Chapter 9
Transient HELS

Most vibrating structures are subject to impulsive or transient force excitations in
practice. Oftentimes transient excitations are unknown and therefore the resultant
acoustic field cannot be predicted. Even if the excitations are given, prediction of a
transient acoustic field produced by an arbitrarily shaped source is very difficult.
The scarcity in literature on predicting, not to mention reconstructing a transient
acoustic field, is the testimony of how challenging this problem is.

One possibility of determining the transient acoustic field generated by an
arbitrary object is to reconstruct the acoustic quantities in the frequency domain
first, and take an inverse Fourier transform to retrieve the time-domain signals.
Wang is the first to reconstruct a transient acoustic field in this manner [137]. Need-
less to say, numerical computations involved in this process are very intensive, if
possible at all.

Another possibility is to utilize the so-called non-stationary spatial transforma-
tion of sound field (NS-STSF) [138]. NS-STSF is based on the time-domain
holography (TDH) that processes the acoustic pressures measured by a planar
array of microphones with the neighboring microphones separated by one-half
the wavelength of a target acoustic wave. Basically, TDH produces “a sequence
of snapshots of instantaneous pressure over the array area, the time separation
between subsequent snapshots being equal to the sampling interval in A/D conver-
sion. Similarly, the output of TDH is a time sequence of snapshots of a selected
acoustic quantity in a calculation plane parallel to the measurement plane”
[138]. Therefore, what one sees is a series of the acoustic pressure images in the
frequency domain at fixed time instances over the recorded measurement time
period. As pointed out in Sect. 5.3, NS-STSF is actually non-stationary acoustical
holography because it gauges with respect to the acoustic frequency or the acoustic
wavelength, not the spatial frequency or the spatial wavelength.

In this chapter we develop the transient NAH formulations by using the HELS
method to visualize acoustic waves traveling in both space and time. Note that
Hansen [101] has used a spherical wave expansion to predict time-domain acoustic
radiation by scanning the acoustic pressure over a minimal spherical surface
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enclosing target sources. The major difference between Hansen’s work and the
present one is that the former is based on infinite series of the spherical Hankel
functions and spherical harmonics, and expansion coefficients are determined using
the orthogonal property of the spherical harmonics; while the latter utilizes a finite
expansion and expansion coefficients are determined by matching the expansion
solution to the measured data and the errors involved in this process are minimized
through regularization. This infinite series is called Rayleigh series and Sect. 4.2
has discussed in detail the differences between the Rayleigh series and the HELS
formulations. We have learned that the Rayleigh series is in general invalid for
reconstructing the acoustic field on a corrugated or arbitrarily shaped surface based
on the acoustic pressure specified on a measurement surface above the source
surface.

Theoretically, the transient acoustic field generated by an arbitrary object can be
calculated by using the Kirchhoff-Helmholtz integral formulation, provided that
the normal component of the surface velocity is specified. For an arbitrarily shaped
object, there is no analytic solution to this integral formulation. Hence numerical
solutions are sought. A direct approach is to discretize the Kirchhoff~Helmholtz
integral formulation in both spatial and temporal domains simultaneously. Such an
approach is unrealistic in practice because the corresponding numerical computa-
tions are prohibitively expensive and time consuming. One alternative is to find
numerical solutions to the radiated acoustic quantities in the frequency domain first,
and take an inverse Fourier transform to obtain the time-domain signals
[137]. Needless to say, numerical computations involved are intensive, if possible
at all. The reality is that in most cases the normal surface velocity is not specified.
Thus these numerical solutions strategies, no matter how plausible they are, cannot
be utilized.

In Chap. 9 explicit formulations for reconstructing the transient acoustic field
generated by an arbitrarily shaped 3D object in free space subject to an arbitrarily
time-dependent excitation are derived using the Kirchhoff-Helmholtz integral
theory. The reconstructed acoustic quantities are expressed in the frequency
domain, and the corresponding time-domain quantities are obtained by taking an
inverse Fourier transform, which is facilitated by using the residue theorem. The
final formulation for reconstructing a transient acoustic quantity is expressed in a
convolution integral of the acoustic pressure signal measured in the time-domain
and a unit impulse response function.

It is emphasized that these explicit formulations are applicable to an arbitrary
object with a uniformly distributed surface velocity. Input data to these explicit
formulations are the acoustic pressure signals measured on a hologram surface in
the near field of the target object.

For simplicity yet without loss of generality, background noise and interfering
signals are assumed negligible as compared to the measured acoustic pressure
signals. Reconstruction of the transient acoustic field is carried out by using
BEM- [25-27, 91] and HELS [36, 37, 91, 102]-based NAH.
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9.1 Transient Acoustic Radiation

To tackle transient acoustic radiation problems, let us first define the Fourier
transform as

F(F0) = [ (F)emta ma 1(5r) = L | F(Fw)e ao. 00

where f (?;t) is a continuous and bounded function as t— co, namely,
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Assume that the transient acoustic field is generated by an arbitrary object
subject to an arbitrarily time-dependent force excitation. Also, assume that the
velocity is uniformly distributed on the surface of the object, which has a closed,
smooth, and impermeable surface immersed in an inviscid, isotropic, and
unbounded fluid medium. This object is initially stationary and excited by an
unknown forcing function at t=t,, causing the amplitude of the velocity to rise

from O to V; instantly in a specific direction ¢., where ¢, is a unit vector at the
center of the object,

V(}’s; r) — Ve H(t—1,), 9.2)

where V is a constant and H(¢ — ¢,) represents the Heaviside step function defined
as

0, t<t
H(t—t) =4 1/2, t=1. (9.3)
1, t>1

The derivative of the Heaviside step function is the Dirac delta function [139],

H'(t—t5) = 6(t — ty). (9.4)

The acoustic pressure p(;; t) generated by this accelerated body in free space

satisfies the homogeneous wave equation,

vzp(}’;z) —%%:o, 9.5)

subject to the Sommerfeld radiation condition,
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In addition, p (;; t) satisfies the causality condition,
p(?;t) =0, for 1 < t,. (9.7)

In other words, the field is perfectly silent before the body is suddenly excited at
t=t,

To find an integral representation of the wave equation (9.5), we make use of the
temporal free-space Green’s function

g(?;t

where 6(t — t; — R/c) is the Dirac delta function, (¢t — R/c) is known as the retarded
time because it takes additional time R/c for the acoustic signal to travel from the

. o(t—t;—R
) =R

9.8)

is the distance between the source

— . — — —
source at x to areceiver at x,here R = |x — x;

and receiver in field space.
The temporal free-space Green’s function satisfies the homogeneous wave
equation,

V2 (x t x“ts) —C—lzazg(i;#’ts) = —47:6(} - i)é(r — 1), (9.9)

subject to the initial condition,

g(};t}>

and the reciprocal relation,
g(x§t xsﬁs) = g(xs§ — | X;

Physically, Eq. (9.10) states that if the source is excited at #;, no sound is detected
before time ¢,. Equation (9.11) is the reciprocity principle, which states that when
the source location and emission time are interchanged with the receiver location
and time, the effect remains unchanged.

ag(;;t i;t)
S;z) = NPT 0, for 1< 1y, (9.10)
s ot

—t). (9.11)
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Multiply Eq. (9.5) by g (}’; %, zs) and Eq. (9.9) by p (}’; t) and utilize the chain
rule to replace V-(AVB) by AV?B — VA-VB. Doing so yields

10/ 0 10p 0
V- (8Vp) = Vp Vg -5 (ga_l;) +§a—lza—f:0, (9.12)
10/ Og 1 Op Og
V“”””’"“‘ﬁ&(%) 3% o
= —4ﬂp5<;—;5>5(t—ts), 9.13)

where the arguments of p(}; t) and g(x t xs, g) in Egs. (9.12) and (9.13) are

suppressed for brevity. Subtracting Eq. (9.13) from (9.12), we obtain
10/ op Og - o
V- (eVp=pVs) — 57 (ga —pa) = 4ﬂp5(x - xs) S(t—1).  (9.14)

Integrating Eq. (9.15) over the entire time history and three-dimensional space
leads to

T 10/ p g
JJ J V.- (¢gVp—pVyg) — zat( af at)dtsdﬂ

%
=

J pé(x — Xy (t — t,)dtdQ;. (9.15)

The integrations on the right side of Eq. (9.15) are readily obtained by the sifting
property of the Dirac delta function (6.4). Changing the order of volume and
temporal integrations of the first term on the left side of Eq. (9.15) and using the
Gauss theorem, we can replace the volume integral by a surface integral. As for the
second term on the left side of Eq. (9.15), the temporal integration and time
derivative cancel each other. Therefore, we obtain

o0

4np(};r) = J ”( Yaagx gA)dets
N

1 op,  0g\|™
=l ( ars‘f’a—f)\;m“ (516)
Qs

where a subscript s in Eq. (9.16) indicates that the quantities are evaluated at a
surface point. The second term on the right side of Eq. (9.16) is identically zero
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because of the property of the Dirac delta function (6.4). Changing the order of
temporal and surface integrations in the first term on the left side of Eq. (9.16) once
again then leads to

4np(};r> - ” T [p ais 8t = th —R/e) _ gi 8 = “R_ RO aras. 9.17)

§ —

Using the chain rule and property of the Dirac delta function, we can rewrite the
first term on the right side of Eq. (9.17) as

” Tp 0 ot —t—R[S) o

ony R
S —oo
P 8R P a /
| gt e mperauas = [ ||| Bg o1 mjesanas
S —oo § —oo
— |12 — | = — R
IGES t:t_R/CdS UcR o | o [ps(t — t; — R/c)]dtdS
s ) —o0
1 0R [ Op » OR
—||—==— | =6(t—t; —R/c)dtdS = — || =5=— d
cR al’ls J afx ( ’ /C) tsaS JJRZ anS t;=t—R/c s
s —00 N ’
1 OR ~ 1 OR Op
—R B I i
+ || cram 3 — 6~ R/]ds ” Ron ot 0
s S '
1 OR 10
_ ds.
won (i +caM o
s s
(9.18)
Substituting Eqgs. (9.18) into (9.17), we obtain
- 1 10R /1 10 -
) = —— = \= 53 Ls d
[)(X, ) 4HJJ |:R 8ns <R T c ats) (x‘ >:| ty=t—R/c :
s 2
_L“ lM as. (9.19)
4z R ony
N ty=t—R/c

Equation (9.19) is known as the Kirchhoff-Helmholtz integral formulation for
predicting the transient acoustic pressure in free space. The surface acoustic

pressure p (;S; ts) on the right side of Eq. (9.19) is related to its normal derivative
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op (;S;ts)/ an(}x> via the surface Kirchhoff-Helmholtz integral equation

obtained by taking the limit as the field point approaches the surface X — Xy
The processes of taking this limit are the same as those described in Sect. 6.3 and
the result is

das’'

<Ht) 1” 1 OR, 1+18 (H t)
Xt —_ _ — _—_ Xoilo
PSS = Taa) g (R ong Ry ™ ¢ 0ag PN N L e

— LJJ LM ds’. (9.20)

2w S’Rs ans/

ty=t;—R;/c

The normal derivative of the surface acoustic pressure in the second term on the
right side of Eq. (9.20) can be rewritten by using the Euler’s equation, the initial
condition (9.2) and the derivative of the Heaviside step function (9.4) as

op (a;li: fs') — Ovn (a};jv ts’) = —poVy (Hy '?c>5(1} —ty). (9.21)

Substituting Eq. (9.21) into the second term on the right side of Eq. (9.20) and
taking the Fourier transform, we obtain

r(ive) = ol (5 Jr(see)s

PoVs Hs"?z ikRy 7!
sdS'. 22
JL( . ) 5 0.22)

Equation (9.22) is the surface Helmholtz integral equation for solving the
surface acoustic pressure, given the initial condition (9.2). Note that the surface
velocity V; is independent of the spatial variable. This often happens in practice
when an object is hit by a force and starts to move impulsively. This sudden motion
may result in an impulsive-like sound. The Fourier transform of the resultant
acoustic pressure is expressible as

P(;s;w) = 5(%;0})%, (9.23)

where 5(}}; a)) may be obtained by substituting Eq. (9.23) into (9.22),

df(;s; w) = pOJL/ (HS/R—Y?C> e s ds' /c(w), (9.24a)
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where

¢(w) =27 + ” D ER N (1 — kR, )eRds'. (9.24b)
g\ R

Once the surface acoustic pressure is specified, the acoustic pressure anywhere
in free space is completely determined by the Fourier transformed version of
Eq. (9.19),

P(};w) = n(?c)«)) Vs, (9.25)

e\ ikR
- Z—;’[ “ (HS : a.)Rzg(w) - (Hs : ?R)(l — ikR) “ (“1%) etk g’ ;—3515.
N
(9.26)

Equation (9.25) offers the closed-form solution for the acoustic pressure in the
frequency domain generated by an arbitrary object subject to the initial condition
(9.2) in free space. The temporal acoustic pressure can be obtained by taking an
inverse Fourier transform of Eq. (9.25),

T

p(5r) = [ p(Fe)e o 027

For an early portion of the transient event, Eq. (9.27) can be evaluated asymp-
totically by taking the limit as @ — oo [140],

lir%p(;;t) = —i lim P(;;a)>. (9.28a)
11— W—00

On the other hand, for a latter portion of the transient event, the inverse Fourier
transform (9.27) can be evaluated asymptotically by taking the limit as @ — 0,

lim p(}'; x) — —ilim P(}’; a)). (9.28b)
t—00 w—0

These two extreme cases indicate that the early portion of the transient event is
governed by the high-frequency content, whereas the late portion of the transient
event is controlled by the low-frequency contents of the spectrum. However, these
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asymptotic solutions are undesirable as far as the tractability of any transient event
is concerned. Alternatively, one can utilize the residue theorem to evaluate the
inverse Fourier transform (9.27) as discussed below.

9.2 Residue Theorem

Mathematically, the evaluation of an infinite integral such as the one given by
Eq. (9.27) can be facilitated by a contour integral. Namely, one can replace the
infinite line integral along the real axis by a finite one from —R to +R in
the complex frequency domain, and close the integration path by a semicircle in
the lower half plane in the clockwise direction. The reason for choosing the lower
half plane in the complex frequency domain is to ensure that the integration remains
finite. The radius R is then extended to infinity. The integration along the semicircle
is finite because by definition the infinite integral satisfies the boundedness condi-
tion [see Eq. (9.1)] [141],

p(}’;t) - | fc @e”“‘”da) V,. (9.29)

2t)c g(o)

Equation (9.29) shows that the temporal acoustic pressure is expressible as V
multiplied by a contour integral of n(;; a)) /¢(w) with 7](?; a)) and ¢(w) being

given by Eqs. (9.26) and (9.24b), respectively. The contour integral in Eq. (9.29)
can be evaluated by the residue theory.

Figure 9.1 shows this contour integration path C. If there are singularities on the
real axis, they must be excluded by drawing a small semicircle of radius r = e. For
example, suppose that the integrand has singularities at +x, on the real axis. Then
the contour integration path can be broken up into segments from —R to (—x¢ — €),
a semicircle from (—xg — €) to (—xo+¢€), a straight line from (—xy+¢€) to (xo — €),
another semicircle from (xy — €) to (xo + €), another straight line from (xy + €) to +R,
and a semicircle from +R to —R. The integration along the small semicircle is with
respect to edf, where 6 varies from z to 0, which vanishes in the limit as € — 0. The
integration along the large semicircle is with respect to Rd@, where @ varies from =
to 0, which is identically zero because the boundedness condition is satisfied as
R — .

Therefore, the infinite line integral in Eq. (9.26) is equivalent to the contour
integral in Eq. (9.29), which reduces to the line integral from —R to +R with
R — oco. Meanwhile, this contour integral is equal to the sum of residues enclosed
by the contour C. Consequently, we obtain

p(?; t) = h(}"? z) Vs, (9.30)
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Fig. 9.1 Schematic of a iy
contour integral in the
complex frequency domain

-R  -Xx
N

where 7% (75‘;3, l) is the sum of residues enclosed by the contour C,

h(? Xy t) = —iZ[: ’meiwq(”"?/"m <t — 1 —f) (9.31)

where the Heaviside step function appears as the field acoustic pressure is felt only
after the source is suddenly excited at ¢ =t¢, plus the retarded time r/c, which is
needed for the impulsive acoustic signal to travel from the source to any receiver.
Also, we have adopted a minus sign because the contour is completed by a
semicircle in the lower half plane. The symbol ¢’ (w,) represents the derivative

of ¢(w,) with respect to w, and w, is the gth singularity of the ratio (?, wq> /¢c(®),
which can be obtained by setting ¢(w,) =0.

Example 9.1 Consider the case of a sudden-expansion sphere of radius r=a
subject to the initial condition (9.2) with n (;v) See=1. Suppose that this sudden
expansion occurs at ¢ =t, (=a/c). The surface acoustic pressure in the frequency
domain can be obtained by using Eq. (9.23) with 5(};; a)) given by Eq. (9.24a),

which for a spherical surface is given by [142]

5(;““’) - ikaa— 1l

Therefore, Eq. (9.23) gives the surface acoustic pressure in the frequency
domain,

ika

— pOVSae
P( s ) = ; .
T @ 1 — ika
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Similarly, substituting §<;s;a}) into Eq. (9.25) yields the field acoustic

pressure as

- PoVs a\
(i) = 2 ()
e (1—ika)<r>e

The temporal acoustic pressure anywhere in free space is given by Eq. (9.27),
which can be replaced by the residue theorem through Eq. (9.30), where

2
n (?; Cl)q) =Po (a—> elaralle,
r
a

c(wg) =1—ika, and ¢'(w,) = _,'Z,

where w, is the gth root of the characteristic equation, g(wq) = 0. In this case there
is only one root, w; = —ic/a. Accordingly, the residue theorem leads to

p (;, t) = pocVs (f) e (/g (t — E) ,
r ¢

which agrees perfectly with the analytic result. This transient sound field is typi-
cally seen in an explosion, where the amplitude of the acoustic pressure decays
exponentially in all direction.

Example 9.2 Next, consider the case of a sphere of radius = g that is impulsively
accelerated in the z-axis direction such that the normal surface velocity is given by

Vn (}ﬁ [> = Vs (Hv ' Zz)]—](t - ts)7
where ¢; = a/c. Following the same procedures as those in Example 9.1, we obtain
5(};; a)) = a(ika — 1)/ {2 — (ka)® — izka]

The surface and field acoustic pressures in the frequency domain are given,
respectively, by

and

p(;y; a)) _ poVsa(l —zika) c0s 6 kg
2 — (ka)” — i2ka

— — 1l 2 )

P(x;a)) _ PoVsa(l 2lkl)0089 (g) il
2 — (ka)” — i2ka \r
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Setting the denominator in the above to zero gives two roots in the lower half
complex frequency domain, @; = (1 —i)c/a and w, = (—1 — i)c/a. Accordingly, the
temporal acoustic pressure at a field point is found to be

p(;; t) = pocVicosO(a/r)e "V H(t —r/c)
{cos[(ct —r)/a] — (1 —a/r)sin[(ct —r)/a]},

which once again agrees perfectly with the analytic result. This transient sound field
is typically seen during an impact where the acoustic pressure is highly directional
yet decays exponentially.

9.3 Extension to Arbitrary Time-Dependent Excitations

The formulations derived in Sect. 9.2 for predicting the transient acoustic pressure
field can be extended to arbitrary time-dependent excitations acting on rigid bodies
in free space. To the end, we consider a rigid body subject to a temporal rectangle
function, which consists of two unit step functions in the opposite signs.

AV (; z) — Ve H(t— 1) — H(t — 1, — A1), (9.32)
where At is the gap between two unit step functions.

Following the same procedures as those described in Sect. 9.2, we derive the
resultant surface acoustic pressure in the frequency domain as

AP(};w): (1_612(2';()(;0)) V,. (9.33)

The corresponding temporal acoustic pressure anywhere in free space may be
obtained by taking the inverse Fourier transform of Eq. (9.33), which can be
evaluated via the residue theorem and be expressible as

ap (1) = [h(;\;;;t) —n(

X5 l) is the same as that given by Eq. (9.31) and h(?

Nt — At)] V., (9.34)

where 7 (?
defined as

Xgif— At) is
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L n(ﬁ%) e R
h(x’xs;t— Ar) A <z —Ar—1 )
C

¢ (@)

(9.35)

Consequently, the transient acoustic pressure radiated from an object subject to a
velocity rectangle impulse of constant amplitude is the superposition of two step
response functions of the same amplitudes but opposite signs with a separation of
At in time. Meanwhile, any continuous and arbitrarily time-dependent excitation
may be approximated as a sum of rectangle impulses of constant amplitudes with a
small duration At. Therefore, for an object subject to a continuous and arbitrarily
time-dependent velocity excitation, we can write the field acoustic pressure as a
sum of individual acoustic pressure pulses,

p(}’;z) = [h (}"3{ tg) - h(}"};;@ - Ax)}vs. (9.36)
l

Equation (9.36) is now ready to be extended to a general, continuous, and time-
dependent excitation. For this purpose, we rewrite Eq. (9.34) in the following
manner,

- h(¥|5at) = n(F| 00— ar)
Ap(x;t) - o NS (9.37)

Equation (9.37) represents an acoustic pressure pulse at a field point X and time
t due to a velocity rectangle pulse at time #;. As Ar— 0, the square bracket term of
Eq. (9.37) becomes an impulse response function. The transient field acoustic
pressure at X due to all the velocity impulses prior to time ¢ can be expressed as
the Duhamel integral [143],

t

p(}’;z) — J h(}"}’s;r— T) V.dr, (9.38)
0

where h(x‘xx; t— 1) is known as the impulse response function since it is the

response to a velocity impulse at time 7, and can be obtained by using the residue
theorem as

h(} Xyt — r) - —i; %e—w. (9.39)

Equation (9.38) states that the transient acoustic pressure a field point X and time
t can be expressed as the convolution integral of the impulse response function and
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the time history of the surface velocity of an object. Sometimes this convolution
integral is abbreviated as

p(?c’;t) = h(?;t) X Vn (}’t) (9.40)

where v, (; PR t) =V (Hg . ?(.>H (t — t;) represents the normal surface velocity of

the source and the symbol * indicates the convolution integral given in Eq. (9.38).

9.4 Transient NAH Formulations

The transient formulations developed in Sects. 9.1-9.3 have laid a solid foundation
for performing transient NAH. Two types of implementation schemes, namely, the
Helmbholtz integral formulation and HELS method-based NAH are considered in
this section.

9.4.1 Reconstruction Through BEM-Based NAH

Suppose that the input data consist of the acoustic pressure signals measured at };
on the hologram surface, m=1, 2,...,M, which is positioned around the source
surface in the near field. Taking the Fourier transform of the measured acoustic
pressure signals and using Eq. (9.25) lead to the following general, discretized
BEM-based formulations:

{P(;;,w) }M><1 - {Tpv (;; ;S;w) }ans(w)’ (9:41)

— r . .
where {P (x ; a)) } is the acoustic pressure measured on the hologram surface
Mx1

m)

[ QN

in the frequency domain and {Tpv (xm Xs; a)) } is the transfer function corre-
Mx1

‘}r . .
lating the measured acoustic pressure at x,, to the velocity magnitude on the source

R
surface x;, whose elements are defined as

T

T
T,,V,m(xm X ) :M (9.42)

Xg; @
* (@)

The symbol Vy(w) on the right side of Eq. (9.41) indicates the magnitude of the
surface velocity, which is frequency dependent but spatially invariant on the source
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. The value of Vy(w) may be obtained by taking a

T —
surface, and R, = |x, — Xx;

pseudo inversion of Eq. (9.41),

—

o= {1 (F[)) (50, o

where

{Tpv (;v

-1

T f — |=T H N TN
Xm;w)}lxM - {Tpv(xs xm;w)}IXM{Tpv(xm xs;a)) }Mxl

| Xl X, @0 .
PYA TS| m IxM

(9.44)

In practice Eq. (9.43) must be regularized because the errors involved in the
input data may make the pseudo-inversion matrix singular and cause solutions to
diverge without a bound. There are many choices for conduct regularization,
ranging from the simplest TSVD, L-Curve, to MTR [46, 49, 50], which have
been discussed extensively in the past and are omitted here for brevity.

Once the surface velocity is reconstructed, the surface acoustic pressure can be
obtained by substituting Eq. (9.43) into Eq. (9.23), and the result is

P(s0) = e(5ao) {1 (5[] (o)), 0

Meanwhile, the reconstructed acoustic pressure at any field point X can be
determined by substituting Eq. (9.43) into Eq. (9.25), which is expressible as

’7;50) T 1 T
o) (o)) (o)), o

P(?; a)) = Tw) {Tpv (;s

The normal component of the particle velocity at X can be obtained by taking the
normal derivative of Eq. (9.46),

_ . on(x;w ~
Vi (x;a)) = _Zpowi;(a)) (8n ) {Tpv(xs

_T i _T
Y a)) }lxM{P(xm; a)) }Mxl'

(9.47)
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9.4.2 Reconstruction Through HELS-Based NAH

Alternatively, the expansion theory can be used to reconstruct the acoustic field.
One such approach is the so-called HELS method that employs the spherical
Hankel functions and spherical harmonics as the basis functions to describe the
acoustic quantities [37, 38].

Suppose that the acoustic pressure is specified on a hologram surface I' in the
same way as that depicted in the preceding section. The acoustic pressure and
normal component of the particle velocity anywhere in the field, including the
source surface, can be reconstructed by using the HELS formulations and the results

are
(o) = (o)}, fr()), om0

Vi (?;a)) - {GV” (; ;;;w) }lxM{P(;;;w) }Mx1’ (9-49)

~|-T T ~|=T T .
where {G,,p (x X a)) } and {G‘,,, (x X s a))} are the transfer functions
IxM 1xM

— — I
that correlate P(x; a)) and V, (x; a)) anywhere in the field to P(xm; w) on the

hologram surface I', respectively,

G | I G0 (G G0 MR

¥(50)]

(9.50)
{G‘,,,,(;’;,I,:;w>}llM
o¥(x;w ' _ - -1
SN (i) )], ) ()]
1xJ
(9.51)

-r

where the elements of the matrix [‘P (x w)} consist of the particular solution
JxM

m’

to the Helmholtz equation, which are expressible in the spherical coordinates as
W,(r,0, ;@) = Pu(r,0,¢;0) = b)) (kr)Y (0. $), (9.52)

where hf,l)(kr) and Y’ f7 (0, @) are the spherical Hankel functions of the first kind and
the spherical harmonics, respectively, and the indices j, n, and / in Eq. (9.52) are
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related through j = n* + n+ [+ 1, where the order of expansion in the radial function
n starts from O to N and / ranges from —n to +n.

9.4.3 Transient NAH Formulations

Once the acoustic quantities in the frequency domain are determined by utilizing
either the BEM- or HELS-based NAH formulations, the corresponding time-
domain signals are obtained by taking an inverse Fourier transform of either
Egs. (9.46) and (9.47) or Egs. (9.48) and (9.49). These equations may be evaluated
by using the residue theorem and expressed as a convolution integral (9.40), except

~r
that input data consist of the measured acoustic pressure signal p (xm; z) rather than

velocity signal on the source surface,
— —|-=T —T
p(x;t) = gpp(x‘xm;t) xp(xm;t>, (9.53)

— NI T
vn(x;t) :g‘,p(x xm;t> xp(xm;t), (9.54)

—|-T —|-=T .
where the temporal kernels Epp (x‘xm;t) and gvp(x X t) are expressible,

m’

respectively, as
PP
—|-T K '7pp<xva)q ) . pp
gpp(x Xt — r) = —i E — LT, (9.55)

Lr mo (o)
8vp (x Xyl — T) = _iz ‘[}’7‘;671%,1’ (9.56)
where w” and w;” are, respectively, the roots of the characteristic equations of
& (@) =0, (9.57)
- (wy’) = 0. (9.58)

—|=T
It is emphasized that there are no closed-form solutions for g, (x ’xm; t) and

—|-T .
gvp(x xm;t) in general because the source surfaces, measurements, and recon-

- _>F . . .
struction locations are arbitrary. Mathematically, g, ( X ‘ X0 t) implies the impulse

response function correlating the reconstructed acoustic pressure p (;; t) at x to the
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T T . NN
measured acoustic pressure signal p(xm; t) at x,,. Similarly, gvp(x ‘xm; t) is the

impulse response function that correlates the reconstructed normal component of

= - ) ) T
the particle velocity v, (x; t) at x to the measured acoustic pressure signal p (xm; t)

at ;; Note that because the residue theorem is used in Egs. (9.53) and (9.54) to
reconstruct the transient acoustic field, rather than a direct inverse Fourier trans-
form, the conventional discretization and the minimal sampling rate requirement in
the time domain are avoided.

9.4.4 Applications of the Transient NAH Formulations

In this section both the integral theory and HELS-based NAH formulations are
utilized to reconstruct the transient acoustic pressure fields, and results are com-
pared with the analytic ones.

Example 9.3 (A Sudden-Expansion Sphere) Consider a sudden-expansion sphere
of radius r = a subject to the initial condition (9.2) with n (Z) . ?U = 1. Suppose

that sudden expansion occurs at r=a/c. The analytic acoustic pressure signal on
a hologram surface is taken as the input. For simplicity, we assume that the
time history of the acoustic pressure signal measured at any field point is (see
Example 9.1)

r

. _ i 7(61‘71‘”1:)/a 7r_m
p(xm, z) = pocVs (rr)e H(r ; ) (9.59)

m

The reconstructed acoustic pressure signal at any field point X can be determined
by using Eq. (9.53). Since the normal surface velocity is constant, it suffices to take
one measurement on a hologram surface, i.e., M = 1. First, we use the BEM-based
NAH formulation to reconstruct the acoustic pressure field. Accordingly, the
pseudo inversion defined in Eq. (9.43) reduces to

Tl (4] X opr) = néﬁ (9.60)

m?

Substituting Eq. (9.60) into Eq. (9.46) yields the reconstructed acoustic pressure
at any field point X in the frequency domain,
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a b o
n(xy)
a a
Xy
v
n(x,) r
X

Fig. 9.2 Schematic of points on the surface of the sphere of radius r=a and in the field, and
corresponding distances R and R, respectively. (a): Both points on the source surface; (b): One
point on the source surface and another in the field

P(;;w) :((;r;;))]’<;;;w>, (9.61)

The temporal acoustic pressure at any field point p(?; w) may be obtained by
Eq. (9.27), which can be evaluated using the residue Eq. (9.53), where the temporal

—|-=T
kernel g, (x‘xm; t— 7) is
- ( a,pp)
gpp(x Xt — 1) = —12 (9.62)

where a)z” is the gth root of the characteristic equation gI,p(a)ZP) =0. In this case,
there is only one root, @}’ = —ic/a, so g=1.

Figure 9.2 displays the schematic of relative positions of the locations of surface
and field points with respect to a sudden-expansion sphere. The quantity

— I
cf(xgmf") involved in n(x a){”’) and n(xm;wf”) is given by Eq. (9.26). The
distance between two points on the source surface is Ry =2acos(6/2), OR;/0n;

= cos (0/2) and dS’ = a’sinfdAd¢p, with @ varying from 0 to z and ¢ from 0 to 27.
Since integrands are independent of the azimuthal angle ¢, integration over ¢ can
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be done separately, yielding 2z. The distance between a surface and field point is

R = V12 + a®> + 2ar cos 6. For simplicity, the radial distance r is assumed much
larger than radius a, so R~r, e*® ~e®**acs? and OR/0On, = cos 6. Detailed

integrations for &(a; /") and n(xm, ol ) are shown in reference [142] and omitted
here for brevity.
r
Substituting §<xg, ol ) and n(x ol ) into Eq. (9.62) yields

o (2| i - 7) = (</>7" _ <_> - (963

alr )e’kl T r
Substituting Egs. (9.59) and (9.63) into Eq. (9.53) then leads to

p (}; 1) = pocVs (?) e~(a=nlay (t - f) , (9.64)

c

which matches the analytic solution for a sudden-expansion sphere [142].

Next the HELS-based NAH formulation is used to reconstruct the transient
acoustic field. The basis function in the HELS expansion is given by Eq. (9.52).
For a sudden-expansion sphere, it suffices to use a one-term expansion. Accord-
T
X, t— ’Z') as

m?

ingly, we have W,(r,0, ¢; w) =e'*"/r. The temporal kernels Sop (?
defined by Eq. (9.62) reduces to

A L RO
g, (x xn;lfr) =—i———te "=
A (") afc
T .
= (’m)e(rrm)/a. (965)
r

Substituting (9.59) and (9.65) into the convolution integral (9.53) yields
N ~|=T T N (A r
A . ) = ooV e (ct=r)fa(Z __
p(x, t) Sp (x X t) X p(xm, t) pocVse ()H(t c) . (9.66)

which agrees with the analytic solution [142].

Figure 9.3 demonstrates three-dimensional images of acoustic pressure fields at
arbitrarily selected time instances ¢ =3.24 (ms), 4.41 (ms), 5.88 (ms), and 7.35
(ms).

Similarly, the normal component of the particle velocity at any field point is

H‘*}F

T
reconstructed by using Eq. (9.54) by using p(xm; t) and g,, (x X i t) given by
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a PIPycVs b PIpcVs

t = 3.24 (ms) t =4.41 (ms)

c plpycVs

t = 5.88 (ms) t = 7.35 (ms)

0.0567 0.1135 0.1702 0.2270 0.2837 0.3405 0.3972 0.4540 0.5107 0.5675 0.6242 0.6810 0.7377 0.7045 0.8512

Fig. 9.3 Reconstructed temporal acoustic pressure fields resulting from a sudden-expansion
sphere of radius a at different time instances. (a): t =3.24 ms; (b): t =4.41 ms; (c): t=5.88 ms;
and (d): t=7.35 ms

2. P
—|-T .nvp wil iw'r
gvp 7 v\ !

X| X, t—7) = —i—F—F—x"¢€
" gvp(wlp)
r 2, e —ile/ (=) (r=ry)/ r
_ (arm/poc r)e ile/(—ia ( )C :L<r—’">e(rr'£)/a- (9.67)
alc Poc\ T

Substituting Eqgs. (9.59) and (9.67) into Eq. (9.54) leads to

— —|=T -
vn<x;t> = gvp(x xm;t) X p(xm;t) = Ve (7)) (?)H(r - g), (9.68)

which reduces to the initial condition (9.2) when r is set on the source surface
and a/c =t,.
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Example 9.4 (An Impulsively Accelerated Sphere) Consider the case of a sphere of
radius » = a that is impulsively accelerated in the z-axis direction (see Example 9.2).
Accordingly, the normal surface velocity is given by

Va (}’ z) —v, (Hx : ?Z)H(t 1), (9.69)

—

— —
where n( x5 ) - e, = cos@.

Again, the integral theory-based NAH is utilized to reconstruct the transient
acoustic field first. The analytic acoustic pressure signal at the hologram surface is
taken as the input,

I o r
P(X,,,; t) = pocVscos 9,1; (’ar) e*((’*rm)/aH <t _ rcm)
{ (ct—ryl;> ( a) . (Ct—rrl;)]
cos —|1——)sin )
a rm a

As in the previous sudden-expansion sphere, the reconstructed temporal acoustic

(9.70)

pressure p(;; a)) can be obtained using Eq. (9.53) with its temporal kernel g,,
—|=T —
(x xm;t—r) given by Eq. (9.62). The quantity S(xs;a)g”) involved in

— —>F
Mop (x; w5p> and 177, (xm; a)gf’) can be shown as

- a(iké’pa — l)
5<Xs;wq ) = ) . (971)
2 (kra) - 2ki7a

In this case ¢ =2, @’ = (1 — i)c/a and 0" = (—1 — i)c/a. Thus the temporal kernel
becomes

o 2 ry 2 (l —ikppr) Cp
A\ (1 - ikg;ﬂr,g)

Detailed derivations of Eq. (9.72) are omitted here for brevity. Substituting
Egs. (9.70) and (9.72) into Eq. (9.53) and summing the residues yield

(50 = et coso (2 (o) o (57) - (1) (220
r c a B P

(9.73)
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which is the analytic solution to the acoustic pressure due to an impulsively
accelerated sphere [142].

Alternatively, the HELS-based NAH can be used to reconstruct the transient
acoustic field. Suppose that a two-term HELS expansion is used,

elkr (kr 4 i) cos 0

Y (r,0,¢;0) =— and ¥,(r,0,¢;w) = (9.74)
r (kr)?

Accordingly, the temporal kernel involved in Eq. (9.55) can be written as

gpp (

where g =1 and 2, o}’ = (1 —i)c/a, &'" = (=1 —i)c/a, 1, (?, Wl ) and g (a)"p)

are given, respectively, by

T 71( ) )
i) = i3 O e 075)

=1 Sppl@

or/c+i)a*cos@ . .,
iy (5077) - ,,z) SR (9.76a)
orfc+i a’cosf . -
(K5 08") = = rz) ez "1e, (9.76b)
gpp( pp) = —2(a/c) (awl + l) (9.76¢)
gpp( pp) = _2(0/5)("@2 + l) (9.76d)

Substituting Egs. (9.73) and (9.75) into Eq. (9.53) and summing the residues
yield

— —|-T _r
P(X;t> :gpp(x xm;t) xp(xm;z>
: t—r t —
et () s (457) (1) (57,
r ¢ a . P

(9.77)

which matches the analytic solution for the temporal acoustic pressure emitted by
an impulsively accelerated sphere of radius a in free space [142].

Figure 9.4 shows three-dimensional images of the acoustic pressure fields at
arbitrarily selected time instances [149].
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a PIPycVs b PIPycVs

t = 3.24 (ms) t = 4.41 (ms)

c PIPycVs d PIPycVs

t = 5.88 (ms) t = 7.35 (ms)

[ ~ - IS

Pressure : -0.0114 0.0503 0.1121 0.1739 0.2356 0.2974 0.3591 0.4209 0.4827 0.5444 0.6062 0.6680 0.7297 0.7915 0.8532

Fig. 9.4 Reconstructed temporal acoustic pressure fields generated by an impulsively accelerated
sphere of radius a at different time instances. (a): t =3.24 ms; (b): t=4.41 ms; (c): t=15.88 ms;
and (d): t="7.35 ms

The normal component of the particle velocity in the time domain can be
reconstructed by Eq. (9.54), where the impulse response function

— —>F
8vp (x X5t — r) is given by

2 )
=T ”vp(x7a)q ) o
g (x X 't—r) =iy ———ZLe T (9.78)
AT = Syl
where
p N 3
o (Fro) — (0"r/c+i)a cosﬁeiwlvn,/c’ (9.79)
K 1 pocr?
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- ) (0,7r/c +i)a® cos @ siollrfc
mp(x ) ) = P : (9.79b)
¢p(@") = =2(a/c) (aw” + 1), (9.79¢)
(@) = =2(a/c) (awy” +1). (9.79d)

where off =(1 —i)c/a and &' =(—1 —i)c/a.
Substituting Egs. (9.73) and (9.78) into Eq. (9.54) yields the normal component
of the particle velocity anywhere in the field,

- —|-T N
vn(x;t> :gvp(x’xm;t> Xp(xm;t)
t_ t_ o
= ieosa(Je (o) eos (U7 - (1-2)sn ()
r c a - p

(9.80)

which reduces the initial condition (9.2) when the distance is set to r = a and t = a/c.

Example 9.5 (An Impulsively Accelerated Baffled Piston on a Sphere) Consider
acoustic radiation from a piston mounted on a sphere of radius a. In general, the
acoustic pressure generated by a spherical source in the frequency domain can be
described by an infinite series of the spherical Hankel functions of the first kind and
the spherical harmonics [99],

P(r,0,¢; 0 Z ZAn,h (kr)Y'(6,9), (9.81)

n=0 l=—n

where the expansion coefficients A,,; can be obtained by the orthonormal property of
the spherical harmonics. Suppose that the normal surface velocity is given in the
boundary condition. Then the coefficients A,; can be obtained by the Euler’s
equation (9.21) and the orthonormal property of the spherical harmonics,

2n 7
An,:iLJ J Vi(a, 0, ¢; )Y (6, ¢) sin 0dOdep, (9.82)
AV (ka) Jo Jo

where V(a,0,¢;) is specified on the surface of the sphere; h,(,l)l(ka) = (c/w)[dhﬁ,l)
(kr)/dr]l, - , is the normal derivative evaluated on the surface of the sphere.

Once the expansion coefficients A, are specified, the acoustic pressure at any
field point in the frequency domain can be determined by Eq. (9.81). The temporal
acoustic pressure can be obtained by taking the inverse Fourier transform and
evaluated by using Eq. (9.53).
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For simplicity, the piston is assumed axisymmetric with respect to the polar axis
at =0, and is impulsively accelerated at =t,. Moreover, the normal surface
velocity is non-zero over a vertex angle, +0,, and zero elsewhere,

va(a,0;t) =V H(O+ 60y) — H(0 — 6p)|H(t — t,), (9.83)

where t;=alc.
Accordingly, Eq. (9.81) is reduced to [99]

=>_ A (kr)Q (cos ), (9.84)
n=0

where Q,Sl)(cos 0) are the Legendre functions of the first kind.

Note that there is no closed-form solution for the radiated acoustic pressure
signal P(r,0;w) in this case. Hence numerical solutions are sought. As an example, a
circular piston with a vertex angle of =6y, = £15° is considered in this section.
Theoretically, the normal surface velocity given by Eq. (9.83) requires an infinite
series to depict the sharp edges at 6y ==+ «15°. For the purpose of demonstrating
the application of the transient NAH formulations, a finite expansion is utilized to
approximate the velocity profile as specified in Eq. (9.83),

N
va(a,0;1) = V> B0\ (cosO)H(t - afc), (9.85)
n=1

where N is finite. The larger the value of N is, the better the approximation to the
velocity profile is, but the more intensive numerical computations are. For simplic-
ity yet without loss of generality, N = 11 is selected in this numerical example. The
expansion coefficients B,, can be determined by using the orthonormal property of
the Legendre functions [99],

2n+ 1\ (%
B, — ( n2+ >J 0" (cos 6) sin 6d6. (9.86)
—6,

Accordingly, the expansion coefficients A, for the acoustic pressure, Eq. (9.84),
can be obtained by using the orthonormal property of the Legendre functions and
boundary condition

20+ 1)pocVy o [ [ .
4, = 120 DpocVs U 0'V*(cos ) sin 66| . (9.87)
20V (ka) £ —6o

The temporal acoustic pressure at any field point can be determined by taking the
inverse Fourier transform of Eq. (9.84) and facilitated by Eq. (9.53). The resultant
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Table 9.1 Singularities of

. No. Singularities @'”
the impulse response 4
functions for reconstructing 1 —5.53363E +02 — i3.28058E + 03
the transient acoustic field 2 —1.41101E+03 —i2.46182E+03
generated by a partially 3 — 1.87779E +03 — i1.80707E + 03
impulsively accelerating 4 —2.16515E+03 —i1.19157E+03
pson zl(v’v‘i?;es - niip:fgr;’e"f 5 — 2.32467E +03 — i5.92509E + 02
of £6° — £15° 6 —2.37603E +03 + i0.00000E + 00
7 —2.32467E + 03 +i5.29509E + 02
8 —2.16515E+03 +i1.19157E+03
9 —1.87779E+03 +i1.80707E + 03
10 —1.41101E+03 +:i2.46182E + 03
11 —5.53363E + 02 +i3.28058E + 03
Table 9.2 Comparison of the C; Reconstructed values Benchmark values
expansion coefficients C; :
reconstructed by the HELS C, +6.69999E — 02 +6.70000E — 02
method and the analytic ones Cy + 1.87500E — 01 +1.87500E — 01
for an impulsively Cs +2.70633E — 01 +2.70633E — 01
accelerating piston mounted Cs | +3.00783E—01 +3.00781E — 01
on a sphere of radius g with a Cs | +2.74016E —01 +2.74016E — 01
vertex angle of +6° = ~15°
Ce +1.98730E — 01 +1.98730E — 01
C; +9.34531E — 02 +9.34529E — 02
Cg — 1.76239E — 02 —1.76239E — 02
Cy — 1.10301E — 01 —1.10301E — 01
Cio — 1.65869E — 01 — 1.65869E — 01
Ciy —1.75139E - 01 — 1.75140E — 01

acoustic pressure signals on the hologram surface can be taken as input to
Egs. (9.53) and (9.54) to reconstruct the acoustic pressure and particle velocity.
In this example the reconstructed acoustic pressure and particle velocity are
obtained using the HELS-based NAH. Numerical computations involved in the
BEM-based NAH are excessively intensive as compared to those of the HELS-
based NAH and are omitted here for brevity.
Specifically, Eq. (9.54) is used to reconstruct the normal surface velocity with its

r

temporal kernel g,, (?‘;m; t) determined by Eq. (9.56). Table 9.1 lists the singu-

—|=T
larities of g,,, (x ‘ X s t) that are obtained by using Eq. (9.58), namely, o;”, g=1to

11, in this case.

Substituting ®'” into Eq. (9.54) and evaluating the residues give the

q

reconstructed normal surface velocity. Table 9.2 shows the comparison of the
reconstructed expansion coefficients with benchmark values. Results indicate that
the accuracy in the reconstructed expansion coefficients is guaranteed up to the 5th
decimal point.
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Fig. 9.5 Comparison of the reconstructed normal surface velocity distributions along the gener-
ator of the surface of a partially impulsively accelerated sphere of radius a. dashed line: Exact
velocity profile; filled diamond: Reconstructed with J =4; filled square: Reconstructed with J = 8;
filled triangle: Reconstructed with J =11

Figure 9.5 displays the comparison of the normal surface velocity reconstructed
by using Eq. (9.54) under various numbers of the expansion terms with Eq. (9.83).
Results indicate that the reconstructed normal surface velocity converges to the
correct velocity profile as the number of expansion terms increases from J =4,
8, and 11.

Figure 9.6 demonstrates the acoustic pressure fields reconstructed by using
Eq. (9.53) at four different time instances: ¢ =3.24 ms; t =4.41 ms; t=15.88 ms;
and t=7.35 ms [145].

Example 9.6 (An Impulsively Accelerated Baffled Circular Disk) Finally, consider
reconstruction of transient acoustic radiation from a non-spherical object. Specif-
ically, Eq. (9.53) is utilized to reconstruct the acoustic pressure generated by an
impulsive accelerated circular disk of radius ¢ mounted on an infinite baffled. The
normal surface velocity of this baffled disk is given by

v (}’ t) = V,H(a — r)H(1). (9.88)

The procedures for reconstruction are exactly the same as those described in
Example 9.5 and not repeated here. The reconstructed temporal acoustic pressures
are obtained by Eq. (9.53). Figure 9.7 shows the locations at which the input
acoustic pressure signals are collected. Assume that the baffled circular disk is
axisymmetric with respect to the z-axis. The temporal acoustic pressure signals on
the hologram surface are given by
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a PPV b PPV

t=3.24 (ms) t=4.41 (ms)

c PIPycVs PIPycVs

¢=5.88 (ms) =735 (ms)

Pressure: —0.01140.0503 0.1121 0.1739 0.2356 0.2974 0.3591 0.4209 0.4827 0.5444 0.6062 0.6680 0.7297 0.7915 0.8532

Fig. 9.6 Reconstructed acoustic pressure fields generated by a partially impulsively accelerated
sphere of radius a at different time instances. (a): t =3.24 ms; (b): t=4.41 ms; (c): t=5.88 ms;
and (d): t="7.35 ms

p<;m§t>

ct <z,

0, W > da,z, < ct < \[(a—w)+2
pOCV57 2 2
- w<azy <ct<\[la-w) 4z,
pocVs (PR =2 W —d?)
—— ] cos : 22 < 2,
z N (@a—w) +22, <ct</(a+w) +2
m
0 ct>/(a+w)’+2

(9.89)

Note that in this case the standoff distance z,, is of no concern because the input
data given by Eq. (9.89) are analytic. The array of microphones extends to twice the
diameter of the baffled disk with respect to its geometric center. The total number of
microphones is 40 and microphone spacing is A =a/10. Figure 9.8 illustrates the
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Fig. 9.7 Schematic of an
impulsively accelerated
baffled disk of radius a and .

an array of microphones microphone
that covers twice the 5
diameter of the disk. The A=—
total number of 10

microphones is 40 and the
microphone spacing is a/10

t=0.2 (ms)
005 0.1 015 02 025 03 035 04

1=0.56 (ms)
005 01 015 02 025 03 035 0d4n(m)

t=0.8 (ms)
2! ,
0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04n(m) 0

1= 1.0 (ms) t=1.2 (ms)
0,
005 01 015 02 025 03 035 04n(m)

Fig. 9.8 Reconstructed acoustic pressure fields generated by an impulsively accelerated baffled
disk of radius a at different time instances. Clockwise: t=0.2 ms, t=0.3 ms, t=0.56 ms,
t=0.8ms,r=1.0ms, and r=1.2 ms
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transient acoustic pressure fields captured at six time instances ¢t =0.2 ms, 0.3 ms,
0.56 ms, 0.8 ms, 1.0 ms, and 1.2 ms, respectively.

Problems

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

9.8.

9.9.

9.10.

Show that the Kirchhoff-Helmbholtz integral formulation for predicting tran-
sient acoustic radiation is given by Eq. (9.19).

Show that the Kirchhoff—-Helmholtz integral equation for determining the
transient surface acoustic pressure is given by Eq. (9.20).

Show that the Fourier transformed version of the Kirchhoff-Helmholtz
integral formulation for predicting the acoustic pressure produced by an
impulsively accelerating body is given by Eq. (9.25).

Show that the transient acoustic pressure radiated from an impulsively
accelerating object can be written as Eq. (9.30) through the residue theorem.
Consider an explosion that occurs in free space at t=f,. Assume that the
particle velocity rises from near zero to a very high constant value (like a step
function) omnidirectionally. Determine the resultant transient acoustic pres-
sure anywhere in the field.

Consider the case in which an object is impacted by an external force and
accelerates in a particular direction in free space. Assume that this impact
occurs at = f and the velocity of the entire body rises from zero to a constant
value (like a step function) in this direction. Determine the resultant transient
acoustic pressure anywhere in the field.

Show that the transient acoustic pressure field generated by an arbitrarily
shaped rigid body subject to an arbitrarily time-dependent excitation is
expressible as a convolution integral given by Eq. (9.45).

Similarly, show that the normal component of the particle velocity in free
space generated by an arbitrarily shaped rigid body subject to an arbitrarily
time-dependent excitation can be written as a convolution integral given by
Eq. (9.46).

Continue Problem 9.5. Assume that the time histories of the acoustic pressure
signals that are measured at two arbitrary points in free space are

p(?m; t) =(Q/ rm)e’“”"m)/ 4. where Q is a constant and a is the character-

istic dimension of the initial explosion region, m =1 and 2. Determine the
transient acoustic pressure field anywhere.

Continue Problem 9.6. Assume that the time histories of the acoustic pressure
signals that are measured at two arbitrary points in free space are given

T )
p(xm; t) = (g> e (=rm)lacos §,,H (t - r_m)
I'm c
ct—ry a . ct — Ty
{cos( )—(1—) sm( )},
a I'm a

where Q is a constant, € indicates the polar angle, a is the characteristic
dimension of the rigid body, and m =1 and 2. Determine the transient
acoustic pressure field anywhere.
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