
Chapter 8
Securing Your R cloud

Analytics deals with huge amounts of confidential data. For regulatory and business
continuity, it is preferable that analytical environments be secure from operational
risk including cyber threats. Some veteran IT administrators may think that their
certifications in Networking and Legacy Operating Systems Engineering are not
relevant in the cloud environment, but the basic principles remain the same.

8.1 Ensuring R Code Does not Contain Your Login Keys

Occasionally we have to connect to services from R that ask for login details,
such as databases but you may not want to store your login details in the R
source code file, instead the user would prefer to enter the my login details when
I execute the code. The following code can do that https://gist.github.com/mages/
2aed2a053e355e3bfe7c#file-getlogindetails-r while the corresponding note is at
http://lamages.blogspot.be/2014/07/simple-user-interface-in-r-to-get-login.html

getLoginDetails <- function(){
Based on code by Barry Rowlingson
http:// r.789695.n4.nabble.com/ tkentry-that-exits-after-RETURN-tt854721.

html#none
require(tcltk)
tt<-tktoplevel()
tkwm.title(tt,“Get login details”)
Name <- tclVar(“Login ID”)
Password <- tclVar(“Password”)
entry.Name <-tkentry(tt,width=“20”,textvariable=Name)
entry.Password <-tkentry(tt,width=“20”, show=“*”,textvariable=Password)
tkgrid(tklabel(tt,text=“Please enter your login details.”))
tkgrid(entry.Name)
tkgrid(entry.Password)

© Springer Science+Business Media New York 2014
A Ohri, R for Cloud Computing, DOI 10.1007/978-1-4939-1702-0__8

237

https://gist.github.com/mages/2aed2a053e355e3bfe7c#file-getlogindetails-r
https://gist.github.com/mages/2aed2a053e355e3bfe7c#file-getlogindetails-r
http://lamages.blogspot.be/2014/07/simple-user-interface-in-r-to-get-login.html
http://r.789695.n4.nabble.com/tkentry-that-exits-after-RETURN-tt854721.html#none
http://r.789695.n4.nabble.com/tkentry-that-exits-after-RETURN-tt854721.html#none

238 8 Securing Your R cloud

OnOK <- function() {
tkdestroy(tt)
}
OK.but <-tkbutton(tt,text=“ OK ”,command=OnOK)
tkbind(entry.Password, “<Return>”,OnOK)
tkgrid(OK.but)
tkfocus(tt)
tkwait.window(tt)
invisible(c(loginID=tclvalue(Name), password=tclvalue(Password)))
}
credentials <- getLoginDetails()
Delete credentials
##rm(credentials)

8.2 Setting Up Access Control (User Management Rights)

For a network to be secure, different users need to have different rights based on
their need to know, their potential for administrative overlap, and their job functions.
Accordingly we give the example of user management in the AWS cloud.

8.2.1 Amazon User Management

• Go to the IAM console (https://console.aws.amazon.com/iam/home).

https://console.aws.amazon.com/iam/home

8.2 Setting Up Access Control (User Management Rights) 239

• From the navigation menu, click Users.

• Select your IAM user name.

– Click User Actions, and then click Manage Access Keys.

• Click Create Access Key. Your keys will look something like this:

– Access key ID example: AKIAIOSFFORE7EXAMPLE

Secret access key example: wJalrXUtnYETAK7MDENG/bPxRfiCYEX-
AMPLEKEY

• Click Download Credentials, and store the keys in a secure location.
• You can deactivate these keys (using Manage Access Keys from Security

Credentials) and easily Delete Users as well once your project requirements are
over.

• If you or your users prefer that they login to your AWS management console,
this can be done as follows:

– For ease of the users we can make the sign in page to a custom url

• Password can be auto generated (which sometimes creates problems). We can
specify the password also.

240 8 Securing Your R cloud

8.3 Setting Up Security Control Groups for IP Address Level
Access (Security Groups)

To truly secure your network, it should allow logins from certain IP addresses only,
even if the security key and password credentials are given. This is of particular use
in case of laptop theft.

8.3 Setting Up Security Control Groups for IP Address Level Access... 241

8.3.1 A Note on Passwords and Passphrases

A passphrase is easier to memorize and has more entropy (randomness) than a
password which uses a combination of uppercase, lowercase, numbers, special
symbols. A lucid example is given here to demonstrate this—perhaps you can share
it with your IT administrator.

A salt is random data that is used as an additional input to a one-way function
that hashes a password or passphrase. Salts also combat the use of rainbow tables

242 8 Securing Your R cloud

for cracking passwords. A rainbow table is a large list of pre-computed hashes
for commonly used passwords. A dictionary attack is a technique for defeating
encryption by trying to determine its decryption key or passphrase by trying
hundreds or sometimes millions of likely possibilities, such as words in a dictionary.

8.3.2 A Note on Social Media’s Impact on Cyber Security

Social media has basically created a lot more websites for where human users need
to manually create and remember passwords. Unfortunately this has led to a lot
more lax security as people basically use the same password in repeated locations,
thus opening up places they can be attacked or breached by.

8.5 Basics of Encryption for Data Transfer (PGP- Public Key, Private Key) 243

8.4 Monitoring Usage for Improper Access

Web analytics to monitor resource usage in the network and statistical tools to detect
outliers in such activity is one solution. Anomaly/outlier detection systems looks for
deviation from normal or established patterns within given data. In case of network
security any threat will be marked as an anomaly.

You can use wireshark to capture network data (http://www.wireshark.
org/download.html). A demo model to check for network intrusion (good or
bad) is given by bigml at https://bigml.com/user/bigml/gallery/model/4f8a88921552
687841000000

A public dataset for training purposes is the DARPA Intrusion Detection
Data Set. http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/
data/)

8.5 Basics of Encryption for Data Transfer (PGP- Public
Key, Private Key)

As a data scientist, we should know how to protect and defend our data. For sensitive
data, it is best to encrypt it before transmission or storage. A public key is used to
encrypt text, and a private key is used to decrypt text (we saw this earlier when we
ran Puttygen to make keys before we transmit data for the cloud).

Here is a more lucid way of explaining how encryption works.

8.5.1 Encryption Software

Software such as GNU PGP and openssl can help with encryption. GNU PGP is
available at https://www.gnupg.org/ and the windows version is available at http://
www.gpg4win.org/ GnuPG is a complete and free implementation of the OpenPGP
standard as defined by RFC4880 (also known as PGP). GnuPG allows to encrypt
and sign your data and communication, features a versatile key management system
as well as access modules for all kinds of public key directories.

The OpenSSL Project is a collaborative effort to develop a robust, commercial-
grade, full-featured, and Open Source toolkit implementing the Secure Sockets
Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols as well as a
full-strength general purpose cryptography library. It is available at https://www.
openssl.org/ and windows version is downloadable at http://slproweb.com/products/
Win32OpenSSL.html

http://www.wireshark.org/download.html
http://www.wireshark.org/download.html
https://bigml.com/user/bigml/gallery/model/4f8a88921552
687841000000
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
https://www.gnupg.org/
http://www.gpg4win.org/
http://www.gpg4win.org/
https://www.openssl.org/
https://www.openssl.org/
http://slproweb.com/products/Win32OpenSSL.html
http://slproweb.com/products/Win32OpenSSL.html

244 8 Securing Your R cloud

The digest package in R (http://cran.r-project.org/web/packages/digest/index.
html) helps create hash digests of arbitrary R objects (using the md5, sha-1, sha-256
and crc32 algorithms) permitting easy comparison of R language objects, as well as
a function ‘hmac()’ to create hash-based message authentication code.

http://cran.r-project.org/web/packages/digest/index.html
http://cran.r-project.org/web/packages/digest/index.html

8.5 Basics of Encryption for Data Transfer (PGP- Public Key, Private Key) 245

	8 Securing Your R cloud
	8.1 Ensuring R Code Does not Contain Your Login Keys
	8.2 Setting Up Access Control (User Management Rights)
	8.2.1 Amazon User Management

	8.3 Setting Up Security Control Groups for IP Address Level Access (Security Groups)
	8.3.1 A Note on Passwords and Passphrases
	8.3.2 A Note on Social Media's Impact on Cyber Security

	8.4 Monitoring Usage for Improper Access
	8.5 Basics of Encryption for Data Transfer (PGP- Public Key, Private Key)
	8.5.1 Encryption Software

