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    Chapter 4   
 Neuropsin-Dependent and -Independent 
Synaptic Tagging and Modulation 
of Long- Term Potentiation: A Quest 
for the Associated Signaling Pathway(s) 

             Yasuyuki     Ishikawa      and     Sadao     Shiosaka    

    Abstract     Synaptic tagging is plausible hypothesis that can potentially explain 
 relational memory. However, it has not yet been cleared why and how the tagged 
synapses can be distinguished from the other non-activated synapses. Early-phase 
long-term potentiation (E-LTP)-related signaling molecules and intracellular 
molecular traffi cking for capturing these toward tagged synapses have been consid-
ered as essential for synaptic tagging apparatus. In this chapter, we will describe a 
new mechanism of synaptic tagging which shares the common set of E-LTP induc-
tion mechanisms as above; that is, the E-LTP-specifi c proteolysis by neuropsin, an 
extracellular serine protease, is involved in neuropsin-dependent form of synaptic 
tagging.  
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4.1         Introduction 

 Relational memory refers to the postulated role of the hippocampus in forming a 
collective representation of the various aspects of an experience. Thus, relational 
memory allows an individual who has experienced a traumatic event (e.g., a traffi c 
accident) to remember even the most trivial details from the scene, as well as their 
spatial, sequential, and causative interconnections. This process permits the con-
solidation of signals from a number of weakly stimulated synapses into a single, 
sometimes unforgettable memory. However, little is known about the neural 
mechanism(s) underlying relational memory. 

 Synaptic tagging is a plausible hypothesis that can potentially explain relational 
memory. In 1997, Frey and Morris presented the hypothesis that active synapses are 
marked with a tag(s), and that newly synthesized, plasticity-related proteins (PRPs) 
must be targeted into the tagged synapses for prolongation of the potentiation state 
(Frey and Morris  1997 ). Because a weak synaptic stimulation is thought to produce 
a tag only at a single specifi c synapse and not to generate PRPs, a coordinated 
strong stimulation of a remote synapse arising from many weakly stimulated syn-
apses is required to induce the production of new PRPs. These PRPs must then be 
transported into additional, specifi cally tagged synapses for the persistence of signal 
transmission between neurons. Therefore, the capturing and subsequent stabiliza-
tion of new PRPs (such as the subunits of the AMPA (α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid) receptor) at the tagged postsynapses are both essential 
for prolonged synaptic potentiation. 

 General intracellular signaling molecules have recently been considered as can-
didate molecular components of synaptic tagging apparatus (including those 
involved in the capture of PRPs) (Navakkode et al.  2005 ; Huang et al.  2006a ; 
Sajikumar et al.  2007 ; Lu et al.  2011 ). However, extracellular molecules have not 
heretofore been taken into account as participants in synaptic tagging mechanisms. 
We now speculate that weak synaptic stimulation affords some initial change in 
extracellular matrix molecules and/or the extracellular domain of transmembrane 
signaling molecules found on the surface of the postsynaptic neuron, and that the 
resultant outside-in signaling permits PRP capture into the tagged dendritic spines. 
To explore this hypothesis, we focused on an established type of weak electrical 
stimulation, the single-pulse train (100 Hz, 1 s). The single-pulse train evokes only 
the early phase of long-term potentiation (E-LTP), lasting 1–3 h, and therefore pro-
vides a model of weak synaptic transmission. On the other hand, a four-pulse 
(repeated) train provokes the late phase of LTP (L-LTP, the protein-synthesis- 
dependent phase of LTP), lasting more than 4 h, and thus provides a model of strong 
synaptic stimulation (Huang and Kandel  1994 ). 

 Numerous E-LTP-related molecules (e.g., extracellular and transmembrane pro-
teins, as well as their intracellular effectors) are found in the CA1 region of the 
hippocampus, where they might contribute to synaptic tagging-related signal trans-
duction cascades. Data from mutant animals, especially knockout (KO) mice, indi-
cate that these molecules participate in spatial learning and memory (Table  4.1 ). 
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Moreover, the E-LTP-specifi c proteolysis of extracellular components by  neuropsin, 
a neuronal serine protease, is a potential cellular/molecular mechanism involved in 
synaptic tagging (i.e., neuropsin-dependent synaptic tagging). This concept will be 
discussed in detail below.

4.2        E-LTP-Related Signaling Molecules That 
Are Modulated by Weak Stimulation 

 Signaling pathways responsible for the initial process of E-LTP and “gating” (the 
process whereby neuronal networks control input by inhibiting or promoting spe-
cifi c synaptic activity) from E-LTP into L-LTP still remain to be elucidated. 

   Table 4.1    Mutant mice, E-LTP, spatial learning, and memory   

 Mutant a  
 E-LTP 
in CA1  Spatial learning/memory  Reference 

 CaMKII  Impaired  Impaired spatial learning  Hinds et al. ( 1998 ), 
Giese et al. ( 1998 ), 
Silva et al. ( 1992a ,  b ) 

 Protein kinase C 
(PKC)-γ 

 Impaired  Impaired spatial learning  Abeliovich et al. 
( 1993a ,  b ) 

 Fyn  Impaired  Impaired spatial learning  Grant et al. ( 1992 ), 
Kojima et al. ( 1997 ) 

 Synaptic Ras GTPase- 
activating protein 
(SynGAP) (+/−) 

 Reduced  Impaired spatial learning  Komiyama et al. ( 2002 ) 

 Protein-tyrosine 
phosphatase (PTP)-δ 

 Enhanced  Impaired spatial learning  Uetani et al. ( 2000 ) 

 Neurogranin  Impaired  Impaired spatial learning  Huang et al. ( 2004 ) 
 LIM kinase 1  Enhanced  Impaired spatial learning  Meng et al. ( 2002 ) 
 Integrin α3  Impaired  Impaired spatial learning  Chan et al. ( 2007 ) 
 Integrin α8  Impaired  Spatial learning unaffected  Chan et al. ( 2010 ) 
 Integrin β1  Impaired  Impaired spatial learning 

and working memory 
 Chan et al. ( 2006 ), 
Huang et al. ( 2006b ) 

 EphB2  Impaired  Impaired spatial learning  Henderson et al. ( 2001 ), 
Grunwald et al. ( 2001 ) 

 TrkB  Impaired  Impaired spatial learning  Minichiello et al. ( 1999 ) 
 Dopamine D1  Reduced  Impaired spatial learning  Granado et al. ( 2008 ) 
 Neural cell adhesion 
molecule (NCAM) 

 Impaired  Impaired fear memory  Muller et al. ( 2000 ), 
Senkov et al. ( 2006 ) 

 Tenascin-R  Impaired  Spatial learning unaffected  Saghatelyan et al. 
( 2001 ) 

 Neuropsin  Impaired  Impaired spatial learning 
and working memory 

 Tamura et al. ( 2006 ) 

 BDNF  Reduced  Korte et al. ( 1995 ) 

   a Data are derived from KO animals unless otherwise noted  
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However, the induction of E-LTP after a single-tetanus stimulation in the CA1 
region of the hippocampus is known to require Ca 2+  infl ux through the  N -methyl- D - 
aspartate  (NMDA) receptor (Lisman  2003 ). Intracellular signaling begins with a 
slow (maximal 1–2-min) Ca 2+ -dependent after depolarization, followed by activa-
tion of the NMDA receptor and elevation of postsynaptic cyclic AMP (cAMP) lev-
els (Blitzer et al.  1995 ). Coincidentally, several cAMP-related molecules, such as 
cAMP-dependent protein kinase (PKA) and Ca 2+ /calmodulin-dependent protein 
kinase II (CaMKII), participate in E-LTP induction. 

 In addition to their role in E-LTP induction, cAMP-activated PKA and CaMKII 
also block a protein phosphatase 1 (PP1)-operated inhibitory synaptic gating path-
way. The gate is thereby maintained in the open state to execute synaptic responses 
for persistent plasticity (Blitzer et al.  1995 ; Otmakhova et al.  2000 ). The slow gating 
pathway is then closed by calcineurin to terminate LTP (Winder et al.  1998 ). 
CaMKII and PKA therefore control the gating mechanism from E-LTP into L-LTP 
by promoting synaptic modifi cations when Ca 2+  levels increase (Okamoto et al. 
 2009 ). CaMKII is probably also involved in the setting of LTP-specifi c tags 
(Sajikumar et al.  2007 ; Redondo et al.  2010 ). Thus, E-LTP induction and synaptic 
tagging might share common and overlapping signal transduction mechanisms. 

 The role of PKA and CaMKII as “gate keepers” that alleviate the inhibitory con-
straint of PP1 and allow the transition from E-LTP into persistent plasticity/L-LTP 
was convincingly demonstrated by a number of studies employing hippocampal 
slices, electrophysiology techniques, and specifi c kinase inhibitors (Huang and 
Kandel  1994 ; Blitzer et al.  1995 ; Winder et al.  1998 ; Lisman  2003 ). The role of 
PKA in E-LTP/L-LTP was also explored in subsequent studies by using genetically 
engineered mice. For example, transgenic animals expressing a dominant negative 
form of the regulatory subunit of PKA showed a 50 % reduction in basal PKA activ-
ity, but continued to exhibit normal Schaffer-collateral E-LTP as induced by one- or 
two-pulse 100 Hz tetanic stimulation. However, L-LTP was clearly impaired (Abel 
et al.  1997 ). Thus, PKA is more likely to be necessary for L-LTP than for E-LTP 
itself. Nevertheless, conventional genetic approaches utilizing PKA regulatory sub-
unit- KO animals failed to establish any decrease in PKA activity, or changes in 
Schaffer-collateral E-LTP and/or L-LTP (Brandon et al.  1995 ; Qi et al.  1996 ). 

 The G-protein-coupled dopamine D1/D5 and D4 receptors regulate postsynaptic 
cAMP and reportedly participate in the induction and regulation of E-LTP and 
L-LTP, respectively. The mesolimbic dopaminergic system projects from the ventral 
tegmental area to the limbic system via the nucleus accumbens, the amygdala, and 
the hippocampus, and is responsible for the relationship between memory acquisi-
tion and learning reinforcement (Lemon and Manahan-Vaughan  2006 ). The effect 
of the D1/D5 receptor on LTP has long been controversial, because the  experimental 
results fl uctuate according to the agonist employed and the experimental conditions 
(Mockett et al.  2004 ). Nevertheless, pharmacological studies using dopamine ago-
nists have generally indicated that dopamine positively regulates E-LTP as well as 
L-LTP via the D1/D5 receptor (Frey et al.  1993 ; Huang and Kandel  1995 ; Otmakhova 
and Lisman  1996 ). In addition, in the recent gene-engineering study, E-LTP and 
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L-LTP were both markedly impaired in the hippocampus of D1 receptor gene-KO 
mice (Granado et al.  2008 ). Because further impairment was not imparted by sup-
plementation of a D1/D5 antagonist to D1 receptor-deleted hippocampal slices, the 
investigators argued that the D1 receptor rather than the D5 receptor is critical for 
both types of LTP. 

 On the other hand, the D4 receptor triggers downregulation of intracellular 
cAMP levels by inhibiting the adenylyl cyclase-mediated G-protein α subunit, Gi. 
Current studies suggest that the dampening effect of D4 on E-LTP might be essen-
tial to the cognitive process (Herwerth et al.  2011 ). Furthermore, D4 modulation 
apparently occurs through NMDA receptors containing NR2B subunits, because 
such modulation is ablated in the hippocampus of mice lacking NR2B, but remains 
unaltered in the hippocampus of mice lacking NR2A (Herwerth et al.  2011 ). 
Notably, D4 receptor agonists increase γ oscillations, a risk factor for  schizophrenia, 
in a manner similar to that afforded by neuregulin 1 (NRG1) (Fisahn et al.  2009 ; 
Andersson et al.  2012 ). 

 NRG1 and dopamine signaling pathways potentially crosstalk in gamma- 
aminobutyric acid (GABA)ergic interneurons to regulate the frequency of γ oscilla-
tions. Recently, Tamura et al. ( 2012 ) showed that neuropsin cleaves mature NRG1 
to remove its heparin-binding domain, releasing the active form of NRG1 from the 
mature glycoprotein (Tamura et al.  2012 ). ErbB4 signaling induced by neuropsin- 
dependent proteolytic processing and subsequent release of NRG1 then modulates 
E-LTP via regulation of GABAergic transmission in the hippocampus (Fig.  4.1 ). 
Collectively, the convergence of dopamine- and neuropsin/NRG1-mediated signal-
ing regulates intracellular cAMP levels in GABAergic neurons to control E-LTP.

   In addition, certain neuromodulatory receptor signaling systems contribute to the 
regulation of E-LTP. Although only limited studies are available to date, some of 
these are briefl y discussed below. For instance, the integrins comprise an important 
family of transmembrane cell adhesion receptors that function as heterodimers of 
α- and β-subunits. Integrins mediate diverse signaling processes in numerous cell 
populations, including neurons. Currently, 19 different α-subunits and eight differ-
ent β-subunits are known in vertebrates, and over 20 different α/β heterodimers have 
been described. Mice with reduced expression of α3, α5, and α8 integrin subunits 
are defective in E-LTP (Chan et al.  2003 ,  2007 ), substantiating the involvement of 
the integrins in learning and memory. Furthermore, the integrin peptide antagonist, 
GRGDSP, as well as an infusion of function-blocking antibodies against the β1 
integrin subunit, suppressed E-LTP and stabilize LTP in hippocampal slices (Stäubli 
et al.  1998 ; Kramár et al.  2006 ). Although the contribution of α5-containing integ-
rins to LTP modulation has yet to be confi rmed by a conditional genetic technology 
approach, conditional deletion of the β1 integrin subunit at a later postnatal stage 
compromised L-LTP induced by a two-tetanus protocol (Huang et al.  2006b ). 
Further studies to reveal possible interactions between integrin signaling and LTP 
are necessary to clarify the precise role of these receptors. 

 Ephrin type-B receptor 2 (EphB2) interacts with and controls NMDA receptor 
activity, and as a result, EphB2 can modulate synaptic plasticity. EphB2 interacts 
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via its extracellular domain with the NR1, NR2A, and NR2B subunits of the NMDA 
receptor (Dalva et al.  2000 ). This interaction does not appear to be a simple two 
molecular interaction, but rather, a more complex heterogeneous interaction. In fact, 
activation of EphB2 results in clustering of NMDA receptors with other synaptic 
proteins, including αCaMKII (Dalva et al.  2000 ). EphB2 activation also enhances 
Ca 2+  infl ux through the NMDA receptor, and is itself dependent on the phosphoryla-
tion of specifi c tyrosines in the NR2B subunit (Takasu et al.  2002 ). In addition, 
EphB2 deletion leads to defi cits in synaptic plasticity (Grunwald et al.  2001 ; 
Henderson et al.  2001 ). 

 Investigations involving brain regions other than the hippocampus suggest that 
the molecular interaction between EphB2 and the NMDA receptor is, like the acti-
vation of NRG1, regulated by neuropsin-dependent proteolytic processing. In the 
amygdaloid complex, neuropsin cleaves EphB2 in response to stress. EphB2 regu-
lates stress-induced plasticity and anxiety-like behavior, and its cleavage stimulates 
a dynamic interaction between the EphB2 and NMDA receptors, leading to an 
increase in the expression of an anxiety-related gene, FKBP5 (Attwood et al.  2011 ). 
The neuropsin/EphB2/NMDA receptor interaction is fast and specifi c for E-LTP, as 
evidenced by its disruption in the lateral-basal pathway of neuropsin-KO mice in 
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  Fig. 4.1    E-LTP-induced signaling cascades are activated postsynaptically. Neuropsin modulates 
E-LTP and synaptic tagging via proteolysis-dependent postsynaptic signaling pathways. 
Neuropsin-dependent pathways are shown ( red ), one that involves integrin/CaMKII signaling, and 
another that involves NRG1/ErbB4 signaling       
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response to a weak stimulation protocol. The dynamic neuropsin/EphB2/NMDA 
receptor interaction ultimately results in increased NMDA receptor activity and 
manifestation of the behavioral signatures of anxiety. 

 Brain-derived neurotrophic factor (BDNF) causes synaptic plasticity in the fully 
developed brain, as well as in the immature brain. BDNF is produced by post- 
translational cleavage of a precursor protein termed proBDNF (Seidah et al.  1996 ; 
Pang et al.  2004 ; Matsumoto et al.  2008 ). BDNF is apparently involved in the regu-
lation of E-LTP, because deletion of  Bdnf  in mice disrupted the induction of E-LTP 
in the CA1 region of hippocampal slices (Korte et al.  1995 ). The defect was rescued 
by reintroducing BDNF via viral transduction or by supplying exogenous BDNF 
(Korte et al.  1996 ; Patterson et al.  1996 ; Pozzo-Miller et al.  1999 ). Therefore, BDNF 
might be associated with the initiation of E-LTP. 

 Furthermore, pharmacological studies have demonstrated that the maintenance 
of L-LTP was also signifi cantly impaired in hippocampal slices pretreated with 
tropomyosin receptor kinase (Trk) B antiserum, indicating an involvement of 
BDNF/TrkB signaling in L-LTP (Kang et al.  1997 ; Korte et al.  1998 ). Conditional 
deletion of  Trkb  from forebrain principal neurons also provided evidence for the 
involvement of TrkB in both E- and L-LTP, as assessed in hippocampal slices 
(Minichiello et al.  1999 ,  2002 ; Xu et al.  2000 ). The BDNF/TrkB system is con-
trolled by Ca 2+  infl ux through NMDA receptors and Ca 2+  channels, enhancing TrkB 
receptor tyrosine kinase activity and facilitating ligand-induced internalization of 
TrkB (Du et al.  2003 ). In addition, cAMP expedites sorting of TrkB into the post-
synaptic density (Ji et al.  2005 ). Because the BDNF/TrkB system participates in 
postsynaptic labeling by virtue of the molecular localization of TrkB, it may act as 
a tag-associated signaling system (Lu et al.  2011 ).  

4.3     The Extracellular Protease Neuropsin 
Contributes to E-LTP 

 Neuropsin belongs to the family of secreted-type serine proteases, which are thought 
to be essential for many aspects of neuronal activity and function (Chen et al.  1995 ; 
Komai et al.  2000 ; Davies et al.  2001 ; Tamura et al.  2006 ; Ishikawa et al.  2008 , 
 2011 ; Attwood et al.  2011 ). As described above, neuropsin stimulates GABAergic 
neurons via NRG1/ErbB4 signaling (Fig.  4.1 ). Recombinant neuropsin (produced 
by insect cells) modulates Schaffer-collateral E-LTP in a dose-dependent manner in 
hippocampal slices, and neuropsin enzyme activity (measured with synthetic neu-
ropsin substrates) is transiently activated in the hippocampus during in vivo E-LTP 
in an NMDA receptor-dependent manner (Komai et al.  2000 ; Tamura et al.  2006 ; 
Ishikawa et al.  2008 ). Furthermore, electrophysiology investigations employing an 
E-LTP-preferential protocol (i.e., weak stimulation) showed that E-LTP is almost 
completely eradicated in hippocampal slices derived from neuropsin-KO mice. 
Consistent with this result, bath-application of a neuropsin-specifi c inhibitor to hip-
pocampal slices derived from wild-type mice confi rmed the E-LTP-specifi c 
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involvement of neuropsin in the CA1 region of the hippocampus (Hirata et al.  2001 ; 
Tamura et al.  2006 ; Ishikawa et al.  2008 ). 

 Interestingly, enzymatic activation of neuropsin is rather slow (requiring at least 
a few minutes) after a single tetanus-triggering protocol. The slow response of neu-
ropsin may represent a sequential up-regulation of the enzyme after Ca 2+ -dependent 
afterdepolarization (Blitzer et al.  1995 ; Tamura et al.  2006 ). Notably, neuropsin 
activation was abolished by a pharmacological NMDA receptor inhibitor. Behavioral 
studies showed that neuropsin protease defi ciency caused a signifi cant impairment 
of working memory-like behavior in the Y maze, as well as during the early stage of 
training in the Morris water maze (Tamura et al.  2006 ). Thus, the regulatory activity 
of neuropsin in the hippocampus (and likely in the amygdaloid complex as well; see 
above) was temporally restricted in E-LTP, rather than in L-LTP.  

4.4     Neuropsin-Dependent and Independent 
Synaptic Tagging 

 Due to the distinctive feature of neuropsin’s function in E-LTP alone, we postulated 
that the protease might contribute to an initial, protein synthesis-independent step in 
synaptic tag production. According to the original synaptic tagging hypothesis set 
forth by Frey and Morris ( 1997 ), two independent [weak (S1) vs. strong (S0)] syn-
aptic inputs to the same neuronal population can be monitored by using a single 
recording electrode in the CA1 stratum radiatum. When the S0-mediated pathway is 
initiated by a strong stimulus, subsequent synaptic persistency is evoked in the 
S1-mediated pathway by a weak (single-tetanus) stimulus, which normally pro-
duces only E-LTP. This process represents the association of the strong and weak 
synaptic pathways. 

 However, our work showed that the S0/S1 association completely disappeared 
in hippocampal slices derived from neuropsin-KO mice, but recovered to normal 
levels by bath-application of an enzymatically active form of recombinant neurop-
sin. This observation suggests that neuropsin does indeed participate in an early 
step in synaptic tagging, as well as in the acquisition of persistency at the S1 site, 
where the single tetanus was delivered. We hypothesize that this neuropsin- 
dependent step encompasses the capture of PRP, as opposed to their synthesis. 
Additionally, a second form of synaptic association was evoked by a stronger (two-
tetanus) stimulus at the S1 synapse, which perseveres in the neuropsin-KO mouse. 
Taken together, our fi ndings support the existence of at least two types of synaptic 
association: neuropsin- dependent and neuropsin-independent synaptic association 
(Ishikawa et al.  2008 ). 

 Ample experimental evidence indicates that the neuropsin-dependent form of 
synaptic association is concomitantly driven by integrin/actin signaling and an 
L-type voltage-dependent Ca 2+  channel (LVDCC)-mediated pathway (Ishikawa et al. 
 2008 ). For example, blockade of integrin function by the GRGDSP peptide, by an 
antibody against the β1 integrin subunit, by the actin polymerization inhibitor 
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 cytochalasin D or by the LVDCC inhibitor nitrendipine all impaired neuropsin- 
dependent synaptic association (Fig.  4.1 ). The integrin-, the actin polymerization- 
and LVDCC-mediated signaling pathways probably converge into one or more 
common Ca 2+ -dependent signaling pathways downstream of neuropsin, such as the 
CaMKII-dependent and/or the cAMP-dependent pathway. In support of this idea, 
KN93, a CaMKII inhibitor, was bath-applied to a recombinant neuropsin- 
supplemented (rescued) neuropsin-KO hippocampal slice. KN93, together with 
weak stimulation at S1, completely blocked the late associativity elicited at S1 in 
the stratum radiatum by a strong stimulation at S0 (Ishikawa et al.  2011 ). However, 
no study to date has directly examined whether neuropsin alters any molecular 
component(s) of the CaMKII-dependent or the cAMP-dependent signaling pathway 
to infl uence synaptic tagging. As such, further investigation is required to elucidate 
the detailed biochemical mechanism underlying neuropsin-dependent synaptic 
association. 

 Complicating matters further, the neuropsin-independent form of synaptic asso-
ciation may also involve LVDCC. A two- or more-tetanus stimulus induces NMDA- 
independent and LVDCC-dependent L-LTP and the formation of longer-lasting 
memories, particularly those based on stress-driven memory tasks (Grover and 
Teyler  1990 ; Cavuş and Teyler  1996 ) (e.g., food exploration in the radial maze 
under conditions of severe starvation (Borroni et al.  2000 ), and fear conditioning 
(Moosmang et al.  2005 ; McKinney and Murphy  2006 ). Thus, neuropsin (integrin/
actin signaling)-dependent and neuropsin-independent late associativity apparently 
come together into the same LVDCC-mediated intracellular signaling pathway 
(Ishikawa et al.  2008 ).  

4.5     Conclusions 

 Recent studies have revealed several novel potential mechanisms of synaptic tag-
ging in which integrin, neuropsin, dopamine receptors, PKA, protein kinase Mzeta 
(PKMz), TrkB, and CaMKII all participate in local and synapse-specifi c regulation 
of E-LTP signaling and E-LTP transition into L-LTP (Sajikumar et al.  2007 ; 
Ishikawa et al.  2008 ,  2011 ; Redondo et al.  2010 ; Attwood et al.  2011 ; Lu et al.  2011 ; 
Tamura et al.  2012 ). These signaling molecules are probably shared among com-
mon and overlapping E-LTP and synaptic tagging pathways. 

 The mechanisms underlying synaptic tagging are triggered by Ca 2+  infl ux through 
synaptic NMDA receptors and other Ca 2+  channels, followed by an enhancement in 
cAMP- and CaMKII-dependent signaling at local synapses. A series of studies from 
our group revealed the existence of neuropsin-dependent and -independent forms of 
synaptic tagging in the hippocampus. Other investigations demonstrated that 
CaMKII may function as a component of a “gating” mechanism for the acquisition 
of persistency from E-LTP into L-LTP by promoting cAMP-dependent protein 
modifi cations (Okamoto et al.  2009 ) and by situating LTP-specifi c tags at appropri-
ate sites (Sajikumar et al.  2007 ; Redondo et al.  2010 ). Thus, the outside-in signaling 
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associated with synaptic gating may utilize several independent intracellular 
 pathways that converge into a single CaMKII-mediated regulatory mechanism for 
setting the tag at a specifi c synapse. As described above, LVDCC-mediated signal-
ing possibly also supports the acquisition of synaptic persistency. 

 Neural activity-dependent proteolytic processing of neuropsin substrates (e.g., 
NRG1 and various extracellular matrix molecules) results in the exertion of multi-
ple signals toward the acquisition of synaptic plasticity, thus contributing to changes 
in synaptic confi gurations. Neuropsin-dependent synaptic tagging via outside-in 
signaling, as mediated through NRG1/ErbB4 and integrins/CaMKII (Fig.  4.1 ), 
might place some as yet unidentifi ed mark on Schaffer-collaterals and interneuronal 
synapses related to the procurement of late associativity (Ishikawa et al.  2008 ,  2011 ; 
Tamura et al.  2012 ). Although neuropsin is apparently crucial for this process, direct 
mechanisms for the attainment of synaptic persistency are still unknown. One pos-
sibility is that a CaMKII-dependent modulation of F-actin induces delivery to and 
capture of PRPs within a specifi c tagged dendritic spine (Okamoto et al.  2009 ). 

 In addition, theoretical work suggests that theta rhythms might act as a type of 
“tag” for short-term memory processing in the hippocampus (Vertes  2005 ). Theta 
rhythms selectively appear in the rodent during periods of active exploratory move-
ment. If the exploratory information is temporally coupled to theta rhythms, the 
theta rhythm-induced storage mechanism of novel information in the hippocampus 
may be similar to that of synaptic tagging-induced initiation of E-LTP. 

 Although molecular and cellular cognition studies have provided compelling 
evidence that synaptic plasticity and synaptic associativity are required for learning 
and memory, it is still unclear where and how they act in the brain. The fi eld is full 
of major questions, including the nature of the molecular and cellular mechanisms 
of plasticity and memory that encode, edit, and use stored information. Certainly, a 
more complete understanding of the fundamental signaling pathways responsible 
for LTP and synaptic tagging will continue to further our understanding of the iden-
tity and functioning of the neuronal networks behind learning and memory.     
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