
Chapter 4

Validity of the HELS Method

The validity challenges came at the joint meetings of the 136th Meeting of the

Acoustical Society of America (ASA), the 2nd Convention of the European Acous-

tics Association (EAA), and the 25th German Annual Conference on Acoustics

(DAGA) held in Berlin, Germany, 1999 [56]. The major questions were as follows:

“How can the acoustic field on the surface of any non-spherical structure be

described by the spherical wave functions?” “Is this a Rayleigh hypothesis in

NAH that pushes a solution formulation beyond its region of validity?”

4.1 Rayleigh Hypothesis

At the turn of the last century, Rayleigh used a series expansion of plane waves to

depict the acoustic pressure field resulting from an incident time-harmonic acoustic

plane wave scattered on a one-dimensional periodic, impenetrable corrugated

surface S (see Fig. 4.1). The corrugations can be expressed mathematically as

[57, 58]

ς ¼ b cos 2πx=λxð Þ, ð4:1Þ

where b and λx are, respectively, the amplitude and wavelength of corrugation of the

surface S and θ is the angle of incidence with respect to the unit normal of the

surface S.
Above the highest point of the corrugations of surface S (z> b), the complex

amplitude of the total acoustic pressure (with the time-harmonic function e�iωt

omitted for brevity) as given by Rayleigh was
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p̂ x; z;ωð Þ ¼ p̂ in eikz cos θ þ R ωð Þe�ikz cos θ
� �þ X1

n¼�1
Ane

i nkxxþkx sin θ�kz cos θnð Þ, ð4:2Þ

where p̂ in is the complex amplitude of the incident acoustic pressure, R(ω) is the
acoustic pressure reflection coefficient, An represent the expansion coefficients that

are determined by the boundary conditions on the corrugated surface S, kx¼ 2π/λx is

the spatial wavenumber of the corrugations, and cos θn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2θn

p
, here

sinn¼ sin θ + n(kx/k). The first and second terms on the right side of Eq. (4.2)

represent, respectively, the incident and reflected acoustic pressure waves acting

on a smooth surface and the infinite series imply the acoustic pressure scattered

from the corrugated surface as shown in Fig. 4.1.

In an attempt to use the boundary conditions on S, Rayleigh assumed that the

infinite series (4.42) was valid everywhere, including the corrugated surface S. This
is known as the Rayleigh hypothesis. This hypothesis was tested on various acoustic

scattering problems and had aroused many controversies over the next 60 years.

Sometimes the results given by the Rayleigh series (4.2) were correct, but most of

times they were completely wrong.

The validity of Rayleigh hypothesis may be examined through analyticity of the

solution. If the solution to the acoustic pressure can be analytically continued from

the field to the surface, then the expansion coefficients may be determined by the

boundary conditions, and the Rayleigh hypothesis is correct [59]. Therefore to

answer the question of the validity of Rayleigh hypothesis, it is necessary to find

the distribution of singularities using the analytic continuation of the acoustic field

across the surface of any scatterer.

These controversies were eventually settled by Millar [59–61] who proved that

the Rayleigh hypothesis was neither completely right nor completely wrong. In

fact, the validity of a Rayleigh series was governed by the locations of the

singularities of the analytic continuation of the exterior scattered field across a

scattering surface. For example, in the case of scattering from the gratings and

periodic corrugated structures, the Rayleigh series solution would be valid if

singularities lay below the lowest point of a corrugated surface. If the singularities
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Fig. 4.1 Schematic of an incident time-harmonic acoustic pressure plane wave on a periodic

corrugated surface S
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lay above the lowest point of a corrugated surface, the series solution is valid only in

the region above the highest singularities.

For the case of a periodic corrugated surface as depicted in Fig. 4.1, Millar

showed that the Rayleigh hypothesis would be wrong and Eq. (4.2) be invalid when

λxb> 0.0448, and neither wrong nor right when λxb� 0.0448 [62]. For example,

consider a corrugated surface of a wavelength λx¼ 1 m and corrugation height

b¼ 0.05 m. Because λxb¼ 0.05> 0.0448, it would be wrong to use Eq. (4.2) to

depict the scattered acoustic pressure on the corrugated surface S. On the other

hand, if λx¼ 1 m and b¼ 0.045 m, then λxb¼ 0.045< 0.0448 and it might be

acceptable to use Eq. (4.2) to describe the scattered acoustic pressure on and

above the corrugated surface S.
Millar gave the formal proof of the method for determining the singularities of

the acoustic field for a periodically corrugated surface [60]. Hill and Celli offered a

heuristic method to estimate the singularities of a periodic corrugated surface

[63]. van der Berg and Fokkema studied the acoustic scattering from a nonperiodic

corrugated surface [64].

Similarly, in a two-dimensional acoustic scattering scenario, we can use a

Rayleigh series in terms of the outgoing cylindrical waves to describe the scattered

acoustic pressure field,

p̂ scattered r;ϕ;ωð Þ ¼
X1
n¼�1

AnH
1ð Þ
n krð Þeinϕ, ð4:3Þ

where H
ð1Þ
n (kr) represents the nth-order cylindrical Hankel functions of the

first kind.

Once again, the validity of Eq. (4.3) will be correlated to the distribution of

singularities in the analytic continuation of the acoustic pressure field across the

surface of a two-dimensional scatterer. Figure 4.2 depicts an arbitrary circle S,
which is the cross section of an infinite cylinder. When the singularities all lie inside

the maximum circle Smax that inscribes the circle S, the series solution (4.3)

converges absolutely and uniformly in the compact subsets of the exterior of Smin

that circumscribes the scatterer. When the singularities lie on or outside the

maximum circle Smax, the series solution (4.3) will be valid to depict the scattered

acoustic pressure above the highest singularities, but invalid below these singular-

ities, because Eq. (4.3) only converges absolutely and uniformly outside the circle

defined by the locations of the singularities.

A number of people have looked into the problem of locating possible singular-

ities of the analytic continuation of solutions to the Helmholtz equation for a

two-dimensional scatterer with analytic data across analytic boundaries [65–

67]. In particular, Maystre and Cadilhac developed a method for determining

possible singularities [68], and Keller gave the proof of its validity [69].

Note that in general there is no way of determining the locations of the singu-

larities in the analyticity of solution to the Helmholtz equation because analytic

solutions for arbitrary geometry do not exist. In an attempt to determine possible
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singularities of the analytic continuation without the explicit knowledge of the

solution, Millar made use of the Schwarz function [70], which utilized of the

geometric properties of the boundary. By locating the singularities of the Schwarz

function, possible singularities in the analytic continuation of the solution might be

determined. However, there is no way of knowing if these possible singularities are

indeed the actual singularities. Thus in practice the Rayleigh series solution (4.3) is

utilized for domains that are free of singularities. Examples of these include

separable geometry such as a sphere and an infinite cylinder.

In three-dimensional acoustic scattering problems, the Rayleigh series can be

expanded in terms of the spherical Hankel functions and spherical harmonics, with

their expansion coefficients determined by the orthogonality properties of the

spherical harmonics.

p̂ r; θ;ϕ;ωð Þ ¼
X1
n¼0

Xn
m¼�n

Amnh
1ð Þ
n krð ÞYm

n cos θð Þ: ð4:4Þ

In Examples 2.10 and 2.11 it has been shown that the infinite series expansion

(4.4) can be used to predict acoustic radiation from a vibrating sphere, given the

normal surface velocity on a spherical source surface as the boundary condition; or

reconstruct the acoustic pressure anywhere including the spherical source surface,

given the acoustic pressure on a spherical surface at some distance away from the

source surface.

Note that there is a major difference between prediction and reconstruction

problems. The former represents a forward problem, whereas the latter stands for

an inverse problem. A forward problem is mathematically well defined and errors in

input data are bounded in prediction. On the other hand, an inverse problem is

mathematically ill posed and errors in input data may increase without a bound in

reconstruction. To get a bounded reconstruction, regularization must be used.

Another complication for the infinite series solution may arise in practice when

the source is non-spherical. Figure 4.3 demonstrates the schematic of acoustic

scattering from an arbitrarily shaped source in three-dimensional space. Analyses

have shown the infinite series solution (4.4) is only valid outside the minimum
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pinFig. 4.2 Schematic of an

acoustic scattering problem

in two-dimensional space.
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inscribing the scatterer S
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sphere Smin that circumscribes an arbitrary source surface S, but invalid inside the

minimum sphere Smin in general [71].

On the surface, it looks as though the infinite series solution (4.4) is quite similar

to the HELS formulation (3.1), which is expressible as

p̂ r; θ;ϕ;ωð Þ ¼
XN
n¼0

Xn
l¼�n

Clnh
1ð Þ
n krð ÞY l

n cos θð Þ: ð4:5Þ

Equation (4.5) shows that the acoustic pressure can be described by a superpo-

sition of the spherical Hankel functions and spherical harmonics, which is the same

as the Rayleigh series (4.4) in three dimensions. Therefore a natural question is as

follows: “Will HELS expansions be subject to the same restriction as the Rayleigh

series does? Specifically, will Eq. (4.5) be valid only inside the region bounded by

spheres?” Moreover, “How will the HELS formulations be related to the Rayleigh

series?” These questions are answered in the next section.

4.2 The Rayleigh Series Versus HELS Formulations

Section 4.1 has discussed in detail that the Rayleigh hypothesis is valid and the

Rayleigh series converges absolutely and uniformly when the singularities of the

analytic continuation of the solution lie inside the maximum sphere that inscribes

the source surface of interest. Since in general the analytic solution to the Helm-

holtz equation for an arbitrarily shaped surface does not exist, there is no way of

knowing if the Rayleigh series (4.4) is a valid solution, and where the region of

validity is. One thing for sure is that the infinite series will diverge when Eq. (4.4) is

evaluated on an arbitrarily shaped source surface. Even if this series is truncated,

pin
Fig. 4.3 Schematic of an

acoustic scattering problem

in the three-dimensional

space. The Rayleigh series

solution (4.4) is valid

outside the minimum sphere

Smin circumscribing the

scatterer but invalid inside

Smin
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the solution can still diverge when input data are noisy. So a safe tactic is to use the

Rayleigh series to predict the scattered acoustic pressure outside the minimum that

circumscribes an arbitrarily shaped surface. The trouble with this approach is that

the expansion coefficients cannot be determined because the boundary conditions

are given on the source surface.

On the other hand, Chap. 3 has demonstrated examples of using the HELS

formulations (4.5) to reconstruct very accurately all the acoustic quantities on a

flat vibrating panel, which is way inside the minimum sphere circumscribing this

highly non-spherical surface. Thus the HELS formulations (4.5) must be different

from the Rayleigh series (4.4), even though they both use the expansion of the

spherical wave functions.

The differences between the Rayleigh series (4.4) and the HELS formulations

(4.5) are as follows. First of all, the Rayleigh series is infinity, while the HELS

expansion is finite. Second, the expansion coefficients in the Rayleigh series are

specified by using the orthonormal property of the spherical harmonics and inte-

grating over the solid angle of a sphere, while those in the HELS formulation are

specified by matching the expansion (4.5) to the measured data, and the errors

involved in this process are minimized by using the least-squares method. Last but

not the least, the orthonormal property of the spherical harmonics holds true for a

spherical surface, but not an arbitrary surface. So the Rayleigh series is bound to fail

when applying it to an arbitrarily shaped surface. In contrast, the HELS formula-

tions always utilize an optimal number of expansion terms to best approximate the

reconstructed acoustic quantities. In other words, the HELS formulations always

attempt to produce the best approximation for the acoustic quantities radiated from

a non-spherical source surface under any given set of input data.

The interrelationships between HELS and Rayleigh series are revealed by

Semenova and Wu [72] in reconstructing the acoustic field generated by an

arbitrary surface in the exterior region. For simplicity, Semenova and Wu consider

infinite cylinders with arbitrary cross sections. They discover that outside the

minimum circle that circumscribes the singularities of the cylinder, the Rayleigh

series yields an identical result as HELS does when the input data are error free.

This is because the high-order terms are negligibly small, so the differences

between the Rayleigh series and HELS solutions (a truncated expansion) are

minuscule.

When the input data are noisy, the results are different. The normalized errors

are the same for all expansion terms in the Rayleigh series because in calculating

the coefficients of the series solution by integration, the noise affects all the

coefficients equally. In order to obtain a bounded solution, the Rayleigh series

must be truncated. Meanwhile, the normalized errors change with the number of

expansion terms for the HELS formulations, and are minimal at the optimal number

of expansion terms. This is because errors embedded in measurements affect the

higher-order terms more than the lower-order ones, as demonstrated in Eq. (3.49) in

Sect. 3.4.

Of particular concern is the difference between Rayleigh series and HELS

solution inside the minimum circle circumscribing a source. Semenova and Wu
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illustrates that the Rayleigh series diverges once it is extended inside the minimum

circle bounded by the singularities. This confirms Millar’s theory on the validity of

the Rayleigh hypothesis. In contrast, HELS formulations are not subject to this

restriction and may provide satisfactory reconstruction everywhere. Of course, the

further the reconstruction point is extended into the minimum circle, the larger the

reconstruction errors may become. Note that even if the Rayleigh series is truncated

at the same order as that of the HELS expansion, its reconstruction errors inside the

minimum circle are still much larger than those of HELS.

These results suggest that the HELS formulations are different from the Ray-

leigh series as far as back propagating an acoustic field to an arbitrary surface is

concerned. However, knowing this difference is not enough to justify the validity of

HELS inside a minimum sphere. Moreover, previous results have demonstrated that

the accuracy of reconstruction on a non-spherical surface using HELS decreases

continuously as the aspect ratio of a source surface and dimensionless frequency ka
increase, where a is the characteristic dimension [73].

Therefore, a rigorous mathematical justification of the validity of the HELS

formulations to reconstruct the acoustic quantities on an arbitrary surface is needed,

which are given rigorously in the next section.

4.3 Justification of the HELS Formulations

Since its first publication in 1997, the HELS-based NAH method has been success-

fully used to reconstruct the acoustic pressure fields generated by arbitrarily shaped

vibrating structures in both exterior and interior regions. Of course, in these cases

the structures are not highly elongated, but nonetheless arbitrary. From the acous-

tics point of view, one can claim that the HELS method may yield satisfactory

reconstruction of the acoustic field by using superposition of the spherical wave

functions, which explains many phenomena observed in the previous studies.

However, this is contradictory to the belief that the expansion solutions using the

spherical wave functions and spherical harmonics are valid only inside the regions

bounded by spheres and invalid outside these regions.

In this section we present rigorous mathematical justifications for the HELS

formulations [74]. Basically, we show that for reconstructing acoustic radiation

from an arbitrary source surface, the solutions given by the HELS formulations are

approximate; but nonetheless, reconstruction errors are bounded.

Consider reconstruction of acoustic radiation from a finite, arbitrarily shaped

object, which includes the acoustic pressure and the normal component of the

velocity on the source surface and those in the field. Mathematically, this is

equivalent to solving the Helmholtz equation in a three-dimensional domain Ω
bounded by the source surface Γ and a surface at infinity Γ1.

The acoustic field u with the acoustic wavenumber k satisfies the Helmholtz

equation in Ω,

4.3 Justification of the HELS Formulations 69



∇2u r; θ;ϕ;ωð Þ þ k2u r; θ;ϕ;ωð Þ ¼ 0 in Ω or in Ωe ¼ R3\Ω
� �

: ð4:6Þ

In practice, the domain Ω can be either the exterior or interior region of a

passenger vehicle or an aircraft cabinet. For the exterior problems, solutions to

Eq. (4.6) satisfy the Sommerfeld radiation condition,

lim
r!1 r

∂u r; θ;ϕ;ωð Þ
∂r

� iku r; θ;ϕ;ωð Þ
� �

¼ 0, as r ! 1: ð4:7Þ

Such a solution u is called a radiating solution. In what follows the arguments of

u are omitted for brevity.

To reconstruct the acoustic field, we need to measure the acoustic pressures

u around the source. Suppose that the acoustical sensors are placed on a surface

Γ0 either inside or outside the source surface. These measured data are utilized to

reconstruct u on the source surface Γ and in Ω and, in particular, the normal surface

velocity vn defined by

vn ¼ 1

iωρ0
∂ru on Γ, ð4:8Þ

where the subscript n indicates the unit outward normal on Γ and the symbol ∂r

indicates a partial derivative with respect to r. Note that here we assume that there

are no sources other than the one under consideration.

The steps involved in our mathematical justifications are outlined as follows.

First, we show that any radiating solution to the Helmholtz equation outside a

bounded Lipschitz domain Ω with a connected complement can be approximated

by a family of certain known special solutions, for example, the spherical wave

functions. Next, by using this approximation together with conditional stability

estimates in the Cauchy problem for an elliptic equation, namely, the Helmholtz

equation, we demonstrate that these special solutions are bounded on Ωe and their

convergence on Γ0 implies convergence in Ωe. Finally, we derive estimates of the

convergence of Hölder type at a distance from Ω and that of logarithmic type in Ωe.

These results justify mathematically the validity of the HELS formulations, in

which the measured acoustic pressures on Γ0 are approximated by a linear combi-

nation of the special solutions. For an exterior problem this linear combination is

well defined everywhere except at the origin, and gives an approximate solution in

the exterior region.

Note that we use Ωe to denote the complement R3\Ω and fix a (large) ball B that

contains Ω. Also we use H(‘)(Ω) to imply the Sobolev space of functions in Ω,
whose partial derivatives up to the order n are square integrable, and use
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				u				 ‘ð Þ Ωð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
α�‘

ð
Ω

∂α
uj j2

vuut , ð4:9Þ

to denote the standard norm in this space. Note that in Eq. (4.9), we let kk2¼kk(0)
be the norm in the space L2(Ω) and use the symbol ∂α to indicate the αth-order
partial derivative. Accordingly, kk‘ + λ, where 0< λ< 1 means the norm in the

Hoelder space ϒ‘+ λ of the functions whose partial derivatives up to order ‘ are

Hoelder continuous of an exponent λ, whereϒ is a generic constant depending only

on Ω, Γ0, and k.
Now we focus on the approximation of u through the simplest solutions. Our

purpose is to interpolate the measured data on Γ0 for solutions to some integral

equations, which can be crucial for higher acoustic wavenumbers k.

Theorem 4.1 Let Ω be a bounded Lipschitz domain in R3 with connected Ωe. Let

u∈H 1ð Þ B\Ω
� �

be a radiating solution to the Helmholtz equation (4.6) in Ωe. Let

B0 � B0 � Ω for a ball B0. Then for any positive ε there is a radiating solution uε to
the Helmholtz equation outside B0 such that				u� uε

				
‘ð Þ Ωeð Þ < ε: ð4:10Þ

In the proofs we will use the following Green’s formula:ð
Ωe

∇2uþ k2u
� �

u� � u ∇2u� þ k2u�
� �� � ¼ ð

∂Ωe

u∂γu
� � u�∂γu

� �
, ð4:11Þ

for u and u*∈H(2)(B\Ω), which are radiating solutions to the Helmholtz equation

in B1e for some ball B1 � B1 � Ω. Also, we need the following Runge property of
radiating solutions.

Lemma 4.1 Let Ω1 and Ω2 be two bounded domains that contain B0 with

connected Ω1e and Ω2e, Ω1 � Ω2. Let u1 be a radiating solution to the Helmholtz
equation (∇2 + k2)u1¼ 0 in Ω1e. Then for any ε> 0 there is a radiating solution u
outside B0 such that ||u1� u||(‘)(Ω2e\B)< ε.

Proof Due to interior Schauder-type estimates for elliptic equations, it suffices to

consider ‘¼ 0. By shrinking Ω2 we can achieve that ∂Ω2∈ϒ1.

Let us assume the opposite. LetΩ*¼Ω2e\B. Then by the Hahn-Banach theorem
there is a function f*∈L2(Ω*) such thatð

Ω�

uf � ¼ 0, ð4:12Þ

for all functions u, but
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ð
Ω�

u1f
� 6¼ 0, ð4:13Þ

for some functions u1. We will extend f* outside Ω* as zero.

To obtain a contradiction, we introduce a ball B* centered at the origin and

contained in Ω1. Since there is a unique radiating solution u*∈H2 to the equation

(∇2 + k2)u*¼ f* in B�
e with zero Dirichlet data u

*¼ 0 on ∂B*, we can find radiating

solutions from the Green’s formula (4.11),

�
ð
Ω�

uf � ¼
ð
∂B�

u∂νu
�: ð4:14Þ

Using Eq. (4.11) and completeness of u in L2(∂B*), we conclude that ∂vu
*¼ 0 on

∂B*.

Since u* solves the Helmholtz equation (4.6) in the connected open set Ω2\B
�
,

we can conclude from the uniqueness in the Cauchy problem for elliptic equations

[75] that u*¼ 0 on Ω2\B
�
. Now applying again the Green’s formula (4.11) to the

radiating solutions u1 and u*, we obtainð
Ω�

u1f
� ¼

ð
∂Ω2e

u�∂νu1 � u1∂νu
�ð Þ ¼ 0 ð4:15Þ

which contradicts Eq. (4.13).

Proof of Theorem 4.1 By extension theorems for Sobolev space in Lipschitz

domains, there is an extension u*∈H(1)(B) of u onto R3. Let f*¼∇2u* + k2u*.

Then f*∈H(�1)(R
3) and suppf � � Ω. It is known that f � ¼ f 0 þ

X
j

∂jf j for some

f0, . . ., f3∈L2(R3) that are supported in Ω. Let χn be a sequence of measurable

functions with values 0 or 1 supported in Ω and pointwise convergent to 1 on Ω.
Then f�n defined as f 0χn þ

X
j

∂j f jχn


 �
will converge to f in H(�1)(R

3) with

sup pf�n �Ω. From the theories of elliptic equations and scattering [76], it follows

that radiating solutions to the Helmholtz equation (Δ + k2)u�n ¼ f �n in R
3 converge to

u in H(1)(B\Ω) for any ball B. So one can write un such that

				u� un
				

‘ð Þ B\Ωð Þ < ε

2
: ð4:16Þ

By the Runge property for scattering solutions in R3\B0 (Lemma 1), there is a

radiating solution uε to the Helmholtz equation outside B0 such that
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				un � uε
				

‘ð Þ B\Ωð Þ < ε

2
: ð4:17Þ

From Eqs. (4.16) and (4.17) we obtain Eq. (4.10).

The proof is complete.

In practice it is very helpful to use a special family of radiating solutions to the

Helmholtz equation εmn, which are expressible as

emn r; θ;ϕ;ωð Þ ¼ h 1ð Þ
n krð ÞYm

n cos θð Þ, ð4:18Þ

where h
ð1Þ
n represent the spherical Hankel functions of the first kind, and Ymn (cos θ)

stand for the spherical harmonics orthonormal in L2(S2) on a unit sphere S2. It is
convenient to approximate the solution u to the Helmholtz equation by a linear

combination of

ue r; θ;ϕ;ωð Þ ¼
XN
n¼0

Xn
m¼�n

Cmnemn r; θ;ϕ;ωð Þ, ð4:19Þ

where Cmn are the expansion coefficients to be determined.

Corollary 4.1 Let 0 ∈ Ω.
For any positive ε there is uε such that				u� ue

				
1ð Þ B\Ωð Þ < ε: ð4:20Þ

Proof By Theorem 4.1 there is a radiating solution uε to the Helmholtz equation in

R3\B0 so that ||u� uε||(1)(B\Ω)< ε/2. Let B1 be a ball of radius r1 (r1> r0) centered

at 0 such thatB1 � Ω. The spherical harmonics Ymn (cos θ) form an orthonormal basis

in L2(S2). Expanding the function uε at r1 with respect to this basis, we can conclude
that the partial sums of the corresponding series are convergent in L2(∂B1) and

therefore, due to the known results of these series (Theorem 2.14 in Ref. [77]), these

partial sums are convergent to uε on B\Ω in H1(B\Ω). Consequently, we can find a

partial sum uε such that ||uε� ue||(1)(B\Ω)< ε/2, and the claim follows from the

triangle inequality.

A similar result is valid for interior problems.

Theorem 4.2 Let u∈H1(Ω) be a solution to the Helmholtz equation (4.6) in Ω.
Then for a positive ε, there is a solution uε to the Helmholtz equation in R

3 such that				u� ue
				

1ð Þ Ωð Þ < ε: ð4:21Þ

For interior problems a partial family of useful solutions can be spanned by the
functions
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Emn r; θ;ϕ;ωð Þ ¼ jn krð ÞYm
n cos θð Þ: ð4:22Þ

Now we discuss how to use these results to approximate u via uε.
Let ε¼ 1 in Eq. (4.21). Since for ε< 1, there are approximate functions uε such

that 				ue				 1ð Þ Ω0\Ωð Þ � M1 ¼
				u				 1ð Þ B\Ωð Þ þ 1: ð4:23Þ

Replacing uε by its definition, we have

ð
Ω0\Ω

XN
n¼0

Xn
m¼�n

Cmnemn r; θ;ϕ;ωð Þ
					

					
2

þ
XN
n¼0

Xn
m¼�n

Cmn∇emn r; θ;ϕ;ωð Þ
					

					
2

0
@

1
Ad r; θ;ϕð Þ

� M2
1,

ð4:24Þ

where d(r, θ, ϕ) represents integrations over the source region in Ω0. Since input

data are given on Γ0, we can approximate u via uε by solving a minimization

problem,

minue
				u� ue

				
0ð Þ Γ0ð Þ ð4:25Þ

subject to the constraint (4.23). By solving this problem for sufficiently large

N¼N(δ), we find uε(; δ) such that				u� ue ; δð Þ				 0ð Þ Γ0ð Þ < δ, ð4:26Þ

so that the constraint (4.23) holds.

Lemma 4.2 Let Ω0 be a bounded domain,Ω � Ω0. Let either Γ0¼∂Ω0 or ∂Ω0 be
analytic and Γ0 be a non-void open part of ∂Ω0. Let Ω1�Ω0. Then there is a
function ω(δ)! 0 as δ! 0 such that				u� ue ; δð Þ				 0ð Þ B\Ω1ð Þ < ω δð Þ: ð4:27Þ

In addition, if Ω � Ω1, then one can choose ω(δ)¼ (C/d2)M1� θ
1 δθ [θ∈ (0, 1),θ>

d/ϒ, where d is the distance from ∂Ω1 to Ω]; and if Ω1¼Ω0, then one can let
ω(δ)¼M(–ϒ/log δ)1/4.

Proof We use the Carleman-type estimates (Sect. 3.3 in Ref. [75]) for the Helm-

holtz operator,
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X
α�1

ð
B

τ ∂α
u0j j2e2τϕ � C

ð
B

∇2u0 þ k2u0
		 		2e2τϕ ð4:28Þ

for anyH(2)(B)-function u0 compactly supported in B and 0< τ. Here φ ∈ϒ2(R3) is

the so-called strongly pseudo-convex function for the Laplace operator in R3 (see

Sects. 3.2 and 3.3 in Ref. [75]). In particular∇φ 6¼ 0 on Ω. We can show that there

is such a function satisfying the conditions φ¼ 0 on ∂Ω, φ> 0 on B\Ω (see Sect. 3.3

in Ref. [75]).

Let δ¼ ||u� ue||(0)(Γ0). First, we consider the case in which Γ0¼∂Ω0. Let Ω2 be

a domain containingΩ0 withΩ2 � B. By using the Green’s function for the exterior
Dirichlet problem for the Helmholtz equation (4.6) in Ω0 we conclude that				u� ue ; δð Þ				 1ð Þ B\Ω2ð Þ < Cδ: ð4:29Þ

To obtain an interior bound, we introduce the cutoff function χ∈ϒ1, which

is 1 onΩ2\Ω(d) and which is supported inB\Ω. We utilize χ with 0� χ� 1, |∇jχ|�
d–j, when j¼ 1 and 2, where Ω(d)¼B\{φ< d}. Observe that due to our choice

of φ, d(r, θ, ϕ)/ϒ<φ(r, θ, ϕ)<ϒd(r, θ, ϕ), thus we can obtain χ with the above

bounds. Let u0¼ χ(u� ue). Then u0 is compactly supported in B. Using Eq. (4.28)

and the equality (∇2 + k2)u0¼ 2∇(u� ue)�∇χ + (u� ue)∇2χ, we have

X
α�1

τ

ð
Ω0\Ω 2dð Þ

		∇ u� ueð Þ		2 þ 		u� ue
		2� �

e2τϕ

� C

ð
Ω dð Þ\Ω

�
\
�
B\Ω2

� � 2∇ u� ueð Þ �∇χ þ u� ueð Þ∇2χ
		 		2e2τϕ

� Ce2τd
ð

Ω0\Ω

		∇u
		2

d2
þ
		u		2
d4

� 

þ Ce2τΦ

ð
B\Ω2

		∇ u� ueð Þ		2 þ 		u� ue
		2� �

,

ð4:30Þ

where Φ¼maxφ over B and the inequality φ< d on Ω(d )\Ω is used. In addition,

using 2d<φ on Ω(2d ) and replacing φ on the left side of Eq. (4.30) by 2d, we
obtain

e4τd
				u� ue

				2
1ð Þ Ω0\Ω 2dð Þð Þ � C

e2τd

d4
				u� ue

				2
1ð Þ Ω0\Ωð Þ þ e2τΦ

				u� ue
				2

1ð Þ B\Ω2ð Þ
� 


:

ð4:31Þ

Dividing the both parts by e4τd and using that due to Eq. (4.23) ||u� ue||(1)(B\Ω),
we find
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				u� ue
				2

1ð Þ Ω0\Ω 2dð Þð Þ � C
e�2τd

d4
M2

1 þ e2τ Φ�2dð Þε2
� 


: ð4:32Þ

Minimizing the right side of Eq. (4.32) with respect to τ> 0 yields the minimum

point,

2τ ¼ 1

Φ� d
ln

M2
1

d3 Φ� 2dð Þε2
� �

, ð4:33Þ

where the value of the minimized function is less than Cd� 4M
2ð1� θÞ
1 ε2θ, here

θ ¼ d
Φ�d.

This proves the interior bound.

To obtain the logarithmic bound, we will split the norm

				u� ue
				2

0ð Þ Ω0\Ωð Þ ¼ 				u� ue
				2

0ð Þ Ω\Ω dð Þð Þ þ 				u� ue
				2

0ð Þ Ω dð Þ\Ωð Þ: ð4:34Þ

By the Hoelder inequality the second term on the right side of Eq. (4.34) is

ð
Ω dð Þ\Ω

1
		u� ue

		2 � ð
Ω dð Þ\Ω

1

0
B@

1
CA

2
3 ð

Ω dð Þ\Ω

		u� ue
		6

0
B@

1
CA

1
3

� Cd
2
3

				u� ue
				2

1ð Þ Ω0\Ωð Þ, ð4:35Þ

by Sobolev embedding theorems (see the Appendix of Ref. [75]). Now using the

interior bound, we obtain

				u� ue
				2

0ð Þ Ω0\Ωð Þ � C
1

d4
M2

1

δ

M1

� 
d
C

þM2
1d

2
3

" #
: ð4:36Þ

Letting d¼ [�ln(δ/M1)]
� 3/4, we conclude that Eq. (4.36) can be rewritten as

				u� ue
				2

0ð Þ Ω0\Ωð Þ � CM2
1 L3e�

L
C þ L�2


 �
, ð4:37Þ

where L¼ [�ln(δ/M1)]
1/4. Using L3e�L/C�CL� 2, we complete the proof of a

logarithmic bound.

The case of analytic ∂Ω0 is similar. We only have to observe that due to known

conditional stability estimates of the analytic continuation for the analytic (in some

two-dimensional complex neighborhood of the analytic surface ∂Ω0) function

u� ue from Γ0 to ∂Ω0 (see Corollary 1.2.2 of Ref. [78]), we have
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				u� ue
				

0ð Þ ∂Ω0ð Þ � C
				u� ue

				θ1
0ð Þ Γ0ð Þ: ð4:38Þ

Here, as in Sect. 6.3 of Ref. [75], the neighborhood of ∂Ω0 and a bound of the

complex-analytic continuation onto this neighborhood depend only on Ω, ∂Ω0, and

M1. The bound in Ref. [75] is given for a plane domain and for a function of a single

complex variable, but by using the local analytic coordinates and continuation in

each of two coordinate variables, we obtain the same bound on ∂Ω0. After that we

proceed as above.

The proof is complete.

By some standard but more complicated argument, we can replace the exponent

1/4 in the logarithmic bound by any value smaller than 1. Also we can demonstrate

that the interior bound of Lemma 4.2 holds when the bound (4.23) in H(1)(Ω\Ω0) is

weakened to the following,

uek k 0ð Þ Ω0\Ωð Þ � M0, ð4:39Þ

and correspondingly the constraint (4.24) is weakened to the bound,

ð
Ω0\Ω

X
n

X
m

un,men,m xð Þ
					

					
2

dx � M2
0, m ¼ 0, . . . , 2nþ 1 and n

¼ 0, . . . ,N: ð4:40Þ

The approximation and stability results in this section suggest the following

strategies for finding the approximate solution ue. First, guess N, which is the

number of the expansion term for radial functions. Next, find the convex constraint

minimization, namely, Eqs. (4.25) and (4.24). Note that sometimes it might be

easier to solve Eqs. (4.25) and (4.39) instead.

4.4 Significance of the Justification

The rigorous mathematical justification of the HELS formulations provided by

Isakov and Wu is significant in that:

1. It demonstrates that any radiating solution to the Helmholtz equation outside a

bounded Lipschitz domain with connected complement can be approximated by

using a family of special solutions.

2. Using these approximations and conditional stability estimates in the Cauchy

problem for the Helmholtz equation, these special solutions are proven to be

bounded outside a vibrating surface and converge to the exact solution, provided

that they converge to the exact solution on the measurement surface.
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3. Moreover, the estimates of convergence of Hölder and logarithmic types in

different regions are derived.

Isakov and Wu’s work has provided definitive answers to the question of the

validity of the HELS formulations: one can indeed use the spherical wave functions

to approximate an acoustic field on a non-spherical surface. This conclusion also

holds for the interior region.

The most significant impact of Isakov and Wu’s work on HELS method is the

suggestion of an effective regularization to overcome ill-posedness difficulty inher-

ent in all inverse acoustic problems. Specifically, Isakov and Wu propose a regu-

larization technique using quasi-solutions [79] by imposing a limit on the growth of

reconstructed acoustic quantities in the entire exterior region, including the source

surface S. Using the same symbols as those defined in Chap. 3, we obtain

				p̂ j x
!
S;ω


 �				2
2
�

ZZ
S

		p̂ J x
!

S;ω

 �		2 � K2, rs; θs;ϕs;ωð Þ∈ S, ð4:41Þ

where j¼ 1 to Jop. The constant on the right side of Eq. (4.41) has been shown to be
correlated to the time-averaged acoustic power [71], which is a constant for any

given source and is independent of measurement locations, or be correlated to the

propagating component of the acoustic pressure,

K ¼ max
rm;θm;ϕmð Þ∈Γ; m¼1, 2, ...,M

p̂ rm; θm;ϕm;ωð Þj j rm
a


 �
, ð4:42Þ

where a is the characteristic radius of the source surface.

Using this constraint on the source surface together with an iteration scheme to

obtain Jop, Semenova and Wu [72] illustrate unambiguously that reconstruction

errors remain finite everywhere including the source surface, whereas errors in

reconstruction using HELS with the least-squares minimization alone can grow to

an unsatisfactory level as the reconstruction point approaches the source surface.

This explains why sometimes the accuracy of reconstruction on the surface of an

arbitrarily shaped structure may be unsatisfactory.

By the way, the validity of using the spherical wave functions and spherical

harmonics to reconstruct the acoustic quantities on a non-spherical surface was

investigated by Prager [80] as well. In particular, Prager proposed a method to

approximate the sound field not fulfilling the Rayleigh hypothesis by transforming a

non-converging spherical wave function expansion to a converging one.

Isakov and Wu’s theory has laid a solid foundation for the HELS method,

answered any questions surrounding its validity in reconstructing acoustic radiation

from an arbitrary object and provided the stability estimates for regularizing an

ill-posed inverse acoustic problem. The work described in [71, 72] further reveals

the interrelationship between a Rayleigh series and HELS solution and most

significantly demonstrates that HELS solutions are convergent with bounded errors

whenever a surface constraint condition is imposed.
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Problems

4.1. What is the Rayleigh hypothesis? What does it attempt to do?

4.2. Consider the solution to the Helmholtz equation that describes the standing

waves inside a spherical surface as given by Eq. (2.21a)

p̂ r; θ;ϕ;ωð Þ ¼
X1
n¼0

Xn
m¼�n

Amnjn krð Þ þ Bmnyn krð Þ�Ym
n

�
cos θ

� �

Does this solution subject to the Rayleigh hypothesis? In other words, will this

formulation work if the interior surface is corrugated, namely, not exactly

spherical?

4.3. Consider the solution to the Helmholtz equation that describes the traveling

waves outside a spherical surface as given by Eq. (2.21b). Suppose that this

infinite series is truncated to a finite one as follows,

p̂ r; θ;ϕ;ωð Þ ¼
XN
n¼0

Xn
m¼�n

Amnh
1ð Þ
n krð Þ þ Bmnh

2ð Þ
n krð Þ�Ym

n

�
cos θ

h �
,

and regularization is applied to the expansion. Will this modified solution

subject to the Rayleigh hypothesis? Will it be applicable to a corrugated,

namely, not exactly spherical surface?

4.4. What are the differences between the Rayleigh hypothesis and HELS

formulations?

4.5. Will the HELS formulations be subject to the same restrictions as the Rayleigh

hypothesis does?

4.6. How are the HELS formulations related to the Rayleigh hypothesis?

4.7. What does the mathematical justification prove for the HELS formulations?

4.8. What is the significance of this mathematical justification?
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