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17.1  Introduction

Animal models are critical for biomedical research, in particular for human im-
munodeficiency virus type one (HIV-1), since HIV-1 infection still remains a major 
burden to global public health. As for 2011, it is estimated that 34 million people are 
living with HIV-1, 2.5 million people are newly infected, and only a small portion 
(8 million) of infected people are currently receiving the combined antiretroviral 
therapy, which is expensive and has to be lifelong [1] (https://www.unaids.org/en/
resources/publications/2013/). This dire reality further highlights the importance of 
animal models in developing vaccine to prevent HIV infection and testing new ap-
proaches to purge latently infected reservoir in order to cure HIV infection. An ideal 
animal model should be able to model HIV-1 transmission, pathogenesis, evaluate 
the efficacy of antiretroviral agents, immune modulators, and vaccines in prevent-
ing, treating, and curing HIV-1 infection in humans. Unfortunately, the universal 
and ideal model does not exist. Instead, different animal models are often used inde-
pendently or in combination, of which non-human primates (NHPs) and humanized 
mice (hu-mice) are the two available models.

In this chapter, we: (1) compare and contrast the pros and cons of NHP and hu-
mouse models of HIV-1 infection of humans in general; (2) discuss in detail which 
model is more relevant in studying HIV-1 transmission and vaccine; and (3) discuss 
what aspects of these models need to be further improved in order to meet the HIV-1 
research need. Since there are many different variables in both models, such as dif-
ferent types of macaques and hu-mice, different types of simian immunodeficiency 
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viruses (SIVs) and HIV-1 viruses, different routes and dose of virus infection, we 
can only compare the best available representatives of NHP and hu-mouse models.

17.2  The Current Status of NHP Models of HIV-1 
Infection

More than 30 African NHP species are naturally infected with more than 40 differ-
ent strains of SIVs [2, 3]; African NHPs have coexisted with SIVs for more than 
32,000 years [4] and host the immediate ancestral virus of HIV-1 [5–7] and HIV-2 
[8], but infected animals generally do not develop the AIDS-like disease even in the 
face of a chronic infection with high level of replicating virus [9].

The common chimpanzees in West Central Africa ( Pan troglodytes troglodytes) 
are endemically infected with SIVcpzPtt and are the zoonotic source of pandemic 
HIV-1 group M and non-pandemic group N; Eastern chimpanzees in East Africa 
( Pan troglodytes schweinfurthii) are infected with SIVcpzPts, but this virus has not 
yet been found in humans [5, 7, 10–13]. Gorillas ( Gorilla gorilla gorilla) are in-
fected with gorilla SIV (SIVgor) and are the zoonotic source of HIV-1 group P [14, 
15]. The simian zoonotic source of HIV-1 group O remains to be identified [15]. 
Although new data indicate that SIVcpz infections of chimpanzees had negative 
effects on their health, reproduction, and lifespan [16], the clinical course is still 
different from HIV-1 infection of humans. For ethical reasons and none/low patho-
genic infection of SIV, the endangered species of chimpanzees are not feasible to be 
used as a model for HIV-1 research [17].

Sooty Mangabeys ( Cercocebus atys) of African origin are the primate reservoir 
for HIV-2 [8] and the immediately ancestral virus of SIVmac transmitted to Asian 
macaques in captivity [18]. Sooty Mangabeys and African green monkeys (genus 
Chlorocebus) do not develop disease with high levels of SIV replication and are 
mainly used to study the mechanisms of non-pathogenic SIV infection [9, 19–22].

Asian NHPs of macaques, including rhesus macaques ( Macaca mulatta), cy-
nomolgus macaques ( M. fascicularis), and pigtailed macaques ( M. nemestrina) 
are non-natural hosts to SIVs and develop AIDS-like diseases after infection, of 
which rhesus macaque has been most widely used in HIV-1 research. Asian NHPs 
of macaques are regarded as a good model of HIV-1 infection of humans because 
of the following characteristics: (1) the proximity of macaques to humans, geneti-
cally, anatomically, and physiologically [23]; (2) the clinical manifestations and 
pathogenesis of macaques infected with SIV are similar to humans’ infection by 
HIV-1 [18, 22, 24]; (3) the innate and adaptive immune responses (CD8+ T [25, 
26–28] and B cells [29–31]) of macaques to SIV infection are similar to humans’ 
responses to HIV-1. Hence, this model has been widely used for transmission, im-
munopathogenesis, immune correlates of protection and vaccine efficacy studies, 
and has gained tremendous insights into the mechanisms of transmission and patho-
genesis, and immune correlates of protection. However, this model also has several 
limitations: (1) macaques are not susceptible to HIV-1 infection; instead only to 
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SIV or related chimeric virus, expressing HIV-1 envelope (Env-SHIV or SHIV) 
or reverse-transcriptase (RT-SHIV) in SIV backbone. Although recently, it was re-
ported that pig-tail macaques can support simian-tropic HIV-1 strains that encode 
only SIV vif protein (stHIV-1) replication [32], however, the virus replication lasted 
only for several months and its biological relevance to HIV-1 infection remained to 
be determined; (2) SIV viruses are naturally resistant to many FDA approved anti-
HIV-1 drugs, including non-nucleoside reverse transcriptase inhibitors (NNRTls), 
some entry inhibitors, and some proteinase inhibitors [33–35]. Although RT-SHIV 
and Env-SHIV can partly offset this drawback, many preventive/therapeutic regi-
mens used in clinic cannot be studied in this model and vice versa; (3) SIV differs 
from HIV-1 genotypically and phenotypically, the vaccines designed and tested in 
this model using SIV or SHIV cannot be directly applied into human clinical trial; 
(4) only a limited number of SIV viruses are available for macaque studies. Which 
SIV challenge virus should be used in vaccine protective studies is still being de-
bated [36], since many commonly used SIV challenge viruses in vaccine protective 
studies have different sensitivity to antibody neutralization and cytotoxic T lympho-
cytes (CTL)-mediated control. For example, SIVmnE660 can be neutralized more 
easily than SIVmac251 or SIVmac239 [30, 37], and SHIV89.6P can be controlled 
by CTL more easily [38]. Thus, the results with uncertain challenge viruses could 
be either underestimating or exaggerating the protective effect [38], and there are 
renewed efforts generating better challenge viruses [39, 40]; and (5) macaques and 
humans are genetically different, especially in major histocompatibility complex 
(MHC) and T cell receptors (TCR) which are more complex in the macaque spe-
cies [41–43]. Thus, alternative models are sought to overcome the limitations of the 
macaque/SIV model. The hu-mice , especially the new generation of hu-mice, has 
emerged as a good alternative system to study HIV in addition to NHP (Fig. 17.1).

Fig. 17.1   The pros and cons of SIV/macaque model of HIV-1 infection. African NHPs are the 
natural host of SIVs and generally do not develop AIDS-like disease. The pandemic HIV-1 group 
M (HIV-1 M) and non-pandemic group N (HIV-1 N) are originated from SIVcpzPtt in Chimpan-
zees, and non-pandemic HIV-1 P is originated from SIVgov in Gorillas. HIV-2 and SIVmac origi-
nated from SIVsmm in sooty Mangabeys. SIVmac infects Asian macaques and cause simian AIDS
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17.3  The Current Status of hu-mouse Models of HIV-1 
Infection

The major driving force for developing hu-mice is to interpose an in vivo model be-
tween in vitro and clinical trials for studying human diseases, since the findings of 
in vitro experiments cannot be directly tested in human clinical trials due to ethical 
reasons. Furthermore, macaques are not susceptible to HIV-1 infection, therefore, 
SIV/macaque always requires a two-stage design and testing in order to move into 
clinical trials. For example, vectors and immunogen of SIV vaccines tested in the 
macaque model have to be redesigned into the human version for clinical trials. The 
hu-mouse model has a potential to serve as an alternative to complement the SIV/
macaque model for vaccine studies.

The hu-mice are a heterochimera of the human immune system in the murine 
body in a delicate balance to avoid human graft versus murine host disease (GVHD) 
and murine host versus human graft disease (HVGD) while reconstituting the hu-
man system. In the past 25 years, this model has gone through several rounds of 
revolution primarily through two approaches. First, by genetically modifying the 
mouse to further eliminate murine immune cells and their functions in order to 
prevent HVGD; and second, by refining the procedures of implantation of human 
tissues and/or hematopoietic stem cells (HSC) in order to prevent GVHD, to attain a 
new level of human immune reconstitution in the lymphatic and non-lymphatic tis-
sues, including mucosa. The new generation of hu-mice has drastically expanded its 
utility and has great potential in studying HIV mucosal transmission, pathogenesis, 
latency, pre-exposure prophylaxis (PrEP), treatment, and vaccine.

The history of hu-mouse model has been extensively reviewed elsewhere [44–
46]; here, we will only highlight the major events in order to better compare NHP 
and hu-mouse models. The initial two independent groups conducted proof-of-con-
cept experiments in 1988 generating hu-mice by two different approaches [47, 48] 
based on SCID mice [49]. The seminal paper by McCune [47] laid the conceptual 
and technical foundation for subsequent stable long-term reconstitution of multi-
lineage human immune cells through implanting human fetal thymus and liver tis-
sue fragments under mouse renal capsule (Thy/Liv SCID-hu mice) [50, 51]. Using 
this first generation of hu-mouse (thy/Liv SCID-hu), some key HIV pathogenesis 
and treatment questions were studied [52–55]. Meanwhile, Mosier group generated 
hu-PBL-SCID mice by transferring peripheral blood leukocyte (PBL) to SCID mice 
[48]. Although the human immune reconstitution is limited and unstable [50, 56, 
57] in the hu-PBL-SCID mice, subsequent replacement of PBL with HSC implanta-
tion improved the human immune reconstitution [58, 59]

To further eliminate murine NK cells and reduce the “leakiness” of murine func-
tional lymphocytes in some SCID mice, NOD/SCID mice were generated in 1995 [60] 
by backcrossing SCID and NOD mice, since NOD mice have defects in NK cells, my-
eloid development and function, and complement pathways [61, 62]. The engraftment 
of human CD45+ cells in NOD/SCID mice has dramatically increased as compared to 
the SCID mouse recipients [60, 63]. In addition, to further improve the SCID mouse, 
RAG-1 [64] and RAG-2 (recombination-activating proteins) [65] deficient mice with 
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no mature T and B cells were generated in 1992. Additionally, the mice with homozy-
gous cytokine common receptor gamma chain mutant, a component of receptors for 
cytokine IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 [66–70], were generated (cγ−/−) [68, 
69] in 1995. These mice have defects in T and B cells and absence of natural killer cell 
(NK) activity. With the crossbreeding of different immune deficiency mice above, more 
severely combined immune deficiency (current generation) mice were generated. These 
include the BRG (BALB/c_ RAG2−/− cγ−/−) [71, 72] and B6RG (C57BL6_ RAG2−/− 
cγ−/−) [73], NOG (NOD/Shi-scid I cγ−/−) [74], NSG (NOD/LtSzscid I cγ−/−) [75], and 
NOD-RAG1−/− cγ−/− mice [76].

Based on the current generation of immune deficient mice, two general types of 
hu-mice are commonly generated for biomedical research. First is hu-BLT (bone 
marrow, liver, and thymus) mice [77] generated through sub-lethal irradiation, im-
plantation of human fetal liver and thymus pieces into the adult mouse left renal 
capsule, and injection of autologous CD34+ HSC intravenously [77, 78]. Hu-BLT 
mice are a new generation of hu-mice with a long-term and multi-lineage reconsti-
tution of human hematopoietic system (T, B, NK, DC, and Macrophages) in both 
lymphatic and mucosal tissues, and can elicit antigen-specific T cell and humoral 
responses [77, 79–83]. The hu-BLT mouse became the best hu-mouse model for 
studying HIV-1 mucosal transmission and its prevention, because there is a good 
immune reconstitution in mucosa, and the T cells can be educated in autologous hu-
man thymic tissues [77, 79–81]. Second is the hu-HSC mice generated by sub-lethal 
irradiation and injection of human CD34+ HSC isolated from fetal liver, umbilical 
cord blood, or mobilized peripheral blood leukocytes with granulocyte colony stim-
ulating factor (G-CSF) into the new generation of immune deficiency mice [74, 75, 
84–87]. It is apparent that injection (intra-hepatic or intra-cardiac) of CD34+ HSC 
into neonates of the current generation of immune deficient mice leads to much 
better de novo development of adaptive immune system (B, T, DC, and structured 
lymphatic organ) as compared with adult recipients [72, 85].

To further improve the human immune responses of the current generation of 
hu-mice, the human cytokines and growth factors cytokines (GM-CSF [88–90], 
IL-3 [88, 90], IL4 [88, 89], and IL-15 [91]) and MHC class I (HLA-A*0201 [92–
94], HLA-B*51:01 [95]) and II (HLA-DRA and HLA-DRB1:0405 [96], HLA-DR4 
[97], HLA-DR1 [93]) or in combination [90] were provided by transgenic, knock-
in, vector expression, or hydrodynamic injection (Fig. 17.2). The current generation 
of hu-mice has increasingly been used in HIV-1 research, because of the following 
reasons: (1) besides chimpanzees, it is the only model that can directly study HIV-
1 infection; (2) it reconstitutes most of human immune system functionally and 
structurally, thus it can recapitulate many aspects of HIV–host interaction, includ-
ing CD4+ T-cell depletion, increased CD4+ and CD8+ T-cell turnover, and immune 
activation [82, 98]; (3) it can be used to study HIV-1 mucosal transmission [79, 99], 
pathogenesis [88, 98, 100–102], prevention [103, 104], treatment [105–107], and 
latency [108]; and (4) it is much cheaper than NHP macaque. However, there are 
several limitations as well: (1) hu-mice are a chimera of human and mouse cells and 
tissues. Although human immune system is partly reconstituted, the non-lymphatic 
cells and tissues remain as murine; (2) there is a delay of humoral (3 month PI) and 
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cellular responses (9 weeks PI) in HIV-1-infected hu-BLT mice as compared with 
SIV/macaque and humans (2 weeks PI) [82]. The adaptive immune responses in 
hu-mice, even hu-BLT mice, therefore need to be further improved, especially IgG 
response [82, 87, 109]; (3) the HIV-1 replication kinetics in hu-mice is different 
from SIV/macaques and HIV-1/humans. In the hu-mice, the virus peaks around 2–3 
weeks post infection, but is maintained for several weeks before declining [82], 
reflecting that there is a delay of the host control of HIV-1 replication.

17.4  Mucosal Transmission of HIV-1 and Its Prevention

HIV-1 is mainly transmitted through mucosal surfaces, such as cervicovagina, fore-
skin, and anorectum. Better understanding of the early events of HIV-1 mucosal 
transmission and their underlying mechanisms holds the keys to the better designed 
microbicide and vaccine. The key body of knowledge on the early events in mucosal 
transmission of HIV-1 was mainly acquired from the macaque/SIV model, of which 
atraumatic high-dose or repeated low-dose inoculations of cell-free viruses are of-
ten used. For example, in the early vaginal transmission, there is a small infected 

Fig. 17.2   The pros and cons of current hu-mouse model of HIV-1 infection. The two types of new 
generation of hu-mice: hu-BLT and hu-HSC are developed by improving the implantation method 
of human cell and tissues and genetically refining the immune deficiency of recipient mouse. 
Recently, human cytokines, growth factors, and MHC class I and II transgenic mice have further 
improved the human immune function of current hu-mice
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founder cell population at the portal of entry before systemic virus dissemination 
[110, 111]; there is a genetic bottleneck as revealed by using single genome am-
plification in vaginal [112], rectal [113, 114], and penile [115] transmission. Only 
recently, the infections of macaques, vaginally [116] and rectally, [117] with cell-
associated SIV were reported; surprisingly, cell-associated virus that transmits in-
fection across the mucosa was found to be more efficient than cell-free virus [117]. 
Of cervicovaginal, foreskin, and anorectal routes in SIV/macaque model, anorectal 
mucosa is the easiest route for transmission, followed by vaginal and penile [115, 
118]. Although macaque penile transmission was reported previously, this route of 
transmission model has been used only very recently [115, 119–121].

In contrast to the long history of the use of macaque/SIV as a model for study-
ing mucosal transmission of HIV-1, hu-mice have been used only recently, since 
the current generation hu-mice were available, specifically after the hu-BLT mice 
were developed. However, due to their advantages in being susceptible to HIV-1 
infection, cheaper, and easier to manipulate than macaque, the current generation 
hu-mice are increasingly used in mucosal transmission and prevention studies. This 
model is especially useful to test microbicide in preventing mucosal transmission 
of HIV-1 [80, 104, 122]. Except for penile transmission, vaginal [80, 123, 124] and 
rectal [79, 122, 124] transmission of HIV-1 have both been reported.

17.5  Vaccine

The goal of vaccine development is to elicit protective memory immunity against 
infection, disease, and death [125, 126]. Macaque-SIV/SHIV model is still the best 
available model to identify the immune correlates of protection and evaluate vac-
cine efficacy, since hu-mice have delayed adaptive immune responses, especially 
very limited IgG response [82, 87, 109]. Currently, human cytokines, growth fac-
tors, and MHC class I and II transgenic NSG or NOG mice are generated which 
may improve this model for vaccine study. Conversely, the current generation of 
hu-mice is exceptionally useful in testing new preventive and therapeutic strategies, 
such as human broadly neutralizing antibodies [105], antibody-expressing vector 
[127], and engineering HIV-1 resistant cells [106, 128]. Its usefulness as a model 
for testing of HIV-1 vaccines remains to be determined.

17.6  Summary and Prospective

SIV/macaques model has been widely used for HIV-1 research since the middle 
1980s and has provided critical insights into the HIV-1 transmission, pathogenesis, 
treatment, latency, microbicide, and vaccine. However, macaques are genetically 
distinct from humans, especially in MHC class I and TCR, and are not suscep-
tible to HIV-1 infection. Thus, results derived from this model may not be directly 
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translatable into human clinical trials; for example, vaccines designed and tested 
in this model using SIV or SHIV have to be redesigned in order to be tested in hu-
man clinical trial. The new generation of hu-HSC and hu-BLT mice, especially the 
hu-BLT mice with transgenic expression of human cytokines, growth factors, and 
MHC class I and II, offers a new opportunity to study HIV-1 infection using HIV-1 
directly. Although there is still room to improve the humoral and cellular immune 
responses of hu-mice to HIV-1 infection [44, 46, 100, 129, 130], this model already 
recapitulates many key aspects of mucosal transmission [79, 99], prevention [103, 
104], immunopathogenesis [88, 98, 100–102], treatment [105–107], and latency 
[108]. The new generation of hu-mouse and SIV/macaque models are complemen-
tary and together they will overcome the idea that “mice lie and monkeys exagger-
ate” [131].
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