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Series Preface for Modern Acoustics and Signal Processing
In the popular mind, the term ‘‘acoustics’’ refers to the properties of a room or
other environment—the acoustics of a room are good or the acoustics are bad. But
as understood in the professional acoustical societies of the world, such as the
highly influential Acoustical Society of America, the concept of acoustics is much
broader. Of course, it is concerned with the acoustical properties of concert halls,
classrooms, offices, and factories—a topic generally known as architectural
acoustics, but it is also concerned with vibrations and waves too high or too low to
be audible. Acousticians employ ultrasound in probing the properties of materials,
or in medicine for imaging, diagnosis, therapy, and surgery. Acoustics includes
infrasound—the wind-driven motions of skyscrapers, the vibrations of the earth,
and the macroscopic dynamics of the sun.

Acoustics studies the interaction of waves with structures, from the detection of
submarines in the sea to the buffeting of spacecraft. The scope of acoustics ranges
from the electronic recording of rock and roll and the control of noise in our
environments to the inhomogeneous distribution of matter in the cosmos.

Acoustics extends to the production and reception of speech and to the songs of
humans and animals. It is in music, from the generation of sounds by musical
instruments to the emotional response of listeners. Along this path, acoustics
encounters the complex processing in the auditory nervous system, its anatomy,
genetics, and physiology—perception and behavior of living things.

Acoustics is a practical science, and modern acoustics is so tightly coupled to
digital signal processing that the two fields have become inseparable. Signal
processing is not only an indispensable tool for synthesis and analysis, it informs
many of our most fundamental models about how acoustical communication
systems work.

Given the importance of acoustics to modern science, industry, and human
welfare Springer presents this series of scientific literature, entitled Modern
Acoustics and Signal Processing. This series of monographs and reference books
is intended to cover all areas of today’s acoustics as an interdisciplinary field.
We expect that scientists, engineers, and graduate students will find the books in
this series useful in their research, teaching, and studies.

July 2012 William M. Hartmann
Series Editor-in-Chief
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Preface

This is the first and only book on the HELS (Helmholtz equation least-squares)
method. While the original contract with Springer to write this book was signed
in 2003, it took 10 years for me to actually sit down and complete the writing.
This is because during the past decade I have been heavily involved in research
projects and teaching, which has constantly distracted me from fulfilling my
obligation with the publisher. On the other hand, we have seen tremendous growth
and expansion in the HELS theory. Its applications have been extended to many
areas that have not been explored such as hybrid near-field acoustical holography
(NAH), transient NAH, and NAH-based panel acoustic contributions analyses.
Hence, in this sense it was good that I did not write this book 10 years ago.
Of course, the HELS method is being further developed and expanded to new
frontiers, including reconstruction of the aerodynamically generated sound field
generated by an aircraft jet engine and realization of super resolution in discerning
acoustic sources by taking input data in space at a rate less than the Nyquist
sampling requirement. These new developments will be included in the second
edition of this book.

What makes the HELS method unique is its simplicity in mathematical form,
efficiency in numerical computation, and flexibility in engineering applications.
The idea of using an expansion of certain basis functions to approximate the
acoustic field can be traced back to the beginning of the last century. The most
famous example was given by Lord Rayleigh to depict the acoustic field scattered
from a corrugated surface. The differences and interrelationships between the
Rayleigh series and the HELS method are explained in great detail in this book.

The underlying principles of the HELS method are strikingly different from the
traditional Fourier acoustics and boundary element method (BEM)-based NAH.
The Fourier acoustics-based NAH relies on the Fourier transforms and requires the
source surface to contain a level of constant coordinate such as an infinite plate, an
infinite cylinder, and a sphere. Moreover, the source must be in free space without
the presence of any other source or boundary surface. Although the BEM-based
NAH is suitable for arbitrarily shaped surfaces, it also requires the source to be in a
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source-free region. In addition, both of them require that the hologram surface
enclose the entire source surface. If these conditions are not met, then they are
invalid theoretically. This makes it difficult for these methods to be adopted in
engineering applications because a source-free region is nonexistent and oftentimes
a source surface cannot be enclosed by a measurement surface in reality.

In contrast to the traditional NAH implementations, the HELS method does not
seek an analytic solution to the acoustic field produced by an arbitrarily shaped
structure that cannot be found anyway. Rather, it attempts to obtain the best
approximation of an acoustic field through the expansion of certain basis functions.
Therefore it significantly simplifies the complexities of the reconstruction process,
yet still enables one to acquire a good understanding of the root causes of different
noise and vibration problems that involve arbitrarily shaped surfaces in non-free
space using much fewer measurement points than both Fourier acoustics and
BEM-based NAH do. The examples given in this book illustrate that the HELS
method may potentially become a practical and versatile tool for engineers to tackle
a variety of complex noise and vibration issues in engineering applications.

Since 2001, I have developed a new course on ME7460 Advanced Acoustic
Radiation for graduate students in the Department of Mechanical Engineering
at Wayne State University. The main objective of this course is for students to
learn the state-of-the-art technology, namely, NAH to diagnose various noise and
vibration problems encountered in practice. The major parts of this book are based
on my class notes plus new developments in the HELS method accumulated over
the past decade. While attending various acoustics conferences sponsored by
professional societies such as the Acoustical Society of America, American Society
for Mechanical Engineers, and Society for Automobile Engineering, I often have
people asking me questions about the HELS method and its implementation. I am
happy to report that finally there is a formal textbook on this subject that outlines
in great detail this methodology, its implementation steps, and guidelines in prac-
tice. In particular, I have provided many examples on how to reconstruct and
predict the acoustic fields emitted from different types of sources, and illustrated
the intermediate steps in the derivations of various formulations. I sincerely hope
that this textbook can serve as a resourceful reference, helpful guidance, and
valuable tool for students, engineers, practitioners, and users to understand the
HELS-based NAH, how it can be implemented in practice, and why.

This book is structured as follows. Chapter 1 gives a brief history of the major
evolution of NAH since its inception in the early 1980s. For a comprehensive
review of the development of this technology including its various implementations
and extensions over the past three decades, the readers are referred to a review
paper by the present author, which was published in the Journal of the Acoustical
Society of America in 2008.

Chapter 2 reviews the expansion theory using the spherical Hankel functions and
spherical harmonics, which form the basis of the HELS method. In particular, many
examples are presented that use the expansion theory to reconstruct the acoustic
field based on the input data measured on a hologram surface, or to predict the
acoustic field based on the boundary condition specified on the source surface.
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Chapter 3 discusses the underlying principle of the HELS method and its
implementation. In particular, various types of regularization techniques are
discussed, including the simplest one that is based on the least-squares minimiza-
tion and that is very simple to program yet very effective to reconstruct the acoustic
pressure field to the most comprehensive hybrid technique that can yield accurate
reconstruction for all vibro-acoustic quantities in a nonideal environment. Experi-
mental validations of using the HELS method together with hybrid regularization to
reconstruct the vibro-acoustic quantities on the surface of highly non-spherical
source geometry are demonstrated. And satisfactory agreements with respect to
the benchmark data obtained through direct measurement using a scanning laser
probe are obtained.

On the surface the HELS method is very similar to the Rayleigh series or
expansion theory. Naturally, people would ask the question whether the HELS
method would be subject to the same difficulty as the Rayleigh series did when
reconstruction was attempted inside the minimum sphere circumscribing the source
for an exterior problem, or beyond the maximum sphere inscribing the source for an
interior problem. This question is answered in Chap. 4. In addition, the interrela-
tionships between the HELS method and the Rayleigh series are revealed, and the
reasons why the HELS method can be extended beyond the so-called region of
validity for the Rayleigh series are presented. Most importantly, rigorous mathe-
matical justifications for the HELS method are provided and its significance is
discussed.

Once a solid mathematical foundation for the HELS method has been
established, Chap. 5 proceeds to outline the guidelines for implementing this
methodology to reconstruct the acoustic fields produced by non-spherical source
geometry typically encountered in practice. In particular, detailed steps and formu-
lations to determine the microphone spacing, aperture size, measurement distance,
measurement points, etc. are illustrated and explained. In addition, special consid-
erations together with various illustrations and schematic are given to the real-
world test configuration and environment for noise and vibration diagnosis.

Chapters 6—10 deal with the extensions of the HELS method to a variety
of scenarios that have posed serious challenges to the traditional NAH
implementations. Needless to say, there are lots of room for further improvement
and new challenges to meet. This is a never-ending process.

This book ends with some of the true stories I have personally experienced in
addressing various vehicle-related noise and vibration issues. These stories stress
the importance of understanding the physics of sound generation and propagation
and how they may help us solve various complex noise and vibration problems in
the most cost-effective manner.

I would like to take this opportunity to express my deep gratitudes to my former
students, without whom it would not have been possible for me to complete this
book. In particular, I would like to thank Dr. Zhaoxi Wang, who was the first
student who conducted numerical simulations and validations of the early version
of the HELS method; Dr. Nassif Rayess, who was the first one to demonstrate
experimentally that the HELS method could indeed be utilized to reconstruct the
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acoustic field generated by a vehicle buck; Dr. Tatiana Semenova, who revealed
the interrelationships between the HELS method and the Rayleigh series and
experimented the HELS via various expansions such as localized spherical
waves, distributed spherical waves, and distributed point sources; Dr. Manjit
Bajwa, who was the first to successfully conduct experiments using transient
HELS-based NAH; Dr. Huancai Lu, who was the first to extend the HELS method
to reconstruct the normal surface velocity distribution on highly non-spherical
source geometry; Dr. Logesh Kumar Natarajan, who was the first to use hybrid
regularization and proved experimentally that the HELS method can be used to
provide satisfactory reconstruction of the acoustic pressure and the normal surface
velocity distribution on highly non-spherical vibrating structures, and to conduct
the panel acoustic contributions analyses; Dr. Richard Dziklinski, who was the first
to show experimentally that one can violate the Nyquist sampling criterion, namely,
take less than two measurement points per wavelength in space, yet still be able
to discern two point sources separated by a distance less than one wavelength of
the sound emitted by these sources, realizing the so-called super resolution via the
HELS method; Dr. Mamohan Singh, who was the first to use the HELS method to
visualize the acoustic field generated by an aircraft jet engine and who was
instrumental in making HELS codes user-friendly; Mr. Ravi Beniwal, who has
made significant contributions toward the graphic user interface of the HELS codes
and its real-world applications for diagnosing vehicle noise and vibration problems;
and last but not least, my postdoctoral fellow, Dr. Xiang Zhao, who was the first to
conduct the numerical simulations using the combined HELS method and hybrid
NAH to solve challenging inverse acoustics problems that cannot be done by using
other methods.

Finally, I acknowledge that it was Dr. Earl G. Williams who challenged me the
validity of using HELS to reconstruct the acoustic quantities on an arbitrarily
shaped surface, thus forcing me to look deeper into reasons why the HELS method
can be extended beyond the region of validity that the Rayleigh series cannot.
However, it was beyond me to prove this validity mathematically. Fortunately,
Dr. Victor Isakov came to the rescue and gave a rigorous mathematical justification,
for which I am eternally grateful to him for his very important contributions toward
the ultimate establishment of the HELS theory.

Detroit, MI, USA Sean F. Wu
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Chapter 1
Introduction

Sound and vibration are intimately related to each other, yet they are two very
different physical phenomena. In physics, sound is defined as the disturbance that
travels in a compressible medium such as air in terms of a pressure (also called the
longitudinal or compressional) wave. In physiology, sound is defined as the
sensation of this pressure wave perceived by the brain auditory system of a
human being.

Vibration is a mechanical phenomenon that involves oscillations around some
equilibrium position. These oscillations can be stationary and periodic such as the
membrane of a loudspeaker playing tonal sounds, or non-stationary and random
such as the body of an automobile driving on a bumpy road surface. In most
engineering applications, sound is regarded as the result of structural vibrations.
So vibration is the cause and sound is an effect. The interrelationships between
sound and structural vibrations have long been a subject of interest in the acoustics
community.

A forward problem is defined as such that the cause is given and effect is to be
determined. Conversely, an inverse problem is defined as such that the effect is
given via measurement and the cause is to be inferred. In general, a forward
problem is much easier to solve than an inverse one because all that is required is
to solve some governing equation, given initial values, or boundary conditions, or
both. For example, given the geometry and dimensions of a vibrating structure and
velocity distribution on its surface, predict the resultant acoustic pressure field.
Mathematically, a forward problem is well posed, and its solution is unique and
convergent. In the example cited above, there can be one and only one sound field
resulting from a particular vibration pattern.

However, the same cannot be said for an inverse problem. Consider the same
example as above. Suppose that the acoustic pressures at a finite number of points
are measured and geometry and dimensions of the structure are specified. These
input data will not be sufficient to uniquely determine the velocity distribution on
the surface of the structure. This is because there can be an infinite number of
surface velocity distributions that will lead to the same pressure values at these

© Springer Science+Business Media New York 2015 1
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2 1 Introduction

measurement points, unless an infinite number of measurements are taken at
infinitely close range to the source surface.

Mathematically, all inverse problems are ill posed. In other words, there is an
insufficient amount of information on the effect to uniquely determine the cause.
Thus an inverse problem is much more difficult to solve than a forward problem.

Unfortunately, most problems encountered in real life are inverse problems, for
example, a doctor diagnosing a disease, a detective investigating a crime scene, and
an engineer identifying the root cause of a malfunctioning machine. In what
follows, we give an overview of the methods commonly used in the industry to
diagnose various complex noise and vibration problems, which fall in the category
of an inverse problem.

1.1 Conventional Noise and Vibration Diagnoses

Traditionally, noise and vibration diagnoses start from taking measurements of
sound and vibration quantities. Typical measurement devices include microphones,
accelerometers, intensity probes, and laser vibrometers to gather different physical
quantities such as sound pressure level (SPL), sound pressure spectrum, sound
intensity, sound power, normal surface velocity, normal surface acceleration, and
linear and torsional vibrations. In all these cases, measurements are taken as
discrete points in space or on the surface of a vibrating structure. Based on the
measured data and one’s experiences, noise and vibration abatement strategies are
formed. These strategies are trial and error or ad hoc in nature, and the success rate
will depend critically on one’s experiences in dealing with various noise and
vibration problems.

Regardless what measurement devices are used and what physical quantities are
measured, there is one thing in common in all these conventional approaches,
namely, the measured physical quantities, no matter how many measurement points
are taken, are discrete in space and valid only at measurement locations. Moreover,
different physical quantities measured at different locations cannot be correlated.
For example, the SPL values measured in space cannot be correlated to the
accelerations measured on the surface of a vibrating structure. As such, the infor-
mation gathered is often one dimensional, namely, only the measured physical
quantity is seen. There is no overall or big picture of what is going on. The
interrelationship between sound and vibration is completely missing in conven-
tional diagnostic approaches. As a result, one might know how to reduce sound and
vibration, but not why.

The difficulties encountered in conventional measurement methods for diagnos-
ing noise and vibration problems can be circumvented by a powerful method known
as near-field acoustical holography (NAH). In what follows we first define some
terminologies in a layman’s language.
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1.2 Holography

Holography is a technique that makes use of the measured light or sound field to
create or reconstruct a three-dimensional (3D) light or sound field after the original
light or sound source is removed. The most significant advantage of holography is
that it allows one to visualize the entire light or sound field that cannot be obtained
by using conventional measurement methodologies.

The earliest holography was done through X-ray in 1920s. The inventor, Dennis
Gabor, was awarded the Nobel Prize in Physics in 1971 “for his invention and
development of the holographic method” [1]. To date, this technique is still being
used in electron microscopy, also known as electron holography. Optical hologra-
phy had a significant advance after the invention of laser in the 1960s. The first
practical laser holography was developed in 1962 by Yuri Denisyuk [2] in the
Soviet Union, and by Emmett Leith and Juris Upatnieks [3] at the University of
Michigan, USA, which enabled one to see 3D objects with very high spatial
resolution.

1.3 Acoustical Holography

The first published acoustical holography through ultrasonic reconstruction was
shown by Frederick L. Thurston [4] in 1966. One of the first books on acoustical
holography was authored by B.P. Hildebrand and B.B. Brenden [5] in 1971.
Acoustical holography employs the same principle as that of laser holography
[6], and a 3D sound field is reconstructed based on the measurements of the acoustic
pressure in the field. The spatial resolution of acoustical holography is limited to
one wavelength of the acoustic wave radiated from the source. In other words, one
cannot discern two acoustic sources separated by a distance less than one wave-
length. For example, if the frequency is 1,000 Hz and the speed of sound in the air at
room temperature (20 °C) is 343 m/s, then the wavelength of this sound wave is
A=c[f=343/1,000 =0.343 m. Accordingly, two sources emitting a sound wave of
1,000 Hz is indistinguishable when they are separated by a distance less than
0.34 m.

In general, if the highest frequency of interest is f;,.x or the shortest wavelength
of interest is Ain = ¢/fmax, then the minimal resolvable distance or spatial resolution
of acoustical holography is in the order of R = A,,;n/2. The same is true for laser
holography, where R = A,,,;,/2 represents the separation distance between two (dark
and bright) fringes. Since the wavelength of a laser beam is in nanometer range, its
spatial resolution is very high. The wavelength of a sound wave, however, is much
longer than that of light. Therefore the spatial resolution of acoustical holography is
much poorer than that of laser holography.
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It is emphasized that acoustical holography can only produce a 3D acoustic
pressure image. Moreover, the reconstructed acoustic pressure is accurate in the far
field, but not in the near field. It cannot be used to reconstruct the normal surface
velocity distribution on a vibrating structure, nor can it be used to reveal the
interrelationships between sound and vibration of a vibrating structure. This is
because acoustical holography does not consider evanescent waves in its recon-
struction. These evanescent waves turn out to be very important in reconstructing
vibro-acoustic responses.

1.4 Near-Field Acoustical Holography

The difficulties encountered in acoustical holography can be circumvented by
NAH. The major difference between NAH and acoustical holography lies in the
fact that the former attempts to capture as much evanescent waves as possible, and
the latter does not consider these waves.

By definition, evanescent waves imply the waves whose amplitudes decay
exponentially with respect to the measurement distances. For example, at one
wavelength of the emitted sound wave, the amplitudes of evanescent waves are
reduced down to 0.8 % of their values, or 99.2 % of evanescent waves are lost. At
one-half wavelength distance, 95.7 % of evanescent waves will be lost. Therefore,
in order to capture evanescent waves the measurement surface must be extremely
close to a target source surface. Chapter 5 provides detailed guidelines on setting up
measurement distances and microphone spacing for NAH reconstruction in both
exterior and interior regions.

Once evanescent waves are captured, the complete vibro-acoustic responses that
include the normal component of the particle velocity, acoustic pressure, and
acoustic intensity on the source surface and in 3D space can be reconstructed.
The interrelationships between sound and vibration can be revealed as well.

Table 1.1 exhibits the major differences between NAH and acoustical hologra-
phy. Indeed, NAH has been a game changer for analyzing noise and vibration since
its inception in early 1980s. The insight one can get from NAH on the underlying
mechanisms of sound and vibration cannot be matched by any other methodologies.
In theory, NAH can yield an unlimited spatial resolution in reconstruction [7] and
produce 3D images for all vibro-acoustic quantities both in space and on the source
surface.

NAH can be implemented in many different ways in practice. In what follows,
we describe some popular implementations. Each implementation has its advan-
tages and limitations.
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Table 1.1 Comparison of the major features and functions of NAH and acoustical holography

Major features and
functions

NAH

Acoustical holography

What can it produce?

3D images of all vibro-acoustic
responses including the normal compo-

3D images of the
far-field acoustic

nent of the particle velocity, acoustic pressure
pressure, and acoustic intensity in 3D
space and on source surface

Can it reveal interrela- It can not only reveal interrelationships | No

tionships between sound
and vibration?

between sound and vibration but also
uncover which components of structural
vibration can produce sound and which
ones cannot

Can the reconstructed
quantities be validated?

Yes, they can be validated against the
benchmark values anywhere

Only the acoustic pres-
sure in the far field

What is the spatial
resolution?

Unlimited spatial resolution when all
evanescent waves are captured

One wavelength of the
emitted sound wave

How should the measure-
ment setup be made?

Setups such as measurement distance
and microphone spacing are gauged
with respect to the critical structural
wavelength A,

Setup is gauged with
respect to the acoustic
wavelength 4

What is measurement dis-
tance d?

d < As/2, where A, is the critical wave-
length of the structural wave

d < /2, where A is the
wavelength of sound
wave

What is microphone
spacing 67

6 < Ao/2 where A, is the critical wave-
length of the structural wave

6 < A/2, where 1 is the
wavelength of sound
wave

1.5 Fourier Transform-Based NAH

The original NAH was implemented through the Fourier transform [8—10], i.e., the
acoustic pressures measured on the hologram surface in the space—time domain are
transformed to space—frequency domain, followed by another Fourier transform to
the wavenumber-frequency domain. These acoustic pressures are then projected
toward and away from a source surface in a source-free region in the wavenumber-
frequency domain. Once this is done, the inverse Fourier transform is taken to
transform the acoustic pressure to the space—frequency domain at new locations,
followed by another inverse Fourier transform to take them back to the space—time
domain. In this way, the acoustic pressure anywhere in a source-free region is
reconstructed. The particle velocity can be reconstructed in a similar manner
through a different propagator. Once the acoustic pressures and particle velocities
are reconstructed, the acoustic intensity and acoustic energy flow from the surface
of a vibrating structure to the surrounding fluid medium are completely determined.

Theoretically, the hologram surface should cover the entire space and measure-
ments must be taken at an equal interval in each dimension to facilitate the Fourier
transform. In particular, the hologram surface must have a level of constant
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coordinate, for example, an infinite planar surface for which the vertical coordinate
z is constant; or an infinitely long cylindrical surface for which the radius is
constant; or a spherical surface for which the radius is constant.

In practice, however, the hologram surface is always finite, known as a finite
measurement aperture. This is inconsistent with the Fourier transform requirement.
One way to circumvent this conflict is to apply a spatial window function that keeps
the measured acoustic pressure inside the measurement aperture intact, but sets the
value to zero outside the aperture. This spatial window in effect extends a finite
measurement aperture to an infinite hologram surface.

Note that a finite measurement aperture will induce wraparound errors in
convolving the measured acoustic pressures with respect to a propagator. In other
words, it introduces artificial wavenumbers that are actually nonexistent in reality.
The amount of wraparound errors cannot be determined exactly, but their impacts
can be reduced by making the aperture size four times as large as the size of the
source surface. Hayek and Luce have demonstrated [11] that it is possible to reduce
an aperture to the size of the source surface, yet still allowing reconstruction of the
source field with sufficient accuracy.

Recently advancements in the Fourier-based NAH have been made to eliminate
the need to have a large measurement aperture. Instead, only the area of the surface
on which the source field is interested needs to be scanned. This technique is called
patch NAH [12-15], which utilizes an analytic continuation of the patch acoustic
pressure and decomposition of the transfer function from measurement and source
surfaces.

Another aperture effect is due to a sudden drop in the amplitudes of the acoustic
pressures at the edges of a measurement aperture. This discontinuity exists no
matter how large an aperture is. As a result, there is a high concentration of very
high wavenumbers in the spectrum that poses a serious problem for the inverse
Fourier transform. This difficulty can be alleviated by applying a spatial window
function that brings down the amplitude of the acoustic pressure along the edge to
zero gradually [16]. Examples of such are called the Tukey window or cosine-
tapered window [17] that combine the cosine and rectangle windows to reduce the
amplitude of the acoustic pressure to zero along the edges of the measurement
aperture smoothly without significantly reducing the gain of windowed Fourier
transform.

As noted above, the Fourier transform-based NAH is applicable to a surface that
contains a level of constant coordinate such as an infinite plane, an infinite circular
cylinder, and a sphere. Another limitation is that the Fourier transform-based NAH
is suitable for a source-free region. In other words, the region in which reconstruc-
tion of an acoustic field is desired must be free from any source and reflecting
surface. For an arbitrary source surface, the region of validity is bounded by two
parallel infinite planes (see Fig. 1.1), one tangential to the source surface and the
other at the infinity. The problem is that such a source-free region is nonexistent in
reality. Moreover, the acoustic quantities on arbitrarily shaped surfaces are desired.
So other NAH implementations are needed.
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Fig. 1.1 Schematic of region of validity for the Fourier transform-based NAH

1.6 Boundary Element Method-Based NAH

In order to reconstruct the vibro-acoustic quantities on the surface of an arbitrarily
shaped structure, different implementations of NAH must be adopted. One such
alternative is through the use of the Helmholtz integral theory, which is a
reformulation of the Helmholtz equation in terms of an integral formulation (see
Sect. 6.1).

The advantage of the Helmholtz integral formulation is a reduction of the
dimensionality of an acoustic radiation problem by one. Specifically, the radiated
acoustic pressure anywhere in a free field is expressible as an integral of the surface
acoustic quantities and free-space Green’s function. Hence, all that is required is to
determine the acoustic pressure and normal component of the particle velocity on
the surface of a vibrating structure. Once this is done, the acoustic field anywhere
external to the structure is completely determined.

For an arbitrarily shaped structure, there is no analytic solution to the acoustic
quantities on the surface via the Helmholtz integral theory. Therefore, numerical
solutions are sought. The most commonly used numerical scheme for the Helm-
holtz integral theory is the boundary element method (BEM), which discretizes any
given surface into a finite number of area segments, each of which contains a fixed
number of discrete nodes with specific weighting coefficients. The values of the
acoustic quantities anywhere on the source surface can be approximated by a
polynomial of the acoustic quantities evaluated at the discrete nodes multiplied
by the corresponding weighting coefficients. The number of discrete nodes on an
area segment determines the order of polynomial interpolation. The zeroth-order
polynomial in BEM approximates the acoustic quantities anywhere on the source
surface as a spatial average of this area segment. The first-order polynomial in BEM
approximates the acoustic quantities anywhere on the source surface as the linear
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interpolation of those evaluated at the discrete nodes. The second-order polynomial
describes the acoustic quantities as a quadratic interpolation of those evaluated at
the discrete nodes. In engineering applications the second-order polynomial is
accurate enough to generate satisfactory numerical solutions.

The first attempt to reconstruct the acoustic quantities in an interior region
bounded by an arbitrarily shaped surface is depicted by Gardner and Bernhard
[18], who use the Helmholtz integral theory to describe the interactions of acoustic
sources on the surface and field points in an interior region. Since numerical
solutions are obtained by using BEM [19], this approach is known as
BEM-based NAH.

Veronesi and Maynard [20] present a more elaborated derivation of BEM-based
NAH. Over the next 10 years many papers have emerged that use singular value
decomposition (SVD) [21] and the Helmholtz integral formulations to reconstruct
the acoustic field radiated from an arbitrary surface [22-32]. SVD is a powerful
technique for solving a matrix equation. It enables one to express any complex
matrix as a diagonal matrix in the proper bases together with domain and range
spaces. If a system of equations is overdetermined, SVD yields a least-squared
solution [33]. However, numerical computations involving SVD for a large and
complex matrix can be very time consuming, especially at high frequencies.

The advantages of BEM-based NAH are that: (1) it allows for reconstruction of
the acoustic quantities on an arbitrarily shaped structure; (2) it has no restriction on
locations of measurement points on a hologram surface, so long as they are in a near
field; (3) it has no restriction on locations of reconstruction points, whether they are
on an arbitrary source surface or in a free field; and (4) it is suitable for both exterior
and interior regions.

The disadvantages of BEM-based NAH are that: (1) it fails to yield a unique
solution when the frequency is close to one of the characteristic frequencies of a
boundary value problem in the interior region [34]; (2) it is valid in an unbounded
source-free region only; and (3) numerical computations are very intensive. This is
especially the case when additional algorithms are needed to overcome the
nonuniqueness difficulties encountered at the characteristic frequencies [34,
35]. The reason for this intensive numerical computation is because the acoustic
quantities are reconstructed through spatial discretizations. Typically, six nodes per
wavelength are required to ensure a satisfactory reconstruction. Each node contains
two unknown variables: the surface acoustic pressure and the normal surface
velocity. So the number of measurement points is doubled. For a complex structure
such as an engine, the number of discrete nodes needed may be very large, which
may lead to an excessive number of measurement points and make reconstruction in
the mid-to-high frequency range unrealistically time consuming.

Although BEM-based NAH is based on rigorous integral formulations, its
implementation can be a challenge. Another hindrance is that this approach is
valid only for an unbounded source-free region, which is nonexistent in practice.
Therefore other alternatives are sought.
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1.7 Helmholtz Equation Least-Squares
Method-Based NAH

An alternative to the aforementioned NAH implementations is HELS (Helmholtz
equation least-squares)-based NAH [36, 37]. Unlike the Fourier transform- and
BEM-based NAH, HELS-based NAH does not seek an analytic reconstruction of
the acoustic field generated by any source, but rather an approximate one by
using an expansion of some admissible basis functions with errors minimized by
the least-squares method. As such, this approach enables one to tackle a complex
source surface with relatively few measurement points, even in a non-source-free
region.

The major advantages of HELS-based NAH are its simplicity in formulation,
efficiency in computation, and flexibility in application. Since this methodology
solves the Helmholtz equation directly, it is immune to the nonuniqueness difficulty
inherent in BEM-based Helmholtz integral formulations [34].

The major disadvantage of HELS-based NAH is due to the fact that there is no
single set of coordinate system that can yield a good approximation for all surface
geometry. For example, the spherical coordinate system may be good for a blunt
and convex surface, but not for a highly elongated one; the cylindrical coordinate
system is ideal for a slender body, but not for not a flat surface. On the other hand,
basis functions are readily available only for the spherical coordinate system. This
means that for all practical purposes, the spherical wave functions have to be used
in HELS-based NAH to reconstruct the vibro-acoustic responses generated by
non-spherical source surface. Consequently, the accuracy in reconstruction is
compromised. The farther a source surface differs from a spherical surface, the
larger the reconstruction errors on the source surfaces are.

There are other NAH implementations for reconstructing the acoustic fields
generated by stationary and moving sources and sources subject to transient exci-
tations, etc. (see [38]). The focus of the present book is on HELS-based NAH and
its applications.

Problems

1.1. What is NAH? What does it do?

1.2. What is the difference between NAH and acoustic holography?

1.3. What are the advantages of NAH compared with traditional noise and
vibration diagnosis techniques based on measurements of microphones,
accelerometers, and intensity probes?

1.4. What are the limitations of NAH compared with traditional noise and vibra-
tion diagnosis techniques?

1.5. Why will NAH have these limitations?

1.6. What are the advantages and limitations of the Fourier transform-based
NAH?
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1.7.
1.8.
L.9.

1.10.

1 Introduction

What are the advantages and limitations of the BEM-based NAH?

What can we learn from the reconstruction of the acoustic pressure field?
What can we learn from the reconstruction of the normal surface velocity
distribution?

What can we learn from the reconstruction of the acoustic intensity field?



Chapter 2
The Spherical Wave Functions

All acoustic radiation problems can be boiled down to solving the wave equation
subject to certain initial and boundary conditions. For a constant frequency case, the
problem reduces to solving the Helmholtz equation [39], Vzﬁ + k*p = 0, subject
to certain boundary conditions on the source surface. This sounds simple but in
reality the analytic solution to the Helmholtz equation exists only for certain types
of source geometry that the Helmholtz equation is separable. In most engineering
applications the source geometry is arbitrary, so the analytic solution to the
Helmbholtz equation cannot be found. In these circumstances numerical or approx-
imate solutions are sought.

In this chapter spherical source geometry is considered. Accordingly, the ana-
lytic solution to the Helmholtz equation is expressible as the spherical wave
functions, which can be obtained by the method of separation of variables. The
reasons for choosing the spherical wave functions are (1) the analytic functions are
readily available; (2) they are easy to understand; (3) computer codes for the
spherical wave functions exist in all software libraries; and (4) they lay the
foundation for Chap. 3 of the present book.

2.1 The Helmholtz Equation Under the Spherical
Coordinates

Using the spherical coordinates (7, 8, ¢»), we can rewrite the Helmholtz equation as

10 (,0p 19 (. 0p 1,
r—za(’ E)*W%(S‘“"%)*Wa?”ﬁ =0 @y

where k = w/c is the acoustic wavenumber; @ and c represent the angular frequency
and speed of the sound, respectively; the symbol p indicates the complex amplitude
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of the acoustic pressure. Note that a time-harmonic function of the form e ™" is
assumed in Eq. (2.1).

The solution to Eq. (2.1) can be obtained by using the separation of variable

p(r,0,¢; @) = R(kr)0(0)D(4), (2.2)

where R(kr), ©(0), and ®(¢) are functions of the spherical coordinates r, 4, and ¢,
respectively.

Substituting Eq. (2.2) into (2.1) then leads to three separate ordinary differential
equations:

1d [ ,dR 2, nn+1)
a2 (1 dr> +k°R 2 R=0, (2.3a)
1 d d® m2
— i . 1) — = 2.
Sin0do (Smecm) + [”(” +1) sin29}® 0. (2.3)

&o
—+m P =0, 2.3¢c
i (2.3¢)

where n and m are integers associated with the radial function R(kr) and the
azimuthal function @(¢), respectively. In particular,n=0,1,2,...,00,and m = —n
to +n, which are discussed later. Throughout this book, we use an italic n to indicate
an index and a regular n to depict the unit normal.

2.2  Solution to R(kr)

The solutions to Eq. (2.3a) are expressible as the spherical Bessel functions of the
first and second kinds [40], j,(kr) and y,(kr), respectively,

R(kr) = Ayj,(kr) + Azy, (kr), (2.4a)

where A, and A, are arbitrary constants to be determined by boundary conditions.
Alternatively, the solutions to Eq. (2.3a) can be written as

R(kr) = By iV (kr) + Boh® (kr), (2.4b)

where B, and B, are arbitrary constants, and hS,U(kr) and h£,2>(kr) are the spherical

Hankel functions of the first and second kinds [40], respectively. Since h,(ll)(kr) and

h,(lz)(kr) contain the exponential functions of et and efikr, respectively, and since

the time-harmonic function in Eq. (2.2) is given by e *”, these spherical Hankel
functions depict the outgoing and incoming waves, respectively.
The spherical Hankel functions in Eq. (2.4b) are related to the spherical Bessel

functions in Eq. (2.4a). In fact, we can write hﬂl)(kr) and hf,z)(kr) as
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where j,(kr) and y,(kr) are given by

. | T

jn(kr) 2k J’H’l/z(kr)
) V1

yn(k’) = 2/{)Yn+l/2(kr)

(2.6a)

(2.6b)

where J,, , 12(kr) and Y, , 1,5(kr) are the first and second kinds of Bessel functions,

respectively.

Example 2.1 The first four terms of the first and second kinds of the spherical Bessel
functions j,(kr) and y,(kr) and spherical Hankel functions hﬁ,l ) (kr) and h,(,z) (kr)

are given, respectively, by

o) =55 anayoftr) = - <G
) __ cos(kr) sin(kr) N R sin (kr)  cos (kr)
J1 (k}’) - (kr) (k}’)2 and yl(k ) (kl‘) (ki‘)2
) __sin(kr) 3cos(kr) 3sin(kr)
Jo(kr) = k) )? + o) and
_ cos (kr) 3sin(kr) 3cos (kr)
yZ(kr) - (kl’) (kr)2 (k}")3 ’
.\ _ cos(kr) 6sin(kr) 15cos(kr) 15sin (kr) an
J3 (k’) - (kl‘) (kr)2 (kr)3 (kl‘)4 d
. sin(kr) 6cos(kr) 1Ssin(kr) 15cos (kr)
B0 =y e T ) W'
h(()l)(kr) =—i e;kr and h(()z) (kr) = +i ;k’ ;
W (k) = — (kr ;{3;:*’” and 2 (kr) = ~ (kr (—k’z; e ik 7
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[(kr)2 34 i3(kr)} e Hikr X
j and hg >(kr)

(kr)?
, [(kr)2 -3- i3(kr)}e‘”<"
l (kr)? ;
1) [(kr)3 —15(kr) + i6(kr)* — 1'15} o-Hikr
iy k) = (kr)4 and
) [(kr)3 —15(kr) — i6(kr)* + ilS} o—ikr
W (kr) = + —

In general, we can write

julkr) = (—1y = [ (kr)

] and y (kr) = (1) =L [COS(’”)}

d(kr)" | (kr) dkr)" | (kr) |’
W A" (kr) W A" (kr)

A

W(kr) = (—1) and A2 (kr) = (—1)

d(kr)" d(kr)"

Example 2.2 The asymptotic forms of the first and second kinds of the spherical
Bessel functions, j,(kr) and y,(kr), and the spherical Hankel functions, hf,])(kr) and

h£,2>(kr), and their derivatives as kr — 0 are given, respectively, by

, (k)" (kr)?

Jn(kr)~(2n+1)!! 1_2(2n—|—3)+“' and
_ n=nf o (kr)? .

2l & = ll -2 |

dj,(kr) _ (kr)""!
d(kr) ~ (2n4 D!

dy,(kr) _(2n— 1)l l(" RO e VI(CO Y ] |

(n+2)(kr)?

~
~

d(ki) (kr)n+2 2(1 _ 2}’1)
hY (kr) ~ —iw and  h%(kr) ~ iw;
n ( ) (kr)n+1 n ( ) + (kr)’“Ll
dhD(kr) _ (n+1)2n— 1) dhD(kr)  (nt+ Dn— DI

~ +i and ~ —I ;
d(kr) (kr)"? d(kr) (kr)"2
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where

2 1)!
(2n+1)!!:<nzn;') and (2n— 1)l =
n!

(2n—1)!
2"n!

These results show that the first kind of the spherical Bessel functions j,(kr) and
their derivatives are bounded, while the second kind of the spherical Bessel
functions y,(kr) and their derivatives grow without a bound as kr — 0. Because
the spherical Hankel functions contain y,(kr), they are unbounded as well as kr — 0.

Example 2.3 The asymptotic expressions of the spherical Hankel functions of the

first and second kinds, h,(f)(kr) and h,(lz) (kr), and their derivatives as kr — oo are
given, respectively, by

ikr —ikr

(1) o ()] © @ (1) 2 1€ .

hy (k) = (—i) ) and 7 (kr) &~ (+i) T
(1) (74 ikr 2) (1. —ikr
dh,”’ (kr) ~ (=)’ e and dny (kr) ~ (_H),,e .
d(kr) (kr) d(kr) (kr)

Note that for large real arguments, kr — 0o, one cannot write the true asymptotic
forms for Bessel functions of the first and second kinds because they are oscillatory
and have zeros all the way to infinity, making it impossible to be matched exactly
by any asymptotic expansion.

Example 2.4 The recursion relationships for the first and second kinds of the
spherical Bessel functions, j,(kr) and y,(kr), and their derivatives are given, respec-
tively, by

) _(2n—1). ) )
Jn(kr) - (kl”) Jnfl(kr) Jn—2 (k’) and
(2n—1)
Yulkr) = Wyn—] (kr) — yu_p(kr);
where n > 2. For n=0 and 1, j,(kr) and y,(kr) are given in Example 2.1.
djy(kr) _(n\. . o o dy,(kr) _ (n ,
ditry = G Vinlhr) = Jucahr) - and - S8 = ({03, (0k7) = 3, (k).

Example 2.5 The recursion relationships for the first and second kinds of the

spherical Hankel functions, hﬁ,l)(kr) and hf)(kr), and their derivatives are given,
respectively, by
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h ((kr) + hn+] (kr)} and

[ (k) + 2, k)|

d( ) nl(kr)_<n/j;l)h£ll)(k’,) and

dn (kr) o) 0 (nE 1Y,
d(kr)hnl(k’)( kr >hn (kr)7

where n>1. For n=0, h(()l)(kr) and h(()2>(kr) are given in Example 2.1, and their
derivatives are

dn (k) (ko 40\ e and dn) (k) (k= i\ e
dkry — \ kr ) kr dikr) — \ kr ) kr~

2.3 Solution to ()

The solutions to Eq. (2.3b) can be written as the Legendre functions of the first and
second kinds, respectively,

0(0) = C\P,'(cos0) + C>0,"(cos0), (2.7)

where C; and C; are arbitrary constants. Note that the second kind of the Legendre
functions is unbounded at the poles cos @ = & 1, and must be discarded by setting
C,=0. Also note that 7 is an integer and the first kind of the Legendre function P
(cos ) =0 whenever m > n. Since m ranges from —n to +n and since P, "(cos ) is
related to P}'(cos 8) through

(n—m)!

P."(cos®) = (—1)" (ntm)

P (cos0), (2.8)

where m is positive, we only need to be concerned with P7'(cos@), which is
expressible as [41]

d"P,(cos6)

Pm — _1 m _-._.m
"(cos@) = (—1)"sin™0 (cos0)"

(2.9)

where P, (cos 0) is given by an infinite series known as the Legendre polynomials,
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(2n—1)N n(n—1)

_ np _ (n—2) ( )( )(}’l — 3) (n—4)
P,(cos0) ] cos"0 22 =1) cos ""20 + 2 A -2 —3) cos 0
=D =2)(n=3)(n =4 =5) (g
2 d-6(n—)n—3)n—5) = 0t
(2.10)
where n=0, 1,2,...,00
The Legendre polynomials P,(cosf) are orthogonal, namely,
+1
2
J P, (cosO)P,(cos@)d(cosb) _(2—-1-1> 8, (2.11)
n
where 6,/ is the Kroneker delta function,
I, ifn=n
Oy =19 , 2.12
w={e wnon 2.12)

Since P7'(cos®) is related to the Legendre polynomials, a similar orthogonal
condition exists for P'(cos 6) for any positive value of m,

+1
J P"/(cos@)P,"(cos@)d(cos0) :(

2 (n+m)!
et 1) = my o (213)

Example 2.6 The first five terms (n=0, 1, 2, 3, and 4) of the first kind of the
Legendre functions are given as follows:

For n=0, P)(cos ) = 1.
Forn=1, P{'(cos0) = 5139, PY(cos 0) =cos 0, and Pl(cos 0) = — sin .

For n=2, P;*(cos@) =10 P l(cos@) =<oslsind  pl(cosg) = Li3cos2d
Pi(cos 6) =—3cosfsind, and P%(cos 0) = 3sin’6.

For n=3, P;*(cos§) = 3¢ P-2(cos 6) :%smze’ P;'(cosf) = w’

T
Pg(COS 9) _ =3 cos(?;—S cos 0’ P3( cos 0) _ 3(175 cozs 0) smé)’ P%(COS 0) =

15 cos @sin’0, and P3(cos §) = — 15sin’6.

_ —4 __7sin*0 p-— 7cos@sin’0 (547 cos20) sin%6
For n=4, P;*(cosf) = P (cosf) =Teosfsinb  p2(cosf) =SB IE

2688 °
_ 3 .
PZI(COSQ):—M, PO(COSG):w’
_ 3 o
P} (cosg) = 22t Teos0)sind - pa s ) = 15(54Teos20)sin’e

P3(cos@)=—105cos0 sin*9, and P(cosd)=105sin"0.
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Example 2.7 The recursion relations for the Legendre functions can be written in
different ways, one of them being

(n—m—|—1) m

) (tm)
(2n+1)cosd !

Pii(cos0) = (2n+ 1)cost9P”_1

(cos®) + (cos @),

where n> 1. For n=0, P8(cos 0) =1 as shown in Example 2.5.

Example 2.8 Similarly, there are different recursion relations for the derivatives of
the Legendre functions, one of them being

dP"(cosf) (n+1)cosf
1 = pr 0) —
d(cos0) sin 6 v (c0s0)

(n—m+1)
sin @

P”’l

i (cos@).

2.4 Solution to ®(¢h)

The solutions to Eq. (2.3¢) are simply harmonic functions of the azimuthal angle
®(p) = D1e"? + Dye™", (2.14)

where D and D, are arbitrary constants.
The angular solutions ®(f) and ®(¢) given by Egs. (2.7) and (2.14) can be
combined into a single function known as the spherical harmonics Y]'(6, ¢),

(2n+1)(n —m)

| .
Y™, ) = pm 0)e™?, 2.15
. (0,0) 4(n +m)! . (cos@)e (2.15)

where —n <m<n.
Since P, "(cos 0) is related to P'(cos ), so is Y, (0, ¢) to Y7'(6, ¢), namely,
Y,"(0,¢) = (=1)"Y,"(0,9), (2.16)

where a superscript * implies a complex conjugation. The spherical harmonics are
orthonormal,

2 n
J d¢J Y?’ (67 ¢)Y:;1* (97 ¢) sin 0d6 = 5n')15m'm’ (2 17)
0 0

The orthonormal characteristics of the spherical harmonics enable us to use
them to represent any arbitrary function f(6, ¢) on a spherical surface. For example,
we can express f(6, ¢) as



2.4 Solution to ®(¢) 19

£(0.9) = Z Z AuY" (0, 9), (2.18)

n=0 m=—n

where A, are the expansion coefficients that can be obtained by using the ortho-
normal condition (2.17). Multiplying both sides of Eq. (2.17) by the spherical
harmonics Y}'(6, ¢) and integrating over the solid angle of a sphere, we obtain

2n

¥4 2r T
quslf(a, )Y, )" sin0do = Jdd’JZ DAY (0, $)Y" (0,4) sin0do

0 0 n=0m=-n

- Z Z AnmJ J (0,)Y" (6, )" sin 0d6 = Z Z Byt 1t = A
0

n=0m=—n n=0m=—n
(2.19)
Therefore, the expansion coefficients A,,, are given by
2r n
A = J d(,{)Jf(H, DY (0,4)" sin0do. (2.20)
0 0

It is important to point out that the results given by Egs. (2.18), (2.19), (2.20) are
only valid for a spherical source surface.

Example 2.9 The first few terms (n < 4) of the spherical harmonics are given by:

For n=0, Y{(0,9) =

s\

For n=1, Y;'(0,¢) = ([sm@) i, Y90, 9) = \/cose and Y}(0,¢)
= —(%\/; sin 6’>ei
For n=2, 52(0,¢) = ( [sm%’) B S (%\/7 sm2€>

Y?<0,¢):f\ﬂ<3cos26—1> Yi(0.4) = (g 2sin20)e?, and

Y3(0,¢) = ( \/gsm 9>ei2¢.
Forn:3,Y;3(9, ) = ( \/7$1n3¢9) 1?¢,Y = (TS’/ cost9s1n29) —i2¢

%

110, ¢) = [% %(500529+3)sm9} e it Y09¢ =1, /1(5c0s%0 — 3cos0),
Yi(0,¢) = [% Z(—5cos%0+1) sm@]e"”, Yi(0,¢) = (TS,/ cos&sm29) e’??,

(—
and Y3 0,¢) = ( \/751n36) e,
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Forn =4, Y;4(0,¢) = (%\/%Sin40>e*i4f/),
13(9, $) = (%\/%cosesinw)e*w,
{}_g\/; (7cos 20 + 5) sin 9} e,
{ \/7 7cos30 — 3cos6) smtﬂ

Y90, 8) = /135 cos 0 — 30cos%0 + 3),
Yi(0,4) = — [%\/%(7 cos 3@ — 3 cos @) sin 0} e,

Yi(0,4) = [—g\/ (7 cos 20 + 5) sin 6} ei2¢,
Yi(0,4) = (%,/35”005951n36) B3¢ and

Yi(0.0) = (42 5tz sin0) e,

2.5 Solution to p(r, 0, ¢; w)

Combining the radial functions R(kr) and spherical harmonics Y'(6, ¢), we can
express the solutions to the Helmholtz equation that describe standing waves in an
interior region as

p(r,0,¢;m) = i i [Apni, (k) + By, (kr)]Y ' (cos ), (2.21a)

n=0 m=—n

or the solutions to the Helmholtz equation that describe traveling waves in an
exterior region as

PO gy =33 {Amnhf})(kr) 4 Buh® (k)Y (cos6),  (2.21b)

n=0 m=—n

where the first term on the right side of Eq. (2.21b) depicts the outgoing spherical
waves and second term describes the incoming spherical waves.

Now let us consider the examples of using Eq. (2.21) to predict the acoustic
pressure fields generated by a vibrating sphere.
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Example 2.10 Consider the case of a vibrating sphere of radius r = a in a free field.
Let the acoustic pressure on a spherical surface of radius r=r" be specified,
P(r,0,0;0)|,_meas =P (r™*,0,¢;w). The acoustic pressure field anywhere
including the source surface is desired. This problem can be solved by using
Eq. (2.21b). Since this is an exterior problem and the field is unbounded, there
are only outgoing waves from the vibrating sphere to infinity. Accordingly,
Eq. (2.21b) is rewritten as

r0,¢:w Z Z AV (k)Y ™ cos 6).

n=0 m=—n

The expansion coefficients A,,, can be specified by using the pressure boundary

condition on the spherical surface of radius r=r"*,

p(r™.0,¢; 0) = Z Z Apnh D (kr™)Y ™ (cos ).

n=0 m=-n

Multiplying both sides by the complex conjugate of the spherical harmonics,
integrating over the solid angle of a sphere, and using the orthonormal property
of the spherical harmonics, we obtain

2r z
J quJ P(r™,0,¢; @)Y (0, $) sin0dO = Ay (k™).
0 0

Therefore, the expansion coefficients A,,, are given by

2z T
o 1 ~ (.meas . mx :
Anm = WJ d¢Jp (l ,07 ¢, CU)Yn (67 ¢) sin 68d6.
" 0 0

Once A,,, are specified, the acoustic pressure anywhere is expressible as

Example 2.11 Consider the case of a vibrating sphere of radius r = a in a free field.
Assume that the normal surface of this vibrating sphere is given as v ,(a, 0, ¢; ®).
With this boundary condition, we want to predict the radiated acoustic pressure
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anywhere, including the source surface. From the Euler’s equation [42], we can
write the boundary condition as

5 1 0p(r,0,¢;
Pafas0,50) = pirtidio)

r=a

where p is the ambient density of the medium surrounding the dilating sphere, and
a subscript n depicts the unit normal direction.
Since there are only outgoing waves, we can rewrite Eq. (2.21b) as

o0

p(r.0,¢;0 Z Z AV (kr)Y ™ (cos 0).

n=0 m=—n

Take the normal derivative on both sides of the above expression,

(
9 (/)’ Z Z Ay —2——= dh”l Y”’(cos 0),

n=0 m=—n
where the symbol 0/0n represents a normal derivative defined as

E:H.V:E,

on or

Substitute the normal derivative of the acoustic pressure evaluated at r = a yields

‘;n(a797¢; :—Z Z

lwpon 0 m=—n

Y"(cos0).

r=a

Next, we multiply both sides by the complex conjugate of the spherical harmonics,
integrate it over the solid angle of the sphere, and use the orthonormal property of
the spherical harmonics,

2z

J d(,bj\?n(a, 0, ¢; w)Y"*(cos 0) sin OdO =
0 0

Apn dR\V ()
iwp, dr

Therefore, the expansion coefficients A,,,, are found to be

2 p/4
iw R s .
A,y = ﬁ J d¢J P n(a, 0, ;@)Y (0, p) sin 0d6.
”dr 0

r=a

Accordingly, the radiated acoustic pressure is given by
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)

. . 2 hD (kr 4
p(r.0,9;0) = lwpoz dh(f# Z Y"(cos@)
n=0 —/———=

a |,
qusj b <a, 0.4 a)) y" (9’, ¢’) sin6d6.
0 0

Example 2.12 Let us consider a specific case of a dilating sphere for which
Vn(a,0,¢; ) = vy is a constant. Accordingly, we set n=m =0 in the above
expression. Substituting the derivative of the spherical Hankel functions of the first
kind with n =0 (see Example 2.1) yields the expansion coefficient Ay as

ka)?
(ka +1)

e—ika

Ago = ipycvo

The corresponding acoustic pressure anywhere is given by

ka a\ iy
A~ -0, b — (_) ik(r —a)’
p(r,0,¢;®) = pycvo (ka i) ~)e

which agrees perfectly with the analytic solution [42].

Example 2.13 Next let us consider the acoustic pressure inside a dilating sphere of
radius r=a. Once again let that the normal surface of this dilating sphere be
constant, v, = v,. In this case we can use Eq. (2.21a) but have to discard the second
term involving the second kind of the spherical Bessel function y,(kr) because it is
unbounded at the center » = 0. Accordingly, we have

(r,0,¢; 0 Z Z Apnj,(kr)Y ' (cos O)e img

n=0 m=-n

where the expansion coefficients A,,,, can be determined by the boundary condition
together with the orthonormal condition. Take the normal derivative of the acoustic
pressure,

9 ¢’ Z Z Am,, Y"’(cos 0)e img

n=0 m=—n

Substitute the normal derivative of the acoustic pressure into the boundary
condition,

Y™(cosf)e™?.

r=a

b= S 3 4, B

1(Upon 0 m=—n




24 2 The Spherical Wave Functions

Following the same procedures as those outlined in Example 2.11, we obtain

27

mk . r
J d¢j VoY (0, ) sin 0dO = m)pOJ d¢jz Z Ay 87 =
0

0 n=0 m=-—n

Y™ (0, )Y (0, §)e™ sin 0d0.

Using the orthogonality property of the spherical harmonics and carrying out the
integrations over the solid angle, we obtain

LS4

la)pon 0 m=—n

etmq’) )

r=a

The left side in the above equation is constant and independent of the angular
variables, and the right side can match this if n =m = 0. Substituting the derivative
of the spherical Bessel function of the first kind given in Example 2.1 with n =0, we
obtain

_ Ao dj,(kr) _ Ao (ka) cos (ka) — sin (ka)]
ipgc d(kr) |,_, ipoc(ka)® ’

from which we found the expansion coefficient Ay, to be

ipgevo(ka)?
(ka) cos (ka) — sin (ka)

Ago =

Substituting A into Eq. (2.21a) yields the interior acoustic pressure field,

. . ipyevo(ka)sin (kr) - a
p(r,0,di0) =705 zoso(ka) — sin (ka) (‘)

In this case resonance will occur inside the spherical surface when the frequency fis
equal to one of the eigenfrequencies obtained by solving the following character-
istic equation:

2 2
tan (L):L n—1.2.3. ...

c c

The above equation is a transcendental equation that can only be solved numer-
ically. The first four eigenfrequencies or the roots of this transcendental equation
are:
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£, =0.715148 (2) (Hz),
£, = 1.229515 (2) (Hz),
fi= 1.735446(2) (Hz),

fo= 2.238705( ) (Hz),

c
a

Examples 2.10 and 2.11 demonstrate that we can use the expansions of the
spherical wave functions to describe exactly the acoustic pressure field generated
by a vibrating sphere. When the vibration pattern is arbitrary, the number of
expansion terms may be infinite. When the vibrating surface is not spherical
however, the expansion given by solution Eq. (21) is invalid. In practice, most
vibrating surfaces are non-spherical. Therefore, a different methodology is needed
to describe the radiated acoustic field. This is the topic of Chap. 3.

Problems

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.17.

Use the recursion relations given in Example 2.4 to write the following
spherical Bessel function and spherical Hankel function of the first kind:
iV (kry and 1YY (kr), where n=4, 5, and 6.

Use the recursion relations given in Example 2.4 to write the derivatives for
the following spherical Bessel function and spherical Hankel function of the
first kind: dj\" (kr)/d(kr) and dh'Y (kr)/d(kr), where n =4, 5, and 6.

Use the recursion relations given in Example 2.6 and definitions of the
Legendre functions to write P'(cos @), where n =15 and m = —n to +n.
Continue Problem 2.2 and write down the spherical harmonics Y7'(0, ¢),
where n =135 and m = —n to +n.

Consider a vibrating sphere of radius »r=a in free space. Assume that the
acoustic  pressure on the spherical surface is given as
p = pocv.(ka)/(ka + i). Determine the radiated acoustic pressure anywhere
in free space by using the expansion of the spherical Hankel functions and
spherical harmonics.

Consider a vibrating sphere of radius »r=a in free space. Assume that the
normal surface velocity of this sphere is a constant v, = V. Find the radiated
acoustic pressure anywhere in free space via the expansion of the spherical
Hankel functions and spherical harmonics.

Consider a vibrating sphere of radius r=a in free space. Assume that the
acoustic ~ pressure on the spherical surface is given as
P = pocV-(ka)(ka + i) cos 0/ (k*a® — 2 + i2ka). Find the radiated acoustic
pressure anywhere in free space by using the expansion of the spherical
Hankel functions and spherical harmonics.
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2.8.

2.9.

2.10.

2 The Spherical Wave Functions

Consider a vibrating sphere of radius r=a in free space. Assume that the
normal surface velocity of this sphere is given asv,, = V/y sin 6, where 0 is the
polar angle. Determine the radiated acoustic pressure in free space by using
the expansion of the spherical Hankel functions and spherical harmonics.
Will the acoustic pressure contain any resonance frequency? Why?
Consider the acoustic pressure field inside a sphere of radius 7 = a. Assume
that the acoustic pressure on the interior surface is constantp = C. Determine
the acoustic pressure field in the interior region by using the expansion of the
spherical Hankel functions and spherical harmonics. Will the acoustic pres-
sure contain any resonance frequency? If so, what are these resonance
frequencies?

Consider the acoustic pressure field inside a sphere of radius 7 =a. Assume
that the sphere is oscillating back and forth along the x-axis direction, and the
normal surface velocity is given as v, = V sin 4, where 6 is the polar angle.
Solve the radiated acoustic pressure field in the interior region using the
expansion of the spherical Hankel functions and spherical harmonics. Will
the acoustic pressure contain any resonance frequency? If so, what are these
resonance frequencies?



Chapter 3

The Helmholtz Equation Least-Squares
Method

In engineering applications, most vibrating surfaces are of arbitrary shapes. More-
over, the environments are often nonideal such that the radiated acoustic pressure
field cannot be solved by any analytic methods, including expansion theories.
Therefore, approximate solutions are sought. The Helmholtz equation least-squares
(HELS) method [36, 37] offers such approximate solutions to a wide variety of
acoustic radiation problems encountered in practice. Note that HELS can not only
be used to reconstruct but also to predict the radiated acoustic field emitted by an
arbitrarily shaped vibrating body.

If Fourier transform-based NAH is the first generation and BEM-based NAH the
second in the evolution of NAH technology because of their respective significance,
the third generation would be HELS-based NAH. Unlike the first two generations,
HELS-based NAH does not seek analytic solutions to the acoustic fields generated
by arbitrarily shaped structures that cannot be found anyway. Rather, it attempts to
find the best approximation of an acoustic field through an expansion of certain
basis functions. This approach greatly simplifies reconstruction, yet enables one to
tackle a complex problem involving an arbitrarily shaped surface in a non-free field
with fewer measurement points than both the Fourier transform and BEM-based
NAH do. This makes HELS potentially a practical and versatile tool for diagnosing
noise and vibration problems.

The development of HELS method started in the mid-1990s. In HELS the
acoustic pressure is written as an expansion of the particular solution to the
Helmbholtz equation. Using the spherical coordinates, the particular solution is
expressible as the spherical wave functions. The coefficients associated with the
expansion functions can be determined by solving an overdetermined linear system
of equations obtained by matching the assumed-form solution to the measured
acoustic pressures, and the errors incurred in this process are minimized by the
least-squares method.

© Springer Science+Business Media New York 2015 27
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3.1 The HELS Formulations

To put it simply, the HELS method uses an expansion of some basis functions to
describe the acoustic pressure generated by an arbitrary source anywhere. The
requirements on the basis functions are that they must satisfy the Helmholtz
equation and are bounded. Therefore different basis functions may be used,
depending on whether the region in which the HELS solution is intended for is
external or internal to a source surface. There is no restriction whatsoever on the
choice of coordinate system, but the rule of thumb is that for a blunt object whose
aspect ratio is close to (1:1:1), then the spherical coordinate system is a natural
choice. Similarly, for an elongated object whose aspect ratio is close to (1:1:10), the
prolate coordinate would be ideal, and for a discoidal object whose aspect ratio is
close to (1:10:10), the oblate would be best. In the matrix form, the HELS
formulation can be expressed as follows:

{;3 (}’w)} - [\W(}’;a))]{c(a))}, (3.1)

where p (1 w) implies the complex amplitude of the acoustic pressure at any field
point X, and ‘Pl(jl) (;, w) are the particular solutions to the Helmholtz equation.

Using the spherical coordinates, one can write ‘ngl) (}, w) as
vy (¥50) = W) (,0,0:0) = 1D (k)Y (0, ), (3.2)

where the first index 7 in ‘PE;) (;, w) indicates the ith reconstruction point and the

second index j implies the jth term of expansion functions. When the spherical
coordinates are used, these indices can be replaced by » and /, where 7 is associated
with the radial functions and / is with the angular functions. The indices j, n, and [ in
Eq. (3.2) are related via j = n* + n + [+ 1 with n starting from 0 to N and [ from —n to
(1)

+n. ¥, (}; a)) are orthogonal with respect to the angular coordinates

2r .4
qusj‘{li,‘;, (r, 0, ¢h; )P\ (1, 0, ¢p; w) sin 06
0 0
2 T
= 1) (kr)hV* (k) Jdd)JYi, (0,)Y"(0,) sin0d0 = ') (kr)h* (k1)8,1,8,1,-
0 0

(3.3)
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From Chap. 2 we have learned that the expansion functions ‘I‘Ejl) (}); co) form a

complete basis from which any function defined on a spherical surface can be

uniquely represented.

Using the spherical Hankel functions and spherical harmonics given in Exam-
ples 2.1 and 2.9, we can write the first few terms (# =0, 1, 2) of the expansion

functions ‘PE,-I) (;; a)) as follows:

For n=0,
¥ (r, 0, 0) = —zﬁ;%
Forn=1,
¥L(r,0, ¢ 0) = ;\/iwek
W (1,0, s 0) = —;@Waa«r@,
¥ (r,0,4;0) :% ;—”%ei@waﬁ).
For n=2,

.1\/5 [(kr)2 ~3+ i3(k")} (3cos?0 — 1)

¥ (r,0,¢;0) = i e/tkr+d)
i5 ( ¢ ) 4 (kr)?)
k)2 — 3 +i3(kr ] sin @ cos @
V7,0, 410) = iy | 6 il ),
i 2V 6x (kr)?
k)2 — 3 +i3(kr } sin @ cos @
‘{‘(1)(1‘79745;60) — —lé i [( ) ( ) eiltkr+4)
i 2V 6x (kr)?
[ 2 . 1 . 2
3 [5 |(kr)” =3 +i3(kr)|sin“0
\P(l) 0.0 0) = in] L ] l(kr72(/1)’
i8 (V, a¢aw) l4 671' (k}")3 €
(12 _ 2] i 2
35 _(kl) 3 +13(k1)_ sin <6 re20)

S .

v (r,0,¢;0) = i
9 (ra ;¢aw) l4 677.' (kl‘)3

k)

)

(3.10)

(3.11)

(3.12)
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Physically, the n =0 term (3.4) represents a monopole source, the n=1 terms
(3.5)—(3.7) depict the effects of three dipole sources in three mutually orthogonal
axes directions, and n =2 terms (3.8)—(3.11) describe the effects of five quadrupole
sources, for which the terms given by Egs. (3.8)—(3.10) portray the effects of
longitudinal quadrupoles, and those given by Egs. (3.11) and (3.12) describe
the effects of lateral quadrupoles. In general the number of terms in the nth index
is (2n+ 1) and that of total expansion terms is J = (n+ N

The coefficients { C(w)} associated with the expansion functions are obtained by
— meas —s meas
matching Eq. (3.1) to the measured acoustic pressures p (xm ;a)) at x,, onthe

hologram surface, where m = 1 to M, J indicates the number of basis functions, and
M the number of measurement points. In practice we take more measurement points
than the number of expansion terms, M >J. Hence Eq. (3.1) becomes an overde-
termined set of equations for the coefficients {C(w)},

— meas

— meas

(5 0) b = ()] Y
{p(xn ")} =[5 Te)] tc@) (3.13)

Solving Eq. (3.13) by taking a pseudo inversion, we obtain
c _ i~ — meas H P —meas -1

(@)} = [(x’” ’w)LxM[ (x”' ’w)}MxJ

_, meas H  [—meas
()] (),
JxM Mx1

where the superscript H represents Hermitian transpose.

(3.14)

—Tec
Once the expansion coefficients are specified, the acoustic pressure at x¢ on the
source surface can be reconstructed by substituting Eq. (3.14) into (3.1),

N —rec G — rec | — meas N — meas 3 15
{p (xS ’w>}5x1 _{ pp(x“ T ’a)ﬂsXM{p (X’" 7w)}/wxl’ (3.15)

— meas

X, ,a))} represents the transfer matrix that correlates the
SxM

—rec

where {Gpp (xs

. — meas . rec
measured acoustic pressure at x,,  to the reconstructed acoustic pressure at X s

)= T (L), )

_,rec -1
[Gpp <X s

(3.16)

s Tec .
The normal component of the surface velocity v, (x s ;w) can be obtained from

Eq. (3.15) by using the Euler’s equation,
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An —>rec; _ Gw<_>rec _;meas; )} {A<_>meas; )} , 317
{v (xs Q))}sm [1 BERE A PR UL R PV (3.17)

— Iec | — meas .
where {GW()CY X, ;a))} represents the transfer matrix that correlates
’ SxM

mea:

. g S .
the measured acoustic pressure at x,,  to the reconstructed normal surface velocity

_rec
at xg ,
_rec
_, rec | — meas 1 aqj(xs ;w)
{Gpv(xY X, ,a))} = -
: SxM  iwp, on

SxJ (318)

N —s meas N —Tec
Once p (x m w) and v, (x P w) are reconstructed, the normal component of

the time-averaged acoustic intensity on the source surface can be calculated as

R _,rec 1 L [—Tec .y [—TeEC
o)) Bl (T, o

The radiated acoustic power can be obtained by integrating the normal compo-
nent of the time-averaged acoustic intensity over the source surface,

@) = [ L3 50) a5 (3.20)
S

Therefore all acoustic quantities generated by this source are completely
determined.

3.2 Reconstructing the Radiated Acoustic Field

Now let us use the HELS formulation (3.1) to reconstruct the acoustic pressures
based on the measurements taken on a hologram surface surround a vibrating
object.

Example 3.1 For simplicity yet without loss of generality, let us consider a
vibrating sphere of the radius r=a at a constant frequency f. Suppose that the
acoustic pressures on a spherical hologram surface I" of radius r =r°® are taken
and the acoustic pressures anywhere in the field including the vibrating surface are
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Fig. 3.1 Schematic of
reconstructing the acoustic
field generated by a dilating
sphere around radius r =a
using HELS-based NAH.
The measured acoustic
pressures are taken on a
concentric spherical surface
of radius r,,

sought (see Fig. 3.1). To illustrate the use of Eq. (3.1), we assume that the number of
measurements and that of reconstruction points be equal and set S =M =2, and the
reconstructed acoustic pressures are set to equal to the measured ones.

ﬁ (r{neas’ 9{1162157 ineas; CU)
ﬁ (rineas’eéneas, éneas;w) -
\P<111> (r{neas’ H{neas7 ¢{neas; a)) \P(llz) (I,Ineas, elmeas, ¢{neas; w) Cl (w)
‘P<211> (réneas7 géneas’ é'neas; a)) "Pglz) (réneas, aéneas’ Eneas; a)) hn Cz(a)) le’

(1) meas meas meas. 1
where W;; (17", 6%, ¢"%; w) are given by

7. meas
ikr|

1) (..meas pmeas jmeas .1 e
lP( (I' 9 ; 0)) = —l—F—"0
11 1 Y1 » Pl ’ meas ’
2\/7_[ krl

meas | ; meas

\P(l) meas gmeas  jmeas, _ 1 /3 (krl + l) €os 91 il s

12(r1 U9 ,0))——— - 5 e ,
2V« (krlmeas)

1 eik’.zmeas

) = e

.meas | ; meas

(1) (,.meas pmeas s meas, _ L /3 (k’2 + l) cos 92 i mess

lI122(’2 0,70, aw)__i - 3 etz .
T (kréneas)

( 1 ) meas meas meas,
\le(rz 0,70, 0

The expansion coefficients {C(w)} can be determined by inverting the square
matrix directly:
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1 aq —1
{Cl (w) } \PER (’.lrrleds76{116as7 {neas;w) IP(I )( ~meas gmeas7 {neas;a))
Cz(a)) 1 \P§11> (réneas géneas7 éneas;a)) lP(Zl) (T’Eneas 6;‘6357 éneas;a)) s
ﬁ( ~meas emeds7 {neas;w)
A( . meas emeds meas, )
Py P2 5®) ) g
1 \I;glz) (réneas’eéneas7¢£neas;w) _\{_1512) (’,lmeas,gineas’qs{neas;m)
det [‘{‘(U(r,ﬂ,qﬁ;w)} _lpzl ( .meas emeas’ ;neaswU) lygll ( _meas gmeas’ ;neas;w) s

13( ~meas gmeas ¢meas w)

A (;-meas meas meas,
p ( 0 12 ) w) 2%1

s

where the determinant of the transfer matrix is given by
det [‘P“)(r, 0, ¢; a))}

— \P“)( meas emeas7 {neas7 )\sz)( meas eéneas’qbéneas;a))

(l ) . neas meas meas, ( 1 ) meas meas meas,
_‘IIIZ('I 010, ¢y vw)TZI(VZ 0,7, 4, ,w).

B \/geik(r{"e““ﬂ'z‘“”‘) réneas(l _ ikrlneas) cos gmeas _ rineas(l _ ikr;neas) cos gé’neas

¥ i3 ( meas imas) 2

Substituting the determinant and ‘I‘ (r,, 0;, ¢;; w) into the elements of {C(w)},
we obtain

(1) (.meas pmeas 4 meas.
Tzz(’"z 0,70, ,w)

det [‘I‘(l)(r, 0,¢; a))}

2 . __:7.,-meas
2/ (rPe) (ke 4 i) cos Osse i
meas 7 meas meas » Imeas 7 meas meas ’
rieas (1 — jkrmess) cos O — pmeas (1 — jkrineas) cos 63
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( 1) meas meas meas,
lpu(rl 077, ¢y 760)

det [‘I‘(” (.6, ¢; w)}

— 2\/77,']( (rineas)z (k’, ]meas + l) cos H{nease,ikrzmeas

- . . Q9
pineas (1 — zkr}“eas) cos O] — pmeas (1 — lkr?eas) cos 0,

( 1) meas meas meas,
1y21(r2 0, ) 760)

det [‘P(l)(r, 0. : w)}

2\/7’7'_ k2 (r]meas) rmeasefikrl :
=1 —_
meas (1 __ i],-meas meas __ .meas (1 __ ;],-meas meas ’
3rmeas (1 — ikress) cos 6] rmeas (1 — ikriness) cos 6
1) meas meas
\P( (rmeas 2] w)
11 1 (! » P )

det {\P“) (r,6, ¢; a))}

\/% [ -meas (I‘ meas) e ikrye®

. 1 -

= —12 — .
meas 7 meas meas meas 7 meas meas
3rmeas (] — ikress) cos O — rmeas (1 — jkrn®) cos 6

Accordingly, the reconstructed acoustic pressures are given by

e BT 4 i) cosOFF e
1 1 e’]"l

ﬁ (’,lrec7 glrec7 {ec; w) L ! kr{eC (kr{neas)z
ﬁ (’,5607 éec7 Eec; w) ‘eikrzfec \/g(krﬁec + l) cos géec -~
lkriec (ki‘;ec)z [
(r{neas)z(krgneas 4 i) cos eéneasefikrl‘“e“‘“ (rgneas)z (kréneas 4 i) cos eéneasefikrz“‘e"‘S
a A A
X
; (krineas) (r]meas)Zefikrl"‘ens » (krlmeas) (rineas)zefikrz"‘e‘“

V3A V3A

meas gmeas  jmeas.
Y1

ﬁ("l @ 7“’)

meas meas meas,
, 05 (o)

[5 (1‘2 ' V2 ’

s

where A =73 (1 — ikr***)cos 0% — %S (1 — ikr}***)cos 654,

These results are of generality because we have neither specified the measure-
ment points (7%, 07°%, ¢"°; w), m=1 and 2, and the reconstruction points,
¢ 07C, ¢, w), m=1 and 2, nor stipulated the measured acoustic pressures

N N N
P (rmes 0, ¢pmS; ). In practice, however, it will be a good idea to take
measurements on a conformal surface very close to the target source surfaces so
as to capture as much near-field information as possible.
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Once the acoustic pressure is reconstructed, the particle velocity anywhere in the
field can be obtained by using the Euler’s equation,

g)(rrecjareiqﬁrec;w) = - 1 vp/‘ (’,TCC70r€C7¢TCC;a)).
lwpy

The time-averaged acoustic intensity anywhere in the field is given by

%

7a‘)(rrec,9recy¢rec;w) — %Re p" (rrec79rec,¢rec;w)‘; (’,rec79recj¢rec;w) .

Therefore, all acoustic quantities in the entire field including the source surface are
completely determined.

meas,

Example 3.2 Now let us specify the input data {ﬁ (rﬁ‘eas,ﬁfn“eas, o ,a)) } Ml
First, we consider the dilating sphere of radius r=a at a constant frequency f.
Suppose that the normal surface velocity on this dilating sphere is v ,. Then acoustic
pressure at any arbitrary field point is given by

ot okt 05 0)

s = 1 and 2.
(ka + i)rmeas n an

~ (..meas pmeas meas, _
P (ris, 00, s w) =

Substituting these data into the expansion coefficients given in Example 3.1
yields

B (rlmeas)2 (kreas 4 ) cos Gre "™ (ré“‘*‘s)2 (krmeas 4 ) cos §ye =™

{ Ci(w) } A A
=27k

meas .meas 2, —ikr meas meas meas \ 2, —ikr e
Ca(w) l,(er ) () e _i(krl ) (r3ee) e s
V3A V3A
. (ka) ( a ) (e —a) 5
PoCVn 7~ e\l ) . (ka) y
ka + i) \rimeas 2 5 ika
N ( ) \ri ) ﬁpo”n(ka—i—i)e ’
. (ka) a \ ip(rmes_g
] ) C 0

where A is given in Example 3.1.

Once the expansion coefficients are determined, the acoustic pressure anywhere
including the source surface can be reconstructed by using the HELS formulation
3.1).
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Fig. 3.2 Schematic of
reconstructing the acoustic
field generated by an
oscillating sphere of radius
r=a using HELS-based
NAH. The measured
acoustic pressures are taken
on a concentric spherical
surface of radius r,,

[3 (’,rec7 Hrec, ¢rec; a)) — — 1 eik]m — l é(k},rec + l) C;)S 0" eikr‘“
2\/7—1 krree 2V« (krrec)

—ika

12\/_pocvn(( l )e

0

ka AN\ (e
= e KN (L ikt —a)
Poc¥n <ka n i> (rm)e ’

which matches perfectly the analytic solution [42].

Example 3.3 Next, we reconstruct the acoustic pressure generated by a sphere of
radius r =a that oscillates in the z-axis direction at a constant frequency f (see
Fig. 3.2). Suppose that the normal surface velocity of this oscillating sphere is
v . cos 8. The acoustic pressures at any field point can be written as

p()C\j Zaz (krrr;eas + l) cos ernneaseik(r,gw%*d)
(a2 — 2 + i2ka) (rmess)?

Coa® (krpne + i) cos Of*Se/

(=)’

meas emeas ¢meas, ) _
) =
'y Pm I

P (r

where m =1 and 2, and the constant Cy is given by

ka .
Co = pyci [l )ik,
0= “(k2a2—2+i2ka)

Accordingly, the expansion coefficients are given by
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{eao)
Cz(a))

(’.lmeas) 2 (kréneas + i) cos ginease—ikrl'“e‘“ (’.?eas)z (kr{neas + i) cos Q{nease—ikrz“‘e“”

4 A
=2 \/775/(
. (kré“eas) (7‘{“635 ) Ze*ikr,meus ) (kl‘ {neas) (I‘éneas ) zefik’"zmeus
l —1
V34 o
Coa?® (kr{™™ + i) cos O™ 0
( J-meas ) 2
" | = Colka)?
Coa® (kr3™ + i) cos 03" e P
( r éneas ) 2 -2 g

where A is given in Example 3.1.
Using Eq. (3.1), the acoustic pressure anywhere including the source surface is
given by

ﬁ (rrec, erec, ¢rec; CU)
1| ™™ /3(kr™® 4 i) cos 0" e ﬂO
- e ,
2w | kiree (krree)? -2 \/;CO (ka)?

ey (kaZ(kr“”C + i)'cosﬂ ( a )2 (r—a)
(Ka? — 2 + i2ka)

rreu

which once again agrees perfectly with the analytic solution [42].

3.3 Predicting the Radiated Acoustic Field

In Examples 3.1-3.3 we have focused on using the HELS formulations to recon-
struct the acoustic pressure radiated from a vibrating sphere. Now we demonstrate
that the same formulations can be used to predict acoustic radiation from a vibrating
object.

To this end, we take the normal derivative of Eq. (3.1), and apply the Euler’s
equation to express the expansion coefficients {C};,; in terms of the normal
surface velocity:

v (0
iopo{n(¥iw)} = # {C@)}r (3:21)

SxJ
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where v, (}Y; a)) is the normal component of the particle velocity measured by the

source surface at ;S, s=1,2,...,8, and {C},, are obtained by taking a pseudo
inversion of Eq. (3.21).

<1) ;Y;O)
{C(@)} ) = ipy Na() {ia(¥i0)}, . (3.22)

IxS

where the pseudo inversion in Eq. (3.22) is defined as

0w (30)] ([0 (e0)]" (0w (30)] )
an JxS L an 4 xS an SxJ (3.23)
- - H
a‘P(l)(;s;a)>
L an _J><S,

where a superscript H implies a Hermitian transpose of a matrix.
Substituting Eq. (3.23) into (3.1) leads to the matrix formulation for predicting
acoustic radiation from any vibrating structure into three-dimensional space,

{ﬁ (};w) }le - [GV” (; ;S;w”Nxs{‘;"(}x;w) }le’ (3.24)

—

where {va (x ‘}s; w)] indicates the transfer function that correlates the normal
Nx

surface velocity specified on the source surface to the field acoustic pressure, which
is given by

[N E:

Equation (3.24) can be utilized to predict the acoustic pressure, given the normal
surface velocity on a vibrating object.

Let us consider the case that involves two expansion functions such that
Eq. (3.24) may be solved exactly. Moreover, the normal surface velocity is spec-
ified at two points on the surface of a vibrating sphere of radius » =a at a constant
frequency f, and the acoustic pressures at two arbitrary field points are sought. This
scenario leads to a square matrix equation given by

a‘P(])(}X;w> '

T —i \y<l>(*~ )} — x| . @325
o 70))]N><S pro{ YV O) v on ( )
JxS
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{[3(71791,451;0))} . lP(lll>(r17017¢l;a)) lP(llz)(r17617¢l;w)
=1,
ﬁ(}‘z,@zjq')z;w) ‘P§11>("27927¢23w) lpg12>(”27927¢230))

"} a emeas meas,w
+aq;(zlz)(r,gzmeas.tﬁ?ea:;w) 1’1( I I ’ )

or

B a‘P(llz) (’.Ygrxea>’¢rleas;w)
or

IS meas meas,
r=a Vn(a792 12 ,C())

r=a
x 1 1 0¥ (r.0,;0) ’
aq”g[) (rﬂznwus.’dbmeas;m) a\l/(“) (rﬁglmem"qslmesm;w) det {87; :|
- or + or r=a
r=a r=a

(3.26)

where the determinant is given by

det oy (r.0.4:0) _ aq;gll) (l‘ﬂ]mc“,qﬁ]mcas;w) aq,;lz) (l‘ﬂzmcas,(ﬁzmcas;w)
or —a - or or
r=a r=a

(3.27)

a"PElz) (rﬂzmcus 7¢2mcm;0])
or

a\Pgll) (I,ﬂlmcus pmes ;m)
- or

r=a r=a

where the first subscript in the expansion functions implies the order of expansion
functions, and the second subscript stands for the sequence of measurement points.
The expansion functions and their derivatives are given by

W (100 i) = —in S (3.28)
r ; = ;7= ’
1 \ULoL e 27 kry
1 /3 (kry + i)eitn
WY (1,01, s ) = — 2 cos ), (3-29)
A A
1 eikrz
Tgll)(r27927¢2;a)) = (330)

_im kry’
W) (12,02, ¢y 0) = —% Ew cos 6, (3.31)
T k°rs;

o) 0 570
or

1 (ka+ i)et
_ - Waryer 32
PAVZ N 7 (3:32)

r=a

(h 12 2\ .ika
:1\/5 pka—i—l(iz 3k e )}e cos O]"*,  (3.33)
a

alP(llz) (l’, eineas’ {neas; w)
or

2

r=a
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8‘1’&12) (r, 0%, 3% ) 1 (ka+i)et

y V2 I
= 3.34
or 2T ka? (3:34)
QWY (r, 05 pes; o) 1 [3[2ka +i(2 — K*a?)]e™ e
5 =5\ o cos O5"°%,  (3.35)

where 6,°*, m =1 and 2, indicates the polar angles at the measurement points on
the sphere.

Substituting the expansion functions and their derivatives into the determinant
yields

v (r,0,¢; w)

det
or - ]
o (3.36)
= 1. 3 (00592 — cos 0, )
4 Bas
Substituting Egs. (3.28)—(3.35) and (3.36) into (3.26), we obtain
el (kry + i)en
g _y3rruE ¥
p(r,01,¢;0) ey V3 K} oS
{ } = iwpg
P (12,02, ¢,; ) ek (kry + i)e*r
- kra _ﬁTr% cos 60,
ka’e ke cos 05" 3 ka?e~ika cos "
(ka+ i) \ cos 0" — cos O]"°* (ka + i) \ cos 07"°* — cos O]"**
g Kade ik Cadeika

[2ka +i(2 — K2a?)] (cos O — cos O™*)  [2ka +i(2 — k*a2)](cos 03°°* — cos O]"*)
‘;“ (a7 0111eas7 ¢ineas; (1))
X B
ﬁ“(a, 0;152157 Eneas; (D)

Equation (3.37) is of generality for a spherical source surface because neither the
normal surface velocity nor the measurement and field points are specified.

(3.37)

Example 3.4 Consider the case of a dilating sphere for which the normal surface
velocity v, is a constant (see Fig. 3.3). Substituting v, into Eq. (3.37), we obtain
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Fig. 3.3 Schematic of predicting the acoustic field generated by a dilating sphere of radius r =a

by using HELS-based NAH.

The normal surface velocity is given at two arbitrary points on the

surface and the field acoustic pressure is predicted

Fig. 3.4 Schematic of
predicting the acoustic field
generated by a sphere of
radius a oscillating along
the z-axis direction by using
HELS-based NAH. The
normal surface velocity is
specified at two arbitrary
points on the surface and the
field acoustic pressure is
predicted

[3(?'17917¢1;
pA(r27927¢2;

eikrl
Y
w) kry
w) B eik}'z
—i
k)‘z
PoCVn

ka + l 1)

: eikao} — ,
“ Pocﬁn( ka ><£>efk<rza>

which is exactly the same as the analytic solution [42].

Example 3.5 Next, we consider a sphere of radius r =a that oscillates back and
forth in the z-axis direction at the velocity v, (see Fig. 3.4). The normal surface
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velocity measured at two arbitrary points on the surface can be written as
Vn(a,0,¢;w) =v.cos0, m=1and 2,

ik i(kry + i)e'*n

p(r,01,¢;0) V/3kr K*r?
[3 (rZa 92a ¢27 Cl)) eikrz l'(k"Q + l')E'ikr2

\/gk)‘z k2r%

0

(ka)3 e—ika

2ka +i(2 — kK*a?)

 (ka)(kry 4 §)E*1=4) <a ) :
B — ] cos@
PO —2) + i2ka \ni :

cos 6,

cos 0,

PoCV 2

k)

 (ka)(kry + i)e*2=9) <a>2
: ) coso
POV — )+ izka \r2) T

which again matches the analytic solution perfectly [42].

3.4 Error Analyses

To acquire an in-depth understanding of the HELS solutions (3.16) and (3.18), we
carry out an error analysis to see the impact of the measurement errors on recon-
struction results.

There are different types of errors in the measured data that can be caused by a
number of reasons due to aliasing, aperture size, bias, random fluctuations, etc.
Most of these errors may be corrected by using various techniques that have been
developed in the past. For example, temporal and spatial aliasing can be overcome
by using sufficiently high sampling rates in either temporal or spatial special
domains; errors due to a finite measurement aperture can be reduced by applying
a spatial window to the measured data; biased errors can be adjusted by calibrating
the system, and random fluctuations can be suppressed by taking time averages of
the measurements. In this error analysis, however, we do not distinguish the causes
of errors. Moreover, we assume that they are uncorrelated to the true values of the
measured data. Accordingly, Eq. (3.16) can be written as

_[—Tec G _,rec |, meas -1 _ /—meas
{p (xs ’w)}le _[ ”p(xs T ’w)LxM{p (xm 760)+€m}M><l,

(3.38)
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where ¢, represents the measurement errors that are Gaussian white and spatially
uncorrelated.

As an example, we consider the two-term expansion (n = 1) and assume that the
acoustic pressure is specified on a spherical surface of radius r=r,,, m=1 and

2. Substituting the expansion functions ‘Pfj”(ri, 0;, ¢;; w) into Eq. (3.38) yields the
following explicit solutions:
ﬁ (’,lrec 0{60 1rec, 0))
ﬁ (’.zrec 9560 éec,w)
_ Gllls (rlmeas’eineas’ lmeas;w) _ G12]§ (réneas’eéneas’ Eneas;w) 4 01(81,82)
Goip (P15, 075, ;@) — Goap (r, 05, $1; ) + Or(e1, ) [

(3.39)
where G;; are defined as

\Ijgll) (rlrec’ elrec7 lrec; CU)‘PS; (réneas7 oé’neas7 ¢£neas; a))
1 rec rec rec, 1 meas meas meas,
G = —ng) (i, 01, ¢1 va))lygl) (1", 07, 3" w) (3.40)
det {l}l(l)(rmeas7 gmess gpmeas. w)}

1 rec rec rec 1 meas meas meas
T(n)(ﬁ 01 ¢ ?“))‘P(u)(rl 000, by W))
G12 — _\11512) (rlrec’glrec7 1rec§a))‘P§11> (r{neas701meas7¢{neas;a)) , (3'41)
det [T(I) (rmeas’ gmeas, ¢meas; w):|

\Pgll) (’,Eec7 9560’ ;ec; w)\yglz) (réneas7 aéneas’ éneas; a))
G21 — _lpglz) (riec’ 9;&7 ;ec; w)\{;gl) (réneas’ géneas’ éneas; Cl)) , (342)
det |:lp(l) (,.meas7 gmess gpmeas. w):|

1 rec rec rec, 1 ) .meas meas meas,
Tgl)(FZ 0,7, ¢, vw)\sz (’1 077, 70))
1 rec rec 1 - meas meas meas,
G = —WY) (5, 05, ¢3 3w)lP§1) (r", 07, ¢ ) (3.43)
det [T(l) (rmeas7 emeas7 ¢meas; w):|

where the determinant is given by
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det {ly(l)(rmeas, gmeas7 ¢meas; w)]
— \P<111> (rlmeas, gfneas, {neas; w)\{;(zlz) (rineas’ Hgleas7 éneas; a)) (344)

(1) /..meas pmeas meas, (1) /. .meas pmeas meas,
_le(ﬁ 000, ¢y vw)lpzl(rz 0,70, b3 ,a)).

The error terms in Eq. (3.39) are defined as
O1(e1,€) Guer —Gne
’ = , 3.45
{ 0 (1, €) Grie1 — Gne (3.45)
where G; are given in Eq. (3.40)—(3.43).

Equation (3.39) has generality for a spherical source since neither the measured
acoustic pressures p (r,';‘e‘ﬂ‘s7 05, o™ (u) nor the measurement points
(Tm> Oms s @), m=1 and 2, as well as the reconstruction points (¢, ¢, ¢°°; w),
s=1 and 2, are specified.

Substituting the expressions for individual expansion functions ‘I’fjl) as given in

Example 3.1 to Eq. (3.40-3.43) and further to Eq. (3.45), we can write the leading
order terms of errors as

- meas 2 meas 2
ay|\ ) € A\ Twc ) €
Oi(e1,€2) _ 1("1 ) 1+ 2(’1 ) 2 (3.46)
02 (8] 82) - - meas 2 - meas 2 ’ .
D () () e

where a,, and b,,, m=1 and 2, are independent of the radial distance r. Equation
(3.46) show that when r°¢ <7 °®, the measurement errors ¢, can be amplified
quadratically.

It is easy to show that if we consider a single-term expansion, namely, n =0 in
(3.38), the error term will be proportional to (7},°*/r*¢), where r°¢ <7e®,

Ole) = a (”’m> e, (3.47)

where « is independent of the radial distance.

These results can be extended to any order of expansion in ‘Pfjl). As shown in

Example 2.2, the asymptotic behaviors of the spherical Hankel function of the first
kind as kr — 0, namely, the reconstruction point approaches the source surface, are
given by

1

AV (kr) — ———.
n ( ) (kr)n+l

(3.48)

So for the nth-order expansion of ‘ngl) in Eq. (3.38), the reconstruction errors are
dominated by
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M ’ meas n+1
Os(gla €2,...,8& = Za ( rreC ) Em,s rsrec < r,r:l]eas (349)
=1
where a,,, m=1, 2,...,M, are independent of the radial distance. Since "¢ < 1,

(e /r¢) > 1. Therefore, the measurement errors ¢, are amplified by (rj,‘;eas/rgec)”“

times in reconstruction.

Equation (3.49) demonstrates the importance of keeping the measurement sur-
face close to the source surface in order to ensure the accuracy in reconstruction.

However, when the HELS formulations (3.24) are utilized to predict the radiated
acoustic pressure, given the normal surface velocity of a vibrating structure, errors
in the predicted results will be bounded.

Following the procedures outlined above, it can be shown that the errors in
Eq. (3.24) are proportional to

N M ( ) (krrec)

) x DD dn) krme‘“) Jd (krmess) "

(3.50)

Example 2.3 illustrates that the asymptotic behaviors of the spherical Hankel
functions and their derivatives in the far-field (kr — co) are given by

O]
AV (kr) — iand dh, _(kr) 1

B T (3.51)

Substituting Eq. (3.51) into (3.50) yields the upper bound of the errors O(¢) in

Eq. (3.24),
~meas m M meas
06) W3 (7 e <Y (5

m=1

(3.52)

where N represents the total number of the spherical Hankel functions involved in
the expansion, and b,,, m =1 and 2, are independent of the radial distance.

Since ™ <7, (1o /r1¢) < 1. So the errors in prediction are always bounded.
In fact, the further the prediction distance r™*° is, the smaller the errors in prediction
become.

As the field point r*° approaches the source surface (kr — 0), the asymptotic
behaviors of the spherical Hankel functions and their derivatives are given by (see
Example 2.2),

1 dh) (kr) 1
A\ntl a d(k = me
(kr) (kr) (k)

(3.53)

Substituting Eq. (3.53) into (3.50) leads to the errors O(¢) in Eq. (3.24),
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N M J-meas n+1
O(e) o< Y > by (krre) (;ﬂ) Em. (3.54)

n=0 m=1

Since (r**/ri¢) <1, the errors in prediction using Eq. (3.24) are bounded by

M . meas
0(e) <3 by (krge) (';" ) ). (3.55)

m=1

Therefore, errors in measurements ¢,, will not affect the acoustic pressure in
prediction as much as they do in reconstruction.

3.5 Regularization

The examples discussed in Sects. 3.2-3.4 all dealt with a spherical source surface.
In practice, a vibrating structure is seldom spherical. Moreover, the measured
acoustic pressures are neither accurate nor complete. So the acoustic quantities
reconstructed by using Eqs. (3.15) and (3.17) may be quite unsatisfactory. This is
because reconstruction is an inverse process, namely, we want to identify the cause
(e.g., structural vibrations) based on the effect (the resultant acoustic pressure field).
Such a problem is mathematically ill posed. Accordingly, any slight error in the
input data may be amplified significantly as it has been demonstrated in the
preceding error analysis section.

The solution strategies to an inverse problem encountered in all fields can be
summarized in one word: regularization [43]. The underlying principle in all
regularization techniques is to smooth the dependence of the output data on the
input data [44-46].

The simplest regularization for Eq. (3.15) is to use an optimal number of
expansion terms J,, in reconstruction. This is because Eq. (3.15) employs the
superposition of the spherical wave functions to describe the acoustic pressure.
The more expansion terms are used in Eq. (3.15), the more details in the
reconstructed acoustic pressure are included. Theoretically, if the input data are
accurate and complete, the expansion solution given by Eq. (3.15) for a spherical
source is exact as J — oo [47]. However, this is not the case in reality. Sect. 3.4 has
shown that errors embedded in measurement ¢,, can be amplified by (rﬁeas/}ﬁec)"+1
times in reconstruction on the source surface. Therefore, it is necessary to find the
optimal number of expansion J,, in reconstruction.

In what follows, we consider an arbitrarily shaped source surface and the
measured data are neither accurate nor complete. For convenience sake, we express
the basis functions in terms the spherical Hankel functions and spherical harmonics
since they are available in many mathematical libraries. Use of these spherical wave
functions may be very effective for a surface with an aspect ratio close to unity,
x: y:z— 1. For elongated, flat, or both elongated and flat objects, the prolate,



3.6 Regularization Through Truncation of the Expansion Functions 47

oblate, or elliptic coordinates, respectively, can be used to provide faster conver-
gence in numerical computations. Unfortunately, the analytic forms of the spheroi-
dal functions in these corresponding coordinates are nonexistent and direct
numerical computations of these spheroidal functions must be carried out, which
can be extremely time consuming.

3.6 Regularization Through Truncation of the Expansion
Functions

In this section, we want to develop a simple yet effective methodology to recon-
struct the radiated acoustic pressure field. To achieve this goal, we must devise a
procedure that can yield the desired accuracy with relatively few measurements.
The questions that must be addressed are:

1. Where and how the measurements should be taken?

2. How many measurement points are necessary to achieve the desired resolution?

3. Given the number of measurements, what is the optimal number of expansion
functions?

Unfortunately, there are no definite answers to these questions because of the
uncertainties involved in an inverse problem. What we can do is to develop
guidelines with which satisfactory reconstruction of the radiated acoustic pressure
fields can be obtained. The detailed guidelines are presented in Chap. 5.

Suppose that the input data are collected by an array of microphones
(see Fig. 3.5). For simplicity yet without loss of generality, we use a rectangular
array that consists of M; x M, =M microphones and collect M data points.

Fig. 3.5 An array of

M, x M, microphones used
to reconstruct the acoustic
pressures radiated from a
source. Red dots, input data
points; green dots,
validation points
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These measured data can be substituted into Eq. (3.15) to reconstruct the acoustic
pressure anywhere.

To find an optimal number of expansion terms in reconstruction, we only use
one-half the data points and the other half for validation. Detailed procedures are as
follows:

1. Use every other data points (red dots) as indicated in Fig. 3.5 as input to
Eq. (3.15) to reconstruct the acoustic pressures at other points on the hologram
surface (green dots) with N=1 and J=(N+ 1)2:4 terms for any selected
frequency f. The corresponding expansion functions include hg(kr,,)Po o(cos 6,,),
hy(kr,)Py o(cos 8,,), hy(kr,,)Py 1(cos 8,,)sin ¢,,, and hy(kr,,)P; (cos b,,)cos ¢,,,.

2. Calculate the L2-norm errors of the reconstructed acoustic pressures at the green
dots with respect to the measured data.

M/2
ILIZ = 37 1™ (s Oy i @) = 5™ (1, Oun, s @) (3.56)

m=1

where m =1 to M/2.

3. Increase the number of expansion terms by one, J =J + 1 in Eq. (3.15) and repeat
the same processes as outlined in 1 and 2 and calculate the L2-norm errors again.

4. Find the minimum value of L2-norm errors. Notice that because of uncertainties
involved in the measurements, L2-norm errors may fluctuate with respect to the
value of J. However the general trend of this L2-norm error curve is U-shaped.
Accordingly, its slope becomes zero at the global minimum of the L2-norm error
curve, and the corresponding value of J is optimal. The resultant expansions will
provide the best approximation of the reconstructed acoustic pressure on the
source surface. In practice, an exact zero slope may not occur. So we can set a
criterion for the slope to be less than certain value, say, tan a < gy, where ¢ is a
preselected small value. The corresponding number of expansion terms is the
optimal value J,,,, which can be interpreted as being optimized with respect to a
particular set of the measured acoustic pressures at a particular frequency f.
Obviously, different frequency and measurement conditions will yield a differ-
ent optimal value of Jp,.

In general, the higher the frequency fis, the larger the value of J,,;, becomes and
the longer the computation takes. This slowdown in computation speed is inherent
in all expansion theories, including the standard finite element or boundary element
methods. Therefore other methods such as asymptotic approximations should be
utilized to reconstruct the radiated acoustic pressure field in the high-frequency
regime.

The value of J,, thus determined may be used to reconstruct acoustic pressures
anywhere, including the source surface.

Example 3.6 Figure 3.6 displays a typical example [37] of L2-norm errors curves
for reconstructing the acoustic pressures with respect to benchmark values on a
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Fig. 3.6 The L2-norm errors curves with respect to the expansion terms for the reconstructed
acoustic pressure on a source surface. Solid line, errors; dashed line, curve-fitted errors

source surface. Results indicate that the accuracy in reconstruction on the source
surface increases at first with the number of expansion terms to certain level, and
then decreases monotonically thereafter. The presence of this minimum L2-norm
error is reasonable. Physically, the higher-order terms represent the small-scale or
near-field effects, which may have been lost in the measured data and cannot be
recovered anyway. On the other hand, the lower-order terms describe the large-
scale or propagating wave effects, which may be captured in the measured data and
can be reconstructed. As more expansion functions are used in reconstruction, more
details are added to the reconstructed acoustic pressure and therefore, more accu-
rate the result is. However the higher the order of expansions is, the more the
amplifications of measurement errors in the reconstructed acoustic pressure become
(see Sect. 3.4). Eventually, the errors embedded in the high-order terms will be so
large that they may completely distort the reconstructed acoustic pressures.

Consequently, it is necessary to find the optimal number of expansion terms in
order to get a satisfactory reconstruction of the radiated acoustic pressure field in
both near and far fields in a cost-effective manner in practice.

On the other hand, the L2-norm error curves for the acoustic pressures
reconstructed on the measurement surface shows a monotonic decay with respect
to the expansion terms. In other words, the accuracy in reconstruction on the
measurement surface increases monotonically with the number of expansion
terms (Fig. 3.7). This is expected because errors in reconstruction on a measure-
ment surface have been minimized by the least-squares method.

It is emphasized that the above optimization process is effective for producing a
satisfactory reconstruction for the acoustic pressure, but not enough for
reconstructing the normal component of the particle velocity on a vibrating surface.
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Fig. 3.7 The L2-norm errors curves with respect to the expansion terms for the reconstructed
acoustic pressure on a measurement surface. Solid line, errors; dashed line, curve-fitted errors

This is because the normal surface velocity usually contains much more details
(evanescent waves) than the acoustic pressure do. Accordingly, different methods
must be used to ensure a satisfactory reconstruction of the normal surface velocity.

3.7 Other Regularization Techniques

Consider Egs. (3.15) and (3.17), which represent the explicit solutions for the
reconstructed surface acoustic pressure and normal surface velocity. Since in
practice the measured data will not be error free and the source surface may not
be spherical, the transfer matrices on the right sides of Eqs. (3.15) and (3.17),

-1
— Iec | — meas —rec
{Gpp (xs X, ;a))} and {Gpv (xS
— meas

SxM
errors embedded in the measured data p (xm ;a)) may grow without a bound.

. meas -1 .
X, ,a))] , may be singular and
SxM

One way to obtain a bounded solution is to apply a truncated singular value
decomposition (TSVD) to Egs. (3.15) and (3.17) [22]

B (0)} = W[ S wlinads (270)}, o 637
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{ﬁn(;‘:ec;w) }le = [Vilsxs {Z‘J ;:M[U"]AI;IIXM{ﬁ (7::635;60) }Mxl, (3.58)

where [V,] and [U,] in Eq. (3.57) are the right and left unitary orthonormal

—rec

matrices, respectively, of the matrix [G,,p(xs

_,meas

—1
P ;w)} in Eq. (3.15),
SxM

m

[21,]_1 is the diagonal matrix that contains inverted singular values of the
corresponding matrix; [V,] and [U,] in Eq. (3.58) are the right and left unitary
_, meas -1
X, ;w)] in
SxM
Eq. (3.17), and (2,17 " is the diagonal matrix containing inverted singular values

of the corresponding matrix.

The simplest regularization for the HELS method is to set the number of
expansion terms in Egs. (3.57) and (3.58) at the optimal value J,, for any given
set of the input data, as discussed above. Mathematically, this optimization process
can be written as

M
min E
-
i=1

_,rec

orthonormal matrices, respectively, of the matrix [G,,v<x s

. [—Tec  [—meas 2
’p (me;a)) -r (xm,i ;w)Hz — Jops (359)

m,i’

—Tec . [—meas .
where p (x w) and p (xm ; ;w) represent, respectively, the reconstructed and

measured acoustic pressures at the ith measurement point ;m, As pointed out
above, Eq. (3.59) may be effective for reconstructing the acoustic pressure, but not
enough for the normal surface velocity.

The effectiveness of using regularization methods such as Tikhonov regulariza-
tion (TR) and L-curve. to improve the accuracy in reconstruction by HELS has been
examined previously [48]. Results have indicated that the modified Tikhonov
regularization [49] (MTR) with its regularization parameter determined by the
generalized cross-validation [50] (GCV) can provide the most accurate reconstruc-
tion for HELS.

Recently, hybrid regularization [51] has been developed to determine the opti-
mal number for the basis functions. In this hybrid regularization the MTR and GCV
method are used to regularize the reconstruction of acoustic pressures on a holo-
gram surface for each value of J first, and the least-squares method to minimize
residual by matching the reconstructed acoustic pressure with respect to the mea-
sured one. Mathematically, this process is expressible as

M
min E
J
m=1

. [—Tec,a . [ — meas 2
I (xm ;a)> —-P (xm §w>”2 — Jop, MTR; (3.60)

. [—Tec,a . . .
where p <xm ;a)) is the reconstructed acoustic pressure at the ith measurement

point Xm by using MTR and GCV, and the Tikhonov functional, J,, for regularizing
p (;m’a; a)) in Eq. (3.60) may be written as

m
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where the regularization parameter « is determined by GCV through a minimiza-
tion process,

» H _ /—meas 2
sl (), |

min . 3 2. (3.62)
a (Trace[F; ]MxM)
where [F7 1y « a 15 the high-pass filter defined as
[FlﬂMxM = diag([I}MxM - [Fa]MxM)’ (3.63)

where [F®]ys « p is a low-pass filter for regularizing the measured acoustic pressure
and is a diagonal matrix containing the singular values o; of the matrix [X] in
Eq. (3.61), where i=1to M,

0-2(0( + 02)2
F = diag| ...,——— ... |. 3.64
[ }MXM g( &+ 0’2 (a n 0%)2 ( )

—rec,a .
The reconstructed acoustic pressure {p (xm ; a)) } can then be rewritten as
Mx1

{p (30 50) ) = Wl Pl b U {p (50 50)
(3.65)

The differences between Eq. (3.15) and Eq. (3.65) are that the former relies on
the least-squares method to determine the optimal HELS expansion number J,, to
reconstruct the acoustic pressure, whereas the latter uses a hybrid regularization that
consists of MTR, SVD, and the least-squares minimization to determine the optimal
HELS expansion number J,, vr and to reconstruct the acoustic pressure.

Using JopMmrr, the acoustic quantities anywhere can be reconstructed. For
example, we can express the reconstructed surface acoustic pressure and normal
surface velocity as
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. [—Tec,a 1 H —, meas
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(3.67)

where [Fﬁ] and [F7] are the diagonal matrices containing the singular values of the
matrix [%,] in Eq. (3.66) and those of [Z,] in Eq. (3.67), respectively,

2 2\2
[Fﬂ = diag 7%‘91)2’ , (3.68)
§x§ B +et(B+e?)
2 2\2
. ni\y +u;
[F‘}::stszdlag<...,%,...>, (369)
v 4ty +m)

where f and y are obtained by GCV through a minimization process given by,
respectively,

2
Pho) a0l (? (5}, |
min L2800 ) P A F
el ))
(race .
[l tnde G )
b PP (1) |
min Plmxm * _ mxilla | (3.71)
! (Trace{FZp} )
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where [FZP] and [F Z‘v] are the high-pass filters obtained by subtracting the low-pass
filters [Fg] and [F7] from the identity matrix, respectively, and by filling its null
space with unity,

{F[/j’h}MxM = diag[([l]sXs - {Fﬂ st)a [I](Mfsy(Mfs)}’ (3.72)

[Fvy,h}MxM = diag[([l]sXs - [Fg]sXs)v [I](Mfs)x(Mfs)]' (3.73)

Experimental results have confirmed that Egs. (3.66) and (3.67) can yield more
robust results than Egs. (3.15) and (3.17) do.

Example 3.7 Consider a thin square plate mounted on a large baffle. The addition
of a baffle allows for rigorous examinations of the reconstructed vibro-acoustic
quantities with respect to the analytic solutions. Also, a plate represents a class of
structures that are commonly encountered in practice, as many structures consist of
flat or slightly curved panels. Hence it will have significant impacts if we can show
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Shaker exciting
plate on foam

Fig. 3.8 Test setup for collecting the near-field acoustic pressures above a baffled square plate

the capability of using computationally simple HELS codes based on the spherical
wave functions to produce satisfactory reconstruction of the vibro-acoustic quanti-
ties on a highly non-spherical panel surface.

For convenience yet without loss of generality, we consider a square plate
subject to free-free boundary conditions. The reason for choosing a square plate
is that its symmetry can pose a challenge for traditional Experimental Modal
Analysis (EMA) to distinguish coupled modes. It is interesting to examine if the
HELS-based NAH can discern these coupled modes.

Figure 3.8 shows the test setup of a square steel plate of dimensions
220 x 220 mm* with a thickness of 1.25 mm, which was mounted on a large baffle
and excited by a mechanical shaker using random signals. The plate edges were
supported on soft foam to mimic free-free boundary conditions. The excitation
point on the thin plate was selected to be away from the nodal lines of the first
10 natural modes. The radiated acoustic pressures were measured by using a 12 x 4
array that contained 48 microphones (PCB T130D21, PCB Piezotronics, Inc.
Depew, New York). Measurements were taken on three patches, resulting in total
144 data points at the standoff distance of 10 mm.

The tests were conducted inside a fully anechoic chamber at the Acoustics,
Vibration, and Noise Control Laboratory at Wayne State University. The excitation
signal level was adjusted to ensure that the signal to noise ratio (SNR) was maintained
atleast 10 dB or higher over the entire frequency of interest. The relative phases of the
acoustic pressures were obtained by taking cross correlations of the measured acoustic



3.7 Other Regularization Techniques 55

Fig. 3.9 Test setup for reconstructing the vibro-acoustic responses of a baffled square plate using
the HELS-based NAH

pressures with respect to the excitation force as a reference signal. The measured data
were used as input to the HELS codes to reconstruct the normal surface velocity
distributions on the 9 x 9 grid that coincided with the laser scanning measurement
points (see Fig. 3.9). A point laser vibrometer (Polytec OFV 551 fiber optic interfer-
ometer, Polytec, Irvine, California) was used to collect the benchmark data to validate
the reconstructed normal surface velocity. The measured normal surface velocities
were taken as input to EMA to identify the natural modes of the plate.

Figure 3.10 shows the comparison of the acoustic pressures reconstructed at four
randomly selected locations on the hologram plane using hybrid regularization with
the optimal number of expansion terms J,,mrr determined by Eq. (3.60). For
comparison purposes, we also employed Eq. (3.15) with the optimal number of
expansion terms J,,, given by the least-squares minimization process Eq. (3.59) to
reconstruct the acoustic pressures at the same locations. Results confirm that even
with a straight application of the HELS method using the value of J,, the accuracy
in the reconstructed acoustic pressure is still very high. By using the hybrid
regularization strategies, we can get more accurate reconstruction of the acoustic
pressures over a much wider frequency span than those obtained by using the least-
squares minimization alone.

Figure 3.11 shows the comparison of the minimized residuals in reconstructing
the acoustic pressure over the entire frequency range of interest on the hologram
surface by using J,,, and those by using J,, mrr. These results clearly show the
advantage of using J,, mrr in reconstruction.
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Fig. 3.10 Comparisons of the reconstructed acoustic pressures at four randomly selected points
vs. the benchmark results on the hologram surface. Solid line, benchmark results; dotted line,
reconstructed by using the least-squares minimization alone; crosses, reconstructed by using the
hybrid regularization

Figure 3.12 depicts the comparisons of the normal surface velocity spectra
reconstructed at randomly selected points on the plate surface, including its edge
and corner, and benchmark data. Once again, we utilized the optimal number of
expansion terms J,, given by Eq. (3.59) (dashed lines) and that of expansion terms
Jop.mrr provided by Eq. (3.60) (dotted lines) to reconstruct the normal surface
velocities. The results indicate that a straight application of the HELS formulations
with J, yields satisfactory reconstruction in the normal surface velocity distribu-
tions at the lower-order modes; however, errors in reconstructions increase with the
mode order. This is because the number of expansion terms J,, obtained by the
least-squares minimization alone can be optimal for reconstructing the acoustic
pressure, but not enough for reconstructing the normal surface velocity. By using
the optimal number of expansion terms J,p, 57z Obtained through a hybrid regular-
ization scheme, satisfactory reconstruction in the normal surface velocity distribu-
tion can be obtained up to the operational deflection shape (ODS) dominated by the
natural mode of the target structural wavelength A.,. The accuracy is improved even
along the edges and at corners of the plate.

Figures 3.13 and 3.14 exhibit comparisons of the first 18 natural modes and
corresponding natural frequencies of this square plate under free-free boundary
conditions from 100 to 420 Hz and from 420 to 800 Hz, respectively.
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Fig. 3.12 Comparisons of the reconstructed normal surface velocity spectra at some randomly
selected points on the baffled square plate surface with the benchmark data. Solid line, benchmark;
dotted line, reconstructed using least-squares minimization alone; crosses, reconstructed using a
hybrid regularization
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Fig. 3.13 Comparisons of the reconstructed ODS of a baffled square plate subject to free-free
boundary conditions and measured ones from 100 to 420 Hz. The first column indicates the mode
number, second column implies the mode order and natural frequency, third column shows the
theoretical mode shape, fourth column displays the mode shape extracted from EMA, fifth column
exhibits the directly measured ODS from laser scanning, and sixth and seventh columns are the
reconstructed ODS using the least-squares method and hybrid regularization scheme, respectively

Note that the natural modes extracted by EMA were based on a 9 x 9 measure-
ment grid, which enabled one to get the 15th mode at 695 Hz successfully. On the
other hand, the microphone grid used for HELS reconstruction was based on a
12 x 12 array, which allowed for a satisfactory reconstruction up to the 18th natural
mode. It is emphasized that the theoretical natural modes and those extracted by
using EMA were displayed in Figs. 3.13 and 3.14 as a reference, but not for
validation. The reconstructed normal surface velocity distributions were validated
against the ODS dominated by the 18th natural mode that were obtained by
scanning a laser vibrometer on the plate surface. For comparisons beyond the
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Fig. 3.14 Comparisons of reconstructed ODS of a baffled square plate subject to the free-free
boundary condition and measured ones from 420 to 800 Hz. The first column indicates the mode
number, second column implies the mode order and natural frequency, third column shows the
theoretical mode shape, fourth column displays the mode shape extracted from EMA, fifth column
exhibits the directly measured ODS from laser scanning, and sixth and seventh columns are the
reconstructed ODS obtained by using the least-squares method alone and by a hybrid regulariza-
tion scheme, respectively

18th natural mode, a denser measurement grid for the laser vibrometer and a finer
measurement grid for the HELS-based NAH must be adopted.

The results shown in Figs. 3.13 and 3.14 confirm that: (1) the HELS based NAH
can be utilized to reconstruct the ODSs dominated by the natural modes of a panel
structure; (2) a direct application of the HELS formulations using J,, alone can
yield satisfactory reconstructions of the ODSs dominated by lower-order modes,
for example, up to the 11th natural mode in this case; and (3) by using the
hybrid regularization scheme, it is possible to obtain satisfactory reconstructions
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Fig. 3.15 Comparisons of the reconstructed vibro-acoustic quantities on the surface of a baffled
square plate up to the 18th natural mode at 770 Hz. The first column is the mode number and
frequency; second depicts the mode shape extracted from EMA; third and forth columns demon-
strate the surface acoustic pressure and normal surface velocity distributions reconstructed by
using the HELS-based NAH with J,,mrr determined by hybrid regularization scheme,
respectively

of all ODSs up to the target one that is dominated by the 18th natural mode of the
square plate.

Note that it is not possible to measure the surface acoustic pressure directly. So
validations of the reconstructed acoustic pressures are performed on the hologram
surface (see Fig. 3.9). It is important, however, to display the capabilities of
reconstructing all vibro-acoustic quantities by using the HELS-based NAH at any
frequency. Figure 3.15 depicts the natural modes extracted by EMA together with
the surface acoustic pressure and normal surface velocity distributions at the natural
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frequencies of a square plate up to the 18th natural mode. Note that the acoustic
pressure distributions showed the same patterns as those of the normal surface
velocity distributions, but without the presence of phase changes. This is because
the acoustic pressure is a scalar quantity.

The HELS-based NAH has been successfully used to reconstruct acoustic
radiation from arbitrarily shaped objects in both exterior [52, 53] and interior
regions [54, 55]. Test results in these cases demonstrate that HELS can provide
satisfactory reconstruction of the acoustic quantities even on an arbitrarily shaped
surface with relatively few measurements in the low-to-mid frequencies and in
particular, allow a piecewise or patch measurement and reconstruction.

Note that in conducting patch measurement at least one reference point should
be selected. This reference point must not be moved in moving from one patch
measurement to another.

It is worth noticing that since the expansion functions in the HELS formulations
consist of the spherical wave functions, the solutions provided by Egs. (3.66) and
(3.67) converge very fast when measurement and reconstruction points are outside
the minimum spherical surface that circumscribes an arbitrarily shaped source
surface.

Inside this minimum spherical surface, however, the situation is unclear in the
beginning. While numerous numerical and experimental results have confirmed the
correctness of the HELS results inside this minimum spherical surface, the validity
of HELS solutions was not established theoretically at first. Naturally, the validity
of the HELS formulations inside the spherical surface that circumscribes arbitrary
source geometry in an exterior region, or outside a maximum sphere that inscribes
arbitrary source geometry in an interior region has been challenged when the HELS
method was first introduced to the acoustics community.

Problems

3.1. Use the knowledge learned in Chap. 2 for the spherical Hankel functions and
spherical harmonics and Eq. (3.4)—(3.12) to write the HELS expansion
functions for n =3 and 4.

3.2. Use Eq. (3.15) to reconstruct the acoustic pressure emitted by a dilating
sphere of radius a. Suppose that the acoustic pressures measured at two
arbitrary points 7, and r, in space are p; = pocv oka’e 1= /[(ka +i)ry]
and p, = pocv oka’e™® 2= /[(ka + i)r,], respectively. Find the acoustic pres-
sure p (r,0,¢;w) at any field point. Hint: use a one-term expansion in the
HELS to reconstruct the radiated acoustic pressure field.

3.3. Continue Problem 3.2. Use Eq. (3.17) to reconstruct the normal component of
the particle velocity v,(r,0,¢;w) at any field point based on the same
measured acoustic pressures.

3.4. Use a two-term HELS expansion in Eq. (3.15) to reconstruct the acoustic
pressure emitted by an oscillating sphere of radius a. Suppose that
the input acoustic pressure at (1, 8y, ¢y) is p | = pocV oka® (kry + i)e”‘("l‘“)
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3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.
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cos 6,/ [(k2 22+ i2ka)rﬂ and that at (1, 65, ¢,) is given by
Py = pocvoka’ (kry + i)e*2=@) cos 0,/ [ (K*a® — 2 + i2ka)r3]. Solve the
acoustic pressure p (r, 0, ¢; w) at any field point.

Continue Problem 3.4. Use Eq. (3.17) to reconstruct the normal component of
the particle velocity v,(r,0,¢;w) at any field point based on the same
measured acoustic pressures.

Use a two-term HELS expansion in Eq. (3.37) to predict the acoustic pressure
emitted by an oscillating sphere of radius a. Suppose that the normal surface
velocities at two arbitrary points on the surface of the sphere are given by
V(T Omy ; @) = V. cos 6,,, where m=1 and 2 and V, is known.

Show that the errors in reconstructing the acoustic quantities on the source
surface based on the acoustic pressures measured in the near field by using the
HELS formulation (3.15) are of the order as given by Eq. (3.49).

Show that the errors in reconstructing acoustic quantities in the far field based
on the near-field acoustic pressure measurements are of the order as given by
Eq. (3.52).

Show that the errors in predicting the acoustic quantities on the source surface
based on the near-field measurements by using the HELS formulation (3.44)
are of the order as given by Eq. (3.55).

Show that the errors in predicting the acoustic quantities in the far field by
using the HELS formulation (3.44) are of the order as given by Eq. (3.55).
Write a simple code for the HELS formulations to reconstruct the acoustic
pressure fields based on the acoustic pressure input data. In this program the
number of optimal terms in the HELS expansion should be specified auto-
matically by the least-squares minimization process as given by Eq. (3.56).
Write a simple code for the HELS formulations to reconstruct the acoustic
pressure fields based on the normal surface velocity input data. Once
again, the number of optimal terms in the HELS expansion is specified
automatically by using the least squares minimization process as given by
Eq. (3.56).



Chapter 4
Validity of the HELS Method

The validity challenges came at the joint meetings of the 136th Meeting of the
Acoustical Society of America (ASA), the 2nd Convention of the European Acous-
tics Association (EAA), and the 25th German Annual Conference on Acoustics
(DAGA) held in Berlin, Germany, 1999 [56]. The major questions were as follows:
“How can the acoustic field on the surface of any non-spherical structure be
described by the spherical wave functions?” “Is this a Rayleigh hypothesis in
NAH that pushes a solution formulation beyond its region of validity?”

4.1 Rayleigh Hypothesis

At the turn of the last century, Rayleigh used a series expansion of plane waves to
depict the acoustic pressure field resulting from an incident time-harmonic acoustic
plane wave scattered on a one-dimensional periodic, impenetrable corrugated
surface S (see Fig. 4.1). The corrugations can be expressed mathematically as
[57, 58]

¢ =bcos (2ax/Ay), (4.1)

where b and A, are, respectively, the amplitude and wavelength of corrugation of the
surface S and 6 is the angle of incidence with respect to the unit normal of the
surface S.

Above the highest point of the corrugations of surface S (z > b), the complex
amplitude of the total acoustic pressure (with the time-harmonic function e "’
omitted for brevity) as given by Rayleigh was
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15

Fig. 4.1 Schematic of an incident time-harmonic acoustic pressure plane wave on a periodic
corrugated surface S

o0
]5 ()C, z w) :ﬁin [eikzcose +R(w)efikzcos€j| + Z Anei<”k,\.x+kxsin9*kZCOS9”), (42)

n=—00

where p;, is the complex amplitude of the incident acoustic pressure, R(w) is the
acoustic pressure reflection coefficient, A, represent the expansion coefficients that
are determined by the boundary conditions on the corrugated surface S, k, = 2z/A, is

the spatial wavenumber of the corrugations, and cos8, = /1 — sin26,, here
sin,, = sin @ + n(k,/k). The first and second terms on the right side of Eq. (4.2)
represent, respectively, the incident and reflected acoustic pressure waves acting
on a smooth surface and the infinite series imply the acoustic pressure scattered
from the corrugated surface as shown in Fig. 4.1.

In an attempt to use the boundary conditions on S, Rayleigh assumed that the
infinite series (4.42) was valid everywhere, including the corrugated surface S. This
is known as the Rayleigh hypothesis. This hypothesis was tested on various acoustic
scattering problems and had aroused many controversies over the next 60 years.
Sometimes the results given by the Rayleigh series (4.2) were correct, but most of
times they were completely wrong.

The validity of Rayleigh hypothesis may be examined through analyticity of the
solution. If the solution to the acoustic pressure can be analytically continued from
the field to the surface, then the expansion coefficients may be determined by the
boundary conditions, and the Rayleigh hypothesis is correct [59]. Therefore to
answer the question of the validity of Rayleigh hypothesis, it is necessary to find
the distribution of singularities using the analytic continuation of the acoustic field
across the surface of any scatterer.

These controversies were eventually settled by Millar [59-61] who proved that
the Rayleigh hypothesis was neither completely right nor completely wrong. In
fact, the validity of a Rayleigh series was governed by the locations of the
singularities of the analytic continuation of the exterior scattered field across a
scattering surface. For example, in the case of scattering from the gratings and
periodic corrugated structures, the Rayleigh series solution would be valid if
singularities lay below the lowest point of a corrugated surface. If the singularities
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lay above the lowest point of a corrugated surface, the series solution is valid only in
the region above the highest singularities.

For the case of a periodic corrugated surface as depicted in Fig. 4.1, Millar
showed that the Rayleigh hypothesis would be wrong and Eq. (4.2) be invalid when
A >0.0448, and neither wrong nor right when 4,6 <0.0448 [62]. For example,
consider a corrugated surface of a wavelength 4,=1 m and corrugation height
b=0.05 m. Because 4,6 =0.05>0.0448, it would be wrong to use Eq. (4.2) to
depict the scattered acoustic pressure on the corrugated surface S. On the other
hand, if 4, =1 m and »=0.045 m, then 1,6 =0.045 <0.0448 and it might be
acceptable to use Eq. (4.2) to describe the scattered acoustic pressure on and
above the corrugated surface S.

Millar gave the formal proof of the method for determining the singularities of
the acoustic field for a periodically corrugated surface [60]. Hill and Celli offered a
heuristic method to estimate the singularities of a periodic corrugated surface
[63]. van der Berg and Fokkema studied the acoustic scattering from a nonperiodic
corrugated surface [64].

Similarly, in a two-dimensional acoustic scattering scenario, we can use a
Rayleigh series in terms of the outgoing cylindrical waves to describe the scattered
acoustic pressure field,

ﬁ scattered (r’ ¢? (1)) = Z AnH}(11> (kr)elnd)’ (43)

n=—0oo

where H,(,l)(kr) represents the nth-order cylindrical Hankel functions of the
first kind.

Once again, the validity of Eq. (4.3) will be correlated to the distribution of
singularities in the analytic continuation of the acoustic pressure field across the
surface of a two-dimensional scatterer. Figure 4.2 depicts an arbitrary circle S,
which is the cross section of an infinite cylinder. When the singularities all lie inside
the maximum circle S, that inscribes the circle S, the series solution (4.3)
converges absolutely and uniformly in the compact subsets of the exterior of Sy,
that circumscribes the scatterer. When the singularities lie on or outside the
maximum circle Sy.x, the series solution (4.3) will be valid to depict the scattered
acoustic pressure above the highest singularities, but invalid below these singular-
ities, because Eq. (4.3) only converges absolutely and uniformly outside the circle
defined by the locations of the singularities.

A number of people have looked into the problem of locating possible singular-
ities of the analytic continuation of solutions to the Helmholtz equation for a
two-dimensional scatterer with analytic data across analytic boundaries [65—
67]. In particular, Maystre and Cadilhac developed a method for determining
possible singularities [68], and Keller gave the proof of its validity [69].

Note that in general there is no way of determining the locations of the singu-
larities in the analyticity of solution to the Helmholtz equation because analytic
solutions for arbitrary geometry do not exist. In an attempt to determine possible
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Fig. 4.2 Schematic of an
acoustic scattering problem
in two-dimensional space.
The Rayleigh series solution
is valid outside the minimum
circle Sy, circumscribing
the scatterer S when
singularities all lie inside
the maximum circle Sy«
inscribing the scatterer S

A~
Pin

singularities of the analytic continuation without the explicit knowledge of the
solution, Millar made use of the Schwarz function [70], which utilized of the
geometric properties of the boundary. By locating the singularities of the Schwarz
function, possible singularities in the analytic continuation of the solution might be
determined. However, there is no way of knowing if these possible singularities are
indeed the actual singularities. Thus in practice the Rayleigh series solution (4.3) is
utilized for domains that are free of singularities. Examples of these include
separable geometry such as a sphere and an infinite cylinder.

In three-dimensional acoustic scattering problems, the Rayleigh series can be
expanded in terms of the spherical Hankel functions and spherical harmonics, with
their expansion coefficients determined by the orthogonality properties of the
spherical harmonics.

o]

p(r,0,¢;m) = Z i AV (kr)Y ™ (cos 0). (4.4)

n=0 m=—n

In Examples 2.10 and 2.11 it has been shown that the infinite series expansion
(4.4) can be used to predict acoustic radiation from a vibrating sphere, given the
normal surface velocity on a spherical source surface as the boundary condition; or
reconstruct the acoustic pressure anywhere including the spherical source surface,
given the acoustic pressure on a spherical surface at some distance away from the
source surface.

Note that there is a major difference between prediction and reconstruction
problems. The former represents a forward problem, whereas the latter stands for
an inverse problem. A forward problem is mathematically well defined and errors in
input data are bounded in prediction. On the other hand, an inverse problem is
mathematically ill posed and errors in input data may increase without a bound in
reconstruction. To get a bounded reconstruction, regularization must be used.

Another complication for the infinite series solution may arise in practice when
the source is non-spherical. Figure 4.3 demonstrates the schematic of acoustic
scattering from an arbitrarily shaped source in three-dimensional space. Analyses
have shown the infinite series solution (4.4) is only valid outside the minimum
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Fig. 4.3 Schematic of an
acoustic scattering problem
in the three-dimensional
space. The Rayleigh series
solution (4.4) is valid
outside the minimum sphere
Smin Circumscribing the
scatterer but invalid inside

N min

sphere S,,;, that circumscribes an arbitrary source surface S, but invalid inside the
minimum sphere S,,;, in general [71].

On the surface, it looks as though the infinite series solution (4.4) is quite similar
to the HELS formulation (3.1), which is expressible as

N n
P06, i) => " CuhV(kr)Y)(cos ). (4.5)

n=0 l=—n

Equation (4.5) shows that the acoustic pressure can be described by a superpo-
sition of the spherical Hankel functions and spherical harmonics, which is the same
as the Rayleigh series (4.4) in three dimensions. Therefore a natural question is as
follows: “Will HELS expansions be subject to the same restriction as the Rayleigh
series does? Specifically, will Eq. (4.5) be valid only inside the region bounded by
spheres?” Moreover, “How will the HELS formulations be related to the Rayleigh
series?” These questions are answered in the next section.

4.2 The Rayleigh Series Versus HELS Formulations

Section 4.1 has discussed in detail that the Rayleigh hypothesis is valid and the
Rayleigh series converges absolutely and uniformly when the singularities of the
analytic continuation of the solution lie inside the maximum sphere that inscribes
the source surface of interest. Since in general the analytic solution to the Helm-
holtz equation for an arbitrarily shaped surface does not exist, there is no way of
knowing if the Rayleigh series (4.4) is a valid solution, and where the region of
validity is. One thing for sure is that the infinite series will diverge when Eq. (4.4) is
evaluated on an arbitrarily shaped source surface. Even if this series is truncated,
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the solution can still diverge when input data are noisy. So a safe tactic is to use the
Rayleigh series to predict the scattered acoustic pressure outside the minimum that
circumscribes an arbitrarily shaped surface. The trouble with this approach is that
the expansion coefficients cannot be determined because the boundary conditions
are given on the source surface.

On the other hand, Chap. 3 has demonstrated examples of using the HELS
formulations (4.5) to reconstruct very accurately all the acoustic quantities on a
flat vibrating panel, which is way inside the minimum sphere circumscribing this
highly non-spherical surface. Thus the HELS formulations (4.5) must be different
from the Rayleigh series (4.4), even though they both use the expansion of the
spherical wave functions.

The differences between the Rayleigh series (4.4) and the HELS formulations
(4.5) are as follows. First of all, the Rayleigh series is infinity, while the HELS
expansion is finite. Second, the expansion coefficients in the Rayleigh series are
specified by using the orthonormal property of the spherical harmonics and inte-
grating over the solid angle of a sphere, while those in the HELS formulation are
specified by matching the expansion (4.5) to the measured data, and the errors
involved in this process are minimized by using the least-squares method. Last but
not the least, the orthonormal property of the spherical harmonics holds true for a
spherical surface, but not an arbitrary surface. So the Rayleigh series is bound to fail
when applying it to an arbitrarily shaped surface. In contrast, the HELS formula-
tions always utilize an optimal number of expansion terms to best approximate the
reconstructed acoustic quantities. In other words, the HELS formulations always
attempt to produce the best approximation for the acoustic quantities radiated from
a non-spherical source surface under any given set of input data.

The interrelationships between HELS and Rayleigh series are revealed by
Semenova and Wu [72] in reconstructing the acoustic field generated by an
arbitrary surface in the exterior region. For simplicity, Semenova and Wu consider
infinite cylinders with arbitrary cross sections. They discover that outside the
minimum circle that circumscribes the singularities of the cylinder, the Rayleigh
series yields an identical result as HELS does when the input data are error free.
This is because the high-order terms are negligibly small, so the differences
between the Rayleigh series and HELS solutions (a truncated expansion) are
minuscule.

When the input data are noisy, the results are different. The normalized errors
are the same for all expansion terms in the Rayleigh series because in calculating
the coefficients of the series solution by integration, the noise affects all the
coefficients equally. In order to obtain a bounded solution, the Rayleigh series
must be truncated. Meanwhile, the normalized errors change with the number of
expansion terms for the HELS formulations, and are minimal at the optimal number
of expansion terms. This is because errors embedded in measurements affect the
higher-order terms more than the lower-order ones, as demonstrated in Eq. (3.49) in
Sect. 3.4.

Of particular concern is the difference between Rayleigh series and HELS
solution inside the minimum circle circumscribing a source. Semenova and Wu
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illustrates that the Rayleigh series diverges once it is extended inside the minimum
circle bounded by the singularities. This confirms Millar’s theory on the validity of
the Rayleigh hypothesis. In contrast, HELS formulations are not subject to this
restriction and may provide satisfactory reconstruction everywhere. Of course, the
further the reconstruction point is extended into the minimum circle, the larger the
reconstruction errors may become. Note that even if the Rayleigh series is truncated
at the same order as that of the HELS expansion, its reconstruction errors inside the
minimum circle are still much larger than those of HELS.

These results suggest that the HELS formulations are different from the Ray-
leigh series as far as back propagating an acoustic field to an arbitrary surface is
concerned. However, knowing this difference is not enough to justify the validity of
HELS inside a minimum sphere. Moreover, previous results have demonstrated that
the accuracy of reconstruction on a non-spherical surface using HELS decreases
continuously as the aspect ratio of a source surface and dimensionless frequency ka
increase, where a is the characteristic dimension [73].

Therefore, a rigorous mathematical justification of the validity of the HELS
formulations to reconstruct the acoustic quantities on an arbitrary surface is needed,
which are given rigorously in the next section.

4.3 Justification of the HELS Formulations

Since its first publication in 1997, the HELS-based NAH method has been success-
fully used to reconstruct the acoustic pressure fields generated by arbitrarily shaped
vibrating structures in both exterior and interior regions. Of course, in these cases
the structures are not highly elongated, but nonetheless arbitrary. From the acous-
tics point of view, one can claim that the HELS method may yield satisfactory
reconstruction of the acoustic field by using superposition of the spherical wave
functions, which explains many phenomena observed in the previous studies.
However, this is contradictory to the belief that the expansion solutions using the
spherical wave functions and spherical harmonics are valid only inside the regions
bounded by spheres and invalid outside these regions.

In this section we present rigorous mathematical justifications for the HELS
formulations [74]. Basically, we show that for reconstructing acoustic radiation
from an arbitrary source surface, the solutions given by the HELS formulations are
approximate; but nonetheless, reconstruction errors are bounded.

Consider reconstruction of acoustic radiation from a finite, arbitrarily shaped
object, which includes the acoustic pressure and the normal component of the
velocity on the source surface and those in the field. Mathematically, this is
equivalent to solving the Helmholtz equation in a three-dimensional domain Q
bounded by the source surface I" and a surface at infinity I'.

The acoustic field # with the acoustic wavenumber £ satisfies the Helmholtz
equation in €,
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Vu(r,0,¢; o) + Ku(r,0,¢;0) =0 in Q(or in Q. =R\Q). (4.6)

In practice, the domain Q can be either the exterior or interior region of a
passenger vehicle or an aircraft cabinet. For the exterior problems, solutions to
Eq. (4.6) satisfy the Sommerfeld radiation condition,

lim r ou(r,9.¢:0) _ iku(r,0,¢;w)| =0, as r — oc. (4.7)
r—00 or
Such a solution u is called a radiating solution. In what follows the arguments of
u are omitted for brevity.
To reconstruct the acoustic field, we need to measure the acoustic pressures
u around the source. Suppose that the acoustical sensors are placed on a surface
I'y either inside or outside the source surface. These measured data are utilized to
reconstruct u# on the source surface I" and in Q and, in particular, the normal surface
velocity v, defined by

1
Vo =—20,u on I, (4.8)
iwpq

where the subscript n indicates the unit outward normal on I" and the symbol 0,
indicates a partial derivative with respect to r. Note that here we assume that there
are no sources other than the one under consideration.

The steps involved in our mathematical justifications are outlined as follows.
First, we show that any radiating solution to the Helmholtz equation outside a
bounded Lipschitz domain € with a connected complement can be approximated
by a family of certain known special solutions, for example, the spherical wave
functions. Next, by using this approximation together with conditional stability
estimates in the Cauchy problem for an elliptic equation, namely, the Helmholtz
equation, we demonstrate that these special solutions are bounded on Q. and their
convergence on ' implies convergence in .. Finally, we derive estimates of the
convergence of Holder type at a distance from € and that of logarithmic type in €.
These results justify mathematically the validity of the HELS formulations, in
which the measured acoustic pressures on Iy are approximated by a linear combi-
nation of the special solutions. For an exterior problem this linear combination is
well defined everywhere except at the origin, and gives an approximate solution in
the exterior region.

Note that we use Q. to denote the complement R\ Q and fix a (large) ball B that
contains Q. Also we use H(Q) to imply the Sobolev space of functions in Q,
whose partial derivatives up to the order n are square integrable, and use
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[Jul (0 () =

to denote the standard norm in this space. Note that in Eq. (4.9), we let |||2= ||/l
be the norm in the space L*(Q) and use the symbol 0“ to indicate the ath-order
partial derivative. Accordingly, ||||¢+; where 0 <1< 1 means the norm in the
Hoelder space T“** of the functions whose partial derivatives up to order ¢ are
Hoelder continuous of an exponent 4, where T" is a generic constant depending only
on Q, Iy, and £.

Now we focus on the approximation of u through the simplest solutions. Our
purpose is to interpolate the measured data on I'y for solutions to some integral
equations, which can be crucial for higher acoustic wavenumbers k.

Theorem 4.1 Ler Q be a bounded Lipschitz domain in R® with connected Q,. Let
uEHq (B\ﬁ) be a radiating solution to the Helmholtz equation (4.6) in £2,. Let

By C By C Qfor a ball By. Then for any positive e there is a radiating solution u, to
the Helmholtz equation outside By such that

[t — se||(0)(Qe) < e (4.10)

In the proofs we will use the following Green’s formula:

J [(Vu+ Ku)u — u(Vu' + )] = J (ud,u* — u*ou), (4.11)

Q. 0Q.

foruandu” € H;)(B\Q2), which are radiating solutions to the Helmholtz equation
in B;, for some ball B C B; C Q. Also, we need the following Runge property of
radiating solutions.

Lemma 4.1 Let Q; and 2, be two bounded domains that contain B, with
connected 2, and £5,, Q| C Q,. Let u; be a radiating solution to the Helmholtz
equation (VZ + k2)u1 =0in Q;,. Then for any € > 0 there is a radiating solution u
outside By such that [Ju; —u//1)(§2;c NB) <e.

Proof Due to interior Schauder-type estimates for elliptic equations, it suffices to
consider £=0. By shrinking Q, we can achieve that 0Q, € T,

Let us assume the opposite. Let Q" = Q,.NB. Then by the Hahn-Banach theorem
there is a function f ELz(Q*) such that

J uf* =0, (4.12)

o

for all functions u, but
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J uf* #0, (4.13)

o

for some functions u;. We will extend f~ outside Q" as zero.

To obtain a contradiction, we introduce a ball B* centered at the origin and
contained in Q,. Since there is a unique radiating solution 1~ € H, to the equation
(V2 +)u* =f*in B? with zero Dirichlet data u" =0 on OB", we can find radiating
solutions from the Green’s formula (4.11),

—J uf* = J ud,u’. (4.14)

QF o0B*

Using Eq. (4.11) and completeness of u in LZ(BB*), we conclude that avu* =0on
):

Since u" solves the Helmholtz equation (4.6) in the connected open set QZ\E*,
we can conclude from the uniqueness in the Cauchy problem for elliptic equations

[75] that " =0 on &\B". Now applying again the Green’s formula (4.11) to the
radiating solutions u#; and u’, we obtain

J uf* = J (u*0uy — u Oyu™) =0 (4.15)

Q* 0Qy,

which contradicts Eq. (4.13).

Proof of Theorem 4.1 By extension theorems for Sobolev space in Lipschitz

domains, there is an extension u*EH(l)(B) of u onto R>. Letf: VS + ik

Then f* EH(,I)(R3) and suppf* C Q. It is known that f* = f,, + Z a}-fj for some
j

fos -0 f3 € L*(R?) that are supported in Q. Let y, be a sequence of measurable

functions with values O or 1 supported in  and pointwise convergent to 1 on .

Then f defined as fyy, + Z 0, (fj;(n) will converge to f in H(,l)(R3) with
J

sup pf; C 2. From the theories of elliptic equations and scattering [76], it follows
that radiating solutions to the Helmholtz equation (A + kz)u:; =frin R’ converge to
u in H,(B\Q) for any ball B. So one can write u, such that

||t = a1y (B\Q) <§. (4.16)

By the Runge property for scattering solutions in R*\ B, (Lemma 1), there is a
radiating solution u, to the Helmholtz equation outside By such that
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€
[l — e[ (0 (B\Q) < 3. (4.17)

From Egs. (4.16) and (4.17) we obtain Eq. (4.10).
The proof is complete.

In practice it is very helpful to use a special family of radiating solutions to the
Helmholtz equation &,,,, which are expressible as

emn(r, 0, ;@) = BV (kr)Y " (cos 0), (4.18)

where hﬁ,l) represent the spherical Hankel functions of the first kind, and Y}'(cos 0)
stand for the spherical harmonics orthonormal in L*(S?) on a unit sphere S% It is
convenient to approximate the solution u to the Helmholtz equation by a linear
combination of

r,0, ;0 Z Z Conemn(r, 6, ; ), (4.19)

n=0 m=—n

where C,,, are the expansion coefficients to be determined.

Corollary 4.1 Let 0 € Q.
For any positive € there is u, such that

||t — ue||(1)(B\Q) < e. (4.20)

Proof By Theorem 4.1 there is a radiating solution u, to the Helmholtz equation in
R*\ B so that Ilu — uell1,(B\Q) < &/2. Let B, be a ball of radius r, (r; > () centered
at O such that B; C Q. The spherical harmonics Y7'(cos 8) form an orthonormal basis
in LZ(SZ). Expanding the function u, at r; with respect to this basis, we can conclude
that the partial sums of the corresponding series are convergent in L*(0B;) and
therefore, due to the known results of these series (Theorem 2.14 in Ref. [77]), these
partial sums are convergent to u, on B\Q in H,(B\Q2). Consequently, we can find a
partial sum u, such that llu, — ull,(B\Q) < £/2, and the claim follows from the
triangle inequality.
A similar result is valid for interior problems.

Theorem 4.2 Let u© H,;(£2) be a solution to the Helmholtz equation (4.6) in Q.
Then for a positive €, there is a solution u, to the Helmholtz equation in R® such that

= ue||(1)(Q) < e. (4.21)

For interior problems a partial family of useful solutions can be spanned by the
functions
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Epn(r,0,¢;0) = j,(kr)Y(cos 6). (4.22)

Now we discuss how to use these results to approximate u via u,.
Lete=1inEq. (4.21). Since for € <1, there are approximate functions u. such
that

[[ute][(1)(Q0\Q) < My = |[u]|(1)(B\Q) + 1. (4.23)

Replacing v, by its definition, we have

2

Z Z Com N e (r,0,p;0)| | d(r,6,0)

n=0 m=—n

Z Z Comen(r, 6, ;@

n=0 m=—n

Q\Q
<M,

(4.24)

where d(r, 0, ¢) represents integrations over the source region in Q. Since input

data are given on Iy, we can approximate u via u, by solving a minimization
problem,

miny, |[u — ue||(0)(To) (4.25)

subject to the constraint (4.23). By solving this problem for sufficiently large
N=N(6), we find u.(; ) such that

[[u = ue(:8) ] (0)(T0) < 8, (4.26)

so that the constraint (4.23) holds.

Lemma 4.2 Let Q, be a bounded domain, Q C Q. Let either I'y= 082, or 082, be
analytic and Ty be a non-void open part of 0€2y. Let £, C £2y. Then there is a
function w(6) — 0 as 6 — 0 such that

||t = e (;8)||10)(B\R1) < 00(3). (4.27)

In addition, if Q C Q, then one can choose ®(5)= (C/dZ)M{ —0§° [6<(0,1),0>
diT, where d is the distance from 082; to Q]; and if 2; =, then one can let
w(8) =M(-Y/log 8)""*.

Proof We use the Carleman-type estimates (Sect. 3.3 in Ref. [75]) for the Helm-
holtz operator,
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Z Jr\ 0% u|* ¥ < CJ |V 2uo + Kuo 2ot (4.28)
aslp B
for any H ,)(B)-function u, compactly supported in B and 0 < 7. Here ¢ & T2(R?) is
the so-called strongly pseudo-convex function for the Laplace operator in R (see
Sects. 3.2 and 3.3 in Ref. [75]). In particular V¢ # 0 on Q. We can show that there
is such a function satisfying the conditions ¢ = 0 on 0Q, ¢ > 0 on B\Q (see Sect. 3.3
in Ref. [75]).

Let & = llu — ullg)(T'o). First, we consider the case in which I'y = 0Q. Let Q, be
a domain containing Qo with Q, C B. By using the Green’s function for the exterior
Dirichlet problem for the Helmholtz equation (4.6) in Q, we conclude that

|t — ue(;8)]|(1)(B\Q2) < C8. (4.29)

To obtain an interior bound, we introduce the cutoff function y € T°°, which
is 1 on Q,\Q(d) and which is supported in B\ Q. We utilize y with 0 < y < 1, 1V/yl <
d”, when j=1 and 2, where Q(d)=BN{¢p <d}. Observe that due to our choice
of @, d(r, 0, §)/T < @(r, 0, ¢) < Td(r, 0, ¢), thus we can obtain y with the above
bounds. Let uy = y(u — u.). Then u, is compactly supported in B. Using Eq. (4.28)
and the equality (V7 + k7)o =2V (u — u,)-Vy + u — u,)V>y, we have

S [T

a<l

= 00\ Q(2d)
<C J 12V (u—ue) - Vy+ (u—u, V2 ’ (4.30)
(e@a)n(Bre:) .
< con | OVWZ ’|>+cgﬂj’uvw_u>P+p_uP>
— d2 e e >
Q\Q B

where ® =max¢ over B and the inequality ¢ < d on Q(d)\Q is used. In addition,
using 2d < ¢ on Q(2d) and replacing ¢ on the left side of Eq. (4.30) by 2d, we
obtain

2
e = el (20220) < €Sl — e ], (201 + € -} (12 )
(4.31)

Dividing the both parts by e**

we find

and using that due to Eq. (4.23) llu — u,ll;1,(B\Q2),
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—27zd
2 e (D
|| = | [}, (Q0\Q(24)) < C( e M3 4 &> (@ 2d)82>. (4.32)

Minimizing the right side of Eq. (4.32) with respect to 7 > 0 yields the minimum
point,

2t =

! M ] (4.33)

ln[
& —d |d*(®—2d)e

1-0
( >529, here

where the value of the minimized function is less than Cd— 4M%
_d
9 —_— ¢——d.
This proves the interior bound.
To obtain the logarithmic bound, we will split the norm

[0 = e[ (Q0\Q) = |1 — e[ (1 Q()) + [Ju — e[ (QNQ).  (434)

By the Hoelder inequality the second term on the right side of Eq. (4.34) is

1

J 1|u—ug’2§ J 1 J |u—ue‘6
QdNQ Qd)\Q QAN Q
< Cd||u— e[, (Q0\ ), (4.35)

by Sobolev embedding theorems (see the Appendix of Ref. [75]). Now using the
interior bound, we obtain

)

d
2 Ly ‘ 2 2
[ = e[ [ ) (Q0\ Q) < € M (M) +M1d3] : (4.36)

Letting d = [—In(6/M)]~ ¥4 we conclude that Eq. (4.36) can be rewritten as
[ = e[ [y (@01 Q) < M3 (e +172), (4.37)

where L=[—In(6/M 1)]1/4. Using Le HC<CL™2, we complete the proof of a
logarithmic bound.

The case of analytic 0 is similar. We only have to observe that due to known
conditional stability estimates of the analytic continuation for the analytic (in some
two-dimensional complex neighborhood of the analytic surface 0€;) function
u —u, from I'y to 0Q (see Corollary 1.2.2 of Ref. [78]), we have
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|16 — ]| 0 (990) < C|u — e[ (T0)- (4.38)
)

Here, as in Sect. 6.3 of Ref. [75], the neighborhood of 0€ and a bound of the
complex-analytic continuation onto this neighborhood depend only on Q, 0Q,, and
M. The bound in Ref. [75] is given for a plane domain and for a function of a single
complex variable, but by using the local analytic coordinates and continuation in
each of two coordinate variables, we obtain the same bound on 0. After that we
proceed as above.

The proof is complete.

By some standard but more complicated argument, we can replace the exponent
1/4 in the logarithmic bound by any value smaller than 1. Also we can demonstrate
that the interior bound of Lemma 4.2 holds when the bound (4.23) in H ,(\2) is
weakened to the following,

[|ute | () (€20\ 2) < Mo, (4.39)

and correspondingly the constraint (4.24) is weakened to the bound,

|

Q\Q

2
dxﬁM%, m=20,...,2n+1 and n

S  unmenm(x)

n m

=0,...,N. (4.40)

The approximation and stability results in this section suggest the following
strategies for finding the approximate solution u.. First, guess N, which is the
number of the expansion term for radial functions. Next, find the convex constraint
minimization, namely, Eqgs. (4.25) and (4.24). Note that sometimes it might be
easier to solve Egs. (4.25) and (4.39) instead.

4.4 Significance of the Justification

The rigorous mathematical justification of the HELS formulations provided by
Isakov and Wu is significant in that:

1. It demonstrates that any radiating solution to the Helmholtz equation outside a
bounded Lipschitz domain with connected complement can be approximated by
using a family of special solutions.

2. Using these approximations and conditional stability estimates in the Cauchy
problem for the Helmholtz equation, these special solutions are proven to be
bounded outside a vibrating surface and converge to the exact solution, provided
that they converge to the exact solution on the measurement surface.
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3. Moreover, the estimates of convergence of Holder and logarithmic types in
different regions are derived.

Isakov and Wu’s work has provided definitive answers to the question of the
validity of the HELS formulations: one can indeed use the spherical wave functions
to approximate an acoustic field on a non-spherical surface. This conclusion also
holds for the interior region.

The most significant impact of Isakov and Wu’s work on HELS method is the
suggestion of an effective regularization to overcome ill-posedness difficulty inher-
ent in all inverse acoustic problems. Specifically, Isakov and Wu propose a regu-
larization technique using quasi-solutions [79] by imposing a limit on the growth of
reconstructed acoustic quantities in the entire exterior region, including the source
surface S. Using the same symbols as those defined in Chap. 3, we obtain

I, (5s0) = [[ 15, (350)P <K Gubupimes. @an
N

where j = 1 to J,,. The constant on the right side of Eq. (4.41) has been shown to be
correlated to the time-averaged acoustic power [71], which is a constant for any
given source and is independent of measurement locations, or be correlated to the
propagating component of the acoustic pressure,

.
K — 5 (Fons O by (’”) 4.42
i) 1w P U 2% (4.42)

where a is the characteristic radius of the source surface.

Using this constraint on the source surface together with an iteration scheme to
obtain J,,, Semenova and Wu [72] illustrate unambiguously that reconstruction
errors remain finite everywhere including the source surface, whereas errors in
reconstruction using HELS with the least-squares minimization alone can grow to
an unsatisfactory level as the reconstruction point approaches the source surface.
This explains why sometimes the accuracy of reconstruction on the surface of an
arbitrarily shaped structure may be unsatisfactory.

By the way, the validity of using the spherical wave functions and spherical
harmonics to reconstruct the acoustic quantities on a non-spherical surface was
investigated by Prager [80] as well. In particular, Prager proposed a method to
approximate the sound field not fulfilling the Rayleigh hypothesis by transforming a
non-converging spherical wave function expansion to a converging one.

Isakov and Wu’s theory has laid a solid foundation for the HELS method,
answered any questions surrounding its validity in reconstructing acoustic radiation
from an arbitrary object and provided the stability estimates for regularizing an
ill-posed inverse acoustic problem. The work described in [71, 72] further reveals
the interrelationship between a Rayleigh series and HELS solution and most
significantly demonstrates that HELS solutions are convergent with bounded errors
whenever a surface constraint condition is imposed.
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Problems

4.1.
4.2.

4.3.

4.4.
4.5.
4.6.

4.7.
4.8.

What is the Rayleigh hypothesis? What does it attempt to do?
Consider the solution to the Helmholtz equation that describes the standing
waves inside a spherical surface as given by Eq. (2.21a)

70,0, Z Z Ay (kr) + By, (kr)| Y ' ( cos 0)

n=0 m=—n

Does this solution subject to the Rayleigh hypothesis? In other words, will this
formulation work if the interior surface is corrugated, namely, not exactly
spherical?

Consider the solution to the Helmholtz equation that describes the traveling
waves outside a spherical surface as given by Eq. (2.21b). Suppose that this
infinite series is truncated to a finite one as follows,

r,0,¢;0 Z Z |:Amnh<l) (kr) +anh,(12>(kr)]Y,;”(cosQ),

n=0 m=—n

and regularization is applied to the expansion. Will this modified solution
subject to the Rayleigh hypothesis? Will it be applicable to a corrugated,
namely, not exactly spherical surface?

What are the differences between the Rayleigh hypothesis and HELS
formulations?

Will the HELS formulations be subject to the same restrictions as the Rayleigh
hypothesis does?

How are the HELS formulations related to the Rayleigh hypothesis?

What does the mathematical justification prove for the HELS formulations?
What is the significance of this mathematical justification?
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Chapter 5
Implementation of the HELS-Based NAH

In this chapter we present the general guidelines for setting up measurement to get
the desired accuracy and spatial resolution for the HELS-based NAH. There are
several parameters that may influence the reconstruction results such as the number
of measurement points, standoff distance, measurement aperture size versus source
surface area, microphone spacing, and SNR. These parameters are generic for all
NAH applications. The strategies for setting up the optimal measurement scheme
are basically the same.

It is the hope of the present author that the proposed reconstruction guidelines
and hybrid regularization strategy would help potential users to get an accurate
reconstruction of the normal surface velocity for a non-spherical structure. This is
because a straight application of the original HELS formulations can result in not-
so-satisfactory reconstruction of the normal surface velocity. We believe that the
HELS method possesses certain advantages for engineering applications that the
Fourier acoustics- and BEM-based NAH do not. This is because the Fourier
acoustics- and BEM-based NAH are based on the exact theories. They can provide
an exact reconstruction of acoustic fields when the required conditions are satisfied,
for example, separable source geometry for the Fourier acoustics and a source-free
field for both Fourier acoustics and BEM-based NAH, but are invalid when these
conditions are not met. Unfortunately, in engineering practice these conditions are
seldom met. On the other hand, the restrictions on the HELS method are signifi-
cantly relaxed because it only seeks approximate reconstruction and is suitable for
patch reconstruction. Needless to say, the results obtained by using HELS are
approximate and their accuracy depends on that of input data. So it is important
to follow the proposed guidelines and strategies to obtain satisfactory reconstruc-
tion of all the acoustic quantities including the acoustic pressures, particle veloci-
ties, and acoustic intensities everywhere in three-dimensional space.

© Springer Science+Business Media New York 2015 81
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5.1 Guidelines for Implementing the HELS Method

It is emphasized that the HELS method imposes no restrictions whatsoever on the
use of the coordinate systems and the corresponding wave functions. The spherical
coordinates and the spherical wave functions can yield good approximate solutions
for a blunt radiator. The prolate, oblate, and elliptic coordinates and the
corresponding spheroids can generate good approximate solutions for a slender, a
flat, and an arbitrarily shaped radiator, respectively. Regardless of the coordinate
systems selected, the expansion coefficients in HELS are specified by matching the
assumed-form solution to the measured acoustic pressures, and the errors are
minimized by the least-squares method and regularization. In practice, it is not
easy to utilize the prolate, oblate, or elliptic spheroids because the corresponding
analytic solutions do not exist. On the other hand, the spherical wave functions are
readily available in any software library, making programming very straightfor-
ward and numerical computations very fast.

Although our ultimate goal is to extend HELS to reconstructing vibro-acoustic
responses of an arbitrarily shaped structure, we begin investigation from a simple
yet highly non-spherical surface, such as a baffled thin plate, and examine the
reconstruction accuracy using the spherical wave functions that are readily avail-
able in most software tools (MATLAB, LabVIEW, etc.) [81, 82]. The choice of a
baffled plate also allows for rigorous examinations on the HELS results because the
corresponding analytic solutions are readily available.

Since the HELS-based NAH utilizes the expansion of certain basis functions, it
is ideal if the geometry of a target source surface fits naturally with the basis
functions. For example, if the spherical coordinates are used in the basis functions,
then the HELS-based NAH will be naturally fit for reconstructing the acoustic
quantities generated by a spherical source or blunt object, whose aspect ratio is
close to 1:1:1. The accuracy in reconstruction will be quite high. If source geometry
is different from a sphere or its aspect ratio is not 1:1:1, the HELS-based NAH is
still applicable, but the accuracy in reconstruction may be compromised. The
farther the source geometry is from the coordinates of the basis functions, the larger
the errors will be in reconstruction. In practice, a vibrating object is usually of an
arbitrary shape. In order to obtain satisfactory reconstruction using HELS, it will be
a good idea to follow some tested guidelines.

In what follows, we consider a class of structures that are commonly used in
practice, i.e., a plate, which is highly non-spherical and represents a serious
challenge to the suitability of using HELS to reconstruct the resultant acoustic
field in three-dimensional space. This is because there are additional factors that
may affect reconstruction results, for example, location of the origin of the coordi-
nate system. Since the thickness of a plate is usually negligible, there is no way of
placing the origin at its geometric center. Thus it must be placed outside the planar
surface, but where? How far should the origin of the coordinate system be? How
far should the measurement aperture be? How large should the measurement
aperture be?
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It is emphasized that there are no analytic solutions to these questions because
HELS is an approximation not an exact theory. Reference [74] gives a mathemat-
ical proof of the HELS method. For the exterior problems solutions are bounded in
the three-dimensional domain Q enclosed by the source surface I" and a surface at
infinity ', (excluding the origin of the coordinate system), where the Helmholtz
equation is satisfied. Moreover, HELS solutions converge logarithmically in Q.
There is no restriction on where the origin of the coordinate system should be
placed. For a blunt object, it is natural to place the origin at the geometric center.
For a thin plate, however, this is not possible. Our studies have illustrated that there
is an optimum position for the origin of the coordinate system on the opposite side
of the plate, which can produce satisfactory reconstruction results [83]. Experiments
have validated the existence of such an optimal position. In addition, the number of
the expansion terms and other parameters, namely, the number of measurement
points, microphone spacing, standoff distances, measurement aperture sizes versus
source surface areas, SNR, etc. are all important in implementing the HELS-
based NAH.

Listed below are the guidelines for implementing the HELS-based NAH [84] to
reconstruct the vibro-acoustic responses on the surface of a highly non-spherical
surface (see Fig. 5.1).

1. Origin position digin: The inherent difficulty in HELS is to approximate the
vibro-acoustic quantities on a highly non-spherical surface by using the spher-
ical wave functions. If the origin of the coordinate system is placed too close to
the surface, errors in reconstruction, though still bounded, can be quite large
because the point of the origin is excluded in the region of validity for an
exterior problem [85]. On the other hand, if the origin is placed too far from the
surface, detailed features in the vibro-acoustic responses associated with the
higher-order expansions in the HELS formulations may diminish, leading to
discrepancies in reconstruction. Therefore, there exits an optimal position for
placing the origin of the coordinate system. Since there are no analytic formu-
lations for selecting the optimal origin of the coordinate system, numerical
simulations are employed and results suggest that the optimal position doyigin
falls within +10 % of the characteristic dimension of the plate D,

dosigin = (0.9 ~ 1.1)D, (5.1)

where D = 0.5v/L*>+ W?, L and W are the length and width of the plate,
respectively.

2. The critical spatial wavelength A..: The spatial wavelengths of any vibrating
structure are usually unknown, so A, is a target value. Consider a rectangular
plate of dimensions L x W. Suppose that we aim at reconstructing up to the (n,
m)th mode of this plate, where 7 is the modal index in the longitudinal direction
with a dimension L and m is that in the transverse direction with a dimension W.
Then A./2 is the smaller of L/n and W/m,
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Fig. 5.1 Schematic of z
measurement setup for a d
plate type structure orign
W /
0 < ) ¢
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X iy |
Source surface ‘Z hologram surface
Aer/2 = min(L/n, W/m). (5.2)

For example, consider a rectangular plate of dimensions 0.3 x 0.2 m* and the
(4, 3)th mode of this plate is the highest mode to be reconstructed. The critical
spatial wavelength is given by Eq. (5.2), where n=4, m=3, L=0.3 m, and
W =0.2 m. Substituting these values into Eq. (5.2) yields 4./2 =0.067 m, or
Aer =0.134 m.

It is important to remember that the test setup in NAH is gauged with respect
to the spatial wavelength or spatial frequency, not the acoustic wavelength or
temporal frequency. If we can reconstruct structural waves up to the critical
spatial wavelength A, the mechanical energies of all components of the
structural waves up to the spatial wavelength A, are captured. Since the
vibration energy of a structural wave decays with spatial wavelength, we
only miss a small portion of the total vibration energy that is the sum of
structural waves whose wavelengths are shorter than A,.

It is emphasized that the acoustic wave, regardless of its wavelength, is of no
concern in NAH reconstruction. So long as the structural waves of wavelengths
up to A, are reconstructed, all acoustic waves can be reconstructed. For
example, consider the plate as cited above. Suppose that structural waves of
wavelengths up to A, =0.134 m are reconstructed. Then all acoustic waves
whose wavelengths are shorter than 0.134 m or equivalently, the acoustic
frequencies higher than f > ¢/A., = 340/0.134 = 2,537 Hz can be reconstructed.
The acoustic waves whose frequencies are lower than 2,537 Hz can always be
reconstructed because the longest acoustic wavelength of the audible sound
wave is always shorter than the longest spatial wavelength, i.e., the rigid body
motion.

Note that if test setup is gauged with respect to the acoustic wavelength or
temporal frequency, but not the spatial wavelength or spatial frequency, it will
be acoustical holography, not NAH. Accordingly, one will only be able to
reconstruct the radiated acoustic pressure and nothing else.

3. Number of measurement points M: This parameter is critical in practice. In
theory, the more the measurement points are taken, the more information is
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collected, and the more accurate the reconstruction becomes. However, an
excessive number of measurement points may not be acceptable in practice.
A compromise is to link the number of measurement points M to the required
reconstruction surface area S through a target structural wavelength A,

M >4S/2% or Mpyy, = 44. (5.3)

Note that we have imposed a minimal number of measurement points
M in =44 [84]. This is because for a small plate and a lower order of vibration
mode, the value of M can be very small, leading to an omission of the critical
information in the input data and large errors in a reconstruction. Once again,
there is no analytic solution to determine M,;,. The value of M,,;, =44 is to
ensure that the HELS expansion includes at least the fifth-order spherical
Hankel function, namely, n»=0-5, in reconstruction, guaranteeing certain
levels of details in the reconstructed vibro-acoustic responses.

. Microphone spacing &: Unlike the Fourier acoustics-based NAH, HELS does

not require a uniform microphone spacing on the hologram surface. However,
it is a good practice to set the microphone spacing to be less than one-half of the
target structural wavelength A, [86],

8 < Aer/2. (5.4)

. Standoff distances d: The goal of NAH is to reconstruct vibro-acoustic quan-

tities without the wavelength resolution limit in theory. This is possible when
all the near-field effects are collected, which may be accomplished by placing
microphones infinitely close to the target vibrating surface and infinitely close
to each other. Such a scenario is unrealistic and unattainable in reality. Practical
considerations such as the working condition, temperature, and accessory
component attached to a structure require that microphones be placed at certain
distances away from the structure. Thus, there is an upper limit in the spatial
resolution in a reconstruction. To strike a balance between the theoretical goal
and practical consideration, we recommend that the standoff distance d be less
than one-eighth of the value of A,

d < Jer/8. (5.5)

Notice that there is an important distinction between the standoff distances for
the Fourier acoustics-based NAH and those for the HELS-based NAH. The
former utilizes the discrete spatial Fourier transform, and its accuracy in
reconstruction is critically dependent on the spatial sampling frequency that
is intimately related to the standoff distances. If the spatial sampling frequency
is so low that the microphone spacing becomes larger than the standoff
distance, “undersampling” may happen, causing spatial aliasing in a recon-
struction. Hence the standoff distances in the Fourier acoustics-based NAH are
kept at least one microphone spacing to avoid “undersampling” in data
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acquisition. The situations are quite different in the HELS-based NAH, where
the acoustic quantities are reconstructed by superimposing the spherical wave
functions. There is no direct correlation between the spatial resolution and
spatial sampling frequency. In fact, the spatial resolution in HELS is directly
related to the number of the spherical wave functions employed. In order for the
high-order spherical wave functions to function the way they are supposed to,
the standoff distances should be as close to the target surface as possible in
order to collect enough near-field information. Experimental results have
confirmed that the smaller the value d is, the more accurate the reconstruction
is, regardless of the microphone spacing 6. This property of decoupling the
measurement distance from microphone spacing is unique to the HELS
method.

. Target source surface S: Because the spherical wave functions are used in the

HELS-based NAH to approximate the acoustic fields generated by
non-spherical vibrating structures, it is a good idea to limit the overall size of
a target source surface S so that reconstruction can be done all at once. Consider
a plate of dimensions S =L x W. We recommend that the length and width be
no more than twice the target structural wavelength, namely,

LW < 2. (5.6)

This imposes some restriction on the overall dimensions of the structure that
HELS may be attempted at once, but nevertheless leads to satisfactory recon-
struction on a target surface. For surfaces whose overall lengths or widths are
larger than 21, patch reconstruction may be utilized. In performing patch
reconstructions, the origin of the coordinate system should move with each
patch, and the rest remains the same. The measurement aperture A,, must be at
least one row and one column larger than a target reconstruction surface area S.
Note that there is a difference between a patch measurement and patch recon-
struction. The former refers reconstruction of the acoustic quantities on a
portion of a large surface, whereas the latter indicates a specific measurement
setup, which is often the case in practice for a finite number of microphones.
For example, a specific reconstruction requires 100 measurement points, but
only 20 microphones are available. Then reconstruction may be done by taking
five patches of measurements sequentially.

. Aspect ratio: For a planar surface, aspect ratio refers the ratio of its overall

length to width. To reconstruct acoustic quantities on a planar surface of
dimensions S=L x W, its aspect ratio should be limited to the following
range per reconstruction,

(1:1)<(L:W)<(2:1). (5.7)

This is because the spherical wave functions and spherical harmonic functions
are used in HELS to approximate the vibro-acoustic quantities on a planar
surface. It may be difficult to ensure a satisfactory reconstruction over the entire
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surface area when the aspect ratio is larger than 2:1. For a planar surface with
aspect ratio larger than 2:1, patch reconstruction should be used.
8. SNR: This parameter is universal to most measurement methods,

SNR > 10(dB) (5.8)

Physically, this means that the energy or mean-squared acoustic pressure
amplitude of the signal is at least ten times higher than that of background
noise.

9. Number of reconstruction points N: There is no restriction on the number of
reconstruction points, either on the source surface or in the field. However, for
engineering applications it is recommended that vibro-acoustic quantities be
reconstructed at four points per critical spatial wavelength A, on the source
surface to produce a smooth ODS. Excessive number of reconstruction points
will not provide further information and should be avoided.

10. Number of the expansion functions J: Eq. (3.60) offers an effective way to
estimate the optimal number of expansion functions Jp, mtr fOr reconstructing
the acoustic pressure and normal velocity on the source surface. When J,
mTR <M, we have an overdetermined system. When Jg, vrr > M, we have an
under-determined system. Either way, the system of equations can be solved by
SVD. However, an under-determined system tends to yield less satisfactory
reconstruction results than an overdetermined system does. Therefore the
maximal number of expansion terms is set to be equal to that of measurement
points M.

Note that the above guidelines have accounted for the needs to simplify the
measurement setup and data acquisition processes in engineering applications. In
conducting research projects for which the accuracy of reconstruction is of primary
concern, whereas time and effort are of no concern, some of the above guidelines
may be tightened as needed.

For example, in our study the area of the square plate is
§$=0.22 x0.22 =0.0484 m2, and the (4, 4)th natural mode of this plate is selected
as the highest mode to be reconstructed. By using Eq. (5.2), we get 1./2 =min
(0.22/4, 0.22/4) = 0.055 m, so A., = 0.11 m. Next, we use Eq. (5.3) to determine the
number of measurement points as M > 0.0484/0.055% = 16, which is smaller than
44, so we take M ,;, = 44. By using Egs. (5.4) and (5.5), we can set the microphone
spacing at 6 < A.,/2 =0.05 m, which is less than 0.055 m as suggested by Eq. (5.4),
and the standoff distance of d =0.0125 m, which is shorter than 0.01375 m as
suggested by Eq. (5.5).

These parameters would suffice to produce a quick reconstruction with a decent
accuracy. However, we want to establish the accuracy in reconstructing the normal
surface velocity by using the HELS-based NAH, and do not mind spending extra
time and efforts in collecting input data. Therefore, we take three patches of
measurements using a 12 x 4 microphone array, resulting in a total M =144
measurement points over the measurement aperture A,,, which is one row and one
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column larger the surface area of the square plate S. The corresponding microphone
spacing is set to be § = 0.03 m, which is less than the suggested microphone spacing
(6 =0.05 m). Moreover, we set the standoff distance to be d =0.01 m, which is less
than the suggested standoff distance (d =0.0125 m). This fine measurement grid
and close measurement distance ensures the desired accuracy in reconstruction. The
origin of the coordinate system is placed at doyigin = 0.155 m behind the plate as
dictated by Eq. (5.1). The reconstruction results are exhibited in Figs. 3.6, 3.7, 3.8,
3.9,3.10, and 3.11.

These results demonstrate that satisfactory reconstruction of the vibro-acoustic
quantities on the surface of a highly non-spherical vibrating structure can be
obtained by using the HELS method. In particular, the target (4, 4)th natural
mode can be satisfactorily reconstructed.

5.2 Practical Considerations in Implementing
the HELS Method

Noise and vibration abatement have always been one of the primary challenges
facing the manufacturing industry, for example, the automobile, aircraft, and
appliance manufacturers. The first step toward noise and vibration abatement is to
identify their root causes, their interrelationships, and the key components that play
the critical roles in generating undesirable noise and vibration.

The traditional technologies such as EMA [87] and operational modal analysis
(OMA) [88] can provide an insight into the integrity of a vibrating structure by
extracting its modal parameters that include the natural frequency, the natural
mode, and the damping ratio. The knowledge acquired from EMA and OMA,
however, may not be employed directly in noise abatement because these modal
parameters are not related to sound radiation.

Traditional measurement devices such as microphones, intensity probes, and
accelerometers enable one to measure the acoustic pressure, acoustic intensity, and
normal surface velocity on specific locations that are very important to understand-
ing the interrelationships between acoustic radiation and structural vibrations.
However, the information captured in measurements is usually isolated and
uncorrelated to each other. In other words, one can obtain a local and direct view
of sound or vibration at a specific location, but not the global view of how sound is
generated by a vibrating structure, and how it is correlated to structural vibrations.

Invention of the NAH technology has fundamentally changed the diagnostics
and analyses of noise and vibration problems in that it enables one to visualize all
acoustic quantities, including the acoustic pressure, particle velocity vector, acous-
tic intensity vector, and out-of-plane structural vibration distributions on the surface
of a structure by taking acoustic pressure measurements at a very close distance.
The insights acquired from NAH to the characteristics of vibrating structures and
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resultant acoustic radiation cannot be matched by traditional measurement
methods.

Because NAH requires taking measurements at very close distances to a target
structure to capture the near-field information, a conformal array of microphones is
usually required. This conformal measurement will ensure that the standoff dis-
tance is uniform and the accuracy in the input data is consistent. The time and effort
involved in setting up a conformal array can be quite intensive. Moreover, the
measurement environment in engineering practice is usually not echo free, which
means there are sound reflections and reverberation inside a test chamber. Accord-
ingly, it is important to take these effects into consideration in order to get the
desired reconstruction.

In addition to the general guidelines presented in Sect. 5.1, we offer further
suggestions to optimize the measurement setups for various test configurations and
test environments that are often encountered in engineering applications.

5.3 Test Configuration

Whenever possible, a conformal array should be utilized instead of a flat array.
There is no doubt that a conformal microphone array will take time to make and set
up. However, this is well worth the effort because the accuracy in reconstruction
will be directly related to that in the input data. Accurate and consistent input data
will lead to accurate and consistent reconstruction of all acoustic quantities in three-
dimensional space, including the source surfaces. Figures 5.2 and 5.3 show sche-
matics of conformal microphone arrays for reconstructing the acoustic fields
generated by arbitrarily shaped vibrating structures in exterior and interior regions,
respectively.

Oftentimes the source surfaces may be larger than the measurement aperture.
Hence patch measurements are required. The number of measurement points as
suggested in the guidelines is minimal for data acquisition. The number of recon-
struction points, however, may be higher than that of measurement points. The
suggested number of reconstruction points in HELS is up to but no more than four
times that of measurement points.

Figures 5.4 and 5.5 illustrate, respectively, examples of using the HELS method
to analyze the acoustic fields generated by an automobile transaxle in the exterior
region, and by an aircraft inside its cabin while the aircraft was cruising at 0.8 Mach
number 30,000 ft above the ground. The microphone array was mounted on a track
so that it could travel along the longitudinal direction to measure the near-field
acoustic pressure inside the cabin.

It must be pointed out that in engineering applications the demand for easy-of-
use often overrides everything else. As a result, a planar array of microphones is
used to collect the input data, even though a target source surface is nonplanar (see
Fig. 5.6). As a result, the near-field information is completely lost because the
measurement distances are varying and too large, and the reconstructed acoustic
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Reconstructing an acoustic field in the exterior region
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Fig. 5.2 Schematic of a conformal microphone array for reconstructing the acoustic field pro-
duced by an arbitrarily shaped source in the exterior region

Reconstructing an acoustic field in the interior region
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Fig. 5.3 Schematic of a conformal microphone array for reconstructing the acoustic field pro-
duced by an arbitrarily shaped source in the interior region

quantities are useless or even misleading. Therefore, even though this approach
seems to save time and effort in data acquisition, it actually wastes all of them
including those in post processing. The well-known statement in the field of
computer science “Garbage in, garbage out” holds exactly true in this case.
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Fig. 5.4 A conformal array
of measurement
microphones around an
automobile transaxle at very
close distances to the target
source surface

Conformal microphone
array for measuring the
acoustic pressure inside

an aircraft cabin
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Fig. 5.5 A conformal array of measurement microphones around along the circumference of the
interior space of an aircraft while it was cruising at 0.8 Mach number 30,000 ft above the ground.
The microphone array was mounted on a track so that it could travel in the longitudinal direction to
measure the nearfield acoustic pressure inside the cabin

Fig. 5.6 Schematic of
using a planar array of
microphones to collect
input data for an arbitrarily
shaped vibrating structure.
The near-field information
is all lost in this case
because measurement
distances are varying and
too large. As a result the
reconstruction results are
useless and even misleading

“Garbage in, Garbage out”
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5.4 Test Environment

The HELS method is valid in both exterior and interior regions. In either case it is
critical for the measurement surface to cover the entire source surface. If the source
surface is relatively large, patch measurements should be taken. Covering a portion
of the source surface may produce satisfactory reconstruction locally, but not
acceptable globally.

Figure 5.7 displays a scenario of reconstructing the acoustic field using the
HELS method in the exterior region. In this case the measurement surface A,, is
on one side at close range. Hence, reconstruction may be acceptable on the covered
source surface area, but not elsewhere.

Similarly, if a conformal array of microphones covers only a portion of the
interior surface of a vibrating structure (see Fig. 5.8), S=S;+S5,+S3, the
reconstructed acoustic quantities may be acceptable on the covered surfaces, but
not on other surfaces, nor in the interior region.

Oftentimes we are dealing with a vibrating structure inside a large room (see
Fig. 5.9), where the total acoustic pressure is the sum of the direct and reflected
sound waves.

Under this condition, it will be critical to ensure that there is enough space
between the source of interest and reflective walls, and SNR is at least 10 dB or
higher in order to minimize the effects of reflected sound waves in data acquisition.
If these conditions are met, the reconstructed results might be acceptable on the
source surfaces covered by a conformal array of microphones. If these conditions
cannot be met, reconstruction should not be carried out because the input data will
be severely contaminated by the interfering sound signals.

This is because a reflecting surface behaves like an image source. Consider the
case in which a source is situated on two infinitely large reflecting surfaces as
shown in Fig. 5.10. Then the acoustic pressure measured in this confined space
consists of the direct sound radiated from the source (ray 1) and those reflected from
walls (rays 2—4). This is equivalent to the case where the source and its three images
lie in free space, and the measured sound pressure will consist of the contributions

Reconstruction in an exterior region:
Good locally, but not good globally

e
Fig. 5.7 Schematic of a P
conformal microphone -
array covering only a 1
portion of the target surface
S in the exterior region.
Accordingly, the
reconstructed acoustic 7~ A I Conformal array
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Fig. 5.8 Schematic of a
conformal microphone
array covering only a
portion of the interior
surface. The resultant
reconstruction may be
satisfactory on the cover
surface area and A
immediately adjacent to it,
but not satisfactory on other
surfaces as well as in the
interior region
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from all these sources. If a source is inside a room consisting four walls, one ceiling
and one floor, then the measured acoustic pressure will consist of one direct sound
wave emitted from the source and an infinite number of reflected sounds. Mathe-
matically, this is expressible as

4
P o (6,3 @) = pocP () {% *m}

(5.9)
where ﬁfms(r, 0,¢;w) indicates the measured mean-squared acoustic pressure
inside a large room; P(w) depicts the acoustic power, which is a function of
frequency but independent of measurement location; Qy is the directivity factor
given by
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Fig. 5.10 Schematic of the
effects of reflecting surfaces
on the measured acoustic
pressure
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The parameter R,.(w) in Eq. (5.9) represents the room constant defined as

o Stotala(a})
W) =—"—"">,
1 —a(w)

(5.11)

where S, stands for the total reflecting surface area of the room and a(w)
represents the spatial averaged acoustic pressure absorption coefficient given by

Z Siai(a))

(5.12)

The first term on the right side of Eq. (5.9) describes the direct sound wave
emitted from the source, and the second term depicts the effect of reverberation of
sounds inside the room. The smaller the room constant R,.(w) is, the higher the
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effect of reverberation of the room becomes and the worse the measurement
condition is for reconstruction. Since in general the values of a;(w) of all reflecting
surfaces inside a room are unknown a priori, there is no way of determining the
value of R (w). Hence, the measured mean-squared acoustic pressure does not
reflect the true acoustic pressure emitted from the source, but includes all rever-
beration effects of the room. Accordingly, the input data to reconstruction will be
severely contaminated.

There are several methods that can be used to determine the reverberation effect
of a room, for example, reference source method and double-concentric-surface
method [89]. All these methods require taking two sets of measurements and
therefore are known as the indirect methods.

In the reference source method, a reference source with a known power spectrum
is placed at the position of or close to a target source inside a room. Next the
acoustic power radiated by this reference source is calculated based on the mean-
squared acoustic pressure measured on a surface enclosing this reference source.
Using Eq. (5.9), R,.(w) at any frequency can be written as

4 :ﬁﬁns(rrefygrefa¢ref;w) _ Qg
Ric() PoCPret(w) g2’

ref

(5.13)

where ﬁfms(rref, Oret, Prep; @) Tepresent the measured mean-squared acoustic pres-
sures radiated by the reference source, and P.f(@) is the known acoustic power of
this reference source. Once the value of room constant R .(w) is specified, the true
mean-squared acoustic pressure is given by

A2
~2 P rms(rref7 ereﬁ ¢ref§ C()) Q() Q9
0,¢;w) = pycP -
D (1,0, 3 @) = pocP (@) { PoCPret(@) 4nr2  Axr?

ref

]. (5.14)

In the double-concentric-surface method, the room constant R, .(w) is determined
by taking the acoustic pressures over two concentric surfaces S; and S,
respectively,

4
ﬁfms,l(rlvelaqsl;w) = ﬂoCP(Cl)) |:4§i2 +R (0)):| 5 (515)
1 rc
~2 . . _ QQ 4
pnns,2(72792>¢25w) - pOCP(a)) dar2 +R—(a)) . (516)
2 rc

Assume that $,> Sy, then p 2 (72,02, ¢y @) < p i 1 (r1, 01, 1 @) because S is
closer to the source, and the amplitude of the acoustic pressure decays from S, to S»,
even though the decay rate is not known. Meanwhile, the acoustic power radiated
from the target source P(w) and directivity factor Q, remain the same. Therefore,
combining Egs. (5.15) and (5.16) we can express the room constant R (@) as
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4 42_;%13rzms’2(r2a923¢2;w) _4%_%[3;3,1(”1,91451;&)) (5 17)
RTC(w) ﬁrzms,l(r17917¢l;w) _ﬁgms,Z(r25027¢2;w) . .

The acoustic power of the target source P(w) can then be given by

52 (11,01, ¢;0) —pE (12,05, ¢y 0
pocP(a)) :prms,l( 1, Y1 ¢1 Qg) pQrgms,Z( 2,02 ¢2 ) (518)

2 )
Ay Anrs

Once R,.(w) and P(w) are determined, the true mean-squared acoustic pressure
emitted by the target source inside a large room is given by

A2 A2
o . _ [prms,l(r1>61a¢l;w)_prms,Z(r27927¢2;w)}
prms(’ae7¢aa)) - < Qg Q6 )

47zr% 4711'%

Qs . O ..
4 ?gpfms,Z(FZanvgbz;w) - ?2[7%“5,1("1,617471;0))
o Oy 71| 4nrs (5.19)
47”'2 ﬁ%ms,l(rhel?gbl; a)) 7[331,“8’2(’”2,62,452;0)) '

where p fms (r, 0, ¢; ) depicts the true mean-squared acoustic pressure radiated from
a target source inside a large room; p2 | (r1,61, ;@) and p2. (r2, 6, ;@)
indicate the mean-squared acoustic pressures measured on two concentric surfaces.
Note that this method works most effectively when the difference between two
concentric surfaces is large enough so that the sound pressure level L; measured on
the first surface S is at least 3 dB higher than L, measured on the second surface S5.
In practice, hemispherical surfaces or rectangular parallelepiped surfaces are often
selected for S; and Ss.

5.5 Clarifications

In implementing the Fourier acoustics-based NAH, measurement distance and
microphone spacing should always be gauged with respect to the spatial frequency
or spatial wavenumber, but not with respect to the acoustic frequency or acoustic
wavenumber. That point was made clear in one of the original NAH papers [7],
which stated “The minimum resolvable distance is on the order of R = 7/kpax,
where k.« 1s the highest spatial frequency for a measurable Fourier component
&(kx,ky,zH). In conventional optical and acoustical holography no evenescent
waves are used in the field reconstructions so that k., =k and R = /2, where A
is the acoustic wavelength.”
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Here the highest spatial frequency or the spatial wavenumber k., is linked to
the shortest spatial wavelength A,,;, (=27/kax) that contains significant vibration
energy [90]. Note that vibration energy of any structure decays with the spatial
wavelength. The shorter the spatial wavelength is, the less the vibration energy it
contains, whereas the longer the spatial wavelength is, the more the vibration
energy it contains. Therefore, if measurement setup is gauged with respect to the
highest spatial frequency k.« or the shortest spatial wavelength A.,;,, structural
vibrations that contain the vibration energy up to the shortest spatial wavelength
can be reconstructed. Once this is done, the entire acoustic field, including the
surface acoustic pressure, the normal surface acoustic intensity, and radiated
acoustic power, can be reconstructed, and the correlation between structural vibra-
tion and acoustic radiation can be established. This is the advantage of NAH that
cannot be matched by other methodologies. All that is lost during this process are
the components of structural vibrations whose spatial wavelengths are shorter than
Amin, Whose vibration energies are insignificant.

For example, in setting up the measurement microphone array, one can gauge
the microphone spacing with respect to a target spatial resolution in reconstruction
of structural vibration in, say, the z-axis direction. If the target spatial resolution is
defined as R, then R=A1./2, where A, is the smallest axial wavelength
corresponding to the maximum value of k., [90]. This criterion agrees perfectly
with Eq. (5.4). Note that the spatial sampling must be high enough to avoid spatial
aliasing. In other words, the highest spatial wavenumber k., “containing signifi-
cant energy must be sampled at least at the rate of two samples per wavelength to
prevent spatial aliasing which causes high wavenumbers to be converted to low
wavenumbers [5].”

There is a huge difference between gauging microphone spacing with respect to
the spatial wavelength and that with respect to the acoustic wavelength. This is
because vibration of any structure can be expressed as a superposition of an infinite
number of spatial waves, each of which has a specific spatial wavelength. This
vibrating structure, however, can only produce a finite number of acoustic waves,
each of which has a specific acoustic wavelength, which radiate into the surround-
ing fluid medium. The number of the acoustic waves generated by any vibrating
elastic structure is always much less than that of the spatial waves. This is why we
say, “Although sound can be generated by vibrations, not all vibrations can produce
sound.” In fact, only a small portion of structural vibrations can produce sound. The
majority of the mechanical energy of an elastic structure stays close to the structure
to maintain its vibration without emitting much sound into the surrounding fluid
medium at all.

This phenomenon can be best illustrated by placing our ears next to a large
window, where we can clearly sense the rumbly sound due to structural vibrations
of the window, but nothing at all when we step back a little from the window.
Another example is to put our ears near a railway track to find out if a train is
coming. If a train is approaching, we will hear rumbling sound due to vibrations of
the railway track excited by a train, even though we cannot see it. However, when
we stand up, we hear nothing! This is because what we have sensed is the structural
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vibration whose amplitude decays exponentially with respect to the distance away
from the structure. These exponentially decaying waves are known as the evanes-
cent waves that are insignificant in acoustic radiation, but critically important for
structural vibrations.

The primary objective of NAH is to reconstruct the evanescent waves so as to
acquire a better understanding of structural vibrations, and how they are correlated
to sound radiation. The insight into the interrelationships between structural vibra-
tions and sound radiation will enable us to device the most cost-effective measures
to tackle undesirable noise emission problems.

To illustrate this point, we consider an acoustic wave at 1,000 Hz or any
frequency for that matter emitted by a vibrating panel of infinite dimensions in
longitudinal and transverse directions. The acoustic wavelength for this 1,000 Hz
sound wave is 0.343 m, given that the speed of sound is 343 m/s. If the microphone
spacing is set with respect to the acoustic wavelength, we have §=0.171 m < 4/2.
Meanwhile, the measurement distance cannot be less than microphone spacing, so
we can select d=0.172 > /2, which is slightly more than one-half the acoustic
wavelength.

To capture the critical evanescent component k. that carries significant amount
of energy, the dynamic range D (SNR of the measurement system) must satisfy the
following condition:

102/20 5, ghelzn—zs) (5.20)

where (z;, — zg) = d is the measurement distance.

Since the amplitudes of the evanescent waves decay exponentially as e *<¢, SNR
will drop by 27.2 dB or 95.7 % at a measurement distance of d =0.172 ~ 4/2! This
will make it impossible for the evanescent components to be captured. Therefore, if
we gauge the microphone array with respect to the acoustic frequency, we will not
be able to reconstruct structural vibrations at all.

This example demonstrates that in order to capture the evanescent waves, the
measurement setup must be gauged with respect to the target spatial, not the
acoustic, wavelength. If the measurement spacing is gauged with respect to the
acoustic frequency, we are in fact conducting acoustical holography, which will
produce an image of the far-field component of the acoustic pressure radiated from
a vibrating structure but nothing else! It cannot tell us anything about the acoustic
pressure distribution on the surface of a vibrating structure, the normal surface
velocity distribution of the structure, and the normal component of the time-
averaged acoustic intensity or acoustic energy flow out of the structure. Moreover,
the acoustic pressure reconstructed by using acoustical holography cannot be
compared with respect to measured acoustic pressures because the measured data
contain both near- and far-field components of the acoustic pressure. Further, the
spatial resolution of acoustical holography is no better than one wavelength of the
acoustic wave radiated from a target source. In contrast, NAH can produce,
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theoretically, an infinitely high spatial resolution if all near-field effects are cap-
tured, plus all the acoustic quantities anywhere in three-dimensional space.

Once the intent of NAH is understood, it becomes obvious that all documents,
regardless what their titles claim, are in fact performing acoustic holography but not
NAH, if the measurement setup is gauged with respect to the acoustic frequency or
acoustic wavelength.

Problems

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

In implementing the HELS-based NAH or any NAH technologies, what is the
single most important parameter that we should target in designing our mea-
surement setup? Why?

Should we consider the frequency of the emitted sound wave in setting up our
microphone array in conducting NAH measurements? Why?

Is the microphone spacing related to the standoff distance in the HELS-based
NAH setup the same way as that in the Fourier transform-based NAH? Why?
How should input data be taken in general when reconstruction of the acoustic
quantities on the surface of a vibrating structure is desired by using the HELS
method in a nonideal environment such as inside a large room with unspecified
reflecting objects and surfaces?

A prefixed and planar microphone array is easy to use and requires no setup
time. Is it a good idea to use such a planar array to reconstruct the acoustic
quantities generated by an arbitrarily shaped vibrating structure? Why?
Sometimes measurements can only be taken on one side of a vibrating
structure in practice. In fact, this type of scenario happens almost all the
time in engineering applications. What the impacts of this restriction may
have on the resultant reconstruction? What should we expect under this
condition?

When reconstruction must be conducted inside a large room in which the
sound reflection and reverberation effects are not necessarily negligible, what
should we do to minimize the impacts of sound reflection and reverberation?
What is wrong to target the measurement setup with respect to the frequency of
the sound wave generated by a vibrating structure?



Chapter 6

Combined Helmholtz Equation
Least-Squares (CHELS) Method

Although the HELS method has exhibited a great promise in reconstructing the
acoustic fields in both exterior and interior regions, the accuracy in reconstruction
for an arbitrarily shaped structure can be unsatisfactory. This is because the
expansion based on the spherical waves for an acoustic field generated by on an
arbitrarily shaped surface is incomplete.

An alternative for reconstructing acoustic radiation from an arbitrary structure is
to use the Helmholtz integral theory. In implementing this integral theory, BEM is
used and the surface is discretized into segments and the acoustic field is specified
on the nodes of these segments using a particular interpolation scheme. This
BEM-based NAH has been used to reconstructing acoustic radiation from struc-
tures in the exterior and interior regions.

The main advantage of the BEM-based NAH is its generality, allowing users to
tackle an arbitrarily shaped structure. The disadvantage is that it may fail to yield a
unique solution for the exterior problem when the excitation frequencies are close
to one of the eigenfrequencies of the boundary value problem in the corresponding
interior region. While this nonuniqueness difficulty may be overcome by the
CHIEF method, the efficiency and accuracy of its reconstruction can be signifi-
cantly affected.

The main drawback of the BEM-based NAH, however, is due to the fact that the
acoustic field is reconstructed via spatial discretization. In other words, we must
have a minimum number of nodes per wavelength in order to achieve the desired
resolution in reconstruction. Accordingly, one must take enough measurements of
the radiated acoustic pressures to determine the acoustic quantities specified on
discrete nodes. For complex structures vibrating at mid-to-high frequencies, the
number of nodes necessary to describe the surface acoustic quantities can be large.
Hence the number of measurements is large, which makes the reconstruction
process very time consuming. Although there are techniques developed recently
to avoid the singularity problem inherent in the Helmholtz integral equation and
methodologies to optimize the measurement locations by using an effective
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independence [27] implementation of the BEM-based NAH is not straightforward
and reconstruction of the acoustic field is extremely slow and inefficient.

It is emphasized that in using the BEM-based NAH it is not necessary to have
exactly the same measurements as discrete nodes. This is because using SVD and
regularization procedures, one can have either an over- or under-determined sys-
tems of equations. Accordingly, one can use fewer measurements than the discrete
nodes. However, the accuracy of reconstruction cannot be guaranteed if the mea-
surements are substantially fewer than the discrete nodes. This is because the
measured data are not error free and background noises are always present. In
order to obtain a convergent solution, the equation must be truncated to filter out the
evanescent waves that fall under the background noises. If measurements are too
few, the equivalent cutoff wavenumber is forced to be very low. As a result, the
high spatial wavenumber contents are filtered out and aliasing occurs in
reconstruction.

In this chapter we show that by combining the HELS- and BEM-based NAH, the
efficiency of reconstruction can be significantly enhanced and satisfactory recon-
struction be obtained by using relatively few measurements [91]. First, we present a
brief account of the Helmholtz integral theory.

6.1 The Helmholtz Integral Theory

The key to the acoustic radiation problems is to solve the wave equation subject to
certain boundary conditions, which for a harmonic excitation reduces to the Helm-
holtz equation

v (}; a)) Ty (}; a)) —0, (6.1)

where p (;; a)) is the complex amplitude of the acoustic pressure at any field point

X and satisfies the Sommerfeld radiation condition at infinity,

lim |x| a—’j—ikp =0 as |x|— . (6.2)
o L]

The Helmholtz equation (6.1) subject to the boundary condition can be solved
for source surfaces that are expressible as one of 11 coordinate systems [92]. For
arbitrary geometry, there is no analytic solution; hence, numerical solutions are
sought. However, the efforts involved may be significant because one must
discretize the entire three-dimensional space.

To enhance the efficiency in numerical computations, we can utilize the Helm-
holtz integral theory, which can be derived by making use of the free-space Green’s
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function. First, we consider the inhomogeneous Helmholtz equation for the free-
space Green’s function,

w6@5mg+ﬁagpmgz_md;_a) (6.3)

where G =e*®/R, where R = |} — }5} is the distance between the source at ;S and a
receiver at x in free space, and 5(; — }Y) is the Dirac delta function [93], which

can be considered as a function that is 0 everywhere except at the origin, where it is
infinite,

S(x —x) = { 0. x7x (6.4)

00, X=2xp

The Dirac delta function has the sifting property,
o0
|| = sy = fo). (6.5)

Therefore, for f(x) =1, the integration of the Dirac delta function is identically
unity,

J S(x —xo)dx =1 (6.6)

Multiply Eq. (6.1) by G and Eq. (6.3) by p (}; w), and use the chain rule to

rewrite the Laplacian operator V2 as
Vo[G(ﬂ;s;w)Vﬁ (}’;w)] - vc(}‘]?s;w) Vp (}’;w)
+ k2G<}|;S;a)>ﬁ (}w) —0,
Ve[p (¥:0) VG (x[¥50) | - VG (¥|¥s0) - Vi (¥50)

+ kG (?‘;V, a))ﬁ (}, a)) = —4zp (}, a))&(; - }Y)

(6.7)

(6.8)

Subtracting Eq. (6.8) from (6.7) and integrating both sides over the volume
enclosed by the source surface and that at infinity leads to
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[ 7 [6(5150) 9 (5:0) - (550) 76 (5]5.c0)Jav

. Jﬂ b (xi0)o(x — 3 )av. (6.9)

The volume integral on the right side of Eq. (6.9) leads to the acoustic pressure
itself due to the sifting property of the Dirac delta function Eq. (6.5). The volume
integral on the left side can be expressed as a surface integral by using the Gauss
theorem or divergence theorem [94],

5G<}|;s/; w) op (?s«; a))

p (;;a)) = %H p (}g;a}) an(}y) an<}s,) G(?}}«;w) ds’,

(6.10)

where 0/0n represents a normal derivative with respect to the outward unit vector
on the surface S, and 0p /On is related to the normal surface velocity through the
Euler’s equation,

w — iwpyia(3250). (6.11)

Note that there is a change in sign on the right side of Eq. (6.10) because the unit
normal vector on the source surface S, which points to the interior region enclosed
by S as required by the Gauss theorem, should point into the region external to S in
the surface integral.

Equation (6.10) is known as the Helmholtz integral formulation, which states

that p (?, w) anywhere in free space may be specified by integrating the surface
acoustic p (;S; a)) and normal surface velocity v, (?S; a)) through the free-space

Green’s function G(}Rs;w). Accordingly, the dimensionality of the original
problem given by Eq. (6.1) is reduced by 1.

Note that the surface acoustic pressure p (;s; w) and normal surface velocity
Vi (})S; w) are interrelated together and should not be specified simultaneously in

practice. For acoustic radiation problems, the normal surface velocity v , (;S; a)) is
usually specified in the boundary condition. So the first step in predicting

the radiated acoustic pressure p (?, w) is to specify the surface acoustic pressure
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Fig. 6.1 Schematic of taking the limit as the field point approaches the surface x — X,. (a) The

field point is located at X = ;S +en (xx) , the surface point is at }x' with the unit normal n (}y) N

and the distance between these two points is R = |} — Xy | (b) Close-up view of taking the limit
as R — 0. The correct sequence is to take € — O first, and then y — 0

p (;s; w) This may be done by solving an integral equation obtained by taking the

limit as the field point approaches the surface x — x, in Eq. (6.10). Note that all

integrands in Eq. (6.10) become singular because R — 0 as X — xy. This difficulty
can be overcome by taking the Cauchy principal value [95]. It is emphasized that
the sequence in which this limit is taken is critical. A wrong sequence in taking the

limit x — x, leads to a wrong result.
Figure 6.1 depicts schematic of taking the limit X — x,. For simplicity yet
without loss of generality, we consider the case in which both ;s’ and }s are located

inside AS, which is a circular segment of the source surface S, centered at }s of a
radius y. The segment AS is shaped like a bowl with radii R; and Ry in the
perpendicular directions, respectively. The remainder of the surface is denoted as

(§ — AS). The field point is at X = ;S + en (;s>, which is a small distance € away
from the surface point x, along the unit normal direction H(;S). Therefore the

distance between these two points is R = |; — x| (see Fig. 6.1a). As X — X4,
R — 0 and all integrands in Eq. (6.10) become singular. So care must be taken in

taking the limit of X — x,.

Note that if ;s/ is in (S — AS), R will not be 0 as X — ;S, and all integrands in
Eq. (6.10) will be finite. So we only need to concentrate on the situation in which
Xy falls inside AS.
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Given that AS is small, the z component of a generic surface point Xy can be
expanded into a power series of x, y, Ry, and Ry, where x/R; < 1 and y/Ry < 1,

X2 y2 x2 y2 )
=Cy/1— +=|=Cll———"=]. 6.12
’ <R2 Rﬁ) ( 2R} 2R} (612

Equation (6.12) is derived from the ellipsoid equation (x /R2)+(y /R )+(z /
C 2) =1, where C is a constant. Therefore for x/R; < 1 and y/Ry; < 1, we have

Cx? Cy?
- Cmms (6.13)
2R; 2Ry
By using (z — C), we have moved the origin of the coordinate system describing
the ellipsoid to the surface point X;. The unit outward normal vector n ( ) at xy

can now be approximated by

— [ — X \— y — —
n(xy) = e, +|=—)e, + e, 6.14
( ) (RI) <RH> Y (6.14)

because xy = xe, + yzy +(z— C)?Z. Similarly, x = X, +en (}s) =¢e,. Thus

—

-
g . .
R = x — xy is given by

—

- - - 5
R=¢e,—xe,—ye,—(z—C)e;

Cx* Cy - -
~|le———s— —Xxe,—ye,, 6.15
()% (13

and the normal derivative of the free-space Green’s function 8G<;};S; a)> /0n in
Eq. (6.10) is

5G(;|;sz;w)

0U0) 56w (515es0)
an(xs/)
~ i—» L—» — ikR — X ;Y/ IkR
- (Rrex—i_RHey—i_EZ) ( R? <

xzv-i- ey — E+——+
(i oy - =T IE < 2R2 2R§I)
z : R3

(ikR — 1)e*R

2 2 2
C (&)
%<X_+y_ O Oy

2 Oy (14+K°R?)
R1 Ry ZRI2 2R121

>(kR—1)(1+ikR):<s—W—W =
(6.16)
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where we have expanded ™R into the Taylor series for a small R as R — 0, and R is
written as

R=y\/2+y 4 (-2~ /2 +x2+y =+ 12 (6.17)

Meanwhile, Fig. 6.1b implies that for a small area AS, dS = rdr, x = rcos¢, and
y =rsing, where r varies from 0 to y and ¢ from O to 2z. With Egs. (6.16) and (6.17)

we can evaluate the integrals in Eq. (6.10) as X — ;S. Let us consider the first

integral on the right side of Eq. (6.10). In particular, we divide the surface into AS
and (S — AS) in taking the limit as AS — 0,

aG(}S }«;w) aG(}S};S/;a))
~ [ ] . ~f— /
JJP (¥r10) on () “ AléTOHP (¥si0) an () @
L (6.18)
aG(xs xsr;a))
+gim, [] 5(50) .

¢Ng an(;y)

where all surface points in the first integral fall inside AS so that as X — x5, R—0.

For the second integral, ;s is in (§ — AS), while }S/ is in AS. Hence as x — ;s,
R #0. So we only need to focus on the first integral on the right side of Eq. (6.18)
because the second integral is regular as the field point approaches the surface

— —

X — X

The required limit AS— 0 in Eq. (6.18) can be accomplished by taking
e — 0 with y fixed, followed by y — 0. The order in which these limits are taken
is very important.

Substituting Eqgs. (6.16) and (6.17) into the first integral on the right side of
Eq. (6.18) yields

lim ”ﬁ (}’S,;w) Mds’ — lim ” b (}’w) I%rdrdqb

AS—0 - e 0
() T

. N ek’r K3 [cos?¢p  sin?¢

- lim JJ”(”’“’)[R ZR( R Ru )}drdq&
/0 S-AS
| ﬁ(;y;@)l’S cos2¢ sin’¢

- U 2R3 < R R >drd¢'
, 0 S-AS

(6.19)
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From Fig. 6.1b we see that we can use trigonometric properties to rewrite
r=etana  and R = e&seca. Accordingly, we  have dr= eseczada,
rdr= eztanaseczada, and (e/R3 Yrdr = sinada. As € — 0, a — n/2. Therefore, the
first integral on the right side of Eq. (6.19) leads to

2am/2
77/ )

— & 3
’ . . » _ tan a sec
Ehir%) ” p <xs,,a)> Frd}d¢ — lim J Jﬁ (xs,;a)) #dadqﬁ
= e & secia

/4 S—AS r—=00 0

2a7/2
= lim J J[S (;s«; a)) sin adad¢

e—0

r—=00 0

= —2ap (;s;w> cos a|(2)” =2xp (;S;w). (6.20)

Note that if we let y — O first in Eq. (6.19), the integration limits for @ would be
all 0, making the integral to vanish, which will be obviously wrong.
The second and third integrals on the right side of Eq. (6.19) are given by

- ek’r k%3 [cos’¢p  sin’¢p
" 5 (% _ drd
ST})””(’C “’)[R ZR(RI +Rn)}'qﬁ

r—085-AS
i . K> ke tan’a [cos?¢p  sin’¢p
= lim J Jﬁ (xs/; a)) — + tan a sec >adadg = 0.
e—0 seca 2seca R; Ry
r—=00 0
(6.21)
p (;c)x/;(u)r3 cos? sin 2
lim H : L ) P
€ —>8 2R’ R[ RH
r—0S—AS
2””/213 <} 'a)) €2 tan 3a sec 2a 24 2 (6:22)
s cos sin
=1l dadg = 0.
s]—l»T:)JJ 2886030{ ( R[ * RH ) a¢
r—=00 0

Meanwhile, the second integral on the right side of Eq. (6.18) is regular as AS — 0.
So we have

5G<;S|;s/;a)>

§7As an(}}/)
aG(}S’;y;aO

_ ”ﬁ (xsr;a)) st'. (6.23)

das'
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Following the same procedures as outlined above, we can show that the second
integral on the right side of Eq. (6.10) is regular as the field point approaches the
surface,

[
% an(xs/> o »
+ lim ” WG(}’Rsl;w)ds':”WG(}RS/;@)CJS’.

.

AS=0 $As on (;S/) On (;S«)

ei0)as' = im | aa<(>>6()ds
AS

(6.24)

Substituting Eqs. (6.23) and (6.24) into (6.10) with X — x then leads to

(i) =2

N

oG (?X | ;X/; a))

GO

] iwpoﬁn(;s,;w)G(zs,zy;w)]dsf,
(6.25)

where both x s and X s are on the surface S.
Equation (6.25) is known as the surface Helmholtz integral equation because
there is an unknown variable under the integral sign. Once the surface acoustic

pressure p (?S;a)) and normal surface velocity \3H<;S;a)) are specified, the

acoustic pressure p (;, w) in free space is completely determined by Eq. (6.10).

The complexities of the problem are significantly reduced because one only deals
with discretization of a two-dimensional source surface. The trouble is that
Eq. (6.25) may fail to produce a unique solution whenever the frequency is equal
to 1 of the characteristic frequencies of the corresponding boundary value problem
in the interior region.

6.2 Nonuniqueness Difficulties

The nonuniqueness difficulties of the surface Helmholtz integral equation (6.25)
can be examined by looking at a general Fredholm integral equation of the second
kind [96],

u(e) —Aﬂmg, Eu()dS(E) = F(c). (6.26)

N

where u(¢) is unknown, K(c, &) is called “L* kernels,” meaning that they are square
integrable over S in the Lebesgue sense, A is some value whose meaning will be
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specified shortly, and F(¢) is a known function. The associate homogeneous
Fredholm integral equation is given by

m@—Qﬁk@w@w®:o (6.27)

S

The Sturm-Liouville theory [97] states that if the associated homogeneous
equation (6.27) has a nontrivial solution uy(¢), then A is a characteristic value or
eigenvalue of the kernel K(¢, &) and uy(¢) is a characteristic function of K(g, &)
belonging to A. Otherwise A is a regular value.

The adjoint inhomogeneous Fredholm integral equation of the second kind is
expressible as

ﬂ@—NﬂK@aW@M%a=H@, (6.28)

N

where K(c, &) is the adjoint kernel of K(g, &) and H(g) is given. The adjoint
homogeneous equation for Eq. (6.28) is

mg—mﬂm@wm®ﬁ@=o (6.29)

S

The following theorems have been proven by Smithies [97]

Theorem 6.1 If A is a regular value of K(¢, &), then ANisa regular value of K(c,
&', the homogeneous Egs. (6.27) and (6.29) have only trivial solutions, and Egs.
(6.26) and (6.28) have unique solutions for any Lzﬁmctions F(¢) and H(¢).

Theorem 6.2 If A is a characteristic value of K(g, &), then A" is a characteristic
value of K(c, &)°, and the homogeneous Egs. (6.27) and (6.29) have nontrivial
solutions.

Theorem 6.3 If A is a characteristic value of K(g, &), then the inhomogeneous
equation (6.27) has an L* solution if and only if F(¢) is orthogonal to every L*
solution of the adjoint homogeneous equation (6.29), i.e., if F(¢) satisfies

ﬂm@v@wwzo (6.30)

S

Furthermore, even if the compatibility condition (6.30) is satisfied, the solution to
Eq. (6.26) is not determined uniquely since any multiple of uo(¢) can be added to a
particular solution of Eq. (6.26).

Now let us apply these theorems to examining the solution of the surface
Helmboltz integral equation (6.25). Let
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1 aG(;Sﬁy;a))
2% on (}s/)

F(g) = —%”ﬁn(;y;a))G(;Sﬁsr;a))dS’.
S

u() :ﬁ@s;w),K(g,é) ,A=1, and

(6.31)

Substituting Eq. (6.31) into Eq. (6.26), we obtain

0G (;X‘;y; w)

(F50) =5 (310) T

s *

N R =
S

as'

where v (;s; co) is specified, and p (?S; a)) is to be determined. The corresponding

homogeneous equation is given by

b (? w) - %ij (}’ w) st’ —0. (6.33)

Y

From Theorems 6.1 and 6.2 we know that Eq. (6.32) has a unique solution,
except at some characteristic frequencies for which Eq. (6.33) has nontrivial
solutions.

From Theorem 6.3 we further learn that at these characteristic frequencies,
Eq. (6.33) has no solution unless the compatibility condition [see Eq. (6.30)],

0 fou(n) | [ (Gem)eimas|as <o o2
S N

holds for all p (;S; a)) , which satisfies the adjoint homogeneous equation (6.29),

ﬁ0<}x; w)* - 2]—””;30(}"?,; w)* st’ —0. (6.35)

To show that compatibility condition (6.30) is satisfied, we consider the interior
problem, for which the Helmholtz integral formulation can be written as
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aG(;’}y;a))

ﬁ‘(?;w) _ 7&”131(;8,560) st,

iopy ([ .1(= . —1=
+V”vn(xsgw)G(x’xx/,a)>dS. (6.36)
S/

Note that Eq. (6.36) can be derived in the same way as that of Eq. (6.10), except that
the sign of the unit normal on the surface should be reversed for the interior
problem.

Taking the limit as the field point approaches the surface from the inside, we
obtain

5G<;s‘;sr;a)>

ﬁl(;s; a)) + %[Jﬂ(;s/; w) W(B’
— iaz)i 0 ”v ) (}’ w)G(}SRS,; a))dS’. (6.37)
4

On the other hand, taking the normal derivative of the Helmholtz integral
formulation for the interior region, Eq. (6.36), we obtain

i)~
s s
ac(;gs,;w)

n 10pg JJ‘;[II (;S,; a)) —
4z 5 5n(xs/>

as’'

ds’. (6.38)

Taking the limit as X — X, from the inside yields

oo (3 dwpy ([ 1= aG(xs|xsl;a))
AN ETE) ol | R G

4 on (;y)

O ([ /o oG }S’}y;w )
_ _%aljp‘(xs,;w) st. (6.39)

For the Dirichlet problem for which ﬁl(;s;w) =0 on the source surface,
Eq. (6.39) reduces to

das’'
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5G<}S|}y;a)>

oy (s0) ~ 22 [[ 31350 ) O 6
n( xy
N h

The roots of this homogeneous equation are called the Dirichlet eigenfrequencies,
k =kp. At these characteristic frequencies Eq. (6.40) has nontrivial solutions that
are known as the characteristic functions belonging to the characteristic frequencies
kp.

Note that Eq. (6.40) has the same form as the homogeneous surface Helmholtz
integral equation (6.33). Accordingly, they share the same characteristic frequen-

cies kp. In other words, the set of solutions ﬁi (?s; w) for the interior Dirichlet
problem are the same as those of p (}X; w) for the exterior Neumann problem for

which \311(}5;0)) = 0 on the surface. In fact, applying this Neumann boundary

condition in Eq. (6.32), we obtain Eq. (6.33), which has the same form as that of
Eq. (6.40).

Now applying the Dirichlet boundary condition to the interior Helmholtz inte-
gral equation (6.37), we obtain

”\3;(?S«;w)G(;SWJI;w)dS’ =0. (6.41)
S!
Because of the equivalence of solutions sets 7 ! (}X; w) for the interior region

and p (?s; a)) for the exterior region, we can interchange these two sets and rewrite
Eq. (6.41) as

Hﬁ (?xl;a))G(}s};y;a))dS’ =0 or ”15 (}‘Y/; a)>*G(;s’;y;a))dS’ =0.

N N
(6.42)

Substituting Eq. (6.42) into Eq. (6.34) and interchanging the order of integrations,
we obtain

—lwpoﬂﬁo(zs;w)* ”1%1(}5/;a))G(;SﬁS/;a))dS' ds
2

§ g (6.43)
O<;S/;a)>*G(;S|;y;w>dS’ ds =0.

[
|
g|$

[=)
—
<>
=
/N
=
2.
S
S—
—
~U>

Equation (6.43) shows that the compatibility condition is perfectly satisfied and
Eq. (6.33) has nontrivial solution. However, the solution to the surface Helmholtz
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integral equation (6.32) may be nonunique because any multiple of v, (})S; a)) may

be added to the particular solution and the compatibility condition (6.43) is still
satisfied.

Therefore the surface Helmholtz integral equation (6.25) fails to yield a unique
solution whenever the frequency coincides with one of the characteristic values for
the interior Dirichlet boundary value problem. However, among all these charac-
teristic frequencies there is only one set that also satisfies the interior Helmholtz
integral formulation simultaneously. This is the basis for the Combined Helmholtz
Integral Equation Formulation or CHIEF for short that provides unique solutions
for acoustic radiation problems at any frequency.

6.3 Discrete Helmholtz Integral Formulations

For arbitrarily shaped surfaces, the Helmholtz integral formulation (6.10) and the
surface Helmholtz integral equation (6.25) cannot be solved analytically. Hence
numerical solutions are sought. Suppose that the surface is discretized into seg-
ments with N nodes, then Egs. (6.10) and (6.25) can be rewritten as

p(wi0) = {n (o)}, {p(Fa0)}, o 649
b (?;w) - {TV (ﬂ;s;w)}u[v{‘;n(;s;w) }le’ (6.45)

where {T,, (;Rs,w)} and {TV (;|;S,w)} represent, respectively, the
IxXN 1N

transfer functions that correlate the surface acoustic pressure and normal surface
velocity to the field acoustic pressure, and are given by

- -1 -1
{Tp (x | Xss a)) }1><N = (4x) <{D}l><N +{M} o M)y sy (2”[I]Nx1v - [DS]NXN)> )
(6.46)
End bl — 71
{n(3[Fs0)} = @07 (1D} i alllyy = Dilyar) ™ My + (M} 1v),
(6.47)
where [I]y.y is a unitary matrix, [M,]yxy and [D,]y.y depict the effects of mono-
poles and dipoles on a surface point, respectively, and [M]yy and [D]y«y describe

those of monopoles and dipoles on a field point, respectively. The uvth elements of
these matrices are given by
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— =
oG xﬂ|xs/,,,;a)

5n(;sf)

5G<;W|;Sgu; a))
an(;s/>

where J,, indicates the Jacobian of the surface integration in Eqs. (6.46) and
(6.47) [98].

In the BEM-based NAH, the goal is to reconstruct the surface acoustic quantities
based on discrete N nodes. So we need to take at least N measurement points of the
field acoustic pressures to form a square matrix in Eqgs. (6.44) and (6.45). Accord-
ingly, we can rewrite Eqgs. (6.44) and (6.45) as

{ﬁ (?nl;a)) }le - [Tp (;|;X;w)}N><N{ﬁ (;S;w) }le’ (6.50)
{13 (zm;w) }le - [TV (;’}s;wﬂz\/xz\/{‘;n(;S’w) }le’ (6.51)

A~ - .
where p (xm; w) ,m=1to N, represent the measured acoustic pressures.

My = G(%u|X¢ui0)dy and Dy = T (6.48)

MS,W:G(}’W|}’S,,V;w)JW and D, = T (6.49)

Equations (6.50) and (6.51) enables one to reconstruct surface acoustic pressure

p (;S; cu) and normal surface velocity v, (?S; w) through inversion of matrices
{Tp (;‘;S; a))] and {TV (;Rs? a))} , respectively. In practice, the measured
NxN NxN

. A i . .
acoustic pressures p | X,;; co) are not error free. As a result, the matrix equations

(6.50) and (6.51) may be ill conditioned. To overcome this difficulty, regularization
can be employed, the simplest one being a TSVD to eliminate the evanescent waves

that fall below the background noise level. Accordingly, p (?s; w) and v, (;S; a))

can be written as

{ﬁ (;5; a)> }le = [Volyw [Z;I}le\, [UP]Aszzv{ﬁ <;n17 CO) }le, (6.52)
Fa(3s0)} =Wy B O s (Gno) ) (659

where [V, ]y«n and [U,]yxn, respectively, are the right and left unitary matrices of
the transfer matrix [Tp (;|;v, w)] , namely, they satisfy [V, ]y« N[Vp]{, YN=
NxN

My x 5 and [U,,]NxN[U,,];, «nv =y xn, and [Z,] = diagl...,1/0,,,...] stands
for the diagonal matrix containing inversions of the non-zero singularities o, , of

the matrix [T,, (} ’;x; w)} . Similarly, [V, ]y« and [U,]yxy are the right and left
NxXN
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unitary matrices of the transfer matrix [TV (;Ry,w)} , respectively,
NxN

WVlv s nVilg sy =Mv <y and [y« nUY =y <y, and [Z,]7 ' =diag
[....,1/6,,,...] is the diagonal matrix that contains inversions of the non-zero

singularities o, ,, of the matrix [TV (;‘}V, w)] .
NxN

Equations (6.52) and (6.53) gives the reconstructed acoustic quantities on the
surface of any arbitrary structure. A rule of thumb in discretization for the BEM
method is to have a minimum of six nodes per wavelength. For a complex
structure vibrating at mid-to-high frequencies, the total number of discrete
nodes needed to depict the surface acoustic quantities can be extremely large.
As a result, the number of measurements required to reconstruct the acoustic
quantities can be very high, thus making the reconstruction process unrealistically
time consuming.

6.4 The Combined Helmholtz Equation Least-Squares
Method

To enhance the efficiency of the BEM-based NAH and improve the accuracy of
the HELS method for reconstructing the acoustic field generated by an
arbitrary structure, we combine these two methods and describe the procedures as
follows:

—, meas .
1. Take the acoustic pressures p (xm ;a)), m=1 to M, on the hypothetical
spherical surface that encloses the target source surface.
2. Divide the measurement points into two groups M and M,, where M =M + M.
3. Use M; as the input to establish the HELS formulations to reconstruct the
acoustic pressure on M, points on the measurement surface,

{ﬁ (x’" ;w) }szl - [G,,,,(xm ‘x’” ;w)}szM. {ﬁ (x”’ ;w) }Mlxl’ (6.54)

_,Tec ,—, meas

where {G,,p(xm |xm ;w)}NXM] is defined in Eq. (3.16).

Note that since the least-squares method is used, the expansion solution (6.54)
with /=M, will be the best fit at M| measurement locations, but it may not be
the best approximation for the remaining M, values. This is especially true when
the measured acoustic pressures contain errors. Consequently, the accuracy in
reconstruction at M, locations will increase with J first, and then deteriorates
thereafter.
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4. Find the optimal expansion term J,,, which is equivalent to finding a low-pass
filter for the spherical harmonics such that the evanescent waves below the
background noise level are eliminated. There are many regularization techniques
available for solving a set of linear equations. The simplest yet very effective for
the HELS method is an iteration scheme,

M as
min Y [[5 (¥p50) =5 (¥ 30) [ = Jops (6.55)
’ =1

where reconstruction is done on the measurement surface to determine the value
of Jop,.

5. Use J,p in Eq. (6.55) to regenerate the acoustic pressures at as many points as
necessary on the measurement surface, say, the same as that of discrete notes,

() by, = o (i B 0) o 12 (5750, o (656)

_,rec

6. Take these regenerated acoustic pressures p (xm ;a)) as input data to the

BEM-based NAH formulations to reconstruct the acoustic pressure

N

{p(3550)}
PA\Ys 59) f v

1 T _,Tec —, meas _ /—meas
- [VP]NXN [21’ :|N><N[UP]NXN {Gpp(xm |xm ;w):|N><M1 {p (xm ;w) }Mlxl’

(6.57)
—.Tec
{1 (5}
h Nx1
1 T _,rec _,meas. R _,meas.
= [VV]NXN [Zv ]NxN[UV]NXN |:GPP(xm ‘xm ’a)>}N><M1 {p (xm ’a)) }M1><1’

(6.58)

. [—Tec .. [—TeC
p (x ;w) and normal velocity v, (xs ;w) on the source surface,

. —,Tec  — meas
where the matrix {Gpp (x m ’xm

|:G <~> rec |, meas ) :|
X {X 0
pp m m ’ NxM,

= {‘P(}::c’ wﬂNxJOp ({T(;;Cas;w)}szm {Y’(;:eas; w>]M1XJ0p) -1 (6.59
_, meas H
[\P(x”’ ;w)]Jopo,’

— meas

where the elements of [‘I’(xm ;a))}M , are given in Eq. (3.2).
1 X op

) is given, tively. b
7w)}N><M1 is given, respectively, by
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The enhancement in the reconstruction efficiency is obvious. Equation (6.59)
_,rec —srec . .
shows that p (x‘Y , w) andv, (xs ,a)) on N nodes of the arbitrarily shaped surface

can now be reconstructed using M; measurements. Since M << N, the required
measurement time is significantly reduced.
Note that the accuracy of the regenerated field acoustic pressure is consistent

with that of measured data for x,, € X. This is because the acoustic pressure for

XmEX can be completely and uniquely described by Eq. (6.54) as J — oco. The
omission of the higher-order terms, namely, the evanescent waves have a negligibly
small impact on the resultant field acoustic pressure. Hence, there is no need to take
more measurements than necessary. In fact, the accuracy of reconstruction would
remain unchanged, even if the regenerated field acoustic pressures were replaced by
the real measurements. The trade-off is that the accuracy in reconstruction may be
limited because certain evanescent waves have been lost as measurements are taken
over a spherical surface rather than a conformal surface at close range.

It is emphasized that one cannot extend the processes discussed above to the
region inside the minimum sphere, either by taking measurements or regenerating
the acoustic pressures. This is because the acoustic pressure there cannot be
represented adequately by the spherical waves.

6.5 Applications of the CHELS Method

In this section we examine the performance of the CHELS method and compare its
results with that of the BEM-based NAH. In particular, we want to check if CHELS
can yield satisfactory reconstruction of an acoustic field accurately and efficiently
based on greatly reduced input data.

Example 6.1 Consider a partially vibrating sphere of radius @ = 0.1 m. The reason
for selecting this example is because it contains very rich evanescent waves and yet
the analytic solution is readily available. The normal surface velocity distribution
v, can be written as

$u(a,6,¢; @) = {VO’ 0< 6] < (6.60)

0, otherwise

where v is a constant and the half vertex angle is, say, £6,=36°.

Since the source is a sphere, the minimum surface is spherical. Following the
guidelines as given in Chap. 5, we gauge the measurement distance d and micro-
phone spacing ¢ with respect to the critical spatial wavelength 4.,. Suppose that as
an initial guess, we set A, = a/3 and § < .,/2. Since a = 0.1 m, we find A, = 0.033 m
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and 6 =0.0165 m. The number of measurement points can be estimated by using
Eq. (5.3). Since the source surface S = 27ta2, a=0.1 m, and 1., ~0.033 m, we have
M >4 x (27 x 0.1%)/0.033% ~278. All the input acoustic pressures are calculated
by using the formulation given by Morse and Ingard [99], of which M| =76 are
used in Eq. (6.56) to regenerate the acoustic pressures on the spherical measurement
surface and the rest M, =202 points are used to optimize the number of expansion
functions J,p,. In this case J,, =26 is found to be acceptable for 0 < ka <10. The
regenerated field acoustic pressures are taken as input to Egs. (6.57) and (6.58).

Note that for any given set of measurements in engineering practice, a larger
value of J,, indicates an inclusion of more evanescent waves and the higher the
accuracy of reconstruction can be. A smaller value of J,,, implies a lower SNR and
less evanescent waves included in input data. As a result, the reconstructed acoustic
field may be unsatisfactory.

For comparison, we use the BEM-based NAH to reconstruct the surface acoustic
quantities. To ensure the accuracy in reconstruction, we use six discrete nodes per
structural wavelength to depict the surface acoustic quantities. Suppose that we take
six discrete nodes per critical spatial wavelength, 6 = A.,/6. Since 1., ~ 0.033 m, we
have 6=0.0055 m, which leads to a total number of N=602 discrete nodes.
Accordingly, we need to take M = 602 measurement points of the acoustic pres-
sures, which are obtained by using the formulation given by Morse and Ingard [99]
and taken as input to the BEM-based NAH Eqs. (6.52) and (6.53) to reconstruct the
surface acoustic pressure and normal component of the surface velocity.

In this example, we show the reconstruction results based on a coarse mesh with
an average distance between neighboring discrete nodes 6 =0.032 m, which is
twice the value of 6 =0.0165 m as suggested for CHELS. Accordingly, the number
of nodes by using a triangular element and the first-order interpolation is reduced to
N =152. The number of measurement points is the same as that of the discrete
nodes, i.e., M = 152.

Figure 6.2 shows the comparison of the reconstructed acoustic pressures at
ka=1.46 on the generator of the sphere. Results show that the surface acoustic
pressures reconstructed by CHELS with N = 152 agree very well with those of the
BEM codes with N =602 and the analytic solutions.

While a fine mesh does not make much difference in reconstructing the acoustic
pressure, it does have a significant impact on reconstructing the normal surface
velocity. Figure 6.3 shows that a coarse mesh with N = 152 nodes only enables one
to capture the main characteristics of the normal surface velocity distribution. By
using a fine mesh of N =602 nodes and the same number of the input data points
regenerated by Eq. (6.56), we can significantly improve the reconstruction accu-
racy. This is because the surface normal velocity distribution has a sharp edge that
contains higher wavenumber contents than the surface acoustic pressure does.

The fact that the CHELS method can yield satisfactory reconstruction with
relatively few measurements is of a great significance. It indicates that the fidelity
of the input data regenerated by Eq. (6.56) is preserved. Hence, one does not need to
take more measurements than necessary. Moreover, it shows that one can improve


http://dx.doi.org/10.1007/978-1-4939-1640-5_5#Equ3

120 6 Combined Helmholtz Equation Least-Squares (CHELS) Method

3.0

——:  Theory

———: BEM-based NAH (M=152, N=152)
—-—: CHELS (M=152,N=152)

— - -—: CHELS (M=152, N=602)

25

20

1.5

LB L L B A VAN

Pressure Magnitudes (Pa)

1.0 F
05|
0-0 :1 1 L 1 l L Il 1 1 l 1 1 L L l Il Il Il Il l l:l 1=‘1»lri’lkl—_‘;—‘_:l.
0 30 60 90 120 150 180
Polar Angle (degree)

Fig. 6.2 Comparison of the reconstructed acoustic pressure distributions on the surface of a
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Fig. 6.3 Comparison of reconstructed normal component of velocity distributions on the surface
of a partially vibrating sphere at ka = 1.46 based on measurements taken at 7 =0.105 m

the accuracy by increasing the input data. Because these data are calculated but not
measured, the efficiency of reconstruction is significantly enhanced.

However, one should not expect the normal surface velocity to converge to the
true value even as the number of regenerated input data approaches infinity. This is
because the accuracy of reconstruction is controlled by the amount of evanescent
waves captured in the measured data. The closer the measurements are to the source
surface, the more the evanescent waves are captured, and the more accurate the
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Fig. 6.4 Reconstructed acoustic pressure distribution on the surface of a partially vibrating sphere
at ka = 1.46 using the BEM-based NAH with 602 discrete nodes and 152 measurements taken at
r=0.105m

reconstruction is. Once the measurement distance is fixed, so is the amount of the
evanescent waves that can be captured. Thus the improvement in the reconstruction
accuracy through increasing the number of regenerated input data is limited.

Also, it is emphasized that we do not need to have exactly the same measurement
number as the discrete nodes. This is because using SVD and regularization, we can
have either an over- or under-determined system of equations, or equivalently, take
more or fewer measurements than the discrete nodes. However, if the measure-
ments are too few, a spatial aliasing may occur and the resulting reconstruction can
be greatly distorted. Figure 6.4 displays that when 152 field acoustic pressures are
taken as the input to the BEM-based NAH for a surface with 602 discrete nodes, the
resulting reconstruction of the surface acoustic pressure is severely distorted.

To show the effect of measurement distances on the reconstruction accuracy, we
present the reconstructed surface acoustic quantities based on conformal measure-
ments taken at different radial distances r=0.105, 0.110, 0.125, and 0.150 m under
ka=1.46. Figure 6.5 depicts that as measurement distances increase, more and
more evanescent waves are lost in the input data. As a result, the reconstructed
normal surface velocity becomes more and more distorted. However the accuracy
in reconstruction of the surface acoustic pressure remains essentially unchanged
(results omitted for brevity). This is because the normal surface velocity contains
more near-field effects than the surface acoustic pressure does. These results
demonstrate the importance of keeping the measurements very close to the target
source surface.
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Fig. 6.5 Comparison of the reconstructed normal component of velocity on the surface of a
partially vibrating sphere ka = 1.46 using the CHELS method based on measurements taken at
different radial distances

Example 6.2 Consider a simplified engine block with an overall length of 0.460 m,
overall width of 0.435 m, and overall height of 0.630 m. To test the effectiveness of
the CHELS method, sharp edges and corners and abrupt changes in surface
contours are built in this model. For such arbitrary geometry, analytic solutions
do not exist and numerical solutions must be sought.

To simulate acoustic radiation from this engine block in a free field,
harmonic excitations of different amplitudes are assumed on three arbitrarily
selected surfaces: 5 x 10> N/m? on the top and 2 x 10> N/m? on part of the front and
back surfaces at various frequencies (see Fig. 6.6). The bottom of the engine block is
clamped with zero displacement and slope, and the rest surfaces are
left unconstrained. The normal surface velocity distributions are obtained
using the standard FEM codes and the surface acoustic pressures are specified
using the BEM codes with 1,548 triangular elements and 776 discrete nodes.
Once the surface acoustic quantities are specified, field acoustic pressures are
calculated.

To reconstruct the surface acoustic quantities using the CHELS method, we take
M =277 measurement points over an imaginary sphere of radius = 0.408 m that
encloses the engine block, which is much fewer than 776 points. In particular, we
select M; =56 as input to set up the HELS formulations and M, =221 to optimize
the number of expansion functions. For the frequency range considered, this
optimal value is found to be approximately J,, = 22. Once this is done, the acoustic
pressures on the measurement surface are regenerated by Eq. (6.56). The results are
taken as input data to Eqgs. (6.57) and (6.58) to reconstruct the surface acoustic
quantities.
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Fig. 6.6 Schematic of an engine block subject to distributed harmonic force excitations

Note that one can divide the measurements into two groups of any sizes.
However, for an arbitrarily shaped surface, the clearance between the measurement
and source surfaces may vary from one point to another. As a result, the amounts of
the evanescent waves captured in the input data may be different. To minimize the
impact of the loss of evanescent waves in reconstruction, a low-pass filter must be
used to eliminate the evanescent waves that drop below the background noise level.
This is equivalent to specifying the optimal expansion number J,,. Experiment
results indicate that in most cases it is better to select a smaller value for M, and a
larger value for M, to achieve the desired reconstruction.

It is emphasized that even if all steps as suggested above are followed, it will be
unrealistic to expect ideal reconstruction. This is because: (1) measurements are
taken on a spherical surface, not a conformal surface, and (2) the number of
measurement points is greatly reduced in CHELS to alleviate the complexities
involved taking an excessive number of measurements demanded by the
BEM-based NAH.

Also noted is the fact that the accuracy of reconstruction varies with frequency.
To ensure that measurements are taken in the near field, we gauge the standoff
distance d with respect to the critical spatial wavelength A, which is set at ., = 7a/8,
and require that the following conditions be satisfied: (1) d < a, and (2) d < A,
Because in the CHELS method the standoff distance d is nonuniform, we take the
maximum clearance between the measurement and source surfaces d,,,x. Therefore,
these conditions are rewritten as dy.x << @ and dp.x <K Ao = 7a/s.

In this case the characteristic dimension of the engine is a =(0.435+0.460
+0.630)/3=0.508 m and the maximum clearance between measurement and
source surface is dp.x=0.19 m < 0.508 m, so the first condition is satisfied.
However, the second condition is not because dg.,x=0.19 m and
Ae=ma/8=0.197 m. As a result, some near-field information is lost in the
input data.

In what follows, we present the reconstructed acoustic fields on the engine block
surfaces based on M =277 measurement points. For validation purposes, we use
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Fig. 6.7 Comparison of the reconstructed acoustic pressure distributions over the surfaces of
engine block using the CHELS method with M =277 data points (right column) and benchmark
values with M =776 data points (left column) at ka =1

Eq. (6.3-6) to reconstruct the surface acoustic quantities based on M =776 mea-
surement points, which are the same as the discrete nodes. Figures 6.7 and 6.8
display the comparisons of the reconstructed acoustic pressure and normal velocity
distributions on the surfaces of the engine block by using the CHELS method and
benchmark values, respectively, at ka = 1.

It is emphasized that this engine block represents a fairly complex structure that
contains sharp edges, corners, and abrupt changes along the surface contours. Yet
satisfactory reconstruction is obtained by using the CHELS method with a reduc-
tion in input data points by more than 63 %. In contrast, when data points are
reduced to one-half, M = 386, aliasing occurs in the reconstructed acoustic quanti-
ties obtained by using the BEM-based NAH because input data are severely under
sampled (see Fig. 6.9) [100].
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Fig. 6.8 Comparison of the reconstructed normal surface velocity distributions over the surfaces
of engine block using the CHELS method with M = 277 data points (right column) and benchmark
values with M =776 data points (left column) at ka =1

Equations (6.57) and (6.58) can be used to reconstruct acoustic radiation in the
—,rec —rec L. .
far field by setting the reconstruction point at x, = x . This is straightforward

because all field points are now outside the minimum sphere, so the acoustic field
can be adequately represented by the outgoing spherical waves. Moreover, the loss
of the evanescent waves has a negligible impact on reconstruction [101].

Figure 6.10 demonstrates comparisons of the reconstructed normal component
of the time-averaged acoustic intensity by using the CHELS method on two planes
(2.6 x 2.6 m?) at y =13 m measured from the center of the engine block versus the
BEM results. Note that the peak amplitude of the time-averaged intensity on the
front plane is slightly lower than that of the back plane. This is because more forces
are acting on the backside than on the front side of the engine block.
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Fig. 6.9 Comparison of the reconstructed acoustic pressure distributions on the engine block
surfaces by using the BEM-based NAH with M =388 input data point and the benchmark results.
In this case, aliasing occurs because the input data are severely under sampled

These results demonstrate that the CHELS method can be used to enhance the
efficiency in reconstruction by taking relatively fewer measurement points on a
minimum sphere enclosing the target source, yet still allowing for a relatively
accurate reconstruction of the acoustic quantities. This is done by setting up the
HELS formulations using a finite number measurement points, and regenerating as
many acoustic pressures as those required by the BEM-based NAH to reconstruct
the acoustic quantities on the source surface as well as in the field.
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engine block using the CHELS method (right column) and BEM-based NAH (left column) at
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Problems

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

What are the differences between the Helmholtz equation and surface Helm-
holtz integral equation (6.25)?
Show that the surface Helmholtz integral equation can be derived by taking

the limit as the field point X approaches the surface point X, in Eq. (6.10).
Show that the surface Helmholtz integral equation (6.25) fails to yield a
unique solution when the frequency approaches one of the Dirichlet eigen-
value for the interior region.

Consider the acoustic pressure inside an arbitrarily shaped enclosure as
shown in Fig. 5.9. Follow the same procedures as shown in Sect. 6.1 and
derive the Helmholtz integral formulation for the interior region. What is the
surface over which the integration are taken in this case?

Continue Problem 6.4 and derive the surface Helmholtz integral equation for

the interior region by taking the limit as X — X, from the inside.

Continue Problem 6.5 and discuss whether the surface Helmholtz integral
equation for the interior region suffers from the same nonuniqueness diffi-
culty at certain eigenfrequencies as that for the exterior region.

Discuss how to determine the acoustic pressure radiated from a vibrating
surface by using the Helmholtz integral theory. Outline the steps required in
solving this problem.

What is the CHELS method? What are the advantages and limitations of the
CHELS method compared with the HELS- and BEM-based NAH?

Discuss the implementation of the CHELS method and compare it to that of
HELS method.

Discuss the implementation of the CHELS method and compare it to that of
BEM-based NAH.
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Chapter 7
Hybrid NAH

All traditional NAH techniques are limited to handle cases where sound sources are
only on one side of an array of microphones. The reality is much more complicated
however. A typical example is the analysis of noise radiation from a vehicle
stationed on the chassis dynamometers inside a semi-anechoic chamber. For safety
and durability concerns, the surfaces of the chamber cannot be made as acoustically
absorptive as they should be. Consequently, the measured acoustic pressures consist
of both direct and reflected waves. Also, the dynamometer is generating its own
noise, making NAH application and analysis very difficult. To date, vehicle noise is
still analyzed by measuring transfer functions between a source and receiver, or by
sweeping an intensity probe over a target source surface at close range. The
information obtained is often isolated and valid at the measurement locations.
These traditional noise diagnosis and analysis processes cannot reveal much
insightful information of the root causes of noise and structural vibrations.

In this chapter we present hybrid NAH to reconstruct acoustic radiation from an
arbitrary object in confined or free space in a cost-effective manner [102]. This
hybrid NAH can be derived from a modified HELS, which expands the acoustic
pressures in terms of both outgoing and incoming spherical waves, and combines it
with the BEM-based NAH and regularization. Since this hybrid NAH allows for
regeneration of the acoustic pressure on a measurement surface, both the accuracy
and efficiency of reconstruction are enhanced.

7.1 Modified HELS

In order to enhance the efficiency of reconstruction of acoustic radiation from an
arbitrarily shaped source in confined space, we rewrite the HELS expansion (3.2) as

© Springer Science+Business Media New York 2015 129
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p(F0) = S0 (50) o)+ L ¥ (Fo)De). ()

=1 j=1

where lpj(.”(};w) is defined in Eq. (3.2) and ¥ (}w) =v2(r.0,0)

= 12 (kr)Y!(6, p), where h{”)(kr) is the second kind spherical Hankel functions
of order n.

Physically, the terms on the right side of Eq. (7.1) represent the outgoing and
incoming spherical waves, respectively. To facilitate the derivations of hybrid NAH
formulations, we rewrite the expansion functions as a matrix and determine the
expansion coefficients by solving an overdetermined linear system of equations
obtained by matching the assumed-form solution (7.1) to the acoustic pressures
measured on I" through least squares.

{ﬁ (};,w) }Mxl - [@(;;;w)}szl{g(w)}yxl’ ;;EF’ m=1to M,
(7.2)
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Because reconstruction is an ill-posed problem, {‘P(xm; a))] ,, may be ill
M x

conditioned. So regularization must be utilized to ensure that the reconstructed
acoustic quantities are bounded. The situation here is worse because the source is
not in a free field, and input data may be contaminated either through sound
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reflections from unspecified boundary surfaces or through interferences due back-
ground noise. Such a scenario is often encountered in engineering applications.
To overcome these difficulties, we take measurements over two conformal
surfaces I'; and I', around a target source at close distances, with I', being inside
I'; by a small separation A apart. In particular, we take M; measurements on I'; to

establish the expansion coefficients {6 (w)}2 o and optimize the number of
J X

expansion terms J,, by minimizing reconstruction errors with respect to additional
M, measurements taken on I'5.

. N —IN ~ —IN 2 —IN .
IIllIaljrec(Xm ;a)) _pjmeas(xm ;a))‘ > Xm el, j=1to 2J, (7.5)
Cj
2 —In

F7 *}I‘7
. ~rec( 2 2. ~ meas 2,
mz}n||pj (xm,a)) —D; (xm,a))|

» Xy elh, m=1 to M. (76)

The reason for taking measurements over two concentric conformal surfaces for
a source in confined space is to ensure that we acquire not only acoustic pressures
but also their gradients so as to discern the directions of wave propagations. This is
especially important inside a reactive acoustic field, namely, the boundary surfaces
are highly reflective. Examples of such are seen in visualizing acoustic fields
bounded by hard surfaces, for which reconstruction cannot possibly be done
correctly without the use of double layers of measurements [103].

It is emphasized that the modified HELS formulation (7.2) can also be used to
reconstruct acoustic radiation from arbitrarily shaped structures at constant fre-
quencies in a free field. Under this condition, it is sufficient to take measurements
over a single conformal surface at a very close distance to the target source. Taking
measurements on two conformal surfaces only prolongs the reconstruction process
with no apparent benefits of improving the reconstruction accuracy.

7.2 Hybrid NAH

Equation (6.52) has provided the BEM solutions to reconstructing the acoustic
quantities generated by an arbitrary source in a free field. This BEM-based NAH
formulation can be utilized in a non-free field with some modifications.

Suppose that the source surface is discretized into elements with N discrete
nodes. Because both the acoustic pressure and normal velocity on the source
surface need to be specified, we solve Eq. (6.53) simultaneously. Accordingly, we
take M measurement points, which are at least equal to N discrete nodes, as input to
Eq. (6.53) to determine these surface acoustic quantities. Since BEM requires a
minimum of six discrete nodes per spatial wavelength to avoid distortions, the
required number of measurement points M may be very high. This is especially true
when the frequency is relatively high. The CHELS method offers an effective way
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to overcome this difficulty by using a finite number of measurement points to
establish the HELS formulations first, and regenerating as many input points as
necessary for the BEM formulations.

The procedures for hybrid NAH are described as follows:

1. Take M; measurements of the acoustic pressure on a conformal surface I’
around a target source at close range, and M, measurements of the acoustic
pressure on another conformal surface I',, which is inside I';. Both M and M,
are finite.

2. Use Eq. (7.5) to determine the expansion coefficients 6 j=1to 2J, and
Eq. (7.6) to specify the value of J,, by minimizing reconstruction errors with
respect to additional M, measurements on I'». This guarantees accurate recon-
struction of acoustic pressures on ['.

T
3. Use Eq. (7.2) to regenerate as many acoustic pressures as needed on x,, €17,
m=1to N, and take them as input data to the BEM formulations to reconstruct
the vibro-acoustic quantities on the source surface,

>
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of matrices of {T,, (xx’xm; w)} and [TV (xs‘ X w)} , respectively, which
NxN

NxN
are defined in Egs. (6.46) and (6.47), and the matrix [é,,,, (;:C ’}:eas; w)} is
NXM1

given by
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Note that the hybrid NAH solution (7.7) and (7.8) is different from the CHELS
solution (6.57) and (6.58) in twofolds: (1) the expansion functions in the hybrid
NAH consist of both outgoing and incoming spherical waves, whereas those in the
CHELS method involve only the outgoing spherical waves, and (2) the transfer
functions in hybrid NAH include transfer functions for both BEM and HELS
formulations, while those in CHELS contain the transfer function for the BEM
formulations.

As mentioned earlier, all reconstruction problems are mathematically ill posed.
Therefore reconstruction formulations must be regularized to smooth the depen-
dence of the solution on input data and minimize the impacts of the errors embed-
ded in input data on reconstruction.

Here MTR is used for regularization (see Sect. 3.5). The first term on the right
side of Eq. (3.61) represents an ultra rough least-squares solution for which a =0,
and the second term implies an ultra smooth solution for which ¢ — oc. Thus the
choice of a allows one to decide how far to go to achieve certain smoothness. One
way of specifying a that requires no prior knowledge of noise variance is to employ
GCV [50, 104]. The basic idea of GCV is to leave a particular measured acoustic
pressure out of calculations of the cost functions first, and then evaluate the
effectiveness of the reconstructed source fields in predicting the values of the
omitted data. This process should be repeated for all data points and the resulting
regularization parameter o can ensure a best fit for the predicted acoustic pressures
at all the data points.

Note that one can use other regularization techniques such as standard TR or
Landweber iterations [105] together with Morozov discrepancy principle (MDP)
[106] and L-curve to reconstruct the acoustic quantities. Numerical tests demon-
strate that GCV may fail to yield a value of a when it is coupled with standard
TR. While MDP can always yield a value for a, its accuracy may not be very high
when it is coupled with standard TR. An optimal combination is an MTR and GCV,
which are adopted here.

To summarize, we reconstruct the acoustic pressure and normal velocity on an
arbitrarily shaped source surface using Egs. (7.7) and (7.8) derived from the
BEM-based integral formulation (6.3-5), which is regularized by using an MTR
and GCV and implemented through SVD. The input data to Eq. (7.2-8) are
regenerated by the modified HELS formulations (7.2). Since the number of mea-
surement points in hybrid NAH are much fewer than the discrete nodes needed


http://dx.doi.org/10.1007/978-1-4939-1640-5_6#Equ57
http://dx.doi.org/10.1007/978-1-4939-1640-5_6#Equ58
http://dx.doi.org/10.1007/978-1-4939-1640-5_3#%20Sec5
http://dx.doi.org/10.1007/978-1-4939-1640-5_3#Equ61

134 7 Hybrid NAH

required by the BEM codes to describe the acoustic quantities on a source surface,
the efficiency of numerical computations is significantly enhanced. Meanwhile, the
accuracy of reconstruction is ensured by the Helmholtz integral formulations and an
optimal combination of an MTR and GCV.

Note that when hybrid NAH is used to reconstruct acoustic radiation from a
source in free space, we must set D; =0 for there is no incoming wave. Under this
condition, the hybrid NAH is the same as the CHELS method.

7.3 Reconstructing Acoustic Fields Using the Hybrid NAH

In this section we use hybrid NAH to reconstruct the acoustic field generated by
vibrating objects in half space (see Fig. 7.1). The acoustic pressure anywhere in this
half space consists of the direct and reflected sound waves. Because the baffle is
infinite, this is equivalent to two sources (the original source and its mirror image)
in free space, and the acoustic pressure anywhere is the superposition of the direct
sound waves from both of them.

The reason for replacing this one-source in half space scenario by two-source in
free space is to facilitate the calculations of acoustic pressures in numerical
simulations, including benchmark acoustic pressures in the field and on the source,
as well as the measured acoustic pressures on I'y and I'; (see Fig. 7.1) by using the
half-space Helmholtz integral formulation,

Source in half space Source and image in free space

-

-
’

1—,{
’
’

Infinite baffle

S,

image

Fig. 7.1 Schematic of equivalence between a source in free space and source-and-image in half
space
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Fig. 7.2 Schematic of ﬁ(.i:‘)
calculating the field !
acoustic pressure radiated
from a source and its image
using the half-space
Helmholtz integral
formulation
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=image
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image

oGy (;‘;s’; cu)

p (?; a)> = %JJ p (;Sr;a)) W - ia)poﬁn(;sr;a)) Gu (;’;y; a)) ds’,
(7.12)

where Gy (;{}y; a)) is known as the half-space Green’s function defined as

. -7 pimage
elkR eIkR

GH(L) == _4p

= (7.13)

Rimage ’

where f represents the acoustic pressure reflection coefficient of the infinite baffle,
which is equal to +1 when the baffle is perfectly rigid and the acoustic pressure is
doubled on the baffle surface, and to —1 when the baffle is a pressure-release
surface on which the acoustic pressure is O.

For a baffle with finite acoustic impedance, there is no closed-form solution for
the half-space Green’s function and Eq. (7.12) becomes a good approximation

when the field point X is at least one-half wavelength away from the baffle. The

. — — — —
distance between x and source surface x iSR = ’x — xs‘ and that between any field
. . . — image
point x and surface point of the image source x

Fig. 7.2).

. . N — image
is R™e = |x — x; | (see
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The surface acoustic pressure p (;s; w) and normal surface velocity v, (;S; a))
in Eq. (7.12) are interrelated through the surface Helmholtz integral equation,

which can be obtained by taking a limit as X — x,. The processes of evaluating
these integrals are exactly the same as those described in Sect. 6.1, and the resultant
surface Helmholtz integral equation for half space is given by

SN
0Gy (xs|x3/;a)

— 1 — — — =
p (Xs§ 60) = —”p(xsf; w) —_— - iwpo\?n(xsr; w) GH(xS’xsl; a))dS’.
2, an(xs,)

(7.14)

Equations (7.12) and (7.14) should be solved simultaneously and their
discretized versions are given by

p (?,w) - {T:(;Rs;w)}lw{ﬁ (;5;0)) }le’ (7.15)
ﬁn(;;w) = {TlH (;Rs;a)}lxN{\?n(;S;w) }le’ (7.16)

where { T ;‘;S'a) and < T ;|}S'w represent the transfer func-
p ’ IxN v ’ IxN

tions that correlate the surface acoustic pressure and normal surface velocity to the
field acoustic pressure, respectively, and are given by

{T:I(;’}S;w)}lxzv | (7.17)
= (47)”" ({DH}IXN + {MH}lxN [MSH][;xN (2”[I]NXN - [DSH]NXN>)’
{T‘I’i(}‘;s;w)}lm

= ) ({0} (2ol — 0]y) 1+ (7))

(7.18)

where the elements of matrices [M1y . ny [D 1y « ns [M"']; » n» and [D"']; v are
defined as

aGH (;ﬂ |;x’,u§ 0))
J

an(}y) "

M;Z/ = GH (;y|;s’,u;a))‘]wz and DZ = (719)
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— —

u R u oGy xs,,,‘xsgl,;a)
Ml =Gu(xu|xyp;0)), and DI = —
on( xy

By specifying the acoustic pressures p (?, a)) at N field points on two concentric

T (7.20)

—

surfaces I'y and I',, we can invert the matrices {Tf (x RS; a))} and
1xN
{T{," (;W?’ w)} in Egs. (7.15) and (7.16), and determine the surface acoustic
1xN

pressure p (}s; a)) and the normal surface velocity v (}S; w) as

b)) Gl )]
{ n( S;a)) }le - {T‘H (;S’;m;w) };iN{ﬁ (}m;a}) }Nx1’ (7.22)

where p (;m; a)) at N points are regenerated by the modified HELS formulations

<>
=

(7.7) and (7.8) based on a finite number of the acoustic pressures measured on I'y,

(o), =P ()

6 —TIec |_>meas N — meas 7 23
_[ pp(x’" T ,w)}Nle{p<xm ’w)}M1x1’ (7.23)

_,rec | — meas

where [5,,,, (xm X, ;a))} is given in Eq. (7.11).
NxM;
Substituting Eq. (7.23) into (7.21), we obtain

v (5o)h,

{TH (H _,rec )}*1 [6’ <ﬂrec _, meas . [—meas
= .X_y’.x s X |X 0 X s
p m Nxy Lo PP\Tm 1me o NxM, P\*m Mx1

(7.24)
{ﬁ“ <}s; a)) }le

{TH (ﬁ _,rec ) }—1 |:é (Hrec _, meas _ /—meas
={TH (% !x ) X |x w)} {p (x w)} )
v\, nNxy L PP\Tm ITme o NxM, mo My x1

(7.25)

Equation (7.24) describes the reconstructed vibro-acoustic quantities on arbi-
trarily shaped geometry in half space. Although there is a slight increase in
computations to evaluate integrals in Eq. (7.25), this increase is more than offset
by not having to integrate over the baffle surface.
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Example 7.1 Consider a vibrating sphere of radius @ = 0.1 m in half space bounded
by an infinite baffle at z = 0 plane and the distance from the source center to baffle is
d. In particular, the acoustic pressures are collected on two concentric measurement
surfaces I'; and I', (see Fig. 7.1) and then used as input data to the hybrid NAH
formulations to reconstruct the acoustic quantities in the half space. The
reconstructed acoustic quantities are validated against the benchmark values.
Note that no symmetry is used in numerical computations and the fluid density
and speed of sound are set at py=1.21 kg/m> and ¢ = 343 m/s, respectively [107].

In this example the input acoustic pressures are specified over two conformal
surfaces that are separated from the source surface at distances of 2 and 5 mm,
respectively. Note that it is not necessary, in theory, to take two layers of measure-
ments since the modified HELS formulations has already accounted for the effects
of both outgoing and incoming spherical waves. However, our numerical simula-
tions have demonstrated that by taking the acoustic pressure measurements on two
conformal surfaces around a target source in the presence of a reflecting surface, we
can get more satisfactory results than using one conformal surface. In all cases, we
take half of measured data to determine the expansion coefficients and use the rest
to specify an optimal number of expansion functions. For brevity, we only display
reconstruction results at ka = 1.

First, let the amplitude of the normal surface velocity of the sphere be
Vo=0.01 m/s. A total of M = 152 measurement points, 76 each along the generator
of two conformal surfaces are taken. The discrete nodes for the BEM codes to
describe the acoustic quantities on the spherical surface are N = 602. Apparently,
the number of input data is substantially fewer than that of the discrete nodes. In
reconstruction the procedures described in Sect. 7.2 for hybrid NAH are followed.
In particular, Eq. (7.23) is used to regenerate N = 602 input data points on surface
I'; and then are taken as input data to Eqs. (7.24) and (7.25) to reconstruct the
acoustic pressure and normal velocity on the source surface. To examine the
impacts of the baffle surface on the acoustic fields, we repeat the reconstruction
processes with the source located at different distances d. expansion functions
provided by Egs. (7.5) and (7.6) are found to be J,, =37 for d=1.5a and d = 2a,
and J,,, = 26 for d = 3a and d = 50a. Note that J,,, implies the number of pairs of the
outgoing and incoming waves in the expansion functions.

For comparison purposes, we use the modified HELS formulations (7.2) with the
value of J,,, determined by Eq. (7.5) and (7.6) without the need of BEM-based NAH
formulations (7.21) and (7.22) under different distances d. The corresponding
number of measurement points is M =62, 31 each along the generator of two
conformal surfaces. The optimal numbers of the expansion functions are found to
be Jop, =7 for d=1.5a, d=2a, and d = 3a, and J,, = 2 for d = 50a. Once again, J,,
implies the number of pairs of the outgoing and incoming waves in the expansion
functions.

Next we consider a sphere oscillating along the z-axis direction with a velocity
amplitude V, =0.01cosé (m/s), where 6 is the angle between the unit normal vector
on the spherical surface and the z-axis. The same numbers of measurement points as
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Fig. 7.3 Comparisons of the reconstructed acoustic pressures normalized with respect to the given
normal surface velocity distributions on the surface of the dilating sphere at ka = 1: (a) d=1.5q;
(b) d=2a; (¢) d=3a; and (d) d=50a

those in a vibrating sphere are used, namely, M = 152 for hybrid NAH and M =62
for the modified HELS method. Also, reconstruction is repeated for different
distances d. Results show that the optimal pairs of expansion functions for hybrid
NAH are Jo, =37 for d=1.5a; J,, =26 for d=2a; and J,, =27 for d=3a and
d = 50a. On the other hand, J,, =7 for d = 1.5a, d =2a, and d = 3a; and J,, = 4 for
reconstructing surface acoustic pressure and J,, =2 for reconstructing surface
normal velocity at d = 50a.

Figures 7.3 and 7.4 show the comparisons of the reconstructed surface acoustic
pressures normalized with respect to the given normal surface velocities versus
benchmark values for a dilating sphere and an oscillating sphere, respectively, at
different distances d.

In all cases satisfactory agreements are obtained by using hybrid HAN and
modified HELS formulations. Results indicate that the presence of an infinite
rigid baffle has changed the acoustic pressure distributions on the surfaces of the
dilating and oscillating spheres as compared with those of the same spheres in free
space (see Figs. 7.3a—c and 7.4a—c). For example, the radiation pattern for a
vibrating sphere is no longer omnidirectional as it is in a free field. The differences
are due to the interferences between the direct and reflected waves from the baffle.
However, these interferences diminish as the sphere moves away from the baffle
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Fig. 7.4 Comparisons of the reconstructed acoustic pressures normalized with respect to the given
normal surface velocity on the surface of the oscillating sphere at ka = 1: (a) d = 1.5a; (b) d =2a;
(¢) d=3a; and (d) d=50a

(see Figs. 7.3d and 7.4d), and the radiation patterns return to those of a sphere in
free space.

Figure 7.5a, b show the comparisons of the reconstructed normal surface veloc-
ities normalized with respect to the given normal surface velocity value versus the
benchmark values for a dilating and an oscillating sphere, respectively. Again,
satisfactory reconstruction is obtained in all cases at different distances d. For
brevity, we only present the results of d = 3a for the dilating and oscillating spheres.

Example 2 Consider a finite circular cylinder with two spherical endcaps in half
space. The radius of this cylinder is @ and its half-length is b. Two cases of different
half-length to radius ratios are considered: (1) b/a=0.5, and (2) b/a=2. The
distance from the center of the cylinder to baffle is d. For b/a =0.5, the cylindrical
surface is discretized into 960 triangular elements with 482 discrete nodes, and for
bla =72, the cylindrical surface is discretized into 1,536 triangular elements with
770 discrete nodes [107].

Assume that these finite cylinders are either dilating with the amplitude of
normal surface velocity of Vy=0.01 m/s or oscillating along the z-axis with the
normal surface velocity amplitude V, = 0.01cosd m/s. The BEM codes are used to
calculate the surface acoustic pressures. Once these surface acoustic quantities are
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Fig. 7.5 Comparisons of the reconstructed acoustic quantities on the surface of a sphere and
cylinder with b/a=0.5 at ka=1 and d=3a. (a) Reconstructed normal surface velocity of a
dilating sphere; (b) Reconstructed normal surface velocity of an oscillating sphere; (c)
Reconstructed surface acoustic pressure of a dilating cylinder; and (d) Reconstructed surface
acoustic pressure of an oscillating cylinder

specified, the field acoustic pressures on the measurement surfaces are generated.
These field acoustic pressures are taken as input data to hybrid NAH and modified
HELS formulations to reconstruct the acoustic fields, and results are compared to
the benchmark values obtained by using the BEM codes.

First, we consider the cylinder with an aspect ratio b/a = 0.5, here a =0.1 m and
d=3a. In using hybrid NAH, we take M =121 measurement points and then
regenerate the acoustic pressures at N =482 points on the same measurement
surface. These regenerated field acoustic pressures are utilized to reconstruct the
acoustic quantities on the surface of the vibrating cylinders. The values of J,, are
found to be 18 for the dilating cylinder and 27 for the oscillating cylinder.

In using the modified HELS, we take M =94 measurement points and then
regenerate the acoustic pressures at N =770 points on the measurement surface.
These regenerated field acoustic pressures are used to reconstruct the acoustic
quantities on the surface of the vibrating cylinders. The values of J,, are 15 and
14, respectively, for the dilating and oscillating cylinders.

Next we consider the cylinder of an aspect ratio b/a=2 with a=0.1 m and
d=>5a and follow the same procedures as those described above. In particular, we
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Fig. 7.6 Comparisons of the reconstructed acoustic quantities on the surface of a cylinder with b/
a=2 atka=1 and d =5a. (a) Reconstructed surface acoustic pressure for a dilating cylinder; (b)
Reconstructed surface acoustic pressure for an oscillating cylinder; (c¢) Reconstructed normal
surface velocity for a dilating cylinder; and (d) Reconstructed normal surface velocity for an
oscillating cylinder

take M = 193 measurement points for hybrid NAH and M = 121 for modified HELS
to reconstruct the surface acoustic quantities at 770 discrete nodes. For hybrid
NAH, the optimal pairs of expansion functions are found to be J,, =17 and
26 for the dilating and oscillating cylinders, respectively. For the modified HELS,
the optimal pairs of expansion functions are J,, =9 and 26 for the dilating cylinder
and J,,= 10 and 17 for the oscillating cylinder, respectively, to reconstruct the
surface acoustic pressure and normal velocity distributions.

Figure 7.5c, d summarize the comparisons of the normalized reconstructed
surface acoustic pressures versus benchmark values for dilating and oscillating
cylinders with an aspect ratio b/a=0.5, respectively. Similar comparisons
for dilating and oscillating cylinders with the aspect ratio b/a=2 are given in
Figs. 7.6a, b, respectively. Results show that the normal surface velocities are
satisfactorily reconstructed for both dilating and oscillating cylinders with different
aspect ratios. For brevity, only comparisons of the reconstructed surface normal
velocity versus the benchmark values for the dilating and oscillating cylinders with
an aspect ratio b/a =2 are plotted (see Fig. 7.6c, d).
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Fig. 7.7 Comparisons of the relative error norms for the reconstructed surface acoustic quantities
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To examine the accuracy of using the hybrid NAH and modified HELS to
reconstruct the acoustic quantities in half space, we calculate the relative errors

defined by
—rec = bench
I (750) = (571l

_rec R Hbench
o(5750) =0 (570 1
for different dimensionless frequency ka with sources located at different

. . (—bench . [—bench .
distances d. The symbols p (xs ;w) and vn<xx ;a)) in Eqgs. (7.26) and

(7.27) indicate the benchmark values of the surface acoustic pressure and normal
surface velocity obtained by using the BEM codes.

Figure 7.7 summarizes the relative errors in reconstruction obtained via hybrid
NAH and modified HELS and for a dilating sphere at d = 3a and those for a dilating
cylinder with an aspect ratio b/a =2 at d = 5a from the baffle, respectively. Results

(*bemh )||§(%), (7.26)
(Hbemh )H (%), (7.27)
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demonstrate that both hybrid NAH and modified HELS can yield satisfactory
reconstruction. However, the errors in reconstructing the surface acoustic pressures
are smaller than those in reconstructing the normal surface velocities in general. In
particular, hybrid NAH may produce more accurate reconstruction than modified
HELS does, but modified HELS requires fewer measurements than hybrid NAH

does.

Problems

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.

7.7.

7.8.

7.9.

7.10.

What is hybrid NAH? What is the purpose of developing hybrid NAH?
What are the advantages and limitations of hybrid NAH?

What are the differences between hybrid NAH and the CHELS method?
What are the differences between hybrid NAH and the HELS method?
Discuss the implementation of hybrid NAH and the differences as compared
to those of the CHELS and HELS methods.

Show that the transfer function for reconstructing the acoustic pressure using
hybrid NAH is given by Eq. (7.9).

Continue Problem 7.6. What is the difference between this transfer function
and that for reconstructing the acoustic pressure by using the CHELS
method?

Show that the transfer function for reconstructing the normal surface velocity
using hybrid NAH is given by Eq. (7.10).

Continue Problem 7.7. What is the difference between this transfer function
and that for reconstructing the normal surface velocity by using the CHELS
method?

Discuss the potential applications of using hybrid NAH for diagnosing noise
and vibration problems in engineering applications.



Chapter 8
Equivalent Sources Using HELS

In an effort to reduce the overall measurement points associated with BEM-based
NAH, Jeon and Ih [108] explore the use of an equivalent source method where the
field acoustic pressures are regenerated by point sources distributed inside the real
source surface. To this end, Jeon and Ih reformulate the HELS formulations by
expanding the spherical Hankel functions and spherical harmonics with respect to
multiple points distributed in the interior region of the source surface. Contributions
from all equivalent sources are determined by matching the assumed-form solution
to the boundary conditions specified on the source surface [109-111] or to the
acoustic pressures on the hologram surface [13, 112-118]. The equivalent sources
locations can be optimized by using either the natural algorithm [119] or EfI
method [120]. The optimal number of expansion terms is obtained by using a
spatial filter and regularization scheme. Once the expansion coefficients are spec-
ified, the field acoustic pressures are regenerated and taken as the input data to BEM
codes, just like CHELS algorithms. In this way, the overall measurement points are
greatly reduced.

All the aforementioned equivalent sources methods rely on a distribution of the
monopole sources inside the actual source surface. This chapter presents a more
effective equivalent sources by expanding the acoustic pressure field in terms of
multipoles [121], which for whatever reasons have escaped the attention of
researchers.

We have learned that HELS utilizes an expansion of the spherical waves to
approximate the acoustic field generated by an arbitrary source. Similar expansions
have been previously utilized to predict acoustic scattering and radiation: the
Rayleigh series as discussed in Sect. 4.1, the point-matching method, and least-
squares approximation method, which were collectively referred to as Rayleigh
methods by some authors [122, 123]. Other expansions that employ outgoing
spherical waves that satisfy the Helmholtz equation and Sommerfeld radiation
condition to approximate an acoustic field include the localized spherical waves
(LSW) [124], distributed spherical waves (DSW) [125], and distributed point
sources (DPS) [126]. These expansions are collectively known as the discrete
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sources methods [127]. In Chapter 8 we discuss the discrete sources methods and
how to combine them with the HELS formulations to reconstruct the acoustic field
generated by an arbitrary source.

8.1 Localized Spherical Waves

LSW was employed to approximate the Green’s function included in the Helmholtz
integral formulation to predict acoustic radiation [125],

(5:0) } ) JSJ [M(;;w) 06(5ys0) ou(yio) G(W;w)] " {;eszs

0 an(;) an(y) YEQ

(8.1)

where € indicates the exterior region bounded by the source surface S and the
sphere at infinity, and €, implies the interior region inside the source surface S. In
Eq. (8.1) the original format is followed as much as possible.

In an attempt to estimate the acoustic field u (?; a)) , Doicu et al. [125] examined

the systems of discrete sources as complete systems of functions. They found that
there is a close relation between the properties of the acoustic field generated by
discrete sources and the structure of their support. For example, a point structure
corresponds to the LSW functions. Similarly, a straight line support parallels with
the DSW functions, and a surface support is equivalent to the DPS.

Accordingly, if the acoustic field can be approximated by a point structure, LSW
functions form a set of characteristic solutions to the Helmholtz equation in the
spherical coordinates, which are given by

Upn ;;w = WD (k) P™(cos @ e, n=20,1,2,...,00;
() = W) )P} cos) 52)

m=—n to +n.

Using LSW, the Green’s function in Eq. (8.1) is expressible as
- JESN & .
G<_) ; ) = Einttmn (ﬂ) —mn( >, 8.3

where u,,, and u_,,, are defined in Eq. (8.2) and the expansion coefficients E,,,, are
given by
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2n+1) (n— ‘m’)'
4 (n+ ‘m’)!

Enn = (8.4)

The following theorem has been proven by Doicu et al. [125]

First of all, let us define some terminologies. Let S be the boundary of a bounded
domain D;C R3, namely, a bounded, open, and connected subset of three-
dimensional space R®. We say that the surface S is of class C? if for each point X
€S there exists a neighborhood V. of X such that the intersection VNS can be

mapped bijectively onto a domain U C R?, and this mapping is twice continuously
differentiable. We express this property by saying that D; is of class C*.

Theorem 8.1 Let S be a closed surface of class C* and n denote the unit outward
normal to S. Then the system Uy, (?, w) = hV(kr)PM(cos 9)e™?, n=0,1,2, ...,
00; m= —n to +n, is complete in LZ(S).

As discussed in Sect. 4.1, an infinite series is not suitable for our applications,
which is especially true for reconstructing the acoustic field generated by an
arbitrary source. However, we can adopt the concept of LSW and try instead the
following finite expansion:

N n

P 0,ds0) =Y awh) (kr)Pi(cos 0)e™, (8.5)

n=0 m=—n

where a,,, represent the expansion coefficients, N is the order of expansion, and the
total number of expansion terms is J = (N + 1)2. Note that there is a subtle difference
between LSW and HELS in that the former uses P,L’”‘(cos 9)e”"¢ in the expansion,
whereas the latter uses the standard spherical harmonics P)'(cos 0)e™? in the
expansion. From Eq. (2.16) we see that P,‘,’"‘(cos G)ei”"/’ differs from P)(cos 9)6"’"’”
by a constant (—1)”, which may be absorbed by the expansion coefficients d,,,.
Thus Eq. (8.5) is in effect the same as the HELS expansion. Since LSW corresponds
to a point source, the corresponding auxiliary source is located at the origin of the
coordinate system.

8.2 Distributed Spherical Waves

In [125] Doicu et al. considered the system of DSW functions, which form a set of
radiating solutions to the Helmholtz equation (4.6). These DSW functions are given
by
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x e |m|
um|m’ (.X —n €Z) |m| (kr")P|m|< cos e)e/m¢ (86)

where the discrete sources are distributed along a segment of the z-axis at a radius
with respect to the origin, which are expressible in the spherical coordinates as (7,

Oy s Tn = \/x2 +y2 4 (z— z,,)z, andn=1,2,..., 00,and m € E, where E is the
support of the discrete sources that consist of the origin of the coordinate system.
The following theorem has been proven by Doicu et al. [125]

Theorem 8.2 Consider the bounded sequence (z,,) C B, where E is a segment of the
z-axis. Assume that S is a surface of class C* enclosing E. Replace in Theorem 8.1

the LSW functions up, (;,w) by um’m‘ (x —ze ) hlml(k; )lei(cos 0)e?,

n=1,2,..., 00, and m € E. Then the resulting systems of functions are complete
.2
in L7(S).

These theorems state that Eq. (8.6) may be utilized to describe the radiated
acoustic field completely. Once again, we adopt the concept of DSW and utilize
instead a finite expansion,

Mmax Mmax
5(%- _ (1) || Im(/)
b (xa)) - ;:1 m},m:, D)) (kr) P (cos 6, )e (8.7)

where b,,, are the expansion coefficients, 7,5 is the number of auxiliary sources
and my,. is the order of expansion, and the total number of expansion terms is
J = Nmax(2mgax + 1). For simplicity, we consider the case where the auxiliary
sources are distributed along a segment of the z-axis with its center at the origin
of the coordinate system,

Zn = 2o COS B, (8.8)

where n=1, 2, ..., Bmax, Zo 1S chosen such that all auxiliary sources are inside
(some of them can be close to the boundary surface §), and f, are given by

b3 ir(n—l).

Pn = (8.9)

anax nmax

g . g - . . . . . .
The z,th auxiliary source is at x — z, e, which is expressible in the cylindrical
coordinates as

e \/1‘2 sin20 4 (r2 cos20 — z,)%, (8.10)
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Q1 6
sing, = 07 (8.11)

T'n

r=/x2 4y (8.12)

8.3 Distributed Point Sources

DPS is known as fundamental solutions to the Helmholtz equation, which are given

by
go,,(ﬂ}n;a)) :G<;|;n;a)>, (8.13)
NT
wheren=1,2, ..., 00, and {x,, }1 is a set of discrete point sources distributed on
X000

— = T
a closed surface S of class C>. Suppose that {(p; (x|x,1;a))} denote the

1x00
T

fundamental solutions with point sources {;; } distributed on the interior
1x00

- - T . - T
surface S, and {(p; (x |xn; w)} indicate those with the sources {xn }
1x00 1x00

distributed on the exterior surface S*. The completeness of DPS as given by
Eq. (8.13) is provided by the following theorem, which has been proven by Doicu
et al. [125]

3T
Theorem 8.3 Consider Q; a bounded domain of class C*. Let the set {x” } be

1xo00

_ . - T
dense on a surface S~ enclosed in Q; and let set {xn } be dense on a surface S*
Ixo0

enclosing Q;. Assume that k is not an eigenvalue of the boundary value problem for
the interior region ;. Replace in Theorem 8.1 the radiating spherical wave

functions uy, (;,a}) = hf,l)(kr)P‘n""(cos 0", n=0,1,2, ..., 00, and m=—n

— ) — T
to n by the functions {(p"_ (x|x,,;a))} n=0, 1, ..., oo, and the regular

1x00

spherical wave functions u,,y, (;, a)) = jfll) (kr)PL"’| (cos @)e™®, where j,(ll)(kr) is
the spherical Bessel functions of the first kind, n=0, 1, 2, ..., 0o, and m= —n to
n by {(pj (;’;n, a)} 1Txoo n=0,1,...,00.Then, the resulting systems of functions are
complete in L(S).

We adopt the DPS concept in reconstruction, but instead use a finite expansion,

Mmax
p (};a)) = chhél) (k’; - X,
n=1

) (8.14)

where c,, are the expansion coefficients, 7., is the number of point sources, and
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ik| -7,
hé”(’f\;—;j’) = (8.15)
X — )Cj

is the fundamental solution (or the free-space Green’s function) to the Helmholtz
equation. Hence the auxiliary sources in DPS are a set of point sources distributed
on a smooth surface S~ inside €, but close to the boundary surface S.

Note that DPS formulation (8.14) is the same as those of the so-called equivalent
source methods [108—119], and LSW is the same as HELS. Here LSW, DSW, and
DPS will be adopted in the HELS expansion to reconstruct the acoustic field
generated by a vibrating object in free space. Their results will be validated against
the benchmark values and their performances be examined.

8.4 Regularization for LSW, DSW, and DPS Expansions

It is well known that the rate of convergence of any expansion depends on the
complexity of the source boundary and frequency [124, 128—130]. Although recon-
struction of acoustic quantities may be done by HELS at any frequencies, the
accuracy in reconstruction may deteriorate with an increase in the frequency.
This is because at high frequencies, SNR is usually very low such that the high-
order terms in the HELS expansion may be contaminated by background noise. To
avoid distortions in reconstruction due to noise contamination, we must truncate the
HELS expansion by eliminating the high-order terms. However, the high-order
terms are critical in depicting the details of acoustic quantities at high frequencies
and an omission of these terms will make it impossible to obtain the details in
reconstruction. It is emphasized that this high-frequency difficulty exists in other
methods, for example, BEM, whose performance deteriorates greatly at high
frequencies.

Despite the fact that discrete sources methods have been extensively studied in
the forward problems such as scattering and prediction of acoustic fields, they have
not been tested in backward problems such as reconstruction of acoustic fields, with
the exception of HELS. Since the matrix involved in HELS is relatively small, it is
possible to utilize a direct regularization method such as TR. For a problem that
involves a large matrix, for example, in three-dimensional simulations, an iterative
regularization method may be a better alternative.

Success in regularization depends to a large extent on choice of regularization
parameter. Based on the type of information available on a targeted solution, the
parameter-choice methods (PCM) are classified as a priori, which is independent of
the actual data, and a posteriori, which is dependent on the actual data [131]. The
former includes heuristic or error-free [132] methods that do not require the
knowledge of the noise level in the input data and seek to predict this information
from actual data. Note that for an infinite-dimensional compact operator, error-free
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PCM may fail to yield a convergent regularization parameter, namely, to provide a
regularized solution that will converge to the exact solution as the noise level tends
to zero [133].

In practice, there is always noise in the input data and its level is unknown a
priori. Hence we must resort to the error-free PCM, even though it may occasion-
ally fail to yield a convergent regularization parameter. Of course, if noise level can
be estimated a priori, we can use Morozov’s discrepancy principle [106, 134] to
determine the correct regularization parameter and get satisfactory reconstruction.
Alternatively, we can impose constraints on the norm of a regularized solution as
suggested by Isakov and Wu [74] to find a convergent regularization parameter.
The trouble is that the right constraint for the norm of the exact solution is hard
to find.

Our objective is to examine the effects of different expansions on resultant
reconstruction and, more importantly, to identify the expansion that can produce
the most accurate and efficient reconstruction.

Specifically, we consider three expansions: LSW, DSW, and DPS in HELS to
reconstruct the acoustic pressure radiated from an arbitrary source in free space. In
particular, we use TR, MTR, and damped singular value decomposition (DSVD) in
regularization scheme with its regularization parameter determined by an error-free
PCM such as GCV, L-curve criterion, and quasi-optimality criterion (QOC)
[135]. Reconstructed acoustic quantities are validated with respect to the bench-
mark data measured at the same locations as the reconstruction points.

The L-curve criterion [136] relies on a parametric plot of the norm of a
regularized solution versus the residual norm in a log—log scale with respect to
the regularization parameter. The corner of an L-curve (which is defined as the
point of maximum curvature) separates the horizontal part (where regularization
errors dominate) from the vertical part (where perturbation errors dominate), and
represents a balance between the regularization and perturbation errors.

8.5 Performances of LSW, DSW, and DPS Expansions

Here we examine the performances of HELS through LSW (8.5), DSW (8.7), and
DPS (8.14) expansions to reconstruct the acoustic pressures generated by a JBL®
speaker that consists of a woofer, mid-ranger, and tweeter inside a fully anechoic
chamber (see Fig. 8.1). In particular, we examine the convergence rates of these
expansions and condition numbers of the corresponding transfer matrices. The
faster the convergence rates and the smaller the condition numbers are, the more
efficient the numerical computations and the more accurate the HELS solutions
become.

In experiments the speaker was driven by an HP 8904 A Multi-Function Synthe-
sizer DC-600 kHz and a McIntosh MC352 Power Amplifier to produce white noise.
The acoustic pressures were measured by an array of 56 PCB T130D21 free-field
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Fig. 8.1 Test setup for tweeter  mid-ranger
reconstructing the acoustic
pressure emitted from a
JBL® speaker that consists
of a woofer, mid-ranger,
and tweeter inside a fully
anechoic chamber. Input
data were collected by an
array of microphones

]
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microphone array  woofer

microphones (see Fig. 8.1). The input data were sent to a personal computer through
the Larson Davis digital Sensor System Model 100 for analog to digital conversion.

Test procedures were as follows. First, the radiated acoustic pressures were
measured on a planar surface I' at 1 cm clearance in front of the speaker. These
data were taken as input to HELS using LSW, DSW, and DPS expansions,
respectively, to reconstruct the acoustic pressures on a surface S at 0.5 cm clearance
in front of the speaker up to 3,275 Hz (see Fig. 8.2). The reason for selecting this
surface S was that there was no way of measuring the acoustic pressures on the
speaker membrane directly.

Next, the acoustic pressures on this surface S were measured using the same
microphone array, and these benchmark values were compared with the
reconstructed acoustic pressures at the same locations. The measurement points
on I' and S were equidistant. The origin of the coordinate system was set at the
geometric center of the speaker. In particular, the auxiliary source for LSW was
placed at the geometric center of the speaker, those for DSW were distributed along
a vertical axis between the front surface and center of the speaker box, and those for
DPS were distributed on a plane next to the front surface of the speaker (see
Fig. 8.2).

For simplicity without loss of generality, we consider reconstructing the acoustic
pressure in front of the speaker. The characteristic dimension was

a= \/(0.28/2)2 +(0.42/2)* =0.28 m. So for the highest frequency of

3,275 Hz, the maximum dimensionless frequency was kd.x ~ 16.6.

Since we were only interested in reconstructing the acoustic pressure, it was
acceptable to gauge the number of expansion terms with respect to the maximum
dimensionless frequency ka... From [37] we learn that the total number of
expansion terms for LSW is J=(N+ 1)2; here, N is the order of expansion. In
general, we may set N =ka.x ~ 17. So J=324. Accordingly, we need at least
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Fig. 8.2 Schematic of the Speaker front surface  DPS DSW
locations of the auxiliary
sources for LSW, DSW, and
DPS expansions inside the

ro-o<——=

JBL® speaker. The
measurement surfaces I" and o _ 0.42m
S were in front of the I S o o—— LSW
speaker at, respectively, JeEi
1 and 0.5 cm away Ooff _______________________
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324 measurement points on I to cover the specified frequency range. In practice, we
may have to truncate the expansion to reduce distortion due to a low SNR at high
frequencies. In this experiment, we set N =9, so J = 100.

The number of expansion terms in DSW is J = 1,0x(2max + 1), Where n,, 1s
the number of auxiliary sources and m,,, is the order of expansion, which is smaller
than N in LSW. There are no known theories or methodologies that we can use to
estimate the optimum values of 7, and m,,, for arbitrarily shaped sources. In
general, the values of 7,,,x and m,,x depend on the complexities of source geometry
and the highest frequency of interest. To achieve the best results, it is a good idea to
set distances among neighboring auxiliary sources to be less than one wavelength of
the highest frequency of interest and distribute the auxiliary sources evenly on a
conformal surface inside the source boundary.

For example, the front surface of the speaker is of dimensions 0.28 x 0.42 m?,
the highest frequency is f,.x = 3,275 Hz, and the acoustic wavelength is A.,;, = ¢/
Jfmax = 0.104 m. Therefore, the estimated number of auxiliary sources for DSW is
Nmax = (0.28/0.104) x (0.42/0.104) = 11. Since the speaker in free space is often
modeled as a dipole, we set the highest order of expansion for DSW at my,,x = 4.
Accordingly, the number of expansion terms is J =99. Therefore we need to take
100 measurement points of the acoustic pressures on I" to guarantee satisfactory
reconstruction of the acoustic pressures in the specified frequency range.

In DPS, the auxiliary sources are distributed uniformly on a surface conformal to
a source boundary from the inside. However, the optimal number and locations of
the auxiliary sources are unknown a priori, whose determination is a topic of
research by itself and will not be considered here. Since the front surface of the
speaker is planar, it is sufficient to distribute the auxiliary sources on a plane
with J =n, X n,, where n, and n, are, respectively, the numbers of sources in the
x- and z-axis directions. Here we set n, = 10 and n, = 10, so J = 100.

In this experiment 112 measurement points of the acoustic pressures were taken
onI" and S, respectively, which were enough for LSW, DSW, and DPS expansions.

It is emphasized that the number of measurement points is not as critical as it
seems. The controlling factor is SNR. If SNR is low, there is no way of obtaining
good reconstruction because the critical near-field information will be buried in
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background noise. Accordingly, the number of expansion terms must be signifi-
cantly reduced to avoid distortion in reconstructed images. Under this condition, the
reconstructed results will not be good no matter how many measurement points are
taken.

8.6 Locations of the Auxiliary Sources

Selection of the auxiliary source locations can be crucial to the success of recon-
struction. Although there is no known theory that can depict exactly the interrela-
tionship between locations of auxiliary sources and rate of convergence of resultant
expansion and reconstruction accuracy, the following guideline is clear: the ana-
lytic continuation of solution to the Helmholtz equation requires that the surface on
which auxiliary sources are distributed must enclose all singularities of an acoustic
field.

However the singularities for a given acoustic field are unknown a priori. To
gain a good understanding of the singularities locations, we start from an arbitrarily
selected auxiliary surface, and measure the acoustic pressures on surfaces I" and S,
respectively. Next, we substitute the data measured on I" to reconstruct the acoustic
pressures on S and calculate the mean relative errors in reconstruction with respect
to the benchmark data on S. Finally, we move the auxiliary surface to a different
location, and repeat these processes again. Note that there is no need to remeasure
the acoustic pressures on S. This iteration is continued until the mean relative errors
in reconstruction are minimized, and the corresponding locations of the auxiliary
sources are optimized for a given frequency and a set of measurements.

It is emphasized that in practice we only measure the acoustic pressures on the
surface I'. The reason for taking an additional set of measurements on § is to
develop a guideline for selecting the optimal location of an auxiliary surface for a
specific expansion function. Needless to say, the impact of the auxiliary source
locations for different expansions is different. Hence, by taking an independent set
of measurements on S, we can validate the reconstructed acoustic pressures, find the
optimal location of an auxiliary surface for a given expansion, and study the
sensitivity of the auxiliary surface on the reconstruction accuracy using this
expansion.

Figure 8.3 depicts the mean relative errors in reconstructing acoustic pressures
on S using LSW, DSW, and DPS, respectively, with respect to the auxiliary sources
distributed on a plane at y = —y,, where y, varies from —0.7 to 0.13 m, for a fixed
frequency of 1,690 Hz. Results show that DSW is relatively insensitive to the
auxiliary source locations as compared to LSW and DPS are. At the optimum
auxiliary surfaces, LSW and DSW can yield nearly the same level of accuracy in
reconstruction, whereas DPS produces a slightly lower accuracy in reconstruction.

It is interesting to observe that LSW places its optimum location of the auxiliary
surface near the origin of the coordinate system, DSW moves its optimum auxiliary
surface slightly away from the origin of the coordinate system toward the front
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Fig. 8.3 Comparison of the auxiliary surface locations at 1,690 Hz. Continuous line: for LSW;
broken line: DSW; and dotted line: DPS

surface of the speaker, and DPS places its optimum auxiliary surface right behind
the front surface of the speaker system.

Note that the standoff distance and frequency can also affect the reconstruction
accuracy. However, their effects are negligible compared to those of the auxiliary
source surface location. So we focus on the determination of optimal locations of
auxiliary source surfaces by minimizing the mean relative errors in reconstruction
with respect to the benchmark values measured on S.

8.7 Condition Number of the Transfer Matrices

Reconstruction of acoustic radiation from any source is an ill-posed problem. As a
result, the transfer matrix in HELS may be ill conditioned. Il conditioning of any
matrix is measured by the 2-norm condition number defined as the ratio of the
largest to smallest singular values of the matrix. This can be done prior to taking
any measurements, if the frequency and measurement and reconstruction locations
are specified. In many situations, if the condition number is in the order of O(10?) or
higher, the matrix may be ill conditioned; if the condition number is in the order of
0(10?) or lower, the matrix is more or less well conditioned. Regularization may be
omitted if the transfer matrix is well conditioned, but must be implemented if the
matrix is ill conditioned.
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In our experiments, the condition numbers of the transfer matrices for a selected
standoff distance and frequency were found to be: 0(101) for DSW, 0(102)~0
(10%) for LSW, and O(10°) for DPS. Therefore, for the same frequency and
measurement and reconstruction locations, DSW offers the best-conditioned trans-
fer matrix among all three expansions. This is expected because DSW uses a lower-
order spherical Hankel function (1, =4) than LSW does (N =9). The small
singular values are always associated with high-order expansion terms, and the
condition number of a transfer matrix containing the high-order terms is much
larger than that of a transfer matrix containing the low-order terms. The reason for
DPS to produce an ill-conditioned transfer matrix may be attributed to the fact that
the sound field produced by the present speaker system cannot be adequately
described by a distribution of point sources because there are three speakers that
emit sounds simultaneously. Consequently, the resultant transfer matrix in DPS
becomes rank deficient and ill conditioned.

From the calculated condition numbers, we see that regularization is needed for
DPS and LSW, but not needed for DSW. Since condition numbers are calculated
before measurements are taken, no information on noise level in the input data is
available. Consequently, we have to resort to an error-free PCM in regularization.

One of our objectives is to examine the performances of HELS using different
expansions to reconstruct acoustic radiation from an arbitrary source. To this end,
we first calculate the ideal regularization parameter by minimizing reconstruction
errors with respect to the benchmark data on S. This process allows for assessing not
only the reconstruction accuracy but also the impact of reducing the measurement
number on reconstruction using various expansions. This latter is of great impor-
tance since in practice fewer measurement points mean bigger savings in time and
costs.

8.8 Effect of Measurement Number

The effect of the number of measurement points on reconstruction accuracy is
examined. Figures 8.4, 8.5, and 8.6 describe the mean relative errors in
reconstructing the acoustic pressure through LSW, DSW, and DPS expansions,
respectively, under different numbers of measurement points. Since the frequency
range is relatively low, SNR is relatively high. So the more the measurements are
taken, the higher the accuracy in regularized reconstruction becomes.

Note that regularization can significantly enhance the reconstruction accuracy,
especially at higher frequencies. This is obvious in Figs. 8.4 and 8.6 since the
transfer matrices for LSW and DPS are ill conditioned. However, the impact of
regularization on reconstruction accuracy for DSW is not as drastic (see Fig. 8.5)
because its transfer matrix is more or less well conditioned. Note that we have used
ideal regularization parameters for all three expansions to maximize these effects.
The calculated regularization parameters for LSW and DPS increased monotoni-
cally with frequency from 0.002 to 0.05, whereas that remained negligibly small at
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Fig. 8.4 Comparison of the mean relative errors in reconstructing the acoustic pressure by using
LSW expansion. Continuous line: 56 measurement points with an ideal regularization parameter;
broken line: 112 measurement points without using regularization; dotted line: 112 measurement
points with an ideal regularization parameter
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Fig. 8.5 Comparison of the mean relative errors in reconstructing the acoustic pressure by using
DSW expansion. Continuous line: 56 measurement points with an ideal regularization parameter;
broken line: 112 measurement points without using regularization; dotted line: 112 measurement
points with an ideal regularization parameter
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Fig. 8.6 Comparison of the mean relative errors in reconstructing the acoustic pressure by using
DPS expansion. Continuous line: 56 measurement points with an ideal regularization parameter;
dotted line: 112 measurement points with an ideal regularization parameter

0.0008 for DSW, which meant that there was almost no need for regularization in
DSW within this frequency range.

Results demonstrate that even with an ideal regularization parameter, DPS failed
to yield a compatible level of accuracy as compared to those of DSW and LSW
under the same set of input data. Moreover, DPS is more sensitive to PCM than
DSW and LSW are.

It is emphasized that for ill-conditioned transfer matrices, just increasing the
numbers of measurement points and expansion terms in HELS without
implementing regularization will only further distort reconstruction. This is seen
in Fig. 8.6 using the DPS expansion. As the number of measurement points was
doubled, the mean relative errors in reconstruction exceeded 200 % when no
regularization was used (the corresponding curve was omitted in Fig. 8.6 for
clarity). The reason for that was because the high-order terms in DPS expansion
were contaminated by noise embedded in measured data, and these errors were
significantly amplified as the acoustic pressures were projected back toward the
source surface. When the transfer matrix is not highly ill conditioned, as in the case
of LSW expansion, increasing the measurement number can improve reconstruc-
tion accuracy to certain frequency without regularization (see Fig. 8.4). If the
transfer matrix is more or less well conditioned, as in the case of DSW expansion,
increasing the number of measurement points allows for an increase in the number
of expansion terms, which enhances the reconstruction accuracy even without
regularization (see Fig. 8.5).
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8.9 Choice of Regularization

In many engineering applications, the noise level embedded in the input data is
unknown a priori. Thus we must rely on an error-free PCM in regularization. In this
study, we want to find out if there exists an optimal regularization with an error-free
PCM for each of DSW, LSW, and DPS expansions in HELS. To this end, we
examine performances of all possible combinations of TR and its modification
implemented by utilizing GCV and DSVD, together with various penalty functions
with respect to pressure, normal velocity, or both, and error-free PCM such as GCV,
L-curve, and QOC to select the best regularization parameter. Results show that for
some expansions, it is possible to find the optimal regularization with an error-free
PCM that can produce an almost ideal regularization parameter over a wide
frequency range; but for other expansion such optimal combinations cannot be
found. For brevity, we summarize the most important results here:

1. The optimal regularization for DSW is MTR implemented through DSVD, and
the best regularization parameter can be provided by L-curve together with an
energy norm as its penalty function.

2. The optimal regularization for LSW is TR implemented by GSVD with its
regularization parameter determined by GCV using an energy norm as its
penalty function. Depicted in Fig. 8.7 is the comparison of the mean relative
errors in reconstruction using LSW and TR with its regularization parameter
determined by different error-free PCMs. It is clear that the regularization
parameter given by GCV is almost identical to the ideal value over the specified
frequency range, that provided by L-curve is close to an ideal one, but those
produced by QOC are way off the target. Figure 8.8 shows the regularization
parameters given by GCV, L-curve, and QOC for TR in LSW versus the
frequency. Results illustrate that GCV yields nearly the ideal regularization
parameters, L-curve gives a regularization parameter close to the ideal one,
but the regularization parameter provided by QOC is off by at least two orders
of magnitude of an ideal value.

3. For DPS, it is not possible to find one regularization scheme that can produce
satisfactory reconstruction over a wide frequency range. In fact, we must utilize
different combinations of regularization, penalty function, and error-free PCM
to select an optimal regularization parameter for different frequency.

Figure 8.9 summarizes the results of this investigation on determining optimal
choices of regularization schemes for DSW, LSW, and DPS expansions in HELS.
Comparing Fig. 8.9 with Figs. 8.4 and 8.5 demonstrates that using the optimal
regularization schemes, for example, TR implemented by DSVD with its regular-
ization parameter specified by L-curve for DSW, and TR with its regularization
parameter determined by GCV for LSW, we can obtain the same level of recon-
struction accuracy as that produced by an ideal regularization. When we only rely
on a single regularization scheme, for example, TR and GCV for DPS, the mean
relative reconstruction errors can be very large, especially at higher frequencies.
This can be seen by comparing the mean relative errors in Fig. 8.9 with those in
Fig. 8.5.
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Fig. 8.7 Comparison of the mean relative errors in reconstructing the acoustic pressure by using

LSW expansion in HELS with TR and various error-free PCM. Broken line with dots: QOC;
broken line: L-curve; dotted line: GCV; continuous line: Ideal case
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Fig. 8.8 Comparison of regularization parameters calculated by using various error-free PCMs

for reconstructing the acoustic pressure using LSW in HELS. Broken line with dots: QOC; broken
line: L-curve; dotted line: GCV; continuous line: Ideal case
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Fig. 8.9 Comparison of the mean relative errors in reconstructing the acoustic pressure using
different expansions with regularization strategies. Continuous line: DSW using DSVD and
L-curve; dotted line: LSW using TR and GCV; broken line: DPS using TR and GCV

It must be emphasized that there is no single regularization strategy that can
yield the best reconstruction for all sources under all circumstances. For example,
although TR and DSVD plus L-curve work well for DSW in the present case, it may
not work well in a different scenario or in a different frequency range. The best
regularization strategy is always case dependent. Also, we must keep in mind that
an error-free PCM can fail to yield a convergent regularization parameter at all. On
the other hand, it is always advantageous to take double-layer measurements
whenever possible. These double-layer measurements can help us to device optimal
regularization schemes and produce the best reconstruction of the acoustic
quantities.

To summarize, results show that DSW leads to the best-conditioned transfer
matrix, is the least sensitive to choices of auxiliary surface locations, and yields
most satisfactory reconstruction over a wide frequency range. LSW is the second
best choice of expansion for HELS, its transfer matrix can be weakly ill condi-
tioned, and its optimal auxiliary source location can be close to the geometric center
of a source. If the optimal location for the auxiliary source is selected, LSW can
yield nearly the same level of accuracy in reconstruction as DSW does. Moreover, it
is possible to improve the reconstruction accuracy in LSW by increasing the
measurement points taken at very close range to the source surface, even without
regularization. DPS gives a highly ill-conditioned transfer matrix and is very
sensitive to the auxiliary surface location. The reason for that may be due to the
fact that the acoustic pressure radiated from an arbitrary source may not be
adequately described by a distribution of point sources. When DPS expansion is



162 8 Equivalent Sources Using HELS

used in HELS, it is necessary to implement regularization in order to obtain a
convergent reconstruction.

The optimal regularization for DSW is MTR implemented through DSVD plus
L-curve to determine the regularization parameter with an energy norm as its
penalty function. The optimal regularization for LSW is TR implemented by
DSVD plus GCV to determine its regularization parameter with an energy norm
as its penalty function. There is no single optimal regularization scheme that can
produce satisfactory reconstruction over a wide frequency range for DPS. In this
case, different regularization schemes must be used at different frequencies in order
to produce satisfactory reconstruction.

It is emphasized that it may not be possible to find the optimal regularization
schemes for DSW and LSW that will work for all scenarios. In other words, there is
no single regularization strategy that can guarantee good reconstruction for all
sources under all conditions.

Finally, it is always a good idea to take double-layer measurements. Such
measurements can help us to determine the optimal auxiliary surface location for
particular expansion functions in HELS and to select the optimal regularization
scheme that includes choosing penalty functions and error-free PCMs to yield the
best regularization parameter.

Problems

8.1. What is LSW? What does it attempt to do? What are the differences between
LSW and the Helmholtz integral formulation?

8.2. What are the differences between LSW and the HELS method? Will LSW
suffer from the same difficulties as those of the Rayleigh hypotheses for a
corrugated surface?

8.3. What is DSW? What does it attempt to do? What are the differences between
DSW and the original HELS method?

8.4. What are the differences between DSW and the HELS method using the
DSW expansion?

8.5. Will DSW have the same difficulties as those of the Rayleigh hypotheses for
a corrugated surface? Will the HELS method using DSW expansion have the
same difficulties as DSW for a corrugated surface?

8.6. What is DPS? What does it attempt to do? What is the difference between
DPS and DSW?

8.7. What are the differences between DPS and the HELS method using the DPS
expansion?

8.8. What are the optimal regularization schemes for the HELS method using
LSW, DSW, and DPS expansions?

8.9. What are the performances of the HELS method using LSW, DSW, and DPS
expansions?

8.10. What are the impacts of various parameters such as the locations of the
auxiliary sources, number of measurement points, and choices of regulariza-
tion schemes on the performances of the HELS method using LSW, DSW,
and DPS expansions?



Chapter 9
Transient HELS

Most vibrating structures are subject to impulsive or transient force excitations in
practice. Oftentimes transient excitations are unknown and therefore the resultant
acoustic field cannot be predicted. Even if the excitations are given, prediction of a
transient acoustic field produced by an arbitrarily shaped source is very difficult.
The scarcity in literature on predicting, not to mention reconstructing a transient
acoustic field, is the testimony of how challenging this problem is.

One possibility of determining the transient acoustic field generated by an
arbitrary object is to reconstruct the acoustic quantities in the frequency domain
first, and take an inverse Fourier transform to retrieve the time-domain signals.
Wang is the first to reconstruct a transient acoustic field in this manner [137]. Need-
less to say, numerical computations involved in this process are very intensive, if
possible at all.

Another possibility is to utilize the so-called non-stationary spatial transforma-
tion of sound field (NS-STSF) [138]. NS-STSF is based on the time-domain
holography (TDH) that processes the acoustic pressures measured by a planar
array of microphones with the neighboring microphones separated by one-half
the wavelength of a target acoustic wave. Basically, TDH produces “a sequence
of snapshots of instantaneous pressure over the array area, the time separation
between subsequent snapshots being equal to the sampling interval in A/D conver-
sion. Similarly, the output of TDH is a time sequence of snapshots of a selected
acoustic quantity in a calculation plane parallel to the measurement plane”
[138]. Therefore, what one sees is a series of the acoustic pressure images in the
frequency domain at fixed time instances over the recorded measurement time
period. As pointed out in Sect. 5.3, NS-STSF is actually non-stationary acoustical
holography because it gauges with respect to the acoustic frequency or the acoustic
wavelength, not the spatial frequency or the spatial wavelength.

In this chapter we develop the transient NAH formulations by using the HELS
method to visualize acoustic waves traveling in both space and time. Note that
Hansen [101] has used a spherical wave expansion to predict time-domain acoustic
radiation by scanning the acoustic pressure over a minimal spherical surface
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enclosing target sources. The major difference between Hansen’s work and the
present one is that the former is based on infinite series of the spherical Hankel
functions and spherical harmonics, and expansion coefficients are determined using
the orthogonal property of the spherical harmonics; while the latter utilizes a finite
expansion and expansion coefficients are determined by matching the expansion
solution to the measured data and the errors involved in this process are minimized
through regularization. This infinite series is called Rayleigh series and Sect. 4.2
has discussed in detail the differences between the Rayleigh series and the HELS
formulations. We have learned that the Rayleigh series is in general invalid for
reconstructing the acoustic field on a corrugated or arbitrarily shaped surface based
on the acoustic pressure specified on a measurement surface above the source
surface.

Theoretically, the transient acoustic field generated by an arbitrary object can be
calculated by using the Kirchhoff-Helmholtz integral formulation, provided that
the normal component of the surface velocity is specified. For an arbitrarily shaped
object, there is no analytic solution to this integral formulation. Hence numerical
solutions are sought. A direct approach is to discretize the Kirchhoff~Helmholtz
integral formulation in both spatial and temporal domains simultaneously. Such an
approach is unrealistic in practice because the corresponding numerical computa-
tions are prohibitively expensive and time consuming. One alternative is to find
numerical solutions to the radiated acoustic quantities in the frequency domain first,
and take an inverse Fourier transform to obtain the time-domain signals
[137]. Needless to say, numerical computations involved are intensive, if possible
at all. The reality is that in most cases the normal surface velocity is not specified.
Thus these numerical solutions strategies, no matter how plausible they are, cannot
be utilized.

In Chap. 9 explicit formulations for reconstructing the transient acoustic field
generated by an arbitrarily shaped 3D object in free space subject to an arbitrarily
time-dependent excitation are derived using the Kirchhoff-Helmholtz integral
theory. The reconstructed acoustic quantities are expressed in the frequency
domain, and the corresponding time-domain quantities are obtained by taking an
inverse Fourier transform, which is facilitated by using the residue theorem. The
final formulation for reconstructing a transient acoustic quantity is expressed in a
convolution integral of the acoustic pressure signal measured in the time-domain
and a unit impulse response function.

It is emphasized that these explicit formulations are applicable to an arbitrary
object with a uniformly distributed surface velocity. Input data to these explicit
formulations are the acoustic pressure signals measured on a hologram surface in
the near field of the target object.

For simplicity yet without loss of generality, background noise and interfering
signals are assumed negligible as compared to the measured acoustic pressure
signals. Reconstruction of the transient acoustic field is carried out by using
BEM- [25-27, 91] and HELS [36, 37, 91, 102]-based NAH.
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9.1 Transient Acoustic Radiation

To tackle transient acoustic radiation problems, let us first define the Fourier
transform as

F(F0) = [ (F)emta ma 1(5r) = L | F(Fw)e ao. 00

where f (?;t) is a continuous and bounded function as t— co, namely,

[o¢]

[ (sl

—00

Assume that the transient acoustic field is generated by an arbitrary object
subject to an arbitrarily time-dependent force excitation. Also, assume that the
velocity is uniformly distributed on the surface of the object, which has a closed,
smooth, and impermeable surface immersed in an inviscid, isotropic, and
unbounded fluid medium. This object is initially stationary and excited by an
unknown forcing function at t=t,, causing the amplitude of the velocity to rise

from O to V; instantly in a specific direction ¢., where ¢, is a unit vector at the
center of the object,

V(}’s; r) — Ve H(t—1,), 9.2)

where V is a constant and H(¢ — ¢,) represents the Heaviside step function defined
as

0, t<t
H(t—t) =4 1/2, t=1. (9.3)
1, t>1

The derivative of the Heaviside step function is the Dirac delta function [139],

H'(t—t5) = 6(t — ty). (9.4)

The acoustic pressure p(;; t) generated by this accelerated body in free space

satisfies the homogeneous wave equation,

vzp(}’;z) —%%:o, 9.5)

subject to the Sommerfeld radiation condition,
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L1

hm ‘é’ ‘H’ CE =0, as ’;‘Hoo. (9.6)

[¥]—e0

In addition, p (;; t) satisfies the causality condition,
p(?;t) =0, for 1 < t,. (9.7)

In other words, the field is perfectly silent before the body is suddenly excited at
t=t,

To find an integral representation of the wave equation (9.5), we make use of the
temporal free-space Green’s function

g(?;t

where 6(t — t; — R/c) is the Dirac delta function, (¢t — R/c) is known as the retarded
time because it takes additional time R/c for the acoustic signal to travel from the

. o(t—t;—R
) =R

9.8)

is the distance between the source

— . — — —
source at x to areceiver at x,here R = |x — x;

and receiver in field space.
The temporal free-space Green’s function satisfies the homogeneous wave
equation,

V2 (x t x“ts) —C—lzazg(i;#’ts) = —47:6(} - i)é(r — 1), (9.9)

subject to the initial condition,

g(};t}>

and the reciprocal relation,
g(x§t xsﬁs) = g(xs§ — | X;

Physically, Eq. (9.10) states that if the source is excited at #;, no sound is detected
before time ¢,. Equation (9.11) is the reciprocity principle, which states that when
the source location and emission time are interchanged with the receiver location
and time, the effect remains unchanged.

ag(;;t i;t)
S;z) = NPT 0, for 1< 1y, (9.10)
s ot

—t). (9.11)
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Multiply Eq. (9.5) by g (}’; %, zs) and Eq. (9.9) by p (}’; t) and utilize the chain
rule to replace V-(AVB) by AV?B — VA-VB. Doing so yields

10/ 0 10p 0
V- (8Vp) = Vp Vg -5 (ga_l;) +§a—lza—f:0, (9.12)
10/ Og 1 Op Og
V“”””’"“‘ﬁ&(%) 3% o
= —4ﬂp5<;—;5>5(t—ts), 9.13)

where the arguments of p(}; t) and g(x t xs, g) in Egs. (9.12) and (9.13) are

suppressed for brevity. Subtracting Eq. (9.13) from (9.12), we obtain
10/ op Og - o
V- (eVp=pVs) — 57 (ga —pa) = 4ﬂp5(x - xs) S(t—1).  (9.14)

Integrating Eq. (9.15) over the entire time history and three-dimensional space
leads to

T 10/ p g
JJ J V.- (¢gVp—pVyg) — zat( af at)dtsdﬂ

%
=

J pé(x — Xy (t — t,)dtdQ;. (9.15)

The integrations on the right side of Eq. (9.15) are readily obtained by the sifting
property of the Dirac delta function (6.4). Changing the order of volume and
temporal integrations of the first term on the left side of Eq. (9.15) and using the
Gauss theorem, we can replace the volume integral by a surface integral. As for the
second term on the left side of Eq. (9.15), the temporal integration and time
derivative cancel each other. Therefore, we obtain

o0

4np(};r) = J ”( Yaagx gA)dets
N

1 op,  0g\|™
=l ( ars‘f’a—f)\;m“ (516)
Qs

where a subscript s in Eq. (9.16) indicates that the quantities are evaluated at a
surface point. The second term on the right side of Eq. (9.16) is identically zero
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because of the property of the Dirac delta function (6.4). Changing the order of
temporal and surface integrations in the first term on the left side of Eq. (9.16) once
again then leads to

4np(};r> - ” T [p ais 8t = th —R/e) _ gi 8 = “R_ RO aras. 9.17)

§ —

Using the chain rule and property of the Dirac delta function, we can rewrite the
first term on the right side of Eq. (9.17) as

” Tp 0 ot —t—R[S) o

ony R
S —oo
P 8R P a /
| gt e mperauas = [ ||| Bg o1 mjesanas
S —oo § —oo
— |12 — | = — R
IGES t:t_R/CdS UcR o | o [ps(t — t; — R/c)]dtdS
s ) —o0
1 0R [ Op » OR
—||—==— | =6(t—t; —R/c)dtdS = — || =5=— d
cR al’ls J afx ( ’ /C) tsaS JJRZ anS t;=t—R/c s
s —00 N ’
1 OR ~ 1 OR Op
—R B I i
+ || cram 3 — 6~ R/]ds ” Ron ot 0
s S '
1 OR 10
_ ds.
won (i +caM o
s s
(9.18)
Substituting Eqgs. (9.18) into (9.17), we obtain
- 1 10R /1 10 -
) = —— = \= 53 Ls d
[)(X, ) 4HJJ |:R 8ns <R T c ats) (x‘ >:| ty=t—R/c :
s 2
_L“ lM as. (9.19)
4z R ony
N ty=t—R/c

Equation (9.19) is known as the Kirchhoff-Helmholtz integral formulation for
predicting the transient acoustic pressure in free space. The surface acoustic

pressure p (;S; ts) on the right side of Eq. (9.19) is related to its normal derivative
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op (;S;ts)/ an(}x> via the surface Kirchhoff-Helmholtz integral equation

obtained by taking the limit as the field point approaches the surface X — Xy
The processes of taking this limit are the same as those described in Sect. 6.3 and
the result is

das’'

<Ht) 1” 1 OR, 1+18 (H t)
Xt —_ _ — _—_ Xoilo
PSS = Taa) g (R ong Ry ™ ¢ 0ag PN N L e

— LJJ LM ds’. (9.20)

2w S’Rs ans/

ty=t;—R;/c

The normal derivative of the surface acoustic pressure in the second term on the
right side of Eq. (9.20) can be rewritten by using the Euler’s equation, the initial
condition (9.2) and the derivative of the Heaviside step function (9.4) as

op (a;li: fs') — Ovn (a};jv ts’) = —poVy (Hy '?c>5(1} —ty). (9.21)

Substituting Eq. (9.21) into the second term on the right side of Eq. (9.20) and
taking the Fourier transform, we obtain

r(ive) = ol (5 Jr(see)s

PoVs Hs"?z ikRy 7!
sdS'. 22
JL( . ) 5 0.22)

Equation (9.22) is the surface Helmholtz integral equation for solving the
surface acoustic pressure, given the initial condition (9.2). Note that the surface
velocity V; is independent of the spatial variable. This often happens in practice
when an object is hit by a force and starts to move impulsively. This sudden motion
may result in an impulsive-like sound. The Fourier transform of the resultant
acoustic pressure is expressible as

P(;s;w) = 5(%;0})%, (9.23)

where 5(}}; a)) may be obtained by substituting Eq. (9.23) into (9.22),

df(;s; w) = pOJL/ (HS/R—Y?C> e s ds' /c(w), (9.24a)
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where

¢(w) =27 + ” D ER N (1 — kR, )eRds'. (9.24b)
g\ R

Once the surface acoustic pressure is specified, the acoustic pressure anywhere
in free space is completely determined by the Fourier transformed version of
Eq. (9.19),

P(};w) = n(?c)«)) Vs, (9.25)

e\ ikR
- Z—;’[ “ (HS : a.)Rzg(w) - (Hs : ?R)(l — ikR) “ (“1%) etk g’ ;—3515.
N
(9.26)

Equation (9.25) offers the closed-form solution for the acoustic pressure in the
frequency domain generated by an arbitrary object subject to the initial condition
(9.2) in free space. The temporal acoustic pressure can be obtained by taking an
inverse Fourier transform of Eq. (9.25),

T

p(5r) = [ p(Fe)e o 027

For an early portion of the transient event, Eq. (9.27) can be evaluated asymp-
totically by taking the limit as @ — oo [140],

lir%p(;;t) = —i lim P(;;a)>. (9.28a)
11— W—00

On the other hand, for a latter portion of the transient event, the inverse Fourier
transform (9.27) can be evaluated asymptotically by taking the limit as @ — 0,

lim p(}'; x) — —ilim P(}’; a)). (9.28b)
t—00 w—0

These two extreme cases indicate that the early portion of the transient event is
governed by the high-frequency content, whereas the late portion of the transient
event is controlled by the low-frequency contents of the spectrum. However, these
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asymptotic solutions are undesirable as far as the tractability of any transient event
is concerned. Alternatively, one can utilize the residue theorem to evaluate the
inverse Fourier transform (9.27) as discussed below.

9.2 Residue Theorem

Mathematically, the evaluation of an infinite integral such as the one given by
Eq. (9.27) can be facilitated by a contour integral. Namely, one can replace the
infinite line integral along the real axis by a finite one from —R to +R in
the complex frequency domain, and close the integration path by a semicircle in
the lower half plane in the clockwise direction. The reason for choosing the lower
half plane in the complex frequency domain is to ensure that the integration remains
finite. The radius R is then extended to infinity. The integration along the semicircle
is finite because by definition the infinite integral satisfies the boundedness condi-
tion [see Eq. (9.1)] [141],

p(}’;t) - | fc @e”“‘”da) V,. (9.29)

2t)c g(o)

Equation (9.29) shows that the temporal acoustic pressure is expressible as V
multiplied by a contour integral of n(;; a)) /¢(w) with 7](?; a)) and ¢(w) being

given by Eqs. (9.26) and (9.24b), respectively. The contour integral in Eq. (9.29)
can be evaluated by the residue theory.

Figure 9.1 shows this contour integration path C. If there are singularities on the
real axis, they must be excluded by drawing a small semicircle of radius r = e. For
example, suppose that the integrand has singularities at +x, on the real axis. Then
the contour integration path can be broken up into segments from —R to (—x¢ — €),
a semicircle from (—xg — €) to (—xo+¢€), a straight line from (—xy+¢€) to (xo — €),
another semicircle from (xy — €) to (xo + €), another straight line from (xy + €) to +R,
and a semicircle from +R to —R. The integration along the small semicircle is with
respect to edf, where 6 varies from z to 0, which vanishes in the limit as € — 0. The
integration along the large semicircle is with respect to Rd6, where @ varies from =
to 0, which is identically zero because the boundedness condition is satisfied as
R — .

Therefore, the infinite line integral in Eq. (9.26) is equivalent to the contour
integral in Eq. (9.29), which reduces to the line integral from —R to +R with
R — oco. Meanwhile, this contour integral is equal to the sum of residues enclosed
by the contour C. Consequently, we obtain

p(?; t) = h(}"? z) Vs, (9.30)
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Fig. 9.1 Schematic of a iy
contour integral in the
complex frequency domain

-R  -Xx
N

where 7% (75‘;3, l) is the sum of residues enclosed by the contour C,

h(? Xy t) = —iZ[: ’meiwq(”"?/"m <t — 1 —f) (9.31)

where the Heaviside step function appears as the field acoustic pressure is felt only
after the source is suddenly excited at ¢ =t¢, plus the retarded time r/c, which is
needed for the impulsive acoustic signal to travel from the source to any receiver.
Also, we have adopted a minus sign because the contour is completed by a
semicircle in the lower half plane. The symbol ¢’ (w,) represents the derivative

of ¢(w,) with respect to w, and w, is the gth singularity of the ratio (?, wq> /¢c(®),
which can be obtained by setting ¢(w,) =0.

Example 9.1 Consider the case of a sudden-expansion sphere of radius r=a
subject to the initial condition (9.2) with n (;v) See=1. Suppose that this sudden
expansion occurs at ¢ =t, (=a/c). The surface acoustic pressure in the frequency
domain can be obtained by using Eq. (9.23) with 5(};; a)) given by Eq. (9.24a),

which for a spherical surface is given by [142]

5(;““’) - ikaa— 1l

Therefore, Eq. (9.23) gives the surface acoustic pressure in the frequency
domain,

ika

— pOVSae
P( s ) = ; .
T @ 1 — ika
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Similarly, substituting §<;s;a}) into Eq. (9.25) yields the field acoustic

pressure as

- PoVs a\
(i) = 2 ()
e (1—ika)<r>e

The temporal acoustic pressure anywhere in free space is given by Eq. (9.27),
which can be replaced by the residue theorem through Eq. (9.30), where

2
n (?; Cl)q) =Po (a—> elaralle,
r
a

c(wg) =1—ika, and ¢'(w,) = _,'Z,

where w, is the gth root of the characteristic equation, g(wq) = 0. In this case there
is only one root, w; = —ic/a. Accordingly, the residue theorem leads to

p (;, t) = pocVs (f) e (/g (t — E) ,
r ¢

which agrees perfectly with the analytic result. This transient sound field is typi-
cally seen in an explosion, where the amplitude of the acoustic pressure decays
exponentially in all direction.

Example 9.2 Next, consider the case of a sphere of radius = g that is impulsively
accelerated in the z-axis direction such that the normal surface velocity is given by

Vn (}ﬁ [> = Vs (Hv ' Zz)]—](t - ts)7
where ¢; = a/c. Following the same procedures as those in Example 9.1, we obtain
5(};; a)) = a(ika — 1)/ {2 — (ka)® — izka]

The surface and field acoustic pressures in the frequency domain are given,
respectively, by

and

p(;y; a)) _ poVsa(l —zika) c0s 6 kg
2 — (ka)” — i2ka

— — 1l 2 )

P(x;a)) _ PoVsa(l 2lkl)0089 (g) il
2 — (ka)” — i2ka \r
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Setting the denominator in the above to zero gives two roots in the lower half
complex frequency domain, @; = (1 —i)c/a and w, = (—1 — i)c/a. Accordingly, the
temporal acoustic pressure at a field point is found to be

p(;; t) = pocVicosO(a/r)e "V H(t —r/c)
{cos[(ct —r)/a] — (1 —a/r)sin[(ct —r)/a]},

which once again agrees perfectly with the analytic result. This transient sound field
is typically seen during an impact where the acoustic pressure is highly directional
yet decays exponentially.

9.3 Extension to Arbitrary Time-Dependent Excitations

The formulations derived in Sect. 9.2 for predicting the transient acoustic pressure
field can be extended to arbitrary time-dependent excitations acting on rigid bodies
in free space. To the end, we consider a rigid body subject to a temporal rectangle
function, which consists of two unit step functions in the opposite signs.

AV (; z) — Ve H(t— 1) — H(t — 1, — A1), (9.32)
where At is the gap between two unit step functions.

Following the same procedures as those described in Sect. 9.2, we derive the
resultant surface acoustic pressure in the frequency domain as

AP(};w): (1_612(2';()(;0)) V,. (9.33)

The corresponding temporal acoustic pressure anywhere in free space may be
obtained by taking the inverse Fourier transform of Eq. (9.33), which can be
evaluated via the residue theorem and be expressible as

ap (1) = [h(;\;;;t) —n(

X5 l) is the same as that given by Eq. (9.31) and h(?

Nt — At)] V., (9.34)

where 7 (?
defined as

Xgif— At) is
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L n(ﬁ%) e R
h(x’xs;t— Ar) A <z —Ar—1 )
C

¢ (@)

(9.35)

Consequently, the transient acoustic pressure radiated from an object subject to a
velocity rectangle impulse of constant amplitude is the superposition of two step
response functions of the same amplitudes but opposite signs with a separation of
At in time. Meanwhile, any continuous and arbitrarily time-dependent excitation
may be approximated as a sum of rectangle impulses of constant amplitudes with a
small duration At. Therefore, for an object subject to a continuous and arbitrarily
time-dependent velocity excitation, we can write the field acoustic pressure as a
sum of individual acoustic pressure pulses,

p(}’;z) = [h (}"3{ tg) - h(}"};;@ - Ax)}vs. (9.36)
l

Equation (9.36) is now ready to be extended to a general, continuous, and time-
dependent excitation. For this purpose, we rewrite Eq. (9.34) in the following
manner,

- h(¥|5at) = n(F| 00— ar)
Ap(x;t) - o NS (9.37)

Equation (9.37) represents an acoustic pressure pulse at a field point X and time
t due to a velocity rectangle pulse at time #;. As Ar— 0, the square bracket term of
Eq. (9.37) becomes an impulse response function. The transient field acoustic
pressure at X due to all the velocity impulses prior to time ¢ can be expressed as
the Duhamel integral [143],

t

p(}’;z) — J h(}"}’s;r— T) V.dr, (9.38)
0

where h(x‘xx; t— 1) is known as the impulse response function since it is the

response to a velocity impulse at time 7, and can be obtained by using the residue
theorem as

h(} Xyt — r) - —i; %e—w. (9.39)

Equation (9.38) states that the transient acoustic pressure a field point X and time
t can be expressed as the convolution integral of the impulse response function and
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the time history of the surface velocity of an object. Sometimes this convolution
integral is abbreviated as

p(?c’;t) = h(?;t) X Vn (}’t) (9.40)

where v, (; PR t) =V (Hg . ?(.>H (t — t;) represents the normal surface velocity of

the source and the symbol * indicates the convolution integral given in Eq. (9.38).

9.4 Transient NAH Formulations

The transient formulations developed in Sects. 9.1-9.3 have laid a solid foundation
for performing transient NAH. Two types of implementation schemes, namely, the
Helmbholtz integral formulation and HELS method-based NAH are considered in
this section.

9.4.1 Reconstruction Through BEM-Based NAH

Suppose that the input data consist of the acoustic pressure signals measured at };
on the hologram surface, m=1, 2,...,M, which is positioned around the source
surface in the near field. Taking the Fourier transform of the measured acoustic
pressure signals and using Eq. (9.25) lead to the following general, discretized
BEM-based formulations:

{P(;;,w) }M><1 - {Tpv (;; ;S;w) }ans(w)’ (9:41)

— r . .
where {P (x ; a)) } is the acoustic pressure measured on the hologram surface
Mx1

m)

[ QN

in the frequency domain and {Tpv (xm Xs; a)) } is the transfer function corre-
Mx1

‘}r . .
lating the measured acoustic pressure at x,, to the velocity magnitude on the source

R
surface x;, whose elements are defined as

T

T
T,,V,m(xm X ) :M (9.42)

Xg; @
* (@)

The symbol Vy(w) on the right side of Eq. (9.41) indicates the magnitude of the
surface velocity, which is frequency dependent but spatially invariant on the source
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. The value of Vy(w) may be obtained by taking a

T —
surface, and R, = |x, — Xx;

pseudo inversion of Eq. (9.41),

—

o= {1 (F[)) (50, o

where

{Tpv (;v

-1

T f — |=T H N TN
Xm;w)}lxM - {Tpv(xs xm;w)}IXM{Tpv(xm xs;a)) }Mxl

| Xl X, @0 .
PYA TS| m IxM

(9.44)

In practice Eq. (9.43) must be regularized because the errors involved in the
input data may make the pseudo-inversion matrix singular and cause solutions to
diverge without a bound. There are many choices for conduct regularization,
ranging from the simplest TSVD, L-Curve, to MTR [46, 49, 50], which have
been discussed extensively in the past and are omitted here for brevity.

Once the surface velocity is reconstructed, the surface acoustic pressure can be
obtained by substituting Eq. (9.43) into Eq. (9.23), and the result is

P(s0) = e(5ao) {1 (5[] (o)), 0

Meanwhile, the reconstructed acoustic pressure at any field point X can be
determined by substituting Eq. (9.43) into Eq. (9.25), which is expressible as

’7;50) T 1 T
o) (o)) (o)), o

P(?; a)) = Tw) {Tpv (;s

The normal component of the particle velocity at X can be obtained by taking the
normal derivative of Eq. (9.46),

_ . on(x;w ~
Vi (x;a)) = _Zpowi;(a)) (8n ) {Tpv(xs

_T i _T
Y a)) }lxM{P(xm; a)) }Mxl'

(9.47)
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9.4.2 Reconstruction Through HELS-Based NAH

Alternatively, the expansion theory can be used to reconstruct the acoustic field.
One such approach is the so-called HELS method that employs the spherical
Hankel functions and spherical harmonics as the basis functions to describe the
acoustic quantities [37, 38].

Suppose that the acoustic pressure is specified on a hologram surface I' in the
same way as that depicted in the preceding section. The acoustic pressure and
normal component of the particle velocity anywhere in the field, including the
source surface, can be reconstructed by using the HELS formulations and the results

are
(o) = (o)}, fr()), om0

Vi (?;a)) - {GV” (; ;;;w) }lxM{P(;;;w) }Mx1’ (9-49)

~|-T T ~|=T T .
where {G,,p (x X a)) } and {G‘,,, (x X s a))} are the transfer functions
IxM 1xM

— — I
that correlate P(x; a)) and V, (x; a)) anywhere in the field to P(xm; w) on the

hologram surface I', respectively,

G | I G0 (G G0 MR

¥(50)]

(9.50)
{G‘,,,,(;’;,I,:;w>}llM
o¥(x;w ' _ - -1
SN (i) )], ) ()]
1xJ
(9.51)

-r

where the elements of the matrix [‘P (x w)} consist of the particular solution
JxM

m’

to the Helmholtz equation, which are expressible in the spherical coordinates as
W,(r,0, ;@) = Pu(r,0,¢;0) = b)) (kr)Y (0. $), (9.52)

where hf,l)(kr) and Y’ f7 (0, @) are the spherical Hankel functions of the first kind and
the spherical harmonics, respectively, and the indices j, n, and / in Eq. (9.52) are
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related through j = n* + n+ [+ 1, where the order of expansion in the radial function
n starts from O to N and / ranges from —n to +n.

9.4.3 Transient NAH Formulations

Once the acoustic quantities in the frequency domain are determined by utilizing
either the BEM- or HELS-based NAH formulations, the corresponding time-
domain signals are obtained by taking an inverse Fourier transform of either
Egs. (9.46) and (9.47) or Egs. (9.48) and (9.49). These equations may be evaluated
by using the residue theorem and expressed as a convolution integral (9.40), except

~r
that input data consist of the measured acoustic pressure signal p (xm; z) rather than

velocity signal on the source surface,
— —|-=T —T
p(x;t) = gpp(x‘xm;t) xp(xm;t>, (9.53)

— NI T
vn(x;t) :g‘,p(x xm;t> xp(xm;t), (9.54)

—|-T —|-=T .
where the temporal kernels Epp (x‘xm;t) and gvp(x X t) are expressible,

m’

respectively, as
PP
—|-T K '7pp<xva)q ) . pp
gpp(x Xt — r) = —i E — LT, (9.55)

Lr mo (o)
8vp (x Xyl — T) = _iz ‘[}’7‘;671%,1’ (9.56)
where w” and w;” are, respectively, the roots of the characteristic equations of
& (@) =0, (9.57)
- (wy’) = 0. (9.58)

—|=T
It is emphasized that there are no closed-form solutions for g, (x ’xm; t) and

—|-T .
gvp(x xm;t) in general because the source surfaces, measurements, and recon-

- _>F . . .
struction locations are arbitrary. Mathematically, g, ( X ‘ X0 t) implies the impulse

response function correlating the reconstructed acoustic pressure p (;; t) at x to the
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T T . NN
measured acoustic pressure signal p(xm; t) at x,,. Similarly, gvp(x ‘xm; t) is the

impulse response function that correlates the reconstructed normal component of

= - ) ) T
the particle velocity v, (x; t) at x to the measured acoustic pressure signal p (xm; t)

at ;; Note that because the residue theorem is used in Egs. (9.53) and (9.54) to
reconstruct the transient acoustic field, rather than a direct inverse Fourier trans-
form, the conventional discretization and the minimal sampling rate requirement in
the time domain are avoided.

9.4.4 Applications of the Transient NAH Formulations

In this section both the integral theory and HELS-based NAH formulations are
utilized to reconstruct the transient acoustic pressure fields, and results are com-
pared with the analytic ones.

Example 9.3 (A Sudden-Expansion Sphere) Consider a sudden-expansion sphere
of radius r = a subject to the initial condition (9.2) with n (Z) . ?U = 1. Suppose

that sudden expansion occurs at r=a/c. The analytic acoustic pressure signal on
a hologram surface is taken as the input. For simplicity, we assume that the
time history of the acoustic pressure signal measured at any field point is (see
Example 9.1)

r

. _ i 7(61‘71‘”1:)/a 7r_m
p(xm, z) = pocVs (rr)e H(r ; ) (9.59)

m

The reconstructed acoustic pressure signal at any field point X can be determined
by using Eq. (9.53). Since the normal surface velocity is constant, it suffices to take
one measurement on a hologram surface, i.e., M = 1. First, we use the BEM-based
NAH formulation to reconstruct the acoustic pressure field. Accordingly, the
pseudo inversion defined in Eq. (9.43) reduces to

Tl (4] X opr) = néﬁ (9.60)

m?

Substituting Eq. (9.60) into Eq. (9.46) yields the reconstructed acoustic pressure
at any field point X in the frequency domain,
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a b o
n(xy)
a a
Xy
v
n(x,) r
X

Fig. 9.2 Schematic of points on the surface of the sphere of radius r=a and in the field, and
corresponding distances R and R, respectively. (a): Both points on the source surface; (b): One
point on the source surface and another in the field

P(;;w) :((;r;;))]’<;;;w>, (9.61)

The temporal acoustic pressure at any field point p(?; w) may be obtained by
Eq. (9.27), which can be evaluated using the residue Eq. (9.53), where the temporal

—|-=T
kernel g, (x‘xm; t— 7) is
- ( a,pp)
gpp(x Xt — 1) = —12 (9.62)

where a)z” is the gth root of the characteristic equation gI,p(a)ZP) =0. In this case,
there is only one root, @}’ = —ic/a, so g=1.

Figure 9.2 displays the schematic of relative positions of the locations of surface
and field points with respect to a sudden-expansion sphere. The quantity

— I
cf(xgmf") involved in n(x a){”’) and n(xm;wf”) is given by Eq. (9.26). The
distance between two points on the source surface is Ry =2acos(6/2), OR;/0n;

= cos (0/2) and dS’ = a’sinfdAd¢p, with @ varying from 0 to z and ¢ from 0 to 27.
Since integrands are independent of the azimuthal angle ¢, integration over ¢ can
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be done separately, yielding 2z. The distance between a surface and field point is

R = V12 + a®> + 2ar cos 6. For simplicity, the radial distance r is assumed much
larger than radius a, so R~r, e*® ~e®**acs? and OR/0On, = cos 6. Detailed

integrations for &(a; /") and n(xm, ol ) are shown in reference [142] and omitted
here for brevity.
r
Substituting §<xg, ol ) and n(x ol ) into Eq. (9.62) yields

o (2| i - 7) = (</>7" _ <_> - (963

alr )e’kl T r
Substituting Egs. (9.59) and (9.63) into Eq. (9.53) then leads to

p (}; 1) = pocVs (?) e~(a=nlay (t - f) , (9.64)

c

which matches the analytic solution for a sudden-expansion sphere [142].

Next the HELS-based NAH formulation is used to reconstruct the transient
acoustic field. The basis function in the HELS expansion is given by Eq. (9.52).
For a sudden-expansion sphere, it suffices to use a one-term expansion. Accord-
T
X, t— ’Z') as

m?

ingly, we have W,(r,0, ¢; w) =e'*"/r. The temporal kernels Sop (?
defined by Eq. (9.62) reduces to

A L RO
g, (x xn;lfr) =—i———te "=
A (") afc
T .
= (’m)e(rrm)/a. (965)
r

Substituting (9.59) and (9.65) into the convolution integral (9.53) yields
N ~|=T T N (A r
A . ) = ooV e (ct=r)fa(Z __
p(x, t) Sp (x X t) X p(xm, t) pocVse ()H(t c) . (9.66)

which agrees with the analytic solution [142].

Figure 9.3 demonstrates three-dimensional images of acoustic pressure fields at
arbitrarily selected time instances ¢ =3.24 (ms), 4.41 (ms), 5.88 (ms), and 7.35
(ms).

Similarly, the normal component of the particle velocity at any field point is

H‘*}F

T
reconstructed by using Eq. (9.54) by using p(xm; t) and g,, (x X i t) given by
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a PIPycVs b PIpcVs

t = 3.24 (ms) t =4.41 (ms)

c plpycVs

t = 5.88 (ms) t = 7.35 (ms)

0.0567 0.1135 0.1702 0.2270 0.2837 0.3405 0.3972 0.4540 0.5107 0.5675 0.6242 0.6810 0.7377 0.7045 0.8512

Fig. 9.3 Reconstructed temporal acoustic pressure fields resulting from a sudden-expansion
sphere of radius a at different time instances. (a): t =3.24 ms; (b): t =4.41 ms; (c): t=5.88 ms;
and (d): t=7.35 ms

2. P
—|-T .nvp wil iw'r
gvp 7 v\ !

X| X, t—7) = —i—F—F—x"¢€
" gvp(wlp)
r 2, e —ile/ (=) (r=ry)/ r
_ (arm/poc r)e ile/(—ia ( )C :L<r—’">e(rr'£)/a- (9.67)
alc Poc\ T

Substituting Eqgs. (9.59) and (9.67) into Eq. (9.54) leads to

— —|=T -
vn<x;t> = gvp(x xm;t) X p(xm;t) = Ve (7)) (?)H(r - g), (9.68)

which reduces to the initial condition (9.2) when r is set on the source surface
and a/c =t,.
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Example 9.4 (An Impulsively Accelerated Sphere) Consider the case of a sphere of
radius » = a that is impulsively accelerated in the z-axis direction (see Example 9.2).
Accordingly, the normal surface velocity is given by

Va (}’ z) —v, (Hx : ?Z)H(t 1), (9.69)

—

— —
where n( x5 ) - e, = cos@.

Again, the integral theory-based NAH is utilized to reconstruct the transient
acoustic field first. The analytic acoustic pressure signal at the hologram surface is
taken as the input,

I o r
P(X,,,; t) = pocVscos 9,1; (’ar) e*((’*rm)/aH <t _ rcm)
{ (ct—ryl;> ( a) . (Ct—rrl;)]
cos —|1——)sin )
a rm a

As in the previous sudden-expansion sphere, the reconstructed temporal acoustic

(9.70)

pressure p(;; a)) can be obtained using Eq. (9.53) with its temporal kernel g,,
—|=T —
(x xm;t—r) given by Eq. (9.62). The quantity S(xs;a)g”) involved in

— —>F
Mop (x; w5p> and 177, (xm; a)gf’) can be shown as

- a(iké’pa — l)
5<Xs;wq ) = ) . (971)
2 (kra) - 2ki7a

In this case ¢ =2, @’ = (1 — i)c/a and 0" = (—1 — i)c/a. Thus the temporal kernel
becomes

o 2 ry 2 (l —ikppr) Cp
A\ (1 - ikg;ﬂr,g)

Detailed derivations of Eq. (9.72) are omitted here for brevity. Substituting
Egs. (9.70) and (9.72) into Eq. (9.53) and summing the residues yield

(50 = et coso (2 (o) o (57) - (1) (220
r c a B P

(9.73)
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which is the analytic solution to the acoustic pressure due to an impulsively
accelerated sphere [142].

Alternatively, the HELS-based NAH can be used to reconstruct the transient
acoustic field. Suppose that a two-term HELS expansion is used,

elkr (kr 4 i) cos 0

Y (r,0,¢;0) =— and ¥,(r,0,¢;w) = (9.74)
r (kr)?

Accordingly, the temporal kernel involved in Eq. (9.55) can be written as

gpp (

where g =1 and 2, o}’ = (1 —i)c/a, &'" = (=1 —i)c/a, 1, (?, Wl ) and g (a)"p)

are given, respectively, by

T 71( ) )
i) = i3 O e 075)

=1 Sppl@

or/c+i)a*cos@ . .,
iy (5077) - ,,z) SR (9.76a)
orfc+i a’cosf . -
(K5 08") = = rz) ez "1e, (9.76b)
gpp( pp) = —2(a/c) (awl + l) (9.76¢)
gpp( pp) = _2(0/5)("@2 + l) (9.76d)

Substituting Egs. (9.73) and (9.75) into Eq. (9.53) and summing the residues
yield

— —|-T _r
P(X;t> :gpp(x xm;t) xp(xm;z>
: t—r t —
et () s (457) (1) (57,
r ¢ a . P

(9.77)

which matches the analytic solution for the temporal acoustic pressure emitted by
an impulsively accelerated sphere of radius a in free space [142].

Figure 9.4 shows three-dimensional images of the acoustic pressure fields at
arbitrarily selected time instances [149].
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a PIPycVs b PIPycVs

t = 3.24 (ms) t = 4.41 (ms)

c PIPycVs d PIPycVs

t = 5.88 (ms) t = 7.35 (ms)

[ ~ - IS

Pressure : -0.0114 0.0503 0.1121 0.1739 0.2356 0.2974 0.3591 0.4209 0.4827 0.5444 0.6062 0.6680 0.7297 0.7915 0.8532

Fig. 9.4 Reconstructed temporal acoustic pressure fields generated by an impulsively accelerated
sphere of radius a at different time instances. (a): t =3.24 ms; (b): t=4.41 ms; (c): t=15.88 ms;
and (d): t="7.35 ms

The normal component of the particle velocity in the time domain can be
reconstructed by Eq. (9.54), where the impulse response function

— —>F
8vp (x X5t — r) is given by

2 )
=T ”vp(x7a)q ) o
g (x X 't—r) =iy ———ZLe T (9.78)
AT = Syl
where
p N 3
o (Fro) — (0"r/c+i)a cosﬁeiwlvn,/c’ (9.79)
K 1 pocr?
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- ) (0,7r/c +i)a® cos @ siollrfc
mp(x ) ) = P : (9.79b)
¢p(@") = =2(a/c) (aw” + 1), (9.79¢)
(@) = =2(a/c) (awy” +1). (9.79d)

where off =(1 —i)c/a and &' =(—1 —i)c/a.
Substituting Egs. (9.73) and (9.78) into Eq. (9.54) yields the normal component
of the particle velocity anywhere in the field,

- —|-T N
vn(x;t> :gvp(x’xm;t> Xp(xm;t)
t_ t_ o
= ieosa(Je (o) eos (U7 - (1-2)sn ()
r c a - p

(9.80)

which reduces the initial condition (9.2) when the distance is set to r = a and t = a/c.

Example 9.5 (An Impulsively Accelerated Baffled Piston on a Sphere) Consider
acoustic radiation from a piston mounted on a sphere of radius a. In general, the
acoustic pressure generated by a spherical source in the frequency domain can be
described by an infinite series of the spherical Hankel functions of the first kind and
the spherical harmonics [99],

P(r,0,¢; 0 Z ZAn,h (kr)Y'(6,9), (9.81)

n=0 l=—n

where the expansion coefficients A,,; can be obtained by the orthonormal property of
the spherical harmonics. Suppose that the normal surface velocity is given in the
boundary condition. Then the coefficients A,; can be obtained by the Euler’s
equation (9.21) and the orthonormal property of the spherical harmonics,

2n 7
An,:iLJ J Vi(a, 0, ¢; )Y (6, ¢) sin 0dOdep, (9.82)
AV (ka) Jo Jo

where V(a,0,¢;) is specified on the surface of the sphere; h,(,l)l(ka) = (c/w)[dhﬁ,l)
(kr)/dr]l, - , is the normal derivative evaluated on the surface of the sphere.

Once the expansion coefficients A, are specified, the acoustic pressure at any
field point in the frequency domain can be determined by Eq. (9.81). The temporal
acoustic pressure can be obtained by taking the inverse Fourier transform and
evaluated by using Eq. (9.53).
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For simplicity, the piston is assumed axisymmetric with respect to the polar axis
at =0, and is impulsively accelerated at =t,. Moreover, the normal surface
velocity is non-zero over a vertex angle, +0,, and zero elsewhere,

va(a,0;t) =V H(O+ 60y) — H(0 — 6p)|H(t — t,), (9.83)

where t;=alc.
Accordingly, Eq. (9.81) is reduced to [99]

=>_ A (kr)Q (cos ), (9.84)
n=0

where Q,Sl)(cos 0) are the Legendre functions of the first kind.

Note that there is no closed-form solution for the radiated acoustic pressure
signal P(r,0;w) in this case. Hence numerical solutions are sought. As an example, a
circular piston with a vertex angle of =6y, = £15° is considered in this section.
Theoretically, the normal surface velocity given by Eq. (9.83) requires an infinite
series to depict the sharp edges at 6y ==+ «15°. For the purpose of demonstrating
the application of the transient NAH formulations, a finite expansion is utilized to
approximate the velocity profile as specified in Eq. (9.83),

N
va(a,0;1) = V> B0\ (cosO)H(t - afc), (9.85)
n=1

where N is finite. The larger the value of N is, the better the approximation to the
velocity profile is, but the more intensive numerical computations are. For simplic-
ity yet without loss of generality, N = 11 is selected in this numerical example. The
expansion coefficients B,, can be determined by using the orthonormal property of
the Legendre functions [99],

2n+ 1\ (%
B, — ( n2+ >J 0" (cos 6) sin 6d6. (9.86)
—6,

Accordingly, the expansion coefficients A, for the acoustic pressure, Eq. (9.84),
can be obtained by using the orthonormal property of the Legendre functions and
boundary condition

20+ 1)pocVy o [ [ .
4, = 120 DpocVs U 0'V*(cos ) sin 66| . (9.87)
20V (ka) £ —6o

The temporal acoustic pressure at any field point can be determined by taking the
inverse Fourier transform of Eq. (9.84) and facilitated by Eq. (9.53). The resultant
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Table 9.1 Singularities of

. No. Singularities @'”
the impulse response 4
functions for reconstructing 1 —5.53363E +02 — i3.28058E + 03
the transient acoustic field 2 —1.41101E+03 —i2.46182E+03
generated by a partially 3 — 1.87779E +03 — i1.80707E + 03
impulsively accelerating 4 —2.16515E+03 —i1.19157E+03
pson zl(v’v‘i?;es - niip:fgr;’e"f 5 — 2.32467E +03 — i5.92509E + 02
of £6° — £15° 6 —2.37603E +03 + i0.00000E + 00
7 —2.32467E + 03 +i5.29509E + 02
8 —2.16515E+03 +i1.19157E+03
9 —1.87779E+03 +i1.80707E + 03
10 —1.41101E+03 +:i2.46182E + 03
11 —5.53363E + 02 +i3.28058E + 03
Table 9.2 Comparison of the C; Reconstructed values Benchmark values
expansion coefficients C; :
reconstructed by the HELS C, +6.69999E — 02 +6.70000E — 02
method and the analytic ones Cy + 1.87500E — 01 +1.87500E — 01
for an impulsively Cs +2.70633E — 01 +2.70633E — 01
accelerating piston mounted Cs | +3.00783E—01 +3.00781E — 01
on a sphere of radius g with a Cs | +2.74016E —01 +2.74016E — 01
vertex angle of +6° = ~15°
Ce +1.98730E — 01 +1.98730E — 01
C; +9.34531E — 02 +9.34529E — 02
Cg — 1.76239E — 02 —1.76239E — 02
Cy — 1.10301E — 01 —1.10301E — 01
Cio — 1.65869E — 01 — 1.65869E — 01
Ciy —1.75139E - 01 — 1.75140E — 01

acoustic pressure signals on the hologram surface can be taken as input to
Egs. (9.53) and (9.54) to reconstruct the acoustic pressure and particle velocity.
In this example the reconstructed acoustic pressure and particle velocity are
obtained using the HELS-based NAH. Numerical computations involved in the
BEM-based NAH are excessively intensive as compared to those of the HELS-
based NAH and are omitted here for brevity.
Specifically, Eq. (9.54) is used to reconstruct the normal surface velocity with its

r

temporal kernel g,, (?‘;m; t) determined by Eq. (9.56). Table 9.1 lists the singu-

—|=T
larities of g,,, (x ‘ X s t) that are obtained by using Eq. (9.58), namely, o;”, g=1to

11, in this case.

Substituting ®'” into Eq. (9.54) and evaluating the residues give the

q

reconstructed normal surface velocity. Table 9.2 shows the comparison of the
reconstructed expansion coefficients with benchmark values. Results indicate that
the accuracy in the reconstructed expansion coefficients is guaranteed up to the 5th
decimal point.
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Fig. 9.5 Comparison of the reconstructed normal surface velocity distributions along the gener-
ator of the surface of a partially impulsively accelerated sphere of radius a. dashed line: Exact
velocity profile; filled diamond: Reconstructed with J =4; filled square: Reconstructed with J = 8;
filled triangle: Reconstructed with J =11

Figure 9.5 displays the comparison of the normal surface velocity reconstructed
by using Eq. (9.54) under various numbers of the expansion terms with Eq. (9.83).
Results indicate that the reconstructed normal surface velocity converges to the
correct velocity profile as the number of expansion terms increases from J =4,
8, and 11.

Figure 9.6 demonstrates the acoustic pressure fields reconstructed by using
Eq. (9.53) at four different time instances: ¢ =3.24 ms; t =4.41 ms; t=15.88 ms;
and t=7.35 ms [145].

Example 9.6 (An Impulsively Accelerated Baffled Circular Disk) Finally, consider
reconstruction of transient acoustic radiation from a non-spherical object. Specif-
ically, Eq. (9.53) is utilized to reconstruct the acoustic pressure generated by an
impulsive accelerated circular disk of radius ¢ mounted on an infinite baffled. The
normal surface velocity of this baffled disk is given by

v (}’ t) = V,H(a — r)H(1). (9.88)

The procedures for reconstruction are exactly the same as those described in
Example 9.5 and not repeated here. The reconstructed temporal acoustic pressures
are obtained by Eq. (9.53). Figure 9.7 shows the locations at which the input
acoustic pressure signals are collected. Assume that the baffled circular disk is
axisymmetric with respect to the z-axis. The temporal acoustic pressure signals on
the hologram surface are given by
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a PPV b PPV

t=3.24 (ms) t=4.41 (ms)

c PIPycVs PIPycVs

¢=5.88 (ms) =735 (ms)

Pressure: —0.01140.0503 0.1121 0.1739 0.2356 0.2974 0.3591 0.4209 0.4827 0.5444 0.6062 0.6680 0.7297 0.7915 0.8532

Fig. 9.6 Reconstructed acoustic pressure fields generated by a partially impulsively accelerated
sphere of radius a at different time instances. (a): t =3.24 ms; (b): t=4.41 ms; (c): t=5.88 ms;
and (d): t="7.35 ms
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(9.89)

Note that in this case the standoff distance z,, is of no concern because the input
data given by Eq. (9.89) are analytic. The array of microphones extends to twice the
diameter of the baffled disk with respect to its geometric center. The total number of
microphones is 40 and microphone spacing is A =a/10. Figure 9.8 illustrates the
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Fig. 9.7 Schematic of an
impulsively accelerated
baffled disk of radius a and .

an array of microphones microphone
that covers twice the 5
diameter of the disk. The A=—
total number of 10

microphones is 40 and the
microphone spacing is a/10
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1=0.56 (ms)
005 01 015 02 025 03 035 0d4n(m)
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0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04n(m) 0

1= 1.0 (ms) t=1.2 (ms)
0,
005 01 015 02 025 03 035 04n(m)

Fig. 9.8 Reconstructed acoustic pressure fields generated by an impulsively accelerated baffled
disk of radius a at different time instances. Clockwise: t=0.2 ms, t=0.3 ms, t=0.56 ms,
t=0.8ms,r=1.0ms, and r=1.2 ms
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transient acoustic pressure fields captured at six time instances ¢t =0.2 ms, 0.3 ms,
0.56 ms, 0.8 ms, 1.0 ms, and 1.2 ms, respectively.

Problems

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

9.8.

9.9.

9.10.

Show that the Kirchhoff-Helmbholtz integral formulation for predicting tran-
sient acoustic radiation is given by Eq. (9.19).

Show that the Kirchhoff—-Helmholtz integral equation for determining the
transient surface acoustic pressure is given by Eq. (9.20).

Show that the Fourier transformed version of the Kirchhoff-Helmholtz
integral formulation for predicting the acoustic pressure produced by an
impulsively accelerating body is given by Eq. (9.25).

Show that the transient acoustic pressure radiated from an impulsively
accelerating object can be written as Eq. (9.30) through the residue theorem.
Consider an explosion that occurs in free space at t=f,. Assume that the
particle velocity rises from near zero to a very high constant value (like a step
function) omnidirectionally. Determine the resultant transient acoustic pres-
sure anywhere in the field.

Consider the case in which an object is impacted by an external force and
accelerates in a particular direction in free space. Assume that this impact
occurs at = f and the velocity of the entire body rises from zero to a constant
value (like a step function) in this direction. Determine the resultant transient
acoustic pressure anywhere in the field.

Show that the transient acoustic pressure field generated by an arbitrarily
shaped rigid body subject to an arbitrarily time-dependent excitation is
expressible as a convolution integral given by Eq. (9.45).

Similarly, show that the normal component of the particle velocity in free
space generated by an arbitrarily shaped rigid body subject to an arbitrarily
time-dependent excitation can be written as a convolution integral given by
Eq. (9.46).

Continue Problem 9.5. Assume that the time histories of the acoustic pressure
signals that are measured at two arbitrary points in free space are

p(?m; t) =(Q/ rm)e’“”"m)/ 4. where Q is a constant and a is the character-

istic dimension of the initial explosion region, m =1 and 2. Determine the
transient acoustic pressure field anywhere.

Continue Problem 9.6. Assume that the time histories of the acoustic pressure
signals that are measured at two arbitrary points in free space are given

T )
p(xm; t) = (g> e (=rm)lacos §,,H (t - r_m)
I'm c
ct—ry a . ct — Ty
{cos( )—(1—) sm( )},
a I'm a

where Q is a constant, € indicates the polar angle, a is the characteristic
dimension of the rigid body, and m =1 and 2. Determine the transient
acoustic pressure field anywhere.




Chapter 10

Panel Acoustic Contribution Analysis
Using HELS

In this chapter we show how to use the HELS method to assess the relative
contributions of individual panels of a complex vibrating structure toward SPL at
any field point, for example, in diagnosing vehicle interior noise or reducing noise
emission from any vibrating machinery. Being able to identify the major contrib-
utors of acoustic emission is the first step toward an effective noise reduction of a
vibrating structure in engineering applications.

Theoretically, panel acoustic contribution analysis can be accomplished by
calculating the acoustic power flows from individual panels of a vibrating structure
and rank their contributions toward the SPL value at a field point of interest. It is
important to understand that in practice, the excitations and boundary conditions of
a vibrating structure are unknown a priori. Therefore, there is no way to predict
acoustic radiation, not to mention calculating the relative contributions from indi-
vidual panel surfaces of a vibrating structure.

This difficulty can be circumvented by utilizing NAH technology to reconstruct
the vibro-acoustic quantities on the surface of a vibrating structure, based on the
acoustic pressure measured around the target structure. Once the surface acoustic
quantities are specified, the acoustic power flows from individual panel surfaces can
be calculated, and their relative contributions be assessed and ranked. Note that one
can select any approach to implement NAH. Here we choose the HELS method to
accomplish this goal.
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10.1 The HELS-Based Panel Acoustic Contribution
Analysis

The most important aspect of panel contributions analysis is the establishment of
the direct correlations between acoustic power flows from individual panels of a
vibrating structure to the SPL values at a field point [146]. To derive these
correlations, we start from the definition of the SPL value at any field point.

L,,(}’;w) = 10log;o [—X 2, (10.1)

where p2 (;, a)) implies the mean-squared acoustic pressure at any field point X
of interest, and p s = 20 (uPa) is the reference acoustic pressure for air used in

practice. By definition p2. (?,a)) is linked to the complex amplitude of the

acoustic pressure p (;; a)) at x through

X;®

- 2
2 (3 ’5( )‘ 1 - -
ﬁrms<x;a)):fZERe‘ﬁ<x;w)ﬁ*(x;w>‘- (102)

The question is: “How is p (}, a)) at any field point X related to the vibro-acoustic

responses of a vibrating structure?” Answer to this question is the key to the
analysis of the structure-borne sound radiation. Currently, this problem is being
tackled by a brute force way in the industry to locate the noise sources, and establish
correlations between structural vibrations and sound radiation. Some typical
approaches include the uses of scanning an intensity probe over target vibrating
structures, transfer path analysis (TPA) [147], and acoustic reciprocity principle
(ARP) [148]. These approaches are measurement based. In particular, TPA and
ARP require taking two sets of measurements:

1. Measure the transfer functions between the excitations at ad hoc positions on test
structures and the SPL values at designated field points for TPA; or the transfer
functions between the volume velocity of a known point source placed at the
designated field point and the normal surface velocities and acoustic pressures
on the panels of a test structure under a laboratory condition for ARP.

2. Measure the vibration responses of the structures under the actual operating
conditions for TPA, or the normal surface velocities and acoustic pressures on
the panels of the structures under the actual operating conditions.

The relative panel acoustic contributions toward the SPL values at designated
field points are obtained by multiplying the transfer functions specified during the
first round of measurements by the vibro-acoustic responses on the panel surfaces
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of the structure obtained during the second round of measurements. Needless to say,
these types of approaches are not only time consuming but also ambiguous. This is
because the TPA formulations are ad hoc in nature, and test conditions in two
rounds of measurements for ARP are not exactly the same. Furthermore, the panel
acoustic contributions analyses are restricted to the preselected field points at which
the transfer functions are measured. If panel contributions toward the SPL values
at the field points that are not included in the first round of measurements are
needed, the same measurement procedures must be repeated. So the existing
approaches are labor intensive, and their results might be called into question.

Our goal is to derive formulations that enable one to correlate the acoustic power
flow from any vibrating panel to any field point of interest in the most cost-effective
manner. In particular, these correlations must be valid for SPL values at any number
of field points without the need to retake input data, thus significantly reducing the
measurement complexities and time.

To this end, we reconstruct p (;, a)) by using the HELS formulations.
Section 3.5 exhibits that the complex amplitude of the acoustic pressure at a field

point X can be reconstructed based on the measurements of the acoustic pressures in
the near field of a vibrating structure,

rec,a -T H _,meas
(o) = ] G e
p(x w) [ PlixiLl Plixt U P )ixml Plyxm P\Xm 5@ Mx1

(10.3)

where [Vg]l «1 and [Ug]ﬁ’,, . are the right and left unitary orthonormal matrices,
respectively, for the transfer function [see Eq. (3.16)] correlating the measured

. . [—meas .
acoustic pressure {p (xm ;a))} to reconstructed field acoustic pressure
Mx

p (;; a)), [F[/f]l «1 represents the low-pass filter defined in Eq. (3.68), and
{Zg}l’;F » contains the inverted singular values of this transfer matrix.

In order to correlated the field acoustic pressures p (}; a)) to the vibro-acoustic

quantities on the surface of a vibrating structure, we first reconstruct the acoustic
pressure on the surface of a target structure by using Eq. (3.66),

(™ a)), = Wl ] e () )
P\Xs st L P lses U P Lss 5P Lsuna 7P Lppseg P\ Mx1’

(10.4)

_rec,a

where x;  represents a surface point; [Vf’]l «1 and [Uf,]f,, . stand for the right
and left unitary orthonormal matrices, respectively, for the transfer function given

by Eq. (3.16) that correlates the measured acoustic pressure {ﬁ (? meas; a)) }M 1 to
X

m

_rec,a

reconstructed acoustic pressure {ﬁ (xY ;w) }s on the surface of a vibrating
° x1
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structure; [F;J]l « 1 indicates the low-pass filter defined in Eq. (3.68); and {Zf7 }fxT M

contains the inverted singular values of this transfer matrix.
Next, we invert Eq. (10.4) as follows:

Py, = [0, =], R i (57 ) )
P\*tm 5 mxt Lol 5P Laes P Lses U P s \P A s Sx1
(10.5)

Substituting Eq. (10.5) into (10.3) yields

_rec,a _rec,a  —rec,a T . [—rec,a
p (3] = {Te (T 0) {5 (570 ), (09

_,rec,a , —rec,a T i . .
where {Tpp(x |x s ;w)} implies the transfer function that correlates
1x§

—rec,a . —rec,a
the reconstructed field acoustic pressure p (x ;a)) at any field point x to

s

{T (Hrec,a _,rec,a ) }T
x O xy e
pp K ’ xS

gy H ~1 H
ol e P L R 73 L3 O 7 o O 5 A L
[ Plixil Plixi U P Lo U P dpesm L Pdmaxma U P Imxs L PlsxsL Plsxs

(10.7)

. [—Tec,a . _srec,a
p (x ;a)) at a surface point x;

In a similar manner, we can reconstruct the normal surface velocity by using
Eq. (3.67),

. [—rec,a 1 H _, meas
{vn(xs ;w) }le = [Vﬂsw[Fﬂsw[ZﬂwM[UﬂMxM{p(xm 5w>}MX1’

(10.8)

where [VZ],,., and [U?1f ,, are the right and left unitary orthonormal
matrices, respectively, for the transfer function given by Eq. (3.18) that correlates

N —s meas . N —lec,a
{p ( X ; a)) } to reconstructed normal surface velocity {v n (x ; a)) }
Mx1 Sx1

m N

on the surface of a vibrating structure, [F ﬁ]l « 1 indicates the low-pass filter defined
in Eq. (3.69), and {X?}T,, contains the inverted singular values of this transfer
matrix. Once again, we invert Eq. (10.8) as follows:

N — meas —1 H ~ —TIec,a
{(p (50 7"50) b = 0= F ks Vs {7 (5 0)

(10.9)
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Substituting Eq. (10.9) into (10.3) leads to the relationship between the field
—rec,a

—rec,a
acoustic p ( ) and the reconstructed normal surface velocity v , ( ; a)) ,

N —rIec,a —rIec,a  —rec,a T N —Tec,a
p (x ;w) = {Tpv(x |x ,a))} {vn(xs ,a))} , (10.10)
1xS Sx1

_,rec,a | —srec,a T | . .
where {Tpv (x |x ;a)) } s is the transfer function given by
1x

—rec,a, rec,a T
{Tpv< ‘x ;w)}1xs
-T H -1 H
=[ve] Fe) (=2} (U] U s [P s Vi

1xM
(10.11)

Equations (10.6) and (10.10) demonstrate that the field acoustic pressure

—rec,a . R
( ;a)) can be correlated to the reconstructed surface acoustic pressure p
N
X

p
rec. —Tec,a

( ; ) and the reconstructed normal surface velocity v ( ; co).

_,rec,a . .

(x ;a)) in Eq. (10.2), we obtain

., [—Tec,a L [—Tec,a H _rec,a, rec,a H
p*(x ;w) :{vn(xY ,a))} [Tpv( ’x ;a))} ) (10.12)
’ 1xS Sx1

Substituting Egs. (10.6) and (10.12) into Eq. (10.3) yields the mean-squared

acoustic pressure at any field point X,

Taking the complex conjugate of the reconstructed field acoustic pressure p

P s (?;w)
_,TeC,a | —Tec,a N _,rec,a _,Tec, o | Tec,a H
(7)) () ()LL)
1xS SxS§ Sx1
(10.13)
_rec,a . . .
where [ av, n(x ;w) is the normal component of the time-averaged acoustic

intensity given by

i —rec _ lR . (orec.a L [oTec H 1014
{av,n(XS ’w)}sm_i ¢ {p(xs ’w>}5x1{vn<xs’"’w>}lxs - (10.14)
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Substituting Eq. (10.13) into (10.1) then leads to

—rIec,a
L, (x ; a))
_.rec,a, _srec,a - _.rec,a
Re<[Tpp(x |XS ;w)}lxs{]av’n (XS ;a)) }5x5

(10.15)
=10 loglo |:Tpv (;fﬁc,a|;1;ec,a; w)j| H >

Sx1

A2
D ter

Equation (10.15) indicates that the SPL value at any field point can be correlated
to the normal component of the time-averaged acoustic intensity on the surfaces of
a vibrating structure. Suppose that the structure consists of individual panels. By
summing the normal components of the time-averaged acoustic intensities on these
panels, one can calculate the acoustic power flows from individual panels and rank
their contributions to the SPL value at any field point of interest. This is the essence
of the HELS-based panel acoustic contribution analysis.

It is emphasized that no assumption is made in deriving Eq. (10.1) to Eq. (10.15),
and the panel contributions analyses are valid for any number of field points based
on a single set of input data. In other words, analyses can be repeated to reveal the
critical panels responsible for acoustic radiation anywhere without the need to
retake the data, thus significantly reducing the overall cost and effort in noise
diagnosis.

10.2 Procedures for Conducting HELS-Based Panel
Acoustic Contributions Analyses

The procedures for carrying out the HELS-based panel acoustic contributions
analyses for a vibrating structure in either interior or exterior region are as follows:

1. Follow all the guidelines listed in Sect. 3.5 to prepare for the measurement
setup to measure the near-field acoustic pressures generated by a vibrating
structure.

2. Sometimes it might be desirable to take the measurements of the acoustic
pressures at a few field points of interest. The spectra of the measured acoustic
pressures can be used as benchmarks to validate the reconstruction accuracy.
However, this is not a required step. It is completely up to the user who is
conducting the panel acoustic contributions analyses. In any event, measure the

. . [ —meas
field acoustic pressure {p (x ;w) } .
Mx1

m
3. For a large structure, multiple patches of measurements are required. So it is
important to set at least one fixed reference point as the patch measurements are
moved from one location to another. Measure the acoustic pressure
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10.
11.

12.

. [ — meas .
p (xref ;w) at the reference point.

_,meas

. Measure the transfer function between {ﬁ (x ;co)} at each measure-
x1

m

—s meas .
ment point and p < Xt 5 a)) at the reference point as the measurement patches

are moved from one place to another.

— meas
. Multiply the transfer functions by the reference acoustic pressure p ( ; w) ,

_,meas
which is equivalent to taking measurements at all points {ﬁ (xm ;w)}
Mx1

simultaneously.

. Use Egs. (10.4) and (10.8) to reconstruct the surface acoustic pressure

~ [—Tec,a —Tec,a
D\ x, ;w) and normal surface velocity v, (x ;w).

. Use Eq. (10.14) to calculate the reconstructed normal component of the time-
~ —TIec,a —TIec,a
averaged acoustic intensity /5, (xs ;a)) at all surface points x s=1,
2,..,8.
. Divide the structure into any number of panel surfaces, { =1,2,...,N, and

—Tec,a .
associate the normal surface acoustic intensities / :V n (xs ;a)) with N panel

surfaces.

. Use Egs. (10.7) and (10.9) to establish transfer functions

_,rec,a ,—rec,a T _,rec,a , —rec,a T
{Tpp< ‘x ;a))} and {Tp ( ’x ;w)} .
1xS 1xS
rec,a

Use Eq. (10.15) to calculate the SPL value at any field point L, (; ;w) S.

Calculate the acoustic power flow P,, /(@) from each panel by multiplying the
normal surface acoustic intensity 1! av.n (}rec a; w) by the area of the panel AS,,

¢ =1,2,...,N. The sum of the acoustic power P,, /() from the individual
panel surfaces should be equal to the total acoustic power P,,(w) generated by
the entire surface of the vibrating structure.

= Puu(@) =) [I4.(@)4S], (10.16)

N N
/=1 (=1

where N is the total number of panels of a structure, and P,, (@) is the acoustic
power flow from the /th panel surface of area AS,.

Calculate contributions from the individual panel surfaces toward the SPL
value at any field point,
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Vi —Tec,a
Lp (x ; a))

0 —TIec,a | —rec,a Y —Trec,a ¢ —rec,a | —rec,a
T | x |xs o)l x, ;o) T (x |xs 0]

pp N pv
= 10log,q — ,
p %ef
(10.17)
where L£ (;rec’a; w) represents the contribution from the /th panel surface of
area AS,.

13. Calculate the acoustic power ranking for the ¢th panel surface of the vibrating

structure,
L (}‘m’“; a))AS/
R = i N X 100%, (1018)
L, (x ; a)) S
where Lp[ (}m’a; a)) AS, indicates the acoustic power produced by the /™ panel

surface and delivered to the field point X via the transfer functions
_.rec,a, _srec,a T _.rec,a, _srec,a T
{Tpp<x }xs ,a))} and {Tpv(x |xS ,a))} , and
IxS IxS
A)rec’a . . . . .
L, <x ; a))S implies the total acoustic power generated by the entire vibrat-

ing structure and delivered to the same field point X through transfer functions

_Tec,a  rec,a T _Tec,a | —rec,a T
{Tpp<x ‘xs ,a))} and {Tpv(x |xs ,a))} .
I1xS$ IxS

Equation (10.18) clearly demonstrates that the acoustic power received at any

field point X consists of two components: (1) the acoustic power generated by
individual panel surfaces and (2) delivery of the acoustic power from an individual
panel surface to a specific field point through the transfer functions

_,Tec,a  Tec,a T _.rec,a, _srec,a T .
{Tpp (x lx, w) } and {Tpv (x |x, a)) } . The former describes
IxS xS

the effectiveness of acoustic power generation by an individual panel, and the latter
depicts that of delivering this acoustic power to any field point. Both of them are
critical from the viewpoint of structure-borne sound radiation. Hence, attention
must be paid to both of them in order to reduce the structure-borne sound radiation
in the most cost-effective manner.
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10.3 Stories of Panel Acoustic Contributions Analyses

The following are true stories about engineers battling with vehicle interior noise
reduction problems in the automobile industry.

10.3.1 Story 1: Sound Transmission Paths

Diagnosis and analysis of sound transmission paths into the vehicle passenger
compartment have always been one of the major noise, vibration, and harshness
challenges facing the automobile OEM (original equipment manufacturer) and the
parts suppliers. Oftentimes, challenges come at the end of a production cycle and
before an official launch of a vehicle or at recall of a vehicle due to customers’
complaints of an unacceptable interior noise level. Consequently, engineers and
managers are under tremendous pressure to meet certain deadline to resolve noise
issues. In these cases, measurements of SPL values and spectra at the driver’s and
passengers’ ears positions are taken, followed by a trial-and-error approach
depending on one’s noise abatement experiences. Hopefully, this quick fix would
be enough to meet the NVH criteria and the problem is solved. If not, more
elaborate noise diagnosis would be carried out and more effective noise mitigations
be tested. This process continues until NVH requirements are met, and problems are
solved.

This scenario occurs quite often in practice with minor variations here and there.
The point is that oftentimes engineers rely solely on the measurements of SPL
values and spectra in locating sound source and sound transmission paths into the
vehicle passenger compartment. This may be adequate in dealing with airborne
sound, but inappropriate in dealing with structure-borne sound and its
transmission path.

Here is the story.

In 2004, a major automobile OEM in Japan was wrestling with locating sound
transmission paths into the passenger compartment so as to reduce vehicle interior
noise. Specifically, the test driver of a new vehicle reported high rumbling sounds,
and engineers took measurements at the driver’s ears positions and confirmed this
rumbling noise problem. Then engineers measured the SPL values and spectra near
the interior surface of the roof and were able to correlate the sounds measured there
to those measured at the drivers’ ears positions. This was a very common practice in
noise diagnosis in industry. Therefore, they concluded that rumbling sounds were
transmitted through the roof into the passenger compartment, but they were not sure
which roof panel was the culprit. To locate this panel, engineers at this OEM used
heavy sandbags to suppress vibrations of the roof panel one at a time, which once
again was a common practice in industry. Surprisingly, it made no difference
whatsoever where heavy sandbag was placed. Rumbling sounds remained the
same as before, even after the entire roof surface was covered with heavy sandbags.
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At the time the present author happened to be in Tokyo for a lecture tour on using
NAH as an effective noise diagnostic tool. During Q&A session, an engineer used
this case as an example and asked how to identify noise transmission paths into the
passenger compartment.

This is a general question. The general answer is that, in dealing with structure-
borne sound problem, one should focus on the acoustic power radiation from a
vibrating surface, which is the product of the normal component of the time-
averaged acoustic intensity and surface area, rather than the acoustic pressure,
which is a scalar quantity that indicates the level of SPL value, but does not reveal
the source of the acoustic energy or the acoustic power flow. Since the acoustic
power is the area integration of the normal component of the time-averaged
acoustic intensity, which is one-half of the real part of the product of the normal
surface velocity and acoustic pressure, all we need to do is to determine the surface
acoustic pressure and normal surface velocity. Once this is done, we can calculate
the net outflow of the acoustic energy.

However, it is difficult at least at the present to measure the normal component
of the time-averaged acoustic intensity on the surface of a vibrating structure
directly. The intensity probe that is commonly used in practice can only measure
the normal component of the acoustic intensity at certain distances away from a
vibrating surface. This may create problems, especially in a relatively reverberant
environment in which the interferences of sound reflections and reverberation tend
to make the readings of the acoustic intensities unstable and unreliable. One
solution is to utilize the NAH technology to reconstruct the normal component of
the acoustic intensity on the surface of a vibrating structure.

For example, the panel acoustic contribution analysis discussed in Sects. 10.1
and 10.2 can be directly applied to a vehicle. In fact, such a panel contribution
analysis has been done on a full-size vehicle in collaborations with engineers at a
major automobile OEM in the USA. In that case, the acoustic pressure

—, meas L. .
{13 (xm ;a))} inside the vehicle passenger compartment was measured at
Mx1

very close distances with respect to the interior surfaces by using a 4 x 8 conformal
padel array of microphones. A total of 25 patches of measurements were taken,
resulting in 800 measurement points covering the entire interior surface of the
vehicle. The vehicle was running at two constant speeds, 60 and 100 kph, with its
rear wheels mounted on a chassis dynamometer with coarse rolls to simulate the
rough road surface condition.

_,meas

The measured acoustic pressures {[5 (x ;w) } ,m=1,2, ..., 800, were
Mx1

m

taken as input to Eqgs. (10.4) and (10.8) to reconstruct the surface acoustic pressure
—rIec,a

. [—Tec,a . N . .
D (xs ;o) and normal surface velocity vn(xs ;w). Once this is done,

Eq. (10.14) is employed to calculate the normal component of the time-averaged
surface acoustic intensity.

To illustrate this type of approach to identify transmission paths into the vehicle
passenger compartment, the present author showed the reconstructed surface
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Fig. 10.1 The reconstructed acoustic pressure distribution at 21 Hz over the interior surface of a
full-size vehicle with rear wheels mounted on a chassis dynamometer with coarse rolls that were
running at 60 kph. The color scale of the acoustic pressure was from red (90 dB) to blue (40 dB)

acoustic pressures (see Fig. 10.1), the normal component of the surface velocities
(see Fig. 10.2) and the normal component of the time-averaged acoustic intensities
(see Fig. 10.3) on the interior surfaces of the vehicle at 21 Hz, where there was a
dominant peak in the acoustic pressure spectrum. Results showed that the
reconstructed acoustic pressure on the roof surface was indeed quite high [the
color scale for the acoustic pressure was from red (90 dB) to blue (40 dB)].
However, this did not mean that there was an acoustic source on the roof surface
because the normal surface velocity on the roof surface was identically zero [the
color scale for the normal surface velocity was from red (0.2 m/s) to blue (0 m/s)].
In other words, the roof surface was motionless. The reconstructed normal compo-
nent of the acoustic intensity on the root surface was zero as well, which indicated
that there was no flow of the acoustic energy from the roof surface [the color scale
for the normal component of the time-averaged acoustic intensity ranged from red
(+5 x 107 W/m?) to blue (-5 x 107> W/m?)].

For proprietary reasons, the image of the test vehicle has been deleted in this
example.

These results demonstrated that the roof surface just reflected the incident sound
waves. It neither produced nor transmitted the rumbling sound. However, the
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Fig. 10.2 The reconstructed normal component of the velocity distribution at 21 Hz on the entire
interior surface of a full-size vehicle with its rear wheels mounted on a chassis dynamometer with
coarse rolls that were running at 60 kph. The color scale of the normal surface velocity was from
red (0.2 m/s) to blue (0 m/s)

driver’s ears happened to be close to the roof surface, on which the amplitude of the
acoustic pressure was very high. So it gave the (wrong) impression that the sound
was coming through from the roof surface.

This was why suppressing the vibration of the roof panels with heavy sandbags
came to no avail as demonstrated in the vehicle interior noise analysis conducted at
a major automobile OEM in Japan.

The more likely transmission paths for this rumbling sound in this case might be
through the front and end portion of the vehicle as indicated by the red areas where
the normal component of the time-averaged acoustic intensity was the highest (see
Fig. 10.3).

Figures 10.4, 10.5, and 10.6 display the reconstructed acoustic pressure, normal
component of the velocity, and normal component of the time-averaged acoustic
intensity distributions on the entire interior surface of the vehicle at 23 Hz. Once
again, the amplitudes of the acoustic pressures were very high on the roof surface.
However, the normal surface velocity and normal component of the time-averaged
acoustic intensity were zero on the roof surface. This indicated that the roof merely
reflected sound at this low frequency. The rumbling sound was transmitted through
the panels on which the normal component of the time-averaged acoustic intensity
was positive, for example, at the front and tail parts of the vehicle.
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Fig. 10.3 The reconstructed normal component of the time-averaged acoustic intensity distribu-
tion at 21 Hz on the entire interior surface of a full-size vehicle with its rear wheels mounted on a
chassis dynamometer with coarse rolls that were running at 60 kph. The color scale of the normal
surface velocity was from red (+5 x 1073 W/m?) to blue (=5 x 1072 W/m?)

To check the accuracy in the reconstructed acoustic quantities, the acoustic
pressure spectra at the drivers’ and passengers’ ears positions were reconstructed,
and the results were compared to those of the benchmark values (see Figs. 10.7 and
10.8). For clarity in comparisons, the spectra zoomed in from 100 to 350 Hz range
were displayed. Comparisons were made at four locations: (1) front driver (desig-
nated as FL), (2) front passenger (designated as FR), (3) rear left passenger
(designated as RL), and (4) rear right passenger (designated as RR).

The agreements between the reconstructed and measured acoustic pressure
spectra at these four critical locations were remarkably good, which gave the
confidence for conducting the panels acoustic contributions analyses shown below.

10.3.2 Story 2: Panel Acoustic Contribution Analyses

The first story was related to the second one because engineers at this automobile
OEM in the beginning also thought the rumbling sound was transmitted through the
roof until they saw the analysis results presented in Figs. 10.1, 10.2, 10.3, 10.4,
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Fig.10.4 The reconstructed acoustic pressure distribution at 23 Hz over the interior surface of a
full-size vehicle with rear wheels mounted on a chassis dynamometer with coarse rolls that were
running at 100 kph. The color scale of the acoustic pressure was from red (90 dB) to blue
(40 dB)

10.5, 10.6, 10.7, and 10.8. Once they realized that noise transmission paths could be
identified by using the HELS-based NAH, they wanted to examine the relative
acoustic contributions from ten specific vehicle panels toward the SPL values
measured at driver’s, front passenger’s, and rear passenger’s ears positions. These
panels included three on the front floor, six inside the trunk floor, and one for the
jack storage area (see Fig. 10.9). Engineers wanted to identify the relative acoustic
contributions from these panels toward the SPL values at the driver, front passen-
ger, and rear passenger positions.

As mentioned in Sect. 10.2 (Step 8), users can designate any number of panels
for the panel acoustic contributions analyses. There is no need to consider all panels
of a target vibrating structure. However, measurements of the acoustic pressures
must cover the entire source surface.

Following the steps outlined in Sect. 10.2, engineers reconstructed the surface
acoustic pressures and normal surface velocities and calculated acoustic power
flows from the designated ten panels. Their relative acoustic contributions at the
designated field points were then assessed. It is emphasized that these panel
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Fig. 10.5 The reconstructed normal component of the velocity distribution at 23 Hz on the entire
interior surface of a full-size vehicle with its rear wheels mounted on a chassis dynamometer with
coarse rolls that were running at 100 kph. The color scale of the normal surface velocity was from
red (0.2 m/s) to blue (0 m/s)

acoustic contributions analyses can be continued at any number of field points
without the need to retake any measurement again. All the input data are collected
in the beginning. The panel acoustic contributions analyses can be performed at any
frequency so long as input data were collected according to the guidelines specified
in Sects. 5.2 and 5.3.

For brevity, representative panel acoustic contributions analyses are shown to
illustrate the applications of the formulations given in Sect. 10.1. It is emphasized
that these formulations are of generality because they are derived from the defini-
tion of SPL, and no assumptions are made.

Figure 10.10 showed that the jack storage area was the major contributor toward
the SPL values at the designated field points at 104 Hz. Here, the ranking was
normalized with respect to the highest contributor and multiplied by 10, and total
values were summed together. In this manner, jack storage area was the major
contributor, followed by Lift Gate Driver Side 2 and Lift Gate Middle 1 panels that
were tied for the second major contributor toward SPL values at designated field
points at 104 Hz. The users can design their own way to display order ranking for
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Fig. 10.6 The reconstructed normal component of the time-averaged acoustic intensity distribu-
tion at 23 Hz on the entire interior surface of a full-size vehicle with its rear wheels mounted on a
chassis dynamometer with coarse rolls that were running at 100 kph. The color scale of the normal
surface velocity was from red (+5 x 1073 W/m?) to blue (=5 x 107> W/m?)

the major acoustic contributor. Results show that each panel can have different
contributions toward the SPL values at different field points. This allows the user to
focus on any specific panel to come up with desired noise reduction measures at the
desired locations.

Figures 10.11, 10.12, 10.13, and 10.14 demonstrate similar panel acoustic
contributions analyses results at 116 Hz, 235 Hz, 241 Hz, and 255 Hz, respectively.
These frequencies represent peak amplitudes in the acoustic pressure spectra
measured at the designated field points (see Figs. 10.7 and 10.8). These frequencies
are chosen on purpose to illustrate the fact that different panels can become the
major contributors at different frequencies. In this example, jack storage area was
found to be the major contributor to the SPL values at the designated field points for
the majority of frequencies. Once engineers at this automobile OEM applied noise
reduction measures to jack storage area, the overall vehicle interior noise was
significantly reduced.
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Fig. 10.8 Comparisons of reconstructed acoustic pressure spectra with benchmark data measured
at two locations in 100-350 Hz: (1) rear left passenger designated as RL (above) and (2) rear right
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Fig. 10.9 Locations of the designated panels for which the relative acoustic contributions toward
the SPL values at the driver, front passenger, and rear passenger positions

10.3.3 Story 3: Engine Block Noise Analyses

The first two stories have shown the applications of panel acoustic contributions
analyses in the interior region. Here is a true story of analyses of engine block noise
in the exterior region.

In 2005, a parts supplier company in the Greater Detroit area was under a great
pressure to reduce noise emission from a specific engine model. The difficulty was
that this full-size gasoline engine and its drive train consisted of a large number of
components that could all contribute to the overall noise emission. To identify the
major contributor, engineers at this company conducted the HELS-based panel
acoustic contributions analyses. Specifically, they used a conformal 7 x 8 array of
microphones and took patch measurements of the acoustic pressures covering the
engine intake manifold, front driving train, both sides, and bottom oil pan, resulting
in a total 280 data points.

Figure 10.15 illustrated the reconstruction grids of this engine block. The
acoustic pressure spectrum measured at a designated field point was shown in
Fig. 10.16, which indicated several significant peaks at 64 Hz, 129 Hz, 258 Hz,
516 Hz, 645 Hz, 710 Hz, 1,161 Hz, 1,937 Hz, 2,259 Hz, etc. For brevity, only
representative reconstruction and analysis results were demonstrated here.

As pointed out in Story 1, in analyzing the structure-borne sound radiation, we
must focus on the normal component of the time-averaged acoustic intensity
distribution on a source surface, rather than the surface acoustic pressure distribu-
tion. This is because the normal surface acoustic intensity depicts the acoustic
energy flow. If the normal surface acoustic intensity is positive, then there is a net
acoustic energy outflow, and this surface may be the major contributor for acoustic
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Major contributor at 104 Hz

Jack
storage
area
FR | RR | FL | RL | Total
Floor-Driver side 88 | 85 | 89 | 89 | 352
Floor-Middle 80 | 7.7 | 83 | 82 | 324
Floor-Passenger Side 7.0 | 65 | 74 | 73 | 284
Jack Storage Area 10.0 | 10.0 | 10.0 | 10.0 | 40.0
Lift Gate-Driver Side 1 87 | 85 | 89 | 88 | 34.8
Lift Gate-Driver Side 2 89 | 86 | 9.0 | 9.0 | 35.6
Lift Gate-Middle 1 88 | 87 | 9.0 | 9.0 | 35.6
Lift Gate-Middle 2 84 | 81 | 86 | 85 | 33.6
Lift Gate-Passenger Side 1 79 | 75 | 82 | 81 | 31.6
Lift Gate-Passenger Side 2 63 | 56 | 6.8 | 6.6 | 252

Fig. 10.10 The jack storage area was the major acoustic contributor toward the SPL values at
104 Hz at the front passenger’s (designated as FR), rear right passenger’s (designated as RR),
driver’s (designated as FL), and rear left passenger’s (designated as RL) ears positions (above).
The relative panel acoustic contributions are normalized with respect to the highest value and
multiplied by 10, and the total values are summed together (below)

radiation. If the normal surface acoustic intensity is negative, there is a net acoustic
energy inflow, and the corresponding surface is known as an acoustic sink, meaning
it actually absorbs sound. When the normal surface acoustic intensities show both
positive and negative values, the outflow acoustic energy tends to cancel inflow
acoustic energy. As a result, the acoustic contribution from this surface can be
minimal.

For example, at 129 Hz, the normal surface acoustic intensity on the top was
negative and those on the front and side surfaces were both positive and negative,
whereas that on the bottom was positive (Fig. 10.17). Therefore, the bottom surface
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Major contributor at 116 Hz

&8 Floor !
@8 Middle

FR | RR | FL | RL | Total
Floor-Driver side 70 | 65 | 74 | 73 | 282
Floor-Middle 10.0 | 10.0 | 10.0 | 10.0 | 40.0
Floor-Passenger Side 87 | 85 | 89 | 88 | 349
Jack Storage Area 89 | 86 | 9.0 | 9.0 | 355
Lift Gate-Driver Side 1 88 | 87 | 9.0 | 9.0 | 355
Lift Gate-Driver Side 2 84 | 81 | 86 | 85 |33.6
Lift Gate-Middle 1 79 | 75 | 82 | 81 | 317
Lift Gate-Middle 2 6.3 56 | 68 | 6.6 | 253
Lift Gate-Passenger Side 1 0.0 | 0.0 | 0.0 | 0.0 0
Lift Gate-Passenger Side 2 00 | 00 [ 0.0 | 0.0 0

Fig. 10.11 The Floor Middle panel was the major acoustic contributor toward the SPL values at
116 Hz at the front passenger’s (designated as FR), rear right passenger’s (designated as RR),
driver’s (designated as FL), and rear left passenger’s (designated as RL) ears positions (above).
Relative panel acoustic contributions are normalized with respect to the highest value and
multiplied by 10, and the total values are summed together (below)

where oil pan was located was the major contributor, and the top, front, and side
surfaces virtually did not contribute any acoustic radiation. Similar results were
obtained for other frequencies. Figure 10.18 demonstrated that at 645 Hz the engine
noise was primarily emitted from the bottom surface because the normal surface
acoustic intensity was consistently positive. Meanwhile, the normal surface acous-
tic intensities on the top, front, and side surfaces were either negative or both
positive and negative.
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Lift-Gate
Middle 1

Major contributor at 235 Hz

FR | RR | FL | RL | Total
Floor-Driver side 68 | 6.1 | 7.1 | 7.2 | 27.2
Floor-Middle 9.3 9.1 9.4 94 | 37.2
Floor-Passenger Side 97 | 97 | 98 | 9.8 | 390
Jack Storage Area 77 1 72 79 | 80 | 308
Lift Gate-Driver Side 1 97 | 96 | 97 | 9.7 | 387
Lift Gate-Driver Side 2 98 | 9.7 | 9.8 | 9.8 | 39.1
Lift Gate-Middle 1 10.0 | 10.0 | 10.0 | 10.0 | 40.0
Lift Gate-Middle 2 9.9 9.8 9.9 9.9 | 39.5
Lift Gate-Passenger Side 1 9.6 19.69| 9.7 | 9.7 | 38.6
Lift Gate-Passenger Side 2 85 | 82 | 8.6 | 87 | 34.0
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Fig. 10.12 The Lift Gate Middle 1 panel was the major acoustic contributor toward the SPL
values at 235 Hz at the front passenger’s (designated as FR), rear right passenger’s (designated as
RR), driver’s (designated as FL), and rear left passenger’s (designated as RL) ears positions
(above). The relative panel acoustic contributions are normalized with respect to the highest

value and multiplied by 10, and the total values are summed together (below)

Table 10.1 shows the total normal surface acoustic intensity values and the
corresponding contributions in percentages. Results indicate that the bottom surface
is the major contributor for sound radiation, whereas the top and side surfaces are
actually acoustic sinks, and the front surface contributes about 1/6 of those from the
bottom surface. With this insight, engineers replaced the stamped oil pan by a

composite one, and the resultant engine noise was significantly reduced.
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.
Major contributor at 241 Hz

Floor
Passenger
side

FR | RR | FL RL | Total
Floor-Driver side 6.8 | 53 | 79 | 7.8 | 278
Floor-Middle 9.3 9.0 | 9.6 | 9.6 | 375
Floor-Passenger Side 10.0 | 10.0 | 10.0 | 10.0 | 40.0
Jack Storage Area 96 | 94 | 9.7 | 9.7 | 384
Lift Gate-Driver Side 1 98 | 9.7 | 9.8 | 9.8 | 39.1
Lift Gate-Driver Side 2 9.1 | 87 | 94 | 94 | 36.6
Lift Gate-Middle 1 8.1 7.2 8.8 8.7 | 32.8
Lift Gate-Middle 2 53 3.1 6.9 | 6.8 | 22.1
Lift Gate-Passenger Side 1 82 | 74 | 88 | 88 | 332
Lift Gate-Passenger Side 2 9.8 | 97 | 99 | 99 | 393

Fig.10.13 The Floor Passenger Side was the major acoustic contributor toward the SPL values at
241 Hz at the front passenger’s (designated as FR), rear right passenger’s (designated as RR),
driver’s (designated as FL), and rear left passenger’s (designated as RL) ears positions (above).
The relative panel acoustic contributions are normalized with respect to the highest value and
multiplied by 10, and the total values are summed together (below)
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Lift-Gate
Driver
side 2

Major contributor at 255 Hz

FR | RR | FL | RL | Total
Floor-Driver side 56 | 89 9 8.8 | 32.3
Floor-Middle 74 | 93 94 | 93 | 354
Floor-Passenger Side 69 | 92 | 93 | 91 | 338
Jack Storage Area 97 | 99 | 99 | 99 | 394
Lift Gate-Driver Side 1 94 | 98 |1 99 | 9.8 | 389
Lift Gate-Driver Side 2 10.0 | 10.0 | 10.0 | 10.0 | 40.0
Lift Gate-Middle 1 59 | 59 | 64 | 55 | 23.7
Lift Gate-Middle 2 5.8 89 | 9.1 8.8 | 32.6
Lift Gate-Passenger Side 1 79 | 95| 95| 94 | 363
Lift Gate-Passenger Side 2 5.1 87 | 89 | 8.6 | 313
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Fig. 10.14 The Lift Gate Driver Side 2 was the major acoustic contributor toward the SPL values
at 241 Hz at the front passenger’s (designated as FR), rear right passenger’s (designated as RR),
driver’s (designated as FL), and rear left passenger’s (designated as RL) ears positions (above).
The relative panel acoustic contributions are normalized with respect to the highest value and
multiplied by 10, and the total values are summed together (below)
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Fig. 10.15 Overall view of the reconstruction grids and different sides of the gasoline engine
block
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Fig. 10.16 A-weighted acoustic pressure spectrum measured at a designated field point for this
gasoline engine. Several significant narrow-band peaks were identified at 64 Hz, 129 Hz, 258 Hz,
516 Hz, 645 Hz, 710 Hz, 1,161 Hz, 1,937 Hz, 2,259 Hz, etc. were identified
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Fig. 10.17 Reconstructed surface acoustic pressure distributions on the engine block (/eft) and the
normal surface acoustic intensity distributions on the engine block (right) at 129 Hz. The bottom
surface was the major contributor of sound radiation because the normal surface acoustic intensity
was consistently positive, whereas those on the top, front, and side surfaces were either negative or
both positive and negative
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Fig. 10.18 Reconstructed surface acoustic pressure distributions on the engine block (/eft) and the
normal surface acoustic intensity distributions on the engine block (right) at 645 Hz. The bottom
surface was the major contributor of sound radiation because the normal surface acoustic intensity
was consistently positive, whereas those on the top, front, and side surfaces were either negative or
both positive and negative
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Table 10.1 Relative panel acoustic contributions of the engine block to overall noise emission

Surface of the engine Sound power ( Watts) % Contribution
Top surface —1.8 —10.60

Side surface —18.6 —109

Front surface 5.5 32.20
Bottom (oil pan) 32.0 187

Overall 17.1 100
Problems

10.1. What is the HELS-based panel acoustic contribution analysis? What are the

10.2.

10.3.

10.4.

10.5.

10.6.

10.7.

10.8.

advantages and limitations of this approach?

What are the differences between the HELS-based panel acoustic contribu-
tion analysis and the existing methodologies that are currently being used in
industry to tackle various noise diagnosis issues?

Why do we need examine the acoustic power flows from individual panels to
assess their relative contributions?

How are the acoustic power flows from individual panels of a vibrating
structure related to the SPL values at any field points?

Why is it not appropriate to use the acoustic pressure measurements alone to
analyze the relative panel acoustic contributions?

When will it be appropriate to use the acoustic pressure measurements alone
to analyze the relative acoustic contributions? Why?

What are the general procedures involved in conducting the HELS-based
panel acoustic contributions analyses?

What should we learn from the stories of the panel acoustic contributions
analyses told in Chap. 10?


http://dx.doi.org/10.1007/978-1-4939-1640-5_10

References

DN =

10.

11.

12

13.

14.

15.

16.

. The Nobel Prize in Physics 1971. The Nobel Foundation (nobelprize.org)
. Y.N. Denisyuk, On the reflection of optical properties of an object in a wave field of light

scattered by it. Dokl. Akad. Nauk SSSR 144, 1275-1278 (1962)

. E.N. Leith, J. Upatnieks, Reconstructed wavefronts and communication theory. J. Opt. Soc.

Am. 52, 1123-1130 (1962)

. F. Thurstone, Ultrasound holography and visual reconstruction. Proc. IEEE Symp. Biomed.

Eng. 1, 12 (1966)

. B.P. Hildebrand, B.B. Brenden, An Introduction to Acoustical Holography (Plenum,

New York, 1974)

. J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968)
. E.G. Williams, J.D. Maynard, Holographic imaging without the wavelength resolution limit”.

Phys. Rev. Lett. 45, 554-557 (1980)

. E.G. Williams, Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography

(Academic, San Diego, 1999)

. E.G. Williams, H.D. Dardy, R.G. Fink, Nearfield acoustical holography using an underwater

automated scanner. J. Acoust. Soc. Am. 78, 789-798 (1985)

J.D. Maynard, E.G. Williams, Y. Lee, Nearfield acoustic holography: I. Theory of general-
ized holography and the development of NAH. J. Acoust. Soc. Am. 78, 13951413 (1985)
S. Hayek, T. Luce, Aperture effects in planar nearfield acoustical imaging. Trans. ASME
J. Vib. Acoust. Stress. Reliab. Des. 110, 91-96 (1988)

. E.G. Williams, B.H. Houston, P.C. Herdic, Fast Fourier transform and singular value

decomposition formulations for patch nearfield acoustical holography. J. Acoust. Soc.
Am. 114, 1322-1333 (2003)

A. Sarkissian, Method of superposition applied to patch near-field. J. Acoust. Soc. Am. 118,
671-677 (2005)

M. Lee, J.S. Bolton, Patch near-field acoustical holography in cylindrical geometry.
J. Acoust. Soc. Am. 118, 3721-3732 (2005)

K. Saijyou, S. Yoshikawa, Reduction methods of the reconstruction error for large-scale
implementation of near-field acoustical holography. J. Acoust. Soc. Am. 110, 2007-2023
(2001)

F.J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform.
Proc. IEEE 66, 51-83 (1978)

. J.W. Tukey, An introduction to the calculations of numerical spectrum analysis, in Spectral

Analysis of Time Series, ed. by B. Harris (Wiley, New York, 1967), pp. 25-46

© Springer Science+Business Media New York 2015 221
S.F. Wu, The Helmholtz Equation Least Squares Method, Modern Acoustics
and Signal Processing, DOI 10.1007/978-1-4939-1640-5



222

19.

20.

21.

22.

23.

24.

25

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.
40.

References

. B.K. Gardner, R.J. Bernhard, A noise source identification technique using an inverse
Helmholtz integral equation method. ASME J. Vib. Acoust. Stress. Reliab. Des. 110, 84—
90 (1988)

T.W. Wu, A direct boundary element method for acoustic radiation and scattering from
mixed regular and thin bodies. J. Acoust. Soc. Am. 97, 84-91 (1995)

W.A. Veronesi, J.D. Maynard, Digital holographic reconstruction of sources with arbitrarily
shaped surfaces. J. Acoust. Soc. Am. 85, 588598 (1989)

G.H. Golub, C.F. Loan, Matrix Computations (Johns Hopkins University Press, North
Oxford, 1983)

G.V. Borgiotti, A. Sarkissian, E.G. Williams, L. Schuetz, Conformal generalized near-field
acoustic holography for axisymmetric geometries. J. Acoust. Soc. Am. 88, 199-209 (1990)
J.M. Varah, On the numerical solution of ill-conditioned linear systems with applications to
ill-posed problems. SIAM J. Numer. Anal. 10, 257-267 (1973)

G.-T. Kim, B.-T. Lee, 3-D sound source reconstruction and field reproduction using the
Helmholtz integral equation. J. Sound Vib. 136, 245-261 (1990)

. M.R. Bai, Application of BEM (boundary element method)-based acoustic holography to
radiation analysis of sound sources with arbitrarily shaped geometries. J. Acoust. Soc.
Am. 92, 533-549 (1992)

B.-K. Kim, J.-G. Ih, On the reconstruction of vibro-acoustic field over the surface enclosing
an interior space using the boundary element method. J. Acoust. Soc. Am. 100, 3003-3016
(1996)

Y .-K. Kim, Y.-H. Kim, Holographic reconstruction of active sources and surface admittance
in an enclosure. J. Acoust. Soc. Am. 105, 2377-2383 (1999)

Z. Zhang, N. Vlahopoulos, S.T. Raveendra, T. Allen, K.Y. Zhang, A computational acoustic
field reconstruction process based on an indirect boundary element formulation. J. Acoust.
Soc. Am. 108, 2167-2178 (2000)

S.-C. Kang, J.-G. Th, Use of non-singular boundary integral formulation for reducing errors
due to near-field measurements in the boundary element method based near-field acoustic
holography. J. Acoust. Soc. Am. 109, 1320-1328 (2001)

A. Schuhmacher, J. Hald, K.B. Rasmussen, P.C. Hansen, Sound source reconstruction using
boundary element calculations. J. Acoust. Soc. Am. 113, 114—127 (2004)

K. Saijyou, H. Uchida, Data extrapolation method for boundary element method-based near-
field acoustical holography. J. Acoust. Soc. Am. 115, 785-796 (2004)

C. Langrenne, M. Melon, A. Garcia, Boundary element method for the acoustic characteri-
zation of a machine in bounded noisy environment. J. Acoust. Soc. Am. 121, 2750-2757
(2007)

D.M. Photiadis, The relationship of singular value decomposition to wave-vector filtering in
sound radiation problems. J. Acoust. Soc. Am. 88, 1152—-1159 (1990)

H.A. Schenck, Improved integral formulation for acoustic radiation problems. J. Acoust. Soc.
Am. 44, 41-58 (1968)

A.J. Burton, G.F. Miller, Application of the integral equation method to the numerical
solution of some exterior boundary value problems. Proc. R. Soc. Lond. A 323, 202-210
(1971)

Z. Wang, S.F. Wu, Helmholtz equation-least-squares method for reconstructing the acoustic
pressure field. J. Acoust. Soc. Am. 102, 2020-2032 (1997)

S.F. Wu, On reconstruction of acoustic pressure fields using the Helmholtz equation least
squares method. J. Acoust. Soc. Am. 107, 2511-2522 (2000)

S.F. Wu, Methods for reconstructing acoustic quantities based on acoustic pressure measure-
ments. J. Acoust. Soc. Am. 124, 2680-2697 (2008)

L.P. Eisenhart, Separable systems in Euclidean 3-space. Phys. Rev. 45, 427428 (1934)

M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York,
1972)



References 223

41

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.
59.

60.

61.

62.

63.

64.

65.

. I.S. Gradshteyn, .M. Ryzhik, Table of Integrals, Series and Products, 4th edn. (Academic,
New York, 1965)

A.D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications
(McGraw-Hill, New York, 1981), pp. 165-194, Chap. 4

A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, New York, 1977),
pp. 71-73, Chap. 2

D.L. Phillips, A technique for the numerical solution of certain integral equations of the first
kind. J. Assoc. Comput. Mach. 9, 84-97 (1962)

S. Twomey, On the numerical solution of Fredholm integral equations of the first kind by the
inversion of the linear system produced by quadrature. J. Assoc. Comput. Mach. 10, 97-101
(1962)

P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems (SIAM, Philadelphia, 1998)
P.J. Davis, P. Rabinowitz, Advances in orthonormalizing computation, in Advances in
Computers, ed. by F.L. Alt, vol. 2 (Academic, New York, 1961), pp. 55-133

L. K. Netarajan, Vibro-acoustic analysis of an arbitrarily shaped vibrating structure, Ph.D.
dissertation, Wayne State University, 2013

E.G. Williams, Regularization methods for near-field acoustic holography. J. Acoust. Soc.
Am. 110, 1976-1988 (2001)

G.H. Golub, M. Heath, G. Wahba, Generalized cross-validation as a method for choosing a
good ridge parameter. Technometrics 21, 215-223 (1979)

L.K. Natarajan, S.F. Wu, Reconstruction of normal surface velocities on a baffled plate using
Helmbholtz equation least squares method. J. Acoust. Soc. Am. 131, 4570-4583 (2012)

N.E. Rayess, S.F. Wu, Experimental validations of the HELS method for reconstructing
acoustic radiation from a complex vibrating structure. J. Acoust. Soc. Am. 107, 2955-2964
(2000)

S.F. Wu, N. Rayess, X. Zhao, Visualization of acoustic radiation from a vibrating bowling
ball. J. Acoust. Soc. Am. 109, 2771-2779 (2001)

S.F. Wu, J. Yu, Reconstructing interior acoustic pressure field via Helmholtz equation least-
squares method. J. Acoust. Soc. Am. 104, 2054-2060 (1998)

M. Moondra, S.F. Wu, Visualization of vehicle interior sound field using HELS based NAH.
Noise Control Eng. J. 53(4), 146-154 (2005)

S. F. Wu, in An overview of reconstruction of radiated acoustic pressures from complex
vibrating structures by using the HELS method, The joint meeting of the meeting of the 136th
Acoustical Society of America, 2nd Convention of the European Acoustics Association:
Forum Acusticum 99, and 25th German Acoustics DAGA Conference, Berlin, Germany,
March 1999

L. Rayleigh (J. W. Strutt), On the dynamical theory of gratings. Proc. R. Soc. Lond. A, 79,
399-416 (1907)

L. Rayleigh (J. W. Strutt), The Theory of Sound, vol. 2 (Dover, New York, 1945), pp. 89-96
R.F. Millar, Rayleigh hypothesis in scattering problems. (With author’s reply). Electron. Lett.
5, 416417 (1969)

R.F. Millar, On the Rayleigh assumption in scattering by a periodic surface. Proc. Camb.
Philos. Soc. 65, 773-791 (1969)

R.F. Millar, The Rayleigh hypothesis and a related least-squares solution to scattering
problems for periodic surfaces and other scatters. Radio Sci. 8, 785-796 (1973)

R.F. Millar, On the Rayleigh assumption in scattering by a periodic surface. II. Math. Proc.
Camb. Philos. Soc. 69, 217-225 (1971)

N.R. Hill, V. Celli, Limits of convergence of the Rayleigh method for surface scattering.
Phys. Rev. B 17, 2478-2481 (1987)

P.M. van den Berg, J.T. Fokkema, The Rayleigh hypothesis in the theory of diffraction by a
perturbation in a plane surface. Radio Sci. 15, 723-732 (1980)

P.M. van den Berg, J.T. Fokkema, The Rayleigh hypothesis in the theory of diffraction by a
cylindrical obstacle. IEEE Trans. Antennas Propag. AP-27, 577-583 (1979)



224

66

67.

68.

69.

70.

71.

72.

73.

74.

75.
76.

71

78.
79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

References

. B.V. Apel’tsin, On the method of nonorthogonal series in exterior problems in the theory of
steady-state oscillations. Sov. Phys. Dokl. 26, 831-833 (1982)

R.F. Millar, Singularities and the Rayleigh hypothesis for solutions to the Helmholtz equa-
tion. IMA J. Appl. Math. 37, 155-171 (1986)

D. Maystre, M. Cadilhac, Singularities of the continuation of fields and validity of Rayleigh’s
hypothesis. J. Math. Phys. 26, 2201-2204 (1985)

J.B. Keller, Singularities and Rayleigh’s hypothesis for diffraction gratings. J. Opt. Soc.
Am. 17, 456457 (2000)

P. Davis, The Schwarz function and its applications, in The Carus Mathematical Mono-
graphs, vol. 17 (Mathematical Association of America, Buffalo, 1974)

T. Semenova, On the behavior of HELS solutions for acoustic radiation and reconstruction,
Ph.D. dissertation, Department of Mechanical Engineering, Wayne State University, May
2004

T. Semenova, S.F. Wu, The Helmholtz equation least squares method and the Rayleigh’s
hypothesis in nearfield acoustical holography. J. Acoust. Soc. Am. 115(4), 1632-1640 (2004)
N. E. Rayess, Development of acoustic holography using the Helmholtz Equation-Least
Squares (HELS) Method, Ph.D. dissertation, Department of Mechanical Engineering,
Wayne State University, May 2001

V. Isakov, S.F. Wu, On theory and applications of the HELS method in inverse acoustics.
Inverse Probl. 18, 1147-1159 (2002)

V. Isakov, Inverse Problems for Partial Differential Equations (Springer, New York, 1990)
R. Pike, P. Sabatier (eds.), Scattering (Academic, New York, 2001), pp. 794-769

. D. Colton, R. Kress, Inverse acoustic and electromagnetic scattering theory, in Applied
Mathematical Sciences, vol. 93 (Springer, Berlin, 1992)

V. Isakov, Inverse Source Problems (AMS, Providence, 1990)

A.N. Tikhonov, On stability of inverse problems. Dokl. Akad. Nauk SSSR 39, 176-179
(1943)

J. Prager, Approximate reconstruction of sound fields close to the source surface using
spherical nearfield acoustic holography. J. Acoust. Soc. Am. 122, 2067-2073 (2007)

The MathWorks, Inc., MATLAB Documentation: MATLAB Function Reference, (The
MathWorks, Inc., MATLAB R2007b, 2007)

National Instruments Corporation, LabVIEW Help: VI and Function Reference, (National
Instruments Corporation, LabVIEW 8.6, 2008)

H. Lu, Reconstruction of vibroacoustic responses using Helmholtz equation least squares
method, Ph.D. dissertation, Wayne State University, Detroit, Michigan, 2007

S. F. Wu, Noise Diagnostics Using Nearfield Acoustical Holography Seminar (Society for
Automobile Engineering International, Short Course ID# C0607, 2007)

H. Lu, S.F. Wu, Reconstruction of vibroacoustic responses of a highly nonspherical structure
using Helmholtz equation least-squares method. J. Acoust. Soc. Am. 125, 1538-1548 (2009)
C. E. Shannon, Communication in the presence of noise. Proc. Inst. Radio. Eng. 37, 10-21
(1949). Reprint as classic paper in Proceedings of IEEE, vol. 86, February 1998. pii: S 0018-
9219(98)01299-7

S.M. Pandit, Modal and Spectrum Analysis: Data Dependent Systems in State Space (Wiley,
New York, 1991)

P. Mohanty, D.J. Rixen, Operational modal analysis in the presence of harmonic excitation.
J. Sound Vib. 270, 93-109 (2004)

H. Lord, W.S. Gatley, H.A. Evensen, Noise Control for Engineers (Krieger Publishing
Company, Malabar, 1987)

E.G. Williams, H.D. Dardy, K.B. Washburn, Generalized nearfield acoustical holography for
cylindrical geometry: theory and experiment. J. Acoust. Soc. Am. 81, 389407 (1987)

S.F. Wu, X. Zhao, Combined Helmholtz equation least squares (CHELS) method for
reconstructing acoustic radiation. J. Acoust. Soc. Am. 112, 179-188 (2002)



References 225

92

93.
94.

95.
96.
97.
98.
99.
100.
101.
102.
103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

. P. Morse, H. Feshbach, Methods of Theoretical Physics, vol. 1 (McGraw-Hill, New York,
1953)

P. Dirac, Principles of Quantum Mechanics, 4th edn. (Clarendon, Oxford, 1958)

M.E. Goldstein, Aeroacoustics (McGraw-Hill, New York, 1976), Chapter 1, 28-29, 45-47,
and Chapter 3, 114-120

I.S. Gradshteyn, .M. Ryzhik, The principal values of improper integrals, Section 3.05, in
Tables of Integrals, Series, and Products, 6th edn. (Academic, San Diego, 2000), p. 248

F. Smithies, Integral Equations (Cambridge University Press, Cambridge, 1958), pp. 51-52
J.D. Pryce, Numerical Solution of Sturm—Liouville Problems (Clarendon, Oxford, 1993)
D.K. Arrowsmith, C.M. Place, Dynamical Systems (Chapman & Hall, London, 1992),
Section 3.3

P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, Princeton,
1986)

X. Zhao, S.F. Wu, Reconstruction of the vibro-acoustic fields using hybrid nearfield acous-
tical holography. J. Sound Vib. 282, 1183-1199 (2005)

T.B. Hansen, Spherical expansions of time-domain acoustic fields: Application to near-field
scanning. J. Acoust. Soc. Am. 98, 1204—1215 (1995)

S.F. Wu, Hybrid nearfield acoustical holography. J. Acoust. Soc. Am. 115(1), 207-217
(2004)

M. Moondra, S.F. Wu, Visualization of vehicle interior noise using HELS based NAH,
(CD-ROM), in Proceedings of the INTER-NOISE 2002, August 2002

S.H. Yoon, P.A. Nelson, Estimation of acoustic source strength by inverse methods: part II,
experimental investigation of methods for choosing regularization parameters. J. Sound Vib.
233, 669-705 (2000)

L. Landweber, An iteration formula for Fredholm integral equations of the first kind.
Am. J. Math. 73, 615-624 (1951)

V.A. Morozov, The error principle in the solution of operational equations by the regulari-
zation method. USSR Comput. Math. Math. Phys. 8, 63-87 (1968)

X. Zhao, S.F. Wu, Reconstruction of vibro-acoustic fields by using hybrid nearfield acoustical
holography in half space. J. Acoust. Soc. Am. 117, 555-565 (2005)

1.-Y.Jeon, J.-G. Ih, On the holographic reconstruction of vibroacoustic fields using equivalent
sources and inverse boundary element method. J. Acoust. Soc. Am. 118, 3475-3484 (2005)
G.H. Koopmann, L. Song, J.B. Fahnline, A method for computing acoustic fields based on the
principle of wave superposition. J. Acoust. Soc. Am. 86, 2433-2438 (1989)

L. Song, G.H. Koopmann, J.B. Fahnline, Numerical errors associated with the method of
superposition for computing acoustic fields. J. Acoust. Soc. Am. 89, 2625-2633 (1991)

J.B. Fahnline, G.H. Koopmann, A numerical solution for the general radiation problem based
on the combined methods of superposition and singular-value decomposition. J. Acoust. Soc.
Am. 90, 2808-2819 (1991)

M.E. Johnson, S.J. Elliott, K.H. Baek, J. Garcia-Bonito, An equivalent source technique for
calculating the sound field inside an enclosure containing scattering objects. J. Acoust. Soc.
Am. 104, 1221-1231 (1998)

Y.I. Bobrovnitskii, T.M. Tomilina, General properties and fundamental errors of the method
of equivalent sources. Acoust. Phys. 41, 649-660 (1995)

C.-X. Bi, X.-Z. Chen, J. Chen, Sound field separation technique based on equivalent source
method and its application in nearfield acoustic holography. J. Acoust. Soc. Am. 123, 1472—
1478 (2008)

N.P. Valdivia, E.G. Williams, Study of the comparison of the methods of equivalent sources
and boundary element methods for nearfield acoustic holography. J. Acoust. Soc. Am. 120,
3694-3705 (2006)

M.R. Bai, J.H. Lin, Source identification system based on the time-domain nearfield equiv-
alence source imaging: fundamental theory and implementation. J. Sound Vib. 307, 202-225
(2007)



226

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.
136.

137.

138.

139.

140.
141.

142.

143.

References

A. Sarkissian, Extension of measurement surface in near-field acoustic holography. J. Acoust.
Soc. Am. 115, 1593-1596 (2004)

M.R. Bai, C.-C. Chen, J.H. Lin, On optima retreat distance for the equivalent source method-
based nearfield acoustical holography. J. Acoust. Soc. Am. 129, 1407-1416 (2011)

K.H. Baek, S.J. Elliot, Natural algorithms for choosing source locations in active control
systems. J. Sound Vib. 186, 245-267 (1995)

D.C. Kammer, Sensor placement for on-orbit modal identification and correlation of large
space structures. J. Guid. Contr. Dynam. 14, 251-259 (1991)

T. Semenova, S.F. Wu, On the choice of expansion functions in the Helmholtz equation least-
squares method. J. Acoust. Soc. Am. 117, 701-710 (2005)

I.P. Lysanov, Theory of the scattering of waves at periodically uneven surfaces. Sov. Phys.
Acoust. 4, 1-10 (1958)

P.M. van den Berg, Reflection by a grating: Rayleigh methods. J. Opt. Soc. Am. 71, 1224—
1229 (1981)

A. Doicu, Y. Eremin, T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using
Discrete Sources (Academic, New York, 2000)

Y.A. Eremin, Complete systems of functions for the study of boundary value problems in
mathematical physics. Sov. Phys. Dokl. 32, 635-637 (1987)

V.D. Kupradze, On the approximate solutions of problems in mathematical physics. Success
Math. Sci. 22, 58-108 (1967)

Y.A. Eremin, N.V. Orlov, A.G. Sveshnikov, The analysis of complex diffraction problems by
the discrete source method. Comp. Maths Math. Phys. 35, 731-743 (1995)

A. Wirgin, On Rayleigh’s theory of sinusoidal diffraction gratings. Opt. Acta 27, 1671-1692
(1980)

T. Namioka, T. Harada, K. Yasuura, Diffraction gratings in Japan. Opt. Acta 26, 1021-1034
(1979)

D. Agassi, T.F. George, Convergent scheme for light scattering from an arbitrary deep
metallic grating. Phys. Rev. B 33, 2393-2400 (1986)

H. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, in Mathematics and Its
Applications, vol. 375 (Kluwer, Dordrecht, 1996)

M. Hanke, P.C. Hansen, Regularization methods for large-scale problems. Surv. Math. Ind. 3,
253-315 (1993)

A.B. Bakushinskii, Remarks on choosing a regularization parameter using the quasi-
optimality and ration criterion. Comput. Math. Math. Phys. 24, 181-182 (1984)

V.A. Morozov, On the solution of functional equations by the method of regularization. Sov.
Math. Dokl. 7, 414417 (1966)

V.A. Morozov, Methods for Solving Incorrectly Posed Problems (Springer, New York, 1984)
C.L. Lawson, R.J. Hanson, Solving Least-Squares Problems (Prentice-Hall, Englewood
Cliffs, 1974)

Z. Wang, Helmholtz equation-least-squares (HELS) method for inverse acoustic radiation
problems, Ph.D. dissertation, Wayne State University, Detroit, Michigan, 1995

J. Hald, Use of Non-Stationary STSF for the Analysis of Transient Engine Noise Radiation
(Briiel & Kjer, Nerum, 1999)

R. Bracewell, Heaviside’s unit step function, H(x), in The Fourier Transform and lIts
Applications, 3rd edn. (McGraw-Hill, New York, 2000)

M.C. Junger, D. Feit, Sound, Structures, and their Interactions (MIT, Cambridge, 1972)
W.R. LePage, Complex Variables and the Laplace Transform for Engineers (Dover,
New York, 1961)

S.F. Wu, Transient sound radiation from impulsively accelerated bodies. J. Acoust. Soc.
Am. 94, 542-553 (1993)

R.R. Craig Jr., Structural Dynamics: An Introduction to Computer Methods (Wiley,
New York, 1981), Chap. 6, 123-127



References 227

144. S.F. Wu, H.-C. Lu, M.S. Bajwa, Reconstruction of transient acoustic radiation from a sphere.
J. Acoust. Soc. Am. 117, 2065-2077 (2005)

145. M. S. Bajwa, Investigation on transient acoustic radiation and reconstruction, Ph.D. disser-
tation, Wane State University, December 2008

146. S.F. Wu, L.K. Natarajan, Panel acoustic contribution analysis. J. Acoust. Soc. Am. 131,
45704583 (2012)

147. D. De Vis, W. Hendricx, P. van der Linden, Development and integration of an advanced
unified approach to structure borne noise analysis, in 2nd International Conference on
Vehicle Comfort, ATA (1992)

148. J. Hald, C. Blaabjerg, M. Kimura, Y. Ishii, M. Tsuchiya, and H. Ando, in Panel contribution
analysis using a volume velocity source and a double layer array with the SONAH algorithm.
Inter-Noise 2006, Honolulu, Hawaii, USA, December 3-6, 2006



Index

A
Acoustic
intensity, 4, 5, 31, 35, 86, 95, 96, 123-125,
127, 196, 199-201, 204, 205, 210, 211,
220, 221
power flow, 31, 76, 91, 93-95, 195-197,
200, 201, 202, 204, 207
source, 3, 20, 30, 64, 79, 107, 127, 143,
163, 196
wavelength, 3, 8, 82, 83, 96-99, 151, 163
wavenumber, 5, 6, 11, 67-69, 94, 118
Acoustical holography, 3-5, 82, 94, 96, 99, 163
Adjoint, 108-110
Aliasing, 42, 83, 95, 100, 119, 123, 124
Analytic boundaries, 63
Analytic continuation, 6, 64—67, 74, 75, 152
Angular
frequency, 11
solution, 18
Array of microphones, 47, 54, 58, 85, 87-91,
96, 127, 150, 163, 191, 192, 204, 210
Aspect ratio, 46, 67, 80, 84, 85, 138-141
Asymptotic form. See Expansion
Auxiliary sources, 145-148, 150-153, 159, 160
Azimuthal function, 12

B

Back propagating, 67

Bessel function of the first and second kinds,
12-15, 24, 147

Boundary condition, 1, 11, 12, 21, 23, 54, 58,
59, 64, 66, 100, 102, 111, 143, 187,
188, 195

Boundary element method (BEM) based NAH.
See Nearfield acoustical holography
(NAH)

Bounded domain, 69, 72, 145, 147

C
Carleman estimates, 72
Cauchy principal value, 103
Cauchy problem, 68, 70, 75
Chain rule, 101, 167, 168
Characteristic
dimension, 67, 81, 122, 150, 193
equation, 173, 179, 181
frequency, 8, 107, 109, 111
function, 108, 111
radius, 76
solution, 144
value, 108, 112
Compeatibility condition, 109, 110, 112
Complex amplitude, 11-12, 63—64, 100,
196, 197
Complex conjugate, 18, 21, 22, 28, 199
Conformal array/measurement, 87-90,
204, 210
Conformal surface, 34, 116, 119, 121, 129,
130, 136, 151
Contour integral, 171-172
Convergence, 4647, 68, 76, 148, 149, 152
Convolution integral, 164, 175, 176, 178-179,
182, 193
Corrugated surface, 63-65, 77, 164
Critical spatial wavelength, 81, 82, 85,
117, 121

© Springer Science+Business Media New York 2015 229
S.F. Wu, The Helmholtz Equation Least Squares Method, Modern Acoustics
and Signal Processing, DOI 10.1007/978-1-4939-1640-5



230

D

Damped singular value decomposition
(DSVD), 149, 157, 159, 160
See also Regularization

Determinant, 1, 2, 5-7, 12, 23, 27, 31, 32-33,
35, 38-39, 40, 4344, 48, 51, 52, 55,
60, 64-66, 71, 83, 85, 93, 94, 100, 101,
107, 109, 115, 118, 128, 129, 130, 135,
136, 143, 149, 151, 153, 157, 160, 163,
164, 170, 177, 178, 180, 187, 188,
189, 204

Diagnosis, 2, 27, 86, 127, 195, 200, 203

Diagonal matrix, 8, 51-53, 114

Dipole, 30, 113, 151

Dirac delta function, 101, 102, 165-168

Directivity factor, 91, 93

Dirichlet problem, 73, 111, 112

Distributed point sources (DPS), 143, 144,
147-154, 156, 157, 159, 160

Distributed spherical waves (DSW), 143-157,
159, 160

Divergence theorem, 102

DPS. See Distributed point sources (DPS)

DSW. See Distributed spherical waves (DSW)

Duhamel integral, 175

Dynamic range, 96

E
Ellipsoid equation, 103
Elliptic equation, 68-70
EMA. See Experimental modal analysis
(EMA)
Equivalent sources, 90, 132, 143-160
Error analysis, 4246
Euler’s equation, 21, 30-31, 35, 37, 102,
169, 187
Evanescent waves, 4, 5, 49, 96, 100, 113,
115-118
Expansion
asymptotic, 15, 44
coefficients, 19, 21-24, 30, 32-33, 35-37,
64, 66, 71, 80, 128—-130, 136, 143-147,
164, 187-190
functions, 9, 27, 28, 30, 38, 40, 43, 44,
48,49, 61, 85, 121, 128, 131, 136, 139,
152, 160
optimal number, 46, 48, 49, 55, 56, 66, 85,
136, 143
order, 39, 44, 49, 145, 146, 150, 151, 178
series, 63, 64
solution, 46, 67, 115
spherical wave functions, 24, 46, 61, 67, 76,
101, 131, 143, 163

Index

terms, 24, 30, 46, 49-51, 55, 56, 66, 75, 81,
85, 115, 129, 143, 145, 146, 150, 151,
152, 154, 156, 189
theory, 27, 48, 177
Experimental modal analysis (EMA), 54, 56,
58-60, 86
Exterior
problems, 20, 68, 81, 101
region, 20, 61, 66, 68, 76, 88, 90, 111, 144,
200, 209

F
Far-field acoustic pressure, 96
Filter
high-pass, 52, 53
low-pass, 52, 53, 115, 121, 197, 198
Fourier acoustics. See Nearfield acoustical
holography (NAH)
Fredholm integral equation, 108

G
Gauss theorem, 102, 167
Generalized cross validation. See
Regularization
Green’s function
free-space Green’s function, 7, 100-102,
147-148
half-space, 132
temporal free-space Green’s function, 166
Guidelines, 4, 47, 79-87, 117, 152, 200, 207

H
Hahn-Banach theorem, 69
Heaviside step function, 165, 169, 172
Helmholtz
equation, 7,9, 11-12, 20, 27-62, 63, 67-71,
73,75,77, 81, 101-128, 131-132,
143-145, 147, 148, 152, 178
integral equation, 101-102, 107-109, 111,
112, 125, 134, 169
integral formulation, 7-9, 102, 110,
112-114, 125, 131-133, 144, 160, 176
integral theory, 7, 8, 101-109
Helmholtz equation least squares method
(HELS)
combined HELS (CHELS), 101-128
modified HELS, 127-129, 131, 135-137,
139-141
transient HELS, 163-193
Hermitian transpose, 30, 38
Hoelder space, 69



Index

Hologram plane, 55

Hologram surface, 5, 6, 8, 30, 31, 55, 56,
60, 83, 143, 164, 176-178, 180, 184,
188, 190

Holography, 3-5, 9, 82, 94, 96, 98, 163

Hybrid NAH. See Nearfield acoustical
holography (NAH)

Hybrid regularization. See Regularization

I

11l condition, 113, 153, 154, 156, 159

111 posed, 2, 46, 64, 76, 128, 131, 153

Image sources, 90, 132

Implementation of NAH. See Nearfield
acoustical holography (NAH)

Impulse response function, 164, 175, 179,
185, 189

Impulsively accelerated, 173, 184—191

Incoming spherical waves, 20, 127, 128,
131, 136

Interior problem, 71

Interior region, 4, 8, 20, 25-26, 61, 67, 68, 76,
87, 88,90, 91, 101, 102, 107, 110, 111,
125, 126, 143, 144, 147, 207

K

Kernel, 108, 179-181, 184, 185, 189

Kirchhoff-Helmholtz integral equation, 164,
168-169, 193

Kroniker delta function, 17

L
Landweber iteration. See Regularization
Laplace operator, 73
Laser holography, 3
Laser scanning, 55, 58, 59
Laser vibrometer, 2, 55, 58
L-curve. See Regularization
Least squares minimization. See Regularization
Lebesgue, 108
Legendre function of the first and second kinds,
16,17, 188
Legendre polynomials, 16-17
Level of constant coordinate
an infinite cylinder, 6
an infinite plate, 6
a sphere, 6
Lipschitz, 68-70, 75
L2-norm, 48-50
Localized spherical waves (LSW), 143-145
Logarithmic bound, 68, 74, 75, 81

231

M
Maximum circle, 63, 64
Measurement aperture, 6, 42, 79-81,
84-87
Microphone array. See Array of microphones
Microphone spacing, 4, 79, 81, 83-86, 89, 94,
96, 99, 191, 192
Minimum circle, 64, 66, 67
Modified Tikhonov regularization.
See Regularization
Monopole, 30, 113, 143
Morozov discrepancy principle.
See Regularization

N
Nearfield acoustical holography (NAH)
the BEM based NAH, 8, 9, 27, 79, 100,
101, 113-117, 119, 121, 123-127, 129,
136, 176-177, 189
the Fourier transform based NAH, 5-7,
27,99
the HELS based NAH (see Helmholtz
equation least squares method (HELS))
hybrid NAH, 127-142
transient NAH, 163, 176-193
Nonuniqueness difficulty, 8, 9, 101,

108-112, 126

(0]

Operational deflection shape (ODS), 56, 58,
59, 85

Operational modal analysis (OMA), 86

Optimal number of expansion. See Expansion

Ordinary differential equation, 12

Origin position, 81

Orthogonality, 17, 23, 28, 30, 64, 108, 164

Outgoing cylindrical waves, 63

Outgoing spherical waves, 12, 20, 123, 127,
128, 131, 136, 143

P

Panel acoustic contribution analysis,
195-221

Parameter-choice methods (PCM), 148, 149,
154, 156-160

Partially vibrating, 116, 118-120

Patch NAH, 6, 61, 79, 84, 85

PCM. See Parameter-choice methods (PCM)

Polynomial, 7, 8, 16-17

Propagator, 5, 6, 49, 67, 76, 129

Pseudo inversion, 30,37-38, 176-177, 180



232

Q

Quadrupole, 29

Quasi-optimality criterion (QOC), 149,
157, 158

R
Radial function, 12, 20, 28, 75, 178
Rayleigh hypothesis, 6367, 76
Rayleigh series, 64—69, 76, 143, 164
Reciprocity principle, 166, 196
Reconstruction of
the acoustic pressure, 3—5, 30-37, 46-54,
56,57, 60, 60, 64, 67, 68, 79, 82, 85,91,
95, 96, 113-120, 122, 124, 127,
130-132, 135-141, 149-152, 154-156,
158, 159, 164, 177, 179, 180, 183, 186,
188-192, 197-199, 204-207, 209, 210,
212, 220, 221
the normal acoustic intensity, 4, 5, 31, 95,
123-125, 201, 204, 205, 208, 211,
220, 221
the normal surface velocity, 30-31, 51-52,
54,56,57,58,60,79,85,113,117-119,
123, 137-141, 189, 190, 198, 199, 201,
204, 207, 208, 210, 211
Rectangular plate, 81, 82
Recursion relation, 15, 18
Reference source, 93
Regularization
DSVD, 149, 157, 159, 160
GCV, 51, 52, 131, 149, 157-160
hybrid, 51, 52, 55, 56-60, 79, 127
Landweber iteration, 131
L-curve, 51, 131, 149, 157-160, 177
least squares minimization, 52, 55, 56,
57,76
modified Tikhonov regularization, 51
Morozov discrepancy principle, 131, 149
SVD, 51, 52, 100, 118, 131
Tikhonov regularization, 51
TSVD, 51, 113, 177
Residue theorem, 164, 170-174, 178—-179
Room constant, 92-94
Runge property, 6971

S

Schauder estimate, 69

Schwarz function, 64

Separation of variables, 11, 12

Sifting property, 101, 102, 167

Signal to noise ratio (SNR), 54, 79, 81, 85, 90,
96, 117, 148, 151-152, 154

Index

Singularities, 8, 50-53, 64-69, 101, 103,
114, 152-154, 171, 172, 177, 189,
197-199

Singular value decomposition.

See Regularization

Smithies theorems, 108

SNR. See Signal to noise ratio (SNR)

Sobolev space, 68—70

Sommerfeld radiation condition, 68, 100, 143,
165-166

Sound pressure level (SPL), 2, 90-91,

94, 195-197, 200-204, 206-209,
213-218

Source-free region, 5, 6, 8, 9

Spatial frequency/spatial wavenumber, 64, 82,
94, 95, 100, 163

Spatial resolution, 3, 4, 79, 83, 84, 96

Spatial wavelength, 81, 82, 85, 95, 117, 121,
129, 163

Spatial window, 6, 42

Spherical Bessel function of the first & second
kind, 12, 15, 23, 24

Spherical coordinates, 9, 11, 12, 27, 28, 80,
144, 146, 178

Spherical Hankel function of the first &
second kind, 12-16, 22-23, 44, 71,
178, 187

Spherical harmonics, 18-23, 29, 46, 61,
64-67, 71,76, 84, 115, 143, 145,

164, 177, 178, 187

Spherical wave, 9, 11-25, 27, 46, 61, 63,
66-68, 76, 80, 84, 101, 116, 123, 127,
128, 131, 136, 143-147, 163

SPL. See Sound pressure level (SPL)

Standing waves, 20

Standoff distance, 79, 81, 83-87, 121, 153,
154, 191

Sturm-Liouville theory, 108

Sudden expansion, 172, 180, 181, 183, 184

T

Tikhonov regularization. See Regularization

Time harmonic function, 12, 63-64

Transcendental equation, 24

Transfer functions, 6, 38, 112, 127, 131, 176,
178, 196-199, 201, 202

Transfer matrices, 50, 149, 153-154, 156

Transient NAH. See Nearfield acoustical
holography (NAH)

Traveling waves, 20, 163

Truncated singular value decomposition
(TSVD). See Regularization

Tukey window or cosine-tapered window, 6



Index 233

U structure, 1, 2,4, 5,7, 38, 45, 46,49, 67, 81,
Unitary orthogonal matrix, 51, 197-198 84, 86-87,89-91, 95, 96, 101, 114, 163,
195-198, 200-202, 204, 207
Vibro-acoustic quantities, 4, 7, 53, 54, 60, 81,

\'% 83-86, 130, 135, 195, 197
Vibrating surfaces

cylinder, 139

object, 31, 37, 38, 80, 132, 148 W

panel, 66, 96, 197 Wrap-around errors, 6

sphere, 20-21, 24, 31, 37, 38, 64, 116,

118-120, 135-137



	Preface
	Contents
	Chapter 1: Introduction
	1.1 Conventional Noise and Vibration Diagnoses
	1.2 Holography
	1.3 Acoustical Holography
	1.4 Near-Field Acoustical Holography
	1.5 Fourier Transform-Based NAH
	1.6 Boundary Element Method-Based NAH
	1.7 Helmholtz Equation Least-Squares Method-Based NAH

	Chapter 2: The Spherical Wave Functions
	2.1 The Helmholtz Equation Under the Spherical Coordinates
	2.2 Solution to R(kr)
	2.3 Solution to Theta(theta)
	2.4 Solution to Phi(phi)
	2.5 Solution to (r, theta, phi; omega)

	Chapter 3: The Helmholtz Equation Least-Squares Method
	3.1 The HELS Formulations
	3.2 Reconstructing the Radiated Acoustic Field
	3.3 Predicting the Radiated Acoustic Field
	3.4 Error Analyses
	3.5 Regularization
	3.6 Regularization Through Truncation of the Expansion Functions
	3.7 Other Regularization Techniques

	Chapter 4: Validity of the HELS Method
	4.1 Rayleigh Hypothesis
	4.2 The Rayleigh Series Versus HELS Formulations
	4.3 Justification of the HELS Formulations
	4.4 Significance of the Justification

	Chapter 5: Implementation of the HELS-Based NAH
	5.1 Guidelines for Implementing the HELS Method
	5.2 Practical Considerations in Implementing the HELS Method
	5.3 Test Configuration
	5.4 Test Environment
	5.5 Clarifications

	Chapter 6: Combined Helmholtz Equation Least-Squares (CHELS) Method
	6.1 The Helmholtz Integral Theory
	6.2 Nonuniqueness Difficulties
	6.3 Discrete Helmholtz Integral Formulations
	6.4 The Combined Helmholtz Equation Least-Squares Method
	6.5 Applications of the CHELS Method

	Chapter 7: Hybrid NAH
	7.1 Modified HELS
	7.2 Hybrid NAH
	7.3 Reconstructing Acoustic Fields Using the Hybrid NAH

	Chapter 8: Equivalent Sources Using HELS
	8.1 Localized Spherical Waves
	8.2 Distributed Spherical Waves
	8.3 Distributed Point Sources
	8.4 Regularization for LSW, DSW, and DPS Expansions
	8.5 Performances of LSW, DSW, and DPS Expansions
	8.6 Locations of the Auxiliary Sources
	8.7 Condition Number of the Transfer Matrices
	8.8 Effect of Measurement Number
	8.9 Choice of Regularization

	Chapter 9: Transient HELS
	9.1 Transient Acoustic Radiation
	9.2 Residue Theorem
	9.3 Extension to Arbitrary Time-Dependent Excitations
	9.4 Transient NAH Formulations
	9.4.1 Reconstruction Through BEM-Based NAH
	9.4.2 Reconstruction Through HELS-Based NAH
	9.4.3 Transient NAH Formulations
	9.4.4 Applications of the Transient NAH Formulations


	Chapter 10: Panel Acoustic Contribution Analysis Using HELS
	10.1 The HELS-Based Panel Acoustic Contribution Analysis
	10.2 Procedures for Conducting HELS-Based Panel Acoustic Contributions Analyses
	10.3 Stories of Panel Acoustic Contributions Analyses
	10.3.1 Story 1: Sound Transmission Paths
	10.3.2 Story 2: Panel Acoustic Contribution Analyses
	10.3.3 Story 3: Engine Block Noise Analyses


	References
	Index

