
Chapter 8

Equivalent Sources Using HELS

In an effort to reduce the overall measurement points associated with BEM-based

NAH, Jeon and Ih [108] explore the use of an equivalent source method where the

field acoustic pressures are regenerated by point sources distributed inside the real

source surface. To this end, Jeon and Ih reformulate the HELS formulations by

expanding the spherical Hankel functions and spherical harmonics with respect to

multiple points distributed in the interior region of the source surface. Contributions

from all equivalent sources are determined by matching the assumed-form solution

to the boundary conditions specified on the source surface [109–111] or to the

acoustic pressures on the hologram surface [13, 112–118]. The equivalent sources

locations can be optimized by using either the natural algorithm [119] or EfI

method [120]. The optimal number of expansion terms is obtained by using a

spatial filter and regularization scheme. Once the expansion coefficients are spec-

ified, the field acoustic pressures are regenerated and taken as the input data to BEM

codes, just like CHELS algorithms. In this way, the overall measurement points are

greatly reduced.

All the aforementioned equivalent sources methods rely on a distribution of the

monopole sources inside the actual source surface. This chapter presents a more

effective equivalent sources by expanding the acoustic pressure field in terms of

multipoles [121], which for whatever reasons have escaped the attention of

researchers.

We have learned that HELS utilizes an expansion of the spherical waves to

approximate the acoustic field generated by an arbitrary source. Similar expansions

have been previously utilized to predict acoustic scattering and radiation: the

Rayleigh series as discussed in Sect. 4.1, the point-matching method, and least-

squares approximation method, which were collectively referred to as Rayleigh

methods by some authors [122, 123]. Other expansions that employ outgoing

spherical waves that satisfy the Helmholtz equation and Sommerfeld radiation

condition to approximate an acoustic field include the localized spherical waves

(LSW) [124], distributed spherical waves (DSW) [125], and distributed point

sources (DPS) [126]. These expansions are collectively known as the discrete
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sources methods [127]. In Chapter 8 we discuss the discrete sources methods and

how to combine them with the HELS formulations to reconstruct the acoustic field

generated by an arbitrary source.

8.1 Localized Spherical Waves

LSWwas employed to approximate the Green’s function included in the Helmholtz

integral formulation to predict acoustic radiation [125],
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where Ωs indicates the exterior region bounded by the source surface S and the

sphere at infinity, and Ωi implies the interior region inside the source surface S. In
Eq. (8.1) the original format is followed as much as possible.

In an attempt to estimate the acoustic field u x
!
;ω

� �
, Doicu et al. [125] examined

the systems of discrete sources as complete systems of functions. They found that

there is a close relation between the properties of the acoustic field generated by

discrete sources and the structure of their support. For example, a point structure

corresponds to the LSW functions. Similarly, a straight line support parallels with

the DSW functions, and a surface support is equivalent to the DPS.

Accordingly, if the acoustic field can be approximated by a point structure, LSW

functions form a set of characteristic solutions to the Helmholtz equation in the

spherical coordinates, which are given by
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n krð ÞP mj j
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Using LSW, the Green’s function in Eq. (8.1) is expressible as
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where umn and u�mn are defined in Eq. (8.2) and the expansion coefficients Emn are

given by
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Emn ¼ 2nþ 1ð Þ
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The following theorem has been proven by Doicu et al. [125]

First of all, let us define some terminologies. Let S be the boundary of a bounded
domain Di�R3, namely, a bounded, open, and connected subset of three-

dimensional space R3. We say that the surface S is of class C2 if for each point x
!

∈ S there exists a neighborhood V
x
! of x

!
such that the intersection V

x
! \ S can be

mapped bijectively onto a domain U�R2, and this mapping is twice continuously

differentiable. We express this property by saying that Di is of class C
2.

Theorem 8.1 Let S be a closed surface of class C2 and n
!
denote the unit outward

normal to S. Then the system umn x
!
;ω

� �
¼ h 1ð Þ

n krð ÞP Mj j
n cos θð Þejmϕ, n¼ 0, 1, 2, . . .,

1; m¼�n to +n, is complete in L2(S).

As discussed in Sect. 4.1, an infinite series is not suitable for our applications,

which is especially true for reconstructing the acoustic field generated by an

arbitrary source. However, we can adopt the concept of LSW and try instead the

following finite expansion:

p̂ r; θ;ϕ;ωð Þ ¼
XN
n¼0

Xn
m¼�n

anmh
1ð Þ
n krð ÞP mj j

n cos θð Þeimϕ, ð8:5Þ

where anm represent the expansion coefficients, N is the order of expansion, and the

total number of expansion terms is J¼ (N+ 1)2. Note that there is a subtle difference

between LSW and HELS in that the former uses Pjmj
n (cos θ)eimϕ in the expansion,

whereas the latter uses the standard spherical harmonics Pm
n (cos θ)e

imϕ in the

expansion. From Eq. (2.16) we see that Pjmj
n (cos θ)eimϕ differs from Pm

n (cos θ)e
imϕ

by a constant (�1)m, which may be absorbed by the expansion coefficients anm.
Thus Eq. (8.5) is in effect the same as the HELS expansion. Since LSW corresponds

to a point source, the corresponding auxiliary source is located at the origin of the

coordinate system.

8.2 Distributed Spherical Waves

In [125] Doicu et al. considered the system of DSW functions, which form a set of

radiating solutions to the Helmholtz equation (4.6). These DSW functions are given

by

8.2 Distributed Spherical Waves 147

http://dx.doi.org/10.1007/978-1-4939-1640-5_4#Sec1
http://dx.doi.org/10.1007/978-1-4939-1640-5_4#Equ6


u
m
��m�� x

! � zn e
!

z

� �
¼ h

1ð Þ
mj j krnð ÞP mj j

mj j cos θð Þejmϕ, ð8:6Þ

where the discrete sources are distributed along a segment of the z-axis at a radius
with respect to the origin, which are expressible in the spherical coordinates as (rn,

θn, ϕn), rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z� znð Þ2

q
, and n¼ 1, 2, . . .,1, and m ∈ Ξ, where Ξ is the

support of the discrete sources that consist of the origin of the coordinate system.

The following theorem has been proven by Doicu et al. [125]

Theorem 8.2 Consider the bounded sequence (zn)� Ξ, where Ξ is a segment of the
z-axis. Assume that S is a surface of class C2 enclosing Ξ. Replace in Theorem 8.1

the LSW functions umn x
!
;ω

� �
by u

m
��m�� x

! � zn e
!

z

� �
¼ h

1ð Þ
mj j krnð ÞP mj j

mj j cos θð Þejmϕ,
n¼ 1, 2, . . ., 1, and m ∈ Ξ. Then the resulting systems of functions are complete
in L2(S).

These theorems state that Eq. (8.6) may be utilized to describe the radiated

acoustic field completely. Once again, we adopt the concept of DSW and utilize

instead a finite expansion,
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where bmn are the expansion coefficients, nmax is the number of auxiliary sources

and mmax is the order of expansion, and the total number of expansion terms is

J¼ nmax(2mmax + 1). For simplicity, we consider the case where the auxiliary

sources are distributed along a segment of the z-axis with its center at the origin

of the coordinate system,

zn ¼ z0 cos βn, ð8:8Þ

where n¼ 1, 2, . . ., nmax, z0 is chosen such that all auxiliary sources are inside Ωs

(some of them can be close to the boundary surface S), and βn are given by

βn ¼
π

2nmax

þ π n� 1ð Þ
nmax

: ð8:9Þ

The znth auxiliary source is at x
! � zn e

!
z, which is expressible in the cylindrical

coordinates as

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 sin 2θ þ r2 cos 2θ � znð Þ2

q
, ð8:10Þ
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sin θn ¼ r sin θ

rn
, ð8:11Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: ð8:12Þ

8.3 Distributed Point Sources

DPS is known as fundamental solutions to the Helmholtz equation, which are given

by

φn x
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, ð8:13Þ

where n¼ 1, 2, . . .,1, and x
!
n

n oT

1�1
is a set of discrete point sources distributed on

a closed surface S of class C2. Suppose that φ�
n x

!��x!n;ω
� �n oT

1�1
denote the

fundamental solutions with point sources x
!�
n

n oT

1�1
distributed on the interior

surface S�, and φþ
n x

!��x!n;ω
� �n oT

1�1
indicate those with the sources x

!þ
n

n oT

1�1
distributed on the exterior surface S+. The completeness of DPS as given by

Eq. (8.13) is provided by the following theorem, which has been proven by Doicu

et al. [125]

Theorem 8.3 Consider Ωi a bounded domain of class C
2. Let the set x
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dense on a surface S� enclosed in Ωi and let set x
!þ
n

n oT
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be dense on a surface S+

enclosing Ωi. Assume that k is not an eigenvalue of the boundary value problem for
the interior region Ωi. Replace in Theorem 8.1 the radiating spherical wave
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spherical wave functions umn x
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1�1 n¼ 0, 1, . . .,1. Then, the resulting systems of functions are

complete in L2(S).

We adopt the DPS concept in reconstruction, but instead use a finite expansion,
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where cn are the expansion coefficients, nmax is the number of point sources, and
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is the fundamental solution (or the free-space Green’s function) to the Helmholtz

equation. Hence the auxiliary sources in DPS are a set of point sources distributed

on a smooth surface S� inside Ω, but close to the boundary surface S.
Note that DPS formulation (8.14) is the same as those of the so-called equivalent

source methods [108�119], and LSW is the same as HELS. Here LSW, DSW, and

DPS will be adopted in the HELS expansion to reconstruct the acoustic field

generated by a vibrating object in free space. Their results will be validated against

the benchmark values and their performances be examined.

8.4 Regularization for LSW, DSW, and DPS Expansions

It is well known that the rate of convergence of any expansion depends on the

complexity of the source boundary and frequency [124, 128–130]. Although recon-

struction of acoustic quantities may be done by HELS at any frequencies, the

accuracy in reconstruction may deteriorate with an increase in the frequency.

This is because at high frequencies, SNR is usually very low such that the high-

order terms in the HELS expansion may be contaminated by background noise. To

avoid distortions in reconstruction due to noise contamination, we must truncate the

HELS expansion by eliminating the high-order terms. However, the high-order

terms are critical in depicting the details of acoustic quantities at high frequencies

and an omission of these terms will make it impossible to obtain the details in

reconstruction. It is emphasized that this high-frequency difficulty exists in other

methods, for example, BEM, whose performance deteriorates greatly at high

frequencies.

Despite the fact that discrete sources methods have been extensively studied in

the forward problems such as scattering and prediction of acoustic fields, they have

not been tested in backward problems such as reconstruction of acoustic fields, with

the exception of HELS. Since the matrix involved in HELS is relatively small, it is

possible to utilize a direct regularization method such as TR. For a problem that

involves a large matrix, for example, in three-dimensional simulations, an iterative

regularization method may be a better alternative.

Success in regularization depends to a large extent on choice of regularization

parameter. Based on the type of information available on a targeted solution, the

parameter-choice methods (PCM) are classified as a priori, which is independent of

the actual data, and a posteriori, which is dependent on the actual data [131]. The

former includes heuristic or error-free [132] methods that do not require the

knowledge of the noise level in the input data and seek to predict this information

from actual data. Note that for an infinite-dimensional compact operator, error-free
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PCM may fail to yield a convergent regularization parameter, namely, to provide a

regularized solution that will converge to the exact solution as the noise level tends

to zero [133].

In practice, there is always noise in the input data and its level is unknown a

priori. Hence we must resort to the error-free PCM, even though it may occasion-

ally fail to yield a convergent regularization parameter. Of course, if noise level can

be estimated a priori, we can use Morozov’s discrepancy principle [106, 134] to

determine the correct regularization parameter and get satisfactory reconstruction.

Alternatively, we can impose constraints on the norm of a regularized solution as

suggested by Isakov and Wu [74] to find a convergent regularization parameter.

The trouble is that the right constraint for the norm of the exact solution is hard

to find.

Our objective is to examine the effects of different expansions on resultant

reconstruction and, more importantly, to identify the expansion that can produce

the most accurate and efficient reconstruction.

Specifically, we consider three expansions: LSW, DSW, and DPS in HELS to

reconstruct the acoustic pressure radiated from an arbitrary source in free space. In

particular, we use TR, MTR, and damped singular value decomposition (DSVD) in

regularization scheme with its regularization parameter determined by an error-free

PCM such as GCV, L-curve criterion, and quasi-optimality criterion (QOC)

[135]. Reconstructed acoustic quantities are validated with respect to the bench-

mark data measured at the same locations as the reconstruction points.

The L-curve criterion [136] relies on a parametric plot of the norm of a

regularized solution versus the residual norm in a log–log scale with respect to

the regularization parameter. The corner of an L-curve (which is defined as the

point of maximum curvature) separates the horizontal part (where regularization

errors dominate) from the vertical part (where perturbation errors dominate), and

represents a balance between the regularization and perturbation errors.

8.5 Performances of LSW, DSW, and DPS Expansions

Here we examine the performances of HELS through LSW (8.5), DSW (8.7), and

DPS (8.14) expansions to reconstruct the acoustic pressures generated by a JBL®

speaker that consists of a woofer, mid-ranger, and tweeter inside a fully anechoic

chamber (see Fig. 8.1). In particular, we examine the convergence rates of these

expansions and condition numbers of the corresponding transfer matrices. The

faster the convergence rates and the smaller the condition numbers are, the more

efficient the numerical computations and the more accurate the HELS solutions

become.

In experiments the speaker was driven by an HP 8904A Multi-Function Synthe-

sizer DC-600 kHz and a McIntosh MC352 Power Amplifier to produce white noise.

The acoustic pressures were measured by an array of 56 PCB T130D21 free-field

8.5 Performances of LSW, DSW, and DPS Expansions 151



microphones (see Fig. 8.1). The input data were sent to a personal computer through

the Larson Davis digital Sensor System Model 100 for analog to digital conversion.

Test procedures were as follows. First, the radiated acoustic pressures were

measured on a planar surface Γ at 1 cm clearance in front of the speaker. These

data were taken as input to HELS using LSW, DSW, and DPS expansions,

respectively, to reconstruct the acoustic pressures on a surface S at 0.5 cm clearance

in front of the speaker up to 3,275 Hz (see Fig. 8.2). The reason for selecting this

surface S was that there was no way of measuring the acoustic pressures on the

speaker membrane directly.

Next, the acoustic pressures on this surface S were measured using the same

microphone array, and these benchmark values were compared with the

reconstructed acoustic pressures at the same locations. The measurement points

on Γ and S were equidistant. The origin of the coordinate system was set at the

geometric center of the speaker. In particular, the auxiliary source for LSW was

placed at the geometric center of the speaker, those for DSW were distributed along

a vertical axis between the front surface and center of the speaker box, and those for

DPS were distributed on a plane next to the front surface of the speaker (see

Fig. 8.2).

For simplicity without loss of generality, we consider reconstructing the acoustic

pressure in front of the speaker. The characteristic dimension was

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:28=2ð Þ2 þ 0:42=2ð Þ2

q
¼ 0:28 m. So for the highest frequency of

3,275 Hz, the maximum dimensionless frequency was kamax� 16.6.

Since we were only interested in reconstructing the acoustic pressure, it was

acceptable to gauge the number of expansion terms with respect to the maximum

dimensionless frequency kamax. From [37] we learn that the total number of

expansion terms for LSW is J¼ (N + 1)2; here, N is the order of expansion. In

general, we may set N¼ kamax� 17. So J¼ 324. Accordingly, we need at least

Fig. 8.1 Test setup for

reconstructing the acoustic

pressure emitted from a

JBL® speaker that consists

of a woofer, mid-ranger,

and tweeter inside a fully

anechoic chamber. Input

data were collected by an

array of microphones
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324 measurement points on Γ to cover the specified frequency range. In practice, we

may have to truncate the expansion to reduce distortion due to a low SNR at high

frequencies. In this experiment, we set N¼ 9, so J¼ 100.

The number of expansion terms in DSW is J¼ nmax(2mmax + 1), where nmax is

the number of auxiliary sources andmmax is the order of expansion, which is smaller

than N in LSW. There are no known theories or methodologies that we can use to

estimate the optimum values of nmax and mmax for arbitrarily shaped sources. In

general, the values of nmax andmmax depend on the complexities of source geometry

and the highest frequency of interest. To achieve the best results, it is a good idea to

set distances among neighboring auxiliary sources to be less than one wavelength of

the highest frequency of interest and distribute the auxiliary sources evenly on a

conformal surface inside the source boundary.

For example, the front surface of the speaker is of dimensions 0.28� 0.42 m2,

the highest frequency is fmax¼ 3,275 Hz, and the acoustic wavelength is λmin¼ c/
fmax� 0.104 m. Therefore, the estimated number of auxiliary sources for DSW is

nmax¼ (0.28/0.104)� (0.42/0.104)� 11. Since the speaker in free space is often

modeled as a dipole, we set the highest order of expansion for DSW at mmax¼ 4.

Accordingly, the number of expansion terms is J¼ 99. Therefore we need to take

100 measurement points of the acoustic pressures on Γ to guarantee satisfactory

reconstruction of the acoustic pressures in the specified frequency range.

In DPS, the auxiliary sources are distributed uniformly on a surface conformal to

a source boundary from the inside. However, the optimal number and locations of

the auxiliary sources are unknown a priori, whose determination is a topic of

research by itself and will not be considered here. Since the front surface of the

speaker is planar, it is sufficient to distribute the auxiliary sources on a plane

with J¼ nx� nz, where nx and nz are, respectively, the numbers of sources in the

x- and z-axis directions. Here we set nx¼ 10 and nz¼ 10, so J¼ 100.

In this experiment 112 measurement points of the acoustic pressures were taken

on Γ and S, respectively, which were enough for LSW, DSW, and DPS expansions.

It is emphasized that the number of measurement points is not as critical as it

seems. The controlling factor is SNR. If SNR is low, there is no way of obtaining

good reconstruction because the critical near-field information will be buried in

Fig. 8.2 Schematic of the

locations of the auxiliary

sources for LSW, DSW, and

DPS expansions inside the

JBL® speaker. The

measurement surfaces Γ and

S were in front of the

speaker at, respectively,

1 and 0.5 cm away
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background noise. Accordingly, the number of expansion terms must be signifi-

cantly reduced to avoid distortion in reconstructed images. Under this condition, the

reconstructed results will not be good no matter how many measurement points are

taken.

8.6 Locations of the Auxiliary Sources

Selection of the auxiliary source locations can be crucial to the success of recon-

struction. Although there is no known theory that can depict exactly the interrela-

tionship between locations of auxiliary sources and rate of convergence of resultant

expansion and reconstruction accuracy, the following guideline is clear: the ana-

lytic continuation of solution to the Helmholtz equation requires that the surface on

which auxiliary sources are distributed must enclose all singularities of an acoustic

field.

However the singularities for a given acoustic field are unknown a priori. To

gain a good understanding of the singularities locations, we start from an arbitrarily

selected auxiliary surface, and measure the acoustic pressures on surfaces Γ and S,
respectively. Next, we substitute the data measured on Γ to reconstruct the acoustic

pressures on S and calculate the mean relative errors in reconstruction with respect

to the benchmark data on S. Finally, we move the auxiliary surface to a different

location, and repeat these processes again. Note that there is no need to remeasure

the acoustic pressures on S. This iteration is continued until the mean relative errors

in reconstruction are minimized, and the corresponding locations of the auxiliary

sources are optimized for a given frequency and a set of measurements.

It is emphasized that in practice we only measure the acoustic pressures on the

surface Γ. The reason for taking an additional set of measurements on S is to

develop a guideline for selecting the optimal location of an auxiliary surface for a

specific expansion function. Needless to say, the impact of the auxiliary source

locations for different expansions is different. Hence, by taking an independent set

of measurements on S, we can validate the reconstructed acoustic pressures, find the
optimal location of an auxiliary surface for a given expansion, and study the

sensitivity of the auxiliary surface on the reconstruction accuracy using this

expansion.

Figure 8.3 depicts the mean relative errors in reconstructing acoustic pressures

on S using LSW, DSW, and DPS, respectively, with respect to the auxiliary sources

distributed on a plane at y¼�y0, where y0 varies from �0.7 to 0.13 m, for a fixed

frequency of 1,690 Hz. Results show that DSW is relatively insensitive to the

auxiliary source locations as compared to LSW and DPS are. At the optimum

auxiliary surfaces, LSW and DSW can yield nearly the same level of accuracy in

reconstruction, whereas DPS produces a slightly lower accuracy in reconstruction.

It is interesting to observe that LSW places its optimum location of the auxiliary

surface near the origin of the coordinate system, DSWmoves its optimum auxiliary

surface slightly away from the origin of the coordinate system toward the front
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surface of the speaker, and DPS places its optimum auxiliary surface right behind

the front surface of the speaker system.

Note that the standoff distance and frequency can also affect the reconstruction

accuracy. However, their effects are negligible compared to those of the auxiliary

source surface location. So we focus on the determination of optimal locations of

auxiliary source surfaces by minimizing the mean relative errors in reconstruction

with respect to the benchmark values measured on S.

8.7 Condition Number of the Transfer Matrices

Reconstruction of acoustic radiation from any source is an ill-posed problem. As a

result, the transfer matrix in HELS may be ill conditioned. Ill conditioning of any

matrix is measured by the 2-norm condition number defined as the ratio of the

largest to smallest singular values of the matrix. This can be done prior to taking

any measurements, if the frequency and measurement and reconstruction locations

are specified. In many situations, if the condition number is in the order ofO(103) or
higher, the matrix may be ill conditioned; if the condition number is in the order of

O(102) or lower, the matrix is more or less well conditioned. Regularization may be

omitted if the transfer matrix is well conditioned, but must be implemented if the

matrix is ill conditioned.

Fig. 8.3 Comparison of the auxiliary surface locations at 1,690 Hz. Continuous line: for LSW;

broken line: DSW; and dotted line: DPS
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In our experiments, the condition numbers of the transfer matrices for a selected

standoff distance and frequency were found to be: O(101) for DSW, O(102) ~O
(103) for LSW, and O(105) for DPS. Therefore, for the same frequency and

measurement and reconstruction locations, DSW offers the best-conditioned trans-

fer matrix among all three expansions. This is expected because DSW uses a lower-

order spherical Hankel function (mmax¼ 4) than LSW does (N¼ 9). The small

singular values are always associated with high-order expansion terms, and the

condition number of a transfer matrix containing the high-order terms is much

larger than that of a transfer matrix containing the low-order terms. The reason for

DPS to produce an ill-conditioned transfer matrix may be attributed to the fact that

the sound field produced by the present speaker system cannot be adequately

described by a distribution of point sources because there are three speakers that

emit sounds simultaneously. Consequently, the resultant transfer matrix in DPS

becomes rank deficient and ill conditioned.

From the calculated condition numbers, we see that regularization is needed for

DPS and LSW, but not needed for DSW. Since condition numbers are calculated

before measurements are taken, no information on noise level in the input data is

available. Consequently, we have to resort to an error-free PCM in regularization.

One of our objectives is to examine the performances of HELS using different

expansions to reconstruct acoustic radiation from an arbitrary source. To this end,

we first calculate the ideal regularization parameter by minimizing reconstruction

errors with respect to the benchmark data on S. This process allows for assessing not
only the reconstruction accuracy but also the impact of reducing the measurement

number on reconstruction using various expansions. This latter is of great impor-

tance since in practice fewer measurement points mean bigger savings in time and

costs.

8.8 Effect of Measurement Number

The effect of the number of measurement points on reconstruction accuracy is

examined. Figures 8.4, 8.5, and 8.6 describe the mean relative errors in

reconstructing the acoustic pressure through LSW, DSW, and DPS expansions,

respectively, under different numbers of measurement points. Since the frequency

range is relatively low, SNR is relatively high. So the more the measurements are

taken, the higher the accuracy in regularized reconstruction becomes.

Note that regularization can significantly enhance the reconstruction accuracy,

especially at higher frequencies. This is obvious in Figs. 8.4 and 8.6 since the

transfer matrices for LSW and DPS are ill conditioned. However, the impact of

regularization on reconstruction accuracy for DSW is not as drastic (see Fig. 8.5)

because its transfer matrix is more or less well conditioned. Note that we have used

ideal regularization parameters for all three expansions to maximize these effects.

The calculated regularization parameters for LSW and DPS increased monotoni-

cally with frequency from 0.002 to 0.05, whereas that remained negligibly small at
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Fig. 8.4 Comparison of the mean relative errors in reconstructing the acoustic pressure by using

LSW expansion. Continuous line: 56 measurement points with an ideal regularization parameter;

broken line: 112 measurement points without using regularization; dotted line: 112 measurement

points with an ideal regularization parameter

Fig. 8.5 Comparison of the mean relative errors in reconstructing the acoustic pressure by using

DSW expansion. Continuous line: 56 measurement points with an ideal regularization parameter;

broken line: 112 measurement points without using regularization; dotted line: 112 measurement

points with an ideal regularization parameter
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0.0008 for DSW, which meant that there was almost no need for regularization in

DSW within this frequency range.

Results demonstrate that even with an ideal regularization parameter, DPS failed

to yield a compatible level of accuracy as compared to those of DSW and LSW

under the same set of input data. Moreover, DPS is more sensitive to PCM than

DSW and LSW are.

It is emphasized that for ill-conditioned transfer matrices, just increasing the

numbers of measurement points and expansion terms in HELS without

implementing regularization will only further distort reconstruction. This is seen

in Fig. 8.6 using the DPS expansion. As the number of measurement points was

doubled, the mean relative errors in reconstruction exceeded 200 % when no

regularization was used (the corresponding curve was omitted in Fig. 8.6 for

clarity). The reason for that was because the high-order terms in DPS expansion

were contaminated by noise embedded in measured data, and these errors were

significantly amplified as the acoustic pressures were projected back toward the

source surface. When the transfer matrix is not highly ill conditioned, as in the case

of LSW expansion, increasing the measurement number can improve reconstruc-

tion accuracy to certain frequency without regularization (see Fig. 8.4). If the

transfer matrix is more or less well conditioned, as in the case of DSW expansion,

increasing the number of measurement points allows for an increase in the number

of expansion terms, which enhances the reconstruction accuracy even without

regularization (see Fig. 8.5).

Fig. 8.6 Comparison of the mean relative errors in reconstructing the acoustic pressure by using

DPS expansion. Continuous line: 56 measurement points with an ideal regularization parameter;

dotted line: 112 measurement points with an ideal regularization parameter
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8.9 Choice of Regularization

In many engineering applications, the noise level embedded in the input data is

unknown a priori. Thus we must rely on an error-free PCM in regularization. In this

study, we want to find out if there exists an optimal regularization with an error-free

PCM for each of DSW, LSW, and DPS expansions in HELS. To this end, we

examine performances of all possible combinations of TR and its modification

implemented by utilizing GCV and DSVD, together with various penalty functions

with respect to pressure, normal velocity, or both, and error-free PCM such as GCV,

L-curve, and QOC to select the best regularization parameter. Results show that for

some expansions, it is possible to find the optimal regularization with an error-free

PCM that can produce an almost ideal regularization parameter over a wide

frequency range; but for other expansion such optimal combinations cannot be

found. For brevity, we summarize the most important results here:

1. The optimal regularization for DSW is MTR implemented through DSVD, and

the best regularization parameter can be provided by L-curve together with an

energy norm as its penalty function.

2. The optimal regularization for LSW is TR implemented by GSVD with its

regularization parameter determined by GCV using an energy norm as its

penalty function. Depicted in Fig. 8.7 is the comparison of the mean relative

errors in reconstruction using LSW and TR with its regularization parameter

determined by different error-free PCMs. It is clear that the regularization

parameter given by GCV is almost identical to the ideal value over the specified

frequency range, that provided by L-curve is close to an ideal one, but those

produced by QOC are way off the target. Figure 8.8 shows the regularization

parameters given by GCV, L-curve, and QOC for TR in LSW versus the

frequency. Results illustrate that GCV yields nearly the ideal regularization

parameters, L-curve gives a regularization parameter close to the ideal one,

but the regularization parameter provided by QOC is off by at least two orders

of magnitude of an ideal value.

3. For DPS, it is not possible to find one regularization scheme that can produce

satisfactory reconstruction over a wide frequency range. In fact, we must utilize

different combinations of regularization, penalty function, and error-free PCM

to select an optimal regularization parameter for different frequency.

Figure 8.9 summarizes the results of this investigation on determining optimal

choices of regularization schemes for DSW, LSW, and DPS expansions in HELS.

Comparing Fig. 8.9 with Figs. 8.4 and 8.5 demonstrates that using the optimal

regularization schemes, for example, TR implemented by DSVD with its regular-

ization parameter specified by L-curve for DSW, and TR with its regularization

parameter determined by GCV for LSW, we can obtain the same level of recon-

struction accuracy as that produced by an ideal regularization. When we only rely

on a single regularization scheme, for example, TR and GCV for DPS, the mean

relative reconstruction errors can be very large, especially at higher frequencies.

This can be seen by comparing the mean relative errors in Fig. 8.9 with those in

Fig. 8.5.
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Fig. 8.7 Comparison of the mean relative errors in reconstructing the acoustic pressure by using

LSW expansion in HELS with TR and various error-free PCM. Broken line with dots: QOC;
broken line: L-curve; dotted line: GCV; continuous line: Ideal case

Fig. 8.8 Comparison of regularization parameters calculated by using various error-free PCMs

for reconstructing the acoustic pressure using LSW in HELS. Broken line with dots: QOC; broken
line: L-curve; dotted line: GCV; continuous line: Ideal case
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It must be emphasized that there is no single regularization strategy that can

yield the best reconstruction for all sources under all circumstances. For example,

although TR and DSVD plus L-curve work well for DSW in the present case, it may

not work well in a different scenario or in a different frequency range. The best

regularization strategy is always case dependent. Also, we must keep in mind that

an error-free PCM can fail to yield a convergent regularization parameter at all. On

the other hand, it is always advantageous to take double-layer measurements

whenever possible. These double-layer measurements can help us to device optimal

regularization schemes and produce the best reconstruction of the acoustic

quantities.

To summarize, results show that DSW leads to the best-conditioned transfer

matrix, is the least sensitive to choices of auxiliary surface locations, and yields

most satisfactory reconstruction over a wide frequency range. LSW is the second

best choice of expansion for HELS, its transfer matrix can be weakly ill condi-

tioned, and its optimal auxiliary source location can be close to the geometric center

of a source. If the optimal location for the auxiliary source is selected, LSW can

yield nearly the same level of accuracy in reconstruction as DSW does. Moreover, it

is possible to improve the reconstruction accuracy in LSW by increasing the

measurement points taken at very close range to the source surface, even without

regularization. DPS gives a highly ill-conditioned transfer matrix and is very

sensitive to the auxiliary surface location. The reason for that may be due to the

fact that the acoustic pressure radiated from an arbitrary source may not be

adequately described by a distribution of point sources. When DPS expansion is

Fig. 8.9 Comparison of the mean relative errors in reconstructing the acoustic pressure using

different expansions with regularization strategies. Continuous line: DSW using DSVD and

L-curve; dotted line: LSW using TR and GCV; broken line: DPS using TR and GCV
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used in HELS, it is necessary to implement regularization in order to obtain a

convergent reconstruction.

The optimal regularization for DSW is MTR implemented through DSVD plus

L-curve to determine the regularization parameter with an energy norm as its

penalty function. The optimal regularization for LSW is TR implemented by

DSVD plus GCV to determine its regularization parameter with an energy norm

as its penalty function. There is no single optimal regularization scheme that can

produce satisfactory reconstruction over a wide frequency range for DPS. In this

case, different regularization schemes must be used at different frequencies in order

to produce satisfactory reconstruction.

It is emphasized that it may not be possible to find the optimal regularization

schemes for DSW and LSW that will work for all scenarios. In other words, there is

no single regularization strategy that can guarantee good reconstruction for all

sources under all conditions.

Finally, it is always a good idea to take double-layer measurements. Such

measurements can help us to determine the optimal auxiliary surface location for

particular expansion functions in HELS and to select the optimal regularization

scheme that includes choosing penalty functions and error-free PCMs to yield the

best regularization parameter.

Problems

8.1. What is LSW? What does it attempt to do? What are the differences between

LSW and the Helmholtz integral formulation?

8.2. What are the differences between LSW and the HELS method? Will LSW

suffer from the same difficulties as those of the Rayleigh hypotheses for a

corrugated surface?

8.3. What is DSW? What does it attempt to do? What are the differences between

DSW and the original HELS method?

8.4. What are the differences between DSW and the HELS method using the

DSW expansion?

8.5. Will DSW have the same difficulties as those of the Rayleigh hypotheses for

a corrugated surface? Will the HELS method using DSW expansion have the

same difficulties as DSW for a corrugated surface?

8.6. What is DPS? What does it attempt to do? What is the difference between

DPS and DSW?

8.7. What are the differences between DPS and the HELS method using the DPS

expansion?

8.8. What are the optimal regularization schemes for the HELS method using

LSW, DSW, and DPS expansions?

8.9. What are the performances of the HELS method using LSW, DSW, and DPS

expansions?

8.10. What are the impacts of various parameters such as the locations of the

auxiliary sources, number of measurement points, and choices of regulariza-

tion schemes on the performances of the HELS method using LSW, DSW,

and DPS expansions?
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