
Chapter 6

Combined Helmholtz Equation

Least-Squares (CHELS) Method

Although the HELS method has exhibited a great promise in reconstructing the

acoustic fields in both exterior and interior regions, the accuracy in reconstruction

for an arbitrarily shaped structure can be unsatisfactory. This is because the

expansion based on the spherical waves for an acoustic field generated by on an

arbitrarily shaped surface is incomplete.

An alternative for reconstructing acoustic radiation from an arbitrary structure is

to use the Helmholtz integral theory. In implementing this integral theory, BEM is

used and the surface is discretized into segments and the acoustic field is specified

on the nodes of these segments using a particular interpolation scheme. This

BEM-based NAH has been used to reconstructing acoustic radiation from struc-

tures in the exterior and interior regions.

The main advantage of the BEM-based NAH is its generality, allowing users to

tackle an arbitrarily shaped structure. The disadvantage is that it may fail to yield a

unique solution for the exterior problem when the excitation frequencies are close

to one of the eigenfrequencies of the boundary value problem in the corresponding

interior region. While this nonuniqueness difficulty may be overcome by the

CHIEF method, the efficiency and accuracy of its reconstruction can be signifi-

cantly affected.

The main drawback of the BEM-based NAH, however, is due to the fact that the

acoustic field is reconstructed via spatial discretization. In other words, we must

have a minimum number of nodes per wavelength in order to achieve the desired

resolution in reconstruction. Accordingly, one must take enough measurements of

the radiated acoustic pressures to determine the acoustic quantities specified on

discrete nodes. For complex structures vibrating at mid-to-high frequencies, the

number of nodes necessary to describe the surface acoustic quantities can be large.

Hence the number of measurements is large, which makes the reconstruction

process very time consuming. Although there are techniques developed recently

to avoid the singularity problem inherent in the Helmholtz integral equation and

methodologies to optimize the measurement locations by using an effective
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independence [27] implementation of the BEM-based NAH is not straightforward

and reconstruction of the acoustic field is extremely slow and inefficient.

It is emphasized that in using the BEM-based NAH it is not necessary to have

exactly the same measurements as discrete nodes. This is because using SVD and

regularization procedures, one can have either an over- or under-determined sys-

tems of equations. Accordingly, one can use fewer measurements than the discrete

nodes. However, the accuracy of reconstruction cannot be guaranteed if the mea-

surements are substantially fewer than the discrete nodes. This is because the

measured data are not error free and background noises are always present. In

order to obtain a convergent solution, the equation must be truncated to filter out the

evanescent waves that fall under the background noises. If measurements are too

few, the equivalent cutoff wavenumber is forced to be very low. As a result, the

high spatial wavenumber contents are filtered out and aliasing occurs in

reconstruction.

In this chapter we show that by combining the HELS- and BEM-based NAH, the

efficiency of reconstruction can be significantly enhanced and satisfactory recon-

struction be obtained by using relatively few measurements [91]. First, we present a

brief account of the Helmholtz integral theory.

6.1 The Helmholtz Integral Theory

The key to the acoustic radiation problems is to solve the wave equation subject to

certain boundary conditions, which for a harmonic excitation reduces to the Helm-

holtz equation

∇2p̂ x
!
;ω

� �
þ k2p̂ x

!
;ω

� �
¼ 0, ð6:1Þ

where p̂ x
!
;ω

� �
is the complex amplitude of the acoustic pressure at any field point

x
!
and satisfies the Sommerfeld radiation condition at infinity,

lim�� x!��!1

��x!�� ∂p̂

∂
��x!��� ikp̂

 !
¼ 0 as

��x!��! 1: ð6:2Þ

The Helmholtz equation (6.1) subject to the boundary condition can be solved

for source surfaces that are expressible as one of 11 coordinate systems [92]. For

arbitrary geometry, there is no analytic solution; hence, numerical solutions are

sought. However, the efforts involved may be significant because one must

discretize the entire three-dimensional space.

To enhance the efficiency in numerical computations, we can utilize the Helm-

holtz integral theory, which can be derived by making use of the free-space Green’s
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function. First, we consider the inhomogeneous Helmholtz equation for the free-

space Green’s function,

∇2G x
!��x!s;ω
� �

þ k2G x
!��x!s;ω
� �

¼ �4πδ x
! � x

!
s

� �
, ð6:3Þ

whereG¼ eikR/R, whereR ¼ ��x! � x
!

s

�� is the distance between the source at x!s and a

receiver at x
!
in free space, and δ x

! � x
!
s

� �
is the Dirac delta function [93], which

can be considered as a function that is 0 everywhere except at the origin, where it is

infinite,

δ x� x0ð Þ ¼ 0, x 6¼ x0
1, x ¼ x0

�
: ð6:4Þ

The Dirac delta function has the sifting property,

ð1
�1

δ x� x0ð Þf xð Þdx ¼ f x0ð Þ: ð6:5Þ

Therefore, for f(x)� 1, the integration of the Dirac delta function is identically

unity,

ð1
�1

δ x� x0ð Þdx ¼ 1 ð6:6Þ

Multiply Eq. (6.1) by G and Eq. (6.3) by p̂ x
!
;ω

� �
, and use the chain rule to

rewrite the Laplacian operator ∇2 as

∇� G x
!��x!s;ω
� �

∇p̂ x
!
;ω

� �h i
�∇G x

!��x!s;ω
� �

�∇p̂ x
!
;ω

� �
þ k2G x

!��x!s;ω
� �

p̂ x
!
;ω

� �
¼ 0,

ð6:7Þ

∇� p̂ x
!
;ω

� �
∇G x

!��x!s;ω
� �h i

�∇G x
!��x!s;ω
� �

�∇p̂ x
!
;ω

� �
þ k2G x

!��x!s;ω
� �

p̂ x
!
;ω

� �
¼ �4πp̂ x

!
;ω

� �
δ x

! � x
!
s

� �
:

ð6:8Þ

Subtracting Eq. (6.8) from (6.7) and integrating both sides over the volume

enclosed by the source surface and that at infinity leads to
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ððð
V

∇ � G x
!��x!s;ω
� �

∇p̂ x
!
;ω

� �
� p̂ x

!
;ω

� �
∇G x

!��x!s;ω
� �h i

dV

¼ 4π

ððð
V

p̂ x
!
;ω

� �
δ x

! � x
!

s

� �
dV: ð6:9Þ

The volume integral on the right side of Eq. (6.9) leads to the acoustic pressure

itself due to the sifting property of the Dirac delta function Eq. (6.5). The volume

integral on the left side can be expressed as a surface integral by using the Gauss

theorem or divergence theorem [94],

p̂ x
!
;ω

� �
¼ 1

4π

ðð
S0

p̂ x
!
s0 ;ω

� �∂G x
!��x!s0 ;ω
� �
∂n x

!
s0

� � �
∂p̂ x

!
s0 ;ω

� �
∂n x

!
s0

� � G x
!��x!s0 ;ω
� �2

4
3
5dS0,
ð6:10Þ

where ∂/∂n represents a normal derivative with respect to the outward unit vector

on the surface S, and ∂p̂ =∂n is related to the normal surface velocity through the

Euler’s equation,

∂p̂ x
!
s;ω

� �
∂n x

!
s

� � ¼ iωρ0v̂ n x
!
s;ω

� �
: ð6:11Þ

Note that there is a change in sign on the right side of Eq. (6.10) because the unit

normal vector on the source surface S, which points to the interior region enclosed

by S as required by the Gauss theorem, should point into the region external to S in
the surface integral.

Equation (6.10) is known as the Helmholtz integral formulation, which states

that p̂ x
!
;ω

� �
anywhere in free space may be specified by integrating the surface

acoustic p̂ x
!
s;ω

� �
and normal surface velocity v̂ n x

!
s;ω

� �
through the free-space

Green’s function G x
!��x!s;ω
� �

. Accordingly, the dimensionality of the original

problem given by Eq. (6.1) is reduced by 1.

Note that the surface acoustic pressure p̂ x
!
s;ω

� �
and normal surface velocity

v̂ n x
!
s;ω

� �
are interrelated together and should not be specified simultaneously in

practice. For acoustic radiation problems, the normal surface velocity v̂ n x
!

s;ω
� �

is

usually specified in the boundary condition. So the first step in predicting

the radiated acoustic pressure p̂ x
!
;ω

� �
is to specify the surface acoustic pressure
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p̂ x
!
s;ω

� �
. This may be done by solving an integral equation obtained by taking the

limit as the field point approaches the surface x
! ! x

!
s in Eq. (6.10). Note that all

integrands in Eq. (6.10) become singular because R! 0 as x
! ! x

!
s. This difficulty

can be overcome by taking the Cauchy principal value [95]. It is emphasized that

the sequence in which this limit is taken is critical. A wrong sequence in taking the

limit x
! ! x

!
s leads to a wrong result.

Figure 6.1 depicts schematic of taking the limit x
! ! x

!
s. For simplicity yet

without loss of generality, we consider the case in which both x
!
s0 and x

!
s are located

inside ΔS, which is a circular segment of the source surface S, centered at x
!
s of a

radius γ. The segment ΔS is shaped like a bowl with radii RI and RII in the

perpendicular directions, respectively. The remainder of the surface is denoted as

(S�ΔS). The field point is at x
! ¼ x

!
s þ εn

!
x
!

s

� �
, which is a small distance ε away

from the surface point x
!
s along the unit normal direction n

!
x
!
s

� �
. Therefore the

distance between these two points is R ¼ ��x! � x
!
s0
�� (see Fig. 6.1a). As x

! ! x
!

s,

R! 0 and all integrands in Eq. (6.10) become singular. So care must be taken in

taking the limit of x
! ! x

!
s.

Note that if x
!

s0 is in (S�ΔS), R will not be 0 as x
! ! x

!
s, and all integrands in

Eq. (6.10) will be finite. So we only need to concentrate on the situation in which

x
!
s0 falls inside ΔS.

Fig. 6.1 Schematic of taking the limit as the field point approaches the surface x
! ! x

!
s. (a) The

field point is located at x
! ¼ x

!
s þ εn

!
x
!

s

� �
, the surface point is at x

!
s0 with the unit normal n

!
x
!

s0
� �

,

and the distance between these two points is R ¼ ��x! � x
!

s0
��. (b) Close-up view of taking the limit

as R! 0. The correct sequence is to take ε! 0 first, and then γ! 0
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Given that ΔS is small, the z component of a generic surface point x
!
s0 can be

expanded into a power series of x, y, RI, and RII, where x/RI� 1 and y/RII� 1,

z ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

R2
I

þ y2

R2
II

� �s
� C 1� x2

2R2
I

� y2

2R2
II

� �
: ð6:12Þ

Equation (6.12) is derived from the ellipsoid equation (x2/R2
I ) + (y

2/R2
II) + (z

2/

C2)¼ 1, where C is a constant. Therefore for x/RI� 1 and y/RII� 1, we have

z� C � �Cx2

2R2
I

� Cy2

2R2
II

: ð6:13Þ

By using (z�C), we have moved the origin of the coordinate system describing

the ellipsoid to the surface point x
!
s. The unit outward normal vector n

!
x
!
s0

� �
at x

!
s0

can now be approximated by

n
!

x
!
s0

� �
� x

RI

� �
e
!
x þ y

RII

� �
e
!
y þ e

!
z, ð6:14Þ

because x
!
s0 ¼ xe

!
x þ ye

!
y þ z� Cð Þe!z. Similarly, x

! ¼ x
!
s þ εn

!
x
!
s

� �
¼ εe

!
z. Thus

R
! ¼ x

! � x
!
s0 is given by

R
! ¼ εe

!
z � xe

!
x � ye

!
y � z� Cð Þe!z

� ε� Cx2

2R2
I

� Cy2

2R2
II

� �
e
!
z � xe

!
x � ye

!
y, ð6:15Þ

and the normal derivative of the free-space Green’s function ∂G x
!��x!s;ω
� �

=∂n in

Eq. (6.10) is

∂G x
!��x!s0 ;ω
� �
∂n x

!
s0

� � ¼ n
!

x
!

s0
� �

�∇s0G x
!��x!s0 ;ω
� �

� � x

RI

e
!

x þ y

RII

e
!

y þ e
!

z

� �
� ikR� 1

R2

� �
x
! � x

!
s0

R

 !
eikR

¼ x

RI

e
!

x þ y

RII

e
!

y þ e
!

z

� �
�

xe
!

x þ ye
!
y � εþ Cx2

2R2
I

þ Cy2

2R2
II

� �
e
!

z

R3

2
6664

3
7775 ikR� 1ð ÞeikR

� x2

RI

þ y2

RII

� ε� Cx2

2R2
I

� Cy2

2R2
II

� �
ikR� 1ð Þ 1þ ikRð Þ ¼ ε� Cx2

2R2
I

� Cy2

2R2
II

� �
1þ k2R2
	 


R3

,

ð6:16Þ
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where we have expanded eikR into the Taylor series for a small R as R! 0, and R is

written as

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ε� zð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 þ x2 þ y2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 þ r2

p
: ð6:17Þ

Meanwhile, Fig. 6.1b implies that for a small area ΔS, dS� rdr, x¼ rcosϕ, and
y¼ rsinϕ, where r varies from 0 to γ and ϕ from 0 to 2π. With Eqs. (6.16) and (6.17)

we can evaluate the integrals in Eq. (6.10) as x
! ! x

!
s. Let us consider the first

integral on the right side of Eq. (6.10). In particular, we divide the surface into ΔS
and (S�ΔS) in taking the limit as ΔS! 0,

ðð
S

p̂ x
!
s0 ;ω

� �∂G x
!
s x
!
s0

��� ;ω
� �
∂n x

!
s0

� � dS0 ¼ lim
ΔS!0

ðð
ΔS

p̂ x
!
s0 ;ω

� �∂G x
!

s

��x!s0 ;ω
� �
∂n x

!
s0

� � dS0

þ lim
ΔS!0

ðð
S�ΔS

p̂ x
!
s0 ;ω

� �∂G x
!
s x
!
s0

��� ;ω
� �
∂n x

!
s0

� � dS0,

ð6:18Þ

where all surface points in the first integral fall inside ΔS so that as x! ! x
!

s, R! 0.

For the second integral, x
!
s is in (S�ΔS), while x

!
s0 is in ΔS. Hence as x

! ! x
!

s,

R 6¼ 0. So we only need to focus on the first integral on the right side of Eq. (6.18)

because the second integral is regular as the field point approaches the surface

x
! ! x

!
s.

The required limit ΔS! 0 in Eq. (6.18) can be accomplished by taking

ε! 0 with γ fixed, followed by γ! 0. The order in which these limits are taken

is very important.

Substituting Eqs. (6.16) and (6.17) into the first integral on the right side of

Eq. (6.18) yields

lim
ΔS!0

ðð
ΔS

p̂ x
!

s0 ;ω
� �∂G x

!
s

��x!s0 ;ω
� �
∂n x

!
s0

� � dS0 ¼ lim
ε ! 0

γ ! 0

ðð
S�ΔS

p̂ x
!
s0 ;ω

� � ε

R3
rdrdϕ

þ lim
ε ! 0

γ ! 0

ðð
S�ΔS

p̂ x
!

s0 ;ω
� � εk2r

R
� k2r3

2R

cos 2ϕ

RI

þ sin 2ϕ

RII

� �� �
drdϕ

� lim
ε ! 0

γ ! 0

ðð
S�ΔS

p̂ x
!
s0 ;ω

� �
r3

2R3

cos 2ϕ

RI

þ sin 2ϕ

RII

� �
drdϕ:

ð6:19Þ
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From Fig. 6.1b we see that we can use trigonometric properties to rewrite

r¼ εtanα and R¼ εsecα. Accordingly, we have dr¼ εsec2αdα,
rdr¼ ε2tanαsec2αdα, and (ε/R3)rdr¼ sinαdα. As ε! 0, α! π/2. Therefore, the
first integral on the right side of Eq. (6.19) leads to

lim
ε ! 0

γ ! 0

ðð
S�ΔS

p̂ x
!
s0 ;ω

� � ε

R3
rdrdϕ ¼ lim

ε ! 0

γ ! 0

ð2π
0

ðπ=2
0

p̂ x
!
s0 ;ω

� � ε3 tan α sec 2α

ε3 sec 3α
dαdϕ

¼ lim
ε ! 0

γ ! 0

ð2π
0

ðπ=2
0

p̂ x
!
s0 ;ω

� �
sin αdαdϕ

¼ �2πp̂ x
!
s;ω

� �
cos α

��2π
0

¼ 2πp̂ x
!
s;ω

� �
: ð6:20Þ

Note that if we let γ! 0 first in Eq. (6.19), the integration limits for α would be

all 0, making the integral to vanish, which will be obviously wrong.

The second and third integrals on the right side of Eq. (6.19) are given by

lim
ε ! 0

γ ! 0

ðð
S�ΔS

p̂ x
!

s0 ;ω
� � εk2r

R
� k2r3

2R

cos 2ϕ

RI

þ sin 2ϕ

RII

� �� �
drdϕ

¼ lim
ε ! 0

γ ! 0

ð2π
0

ðπ=2
0

p̂ x
!
s0 ;ω

� � k2ε2

sec α
� k2ε3 tan 2α

2 sec α

cos 2ϕ

RI

þ sin 2ϕ

RII

� �� �
tan α sec 2αdαdϕ � 0:

ð6:21Þ

lim
ε ! 0

γ ! 0

ðð
S�ΔS

p̂ x
!
s0 ;ω

� �
r3

2R3

cos 2ϕ

RI

þ sin 2ϕ

RII

� �
drdϕ

¼ lim
ε ! 0

γ ! 0

ð2π
0

ðπ=2
0

p̂ x
!

s0 ;ω
� �

ε2 tan 3α sec 2α

2ε sec 3α

cos 2ϕ

RI

þ sin 2ϕ

RII

� �
dαdϕ � 0:

ð6:22Þ

Meanwhile, the second integral on the right side of Eq. (6.18) is regular as ΔS! 0.

So we have

lim
ΔS!0

ðð
S�ΔS

p̂ x
!

s0 ;ω
� �∂G x

!
s

��x!s0 ;ω
� �
∂n x

!
s0

� � dS0

¼
ðð
S0

p̂ x
!
s0 ;ω

� �∂G x
!
s

��x!s0 ;ω
� �
∂n x

!
s0

� � dS0: ð6:23Þ
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Following the same procedures as outlined above, we can show that the second

integral on the right side of Eq. (6.10) is regular as the field point approaches the

surface,

ðð
S0

∂p̂ x
!

s0 ;ω
� �

∂n x
!
s0

� � G x
!

x
!
s0

��� ;ω
� �

dS0 ¼ lim
ΔS!0

ðð
ΔS

∂p̂ x
!
s0 ;ω

� �
∂n x

!
s0

� � G x
!��x!s0 ;ω
� �

dS0

þ lim
ΔS!0

ðð
S�ΔS

∂p̂ x
!
s0 ;ω

� �
∂n x

!
s0

� � G x
!��x!s0 ;ω
� �

dS0 ¼
ðð
S0

∂p̂ x
!
s0 ;ω

� �
∂n x

!
s0

� � G x
!��x!s0 ;ω
� �

dS0:

ð6:24Þ

Substituting Eqs. (6.23) and (6.24) into (6.10) with x
! ! x

!
s then leads to

p̂ x
!

s;ω
� �

¼ 1

2π

ðð
S0

p̂ x
!

s0 ;ω
� �∂G x

!
s

��x!s0 ;ω
� �
∂n x

!
s0

� � � iωρ0v̂ n x
!

s0 ;ω
� �

G x
!

s

��x!s0 ;ω
� �2

4
3
5dS0,
ð6:25Þ

where both x
!
s and x

!
s0 are on the surface S.

Equation (6.25) is known as the surface Helmholtz integral equation because

there is an unknown variable under the integral sign. Once the surface acoustic

pressure p̂ x
!
s;ω

� �
and normal surface velocity v̂ n x

!
s;ω

� �
are specified, the

acoustic pressure p̂ x
!
;ω

� �
in free space is completely determined by Eq. (6.10).

The complexities of the problem are significantly reduced because one only deals

with discretization of a two-dimensional source surface. The trouble is that

Eq. (6.25) may fail to produce a unique solution whenever the frequency is equal

to 1 of the characteristic frequencies of the corresponding boundary value problem

in the interior region.

6.2 Nonuniqueness Difficulties

The nonuniqueness difficulties of the surface Helmholtz integral equation (6.25)

can be examined by looking at a general Fredholm integral equation of the second

kind [96],

u ςð Þ � Λ
ðð
S

K ς; ξð Þu ξð ÞdS ξð Þ ¼ F ςð Þ, ð6:26Þ

where u(ς) is unknown, K(ς, ξ) is called “L2 kernels,” meaning that they are square

integrable over S in the Lebesgue sense, Λ is some value whose meaning will be
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specified shortly, and F(ς) is a known function. The associate homogeneous

Fredholm integral equation is given by

u0 ςð Þ � Λ
ðð
S

K ς; ξð Þu0 ξð ÞdS ξð Þ ¼ 0: ð6:27Þ

The Sturm-Liouville theory [97] states that if the associated homogeneous

equation (6.27) has a nontrivial solution u0(ς), then Λ is a characteristic value or

eigenvalue of the kernel K(ς, ξ) and u0(ς) is a characteristic function of K(ς, ξ)
belonging to Λ. Otherwise Λ is a regular value.

The adjoint inhomogeneous Fredholm integral equation of the second kind is

expressible as

y ςð Þ � Λ�
ðð
S

K ς; ξð Þ�y ξð ÞdS ξð Þ ¼ H ςð Þ, ð6:28Þ

where K(ς, ξ)* is the adjoint kernel of K(ς, ξ) and H(ς) is given. The adjoint

homogeneous equation for Eq. (6.28) is

y0 ςð Þ � Λ�
ðð
S

K ς; ξð Þ�y0 ξð ÞdS ξð Þ ¼ 0: ð6:29Þ

The following theorems have been proven by Smithies [97]

Theorem 6.1 If Λ is a regular value of K(ς, ξ), then Λ* is a regular value of K(ς,
ξ)*, the homogeneous Eqs. (6.27) and (6.29) have only trivial solutions, and Eqs.
(6.26) and (6.28) have unique solutions for any L2 functions F(ς) and H(ς).

Theorem 6.2 If Λ is a characteristic value of K(ς, ξ), then Λ* is a characteristic
value of K(ς, ξ)*, and the homogeneous Eqs. (6.27) and (6.29) have nontrivial
solutions.

Theorem 6.3 If Λ is a characteristic value of K(ς, ξ), then the inhomogeneous
equation (6.27) has an L2 solution if and only if F(ς) is orthogonal to every L2

solution of the adjoint homogeneous equation (6.29), i.e., if F(ς) satisfiesðð
S

y0 ξð Þ�F ξð ÞdS ξð Þ ¼ 0: ð6:30Þ

Furthermore, even if the compatibility condition (6.30) is satisfied, the solution to
Eq. (6.26) is not determined uniquely since any multiple of u0(ς) can be added to a
particular solution of Eq. (6.26).

Now let us apply these theorems to examining the solution of the surface

Helmholtz integral equation (6.25). Let
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u ςð Þ ¼ p̂ x
!
s;ω

� �
,K ς; ξð Þ ¼ 1

2π

∂G x
!
s

��x!s0 ;ω
� �
∂n x

!
s0

� � ,Λ ¼ 1, and

F ςð Þ ¼ � iωρ0
2π

ðð
S

v̂ n x
!
s0 ;ω

� �
G x

!
s

��x!s0 ;ω
� �

dS0:

ð6:31Þ

Substituting Eq. (6.31) into Eq. (6.26), we obtain

p̂ x
!
s;ω

� �
� 1

2π

ðð
S0

p̂ x
!
s0 ;ω

� �∂G x
!
s

��x!s0 ;ω
� �
∂n x

!
s0

� � dS0

¼ � iωρ0
2π

ðð
S

v̂ n x
!
s0 ;ω

� �
G x

!
s

��x!s0 ;ω
� �

dS0, ð6:32Þ

where v̂ n x
!
s;ω

� �
is specified, and p̂ x

!
S;ω

� �
is to be determined. The corresponding

homogeneous equation is given by

p̂ x
!
s;ω

� �
� 1

2π

ðð
S0

p̂ x
!

s0 ;ω
� �∂G x

!
s

��x!s0 ;ω
� �
∂n x

!
s0

� � dS0 ¼ 0: ð6:33Þ

From Theorems 6.1 and 6.2 we know that Eq. (6.32) has a unique solution,

except at some characteristic frequencies for which Eq. (6.33) has nontrivial

solutions.

From Theorem 6.3 we further learn that at these characteristic frequencies,

Eq. (6.33) has no solution unless the compatibility condition [see Eq. (6.30)],

� iωρ0
2π

ðð
S

p̂ 0 x
!
s;ω

� �� ðð
S0

v̂ n x
!

s0 ;ω
� �

G x
!

s

��x!s0 ;ω
� �

dS0

2
4

3
5dS ¼ 0, ð6:34Þ

holds for all p̂ 0 x
!
s;ω

� ��
, which satisfies the adjoint homogeneous equation (6.29),

p̂ 0 x
!

s;ω
� ��

� 1

2π

ðð
S0

p̂ 0 x
!
s0 ;ω

� �� ∂G x
!
s x
!
s0

��� ;ω
� �
∂n x

!
s0

� � dS0 ¼ 0: ð6:35Þ

To show that compatibility condition (6.30) is satisfied, we consider the interior

problem, for which the Helmholtz integral formulation can be written as
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p̂ I x
!
;ω

� �
¼ � 1

4π

ðð
S0

p̂ I x
!
s0 ;ω

� �∂G x
!��x!s0 ;ω
� �
∂n x

!
s0

� � dS0

þ iωρ0
4π

ðð
S0

v̂ I
n x

!
s0 ;ω

� �
G x

!��x!s0 ;ω
� �

dS: ð6:36Þ

Note that Eq. (6.36) can be derived in the same way as that of Eq. (6.10), except that

the sign of the unit normal on the surface should be reversed for the interior

problem.

Taking the limit as the field point approaches the surface from the inside, we

obtain

p̂ I x
!
s;ω

� �
þ 1

2π

ðð
S0

p̂ I x
!
s0 ;ω

� �∂G x
!
s

��x!s0 ;ω
� �
∂n x

!
s0

� � dS0

¼ iωρ0
2π

ðð
S0

v̂ I
n x

!
s0 ;ω

� �
G x

!
s

��x!s0 ;ω
� �

dS0: ð6:37Þ

On the other hand, taking the normal derivative of the Helmholtz integral

formulation for the interior region, Eq. (6.36), we obtain

iωρ0v̂
I
n x

!
;ω

� �
¼ � 1

4π

∂
∂n

ðð
S0

p̂ I x
!
s0 ;ω

� �∂G x
!��x!s0 ;ω
� �
∂n x

!
s0

� � dS0

þ iωρ0
4π

ðð
S0

v̂ I
n x

!
s0 ;ω

� �∂G x
!��x!s0 ;ω
� �
∂n x

!
s0

� � dS0: ð6:38Þ

Taking the limit as x
! ! x

!
s from the inside yields

iωρ0v̂
I
n x

!
s;ω

� �
� iωρ0

2π

ðð
S0

v̂ I
n x

!
s0 ;ω

� �∂G x
!

s

��x!s0 ;ω
� �
∂n x

!
s0

� � dS0

¼ � 1

2π

∂
∂n

ðð
S0

p̂ I x
!
s0 ;ω

� �∂G x
!
s

��x!s0 ;ω
� �
∂n x

!
s0

� � dS0: ð6:39Þ

For the Dirichlet problem for which p̂ I x
!
s;ω

� �
¼ 0 on the source surface,

Eq. (6.39) reduces to
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iωρ0v̂
I
n x

!
s;ω

� �
� iωρ0

2π

ðð
S0

v̂ I
n x

!
s0 ;ω

� �∂G x
!
s

��x!s0 ;ω
� �
∂n x

!
s0

� � dS0 ¼ 0: ð6:40Þ

The roots of this homogeneous equation are called the Dirichlet eigenfrequencies,

k¼ kD. At these characteristic frequencies Eq. (6.40) has nontrivial solutions that

are known as the characteristic functions belonging to the characteristic frequencies

kD.
Note that Eq. (6.40) has the same form as the homogeneous surface Helmholtz

integral equation (6.33). Accordingly, they share the same characteristic frequen-

cies kD. In other words, the set of solutions v̂ I
n x

!
s;ω

� �
for the interior Dirichlet

problem are the same as those of p̂ x
!
s;ω

� �
for the exterior Neumann problem for

which v̂ n x
!
s;ω

� �
¼ 0 on the surface. In fact, applying this Neumann boundary

condition in Eq. (6.32), we obtain Eq. (6.33), which has the same form as that of

Eq. (6.40).

Now applying the Dirichlet boundary condition to the interior Helmholtz inte-

gral equation (6.37), we obtainðð
S0

v̂ I
n x

!
s0 ;ω

� �
G x

!
s

��x!s0 ;ω
� �

dS0 ¼ 0: ð6:41Þ

Because of the equivalence of solutions sets v̂ I
n x

!
s;ω

� �
for the interior region

and p̂ x
!
s;ω

� �
for the exterior region, we can interchange these two sets and rewrite

Eq. (6.41) asðð
S0

p̂ x
!
s0 ;ω

� �
G x

!
s

��x!s0 ;ω
� �

dS0 ¼ 0 or

ðð
S0

p̂ x
!

s0 ;ω
� ��

G x
!
s

��x!s0 ;ω
� �

dS0 ¼ 0:

ð6:42Þ

Substituting Eq. (6.42) into Eq. (6.34) and interchanging the order of integrations,

we obtain

� iωρ0
2π

ðð
S

p̂ 0 x
!
s;ω

� �� ðð
S0

v̂ n x
!
s0 ;ω

� �
G x

!
s

��x!s0 ;ω
� �

dS0

2
4

3
5dS

¼ � iωρ0
2π

ðð
S

v̂ n x
!

s;ω
� � ðð

S0

p̂ 0 x
!
s0 ;ω

� ��
G x

!
s

��x!s0 ;ω
� �

dS0

2
4

3
5dS � 0:

ð6:43Þ

Equation (6.43) shows that the compatibility condition is perfectly satisfied and

Eq. (6.33) has nontrivial solution. However, the solution to the surface Helmholtz
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integral equation (6.32) may be nonunique because any multiple of v̂ n x
!
s;ω

� �
may

be added to the particular solution and the compatibility condition (6.43) is still

satisfied.

Therefore the surface Helmholtz integral equation (6.25) fails to yield a unique

solution whenever the frequency coincides with one of the characteristic values for

the interior Dirichlet boundary value problem. However, among all these charac-

teristic frequencies there is only one set that also satisfies the interior Helmholtz

integral formulation simultaneously. This is the basis for the Combined Helmholtz

Integral Equation Formulation or CHIEF for short that provides unique solutions

for acoustic radiation problems at any frequency.

6.3 Discrete Helmholtz Integral Formulations

For arbitrarily shaped surfaces, the Helmholtz integral formulation (6.10) and the

surface Helmholtz integral equation (6.25) cannot be solved analytically. Hence

numerical solutions are sought. Suppose that the surface is discretized into seg-

ments with N nodes, then Eqs. (6.10) and (6.25) can be rewritten as

p̂ x
!
;ω

� �
¼ Tp x

!��x!s;ω
� �n o

1�N
p̂ x

!
s;ω

� �n o
N�1

, ð6:44Þ

p̂ x
!
;ω

� �
¼ Tv x

!��x!s;ω
� �n o

1�N
v̂ n x

!
s;ω

� �n o
N�1

, ð6:45Þ

where Tp x
!��x!s;ω
� �n o

1�N
and Tv x

!��x!s;ω
� �n o

1�N
represent, respectively, the

transfer functions that correlate the surface acoustic pressure and normal surface

velocity to the field acoustic pressure, and are given by

Tp x
!��x!s;ω
� �n o

1�N
¼ 4πð Þ�1 Df g1�N þ Mf g1�N Ms½ 	�1

N�N 2π I½ 	N�N � Ds½ 	N�N

	 
� �
,

ð6:46Þ
Tv x

!��x!s;ω
� �n o

1�N
¼ 4πð Þ�1 Df g1�N 2π I½ 	N�N � Ds½ 	N�N

	 
�1
Ms½ 	N�N þ Mf g1�N

� �
,

ð6:47Þ

where [I]N�N is a unitary matrix, [Ms]N�N and [Ds]N�N depict the effects of mono-

poles and dipoles on a surface point, respectively, and [M]N�N and [D]N�N describe

those of monopoles and dipoles on a field point, respectively. The μνth elements of

these matrices are given by
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Mμν ¼ G x
!
μ

��x!s0,ν;ω
� �

Jμν and Dμν ¼
∂G x

!
μ

��x!s0,ν;ω
� �
∂n x

!
s0

� � Jμν, ð6:48Þ

Ms,μν ¼ G x
!
s,μ

��x!s0,ν;ω
� �

Jμν and Ds,μν ¼
∂G x

!
s,μ

��x!s0,ν;ω
� �
∂n x

!
s0

� � Jμν, ð6:49Þ

where Jμν indicates the Jacobian of the surface integration in Eqs. (6.46) and

(6.47) [98].

In the BEM-based NAH, the goal is to reconstruct the surface acoustic quantities

based on discrete N nodes. So we need to take at least N measurement points of the

field acoustic pressures to form a square matrix in Eqs. (6.44) and (6.45). Accord-

ingly, we can rewrite Eqs. (6.44) and (6.45) as

p̂ x
!
m;ω

� �n o
N�1

¼ Tp x
!��x!s;ω
� �h i

N�N
p̂ x

!
s;ω

� �n o
N�1

, ð6:50Þ

p̂ x
!

m;ω
� �n o

N�1
¼ Tv x

!��x!s;ω
� �h i

N�N
v̂ n x

!
s;ω

� �n o
N�1

, ð6:51Þ

where p̂ x
!
m;ω

� �
, m¼ 1 to N, represent the measured acoustic pressures.

Equations (6.50) and (6.51) enables one to reconstruct surface acoustic pressure

p̂ x
!
s;ω

� �
and normal surface velocity v̂ n x

!
s;ω

� �
through inversion of matrices

Tp x
!��x!s;ω
� �h i

N�N
and Tv x

!��x!s;ω
� �h i

N�N
, respectively. In practice, the measured

acoustic pressures p̂ x
!
m;ω

� �
are not error free. As a result, the matrix equations

(6.50) and (6.51) may be ill conditioned. To overcome this difficulty, regularization

can be employed, the simplest one being a TSVD to eliminate the evanescent waves

that fall below the background noise level. Accordingly, p̂ x
!
s;ω

� �
and v̂ n x

!
s;ω

� �
can be written as

p̂ x
!

s;ω
� �n o

N�1
¼ Vp


 �
N�N

Σ�1
p

h i
N�N

Up


 �T
N�N

p̂ x
!
m;ω

� �n o
N�1

, ð6:52Þ

v̂ n x
!
s;ω

� �n o
N�1

¼ Vv½ 	N�N Σ�1
v


 �
N�N

Uv½ 	TN�N p̂ x
!

m;ω
� �n o

N�1
, ð6:53Þ

where [Vp]N�N and [Up]N�N, respectively, are the right and left unitary matrices of

the transfer matrix Tp x
!��x!s;ω
� �h i

N�N
, namely, they satisfy [Vp]N�N[Vp]

T
N�N ¼

[I]N�N and [Up]N�N[Up]
T
N�N ¼ [I]N�N, and [Σp]

� 1¼ diag[. . ., 1/σp,n, . . .] stands
for the diagonal matrix containing inversions of the non-zero singularities σp,n of

the matrix Tp x
!��x!s;ω
� �h i

N�N
. Similarly, [Vv]N�N and [Uv]N�N are the right and left
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unitary matrices of the transfer matrix Tv x
!��x!s;ω
� �h i

N�N
, respectively,

[Vv]N�N[Vv]
T
N�N ¼ [I]N�N and [Uv]N�N[Uv]

T
N�N ¼ [I]N�N, and [Σv]

� 1¼ diag

[. . ., 1/σv,n, . . .] is the diagonal matrix that contains inversions of the non-zero

singularities σv,n of the matrix Tv x
!��x!s;ω
� �h i

N�N
.

Equations (6.52) and (6.53) gives the reconstructed acoustic quantities on the

surface of any arbitrary structure. A rule of thumb in discretization for the BEM

method is to have a minimum of six nodes per wavelength. For a complex

structure vibrating at mid-to-high frequencies, the total number of discrete

nodes needed to depict the surface acoustic quantities can be extremely large.

As a result, the number of measurements required to reconstruct the acoustic

quantities can be very high, thus making the reconstruction process unrealistically

time consuming.

6.4 The Combined Helmholtz Equation Least-Squares

Method

To enhance the efficiency of the BEM-based NAH and improve the accuracy of

the HELS method for reconstructing the acoustic field generated by an

arbitrary structure, we combine these two methods and describe the procedures as

follows:

1. Take the acoustic pressures p̂ x
!meas

m ;ω
� �

, m¼ 1 to M, on the hypothetical

spherical surface that encloses the target source surface.

2. Divide the measurement points into two groupsM1 andM2, whereM¼M1 +M2.

3. Use M1 as the input to establish the HELS formulations to reconstruct the

acoustic pressure on M2 points on the measurement surface,

p̂ x
! rec

m ;ω
� �n o

M2�1
¼ Gpp x

! rec

m

��x!meas

m ;ω
� �h i

M2�M1

p̂ x
!meas

m ;ω
� �n o

M1�1
, ð6:54Þ

where Gpp x
! rec

m

��x!meas

m ;ω
� �h i

N�M1

is defined in Eq. (3.16).

Note that since the least-squares method is used, the expansion solution (6.54)

with J¼M1 will be the best fit at M1 measurement locations, but it may not be

the best approximation for the remaining M2 values. This is especially true when

the measured acoustic pressures contain errors. Consequently, the accuracy in

reconstruction at M2 locations will increase with J first, and then deteriorates

thereafter.
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4. Find the optimal expansion term Jop, which is equivalent to finding a low-pass

filter for the spherical harmonics such that the evanescent waves below the

background noise level are eliminated. There are many regularization techniques

available for solving a set of linear equations. The simplest yet very effective for

the HELS method is an iteration scheme,

min
J

XM
i¼1

����p̂ x
! rec

m, i;ω
� �

� p̂ x
!meas

m, i ;ω
� �����2

2
! Jop, ð6:55Þ

where reconstruction is done on the measurement surface to determine the value

of Jop.
5. Use Jop in Eq. (6.55) to regenerate the acoustic pressures at as many points as

necessary on the measurement surface, say, the same as that of discrete notes,

p̂ x
! rec

m ;ω
� �n o

N�1
¼ Gpp x

! rec

m

��x!meas

m ;ω
� �h i

N�M1

p̂ x
!meas

m ;ω
� �n o

M1�1
: ð6:56Þ

6. Take these regenerated acoustic pressures p̂ x
! rec

m ;ω
� �

as input data to the

BEM-based NAH formulations to reconstruct the acoustic pressure

p̂ x
! rec

s ;ω
� �

and normal velocity v̂ n x
! rec

s ;ω
� �

on the source surface,

p̂ x
! rec

s ;ω
� �n o

N�1

¼ Vp


 �
N�N

Σ�1
p

h i
N�N

Up


 �T
N�N

Gpp x
! rec

m

��x!meas

m ;ω
� �h i

N�M1

p̂ x
!meas

m ;ω
� �n o

M1�1
,

ð6:57Þ
v̂ n x

! rec

s ;ω
� �n o

N�1

¼ Vv½ 	N�N Σ�1
v


 �
N�N

Uv½ 	TN�N Gpp x
! rec

m

��x!meas

m ;ω
� �h i

N�M1

p̂ x
!meas

m ;ω
� �n o

M1�1
,

ð6:58Þ

where the matrix Gpp x
! rec

m

��x!meas

m ;ω
� �h i

N�M1

is given, respectively, by

Gpp x
! rec

m

��x!meas

m ;ω
� �h i

N�M1

¼ Ψ x
! rec

m ;ω
� �h i

N�Jop
Ψ x

!meas

m ;ω
� �h iH

Jop�M1

Ψ x
!meas

m ;ω
� �h i

M1�Jop

� � -1

Ψ x
!meas

m ;ω
� �h iH

Jop�M1

,

ð6:59Þ

where the elements of Ψ x
!meas

m ;ω
� �h i

M1�Jop
are given in Eq. (3.2).
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The enhancement in the reconstruction efficiency is obvious. Equation (6.59)

shows that p̂ x
! rec

s ;ω
� �

and v̂ n x
! rec

s ;ω
� �

on N nodes of the arbitrarily shaped surface

can now be reconstructed using M1 measurements. Since M << N, the required

measurement time is significantly reduced.

Note that the accuracy of the regenerated field acoustic pressure is consistent

with that of measured data for x
!
m ∈ X

!
. This is because the acoustic pressure for

x
!
m ∈ X

!
can be completely and uniquely described by Eq. (6.54) as J!1. The

omission of the higher-order terms, namely, the evanescent waves have a negligibly

small impact on the resultant field acoustic pressure. Hence, there is no need to take

more measurements than necessary. In fact, the accuracy of reconstruction would

remain unchanged, even if the regenerated field acoustic pressures were replaced by

the real measurements. The trade-off is that the accuracy in reconstruction may be

limited because certain evanescent waves have been lost as measurements are taken

over a spherical surface rather than a conformal surface at close range.

It is emphasized that one cannot extend the processes discussed above to the

region inside the minimum sphere, either by taking measurements or regenerating

the acoustic pressures. This is because the acoustic pressure there cannot be

represented adequately by the spherical waves.

6.5 Applications of the CHELS Method

In this section we examine the performance of the CHELS method and compare its

results with that of the BEM-based NAH. In particular, we want to check if CHELS

can yield satisfactory reconstruction of an acoustic field accurately and efficiently

based on greatly reduced input data.

Example 6.1 Consider a partially vibrating sphere of radius a¼ 0.1 m. The reason

for selecting this example is because it contains very rich evanescent waves and yet

the analytic solution is readily available. The normal surface velocity distribution

v̂ n can be written as

v̂ n a; θ;φ;ωð Þ ¼ v0, 0 
 ��θ�� 
 θ0
0, otherwise

�
, ð6:60Þ

where v0 is a constant and the half vertex angle is, say, ∠θ0¼ 36�.

Since the source is a sphere, the minimum surface is spherical. Following the

guidelines as given in Chap. 5, we gauge the measurement distance d and micro-

phone spacing δ with respect to the critical spatial wavelength λcr. Suppose that as
an initial guess, we set λcr¼ a/3 and δ< λcr/2. Since a¼ 0.1 m, we find λcr� 0.033 m
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and δ¼ 0.0165 m. The number of measurement points can be estimated by using

Eq. (5.3). Since the source surface S¼ 2πa2, a¼ 0.1 m, and λcr� 0.033 m, we have

M> 4� (2π� 0.12)/0.0332� 278. All the input acoustic pressures are calculated

by using the formulation given by Morse and Ingard [99], of which M1¼ 76 are

used in Eq. (6.56) to regenerate the acoustic pressures on the spherical measurement

surface and the rest M2¼ 202 points are used to optimize the number of expansion

functions Jop. In this case Jop¼ 26 is found to be acceptable for 0< ka
 10. The

regenerated field acoustic pressures are taken as input to Eqs. (6.57) and (6.58).

Note that for any given set of measurements in engineering practice, a larger

value of Jop indicates an inclusion of more evanescent waves and the higher the

accuracy of reconstruction can be. A smaller value of Jop implies a lower SNR and

less evanescent waves included in input data. As a result, the reconstructed acoustic

field may be unsatisfactory.

For comparison, we use the BEM-based NAH to reconstruct the surface acoustic

quantities. To ensure the accuracy in reconstruction, we use six discrete nodes per

structural wavelength to depict the surface acoustic quantities. Suppose that we take

six discrete nodes per critical spatial wavelength, δ¼ λcr/6. Since λcr� 0.033 m, we

have δ¼ 0.0055 m, which leads to a total number of N¼ 602 discrete nodes.

Accordingly, we need to take M¼ 602 measurement points of the acoustic pres-

sures, which are obtained by using the formulation given by Morse and Ingard [99]

and taken as input to the BEM-based NAH Eqs. (6.52) and (6.53) to reconstruct the

surface acoustic pressure and normal component of the surface velocity.

In this example, we show the reconstruction results based on a coarse mesh with

an average distance between neighboring discrete nodes δ¼ 0.032 m, which is

twice the value of δ¼ 0.0165 m as suggested for CHELS. Accordingly, the number

of nodes by using a triangular element and the first-order interpolation is reduced to

N¼ 152. The number of measurement points is the same as that of the discrete

nodes, i.e., M¼ 152.

Figure 6.2 shows the comparison of the reconstructed acoustic pressures at

ka¼ 1.46 on the generator of the sphere. Results show that the surface acoustic

pressures reconstructed by CHELS with N¼ 152 agree very well with those of the

BEM codes with N¼ 602 and the analytic solutions.

While a fine mesh does not make much difference in reconstructing the acoustic

pressure, it does have a significant impact on reconstructing the normal surface

velocity. Figure 6.3 shows that a coarse mesh with N¼ 152 nodes only enables one

to capture the main characteristics of the normal surface velocity distribution. By

using a fine mesh of N¼ 602 nodes and the same number of the input data points

regenerated by Eq. (6.56), we can significantly improve the reconstruction accu-

racy. This is because the surface normal velocity distribution has a sharp edge that

contains higher wavenumber contents than the surface acoustic pressure does.

The fact that the CHELS method can yield satisfactory reconstruction with

relatively few measurements is of a great significance. It indicates that the fidelity

of the input data regenerated by Eq. (6.56) is preserved. Hence, one does not need to

take more measurements than necessary. Moreover, it shows that one can improve
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the accuracy by increasing the input data. Because these data are calculated but not

measured, the efficiency of reconstruction is significantly enhanced.

However, one should not expect the normal surface velocity to converge to the

true value even as the number of regenerated input data approaches infinity. This is

because the accuracy of reconstruction is controlled by the amount of evanescent

waves captured in the measured data. The closer the measurements are to the source

surface, the more the evanescent waves are captured, and the more accurate the

Fig. 6.3 Comparison of reconstructed normal component of velocity distributions on the surface

of a partially vibrating sphere at ka¼ 1.46 based on measurements taken at r¼ 0.105 m

Fig. 6.2 Comparison of the reconstructed acoustic pressure distributions on the surface of a

partially vibrating sphere at ka¼ 1.46 based on measurements taken at r¼ 0.105 m
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reconstruction is. Once the measurement distance is fixed, so is the amount of the

evanescent waves that can be captured. Thus the improvement in the reconstruction

accuracy through increasing the number of regenerated input data is limited.

Also, it is emphasized that we do not need to have exactly the same measurement

number as the discrete nodes. This is because using SVD and regularization, we can

have either an over- or under-determined system of equations, or equivalently, take

more or fewer measurements than the discrete nodes. However, if the measure-

ments are too few, a spatial aliasing may occur and the resulting reconstruction can

be greatly distorted. Figure 6.4 displays that when 152 field acoustic pressures are

taken as the input to the BEM-based NAH for a surface with 602 discrete nodes, the

resulting reconstruction of the surface acoustic pressure is severely distorted.

To show the effect of measurement distances on the reconstruction accuracy, we

present the reconstructed surface acoustic quantities based on conformal measure-

ments taken at different radial distances r¼ 0.105, 0.110, 0.125, and 0.150 m under

ka¼ 1.46. Figure 6.5 depicts that as measurement distances increase, more and

more evanescent waves are lost in the input data. As a result, the reconstructed

normal surface velocity becomes more and more distorted. However the accuracy

in reconstruction of the surface acoustic pressure remains essentially unchanged

(results omitted for brevity). This is because the normal surface velocity contains

more near-field effects than the surface acoustic pressure does. These results

demonstrate the importance of keeping the measurements very close to the target

source surface.

Fig. 6.4 Reconstructed acoustic pressure distribution on the surface of a partially vibrating sphere

at ka¼ 1.46 using the BEM-based NAH with 602 discrete nodes and 152 measurements taken at

r¼ 0.105 m
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Example 6.2 Consider a simplified engine block with an overall length of 0.460 m,

overall width of 0.435 m, and overall height of 0.630 m. To test the effectiveness of

the CHELS method, sharp edges and corners and abrupt changes in surface

contours are built in this model. For such arbitrary geometry, analytic solutions

do not exist and numerical solutions must be sought.

To simulate acoustic radiation from this engine block in a free field,

harmonic excitations of different amplitudes are assumed on three arbitrarily

selected surfaces: 5� 105 N/m2 on the top and 2� 105 N/m2 on part of the front and

back surfaces at various frequencies (see Fig. 6.6). The bottom of the engine block is

clamped with zero displacement and slope, and the rest surfaces are

left unconstrained. The normal surface velocity distributions are obtained

using the standard FEM codes and the surface acoustic pressures are specified

using the BEM codes with 1,548 triangular elements and 776 discrete nodes.

Once the surface acoustic quantities are specified, field acoustic pressures are

calculated.

To reconstruct the surface acoustic quantities using the CHELS method, we take

M¼ 277 measurement points over an imaginary sphere of radius r¼ 0.408 m that

encloses the engine block, which is much fewer than 776 points. In particular, we

select M1¼ 56 as input to set up the HELS formulations and M2¼ 221 to optimize

the number of expansion functions. For the frequency range considered, this

optimal value is found to be approximately Jop¼ 22. Once this is done, the acoustic

pressures on the measurement surface are regenerated by Eq. (6.56). The results are

taken as input data to Eqs. (6.57) and (6.58) to reconstruct the surface acoustic

quantities.

Fig. 6.5 Comparison of the reconstructed normal component of velocity on the surface of a

partially vibrating sphere ka¼ 1.46 using the CHELS method based on measurements taken at

different radial distances
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Note that one can divide the measurements into two groups of any sizes.

However, for an arbitrarily shaped surface, the clearance between the measurement

and source surfaces may vary from one point to another. As a result, the amounts of

the evanescent waves captured in the input data may be different. To minimize the

impact of the loss of evanescent waves in reconstruction, a low-pass filter must be

used to eliminate the evanescent waves that drop below the background noise level.

This is equivalent to specifying the optimal expansion number Jop. Experiment

results indicate that in most cases it is better to select a smaller value for M1 and a

larger value for M2 to achieve the desired reconstruction.

It is emphasized that even if all steps as suggested above are followed, it will be

unrealistic to expect ideal reconstruction. This is because: (1) measurements are

taken on a spherical surface, not a conformal surface, and (2) the number of

measurement points is greatly reduced in CHELS to alleviate the complexities

involved taking an excessive number of measurements demanded by the

BEM-based NAH.

Also noted is the fact that the accuracy of reconstruction varies with frequency.

To ensure that measurements are taken in the near field, we gauge the standoff

distance dwith respect to the critical spatial wavelength λcr, which is set at λcr¼ πa/8,
and require that the following conditions be satisfied: (1) d� a, and (2) d� λcr.
Because in the CHELS method the standoff distance d is nonuniform, we take the

maximum clearance between the measurement and source surfaces dmax. Therefore,

these conditions are rewritten as dmax� a and dmax� λcr¼ πa/8.
In this case the characteristic dimension of the engine is a¼ (0.435 + 0.460

+ 0.630)/3¼ 0.508 m and the maximum clearance between measurement and

source surface is dmax¼ 0.19 m< 0.508 m, so the first condition is satisfied.

However, the second condition is not because dmax¼ 0.19 m and

λcr¼ πa/8¼ 0.197 m. As a result, some near-field information is lost in the

input data.

In what follows, we present the reconstructed acoustic fields on the engine block

surfaces based on M¼ 277 measurement points. For validation purposes, we use

XY

Z

p = 2 x 105 N/m2

p = 5 x 105 N/m2

p = 2 x 105 N/m2

Clamped boundary

Fig. 6.6 Schematic of an engine block subject to distributed harmonic force excitations
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Eq. (6.3-6) to reconstruct the surface acoustic quantities based on M¼ 776 mea-

surement points, which are the same as the discrete nodes. Figures 6.7 and 6.8

display the comparisons of the reconstructed acoustic pressure and normal velocity

distributions on the surfaces of the engine block by using the CHELS method and

benchmark values, respectively, at ka¼ 1.

It is emphasized that this engine block represents a fairly complex structure that

contains sharp edges, corners, and abrupt changes along the surface contours. Yet

satisfactory reconstruction is obtained by using the CHELS method with a reduc-

tion in input data points by more than 63 %. In contrast, when data points are

reduced to one-half, M¼ 386, aliasing occurs in the reconstructed acoustic quanti-

ties obtained by using the BEM-based NAH because input data are severely under

sampled (see Fig. 6.9) [100].

Fig. 6.7 Comparison of the reconstructed acoustic pressure distributions over the surfaces of

engine block using the CHELS method with M¼ 277 data points (right column) and benchmark

values with M¼ 776 data points (left column) at ka¼ 1
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Equations (6.57) and (6.58) can be used to reconstruct acoustic radiation in the

far field by setting the reconstruction point at x
! rec

s ¼ x
!rec

. This is straightforward

because all field points are now outside the minimum sphere, so the acoustic field

can be adequately represented by the outgoing spherical waves. Moreover, the loss

of the evanescent waves has a negligible impact on reconstruction [101].

Figure 6.10 demonstrates comparisons of the reconstructed normal component

of the time-averaged acoustic intensity by using the CHELS method on two planes

(2.6� 2.6 m2) at y¼�3 m measured from the center of the engine block versus the

BEM results. Note that the peak amplitude of the time-averaged intensity on the

front plane is slightly lower than that of the back plane. This is because more forces

are acting on the backside than on the front side of the engine block.

Fig. 6.8 Comparison of the reconstructed normal surface velocity distributions over the surfaces

of engine block using the CHELS method withM¼ 277 data points (right column) and benchmark

values with M¼ 776 data points (left column) at ka¼ 1
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These results demonstrate that the CHELS method can be used to enhance the

efficiency in reconstruction by taking relatively fewer measurement points on a

minimum sphere enclosing the target source, yet still allowing for a relatively

accurate reconstruction of the acoustic quantities. This is done by setting up the

HELS formulations using a finite number measurement points, and regenerating as

many acoustic pressures as those required by the BEM-based NAH to reconstruct

the acoustic quantities on the source surface as well as in the field.

Fig. 6.9 Comparison of the reconstructed acoustic pressure distributions on the engine block

surfaces by using the BEM-based NAH with M¼ 388 input data point and the benchmark results.

In this case, aliasing occurs because the input data are severely under sampled
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Fig. 6.10 Comparison of the reconstructed normal component of the time-averaged acoustic

intensity distribution over two planes at y¼�3.0 m measured with respect to the center of the

engine block using the CHELS method (right column) and BEM-based NAH (left column) at
ka¼ 1
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Problems

6.1. What are the differences between the Helmholtz equation and surface Helm-

holtz integral equation (6.25)?

6.2. Show that the surface Helmholtz integral equation can be derived by taking

the limit as the field point x
!
approaches the surface point x

!
s in Eq. (6.10).

6.3. Show that the surface Helmholtz integral equation (6.25) fails to yield a

unique solution when the frequency approaches one of the Dirichlet eigen-

value for the interior region.

6.4. Consider the acoustic pressure inside an arbitrarily shaped enclosure as

shown in Fig. 5.9. Follow the same procedures as shown in Sect. 6.1 and

derive the Helmholtz integral formulation for the interior region. What is the

surface over which the integration are taken in this case?

6.5. Continue Problem 6.4 and derive the surface Helmholtz integral equation for

the interior region by taking the limit as x
! ! x

!
s from the inside.

6.6. Continue Problem 6.5 and discuss whether the surface Helmholtz integral

equation for the interior region suffers from the same nonuniqueness diffi-

culty at certain eigenfrequencies as that for the exterior region.

6.7. Discuss how to determine the acoustic pressure radiated from a vibrating

surface by using the Helmholtz integral theory. Outline the steps required in

solving this problem.

6.8. What is the CHELS method? What are the advantages and limitations of the

CHELS method compared with the HELS- and BEM-based NAH?

6.9. Discuss the implementation of the CHELS method and compare it to that of

HELS method.

6.10. Discuss the implementation of the CHELS method and compare it to that of

BEM-based NAH.
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