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Abstract We find the generating set of SL-invariant polynomials in four qubits
that are also invariant under permutations of the qubits. The set consists of four
polynomials of degrees 2, 6, 8, and 12, for which we find an elegant expression in
the space of critical states. These invariants are the degrees if the basic invariants
of the invariants for F4, and in fact, the group plays an important role in this
note. In addition, we show that the hyperdeterminant in four qubits is the only
SL-invariant polynomial (up to powers of itself) that is non-vanishing precisely on
the set of generic states.
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1 Introduction

With the emergence of quantum information science in recent years, much effort
has been given to the study of entanglement [7]: in particular, to its characterization,
manipulation and quantification [15]. It was realized that highly entangled states are
the most desirable resources for many quantum information processing tasks. While
two-party entanglement has been very well studied, entanglement in multi-qubits
systems is far less understood. Perhaps one of the reasons is that n qubits (with
n > 3) can be entangled in an uncountable number of ways [5, 6, 18] with respect
to stochastic local operations assisted by classical communication (SLOCC). It is
therefore not very clear what role entanglement measures can play in multi-qubits
or multi-qudits systems unless they are defined operationally. One exception from
this conclusion are entanglement measures that are defined in terms of the absolute
value of SL-invariant polynomials [3, 6, 10, 12, 14, 16, 18, 19].

Two important examples are the concurrence [20] and the square root of the
3-tangle (SRT) [3]. The concurrence and the SRT, respectively, are the only
SL.2;C/ ˝ SL.2;C/ and SL.2;C/ ˝ SL.2;C/ ˝ SL.2;C/ invariant measures of
entanglement that are homogenous of degree 1. The reason for that is that in two
or three qubit-systems there exists a unique SL-invariant polynomial. However,
for 4-qubits or more, the picture is different since there are many homogenous
SL-invariant polynomials such as the 4-tangle [16] or the hyperdeterminant [12].

In this paper, we find the generating set of all SL-invariant polynomials with
the property that they are also invariant under any permutation of the four qubits.
Such polynomials yield a measure of entanglement that capture genuine 4 qubits
entanglement. In addition, we show that the 4-qubit hyperdeterminant [12] is the
only homogeneous SL-invariant polynomial (of degree 24) that is non-vanishing
precisely on generic states.

This paper is written with a variety of audiences in mind. First and foremost are
the researchers who study quantum entanglement. We have therefore endeavored
to keep the mathematical prerequisites to a minimum and have opted for proofs
that emphasize explicit formulas for the indicated SL-invariant polynomials. We are
aware that there are shorter proofs of the main results using the important work of
Vinberg [17]. However, to us, the most important aspect of the paper is that the Weyl
group of F4 is built into the study of entanglement for 4 qubits. Indeed, the well-
known result of Shepherd–Todd on the invariants for the Weyl group of F4 gives an
almost immediate proof of Theorem 2.1. The referee has indicated a short proof of
Theorem 3.3 using more algebraic geometry. Although our proof is longer, we have
opted to keep it since it is more elementary. We should also point out that in the
jargon of Lie theory the hyperdeterminant is just the discriminant for the symmetric
space corresponding to SO.4; 4/.
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2 Symmetric invariants

Let Hn D ˝n
C
2 denote the space of n-qubits, and let G D SL.2;C/˝n act on Hn

by the tensor product action. An SL-invariant polynomial, f . /, is a polynomial in
the components of the vector  2 Hn, which is invariant under the action of the
group G. That is, f .g / D f . / for all g 2 G. In the case of two qubits there
exists only one unique SL-invariant polynomial. It is homogeneous of degree 2 and
is given by the bilinear form . ; /:

f2. / � . ; / � h �j�y ˝ �y j i ;  2 C
2 ˝ C

2 ;

where �y is the second 2 � 2 Pauli matrix with i and �i on the off-diagonal terms.
Its absolute value is the celebrated concurrence [20].

Also in three qubits there exists a unique SL-invariant polynomial. It is homoge-
neous of degree 4 and is given by

f4. / D det

�
.'0; '0/ .'0; '1/

.'1; '0/ .'1; '1/

�
;

where the two qubits states 'i for i D 0; 1 are defined by the decomposition j i D
j0ij'0i C j1ij'1i, and the bilinear form .'i ; 'j / is defined above for two qubits.
The absolute value of f4 is the celebrated 3-tangle [3].

In four qubits, however, there are many SL-invariant polynomials and it is
possible to show that they are generated by four SL-invariant polynomials (see
e.g., [6] for more details and references). Here we are interested in SL-invariant
polynomials that are also invariant under the permutation of the qubits.

Consider the permutation group Sn acting by the interchange of the qubits. LeteG be the group Sn ËG: That is, the set Sn �G with multiplication

.s; g1 ˝ � � � ˝ gn/.t; h1 ˝ � � � ˝ hn/ D .st; gt�11h1 ˝ � � � ˝ gt�1nhn/:

Then eG acts on Hn by these two actions. We are interested in the polynomial
invariants of this group action.

One can easily check that f2 and f4 above are also eG-invariant. However,
this automatic eG-invariance of G-invariants breaks down for n D 4. As is well
known [6], the polynomials on H� that are invariant underG are generated by four
polynomials of respective degrees 2, 4, 4, 6. For eG we have the following theorem:

Theorem 2.1. The eG-invariant polynomials on H� are generated by four
algebraically independent homogeneous polynomials h1; h2; h3 and h4 of respective
degrees 2; 6; 8 and 12: Furthermore, the polynomials can be taken to be
F1.z/;F3.z/;F4.z/;F6.z/ as given explicitly in Eq. (1) of the proof.



262 Gilad Gour and Nolan R. Wallach

Proof. To prove this result we will use some results from [6]. Let

u0 D 1

2
.j0000i C j0011i C j1100i C j1111i/;

u1 D 1

2
.j0000i � j0011i � j1100i C j1111i/;

u2 D 1

2
.j0101i C j0110i C j1001i C j1010i/;

u3 D 1

2
.j0101i � j0110i � j1001i C j1010i/:

LetA be the vector subspace of H� generated by the uj . ThenGA contains an open
subset of H� and is dense. This implies that any G-invariant polynomial on H� is
determined by its restriction to A. Writing a general state in A as z D P

ziui , we
can choose the invariant polynomials such that their restrictions to A are given by

E0.z/ D z0z1z2z3; Ej .z/ D z2j0 C z2j1 C z2j2 C z2j3 ; j D 1; 2; 3:

In [6] we give explicit formulas for their extensions to H�:
Also, let W be the group of transformations of A given by

fg 2 G j gA D AgjA:

ThenW is the finite group of linear transformations of the form

ui 7�! "ius�1i

with "i D ˙1, s 2 S4 and "0"1"2"3 D 1. One can show [6, 19] that every
W -invariant polynomial can be written as a polynomial in E0; E1; E2; E3. We now
look at the restriction of the S4 that permutes the qubits toA. Set �i D .i; iC1/, i D
1; 2; 3 where .2; 3/ corresponds to fixing the first and last qubit and interchanging
the second and third. Then they have matrices relative to the basis uj W

�1jA D

2
6664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

3
7775 ; �2jA D 1

2

2
6664
1 1 1 1

1 1 �1 �1
1 �1 �1 1

1 �1 1 �1

3
7775 ; �3jA D

2
6664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

3
7775 :

Since S4 is generated by .1; 2/; .2; 3/; .3; 4/, it is enough to find thoseW -invariants
that are also �i jA invariant for i D 1; 2. We note that the only one of the Ej that is not
invariant under �1jA is E0 and E0.�1z/ D �E0.z/ for z 2 A. Thus if F.x0; x1; x2; x3/
is a polynomial in the indeterminates xj , then F.E0; E1; E2; E3/ is invariant under
� D �1jA if and only if x0 appears to even powers. It is an easy exercise to show
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that if E4 D z80 C z81 C z82 C z83, then any polynomial in E20 ; E1; E2; E3 is a polynomial
in E1; E2; E3; E4 and conversely (see the argument in the very beginning of the next
section). Thus we need only find the polynomials in E1; E2; E3; E4 that are invariant
under � D �2jA. A direct calculation shows that E1 is invariant under � . Also,

E21 ı � D E21 ; E2 ı � D 3

4
E21 � 1

2
E2 C 6E0 ; E0 ı � D � 1

16
E21 C 1

8
E2 C 1

2
E0:

Since E0; E21 ; E2 forms a basis of the W -invariant polynomials of degree 4 this
calculation shows that the space of polynomials of degree 4 invariant under �; �
and W (hence under eW ) consists of the multiples of E21 . The space of polynomials
invariant under W and � and homogeneous of degree 6 is spanned by E31 ; E1E2,
and E3. From this it is clear that the space of homogeneous degree 6 polynomials
that are invariant under eW is two dimensional. Since E31 is clearly eW -invariant there
is one new invariant of degree 6. Continuing in this way we find that to degree 12
there are invariants h1; h2; h3; h4 of degrees 2; 6; 8 and 12, respectively, such that:
(1) the invariant of degree 8, h3, is not of the form ah41 C bh1h2, (2) there is no new
invariant of degree 10, and (3) the invariant of degree 12, h4, cannot be written in
the form ah61 C bh31h2 C ch21h3. To describe these invariants we write out a new set
of invariants. We put

Fk.z/ D 1

6

X
i<j

�
zi � zj

�2k C 1

6

X
i<j

�
zi C zj

�2k
: (1)

We note that F1 D E1, F2 D E21 . A direct check shows that these polynomials are
invariant under eW . Since F3.z/ ¤ cE31 we can use it as the “missing polynomial”.
If one calculates the Jacobian determinant of F1.z/;F3.z/;F4.z/;F6.z/, then it is
not 0. This implies that none of these polynomials can be expressed as a polynomial
in the others. Thus they can be taken to be h1; h2; h3; h4.

Let AR denote the vector space over R spanned by the uj . If � 2 AR is non-

zero, then we set for a 2 A, s�a D a � 2h�jai
h�j�i �. Then such a transformation

is called a reflection. It is the reflection about the hyperplane perpendicular to �.
The obvious calculation shows that � D su3and if ˛ D 1

2
.u0 � u1 � u2 � u3/,

then � D s˛ . We note that W is generated by the reflections corresponding to
u0 � u1, u1 � u2; u2 � u3 and u2 C u3. This implies that the group eW is generated
by reflections. One also checks that it is finite (actually of order 576). The general
theory (cf. J. E. Humphreys [8, Thm 3.5, p. 54]) implies that the algebra of invariants
is generated by algebraically independent homogeneous polynomials. Using this it
is easy to see that F1.z/;F3.z/;F4.z/;F6.z/ generate the algebra of invariants.

Remark 2.2. Alternatively, we note that eW is isomorphic with the Weyl group
of the exceptional group F4 (see Bourbaki, Chapitres 4, 5, et 6, Planche VIII pp.
272, 273). The exponents (on p. 273) are 1, 5, 7, 11. This implies that the algebra
of invariants is generated by algebraically independent homogeneous polynomials
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of degrees one more than the exponents, so 2, 6, 8, 12. We also note that the
basic invariants for F4 were given as F1.z/;F3.z/;F4.z/;F6.z/ for the first time
by M. L. Mehta [11].

For n � 4 qubits the analogue of the space A would have to be of dimension
2n � 3n: Thus even if there were a good candidate one would be studying, say,
for 5 qubits, a space of dimension 17 and an immense finite group that cannot be
generated by reflections.

3 A special invariant (hyperdeterminant) for 4 qubits

In this section we show that the hyperdeterminant for qubits is the only polynomial
that quantifies genuine 4-way generic entanglement. We start by observing that
Newton’s formulas (relating power sums to elementary symmetric functions) imply
that if a1; : : : ; an are elements of an algebra over Q (the rational numbers), then

a1a2 � � �an D fn.p1.a1; : : : ; an/; : : : ; pn.a1; : : : ; an//

with fn a polynomial with rational coefficients in n indeterminates and
pi .x1; : : : ; xn/ D P

xij . This says that in the notation of the previous theorem

�.z/ D
Y
i<j

.zi � zj /
2.zi C zj /

2

is eW -invariant. Indeed, take a1; : : : ; an.n�1/ to be

f.zi � zj /
2 j i < j g [ f.zi C zj /

2 j i < j g

in some order. We will also use the notation � for the corresponding polynomial of
degree 24 on H�.

We define the generic set, ˝ , in H� to be the set of elements, v, such that Gv
is closed and dimGv is maximal (that is, 12). Then every such element can be
conjugated to an element of A by an element of G. It is easily checked that

˝ \A D fP ziui j zi ¤ ˙zj if i ¤ j g:

This implies that ˝ D f� 2 H� j �.�/ ¤ 0g.

Proposition 3.1. If f is a polynomial on H� that is invariant under the action of
G and is such that f .H� �˝/ D 0, then f is divisible by � .

Proof. Since f .z/ D 0 if zi D ˙zj for i ¤ j we see that f is divisible by zi � zj
and zi C zj for i < j . Thus if

�.z/ D
Y
i<j

.zi � zj /.zi C zj /;
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then f D �g with g a polynomial on A. One checks that �.sz/ D det.s/�.z/ for
s 2 W (see the notation in the previous section). Since f .sz/ D f .z/ for s 2 W we
see that g.sz/ D det.s/g.z/ for s 2 W: But this implies that g.z/ D 0 if zi D ˙zj
for i ¤ j . So g is also divisible by �. We conclude that f is divisible by �2. This
is the content of the theorem.

Lemma 3.2. � is an irreducible polynomial.

Proof. Let � D �1�2 � � ��m be a factorization into irreducible (non-constant)
polynomials. If g 2 G, then since the factorization is unique up to order and scalar
multiple there is for each g 2 G, a permutation �.g/ 2 Sm and ci .g/ 2 C � f0g,
i D 1; : : : ; m such that �j ı g�1 D cj .g/��.g/j for j D 1; : : : ; m. The map
g 7�! �.g/ is a group homomorphism. The kernel of � is a closed subgroup of G.
Thus G= ker � is a finite group that is a continuous image of G. So it must be the
group with one element since G is connected. This implies that each �j satisfies
�j ıg�1 D cj .g/�j for all g 2 G. We therefore see that cj W G ! C�f0g is a group
homomorphism for each j . But the commutator group of G is G. Thus cj .g/ D 1

for all g. This implies that each of the factors �j is invariant under G. Now each
�j jA divides �jA thus it must be a product

Y
i<j

.zi � zj /
aij .zi C zj /

bij

by unique factorization. We note that if i < j , then f.zi C zj / ı s j s 2 W g D
f.zi � zj / ı s j s 2 W g D f".zi C zj / j i < j; " 2 f˙1gg [ fzi � zj j i ¤ j g.
This implies that since �j jA is non-constant and W -invariant that each �j jA must be
divisible by�jA. Now arguing as in the previous proposition, the invariance implies
that �j is divisible by �2 D � . This implies that m D 1.

Theorem 3.3. If f is a polynomial on H� such that f .�/ ¤ 0 for � 2 ˝ , then
there exists c 2 C, c ¤ 0 and r such that f D c�r .

Proof. We may assume that f is non-constant. Let h be an irreducible factor of f .
Then h.�/ ¤ 0 if � 2 ˝ . This implies that the irreducible variety

Y D fx 2 H� j h.x/ D 0g � H� �˝ D fx 2 H� j �.x/ D 0g:

Since both varieties are of dimension 15 over C they must be equal. This implies
that h must be a multiple of � . Since f factors into irreducible non-constant factors
the theorem follows.

4 Discussion

In this paper we have shown that the set of all 4-qubit SL-invariant polynomials that
are also invariant under permutations of the qubits is generated by four polynomials
of degrees 2, 6, 8, 12. Using a completely different approach, in [14] it was also
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shown that these polynomials exist, but they were not given elegantly as in Eq. (1). In
addition, we have shown here that the hyperdeterminant [12] is the only SL-invariant
polynomial (up to its powers) that is not vanishing precisely on the set of generic
states.

Since the hyperdeterminant (in our notations �.z/) quantifies generic entangle-
ment, a state with the most amount of generic entanglement can be defined as a
state, z, that maximizes j�.z/j. We are willing to conjecture that the state

jLi D 1p
3
.u0 C !u1 C N!u2/ ; ! � ei	=3 ;

is the unique state (up to a local unitary transformation) that maximizes j�.z/j.
It was shown in [6] that the state jLi maximizes uniquely many measures of 4 qubits
entanglement. Moreover, one can easily check that the state jLi is the only state for
which E0 D E1 D E2 D 0 while E3.jLi/ D 1=9. It is known that a state with such
a property is unique [9]. Similarly, we found out the unique state, jF i for which
F1.jF i/ D F3.jF i/ D F4.jF i/ D 0 but F6.jF i/ ¤ 0. The (non-normalized)
unique state (up to a local unitary transformation) is

jF i D .3 � p
3/u0 C .1C i/

p
3u1 C .1 � i/p3u2 � i.3� p

3/u3 :
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