
Chapter 9

Transient HELS

Most vibrating structures are subject to impulsive or transient force excitations in

practice. Oftentimes transient excitations are unknown and therefore the resultant

acoustic field cannot be predicted. Even if the excitations are given, prediction of a

transient acoustic field produced by an arbitrarily shaped source is very difficult.

The scarcity in literature on predicting, not to mention reconstructing a transient

acoustic field, is the testimony of how challenging this problem is.

One possibility of determining the transient acoustic field generated by an

arbitrary object is to reconstruct the acoustic quantities in the frequency domain

first, and take an inverse Fourier transform to retrieve the time-domain signals.

Wang is the first to reconstruct a transient acoustic field in this manner [137]. Need-

less to say, numerical computations involved in this process are very intensive, if

possible at all.

Another possibility is to utilize the so-called non-stationary spatial transforma-

tion of sound field (NS-STSF) [138]. NS-STSF is based on the time-domain

holography (TDH) that processes the acoustic pressures measured by a planar

array of microphones with the neighboring microphones separated by one-half

the wavelength of a target acoustic wave. Basically, TDH produces “a sequence

of snapshots of instantaneous pressure over the array area, the time separation

between subsequent snapshots being equal to the sampling interval in A/D conver-

sion. Similarly, the output of TDH is a time sequence of snapshots of a selected

acoustic quantity in a calculation plane parallel to the measurement plane”

[138]. Therefore, what one sees is a series of the acoustic pressure images in the

frequency domain at fixed time instances over the recorded measurement time

period. As pointed out in Sect. 5.3, NS-STSF is actually non-stationary acoustical

holography because it gauges with respect to the acoustic frequency or the acoustic

wavelength, not the spatial frequency or the spatial wavelength.

In this chapter we develop the transient NAH formulations by using the HELS

method to visualize acoustic waves traveling in both space and time. Note that

Hansen [101] has used a spherical wave expansion to predict time-domain acoustic

radiation by scanning the acoustic pressure over a minimal spherical surface
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enclosing target sources. The major difference between Hansen’s work and the

present one is that the former is based on infinite series of the spherical Hankel

functions and spherical harmonics, and expansion coefficients are determined using

the orthogonal property of the spherical harmonics; while the latter utilizes a finite

expansion and expansion coefficients are determined by matching the expansion

solution to the measured data and the errors involved in this process are minimized

through regularization. This infinite series is called Rayleigh series and Sect. 4.2

has discussed in detail the differences between the Rayleigh series and the HELS

formulations. We have learned that the Rayleigh series is in general invalid for

reconstructing the acoustic field on a corrugated or arbitrarily shaped surface based

on the acoustic pressure specified on a measurement surface above the source

surface.

Theoretically, the transient acoustic field generated by an arbitrary object can be

calculated by using the Kirchhoff–Helmholtz integral formulation, provided that

the normal component of the surface velocity is specified. For an arbitrarily shaped

object, there is no analytic solution to this integral formulation. Hence numerical

solutions are sought. A direct approach is to discretize the Kirchhoff–Helmholtz

integral formulation in both spatial and temporal domains simultaneously. Such an

approach is unrealistic in practice because the corresponding numerical computa-

tions are prohibitively expensive and time consuming. One alternative is to find

numerical solutions to the radiated acoustic quantities in the frequency domain first,

and take an inverse Fourier transform to obtain the time-domain signals

[137]. Needless to say, numerical computations involved are intensive, if possible

at all. The reality is that in most cases the normal surface velocity is not specified.

Thus these numerical solutions strategies, no matter how plausible they are, cannot

be utilized.

In Chap. 9 explicit formulations for reconstructing the transient acoustic field

generated by an arbitrarily shaped 3D object in free space subject to an arbitrarily

time-dependent excitation are derived using the Kirchhoff–Helmholtz integral

theory. The reconstructed acoustic quantities are expressed in the frequency

domain, and the corresponding time-domain quantities are obtained by taking an

inverse Fourier transform, which is facilitated by using the residue theorem. The

final formulation for reconstructing a transient acoustic quantity is expressed in a

convolution integral of the acoustic pressure signal measured in the time-domain

and a unit impulse response function.

It is emphasized that these explicit formulations are applicable to an arbitrary

object with a uniformly distributed surface velocity. Input data to these explicit

formulations are the acoustic pressure signals measured on a hologram surface in

the near field of the target object.

For simplicity yet without loss of generality, background noise and interfering

signals are assumed negligible as compared to the measured acoustic pressure

signals. Reconstruction of the transient acoustic field is carried out by using

BEM- [25–27, 91] and HELS [36, 37, 91, 102]-based NAH.
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9.1 Transient Acoustic Radiation

To tackle transient acoustic radiation problems, let us first define the Fourier

transform as

F x
!
;ω

� �
¼
ð1

�1
f x

!
; t

� �
eiωtdt and f x

!
; t

� �
¼ 1

2π

ð1
�1

F x
!
;ω

� �
e�iωtdω, ð9:1Þ

where f x
!
; t

� �
is a continuous and bounded function as t!1, namely,ð1

�1
f x

!
; t

� ���� ���dt < 1.

Assume that the transient acoustic field is generated by an arbitrary object

subject to an arbitrarily time-dependent force excitation. Also, assume that the

velocity is uniformly distributed on the surface of the object, which has a closed,

smooth, and impermeable surface immersed in an inviscid, isotropic, and

unbounded fluid medium. This object is initially stationary and excited by an

unknown forcing function at t¼ ts, causing the amplitude of the velocity to rise

from 0 to Vs instantly in a specific direction e
!

c, where e
!
c is a unit vector at the

center of the object,

v
!

x
!
s; t

� �
¼ Vs e

!
cH t� tsð Þ, ð9:2Þ

where Vs is a constant and H(t� ts) represents the Heaviside step function defined

as

H t� tsð Þ ¼
0,

1=2,
1,

t < ts
t ¼ ts
t > ts

:

8<
: ð9:3Þ

The derivative of the Heaviside step function is the Dirac delta function [139],

H0 t� tsð Þ ¼ δ t� tsð Þ: ð9:4Þ

The acoustic pressure p x
!
; t

� �
generated by this accelerated body in free space

satisfies the homogeneous wave equation,

∇2p x
!
; t

� �
� 1

c2

∂2
p x

!
; t

� �
∂t2

¼ 0, ð9:5Þ

subject to the Sommerfeld radiation condition,
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lim
x
!j j!1

x
!��� ��� ∂p

∂ x
!��� ���þ

1

c

∂p̂
∂t

0
B@

1
CA ¼ 0, as x

!��� ���! 1: ð9:6Þ

In addition, p x
!
; t

� �
satisfies the causality condition,

p x
!
; t

� �
� 0, for t < ts: ð9:7Þ

In other words, the field is perfectly silent before the body is suddenly excited at

t¼ ts.
To find an integral representation of the wave equation (9.5), we make use of the

temporal free-space Green’s function

g x
!
; t x

!
s; ts

���� �
¼ δ t� ts � R=cð Þ

R
, ð9:8Þ

where δ(t� ts�R/c) is the Dirac delta function, (t�R/c) is known as the retarded

time because it takes additional time R/c for the acoustic signal to travel from the

source at x
!
s to a receiver at x

!
, hereR ¼ x

! � x
!

s

��� ��� is the distance between the source
and receiver in field space.

The temporal free-space Green’s function satisfies the homogeneous wave

equation,

∇2g x
!
; t x

!
s; ts

���� �
� 1

c2

∂2
g x

!
; t x

!
s; ts

���� �
∂t2

¼ �4πδ x
! � x

!
s

� �
δ t� tsð Þ, ð9:9Þ

subject to the initial condition,

g x
!
; t x

!
s; t

���
s

� �
¼

∂g x
!
; t x

!
s; t

���
s

� �
∂t

� 0, for t < ts, ð9:10Þ

and the reciprocal relation,

g x
!
; t x

!
s; ts

���� �
¼ g x

!
s;�ts x

!
;�t

���� �
: ð9:11Þ

Physically, Eq. (9.10) states that if the source is excited at ts, no sound is detected
before time ts. Equation (9.11) is the reciprocity principle, which states that when

the source location and emission time are interchanged with the receiver location

and time, the effect remains unchanged.
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Multiply Eq. (9.5) by g x
!
; t x

!
s; ts

���� �
and Eq. (9.9) byp x

!
; t

� �
and utilize the chain

rule to replace ∇·(A∇B) by A∇2B�∇A·∇B. Doing so yields

∇ � g∇pð Þ �∇p �∇g� 1

c2
∂
∂t

g
∂p
∂t

� �
þ 1

c2
∂p
∂t

∂g
∂t

¼ 0, ð9:12Þ

∇ � p∇gð Þ �∇p �∇g� 1

c2
∂
∂t

p
∂g
∂t

� �
þ 1

c2
∂p
∂t

∂g
∂t

¼ �4πpδ x
! � x

!
s

� �
δ t� tsð Þ, ð9:13Þ

where the arguments of p x
!
; t

� �
and g x

!
; t x

!
s; ts

���� �
in Eqs. (9.12) and (9.13) are

suppressed for brevity. Subtracting Eq. (9.13) from (9.12), we obtain

∇ � g∇p� p∇gð Þ � 1

c2
∂
∂t

g
∂p
∂t

� p
∂g
∂t

� �
¼ 4πpδ x

! � x
!
s

� �
δ t� tsð Þ: ð9:14Þ

Integrating Eq. (9.15) over the entire time history and three-dimensional space

leads to

ððð
Ωs

ð1
�1

∇ � g∇p� p∇gð Þ � 1

c2
∂
∂ts

g
∂p
∂ts

� p
∂g
∂ts

� �
dtsdΩs

¼ 4π

ððð
Ωs

ð1
�1

pδ x
! � x

!
s

� �
δ t� tsð ÞdtsdΩs: ð9:15Þ

The integrations on the right side of Eq. (9.15) are readily obtained by the sifting

property of the Dirac delta function (6.4). Changing the order of volume and

temporal integrations of the first term on the left side of Eq. (9.15) and using the

Gauss theorem, we can replace the volume integral by a surface integral. As for the

second term on the left side of Eq. (9.15), the temporal integration and time

derivative cancel each other. Therefore, we obtain

4πp x
!
; t

� �
¼
ð1

�1

ðð
S

ps
∂g
∂ns

� g
∂ps
∂ns

� �
dSdts

� 1

c2

ððð
Ωs

g
∂ps
∂ts

� p
∂g
∂ts

� �����
1

�1
dΩs, ð9:16Þ

where a subscript s in Eq. (9.16) indicates that the quantities are evaluated at a

surface point. The second term on the right side of Eq. (9.16) is identically zero
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because of the property of the Dirac delta function (6.4). Changing the order of

temporal and surface integrations in the first term on the left side of Eq. (9.16) once

again then leads to

4πp x
!
; t

� �
¼
ðð
S

ð1
�1

p
∂
∂ns

δ t� ts � R=cð Þ
R

� ∂ps
∂ns

δ t� ts � R=cð Þ
R

� �
dtsdS: ð9:17Þ

Using the chain rule and property of the Dirac delta function, we can rewrite the

first term on the right side of Eq. (9.17) as

ðð
S

ð1
�1

p
∂
∂ns

δ t� ts � R=cð Þ
R

dtsdS

¼ �
ðð
S

ð1
�1

p

R2

∂R
∂ns

δ t� ts � R=cð ÞdtsdS�
ðð
S

ð1
�1

p

cR

∂R
∂ns

δ0 t� ts � R=cð ÞdtsdS

¼ �
ðð
S

p

R2

∂R
∂ns

����
ts¼t�R=c

dSþ
ðð
S

1

cR

∂R
∂ns

ð1
�1

∂
∂ts

pδ t� ts � R=cð Þ½ �dtsdS

�
ðð
S

1

cR

∂R
∂ns

ð1
�1

∂p
∂ts

δ t� ts � R=cð ÞdtsdS ¼ �
ðð
S

p

R2

∂R
∂ns

����
ts¼t�R=c

dS

þ
ðð
S

1

cR

∂R
∂ns

pδ t� ts � R=cð Þ½ �j1�1dS�
ðð
S

1

cR

∂R
∂ns

∂p
∂ts

����
ts¼t�R=c

dS

¼ �
ðð
S

1

R

∂R
∂ns

1

R
þ 1

c

∂
∂ts

� �
p

� �����
ts¼t�R=c

dS:

ð9:18Þ

Substituting Eqs. (9.18) into (9.17), we obtain

p x
!
; t

� �
¼ � 1

4π

ðð
S

1

R

∂R
∂ns

1

R
þ 1

c

∂
∂ts

� �
p x

!
s; ts

� �� �����
ts¼t�R=c

dS

� 1

4π

ðð
S

1

R

∂p x
!

s; ts

� �
∂ns

2
4

3
5
������
ts¼t�R=c

dS: ð9:19Þ

Equation (9.19) is known as the Kirchhoff–Helmholtz integral formulation for

predicting the transient acoustic pressure in free space. The surface acoustic

pressure p x
!
s; ts

� �
on the right side of Eq. (9.19) is related to its normal derivative
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∂p x
!

s; ts

� �
=∂n x

!
s

� �
via the surface Kirchhoff–Helmholtz integral equation

obtained by taking the limit as the field point approaches the surface x
! ! x

!
s.

The processes of taking this limit are the same as those described in Sect. 6.3 and

the result is

p x
!
s; ts

� �
¼ � 1

2π

ðð
S0

1

Rs

∂Rs

∂ns0
1

Rs
þ 1

c

∂
∂ts0

� �
p x

!
s0 ; ts0

� �� �����
ts0 ¼ts�Rs=c

dS0

� 1

2π

ðð
S0

1

Rs

∂p x
!
s0 ; ts0

� �
∂ns0

������
ts0 ¼ts�Rs=c

dS0: ð9:20Þ

The normal derivative of the surface acoustic pressure in the second term on the

right side of Eq. (9.20) can be rewritten by using the Euler’s equation, the initial

condition (9.2) and the derivative of the Heaviside step function (9.4) as

∂p x
!

s0 ; ts0
� �
∂ns0

¼ �ρ0
∂vn x

!
s0 ; ts0

� �
∂ts0

¼ �ρ0Vs n
!

s0 � e!c

� �
δ ts � ts0ð Þ: ð9:21Þ

Substituting Eq. (9.21) into the second term on the right side of Eq. (9.20) and

taking the Fourier transform, we obtain

P x
!
s;ω

� �
¼ � 1

2π

ðð
S0

∂Rs

∂ns0
1� ikRs

R2
s

� �
P x

!
s0 ;ω

� �
dS0

þ ρ0Vs

2π

ðð
S0

n
!
s0 � e!z

Rs

 !
eikRsdS0: ð9:22Þ

Equation (9.22) is the surface Helmholtz integral equation for solving the

surface acoustic pressure, given the initial condition (9.2). Note that the surface

velocity Vs is independent of the spatial variable. This often happens in practice

when an object is hit by a force and starts to move impulsively. This sudden motion

may result in an impulsive-like sound. The Fourier transform of the resultant

acoustic pressure is expressible as

P x
!

s;ω
� �

¼ ξ x
!

s;ω
� �

Vs, ð9:23Þ

where ξ x
!
s;ω

� �
may be obtained by substituting Eq. (9.23) into (9.22),

ξ x
!
s;ω

� �
¼ ρ0

ðð
S0

n
!
s0 � e!c

Rs

 !
eikRsdS0=ς ωð Þ, ð9:24aÞ
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where

ς ωð Þ ¼ 2π þ
ðð

S0

n
!
s0 � e!R

R3
s

 !
1� ikRsð ÞeikRsdS0: ð9:24bÞ

Once the surface acoustic pressure is specified, the acoustic pressure anywhere

in free space is completely determined by the Fourier transformed version of

Eq. (9.19),

P x
!
;ω

� �
¼

η x
!
;ω

� �
ς ωð Þ

2
4

3
5Vs, ð9:25Þ

where

η x
!
;ω

� �

¼ ρ0
4π

ðð
S

n
!
s � e!c

� �
R2ς ωð Þ � n

!
s � e!R

� �
1� ikRð Þ

ðð
S0

n
!
s0 � e!z

Rs

 !
eikRsdS0

2
64

3
75 eikR

R3
dS:

ð9:26Þ

Equation (9.25) offers the closed-form solution for the acoustic pressure in the

frequency domain generated by an arbitrary object subject to the initial condition

(9.2) in free space. The temporal acoustic pressure can be obtained by taking an

inverse Fourier transform of Eq. (9.25),

p x
!
; t

� �
¼ 1

2π

ð1
�1

P x
!
;ω

� �
e�iωtdω : ð9:27Þ

For an early portion of the transient event, Eq. (9.27) can be evaluated asymp-

totically by taking the limit as ω!1 [140],

lim
t!0

p x
!
; t

� �
¼ �i lim

ω!1P x
!
;ω

� �
: ð9:28aÞ

On the other hand, for a latter portion of the transient event, the inverse Fourier

transform (9.27) can be evaluated asymptotically by taking the limit as ω! 0,

lim
t!1 p x

!
; t

� �
¼ �i lim

ω!0
P x

!
;ω

� �
: ð9:28bÞ

These two extreme cases indicate that the early portion of the transient event is

governed by the high-frequency content, whereas the late portion of the transient

event is controlled by the low-frequency contents of the spectrum. However, these
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asymptotic solutions are undesirable as far as the tractability of any transient event

is concerned. Alternatively, one can utilize the residue theorem to evaluate the

inverse Fourier transform (9.27) as discussed below.

9.2 Residue Theorem

Mathematically, the evaluation of an infinite integral such as the one given by

Eq. (9.27) can be facilitated by a contour integral. Namely, one can replace the

infinite line integral along the real axis by a finite one from �R to +R in

the complex frequency domain, and close the integration path by a semicircle in

the lower half plane in the clockwise direction. The reason for choosing the lower

half plane in the complex frequency domain is to ensure that the integration remains

finite. The radius R is then extended to infinity. The integration along the semicircle

is finite because by definition the infinite integral satisfies the boundedness condi-

tion [see Eq. (9.1)] [141],

p x
!
; t

� �
¼ 1

2π

I
C

η x
!
;ω

� �
ς ωð Þ e�iωtdω

2
4

3
5Vs: ð9:29Þ

Equation (9.29) shows that the temporal acoustic pressure is expressible as Vs

multiplied by a contour integral of η x
!
;ω

� �
=ς ωð Þ with η x

!
;ω

� �
and ς(ω) being

given by Eqs. (9.26) and (9.24b), respectively. The contour integral in Eq. (9.29)

can be evaluated by the residue theory.

Figure 9.1 shows this contour integration path C. If there are singularities on the
real axis, they must be excluded by drawing a small semicircle of radius r¼ ε. For
example, suppose that the integrand has singularities at �x0 on the real axis. Then

the contour integration path can be broken up into segments from �R to (�x0� ε),
a semicircle from (�x0� ε) to (�x0 + ε), a straight line from (�x0 + ε) to (x0� ε),
another semicircle from (x0� ε) to (x0 + ε), another straight line from (x0 + ε) to +R,
and a semicircle from +R to �R. The integration along the small semicircle is with

respect to εdθ, where θ varies from π to 0, which vanishes in the limit as ε! 0. The

integration along the large semicircle is with respect to Rdθ, where θ varies from π
to 0, which is identically zero because the boundedness condition is satisfied as

R!1.

Therefore, the infinite line integral in Eq. (9.26) is equivalent to the contour

integral in Eq. (9.29), which reduces to the line integral from �R to +R with

R!1. Meanwhile, this contour integral is equal to the sum of residues enclosed

by the contour C. Consequently, we obtain

p x
!
; t

� �
¼ ℏ x

!
x
!
s

��� ; t
� �

Vs, ð9:30Þ
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where ℏ x
!

x
!
s

��� ; t
� �

is the sum of residues enclosed by the contour C,

ℏ x
!

x
!
s

��� ; t
� �

¼ �i
X
q

η x
!
;ωq

� �
ς0 ωq

	 
 e�iωq t�ts�R=cð ÞH t� ts � R

c

� �
, ð9:31Þ

where the Heaviside step function appears as the field acoustic pressure is felt only

after the source is suddenly excited at t¼ ts plus the retarded time r/c, which is

needed for the impulsive acoustic signal to travel from the source to any receiver.

Also, we have adopted a minus sign because the contour is completed by a

semicircle in the lower half plane. The symbol ς ’ (ωq) represents the derivative

of ς(ωq) with respect to ω, and ωq is the qth singularity of the ratio η x
!
;ωq

� �
=ς ωð Þ,

which can be obtained by setting ς(ωq)¼ 0.

Example 9.1 Consider the case of a sudden-expansion sphere of radius r¼ a

subject to the initial condition (9.2) with n
!

x
!

s

� �
� e!c ¼ 1. Suppose that this sudden

expansion occurs at t¼ ts (¼a/c). The surface acoustic pressure in the frequency

domain can be obtained by using Eq. (9.23) with ξ x
!
s;ω

� �
given by Eq. (9.24a),

which for a spherical surface is given by [142]

ξ x
!

s;ω
� �

¼ a

ika� 1
:

Therefore, Eq. (9.23) gives the surface acoustic pressure in the frequency

domain,

P x
!
s;ω

� �
¼ ρ0Vsae

ika

1� ika
:

C

+
ee

x0 x0 x

iy

+RR

R

Fig. 9.1 Schematic of a

contour integral in the

complex frequency domain
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Similarly, substituting ξ x
!

s;ω
� �

into Eq. (9.25) yields the field acoustic

pressure as

P x
!
;ω

� �
¼ ρ0Vs

1� ikað Þ
a2

r

� �
eikr:

The temporal acoustic pressure anywhere in free space is given by Eq. (9.27),

which can be replaced by the residue theorem through Eq. (9.30), where

η x
!
;ωq

� �
¼ ρ0

a2

r

� �
eiωq r�að Þ=c,

ς ωq

	 
 ¼ 1� ikqa, and ς0 ωq

	 
 ¼ �i
a

c
,

where ωq is the qth root of the characteristic equation, ς ωq

	 
 ¼ 0. In this case there

is only one root, ω1¼�ic/a. Accordingly, the residue theorem leads to

p x
!
; t

� �
¼ ρ0cVs

a

r

� �
e� ct�rð Þ=aH t� r

c

� �
,

which agrees perfectly with the analytic result. This transient sound field is typi-

cally seen in an explosion, where the amplitude of the acoustic pressure decays

exponentially in all direction.

Example 9.2 Next, consider the case of a sphere of radius r¼ a that is impulsively

accelerated in the z-axis direction such that the normal surface velocity is given by

vn x
!

s; t
� �

¼ Vs n
!
s � e!z

� �
H t� tsð Þ,

where ts¼ a/c. Following the same procedures as those in Example 9.1, we obtain

ξ x
!
s;ω

� �
¼ a ika� 1ð Þ= 2� kað Þ2 � i2ka

h i
:

The surface and field acoustic pressures in the frequency domain are given,

respectively, by

P x
!
s;ω

� �
¼ ρ0Vsa 1� ikað Þ cos θ

2� kað Þ2 � i2ka
eika and

P x
!
;ω

� �
¼ ρ0Vsa 1� ikrð Þ cos θ

2� kað Þ2 � i2ka

a

r

� �2
eikr:
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Setting the denominator in the above to zero gives two roots in the lower half

complex frequency domain, ω1¼ (1� i)c/a and ω2¼ (�1� i)c/a. Accordingly, the
temporal acoustic pressure at a field point is found to be

p x
!
; t

� �
¼ ρ0cVs cos θ a=rð Þe� ct�rð Þ=aH t� r=cð Þ

cos ct� rð Þ=a½ � � 1� a=rð Þ sin ct� rð Þ=a½ �f g,

which once again agrees perfectly with the analytic result. This transient sound field

is typically seen during an impact where the acoustic pressure is highly directional

yet decays exponentially.

9.3 Extension to Arbitrary Time-Dependent Excitations

The formulations derived in Sect. 9.2 for predicting the transient acoustic pressure

field can be extended to arbitrary time-dependent excitations acting on rigid bodies

in free space. To the end, we consider a rigid body subject to a temporal rectangle

function, which consists of two unit step functions in the opposite signs.

Δv
!

x
!
s; t

� �
¼ Vs e

!
c H t� tsð Þ � H t� ts � Δtð Þ½ �, ð9:32Þ

where Δt is the gap between two unit step functions.

Following the same procedures as those described in Sect. 9.2, we derive the

resultant surface acoustic pressure in the frequency domain as

ΔP x
!
;ω

� �
¼

1� eiωΔtð Þη x
!
;ω

� �
ς ωð Þ

2
4

3
5Vs: ð9:33Þ

The corresponding temporal acoustic pressure anywhere in free space may be

obtained by taking the inverse Fourier transform of Eq. (9.33), which can be

evaluated via the residue theorem and be expressible as

Δp x
!
; t

� �
¼ ℏ x

!
x
!
s

��� ; t
� �

� ℏ x
!

x
!
s

��� ; t� Δt
� �h i

Vs, ð9:34Þ

where ℏ x
!

x
!

s

��� ; t
� �

is the same as that given by Eq. (9.31) and ℏ x
!

x
!

s

��� ; t� Δt
� �

is

defined as
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ℏ x
!

x
!
s

��� ; t� Δt
� �

¼ �i
X
q

η x
!
;ωq

� �
ς0 ωq

	 
 e�iωq t�Δt�ts�R=cð ÞH t� Δt� ts � R

c

� �
:

ð9:35Þ

Consequently, the transient acoustic pressure radiated from an object subject to a

velocity rectangle impulse of constant amplitude is the superposition of two step

response functions of the same amplitudes but opposite signs with a separation of

Δt in time. Meanwhile, any continuous and arbitrarily time-dependent excitation

may be approximated as a sum of rectangle impulses of constant amplitudes with a

small duration Δt. Therefore, for an object subject to a continuous and arbitrarily

time-dependent velocity excitation, we can write the field acoustic pressure as a

sum of individual acoustic pressure pulses,

p x
!
; t

� �
¼
X
‘

ℏ x
!

x
!
s

��� ; t‘

� �
� ℏ x

!
x
!
s

��� ; t‘ � Δt
� �h i

Vs: ð9:36Þ

Equation (9.36) is now ready to be extended to a general, continuous, and time-

dependent excitation. For this purpose, we rewrite Eq. (9.34) in the following

manner,

Δp x
!
; t

� �
¼

ℏ x
!

x
!

s

��� ; t
� �

� ℏ x
!

x
!

s

��� ; t� Δt
� �

Δt

2
4

3
5Δt

8<
:

9=
;Vs: ð9:37Þ

Equation (9.37) represents an acoustic pressure pulse at a field point x
!
and time

t due to a velocity rectangle pulse at time ts. As Δt! 0, the square bracket term of

Eq. (9.37) becomes an impulse response function. The transient field acoustic

pressure at x
!

due to all the velocity impulses prior to time t can be expressed as

the Duhamel integral [143],

p x
!
; t

� �
¼
ð t
0

h x
!

x
!
s

��� ; t� τ
� �

Vsdτ, ð9:38Þ

where h x
!

x
!
s

��� ; t� τ
� �

is known as the impulse response function since it is the

response to a velocity impulse at time τ, and can be obtained by using the residue

theorem as

h x
!

x
!
s

��� ; t� τ
� �

¼ �i
X
q

η x
!
;ωq

� �
ς0 ωq

	 
 e�iωqτ: ð9:39Þ

Equation (9.38) states that the transient acoustic pressure a field point x
!
and time

t can be expressed as the convolution integral of the impulse response function and
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the time history of the surface velocity of an object. Sometimes this convolution

integral is abbreviated as

p x
!
; t

� �
¼ h x

!
; t

� �
� vn x

!
s; t

� �
, ð9:40Þ

where vn x
!

s; t
� �

¼ Vs n
!
s � e!c

� �
H t� tsð Þ represents the normal surface velocity of

the source and the symbol * indicates the convolution integral given in Eq. (9.38).

9.4 Transient NAH Formulations

The transient formulations developed in Sects. 9.1–9.3 have laid a solid foundation

for performing transient NAH. Two types of implementation schemes, namely, the

Helmholtz integral formulation and HELS method-based NAH are considered in

this section.

9.4.1 Reconstruction Through BEM-Based NAH

Suppose that the input data consist of the acoustic pressure signals measured at x
!Γ
m

on the hologram surface, m¼ 1, 2, . . .,M, which is positioned around the source

surface in the near field. Taking the Fourier transform of the measured acoustic

pressure signals and using Eq. (9.25) lead to the following general, discretized

BEM-based formulations:

P x
!Γ

m;ω
� �n o

M�1
¼ Tpv x

!Γ
m x

!
s

��� ;ω
� �n o

M�1
Vs ωð Þ, ð9:41Þ

where P x
!Γ
m;ω

� �n o
M�1

is the acoustic pressure measured on the hologram surface

in the frequency domain and Tpv x
!Γ

m x
!
s

��� ;ω
� �n o

M�1
is the transfer function corre-

lating the measured acoustic pressure at x
!Γ
m to the velocity magnitude on the source

surface x
!
s, whose elements are defined as

Tpv,m x
!Γ
m x

!
s

��� ;ω
� �

¼
η x

!Γ
m;ω

� �
ς ωð Þ : ð9:42Þ

The symbol Vs(ω) on the right side of Eq. (9.41) indicates the magnitude of the

surface velocity, which is frequency dependent but spatially invariant on the source
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surface, and Rm ¼ x
!Γ

m � x
!
s

��� ���. The value of Vs(ω) may be obtained by taking a

pseudo inversion of Eq. (9.41),

Vs ωð Þ ¼ Tpv x
!
s x
!Γ
m

��� ;ω
� �n o{

1�M
P x

!Γ
m;ω

� �n o
M�1

, ð9:43Þ

where

Tpv x
!
s x
!Γ
m

��� ;ω
� �n o{

1�M
¼ Tpv x

!
s x
!Γ
m

��� ;ω
� �n oH

1�M
Tpv x

!Γ
m x

!
s

��� ;ω
� �n o

M�1

� ��1

Tpv x
!

s x
!Γ
m

��� ;ω
� �n oH

1�M
:

ð9:44Þ

In practice Eq. (9.43) must be regularized because the errors involved in the

input data may make the pseudo-inversion matrix singular and cause solutions to

diverge without a bound. There are many choices for conduct regularization,

ranging from the simplest TSVD, L-Curve, to MTR [46, 49, 50], which have

been discussed extensively in the past and are omitted here for brevity.

Once the surface velocity is reconstructed, the surface acoustic pressure can be

obtained by substituting Eq. (9.43) into Eq. (9.23), and the result is

P x
!
s;ω

� �
¼ ξ x

!
s;ω

� �
Tpv x

!
s x
!Γ
m

��� ;ω
� �n o{

1�M
P x

!Γ
m;ω

� �n o
M�1

: ð9:45Þ

Meanwhile, the reconstructed acoustic pressure at any field point x
!

can be

determined by substituting Eq. (9.43) into Eq. (9.25), which is expressible as

P x
!
;ω

� �
¼

η x
!
;ω

� �
ς ωð Þ Tpv x

!
s x
!Γ

m

��� ;ω
� �n o{

1�M
P x

!Γ
m;ω

� �n o
M�1

: ð9:46Þ

The normal component of the particle velocity at x
!
can be obtained by taking the

normal derivative of Eq. (9.46),

Vn x
!
;ω

� �
¼ �i

1

ρ0ως ωð Þ
∂η x

!
;ω

� �
∂n

Tpv x
!
s x
!Γ
m

��� ;ω
� �n o{

1�M
P x

!Γ
m;ω

� �n o
M�1

:

ð9:47Þ
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9.4.2 Reconstruction Through HELS-Based NAH

Alternatively, the expansion theory can be used to reconstruct the acoustic field.

One such approach is the so-called HELS method that employs the spherical

Hankel functions and spherical harmonics as the basis functions to describe the

acoustic quantities [37, 38].

Suppose that the acoustic pressure is specified on a hologram surface Γ in the

same way as that depicted in the preceding section. The acoustic pressure and

normal component of the particle velocity anywhere in the field, including the

source surface, can be reconstructed by using the HELS formulations and the results

are

P x
!
;ω

� �
¼ Gpp x

!
x
!Γ

m

��� ;ω
� �n o

1�M
P x

!Γ
m;ω

� �n o
M�1

, ð9:48Þ

Vn x
!
;ω

� �
¼ Gvp x

!
x
!Γ
m

��� ;ω
� �n o

1�M
P x

!Γ
m;ω

� �n o
M�1

, ð9:49Þ

where Gpp x
!

x
!Γ
m;ω

���� �n oT

1�M
and Gvp x

!
x
!Γ

m;ω
���� �n oT

1�M
are the transfer functions

that correlate P x
!
;ω

� �
and Vn x

!
;ω

� �
anywhere in the field to P x

!Γ
m;ω

� �
on the

hologram surface Γ, respectively,

Gpp x
!

x
!Γ
m;ω

���� �n oT

1�M
¼ Ψ x

!
;ω

� �n oT

1�J
Ψ x

!Γ
m;ω

� �h iH
J�M

Ψ x
!Γ
m;ω

� �h i
M�J

� ��1

Ψ x
!Γ
m;ω

� �h iH
J�M

,

ð9:50Þ

Gvp x
!

x
!Γ
m;ω

���� �n oT

1�M

¼ 1

iωρ0

∂Ψ x
!
;ω

� �
∂n

8<
:

9=
;

T

1�J

Ψ x
!Γ

m;ω
� �h iH

J�M
Ψ x

!Γ
m;ω

� �h i
M�J

� ��1

Ψ x
!Γ

m;ω
� �h iH

J�M
,

ð9:51Þ

where the elements of the matrix Ψ x
!Γ
m;ω

� �h i
J�M

consist of the particular solution

to the Helmholtz equation, which are expressible in the spherical coordinates as

Ψj r; θ;ϕ;ωð Þ � Ψnl r; θ;ϕ;ωð Þ ¼ h 1ð Þ
n krð ÞY l

n θ;ϕð Þ, ð9:52Þ

where h
ð1Þ
n (kr) and Yln(θ,ϕ) are the spherical Hankel functions of the first kind and

the spherical harmonics, respectively, and the indices j, n, and l in Eq. (9.52) are
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related through j¼ n2 + n+ l+ 1, where the order of expansion in the radial function
n starts from 0 to N and l ranges from �n to +n.

9.4.3 Transient NAH Formulations

Once the acoustic quantities in the frequency domain are determined by utilizing

either the BEM- or HELS-based NAH formulations, the corresponding time-

domain signals are obtained by taking an inverse Fourier transform of either

Eqs. (9.46) and (9.47) or Eqs. (9.48) and (9.49). These equations may be evaluated

by using the residue theorem and expressed as a convolution integral (9.40), except

that input data consist of the measured acoustic pressure signal p x
!Γ
m; t

� �
rather than

velocity signal on the source surface,

p x
!
; t

� �
¼ gpp x

!
x
!Γ
m

��� ; t
� �

� p x
!Γ
m; t

� �
, ð9:53Þ

vn x
!
; t

� �
¼ gvp x

!
x
!Γ

m

��� ; t
� �

� p x
!Γ

m; t
� �

, ð9:54Þ

where the temporal kernels gpp x
!

x
!Γ

m

��� ; t
� �

and gvp x
!

x
!Γ
m

��� ; t
� �

are expressible,

respectively, as

gpp x
!

x
!Γ

m

��� ; t� τ
� �

¼ �i
X
q

ηpp x
!
;ωpp

q

� �
ς0
pp ωpp

qð Þ e�iω pp
q τ, ð9:55Þ

gvp x
!

x
!Γ
m

��� ; t� τ
� �

¼ �i
X
q

ηvp x
!
;ω vp

q

� �
ς0
vp ω vp

qð Þ e�iω vp
q τ, ð9:56Þ

where ωpp
q and ωvp

q are, respectively, the roots of the characteristic equations of

ςpp ωpp
q

� �
¼ 0, ð9:57Þ

ςvp ω vp
q

� �
¼ 0: ð9:58Þ

It is emphasized that there are no closed-form solutions for gpp x
!

x
!Γ
m

��� ; t
� �

and

gvp x
!

x
!Γ

m

��� ; t
� �

in general because the source surfaces, measurements, and recon-

struction locations are arbitrary. Mathematically, gpp x
!

x
!Γ
m

��� ; t
� �

implies the impulse

response function correlating the reconstructed acoustic pressure p x
!
; t

� �
at x

!
to the
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measured acoustic pressure signal p x
!Γ
m; t

� �
at x

!Γ
m. Similarly, gvp x

!
x
!Γ
m

��� ; t
� �

is the

impulse response function that correlates the reconstructed normal component of

the particle velocity vn x
!
; t

� �
at x

!
to the measured acoustic pressure signal p x

!Γ
m; t

� �
at x

!Γ
m. Note that because the residue theorem is used in Eqs. (9.53) and (9.54) to

reconstruct the transient acoustic field, rather than a direct inverse Fourier trans-

form, the conventional discretization and the minimal sampling rate requirement in

the time domain are avoided.

9.4.4 Applications of the Transient NAH Formulations

In this section both the integral theory and HELS-based NAH formulations are

utilized to reconstruct the transient acoustic pressure fields, and results are com-

pared with the analytic ones.

Example 9.3 (A Sudden-Expansion Sphere) Consider a sudden-expansion sphere

of radius r¼ a subject to the initial condition (9.2) with n
!

x
!
s

� �
� e!c ¼ 1. Suppose

that sudden expansion occurs at t¼ a/c. The analytic acoustic pressure signal on

a hologram surface is taken as the input. For simplicity, we assume that the

time history of the acoustic pressure signal measured at any field point is (see

Example 9.1)

p x
!Γ
m; t

� �
¼ ρ0cVs

a

r Γm

� �
e� ct�r Γmð Þ=aH t� r Γm

c

� �
: ð9:59Þ

The reconstructed acoustic pressure signal at any field point x
!
can be determined

by using Eq. (9.53). Since the normal surface velocity is constant, it suffices to take

one measurement on a hologram surface, i.e., M¼ 1. First, we use the BEM-based

NAH formulation to reconstruct the acoustic pressure field. Accordingly, the

pseudo inversion defined in Eq. (9.43) reduces to

T{
pp x

!Γ
m x

!
s

��� ;ωpp
q

� �
¼ ς ωð Þ

η x
!Γ
m;ω

� � : ð9:60Þ

Substituting Eq. (9.60) into Eq. (9.46) yields the reconstructed acoustic pressure

at any field point x
!
in the frequency domain,
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P x
!
;ω

� �
¼

η x
!
;ω

� �
η x

!Γ
m;ω

� �P x
!Γ
m;ω

� �
, ð9:61Þ

The temporal acoustic pressure at any field point p x
!
;ω

� �
may be obtained by

Eq. (9.27), which can be evaluated using the residue Eq. (9.53), where the temporal

kernel gpp x
!

x
!Γ
m

��� ; t� τ
� �

is

gpp x
!

x
!Γ
m

��� ; t� τ
� �

¼ �i
X
q

η x
!
;ωpp

q

� �
η x

!Γ

m ;ω
pp
q

� �, ð9:62Þ

where ωpp
q is the qth root of the characteristic equation ςpp(ωpp

q )¼ 0. In this case,

there is only one root, ωpp
1 ¼� ic/a, so q¼ 1.

Figure 9.2 displays the schematic of relative positions of the locations of surface

and field points with respect to a sudden-expansion sphere. The quantity

ξ x
!

s;ω
pp
1

� �
involved in η x

!
;ωpp

1

� �
and η x

!Γ
m;ω

pp
1

� �
is given by Eq. (9.26). The

distance between two points on the source surface is Rs¼ 2acos(θ/2), ∂Rs=∂ns
¼ cos θ=2ð Þ and dS0 ¼ a2sinθdθdϕ, with θ varying from 0 to π and ϕ from 0 to 2π.
Since integrands are independent of the azimuthal angle ϕ, integration over ϕ can

x

n(xs)

xs

eR

a 

r 

R 
xs'

n(xs')

n(xs)

q qxs

eR

a 

a b

Rs

Fig. 9.2 Schematic of points on the surface of the sphere of radius r¼ a and in the field, and

corresponding distances Rs and R, respectively. (a): Both points on the source surface; (b): One

point on the source surface and another in the field
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be done separately, yielding 2π. The distance between a surface and field point is

R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 þ 2ar cos θ

p
. For simplicity, the radial distance r is assumed much

larger than radius a, so R� r, eikR� eikR+ ika cos θ and ∂R=∂ns ¼ cos θ. Detailed

integrations for ξ(a;ωpp
1 ) and η x

!Γ
m;ω

pp
1

� �
are shown in reference [142] and omitted

here for brevity.

Substituting ξ x
!

s;ω
pp
1

� �
and η x

!Γ
m;ω

pp
1

� �
into Eq. (9.62) yields

gpp x
!

x
!Γ

m

��� ; t� τ
� �

¼ a=rð Þeik pp
1
r

a=r Γm
	 


eik
pp
1
r Γm

¼ r Γm
r

� �
e r�r Γmð Þ=a: ð9:63Þ

Substituting Eqs. (9.59) and (9.63) into Eq. (9.53) then leads to

p x
!
; t

� �
¼ ρ0cVs

a

r

� �
e� ct�rð Þ=aH t� r

c

� �
, ð9:64Þ

which matches the analytic solution for a sudden-expansion sphere [142].

Next the HELS-based NAH formulation is used to reconstruct the transient

acoustic field. The basis function in the HELS expansion is given by Eq. (9.52).

For a sudden-expansion sphere, it suffices to use a one-term expansion. Accord-

ingly, we have Ψ1(r, θ,ϕ;ω)¼ eikr/r. The temporal kernels gpp x
!

x
!Γ
m

��� ; t� τ
� �

as

defined by Eq. (9.62) reduces to

gpp x
!

x
!Γ

m

��� ; t� τ
� �

¼ �i
ηpp x

!
;ωpp

1

� �
ς0
pp ωpp

1

	 
 e�iω pp
1
τ ¼ ar Γm=cr

	 

e�i c= �iað Þ½ � r�r Γmð Þ=c
a=c

¼ r Γm
r

� �
e r�r Γmð Þ=a: ð9:65Þ

Substituting (9.59) and (9.65) into the convolution integral (9.53) yields

p x
!
; t

� �
¼ gpp x

!
x
!Γ
m

��� ; t
� �

� p x
!Γ
m; t

� �
¼ ρ0cVse

� ct�rð Þ=a a

r

� �
H t� r

c

� �
, ð9:66Þ

which agrees with the analytic solution [142].

Figure 9.3 demonstrates three-dimensional images of acoustic pressure fields at

arbitrarily selected time instances t¼ 3.24 (ms), 4.41 (ms), 5.88 (ms), and 7.35

(ms).

Similarly, the normal component of the particle velocity at any field point is

reconstructed by using Eq. (9.54) by using p x
!Γ
m; t

� �
and gvp x

!
x
!Γ
m

��� ; t
� �

given by

182 9 Transient HELS



gvp x
!

x
!Γ

m

��� ; t� τ
� �

¼ �i
ηvp x

!
;ω vp

1

� �
ς0
vp ω vp

1

	 
 e�iω vp
1
τ

¼ ar Γm=ρ0c
2r

	 

e�i c= �iað Þ½ � r�r Γmð Þ=c
a=c

¼ 1

ρ0c

r Γm
r

� �
e r�r Γmð Þ=a: ð9:67Þ

Substituting Eqs. (9.59) and (9.67) into Eq. (9.54) leads to

vn x
!
; t

� �
¼ gvp x

!
x
!Γ

m

��� ; t
� �

� p x
!Γ

m; t
� �

¼ Vse
� ct�rð Þ=a a

r

� �
H t� r

c

� �
, ð9:68Þ

which reduces to the initial condition (9.2) when r is set on the source surface

and a/c¼ ts.

p/r0cVs p/r0cVs

p/r0cVs p/r0cVs
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-2 -2-2
-1

-1 -1 -1-1

-1 -1-1
0

0 0 0 0

0 0

0 00
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Y
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Y1

1 1 1 1

1 11
2

2 2 2 2

2 22

t = 3.24 (ms)

t = 5.88 (ms) t = 7.35 (ms)

t = 4.41 (ms)

0.1702 0.2270 0.2837 0.3405 0.3972 0.4540 0.5107 0.5675 0.6242 0.6810 0.7377 0.7045 0.85120.11350.0567

a b

c d

Fig. 9.3 Reconstructed temporal acoustic pressure fields resulting from a sudden-expansion

sphere of radius a at different time instances. (a): t¼ 3.24 ms; (b): t¼ 4.41 ms; (c): t¼ 5.88 ms;

and (d): t¼ 7.35 ms
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Example 9.4 (An Impulsively Accelerated Sphere) Consider the case of a sphere of

radius r¼ a that is impulsively accelerated in the z-axis direction (see Example 9.2).

Accordingly, the normal surface velocity is given by

vn x
!

s; t
� �

¼ Vs n
!
s � e!z

� �
H t� tsð Þ, ð9:69Þ

where n
!

x
!
s

� �
� e!z ¼ cos θ.

Again, the integral theory-based NAH is utilized to reconstruct the transient

acoustic field first. The analytic acoustic pressure signal at the hologram surface is

taken as the input,

p x
!Γ
m; t

� �
¼ ρ0cVs cos θ

Γ
m

a

r Γm

� �
e� ct�r Γmð Þ=aH t� r Γm

c

� �

cos
ct� r Γm

a

� �
� 1� a

r Γm

� �
sin

ct� r Γm
a

� �� �
:

ð9:70Þ

As in the previous sudden-expansion sphere, the reconstructed temporal acoustic

pressure p x
!
;ω

� �
can be obtained using Eq. (9.53) with its temporal kernel gpp

x
!

x
!Γ
m

��� ; t� τ
� �

given by Eq. (9.62). The quantity ξ x
!
s;ωpp

q

� �
involved in

ηpp x
!
;ωpp

q

� �
and ηpp x

!Γ
m;ω

pp
q

� �
can be shown as

ξ x
!

s;ω
pp
q

� �
¼

a ik pp
q a� 1

� �
2� k pp

q a
� �2

� i2k pp
q a

: ð9:71Þ

In this case q¼ 2, ωpp
1 ¼ (1� i)c/a and ωpp

1 ¼ (�1� i)c/a. Thus the temporal kernel

becomes

gpp x
!

x
!Γ
m

��� ; t� τ
� �

¼ �i
X2
q¼1

r Γm
r

� �2 1� ik pp
q r

� �
1� ik pp

q r Γm

� �eik pp
q r�r Γmð Þ: ð9:72Þ

Detailed derivations of Eq. (9.72) are omitted here for brevity. Substituting

Eqs. (9.70) and (9.72) into Eq. (9.53) and summing the residues yield

p x
!
; t

� �
¼ ρ0cVs cos θ

a

r

� �
e� ct�rð Þ=aH t� r

c

� �
cos

ct� r

a

� �
� 1� a

r

� �
sin

ct� r

a

� �h i
,

ð9:73Þ
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which is the analytic solution to the acoustic pressure due to an impulsively

accelerated sphere [142].

Alternatively, the HELS-based NAH can be used to reconstruct the transient

acoustic field. Suppose that a two-term HELS expansion is used,

Ψ1 r; θ;ϕ;ωð Þ ¼ eikr

r
and Ψ2 r; θ;ϕ;ωð Þ ¼ kr þ ið Þ cos θ

krð Þ2 eikr: ð9:74Þ

Accordingly, the temporal kernel involved in Eq. (9.55) can be written as

gpp x
!

x
!Γ
m

��� ; t� τ
� �

¼ �i
X2
q¼1

ηpp x
!
;ωpp

q

� �
ς0
pp ωpp

qð Þ e�iω pp
q τ, ð9:75Þ

where q¼ 1 and 2, ωpp
1 ¼ (1� i)c/a, ωpp

1 ¼ (�1� i)c/a, ηpp x
!
;ωpp

q

� �
, and ς

0
pp ωpp

q

� �
are given, respectively, by

ηpp x
!
;ωpp

1

� �
¼ ωpp

1 r=cþ i
	 


a3 cos θ

r2
eiω

pp
1
r=c, ð9:76aÞ

ηpp x
!
;ωpp

2

� �
¼ ωpp

2 r=cþ i
	 


a3 cos θ

r2
eiω

pp
2
r=c, ð9:76bÞ

ς
0
pp ωpp

1

	 
 ¼ �2 a=cð Þ aωpp
1 þ i

	 

, ð9:76cÞ

ς
0
pp ωpp

2

	 
 ¼ �2 a=cð Þ aωpp
2 þ i

	 

: ð9:76dÞ

Substituting Eqs. (9.73) and (9.75) into Eq. (9.53) and summing the residues

yield

p x
!
; t

� �
¼ gpp x

!
x
!Γ

m

��� ; t
� �

� p x
!Γ

m; t
� �

¼ ρ0cVs cos θ
a

r

� �
e� ct�rð Þ=aH t� r

c

� �
cos

ct� r

a

� �
� 1� a

r

� �
sin

ct� r

a

� �h i
,

ð9:77Þ

which matches the analytic solution for the temporal acoustic pressure emitted by

an impulsively accelerated sphere of radius a in free space [142].

Figure 9.4 shows three-dimensional images of the acoustic pressure fields at

arbitrarily selected time instances [149].
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The normal component of the particle velocity in the time domain can be

reconstructed by Eq. (9.54), where the impulse response function

gvp x
!

x
!Γ

m

��� ; t� τ
� �

is given by

gvp x
!

x
!Γ
m

��� ; t� τ
� �

¼ �i
X2
q¼1

ηvp x
!
;ω vp

q

� �
ς0
vp ω vp

qð Þ e�iω vp
q τ, ð9:78Þ

where

ηvp x
!
;ω vp

1

� �
¼ ω vp

1 r=cþ i
	 


a3 cos θ

ρ0cr2
eiω

vp
1
r=c, ð9:79aÞ
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Fig. 9.4 Reconstructed temporal acoustic pressure fields generated by an impulsively accelerated

sphere of radius a at different time instances. (a): t¼ 3.24 ms; (b): t¼ 4.41 ms; (c): t¼ 5.88 ms;

and (d): t¼ 7.35 ms
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ηvp x
!
;ω vp

2

� �
¼ ω vp

2 r=cþ i
	 


a3 cos θ

ρ0cr2
eiω

vp
2
r=c, ð9:79bÞ

ς
0
vp ω vp

1

	 
 ¼ �2 a=cð Þ aω vp
1 þ i

	 

, ð9:79cÞ

ς
0
pv ω vp

2

	 
 ¼ �2 a=cð Þ aω vp
2 þ i

	 

: ð9:79dÞ

where ωpp
1 ¼ (1� i)c/a and ωpp

1 ¼ (�1� i)c/a.
Substituting Eqs. (9.73) and (9.78) into Eq. (9.54) yields the normal component

of the particle velocity anywhere in the field,

vn x
!
; t

� �
¼ gvp x

!
x
!Γ
m

��� ; t
� �

� p x
!Γ
m; t

� �
¼ Vs cos θ

a

r

� �
e� ct�rð Þ=aH t� r

c

� �
cos

ct� r

a

� �
� 1� a

r

� �
sin

ct� r

a

� �h i
,

ð9:80Þ

which reduces the initial condition (9.2) when the distance is set to r¼ a and t¼ a/c.

Example 9.5 (An Impulsively Accelerated Baffled Piston on a Sphere) Consider

acoustic radiation from a piston mounted on a sphere of radius a. In general, the

acoustic pressure generated by a spherical source in the frequency domain can be

described by an infinite series of the spherical Hankel functions of the first kind and

the spherical harmonics [99],

P r; θ;ϕ;ωð Þ ¼
X1
n¼0

Xn
l¼�n

Anlh
1ð Þ
n krð ÞY l

n θ;ϕð Þ, ð9:81Þ

where the expansion coefficients Anl can be obtained by the orthonormal property of

the spherical harmonics. Suppose that the normal surface velocity is given in the

boundary condition. Then the coefficients Anl can be obtained by the Euler’s

equation (9.21) and the orthonormal property of the spherical harmonics,

Anl ¼ i
ρ0c

h 1ð Þ0
n kað Þ

ð2π
0

ð π
0

Vs a; θ;ϕ;ωð ÞYl	
n θ;ϕð Þ sin θdθdϕ, ð9:82Þ

where Vs(a,θ,ϕ;ω) is specified on the surface of the sphere; h
ð1Þ 0
n (ka)¼ (c/ω)[dhð1Þn

(kr)/dr]|r¼ a is the normal derivative evaluated on the surface of the sphere.

Once the expansion coefficients Anl are specified, the acoustic pressure at any

field point in the frequency domain can be determined by Eq. (9.81). The temporal

acoustic pressure can be obtained by taking the inverse Fourier transform and

evaluated by using Eq. (9.53).
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For simplicity, the piston is assumed axisymmetric with respect to the polar axis

at θ¼ 0, and is impulsively accelerated at t¼ ts. Moreover, the normal surface

velocity is non-zero over a vertex angle, �θ0, and zero elsewhere,

vn a; θ; tð Þ ¼ Vs H θ þ θ0ð Þ � H θ � θ0ð Þ½ �H t� tsð Þ, ð9:83Þ

where ts¼ a/c.
Accordingly, Eq. (9.81) is reduced to [99]

P r; θ;ωð Þ ¼
X1
n¼0

Anh
1ð Þ
n krð ÞQ 1ð Þ

n cos θð Þ, ð9:84Þ

where Q
ð1Þ
n (cos θ) are the Legendre functions of the first kind.

Note that there is no closed-form solution for the radiated acoustic pressure

signal P(r,θ;ω) in this case. Hence numerical solutions are sought. As an example, a

circular piston with a vertex angle of� θ0¼∠15
 is considered in this section.

Theoretically, the normal surface velocity given by Eq. (9.83) requires an infinite

series to depict the sharp edges at θ0¼�∠15
. For the purpose of demonstrating

the application of the transient NAH formulations, a finite expansion is utilized to

approximate the velocity profile as specified in Eq. (9.83),

vn a; θ; tð Þ ¼ Vs

XN
n¼1

BnQ
1ð Þ
n cos θð ÞH t� a=cð Þ, ð9:85Þ

where N is finite. The larger the value of N is, the better the approximation to the

velocity profile is, but the more intensive numerical computations are. For simplic-

ity yet without loss of generality, N¼ 11 is selected in this numerical example. The

expansion coefficients Bn can be determined by using the orthonormal property of

the Legendre functions [99],

Bn ¼ 2nþ 1

2

� �ðθ0
�θ0

Q 1ð Þ	
n cos θð Þ sin θdθ: ð9:86Þ

Accordingly, the expansion coefficients An for the acoustic pressure, Eq. (9.84),

can be obtained by using the orthonormal property of the Legendre functions and

boundary condition

An ¼ i
2nþ 1ð Þρ0cVs

2h 1ð Þ0
n kað Þ

XN
n0¼1

ðθ0
�θ0

Q
1ð Þ	
n0 cos θð Þ sin θdθ

� �
: ð9:87Þ

The temporal acoustic pressure at any field point can be determined by taking the

inverse Fourier transform of Eq. (9.84) and facilitated by Eq. (9.53). The resultant
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acoustic pressure signals on the hologram surface can be taken as input to

Eqs. (9.53) and (9.54) to reconstruct the acoustic pressure and particle velocity.

In this example the reconstructed acoustic pressure and particle velocity are

obtained using the HELS-based NAH. Numerical computations involved in the

BEM-based NAH are excessively intensive as compared to those of the HELS-

based NAH and are omitted here for brevity.

Specifically, Eq. (9.54) is used to reconstruct the normal surface velocity with its

temporal kernel gvp x
!

x
!Γ
m

��� ; t
� �

determined by Eq. (9.56). Table 9.1 lists the singu-

larities of gvp x
!

x
!Γ
m

��� ; t
� �

that are obtained by using Eq. (9.58), namely, ωvp
q , q¼ 1 to

11, in this case.

Substituting ωvp
q into Eq. (9.54) and evaluating the residues give the

reconstructed normal surface velocity. Table 9.2 shows the comparison of the

reconstructed expansion coefficients with benchmark values. Results indicate that

the accuracy in the reconstructed expansion coefficients is guaranteed up to the 5th

decimal point.

Table 9.1 Singularities of

the impulse response

functions for reconstructing

the transient acoustic field

generated by a partially

impulsively accelerating

piston mounted on a sphere of

radius a with a vertex angle

of� θ
 ¼∠15


No. Singularities ωvp
q

1 � 5.53363E+ 02� i3.28058E + 03

2 � 1.41101E+ 03� i2.46182E + 03

3 � 1.87779E+ 03� i1.80707E + 03

4 � 2.16515E+ 03� i1.19157E + 03

5 � 2.32467E+ 03� i5.92509E + 02

6 � 2.37603E+ 03 + i0.00000E + 00

7 � 2.32467E+ 03 + i5.29509E + 02

8 � 2.16515E+ 03 + i1.19157E + 03

9 � 1.87779E+ 03 + i1.80707E + 03

10 � 1.41101E+ 03 + i2.46182E + 03

11 � 5.53363E+ 02 + i3.28058E + 03

Table 9.2 Comparison of the

expansion coefficients Cj

reconstructed by the HELS

method and the analytic ones

for an impulsively

accelerating piston mounted

on a sphere of radius a with a

vertex angle of� θ
 ¼∠15


Cj Reconstructed values Benchmark values

C1 + 6.69999E� 02 + 6.70000E� 02

C2 + 1.87500E� 01 + 1.87500E� 01

C3 + 2.70633E� 01 + 2.70633E� 01

C4 + 3.00783E� 01 + 3.00781E� 01

C5 + 2.74016E� 01 + 2.74016E� 01

C6 + 1.98730E� 01 + 1.98730E� 01

C7 + 9.34531E� 02 + 9.34529E� 02

C8 � 1.76239E� 02 � 1.76239E� 02

C9 � 1.10301E� 01 � 1.10301E� 01

C10 � 1.65869E� 01 � 1.65869E� 01

C11 � 1.75139E� 01 � 1.75140E� 01
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Figure 9.5 displays the comparison of the normal surface velocity reconstructed

by using Eq. (9.54) under various numbers of the expansion terms with Eq. (9.83).

Results indicate that the reconstructed normal surface velocity converges to the

correct velocity profile as the number of expansion terms increases from J¼ 4,

8, and 11.

Figure 9.6 demonstrates the acoustic pressure fields reconstructed by using

Eq. (9.53) at four different time instances: t¼ 3.24 ms; t¼ 4.41 ms; t¼ 5.88 ms;

and t¼ 7.35 ms [145].

Example 9.6 (An Impulsively Accelerated Baffled Circular Disk) Finally, consider

reconstruction of transient acoustic radiation from a non-spherical object. Specif-

ically, Eq. (9.53) is utilized to reconstruct the acoustic pressure generated by an

impulsive accelerated circular disk of radius a mounted on an infinite baffled. The

normal surface velocity of this baffled disk is given by

vn x
!
s; t

� �
¼ VsH a� rð ÞH tð Þ: ð9:88Þ

The procedures for reconstruction are exactly the same as those described in

Example 9.5 and not repeated here. The reconstructed temporal acoustic pressures

are obtained by Eq. (9.53). Figure 9.7 shows the locations at which the input

acoustic pressure signals are collected. Assume that the baffled circular disk is

axisymmetric with respect to the z-axis. The temporal acoustic pressure signals on

the hologram surface are given by
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Fig. 9.5 Comparison of the reconstructed normal surface velocity distributions along the gener-

ator of the surface of a partially impulsively accelerated sphere of radius a. dashed line: Exact
velocity profile; filled diamond: Reconstructed with J¼ 4; filled square: Reconstructed with J¼ 8;

filled triangle: Reconstructed with J¼ 11
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p x
!

m; t
� �

¼

0,

0,

ρ0cVs,

ρ0cVs

π

� �
cos �1

c2t2 � z2m þ w2 � a2
	 


2w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 � z2m

p
" #

;

0

ct < zm

w > a, zm � ct <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� wð Þ2 þ z2m

q

w < a, zm � ct <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� wð Þ2 þ z2m

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� wð Þ2 þ z2m

q
� ct <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ wð Þ2 þ z2m

q

ct �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ wð Þ2 þ z2m

q

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

,

ð9:89Þ

Note that in this case the standoff distance zm is of no concern because the input

data given by Eq. (9.89) are analytic. The array of microphones extends to twice the

diameter of the baffled disk with respect to its geometric center. The total number of

microphones is 40 and microphone spacing is Δ¼ a/10. Figure 9.8 illustrates the
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Fig. 9.6 Reconstructed acoustic pressure fields generated by a partially impulsively accelerated

sphere of radius a at different time instances. (a): t¼ 3.24 ms; (b): t¼ 4.41 ms; (c): t¼ 5.88 ms;

and (d): t¼ 7.35 ms
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Fig. 9.7 Schematic of an

impulsively accelerated

baffled disk of radius a and

an array of microphones

that covers twice the

diameter of the disk. The

total number of

microphones is 40 and the

microphone spacing is a/10
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Fig. 9.8 Reconstructed acoustic pressure fields generated by an impulsively accelerated baffled

disk of radius a at different time instances. Clockwise: t¼ 0.2 ms, t¼ 0.3 ms, t¼ 0.56 ms,

t¼ 0.8 ms, t¼ 1.0 ms, and t¼ 1.2 ms
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transient acoustic pressure fields captured at six time instances t¼ 0.2 ms, 0.3 ms,

0.56 ms, 0.8 ms, 1.0 ms, and 1.2 ms, respectively.

Problems

9.1. Show that the Kirchhoff–Helmholtz integral formulation for predicting tran-

sient acoustic radiation is given by Eq. (9.19).

9.2. Show that the Kirchhoff–Helmholtz integral equation for determining the

transient surface acoustic pressure is given by Eq. (9.20).

9.3. Show that the Fourier transformed version of the Kirchhoff–Helmholtz

integral formulation for predicting the acoustic pressure produced by an

impulsively accelerating body is given by Eq. (9.25).

9.4. Show that the transient acoustic pressure radiated from an impulsively

accelerating object can be written as Eq. (9.30) through the residue theorem.

9.5. Consider an explosion that occurs in free space at t¼ t0. Assume that the

particle velocity rises from near zero to a very high constant value (like a step

function) omnidirectionally. Determine the resultant transient acoustic pres-

sure anywhere in the field.

9.6. Consider the case in which an object is impacted by an external force and

accelerates in a particular direction in free space. Assume that this impact

occurs at t¼ t0 and the velocity of the entire body rises from zero to a constant

value (like a step function) in this direction. Determine the resultant transient

acoustic pressure anywhere in the field.

9.7. Show that the transient acoustic pressure field generated by an arbitrarily

shaped rigid body subject to an arbitrarily time-dependent excitation is

expressible as a convolution integral given by Eq. (9.45).

9.8. Similarly, show that the normal component of the particle velocity in free

space generated by an arbitrarily shaped rigid body subject to an arbitrarily

time-dependent excitation can be written as a convolution integral given by

Eq. (9.46).

9.9. Continue Problem 9.5. Assume that the time histories of the acoustic pressure

signals that are measured at two arbitrary points in free space are

p x
!
m; t

� �
¼ Q=rmð Þe� ct�rmð Þ=a, where Q is a constant and a is the character-

istic dimension of the initial explosion region, m¼ 1 and 2. Determine the

transient acoustic pressure field anywhere.

9.10. Continue Problem 9.6. Assume that the time histories of the acoustic pressure

signals that are measured at two arbitrary points in free space are given

p x
!Γ
m; t

� �
¼ Q

rm

� �
e� ct�rmð Þ=a cos θmH t� rm

c

� �

cos
ct� rm

a

� �
� 1� a

rm

� �
sin

ct� rm
a

� �� �
,

where Q is a constant, θ indicates the polar angle, a is the characteristic

dimension of the rigid body, and m¼ 1 and 2. Determine the transient

acoustic pressure field anywhere.
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