully represented by the neuron.

In this coding scheme, the temporal information

contained in striatal firing rates would be passed

to downstream structures that control motor

behavior, thereby allowing temporally appropri-

ate responding. This coding scheme can be

contrasted with “temporal motor coding” in

which the firing rate of the neuron partially

reflects the motor behaviors being emitted. In

this case, the firing fluctuations are a result of

behavioral fluctuations (rather than the cause),

and the neuron firing more at 10 s than 40 s

would be due to a temporally informative signal

generated either intrinsically or extrinsically

(i.e., from another brain structure) and enhancing

or diminishing the strength of the motor-related

firing. To make this distinction clear, imagine

that we were able to disrupt the rat’s motor

behavior, such that responding was occurring in

a random manner across time, as shown in a

graphical manner in Fig. 3. In the “abstract tem-

poral coding” scheme, the striatal neuron’s firing

rate would nevertheless continue to peak at the

criterion time. In contrast, in the “temporal motor

coding” scheme, the firing rate co-varies directly

with the response pattern, while a temporally-

specific signal (shown in black) modulates the

strength of the response-related activity.

To investigate this issue, we wanted to con-

duct another experiment in which the rats would

respond without a corresponding temporal

expectation (e.g., comparing responding on a

fixed-interval schedule with responding under a

fixed-ratio schedule). However, this brings up

a point of possible contention, namely whether

a behavior can be executed without a

corresponding temporal expectation. In other

words, it seems possible that an organism might

always know something about the average time

until reward, even if elapsed time is not the

contingent factor, as in a fixed-ratio schedule. If

this is the case, then comparing across so-called

timing versus non-timing conditions would be

meaningless, as there are no non-timing

Fig. 3 Graphical representation of two different

mechanisms for temporal coding. The red lines in the

figures show the firing pattern of a temporally sensitive

striatal neuron, while the blue crosses indicate the con-

current behavior. In contrast to Fig. 2, in which the

behavior showed temporal control, thereby preventing a

dissociation between motor and abstract timing, we have

intentionally disrupted the behavior in this example so

that it does not show temporal control. An “abstract

temporal code” is shown in which the neuron’s firing

rate peaks around the expected time of reinforcement.

The behavior in this coding scheme is generated down-

stream from the striatum, such that although there is

temporally informative activity in the striatal neuron, the

behavior does not necessarily reflect this activity. (right)
In contrast, the firing pattern displayed on the top right
represents temporal motor coding. In this case, the

neuron’s activity is driven by the behavior, but temporal

information (represented here as the black dotted line)
modulates the firing rate. Thus in this scheme, the behav-

ior and time are represented in an integrated manner

within the striatal neuron
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conditions. Indeed, a recent theory of learning by

Gallistel and Gibbon [3] proposed that all asso-

ciative learning is based upon establishing the

temporal relationships between events. There-

fore, we opted to compare responding for a tem-

porally predictable reward to responding for a

temporally unpredictable (or at least much less

predictable) reward. Specifically, we trained and

tested rats on a discrete trials, probabilistic, con-

current variable-interval, fixed-interval rein-

forcement schedule (see Fig. 1, Panel B). In this

procedure, all trials began with the onset of a

tone. On some proportion of the trials (33 %),

responding at one nosepoke aperture (e.g., one on

the left) would be reinforced on a 15 s variable-

interval schedule, meaning that reinforcement

was “primed” at a constant low probability at

each moment the rat had its snout in the nosepoke

aperture. The probability was set so that a rat

who simply held its nose in the left aperture

would earn reinforcement on average after 15 s,

but the precise time at which reinforcement was

delivered varied randomly across trials. Upon

reinforcement, the trial ended. On other trials

(33 %), responding on the center nosepoke was

reinforced on a 15 s fixed-interval schedule, such

that the first center response at or after 15 s would

be reinforced, and the trial would terminate.

Additionally, in order to facilitate stable

responding, if the rat was holding its snout in

the center nosepoke aperture at the moment

15 s elapsed, reinforcement was delivered (see

[50]). Finally, 33 % of the trials were non-

reinforced probe trials which lasted at least 40 s

and terminated independently of responding

[51]. No signal was provided to the rat to indicate

what type of trial was in effect. Finally, alumi-

num hallways were constructed around the

nosepoke apertures to prevent rapid switching

between nosepokes and to minimize any postural

differences across nosepokes or elapsed time.

Our goal here was to have the rats responding

on the fixed-interval nosepoke around 15 s, but

responding at the temporally unpredictable

variable-interval nosepoke at all other times. In

this manner, motor behavior (i.e., nosepoking)

would be emitted at a relatively constant rate

across the entire trial, except for the times at

which the rat switched from one nosepoke to

the other. Figure 4 (top) shows the rat’s likeli-

hood of occupying the nosepoke, and the pattern

of behavior on a representative single trial

(Fig. 4, bottom). As can be seen, the rat was

either responding on the VI or FI nosepoke, or

switching between the nosepokes. As such, we

could compare the firing rates across time, as

well as across different levels of temporal pre-

dictability of reward, while the nosepoking

behavior was roughly constant. Further, because

overt motor behaviors were most prominent dur-

ing the transition periods when the rat switched

nosepokes, we could address the temporal mod-

ulation versus abstract timing question described

above. Specifically, if striatal activity represents

time in an “abstract” manner, divorced from any

motor behaviors required for reinforcement, then

average firing rates should be characterized by

ramp shaped or peak-shaped activity profiles

over the entire trial, without abrupt changes in

firing at the transition periods in which a broad

array of motor behaviors are emitted [52]. In

contrast, if the striatal activity is dependent on

motor activity, there should be abrupt changes in

firing rates during the transition periods, above

and beyond any modulation related to elapsed

time.

Our recordings demonstrated that 82 % of the

cells had different firing rates when comparing

the same behavior (e.g., nosepoke holding)

across different response phases (e.g., variable-

interval responding compared to fixed-interval

responding), thereby supporting the notion that

striatal neurons are a major contributor to inter-

val timing behavior as suggested by our [45], and

others [8, 29, 53, 54] findings, as well as the

Striatal Beat Frequency model [46]. Intriguingly,

some neurons had clear peak or ramp shaped

activity profiles across the trial or within select

phases of the trial (Fig. 5) when we restricted the

analysis to the periods of time in which the rat’s

snout was held within one or both nosepoke

apertures (i.e., when it’s behavior was controlled

for). However, when we examined firing rates

across the entire trial (i.e., including the transi-

tion periods—the periods of time in which the rat

was moving between the fixed-interval and
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Fig. 4 Session average and single trial behavior during a

concurrent 15 s variable-interval/fixed-intervaI procedure

(see Fig. 1B). The top panel shows the average proportion
of time in which a representative rat had its snout within

either the VI or FI nosepoke. As can be seen, FI responses

peaked in a symmetrical manner around the criterion time

of 15 s, with VI responding occurring with high likelihood

during all other times. The bottom panel shows VI (black
lines) and FI (grey lines) nosepoke occupancy on an

individual probe trial. As can be seen, the rat initially

occupied the VI nosepoke, before switching to the FI

nosepoke around the criterion FI time. After the FI dura-

tion had elapsed, the rat switched back to occupying the

VI nosepoke. Note the short (~1–2 s) periods of transition,

during which the rat backed away from the nosepoke it

was occupying, and approached the nosepoke it was about

to occupy. This figure was originally published in

Portugal, G. S., Wilson, A. G., & Matell, M. S. (2011).

Behavioral sensitivity of temporally modulated striatal

neurons. Front Integr Neurosci, 5, 30. doi: 10.3389/

fnint.2011.00030
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variable interval nosepokes), we almost always

saw dramatic modulation of firing rates during

these transition periods. Indeed, of those cells

showing a difference in firing rate across the

hold periods (55 % of all cells), 91 % of them

showed significant modulation of firing rates dur-

ing one or more of the transition periods as com-

pared to both of the surrounding hold periods.

For example, Fig. 6 shows the average firing

rates from several representative neurons during

the nose-poking periods and during the transition

periods. The nose-poking periods that were

analyzed were restricted to the periods of time

in which the rat was holding its snout within one

of the nosepoke apertures. The transition periods

are composed of two sub-periods: the first

200 ms after the rat left the nosepoke aperture

at which it had been responding (e.g., the

variable-interval nosepoke), and the last 200 ms

before the rat entered the nosepoke aperture in

which it would subsequently be responding (e.g.,

the fixed-interval nosepoke). Based on visual

inspection of the rats’ behavior, these transition

sub-periods were composed of either backing

away from the nosepoke (the first sub-period),

or locomoting toward the nosepoke (the second

sub-period). As can be seen, the firing rates dur-

ing one or more of the transition behaviors are

dramatically different than that found for the

surrounding hold periods. Indeed, in most of the

cases, the firing rates during the transition

behaviors moved in the opposite direction from

what would be expected from a neuron whose

firing rates showed ramp or peak patterns. For

example, in Fig. 6a, the neuron showed a peak-

like structure, firing on average at 4.8 spikes/s
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Fig. 5 Examples of striatal neurons that exhibited mono-

tonic ramp (left) or peak-shaped (right) changes in spike

rate when in the process of holding their snout in the

nosepoke (defined as continuous occupancy in the

nosepoke aperture for at least 500 ms) as a function of

elapsed time in the trial. Because nosepoke occupancy

occurred at different times on different nosepokes across

trials, the size of the data points reflect the number of trials

contributing to each data point. Some neurons had firing

rates that fluctuated in a systematic manner irrespective of

the nosepoke aperture on which they were responding,

whereas others showed these patterns only within certain

phases (either on the FI nosepoke or one/both of the VI

nosepokes). The degree (fit) to which a power function

(indicative of a ramp) or Gaussian function characterized

the data is provided in each plot‘s legend
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while initially holding its snout in the variable-

interval nosepoke, rising to 6.8 spikes/s during

the period of time in which it was holding its

snout in the fixed-interval nosepoke, and

dropping to 5.5 spikes/s upon returning to the

variable-interval nosepoke. However, when the

rat was approaching the fixed-interval nosepoke,

its firing rate was significantly below the firing

rates of all of these hold-periods, which is incom-

patible with a peak shaped activity profile that is

un-perturbed by motor activity. A similar situa-

tion is seen in Fig. 6b, in which the firing rates

Fig. 6 Mean firing rates during the phases of nosepoke

occupancy and during the first 200 and last 200 ms of the

transition period illustrated in Fig. 4. The firing rate of

each phase is plotted at the mean time at which these

phases began and ended, but was computed with respect

to each trial’s actual transition times. Although the firing

rates were not constant throughout the nosepoking phases

(see Fig. 5), the pattern of activity across the trial are

inconsistent with a monotonic or peak-shaped firing pat-

tern that develops irrespective of the co-occurring motor

behaviors, thereby suggesting that the striatum is

encoding both the time at which overt behaviors are

executed, and the expected reward time or elapsed trial

time (i.e., temporal motor coding). The four panels dis-

play four representative neurons, but 100 % of task-

modulated neurons had qualitatively similar patterns. To

facilitate display, the duration of the transition segments

is shown over 500 ms, rather than the 200 ms used for

analysis. This figure was originally published in Portugal,

G. S., Wilson, A. G., & Matell, M. S. (2011). Behavioral

sensitivity of temporally modulated striatal neurons.

Front Integr Neurosci, 5, 30. doi: 10.3389/fnint.2011.

00030
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during the hold periods grow in a monotonic

manner across the three hold phases. If this neu-

ron were solely coding time, irrespective of

motor activity, one would expect the firing rates

during the transition periods to be in-between the

firing rates of the surrounding hold periods. In

contrast, the firing rates during the transitions

were both below (while the rat was backing

away from the nosepokes) and above (while the

rat was approaching the nosepokes), the surroun-

ding hold period rates. As such, these data are

clear in demonstrating that striatal neurons are

not solely encoding time as an abstract entity.

Instead, the passage of time appears to interact

with their behaviorally-linked activity, thereby

supporting the idea that the striatum represents

time through temporally-modulated motor coding.

A Variety of Temporally Informative
Patterns

Given the lack of an abstract representation of

time in the striatum, we therefore turned to the

inputs of the striatum to attempt to locate the

structure(s) that might represent the passage of

time in a monotonic or unimodal manner, with-

out the influence of co-occurring behaviors, as

predicted by many psychological models. The

majority of excitatory striatal inputs come from

the cortex, with some additional inputs arising

from the thalamus, as well as modulatory dopa-

minergic inputs from the substantia nigra pars

compacta [55]. Given work showing that the

firing patterns of substantia nigra neurons relate

to signal onset as well as trial outcomes [56–58],

rather than showing across trial patterns of activ-

ity associated with elapsed time (although see

[59]), we felt that the search for a representation

of elapsed time should be focused on the cortex.

Of course, the cortex is a broad area, and despite

the general topographic organization of cortico-

striatal inputs, with motor cortical areas

projecting to motor striatal areas, etc. [60],

there is sufficient overlap in projections to keep

the search open across all cortical areas. Related

to this issue is the current question in the

field regarding whether the timing system is

centralized (and amodal) or localized to specific

sensory systems [61–63]. To the extent that the

striatum is critically involved in timing, one

might surmise that both situations may be simul-

taneously instantiated, as the majority of cortico-

striatal inputs would remain largely segregated to

specific sensory, motor, or association cortical

channels (thus being sensory-specific), whereas

the sparser overlap in projections could allow a

limited degree of cross-modal interaction (thus

being amodal).

In our initial work described above [45], we

recorded from the anterior cingulate cortex,

which makes up a substantial portion of the

inputs to the dorsal lateral striatum that was

recorded in the above studies. However, we

found scant evidence of monotonic or peak-

shaped (uni-modal) activity patterns. Based on

evidence from other electrophysiological, func-

tional imaging, and ERP studies [24, 28, 64–69],

the premotor and supplementary motor cortices

appeared as likely areas to provide a temporal

signal. As such, in collaboration with Shea-

Brown and others [70], we decided to record

from the medial agranular cortex, which has

been suggested to be the rodent homologue of

premotor cortex [71, 72]. In this study, we

continued to use a matched behavior design, a

two-modality, two-duration peak procedure,

such that the same response nosepoke and

nosepoke requirements were used to earn reward

for two different durations (i.e., 10 s and 20 s),

with two different discriminative stimuli (i.e.,

tone and light) signaling which duration to time

(see Fig. 1, Panel C). To equate response strength

across the two durations, the 10 s cue was

reinforced on 25 % of trials in which it occurred,

with the other 75 % of its trials being non-

reinforced probe trials lasting three to four

times the criterion duration, whereas the 20 s

cue was reinforced on 50 % of the trials on

which is occurred, and the other 50 % of its trials

being non-reinforced probes. In addition, non-

reinforced stimulus compound trials were

presented in which both the 10 s and 20 s cues

were presented simultaneously.

As shown in Fig. 7, peristimulus time

histograms showed a range of patterns across
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Fig. 7 Perievent rasters and histograms from representa-

tive neurons on a two-modality, two-duration peak proce-

dure (see Fig. 1C). Each row displays a different neuron,

and each column corresponds to the short (10 s) cue (left),
the simultaneous compound cue (middle), and the long

(20 s) cue (right). The thick black line shows the relative
occupancy of the rat’s snout in the nosepoke. Notice the

dynamics of firing rates across neurons, time within a trial

type, and across trial types. This figure from Matell, M.S.

Shea-Brown, E., Gooch, C., Wilson, A.G., & Rinzel, J., A

heterogeneous population code for elapsed time in rat

medial agranular cortex. Behavioral Neuroscience. 125
(1), 54-73, APA, with permission
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time and trial type, with roughly half of the

neurons (46 %) having significant fluctuations

in rate as a function of time in the trial. Of

these task sensitive neurons, 59 % had peak

shaped activations, whereas 21 % were ramp-

like on at least one of the trial types. Intriguingly,

only 4 cells out of the 155 recorded (e.g., Fig. 7,

top) showed the same pattern of activation across

all trials types. Thus, it appears unlikely that

neurons representing a purely abstract temporal

signal that operates across modalities and behav-

ioral domains are contained within this structure.

However, as there is no reason to require the

same neurons to provide a temporal signal for

all scenarios, and as a substantial proportion of

neurons showed patterns of activity across the

trial that could provide an effective clock signal

that maps onto time, we felt these data deserved

further examination. As with the studies above,

because these subjects were freely behaving, the

possibility remained that the activity patterns

shown in Fig. 7 might be related to overt motor

activity and not directly associated with the pas-

sage of time.

Indeed, the behavior of the rats in this proce-

dure was similar to what is seen in a single

duration peak-interval procedure, where the rate

of operant responding is very low at the begin-

ning of the trial, abruptly switches to a high rate

sometime before the criterion duration has

elapsed, and then abruptly returns to a low rate

sometime after the criterion duration has passed

[73]. In the current experiment, we captured this

state of temporally controlled, goal-directed,

responding by plotting the occupancy (i.e., in or

out) of the rat’s snout in the nosepoke as a func-

tion of time in the trial, and then exhaustively

fitting all possible “out-in-out” step functions

until the deviation between the data and the step

function was minimized. We saw that the rat’s

snout occupied the nosepoke less than 10 % of

the time during the obtained “Out” states,

whereas it was within the nosepoke more than

60 % of the time during the obtained “In” state.

We then restricted our analysis of the firing

patterns to those periods of time in which the

rats were in the “In” state, so that the temporal

evolution of overt motor behaviors across the

trial could not account for the fluctuations in

firing rate. Figure 8 shows the firing rates of a

representative sample of neurons as a function of

time during this “In” state, as well as the rat’s

occupancy of the nosepoke. Because the length

of the “In” state varied across both trials and trial

types, we plotted these PSTHs using a relative

measure of time, the proportion of the “In” state

period. As can be seen, nosepoke occupancy

during the “In” state was not constant, but

fluctuated to some degree as a function of time.

Therefore, to further account for this non-

stationarity of the rat’s behavior, we used the

nosepoke occupancy as a covariate when

analyzing the firing rate fluctuations across

time. In this way, fluctuations in firing rate that

are related to fluctuations in occupancy can be

“subtracted out”.

Our primary goal here was to ascertain the

shape of the firing (i.e., whether it was peak or

ramp shaped), as well to assess whether the firing

rate on an individual trial was reliable enough for

an ideal observer to discriminate elapsed time.

To do this, we utilized linear discriminant analy-

sis (LDA), which allows one to ask whether a

dataset, when split into two (or more) categories,

has sufficient separation in its measured statis-

tics, here spike rates, to be reliably segregated

[74]. Given the limited number of trials available

before the subjects became satiated, we asked the

simplest question possible: whether the pattern of

firing provided sufficient information to predict

whether the rat was in the first or second half of

the “In” state. The assumption here is that the rat

begins responding some time before it expects to

get food, but doesn’t stop responding until it is

sure that food is not available (e.g., onset of “In”

state at 7 s, expectation of food at 10 s, end of

“In” state at 13 s). We are then asking whether

the pattern of activity from 7 s to 10 s (i.e., early

half of the “In” state) is different from the pattern

of activity from 10 s to 13 s (i.e., late half of the

“In” state). A graphical example of the approach

is shown in Fig. 9, and described here. To assess

whether either the rate of firing, and/or pattern of

firing, of a hypothetical neuron is different

between the early and late halves of the “in

state”, we split each half period into two bins
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Fig. 8 Heterogeneous patterns of firing rate changes in

medial agranular cortex neurons during the high nosepoke

occupancy “In” state, on probe trials in the mixed

10 s/20 s peak procedure. Different neurons are shown

on different rows, and different trial types are shown in

different columns, as in Fig. 7. To account for trial by trial
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(i.e., early bin 1, early bin 2, late bin 1, and late

bin 2). We then plot a point (here in blue)

specifying the firing rate during the first half of

the “In” state from a single trial on a Cartesian

plane, with the firing rate in early bin 1

specifying distance along the X-axis, and the

firing rate in early bin 2 specifying distance

along the Y-axis. The firing rate of this hypothet-

ical neuron during the second half of the trial is

plotted in a similar manner, but with a different

symbol (here in red). For example, imagine on

trial 1, the firing rate during the “In” state

progresses as follows [spike rate ¼ 3, 5, 8, 12

spikes/s for early bin 1, early bin 2, late bin 1, late

bin 2, respectively]. The point in blue at [3, 5]

and the point in red at [8, 12] represent this trial.

From these two points, one can see that the

neuron monotonically increased its firing rate

from the first to the fourth bin (i.e., ramped). In

comparison, if the two points on a single trial

were at [5, 10] and [9, 6], the firing rates would

be construed as peaking. A line that connects

these dots specifies what is referred to as the

feature dimension in which the difference

between categories (early versus late) is maxi-

mal. By crossing this feature line with a perpen-

dicular “boundary” line at the midpoint, one

could then evaluate in a subsequent trial, whether

the current firing rate is more similar to the early

half or the late half of the first trial, simply by

asking which side of the line it falls on. For

example, if you observed that the spike rate was

4 spikes/s in the first bin of time you watched the

neuron and six in the second bin of time, you

should predict that you are in the early half of the

“In” state. Instead of doing this for one trial,

LDA allows one to do this for all of the trials,

such that the feature line identifies the dimension

over which the clusters of blue and red are maxi-

mally separated based on their means as well as

their variances. Finally, because we were inter-

ested in evaluating how reliable single neuron

firing was at providing this information, we

utilized the standard approach of leave-one-out

Fig. 8 (continued) variability in the length of the “In”

state, the figures are binned using varying bin widths, that

are 1/15 the width of the “In” state on each trial. Firing

rates are shown as vertical bars, and occupancy in the

nosepoke aperture is plotted as a thick black line. Firing
rates and nosepoke occupancy within the “In” state have

been smoothed with a 5 s running mean for presentation

and were normalized by the maximum rate across trial

types. The lack of stationarity in nose-poke occupancy

was accounted for by using the time-varying occupancy

as a covariate in the quantitative analysis. This figure

from Matell, M.S. Shea-Brown, E., Gooch, C., Wilson,

A.G., & Rinzel, J., A heterogeneous population code for

elapsed time in rat medial agranular cortex. Behavioral

Neuroscience. 125(1), 54-73, APA, with permission

Fig. 9 A graphical example showing the optimal feature

and boundary line separating the firing rates of a hypo-

thetical neuron that increases in rate the across the “In”

state. The “In” state is split into two halves (early versus

late), and each half is split again (Bin 1 and Bin 2). The

firing rate during these bins is plotted as a point in 2-d

space. These points are plotted for each trial, and in

separate colors for the early and late halves of the “In”

state. The means of these points are plotted as filled
diamonds. The feature direction that optimally separates

these clusters of points is plotted in green (as identified by
linear discriminant analysis). The data points are

“projected” in an orthogonal direction onto the feature

line, and the boundary by which the two clusters of points

are maximally separated is plotted as a dashed line.
Notice that due to greater variability during Bin 2 in

both the early and late halves of the “In” state, the best

discriminability is not along the dimension that goes

through the cluster means, but that the optimal feature is

one that utilizes the Bin 1 rates more heavily than the Bin

2 rates
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cross validation, which computes the feature and

boundary line based upon all trials but one, and

then asks whether the remaining data point is

classified correctly. This process is reiterated,

such that every trial is assessed using the features

and boundaries from all other trials, and the

overall percent correct is compared to chance

(using a standard binomial test with n trials).

This analysis revealed that 55 % of the

recorded neurons provided information that

could be used by an ideal observer to reliably

discriminate whether the rat was in the early or

late half of the “In” state. The trial types on

which a particular neuron provided information

differed, with 34 % of the neurons providing

information on short trials, 25 % on long trials,

and 39 % on compound trials. Only 10 % of

neurons could reliably discriminate time on all

three trial types when each trial type was exam-

ined individually. On the other hand, when the

same analysis was performed after pooling

across trials, thereby increasing power, but also

requiring the neural activity pattern to transcend

trial type specific activity, we found that 43 % of

the neurons provided reliable information

regarding relative time in the “In” state. Intrigu-

ingly, when we examined the firing patterns that

provided this information, we found a roughly

equal distribution of all possible patterns that

could be described by four bins (i.e., positive

and negative ramp patterns as well as positive

and negative peak patterns). Similar variation of

patterns was seen for all trial types. To more

thoroughly explore this variability in firing

patterns, we simplified our description of the

pattern by re-binning the data into three bins,

rather than four, such that a monotonic increase

or decrease represented a ramp pattern, while a

non-monotonic pattern of activity across the

three bins represented a peak or dip. We then

graphically characterized the shape of firing as

a vector in Cartesian space, by plotting the rela-

tive change in rate from bin 1 to bin 2 on the

abscissa and the relative change in rate from bin

2 to bin 3 on the ordinate. In such a plot, lines

falling in quadrants 1 and 3 indicate positive and

negative ramping, respectively, with the slopes

indicating the degree and direction of non-

linearity. Similarly, lines falling in quadrants

2 and 4 indicate peak or valley shaped firing,

respectively, with the slopes indicating the

degree and direction of skew. As shown in

Fig. 10, there were not only a variety of firing

patterns in terms of ramps versus peaks, but also

in terms of the non-linearities and asymmetries.

Surprised by this variety of temporally infor-

mative firing patterns, we asked whether such a

scenario provided some benefit to the organism.

Specifically, we compared the errors in temporal

estimation produced by a model that relates spike

counts to elapsed time. We first considered a

hypothetical population of ramping cells with

Poisson noise, and found that the estimation

error was minimized when the rate of ramping

was maximally steep (under constraints of maxi-

mal firing rates of 40 Hz). This outcome results

from the fact that the steeper the slope, the larger

the change in spike counts per unit of time,

thereby providing maximal discriminability

across time. Additionally, the relative rate

change is maximal at low firing rates, so sensi-

tivity is greatest at the beginning of the trial for a

positively ramping cell, and the end of a trial for

a negatively ramping cell. The next model we

considered was composed of neurons which

peaked or dipped rather than ramped. This

model provided a 27 % improvement over the

ramping models, due to the maximal firing rate

changes occurring over a smaller window of time

(i.e., the slope of the ramp is steeper as the

change in rate occurs from trial start to the peak

time, rather than to trial end), and essentially

equivalent performance for peaks and dips.

Finally, we considered a model in which the

population was constructed of a mixture of

peaks, dips, and ramps, and in which the peaks/

dips could be maximal/minimal at different times

across neurons. This heterogeneous model

improved the estimation error of the homoge-

neous peak/dip case by an additional 13 %. The

basis for this further improvement resulted from

the minimal firing rates occurring at different

times (i.e., the dips hit 0 spikes/s at different

times for different neurons). As stated above,
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the relative change in firing rate for a given slope

is maximal when the firing rate is minimal, so by

having the maximum relative change at a variety

of temporal locations, timing is maximally pre-

cise at each point in time.

These findings suggest that animals have

access to neurons with a variety of different

firing patterns which could be used to estimate

elapsed time, and if accessed as an ensemble,

could enhance perceptual sensitivity. It should,

of course, be noted that the availability of these

patterns in no way implies that these patterns or

neurons are actually used by the animal to con-

trol behavior in time. Such limits for interpreta-

tion are true for every recording experiment, as

they are simply correlational. Nevertheless, the

fact that we found that so many different

patterns co-vary in a reliable manner as a func-

tion of time serves as a bit of a cautionary note

for further study. Indeed, due to the relatively

small number of trials, and to prevent over-

fitting in the LDA, we used the smallest number

of bins (i.e., 4) that could provide a time-

varying pattern of activity, which in turn

means we had the lowest resolution for

identifying temporal dynamics. Thus, the neural

firing patterns that are actually available to the

animal could be considerably more complicated

than this, and our theories may not be suffi-

ciently advanced to provide incentive to look

for such patterns. Indeed, while a number of

studies have found or suggested ramp-like

activity during timed or delay intervals [22,

25–27, 69, 75–77], one must be prudent in

identifying the degree to which other patterns

may have been present but unreported and unex-

plored due to biases resulting from the analytic

technique used.

Fig. 10 Shapes of the firing rate patterns in neurons

whose rates differed across the “In” state defined by

three relative duration bins, irrespective of trial type.

The abscissa provides the change in rate from Bin 1 to

Bin 2, while the ordinate provides the change in rate from

Bin 2 to Bin 3. The rate changes were normalized by the

maximum change, such that all points fall along the unit

square. Points in quadrants 1–4 correspond to a positive

ramp, a dip, a negative ramp and a peak, respectively.

This figure fromMatell, M.S. Shea-Brown, E., Gooch, C.,

Wilson, A.G., & Rinzel, J., A heterogeneous population

code for elapsed time in rat medial agranular cortex.

Behavioral Neuroscience. 125(1), 54-73, APA, with

permission

228 M.S. Matell



Temporal Memory Averaging

In the above experiment, we occasionally

presented the rat with compound probe trials in

which both the “short” cue that signaled rein-

forcement might be available after 10 s and the

“long” cue that signaled that reinforcement

might be available after 20 s were presented

simultaneously, and no reinforcement was

provided. We added these compound probe trials

in order to verify that the differential firing

patterns seen across trials were not simply the

result of different sensory stimuli being concur-

rently present. Indeed, we found that approxi-

mately half the neurons (35/75) that fired with a

different pattern during the “In” state on short

versus long trials, also had reliably different

patterns on the compound trials as compared to

both of the component, single cue, trials. In other

words, similar to the differences in firing seen

across time within a trial, these neurons had

reliably different patterns across trial types that

were not related to the presence or absence of a

sensory stimulus. As such, these data further

support the notion that premotor neurons are

sensitive to the amount of time that has elapsed

in the trial.

When we designed this task, we anticipated

that the rats would adopt a “cover the bases”

response strategy on these compound trials,

initiating responding as though reinforcement

might be earned after the short duration elapsed,

and continuing to respond until the long duration

elapsed. Unexpectedly, we found that the rats’

behavior on these compound trials peaked at a

time in between the peak times of the component

trials, and furthermore, that the peak function was

scalar. Given the remarkable nature of this finding,

and out of concern that the electrode implant sur-

gery or recording cables might have somehow

contributed to the effect, we reran the experiment

in naı̈ve rats that were not implanted with

electrodes [78]. As shown in Fig. 11, we again

found scalar responding at a time (16 s) in between

the component peak times of 10 s and 20 s. Impor-

tantly, the fact that responding was scalar is not

consistent with a scenario in which the rats

respond to both of the cues in an independent

manner. Rather, we interpreted these data as

indicating that the presentation of each component

cue led to the retrieval of the appropriate temporal

memory, and due to the presumed discrepancy in

when reward is judged to be available, the subjects

averaged or integrated these temporal memories

and timed this average expectation in an otherwise

normal manner.

Subsequent studies [79, 80] have demonstrated

that this temporal memory averaging occurs

across a range of component durations and dura-

tion ratios, indicating that this is not a one-shot

phenomenon related to a specific set of durations.

Intriguingly, this scalar averaging is only seen

when the reinforcement densities of the compo-

nent cues are approximately equal (i.e., when an

increased probability of reinforcement for the long

duration offsets the diminished subjective value

associated with the longer delay [81]). Further-

more, across five different studies, the time of

peak responding on compound trials could be

accurately predicted by an average of the compo-

nent peak times, but only when each time was

weighted by its relative probability of reinforce-

ment. Together, these data suggest a tight link

between value and time, and suggest that future

recording studies will profit from examining these

factors simultaneously (see [44]).

While my lab is actively investigating the

boundary conditions and moderating factors

associated with temporal memory averaging,

the phenomenon itself provides important

constraints on the possible mechanisms underly-

ing interval timing. Specifically, it is very diffi-

cult to explain temporal memory averaging in the

context of a network-state based timing model,

such as the instantiation of SBF described above

[46]. This difficulty results from the fact that

different times in these models are associated

with different states of the network (i.e., patterns

of neural activity), but these states do not evolve

in a monotonic manner as a function of time (i.e.,

there is nothing “bigger” about a complex

ensemble firing pattern associated with 20 s as

compared to 10 s). As such, the network states

that correspond to times in between the compo-

nent durations are not in any obvious manner “in
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between” the network states associated with the

component durations themselves. In contrast,

monotonic clock models, such as Scalar Expec-

tancy Theory [39], the Multiple Timescales

model [82], or the Drift-Diffusion timing

model [75], have neural activity patterns that

grow or decay in a monotonic manner, and an

average of component memories, whether they

are instantiated as thresholds or clock speeds,

would result in maximal responding at a time

that falls in between the component peak times.

Of course, the ability of these monotonic models

Fig. 11 Normal, peak-shaped, scalar responding at a

time in between the trained criterion times when tested

with the stimulus compound. Rats were trained that one

modal stimulus (e.g., a tone) predicted probabilistic food

availability (25 % of tone trials) at 10 s, whereas a differ-

ent modal stimulus (e.g., a light) predicted probabilistic

food availability (50 % of light trials) at 20 s. The differ-

ent probabilities of reinforcement led to equivalent peak

rates on the component stimuli probe trials as shown

(top). Presentation of the stimulus compound (tone +

light) led to responding that peaked in between the

criterion times. These compound trials were never

reinforced. The bottom panel shows the superimposition

of component and compound responding after

normalizing the response functions by the obtained peak

times, thereby indicating that the compound response was

scalar. Such a result strongly suggests normal timing

processes operating on an average temporal expectation.

This figure from Swanton, D.N., Gooch, C.M, & Matell,

M.S. Averaging of temporal memories by rats. Journal of

Experimental Psychology: Animal Behavior Processes,

35(3), 434-439, 2009, APA, with permission
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to deal with the finer complexities of this phe-

nomenon, such as the weighted averaging and

modality-associated asymmetries remains to be

seen. Dealing with such issues may require

refinement of these models.

The phenomenon of temporal memory aver-

aging may also be helpful in clarifying the

functions of neurons that are found to co-vary

with time in electrophysiological recording stud-

ies. Presumably, the first explanation considered

by neuroscientists finding neurons with

temporally-informative activity patterns, is that

these neurons are used as the basis for temporal

perception. However, during a perusal of the

numerous posters reporting on electrophysiolog-

ical investigations on interval timing at the 2012

Society for Neuroscience Annual Meeting, a col-

league remarked to me that he wondered whether

there were any areas that didn’t show co-

variation of neural activity with time. While

some of us believe that “Timing is everything,”

it is somewhat hard to imagine that every area of

the brain is contributing in a direct manner to the

temporal control of behavior. Instead, these

neurons are likely involved in other facets of

behavior, but are nevertheless influenced by tem-

poral factors, perhaps via a temporally informa-

tive input signal. For example, as described

earlier, we showed that neurons in the anterior

cingulate cortex had firing rates that co-varied

with time [45]. However, current theories of

this brain area ascribe its function to one of

error detection [83]. Such error related proces-

sing might be expected to co-vary in intensity as

a function of time between expected and

obtained outcomes similar to that seen in the

activity of dopamine neurons [57], but such tem-

porally varying error signals need not be the

source of the subject’s temporal perception. Sim-

ilarly, Shuler and Bear [84] have demonstrated

that primary visual cortex neurons have firing

rates that peak at the time that reinforcement is

typically provided, thereby providing a tempo-

rally informative signal. While this is a

fascinating finding given the “low-level” sensory

functionality classically ascribed to this cortical

area, it remains to be seen whether such activity

is generated within this structure, or whether it is

provided by another area. Similarly, it remains to

be seen whether this activity is responsible for

the temporally specific overt behaviors produced

by the subject (i.e., licking at the spout at the

right time), or whether it instead functions to

temporally moderate processing of visual inputs.

As such, examining the activity of temporally

varying neurons in novel and/or conflicting

situations, such as that produced by a stimulus

compound, may help us to identify how and

where different components of the system

(clock, memory, decision, output) are integrated.

For example, if one recorded from visual, audi-

tory and motor areas in rats while presenting

them with stimulus compounds, one might see

activity in sensory-specific areas that represent

the component expectations, but activity in

motor areas that represent the integrated

expectations.

Summary

The work presented here supports the idea that

cortical and striatal neurons are modulated by the

temporal relationships between external events

and may temporally modulate the animal’s behav-

ior to deal with these contingencies. The involve-

ment of an array of cortical and sub-cortical areas

in timing and time perception has also been

demonstrated recently by other investigators

using electrophysiological techniques in behaving

animals (see the preceding chapters, as well as [24,

28–30, 85–87]). While this body of work shows

that a number of structures have firing patterns that

provide an index of elapsed time, whether a “pure”

temporal signals exist anywhere in the brain

remains to be seen, and will require the adoption

of experimental designs that go beyond simply

searching for neurons that co-vary with time in

stationary subjects. We have also shown that a

variety of temporally informative firing patterns

are simultaneously present, and that this variation

in patterns may facilitate temporal expectations.

As such, I believe that we need to be open to the

possibility that complex neural activity patterns

may contribute to temporal expectations. Indeed,

recent work has demonstrated temporal
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information encoded in complex network states

[88, 89], as well in the temporally specific activity

of tuned “time cells” in the hippocampus [90] and

premotor cortex [91]. Nevertheless, as we have

found that the cued retrieval of multiple discrepant

temporal memories can lead to temporal memory

integration, monotonic coding of time such as that

obtained with ramp and decay patterns, seems

likely to be a critical component [22, 75]. With

all of these outstanding questions, I think it is clear

that this is an exciting time to be studying timing.
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Functional Imaging and Interval Timing



Getting the Timing Right: Experimental
Protocols for Investigating Time with
Functional Neuroimaging and
Psychopharmacology

Jennifer T. Coull

Abstract

Functional Magnetic Resonance Imaging (fMRI) is an effective tool for

identifying brain areas and networks implicated in human timing. But fMRI

is not just a phrenological tool: by careful design, fMRI can be used to

disentangle discrete components of a timing task and control for the

underlying cognitive processes (e.g. sustained attention and WM updating)

that are critical for estimating stimulus duration in the range of hundreds of

milliseconds to seconds. Moreover, the use of parametric designs and

correlational analyses allows us to better understand not just where, but

also how, the brain processes temporal information. In addition, by com-

bining fMRI with psychopharmacological manipulation, we can begin to

uncover the complex relationship between cognition, neurochemistry and

anatomy in the healthy human brain. This chapter provides an overview of

some of the key findings in the functional imaging literature of both

duration estimation and temporal prediction, and outlines techniques that

can be used to allow timing-related activations to be interpreted more

unambiguously. In our own studies, we have found that estimating event

duration, whether that estimate is provided by a motor response or a

perceptual discrimination, typically recruits basal ganglia, SMA and right

inferior frontal cortex, and can be modulated by dopaminergic activity in

these areas. By contrast, orienting attention to predictable moments in time

in order to optimize behaviour, whether that is to speed motor responding or

improve perceptual accuracy, recruits left inferior parietal cortex.
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Timing is integral to a great number of cognitive

processes, such as language, sensorimotor con-

trol or decision-making. Closing one’s fingers at

just the right moment to catch a ball, for
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example, requires an exquisite sense of time in

the range of tens of milliseconds. Deciding

whether or not you have time to race safely

through the amber traffic light before it turns

red requires a sense of time in the range of

hundreds of milliseconds to seconds. In these

examples timing is automatic and covert. Yet

we can also access a more conscious or overt

representation of time. For instance, you could

probably give a fair estimate of how long it has

taken to read the first few sentences of this chap-

ter; and whether this duration is shorter or longer

than the time it would take for an amber traffic

light to turn red. But despite this ‘sense’ of time,

there is no dedicated neural machinery for per-

ceiving the duration of a stimulus in the way that

there are dedicated areas of the brain for perceiv-

ing other features of a stimulus, such as colour,

form, or motion.

This lack of functional localization may be

due, in part, to the complexity of estimating

duration, which depends upon a number of acces-

sory cognitive processes, such as sustained atten-

tion and working memory, in addition to the

timing process itself [1–5]. To perceive a stimu-

lus feature like colour or spatial location, exter-

nal sensory input simply needs be high enough to

pass the threshold for conscious perception. To

perceive stimulus duration, on the other hand, we

not only need external sensory input (to mark the

beginning and end of the duration to be timed)

but also an internal, memorized representation

of elapsed time. These phenomenological

differences were eloquently articulated more

than a hundred years ago by James [6]: “To

‘realize’ a quarter of a mile we need only look
out of the window and feel its length by an act

which. . . seems immediately performed. To real-

ize an hour, we must count ‘now! – now! – now! –
now!’ – indefinitely. . .and the exact sum of the

bits never makes a very clear impression on our

mind.” In a monograph by the French philoso-

pher Guyau [7], published post-humously in the

same year, he stated that “time can only be per-

ceived . . . as representations rather than imme-
diate sensations” [8].

Today, these philosophical observations can

be investigated in the laboratory. Imagine a

coloured circle presented in the centre of a com-

puter screen for 2 s. An estimation of its colour or

spatial location can be accomplished within the

first couple of hundred milliseconds making the

remainder of its presentation time redundant. On

the other hand, an estimation of its duration can

be accomplished only once the entire two second

presentation time has elapsed. Moreover, in con-

trast to colour or spatial processing, duration

estimation requires that the initial moment of

stimulus onset be held in working memory

(WM), for attention to then be maintained on

the stimulus throughout its entire presentation,

and for the contents of WM to be continually

updated as a function of elapsing time. The dif-

ference between the 200 ms or so required to

perceive colour or location and the 2,000 ms

necessarily required to perceive duration

explains each process’ differential reliance on

sustained attention and WM. That timing (at

least in the range of hundreds of milliseconds

and beyond) requires attention to be sustained

and WM to be updated very likely contributes

to the extensive network of regions typically

observed in neuroimaging studies of duration

estimation (e.g. [9–11]). A crucial challenge for

experimental investigations of timing is how to

disentangle the attentional and mnemonic pro-

cesses required for estimating duration from the

temporal ones. For timing of stimuli in the

hundreds of milliseconds to seconds range, the

need to sustain attention and to update WM can-

not be eliminated. They can, however, be con-

trolled for.

Controlling Time: Minimizing
Sensorimotor and Cognitive
Confounds

A well-designed fMRI study in any cognitive

domain should control for basic sensorimotor

processes of non-interest. Imagine a perceptual

timing task in which the duration of two consec-

utively presented visual stimuli are compared,

with a same/different response being registered

with a choice button-press. That this task will

activate visual cortex (due to the sensory
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stimulation) and motor cortex (due to the button-

press) is obvious and trivial. Ideally, we would

like to remove these activations of non-interest

from our map of timing-related brain areas to

clarify interpretation. To do so, we need simply

include a control task that presents two consecu-

tive stimuli, of the same form, shape and location

as those used in the timing task, and which

requires the same button-press response.

Subtracting the control task activation map

from that of the timing task should remove any

activity related to low-level visual and motor

processing. Ideally, if the study is event-related,

the contribution of motor execution processes

can be further minimised by incorporating a var-

iable temporal jitter between the stimulus to be

estimated and the moment of the motor

response, and then synchronising the event-

related haemodynamic fMRI response to the

moment of stimulus presentation. By temporally

dissociating the stimulus and response stages of

the task in this manner, activations induced by

the later motor response can be distinguished

from the stimulus-evoked signal.

However, while these procedures may control

for basic sensorimotor aspects of the timing task,

they do not address its higher cognitive demand.

The perceptual timing task described above

requires the first stimulus to be held in WM,

compared on-line to the second stimulus, and

for a decision to be made and translated into a

motor response. So we need to complexity our

control task to match the cognitive demands of

this temporal discrimination task. For instance,

we may ask participants to compare some other

feature of the two stimuli, making a same/differ-

ent decision on this feature (e.g. colour discrimi-

nation) rather than its temporal features. In this

way, we can minimize activations induced by

general higher-level cognitive processes, such

as WM maintenance, on-line comparison and

decision-making, as well as the low-level senso-

rimotor aspects of the task.

Some of the early neuroimaging studies of

timing failed to control for accessory cognitive

processes, comparing timing tasks to basic sen-

sory stimulation [12], simple button-pressing

[13] or rest [14]. Generally, these studies

identified an extremely widespread timing-

related network of activation, which, given the

low-level nature of the control task to which the

timing task was compared, it was impossible to

unambiguously attribute to temporal processing:

instead activations may have reflected the atten-

tional, mnemonic or decisional processes neces-

sary that were for the timing task, but not the

control. Fortunately, most investigators have

now adopted a more rigorous approach. For

example, perceptual timing tasks are routinely

compared to cognitively challenging control

tasks, such as pitch discrimination in the auditory

domain (e.g. [15–18]), or to colour (e.g. [15,

19–23]), intensity [24] or length [25] discrimina-

tion in the visual domain.

Many of the earliest neuroimaging studies of

timing investigated motor, rather than percep-

tual, timing (e.g. [14, 26, 27]). Typically, these

studies employed finger tapping tasks, in which

participants first tapped along to a sensory pacing

rhythm (synchronisation phase) then continued

to tap at the same rate once the pacing rhythm

had been removed (continuation phase). To iso-

late activity related to internally generated timing

whilst controlling for accessory cognitive pro-

cesses, brain activity recorded during the syn-

chronization phase can be subtracted from that

recorded during the continuation phase (e.g. [28,

29]) or to activity induced by syncopated, rather

than synchronized, tapping [30–32]. More recent

motor timing studies have often used temporal

reproduction tasks in which participants produce

a single, discrete motor response after a timed

interval, and compare timing-related brain activ-

ity to that induced by control reaction–time tasks

[33–35], force reproduction tasks [36, 37] or self-

paced, randomly timed button presses [38]. A

recent meta-analysis by Wiener et al. [11] has

shown that the areas most consistently activated

by motor timing (both synchronisation and repro-

duction paradigms) are bilateral SMA, bilateral

prefrontal cortices, left insula and right inferior

parietal cortex whereas perceptual timing

(mostly temporal discrimination paradigms) con-

sistently activates bilateral SMA, right prefrontal

cortex and insula, and left putamen, This meta-

analysis further pinpointed SMA and right
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inferior frontal cortex as being the only two

regions common to both perceptual and motor

timing, as well as to timing in both the subsecond

and suprasecond range.

Motor Preparation

Although these studies highlight a key role for

SMA in timing processes, SMA has more tradi-

tionally been implicated in motor preparation (e.

g. [39, 40]). Yet motor preparation itself includes

temporal, as well as motor, components: when

preparing a motor response, the specific motor

effector with which the response will be given is

selected (motor component), then prepared in

advance and maintained (temporal component)

until response execution. Unfortunately, the tem-

poral component of motor preparation has some-

times been inadvertently confounded with

duration estimation in neuroimaging studies of

timing. For example, if reproduction of long

intervals are compared directly to that of short

intervals (e.g. [27, 33, 41]) the longer intervals

not only make greater demands on timing but

also afford greater opportunity for motor prepa-

ration: the longer the participant waits to make

their response the longer they have to prepare it.

Indeed, behavioural data showing faster [41] and

more accurate [33] responses for long, versus

short, intervals confirmed the greater degree of

motor preparation in long intervals trials. Activa-

tion of SMA in these studies may have therefore

reflected increased motor preparation, rather than

(or as well as) increased temporal processing.

One straightforward way of minimising motor

preparation confounds is to use a non-timing

control task that is matched not only for the

motor effector with which the response will be

given (motor component of motor preparation)

but also for the length of the preparatory interval

(temporal component of motor preparation). In

addition, it is generally easier to control for

motor preparation in perceptual timing tasks

than motor ones, although motor preparation

confounds may still intervene. Consider again

the temporal discrimination task in which the

duration of a stimulus must be judged as being

the same or different to that of a previous stimu-

lus, with the decision being registered with an

index or middle finger button-press. As soon as

the temporal decision has been made (e.g. differ-

ent), the appropriate motor response (e.g. middle

finger) can be prepared. If the decision can be

made before the stimulus presentation time has

completely elapsed, then activity recorded dur-

ing this period will confound motor preparation

processes with timing ones. To avoid this, Coull

et al. [20] varied the motor effector (index/mid-

dle/ring finger) associated with a particular tem-

poral decision (shorter/equal/longer) on a trial-

by-trial basis (Fig. 1a). The stimulus–response

contingencies were not known until the response

screen was presented at the end of each trial. In

this way, even though participants could make

their decision on a temporal level (e.g. shorter)
during presentation of the stimulus, they could

not begin to prepare the appropriate response

effector at the motor level (e.g. index finger)

until the response screen appeared. Processes of

timing and motor preparation were thereby

unconfounded.

Sustained Attention and WM Updating

These measures help control for the sensorimotor

and cognitive demands of the timing task,
whether it’s motor temporal reproduction or per-

ceptual temporal discrimination. However, these

measures are not sufficient for controlling for the

cognitive demands of the stimulus itself. As

outlined earlier, estimating the duration of a

stimulus depends upon processes of sustained

attention and WM updating, processes that are

not required when estimating, for example, its

colour or location. Sustained attention and WM

updating are dynamic, constantly evolving cog-

nitive processes. One solution to the problem

therefore is for the control task to make similarly

dynamic demands. Lewis and Miall [25]

pioneered just such an approach, developing a

stimulus whose length fluctuated constantly

throughout stimulus presentation. Their timing

task required participants to estimate the duration

for which this stimulus was presented, whereas
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the control task required participants to estimate

its average length. In both conditions therefore,

participants had to maintain attention throughout

stimulus presentation and constantly update their

representation of stimulus duration or length, in

order to accurately perform either the timing or

control tasks. Unfortunately, despite Lewis and

Miall’s clever use of dynamic stimuli, the timing

Fig. 1 (a) A cue (the word “time” or “colour”) instructed

participants to estimate either the duration or colour of

two forthcoming consecutive stimuli. The first (sample)

and second (probe) stimuli were presented for one of three

durations (540, 1,080, 1,620 ms) and had an overall per-

cept of one of three shades of purple (maroon, violet, or

indigo). According to the cue instruction, participants

estimated whether the probe was shorter (S), longer (L),

or the same (¼) duration as the sample (time condition) or

redder (R), bluer (B), or the same (¼) shade of purple as

the sample (colour condition). The stimuli to be estimated

were not a uniform color. Instead, five different shades of

purple were presented rapidly (90 ms) and in pseudo-

random order to give an overall percept of either maroon,

purple, or indigo (see insets at top of figure). In the colour
task, the subject estimated the average shade of purple by

amalgamating all shades presented during the flickering

percept. At the onset of the response signal, participants

indicated their duration or color estimate with a three-

choice button press. To minimize the possibility for motor

preparation, stimulus–response contingencies varied on a

trial-by-trial basis. One of three possible response screens

(see right-hand side of figure) could be presented on any

given trial. The left, middle, and right-sided spatial

locations of the response choices (S/¼/L for the time

task; R/¼/B for the colour task) on the computer screen

mapped respectively onto a button located under the

index, middle, or ring finger of the right hand. If the

character corresponding to the subject’s estimate

appeared in e.g. the leftmost position on the screen the

subject pressed on the leftmost button (i.e. with the index

finger). By way of illustration, the black circles on each of

the hand symbols indicate which button would have to be

pressed for each of the response screens if the subject’s

estimate were “equal to” (represented by the symbol

“¼”). This figure shows a trial from the time condition.

The colour condition was identical apart from the substi-

tution of the word “colour” at the cue stage, and the

characters R/¼/B at the response stage. (b) In comparison

to the colour control condition, the time condition

activated Supplementary Motor Area (SMA) at both sam-

ple and probe stages of the task. By contrast, the time

condition activated putamen selectively at the sample

stage but not at the probe, whereas right superior temporal

gyrus (STG) was activated by the time condition selec-

tively at the probe stage, not at the sample. The

accompanying plot shows the mean level of putamen

activity during the time and colour conditions, separately

for the sample and probe stages of the task
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task was significantly more difficult than the

control task, compromising clear interpretation

of their results. Inspired by their ingenious solu-

tion to the problem of sustained attention and

WM updating, we devised our own control

stimuli, though we chose to manipulate stimulus

colour, rather than length, in order to avoid

illusions of movement that may have inadver-

tently provided temporal cues [19, 20].

We developed temporal and colour discrimi-

nation tasks, in which participants saw two con-

secutively presented stimuli and had to compare

either their duration (timing task) or colour (con-

trol task). However, the stimuli were not of a

uniform colour but instead changed shade rapidly

(every 90 ms) and constantly throughout stimu-

lus presentation (coloured insets Fig. 1a).

Participants estimated the average colour of the

stimulus by amalgamating all shades presented

during the flickering percept. Therefore, for col-

our, as well as timing, tasks, participants had to

maintain attention for the entire stimulus presen-

tation time, integrating in WM information

presented throughout this period. Importantly,

there were no significant differences in accuracy

of temporal and colour discrimination,

suggesting these tasks were well-matched for

difficulty [19, 20]. Areas activated by the timing

task were compared to those activated by the

colour task, revealing timing-specific activations

in SMA, right prefrontal and temporal cortices,

and basal ganglia [19, 20]. Given the deliberate

matching of sustained attention, WM updating

and task difficulty across tasks, these activations

were unlikely to reflect differential recruitment

of attentional or mnemonic processes, allowing

us to conclude more confidently that they

reflected more temporal components of stimulus

processing. Investigators from several different

research groups have since adopted similarly

dynamic colour control stimuli [21–23].

Task Difficulty

As mentioned briefly above, an important param-

eter to be controlled for in any well-designed

fMRI study of timing (indeed, in fMRI studies

of almost any sort of cognitive processing) is task

difficulty. If the timing task is more difficult than

the control task it will place greater demands on

attentional or effortful processing, which could

contribute to timing-related activations in

attention-related areas such as parietal and fron-

tal cortices. To minimize this potential confound,

it is crucial to demonstrate that the levels of

performance of timing and control tasks are

matched (e.g. [16–18]). Using a control task

that necessitates similar levels of sustained atten-

tion and WM updating as the timing task is one

way of matching difficulty across tasks [19, 20,

22]. Unfortunately, this approach is not always

successful: despite Lewis and Miall’s [25]

pioneering use of dynamic stimuli, coupled with

a sophisticated psychometric staircase procedure

designed to maintain task difficulty at constant

levels for both timing and control tasks, perfor-

mance in their timing task was significantly

worse than that for their control task. An alterna-

tive experimental approach is to deliberately

manipulate task difficulty, rather than trying to

match it. Tregallas et al. [42] compared easy and

difficult versions of an auditory timing task,

while Livesey et al. [21] took this a step further,

by comparing patterns of timing-induced activity

when the control task was either easier or more

difficult than the timing task. They reasoned that

areas differentially activated by whichever task

was more difficult, whether that was the timing

or the control task, were not specifically

concerned with timing, whereas areas activated

by the timing task, whether it was relatively

easier or more difficult, reflected true timing-

induced activations. Interestingly, although

these two groups adopted similar approaches,

the results of the two studies were quite different.

Using visual stimuli in the range of

1,000–1,500 ms (similar to the dynamic colour

stimuli used by ourselves), Livesey et al. [21]

observed timing-selective activation of putamen,

inferior frontal gyrus and a small region of left

inferior parietal cortex. Conversely, Tregallas

et al. [42] observed timing-selective activation

of cerebellum and superior temporal gyrus with

their auditory stimuli in the range of 200 ms. The

anatomical differences between these two studies
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most likely reflect differential activation of a

stimulus-specific “automatic” timing system [9]

by the brief 200 ms stimuli in the Tregallas et al.

[42] study, and of a “cognitive” timing system by

the seconds-range stimuli used in the Livesey

et al. [21] study. The brief auditory stimuli in

the Tregallas et al. study [42] were most likely

processed by modality-specific systems in tem-

poral cortex, as well as cerebellum, which has

previously been associated with timing of short

millisecond, rather than longer seconds-range,

stimulus durations [43].

Parametric Experimental Designs

It should, by now, be clear that many parameters

must be controlled for when investigating timing

with fMRI. Most obviously, these include basic

components of task performance, such as senso-

rimotor processing, selective attention, mainte-

nance in long-term or working memory,

decision-making and task difficulty. However,

processes related to the dynamic nature of time

itself must also be considered: motor preparation,

sustained attention and WM updating. The

choice of an appropriate control task is therefore

critical for the success of the timing experiment.

One way of circumventing the search for the

perfect control task however, is instead to para-

metrically vary a specifically temporal compo-

nent of the task. For example, by identifying

areas of the brain whose activity increases as a

function of increasing stimulus duration (e.g.

[44]). Parametric designs are particularly power-

ful in isolating cognitive processes of interest as

they test for systematic relationships between

cognitive and neural activity: incremental

changes in the cognitive process of interest (e.g.

stimulus duration) are associated with

corresponding changes in brain areas responsible

for implementing that cognitive change. How-

ever, as mentioned earlier, long stimulus

durations are confounded with high levels of

motor preparation, as well as greater sustained

attention and WM demands. Therefore, to mini-

mize the influence of these dynamic cognitive

confounds, the experimental paradigm should

incorporate a control task whose stimuli are

processed for the same parametrically varying

lengths of time (e.g. [22, 23]).

We sidestepped this potential problem in one

of our own experiments by parametrically

modulating the amount of attention paid to stim-

ulus duration, rather than the length of the dura-

tion itself [19]. This approach was inspired by

one of the earliest, and most robust, findings in

the functional neuroimaging literature: attending

to a perceptual stimulus feature, such as shape,

colour, speed [45] or spatial location [46],

increases neural activity in sensory brain regions

specialised for processing that feature, even

though the comparison stimuli are perceptually

identical. By analogy, we hypothesised that

attending to stimulus duration would increase

neural activity in brain regions specialized for

processing time. We manipulated attention to

duration by parametrically varying the degree

of attentional selectivity to temporal or colour

stimulus features (Fig. 2a). Attention-sharing

instructions indicated how attention should be

allocated within a particular trial: selectively to

stimulus duration, more to duration than colour,

to duration and colour equally, to colour more

than duration, or selectively to colour. Appropri-

ate attentional allocation was encouraged by

varying the relative likelihood that the trial

would require a temporal or colour discrimina-

tion (Fig. 2a). For example, half of the “attend

duration and colour equally” trials required a

temporal discrimination and the other half

required a colour discrimination, but the partici-

pant didn’t know until the trial-end which would

be required, meaning both parameters had to be

attended equally. By contrast, every single one of

the “attend duration only” trials required a tem-

poral discrimination, meaning the participant

could ignore colour and focus exclusively on

duration. In “attend duration more than colour”,

most of the trials required a temporal discrimina-

tion with only a few requiring a colour discrimi-

nation, meaning that participants should pay

attention mostly to duration but should “keep an

eye” on colour.

Behavioural and neural data confirmed that

attention was allocated appropriately across the
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Fig. 2 (a) One of five attentional cues (see inset on the

right) instructed participants to attend either selectively to

stimulus time (T), to time more than color (Tc), to both

parameters equally (tc), to color more than time (tC), or

selectively to color (C). As a function of the cue,

participants then estimated whether the duration of the

probe was shorter, equal to, or longer than the sample

(time condition) and/or whether the probe was redder,

equal to, or bluer than the sample (colour condition). So,

for instance, if the trial began with the ‘T’ cue participants

had to estimate duration only, whereas if it began with the

‘tc’ cue they had to estimate duration and colour equally.

Participants then gave a discriminatory response

according to the instruction presented on the response

screen, either “time” or “colour”, giving a single estimate

of duration or of colour even though they may have been

instructed to estimate both. Each attentional cue condition

comprised a specific ratio of temporal:colour discrimina-

tion trials (see inset). All trials in the T condition required

a temporal discrimination (a ratio of 100:0 temporal:col-

our discrimination trials) whereas all trials in the C con-

dition required a colour discrimination (a ratio of 0:100);

half of the trials in the tc condition required a temporal

discrimination while the other half required a colour dis-

crimination (50:50); most (75 %) of the trials in the Tc

condition required a temporal discrimination but only a

few (25 %) required a colour discrimination (75:25); and

most of the trials in the tC condition required a colour

discrimination with only a few requiring a temporal dis-

crimination (25:75). In this way, knowing that a temporal

discrimination would be required on every single T trial

should encourage participants to focus on duration and

ignore colour. On the other hand, knowing there was

50:50 chance that the response required in tc trials

would be either a temporal or a colour discrimination

should encourage participants to divide attention equally

between duration and colour characteristics. Varying the

response ratios in this way encouraged attention to be

allocated parametrically to either duration and/or colour

across the five cue conditions. (b) As participants paid

progressively more attention to stimulus duration across

the five cue conditions, brain activity increased most

notably in preSMA and right inferior frontal cortex,

around the frontal operculum (FrOp). The upper plot

244 J.T. Coull



five attentional conditions: the more participants

were instructed to attend to colour, the more

colour discrimination gradually improved and

the more activity in visual area V4, the colour

processing area of occipital cortex, monotoni-

cally increased [19]. We reasoned that if

parametric modulation of attention to colour

modulated activity in the brain area fundamental

for colour perception, then parametric modula-

tion of attention to duration should modulate

activity in brain areas fundamental for time per-

ception. We found that the more participants

were instructed to attend to duration, the more

temporal discrimination gradually improved and

the more activity increased primarily in preSMA

and right inferior frontal cortex (Fig. 2b). Inter-

estingly, these were precisely the two regions

later identified by Wiener et al.’s [11] meta-

analysis as being critical for timing.

Deconstructing Time: Distinguishing
Temporal Task Components

In a version of the temporal discrimination task

commonly used in fMRI studies of timing, the

participant times the duration of a first (standard

or sample) stimulus, storing it in memory for

later retrieval. They then time the duration of a

second (comparison or probe) stimulus, compar-

ing it in WM to that of the first. With careful use

of event timing and randomization, the temporal

resolution of event-related fMRI allows activity

associated with these two discrete stimuli to be

dissociated. This, in turn, allows identification of

brain areas that respond more to initial storage of

temporal information (sample) than its

subsequent retrieval and comparison (probe).

Rao et al. [16] were the first to dissociate the

initial storage component of temporal discrimi-

nation from the later comparison stage using

event-related fMRI. As compared to a

performance-matched cognitive control task,

early timing processes were linked to activation

of the basal ganglia (right caudate and putamen),

whereas later processes recruited right prefrontal

cortex (PFC). However, the designation of

“early” and “late” processing stages lacked tem-

poral precision, making it difficult to conclude

whether brain activations represented stimulus-

evoked activity related to the presentation of the

first (encoding and storage) or second (retrieval

and comparison) stimulus, or some mixture of

the two.

We circumvented these problems by precisely

time-locking the fMRI signal to presentation of

the sample and probe stimuli independently [20],

to achieve a more direct measure of brain activity

at each stage of the task. We used the same

coloured stimulus pairs as described previously,

except that the sample and probe stimuli were

now separated by a longer and variable inter-

stimulus interval (Fig. 1a), allowing their

stimulus-evoked activity to be distinguished. As

before, we compared activations evoked by the

timing task to those evoked by the colour task,

but this was conducted separately at the sample

and probe stages of the task. Notably, Harrington

et al. [18] and Wencil et al. [44] later used the

same approach (time-locking the fMRI signal to

events separated by a variable jitter) to dissociate

events in perceptual timing paradigms (auditory

or visual temporal discrimination respectively),

as did Wittman et al. [35] and Bueti and

Macaluso [23] for motor timing (temporal repro-

duction). We hypothesised that timing of stimu-

lus duration is necessary for both sample and

probe stimuli, that the encoding and storage of

stimulus duration into WM would occur during

presentation of the sample stimulus only,

whereas retrieval and comparison of stimulus

duration would occur during presentation of the

probe only. Whole-brain analyses revealed that

putamen was selectively activated by the sample,

but not probe, stimulus while right superior tem-

poral gyrus was activated by the probe, but not

�

Fig. 2 (continued) demonstrates that participants were

allocating attention as required: as they paid more atten-

tion to stimulus duration, their temporal discriminations

were increasingly accurate. The lower plot shows how

activity in the SMA cluster increases progressively as a

function of increasing attention to duration
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sample, stimulus (Fig. 1b). SMA was the only

region to be equally engaged by temporal

processing of both sample and probe (Fig. 1b).

Since the only process common to these two

stimuli is the timing of elapsing duration, we

suggested SMA plays a fundamental role in the

perceptual timing of a duration that is currently

unfolding in time [20]. Collectively, these results

indicated a role for SMA in timing stimulus

duration, for putamen in storing duration for

later recollection, and for superior temporal

gyrus in retrieving and comparing stored

representations of duration.

Notably, the finding that timing-induced basal

ganglia activity was restricted to the initial

encoding and storage of stimulus duration

confirms the earlier results of Rao et al. [16],

who compared temporal to pitch discrimination

of auditory intervals. It was also, in turn, con-

firmed by a later study from the same group using

the same auditory task [18] and also by Wencil

et al. [44] using temporal discrimination of visual

durations. Similarly, Bueti and Macaluso [23]

found basal ganglia activity during the encoding,

but not reproduction, phase of a motor timing

task, as did Wittmann et al. [35], although this

was true only for the shortest (3 s) durations, not

the longer (9 and 18 s) ones. Although timing-

specific putamen activation during both initial

storage and later comparison stages of the task

has been reported [16, 18], this was observed

only when the temporal discrimination task was

compared to a low-level sensorimotor control

task that did not control for the attentional, mne-

monic and executive processes necessary for

stimulus comparison and decision-making. In

conclusion, whether the stimuli whose duration

to be estimated are auditory empty intervals [16,

18, 35] or visual filled durations [20, 23, 44], or

whether the temporal decision is measured with a

perceptual discrimination [16, 18, 20, 44] or a

timed motor response [23, 35], the fMRI results

are broadly consistent, demonstrating that

timing-related basal ganglia activation is

restricted to the initial encoding and storage

phase of the task. Collectively, these data cast

doubt on Matell and Meck’s [47, 48] model of

interval timing, in which basal ganglia are

proposed to perform the comparison function

(“coincidence detection”) that would, presum-

ably, be taking place at the probe stage of the

task.

Differential activation of putamen during stor-

age versus comparison phases of the timing task

may also go some way to explaining the incon-

sistent nature of timing-induced basal ganglia

activation reported in the fMRI literature. Fig-

ure 1b illustrates the pattern of activity in puta-

men during our temporal and colour

discrimination tasks [20]. It shows that the puta-

men was preferentially activated by the timing

versus colour task during presentation of the

initial sample, but was less activated by the

timing than the colour task during presentation

of the subsequent probe. When data were aver-

aged across both stages of the task, timing-

specific putamen activity was effectively can-

celled out. If we had not utilized the temporal

resolution of event-related fMRI to separate out

the individual trial components, we would have

deduced that basal ganglia were not involved in

the timing task.

The functional selectivity of the putamen for

storing stimulus duration into WM was further

corroborated by correlational analyses showing

significant links between brain activity and

behaviour. Specifically, the more putamen was

activated by the initial sample stimulus of the

timing task, the more accurately participants

eventually performed the task [20]. Conversely,

there was no significant correlation between

timing performance and the putamen activity

recorded during the subsequent probe. Nor was

there any correlation between activity in the

putamen and performance on the colour discrim-

ination task, further demonstrating the temporal

selectivity of the putamen activation. The link

between increased timing performance and neu-

ral activity at the storage phase of the task may

reflect enhanced encoding of the sample stimulus

into WM (mediated by the putamen), which

results in a more accurate representation of stim-

ulus duration. Our results confirmed those of

Harrington et al. [49], who had already reported

a significant correlation between a performance

measure of temporal sensitivity in auditory
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perceptual timing, the co-efficient of variation,

with activity in basal ganglia (caudate) during

initial encoding of stimulus duration. More

recently, Bueti and Macaluso [23] found that

performance measures of the subjective percep-

tion of time (degree of overestimation) correlated

significantly with putamen activity during the

encoding phase of their motor timing task.

Generally, these results illustrate the utility of

correlational analyses in interpreting fMRI data.

First, this approach helps tease apart which

aspects of performance (e.g. accuracy,

variability, clock-speed) correlate with activity

in which brain regions and during which phase

of the task (e.g. storage/retrieval). Second,

showing that activation of a particular area varies

as a function of performance provides a more

convincing demonstration that the activation

observed is truly reflective of the cognitive pro-

cess of interest, rather than an incidental, co-

occurring process that has not been adequately

controlled for. The cognitive selectivity of the

effect can be further confirmed if it is shown

that no such correlation exists between activity

in the region of interest and performance on a

suitable control task.

Altering Time: Neurochemically
Modulating the Perception of Time

I hope to have highlighted the importance of

controlling for incidental cognitive processes,

such as sustained attention or WM, when

investigating the neuroanatomical substrates of

timing with fMRI. This is also good practice

when investigating the neurochemical substrates
of timing. Ideally, psychopharmacological

experiments should aim to demonstrate both psy-

chological and pharmacological specificity of the

drug effect. Pharmacological specificity can be

achieved by showing that a particular drug

affects performance on a task, but that a different

drug (or at least a placebo) does not. Psychologi-

cal specificity can be achieved by showing that a

drug affects performance on one kind of task or

process, but not on a different kind. A lack of

pharmacological or psychological specificity

would suggest that observed drug effects derive

from more general consequences of drug admin-

istration, such as the anxiogenic nature of the

experimental protocol or the generally sedative/

excitatory properties of the drug. Therefore, to be

able to confidently interpret the deleterious

effects of a drug on a timing task as a truly

temporal effect, it must be demonstrated that

the effect is (a) significantly different from the

effects of a placebo or comparison drug and (b)

independent from any collateral effects of the

drug on attentional and mnemonic processes.

Warren Meck and colleagues have

contributed enormously to our understanding of

the neurochemical bases of timing, consistently

showing in rats that dopaminergic (DA) agonists

and antagonists have complementary effects on

timing: agonists speed up the internal clock while

antagonists slow it down (e.g. [50–55]). Simi-

larly, Thomas Rammsayer has conducted a

large number of psychopharmacological timing

studies in healthy volunteers, demonstrating that

while DA drugs impair timing in both the tens of

milliseconds and seconds time-range, drugs act-

ing on other neurotransmitter systems have either

no effect or impair only seconds-range timing.

For example, the D2 receptor antagonist haloper-

idol impairs accuracy of perceptual timing for

durations in either the tens of milliseconds

range (50 ms) or the seconds (1,000 ms) range

[56–60]. By contrast, the benzodiazepine

midazolam [60, 61], the glutamatergic N-

methyl-D-aspartate (NMDA) receptor antagonist

memantine [62], or the selective noradrenaline

reuptake inhibitor, reboxitine [63] significantly

affect timing in the seconds range but have no

effect on timing in the tens of milliseconds range.

Since timing in the seconds-range requires sup-

port from accessory processes, such as WM or

sustained attention, processes known to be

affected by benzodiazepines [64], noradrenergic

drugs [65, 66] and NMDA antagonists [67],

Rammsayer [60, 63] concluded that drug effects

on seconds-range timing were secondary to their

effects on attention and WM. Wittmann et al.

[68] drew similar conclusions after observing

deleterious effects of the 5-HT2A agonist psilo-

cybin on motor timing of long (4–5 s) but not
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short (~2 s) durations. Rammsayer [60, 63] fur-

ther argued that the fact that haloperidol was the

only drug tested to impair timing of in the tens of

milliseconds range, which does not depend upon

additional processes of sustained attention or

WM, suggests a more selective effect on timing

per se.

Rammsayer’s studies tackled the potentially

confounding effects of drugs on attentional and

mnemonic processes by comparing effects on

timing in the seconds versus tens of milliseconds

range, which differentially engage sustained

attention and WM. However, just because a

drug affects timing in the seconds, but not tens

of milliseconds, range does not necessarily mean

that its effects reflect modulation only of WM or

attentional processes. Timing of longer, seconds-

range durations depends not only upon sustained

attention and WM but also, of course, upon an

index of elapsed time itself, for example accu-

mulation of temporal pulses [69, 70] or temporal

integration of steadily climbing neuronal activity

[71]. Therefore, it’s possible that drug-effects in

this time-range could reflect impairment of a

specifically seconds-range timing mechanism

(e.g. accumulation), which is distinct from that

used to time durations in the tens of milliseconds

range. Mounting evidence suggests that timing in

these two different duration ranges are

underpinned by distinct mechanisms [9, 72–74].

Thus it is possible that a drug-induced deficit in

the seconds but not tens of milliseconds, range

could reflect a specifically temporal, rather than

just WM or attentional, deficit.

Controlling for Cognitive Confounds

By asking participants to time durations only tens

of milliseconds long, Rammsayer was able to

discount the attentional and WM contributions

to drug-induced timing effects. However, for

timing in the longer hundreds of milliseconds to

seconds range sustained attention and WM are

fundamentally necessary and cannot be

disentangled from the process of timing. We

therefore approached this problem from a differ-

ent angle. Since it’s impossible to time longer

durations without sustained attention and WM,

we decided instead to control for them. Specifi-

cally, we sought to dissociate drug effects on

seconds-range timing from their collateral effects

on attentional and/or mnemonic processes by

directly comparing effects on performance of

timing and control tasks that were matched for

attentional and WM demand. Specifically, we

used the temporal and colour discrimination

tasks [19, 20], described earlier (Fig. 1a). Drug-

induced impairment of the timing, but not colour,

task would provide evidence for neurochemical

modulation of seconds-range timing independent

from any mnemonic or attentional effects.

We first examined the effects of the NMDA

receptor antagonist ketamine on timing [75].

Ketamine induces perceptual and cognitive

changes similar to those found during prodromal

stages of schizophrenia [76–78], thus providing a

useful pharmacological model of the illness [79].

Numerous studies have shown that patients with

schizophrenia have difficulties in timing

durations in the hundreds of milliseconds to

seconds range [80–85]. Since schizophrenia is

often accompanied by WM deficits, and WM is

critical for timing, some of these studies con-

trolled for possible effects of the illness on WM

by examining performance on digit span, a task

that requires patients to repeat a list of numbers

forwards and backwards. Digit span was either

uncorrelated with timing performance [82, 84] or

was correlated only with clock-speed, not tem-

poral sensitivity [86], leading authors to con-

clude that patients’ timing impairments could

not be entirely explained by WM deficits. How-

ever, the kind of verbal WM required to maintain

a list of numbers in WM is quite distinct from the

kind of WM required to continually update infor-

mation as a function of elapsing time. We there-

fore controlled for WM by using the colour

discrimination task described earlier (Fig. 1)

that employed exactly the same stimuli as the

timing task, the only difference between tasks

being whether participants had to attend to the

stimulus’ temporal or colour characteristics.

As compared to placebo, administration of an

acute dose of ketamine to healthy volunteers

selectively impaired temporal, but not colour,
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discrimination of visual stimuli in the hundreds

of milliseconds to seconds time-range [75]. Since

both temporal and colour tasks placed similar

demands on sustained attention and WM

updating, the lack of effect of ketamine on colour

discrimination suggests ketamine-induced

impairments of timing of seconds-range

durations did not simply reflect a side-effect of

the drug on attention and WM. Rammsayer et al.

[62] had concluded that the deleterious effects of

the NMDA receptor antagonist memantine in the

seconds duration-range were secondary to its

mnemonic effects, yet the results of our ketamine

study suggest that they could in fact have

reflected effects on a distinct, seconds-range,

timing mechanism independent from any inci-

dental effects on sustained attention and WM

updating. However, one difference in the WM

requirements of the timing and colour tasks was

the way in which information was manipulated in

WM. For the timing task, information was incre-

mentally accumulated, whereas for the colour

task it was averaged. Accumulation implies a

unidirectionality, a fundamental feature of the

flow of time itself (“time’s arrow” [87]). Averag-

ing does not imply this unidirectionality. It is

possible therefore, that ketamine influenced

timing behaviour more specifically by selectively

impairing the ability to increment information in

WM in a particular direction or order.

Identifying Anatomical Substrates of
Neurochemical Modulation

The patients included in investigations of timing

in schizophrenia are generally medicated with

neuroleptics. This could seriously confound the

timing effects observed. In one study, for exam-

ple, timing deficits were found in medicated

patients whereas non-medicated patients were

no different to healthy controls [88]. This

suggests that the timing deficits typically

observed in schizophrenic patients could, in

fact, be a side-effect of their neuroleptic medica-

tion. This hypothesis is strengthened by consis-

tent demonstrations of the deleterious effects of

neuroleptics on timing in rats [51, 53, 54, 89] and

healthy human volunteers [56–60]. We therefore

decided to investigate the effects of a DA manip-

ulation on seconds-range timing, using our tem-

poral and colour discrimination paradigm to

carefully control for potential effects on atten-

tional and mnemonic processes. Moreover, we

conducted the study with fMRI in order to iden-

tify the regions of the timing network that were

modulated by DA [90].

Functional neuroimaging adds a useful third

dimension to psychopharmacology research,

allowing the complex relationship between cog-

nition, neurochemistry and anatomy to be

explored in the healthy human brain [91]. In

particular, it allows the anatomical bases for

neurochemical modulation of human cognition

to be localised. Ideally, a psychopharmacological

fMRI study should control for psychological, as

well as pharmacological, mechanisms by includ-

ing both a control cognitive task and a placebo

treatment condition within a factorial design that

comprises task (timing vs. control) and treatment

(drug vs. placebo) as the factors of interest. By

examining differential effects of the drug on the

timing task compared to the control, any effects

on non-timing factors (e.g. inhibitory effects on

the vasculature) are subtracted out since these

would be equally present during both the timing

and control tasks. The factorial design therefore

provides an index of the modulatory effects of

drugs on timing-related networks, not their abil-

ity to directly excite or inhibit neural tissue. Or,

in other words, the drug effect manifests itself as

an attenuation or enhancement of activity in

brain areas that are preferentially activated by

the timing task. By contrast, simply comparing

the effects of drug versus placebo on the pattern

of activity induced by a timing task, without

including a control task, would confound physi-

ological effects of non-interest with

neuromodulatory effects on timing-related areas.

In our study, we manipulated DA non-

pharmaceutically, using Acute Phenylalanine/

Tyrosine Depletion (APTD). This is an amino

acid drink deficient in the DA precursors phenyl-

alanine and tyrosine and has been shown to reduce

striatal DA release [92, 93]. Behaviourally, as

compared to a balanced amino-acid drink, APTD
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selectively impaired performance of the temporal,

but not the colour, discrimination task. APTD

effects on timing were therefore unlikely to sim-

ply reflect DA modulation of sustained attention

and WM processes. Neurally, in order to identify

which regions of the timing network were

modulated by APTD, we directly compared

time-specific activations maps (i.e. areas activated

more by temporal than colour discrimination)

across the APTD and balanced drink sessions.

APTD affected just two of the regions of the

time-specific network, attenuating activity in the

left putamen of the basal ganglia and SMA [90].

These results demonstrate the anatomical, as well

as cognitive, specificity of the APTD effect.

These anatomical data also allowed us to dis-

sect the cognitive effects of APTD even more

finely by examining the effects of APTD on

neural activity separately at the sample and

probe stages of the task (see also Fig. 1). The

APTD effects on activity in putamen and SMA

occurred selectively at the initial sample stage of

the timing task [90]. By contrast, there were no

effects of APTD on activity in any of the regions
associated with the probe stage of the timing task

(a distributed network comprising prefrontal and

temporal cortices, caudate and cerebellum). Fur-

thermore, the APTD-induced neural changes at

the sample stage correlated significantly with its

behavioural changes: the more APTD attenuated

activity in putamen or SMA, the more it impaired

accuracy of temporal discrimination. In other

words, APTD’s effects on activity at the initial

sample stage of the task predicted participant’s

subsequent timing performance. This suggests

that the mechanism by which APTD impairs

timing is to reduce activity in those areas of the

brain responsible for the initial storage of tempo-

ral information into WM. Since putamen and

SMA are functionally [94] and anatomically

[95] connected components of the nigrostriatal

“motor” pathway [96], our fMRI approach

provided direct confirmation of Rammsayer’s

[59] speculation that DA modulates timing via

the nigrostriatal, rather than mesocortical, path-

way. Moreover, the spatial and temporal resolu-

tion of event-related fMRI allowed us to pinpoint

not only the neuroanatomical (putamen and

SMA) substrates of the APTD modulation of

timing, but also its functional ones (initial stor-

age into WM). In addition, the matched control

task allowed us to exclude the possibility that

results merely reflected modulation of

confounding cognitive processes, such as WM

or sustained attention.

Yet our results are at odds with prior fMRI

studies reporting a predominantly frontal, rather

than striatal, pattern of DA modulation during

timing [97, 98]. This discrepancy could be

explained, however, by the fact that participants

in these previous studies were patients with

Parkinson’s Disease, whose underlying basal

ganglia dysfunction may have influenced the pat-

tern of effect. Alternatively (though not mutually

exclusively), the discrepancy might be due to the

fact that APTD preferentially targets striatal,

rather than frontal, activity [99]. Future studies

in healthy volunteers using DA agents that pref-

erentially modulate mesocortical, rather than

nigrostriatal, pathways may yet reveal modula-

tion of timing-induced activity in prefrontal

cortex.

Choosing the Right Time: Temporal
Orienting of Attention

In the laboratory, as in the real-world, the term

“timing” can be used to refer either to how long

an event lasts or when an event occurs. The on-

line Merriam-Webster English dictionary (www.

merriam-webster.com/dictionary/timing) gives

two distinct definitions for the word “timing”.

One is the “observation and recording of the

elapsed time of an act, action or process”. Here,

the critical parameter is how long an event lasts.

Estimating the duration of an event is the form of

timing that has been discussed so far in this

chapter. The other definition is “the ability to

select the precise moment for doing something

for optimum effect (e.g. a boxer with impeccable

timing)”. Here, the critical parameter is when
best to act. Selecting a moment in time in order

to optimise behaviour is the focus of the final

section of this chapter.
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The semantic distinction between these two

definitions of timing is reminiscent of the distinc-

tion between explicit and implicit timing that can

be found in the scientific literature [10,

100–104]. Explicit timing tasks have a temporal

task goal, which is usually to measure and regis-

ter the duration of a motor act or sensory stimulus

[74, 105]. In other words, an overt estimation of

stimulus duration is required. Conversely,

implicit timing tasks have a non-temporal, often

sensorimotor task goal, that nevertheless makes

use of inherent temporal regularities in either

movement dynamics [101, 102] or sensory

stimuli (e.g. [10, 106, 107]). Temporal

regularities may simply emerge as an intrinsic

property of ongoing behaviour, e.g. tapping

one’s foot while waiting. Alternatively, temporal

regularities in the environment may be used to

enhance information processing for events

occurring at predictable moments in time e.g.

accelerating away more quickly after a 3-2-1

countdown. Of course, elapsed time must be

tracked covertly to enable timely responding,

but this temporal percept is never registered in

explicitly temporal terms as, for example, a ver-

bal estimate (“2 seconds”) or a perceptual dis-

crimination (shorter/longer than a memorised

standard). Rather, it is indexed implicitly by the

relatively improved speed (or accuracy) of stim-

ulus processing.

The use of the phrase “select the precise

moment” in the second of the two dictionary

definitions of timing illustrates the attentional

nature of this process: “select” implies that only

certain aspects of the environment will be

attended to and processed. The phrase “doing

something for optimum effect” highlights the

purpose of selective attention generally, which

is to process certain elements of the environment

whilst ignoring others so as to optimise

behaviour. In this case, attention operates to

select precise moments in time but, equally, it

may also select particular locations in space or

specific features of objects. Yet while the cogni-

tive neuroscience of feature or spatial attention is

a vast and well-established field, the cognitive

neuroscience of temporal attention is in its

infancy. This is despite the fact that the

behavioural benefits of temporal preparation

have now been known for almost a century [108].

Temporal Orienting of Attention

The neuroscientific investigation of spatial atten-

tion is frequently conducted with variants of the

spatial orienting of attention task, first devised by

Posner et al. [109]. In the classic version of this

task, pre-cues provide information regarding the

likely location of an upcoming target. Attentional

resources can then be directed (“oriented”) to

that location, enabling faster detection of targets

appearing there. Valid cues accurately predict

where the target will appear, whereas invalid

cues incorrectly predict the target’s location.

Neutral cues provide no spatially predictive

information. Typically, RTs are faster for targets

appearing in validly cued, rather than invalidly or

neutrally cued, locations due to a process of

spatial attentional orienting. My colleague Kia

Nobre and I hypothesised that target detection

would also be faster for stimuli appearing at

validly cued temporal intervals, due to a putative

process of temporal attentional orienting [110].

We therefore devised a temporal analogue of the

Posner task, in which visual cues provided valid,

invalid or neutral information concerning the

likely interval before an imminent target was

presented. Speed of target detection was

measured in a paradigm in which pre-cues

provided either spatial or temporal information

independently, both spatial and temporal infor-

mation together, or neither spatial nor temporal

information (Fig. 3a). Sensorimotor demands

were matched across conditions, with the only

difference being whether attention was oriented

within the spatial and/or temporal domain.

As predicted, target detection was faster fol-

lowing valid, rather than neutral or invalid, cues

in the temporal, as well as the spatial, domain

[10]. This result demonstrates that it is

behaviourally advantageous not only to know

where a target is likely to appear but also when
it is likely to appear. The benefits of spatial

attentional orienting had already been well

documented, but this was the first time such
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benefits had been shown to manifest themselves

in the temporal domain. We speculated that sim-

ilar attentional mechanisms operated in both spa-

tial and temporal domains, with resources being

directed in an anticipatory way to the location in

space or the moment in time at which the event

was predicted to happen, thus enhancing selec-

tivity of processing at that point. Yet although

spatial and temporal orienting appeared function-

ally similar, the brain regions underpinning these

attentional processes were anatomically distinct.

We directly compared the pattern of brain activ-

ity induced by spatially valid trials to that

induced by temporally valid trials, which can-

celled out any activations common to both tasks

(e.g. those linked to processes of attentional

orienting generally), leaving only areas that

were differentially activated by orienting within

the spatial versus temporal domain. Notably, we

found hemispheric lateralization in parietal cor-

tex for spatial versus temporal orienting of atten-

tion [110]. Spatial orienting activated right

inferior parietal cortex, confirming numerous

previous studies [46, 111, 112], whereas tempo-

ral orienting preferentially activated left inferior

parietal cortex, specifically around the

intraparietal sulcus (Fig. 3b). This result was

replicated in two different groups of participants,

first using PET then fMRI technologies [110],

underlining the robustness of the result.

Optimising Behaviour or Estimating
Duration?

At this point, it is crucial to remember that what

these neuroimaging data primarily reflect are

attentional processes: resources being oriented

towards a particular moment in space or time in

order to optimize behaviour. In the temporal

orienting task, even though the participant has

to accurately estimate duration in order to

respond at the right moment, they were not

required to provide an overt estimate of that

duration. Their primary goal was a motor one:

to respond to the target as quickly as possible.

Fig. 3 (a) A central endogenous cue predicted the likely

location (left/right box) and/or onset-time (short/long

interval) of a forthcoming target (X). Cues directed atten-

tion either to the left or right location (“space”), to a short

(300 ms) or long (1,500 ms) onset-time (“time”), to both

location and onset-time (“space–time”) or to neither loca-

tion nor onset-time (“neutral”). Brightening of the left or

right side of the diamond within the central cue predicted

that the target would appear in the left or right peripheral

box respectively. Brightening of the inner or outer circle
predicted that the target would appear after a short or long

interval respectively. Brightening of the entire cue in the

neutral condition effectively provided no spatially or

temporally predictive information. In the time condition

illustrated here, the cue predicts that the target will appear

after a short interval (bright inner circle) but provides no
information concerning its location. (b) Spatial (versus

temporal) cueing preferentially activated right-lateralised

inferior parietal cortex, confirming previous reports. By

contrast, temporal (versus spatial) cueing preferentially

activated left-lateralised inferior parietal cortex
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Activation of left inferior parietal cortex by tem-

poral orienting is therefore not incompatible with

activation of SMA and right inferior frontal cor-

tex by duration estimation (as described in pre-

ceding sections). These distinct anatomical

substrates merely reflect the distinct functional

characteristics of these two forms of timing:

estimating duration so that attentional resources

can be oriented towards the measured time in

order to optimise behaviour (left inferior parie-

tal) as opposed to estimating duration in order to

register a temporal measure of elapsed time

(SMA and right inferior frontal). In agreement

with this, SMA and right-sided frontoparietal

cortices were found to be activated in a temporal

orienting task [113] when the participant was

required to convert the predicted time of target

appearance into an explicit judgement (“did the

target appear earlier or later than expected?”)

rather than using the predicted time of its appear-

ance to enhance stimulus processing.

In a recent fMRI study, we directly compared

the neural substrates of these two forms of timing

within the same experimental paradigm [38].

Timing was measured either explicitly, by a

timed motor response (temporal reproduction

task), or implicitly, by speeded detection of a

temporally predictable target (temporal orienting

task). In both tasks, a previously learnt visual cue

preceded the interval to-be-timed, and either

indicated (temporal cues) or not (neutral cues)

the duration of the ensuing interval (Fig. 4a).

These four conditions constituted a 2 � 2 facto-

rial design, with task (reproduction/orienting)

and cue (temporal/neutral) as the experimental

factors. In the reproduction task, participants

internally generated the cued interval, making a

brief response when they estimated it had

elapsed. In the orienting task, participants

responded as quickly as possible to the appear-

ance of an externally specified event that

appeared at the cued interval. Neutral cue

conditions, in which participants either generated

a random interval (reproduction task) or detected

a target appearing after a random interval

(orienting task), controlled for the contribution

of internally versus externally guided movement

generally.

Behavioural data confirmed that participants

acquired accurate representations of the cued

durations in both tasks [38]. In the temporal

reproduction task, duration estimates were very

close to cued intervals, with variability being

greater for long intervals than for short ones

(i.e. timing behaviour was scalar). In the tempo-

ral orienting task, responses were faster for tem-

porally valid targets than for neutrally cued ones.

Yet although participants were using the same

temporal representation in both reproduction and

orienting tasks, distinct patterns of neural activity

were evoked as a function of the way in which

this temporal representation was used. When the

temporal cue was translated into an overt esti-

mate of elapsing time in the temporal reproduc-

tion task, SMA, basal ganglia and right-

lateralised frontal and parietal cortices were pref-

erentially recruited. Conversely, when the tem-

poral cue was used to optimise sensorimotor

processing at precise moments in time in the

temporal orienting task, left inferior parietal cor-

tex, left premotor cortex and cerebellum were

preferentially engaged (Fig. 4b). By matching

sensorimotor requirements across tasks, we

were able to directly compare the temporal repro-

duction to temporal orienting tasks, confirming

the fundamental role of SMA and right inferior

frontal cortex in explicit duration estimation, and

of left inferior parietal cortex in temporal

orienting [38].

Independence from Motor Responding

Two further fMRI studies were designed to con-

firm the ubiquity of left inferior parietal cortex in

temporal orienting. First, we aimed to show that

activation of this area was independent of the

type of motor response (left/right; manual/ocu-

lar) used to register stimulus detection. Second,

we hoped to show that its activation was not only

independent of the type of motor response but

was, in fact, independent of the need to make a

motor response of any kind. Specifically, we

aimed to show that it was independent of the

type of stimulus processing (motor/sensory)

being optimised.
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The impetus for these studies was the obser-

vation that a very similar area of left inferior

parietal cortex had been implicated in another

variant of the Posner paradigm, in which cues

predicted the motor effector (e.g. index/middle

finger) with which the speeded response should

be made [114, 115]. It was therefore possible that

activation of left inferior parietal cortex by tem-

poral orienting may have simply reflected selec-

tive motor preparation of a speeded response.

This is unlikely since motor preparation

requirements were always matched across tem-

poral orienting and comparison tasks. However,

to explore this possibility more thoroughly, we

Fig. 4 (a) All cues comprised two concentric circles. For

temporal cues, the inner or outer circle was brightened,

indicating a short (600 ms) or long (1,400 ms) cue-

stimulus interval respectively. For neutral cues, both

inner and outer circles were brightened, indicating a

random cue-stimulus interval. In the examples illustrated

here, both tasks begin with a long temporal cue. In the

temporal reproduction task, participants internally

generated the duration indicated by the cue (short or

long) then pressed a button when they estimated that

that duration had elapsed. Pressing the button immedi-

ately elicited presentation of the visual response stimulus

(++). In the temporal orienting task, the duration of the

cue-stimulus interval was externally specified and deter-

mined by the onset-time of the response stimulus.

Participants pressed a button as soon as the response

stimulus was presented. The neutral cue version of each

task had the same task structure except that the trial began

with a neutral cue rather than a temporal one. The neutral

cue version of the temporal reproduction task was a self-

paced movement task in which participants pressed a

button after a random interval of their choosing, thereby

eliciting presentation of the response stimulus. The

neutral cue version of the temporal orienting task was a

simple reaction-time task in which participants pressed a

button in response to a response stimulus that was

presented after a random interval. (b) Direct comparison

of the temporal reproduction and temporal orienting tasks

revealed preferential activation of right prefrontal cortex,

preSMA, right inferior parietal cortex and left caudate by

the temporal reproduction task, but of left inferior parietal

cortex and cerebellum by the temporal orienting task.

Importantly, these activations do not simply reflect the

neural substrates of internally versus externally guided

movement. The activation maps illustrated here were

first masked by the comparison of each task to its respec-

tive neutral cue condition. For example, the temporal

reproduction minus temporal orienting comparison was

masked by the temporal reproduction minus self-paced

movement comparison. Since the neutral cue conditions

engaged internally or externally guided movement to the

same degree as the relevant temporal condition, but for

random, rather than precisely timed, intervals, any

activations related to internally or externally guided

movements would be subtracted out
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designed a variation of the Posner task in which

motor and temporal components of response

preparation were independently cued within the

same experimental paradigm [116]. Specifically,

temporal or motor pre-cues informed participants

as to when (short/long interval), and/or with

which motor effector (oculomotor saccade/

index finger button-press), a speeded response

to an upcoming target should be made (Fig. 5a).

By comparison, neutral cues provided neither

temporal nor motor information. Behaviourally,

temporal cues speeded responding as compared

to neutral cues. This was true even when the

motor effector used to register the response

could not be prepared in advance, confirming

that temporal preparation could benefit perfor-

mance independently from motor preparation

[116]. Similarly, temporal orienting activated

left inferior parietal cortex, specifically within

the intraparietal sulcus, whether the motor effec-

tor used to respond to the target could be

prepared in advance or not (Fig. 5b). The robust-

ness of this activation was further demonstrated

by the fact that temporal orienting activated left

Fig. 5 (a) A crosshair cue predicted the onset-time

(short/long interval) and/or the motor effector (manual

button-press/ocular saccade) with which a response to a

forthcoming target would be made. Cues directed atten-

tion either to onset-time (“time”), to motor effector

(“motor”), to neither onset-time nor motor effector (“neu-

tral”), or to both onset-time and motor effector (“time-

motor”). Colouring of the inner or outer components of

the crosshair cue indicated that the target would appear

after a short (750 ms) or long (1,500 ms) interval respec-

tively. Colouring of the horizontal or vertical components

of the crosshair cue indicated that the target would call for

an ocular saccade or a manual button-press respectively.

Correspondingly, the orientation of the target specified
the motor effector with which the motor response should

be made, with vertical targets specifying manual button-

presses and horizontal targets specifying saccades. The

shading of the target specified the laterality of the

response, with left/right responses being made towards

the lighter side of the target. In the time-motor condition

illustrated here, the cue predicts that the target will appear

after a long interval (outer component) and will call for a

manual button-press response (vertical component).

When the target appears, it specifies a button-press

response (vertical target) to be made with the right hand

(lighter shading to the right of the target). (b) Temporal

(versus neutral) cueing activated left intraparietal sulcus

whether participants responded with manual button-

presses or ocular saccades, either to the left or to the

right. The accompanying plot shows that left intraparietal

sulcus was activated more whenever temporal informa-

tion was available, whether the effector used to register

the response could also be prepared in advance (the time-

motor condition) or not (the time condition)
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intraparietal sulcus whether the laterality of the

movement was left or right-sided, and whether

the response was registered with a manual

button-press or an oculomotor saccade [116].

We therefore concluded that left intraparietal

sulcus represented an effector-independent sub-

strate for temporal orienting and did not simply

represent a motor preparation confound during

the temporal orienting task. We further proposed

that temporal orienting is an attentional mecha-

nism that operates with similar principles on

either the manual or ocular motor systems, in a

manner analogous to that already proposed for

spatial orienting [117, 118].

In a follow-up experiment, we aimed to show

that temporal orienting would activate left inferior

parietal cortex even when a speeded motor

response was not required. Prior behavioral stud-

ies had demonstrated that temporal orienting not

only confers faster motor response times [110,

119] but also enables faster and more accurate

stimulus perception [120–122]. If left inferior

parietal cortex is a core substrate for temporal

orienting, it should also be activated when the

task requires a perceptual discrimination, rather

than a motor response. We therefore designed a

perceptual version of the temporal orienting task

[123], based on the paradigm used previously by

Correa et al. [121], and compared its neural

correlates directly to those of the motor version

described previously. In the perceptual discrimi-

nation version of the task, participants were asked

to discriminate which of two targets had been

presented within a rapid serial presentation of

visually similar distractors (Fig. 6a). In the motor

detection version of the task, no visual distractors

were presented and the participant had simply to

detect the presence of the target as soon as possi-

ble after its appearance. In order to minimise the

motor component of the perceptual version as

much as possible, participants did not respond as

soon as they had seen the target, but instead had to

wait until the offset of the visual stream, at which

point a choice response screen was displayed. To

Fig. 6 (a) A temporal cue predicted the onset-time

(short/long) of a target (either + or �) that was embedded

within a rapid serial visual presentation stream of visually

similar distractors. The trial on the left shows a short

temporal cue (brightened inner circle) and the trial on

the right a long temporal cue (brightened outer circle),
with targets appearing after a short (600 ms) or a long

(1,380 ms) interval respectively. For the neutral cue (not

illustrated here), both inner and outer circles were bright-
ened, providing no temporal information. Participants

indicated whether they had seen a + or x target by

providing a delayed discriminatory response at trial end.

To minimize the possibility for motor preparation,

stimulus–response contingencies varied on a trial-by-

trial basis. There were two possible response screens,

and the relative positions (left/right) of the + and �
symbols on the screen specified either a left or right

button press, located under the index and middle fingers

of the right hand. In the examples given here, the correct

response would be a left button press in each case. (b) The
only area preferentially activated by temporal versus neu-

tral cueing in this perceptual version of the temporal

orienting task was left intraparietal sulcus
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minimise motor processing further still, and simi-

lar to the manipulation described earlier in the

Controlling Time section, the stimulus–response

mapping changed from trial to trial so that

participants could not begin to prepare a motor

response as soon as the target had been detected.

Analysis of behavioural data confirmed that

temporal cues significantly enhanced both speed

of motor detection and accuracy of perceptual

discrimination. Crucially, fMRI results revealed

that, as compared to neutral-cue control

conditions, temporal orienting activated left infe-

rior parietal cortex, deep in the intraparietal sul-

cus, whether temporally informative cues were

used to react more quickly or, critically, to

enhance perceptual sensitivity (Fig. 6b), thereby

identifying this region as a core neural substrate

for temporal orienting (see also [124]). Intrigu-

ingly, the level of activity in this region co-varied

differentially with sensory or motor brain regions

as a function of the task being performed: its

activity correlated with activity in bilateral

premotor/motor cortex during the motor detec-

tion task, but with activity in bilateral visual

cortex during the (visual) perceptual discrimina-

tion task [123]. We suggested that, analogous to

the biased competition model of spatial attention

[125, 126], left intraparietal sulcus may generate

a top-down biasing signal for activity in task-

specific sensorimotor areas (i.e. areas recruited

for processing of specific stimulus features or

motor task goals) so as to bias information

processing for stimuli appearing at the cued time.

Endogenous and Exogenous Temporal
Cues

In the temporal orienting studies discussed so far,

timing was measured implicitly by speed of

motor responding or accuracy of perceptual

discriminations. The way in which attention

was oriented to discrete moments in time by the

temporal cues, however, was explicit and volun-

tary. In a very recent study [127], it was not only

the way in which timing was measured that was

implicit but also the way in which attention was

oriented in time. Specifically, we used metrically

structured isochronous rhythms to manipulate

temporal orienting implicitly. By analogy with

the spatial attention literature, isochronous

rhythms direct attention in an automatic,

stimulus-driven “exogenous” manner whereas

symbolic temporal cues direct attention in a

more voluntary, goal-directed “endogenous”

way [128]. We examined whether the temporal

predictability of metrically structured rhythms

would share functional and neural properties

with that of symbolic temporal cues.

Prior fMRI studies of rhythm have compared

temporally regular (isochronous or beat-based) to

temporally irregular sequences, finding SMA and

basal ganglia to be preferentially activated by

temporal regularity (e.g. [15, 129–132]). Very

recently, Marchant and Driver [133] found that

targets were better detected when presented

amidst temporally regular, rather than irregular,

visual stimulus streams, and was accompanied by

activity in bilateral PFC, insula, basal ganglia and,

notably, inferior parietal cortex lateralized to

the left hemisphere. They concluded the left pari-

etal activation was most likely due to the tempo-

rally predictable nature of the isochronous

sequence, which helped optimize target detection.

In our experiment, we also examined brain

activity associated with rhythmically induced

improvements in target detection, but instead of

comparing rhythmic to non-rhythmic sequences,

we compared activity induced by strong versus

weak beats of a metrically structured rhythm.

Critically, all experimental conditions were

equally rhythmic, in order to equate (or cancel

out) processes related to rhythm perception per

se. Behavioural responses were faster for targets

presented on strong, rather than weak, beats,

indicating increased allocation of attention to

strong beats (see also [106, 107]). This

behavioural benefit was accompanied by selective

activation of left inferior parietal cortex [127].

Therefore, although basal ganglia and SMA may

be activated by the perception of rhythm in the

first place (e.g. [131]), left inferior parietal cortex

is activated whenever temporally salient elements

of that rhythm capture attention, thereby

optimising processing of stimuli occurring at that

time. This neuroanatomical distinction once again
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reflects the functional difference between timing

in order to estimate duration (perceiving rhyth-

micity or not) and timing in order to optimize

sensorimotor processing (using rhythmicity to

improve target detection).

Using Action Circuits for Time

To summarise, estimating event duration,

whether the estimate is provided with a motor

response or a perceptual discrimination, typically

recruits basal ganglia, SMA and right inferior

frontal cortex, and can be modulated by dopami-

nergic activity in these areas. By contrast,

orienting attention to predictable moments in

time in order to optimize behaviour, whether

that is to speed motor responding or improve

perceptual accuracy, recruits left inferior parietal

cortex. Strikingly, these are areas that have all

previously been implicated in motor preparation,

with Goldberg [134] proposing that distinct

motor areas would be recruited depending on

whether the movement being prepared was inter-

nally or externally guided. Indeed, numerous

neuroimaging studies of motor preparation have

shown that SMA and prefrontal cortex are

activated particularly by preparation of internally

generated (i.e. self-willed) movements [39, 40,

135–139] and the voluntary intention to act

[140], whereas left parietal and premotor cortices

are activated by preparation of externally cued

movements [141, 142]. This neuroanatomical

distinction between internally and externally

guided movement neatly parallels that between

duration estimation and temporal orienting

respectively, perhaps reflecting a corresponding

functional parallel: responses in a temporal

reproduction task are guided by internal

estimates of elapsed duration whereas responses

in a temporal orienting task are triggered by the

onset of externally timed imperative sensory

stimuli.

Highlighting the neural and functional overlap

between timing and motor control is one thing. A

more intriguing question is to ask what this over-

lap might signify? One possibility, taking us right

back to the beginning of this chapter, is that this

overlap simply reflects the presence of

confounding cognitive processes. For example,

in studies of internally generated motor prepara-

tion (e.g. [135, 138]), activation of SMA and

prefrontal cortex may actually represent the

timing of the intended response rather than selec-

tion of a particular motor effector: indeed,

Wencke et al. [143] have noted that such studies

typically examine the voluntary intention of

when to move, not which motor effector to

move (see also 144). Conversely, in studies of

duration estimation, activation of SMA and pre-

frontal cortex may simply reflect confounding

processes of motor preparation. This is unlikely

however, since SMA and prefrontal cortex are

selectively activated even when duration

estimates are registered with a perceptual dis-

crimination [11], or after motor preparation

and/or execution processes have been rigorously

controlled for (e.g. [20]).

A more appealing possibility is that timing

shares neural circuitry with motor function

because our sense of time is acquired early in

development through action ([145, 146]; see also

[147]). This proposal is similar in principle to

other embodied theories of time perception

although, given the neuroanatomical overlap

between timing and motor areas, I suggest time

is grounded more fundamentally in action, rather

than interoception (e.g. [148, 149]) or motion

perception [150, 151]. These propositions are

not incompatible, of course, since action implies

both motion and interoception. To begin on a

personal note, I noticed that when my children

were younger I often gave them motor reference

frames when they asked how long a particular

period of time was: for example, 15 min was the

time it took to walk to school, or an hour was the

time their judo/ballet class lasted. This anecdotal

account is supported empirically by the results of

developmental studies demonstrating that young

children appear to represent time in motor terms.

Their duration estimates are more accurate when

the duration is filled with an action than when it

is empty [152] and they find it difficult to disso-

ciate an estimate of duration from the motor act

itself. For example, 3 year-olds’ could not repro-

duce the duration of one action with a different
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action (e.g. “press the button. . .now, squeeze the
bulb for the same amount of time”), although by

the age of 5 such temporal transfer was possible

[153]. Moreover, Droit-Volet [154] found that

when 3 year-olds’ were asked to press a button

“longer than before” the duration of their

responses did not differ, but when asked to

press “harder than before” their responses length-

ened. In these young children, duration actually

appears to have been coded as a force parameter

rather than a temporal one. A tantalizing possi-

bility therefore is that action circuits are engaged

early in development to build up and acquire

representations of time, resulting in shared neural

representations for action and the perception of

time. Even in adults, there is evidence that when

motor skills are learned incidentally temporal

information is bound to the specific action in

which it was learnt rather than being represented

at an effector-independent level [113]. Many

neuroscientific theories of different aspects of

cognitive function propose shared neural

representations for action and perception (e.g.

[155–158]). Applied to the temporal domain,

learned associations between particular actions

and their durations might ultimately lead to

shared neural representations for motor acts and

their perceptual (i.e. temporal) correlates.

The association between action and percep-

tion is bidirectional: an internally generated

action may become associated with its perceptual

consequences (action-effect pairing) and an

external stimulus may become associated with

the motor response it evokes (stimulus–response

pairing). It is tempting to consider that this func-

tional distinction maps onto the neuroanatomical

dissociation between duration estimation (basal

ganglia, SMA, prefrontal cortex) and temporal

orienting (left inferior parietal cortex). There-

fore, for action-effect pairings, when an inter-

nally generated action results in a particular

temporal percept (e.g. the child who learns that

the amount of time it takes to walk to school

represents a duration of 10 min), the representa-

tion for time perception is instantiated within the

fronto-striatal motor circuits underlying volun-

tary action. By contrast, for stimulus–response

pairings, when the timing of a sensory stimulus

evokes a particular motor response (e.g. learning

to clap in time to the music), the representation

for timing may instead become instantiated in the

parietal circuits necessary for sensorimotor

learning. Data derived from modern neuroimag-

ing techniques are beginning to converge with

developmental evidence in children to suggest

that the ontogenetic roots of our notion of time

might be embedded within action circuits, an

idea that was first advanced by Guyau [7, 8]

over a hundred years ago.
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82. Elvevåg B, McCormack T, Gilbert A, Brown GD,

Weinberger DR, Goldberg TE. Duration judgements

in patients with schizophrenia. Psychol Med.

2003;33:1249–61.

83. Davalos DB, Kisley MA, Ross RG. Effects of inter-

val duration on temporal processing in schizophre-

nia. Brain Cogn. 2003;52:295–301.

84. Carroll CA, Boggs J, O’Donnell BF, Shekhar A,

Hetrick WP. Temporal processing dysfunction in

schizophrenia. Brain Cogn. 2008;67:150–61.

85. Carroll CA, O’Donnell BF, Shekhar A, Hetrick WP.

Timing dysfunctions in schizophrenia as measured

by a repetitive finger tapping task. Brain Cogn.

2009;71:345–53.

86. Lee KH, Bhaker RS, Mysore A, Parks RW, Birkett PB,

Woodruff PW. Time perception and its neuropsycho-

logical correlates in patients with schizophrenia and in

healthy volunteers. Psychiatry Res. 2009;166:174–83.

87. Eddington AS. The nature of the physical world.

Cambridge: Cambridge University Press; 1928.

88. Goldstone S, Nurnberg HG, Lhamon WT. Effects of

trifluoperazine, chlorpromazine, and haloperidol upon

temporal information processing by schizophrenic

patients. Psychopharmacology (Berl). 1979;65

(2):119–24.

89. Maricq AV, Church RM. The differential effects of

haloperidol and methamphetamine on time estima-

tion in the rat. Psychopharmacology (Berl).

1983;79:10–5.

90. Coull JT, Hwang HJ, Leyton M, Dagher A. Dopamine

precursor depletion impairs timing in healthy

volunteers by attenuating activity in putamen and sup-

plementary motor area. J Neurosci. 2012;32:16704–15.

91. Coull JT, Thiele C. Functional imaging of cognitive

psychopharmacology. In: Frackowiak RSJ et al.,

editors. Human brain function. 2nd ed. New York:

Academic; 2004.

92. Montgomery AJ, McTavish SF, Cowen PJ, Grasby

PM. Reduction of brain dopamine concentration

with dietary tyrosine plus phenylalanine depletion:

an [11C] raclopride PET study. Am J Psychiatry.

2003;160:1887–9.

93. Leyton M, Dagher A, Boileau I, Casey K, Baker GB,

Diksic M, Gunn R, Young SN, Benkelfat C.

Decreasing amphetamine-induced dopamine release

by acute phenylalanine/tyrosine depletion: A PET/

[11C]raclopride study in healthy men. Neuropsycho-

pharmacology. 2004;29:427–32.

94. Postuma RB, Dagher A. Basal ganglia functional

connectivity based on a meta-analysis of 126 posi-

tron emission tomography and functional magnetic

resonance imaging publications. Cereb Cortex.

2006;16:1508–21.

95. Lehericy S, Ducros M, Krainik A, Francois C, Van

de Moortele P, Ugurbil K, Kim D. 3-D diffusion

tensor axonal tracking shows distinct SMA and pre-

SMA projections to the human striatum. Cereb Cor-

tex. 2004;14:1302–9.

96. Alexander GE, DeLong MR, Strick PL. Parallel orga-

nization of functionally segregated circuits linking

basal ganglia and cortex. Annu Rev Neurosci.

1986;9:357–81.

97. Harrington DL, Castillo GN, Greenberg PA, Song

DD, Lessig S, Lee RR, Rao SM. Neurobehavioral

mechanisms of temporal processing deficits in

Parkinson’s disease. PLoS One. 2011;6(2):e17461.

98. Jahanshahi M, Jones CR, Zijlmans J, Katzenschlager

R, Lee L, Quinn N, Frith CD, Lees AJ. Dopaminer-

gic modulation of striato-frontal connectivity during

motor timing in Parkinson’s disease. Brain.

2010;133:727–45.

99. Le Masurier M, Cowen PJ, Sharp T. Fos immuno-

cytochemical studies on the neuroanatomical

sites of action of acute tyrosine depletion in

the rat brain. Psychopharmacology (Berl).

2004;171:435–40.

100. Michon JA. Implicit and explicit representations of

time. In: Block RA, editor. Cognitive models of

psychological time. Hillsdale: Lawrence Erlbaum

Associates; 1980. p. 37–58.

101. Grondin S. From physical time to the first and second

moments of psychological time. Psychol Bull.

2001;127:22–44.

102. Zelaznik HN, Spencer RMC, Ivry RB. Dissociation

of explicit and implicit timing in repetitive tapping

and drawing movements. J Exp Psychol Hum Per-

cept Perform. 2002;28:575–88.

103. Jones CR, Malone TJ, Dirnberger J, Edwards M,

Jahanshahi M. Basal ganglia, dopamine and tempo-

ral processing: performance on three timing tasks on

and off medication in Parkinson’s disease. Brain

Cogn. 2008;68:30–41.

104. Merchant H, Zarco W, Bartolo R, Prado L. The

context of temporal processing is represented in the

multidimensional relationships between timing

tasks. PLoS One. 2008;3(9):e3169.

262 J.T. Coull



105. Grondin S. Timing and time perception: a review of

recent behavioural and neuroscience findings and

theoretical directions. Atten Percept Psychophys.

2010;72:561–82.

106. Jones MR. The patterning of time and its effects on

perceiving. Ann N Y Acad Sci. 1984;423:158–67.

107. Jones MR. Attending to sound patterns and the role

of entrainment. In: Nobre AC, Coull JT, editors.

Attention and time. Oxford: Oxford University

Press; 2010. p. 137–330.

108. Woodrow H. The measurement of attention. Psychol

Monogr. 1914;17.

109. Posner MI, Snyder C, Davidson BJ. Attention and the

detection of signals. J Exp Psychol. 1980;109:160–74.

110. Coull JT, Nobre AC. Where and when to pay atten-

tion: the neural systems for directing attention to

spatial locations and to time intervals as revealed by

both PET and fMRI. J Neurosci. 1998;18:7426–35.

111. Corbetta M, Kincade JM, Ollinger JM, McAvoy MP,

Shulman GL. Voluntary orienting is dissociated

from target detection in human posterior parietal

cortex. Nat Neurosci. 2000;3(3):292–7.

112. Nobre AC. The attentive homunculus: now you see

it, now you don’t. Neurosci Biobehav Rev. 2001;25

(6):477–96.

113. O’Reilly JX, Mesulam MM, Nobre AC. The cerebel-

lum predicts the timing of perceptual events. J

Neurosci. 2008;28(9):2252–60.

114. Rushworth MFS, Nixon PD, Renowden S, Wade DT,

Passingham RE. The left parietal cortex and motor

attention. Neuropsychologia. 1997;35:1261–73.

115. Rushworth MF, Johansen-Berg H, Gobel SM, Devlin

JT. The left parietal and premotor cortices: motor

attention and selection. Neuroimage. 2003;20(S1):

S89–100.

116. Cotti J, Rohenkohl G, Stokes M, Nobre AC, Coull

JT. Functionally dissociating temporal and motor

components of response preparation in left

intraparietal sulcus. Neuroimage. 2011;54:1221–30.

117. Astafiev SV, Shulman GL, Stanley CM, Snyder AZ,

Van Essen DC, Corbetta M. Functional organization

of human intraparietal and frontal cortex for

attending, looking, and pointing. J Neurosci.

2003;23:4689–99.

118. Eimer M, Forster B, Velzen JV, Prabhu G. Covert

manual response preparation triggers attentional

shifts: ERP evidence for the premotor theory of

attention. Neuropsychologia. 2005;43:957–66.

119. Griffin IC, Miniussi C, Nobre AC. Orienting atten-

tion in time. Front Biosci. 2001;6:D660–71.
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Motor and Perceptual Timing
in Parkinson’s Disease

Catherine R.G. Jones and Marjan Jahanshahi

Abstract

Neuroimaging has been a powerful tool for understanding the neural

architecture of interval timing. However, identifying the critical brain

regions engaged in timing was initially driven by investigation of

human patients and animals. This chapter draws on the important contri-

bution that the study of patients with Parkinson’s disease (PD) has made in

identifying the basal ganglia as a key component of motor and perceptual

timing. The chapter initially describes the experimental tasks that have

been critical in PD (and non-PD) timing research before systematically

discussing the results from behavioural studies. This is followed by a

critique of neuroimaging studies that have given insight into the pattern of

neural activity during motor and perceptual timing in PD. Finally, discus-

sion of the effects of medical and surgical treatment on timing in PD

enables further evaluation of the role of dopamine in interval timing.

Keywords

Parkinson’s disease � Basal ganglia � Dopamine � Motor timing � Perceptual
timing � Temporal processing � Internal clock

Introduction

Psychological research has a long history of

being informed by clinical populations. Atypical

performance in a patient group open a window

for understanding the neural mechanisms of a

given psychological process. This has been par-

ticularly true of Parkinson’s disease (PD) and

research into interval timing, with a focus on

both motor and perceptual timing in the

milliseconds and seconds range. The following

chapter summarizes the contribution that

research on PD has made to the field of interval

timing. Starting with descriptions of the key

timing tasks used, the chapter then goes on to

review evidence from behavioural studies of

motor and perceptual timing in PD. This is then

supplemented by a summary of neuroimaging
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studies of timing in PD, as well as investigation

of studies that have analyzed treatment effects.

To enable conclusions to be drawn we will pres-

ent the percentage of studies showing evidence

of impairment in PD across a range of different

task factors. We have a relatively small pool of

studies, which differ in terms of methodology

and experimental rigor, which means that the

calculation of percentages has limitations. How-

ever, whilst recognizing this caveat, it also

proves a valuable approach for identifying

patterns in the results across tasks.

Parkinson’s Disease as a Model
of Basal Ganglia Mediated Dysfunction
in Temporal Processing

Parkinson’s disease (PD) is neurodegenerative

movement disorder associated with the loss of

dopamine producing neurons in the substantia

nigra pars compacta, a midbrain structure. This

pathological process has implications for the effi-

cacy of the nigrostriatal dopaminergic pathway

that transmits dopamine from the substantia nigra

to the striatum, the input area of the basal

ganglia. Thus, PD is a disorder of dopamine

deficiency within the basal ganglia, a group of

closely connected nuclei that play an important

role in the control of movement, cognition and

motivation. The cardinal symptoms of PD

include akinesia, bradykinesia, rigidity and

tremor. Akinesia translates as ‘lack of move-

ment’ and manifests as symptoms including

difficulty initiating movement, and reduced

frequency and amplitude of spontaneous move-

ments. Affected movements include blinking,

facial expression and gesticulation during

speech. Akinesia also leads to the characteristic

shuffling and short stepping during walking,

alongside reduced arm swinging. Bradykinesia

refers to the slowness in executing movements,

whereas rigidity is due to increased muscle tone.

These features are seen alongside a characteristic

4–6 Hz tremor present at rest. Other clinical

symptoms can include pain, sleep disturbance,

psychiatric disturbance including depression,

apathy and anxiety, cognitive impairment, and

dementia in the later stages (see [1] for a review).

The most common treatment for PD is dopami-

nergic medication to increase the amount of

dopamine in the brain and redress the neuro-

chemical imbalance in the basal ganglia. A

more invasive surgical treatment option is to

directly stimulate key targets in the basal ganglia

using chronically implanted electrodes, a tech-

nique called deep brain stimulation (DBS).

The slowness of movement in PD has led to

interest in characterizing the temporal processing

profile of patients with this disorder. From an

initial case study exploring motor timing in PD

[2], the field has expanded to encompass a range

of motor and perceptual timing tasks. Testing

patients both ‘on’ and ‘off’ medication or DBS

has also enabled researchers to directly evaluate

the impact of the efficacy of dopaminergic neuro-

transmission and the manipulation of striato-

frontal connectivity on timing performance. This

research has dovetailed with the quest to charac-

terize the neural substrates of an ‘internal clock’

that meters time (e.g. [3]). Thus, investigation of

temporal processing in PD has been instrumental

in the argument that the basal ganglia are a critical

component of the internal clock. This argument

has been bolstered by more recent neuroimaging

research that has found evidence of basal ganglia

activation during a range of tasks involving tem-

poral processing (see [4] for a review).

Tasks Commonly Used to Study
Perceptual and Motor Timing

Motor timing can be considered as any temporal

process where the temporal decision is intrinsi-

cally tied with movement. For example, the split

second adjustments required to catch a ball or the

ability to clap in rhythm with others. In contrast,

perceptual timing is a subjective judgment of

perceived time and is not defined by movement.

For example, perceptual timing processes enable

a person to judge that their kettle has boiled or to

estimate that a friend travelling a familiar route

will have returned home. Perceptual timing

sometimes includes a motor element and there

is some grey area in these distinctions. However,
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commonly motor timing is a description reserved

for repetitive and continuous movements (e.g.

clapping in time with music), as opposed to a

discrete movement that may be employed to

indicate a temporal decision but can be separated

from the perceptual decision (e.g. returning to the

kitchen because the kettle is judged to have

boiled). Studies have shown a significant corre-

lation between performance on motor and per-

ceptual timing tasks (e.g. [5, 6]), leading many to

assume a common neural substrate.

Classic motor and perceptual timing tasks are

summarized in Table 1 and the most frequently

used with PD patients are described in more

detail below. Figure 1 illustrates the duration

discrimination, time estimation, time production

and time reproduction tasks. Tasks commonly

use a computerized presentation of simple audi-

tory (e.g. pure tone) or visual (e.g. small square)

stimuli to denote the intervals being timed. The

duration being estimated can either be ‘filled’ e.

g. a stimulus such as an auditory tone is present

for the duration of the interval, or ‘unfilled’ e.g.

the onset and offset is bounded by two short

auditory tones but the actual interval is empty

(e.g. [25]). For certain tasks, sometimes the inter-

val is filled with counting or reading aloud ran-

dom numbers (e.g. [30]), which will be discussed

in more detail below. The duration discrimina-

tion task is the most popular ‘pure’ method of

measuring perceptual timing. The task is consid-

ered pure as movement is not tied to the temporal

decision. In this task, two durations are

presented, typically sequentially (although see

[24] for an alternative approach), and the partici-

pant has to make a discrimination based on their

durations. This might be to judge which interval

is longer (e.g. [20]), or to decide whether the

second interval is longer or shorter than the first

(e.g. [11]). Either a set number of trials and

duration differences are presented [24] or, more

commonly, an adaptive staircase is presented to

calculate the threshold at which (for example)

75 % of discriminations are correct (e.g. [20]).

It is important in studies with a patient popula-

tion that group differences can be designated as

specific to the process of interest and not to the

general perceptual and cognitive demands (e.g.

stimulus detection, attention, memory, decision

making). This issue is particularly pertinent

when investigating a clinical group such as PD,

where cognitive deficits are well documented

(e.g. [38]). Unfortunately, most timing tasks can-

not be matched with an adequate control task and

researchers rely on carefully matched groups

(age, IQ, education), as well as screening for

cognitive impairment and psychiatric problems

(depression, apathy and anxiety) that may addi-

tionally impact on timing performance. An

advantage of the duration discrimination task is

that control tasks can be used. Most studies of PD

have used an auditory version of the duration

discrimination task and a sound intensity or

frequency discrimination control task (e.g. [11,

12, 25]). Line length or colour discrimination are

common options when a visually presented dura-

tion discrimination task is used, although not all

studies include such a control task (e.g. [22, 24]).

Typically, control discrimination tasks are

performed with proficiency by PD patients (e.g.

[11, 25]), which adds weight to the argument for

a specific timing deficit. However, a major caveat

is that all of these control tasks can be solved in

the first few hundred milliseconds; for example,

it is not necessary to attend to the stimulus for its

entire duration to decide its frequency. This is in

contrast to the duration discrimination task,

which makes it intrinsically more cognitively

demanding. The neuroimaging field has led the

way in designing inventive control tasks that

match well for additional demands, including

attention, working memory and motor prepara-

tion. These are covered comprehensively in

seventh chapter of this book.

Time estimation assesses how well a partici-

pant can apply temporal labels to intervals of

time. For example, the participant is presented

with an interval and asked to estimate its length

to the nearest second (e.g. [29]). Rather than

relying on direct comparative judgments, this

task assesses the ability to map understanding

of the common units of time to an internal

sense of time passing. A very similar task,

which also relies on the participant’s ability to

label units of time, is the time production task.

Here, the participant is asked to indicate when
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they think a pre-specified period of time has

elapsed, for example, to press a button when

they think 60 s has passed (e.g. [31]). The time

reproduction task requires the participant to

attend to an interval and then reproduce the dura-

tion by pressing a response button when they

think an identical period of time has elapsed

(e.g. [31]). The latter three tasks can vary in

their design, but one crucial feature is whether

participants are instructed to count. Counting out

the intervals, at a self-paced and self-preferred

[32], self-paced but specified (e.g. 1 s) (e.g. [29,

30]), or externally paced [30] rate, introduces a

timed motor element that can confound interpre-

tation. It becomes unclear whether the task is

measuring perception of a discrete interval or

the ability to time a short continuous sequence

that is intrinsically tied to motor production.

Thus, many purported perceptual timing tasks

have an implicit motor timing element. As an

Table 1 Summary of motor and perceptual temporal processing tasks, the key processes measured, and studies that

have used the tasks in Parkinson’s disease

Task Description What is measured Studies using task

Motor timing

Synchronization-

Continuation task/

repetitive tapping

task

Tap in time with a regularly paced

stimulus (synchronization phase) and

then maintain the rhythm

(continuation phase) in the stimulus’s

absence

Paced and

unpaced motor

timing

Cerasa et al. [7]; Claassen et al. [8];

Duchek et al. [9]; Elsinger et al. [10];

Harrington et al. [11]; Ivry and Keele

[12]; Jahanshahi et al. [13]; Jones

et al. [14]; Joundi et al. [15];

Merchant et al. [6]; O’Boyle et al.

[16]; Pastor et al. [17]; Spencer and

Ivry [18]; Wojtecki et al. [19]

Perceptual timing

Duration

discrimination

Pairs of intervals are presented.

Participants indicate which is longer/

shorter

Detection of a

temporal

difference

between two

durations

Guehl et al. [20]; Harrington et al.

[11]; Harrington et al. [21]; Hellström

et al. [22]; Ivry and Keele [12];

Rammsayer and Classen [23]; Riesen

and Schnider [24]; Wearden et al.

[25]; Wojtecki et al. [19]

Peak-interval

procedure

Participants reproduce a learnt

interval by pressing a response button

repeatedly within the boundaries of its

judged offset

Reproduction of a

learnt interval

Malapani et al. [26]; Malapani et al.

[27]

Temporal

bisection

Participants learn short and long
standard intervals. They then classify

subsequent intervals as more similar

to the short or long standards

Classifying

stimuli based on

duration

Merchant et al. [6]; Smith et al. [28];

Wearden et al. [25]

Temporal

generalization

Participants learn a standard interval.

They then judge if subsequent

intervals are the same length as the

standard

Judge if stimuli is

same or different

to a standard

Wearden et al. [25]

Time estimation A temporal interval is presented.

Participants are asked to estimate the

duration, using seconds and minutes

Assigning a

temporal label to a

duration

Lange et al. [29]; Pastor et al. [30];

Riesen and Schnider [24]; Wearden

et al. [25]

Time production Participants press a button when a

defined interval of time (e.g. 60 s) has

elapsed

Subjective time

sense for a given

unit of time

Jones et al. [31]; Lange et al. [29];

Perbal et al. [32]; Wild-Wall et al.

[33]; Wojtecki et al. [19]

Time reproduction A temporal interval is presented.

Participants press a button to indicate

when an identical interval has elapsed

Reproduction of a

presented interval

Jones et al. [31]; Koch et al. [34];

Koch et al. [35]; Koch et al. [36];

Merchant et al. [6]; Pastor et al. [30];

Perbal et al. [32]; Torta et al. [37];

Wojtecki et al. [19]

Stimuli are typically simple pure tones or simple visual displays (e.g. a square on a computer screen)

268 C.R.G. Jones and M. Jahanshahi



additional confound, the psychophysical

properties of chronometric counting and interval

timing are different, with only the variance in

interval timing conforming to the scalar property

[39]. Arguably, chronometric counting may still

activate the internal clock (e.g. to generate indi-

vidual counts), but it is a less pure measure of

internal timing processes and results in more

precise estimations [40]. Cognizant of these

issues, some studies take the opposite approach

and require that random numbers are read aloud

to inhibit counting (e.g. [24, 26, 35]). However,

managing the competing demands of two sepa-

rate tasks is differentially more demanding for

PD patients than healthy controls (e.g. [32, 41])

and the confounding motor element is still pres-

ent. Some researchers have asked participants

not to count (e.g. [31]). The downside of this is

that the data become more noisy as it is difficult

to control what strategies participants employ

when timing intervals.

Three classic tasks from the animal timing

literature, the peak interval procedure, the tem-

poral generalization task and the temporal

bisection task, have been used to good effect

when investigating perceptual timing in PD. All

three tasks plot a response curve and schematic

examples of these curves, along with interpreta-

tion of results can be seen in Fig. 2. Malapani and

colleagues have used an adaptation of the peak

interval procedure in humans [26, 27]. The task

can be thought of as a time reproduction task in

which many intervals are reproduced and then

plotted to produce a frequency distribution. The

participants are first trained in the target duration

by monitoring the length of time a rectangle is

displayed on a computer screen. In the testing

phase, the rectangle appears but remains on the

screen for a longer period. Participants have to

press a button when they think the target duration

has elapsed. Unlike a classic time reproduction

task the participants are told to make multiple

guesses on each trial, pressing the button before

the estimated duration has elapsed and

continuing until they judge it has passed. Feed-

back regarding accuracy is provided. This proce-

dure enables responses to be plotted, showing a

peak at the time where responses are most fre-

quent. With time plotted on the x axis, a curve

with a peak shifted to the right would imply

relative overestimation, whereas a peak shifted

to the left would imply underestimation. The

human version of the temporal bisection task

(e.g. [25]) has participants learn two standard

durations, one ‘short’ and one ‘long’. Once

learnt, the participant is presented with a range

of intermediate durations, spaced at equal

intervals, as well as the standard durations.

They have to classify each duration as more

similar to the ‘short’ or ‘long’ standards that

they learnt. The data produces a sigmoid curve,

plotting the probability of making a ‘long’

response as a function of stimulus duration.

With durations plotted on the x axis, a leftward

Fig. 1 Illustration of the

four most popular

perceptual timing tasks.

Blue circles indicate
stimulus presentation

(auditory or visual) and red
circles indicate the
participant’s response
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shift in the curve reflects a relative overestima-

tion of time. The bisection point (or point of

subjective equality) is the duration at which

long and short responses occur with equal proba-

bility. In the human version of the temporal gen-

eralization task (e.g. [25]), participants are

initially presented with examples of a standard

duration that becomes learnt. During the testing

phase, a range of different durations are

presented including the standard duration. After

each interval presentation the participant

responds ‘yes’ if they judge that the interval is

the standard duration and ‘no’ if they think

otherwise, with feedback given. The proportion

of ‘yes’ responses for each duration are plotted to

create a temporal generalization gradient, which

illustrates the probability of a response as a func-

tion of signal duration. With duration plotted on

the x axis, a rightward skew of the generalization

function would indicate overestimation of the

standard duration, whereas a leftward skew

would suggest underestimation.

Motor timing is almost exclusively measured

using the synchronization-continuation task,

also known as the repetitive tapping task. The

task assesses the ability to entrain a motor

response to a regularly paced cue and then to

maintain the learnt rhythm without the pacing

cue (all studies discussed in this chapter use an

auditory cue). Thus, there are two phases to the

task, which are analyzed separately. In the syn-

chronization phase the participant is required to

tap in time to regularly paced stimuli, typically a

pure tone. Tapping usually uses the index finger

of the dominant had and the inter tone interval

of the pacing tone is generally within the range of

a couple of seconds, most commonly around

500 ms. After a certain number of taps the tone

ceases and the participant has to maintain the

entrained rhythm as accurately as possible. This

Fig. 2 Schematic illustration of the (a) peak interval

procedure, (b) temporal bisection task and (c) temporal

generalization task. For each illustration, Group 1

illustrates typical performance, while Group 2 illustrates

relative overestimation compared to Group 1. For (a) the

duration being reproduced is 8 s, for (b) the standard

durations are 400 and 1,600 ms, and for (c) the standard

duration is 1,000 ms
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is the continuation phase. The accuracy of the

tapping rate, usually measured by the mean inter-

response interval, is important in determining

whether tapping is unusually slow or fast. For

measuring the variability of responses, Wing and

Kristofferson [42, 43] proposed a model that

decomposed tapping variability into ‘clock’ and

‘motor’ components. The model assumes that a

centralized internal clock that meters time can be

dissociated from a motor implementation pro-

cess, which is triggered by the clock. Although

highly influential, the model has certain caveats.

First, it assumes that the clock and motor pro-

cesses are independent and second it does not

allow for drift in the length of the participant’s

taps, despite this being a common phenomenon

(e.g. [44, 45]). The Wing and Kristofferson [42,

43] model was designed to delineate the

variability of unpaced tapping, which has meant

that very few studies report performance on the

synchronization section of the task. However, the

synchronization phase provides important infor-

mation about motor timing performance, partic-

ularly as a comparison with the continuation

phase. For example, performance on the contin-

uation phase would be interpreted differently if

the ability to keep pace with the tone in the

synchronization phase was poor, compared to if

it was good.

It is important to note that varying durations

have been used in behavioural timing studies.

Perceptual timing tasks range between 50 ms

and 120 s, which is in contrast to a far narrower

span of between 250 and 2,000 ms for motor

timing (see Tables 2 and 3). For perceptual

timing tasks, time estimation and time produc-

tion tasks tend to use longer intervals than the

duration discrimination and time reproduction

measures. As duration discrimination and time

reproduction tasks involve remembering an

interval within a trial, the durations are kept

short to reduce interference from cognitive

demands. A complete understanding of motor

and perceptual timing in PD requires direct

comparison of task performance using the

same durations. Particularly as different time

ranges (e.g. millisecond vs. seconds-range) are

thought to recruit different neural regions (e.g.

[3, 46]) and patients with PD can show differen-

tial performance across different time ranges

(e.g. [14]).

Behavioural Studies of Temporal
Processing in Parkinson’s Disease

Perceptual Timing in Parkinson’s
Disease

A summary of the results from four of the most

popular perceptual timing tasks can be seen in

Table 2. When investigating perceptual timing in

a group with a movement disorder the most

effective tasks, and certainly the most easily

interpretable, dissociate movement from the tem-

poral decision. The duration discrimination task

fits this criterion and performance of patients

with PD is compromised in six of ten tasks

(60 %) across nine published studies (see

Table 2). Using a slightly different paradigm,

where a ball moved across a computer screen,

individuals with PD showed difficulty at

distinguishing velocities as low or high speed

[47]. However, the same individuals were suc-

cessfully able to predict the time at which the

moving ball would reach the bottom edge of the

screen. This indicates intact temporal prediction

in PD, which has also been reported elsewhere

[48].

Other perceptual measures that are dissociated

from motor performance are the temporal bisec-

tion and temporal generalization tasks. Using

temporal bisection, Merchant et al. [6] found

evidence of increased variability when patients

were tested ‘off’ medication, while Smith et al.

[28] found impairment in PD patients tested ‘on’

medication in both the visual and auditory

modality for durations of 1–5 s, although not

for a shorter range of 100–500 ms. However,

Wearden et al. [25] draw attention to a probable

miscalculation of the key timing variables in

Smith et al. [28]. In contrast, Wearden et al.

[25] found no evidence of impairment in either

the temporal bisection or temporal generalization

task within the milliseconds range (100–800 ms),

and no effect of dopaminergic medication on
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Table 2 Summary of findings from studies of perceptual timing in patients with Parkinson’s disease when compared

to healthy controls

Study

Medication

state Modality Counting

Type of

interval Standard duration Results

Duration discrimination

Guehl et al. [20]a Off Auditory No Unfilled 50 ms Impaired

Harrington et al. [11] On Auditory No Unfilled 300 and 600 ms Impaired

Harrington

et al. [21]c
Off Auditory No Unfilled 300 and 600 ms Impaired

Hellström et al. [22] On Auditory No Filled 400, 800, 1,200,

1,600 ms

No impairment at

group level,

although gender

differences

reported

Ivry and Keele [12] On Auditory No Unfilled 400 ms No impairment

Rammsayer and

Classen [23]

On Auditory No Unfilled 50 ms Impaired

Riesen and Schnider

[24]

On Visual No Filled 200 ms and 1 s Impaired

Wearden et al. [25] On & Off Auditory No Short delay

condition:

both; long

delay

condition:

filled

400 ms with short

delay between the

two tones

(1,100 ms);

350–650 ms with

long delay (2, 4,

8 s)

Short delay: No

impairment

Long delay:

Impairment

Wojtecki et al. [19]a Off Auditory No Unfilled 1,200 ms No impairment

Peak-interval procedure

Malapani et al. [26] On & Off Visual Random

number

Filled 8, 21 s Impaired accuracy

for 21 s. Greater

variability for 8 s

(Off only)

Temporal bisection

Merchant et al. [6] On & Off Auditory No Filled 350, 1,000 ms Greater variability

(Off only)

Smith et al. [28] On Both

separate

No Unfilled 100, 500 ms and

1,000, 5,000 ms

Impaired for long

(1,000, 5,000 ms)

intervals

Wearden et al. [25] On & Off Auditory No Filled 200, 800 ms No impairment

Temporal generalization

Wearden et al. [25] On & Off Auditory No Filled 400 ms No impairment

Time estimation

Lange et al. [29] On & Off – Yes Filled 10, 30, 60 s Underestimation

(Off only)

Pastor et al. [30] Off Visual Yes Filled 3, 9, 27 s Underestimation

Riesen and

Schnider [24]

On Visual Random

number

Filled 12, 24, 48 s No impairment

Wearden et al. [25] On & Off Auditory No Filled 10 durations

between 77 and

1,183 ms

No impairment

Time production

Jones et al. [31] On Auditory No Unfilled 30, 60, 120 s Overestimation

Lange et al. [29] On & Off – Yes Filled 10, 30, 60 s Overestimation

(Off only)

(continued)
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Table 2 (continued)

Study

Medication

state Modality Counting

Type of

interval Standard duration Results

Perbal et al. [32] On Visual Yes, and a

random

number

condition

Filled 5, 14, 38 s Counting

condition: No

impairment

Random number

condition:

underestimation

Wild-Wall et al. [33] On Visual No Filled 1,200 ms No impairment

Wojtecki et al. [19]a Off Visual No Unfilled 5, 15 s Underestimation at

15 s

Time reproduction

Jones et al. [31] On Auditory No Unfilled 250, 500, 1,000,

2,000 ms

Reduced

variability.

Violation of Scalar

property

Koch et al. [34]a Off Visual Random

number

Filled 5, 15 s Overestimate 5 s,

Underestimate 15 s

Koch et al. [35] Off Visual Random

number

Filled 5, 15 s Left-hemi PD:

Overestimate 5 s,

underestimate 15 s

Right-hemi PD:

Overestimate 5 s

Koch et al. [36] On & Off Visual No Filled Short: 400, 450,

500, 550, 600.

Long: 1,600,

1,800, 2,000,

2,200, 2,400 ms

Standard

condition:

Underestimation

of long intervals.

1 h delay between

short and long

trials: No

impairment

Merchant et al. [6] On & Off Auditory No Unfilled 350, 450, 550,

650, 850,

1,000 ms

Increased

variability

Pastor et al. [30]b Off Visual Yes Both 2, 3, 4.5, 6, 9 s Overestimation

Perbal et al. [32] On Visual Yes, and a

random

number

condition

(during

encoding

only)

Filled 5, 14, 38 s Counting

condition: No

impairment

Random number

condition:

increased

variability

Torta et al. [37]a On & Off Both No Both Seconds-range,

varied for each

participant

Unfilled: No

impairment

Filled (simple

motor task during

encoding phase):

Underestimation

(off only)

Wojtecki et al. [19]a Off Auditory No Unfilled 5, 15 s No impairment

aPatients had undergone STN DBS, data in the table are reported when stimulation was turned off
bPastor et al. [30] tested five variations of the time reproduction task. As all tasks produced the same result we present

the data as one result in the table, with reference to the different manipulations discussed in the chapter
cData collected during a neuroimaging (fMRI) experiment
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performance. Of the studies that have reported

on the time estimation and time production

tasks, both of which require application of a

temporal label to intervals, 50 % (2 of 4) of

time estimation tasks and 67 % of time produc-

tion tasks (4 of 6) record impairment in PD (see

Table 2). The time reproduction task is a signif-

icant source of difficulty in PD on 67 % (8 of 12)

occasions. However, the pattern of findings is

inconsistent, with reports of both increased and

reduced variability and of over and

underestimation. Notably, the time reproduction

task has the greatest motor demand of all per-

ceptual tasks, with a short temporal decision

(commonly < 5 s) having to be made precisely

through a motor response. However, studies that

have required two different intervals to be

reproduced in the same session have found that

the longer interval is underestimated, while the

shorter interval is overestimated (see below for

a full description of this ‘migration’ effect) (e.g.

[34–36]). This effect is not compatible with a

simple motor explanation (e.g. slowed motor

execution).

Table 3 Summary of findings from studies of the synchronization-continuation task in Parkinson’s disease when

compared to healthy controls

Study Medication

Duration

(ms)

Synchronization:

variability

Synchronization:

accuracy

Continuation:

variability

Continuation:

accuracy

Cerasa et al. [7]a Off 750 Increased PD ¼ Controls PD ¼ Control PD ¼ Control

Duchek et al. [9] On 550 – – Decreased (MV)

PD ¼ Control

(SD)

PD ¼ Control

Elsinger

et al. [10]a
On & Off 600 Increased PD ¼ Control Increased Faster

Harrington

et al. [11]

On 300, 600 – – Increased (CV,

TV)

PD faster

Ivry and Keele

[12]

On 550 – – PD ¼ Control PD faster

Jahanshahi

et al. [13]a
On & Off 1,000 PD ¼ Control PD ¼ Control PD ¼ Control PD ¼ Control

Jones et al. [14] On & Off;

De novo

250, 500,

1,000,

2,000

No consistent

pattern across

durations

Faster at 250 ms No consistent

pattern across

durations

Faster at

250 ms

Joundi et al. [15]b On 500, 2,000 Increased (CoV) PD ¼ Control Increased (CoV,

CV, MV)

PD ¼ Control

Merchant

et al. [6]

On & Off 350, 450,

550, 650,

850, 1,000

– – Increased (SD) Not reported

O’Boyle

et al. [16]

On & Off 550 – – Increased (CV,

MV, TV) (only

CV sig. when On)

PD faster

(only sig.

when On)

Pastor et al. [17] On & Off 400, 500,

667,

1,000,

2,000

– PD slower

at 400 and

500 ms

Increased (CV,

MV, TV)

PD slower at

400 and

500 ms

Spencer and

Ivry [18]

On & Off 550 – – PD ¼ Control PD ¼ Control

Wojtecki

et al. [19]b
Off 800 PD ¼ Control PD ¼ Control PD ¼ Control PD ¼ Control

CoV coefficient of variation, SD standard deviation; using the Wing and Kristofferson [42, 43] model: CV clock

variance, MV motor variance, TV total variance. The Wing and Kristofferson model is only applied in the continuation

phase
aData collected during a neuroimaging (PET or fMRI) experiment
bPatients had undergone STN DBS, data reported in the Table are when stimulation was turned off
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The pattern of findings for different tasks can

prove illuminating. Lange et al. [29] and Pastor

et al. [30] report a compelling finding of

underestimation in patients with PD when decid-

ing the length of a temporal interval (time esti-

mation) and overestimation when producing a

temporal interval (time production). This pattern

is consistent with an internal clock that runs at a

slowed rate. However, in both studies the

participants were trained to count aloud at a rate

of 1 digit per second, which does not give a true

estimate of perceptual deficits (see above). How-

ever, Jones et al. [31] found similar evidence of

overestimation in time production in PD but this

time in a condition where participants were

explicitly told not to count (although see [19]

for a different pattern of results).

Perceptual timing research in PD has uncov-

ered another important phenomenon, the ‘migra-

tion’ effect. When presented in consecutive

blocks, it has been noted that shorter intervals

(<10 s) are overestimated while longer intervals

(�15 s) are underestimated, causing an apparent

‘migration’ [26, 27]. Using the peak interval

procedure in a series of experiments that

manipulated task factors including medication

state, Malapani and colleagues concluded that

two types of dysfunction were evident in PD

[27]. First, when individuals with PD learn an

interval ‘off’ medication they subsequently over-

estimate the interval when medicated; this

indicates a storage dysfunction. Second, when

individuals with PD reproduce the intervals

when ‘off’ medication (regardless of their medi-

cation state when learning) they produce the

migration effect; this indicates a retrieval dys-

function. Importantly, the data indicate that the

memory for the learnt durations is the source of

the temporal deficit, rather than the ‘clock’ pro-

cess itself. Using the time reproduction task, a

similar migration effect was reported for

intervals of 5 and 15 s [34, 35]. In a study using

shorter intervals (500 and 2,000 ms), Koch et al.

[36] found significant underestimation of the

2,000 ms in PD group. However, when the

short and long intervals were separated by a

delay of an hour, the migration effect

disappeared. Thus, Koch et al. [36] suggest the

phenomenon has a general cognitive explanation,

such as set-shifting. In a novel re-working of the

time reproduction task, Torta et al. [37] required

the time taken for the participant to perform an

activity (unscrewing a bolt from a nut) to be

reproduced, without replication of the activity

(participants had to tap a desk to mark the onset

and offset of the interval). This meant that a filled

interval was learnt in the context of a dual task

and reproduced in an unfilled context. Whereas

performance was unimpaired in a standard ver-

sion of the time reproduction task, the group with

PD significantly underestimated on the motor

version. The authors interpret the data in terms

of attentional allocation (e.g. [49]), arguing that

the motor task is demanding for the patients and

therefore routes attention away from the second-

ary task of time perception. The relative lack of

attention given to temporal processing leads to

underestimation.

The Importance of Cognitive Factors
These findings lead to an important area of

debate, does the temporal deficit in PD reflect

the dysfunction of critical timing regions or is

impairment of global cognitive processes (e.g.

attention, memory, executive skills) the root

cause? One way of testing the specificity of the

temporal deficit is to use carefully selected con-

trol tasks. Studies have commonly found a deficit

on the duration discrimination task in PD, while

performance on other types of discrimination

task (e.g. frequency) remains unaffected (e.g.

[11]). However, as discussed above, whether

these control tasks are sufficiently cognitively

demanding is questionable. Using a rhythm dis-

crimination task, Grahn and Brett [50] showed

that participants with PD were as proficient as

controls when the rhythm did not contain a beat

but showed poorer performance when a beat was

present. This study is particularly notable as

rhythms with a beat structure are easier to dis-

criminate than non-beat rhythms. A specific defi-

cit in the easier beat condition suggests that

global and non-specific cognitive or perceptual

difficulties are not the explanation.

Another way for testing the independence of

the temporal deficit is to measure the extent to
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which cognitive impairment is correlated with

timing task performance. Using exploratory fac-

tor analysis, Jones et al. [31] found that the time

production of seconds range intervals (30–120 s)

and a measure of attention (Paced Auditory

Serial Addition Test) formed a common factor,

distinct from time reproduction (250–2,000 ms)

and a warned and unwarned reaction time task.

This supports the hypothesis that cognitive

mechanisms relate to the production of time

intervals in the seconds-to-minutes range, a cog-

nitive load that is not common to all timing tasks.

In a rigorous study testing participants with PD

on five different perceptual timing tasks,

Wearden et al. [25] found that the only task that

significantly discriminated the group with PD

from the control group was a duration discrimi-

nation task that required the standard interval to

be held in memory for 2–8 s. Wearden et al. [25]

comment that studies that find temporal

processing differences in PD tend to use tasks

where two stimuli have to be processed. They

therefore suggest a cognitive explanation for the

difficulties, for example, impaired sequential

processing or attention-switching. This interpre-

tation aligns with Riesen and Schnider [24] who

found impairment on a duration discrimination

task using an unusual protocol where the two

intervals were presented simultaneously but

with different onsets and offsets. They suggest

their results may be best explained by a failure of

divided attention or working memory, although

further research using additional manipulations

(e.g. a comparison with sequential durations)

would be needed to more fully support this inter-

pretation. Guehl et al. [20] reported that

participants with PD were impaired on a duration

discrimination task with a standard interval of

50 ms (defined by two clicks) and a comparison

interval that was longer to varying degrees. How-

ever, they were unimpaired on a very similar

duration discrimination task where trains of

clicks paced at 50 ms intervals were used.

Participants had to determine which of the two

trains of isochronous clicks had one long interval

(>50 ms) in the middle. Thus, although the

durations were identical the context they were

embedded in was different. One interpretation

suggested by the authors was that the first task

requires a greater allocation of attentional

resources, as the onset of the stimuli cannot be

predicted as easily. However, Merchant et al. [6]

found that performance on a range of cognitive

tasks (working memory, go/no-go reaction time

and verbal learning) did not discriminate those

with PD who did well or poorly on a range of

motor and perceptual timing tasks with intervals

�1 s. This suggests that impaired memory and

attention were not driving timing difficulties in

their sample. However, surveying across all of

the studies, there seems to be evidence that cog-

nitive factors can influence performance on per-

ceptual timing tasks in PD, which aligns with the

documented cognitive deficits of this group. Of

course, this does not preclude that genuine clock

dysfunction is also present. Certainly, data such

as those presented by Grahn and Brett [50] are

compelling. Also, the finding of duration dis-

crimination deficits using very short intervals

(50 ms) (e.g. [20, 23]) compared to preserved

performance using equivalent tasks with much

longer durations (e.g. [19, 22]), albeit in different

samples, would not be predicted by a purely

cognitive explanation.

The Importance of Task Factors
Across the range of most common perceptual

timing tasks (Table 2), 23 of 37 tasks (62 %)

demonstrate a different pattern of performance

in PD. This is perhaps low given the publication

bias for positive findings. However, both the

heterogeneity of PD and the effects of aging on

temporal processing (see [33]), which means a

well-matched control group is critical, may in

part explain the mixed findings. Another reason

for the variation in the results is task differences.

When looking at relevant tasks (peak-interval

procedure, time estimation, time production,

and time reproduction) that included a timed

motor element, 4 of 6 (67 %) of the tasks that

using counting reported between-group

differences, whereas 5 of the 6 (83 %) that used

random numbers reported differences. For both,

this is higher than for tasks where no counting

was included (6 of 11, 55 %). Therefore, the

presence of a paced element, which may change
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the nature of the temporal and cognitive pro-

cesses being utilized, is more likely to produce

impairment. Another important distinction is the

length of the intervals being used. Previous

research has suggested that the time range may

affect the type of timing and the pattern of neural

activation (e.g. [46]). A particular emphasis has

been placed on millisecond vs. seconds-range

timing (e.g. [3]). If millisecond-range timing is

defined (arbitrarily) as between 1 and 1,000 ms

and seconds-range timing as intervals

>1,000 ms, 6 of 15 (40 %) millisecond-range

tasks find evidence of impairment compared to

16 of 26 (62 %) seconds-range tasks. If the cutoff

is increased to 5 s and above then the proportion

of longer interval tasks that the PD group per-

form poorly on increases to 71 % (12 of 17). This

suggests that temporal processing in the seconds-

range is more challenging, which may relate to

the additional cognitive demands (e.g. [31]). It is

worth commenting that this is collapsing across

all studies and the pattern is more nuanced if a

task breakdown is used. For example, for the

duration discrimination task, both studies that

used very short millisecond standard intervals

of 50 ms reported impairment [20, 23], whereas

the studies with durations from 200 to 1,600 ms

presented with more mixed results. Importantly,

although it has previously been suggested that

the basal ganglia are only implicated in

seconds-range timing [3], this does not seem to

be the case when reviewing the studies. These

data complement neuroimaging work that has

found the basal ganglia are active in both milli-

second and seconds-range temporal processing

[46].

Focusing on the five types of task that present

a stimulus to be timed (time reproduction, dura-

tion discrimination, temporal bisection, temporal

generalization, and peak-interval procedure),

there are group differences for 9 of the 16

(56 %) tasks using the auditory modality but for

9 of the 11 (82 %) tasks that use the visual

modality. Modality of presentation is known to

have an effect on temporal processing, with audi-

tory stimuli judged as longer than equivalent

visual stimuli [51]. Further, temporal sensitivity

is poorer in the visual modality in healthy adults

and children [52]. Zélanti and Droit-Volet [52]

also found that temporal performance in the

visual modality was significantly associated

with visual selective attention, but that there

was no equivalent association in the auditory

modality. It was concluded that temporal

processing in the visual domain is more cogni-

tively demanding. This task-related difference

may therefore indicate the influence of general

cognitive factors on performance on these tasks

for individuals with PD. An alternative interpre-

tation is that there are separable modality-

specific neural clocks and that the visual clock

is more compromised. However, recent research

reports that auditory judgments are influenced by

the presentation of visual durations, and vice

versa, which suggests that visual and auditory

durations are timed by a ‘common code’ and

not by modality-specific processors [53]. As the

tasks using visual cues were more likely to be

seconds-range than the auditory tasks, further

studies are needed to corroborate the interpreta-

tion that the auditory domain is differentially

more demanding in PD.

Looking across all the tasks in Table 2, of the

14 using unfilled intervals, 9 showed differences

between groups (64 %), which contrasts with 15

of the 25 tasks using filled intervals (60 %).

However, if the 13 tasks that used counting,

random numbers or motor activity are removed

and the focus is just on tasks that used simple

visual stimuli or pure tones to fill the interval,

then just 5 of the 12 (42 %) studies with filled

interval tasks reported a deficit in PD. Filled

intervals are routinely judged as longer than

unfilled intervals (e.g. [54]), with animal

research suggesting that filled intervals are also

timed with more precision [55]. Therefore, when

comparing across studies it appears that tasks

that are unfilled (compared to filled) and visual

(compared to auditory) are more demanding for

individuals with PD. Wearden et al. [25] required

participants to complete both unfilled and filled

versions of the duration discrimination task.

Supporting the pattern across studies, the differ-

ence between the PD and control groups

appeared more marked in the unfilled condition,

although a direct comparison across stimulus
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type was not reported. On the other hand, Pastor

et al. [30] found no difference in the time repro-

duction of filled and unfilled intervals in PD,

although participants were given no specific

instructions in the unfilled condition so may

have used the counting that they were trained to

apply in the filled condition. It has been

suggested that the internal clock ticks at a slower

speed for unfilled and visual intervals (i.e. pro-

ducing less clock ticks per unit of time) com-

pared to their filled and auditory equivalents, and

that this explains the relative overestimation in

the filled and auditory versions in healthy

populations (e.g. [51, 54]). Why auditory and

filled durations produce a faster clock is not

clear, although it may relate to differences in

arousal. Further, it remains to be established

why stimuli that induce a slower clock pace are

more problematic in PD and whether this relates

directly to their hypothesised slowed clock (e.g.

[30]) or to generic cognitive demands. Future

research would benefit from exploring this

finding.

In summary, individuals with PD often perform

poorly on measures of perceptual timing,

implicating the basal ganglia in interval timing.

These results have been interpreted in terms of a

slowed internal clock, but it is likely that

compromised cognitive functioning also influen-

ces performance. The data suggest both millisec-

ond and seconds-range perceptual timing are

impaired in PD, and cognitive factors may be

more important for longer durations. Finally,

stimuli that are unfilled and presented in the visual

modality are the most challenging in PD. Greater

consideration needs to be given to the extent to

which these stimulus properties influence temporal

processing in PD and what they can tell us about

the role of the basal ganglia in timing. Finally,

greater consideration of the interaction between

time-dependent computations and supportive

cognitive processes is required.

Motor Timing in Parkinson’s Disease

As mentioned previously, investigation of motor

timing has focused on the synchronization-

continuation task, with the majority of studies

only investigating continuation performance.

However, although both healthy participants

and those with PD perform better at synchroni-

zation than continuation tapping (e.g. [14]) there

is no convincing evidence that the pattern of

impairment in PD differs significantly between

the two phases (e.g. [14, 15, 17, 19], although see

[10]). A summary of the studies into motor

timing in PD can be found in Table 3.

There have been varied results for accuracy

on the synchronization-continuation task.

Tapping rate in PD has been shown to be faster

[10–12, 14, 16], slower [17], and unimpaired [7,

9, 13, 15, 18, 19]. To help make sense of these

inconsistencies it is important to focus on the

differences between the tasks used. Notably,

there is a cluster of studies compatible with the

hypothesis that accuracy of repetitive finger

movement is only impaired at rates faster than

500 ms, at slower rates patients with PD are able

to demonstrate preserved performance (e.g. [7, 9,

13–15, 18, 19]). This pattern is also observed in

tasks that have just measured synchronized

tapping [56–58]. In contrast, many studies report

that individuals with PD tap significantly faster

than a control group at intervals of 300–600 ms

[10–12, 16]. One interpretation of these findings

is that individuals with PD are demonstrating

festination at these shorter intervals. Festination

is a clinical phenomenon often observed in PD

and is the tendency to speed up when performing

a repetitive movement. Experimentally it is

identified when movement speed exceeds that

in a control group by a specified margin (e.g.

2 standard deviations) and has been recorded

for a variety of movement types, including oral,

finger and wrist (e.g. [56, 59–61]). Reflecting

these findings, other studies demonstrating the

phenomenon of festination report it in movement

rates of 500 ms and faster [56, 59–61]. In con-

trast, two studies [17, 59] found evidence of

slowed tapping at short intervals (200–500 ms),

but they used repetitive wrist movements,

making a comparison with the traditional

synchronization-continuation tasks difficult.

It appears that the interval range of

400–600 ms is of critical importance in PD, as
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this is the threshold at which performance

switches from impaired to unimpaired. It has

been suggested that movement rates of around

500 ms (i.e. movement frequencies of 2 Hz) are

associated with a transition in control strategy.

At this faster rate, the timing of continuous

movements to a cue shifts from a synchroniza-

tion strategy (i.e. individually controlled

movements), to a syncopated strategy (i.e. con-

trol over the rhythm of movements rather than

each individual movement, as indicted by a lag in

producing the movement) [62]. While slower

movements can be executed in a closed-loop

fashion, where motor commands are continu-

ously compared to afferent information, the exe-

cution of faster movements depends on a motor

program being generated before movement onset

and controlling performance in the absence of

feedback (e.g. [63]). This dissociation is

supported by neuroimaging (positron emission

tomography (PET) and functional magnetic res-

onance imaging (fMRI)) evidence that the pat-

tern of sensorimotor activation during repetitive

index finger tapping is different for slower

(0.25–0.5 and 0.5–1 Hz) compared to faster

(1–4 and 1.5–5 Hz) rates of movement [64, 65].

Thus, in PD the difference in motor control strat-

egy may make timing faster movements differ-

entially more demanding. Using an

electroencephalogram (EEG) to measure β band

oscillations, Toma et al. [62] found that timing a

repetitive thumb movement with a slow pacing

signal (below 2 Hz) activated motor cortical

areas (i.e. event-related desynchronization of

neuronal populations) and was followed immedi-

ately by deactivation (i.e. event-related synchro-

nization). In contrast, for faster movements

(above 2 Hz) the motor cortical areas were con-

tinuously activated without any synchronization.

It has been suggested that the impairment of

faster repetitive movements in PD may relate to

a difficulty in the desynchronization of elevated β
band oscillations [57]. Logigian et al. [56] argue

that there is ‘attraction’ of repetitive voluntary

movements to the strong neural synchronization

that drives pathological tremor in PD. As such,

the movements become ‘entrained’ to the

tremor rate.

Reviewing the findings for variability, a major-

ity of studies reported elevated levels of variability

on the synchronization-continuation task in PD

(e.g. [6, 7, 10, 11, 15–17]) but other studies

found no impairment [12, 13, 18, 19] or decreased

variability [9]. There is no consistent pattern that

relates timing variability to interval length,

although Jones et al. [14] observed that variability

for both patients with PD and healthy controls was

lowest at 500 ms. Five hundred milliseconds is

close to the natural tapping rhythm (i.e. when

tapping at their most comfortable pace) of

individuals with and without PD [58]. Combined

with the pattern of findings from the accuracy of

synchronization-continuation performance, the

variability results again suggest the importance of

evaluating the shorter interval ranges when

investigating motor timing performance in PD.

In summary, ten (77 %) of the thirteen studies

report group differences in the variability and/or

accuracy of motor timing, making motor timing

more discriminating than perceptual timing.

However, close analysis of the pattern of findings

suggests that focus should be given to intervals

under 600 ms, with particular emphasis on

identifying the shift from impaired to unimpaired

accuracy at around 400–600 ms. This may reflect

the conceptual and neural shift in the way that the

shorter intervals are timed, with the timing and

production of shorter intervals being more

demanding in PD.

Neuroimaging Studies of Temporal
Processing in Parkinson’s Disease

Although highly informative, behavioural stud-

ies only provide a limited window on the role of

the basal ganglia in temporal processing. The

basal ganglia are a highly connected set of

structures and the pathology in also PD

influences the functioning of these other regions.

PD is associated with excessive inhibitory out-

flow from the basal ganglia, which means that

cortical sites are not adequately activated. The

frontostriatal motor loop is particularly affected,

which implicates the supplementary motor area

(SMA) and pre-SMA [66]. As the disease
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progresses more widespread areas of the frontal

cortex are implicated. As such, it is feasible that

cortical, as well as subcortical, dysfunction is

driving the temporal deficits observed in PD.

One obvious way to test this hypothesis is to

use neuroimaging techniques to reveal the extent

of cortical and subcortical patterns of neural acti-

vation during a timing task. A handful of studies

have used imaging to examine the neural

substrates of perceptual and motor timing in

PD. The results of these studies are summarized

in Table 4.

To date, only two studies have investigated the

neural correlates of perceptual timing in PD. In

the first study, Harrington et al. [21] scanned 21

patients with PD both ‘on’ and ‘off’ dopaminergic

medication and 19 healthy controls during a dura-

tion discrimination task. Standard durations of

1,200 or 1,800 ms were presented followed by a

comparison duration and participants had to

decide if the comparison was longer or shorter

than the standard. Data were obtained during

both the encoding and decision phases of the

task. Striatal dysfunction was found in both

phases, highlighting its key role in timing. How-

ever, activation in distributed areas of the cortex

were also recorded. During the encoding phase,

activation interpreted as part of a working mem-

ory network (middle frontal-inferior parietal

regions, supplementary motor area (SMA), and

lateral cerebellum) was dysfunctional, whereas

during the decision making phase activation in

regions relevant to executive processes and mem-

ory retrieval were atypical (posterior-cingulate,

parahippocampus). Dopamine medication did not

alleviate the timing deficits on the task in the

patients, and effective connectivity between the

striatum and cortex was modulated by dopamine

medication in the decision phase. Specifically,

there was greater connectivity between the stria-

tum and medial frontal gyrus, SMA, pre- and

postcentral cortex, insula and parietal cortex

‘off’ compared to ‘on’ medication. This authors

interpreted this as reflecting excessive synchronic-

ity in corticostriatal circuits. In contrast, the

connections between the striatum and left

superior frontal gyrus were greater ‘on’ than

‘off’ medication.

In another fMRI study, Dušek et al. [67]

scanned 12 PD patients ‘on’ and ‘off’ medication

in the encoding and reproduction phases of a

time reproduction task with short and long

intervals (range 5 to 16.82 s). Medication had

no effect on performance of the task. However,

in the reproduction phase, significantly greater

activation in the precuneus was found ‘on’ than

‘off’ medication, which was not present during a

control random button pressing task. It was

concluded that differences in activation of the

precuneus during retrieval of an encoded dura-

tion may underlie the time perception deficits in

PD (as documented in the ‘migration effect’ for

example), which is partly alleviated by dopami-

nergic medication.

As shown in Table 4, the neural correlates of

motor timing in PD has been investigated in four

studies, three of which employed the

synchronization-continuation task [7, 10, 13],

whilst Yu et al. [80] just used the synchronization

phase. Elsinger et al. [10] and Jahanshahi et al.

[13] assessed patients both ‘on’ and ‘off’ medi-

cation, whereas Cerasa et al. [7] and Yu et al.

[80] only scanned patients in the ‘off’ state

after overnight withdrawal of dopaminergic

medication. The study of Jahanshahi et al. [13]

was the only one with an additional reaction time

task to control for the non-temporal aspects of

the synchronization-continuation paradigm, such

as anticipation of the tone, motor preparation,

and execution of a motor response. For the

controls, relative to the control task, motor

timing in the synchronization and continuation

phases was associated with increased activation

in the right middle frontal gyrus (BA 8) and the

left caudate compared to the PD patients. In

contrast, compared to the controls, PD patients

showed greater activation of the midbrain/

substantia nigra, vermis and the cerebellar lobule

V during motor timing relative to the control

task. Thus, while the controls were recruiting

fronto-striatal areas more than PD, the patients

were relying on the vermis and cerebellum for

motor timing. For both groups, the internally

controlled timing in the continuation phase was

associated with significantly greater activation of

the DLPFC compared to the externally paced
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Table 4 Summary of imaging studies of perceptual or motor timing in Parkinson’s disease

Study

Imaging

technique Sample

Medication

state Task Duration Main findings

Cerasa

et al. [7]

fMRI 10 PD

11 HC

Off S-C finger

tapping

750 ms See Table 3 for behavioral results.

No differences between S and C

phases for either PD or HCs except

in visually related areas. During S

phase, relative to HCs, PD showed

increased activation in cerebellum,

putamen, SMA and thalamus,

inferior frontal gyrus, frontal

operculum, lingual gyrus and insula.

In the C phases, relative to HCs, PD

showed greater cerebello-thalamic

activation

Dušek

et al. [67]

fMRI 12 PD On & off Time

Reproduction &

Control random

button pressing

5, 5.95, 7.07,

8.41, 10,

11.89, 14.4,

16.82 s

A ‘migration effect’ was observed,

with intervals � 11.9 s

overestimated and

intervals � 14.1 s underestimated in

the ‘off’ compared to the ‘on’

medication state. Significantly

greater activation in the precuneus

‘on’ than ‘off’ medication during the

reproduction but not encoding phase

Elsinger

et al. [10]

fMRI 10 PD

13 HC

On & off S-C finger

tapping

600 ms See Table 3 for behavioral results.

PD less activation in SMC,

cerebellum and SMA than HCs.

SMA, thalamus and putamen active

in PD during the C phase when on

but not off medication. NB. Direct

statistical comparison of the

conditions not reported.

Harrington

et al. [21]

fMRI 22 PD

10 HC

On & off Duration

discrimination

1,200,

1,800 ms

See Table 2 for behavioral results.

Striatal dysfunction evident in both

the encoding and decision phases

when PD were compared ‘off’ to

HCs. During encoding, PD also

showed underactivation of a

working memory network (middle

frontal-inferior parietal, SMA,

lateral cerebellum). During the

decision making phase there was

abnormal activation of regions

involved in executive processes and

memory (posterior-cingulate,

parahippocampus). Connectivity

between the striatum and areas of

frontal and parietal cortex was

greater ‘off’ than ‘on’, and the

putamen showed greater

connectivity with the left superior

frontal gyrus ‘on’ compared to ‘off’

(continued)
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synchronization phase. Overactivation of the cer-

ebellum in PD during motor timing has also

been reported in Cerasa et al. [7] and Yu et al.

[80]. Yu et al. [80] additionally reported

underactivation of the striatum when ‘off’ medi-

cation, although Cerasa et al. [7] found overac-

tivity in frontostriatal regions during the

synchronization phase in patients tested ‘off’

medication. When looking at medication effects,

Jahanshahi et al. [13] reported that cortical

activation was significantly more predominant

‘on’ medication, whereas pallidal and cerebellar

activation was greater ‘off’ medication. Two dis-

tinct patterns of effective connectivity were

found ‘on’ and ‘off’ dopaminergic medication.

While there was greater task-related connectivity

between the caudate and the left DLPFC and the

right middle prefrontal cortex (BA 10/32) ‘on’

than ‘off’ medication, striatal-cerebellar connec-

tivity was greater ‘off’ than ‘on’ medication.

Table 4 (continued)

Study

Imaging

technique Sample

Medication

state Task Duration Main findings

Husárová

et al. [68]

fMRI 20 PD

21 HC

Off Target

interception

task

Not

applicable

Similar hit ratios in the two groups,

but the groups differed in the

distribution of early errors relative to

hits and in trial by trial adjustments

of performance. During successful

trials, more activation in the right

cerebellar lobule VI in HC than in

PD. In HCs compared to PD,

successful trial by trials adjustments

were associated with higher activity

in the right putamen and cerebellar

lobule VI

Jahanshahi

et al. [13]

PET 8 PD

8 HC

On & off S-C finger

tapping &

Control RT task

1,000 ms See Table 3 for behavioral results.

Relative to control task, motor

timing (S + C) associated with

greater fronto-striatal activation for

HCs, but greater activation of the

cerebellum, vermis, midbrain/

substantia nigra for PD. Relative to

S, C associated with greater

activation of DLPFC for both HC

and PD. Cortical activation more

predominant ‘on’ medication,

whereas pallidal and cerebellar

activation more evident ‘off’

medication. Greater caudate-frontal

connectivity ‘on’ medication and

greater striatal-cerebellar

connectivity ‘off’ medication

Yu

et al. [80]

fMRI 8 PD

8 HC

Off Synchronization

thumb tapping

900,

2,400 ms

No difference in behavioral

performance for PD and HC.

Underactivation in PD of the SMA,

pre-SMA, DLPFC, caudate and

putamen. Overactivation in PD of

the cerebellum and primary motor

cortex. This pattern was observed

for both durations. Negative

correlation between putamen and

cerebellum in PD

PD Parkinson’s disease, HC healthy control, PET Poistron emission tomography, fMRI functional magnetic resonance

imaging, S-C synchronization-continuation, SMC sensorimotor cortex, SMA supplementary motor area
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These findings align with Yu et al. [80], who

reported a negative correlation between activa-

tion of the ipsilateral cerebellum and contralat-

eral putamen during synchronized tapping in

patients with PD. Further, Elsinger et al. [10]

found activation of the motor frontostriatal loop

in patients with PD during the continuation phase

when they were ‘on’ medication but not when

they were ‘off’.

In contrast, Husárová et al. [68] used a

computerized target interception task, which

requires implicit processing of time rather than

the explicit engagement demanded by classic

motor and perceptual tasks. A target moved at

three different angles and speeds across the

screen and the participants had to press a button

to fire a cannonball that would intercept the

moving target. The study used fMRI with 20

early stage (mean duration of illness of

2.5 years, including 8 de novo cases) patients

with PD tested ‘off’ medication and 21 controls.

Similar hit ratios were observed in the two

groups, but the groups differed in the distribu-

tion of early errors relative to hits and in their

trial by trial adjustment of performance. During

successful trials, there was more activation in

the right cerebellar lobule VI in the controls

than in PD. For the controls, but not the PD

patients, successful trial by trials adjustments

were associated with higher activity in the

right putamen and cerebellar lobule VI. Indeed,

PD was characterized by hypoactivation of the

striatum and cerebellum relative to the healthy

controls. This study therefore implicates both

the basal ganglia and the cerebellum in the

adaption of motor actions to achieve optimal

temporal performance. However, as a note of

caution, none of the patients in this study

had started levodopa medication. As levodopa

responsiveness is a key criterion for distin-

guishing idiopathic PD from other Parkinsonian

syndromes such as progressive supranuclear

palsy or multiple systems atrophy, it is possible

that not all participants in the patient group had

idiopathic PD.

In summary, the results of these imaging stud-

ies indicate that, relative to healthy controls,

perceptual and motor timing deficits in PD are

associated with underactivation of a range of

frontal, temporal and parietal cortical areas as

well as the striatum. Medication does not fully

normalize these dysfunctional patterns of brain

activation. In addition, the findings of some (e.g.

[13]), but not all (e.g. [21]), studies suggest that

patients with PD rely on the cerebellum for tem-

poral processing, particularly in the ‘off’ medi-

cation state when task-related striatal-cerebellar

connectivity is increased.

Effects of Medical Treatments on
Temporal Processing in Parkinson’s
Disease

Pharmacological treatment and DBS are the two

common medical treatment options in PD. The

primary pharmacological treatment is a precursor

to dopamine, levodopa. Levodopa is converted to

dopamine in the central nervous system by the

enzyme DOPA decarboxylase, which brings

therapeutic benefit in PD. More recently, direct

acting dopamine agonists have come into use.

DBS involves implanting electrodes in key target

areas, most commonly the sub-thalamic nucleus

(STN). These electrodes are then connected to an

implanted device in the chest cavity, generating

electrical impulses to stimulate the STN. A

recent study has shown that both STN DBS and

a dopamine agonist (apomorphine) deactivate

regional cerebral blood flow (rCBF) in the sup-

plementary motor area, precentral gyrus,

postcentral gyrus, putamen and cerebellum, and

increase rCBF in the substantia nigra/sub-

thalamic nucleus and superior parietal lobule

[69]. However, the treatments also had distinct

effects. Notably, STN DBS affected wider areas

of the SMA, precentral gyrus and postcentral

gyrus as well as uniquely affecting the globus

pallidus, whilst apomorphine affected wider

areas of the putamen and cerebellum and

uniquely activated the superior temporal gyrus.

Further, the direction of the effects on particular

regions was often different between treatments.

Certain areas (e.g. posterolateral cerebellum,

ventrolateral thalamus) had their rCBF increased

by STN DBS but decreased by apomorphine.
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Thus, although both treatments have proven effi-

cacy in ameliorating the cardinal symptoms of

PD, they will not necessarily have identical

effects on temporal processing. Further, it is

important to recognize that both treatments do

not just produce isolated effects on the basal

ganglia, but rather both treatments induce

changes in activation in the cortex [69]. Related

to this, in addition to the targeted motor benefit,

both medical treatments affect cognition, both

positively and negatively, (e.g. [70, 71]).

The Effects of Dopaminergic Medication

Close to half the studies reviewed in this chapter

compared performance both ‘on’ and ‘off’ medi-

cation (see Table 5). For studies of motor timing,

one study found that levodopa improved accu-

racy for short intervals [17] and one found an

ameliorating effect on variability [16]. However,

two studies found that medication did not

improve motor timing [12, 14]; with a further

two studies not reporting a direct comparison

[6, 10]. A final two studies [13, 18] found no

evidence that medication improved performance

but interpretation is difficult as performance was

also unimpaired ‘off’ medication. Overall, for the

studies reporting a direct comparison in the con-

text of impairment in the ‘off’ medication state, 3

of the 5 (60 %) reported a beneficial effect of

dopamine replacement therapy. For the percep-

tual tasks, 6 of 12 tasks reporting a direct com-

parison found that medication benefits perceptual

timing (50 %), while 4 (33 %) found no differ-

ence. Two studies (17 %) found better perfor-

mance ‘on’ medication than ‘off’ [31, 36], which

may reflect the negative effect dopamine can

have on relatively preserved basal ganglia

circuits, known as the ‘dopamine overdose’

effect. Therefore, although dopaminergic medi-

cation clearly can have a positive effect, there are

many instances where it is not sufficient to

impact upon performance. This may reflect a

range of factors, including the different types of

dopaminergic medication that patients take, as

well as their effectiveness on the individual. Fur-

ther, there are likely to be lingering effects of

medication in patients tested ‘off’ medication,

which would diminish the extent of the perfor-

mance difference observed ‘on’ vs. ‘off’. Patients

can also vary in their disease severity and dura-

tion of illness, which are factors that can also

influence the impact of medication. Merchant

et al. [6] tested the effect of dopaminergic medi-

cation across a range of perceptual and motor

timing tasks. They found that while variability

on their three timing tasks correlated in the ‘on’

medication state, the effect was not apparent

when ‘off’ medication. They argued that the

dopamine depleted state causes a major disrup-

tion to a common timing mechanism, located in

the basal ganglia-thalamocortical pathway, that

underpins motor and perceptual timing. It is also

important to consider the wide-reaching effects

that medication have on cortical structures. Thus,

improvements following medication may reflect

better cognitive control during the task. For

example, Koch et al. [36] found that patients

with PD showed greater underestimation on a

time reproduction task when ‘off’ medication

compared to ‘on’. They suggested that this

could reflect impulsivity or delay aversion when

in the unmedicated state.

The Effects of Deep Brain Stimulation
of the Subthalamic Nucleus

Testing patients with STN DBS, Koch et al. [34]

found that when ‘off’ DBS and ‘off’ medication

the patients showed overestimation of 5 s and

underestimation of 15 s intervals (i.e. the migra-

tion effect) compared to a control group. Perfor-

mance was improved when the patients were

either ‘on’ DBS (whilst ‘off’ medication) or

‘on’ medication (whilst ‘off’ DBS). The data

are presented as evidence of the importance of

thalamo-cortical projections to the prefrontal

cortex in temporal processing. Similarly,

Wojtecki et al. [19] found that there was

improvement in time production of 15 s intervals

for 130 Hz STN DBS compared to being in an

untreated state. However, when they used a much

lower 10 Hz DBS, time reproduction and produc-

tion of 5 and 15 s intervals worsened. They
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Table 5 Effect of dopaminergic medication on motor and perceptual timing tasks

Study Effect of dopaminergic medication

Synchronization-continuation

Elsinger et al. [10]a Off less accurate (Cont only) and more variable than Control

On less accurate (Cont only) and more variable than Control

Ivry and Keele [12] Off ¼ On

Jahanshahi et al. [13]a Off ¼ On

Jones et al. [14] Off ¼ On

Merchant et al. [6] Off more variability than Control

On more variability than Control

O’Boyle et al.[16]) Off more variability than On

Pastor et al. [17] Off less accurate and more variable than On for 500 and 667 ms (no statistical

test)

Spencer and Ivry [18] Off ¼ On

Duration discrimination

Guehl et al. [20] Off ¼ On

Harrington et al. [21]a Off ¼ On

Wearden et al. [25] Short delay: Off ¼ On

Long delay: Off ¼ On

Peak interval procedure

Malapani et al. [26] Off more error than On

Temporal bisection

Merchant et al. [6] Off more variability than Control

On ¼ Control

Wearden et al. [25] Off ¼ On

Temporal generalization

Wearden et al. [25] Off ¼ On

Time estimation

Lange et al. [29] Off underestimate compared to Control

On ¼ Control

Pastor et al. [30] Off more error than On

Wearden et al. [25] Off ¼ On

Time production

Jones et al. [31] On more error than Off

Lange et al. [29] Off overestimate compared to Control

On ¼ Control

Time reproduction

Jones et al. [31] Off ¼ On

Koch et al. [34] Off less accurate than On

Koch et al. [35] L hemi PD: Off less accurate than On for 15 s interval

R hemi PD: Off less accurate than On for 5 s interval

Koch et al. [36] On less accurate than Off

Off ¼ On when 1 h delay between short and long trials

Merchant et al. [6] Off more variability than Control

On more variability than Control

Torta et al. [37]b Unfilled: Off ¼ On

Filled: Off underestimate compared to On

Pastor et al. [30] Mixed results [Off generally worse than On for shorter intervals, and Off ¼ On

for most longer interval conditions (6 and 9 s)]

Direct comparison of ‘off’ vs ‘on’ reported where relevant. Two comparisons with Control groups reported in absence

of direct comparison. Cont continuation phase
aData collected during a neuroimaging (PET or fMRI) experiment
bPatients had undergone STN DBS, data reported in the table are when stimulation was turned off
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interpret this as STN DBS having a frequency-

dependent modulatory impact on memory

representations of time, with a frequency of

10 Hz causing further disruption to an impaired

temporal processing system, in contrast to the

beneficial effects of 130 Hz. A further study

found no effect of STN DBS on time reproduc-

tion of a seconds-range interval, albeit where

performance was unimpaired without treatment,

although STN DBS and medication both

improved performance when the learnt interval

was filled with performance of a motor task [37].

Wojtecki et al. [19] found no effect of STN DBS

on millisecond-range repetitive tapping or dura-

tion discrimination, although again in patients

who showed no difference from controls under

any treatment state. However, a more recent

study found that patients with PD who were

‘on’ medication had elevated variability on the

synchronization-continuation task and this was

improved when STN DBS was turned ‘on’ [15].

In summary, both medication and DBS can

produce beneficial effects on temporal

processing in PD. This is further evidence that

the efficacy of the dopamine-rich basal ganglia is

necessary for interval timing. From studies that

investigated medication effects, medication is

more beneficial in motor than perceptual timing,

which may relate to the dominant motor demands

of the former task.

Conclusions and Future Directions

The phenotype of PD is broad, encompassing

a range of motor, autonomic and cognitive

symptoms (e.g. [72]). To better understand

the mixed nature of some of the results

reviewed above, an obvious point of explora-

tion is to investigate heterogeneity of PD. The

commonly identified clinical subtypes include

those with predominantly akineto-rigid

symptoms versus patients with tremor pre-

dominant symptoms [73]. Subgroups of

patients can also be distinguished by age of

onset, progression rate, and affected motor

and non-motor domains (e.g. [74, 75]). The

mixed results for motor and perceptual timing

deficits in PD may be clarified through greater

attention to clinically or experimentally

defined subtypes. Using an experimental

approach, Merchant et al. [6] have sought to

examine heterogeneity in timing in PD. They

were able to divide their nineteen patients into

those with ‘high’ variability on three diverse

perceptual and motor timing tasks, and those

with ‘low’ variability. Those with low

variability did not differ in performance

from a control group, which was in contrast

to the group with high variability. Within the

high variability group they found a further

subdivision of just three individuals who did

not show the scalar property, a hallmark of

temporal processing. The two groups did not

differ in a clinical evaluation of motor dys-

function or an experimental assessment of

tapping speed, suggesting a specific differ-

ence in timing proficiency rather than a gen-

eral difference in disease progression. More

studies are needed that consider the effect of

heterogeneity in PD. Heterogeneity may be

the key to better understanding the specific

clinical and biological markers of disordered

motor and perceptual timing in PD.

Although the evidence on motor and per-

ceptual timing deficits in PD is mixed, some

clear conclusions can be drawn. First, there is

evidence of both motor and perceptual timing

dysfunction in PD. This suggests the impor-

tance of the basal ganglia in both types of

timing and is compatible with the role of

these subcortical nuclei as a neural clock that

meters timing processes. However, this is still

very much an area for debate. Although the

basal ganglia may play a clock-type role in

both types of timing tasks, the specific nature

of this role may differ. Alternatively, they

may play a timing-related role in limited

types of timing task, with other findings

being largely driven by cognitive or motor

factors. While perceptual timing is

compromised in both the milliseconds and

seconds-range in PD, the deficits are confined

to short (commonly 500 ms or below)

intervals in motor timing. The very nature of

motor timing does not lend itself to very long

intervals. Long seconds-range motor timing

would lose the continuous quality and become
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a serious of remembered, discrete intervals,

much like a time reproduction task. However,

studies suggest motor timing performance is

preserved even at 1,000 and 2,000 ms

intervals (e.g. [14]). Consistent with a critical

role for the basal ganglia in temporal

processing, medical treatment of PD with

dopaminergic medication and STN DBS

often has a positive effect on task perfor-

mance. Better understanding of why some

studies do not report evidence of a temporal

deficit in PD, which may relate to task factors,

cognitive factors or patient heterogeneity, is

likely to be critical in furthering characteri-

zing the role of the basal ganglia in interval

timing.

Many researchers have considered a cogni-

tive explanation for some of the timing

deficits in PD, particularly on the perceptual

timing tasks, and this alternative explanation

needs to be empirically investigated in future

studies. Understanding issues such as whether

it is meaningful to separate memory for a

timed interval from a ‘clock’ process would

further interpretation of the data. Theoretical

work on temporal processing has been lim-

ited, and has been dominated by the very

influential scalar expectancy theory [76, 77].

More recently, the striatal beat frequency [78,

79] has aimed to provide a biologically plau-

sible model of temporal processing. The field

could benefit from further testable models of

timing behaviour that could guide empirical

investigation. This is clearly an important

avenue for future progress in timing research.
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Wackermann J, Mueller K. Abnormal activity in the

precuneus during time perception in Parkinson’s dis-

ease: an fMRI study. PLoS One. 2012;7(1):e29635.

doi:10.1371/journal.pone.0029635.
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Part V

Neural Underpinnings of Rhythm and Music



Music Perception: Information Flow
Within the Human Auditory Cortices

Arafat Angulo-Perkins and Luis Concha

Abstract

Information processing of all acoustic stimuli involves temporal lobe

regions referred to as auditory cortices, which receive direct afferents

from the auditory thalamus. However, the perception of music (as well as

speech or spoken language) is a complex process that also involves

secondary and association cortices that conform a large functional net-

work. Using different analytical techniques and stimulation paradigms,

several studies have shown that certain areas are particularly sensitive to

specific acoustic characteristics inherent to music (e.g., rhythm). This

chapter reviews the functional anatomy of the auditory cortices, and

highlights specific experiments that suggest the existence of distinct

cortical networks for the perception of music and speech.
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Introduction

Music is defined as a set of sounds with specific

attributes (such as frequency and timbre) that are

presented temporally as patterns, following rules

that can be adjusted to create different sensations

based on cultural and stylistic categories. Time is

evident in music at different scales, with the

smallest oscillations in frequencies being the

backbone of timbre, periods producing rhythms,

and contours supporting melodies. Temporal

features are, therefore, of particular interest in the

analysis of auditory stimuli, particularly music.

Music perception is based on the detection

and analysis of acoustic events, including their

duration and position along time. The particular

organization of time intervals between one sound

and another creates the perception of a rhythm or

pattern; therefore, rhythm is the perceived musi-

cal structure, and its perception depends on a
priori existence of an internal time frame (i.e.,

metric). By contrast, beat perception seems to be

a basic and innate phenomenon that does not

depend on prior learning of metric structures,

but rather on the salience and regularity of the

pulse inherent to the acoustic signal. However,

the perception of an underlying beat can be
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modulated by the stimulus itself, namely the

temporal structure of acoustic events and their

accents, but also by the listener, such as his or her

preferred tempo rage or fluctuations in attention.

In this chapter we review the literature regard-

ing music perception. First, a brief review of the

flow of information within the auditory cortex is

presented. Next, we compare the perception of

music to that of speech, as these two acoustic

categories share important traits in terms of their

communicative functions, evolution and tempo-

ral and spectral characteristics, highlighting their

differences in terms of temporality and acoustic

patterns. Particular aspects of music parameters

are addressed elsewhere in this book (see, for

example, previous chapter on beat induction).

The Auditory Cortices

The characterization of the auditory cortices has

been studied from different perspectives, all of

which reveal a detailed subdivision that can be

seen in the cat, ferret, macaque, the chimpanzee

and in man, with more than ten areas identified

[1, 2]; each of these areas have different func-

tional, cytological and neurochemical features

[2–4], and their afferents come from different

thalamic nuclei (e.g., dorsal, ventral and medial

portions of the medial geniculate complex,

pulvinar and posterior nuclei). All these aspects,

besides their different neurochemical gradients/

neurochemical profile provide distinctive

features in auditory processing, so we will make

some brief remarks on their anatomical and func-

tional organization.

Anatomical Organization
of the Auditory Cortices

The primary auditory cortex, or core region

[Brodmann’s Area (BA), 41], is located on the

dorsal surface of the superior temporal gyrus

(STG), covered by the frontoparietal operculum.

The core is surrounded postero-laterally by the

belt (BA 42 and possibly BA 52), and antero-

laterally by the parabelt region (corresponding to

BA 22), the latter two regions being considered

secondary and tertiary auditory cortices, respec-

tively (Fig. 1).

In turn, these three regions have been

subdivided into around 12 regions, using func-

tional and anatomical criteria that have been

obtained mainly from non-human primates [1,

7, 8], but also by post mortem studies in humans,

which have allowed a precise cytological charac-

terization of three sub-areas of the primary audi-

tory cortex (T1.0, T1.1 and T1.2, according to

Morosan et al. [3]) within Heschl’s gyrus [4, 9].

The core, belt and parabelt form, strictly, the

auditory cortex, because they are direct targets of

the acoustic radiation, which emerges from the

medial geniculate complex (MGC), although

each region has a specific pattern of thalamic

afferents: the projections from the ventral portion

of the MGC (MGv) are mainly distributed in BA

41 or core, while the belt and parabelt regions are

mainly contacted by the dorsal portion (MGd),

and finally all the regions are reached by fibers

emerging from the medial subdivision (MGm).

Thus, each cortical region receives a unique

blend of fibers from several thalamic nuclei,

and therefore each thalamic nucleus provides a

distinct variety of information to its cortical

targets [6, 10, 11]. The anatomical distribution

of these three regions is not only based on their

thalamic afferents but also in the cytoarchitecture

of each region which presents a precise pattern of

cellular distribution (e.g., dense concentration of

small granular cells in layer II and IV in the core

compared with the less granular appearance,

larger pyramidal cells in layer IIIc and smaller

width of layer IV in the parabelt) [3, 4]. Further-

more, it should be mentioned that the intrinsic

connectivity (i.e., the local circuits of each corti-

cal region), provides pathways for communica-

tion among neurons within or between the cell

columns that constitute functional units [12, 13].

Seldon [14] described the cytoarchitecture

and the axonal and dendritic distributions in the

human auditory cortex in an attempt to establish

the morphological correlates of speech percep-

tion, making a distinction in different patterns of

columnar organization between primary and sec-

ondary regions. In addition, clear inter-
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hemispheric differences were noted, such as the

enlargement of the left planum temporale

(Wernicke’s area), different sizes of neuronal

columns and intervals between them and, differ-

ent values of fractional volume of neuropil. Thus,

anatomical features are important factors to con-

sider when making functional inferences from a

particular region, since neither the intrinsic con-

nectivity, thalamic afferents or cytoarchitectural

organization are identical in each region [13–15].

Functional Distribution
of the Auditory Cortex

Tonotopy (i.e., the spatial arrangement of

structures devoted to particular acoustic

frequencies) is the functional characteristic

more commonly used to classify the primary

auditory cortex (A1) or core. The ordered

arrangement of the frequency distribution from

the cochlea to A1 allows the identification of

tonotopic cortical maps. In non-human primates

these maps are extended to the belt (albeit in a

less precise pattern) [8, 16]. In humans, tonotopic

maps have a frequency distribution in a gradient

of high to low (posterior-anterior), repeated in a

mirror array, and are located along Heschl’s

gyrus (even if the gyrus is bifurcated) [16]. The

role of the auditory cortex is not limited to

decomposition of frequencies of a complex

acoustical stimulus, but is also sensitive to its

spectral profile, as suggested by the increased

activation of A1 during stimulation with har-

monic tones in comparison with pure tones [17].

Functional assessment of the surrounding

auditory cortices (belt and parabelt) is more

difficult because it breaks the linearity in the

representation of the stimulus evident in A1.

Besides, the total area of the human belt and

parabelt extends approximately 9.6 times more

than their equivalents in the macaque brain (in

contrast to the core region which covers a

greater cortical surface in the macaque). These

inter-species differences have been proposed as

the cornerstones of language development in

humans [8] and highlight the poor suitability

of animal models for the study of inherently

human traits, such as music and speech. How-

ever, different studies have reported that regions

adjacent to the core and belt share tonotopic

gradients. Woods et al. [8] evaluated functional

magnetic resonance imaging (fMRI) activations

on the cortical surface of the STG in response to

Fig. 1 Schematic representing the distribution of the

auditory cortex in human and macaque monkey. Upper
panel: lateral views of the macaque monkey (left) and

human (right) brains; lower panel: dorsolateral view

showing the location of auditory cortex on the lower

bank of the lateral sulcus. Primary auditory areas (core)

are shown in dark gray, belt (yellow) and parabelt areas

(green) are colored. Left: macaque monkey map by

Hackett et al. [5]; right: human distribution by Brodmann

[6]. Schematics are not to scale. STG superior temporal

gyrus, STS superior temporal sulcus, LS lateral sulcus, CS
central sulcus. Modified from Hackett [6]
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attended and non-attended tones of different

frequency, location, and intensity, in humans.

They reported that the core regions presented

mirror-symmetric tonotopic organization and

showed greater sensitivity to sound properties

than belt fields, which showed greater modula-

tion for processes driven by attention. These

data show that the belt region is probably

involved in analyses prone to modulation by

other factors, such as attentional resources, as

evidenced by its greater activation during tasks

requiring auditory recognition [8], or during

stimulation with more behaviorally relevant

sounds [18].

Manipulation of acoustic characteristics such

as amplitude or frequency generate little or no

modulation of activity of BA 22 or parabelt

(divided into rostral and caudal parabelt; RP or

CP, respectively), suggesting that its topographic

organization is not related to the physical

properties of stimulus (as in the core or some

portions of the belt) [19, 20]. Activation of the

parabelt has been associated with verbal

processing, semantic integration, formation of

“auditory faces”, among others [21]. The

parabelt also shows a positive correlation

between activation levels and the level of spec-

tral and temporal complexity of the stimuli,

showing differences between the right and left

hemispheres. Temporal modulations, for exam-

ple, produce increased activation of the parabelt

in the left hemisphere, while spectral

modulations do so in the right hemisphere [22].

All these data suggest that higher level auditory

areas combine information obtained previously

(e.g., temporal and spectral), to form a unified

representation of what is being heard [23].

Information Flow Within the Auditory
Cortex

Kaas and Hackett [7] reported a hierarchical

organization in the primate auditory cortex by

using invasive electrophysiological methods,

but an analogous hierarchical organization can

be inferred from anatomical and functional data

obtained from fMRI in humans [8, 20, 24]. Most

studies attempting to assess complex aspects of

auditory processing have focused on speech and

language due to their relevance to humans.

Okada et al. [25], evaluated the sensitivity to

acoustic variation within intelligible versus unin-

telligible speech, and they found that core

regions exhibited higher levels of sensitivity to

acoustic features, whereas downstream auditory

regions, in both anterior superior temporal sulcus

(aSTS) and posterior superior temporal sulcus

(pSTS), showed greater sensitivity to speech

regardless of its intelligibility, and less sensitiv-

ity to acoustic variation.

There are other auditory-like areas involved in

higher order processing, receiving sensory infor-

mation from other systems besides the strictly

auditory regions (e.g., STS also receives visual

and somatosensory input). For example, speech

processing and voice selective areas have been

demonstrated in the upper bank of the STS

[26–28].

Zatorre and Schönwiesner [29], while study-

ing the involuntary capture of auditory attention,

observed temporal and spatial flow of informa-

tion that depended on the characteristics of

acoustic stimuli. They showed that primary and

secondary cortices respond to acoustic temporal

manipulations in different ways: primary areas

were involved in the detection of acoustic

changes, whereas secondary areas extract the

details of such acoustic change; a subsequent

activation (with lag of �50 ms) in the mid-

ventrolateral prefrontal cortex was associated to

memory-based decisions and to the novelty value

of the acoustic change (regardless of the magni-

tude of this change) [30]. A similar result was

reported by Patterson et al. [31], from an fMRI

experiment that involved spectrally matched

sounds that produced no pitch, fixed pitch or a

melody, in order to identify the main stages of

whole melody processing in the auditory path-

way. Based on their results, they suggested the

following information flow during melody

processing: (1) extraction of time-interval infor-

mation (neural firing pattern in the auditory

nerve) and construction of time-interval

histograms (likely within the brain stem and

thalamus); (2) determination of the pitch value
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and its salience from the interval histograms

(probably occurring in lateral Heschl’s gyrus);

and (3) identification of pitch changes in discrete

steps and tracking of changes in a melody

(regions beyond auditory cortex in the superior

temporal gyrus (STG) and/or lateral planum
polare (PP).

Popescu et al. [32], also studied the informa-

tion flow, but from the standpoint of rhythm,

and they found widely distributed neural

networks during music perception (by changing

the rhythmical features of a musical motif).

They reported activations, soon after the onset

of the stimulus, within and around the primary

and secondary auditory cortices, but also in

SM1 (primary somatomotor area), the supple-

mentary motor area (SMA) and premotor area

(PMA). These data suggest an important role for

the motor cortex in music perception and more

precisely in the perception of the temporal

patterns embodied in the musical rhythm, pro-

posing the existence of two interrelated

subsystems that mediate the auditory input and

an internal rhythm generator subsystem (see

Chapter 5.2 and 5.3).

The above-mentioned studies show that the

perception of sound stimuli is a distributed pro-

cess that follows a hierarchical order, which in

the case of complex sounds, such a music or

speech, includes regions within and beyond the

auditory cortices (e.g., premotor, supplementary

motor areas, frontal regions). We must consider,

however, that complex sounds are formed of

simple elements (intensity, frequency, onset)

that form patterns as a function of time. The

location and intensity of cortical activations

derived from complex acoustical stimuli are

extremely dependent on the time scale of the

stimulus itself, which can range from only a

few ms to the entire contour of a melody [32,

33]. Some of these data are supported by lesion

and psychophysical studies of higher-order tem-

poral processing (analysis of sound sequences

such as patterns of segmented sounds or music),

suggesting that these deficits are produced by

temporal lobe lesions that involve superior tem-

poral lobe areas beyond the primary auditory

cortex [34, 35].

Music and speech are two examples of com-

plex acoustical stimuli with great relevance to

our species, given their role as information

carriers. While the neural mechanisms required

for their perceptions may be shared to a great

extent [36], certain pathologies that affect one,

domain, but not the other, suggest a certain

degree of independence [37, 38]. In this final

section we will mention several studies that sug-

gest that the selectivity for musical sounds exists,

showing evidence of cortical regions sensitive to

music stimuli over other types of complex

sounds.

The Musical Auditory Cortex

In brain-music research, one of the most studied

topics is pitch perception, and it has been

reported that lesions encroaching into the right

Heschl’s gyrus result in deficits in the perception

of pitch of spectrally complex stimuli with no

energy at the fundamental [39]. This was

demonstrated in an experiment by Zatorre and

Belin [40], where they found distinct areas of the

auditory cortex, in each hemisphere, that respond

to distinct acoustic parameters: the anterior audi-

tory region on the right hemisphere showed a

greater response to spectral than temporal varia-

tion; a symmetrical area on the left hemisphere

showed the reverse pattern; finally, a region

within the right superior temporal sulcus also

showed a significant response to spectral

modulations, but showed no change to the tem-

poral changes. In brief, cortical activity of spe-

cific areas within the left hemisphere was

modulated by temporal manipulations, while

spectral variations modulated the activity of

right-hemispheric cortical structures (Fig. 2).

With these data the authors support the hypothe-

sis of right hemisphere dominance for music

perception, specially in pitch processing, in com-

parison with the putative role of the left hemi-

sphere in temporal processing.

With this evidence as context, the following

question is: How is spectral information

processed when it also contains linguistic infor-

mation, as is the case in tonal languages? Current
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theories answer this question in two ways: (a)

based on the cue-specific hypothesis (which

determines that interhemispheric asymmetry is

based on low-level acoustical features of the

stimulus), linguistically relevant pitch patterns

would depend on processing carried out in

right-hemisphere networks; and (b) based on

the domain-specific model (which states that

low-level acoustical features are not relevant for

predicting hemispheric lateralization), analysis

of speech is processed in an exclusive system

engaging higher-order abstract processing

mechanisms, primarily in the left hemisphere.

Both proposals show that there is a hemispheric

specialization to specific basic aspects of sound:

the right hemisphere is more sensitive to slow

temporal acoustic patterns (contour), while

the left hemisphere has a higher spectral and

temporal resolution (phonemes). Hemispheric

specialization is also evident in higher-order

analyses, as evidenced by the left hemisphere

dominance for speech perception. Using

variations in pitch to create differences in word

meaning in tonal language speakers, it has been

demonstrated that tonal perception is lateralized

to the left hemisphere. In experiments where

Mandarin speakers were asked to discriminate

Mandarin tones and low-pass filtered homolo-

gous pitch patterns, there was increased activity

of the left inferior frontal regions, in both speech

and non-speech stimuli, in comparison to

English-speaking listeners who exhibited activa-

tion in homologous areas of the right hemisphere

[41, 42]. The conclusion proposed was that

pitch processing can be lateralized to the left

hemisphere only when the pitch patterns are

Fig. 2 Top panel: MRI images superimposed with the

functional activation assessed through positron-emission

tomography. The left superior image shows a horizontal

view trough Heschl’s gyrus (z ¼ 9 mm in MNI standard

space). This region shows more activation in the temporal

modulation conditions in comparison with the spectral

conditions. The right superior image corresponds to a

horizontal view locating the anterior superior temporal

region (z ¼ �6 mm), which shows more activation in

response to spectral manipulations versus temporal

conditions. Bottom panel: Error bars showing percentage
of cerebral blood-flow difference in temporal and spectral

conditions. In this figure, the right hemisphere is

presented in the right side of the image. Modified from

Zatorre and Belin [40]
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phonologically significant to the listener; other-

wise, the right hemisphere emerges as dominant

and is involved in the extraction of the long-term

variations of the stimulus.

Gandour et al. [43], also demonstrated that the

left hemisphere appears to be dominant in

processing contrastive phonetic features in the

listener’s native language, showing fronto-

parietal activation patterns for spectral and tem-

poral cues, even during the non-speech

conditions. However, when acoustic stimuli are

no longer perceived as speech, the language-

specific effects disappear, regardless of the

neural mechanisms underlying lower-level

processing of spectral and temporal cues,

showing that hemispheric specialization is

sensitive to higher-order information about the

linguistic status of the auditory signal.

Following this line of thought, Rogalsky et al.

[44] explored the relation between music and

language processing in the brain, using a para-

digm of stimulation with linguistic and melodic

stimuli that were modified at different rates (i.e.,

30 % faster or slower that their normal rate). This

experiment evaluated if the temporal envelope of

a stimulus feature (that according to several stud-

ies plays a major role in speech perception), can

elicit domain-specific activity that highlight the

regions that were modulated by periodicity

manipulations. They found some overlap in the

activation patterns for speech and music

restricted to early stages of processing, but not

in higher-order regions (e.g., anterior temporal

cortex or Broca’s area); perhaps the most impor-

tant result was that there was no overlap between

regions that showed a correlation between their

activity and the modulation rate of sentences (i.

e., anterior and middle portions of the superior

temporal lobes, bilaterally), and those that

showed correlation with the modulation rate of

melodies (dorsomedial regions of the anterior

temporal lobe, primarily in the right hemi-

sphere). This experiment attempted to isolate

regions sensitive to rate modulation correlations

(higher-order aspects of processing), finding that

music and speech are processed largely within

distinct cortical networks. As the authors

acknowledged, it is important not to conclude

from the apparently lateralized pattern for

music processing, that the right hemisphere pref-

erentially processes music stimuli (as is often

assumed), because the lateralization effect

described was due to the comparison of the acti-

vation patterns to music versus speech.

Selectivity for Music and Musicianship

Our group conducted an experiment to evaluate

music perception, with the main objective of

evaluating whether there are specific temporal

regions that preferentially respond to musical

stimuli (using novel melodies with different

timbres and emotional charge), as compared to

other complex acoustic stimuli including speech

and non-linguistic human vocalizations, monkey

vocalizations and environmental sounds. With

this paradigm, we tried to evaluate the cortical

responses associated to music perception but

within an ecological context, using complex

sounds without any kind of experimental manip-

ulation (i.e., as we normally hear them in our

everyday life). Our intention was to elicit the

activation of cortical regions involved in the

perception of music without disturbing any of

its parameters, and then compare with the activ-

ity elicited by other types of complex stimuli,

particularly speech. Finally, we wanted to assess

whether these hypothesized music-selective

regions are modulated by prior musical training,

considering that previous studies have revealed

that specific musical abilities can modify the

distribution of the functional networks but also

the neuroanatomical characteristics associated to

their processing [45–47]. To achieve our goals,

we included individuals with and without formal

musical training (groups did not differ in terms of

age or gender). This group comparison allowed

us to look for differences in music processing

based on the individual history of interactions

(ontogeny) and to explore how experience can

modify the overall processing of auditory

stimuli. We used a paradigm of acoustic stimula-

tion in an fMRI experiment, which included

two main categories: (a) Human vocal sounds

such as non-linguistic vocalizations sounds
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(e.g., yawning, laughs and screams); and speech

(sentences in several languages); and (b) musical

stimuli, excerpts of novel musical passages

played on piano and violin. We found a func-

tional segregation when we compared the corti-

cal activity associated with the processing of any

type of human vocalization versus the activity

generated by musical sounds. The comparison

among music versus human vocalizations

revealed a discrete bilateral area located in the

anterior portion of the STG (Fig. 3a; light and

dark blue colors) which responded significantly

more to music than to human voices; this region

was located within Brodmann’s area 22, but

extending to a more rostral portion named

planum polare. Notably, these differences

remain significant even when comparing only

violin versus speech, two stimuli with very simi-

lar spectro-temporal acoustic characteristics

(Fig. 3a, bar graph). The regions activated during

the perception of speech or nonverbal

vocalizations (i.e., the opposite contrast) coin-

cide with those reported in the literature: bilateral

activation of the lateral STG, medial temporal

gyrus (MTG), predominantly in the left hemi-

sphere where the cluster extended to the edge of

Fig. 3 Music-selective cortical regions. Voxels with sig-

nificant activation (corrected cluster p < 0.05) are

overlaid on the MNI-152 atlas, in radiological conven-

tion. (a) Music sensitive regions (blue colors). Coronal
and sagittal views (left and right, respectively), the

clusters in light blue (music > human vocalizations

[speech + non-linguistic vocalizations]) and dark blue
(music > speech) show no overlap with the cluster in

orange (human vocalizations > music); amplification of

the sagittal view showing part of Heschl’s gyrus (HG)

and the planum polare (PP). Bar plot showing BOLD

signal change for each of the stimuli, obtained from the

peak of maximal activation of the contrast testing for

music > human vocalizations (speech and non-linguistic

vocalizations). Error bars show the standard error.

(b) Sagittal and axial views (left and right, respectively),

showing the results from contrasts testing music >
human vocalizations in musicians > non-musicians.

Differential BOLD activity of the right planum temporale
(green color), elicited by music or human vocalizations,

was present only in musicians, the blue cluster (PP) is

shown for reference. (c) Individual statistical maps from

the analyses for music > human vocalizations (red color;
p < 0.01 uncorrected), overlaid in T1-weighted images

of 4 representative musicians (upper panel) and 4 repre-

sentative non-musicians. R right, L left

300 A. Angulo-Perkins and L. Concha



the STG and STS; and other regions such as the

hippocampus, the amygdala, and the inferior

frontal gyrus (Fig. 3a, warm colors).

One way to interpret these results is to

consider the planum polare as a relay in the

stream of musical stimuli (and perhaps other

complex acoustically rich sounds), that receives

information from the core and belt regions

(among other association areas), and integrates

complex acoustic attributes, serving as an inte-

grator required for the analysis of diverse

features of the stimulus. Indeed, previous results

demonstrate that this region co-participates with

frontal regions in tasks involving pitch and

melodic discrimination [48–50].

One of the strongest arguments for questioning

the selectivity observed in the planum polare, is to

attribute the differences observed in the patterns

of activity of each sound (e.g., speech or music),

to differences in the spectro-temporal properties

of each acoustic stimuli. However, Schönwiesner

and colleagues [22, 51, 52], have shown that

manipulations of spectro-temporal patterns along

the time dimension are not sufficient to explain the

activation of tertiary or high-order cortices. Using

complex broadband stimuli with a drifting sinu-

soidal spectral envelope (dynamic ripples), they

measured spectro-temporal modulation transfer

functions (MTFs) in the auditory cortex, finding

that dynamic ripples elicited strong responses

from primary to secondary cortices (on and

around Heschl’s gyrus), but not in higher-order

auditory cortices (e.g., posterior superior temporal

gyrus and PT or STS). They argued that the lack

of activity in higher areas may be due to two

important characteristics of dynamic ripples (1)

their low acoustical complexity, i.e., higher-order

areas might integrate information across the spec-

trum modulation (units with simple summing

responses MTFs); and (2) their lack of behavioral

significance, arguing that higher auditory areas do

not faithfully represent the physical properties of

sounds but rather the relation between a sound

and its behavioral implications [52]. Another

fact that supports selectivity for music was

observed in musicians, since only their group

showed modulation of the planum temporale,

whereas musicians presented similar activation

for music and human vocalizations, non-

musicians showed higher activity in response to

human vocalizations (ascompared to music).

Subject-level analyses of our fMRI data

revealed that bilateral activation of the planum

polare was more prevalent in the group of

musicians (27/28) compared to non-musicians

(13/25) (Fig. 3c) during music listening. Previ-

ously we discussed that the functional asymme-

try in musical processing postulates the right

hemisphere as dominant, but in this experiment

we found that this functional asymmetry was

modified in musicians, which showed no

differences in BOLD signal modulation between

the left an the right planum polare during music

perception. Even though musicians and non-

musicians likely have the same neural substrates

for musical processing (both perceive and distin-

guish what is and what is not music), musicians

may demand similar resources in both

hemispheres, while non-musicians do so in an

asymmetric fashion, suggesting a functional spe-

cialization relative to musicianship.

Conclusions

The evidence presented in this chapter

indicates that cortical responses to music are

distributed and sophisticated; each area in the

auditory cortex reveals its specialization

according to its stage of processing in the

flow of information. Several studies provide

data regarding a musical processing network

that differs from the network associated with

speech perception [44, 50, 53], this means that

the particular attributes of these two complex

stimuli are processed by specialized networks,

which are sensitive to spectral and temporal

patterns that distinguish each sound category.

As a summary of the information flow, we can

say that the right primary auditory cortex is

more sensitive to the changes in frequency

and timing that characterize music; that belt

regions (besides presenting extensions of the

tonotopic maps) start to exhibit singularities,

such as increased activation during directed

attention to sounds, harmonic tones prefer-

ence, among others; and that the parabelt

region is involved in more complex processes,
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exhibiting preference or selectivity for acous-

tic elements inherent in music, or showing

activation with frontal regions during tasks

involving discrimination of tones and tunes

[48, 54, 55]. Furthermore, it can be concluded

that the networks involved in the perception of

music show some specificity, which may be

evident in plasticity processes such as training

(i.e., by the history of the interaction between

the listener and the stimulus) ([44, 55–57]).

These concepts will serve to develop more

advanced and integrative models for the com-

prehension of music and speech processing.
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Perceiving Temporal Regularity in
Music: The Role of Auditory
Event-Related Potentials (ERPs) in
Probing Beat Perception

Henkjan Honing, Fleur L. Bouwer, and Gábor P. Háden

Abstract

The aim of this chapter is to give an overview of how the perception of a

regular beat in music can be studied in humans adults, human newborns,

and nonhuman primates using event-related brain potentials (ERPs). Next

to a review of the recent literature on the perception of temporal regularity

in music, we will discuss in how far ERPs, and especially the component

called mismatch negativity (MMN), can be instrumental in probing beat

perception. We conclude with a discussion on the pitfalls and prospects of

using ERPs to probe the perception of a regular beat, in which we present

possible constraints on stimulus design and discuss future perspectives.
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Introduction

In music, as in several other domains, events

occur over time. The way events are ordered in

time is commonly referred to as rhythm. In musi-

cal rhythm, unlike in other domains, we often

perceive an underlying regularity in time, which

is known as the pulse or the beat. The beat is a

regularly recurring salient moment in time [1].

The beat often coincides with an event, but a beat

can also coincide with plain silence ([2]; see

Fig. 1). At a higher level, we can hear regularity

in the form of regular stronger and weaker beats

and at a lower level, we can perceive regular

subdivisions of the beat. We thus can perceive

multiple levels of regularity in a musical rhythm,

which together create a hierarchical pattern of

saliency known as metrical structure or simply,

meter. In this chapter, we will mainly focus on

the processes underlying the perception of the

most salient level of regularity in this perceived

metrical structure: the beat.

The sensory and cognitive mechanisms of beat

perception have quite a history as a research topic

[3–8]. These mechanisms have been examined in
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many music perception studies, mostly from a

theoretical and psychological point of view

[4, 6, 9, 10]. More recently, beat perception

has attracted the interest of developmental

psychologists [11], cognitive biologists [12], evo-

lutionary psychologists [13], and neuroscientists

[14, 15]. In addition, in the last decades a change

can be observed from studying beat perception

from a psychophysical perspective (studying the

relation between stimulus and sensation) using

relatively simple stimulus materials [16], to study-

ing beat perception with more ecologically valid

materials that take the task and the effect of musi-

cal context into account [8, 17]. In its entirety this

has resulted in a substantial body of work using a

variety of methods. In this chapter we will focus

on studying the perception of the beat using

electrophysiological methods.

Beat Perception as a Fundamental
Cognitive Mechanism

It seems a trivial skill: children that clap along

with a song, musicians that tap their foot to the

music, or a stage full of line dancers that dance in

synchrony. And in a way it is indeed trivial. Most

people can easily pick up a regular pulse from the

music or can judge whether the music speeds up

or slows down. However, the realization that

perceiving this regularity in music allows us to

dance and make music together makes it a less

trivial phenomenon. Beat perception might well

be conditional to music [18], and as such it can be

considered a fundamental human trait that, argu-

ably, has played a decisive role in the origins of

music [13]. Three properties of the ability to

perceive a beat can be looked at when consider-

ing its role in the origins of music: whether it is

an innate (or spontaneously developing) ability,

whether it is specific to the domain of music and

whether it is a species-specific ability.

Innateness, Domain- and
Species-Specificity

Scientists are still divided whether beat percep-

tion develops spontaneously (emphasizing a

biological basis) or whether it is learned

(emphasizing a cultural basis). Some authors

consider a sensitivity to the beat to be acquired

during the first years of life, suggesting that the

ways in which babies are rocked and bounced in

time to music by their parents is the most impor-

tant factor in developing a sense for metrical

structure [19]. By contrast, more recent studies

emphasize a biological basis, suggesting that

beat perception is already functional in young

infants [20] and possibly even in 2–3 day old

newborns [21]. These recent empirical findings

can be taken as support for a genetic predisposi-

tion for beat perception, rather than it primarily

being a result of learning.

Furthermore, developmental studies suggest

that infants are not only sensitive to a regular

pulse, but also to regularity at a higher level

(two or more levels of pulse; [22]). Thus it is

possible that humans possess some processing

predisposition to extract hierarchically structured

regularities from music [23, 24]. To understand

more about these capacities to hear regularity in

music and to examine whether they are indeed

Fig. 1 A rhythm notated in common music notation

(labeled Score) and as dashes (sound) and dots (silence)
on a grid (labeled Rhythm). The perceived beat is marked

with bullets; one possible metrical interpretation is

marked with a metrical tree, with the length of the

branches representing the theoretical metric salience and

bullets marking the regularities at each metrical level. The

rest (labeled R) marks a ‘loud rest’ or syncopation: a
missing event on an induced beat
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(partly) innate, research with newborns provides

a suitable context [18, 21].

With regard to the domain-specificity of beat

perception convincing evidence is still lacking,

although it was recently argued that beat induc-

tion does not play a role (or is even avoided) in

spoken language [25]. Furthermore, the percep-

tion of a beat occurs more easily with auditory

than visual temporal stimuli [26], with audition

priming vision [27], but not vice versa [28].

With regard to the species specificity of beat

perception, it is still unclear which species have

this ability. It was recently shown that rhythmic

entrainment, long considered a human-specific

mechanism, can be demonstrated in a select

group of bird species [29–31], and not in more

closely related species such as nonhuman

primates [32, 33]. This is surprising when one

assumes a close mapping between a genetic pre-

disposition (specific genotypes) and specific cog-

nitive traits. However, more and more studies

show that genetically distantly related species

can show similar cognitive skills; skills that

more genetically closely related species fail to

show [34]. The observations regarding beat per-

ception in animals support the vocal learning

hypothesis [35] that suggests that rhythmic

entrainment is a by-product of the vocal learning

mechanisms that are shared by several bird and

mammal species, including humans, but that are

only weakly developed, or missing entirely, in

nonhuman primates [36]. Nevertheless it has to

be noted that, since no evidence of rhythmic

entrainment was found in many vocal learners

(including dolphins and songbirds; [30]), vocal

learning may be necessary, but clearly is not

sufficient for beat perception and rhythmic

entrainment. Furthermore, vocal learning itself

may lie over a continuum rather than being a

discrete ability, as for example sea lions

(Zalophus californianus) seem capable of rhyth-

mic entrainment [37] while there is little or no

evidence of vocal learning [38]. Whereas

research in human newborns can answer

questions about the innateness of beat percep-

tion, research in various animals can answer

questions about the species-specificity of beat

perception.

Beat Induction

We use the term beat induction for the cognitive

mechanism that supports the detection of a regu-

lar pulse from the varying surface structure of

musical sound. This term stresses that the per-

ception of a beat is not a passive process but an

active one in which a listener induces a particular

regular pattern from a rhythm. It emphasizes that

a beat does not always need to be physically

present in order to be perceived. This is, for

example, the case when we hear a syncopation
(or ‘loud rest’; see Fig. 1), in which the beat does

not coincide with an event in the musical surface,

but with a silence [18].

As we have seen, beat perception and beat

induction can be considered fundamental to

music perception and production. Questions of

innateness, domain-specificity and species-

specificity need to be addressed to further reveal

the relationship between beat perception and the

origins of music. Before we turn to a possible

method to answer these questions, first, the pos-

sible mechanisms that constitute beat perception

and beat induction will be discussed.

Possible Mechanisms of Beat
Induction

The Perception of a Beat

The perception of a beat is a bi-directional pro-

cess: not only can a varying musical rhythm

induce a regular beat, a regular beat can also

influence the perception of the very same rhythm

that induces it. Hence beat perception can be seen

as an interaction between bottom-up and top

down sensory and cognitive processes [10].

Initially, we induce a beat from various cues in

the music. Once a context of regularity is

established, we use the inferred beat to interpret

the music within this context and to predict

future events [7]. A perceived pulse is stable

and resistant to change [39]. However, if the

sensory input provides clear evidence for a dif-

ferent metrical structure, our perception of the
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beat can change. The relation between the events

in the music and the perceived temporal regular-

ity thus is a flexible one, in which the perceived

metrical structure is both inferred from the music

and has an influence on how we perceive the

music [40, 41].

Boundaries on Beat Perception

We can perceive regularity in music at different

metrical levels and thus at different timescales. It

should be noted that the perception of temporal

regularity is restricted by several perceptual

boundaries. We can perceive temporal regularity

with a period roughly in the timescale of

200–2,000 ms [42]. Within this range, we have

a clear preference for beats with a period around

600 ms or 100 beats/min. This rate is referred to

as preferred tempo [3]. A beat at this tempo is

usually very salient. Most empirical studies

looking at beat perception use a rate of stimulus

presentation that makes it possible to hear a beat

at preferred tempo level.

Beat Induction Through Accent
Structure

To infer a metrical structure from music we make

use of accents. In a sequence of events, an accent

is a more salient event because it differs from

other, non-accented events along some auditory

dimension [43]. When accents exhibit regularity

in time, we can induce a regular beat from them.

Accented tones are then usually perceived as on

the beat or, on a higher level, as coinciding with a

strong rather than a weak beat [44].

A sequence of events in time, such as a musi-

cal rhythm, also contains purely temporal

accents that arise from the structure of event

onsets rather than from acoustic changes in the

sound. Events are perceived as more or less

salient depending on their length and position in

a rhythm. Povel and Essens [4] describe three

ways in which a temporal accent can occur.

First, when an onset is isolated relative to other

onsets, it sounds like an accent. Second, when

two onsets are grouped together, the second onset

sounds accented. Finally, for groups of three or

more onsets, the first and/or last tone of the group

will be perceived as an accent.

While it has been suggested that beat induc-

tion is mainly guided by these temporal accents

[45], recently it has been shown that pitch

accents also play a role in perceiving the beat

[43, 46]. It is very likely that in natural music,

many features of tones can contribute to an

accent structure and our perception of the beat,

including not only pitch, but also timbre and

intensity. In line with this, Bolger et al. [27]

and Tierney and Kraus [47] showed that the use

of ecologically valid stimuli can actually

enhance the perception of a beat. However, to

date, melodic, timbre and intensity accents have

been largely ignored in many studies examining

beat perception.

Beyond Accents

While accents explain a large part of how we

infer a beat and metrical structure from music,

several other processes must be taken into

account. First, it must be noted that we some-

times perceive temporal structure without any

accents present. Rather, we actually imagine

accents where they are not psychically present.

This phenomenon has been termed subjective

rhythmization and is very apparent when listen-

ing to a clock. Whereas every tick of a clock is

equal, we often hear every other tick as an accent

(e.g., ‘tick-tock’ instead of ‘tick-tick’). Direct

evidence for the presence of subjective rhythmi-

zation in isochronous sequences comes from

studies comparing the brain response to tones in

odd positions (which are subjectively accented)

with the response to tones in even positions

(which are not subjectively accented). It was

found that slightly softer tones were perceived

as more salient in odd than in even positions [48].

While this shows the presence of the effect, the

mechanism underlying subjective rhythmization

is still unclear [49].

A second influence on beat induction is our

previous experience. Hannon and Trehub [50]
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showed how cultural background and exposure

to music can affect how well we can discern a

metrical structure. In their study, participants

listened to folk melodies with either a simple or

a complex metrical structure. They were subse-

quently presented with two alterations of the

melody, one in which the metrical structure was

preserved, and one in which the metrical struc-

ture was violated. Participants then rated the

similarity of the altered melodies to the original

melody. Adults of Bulgarian and Macedonian

origin, who are accustomed to complex metrical

structures (i.e., compound meters like 5/8 or 7/8),

differentiated between structure-preserving and

structure-violating alterations in both complex

and simple metrical structures. However,

participants with a Western background did so

only in the melodies with a simple meter. This

was most likely due to the fact that Western

listeners are not familiar with complex meters.

Interestingly, 6 month-old infants responded dif-

ferentially to structure-preserving and structure-

violating alterations regardless of whether they

occurred in a simple or complex metrical struc-

ture. This implies that the difference between the

adults from Western and Balkan cultures is due

to enculturation, which takes place sometime

after the age of 6 months. It shows that the

culture with which we are familiar influences

how we perceive the metrical structure (for

more evidence regarding the effect of culture on

beat and meter perception, see [51]). In addition

to the familiarity of different metrical structures,

our culture can also provide us with template of

certain patterns that specify a certain metrical

structure. For example, snare drum accents in

rock music often indicate the offbeat rather than

the beat [7].

Finally, in addition to the influence of an

accent structure, subjective rhythmization and

our previous experience, the perception of a

beat can also be guided by conscious effort. By

consciously adjusting the phase or period of the

regularity we perceive, we can influence which

tones we hear on the beat. For example, when we

listen to an isochronous series of tones, without

any instruction, we will hear every other tone as

accented [49]. However, by conscious effort, we

can project a beat on every third tone, thus

adjusting the period of the beat to our will. This

ability has been very useful in examining beat

and meter perception, because it can allow us to

hear a physically identical stimulus as on the beat

or not, depending on the (instructions for

examples, see [52, 53]). Any change in neural

activity found can then reliably be attributed to

beat perception, without having to control for

physical differences between tones that are on

or off the beat.

To summarize, beat induction is guided by the

temporal and acoustic structure of events. It is

constrained by our perceptual system and can be

influenced by our earlier exposure to music, sub-

jective rhythmization and conscious effort. When

we listen to music, we induce a beat from the

sensory input and then use that information to

predict future events within a metrical frame-

work. One way of understanding the mechanisms

of beat perception is in the framework of the

predictive coding theory (see Vuust et al., last

chapter of this volume). Another prominent the-

ory explaining the interaction between the vary-

ing sensory input and beat perception is the

Dynamic Attending Theory [54].

Dynamic Attending Theory

Dynamic Attending Theory (DAT) explains the

perception of metrical structure as regular

fluctuations in attention. It proposes that internal

fluctuations in attentional energy, termed attend-

ing rhythms, generate expectancies about when

future events occur. When attentional energy is

heightened an event is expected. Such a peak in

attentional energy is perceived as a metrically

strong position, i.e., on the beat. The internal

fluctuations in attentional energy can entrain to

the rhythm of external events, by adapting their

phase and period, which corresponds to how we

infer a metrical structure from events in the

music. The attending rhythms are self-sustaining

and can occur at multiple levels, tracking events

with different periods simultaneously [6, 55].

These features correspond respectively to the

stability of our metrical percept and the
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perception of multiple hierarchical levels of reg-

ularity [39]. As such, DAT can explain many

aspects of beat and meter perception. Behavioral

support for DAT comes from studies showing a

processing advantage in metrically strong

positions for temporal intervals [6], pitch [56]

and phonemes [57]. This is thought to be the

result of the peaks in attentional energy

associated with metrically salient positions.

At a neural level, beat and meter perception

have been hypothesized to originate from neural

oscillations that resonate to external events (neu-
ral resonance, see [39]). This view on the per-

ception of metrical structure can be seen as an

extension of DAT and makes largely the same

predictions. Like the attending rhythms in DAT,

neural oscillations are suggested to be self-

sustaining and are suggested to adapt their

phase and period to an external rhythm. In addi-

tion to these features, neural oscillations may

arise at frequencies that are not in the stimulus,

which may be an explanation for the phenome-

non of subjective rhythmization [39].

Snyder and Large [58] provided some empiri-

cal evidence for the neural resonance theory, by

showing that high frequency neural oscillations

reflect rhythmic expectancy. They presented

participants with a rhythm consisting of

alternating loud and soft tones, while measuring

their brain activity using electroencephalography

(EEG). With this method it is possible to measure

the electric activity of the brain with high tempo-

ral precision and thus, it is possible to show high

frequency neuronal oscillations. The results

showed that a peak in induced gamma

oscillations (20–80 Hz) coincided with the

sounds. When a loud sound was omitted, this

peak was still present, which was interpreted as

evidence that the induced activity represented the

regular underlying beat, which continued even

without physical input. Additional evidence in

this line was provided by Zanto et al. [59],

Iversen et al. [52] and Fujioka et al. [60]. In

each of these studies, induced oscillatory activity

was shown to relate to metrical expectations. The

question remains, however, whether neural reso-

nance is actively influencing rhythm perception

or whether it is an emergent attribute of the EEG

response induced by the rhythmic structure of the

stimulus itself [61]. Also, to date, support for

neural resonance as an explanation for beat per-

ception only comes from studies using isochro-

nous stimuli. Whether neural resonance also

explains phenomena such as subjective rhythmi-

zation and beat perception with more complex

stimuli remains to be tested.

Metrical Structure Is Perceived in Motor
Areas of the Brain

EEG provides excellent temporal resolution.

However, to localize the networks involved in

beat perception, the superior spatial resolution of

functional magnetic resonance imaging (fMRI) is

needed. The overall picture emerging from fMRI

studies looking at beat perception is that of large

involvement of the motor areas in the brain. Grahn

and Brett [14] examined beat perception using

different rhythmic sequences, containing temporal

accents (i.e. accents that arise from the structure of

event onsets; cf. [4]). In some rhythms these

accents were spaced evenly, while in other

rhythms they were irregular. Rhythms with regu-

lar accents were considered to bemetrical rhythms

and rhythms with irregular accents non-metrical.

Only metrical rhythms induced a beat, as was

confirmed by a behavioral test. Using fMRI it

could be shown that during listening to metrical

rhythms the basal ganglia and the supplementary

motor area (SMA) were more active than during

listening to non-metrical rhythms, implicating

these areas in beat perception. The findings of

Grahn and Brett [14] were confirmed by several

subsequent studies showing activations not only in

the basal ganglia and SMA, but also in the cere-

bellum and pre-motor areas [62–64]. Importantly,

activity in a network of motor areas was consis-

tently observed, even when participants were

asked not to make overt movements. This shows

that these areas are involved when people just

listen to a metrical rhythm (for a review on the

neural correlates of beat and meter perception, see

[65, 66]).

Motor areas have been implicated in time

perception in general. However, recently it was
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shown that specific networks are dedicated to

perceiving absolute and relative durations

respectively. While a network comprising the

cerebellum and the inferior olive is involved in

absolute duration-based timing, a different net-

work, including the basal ganglia and the SMA,

is active for relative or beat-based timing [67].

The perception of a beat, which requires the

perception of temporal regularity, thus appears

to be a distinct process from the general percep-

tion of temporal intervals. We will refer to this as

the auditory timing dissociation hypothesis (see
also [68, 69]).

To summarize, regular fluctuations in atten-

tional energy and neural resonance have been

suggested to explain the perception of metrical

structure. Also, a role for a network of motor

areas in the brain, including the basal ganglia

and the SMA, has been implicated. Finally, a

dissociation between rhythm perception and

beat perception has been suggested.

Beat Perception in Human Adults,
Human Newborns, and Nonhuman
Primates

As discussed in the Introduction, some of the

main questions regarding beat perception are

concerned with whether beat perception is innate

(or spontaneously developing) and/or species-

specific. These questions about beat perception

can potentially be answered by testing human

newborns and nonhuman animals. These

questions ask for a method that is non-invasive

and does not require an overt response from the

participant. EEG is well suited for this task and

has the temporal resolution to track the percep-

tion of a beat over time. One way of looking at

beat perception with EEG is by measuring neural

oscillations. While this provides a promising way

of examining beat perception, this line of

research is very recent and has mostly been

tested in adult participants under attended

conditions. It is not yet clear whether beat per-

ception can be measured through neural reso-

nance in special groups of participants, like

children, newborns or animals, and in conditions

in which participants do not attend to the rhythm.

Questions regarding the innateness and species-

specificity of beat perception have been

addressed using EEG with the more traditional

and well-studied approach of looking at event-

related potentials (ERPs). In the remainder of

this chapter we will therefore focus on using

auditory ERPs in probing beat perception.

Measuring Beat Induction with
Event-Related Potentials (ERPs)

Using ERPs to Probe Beat Perception

ERPs are hypothesized to reflect the sensory and

cognitive processing in the central nervous sys-

tem associated with particular (auditory) events

[70]. ERPs are isolated from the EEG signal by

averaging the signal in response to many trials

containing the event of interest. Through this

averaging procedure, any activity that is not

time-locked to the event is averaged out, leaving

the response specific to the event of interest: the

ERP. While ERPs do not provide a direct func-

tional association with the underlying neural pro-

cesses, there are several advantages to the

technique, such as the ability to record tempo-

rally fine-grained and covert responses not

observable in behavior. Also, several ERP

components have been well studied and

documented, not only in human adults, but also

in newborns and animals. Some of these

components, used in testing beat perception, are

elicited with an oddball paradigm.

An auditory oddball paradigm consists of a

regular sequence of stimuli (standards), in

which infrequently a stimulus is changed (devi-

ant) in some feature (e.g., pitch, intensity, etc.).

The deviant stimulus thus violates a regularity

that is established by the standard stimuli.

Depending on the task of the subject a deviant

stimulus elicits a series of ERP components

reflecting different stages and mechanisms of

processing. The mismatch negativity (MMN),

which is a negative ERP component elicited

between 100 and 200 ms after the deviant

stimulus, reflects automatic deviance detection
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through a memory-template matching process

(see Fig. 2). The N2b is a component similar to

the MMN in latency, polarity and function, but it

is only elicited when the deviant is attended and

relevant to the task. At around 300 ms after the

deviant stimulus, a positive component can

occur, known as the P3a, which reflects attention

switching and orientation towards the deviant

stimulus. For task relevant deviants, this compo-

nent can overlap with the slightly later P3b,

reflecting match/mismatch with a working mem-

ory representation [71, 72]. Finally, the reorien-

tation negativity (RON; 400–600 ms) reflects

switching back attention to the original task

[73]. Several of these ERP components are

known to index the magnitude of a regularity

violation. A larger deviation from regularity

yields a MMN, N2b, P3a and P3b with earlier

latency and larger amplitude [74–77]. This prop-

erty is exploited when probing beat perception

with ERPs.

The general idea of using ERPs to probe beat

perception is that an event on the beat is per-

ceived differently from an event occurring not

on the beat and thus that two physically identical

events in different metrical positions should yield

different brain responses. Moreover, because we

perceive events on the beat as different from

events not on the beat, we also perceive deviants

on the beat as different from deviants not on the

beat. An effect of metrical position on the ERP

response to a deviant event is therefore

interpreted as evidence for the presence of beat

perception. In general, it is thought that deviant

events on the beat are detected better than devi-

ant events not on the beat and thus that the former

elicit earlier and larger amplitude ERP responses

than the latter [78].

An example of how deviant detection can

show the presence of beat perception comes

from studies examining subjective rhythmization

[48, 49]. In these studies, participants were

presented with an isochronous series of tones.

They were hypothesized to perceive the tones in

odd positions as stronger than tones in even

positions. Infrequently, a softer tone was

introduced, either in odd or in even positions.

These deviants elicited an N2b and a P3b. The

P3b to deviants in odd positions had a larger

amplitude than the P3b to deviants in even

positions, showing that the deviants were

indeed detected better—or perceived as more

violating—on the beat. Other studies have

shown that the P3b component to deviants is

Fig. 2 Idealized event-related potential (ERP) responses

to unattended stimuli in an oddball paradigm, showing the

standard (dotted line), deviant (solid line) and deviant

minus standard difference waveform (bold line).

The mismatch negativity (MMN), P3a and reorientation

negativity (RON) components are highlighted with grey
shading indicating standard latency windows
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larger when the deviants occur in a regular

sequence than when they occur in a sequence

with random inter-onset intervals [78, 79].

While the elicitation of an N2b and a P3b

requires attention and a conscious effort towards

detecting deviant stimuli, the MMN is automatic

and mostly independent of attention. As such, it

has been possible to show MMN-like responses

in newborn infants as well as in nonhuman spe-

cies. This makes the MMN an ideal ERP compo-

nent for interspecies comparisons and for testing

the innateness of beat perception, provided that

the MMN response is indeed sensitive to metrical

structure and that beat perception can be shown

to be pre-attentive in human adults. In the fol-

lowing sections, the MMN component and its

relation to beat perception is discussed.

The Mismatch Negativity (MMN)

In general, the MMN is elicited when incoming

sounds mismatch the neural representations of

regularities extracted from the acoustic environ-

ment. Violations of the regularity in sound

features such as pitch, duration or timbre can elicit

anMMN [80, 81]. Also violations of abstract rules

(i.e. one auditory feature predicting another; [82])

or stimulus omissions [83] can cause an MMN.

The MMN is regarded as a predictive process [84]

reflecting the detection of regularity-violations

(for reviews see [85, 86]).

The processes underlying the MMN are

thought to be automatic, however, the MMN

can be modulated by attention [87] and even be

completely eliminated when deviations in

attended and unattended auditory streams vie

for feature specific processing resources [88].

The fact that MMN can be elicited even in coma-

tose patients [85], sleeping newborns [89] and

anesthetized animals [90] illustrates the relative

independence from attention. The latency and

amplitude of the MMN are sensitive to the rela-

tive magnitude of the regularity violation [74,

76] and correspond to discrimination perfor-

mance in behavioral tasks [91]. These properties

can be exploited when, for example, beats on

metrically strong and weak positions are

compared or the relation between attention and

beat perception is tested.

Using MMN to Probe Beat Perception
in Human Adults

To date there has been only a handful of studies

that used MMN to study beat perception. The

different methods in these studies have two com-

mon design goals: First, all studies present

subjects with stimuli that induce a metrical struc-

ture and the responses to regularity violations

occurring on different metrical positions (e.g.

on the beat and not on the beat) are compared.

Second, all studies try to control attention to test

whether the processes involved in differentiating

between different metrical positions are auto-

matic or dependent on attention, i.e. to study

whether beat perception is pre-attentive [92].

The existing literature, however, contains incon-

sistent results (for a related review, see [65]).

Geiser et al. [93] presented subjects with

rhythmic patterns containing temporal accents

consistent with a regular 3/4 bar (e.g. the metrical

structure of a waltz). In these metrically regular

sequences infrequently a pitch deviant, a viola-

tion of the metrical structure or a violation of the

temporal surface structure of the rhythm was

introduced. The meter violations consisted of

the addition or removal of an eight note to the

regular 3/4 bar. To create the rhythm violations,

one or two eight notes were substituted by two or

four sixteenth notes, leaving the metrical struc-

ture intact. Subjects had to either ignore the

changes in the temporal domain and detect the

pitch changes (unattended condition) or ignore

the pitch changes and detect the temporal

changes (attended condition). Regardless of

subjects’ musical training, rhythm violations

elicited an MMN-like component in both

attended and unattended conditions. Meter

violations however only elicited an MMN-like

component in the attended condition, implying

that attention is required to induce a beat. In an

experiment with similar attentional control,

Vuust et al. [94, 95] did find MMN responses to

large temporal violations of the metrical
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structure regardless of musical training and atten-

tion. Unfortunately the large changes violated

not only the meter but also other parameters,

like the underlying temporal grid. As this in itself

would lead to a MMN response, it is not clear

from these results whether the MMN system is

indeed sensitive to metrical structure.

A converse result comes from the experiment

of Geiser et al. [96] who used identical regular 3/

4 bar sequences as in their earlier study [93].

However, in this study deviants in the form of

intensity accents were introduced at meter-

congruous and meter-incongruous positions.

The attention control was achieved in this exper-

iment by asking subjects to attend to a silenced

movie, a common procedure in many MMN

experiments [86]. Geiser et al. [96] found an

enhanced MMN to accents in meter-incongruous

positions for musicians and, to a lesser extent, for

non-musicians, providing evidence in support of

beat perception being pre-attentive. The

conclusions drawn by this and the previous [93]

study are radically different, while identical beat

inducing stimuli were used. As such, these stud-

ies very clearly show how large the influence of

different attentional controls and experimental

design on the results can be.

Ladinig et al. [23, 24] took a somewhat differ-

ent approach to meter perception in a study

where they compared the responses of musically

untrained subjects to omissions of tones with two

different levels of metrical salience in a rock

drum pattern (see Fig. 3). Two different levels

of attention control were employed. In the pas-

sive condition subjects were attending to a silent

movie, as in Geiser et al. [96]. In the unattended
condition subjects were attending to intensity

changes in a continuous stream of white noise.

The latter condition was designed to be a strict

control for attention as it required attention in the

same modality, but for a different auditory

stream. Results showed that the MMN responses

elicited by infrequent omissions on the first beat

(deviant D1; large violation of the metrical struc-

ture) and the second beat (deviant D2; smaller

violation of the metrical structure) differed in

latency but not in amplitude. The latency differ-

ence indicates faster processing for the larger

metric violation, suggesting that the metrical

structure was picked up without attention.

Studying pre-attentive beat perception using

the MMN is not as straightforward as one might

like. Most notably, the use of acoustically rich

stimuli (with potential differences between

sounds in different metrical positions) may inter-

fere in unforeseen ways with the ERP results (cf.

[92]). One possible future direction is to strive

for even more minimalistic paradigms and to test

whether the auditory system automatically

imposes structure to incoming unattended stimuli

that have no apparent structure (e.g., isochronous

sequences of the same sounds; subjective rhyth-

mization). Alternatively, priming paradigms

could be used that test how long externally

imposed structure persists when the input is no

longer structured. As the MMN responds not

only to temporal but also to pitch and timbre

deviants, it does allow studying more complex

accent structures, a topic mostly ignored so far.

In summary, while the automatic nature of

beat perception is not yet fully understood,

MMN seems to be a promising candidate for

measuring beat perception. In the next sections,

we will discuss how ERPs in general and the

MMN in particular can be used to examine beat

perception in human newborns and nonhuman

primates and other animals.

Measuring ERPs in Human Newborns

MMN-like ERP responses in newborns were first

measured by Alho et al. [89]. Since then several

studies tried to identify the correlates of deve-

loping and adult-like auditory processing.

Recordings from newborns are inherently noisier

than recordings from adults therefore MMN-like

responses in newborns are not very robust. On

the one hand the brain is in extremely rapid

development during the first years of life. On

the other hand the length of experiments are

necessarily short and do not allow for complex

experimental designs or extensive data collection

to improve signal to noise ratio. ERPs both nega-

tive and positive in polarity and within a wide

variety of latency ranges from about 80 ms up to
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500 ms were found in response to oddball

designs, also in absence of attention (the EEG

recording in newborns is made during sleep). It is

not yet clear whether the infants’ responses are

identical or only analogous to the adult MMN

responses, but based on the different ERP

responses to deviant and standard tones we can

assume that the information on which the

deviant-standard discrimination is based is avail-

able to the infant’s brain. However, further

processing steps are unclear. With these caveats

in mind in the discussion below we will refer to

these ERP responses found in newborns and

young infants as MMN.

Several abilities that underlie music percep-

tion seem to be functioning already at birth.

Newborns are able to separate two sound streams

based on sound frequency [97] and detect pattern

repetitions which they incorporate into their

model of the auditory scene [98]. Most important

to beat perception is the ability to process tempo-

ral relations. Presenting a stimulus earlier or later

than expected in an isochronous sequence elicits

an MMN in 10-month old infants (Brannon et al.

2004), at least for large time intervals

(500–1,500 ms). Newborns are also sensitive to

shorter changes (60–100 ms) in stimulus length

[99, 100] and 6-month old infants detect even

shorter gaps (4–16 ms) inserted in tones [101,

102] showing the remarkable temporal resolution

of the auditory system. Furthermore, Háden et al.

[103] showed that newborns are sensitive to

Fig. 3 Stimuli as used in

several studies on beat and

meter perception e.g., [21,
23, 33]. S1–S4 are the

standards and D1 and D2

the deviants used in an

oddball paradigm. The

different percussion sounds

are marked as hi-hat, snare

and bass (see for more

information www.mcg.uva.

nl/newborns/ and www.

mcg.uva.nl/monkeys/)
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changes in the presentation rate of the stimula-

tion, can detect the beginning of sound trains,

and react to the omission of expected stimuli.

These results indicate that investigating phenom-

ena reliant on temporal processing (e.g., beat

perception) is viable.

Using MMN to Probe Beat Perception
in Human Newborns

In the only experiment to date on beat perception

in newborns Winkler et al. [21] used a variant of

the paradigm used in Ladinig et al. ([23], see

Fig. 3) to test whether newborns are able to

extract a regular beat from a varying rhythmic

stimulus. Sounds at the position of the strongest

beat (the ‘downbeat’) in a 4/4 rock drum pattern

were occasionally omitted (D1 in Fig. 3). The

response to these omissions was compared to the

response to omissions on weak metrical positions

(e.g. not on the beat, S2–S4 in Fig. 3) and the

response to omissions in a control sequence

consisting of patterns in which the downbeat

was always omitted. The ERP responses to the

omissions on the downbeat differed significantly

from responses to patterns without omission,

omissions on weak positions and also omissions

in the control sequence. The results were

interpreted as proof to newborns ability to detect

a beat.

Some reservations remain however. In the

experimental design used there is no guarantee

that the perceived phase of the control sequence

was the same as the perceived phase of the other

sequences (see also [23]). This is important

because a different interpretation of the control

sequence would mean that the position of the

beat in the sequence might also be different.

Another possible problem is that the acoustic

context of weak and strong metrical positions is

not identical. Finally, the omitted sounds on

weak and strong positions are not physically

identical. Therefore comparing them might be

problematic (see also Discussion section).

The available evidence points to beat percep-

tion as an innate ability that is shaped by learning

later on [11]. However, there is still some

confirmation needed for newborn beat percep-

tion. New experiments should take into account

the weaknesses of the Winkler et al. [21] design.

In doing so, it would be beneficial to examine

responses to temporal or spectral violations of

regularity instead of omissions, as this would

produce clearer electrical signals. In addition,

this would allow for varying the tempo of the

stimuli and loosen the constraint for relatively

fast tempi (i.e., 150 inter-stimulus interval or

shorter) that is needed for omission studies [83].

Measuring ERPs in Nonhuman Animals

There is quite some discussion on whether beat

perception is species-specific [36]. The evidence

that is in support of beat perception in certain

species comes from experiments that test entrain-

ment to a beat through overt behavior (e.g., [29]).

However, if the production of synchronized

movement to sound or music is not observed in

certain species, this is no evidence for the

absence of beat perception. It could well be that

certain animals are simply not able to synchro-

nize their movements to a varying rhythm, while

they can perceive a beat. With behavioral

methods that rely on overt motoric responses it

is difficult to separate between the contribution

of perception and action. Electrophysiological

measures, such as ERP, that do not require an

overt response, provide an attractive alternative

to probe beat perception in animals.

Since the discovery of the MMN component

researchers have tried to find analogous pro-

cesses in animal models [104] and to integrate

deviance detection and predictive processing into

a general framework of auditory perception

[105]. A wide range of electrophysiological

methods from scalp electrodes to single-cell

recordings have been used on animal models.

These methods highlight different phenomena

of varying spatial and temporal resolution. The

most vital difference is that scalp and epidural

recordings may yield components similar to the

human MMN (i.e. electric responses generated

by large brain areas), whereas local field poten-

tial, multiunit activity and single-cell recordings
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work on a lower spatial scale and reflect stimulus
specific adaptation (SSA; [106]). SSA has many

common properties with MMN; both can be

observed in similar paradigms and it is still

debated whether SSA reflects the cellular level

activity underlying MMN. However, this does

not concern the main aim of this chapter and

will not be discussed further (see Chap. 9 for

more information on this topic).

Using epidural recording, MMN-like

responses have been shown in different species

including rats (for a review see [107]), cats [90,

108, 109] and macaque monkeys [110, 111]. In

most of these studies, frequency and amplitude

violations were used. In rats, deviance detection

was shown for both a temporal feature, sound

duration [107], as well as to an abstract feature,

namely melodic contour [112]. Recordings from

scalp electrodes showed MMN responses in mice

[113] and in a single chimpanzee [114]. While

not all attempts at recording MMN-like

responses from animals were successful, it

seems that MMN can be reliably elicited in ani-

mal models and thus can be used to study audi-

tory processing in nonhuman animals.

Using MMN to Probe Beat Perception
in Nonhuman Primates

Honing et al. [33] recorded ERPs from the scalp

of macaque monkeys. This study demonstrates

that an MMN-like ERP component can be

measured in rhesus monkeys (Macaca mulatta),

both for pitch deviants and unexpected

omissions. Together these results provide sup-

port for the idea that the MMN can be used as

an index of the detection of regularity-violations

in an auditory signal in monkeys.

In addition, the study showed that rhesus

monkeys, using stimuli and an experimental par-

adigm identical to Winkler et al. [21], are not

able to detect the regularity—the beat—induced

by a varying rhythm, while being sensitive to the

rhythmic grouping structure. These findings are

in support of the hypothesis that beat perception

is species-specific, and it is likely restricted to

vocal learners such as a selected group of bird

species, while absent in nonhuman primates such

as rhesus monkeys.

The result is also in support of the dissociation

hypothesis that posits different neural networks

being active for interval-based and beat-based

timing, of which only the former is shared

between non-vocal learning species [33, 69].

Testing beat perception in animals has only

started recently and there is still much work to be

done [36]. The MMN component seems like a

good index of beat perception as it can be elicited

in several different species. Unfortunately most

of the vocal learning species, such as cetaceans

and pinnipeds, are not typical targets for ERP

studies. Interestingly, a recent study suggests at

least some level of vocal learning in mice [115].

This might prove to be an alternative starting

point for testing beat perception in nonhuman

animals.

Discussion and Conclusion

In this chapter we have seen that the percep-

tion of metrical structure seems specific to the

domain of music and is shared with only a

limited number of non-human animals. None-

theless, this ability seems very basic to

humans. People readily synchronize to a beat

in a wide variety of settings, like concerts,

demonstrations, when marching and when

singing a song together. This apparent contra-

diction between the ease with which we are

capable of hearing a beat and the uniqueness

of this skill raises several questions about how

fundamental the perception of metrical struc-

ture really is.

We have shown how ERPs can be used to

answer fundamental questions about beat per-

ception. Measuring ERPs is relatively

straightforward, it can be realized in

populations that are difficult to study behav-

iorally (like infants and monkeys), and it is a

well-researched method. However, several

issues remain.

One of the challenges in examining beat

perception is to balance the need for highly

controlled stimuli with the aim to use stimuli

that are ecologically valid. On the one hand,

future research must address the role of
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different acoustic features in beat perception.

Most research in this area has focused on

temporal accents and has used either very

simple or even isochronous sequences.

While this is useful in controlling acoustic

factors, it is not a very natural way of testing

beat induction. In natural music, different

types of accents often work together in shap-

ing our metrical expectancies. The role of

intensity accents, melodic accents and our

previous experience has only been looked at

very sparsely. However, using more natural

stimuli can create problems in interpreting

the results.

In natural music, a beat is induced by creat-

ing accents on the beat. Because accented

sounds by definition need to stand out from

non-accented sounds, this often means that

tones on the beat have a different sound than

tones that are not on the beat. When comparing

the response to events on the beat and events

that are not on the beat, these sound differences

need to be taken into account. An example of

this problem can be found in the work of

Winkler et al. [21], who showed that newborn

infants respond to the omission of a beat, but

not to the omission of a sound that was not on

the beat. While these results showed that the

newborns differentiated between sounds in dif-

ferent metrical positions, it cannot be

completely ruled out that they did so on the

basis of differences in sound rather than posi-

tion. The sounds that were on the beat were

composed of a bass drum and a hi-hat sound,

while the sounds that were not on the beat were

composed of a single hi-hat sound. This means

it is possible that the newborns responded dif-

ferently to the omission of different sounds. To

exclude alternative explanations like these,

stimuli must be designed in which physical

differences between the sounds in different

metrical positions cannot influence the results

[92]. Thus, balancing the design of

ecologically valid stimuli with the experimen-

tal control needed to draw firm conclusions

continues to be a challenge.

Another issue to be addressed in future

research is the apparent gap between the

sometimes contradicting, results obtained

with the different methods used in probing

beat perception. Some consensus is emerging

on which brain networks are involved in the

perception of beat and meter and how brain

dynamics might be accountable for our metri-

cal expectations. However, the connection

between these findings remains unclear.

Also, studies to date have all used slightly

different stimuli and tasks, which in some

cases results in radically different or even

contradicting conclusions [23, 66, 93]. Once

the different methods are used with similar

paradigms, tasks and stimuli, it will be possi-

ble to directly compare the results and this

will hopefully allow us to get a more coherent

picture of the perception of beat and meter,

and address its apparent innateness, domain-

and species-specificity. All in all, this research

will contribute to a better understanding of the

fundamental role that beat and meter percep-

tion play in music.
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Neural Mechanisms of Rhythm
Perception: Present Findings
and Future Directions

Li-Ann Leow and Jessica A. Grahn

Abstract

The capacity to synchronize movements to the beat in music is a complex,

and apparently uniquely human characteristic. Synchronizing movements

to the beat requires beat perception, which entails prediction of future

beats in rhythmic sequences of temporal intervals. Absolute timing

mechanisms, where patterns of temporal intervals are encoded as a series

of absolute durations, cannot fully explain beat perception. Beat percep-

tion seems better accounted for by relative timing mechanisms, where

temporal intervals of a pattern are coded relative to a periodic beat

interval. Evidence from behavioral, neuroimaging, brain stimulation and

neuronal cell recording studies suggests a functional dissociation between

the neural substrates of absolute and relative timing. This chapter reviews

current findings on relative timing in the context of rhythm and beat

perception.
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Of many uniquely human behaviours, the capac-

ity to move to the beat in music is one of the most

fascinating. To synchronize movements to the

beat, we must rapidly predict the timing of future

beats in rhythmic sequences of temporal

intervals. Despite its complexity, this ability

appears spontaneously in humans, without train-

ing. Sensitivity to the beat in temporal sequences

cannot be easily accounted for by most theories

of timing, as they generally focus on ‘absolute’

timing (also termed duration-based timing), in

which patterns of temporal intervals must be

encoded as a series of absolute durations.

Instead, some human predictive timing

behaviors, such as beat perception, seem better

accounted for by relative timing mechanisms, in

which the temporal intervals of a pattern are

coded relative to each other. This relative timing

is sometimes called ‘beat-based’ timing, because

the intervals can be encoded relative to a regular,

periodic beat interval. Converging evidence

from behavioral, neuroimaging, brain stimula-

tion and neuronal cell recording studies suggests
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a functional dissociation between the neural

substrates of absolute and relative timing. Abso-

lute timing research has been described in depth

elsewhere [1, 2], and will only be briefly

reviewed here. Relative timing, particularly in

the context of rhythm, will be the focus of this

chapter. To orient the reader, we will first pro-

vide some definitions of key terms.

Rhythm is defined as the pattern of time

intervals demarcating a sequence of stimulus

events. In rhythms, the onsets of stimulus events

(such as tones or light flashes) tend to be the most

important markers of the intervals in a rhythm,

and the time between onsets (inter-onset-

intervals) generally defines the lengths of the

temporal intervals in the rhythmic sequence.

This reliance on onsets, not offsets, to indicate

intervals in a rhythm is the reason that we can

recognize a rhythm whether it is played with

long, connected notes (as bowed on a violin) or

with short, disconnected notes (as plucked on a

guitar). Listening to a musical rhythm gives rise

to a sense of pulse, sometimes termed the beat.

The pulse or beat is a series of regularly recurring

psychological events that arise in response to a

musical rhythm [3, 4]. The time interval between

beats is called the beat period or beat interval,
and relates to tempo, the rate of the beat: a shorter

beat period leads to a faster tempo. Although a

sense of beat arises in response to a rhythmic

stimulus, it is not purely a stimulus property:

beat perception is a psychological response to

rhythm [5–8]. For example, beats do not always

have to coincide with stimulus onsets (as

evidenced by our ability to mentally continue

the beat through gaps or breaks in music).

Although perception of the beat can be enhanced

by volume or timbral accents, such perceptual

accents are not necessary for beat perception,

suggesting that beat perception can arise purely

from particular temporal characteristics of a

rhythm. The specific temporal characteristics

that induce beat perception, and thus trigger

beat-based timing mechanisms, are not entirely

clear, but some common heuristics have been

used.

Beat-inducing rhythms (sometimes termed

metric simple rhythms) can be formed by

creating rhythmic sequences from intervals

whose lengths are related by integer ratios (e.g.,

1:2:4), particularly if the interval onsets system-

atically occur at rates known to be salient for

human beat perception (440–1,080 ms) [9, 10].

The opposite of beat-inducing or metric simple

rhythms are nonmetric rhythms, which have no

beat. These can be formed by creating sequences

from intervals whose lengths are related by com-

plex or noninteger ratios (e.g., 1:2.3:3.7), or even

intervals of randomly selected lengths. In these

rhythms, no beat can be felt, because no regular-

ity of onsets is present. Between metric simple

and nonmetric rhythms are rhythms that are less

likely to induce a sense of beat, but in which it

would be possible to sense a beat (i.e., the struc-

ture is not so irregular as to preclude a beat

‘fitting’ to the rhythm). These are often termed

metric complex rhythms. Metric complex

rhythms are generally closely matched to metric

simple rhythms in terms of sequence length,

number of intervals in a sequence, and the

lengths of individual intervals that comprise the

sequence. Unlike metric simple rhythms, the

intervals are arranged in such a way that a beat

is not readily perceived, generally by not having

onsets consistently occur at rates salient for beat

perception. Different researchers use somewhat

different heuristics for determining the ‘com-

plexity’ of a metric rhythm, but the underlying

idea is similar: simple rhythms induce clear beat

perception, complex rhythms less so, and non-

metric rhythms not at all.

Behavioral Evidence of Beat-Based
Timing Mechanisms

Without beat perception, the durations of each

interval in the rhythm must be measured and

stored in memory separately as they occur, and

our capacity to remember a series of separate,

unrelated time intervals is limited. Perception of

the beat enables temporal intervals to be encoded

as multiples or subdivisions of the beat, rather

than as a series of individual and unrelated

intervals. Therefore, the percept of a beat has

repeatedly been shown to improve performance
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on temporal processing tasks (e.g., [9, 11–13]).

In general, behavioural temporal processing

tasks can be categorized as either belonging to

the perceptual paradigm, or the production para-

digm. Perceptual paradigms require subjects to

make perceptual judgments about sets of tempo-

ral stimuli. One commonly used perceptual task

is the rhythmic discrimination task, which

requires subjects to listen to a “standard” tempo-

ral sequence of rhythmic stimuli, followed by a

second “test” sequence. Subjects are then asked

to compare the standard and the test sequences

and make judgments about the sequences (e.g.,

are the rhythms same or different?) When asked

to discriminate if rhythms are same or different,

subjects are typically better at discrimination of

metric simple rhythms than with metric complex

rhythms [14]. Furthermore, beat-inducing

rhythms elicit better performance even when

the task is not temporal: discrimination of inten-

sity differences is better with beat rhythms than

non-beat rhythms [15]. Production paradigms

require subjects to produce a specified temporal

pattern. For example, in rhythm reproduction

tasks, subjects listen to rhythms and then repro-

duce them from memory [9]. Another commonly

used production task is the synchronization-

continuation task. In the synchronization phase,

subjects synchronize movements (typically fin-

ger taps) to the onset of each tone of a rhythm, or

to each beat in the rhythm. In the continuation

phase, the sound is removed, and subjects con-

tinue to reproduce the rhythm, or only the beat,

from memory. As with perceptual paradigms,

performance in production paradigms is more

accurate and precise with beat-inducing rhythms

than with non-beat rhythms [9, 12, 13, 16, 17].

The individual intervals in beat and non-beat

rhythms are the same (only the interval order

differs), and the rhythms are equal in all other

temporal processing requirements (such as

length and number of intervals), therefore the

performance advantage for beat-inducing

rhythms does not result from any differences in

timing of individual intervals. Instead, in beat

rhythms, temporal processing performance is

improved by the use of relative timing

mechanisms: the intervals are perceived and

organized relative to the beat interval [1]. Even

though the use of relative timing can lead to

better performance, its use is limited: only

sequences that are structured relative to a beat

can be timed this way, so absolute timing

mechanisms are still required for timing of non-

beat sequences.

Functional Neuroimaging Evidence

Non-invasive neuroimaging methods have

contributed to our understanding of how timing

and rhythm are processed in the human brain.

Unlike in other areas of timing research, non-

human primates do not appear to spontaneously

perceive and respond to the beat. Thus, we can-

not fully extrapolate mechanisms derived from

invasive neural recordings in non-human

primates to humans, as non-human primates

may not have the same relative timing

mechanisms as humans. For example, primates

do not appear to match tapping movements to

metronome tones in the same way as humans.

Unlike humans, whose finger taps anticipate tone

onset by ~50 ms, primate finger taps lag behind

by approximately 250 ms [18] (for a review, see

[19]). Non-invasive neuroimaging techniques

can therefore provide a much needed bridge

between data acquired between human and non-

human primates, such that neural bases for

behavioral differences between these groups

can be determined. Currently, some techniques

used in non-human primates, such as intracranial

recordings, are too invasive for human use,

making cross-species comparisons difficult. By

using non-invasive methods, researchers can col-

lect the same type of data, using the same

paradigms, across species, enabling them to see

which differences are the result of genuine

processing differences, and which differences

were simply the result of trying to compare

across different methodologies.

Broadly, non-invasive neuroimaging

techniques fall into two categories. The first cat-

egory measures the electrical potentials or con-

comitant magnetic fields generated by neuronal

activity using electroencephalography (EEG) or
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magnetoencephalography (MEG) respectively.

The second category measures the metabolic or

hemodynamic consequences of neuronal activity

using positron emission tomography (PET) or

functional magnetic resonance imaging (fMRI).

These two categories of techniques are comple-

mentary: EEG and MEG have high temporal

resolution, which shows the time-course of neu-

ral activity, whereas fMRI and PET have high

spatial resolution, which shows the spatial loca-

tion of activity in the brain. Here, we focus on

findings obtained with fMRI techniques, as EEG

andMEG findings have been reviewed elsewhere

(Vuust et al., final chapter of this book).

Absolute Timing

Absolute timing mechanisms are necessary for the

encoding of non-beat rhythms, as the intervals

have no relationship to each other. This differs

from beat rhythms, in which all intervals can be

encoded relative to the beat interval. Converging

evidence shows that the cerebellum plays a key

role in absolute timing. Several studies have

shown that such rhythms activate cerebellar

structures [17, 20–22]. For example, memorizing

non-beat rhythms evokes greater cerebellar activ-

ity than memorizing beat rhythms [23]. Greater

cerebellar activity is also evident for non-beat

rhythms compared to beat rhythms when subjects

are reproducing them [9], or make perceptual

judgments about them [20, 22], or synchronize

finger taps to them [17]. The ability to encode

single durations is impaired when cerebellar func-

tion is disrupted through disease [24] or through

transcranial magnetic brain stimulation [25].

Importantly, the deficits in encoding single

durations that occur with cerebellar disruption

are not accompanied by deficits in encoding beat

sequences [24, 25], supporting the idea that the

cerebellum is involved in absolute but not relative

timing mechanisms.

Relative Timing

Beat perception necessarily requires relative

timing, as all intervals are encoded relative to

the beat interval. Relative encoding confers flex-

ibility in the representation of a sequence. One

can recognize the iconic ‘William Tell’ rhythm

whether it is played very quickly or very slowly:

the rhythm can be accurately rescaled. Absolute

representations are not as flexible, and even

trained musicians cannot rescale them [26].

This behavioral dissociation between absolute

and relative representations is supported by neu-

roimaging work. There is reasonable consensus

that the cerebellum is involved in absolute timing

mechanisms (as mentioned above), and basal

ganglia-thalamo-cortical circuits are involved

in relative timing mechanisms [1]. This view

arises from mounting evidence showing activa-

tion of the basal ganglia, supplementary motor

area, and premotor cortex in beat perception

tasks that engage relative timing mechanisms

[9, 16, 20, 27–30]. In particular, perceiving a

beat appears to selectively activate the basal

ganglia and SMA, as beat rhythms consistently

elicit greater basal ganglia and SMA activity

across studies employing different perception

and production paradigms [9, 15, 20–22]. Impor-

tantly, increases in basal ganglia and SMA activ-

ity during beat-inducing rhythms compared to

non-beat rhythms do not arise from greater diffi-

culty performing tasks with non-beat rhythms:

even when the task difficulty is systematically

manipulated to equate performance for beat and

non-beat rhythms, greater basal ganglia and

SMA activity is still evident for beat rhythms

[9]. Furthermore, beat-inducing rhythms evoke

greater activity of the basal ganglia than non-

beat rhythms even when subjects are not specifi-

cally instructed to attend to any part of the

rhythms [29], or when subjects attend to non-

rhythmic aspects of the stimuli such as loudness

[15] and pitch [21]. This suggests that

greater basal ganglia activity does not arise

from beat rhythms engaging more attention to

temporal aspects of the rhythms than non-beat

rhythms.

One question that arises is whether the neural

substrates that are attributed to beat perception

are specific to the auditory modality. Although

beat perception certainly seems to occur more

readily with auditory stimuli, it appears that the

role of the basal ganglia networks in beat
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perception might not be specific to the auditory

modality. Visual rhythms do not usually evoke a

sense of the beat the way auditory rhythms do,

however, a sense of beat can be induced for a

visual rhythm if it is preceded by an auditory

version. When visual rhythms are perceived

after auditory counterparts, the basal ganglia

response increases during the visual rhythm pre-

sentation, and the amount of that increase

predicts whether a beat is perceived in that visual

rhythm [31]. This suggests that an internal repre-

sentation of the beat formed during an auditory

presentation may influence beat perception in

subsequently presented visual rhythms, and that

the basal ganglia mediate beat perception that

occurs this way.

In addition to neuroimaging findings, basal

ganglia involvement in beat perception is also

evident from neuropsychological work showing

that impaired basal ganglia function leads to

worse performance on tasks assessing beat per-

ception [14]. For example, patients with

Parkinson’s disease are worse than controls at

discriminating changes in beat rhythms, but are

similar to controls at discriminating changes in

non-beat rhythms [14]. Unlike rhythm reproduc-

tion or beat synchronization tasks, discrimination

tasks do not require any motor responding and

therefore the results are unlikely to be explained

by a motor deficit. More importantly, the patients

are impaired only in the condition that is gener-

ally found by subjects to be easier. This rules out

the possibility that nonspecific impairments, such

as greater fatigue or poorer working memory

function, caused the deficit. Any nonspecific

impairment would be expected to be present

across all conditions, and if anything, to a greater

extent in the non-beat condition, as it is usually

more difficult for healthy subjects. The selective

deficit in beat rhythms and not non-beat rhythms

supports the proposal that the basal ganglia are

primarily involved in relative timing

mechanisms. There is also preliminary evidence

suggesting that Parkinson‘s disease patients

have difficulty perceiving and synchronizing

movements to the beat in music [32]. Other

forms of basal ganglia dysfunction, such as in

Huntington’s disease patients, also show deficits

in tasks assessing relative timing [33]. However,

unlike the Parkinson’s disease patients in the

previous study [14], the Huntington’s disease

patients also showed deficits in tasks assessing

absolute timing mechanisms. This apparent dis-

crepancy in results might be because the pattern

of basal ganglia degeneration differs substan-

tially between Parkinson’s disease and

Huntington’s disease: degeneration in

Huntington’s disease starts in the caudate

nucleus, whereas degeneration in Parkinson’s

disease starts in the putamen [34]. Future studies

comparing the same temporal processing tasks in

both patient groups can help determine if striatal

networks impaired in Huntington’s disease but

spared in Parkinson’s disease are important to

absolute timing mechanisms.

Basal ganglia deficits appear to selectively

affect temporal processing performance around

a rate that humans find ideal for beat-perception

(500–700 ms). For example, patients with focal

basal ganglia lesions are less able to detect tempo

changes or adjust finger taps to rate changes at

rates close to the ideal beat rate [35]. Parkinson’s

disease patients also show selective deficits in

tapping at the ideal beat rate of 500 ms, but not

at 1,000 or 1,500 ms [36]. This appears consis-

tent with neuroimaging findings which show

basal ganglia activity does not correlate with

the speed of the beat, but shows maximal activity

around the ideal beat rate and then decreases as

rates are too slow (McAuley et al. 2012) or too

fast for a beat to be felt [37]. Therefore, the basal

ganglia are not simply responding to perceived

temporal regularity at any rate in auditory

stimuli, but are most sensitive to regularity at

the rate that best induces a sense of beat.

Although poor beat perception has been

observed in patients with impaired basal ganglia

function, it is not limited to neurological patients.

Healthy individuals have been diagnosed as

“beat-deaf”. These individuals have no other

form of musical impairment, yet beat perception

deficits are evident across a number of behavioral

paradigms: perceiving the beat, synchronizing

movements to the beat, detecting when metro-

nome cues are off the beat in music, and

detecting when a dancer’s movements are off
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the beat [38]. Even apart from the most severe

beat impairments, there is a wide range of ability

to perceive the beat in healthy individuals

[39–41]. Several studies have recently attempted

to examine the neural correlates of individual

differences in beat perception. One study showed

that good beat-perceivers more readily engage

supplementary and premotor areas when making

temporal judgments than poor beat-perceivers

[39]. Another study found that better beat per-

ception was positively correlated with activation

of the supplementary motor area and premotor

cortex during a rhythm discrimination task [41].

Better synchronization performance to rhythms

has also been associated with larger ventral

premotor cortices [42]. Overall, the fMRI evi-

dence points to a key role for motor areas, rather

than auditory areas, in beat perception ability.

Why do healthy, neurologically intact

individuals show poor beat perception? One pos-

sible explanation is that such individuals possess

dopamine genetic polymorphisms which selec-

tively impair temporal perception at intervals

that are most salient for beat perception

(500–700 ms). For example, individuals with

the DRD2/ANKK1-Taq1a genetic polymor-

phism have a reduced density of D2 receptors

in the basal ganglia. These individuals also show

significantly greater variability in temporal dis-

crimination of single intervals of 500 ms (at the

ideal beat rate) but not 2,000 ms [43]. These

commonly found genetic polymorphisms appear

likely to influence individual differences in abil-

ity to perceive the beat, although this possibility

has yet to be systematically examined.

Coupling Between the Auditory
and Motor Areas in Beat Perception

Although many studies have shown involvement

of several motor regions in rhythm processing, it

is still unclear how these motor regions interact

with each other, as well as with auditory regions,

to give rise to a beat percept. The analyses that

characterize the communication and interactions

between brain areas are called functional connec-

tivity analyses. Greater functional connectivity

between two or more areas is thought to denote

greater communication between those areas.

Recent studies exploring the communication

between motor areas in beat perception showed

that during beat perception, greater connectivity

was observed between the putamen and the sup-

plementary motor area, as well as between the

putamen and the premotor cortex (see Fig. 1)

[21]. The increases in connectivity were evident

regardless of whether the beat was induced by the

temporal pattern of interval durations in the

rhythm, or by regularly occurring volume accents

(see Fig. 1) [21]. Another study showed greater

connectivity between the putamen and the ventro-

lateral prefrontal cortex (VLPFC) when

synchronizing finger taps to the beat of non-beat

rhythms than to beat rhythms [17]. The VLPFC is

thought to be involved in monitoring performance

by comparing internal and external sensory

representations [44]. Synchronization requires

subjects to continuously monitor performance by

comparing the output of their motor responses

with internal representations of the beat intervals.

Synchronizing to non-beat rhythms has more per-

formance monitoring demands than synchronizing

to beat rhythms, because unlike beat rhythms,

non-beat rhythms cannot be encoded automati-

cally through relative timing mechanisms. The

VLPFC is therefore thought to interact with the

basal ganglia so that beat intervals could be com-

pared, selected and maintained for production dur-

ing synchronization [17].

Individual differences in connectivity

between cortical motor and auditory areas

might be a useful marker of rhythmic ability. In

musicians, superior performance on a synchroni-

zation task was associated with greater connec-

tivity between the auditory and premotor cortex

[12]. Furthermore, a different study found greater

connectivity between the premotor and auditory

cortex in musicians, even when activity of these

areas was similar (see Fig. 1) [21]. That is,

increased connectivity between two regions can

exist in the absence of increased activity in either

region. Exactly how coupling between the audi-

tory areas and the premotor cortex improves

rhythmic performance remains unclear, although

it has been suggested that increased functional
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connectivity between the premotor cortex and

superior temporal gyrus might be important for

integrating auditory perception with a motor

response [12]. Kung et al. [17] also showed that

beat perception and synchronization

performance was correlated with activity in

STG and VLPFC; they suggest that the connec-

tivity between the STG and VLPFC could be

important for retrieving, selecting, and

maintaining the musical beat.

Fig. 1 Top panel shows functional connectivity between

the putamen and the SMA and premotor cortices in Grahn

and Rowe [21]. Greater subcortical-cortical connectivity

was evident with beat rhythms than with non-beat

rhythms. Mean PPI coefficients (arbitrary units) from

the target regions for each of the significant source to

target pairs are shown in the top right graph (p < 0.05;

small volume corrected). Middle panel shows regions

with increased coupling in condition where the beat was

indicated by relative interval durations (duration beat

condition) compared to conditions where the beat was

indicated by strong external volume accents (volume

beat condition). Bottom panel shows coefficients for

musicians and nonmusicians: *p < 0.05, significant dif-

ference between groups (independent samples t test). R
right, L left, mus musician, non nonmusician
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The Role of the Basal Ganglia in Beat
Perception

Although many studies demonstrate the involve-

ment of the basal ganglia in beat perception, its

specific role in beat perception remains unclear.

Recent studies have started to address this ques-

tion by examining the basal ganglia’s role in the

component processes of beat perception. Beat

perception has been proposed to require at least

three processes: beat finding, during which the

regular beat interval is detected, beat continua-

tion, during which predictions of beat intervals

are created and maintained, and beat adjustment,
during which predictions of future beat intervals

are updated based on accumulating evidence

resulting from sensory feedback [22]. In a recent

study, these processes were distinguished by hav-

ing participants listen to sequentially presented

beat and non-beat rhythmic sequences. For each

sequence, the preceding sequence provided a

temporal beat context for the following

sequence. Beat sequences preceded by non-beat

sequences were proposed to elicit beat finding, as

subjects must detect the beat in the beat sequence

without any previous beat information. Beat

sequences preceded by beat sequences at the

same beat rate elicited beat continuation as

subjects would ostensibly maintain their internal

representation of the beat intervals from the pre-

ceding sequence, and simply continue them on to

the subsequent sequence. However, if the beat

rate changed from one beat sequence to the

subsequent beat sequence, then the internal rep-

resentation of the beat would require adjustment.

FMRI was used to measure brain activation dur-

ing each process. Putamen activation was

greatest when listening to rhythms at the same

beat rate (beat continuation), was lower when the

rhythms changed rated (beat adjustment), and

was lowest when rhythms were preceded by

non-beat rhythms (beat finding) (see Fig. 2).

The finding of highest putamen activation during

beat continuation suggested a role for the puta-

men in maintaining the internal representation of

the beat interval. The suggestion that basal

ganglia and SMA are involved in maintaining

an internal representation of beat intervals is

supported by findings of greater basal ganglia

and SMA activation during the continuation

phase, and not the synchronization phase, during

the synchronization-continuation task [30, 45].

Similarly, patients with SMA lesions also show

a selective deficit in the continuation phase but

not the synchronization phase of the

synchronization-continuation task [46]. Taken

together, these findings strongly implicate a role

of the basal ganglia and SMA networks in

maintaining forward predictions of the beat.

That is, when a detectable beat is present in a

rhythm, human spontaneously generate

predictions about the timing of future beats in

the pattern. Successful predictions enhance the

speed of perceptual organization of the sequence,

reduce working memory load, and thus improve

temporal processing performance. Accurate pre-

diction improves performance in many domains,

and beat perception may simply be one example

of how humans’ exploit regular structure to

reduce processing load.

Recent cell recording findings in macaque

monkeys have also furthered our understanding

of the SMA-BG networks’ role in beat percep-

tion and in rhythmic timing behavior. A first

study indicated that distinct SMA cells encoded

either the time left for movement (i.e., “relative

timing cells”); or the time elapsed after move-

ment (i.e., “absolute timing cells”) in a

synchronization-continuation task, as evidenced

by distinct patterns of ramping behavior pre and

post-movement [47]. Crucially, these absolute

and relative timing cells interacted during selec-

tive phases of the synchronization-continuation

task, revealing that rhythmic timing behavior

requires the interaction of both absolute and rel-

ative timing mechanisms [47]. A subsequent

study showed that many SMA cells were selec-

tively tuned to different intervals ranging from

450 to 1,000 ms, and these cells showed the same

preferred intervals across different behavioral

paradigms (the synchronization-continuation

task and a single interval reproduction task)

[48]. These SMA cells also showed selectivity

for the different task phases during the

synchronization-continuation task: some cells
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were biased to respond during synchronization

phase, whereas other cells were biased to respond

during the continuation phase. These findings are

consistent with subsequent work showing differ-

ential beta and gamma activity in local field

potentials recorded from the putamen: greater

beta band activity was evident in the continuation

phase, whereas greater gamma band activity was

evident in the synchronization phase, in certain

local field potentials [49]. Together, these

findings support the proposal of distinct pro-

cesses in rhythmic timing behavior: a process

that underlies synchronization of rhythmic

behavior, and another process that underlies con-

tinuation of rhythmic behavior. The existence of

cells in both SMA and basal ganglia which are

Fig. 2 Top panel shows
the activation contrast for

beat versus non-beat

rhythms in Grahn and

Rowe [22]. Contrasts were

overlaid on a template

brain, thresholded at

PFDR < 0.05. Z refers to

the level of the axial slice

shown in stereotaxic

Montreal Neurological

Institute space. Bottom
panel shows mean

activation graphs from left

and right putamen regions

of interest for each beat

condition relative to the

nonbeat control condition.

A positive value means

greater activity for that

particular beat condition

compared with the nonbeat

condition. Putamen

activation was greater in

conditions where the

rhythms increased in

similarity: greatest

putamen activation was

evident in beat continuation

(same rhythm)
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preferentially activated by the continuation of

rhythmic behavior suggests that SMA and basal

ganglia networks maintain forward temporal

predictions [22].

Challenges in the Study of Rhythm
Processing

Localizing the neural substrates of rhythm has

proven challenging, partly because rhythm is

supported by processes common to temporal

processing, and temporal processing unavoidably

engages many distributed brain areas. One view

proposes that sub and supra-second timing

engage partially distinct neural mechanisms

[50, 51]. Sub-second timing appears to preferen-

tially engage the cerebellum, while supra-second

timing tasks appear to preferentially engage the

supplementary motor area and prefrontal cortex

(for a review, see [52]). The basal ganglia is

thought to be engaged by both sub and supra-

second timing [50]. How this dissociation affects

our current understanding of beat perception is

unclear. Beat perception requires both sub-

second and supra-second timing, as individual

sub-second beat intervals must first be perceived,

and then an internal representation of these

intervals must be maintained across supra-

second timescales. The component processes in

beat perception (such as beat finding, beat con-

tinuation, beat adjustment) might differentially

rely on sub and supra-second timing mechani-

sms, and this remains to be systematically

examined.

An additional challenge to the study of

rhythm processing is the fact that even the sim-

plest rhythm processing task might have multi-

ple cognitive and motor demands. Patterns of

neural activation that are attributed to experi-

mental manipulations in rhythm processing

tasks can sometimes result from task demands.

For example, working memory is required to

compare standard rhythms with test rhythms,

as subjects must remember the standard rhythm

to compare with the test rhythm. It is unclear

whether the memory benefits resulting from

beat perception underpin the performance

advantages for beat-inducing rhythms. The

synchronization-continuation paradigm also

relies on several cognitive and motor processes

beyond just timing. During synchronization,

subjects must encode and maintain the beat

interval, produce a synchronized motor

response, evaluate the accuracy of that response

after each tap, and correct the timing of the next

tap, if necessary. Better synchronization to beat

rhythms might result from better encoding and

maintenance of the beat interval, or from better

evaluation and error correction. Hence,

although temporal performance is thought to

be improved by using relative timing, exactly

how this mechanism improves specific aspects

of performance is unclear.

Another challenge is that while many studies

employ rhythms that are manipulated in terms of

perceived beat strength, it remains unclear what

factors lead to a beat percept. It has been pro-

posed that integer-ratio relationships between

intervals in a sequence induce beat perception,

whereas noninteger-ratios do not [30, 53]. How-

ever, to the best of our knowledge, no studies

have shown statistically reliable differences in

brain activation between integer ratio and

noninteger ratio rhythms. A previous study by

Sakai et al. [53] did not directly compare brain

activation between integer-ratio and noninteger-

ratio rhythms [53]. Another study showed that

integer-ratio and noninteger-ratio rhythms could

result in statistically indistinguishable brain acti-

vation [9]. The integer/noninteger-ratio distinc-

tion therefore appears insufficient to fully

account for what features induce beat perception,

especially in rhythms composed of more than

only one or two interval lengths.

Beat perception in musical rhythms typically

occurs in an ongoing fashion: we spend only a

very small portion of time perceiving the begin-

ning of a rhythmic sequence. Knowledge acquired

from prior context is therefore likely to drive

internal predictions about the beat, optimizing

estimations of beat intervals and beat onsets.

Some studies have examined the role of context

in the perception of individual intervals (e.g.,

[54]), but debate remains on its role [55]. One

view suggests that time perception occurs through
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interactions of a core timing network with cortical

areas that are activated in a context-dependent

fashion [2]. Computational studies suggest that

prior contextual knowledge about temporal uncer-

tainty is used to optimally adapt internal interval

timing mechanisms to the temporal statistics of

the environment [56, 57] (for a review, see [58]).

Although context appears intuitively important to

beat perception, little is known about how to inte-

grate contextual information into mechanistic

accounts of relative timing.

Finally, beat perception is also affected by

other aspects of musical structure, such as mel-

ody, harmony, and timbre. The influence of

musical structure on beat perception have been

examined [59–67], but these findings have yet to

be integrated into a single unifying model.

Additional basic research that tests the

influences of these non-temporal musical

factors on beat perception will need to be done

to extrapolate modes of beat perception to apply

in real music, rather than monotone rhythmic

sequences.

Future Directions

As we move towards more complete understand-

ing of the neural mechanisms underlying relative

timing and rhythm processing, converging evi-

dence from complementary techniques becomes

increasingly important in overcoming the

limitations of individual techniques. For exam-

ple, the use of Parkinson’s disease patients as

models of impaired basal ganglia function is

limited by the fact that areas connected to the

basal ganglia are also affected in Parkinson’s

disease. Furthermore, neurodegenerative

diseases like Parkinson’s disease result in heter-

ogenous degeneration of striatal pathways, and

the different patterns of degeneration are

associated with different behavioral impairments

on timing tasks [36, 68]. An exciting new com-

plementary approach involves testing individuals

with particular genetic variants that alter function

of the basal ganglia. For example, one could

examine how beat perception is affected by

selective reductions in dopamine receptor func-

tion in healthy adults, such as carriers of specific

genetic polymorphisms which reduce dopamine

neurotransmission within the basal ganglia, but

do not affect dopamine neurotransmission out-

side the basal ganglia. Studies that combine neu-

roimaging and genetic approaches have already

shown promising results. For example,

individuals with genetic polymorphisms that

reduce striatal dopamine receptor function

showed worse performance on a temporal dis-

crimination task [69]. Interestingly, in these

individuals, better temporal discrimination per-

formance was associated with greater activation

in the basal ganglia and right dorsolateral pre-

frontal cortex, as well as greater cerebellar vol-

ume [69]. One possible interpretation is that

these findings indicate functional and structural

compensatory mechanisms for poor temporal

discrimination.

There is also increasing interest in why non-

human primates differ from humans in rhythmic

timing behavior. It has recently been proposed

that non-human primates lack connectivity

between the auditory and motor regions which

enable rhythmic timing behavior in humans [19].

Comparative studies using non-invasive neuro-

imaging techniques may help bridge the gap in

understanding the inter-species differences in

rhythmic timing behavior (e.g., [70]). FMRI

and EEG studies can be conducted with both

humans and macaques, often with identical

equipment and using identical paradigms. In

addition, the increasing availability of intracra-

nial recordings in patients may make it possible

to make compare invasive neural recordings in

humans and in primates [18, 19].

Overall, advances in analysis methods for

existing techniques, adaptation of these

techniques to different species, and adoption of

new techniques are leading to better understand-

ing of the characteristics of human rhythm

processing. In coming years, greater integration

of data acquired across different methodologies

will be important to progress our understanding

of how the complexities of rhythmic behaviour

arise.
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Neural Underpinnings of Music:
The Polyrhythmic Brain

Peter Vuust, Line K. Gebauer, and Maria A.G. Witek

Abstract

Musical rhythm, consisting of apparently abstract intervals of accented

temporal events, has the remarkable ability to move our minds and bodies.

Why do certain rhythms make us want to tap our feet, bop our heads or even

get up and dance? And how does the brain process rhythmically complex

rhythms during our experiences of music? In this chapter, we describe some

common forms of rhythmic complexity inmusic and propose that the theory

of predictive coding can explain how rhythm and rhythmic complexity are

processed in the brain.We also consider how this theorymay reveal why we

feel so compelled by rhythmic tension in music. First, musical-theoretical

and neuroscientific frameworks of rhythm are presented, in which rhythm

perception is conceptualized as an interaction between what is heard

(‘rhythm’) and the brain’s anticipatory structuring of music (‘the meter’).

Second, three different examples of tension between rhythm and meter in

music are described: syncopation, polyrhythm and groove. Third, we pres-

ent the theory of predictive coding of music, which posits a hierarchical

organization of brain responses reflecting fundamental, survival-related

mechanisms associated with predicting future events. According to this

theory, perception and learning is manifested through the brain’s Bayesian

minimization of the error between the input to the brain and the brain’s prior

expectations. Fourth, empirical studies of neural and behavioral effects of

syncopation, polyrhythm and groove will be reported, and we propose how
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these studies can be seen as special cases of the predictive coding theory.

Finally, we argue that musical rhythm exploits the brain’s general principles

of anticipation and propose that pleasure from musical rhythm may be a

result of such anticipatory mechanisms.

Keywords

Music � Rhythmic complexity � Prediction � Pleasure

Introduction

Music has a remarkable ability to move our bod-

ies and brains. The ways in which apparently

abstract rhythmic intervals of accented temporal

events relate to each other can make us want to

tap our feet, bop our heads and get up and dance.

With the advent of musical styles of the twentieth

century, developed in the aftermath of the

meeting between music brought to America

from Africa and Western music, rhythm has

become an increasingly important aspect of the

listening experience. Why is rhythm so compel-

ling, and how does the brain facilitate the rich

and complex experiences we have with rhythm in

music? In this chapter, we describe some of the

most common forms of rhythmic complexity in

music, review some theories of how rhythm and

rhythmic complexity is processed in the brain,

with particular focus on the theory of predictive

coding, and propose why we may be attracted to

rhythmic tension in music. First, we will present

the music-theoretical and neuroscientific frame-

work for understanding rhythm perception as an

interaction between what is heard (‘rhythm’) and

the brain’s anticipatory structuring of music (‘the

meter’). Accordingly, the rhythmic experience is

seen as the result of tension or discrepancy

between rhythm and meter. Second, we will dis-

cuss the experience of three different musical

examples of tension between rhythm and meter:

syncopation, polyrhythm and groove. Third, we

will present the theory of predictive coding of

music, which posits a hierarchical organization

of brain responses, reflecting fundamental,

survival-related mechanisms associated with

predicting future events. It argues that perception

and learning occurs in a recursive Bayesian pro-

cess by which the brain tries to minimize the

error between the input and the brain’s expecta-

tion. Fourth, we describe a number of empirical

studies in which the neural and behavioral effects

of syncopation, polyrhythm and groove were

investigated, and propose how these studies can

be seen as special cases of the predictive coding

theory. Here, we will touch upon the effect of

individual background in rhythm processing, as

exemplified by differences between groups of

individuals with varying musical competence.

Finally, we shall propose that neural processing

of rhythm may be music’s way of exploiting

general principles of anticipatory brain

processing and that our extraordinary capacity

for anticipating the future may be one of the

reasons why we find so much pleasure in music.

Rhythm and Meter

Most theories of rhythm perception involve the

notion of meter. Rhythm, broadly, is a pattern of

discrete durations, and is largely thought to

depend on the underlying perceptual mechanism

of grouping [1, 2]. Meter, again broadly, is the

temporal framework according to which rhythm

is perceived. When we listen to a certain piece of

music, we often automatically start tapping our

feet in relation to the rhythm with isochronously

spaced beats (a process also known as beat per-

ception, or -production), and we may even accen-

tuate some beats more than others. This process

of differentially accentuating isochronously

spaced beats is an expression of meter. Meter is

often described as the temporal framework of
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rhythmic expectations [3]. In other words, the

meter provides the listener with a hierarchical

expectancy structure underlying the perception

of music, according to which each musical

time-point encompasses a conjoint prediction of

timing and salience [4].

Despite growing interest in music research for

the cognitive underpinnings of music perception,

the definitions of meter, and particularly its rela-

tionship with rhythm is still under significant

debate. This is despite music psychology

researchers having attempted to define meter

since the 1970s, using a number of different theo-

retical and empirical approaches (e.g., [5–10]).

In formal terms, meter generally refers to the

alternation of strong and weak temporal accents,

which provide a metric framework for a rhythmic

pattern. According to music theory, this is

expressed in the time signature of a given piece

of music, such as 4/4, 3/4 or 6/8. This formal

expression of meter, however, can be quite dif-

ferent from how the meter is actually perceived

or how it is expressed in sensorimotor synchroni-

zation, such as foot-tapping, since it is possible,

in principle, to notate any given piece of music in

more than one time signature. Furthermore,

while the formal definition is relatively easy to

handle, there is more disagreement about the

perceptual definition of meter. At the most

basic level, meter perception is understood as a

subjective sense of pulse. Listeners often recog-

nize the main pulse in rhythm, which is the

pattern of isochronously spaced beats that com-

monly elicits spontaneous foot-tapping or

synchronized body-movement [11]. However,

the hierarchical differentiation of pulse

sequences beyond the main pulse (i.e. faster or

slower pulses), the exact structure of this hierar-

chy and whether they determine the differences

in metric salience of pulse events within a

sequence, still remain unclear. An example of a

highly hierarchical view of meter is proposed in

Lerdahl and Jackendoff’s Generative Theory of

Tonal Music [6]. They claim that rhythm percep-

tion is underpinned by a framework of meter

organized in a tree-like structure (Fig. 1),

implemented on the basis of a set of cognitive

rules. Within this tree-structure, every node on a

given hierarchical level is recursively subdivided

into equally spaced nodes at the level below. The

level of a given node, as well as the number of

connections to other nodes at lower levels,

determines the metric salience of notes occurring

at that position in the framework. The higher up

in the hierarchy, and the more connections, the

stronger the metric accent. Although their

emphasis on cognitive rules is often criticized

for giving too much attention to top-down pro-

cesses of music cognition and not enough focus

on the role of the body, many researchers have

since also adopted metric tree models in studying

rhythm and meter [12–16].

Other models, in particular the dynamic

attending theory (DAT), direct considerably

more attention to the body. DAT was originally

proposed by Jones and colleagues [10, 17–19] in

order to conceptualize the cognitive mechanisms

for time perception more broadly, but has since

Fig. 1 Metric tree-model. Each metric level (or value) is

recursively subdivided into equally spaced parts (or

values) at the level below, determining the metric salience

of positions within the metric framework. The higher the

value in the hierarchy, the more salient the position in the

meter. Numbers designate serial positions within the

meter, at 16th note resolution
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been widely appropriated to music, specifically

[20–24]. Here, the claim is that rhythm induces

metric frameworks by way of entrainment: the

listeners’ attention is captured and driven by the

periodicities (or oscillations) in the rhythmic pat-

tern, and the experience of metric salience

corresponds to the relative strength of attention

directed towards each rhythmic event. The hier-

archical nature of meter in DAT is considerably

more flexible and adaptive compared to Lerdahl

and Jackendoff’s model [6]. It was originally

proposed as a conceptual model, using oscilla-

tion and resonance as metaphors for the functions

of rhythm and meter in music. However, recent

evidence suggests that the electrophysiological

firing patterns of neurons in the brain are

characterized by entrainment, and models of neu-

ral resonance are believed by some to explain

rhythm and meter perception directly [9, 25].

Another relatively new way of modelling

rhythm and meter perception is by way of compu-

tational models [26–30]. One particularly influen-

tial theory is proposed by Temperley [13–15], who

argues that probabilistic models of rhythm are the

most appropriate ways of capturing the generative

principles behind compositional processes. In one

of his studies [15], he tests the performance of six

probabilistic models based on the Bayesian rule of

probability on two corpuses of music, the Essens

Folk Song Collection [7] and a collection of string

quartets by Haydn and Mozart. The Bayesian

model is one that allows the drawing of

conclusions about how well an expression of data

(e.g. a rhythmic pattern) fits with other expressions

of the same type of datamore generally (amodel of

rhythm, or meter). As will be discussed below, this

type of model comparison, relying on Bayesian

inference, is also integrative to the predictive cod-

ing theory.

When Metric Expectancy Is Broken

Syncopation

A key factor in our experience of rhythm is the

extent to which a rhythmic pattern challenges our

perception of meter. The most common example

of such tension between rhythm and meter is

syncopation. Most researchers and theorists gen-

erally define syncopation as an instance of

rhythm that violates listeners’ metric

expectations. Generally, it is assumed that

listeners expect the majority of onsets in a

rhythm to occur at metrically salient positions

in a metric framework, while rests are expected

to occur at metrically less salient positions

(Fig. 2a, Audio Example 6.4- 1). A syncopation

occurs when these expectations are violated

(Fig. 2b, Audio Example 6.4- 2) and the rhythmic

event coincides with the metrically less salient

position, while the rest coincides with the metri-

cally salient position. Building on the assumption

of a hierarchical model of meter, Longuet-

Higgins and Lee [12] proposed a particularly

influential theory of syncopation, formalizing

an index of syncopation that can be used to

calculate the perceptual effect of syncopation

based on its contextualization within a model of

metric salience.

Since it was proposed, a number of

researchers have tried to test Longuet-Higgins

and Lee’s index [12]. Ladinig, Honing and

colleagues have primarily been interested in

determining how the model reflects the actual

perceptual properties of rhythm and meter,

using syncopation as a tool [31–33]. Ladinig

et al. [32] tested the perceptual effects of

syncopations on listeners’ metric expectations

and found that the degree of unexpectedness or

perceived stability depended on the metric loca-

tion at which the syncopation occurred. Their

findings broadly support the idea that syncopa-

tion relies on the differentiation of metric

salience in rhythm. Furthermore, their

participants were all non-musicians, suggesting

that not only listeners with extensive musical

training exhibit hierarchical processing of

meter and rhythm, as has previously been

suggested [34]. However, the metric

frameworks indicated by these studies were

not found to be as strictly hierarchical as the

tree-model suggests. Generally, it seems we

can be relatively confident that the downbeat

has the strongest accent, but beyond that, the

model remains unclear.
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Other researchers have been more concerned

with how syncopation affects sensorimotor syn-

chronization: using syncopations as a way of

increasing complexity in rhythmic patterns,

they have investigated the extent to which such

complexity affects the experience of a stable

meter and the ability to synchronize body

movements [16, 35–37]. Fitch and Rosenfeld

[16] adopted Longuet-Higgins and Lee’s index

[12] and showed that participants’ number and

magnitude of tapping errors correlated linearly

with the degree of syncopation. Furthermore, as

the degree of syncopation increased, participants

were more likely to “reinterpret” the rhythmic

patterns as unsyncopated by resetting the phase

of the perceived main pulse. In other words, the

more syncopated a rhythmic pattern, the less

likely listeners are to accurately perceive the

meter and successfully synchronize body

movements to it.

Importantly, syncopation is a way to musi-

cally conceptualize rhythmic complexity since

it challenges the presumed perceptual model of

the meter. In fact, in a correlational comparison

of different measures of rhythmic complexity in

music, Thul and Toussaint [38] found that

measures of syncopation outperformed other

measures of rhythmic complexity, such as

entropy, in explaining the behavioral data from

four separate studies.

Polyrhythm

In some styles of music, the meter may at times

be only weakly (or not at all) acoustically

actualized in the music itself, creating extreme

instances of perceptual rhythmic complexity. An

example is Cuban Son Montuno (e.g. Guillermo

Portabales “Mi son Cubano” 1976). In this musi-

cal style, it is common for the bass to continu-

ously avoid playing on the downbeat, i.e. the

most salient position in the metric framework.

As a listener unfamiliar with Cuban music, it is

likely that the meter is ‘misinterpreted’ and the

phase of the downbeat is shifted to comply with

less complexly manifested rhythmic-metric

relationships. An even more radically complex

rhythmic practice is the pervasive use of poly-

rhythm, or even polymeter,1 throughout musical

compositions, especially in (but not restricted to)

jazz music [39]. During polyrhythms, the formal

meter may be completely absent in the actual

acoustic signal and musicians rely on listeners’

ability to predict the formal metric framework.

One example of polyrhythm is ‘cross-rhythm’, in

which different overlaid rhythmic patterns can be

perceived as suggesting different meters. A typi-

cal example is the so-called 3-against-4 pattern,

which may be experienced by playing, for exam-

ple on the drums, at the same time three equally

spaced beats in one hand and four equally spaced

beats in the other hand, so that the periods of both

patterns add up at the end. In this case, it is

possible to perceive the meter as a triple waltz

meter (formal meter 3/4) and the four-beat pat-

tern as a counter-metric pattern (Fig. 3a, Audio

Example 6.4- 3) or as a duple meter (formal

Fig. 2 (a) Pattern with no syncopation (Audio Example

6.4- 1). (b) Pattern with syncopation, in red circle (Audio
Example 6.4- 2). Blue dots designate the main pulse (the

background click in Audio Examples 6.4-s 1 and 2), and

metric salience indicated above (strong and weak)

1 Although often used interchangeably, the difference

between polyrhythm and polymeter is important to main-

tain. In the former, more than one rhythmic pattern is

played simultaneously, underpinned by the same meter,

while in the latter, more than one rhythm based on differ-

ent meters is played simultaneously.
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meter 4/4) with the three-beat pattern as the

counter-metric pattern (Fig. 3b, Audio Example

6.4- 4). The rhythmic organization of these two

patterns is exactly the same, that is, the cross-

rhythmic relationships between the two streams

within each pattern are identical. The lower pitch

expresses the meter and the higher pitch the

counter-rhythm in both patterns, but in the first

pattern, the meter is triple, while in the second

pattern, the meter is duple. These two

experiences of the same polyrhythm (albeit with

inverted instrumentation, i.e. whether the four- or

three-beat pattern has the lower pitch) are

phenomenologically different, and is thus analo-

gous to ambiguous images such as the Rubin’s

vase, which can be seen either as a vase on black

background or faces on white background

(Fig. 3c). In the case of the cross-rhythms, the

meter is the background and the counter-metric

rhythm is the foreground. Experiencing cross-

rhythm in music can sometimes force the inex-

perienced listener to either shift the meter to

comply with the counter-meter or to reinforce

the sense of the original meter, for example

through sensorimotor synchronization, such as

foot-tapping. Polyrhythms thus provide the lis-

tener with a bistable percept [40] that affords

rhythmic tension and embodied engagement in

music.

Another example of polyrhythm is metric dis-

placement, a structural strategy in which a rhyth-

mic motif is first presented in relation to a

specific metric framework (Fig. 4a, Audio Exam-

ple 6.4- 1), and later shifted to start at a new

metrical location, causing different layers to

interlock in novel ways and form new

rhythmically complex relationships (Fig. 4b,

Audio Example 6.4- 5). The beginning of a met-

ric displacement will therefore always be heard

as metric incongruity and the tension caused by

the displacement is prolonged, compared to other

more momentary instances of rhythmic tension

(e.g. syncopation).

In some jazz music, such as the music of the

Miles Davis Quintet, polyrhythmic structures

were used extensively during improvisation

as an important means of communication [41].

In fact, when applying established linguistic

communicational models, such as Roman

Jacobson’s model [42], the interactive exchange

of polyrhythms in music displays functions com-

parable to the functions of spoken language. In

jazz, the metric displacements and the

accompanying rhythmic incongruities are often

used for attracting attention and establishing

communicational paths between musicians,

whereas cross-rhythms are more typically used

for building and playing with tension once a

connection between musicians is established. In

both cases, the effect of the polyrhythm relies on

the listeners’ or musicians’ ability to predict the

original meter.

Albeit rarely, polyrhythms have been used in

empirical investigations of rhythm and meter

perception [34, 43–49]. The idea is that the

ways in which complex rhythmic structures are

processed can reveal the mechanisms underpin-

ning rhythm and meter perception more gener-

ally. As will be described below, polyrhythms

also provide unique insights into the ways in

which the brain processes temporally incongru-

ous information.

Fig. 3 (a) Three-beat triple meter with four-beat pattern

as counter-rhythm (Audio Example 6.4- 3). (b) Four-beat
duple meter with three-beat counter-rhythm (Audio

Example 6.4- 4). Blue dots designate the main pulse. (c)
The bistable percept of Rubin’s vase
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Groove

Within musicology research, groove usually

refers to music that is characterized by some

degree of rhythmic complexity and expectancy

violation, such as syncopation, metric displace-

ment, cross-rhythms or microtiming.2 A groove

can be just a drum-kit playing and repeating a

two-bar pattern (Fig. 5) or it may be the sonic

interplay of a whole rhythm section of a band (e.

g. drums, guitar, bass and vocals, Fig. 6)

Examples of groove-based genres are funk,

soul, hip-hop, jazz and electronic dance music.

In the context of groove, the rhythmically com-

plex musical-structural strategies engender a

somewhat different behavioral effect than when

they are experienced in isolation. Importantly, in

groove, the rhythmic complexity is continuously

repeated, and the experiential result is a desire to

move the body in synchrony with the meter

[53–56]. Witek [57, p. 4] provides the following

definition of groove: Grooves are continuous

multi-layered patterns of repeating units, com-

monly 2–4 bars in length, with varying degrees

and expressions of rhythmic complexity,

associated with a pleasurable desire to move.

Groove has until recently mainly been

addressed theoretically, particularly in the context

of embodied cognition [50, 58] and prediction

Fig. 4 (a) Metrically congruous pattern (Audio Example

6.4- 1). (b) Pattern metrically displaced by one eight-note,

resulting in a metrically incongruous pattern (Audio

Example 6.4- 5). Blue dots designate the main pulse (the

background click in Audio Example 6.4-s 1 and 5) and

metric salience indicated above (strong and weak)

Fig. 5 Drum-break of “Ode to Billy Joe” by Lou Donaldson (1976)

Fig. 6 Groove of “Sex Machine” by James Brown (1970)

2Microtiming, otherwise known as expressive timing or

‘swing’, refers to patterns of rhythmic events that do not

occur exactly ‘on’ the pulse, but slightly ‘late’ or ‘early’

in relation to it [50–52].
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[39]. Furthermore, the first empirical studies on

the subject have tended to focus on the behavioral

effects exclusively, and only broadly drawn

parallels between the musical structure and the

psychological effects. In these studies, the positive

drive towards body-movement has been the main

focus [53–55]. For example, Madison et al. [55]

found that the salience of the beat (i.e. the main

pulse) and event density (i.e. sub-beat variability)

correlated positively with ratings of groove (i.e.

wanting to move). Janata et al. [53] showed that

groove was consistently defined by listeners in

terms of movement-inducing properties, but also

positive affective feelings. Through phenomeno-

logical considerations, behavioral investigations

and computational correlations, their research

demonstrated that the ‘quality’ of groove experi-

ence depends on the degree of sensorimotor syn-

chronization coupling in ways that interacted with

positive affect. Thus, it seems that in the context

of continuous repetition, rhythmic structures

that violate expectations, such as syncopation,

metric displacement, cross-rhythm and micro-

timing, acquire subjectively manifested pleasur-

able effects.

Music Anticipation and Predictive
Coding

The idea that our experience of rhythm is depen-

dent on the mental anticipatory framework of

meter and that this can be modeled as a Bayes-

ian process [13–15, 59] resonates well with a

novel theory about fundamental brain function,

namely the predictive coding theory proposed

by Karl Friston. As a general theory of brain

function, it explains how brain areas exchange

information [60]. It was first applied to sensory

perception, describing how the brain determines

the sources of sensory input based on Bayesian

inference. According to this argument, the brain

predicts the causes of sensations based on the

actual sensory input as compared with previous

‘knowledge’ [60, 61]. This comparison is essen-

tial to the system, since a variety of environ-

mental causes can result in similar sensory

input. The predictive coding theory overcomes

this perceptual challenge by using internal

generative predictive models, which have been

formed based on previous experience. These

models continuously predict the causal relation-

ship between sensory input and environmental

events. In changing environments, the models

are gradually updated to maximize the corre-

spondence between the sensory input and the

predictions and minimize prediction errors.

In this way, the causes of our sensory input are

not solely backtracked from the sensory input,

but also inferred and anticipated based on con-

textual cues and previous sensory inputs. Thus,

perception is a process that is mutually

manifested between the perceiver and the

environment.

Hence, the predictive coding theory offers a

novel perspective on how specialized brain

networks can identify and categorize causes of

its sensory inputs, integrate information with

other networks, and adapt to new stimuli by

learning predictive patterns. It posits that percep-

tion and learning occurs in a recursive Bayesian

process by which the brain tries to minimize the

error between the input and the brain’s expecta-

tion (Fig. 7). In other words, predictive coding is

the mechanism by which the brain extracts the

salient parts of the incoming signals and avoids

processing redundant information [62].

Perception and Learning According
to the Predictive Coding Theory

In addition to the idea of minimizing prediction

error, predictive coding theory is characterized

by the hierarchical organization of neural

networks in the brain. Each hierarchical level in

the recursive process provides a predictive model

(or models, since competing models at the same

hierarchical level are present as soon as the situ-

ation becomes ambiguous or uncertain) of

what the input to the specific level is expected

to be. The hierarchical levels ‘communicate’

through forward and backward connections

[60, 63]. The internal predictive models are

communicated from high-level structures to

specialized low-level structures through back-

ward connections. These backwards connections

have a strong modulatory effect on the

346 P. Vuust et al.



functionally specialized brain areas, and can thus

exert contextual constraints on the models of

lower levels. Sensory information is processed

through forward connections from lower to

higher cortical levels, and works as driving

signals. At each level, the sensory information

is matched to the internal predictive model. If

there is a mismatch between the model and the

sensory input at any level of the hierarchy, a

prediction error occurs and a neuronal error-

message is fed forward to higher, more integra-

tive levels. Here the prediction error is evaluated

and depending on the degree to which it violates

the internal prediction, the brain can either

change its internal model or it can change the

way it samples information from the environ-

ment. Consequently, prediction errors are funda-

mental for adaptive learning. When predictions

change, the connectivity between neurons is

believed to change accordingly. In this way, neu-

ron A predicts neuron B’s response to a stimuli in

a given context [60, 63]. The brain is constantly

trying to optimize its internal model to corre-

spond to the world, and thereby minimize predic-

tion errors [63–65]. Thus, the minimization of

prediction errors is imperative for brain function,

because neuronal prediction error signals are fun-

damental to learning and improvement of the

internal model.

Importantly, the predictive coding theory

states that the brain relies on prior experience to

model expectations for the future. This prior

experience gives a prior probability, describing

the degree of probability of the internal hypothe-

sis (or model). Prior probabilities are context-

sensitive and hierarchical, hence we have a

Fig. 7 The experience and learning of music takes place

in a dynamic interplay between anticipatory structures in

music, such as the build-up and relief of tension in

rhythm, melody, harmony, form and other intra-musical

features on one side, and the predictive brain on the other.

The real time brain model is dependent on cultural back-

ground, personal listening history, musical competence,

context (e.g. social environment), brain state (including

attentional state and mood), and innate biological factors.

The brain is constantly trying to minimize the discrepancy

between its interpretation model and the musical input by

iteratively updating the real time brain model (or prior) by

weighting this model with the likelihood (musical input)

through Bayes’ theorem. This leads to a constantly chang-

ing musical experience and long-term learning
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range of possibilities available to us, some more

likely to be correct than others, and they change

according to context. Thus, the hypotheses

generated by the brain in a specific situation are

constrained by hypotheses at the same or higher

levels and guide the processing at lower levels

[63, 66]. Therefore, when we have access to

accurate information about the context, more

specific hypotheses will be generated, due to the

many contextual constraints, and hence the

predictions of the sensory input will improve.

Consequently, these predictions are a product of

the interplay between the subject’s prior experi-

ence and the available sensory information,

which forms the internal hypothesis. In this

way, our predictions are built on prior experience

and learning, but are still dynamic and context-

sensitive.

Predictive Coding in Music

The principles of predictive coding align very

closely with the statistical learning approach pro-

posed by Pearce and Wiggins, accounting for

melodic perception in music [67, 68]; the

theory’s notion of initial neuronal error message

followed by synchronized activity in various

brain areas in response to low-probability

sequences corresponds to a local prediction

error at a low hierarchical level in predictive

coding, while the following synchronization

across various brain areas is analogous to the

integration of new information into the models

at higher hierarchical layers.

Recently, Vuust and colleagues [47, 69, 70]

have suggested that the predictive coding theory

can provide a useful framework for understand-

ing music perception in general and rhythm per-

ception in particular. If meter is seen as the

mental model and rhythm is the input, the rela-

tionship between the two complies with the pre-

dictive coding framework in a number of ways:

Influences on meter perception: First, the

model can describe how the brain infers a hierar-

chical prediction model (the meter) from a given

piece. Brochard et al. [71], as mentioned else-

where in this book (fourteenth chapter of this

book), provided strong evidence for the automa-

ticity of this process in the simplest possible

experimental setting. Specifically, they showed

that listening to an undifferentiated metronome

pattern causes the brain to register some beats as

automatically more salient than others, in a duple

meter. In predictive coding terms, the brain is

interpreting the input, in this case metronomic

beats, according to its own anticipatory frame-

work. These anticipatory brain mechanisms are

dependent on long-term learning, familiarity

with a particular piece of music, deliberate lis-

tening strategies and short-term memory for the

immediate musical past during listening [72].

Brain structures underlying musical expectation

are thus shaped by culture, personal listening

history, musical training and biology (Fig. 7).

Brain processing of syncopation: Second,

rhythmic violations of the brain’s metrical

model, such as syncopations or metric displace-

ment, should give rise to prediction error. Since

the meter may be supported by the actual musical

sounds to a varying extent, different expressions

of syncopation and different types of rhythmic

patterns could hence give rise to smaller or

greater prediction error. These would first occur

at certain lower level brain areas, which would

subsequently be evaluated in a larger network

including brain areas at higher hierarchical

levels, leading to subjective evaluation and

learning. This is an automatic process, and the

size of the prediction error is affected by cultural

and biological factors. In particular, the size of

the error term is influenced by rhythmic or musi-

cal expertise. Expertise in predictive coding

terms means that the metrical model is strength-

ened. Hence, musicians should show stronger

brain signatures of prediction error than non-

musicians, according to the predictive coding

theory.

Brain processing of polyrhythm: Third,

extreme instances of prediction error, such as in

the case of continuous tension caused by

polyrhythms suggesting counter-meter, should

either cause the model to break down or lead to

a continuous effort to sustain the main metrical

model. Compared to instances of model shift and

prediction error, the continuous effort in turn
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leads to sustained activity in the relevant brain

areas and networks, including areas at a higher

level than those primarily generating the predic-

tion error. In contrast to the prediction error at the

lower level, this brain activity at higher levels

should reflect an inverse relationship between

expertise and brain activity, since experts need

less effort in order to maintain the main meter.

Brain processing of groove: Fourth, when

the rhythmic violations are continuously

repeated, such as in the context of groove, the

string of hierarchically related prediction errors

at different parts of the neural network should

facilitate the characteristic experiential effect of

groove, namely the positive drive towards body-

movement. Because the tension between rhythm

and meter repeats throughout the groove, the

prediction errors at the lower levels of the coding

hierarchy, caused by for example syncopation,

metric displacement or instances of cross-

rhythm, become predicted at the higher levels.3

Thus, the original metric model is maintained,

while the metrically deviating rhythmic

structures facilitate embodied and affective

responses.

Predictive Coding Error Messages
Indexed by the MMN

As mentioned, the predictive coding mechanism

can account for the extracting of the salient parts

of an incoming signal and the avoidance of

processing redundant information. Accordingly,

neuronal networks extract the statistical

regularities in the incoming stimulus and reduce

redundancy by removing the predictable

components, leaving only what is not predictable

(the residual errors in prediction). This mecha-

nism has received significant attention from

researchers interested in visual perception, as it

is consistent with both the spatial and temporal

receptive fields found in the retina [62].

The predictive coding theory provides an

equally feasible explanation for pre-attentive

auditory prediction and this has been studied

extensively through the ‘mismatch negativity’

(MMN) paradigm. The MMN is a component

of the auditory event-related potential (ERP) in

the brain that can be recorded using electroen-

cephalography (EEG) and relates to change in

different sound features, such as pitch, timbre,

location of sound source, intensity, rhythm or

other more abstract auditory changes, such as

streams of ascending intervals [74, 75]. The tra-

jectory of the response peaks around 100–200 ms

after deviation onset and the amplitude and

latency of the MMN depends on deviation mag-

nitude and related perceptual discriminability,

such that larger deviations yield larger and faster

MMNs [76]. The MMN, primarily originating in

the auditory cortices bilaterally, is often

accompanied by a later component, the P3a,

also in the auditory cortices, which is usually

associated with the evaluation of the salient

change for subsequent behavioral action. It is

believed to indicate activity in a network which

contains frontal, temporal and parietal sources

[77].

The MMN signal appears to have properties

analogous to the error signal in a predictive cod-

ing framework. It is dependent on the establish-

ment of a pattern or model and responds only

when the predictive pattern is broken. MMNs

have been found in response to pattern deviations

determined by physical parameters, such as fre-

quency [78], intensity [76], spatial localization

[79], and duration [79], but also to patterns with

more abstract properties [80, 81]. Importantly the

size of the mismatch negativity adjusts as the

pattern adapts [82], hence the size of the error

message is dependent on the brain’s model of the

incoming input as well as on the input itself.

The MMN is also strongly dependent on the

expertise of the participants. Musicians who

adjust the tuning of their instrument during per-

formance, such as violinists, display a greater

sensitivity to small differences in pitch compared

to non-musicians and other musicians playing

3According to this understanding, the meter can be seen

as conveying what has elsewhere been termed schematic

expectations, whereas the perceptually syncopated rhyth-

mic patterns are perceived according to veridical

expectations [73].
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other instruments [83]; singers respond with a

stronger MMN than instrumentalists to small

pitch changes [84]; and conductors process spa-

tial sound information more accurately than pro-

fessional pianists and non-musicians [85].

Recently, it was shown that the characteristics

of the style/genre of music played by musicians

influence their perceptual skills and the brain

processing of sound features embedded in a

musical context as indexed by larger MMN [86,

87].

The Influences of Musical Expertise
on Brain Processing of Syncopation

Vuust and colleagues investigated whether dif-

ferential violations of the hierarchical prediction

model provided by musical meter would produce

error messages indexed by the MMN and

whether musical expertise influenced the ERPs

[47]. They compared rhythmically unskilled non-

musicians with expert jazz musicians on two

different types of metric violations: syncopations

in the bass drum of a drum kit pattern (a musi-

cally common violation), and a more drastic dis-

ruption of the meter (a musically less common

violation). Jazz musicians perform highly com-

plex rhythmic music and are therefore ideal

candidates for identifying putative competence-

dependent differences in the processing of metric

violations. The researchers found event-related

responses to strong rhythmic incongruence (met-

ric disruption) in all subjects, the magnetic

equivalence of the MMN (MMNm) peaking at

110–130 ms and the P3am around 80 ms after the

MMNm in expert jazz musicians. Some of the

rhythmically unskilled subjects also exhibited

the P3am. Furthermore, responses to more subtle

rhythmic incongruence (syncopation) were

found in most of the expert musicians. The

MMNms were localized to the auditory cortices,

whereas the P3am showed greater variance in

localization between individual subjects.

MMNms of expert musicians were stronger in

the left hemisphere than in the right hemisphere

in contrast to P3ams showing a slight non-

significant right-lateralization.

The MMNm and P3am were interpreted as

reflecting an error term generated in the auditory

cortex and its subsequent evaluation in a broader

network including generators in the auditory cor-

tex as well as higher level neuronal sources. The

researchers also found evidence of model adjust-

ment in two of the jazz musicians. These findings

are thus in keeping with expectations based on

the predictive coding theory and suggests that

there is a congruous relationship between percep-

tual experience of rhythmic incongruities and the

way that these are processed by the brain. How-

ever, it should be noted that other researchers

have suggested that the predictive coding pro-

cesses possibly underlying the MMN generation

could in principle happen within the different

layers of the auditory cortex [88]. More research

is needed to determine the localization of the

computational networks supporting the predic-

tive models leading to the MMN.

The study by Vuust et al. [47] described

above, showed quantitative and qualitative

differences in brain processing between the par-

ticipant groups indicating that the prediction

error generated by meter violation correlates pos-

itively with musical competence, A predictive

coding interpretation of this would posit that the

metrical model of musicians is stronger than that

of non-musicians, leading to greater prediction

error. However, greater competence does not

necessarily lead to more efficient brain

processing in a linear fashion. “More” is not

necessarily “more”.

Predictive Coding of Polyrhythmic
Music

As described above, polyrhythm is an extreme

example of how rhythmic complexity is

established as interplay between the brain’s

anticipatory framework and the incoming stimu-

lus during music listening and performance. For

example, when listening to the soprano sax solo

on Sting’s “The Lazarus Heart”, the rhythm sud-

denly changes to a different meter for the dura-

tion of six bars, with no trace of the original

meter in the actual sound. It is still possible to
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keep the original meter overall, since the

subdivisions and metric frameworks of the two

different meters eventually coincide after the six

bars. However, what makes it almost impossible

for a listener to avoid adjusting to the new beat

during the six bars, for example by shifting the

phase of foot-tapping or head-nodding, is that the

saxophone’s melodic solo completely switches

to the new meter by emphasizing its complete

hierarchical structure of subdivisions. For a lis-

tener with jazz music training, it would be imper-

ative to try to keep the original meter, primarily

since the rhythmic tension between the old and

new meter is important to the experience of this

piece, but also because it is necessary for all

musicians to mentally maintain the original met-

ric framework in order for collective improvisa-

tion to work. Hence, there is a big difference in

experienced complexity between an expert lis-

tener who stays in the original meter, and the

inexperienced listener who switches back and

forth between the two meters, avoiding much of

the tension.

In two studies of polyrhythm, Vuust and

colleagues used this Sting example to investigate

neural correlates of polyrhythmic tension by way

of functional Magnetic Resonance Imaging

(fMRI) [46, 49]. fMRI is a brain scanning tech-

nique which enables the measurement of the

blood oxygenated level dependent (BOLD) sig-

nal in the brain, by contrasting this signal during

different perceptual or task-related epochs. As

the source of the signal can be localized with

great spatial resolution in the brain, this tech-

nique provides, indirectly, indications of the

activity in areas of the brain that are associated

with different tasks. The extent of the spatial

resolution is greater in fMRI than in MEG/

EEG, but when studying auditory stimuli such

as music, there are important drawbacks of using

fMRI. Importantly, the temporal resolution of

this technique is of the order of seconds or

more and can thus not capture sub-second musi-

cal temporal events, such as microtiming.

However, since the experience of polyrhythm

typically evolves over seconds, fMRI was found

suitable for a study in which the neural correlates

of epochs of polyrhythm (counter-meter and

main meter) were contrasted with epochs

containing only the main meter [46]. Seventeen

subjects, all ‘rhythm-section’ players, specifi-

cally drummers, bassists, pianists and guitarists,

were recruited for the study. During the first

experiment, they were required to tap along to

the main meter while being asked to focus first on

the main meter, and second on a strong counter-

meter. In the second experiment, the participants

listened to the main meter throughout the study

but were asked to tap the main meter followed by

the counter-meter. In both experiments, the

BOLD analyses showed activity in a part of the

inferior frontal gyrus, specifically Brodman’s

area 47 (BA 47), most strongly in its right-

hemispheric homologue (Fig. 8). This area is

typically associated with language, in particular

semantic processing (for reviews, see [89, 90]).

Hence, this area may serve more general

purposes, such as sequencing or hierarchical

ordering of perceptual information than formerly

believed. Interestingly, BA 47 was active both in

relation to the experience of polyrhythmic ten-

sion (experiment 1, in which the motor task was

identical throughout) and the production of poly-

rhythmic tension (experiment 2, in which the

auditory input was constant). It thus seems that

this area, bilaterally, reflects processing of the

Fig. 8 Areas of activity in the brain during tapping to

polyrhythms. Modified from Vuust et al. [46]
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prediction error in the polyrhythm per se. Impor-

tantly, the activity in BA 47 was inversely related

to the rhythmic expertise of the subjects as

measured by the standard deviation of tapping

accuracy. Hence the effort to maintain the metri-

cal model shows a negative correlation between

expertise and brain activity, presumably since

experts need less effort to maintain the main

meter. It was also found that BA 40, an area

previously related to language prosody and

bistable percepts (e.g. Rubin’s vase, Fig. 3c),

was active during tapping to polyrhythms

(Fig. 8). Thus, the results showed that this area

might be involved in the encoding of stimuli that

allow for more than one interpretation, across as

language, vision and audition. However, the

fMRI data does not allow us to conclude whether

the activity in the inferior frontal lobe could be

preceded by a prediction error at a lower hierar-

chical level in the brain directly related to the

polyrhythms, since the temporal resolution of

fMRI is limited. Broca’s area has recently also

been suggested to have a more general role

related to hierarchical organization of informa-

tion [91].

Predictive Coding in Groove

In recent experiments, Witek and colleagues [92]

investigated the relationship between syncopa-

tion in groove and the desire to move and

feelings of pleasure. Their stimuli consisted of

50 groove-based (funk) drum-breaks, in which 2-

bar rhythmic phrases were repeated 4 times, with

varying degrees of syncopation. Using a web-

based survey, participants were asked to listen

to the drum-breaks and rate to what extent the

rhythms made them want to move and how much

pleasure they experienced with the rhythms. The

results showed an inverted U-shaped relationship

between degree of syncopation and ratings,

indicating that a positive increase in syncopation

in groove increases embodied and affective

responses, until an optimal point, after which a

continued increase in syncopation causes the

desire to move and pleasure to decrease. The

inverted U is a familiar shape in aesthetics

psychology, and has been found in the relation-

ship between a number of forms of perceptual

complexity in art and arousal (e.g. physical,

physiological and evaluative). Berlyne [93]

famously proposed that appreciators of art prefer

medium degrees of perceptual complexity, and

this has been supported in a number of studies

involving music [61, 94, 95]. Accordingly, Witek

et al.’s study showed that systematic increase in a

form of rhythmic complexity, namely syncopa-

tion, increased the positive drive towards body-

movement, but that beyond medium degrees of

rhythmic complexity in groove, embodied and

affective engagements with the music was

prevented. Interestingly, rather than being

affected by the participants’ formal musical

training, it was found that those who enjoyed

dancing and often danced to music rated the

drum-breaks as eliciting more desire to move

and more pleasure, overall. Thus, it seems that

more broadly embodied previous engagements

with music may affect the subjective experience

of rhythmically complex music, such as groove,

rather than institutionalized formal training, such

as the ability to play an instrument.

The inverted U-shape found between degree

of syncopation in groove and wanting to move

and feelings of pleasure can again be seen as

complying with the predictive coding theory. At

low degrees of syncopation, there is little incon-

gruence between the rhythm of the groove (the

input to the model) and the meter (the predicted

model), and thus the experiential effect,

facilitated most explicitly at the higher levels of

the hierarchical neural network, is weak. At high

levels of syncopation, the degree of complexity

is so high and the rhythm deviates too much from

the metric framework causing the model to break

down, and preventing pleasure and desire for

movement. However, at intermediate degrees of

syncopation in groove, the balance between the

rhythm and the meter is such that the tension is

sufficient to elicit positive affective and embod-

ied responses, yet not so complex as to cause the

meter to break down. In terms of predictive cod-

ing, the input and the model are incongruent, but

not incompatible, and the prediction error affords

the string of hierarchical encoding and
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evaluation from lower to higher levels in the

brain. It is important to remember that the effect

of syncopation in groove relies on the repetition

of the syncopated patterns, and that it is the

continuous effect of the tension caused by the

relationship between rhythm (input) and meter

(model) that causes the subjectively experienced

tendencies towards body-movement and plea-

sure. In this way, the experience of groove is

different from the experience of polyrhythm, as

it is used in e.g. jazz, since polyrhythmic epochs

usually have a relatively short duration and thus

constitutes a momentary shift between weak and

strong rhythmic tension.

Perspectives

In this chapter, we have considered interval

timing in music as integrated in a general view

of brain processing, characterized by a dynamic

interplay between an internal model, represented

by the meter, and the incoming input, provided

by rhythms in music. We have shown how such

an understanding of the relationship between

rhythm and meter supports theories of predictive

coding mechanisms by which the brain tries to

minimize the error between the rhythm and the

meter. This mechanism can be exemplified by

processing of different forms of rhythmic com-

plexity in music, such as syncopation,

polyrhythms and groove, and can also account

for the experience of these phenomena as well as

interpersonal differences in preference and com-

petence. Importantly, the pleasure that many

people experience with rhythms that do not con-

form entirely to the prescribed meter may be part

of a predictive coding balance between meter and

rhythm. Such notions fit nicely with theories of

reward processing taking place during pleasure

cycles mediated by the brain’s constant search

for a balance of dopamine levels [96, 97]. How-

ever, a discussion of such links between predic-

tion in music and reward are beyond the scope of

the present chapter (cf. [69]). As an important

footnote, it should be mentioned that dopamine

mediates both pleasure and motor processing in

the brain [98], which points to a possible link

between predictive coding theories and embod-

ied approached to music cognition [99]. While

predictive coding is still a novel theory, which

needs to be further empirically investigated in

order to be more confidently applied as a general

theory of brain function, the examples shown in

the present chapter demonstrate how it has the

potential to encompass different aspects of

musical experience, particularly with regard to

rhythm and meter. On the one hand, brain sci-

ence thus offers a window into the underlying

mechanisms of people’s rich and complex, affec-

tive and embodied engagements with music. On

the other hand, the study of musical rhythm may

provide us with novel insights into the predictive

brain.

Current State of the Field

As the three chapters of this part have

demonstrated, the study of the neurobiology of

music and rhythm offers greater understanding

of not just how we perceive music, but how the

brain operates more generally. Thirteenth chapter

(this book) has described how the functions

associated with music are distributed in the

brain, in ways that both overlap and are

dissociable from language and speech processing.

Using state-of-the-art neuroimaging techniques,

as reported in fourteenth chapter of this book,

there is now increasing evidence that beat percep-

tion is both a fundamental and innate cognitive

mechanism, the functions of which go beyond

purely musical listening. And in the present chap-

ter, we show how complex musical rhythms, such

as syncopation, polyrhythm and groove, are

processed, allowing us to make inferences about

the role of temporal prediction as a fundamental

organizing principle of the brain. However, a

number of crucial aspects of the neurobiology of

rhythm remain to be determined. The study of

non-human animal perception of rhythm is still

in its infancy, and a continued interest in such

issues has great prospects for revealing the

biological origin of music. Questions regarding

the exact nature of metric hierarchies are still

unanswered, and developing computational
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models that offer empirical tools for applying the

hierarchical model of predictive coding might

prove fruitful in answering such questions.

Finally, although great progress has been made

in the acknowledgement of action and body-

movement in rhythm perception, more can be

done to integrate such embodied theories of

rhythmwith affective models. With new neurosci-

entific tools developing rapidly, we might soon be

able to tell you more about why abstract patterns

of interval timing, such as rhythm, give us so

much pleasure.
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Näätänen R. Mismatch negativity to change in spatial

location of an auditory stimulus. Electroencephalogr

Clin Neurophysiol. 1989;73(2):129–41.

80. Paavilainen P, Simola J, Jaramillo M, Näätänen R,
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